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President’s Address

On behalf of the Executive Committee of the International Association for Pattern Recog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that we must thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for [ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPR Prize Lectures at ICPR 2024. This year we honor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of Pattern Recognition and whose past contributions,
current research activity and future potential may be regarded as a model to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in TAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer—Rao bound, and Fisher—
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IICPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. In ICRP 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image, Video, Speech, and Signal Analysis; Biometrics and Human-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2-5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in four meeting rooms with a total of 40 oral sessions. In total 24 workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork Al,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conference would not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, Rama Chellappa and Cheng-Lin Liu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-Marc Ogier and Prabir Bhattacharya) and Tutorial Chairs (B.B. Chaudhuri, Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium. We would like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the Track Chairs and the meta reviewers who devoted significant time to
the review process and preparation of the program. We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

We hope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler
Anil Jain
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Abstract. In July 2020, Versatile Video Coding (VVC/H.266) has been
finalized as the next-generation video coding standard. Due to the
diverse characteristics of video, motion prediction in fractional precision
is required in the video coding. For this, VVC/H.266 uses Discrete Cosine
Transform-based Interpolation Filter (DCTIF) but, it is being a typical
low-pass filter with fixed integer coefficients so it cannot guarantee opti-
mal performance across all videos. Recently, deep learning-based tech-
nology has been continually developed onwards. This paper proposed
the In-Loop Interpolation Filter (ILIF) which can generate high-quality
fractional pixels. ILIF is an Super-Resolution (SR) model with our pro-
posed pixel embedding technique. Pixel Embedding allows the correla-
tion between integer and sub-pixels to be maintained during learning and
it is highly effective in the inter coding. Optimized through a divide-and-
conquer learning approach, ILIF replaces the DCTIF and is integrated
with inter prediction in VVC/H.266. ILIF considered only the Y com-
ponent of YUV420 format and the BD-rate performance was compared
and analyzed with the anchor of VVC/H.266. Two integration methods
(MODE 1, 2) between ILIF and VVC/H.266 were presented. As a result of
the experiment, for MODE 1 which applies ILIF only for fractional pixel
generation, the gains were —1.42% for All-QP, —1.54% for High-QP, and
—1.24% for Low-QP. Additionally, in MODE 2 which integrates integer
pixel filtering and sub-pixel generation with ILIF, it showed the gains of
—3.92% for All-QP, —4.01% for High-QP, and —3.13% for Low-QP.

Keywords: Versatile Video Coding (VVC/H.266) - fractional
interpolation - Convolutional Neural Network (CNN) - Pixel
Embedding

1 Introduction

®

Check for
updates

In July 2020, Versatile Video Coding (VVC/H.266) was officially announced
as the final standard [2]. VVC/H.266 was developed with the goal of achieving
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Fig. 1. Architecture of VVC/H.266

more than twice the coding efficiency of the previous standard the HEVC/H.265.
Additionally, it was designed to handle Ultra-High Definition (UHD) videos
ranging from 4K to 16K more efficiently and to support Virtual Reality (VR)
content. As the display technology advanced, VVC/H.266 also supports High
Dynamic Range (HDR), 10-/16-bit color depths as well as brightness levels of
4,000 nits and 10,000 nits. Consequently, the computational complexity signifi-
cantly increased with encoding predicted to be up to 10 times higher and decod-
ing predicted up to 2 times larger compared to HEVC/H.265.

Figure1 illustrates the schematic overall architecture of VVC/H.266. As
shown in the figure, VVC/H.266 has a block-based hybrid video coding struc-
ture that integrates various element technologies. Conceptually, video coding
technology eliminates spatial, temporal, and statistical redundancies present in
videos.

A video is a digital signal that quantizes continuous natural signals into
discrete forms. Therefore, as continuous signals are represented by limited pix-
els, the performance of motion prediction for reference blocks is observed to
degrade due to aliasing, rapid object movements, and other factors. Addition-
ally, reference frames are transformed signals that have undergone quantization
and inverse quantization in a block-wise manner during encoding and decoding.
Although in-loop filters improve these, there are still quality differences between
current frames making accurate motion prediction difficult.

To address the prediction performance degradation caused by the discontinu-
ity of digital signals and quantization of brightness values, inter frame prediction
applies low-pass filters to interpolate signals between pixels at sub-pixel levels
[18]. VVC/H.266 uses the Discrete Cosine Transform-based Interpolation Filter
(DCTIF) to generate sub-pixels from integer pixels. Although fractional pix-
els generated by interpolation filters enable more precise motion prediction, the



Pixel Embedding for Fractional Interpolation in Video Coding 3

1%t Stage Output 2n Stage Output

—

2x2 8x8 Final Output of the ILIF

Fig. 2. Example of Integer Pixel Embedding.

input signal does not always respond ideally to handcrafted filters. Moreover, the
filter coefficients are approximated to integer values for hardware optimization
and high-speed computation which inherently introduces fundamental errors.
These errors can become significant for certain input signals.

Recently, deep learning-based methods have shown remarkable results in
image and video processing, outperforming classical methods. Video coding is
also actively researching deep learning, with in-loop filters being representative
examples [10]. However, several significant issues remain with the introduction
of deep learning technologies for sub-pixel generation.

Firstly, there is the challenge of constructing datasets for training. NN models
for image or video quality typically set unmodified original quality as the target
value following general supervised learning principles. However, there are no
target values for sub-pixels generated from integer pixels. To overcome this,
sub-pixels generated by DCTIF are used as target values or low-pass filters
are applied to the original quality images such as gaussian. Nevertheless, these
approaches do not consider the sub-pixel-based inter prediction process and fail
to guarantee performance in highly efficient VVC/H.266.

Secondly, the approach to sub-pixel generation as a SR problem causes issues.
SR research is also an active research field in video coding, such as Reference
Picture Resampling (RPR) or Video Super-Resolution (VSR) [5]. The output
of SR models includes both integer and sub-pixels. In this case, the output integer
pixels may not match the input integer pixels. Since sub-pixel motion estimation
during the coding process is entirely dependent on input integer pixels, such
discrepancies negatively impact coding efficiency.

In a real environment, the correlation between integer pixels and sub-pixels
is a factor that greatly determines coding efficiency. This because of the sub-
pixel motion estimation occurs after the integer pixels have been determined.
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Fig. 3. Two-Stage Model using Pixel Embedding Methods.

Also, the reason why the SR model which shows a higher quality improvement
surprisingly does not improve coding efficiency significantly.

In conclusion, a new approach that simultaneously consider both integer and
sub-pixels during the learning and coding process is necessary unlike traditional
deep learning-based sub-pixel generation research.

2 Related Work

Traditional approaches to enhance the interpolation filter have mainly focused on
three aspects: enhancing fixed filters, designing adaptive filters, and developing
hardware for fractional interpolation. Lakshman et al. have proposed a gener-
alized interpolation framework for MCP that uses fixed-point Infinite Impulse
Response (ITR) and Finite Impulse Response (FIR) filters to enhance the perfor-
mance of fixed filters [9]. Wittmann et al. introduced the concept of a separable
adaptive interpolation filter using 1-dimensional tap filters sequentially, which
reduced computational cost and improved efficiency [23].

Ye et al. also proposed an enhanced adaptive interpolation filter that includes
full pixel position filters, filter offsets, radial 12-position filters, and RD-based
filter selection [26]. Lv et al. proposed a resolution-adaptive tap filter, selecting
a 4-tap filter for high-resolution and 6-/10-tap filters for low-resolution videos
[13]. Guo et al. proposed an efficient VLSI design by configuring the tap filters
of HEVC/H.265 with an optimized parallel pipeline structure from a hardware
perspective [6].

Kim and Lee suggested an 11-/12-tap Discrete Sine Transform-based Inter-
polation Filter (DSTIF) to emphasize high-frequency components [8]. Choi and
Lee also designed a 12-tap DCTIF to improve filter response in high-frequency
bands, enhancing the efficiency of VVC/H.266 [4].

As deep learning-based computer vision technology develops, attempts to
apply it to interpolation filter research have been reported. Pham et al. have
proposed a Convolutional Neural Network (CNN)-based interpolation filter for
the luma and chroma components of HEVC/H.265, utilizing the sub-pixel values
generated during the encoding process as the training dataset. Additionally, they
applied an RDO-based interpolation filter selection method to achieve coding
efficiency, adding two syntax elements for this purpose [17].
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Fig. 4. Architecture of 1-st Stage Filter Model.

Similarly, Yan et al. used data generated by DCTIF to train a CNN model
for 1/2 sub-pixel generation. They enhanced the efficiency of HEVC/H.265 by
individually training 1/2 sub-pixels in vertical, horizontal, and diagonal direc-
tions [25]. In subsequent research, they proposed a CNN model for unidirectional
and bidirectional motion compensation (MC), guiding the training to predict the
current block to be encoded rather than generating sub-pixels from the refer-
ence block [24].

Liu et al. also proposed a CNN-based filter for sub-pixel interpolation in
HEVC/H.265. They designed a grouped network structure for inferring sub-
pixel blocks, reflecting that sub-pixel interpolation in video coding is generated
at the same resolution as integer blocks. Additionally, they introduced Gaussian
blurring to the target values used in training the sub-pixel generation model [11].

Murn et al. proposed a CNN-based interpolation filter for low-complexity
inter prediction in VVC/H.266, demonstrating the potential for performance
improvement [15].

Zhang et al. designed an interpolation filter based on the VDSR model [7],
using the results of DCTIF for the dataset and introducing a constraint mask
during training to maintain integer positions [27].

In this study, we prioritized maintaining the correlation and dependency
between integer/fractional pixels. Likewise, recent studies on neural networks
targeting video coding have attempted to utilize these kind of semantic features.
Tian et al. suggested a framework aimed at unsupervised video semantic com-
pression. The framework optimizes video compression by focusing on preserving
semantic features rather than purely visual quality using a novel Non-Semantics
Suppressed (NSS) learning strategy [20-22].

Deep learning-based interpolation filters must be designed to maintain cor-
relation between pixels. In particular, in the case of VVC/H.266 which has very
high coding efficiency, it is difficult to guarantee performance when applying a
model designed for HEVC/H.265. To solve this problem, a fundamental app-
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Table 1. Summary of 1-st Stage Filter Model.

Step |Layer Structure Output Size [Parameters
Input |Luma Pixel + QP-Map 2x128%x128 |-
1 Conv (3x3) + PReLU 128x128x128(2,433

2~17 |Conv (3x3) + PReLU + Conv (3x3): ResBlock (x16)[128x128x1284,722,704
18 Conv (3x3) + PReLU + Skip-Connection with Step 1]{128x128x128(147,585
(3x3) 1x128x128 |1,153
Total Parameters|4,873,875

Output|Conv

roach is needed that can maintain correlation during model design and learning
processes.

3 In-Loop Interpolation Filter

The proposed Pixel Embedding (PE) refers to the process of directly inserting
specific pixel values into specific locations in the high-resolution output image.
To clarify the concept, the resolution of the input (E) and the output (F) in the
SR model can be expressed as follows:

Hout:TXHin )

o 1)
out =T X Wzn )

Here, (Hin, Win) and (Hout, Wour) are the resolutions of the input image and
output image, respectively. r is the scaling factor of the SR model. Therefore, the
equation for embedding F into the integer pixel positions of F' can be expressed
as follows:

F(ri,rj) =E(i,j) for 0<i<H;, , 0<j< W, . (2)

All pixel values F'(7,7) in the output are used to calculate the loss function with
the target values during the training process. Since the pixel value F(ri,rj) is
always equal to the input pixel E(i,7) of the model, the correlation between the
integer pixels and the sub-pixels is maintained even as training progresses.

However, the limitation of this approach is that since the value F(ri,7j) does
not change, it is difficult to expect an overall improvement in high-resolution
quality due to training. Originally, SR models aim for both quality improvement
and up-scaling simultaneously, so this kind of constraint needs to be improved.

The quality of all pixels F'(¢, j) in the output image is constrained by the qual-
ity of the fixed pixels F'(ri,rj). Therefore, if the quality of F'(ri,rj) is improved
compared to the input pixel E(i,j), the quality of all pixels F(i,j) can also be
improved. From this perspective, we can introduce a filter model V(-) that gen-
erates a high-quality output (I) with the same resolution as the input image
(E). So, we can modify the equation as follows:
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Fig. 5. 2-nd Stage Model.

I1(i,j) = V(E)(i,5) , 3)
F(ri,rj) =1(i,j) for 0<i< H;p,, 0<j<W,;, .

By changing the target of pixel embedding to the output of the filter model
V(-), the quality of the output pixels F'(i, j) from the SR model is also improved
compared to the previous results. Thus, this approach achieves improved qual-
ity of integer pixels, generation of high-quality sub-pixels, and maintains the
dependency between integer and sub-pixels through pixel embedding.

Figure 2 details this process. I represents the integer pixel samples output
from the filter model, exemplified as having a size of 2 x 2. F represents the
sub-pixel samples output from the SR model, exemplified as having a size of
8 x 8, which is four times the input resolution. The final output maintains the
correlation between integer and sub-pixels by embedding I into the integer pixel
positions of F. Through the pixel embedding process, the quality of the opti-
mized integer pixel samples from filter model is preserved Also, high-quality
sub-pixel samples with well-preserved correlation to the integer pixels are gen-
erated.

However, introducing the filter model V(:) and the SR model separately
can lead to additional issues. To reduce the complexity of the neural network
model, we did not consider an ensemble approach of separate models. Therefore,
we adopted a two-stage training strategy that divides the network module to
achieve filtering and SR with a single model simultaneously.

Figure 3 illustrates the Pixel Embedding process through the proposed two-
stage model. We have employed a two-stage learning method that separates the
filter part and the SR part within a single network and optimized them sepa-
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Table 2. Summary of 2-nd Stage SR Model.

Step  |Layer Structure Output Size Parameters

Input |Luma Pixel + QP-Map 2x128x128 -

1 Conv (3x3) + PReLU 128x128x128 2,433

2~17 |Conv (3x3) + PReLU + Conv (3x3): ResBlock (x16)128x128x128  |4,722,704

18 Conv (3x3) + PReLU + Skip-Connection with Step 1/128x128x128 147,585

19  Conv (3x3) 1x128%128 1,153
Filter Part Parameters|4,873,875

20 Conv (3x3) 512x128%x128 590,336

21 PixelShuffle (2x) 128x256x256 |-

22 Conv (3x3) 512x256x256 590,336

23 PixelShuffle (2x) 128x512x512 -

24 Conv (3x3) 512x512x512 590,336

25 PixelShuffle (2x) 128x 1,024 x1,024/-

26 Conv (3x3) 512x1,024x1,024/590,336

27 PixelShuffle (2x) 128%2,048x2,048-

28 Conv (3x3) 1x2,048x2,048 |1,153

Output/Pixel Embedding: F(ri,rj) = I1(i,7) 1x2,048%x2,048 |-

SR Part Parameters 2,362,497

Total Parameters 7,236,372

rately. The two parts are optimized in separate stages, and the trained weights
of the filter part are fully shared in the SR part. This approach achieves the
same goal not using separate filter and SR models but with a single network.

As shown in Fig. 4, 1-st stage model functions as a typical filtering model
that performs an E2E mapping of low-quality input pixels to high-quality output
pixels. Thus, the goal of the first stage is to fine-tune the model to improve the
quality of the input image, excluding the up-scaling part. Table1 summarizes
the configuration of the 1-st stage model and the dimensions and number of
parameters of the feature map output from each layer. The 1-st stage model is
a filter model with 4,873,875 parameters.

As shown in Fig. 5, this 2-nd stage model tunes the up-scaling part to generate
sub-pixel samples. All parameters tuned in the 1-st stage (Feature Extraction,
Feature Refinement, Integer-Pizel Reconstruction) are transferred and shared.
Also, these are frozen and excluded from the weight update process in the 2-
nd stage learning. This means that the integer pixel output from the 1-st stage
does not change at this point. However, since the integer pixel part included
in the output of the this stage changes, the output values of the 1-st stage are
embedded into the output values of the 2-nd stage to correct this in the final
output.

Discontinuity between integer pixels and subpixels caused by embedding
naturally disappear during the process of backpropagating the loss function.
This is because the loss function is calculated over the entire plane containing
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Fig. 6. Flow Chart of the proposed Inter Prediction with ILIF.

the embedded integer pixels. Table2 summarizes the configuration of the 2-nd
stage model and the dimensions and number of parameters of the feature map
output from each layer. The 2-nd stage model is an SR model with 7,236,372
parameters. Among them, excluding the parameters shared and freezed from the
1-st stage model, the number of parameters is 2,362,497.

The proposed ILIF simultaneously performs the roles of an in-loop filter
and an interpolation filter in the inter prediction process targeting VVC/H.266.
Thus, there are 2 modes for integrating ILIF into the VVC/H.266 inter prediction
process as follows:

— MODE 1: Sampling Fractional Pixels of ILIF for DCTIF Replacement:
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e Use only the fractional-pixel output F from ILIF to replace the DCTIF

e This method enhances the motion compensation accuracy by providing
high-quality fractional pixels

— MODE 2: Combined Integer Pixel Filtering and Fractional Pixel Sampling:

e Use both the integer pixel output I to filter the reference frame and the
fractional-pixel output F' to replace DCTIF

e This combined approach leverages the strengths of both integer pixel
filtering and fractional-pixel generation for optimal performance

Figure 6 illustrates the inter prediction process within VVC/H.266 integrated
with ILIF. The components numbered as (1), (2), (3) in the figure represent the
additional logic introduced with ILIF integration. The ILIF model is trained
considering only the luma components. During the inter prediction stage, the
ILIF model is called to generate fractional samples at 16 times the size when the
reference sample is a luma component as shown in component (1). The generated
fractional samples include enhanced integer pixel samples.

MODE 1 corresponds to using the fractional samples generated by ILIF as
shown in component (3) for 1/4 and 1/16 level motion compensation (MC)
in AFFINE AMVP mode or 1/2 and 1/4 level MC in Normal AMVP mode. In
MODE 2, both components (2) and (3) correspond to the active state. Therefore,
the overall efficiency may be further improved since motion prediction becomes
more accurate from the integer pixel unit.

The proposed ILIF-based inter prediction technique is designed with the goal
of achieving high performance in MODE 3, even if the performance or gains in
MODE 2 are lower or minimal. This strategy is based on the fundamental design
of DCTIF which maintains the correlation between integer and fractional pix-
els Also, the interdependence of the inter prediction process were considered.
Ultimately, proposed ILIF can contribute to improving the efficiency of inter
prediction in VVC/H.266 through the integration of in-loop filter and interpo-
lation filter.

4 Experimental Results

We used two main datasets for training ILIF. First, we used 22 sequences from
Class A to E of the Common Test Condition (CTC) for VVC/H.266 [1]. Second,
the sequence dataset from Bristol University (BVI-DVC) including four different
resolutions, ranging from 270p to 2160p, with 200 sequences for each resolution,
totaling 800 sequences [14]. The primary purpose of using the BVI-DVC dataset
is for the 2-nd stage of ILIF training. For the purpose, the original sequences of
BVI-DVC were first downsampled to 1/4 of their size before being encoded.

The CTC sequences and the 1/4 downsampled BVI-DVC sequences were
encoded using the VVC Test Model version 11.0 (VIM-11.0) which is the ref-
erence software for VVC/H.266 [3]. For encoding, the Random Access (RA)
configuration file (encoder_randomaccess_vtm.cfg) was used.

ILIF was trained as a single integrated model not by QP but using normalized
QP-Map [19] for the input samples. To train the 256 times output model using
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datasets where most sequences have resolutions smaller than 4K, we utilized
the DCTIF coefficients of VVC/H.266. We normalized the integer-scaled 8-tap
luma DCTIF coefficients and then constructed 9-tap filter coefficients to ensure
symmetry. During training, we applied horizontal and vertical filtering to the
target values t to generate new target values ¢ and calculated the loss between
these and the outputs y of the SR Part. This approach has the advantage of fully
utilizing the CTC and BVI-DVC sequences without the need for a downsampling
process. Additionally, it offers benefits in both original quality and fractional
sample generation by applying DCTIF to the original target values.

The proposed ILIF is designed with the goal of simultaneously improving the
visual quality of integer pixels and generating ultra-high-resolution sub-pixels.
For the training of the 2-nd stage model, we generated the upscaled target values
from the uncompressed original frames using the normalized DCTIF (D).

Given an original target pixel data ¢, we apply a convolution process to
upscale the data both horizontally and vertically by a factor of r = 16. The
process involves the following steps:

4
n(t,rj+c¢) = Z (i,j+ k) -D(c,k+4),

t(ri+c,rj+c) = Z th(i+k,rj+c) -Dlc,k+4) .
k=—4

Here, t;, is the result after horizontal convolution, of size (H x (W x r)) and #
is the final upscaled result, of size (H x r) x (W x r). D is a 16 x 9 matrix
containing the nomalized filter coefficients. ¢ is the index value for 16 tap filters
assigned by sub-pixel generation positions. The 16 sets of normalized 9-tap luma
DCTIF filter coefficients D as follows:

0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0156 —0.0469 0.9844 0.0625 —0.0313 0.0156 0.0000
0.0000 —0.0156 0.0313 —0.0781 0.9688 0.1250 —0.0469 0.0156 0.0000
0.0000 —0.0156 0.0469 —0.1250 0.9375 0.2031 —0.0625 0.0156 0.0000
0.0000 —0.0156 0.0625 —0.1563 0.9063 0.2656 —0.0781 0.0156 0.0000
0.0000 —0.0156 0.0625 —0.1719 0.8125 0.4063 —0.1250 0.0469 —0.0156
0.0000 —0.0156 0.0469 —0.1406 0.7344 0.4844 —0.1563 0.0625 —0.0156
0.0000 —0.0156 0.0625 —0.1719 0.7031 0.5313 —0.1563 0.0625 —0.0156
0.0000 —0.0156 0.0625 —0.1719 0.6250 0.6250 —0.1719 0.0625 —0.0156
0.0000 —0.0156 0.0625 —0.1563 0.5313 0.7031 —0.1719 0.0625 —0.0156
0.0000 —0.0156 0.0625 —0.1563 0.4844 0.7344 —0.1406 0.0469 —0.0156
0.0000 —0.0156 0.0469 —0.1250 0.4063 0.8125 —0.1719 0.0625 —0.0156
0.0000 0.0000 0.0156 —0.0781 0.2656 0.9063 —0.1563 0.0625 —0.0156
0.0000 0.0000 0.0156 —0.0625 0.2031 0.9375 —0.1250 0.0469 —0.0156
0.0000 0.0000 0.0156 —0.0469 0.1250 0.9688 —0.0781 0.0313 —0.0156
0.0000 0.0000 0.0156 —0.0313 0.0625 0.9844 —0.0469 0.0156 0.0000
(5)
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We used Mean Absolute Difference (MAD) for the cost function. Therefore,
the loss function was defined as follows:

1 R
516=Nzwqp'|yi—ti\ : (6)

Here, wgy, is a weight value according to the base QP of the dataset and was
introduced to prevent the model from overfitting to data of a specific QP. The
weight values for each of the 5 base QPs (22, 27, 32, 37, and 42) were set to 1.7,
1.5, 1.3, 1.1, and 1.0, respectively.

PyTorch was used as the framework for implementing the proposed ILIF [16].
We used Adaptive Moment Estimation with Weight Decay (ADAMW) optimiza-
tion algorithm for training [12]. The training utilized a multi-GPU environment
with 4 GPUs.

To verify the performance of ILIF, we modified the VVC reference software
(VTM-11.0) and integrated them using LibTorch, the C++ API of PyTorch.
We encoded the Class A~E sequences of the CTC using the RA Main 10 con-
figuration. All results were presented as BD-rate performance for 50 frames per
sequence between proposed ILIF the VVC/H.266 (VIM-11.0) anchor. Both the
training of the ILIF model and the integration with the reference software con-
sidered only the luma (Y) component. Therefore, only the results for Y are
significant in the experimental results.

The experimental results for the integration of ILIF and VVC covered whole
AMVR resolution are summarized in Tables 3, and 4, respectively. These results
are implemented to support up to 1/16-luma-sample resolution which is used
in the AFFINE AMVP mode.

MODE 1 presents the results when the proposed ILIF is applied only for
sub-pixel generation. The experimental results show the gains of —1.42% for
All-QP, —1.54% for High-QP, and 1.24% for Low-QP. It can be seen that the
performance improvement due to AFFINE mode and 1/16 ultra-high resolution
sub-pixel samples is significant.

MODE 2 involves applying the proposed ILIF for both integer pixel improve-
ment and sub-pixel generation. The experimental results show the gains of
—3.92% for All-QP, —4.01% for High-QP, and —3.13% for Low-QP, respectively.
The performance improvement in MODE 2 can be attributed to maintaining the
dependency between integer and sub-pixels.
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Table 3. BD-Rate Comparison of the ILIF: MODE 1 (1/16-luma-sample).
Random Access Main 10 (50 frames, 1/16-luma-sample)
Class|Sequence All-QP High-QP Low-QP
{22, 27,32, 37, 42} | {27, 32, 37, 42} {22, 27, 32, 37}
Y U \% Y U \% Y U \%

Al Tango2 —0.70%/2.50%) 3.40% —0.80%]2.30%)3.50%| —0.60%|2.00%|3.30%
FoodMarketd |—1.10%2.70%|3.10%)|—1.20%|2.80%|3.20%|—1.00%|2.60%) 3.00%
Campfire 0.50% |1.30%(1.40%|0.40% |1.40%(1.50%0.60% [1.20%1.30%

A2 |CatRobot —4.40%)3.10%3.00% —4.50%]3.20%)3.10%| —4.30%|3.00%|2.90%
DaylightRoad2 |—5.00%)|3.30%|3.10%) —5.10%|3.40%|3.20%|—4.90%|3.20%|3.00%
ParkRunning3 |—0.10%|1.50%|1.60%|—0.20%|1.60%|1.70%|—0.10%|1.40% 1.50%

B MarketPlace —0.80%|3.40% 3.50% —0.90%]3.30%)3.60%|—0.70%|3.20%|3.40%
RitualDance —0.90%(1.80%|2.20% —1.00%1.70%2.30%|—0.80%|1.90% 2.10%
Cactus —3.30%|3.50%)3.60% —3.40%]3.40%)3.70%| — 3.20%|3.60%|3.50%
BasketballDrive|—0.70%)|3.70%|3.40%) —0.80%|3.60%|3.50%| —0.60%|3.80%|3.30%
BQTerrace —9.80%/2.60% 2.70% —9.90%]|2.50%)2.80%| —9.70%|2.70%|2.60%

C BasketballDrill |—1.10%)|3.22%|2.35%|—1.24%|3.93%(2.68%|—0.96%/2.64%1.94%
BQMall —0.11%/2.03%|2.74%|—0.28%/2.28%|3.46%/0.27% |1.76%(2.11%
PartyScene —0.12%1.61%1.75% —0.36%|2.15%1.98%(0.14% |1.25%|1.53%
RaceHorses 1.62% 2.04%2.90%1.99% |2.17%3.78%/1.39% 1.75%/2.10%

D BasketballPass [2.30% [4.01%(2.52%(2.57% |4.95%(2.72%2.01% (3.54%2.22%
BQSquare —1.25%)3.28%)3.43% —1.94%)3.36%)3.25%| —0.68 %|3.22%|3.33%
BlowingBubbles 1.29% [2.14%(2.65%|1.23% |2.51%(2.90%(1.30% {2.02% 2.25%
RaceHorses 2.70% |2.25%(2.25%(2.87% |2.28%2.09%2.50% [1.63%1.21%

E FourPeople —4.07%2.08%]|1.88% —4.51%)2.34%(1.93%|—2.94%|1.94%1.62%
Johnny —4.50%2.49%2.81%|—4.67%2.84%3.14%|—4.13%)|2.13%|2.41%
KristenAndSara —1.69%|3.01%|2.53%|—2.24%)3.48%/2.71%|—0.77%|2.65%) 2.24%

Class Al —0.77%2.17%|2.63% —0.87%|2.30%2.93%| —0.73%2.00%2.57%
Class A2 —4.28%2.61%2.92% —4.40%|2.68%)3.04%|—4.17%|2.39%|2.76%
Class B —3.32%(2.95%)|3.34% —3.49%)2.96%|3.49%| —3.14%|2.98%3.32%
Class C 0.07% |2.22%(2.44%(0.03% |2.63%(2.97%0.21% [1.85%1.92%
Class D 1.26% [2.92%|2.72%1.18% 3.27%(2.74%(1.28% |2.60%)2.25%
Class E —3.42%(2.53%2.40%|—3.81%2.89%2.59%| —2.62%)2.24%|2.09%
Overall —1.42%2.62% 2.6 7% —1.54%|2.80%)2.85%| —1.24%|2.42%|2.40%
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Table 4. BD-Rate Comparison of the ILIF: MODE 2 (1/16-luma-sample).

Random Access Main 10 (50 frames, 1/16-luma-sample)

Class|Sequence All-QP High-QP Low-QP
{22, 27, 32, 37, 42} {27, 32, 37, 42} {22, 27, 32, 37}
Y U A% Y U A% Y U \Y%
Al |Tango2 —-1.21% 1.49% [2.60% |—1.22% 1.38% 2.82% |—1.40%/1.10% 2.17%
FoodMarket4 |—2.18% [1.65% [2.02% |—2.21% [2.01% [2.49% |—2.21%[1.11% |1.62%
Campfire —0.48% (0.23% 10.51% |—0.76% [0.42% [0.78% |—0.28%/0.14% 0.36%
A2 |CatRobot —5.49% 2.13% [1.95% |—5.46% 2.36% 2.16% |—5.31%/1.41% |1.42%

DaylightRoad2 |—6.04% [2.19% 1.98% |—6.71% [2.29% |2.25% |—5.89%/1.58% 1.67%
ParkRunning3 |—1.14% [0.40% (0.65% |—1.34% [0.46% [0.81% |—1.05%|0.34% 0.48%
B MarketPlace —-1.33% 2.36% [2.45% |—1.28% 2.36% 2.71% |—1.52%2.12% |1.76%
RitualDance —1.46% 0.75% [1.23% |—1.66% 1.04% 1.24% |—1.33%/0.44% |0.82%

Cactus —4.34% 2.54% [2.48% |—4.86% 2.78% 2.58% |—3.50%2.15% |2.20%
BasketballDrive —1.74% [2.65% [2.37% |—2.03% [2.62% [2.13% |—1.43%[2.16% |2.03%
BQTerrace —10.76%(1.57% [1.68% |—14.72%1.56% 1.73% |—8.52%(1.73% |1.68%
C  BasketballDrill |—4.59% [0.29% (0.20% |—5.32% 0.26% |—0.11% —4.00%/0.31% [0.19%
BQMall —4.04% (0.15% 10.92% |—4.99% [0.06% [1.02% |—2.99%/0.10% 0.60%
PartyScene —3.18% |—0.14%0.38% |—4.48% |—0.37%|0.26% |—2.12%|—0.20%0.35%
RaceHorses —0.03% [0.43% 0.28% (0.05% |0.25% [0.66% |—0.09%/0.33% |—0.06%
D  BasketballPass |—0.44% [1.30% [0.97% |—1.36% [1.12% 0.74% [0.23% [1.47% |1.29%
BQSquare —7.04% (0.16% 0.31% |—8.20% [0.08% |—0.02%|—6.11%/0.17% 0.37%

BlowingBubbles —1.29% |—0.14%|—0.14%|—1.77% |—0.25%|—0.03%|—0.93%0.24% |—0.31%
RaceHorses 0.21% |-1.02%|—0.55%(0.18% | —1.33%|—0.90%0.06% |—0.41%|—0.62%

E FourPeople —-7.96% 0.71% [0.71% |—8.95% |0.57% 0.55% |—6.03%/0.83% |0.61%
Johnny -9.22% 0.47% [1.09% |—9.99% 0.51% 10.79% |—8.01%/0.31% |1.21%
KristenAndSara —7.28% [1.01% (0.78% |—8.45% [1.01% [0.69% |—5.32%/0.97% |0.78%
Class Al -1.29% 1.12% [1.71% |—1.40% 1.27% 2.03% |—1.29%/0.78% |1.38%
Class A2 —4.22% (1.57% 1.53% |—4.50% [1.70% [1.74% |-4.08%/1.11% 1.19%
Class B -3.92% (1.97% 2.04% |—4.91% [2.07% [2.08% |-3.26%/1.72% 1.70%
Class C —2.96% (0.18% 0.45% |—3.68% [0.05% [0.46% |—2.30%/0.14% 0.27%
Class D —2.14% 10.07% 0.15% |—2.79% |—0.10%|—0.05%|—1.69%0.37% 0.18%
Class E —8.15% (0.73% 10.86% |—9.13% [0.70% [0.68% |—6.45%/0.70% 0.87%
Overall —-3.92% 0.97% [1.22% |—4.01% 0.90% 1.28% |—3.13%/0.88% |0.96%

5 Conclusion

The ultimate goal of this dissertation is to propose a deep learning-based SR
model to improve the efficiency of inter-coding within video coding standards and
apply it simultaneously for integer pixel enhancement and sub-pixel generation.

The proposed ILIF was an SR model with a fully convolutional neural net-
work structure containing 16 Residual Blocks and 4 Pixel Shuffling Blocks. In
addition, this model divided the network into a filtering part and an SR part to
achieve the aforementioned dual objectives. The output of the filtering part and
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the output of the SR part were combined into one output but, unlike common
SR models the Pixel Embedding techniques were utilized to maintain correla-
tion. Pixel Embedding was a method of embedding the integer pixel output of
the filtering part directly into the sub-pixel output of the SR part. This induced
the sub-pixels to correlate to the integer pixels.

ILIF totally replaced DCTIF in the inter prediction technology of
VVC/H.266 and was used as a high-performance interpolation filter. Depending
on the utilization of integer and sub-pixel samples generated from ILIF, it was
categorized 2 integration methods with VVC/H.266 as named MODE 1 and 2.

The experimental results showed improvement in performance was observed
when ILIF was applied up to 1/16-luma-sample resolution. The results showed
the gains of —1.42% for All-QP, —1.54% for High-QP, and —1.24% for Low-QP
in MODE 1 which applies ILIF only for sub-pixel generation However, significant
BD-rate gains were observed as —3.92% for All-QP, —4.01% for High-QP, and
—3.13% for Low-QP in MODE 2 which integrates both integer pixel filtering and
sub-pixel generation.

The comprehensive experimental results demonstrated that incorporating
both integer pixels and sub-pixels in the learning model could enhance the per-
formance of inter prediction techniques.
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Abstract. Scene Text Image Super-Resolution (STISR) plays a crucial role in
enhancing text readability within natural scenes, impacting OCR systems, visual
question answering, and image retrieval. Existing STISR methods often fall short,
either neglecting textual information entirely or utilizing it ineffectively. We
attempt to bridge this gap with a novel two-fold approach. Firstly, we use CLIP
(Contrastive Language-Image Pre-Training), a powerful model that can map both
images and text into a shared latent space, enabling it to assess image-text align-
ment. We harness CLIP’s ability to understand the semantic relationship between
images and text. By incorporating CLIP-generated image representations that
capture these inherent textual features, we effectively guide the super-resolution
process, leading to more accurate reconstructions. Secondly, we propose a novel
TrOCR (Transformer-based OCR) loss function to supervise the super-resolution
process from a text-centric perspective. Our loss function enforces consistency
between the super-resolved output and the high-resolution ground truth image in
terms of their text content. Experiments conducted on the benchmark TextZoom
dataset demonstrate that our approach not only improves visual quality but also
boosts text recognition accuracy.

Keywords: Scene Text Image Super-Resolution - CLIP Embeddings -
StyleGAN?2 - TrOCR Loss - Deep Learning

1 Introduction

Digital images are a cornerstone of modern information transmission, yet limitations
in image acquisition systems can lead to images with insufficient detail or resolution.
Super-Resolution (SR) techniques address this by reconstructing high-resolution (HR)
images from low-resolution (LR) inputs.

Early SR methods relied on interpolation techniques, but these often resulted in
artifacts such as blurring and aliasing due to their inherent inability to introduce new
information corresponding to the finer details that appear at high resolution. More recent
advancements incorporate learning-based approaches, utilizing large datasets of paired
LR and HR images to train deep neural networks. These methods, such as SRCNN [6],
VDSR [13], and SRGAN [15], have shown significant improvements by intelligently
filling in plausible details and maintaining the natural characteristics of images.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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However, while significant progress has been made in enhancing natural images,
applying SR to scene text images presents unique challenges. Scene Text Image Super-
Resolution (STISR) focuses on improving the resolution and legibility of text within
complex backgrounds, varying illuminations, and diverse fonts and styles. Early meth-
ods directly used generic SR approaches and ignored these text characteristics in
scene text images. Then STISR methods like TSRN (Text Super Resolution Network)
[28] and TPGSR (Text Prior Guided Super-Resolution) [23] started incorporating text-
specific features and loss functions, but they still struggle to extract and harness the full
potential of the textual features.

Our work aims to bridge this gap by proposing a novel STISR approach that
addresses the unique challenges of scene text images. Our key contributions are as fol-
lows:

1. We explore the use of CLIP for STISR, highlighting its strengths in text feature
extraction through fine-tuning with literal text pairings.

2. We introduce the TrOCR loss function, designed to improve both visual quality and
text recognition accuracy. The effectiveness of TrOCR is demonstrated by its ability
to elevate these metrics when applied to existing STISR methods.

3. We propose a comprehensive new method by modifying StyleGAN2, integrating
CLIP image embeddings, and introducing our novel TrOCR loss, enhancing scene
text image resolution and readability.

2 Related Work

2.1 Single Image Super Resolution (SISR)

SISR techniques aim to reconstruct HR images from LR inputs. Early methods like
SRCNN [6] introduced the potential of deep learning with a three-layer CNN. VDSR
[13] expanded on this with deeper networks, while SRGAN [15] utilized generative
adversarial networks (GANSs) and perceptual loss for more realistic images. Subsequent
models, such as EDSR [18], RDN [31], LapSRN [14], and RCAN [30], optimized net-
work design and training for better performance and efficiency. The advent of trans-
formers further advanced SISR with models like IPT [3] and SwinIR [17], showcasing
state-of-the-art performance. Other approaches like AND [21] and FuncNet [20] have
further improved SISR by addressing degradation robustness and parametric restora-
tion, respectively.

2.2 Scene Text Image Super-Resolution (STISR)

STISR enhances text resolution in natural scenes, addressing challenges like blurred
characters and distorted shapes. Early research, exemplified by TSRN [28], highlighted
limitations in generic SISR for text data. TSRN employs sequential residual blocks
and a boundary-aware loss function to enhance character flow and sharpness. TPGSR
[23] integrates text recognition models to generate “character probability sequences”,
improving reconstruction accuracy.
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Adversarial learning methods like TSRGAN [7] maintain text spatial structure
through the Sinkhorn distance and enhance visual realism with triplet attention. STT
[4] uses Transformers for accurate character reconstruction despite distortions. Text
Gestalt [5] prioritizes stroke clarity with a Stroke-Focused Module (SFM), while TATT
[22] employs global attention mechanisms for spatial coherence. C3-STISR [32] inte-
grates visual, textual, and linguistic features for enhanced reconstructions, and DPMN
[34] refines text and graphic recognition priors to modulate super-resolution for
improved visual and textual clarity. Additionally, text-conditional diffusion models [24]
have been proposed, utilizing their powerful text-to-image synthesis capabilities to sig-
nificantly surpass existing STISR methods, particularly in producing superior quality
super resolution text images.

2.3 Scene Text Recognition (STR)

Scene Text Recognition (STR) deals with deciphering text in natural images, facing
challenges like variable fonts, orientations, and occlusions. Unlike Optical Character
Recognition (OCR) designed for clean documents, STR requires robust methods to
handle diverse text appearances. Standard recognizers such as CRNN [26], ASTER
[27], and MORAN [19] are commonly used to evaluate STISR methods, with OCR
accuracy being a key metric for assessing super-resolved images.

Current super-resolution methods often rely on pixel-domain losses (e.g., Mean
Absolute Error or Root Mean Squared Error, pixel-wise), which may not correlate well
with perceptual quality or semantic fidelity, especially for text. To address this, some
approaches incorporate perceptual losses like VGG loss [10], focusing on visual aes-
thetics. Our work proposes a novel loss function inspired by TrOCR [16], capturing
both visual and semantic information, aiming to improve downstream text recognition
tasks.

3 Methodology

3.1 Preliminaries

Contrastive Language-Image Pre-Training (CLIP): CLIP [25] bridges the semantic
gap between low-level image features and high-level concepts through pre-training on a
massive dataset of image-text pairs. It employs separate image and text encoders to gen-
erate aligned embeddings, maximizing cosine similarity between matching pairs. This
capability is crucial for STISR, where reconstructing semantically meaningful text from
low-resolution images is essential. CLIP’s proficiency in understanding textual content,
even in challenging scenarios like noise and occlusions [33], strengthens its potential
application in STISR.

StyleGAN: StyleGAN [11,12] is a generative adversarial network known for high-
quality image generation. It introduces a style-based generator that maps latent codes
to an intermediate latent space (W), which controls the generator via adaptive instance
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normalization (AdalN) [8]. This separation allows fine-grained control over image fea-
tures, enabling detailed texture modeling. StyleGAN2 [12] further refines this approach
for superior image synthesis. StyleGAN’s ability to capture intricate textures makes
it suitable for generating high-resolution text images, addressing the diverse textures
found in natural text settings. By combining CLIP’s semantic understanding with Style-
GAN’s texture synthesis, we propose a novel STISR approach that overcomes current
limitations.

TextZoom: Our work utilizes the TextZoom dataset [28], a comprehensive collection
of real-world text images specifically designed for STISR. The dataset is constructed
from SR-RAW [29] and RealSR [1], with images captured at varying focal lengths,
leading to inherent misalignment and ambiguity between LR and HR pairs. TextZoom
comprises 21,740 LR-HR image pairs, with 17,367 pairs for training and 4,373 for test-
ing, divided into three subsets: Easy (1,619 samples) with minimal misalignment and
ambiguity, Medium (1,411 samples) with moderate challenges, and Hard (1,343 sam-
ples) with significant misalignment and ambiguity. These variations make TextZoom
an ideal and challenging test-bed for evaluating STISR algorithms. In our analysis, we
utilize all subsets of the TextZoom dataset to ensure a comprehensive evaluation.

3.2 Architecture and Rationale

Our proposed architecture for STISR comprises three key modules, each playing a cru-
cial role in the super-resolution process (Fig. 1). The first module focuses on textual
understanding, the second on guided image generation, and the third on super-resolution
reconstruction.

Fine-Tuning CLIP for Textual Understanding: A pre-trained CLIP model is fine-
tuned on image-text pairs in the TextZoom dataset. This training process incorporates
two distinct types of pairs: (1) HR images paired with their corresponding text labels,
and (2) LR versions of the same images with the same text labels. This fine-tuning
ensures that CLIP learns to associate both image resolutions with the same textual
content. In essence, CLIP becomes adept at producing similar embeddings, numeri-
cal representations capturing essential information, for both LR and HR versions of an
image as long as they contain the same text. The image encoder of this fine-tuned CLIP
model serves as our “textual understanding” component. This fine-tuned CLIP is now
frozen for further downstream uses.

Adapting StyleGAN2 for Guided Image Generation: Instead of using a randomly
sampled latent code as input, we use the text-aware embeddings from the fine-tuned
CLIP model to guide StyleGAN2’s generator. This modification allows us to incor-
porate crucial textual information into the image generation process. Furthermore, we
incorporate the LR input image at various scales to provide localized visual cues, com-
plementing CLIP’s global semantic guidance. This combined approach leads to a more
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faithful reconstruction during the super-resolution process. We further modify Style-
GAN?2 to output a set of feature maps enriched with both textual and visual information,
providing a more comprehensive representation for the subsequent SR branch.

Integrating with SR Branch: Inspired by TPGSR, we use the feature maps generated
by the modified StyleGAN?2 as textual priors for the SR branch. These priors effectively
integrate the semantic text information from CLIP and the visual details extracted from
the LR image. The SR branch, based on TPGSR’s SR Module, utilizes these informative
priors alongside the LR image to produce the final super-resolution text image. This SR
Module comprises TP-Guided SR blocks, which build upon established SR and STISR
methods [15,18,28,31]. However, unlike TPGSR which relies on features from its TP
transformer, our architecture directly feeds the richer feature maps produced by our
modified StyleGAN2. These features are concatenated along the channel dimension and
then projected back to image features, guiding the SR Module to generate a textually
accurate HR output.

This combined approach allows our architecture to harness the strengths of CLIP for
textual understanding, StyleGAN?2 for guided image generation with textual influence,
and established SR techniques for reconstructing high-quality HR images.

CLIP Image
Encoder LR Image
HR Image
v
kA . AL SR Module
CLIP Embeddings Downsample i i
i I
Synthesis network g H Spatial |
i
Normalize | Transformer :
. ! Network !
Mapping ! 1 ﬁpiz +Lrrocr
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= ! ! SR Image
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FC ' Pixel Shuffle !
FC : i
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Feature Maps

Fig. 1. Overall Architecture: The fine-tuned CLIP model provides text-aware image embeddings,
guiding the modified StyleGAN2. The resulting feature maps are infused into SR branch.
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3.3 Training Loss

To train our model effectively, we use a combination of pixel-level and text recognition
losses. The pixel-level loss ensures the visual quality of the generated HR image (Ir)
compared to the ground truth HR image (/). As shown in Eq. 1 the pixel-level loss
combines the MSE loss and the Gradient Prior Loss, which encourages sharp edges
around characters and smooth backgrounds by comparing gradients in the generated
and ground truth images.

Lpiz = o|[Iy — I3 + BV Iy — Vig|h (1)

We also introduce a novel text recognition loss in Eq. 2 by utilizing an already exist-
ing pre-trained text recognition model, TrOCR [16], to guide the super-resolution pro-
cess. TrOCR consists of an encoder (E7) and a decoder (D). The encoder converts an
image into a compact representation that captures essential information about the text,
while the decoder predicts the actual characters in the image, outputting logits which
are nothing but numerical scores for each possible character.

Let ey and éy be the encodings of the real and generated HR images, respectively,
ie,eg = Ep(Iy) and ég = ET(fH). Let dgy and dg be the corresponding logits,
i.e., dH = DT(BH) and JH = DT(éH)

The text recognition loss in Eq. 2 encourages the generated HR image to have simi-
lar encodings and logits to the real HR image.

Lrrocr = M|lexr — émlly + Xal|de — d||y + AsK L(dgr, dgr) )

In Eq.2 the first two terms minimize the difference between the encodings and
logits of the real and generated HR images. The third term uses the Kullback-Leibler
(KL) divergence to ensure the predicted character probabilities (derived from the logits)
of the real and generated HR images are similar.

The final training loss given in Eq.3 is a combination of the pixel-level and text
recognition losses that guides our model using the strengths of TrOCR.

L= ’Y‘pr; + 6£T7‘OCR (3)

3.4 Evaluation Metrics

Standard image quality metrics like Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity Index (SSIM) are commonly used to gauge the fidelity of reconstructed
images. However, these metrics do not fully capture the effectiveness of STISR for
improving text recognition.

To address this, we follow a two-step evaluation process. First, we apply different
STISR methods to LR text images to generate their SR counterparts. Next, we evaluate
the recognition accuracy of the generated SR images using established text recognition
models like ASTER, CRNN, and MORAN. By evaluating recognition accuracy, we
directly quantify the impact of STISR on downstream text understanding tasks. This
ensures that STISR models are evaluated not just for visual quality but also for their
ability to enable accurate text recognition in real-world scenarios.
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4 Experiments and Results

4.1 Experiment Settings

Environment: We trained our models on a Google Cloud Platform instance with 8
NVIDIA V100 GPUs (16GB VRAM each), 8 CPU cores (16 virtual CPUs), and
104GB of memory. The software environment consisted of Ubuntu 20.04.6 LTS, Python
3.10.14, and PyTorch 2.3.1. We employed PyTorch’s DistributedDataParallel (DDP)
module, achieving faster training than the DataParallel module used in prior works.

Training Procedure: We adopted a three-stage training process to optimize model
performance and stability:

1. Initial Training (500 epochs): We train the model solely on image super-resolution,
excluding the TrOCR loss. This stage utilizes a larger batch size of 128 for faster
training.

2. Batch Size Reduction (30 epochs): Before introducing the TrOCR loss, we reduce
the batch size to 8.

3. Fine-tuning with TrOCR Loss (100 epochs): We incorporate our novel TrOCR loss
and continue training with the reduced batch size. This stage refines the model to
produce sharper and more textually accurate results.

Hyper-parameters: Our model uses the Adam optimizer, a widely used optimizer
for deep learning models, with standard parameters ; = 0.9 and G2 = 0.99. The
learning rate, controlling the optimization step size, starts at 0.001 and is reduced to
0.0001 during fine-tuning with the TrOCR loss. This schedule is a common practice for
initial coarse learning followed by task-specific refinement.

The loss function weights, which balance the influence of different loss components,
were empirically determined. We set « to 1 and 3 to 0.0001 to balance the pixel-level
MSE and gradient losses. For the TrOCR loss, we use equal weights (A1 = Ao = 1) for
the encoding and logits terms and a higher weight (A3 = 100) for the KL divergence to
emphasize similarity in predicted character probabilities. Finally, we weigh the overall
pixel loss () at 100 and the TrOCR loss (d) at 5.

4.2 Fine-Tuning CLIP

We experimented with various CLIP models and fine-tuning strategies, focusing on
over 30 models from OpenCLIP [9], an open-source implementation offering access to
diverse pre-trained models trained on various datasets. These models encompass a range
of capabilities and computational costs.

Fine-Tuning with Literal Text: We fine-tuned CLIP using paired examples of images
and their corresponding literal text descriptions. To visualize the impact, we employed
Relevance Maps [2], a state-of-the-art method for explaining CLIP models. These maps
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Fig. 2. Relevance Maps and similarity scores for LR and HR images before fine-tuning CLIP on
literal text pairings.

highlight the parts of an image that are most influential in matching a given text descrip-
tion.

Figures 2 and 3 showcase these Relevance Maps alongside similarity scores for both
LR and HR images before and after fine-tuning, respectively. The significant increase in
similarity scores after fine-tuning demonstrates improved alignment between image and
text embeddings, particularly for LR images, which approach the scores of HR images.
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Fig. 3. Relevance Maps and similarity scores for LR and HR images after fine-tuning CLIP on
literal text pairings.

A deeper analysis of the Relevance Maps reveals even more interesting details.
Before fine-tuning, the attention patterns for LR and HR images differ considerably.
The scattered attention on LR images suggests the model’s struggle to focus on rele-
vant textual features at lower resolutions. However, after fine-tuning, both LR and HR
images exhibit focused attention on the same textual regions. This alignment signi-
fies CLIP’s ability to consistently capture semantic textual features regardless of image
resolution. This successful fine-tuning equips CLIP to extract meaningful textual infor-
mation even from blurry or low-quality images.
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Fig. 4. Fine-tuning CLIP with Blur-Sharp Text Pairings

Fine-Tuning with Blur-Sharp Text Pairings: We further explored fine-tuning with
a different approach, aiming to learn the relationship between blurry and sharp text
representations directly. We used pairings of (LR image, blurry text) and (HR image,
clear text) instead of literal text descriptions to fine-tune the model. Figure 4 illustrates
the substantial improvements achieved in similarity scores after fine-tuning. We further
investigated using this fine-tuned CLIP directly as a loss function during training. This
involved calculating the similarity scores between image embeddings and text prompts
“blurry” and “clear” for both SR and HR images, and backpropagating the difference
as a loss. However, this approach did not outperform our proposed TrOCR loss.

4.3 Visual Comparisons

We present visual comparisons of our method’s super-resolution outputs against exist-
ing techniques. Figure 5 compares the LR image, the SR outputs from the original
TSRN model [28] and our TrOCR-trained TSRN. This comparison highlights the
improvements achieved by incorporating our TrOCR loss into TSRN (trained with a
batch size of 8 throughout).

Similarly, Fig. 6 showcases the LR image, outputs from TPGSR (Stage 1: without
TrOCR loss), TrOCR-TPGSR (Stages 2 & 3: with our TrOCR loss), and the HR ground
truth. This visualization emphasizes the benefits of incorporating our TrOCR loss within
the TPGSR architecture. From the examples in the figure, we can observe several key
improvements with our TrOCR loss. Firstly, the font style and edge clarity are signifi-
cantly closer to the HR ground truth with TrOCR-TPGSR than with plain TPGSR, as
illustrated by the “(Camille” and “11:00 am - 11:00” examples. Secondly, the text recon-
struction quality is notably better in our case, evident from the “R” in “CALIFORNIA”
example. Additionally, our approach performs better even under distortions and poor
lighting conditions, as demonstrated by the “Japanese” and “SIEMENS” examples.
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Fig. 5. Visual Comparison: LR input, SR output from the original TSRN [28] and SR output from
TSRN trained with our TrOCR loss.
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Fig. 6. Visual Comparison: LR input, TPGSR output after Stage 1 (TPGSR only), TrOCR-TPGSR
output after Stage 3 (with TrOCR loss), and HR ground truth.

Figure 7 presents a comprehensive qualitative assessment of our method’s perfor-
mance compared to existing state-of-the-art approaches. The figure showcases the LR
image alongside outputs from TrOCR-TSRN, TPGSR, TrOCR-TPGSR, our proposed
method, and the HR ground truth. Notably, the visualizations reveal interesting insights
into the strengths of each method. We can see that TrOCR-TPGSR excels at capturing
specific font styles, as evidenced by its preservation of the blunt bend at the apex of
“M” and “N” in the “SIEMENS” example, including the thicker strokes in these char-
acters at appropriate positions. While TPGSR reconstructs the “c” and “0” well in the
word “copy,” our method demonstrates an advantage in reconstructing the more chal-
lenging “p” character. Additionally, TrTOCR-TPGSR maintains a better font style for
the letter “y” in the same word. Interestingly, when looking at the overall visual qual-
ity, our super-resolved version of words like “Diagnostic” and “Solutions” surpasses
the other methods, which exhibit inconsistencies in character reconstruction. In fact,
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our method’s output for “Solutions” appears visually superior even compared to the HR
ground truth. These observations highlight the effectiveness of our proposed approach
in achieving high-quality STISR.
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Fig.7. Visual Comparison: LR input, outputs from TROCR-TSRN, TPGSR, TROCR-TPGSR,
our method, and the HR ground truth.

4.4 Quantitative Comparision

Our method’s quantitative performance is evaluated against some of the state-of-the-art
STISR approaches on the TextZoom dataset. Tables 1, 2, and 3 report the recognition
accuracies achieved by different methods using CRNN, ASTER, and MORAN as text
recognizers, respectively. These tables present results for the easy, medium, and hard
subsets of the TextZoom test set, along with the average accuracy across all subsets.

The results reveal interesting insights into the strengths of different approaches.
Analyzing the CRNN recognizer’s results, we observe that while plain TPGSR per-
forms slightly better on the easy subset, our method outperforms it in the medium,
hard, and overall average categories. This improvement, however, is modest at around
0.8%. Notably, the clear winner in CRNN recognizer’s results is TPGSR trained with
our proposed TrOCR loss, achieving an average accuracy of 50.33% and surpassing all
other methods across all subsets. This suggests that, disregarding factors like font style
and reconstruction details, TPGSR with TrOCR loss achieves the most accurate char-
acter reconstruction as recognized by CRNN. Additionally, TSRN also demonstrates
improvement when incorporating our TrOCR loss.
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Table 1. Recognition Accuracy (%) with CRNN

Method CRNN

Easy MediumHard |Average
BICUBIC 36.4% 21.1% 21.1% 26.8%
SRCNN 41.1% 22.3% 22.0% [29.2%
SRGAN 45.2% (32.6% (25.5% (35.1%
TSRN 52.5% [382% 31.4% 41.4%
TSRN (with our TrOCR loss) * |53.61%41.32% (32.02%43.0%
TPGSR * 56.27%/43.44% 32.02% 44.68%
TPGSR (with our TrOCR loss) */61.09%|51.10% (36.56%|50.33%
Our Method * 55.71%/44.44% 34.25% 45.48%
HR 76.4% |715.1% 64.6% 72.4%

The results with the ASTER recognizer showcase a contrasting trend. Here, TSRN
with our TrOCR loss exhibits a slight decrease in accuracy compared to plain TSRN.
This could be attributed to ASTER’s superior recognition capabilities, potentially
allowing it to better recognize characters in the original TSRN outputs. This aligns with
the observation that the performance gain for TPGSR with and without TrOCR loss is
around 4% for ASTER, while it is around 6% for CRNN. Nevertheless, our method still
surpasses plain TPGSR by 1.2% in ASTER recognition accuracy.

Table 2. Recognition Accuracy (%) with ASTER

Method ASTER

Easy MediumHard |Average
BICUBIC 67.4% |42.4% 31.2% 48.2%
SRCNN 70.6% |44.0% 31.5% 50.0%
SRGAN 69.4% |50.5% 35.7% 53.0%
TSRN 75.1% 56.3% 40.1% 58.3%
TSRN (with our TrOCR loss) * 73.13%|54.50% |39.54%56.80%
TPGSR * 73.75%|57.90% 38.94%57.95%
TPGSR (with our TrOCR loss) */77.08%|61.45% 42.96%|61.56%
Our Method * 73.44%|58.68% 42.37%59.14%
HR 94.2% 87.7% 76.2% 86.6%

Similar behavior is observed with the MORAN recognizer, suggesting that the
impact of the TrOCR loss on TSRN method might vary depending on the specific
text recognizer used. Overall, these quantitative results highlight the effectiveness of
our proposed method in improving STISR, with TPGSR incorporating our TrOCR loss
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demonstrating the most significant gains in recognition accuracy irrespective of the rec-

ognizer.

Table 3. Recognition Accuracy (%) with MORAN

Method MORAN

Easy MediumHard |Average
BICUBIC 60.6% 37.9% (30.8% |44.1%
SRCNN 63.9% 40.0% [29.4% |45.6%
SRGAN 66.0% [47.1% 33.4% 49.9%
TSRN 70.1% |55.3% (37.9% |55.4%
TSRN (with our TrOCR loss) * 67.33%|49.75% |37.01%|52.35%
TPGSR * 68.44%|52.59% |37.08%|53.69%
TPGSR (with our TrOCR loss) *|71.28%|58.54% |40.36%|57.67%
Our Method * 68.19%|53.93% (38.64%|54.51%
HR 91.2% [85.3% |74.2% 84.1%

Table 4 compares PSNR and SSIM scores. Our method excels in PSNR but has a
lower SSIM over TPGSR. Whereas TPGSR with TrOCR loss improves on both met-

rics. Similar to recognition results with ASTER/MORAN, TSRN with TrOCR loss sees
a decrease in PSNR/SSIM. This suggests the TrOCR loss’s impact on these metrics
depends on the base STISR method. Overall, TPGSR with TrOCR loss achieves the
highest PSNR, solidifying its pixel-level reconstruction performance, while its SSIM

remains competitive with TSRN.

Table 4. Quantitative Evaluation

Method PSNR SSIM (x10~?)
BICUBIC 20.35169.61
SRCNN 20.78 [72.28
SRGAN 21.03 73.31
TSRN 21.42(76.91
TSRN (with our TrOCR loss) * [21.27 |76.02
TPGSR * 21.28 {76.20
TPGSR (with our TrOCR loss) *21.68 [76.62
Our Method * 21.37 [15.71
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5 Conclusion and Future Work

Extracting clear and readable text from images is crucial for various applications, and
STISR plays a vital role in achieving this goal. However, conventional STISR methods
often fall short when dealing with the intricacies of text information within images. This
limitation can manifest as blurry or poorly structured text, hindering accurate recog-
nition. In this work, we address this by proposing a novel deep learning framework
specifically designed for STISR. Our approach leverages CLIP embeddings, Style-
GAN2 modifications, and a newly introduced TrOCR loss function. CLIP, with its
text feature extraction strengths validated by relevance maps, strengthens our model.
The effectiveness of the TrOCR loss function is further demonstrated by its ability
to enhance both visual quality and recognition accuracy, even when applied to estab-
lished STISR techniques. Notably, while our CLIP-StyleGAN-TrOCR model surpasses
the baseline TPGSR, incorporating TrOCR loss into TPGSR yields even better results,
highlighting the potential for further refinement.

While our approach demonstrates clear advancements, limitations like increased
computational complexity from CLIP embeddings and potential performance drops for
heavily degraded text require further exploration. Additionally, the significant perfor-
mance gains from the TrOCR loss come at the cost of tenfold training time. Future
work can address these limitations and explore promising avenues such as text specific
perceptual losses, domain adaptation techniques for specific text domains, investigat-
ing alternative vision-language models beyond CLIP, and exploring alternative training
prompts for CLIP itself.
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Abstract. As a highly recognizable biometric feature, human face has
become the first choice for identity verification. With the application of
face in various important fields of society, the serious threat caused by
face image information leakage has become prominent, and its privacy
and security protection is becoming more and more important. Apply-
ing steganography to face images can not only effectively protect per-
sonal privacy, but also realize the secure transmission and sharing of
sensitive information. Therefore, we propose a face privacy-preserving
coverless steganography framework based on diffusion models. Firstly,
the facial features are extracted and the feature masks are generated.
Then, the DDIM sampling is used to generate the coverless stego image
by combining the conditional diffusion model with the text secret key
by using the generation ability of diffusion model. DDIM Inversion is
used to recover the secret image with high quality. We conduct extensive
experiments on CelebA-HQ and FFHQ public face datasets. Compared
with the existing methods, the stego images generated and recovered
by our method have higher quality and can better resist steganalysis.
Our method also achieves significant advantages in terms of robust-
ness and security, maintaining sharper recovery effects under Gaussian
noise, JPEG compression, and real-world transmission. In addition, we
can combine custom masks to achieve controllable local steganography,
which has stronger controllability and flexibility. The proposed method
can achieve a good unity of security, controllability and robustness, and
is superior to the traditional steganography methods without any addi-
tional training.

Keywords: Coverless Steganography - Diffusion Model - DDIM -
Privacy Protection

1 Introduction

Steganography, as a widely researched topic, aims to hide secret information
within a host medium [1]. Image steganography specifically aims to covertly
embed information such as images, audio, and text within a host image, meaning
the host medium in image steganography is an image. The goal is to hide secret
messages within the image. In typical scenarios, the sender hides the secret
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message in a cover image and transmits it to the receiver, who recovers the
message. Even if the image is intercepted, no one besides the sender and receiver
can detect the presence of the message [2]. Nowadays, image steganography has
been widely applied in fields such as copyright protection, digital watermarking,
secure information transmission, and digital forensics.

Traditional image steganography techniques often involve transforming hid-
den messages within the spatial or adaptive domains. Some widely used data hid-
ing algorithms include the Least Significant Bit (LSB) method [3] and histogram-
based approaches [4]. Typically, spatial domain techniques offer higher embed-
ding capacity. With the advancement of deep neural networks, researchers have
started employing autoencoder networks or invertible neural networks (INNs)
[5] for data hiding, a technique known as deep steganography. The main goals
of image steganography are to ensure security, preserve reconstruction quality,
and improve robustness. Traditional methods typically use cover images to hide
secret messages, but they often unintentionally leave behind traces of the hid-
den information as artifacts or local details within the carrier image. This can
lead to information leakage, thereby compromising transmission security. Addi-
tionally, while these methods may achieve good reconstruction fidelity of the
recovered image, they are often trained in noise-free simulated environments,
rendering them vulnerable to noise, compression artifacts, and nonlinear trans-
formations in real-world scenarios. This significantly undermines their practical-
ity and robustness [6]. To address these challenges, recent years have seen the
development of coverless data hiding methods, where secret messages are hidden
without modifying the cover image. Current coverless steganography techniques
frequently utilize frameworks such as CycleGAN [7] and encoder-decoder mod-
els [8], leveraging the concept of cycle consistency. Despite this, the generated
container images often suffer from limited controllability, lack user-defined cus-
tomization, and predominantly focus on bit-level hiding, thereby overlooking the
more challenging task of embedding complete secret images.

Drawing inspiration from diffusion-based generative models, we aim to over-
come the limitations of existing approaches. Research on diffusion-based gener-
ative models [9] has gained significant traction, as these models add noise to a
dataset incrementally and then learn how to reverse the process, allowing for the
generation of high-quality data. This method enables the production of highly
accurate and detailed outputs, ranging from realistic images to coherent text
sequences. The core function of these models is to gradually degrade data quality
and then either restore it to its original form or transform it into a new creation.
Moreover, diffusion models offer several unique attributes, such as zero-shot
task performance [10], strong control over the generation process [11], natural
resilience to image noise [12], and capabilities for image-to-image translation [13].
Due to their progressive denoising process, diffusion models show promising
potential across various fields. The powerful control capabilities of conditional
diffusion models make the generation of steganographic images highly control-
lable, while their generative priors ensure the visual quality of the steganographic
outputs. Furthermore, diffusion models possess inherent robustness, allowing the
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main content of the hidden image to be retrieved even if the steganographic image
is degraded during transmission.

Therefore, in this paper, we propose a face privacy protection steganography
framework based on diffusion models, which aims to achieve secure, controllable
and robust face privacy protection steganography. Our framework is realized by
combining many properties of diffusion model, and a coverless steganography
framework is implemented by using DDIM inversion [14] technique. It ensures
that the hidden image has higher security and can play a more important role
in information security and privacy protection.

Our contributions are summarized as follows:

(1) We propose a face image coverless steganography technique based on diffusion
models, combining face feature masks and conditional diffusion models, and
utilizing DDIM for inversion. Our method achieves a steganography frame-
work specifically for face images without any additional complex training
processes.

(2) We introduce the Stable Diffusion inpainting model to coverless steganog-
raphy of face images, ensuring higher quality of generated steganographic
and recovered images. We also achieve controllable local steganography by
creating customized masks, enhancing its controllability and flexibility.

(3) Experimental results on the CelebA-HQ and FFHQ public datasets demon-
strate that our method significantly outperforms existing methods in both
network environments and real-world degradations, effectively resisting ste-
ganalysis while successfully achieving better reconstruction quality, higher
robustness, and security.

2 Related Work

2.1 Steganography

Cover-Based Methods: Traditional Image Steganography: Traditional image
steganography can be divided into two categories based on the domain where
the steganography process occurs: spatial domain and frequency domain. Spatial
Domain: The most popular methods include the Least Significant Bit (LSB) [3],
Pixel Value Differencing (PVD) [15], and Histogram Shifting (HS) [4]. Fre-
quency Domain: Frequently used methods include Discrete Cosine Transform
(DCT) [16] and Discrete Wavelet Transform (DWT) [17]. In recent years,
deep learning has been introduced into image steganography. HiDDeN [18§],
SteganoGAN [19], and Baluja [20] have achieved a balance between capacity,
secrecy, and noise robustness, significantly improving the effective payload capac-
ity of steganography. HiNet [21] and PRIS [22] incorporated invertible neural
networks (INNs) [5] into image steganography, enabling both image hiding and
recovery within a single INN model.
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Coverless Methods: This emerging technology in information hiding embeds
secret information without altering the cover medium. Zhou et al. [23] proposed a
coverless data hiding scheme using partially repeated images. Mu and Zhou [24]
used secret image copies, each sharing a similar patch with the secret image. Liu
et al. [25] proposed a scheme based on DenseNet features and DWT sequence
mapping. Lu et al. [26] developed a method using unsupervised learning to con-
struct a complete basis set. Li et al. [27] proposed a method based on face fusion
recognition with CNNs for encryption and decryption. Yu et al. [28] introduced
a reversible image transformation technique using diffusion models, achieving
better performance.

2.2 Diffusion Models

Diffusion models are currently one of the most advanced generative models, ini-
tially proposed by Sohl-Dickstein et al. in 2015 [29]. Owing to their remarkable
generative capabilities, diffusion models have recently found widespread appli-
cation across various image-related domains, including image generation [30],
restoration [12], and translation [13]. To address the main drawback of extended
training and inference times for diffusion models, numerous studies have focused
on optimizing these models [11]. Recent studies have also proposed limiting
the change region by using masks [31], thus retaining the background while per-
forming meaningful image editing. “Text Inversion” [32] and “DreamBooth” [33]
techniques allow users to fine-tune diffusion models by providing a few example
images, enabling personalized image content generation.

3 Method

3.1 Relevant Definitions in Our Steganography

Before delving into the specifics of our method, we will first clearly define the
components involved in the image steganography task, as depicted in Fig. 1.
This task involves four types of images: the secret image (Xsecret), the secret
image mask (Xmask), the stego image (Xstego), and the recovered image (Xyey),
along with two key processes: the hiding process and the revealing process. To
precisely control this process, we use the FaceParsing model [34] to extract
the mask X,,4sx from the secret image. This mask together with the secret
image goes through the hiding process to generate the stego image Xsseq0. When
the stego image is transmitted over the Internet, the quality of the image may be
degraded, and a degraded stego image X ;tego can be obtained. Despite this, our
revealing process can still recover the recovered image X, from X{,. , using
X asks Maintaining semantic consistency of the content.

In the following sections, we will provide a detailed explanation of how to
utilize the diffusion model and the FaceParsing model [34] to implement our
method. Specifically: In Sect. 3.2, we will analyze the principles of the Denoising
Diffusion Implicit Model (DDIM). In Sect. 3.3 we will describe in depth how to

implement our face coverless steganography framework.
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Fig. 1. The definition and composition of steganography of face image.

3.2 DDIM for Image Reversible Transformation

The DDIM is a diffusion model that utilizes deterministic inference to generate
high-quality images. This model aims to improve the generation process of tradi-
tional diffusion models by reducing randomness, thereby enhancing the quality
and efficiency of the generated samples.

DDIM defines its diffusion model through two main phases: the forward
phase and the reverse sampling phase. In the forward phase, the model gradu-
ally adds noise to a clean image, simulating the process of the image becoming
progressively distorted. Specifically, the forward process in DDIM [14] can be
described by the following equations:

= w1+ V1 —age, e~ N(0,1) (1)

where oy is a pre-defined noise level parameter, € is the random noise sampled
from a standard Gaussian distribution, and z; is the image state at time step ¢.
The range of time step ¢ is [1, T1.

In the reverse sampling phase, the model adopts the inverse process, gradually
restoring the clean image by estimating and removing the noise. This process not
only reduces random variations during generation but also improves the clarity
and detail representation of the image, thereby generating more realistic and
high-quality images. The reverse sampling process of DDIM can be described
by the following equation:

=Vasfo(xe, t) + /1 — as — o2eg(xe,t) + ose,  fo(we,t) = 2= V1 __Oétee(mt’t)
VOt
(2)

where € ~ N(0, 1) represents Gaussian noise randomly sampled with o2 as the
noise variance, and fy(.,t) relies on a pre-trained noise estimator €y(.,t) with
as = [[i = 1'a;. DDIM uniquely allows for non-adjacent sampling steps, mean-
ing t and s can take any two steps where s < ¢, enhancing the flexibility and
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speed of the sampling process. Additionally, if set the noise variance o, to zero in
Eq. 2, the DDIM sampling process becomes deterministic, meaning the sampling
result is fully determined by the initial value xr, which acts as a latent encoding.
This deterministic process can also be described through the framework of an
ordinary differential equation (ODE), where an ODE solver [14] is employed to
resolve the corresponding ODE.

Backward(noise—stego)

Xy

C( ) C(an old man with a beard)

Fig. 2. We employ a conditional diffusion model for image translation across various
scenarios. In this instance, we utilize two distinct prompts to transform an image of a
woman into an image of an old man.

We choose to implement the diffusion model using deterministic DDIM,
which not only simplifies the model’s complexity but also enhances its pre-
dictability and controllability. Using the conditional diffusion model, text con-
dition and mask are used as inputs to precisely guide the generation of image
content. As illustrated in Fig. 2, our process involves transforming an image of a
woman into an image of an elderly man. In this process, we begin by applying
Eq.1 to introduce noise into the woman’s image during the forward sampling
stage, resulting in an intermediate noise state. Next, for the backward sampling
phase detailed in Eq. 2, we input a specific text condition (prompt: “an old man
with a beard”) to remove the noise and produce the stego image. Both the text
condition (¢) and mask (X,,qs%) are utilized as input conditions. The sampling
process that iteratively refines the image from the noisy state (xr) back to the
clean state (z¢) is executed using the pre-trained noise estimator ¢y is as follows:

Tog = ODESolve(xT, Xmask; €0,¢, T, 0) (3)

To achieve reversible image transformation, we employ the DDIM Inversion
method based on deterministic DDIM. As the name implies, this method trans-
forms the image into potential noise and then restores it to the original image.
The concept draws on the approximation of forward and backward differen-
tials used in solving ordinary differential equations. Intuitively, for deterministic
DDIM, it allows for flexibility in the steps s and t in Eq. 1, with Eq.2 accom-
modating any two steps. When s < t, Eq.2 performs the backward process,
while when s > ¢, Eq.2 carries out the forward process. Given the similarity
in trajectories between the backward and forward processes, the input and out-
put images are nearly identical, and the intermediate noise 1 as an effective
inverted latent variable. In our research, we apply the following formulation:

x7 = ODESolve(x, Xmask; €0, ¢,0,T), xy = ODESolve(zr, X/ .k; €6, ¢, T,0)
(4)
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DDIM Inversion describes the transformation where the original image xg is
converted to a latent code 7, and subsequently, this latent code 7 is reverted
back to the original image, with the output image being denoted as xf and
approximately equal to xy. Using the DDIM Inversion method, we establish a
reversible relationship between the image and latent noise. By utilizing the image
translation framework constructed with deterministic DDIM, we can complete
the entire reversible image transformation through two DDIM Inversion cycles.
This technique not only serves as the core of our coverless image steganography
framework but also is key to ensuring the reversibility of the steganography
process. The reversibility of this method means that even in complex image
processing, the integrity and accuracy of the image content can be maintained.

3.3 Face Steganography Based on Diffusion Models

Our framework is built upon a conditional diffusion model, where the noise
estimator utilizes a mask and two different conditions as inputs. In our approach,
these conditions function as private and public keys, denoted as K,; and Kpyp
respectively. The detailed workflow is illustrated in Fig. 3. We will introduce our
coverless steganography framework in two segments: the hiding process and the
revealing process.

Hide Process \

ODESolve(Xsecrets Xmasts €0, Kpri, 0,T) > ODESolve(X noise, Xmask: €0, Kpun, T, 0)

Xr

e

/ Reveal Process

< ODES0lve(X oise, X masi: €6, Kprir T,0) ODESolve(X seagor X'mast’ €6: Kpurs 0,T)

\ @
.

\

X 3

Image Transmission,

K, awoman with blonde hair and awhite shirt

Fig. 3. We opt for a conditional diffusion model that accommodates conditional inputs
to steer the outcomes of generation. Furthermore, we employ deterministic DDIM as
our sampling approach and utilize two distinct conditions specified by the model (Kpr;
and K,u) to serve as the private and public keys, respectively.
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Hiding Process: In the hiding phase, we facilitate the transformation between
the secret image X ecrer and the steganographic image Xgieqo via the determinis-
tic DDIM’s forward and backward processes. To ensure variability in the images
pre- and post-transformation, we engage the pre-trained conditional diffusion
model with differing conditions for each process. These conditions also serve dual
roles as private and public keys (K,,; and K ). Specifically, we use a generated
mask X,,,sx from the original secret image to control the depiction of people
independently from the background and other elements, employing Kp,; in the
forward process and K, in the reverse. The resulting steganographic image
Xstego 1s then sent across the Internet, accessible to all potential recipients. This
setup hinges on the effectiveness of the conditions: the private key outlines the
content of the secret image, while the public key influences the steganographic
image’s content. In this model, the public key is inferable from the stegano-
graphic image itself, thus, it need not be transmitted separately. Conversely, the
private key is crucial for accurate image recovery and must remain confidential.

Revealing Process: In the revealing phase, we assume the steganographic
image X, has been transmitted online and possibly altered. The recipi-
ent utilizes the same conditional diffusion process with the corresponding keys,
employing a reverse sequence to the hiding process, to restore the original secret
image. This involves regenerating a control mask from the steganographic image
Xitegor» now called X ., using K, in the forward process. Unlike the hid-
ing phase, where K, is used forward and K,,; backward, the revealing phase
adjusts these roles. This method of coverless image steganography doesn’t require
training or fine-tuning the diffusion model specifically for steganography tasks;
rather, it leverages the inherent reversible image transformation capabilities
of DDIM Inversion. The forthcoming section will delve into this framework’s
specific applications and operational details, demonstrating its efficacy in safe-

guarding the privacy and security of image content in real-world scenarios.

4 Experimental Results

4.1 Implementation Details and Setup

Experimental Settings: In our experiments, we utilized the FaceParsing
model to generate facial masks and chose Stable Diffusion V2-Inpainting, pro-
vided by Huggingface, as our conditional diffusion model. We used deterministic
DDIM inversion to perform the inversion, with both forward and reverse pro-
cesses comprising 50 steps each. To facilitate reversible image transformation,
we adjusted the guidance scale to 1.0 and set the strength to 0.99.

Data Preparation: We used two facial image datasets, CelebA-HQ and FFHQ.
CelebA-HQ contains 30,000 high-resolution facial images, and FFHQ has 70,000
high-definition images at 1024 x 1024 resolution. From these, we curated 240
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images, named StegFace240. We used the BLIP [13] model to generate descrip-
tive textual information for the images as the private key, with the public key
manually modified. To validate our method, we compared it against several state-
of-the-art image steganography techniques, demonstrating its effectiveness. Our
method requires no training, and all experiments were conducted using a GeForce
RTX 3090 GPU card.

4.2 Comparison with SOTA Methods

In our experiments, we compared our method with various techniques on the
StegFace240 dataset. Considering that the application of diffusion models in
image steganography is relatively novel, we implemented several versions of the
Stable Diffusion model, including SDXL, SDXL-Inpt, and SD-Inpt. As shown in
Fig. 4, we compared the quality of steganographic and recovered images gener-
ated by different methods. It is evident that the steganographic images produced
by our method efficiently conceal the secret images without introducing notice-
able artifacts or unrealistic details, making anomalies virtually undetectable
to the human eye. Moreover, our steganographic images support seamless mod-
ifications of facial features such as gender, age, and beard, with high control-
lability. Regarding controllability (Fig.5), our approach enables steganography
in targeted regions while leaving other areas unaffected. It ensures the accurate
preservation of the secret image’s semantic information using the private key,
thereby exhibiting outstanding fidelity.

Our method not only allows for highly accurate recovery of the secret image
but also minimizes the difference between the original and recovered images. We
adopt four different metrics to evaluate the quality of the secret image and the
recovered image, including PSNR, SSIM, LPIPS and FID as shown in Table 1.
Higher PSNR and SSIM scores indicate better quality of the recovered images,
while lower LPIPS and FID scores suggest that the generated images are closer
to real images in terms of visual perception and style, reducing the likelihood of
being detected as containing steganographic information. Additionally, we used
Face++ and Aliyun’s facial recognition models to verify the recovery effective-
ness (Table 1). The facial recognition rate between the recovered images and the
secret images achieved over 90% on both models, attaining the highest confi-
dence levels. The results show that our method significantly outperforms other
methods across all metrics.

4.3 Steganalysis

To evaluate the security of the steganographic images, we employed both tra-
ditional statistical methods and deep learning-based steganalysis techniques to
determine whether the images can withstand detection by existing steganalysis
tools. As shown in the left side of Fig.6, we used the open-source steganalysis
tool StegExpose [35] to test the anti-steganalysis capability of our model. By
adjusting different detection thresholds, we generated ROC curves. The closer
the area under the ROC curve is to 0.5, the closer the detection accuracy is
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Fig. 4. Our method compares with other methods for steganography and image recov-
ery. It can be seen that the steganographic image generated by our method has high
visual quality, is not easy to be detected, and the recovered image has a high similarity
to the secret image.

to random guessing, indicating better resistance to steganalysis detection. The
results clearly show that our method exhibits low detection accuracy, suggesting
that the steganographic images generated by our model possess high security
and can effectively deceive the StegExpose tool.

In the right side of Fig. 6, we used the deep learning-based steganalysis tool
SRNet [36] and tested the steganographic images produced by various meth-
ods using the StegFace240 dataset. We retrained SRNet by gradually increas-
ing the number of steganographic images used for training. The data in the
figure indicates that compared to other methods, our proposed method shows
significantly lower detection accuracy, further demonstrating the strong anti-
steganalysis capability of our method. Table2 presents the detection accuracy
of different image hiding methods using SRNet. Ideally, the closer the detec-
tion accuracy is to 50%, the better the performance of the image hiding algo-
rithm. Our method achieved a detection accuracy of 55.25%, indicating that the
steganographic images are almost impossible to accurately detect as containing
hidden information.

4.4 Robustness Analysis

To assess the robustness of our method, we performed a series of simulated degra-
dation experiments, including the addition of Gaussian noise and JPEG compres-
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Fig.5. Our method, combined with custom face mask control, realizes controllable
local steganography and has good semantic consistency.

Table 1. Comparison results of our proposed method and other methods on the
StegFace240 dataset. The best results are highlighted in bold.

Secret/Reverse
Methods
PSNR|] SSIM] LPIPS| FID| Face++1 Aliyun]

CRoSS 23.79 0.74 0.18 48.85 89.20 70.85
SDXL 24.56 0.75 0.31 71.71 86.02 63.14
SDXL-Inpt [19.82 0.65 0.33 117.94 68.37 32.48
SD-Inpt 26.38 0.78 0.11 30.62 93.86 81.48
Ours 28.76 0.82 0.08 21.82 96.21 90.36

sion. As illustrated in Table 3, our method exhibited remarkable adaptability to
different levels of degradation, with minimal performance decline. Notably, in
the presence of Gaussian noise and JPEG compression, our method achieved the
highest PSNR values. Even under severe conditions such as Gaussian noise with
o = 30 and JPEG compression with QF = 20, the PSNR values remained above
20dB and 25dB respectively, whereas other methods exhibited a significant drop
in fidelity.

To further prove the robustness of our method, we tested real-world degrada-
tion scenarios. We conducted steganographic image transmission and reception
experiments via the WeChat network to simulate the effects of network trans-
mission. As illustrated in Fig. 7, under such complex degradation conditions, all
other methods either failed entirely or exhibited significant color distortions. In
contrast, our method not only successfully revealed the general content of the
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Fig. 6. The left is the ROC curves generated by different methods under the StegEx-
pose detector. The closer the area under the curve is to 0.5, the better the method is at
ideally evading the detector. The right is the results of steganalysis using SRNet. The
slower the curve grows and the closer the accuracy is to 50%, the higher the method’s
resistance to steganalysis.

Table 2. Detection accuracy of different methods on SRNet. The best results are
highlighted in bold.

Methods Accuracy (%)+std
HiNet 77.17£0.251
PRIS 74.33+0.219
CRoSSt 57.501+0.059
SD-Inpt 53.50+0.023
Ours 55.2540.049

Secret Image

‘WeChat Shoot

Revealed Image

Fig. 7. In real-world scenarios, when subjected to visual downgrades under conditions
labeled “Shoot” and “WeChat,” our method effectively reconstructs the contents of a
secret image, whereas other methods display significant color distortion or fail entirely.
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Table 3. Comparison of PSNR (dB) results for our proposed method and other tech-
niques under various levels of degradation. The best results are highlighted in bold.

Gaussian Noise JPEG
Methods
o=10 o =20 o =30 QF =20 QF =40 QF =80

HiNet 20.45 13.55 10.22 11.06 11.12 12.75
PRIS 23.83 18.29 14.90 12.86 13.02 15.66
CRoSS 20.78 19.10 17.49 20.73 21.36 22.96
SD-Inpt 24.04 21.40 19.65 24.16 25.09 25.79
Ours 25.96 23.99 22.48 25.49 26.87 28.15

secret image but also maintained good semantic consistency with the private key,
once again proving the significant superiority of our approach. Compared to the
latest methods, our proposed method also successfully maintained higher recon-
struction quality. These experimental results fully validate the efficiency and
robustness of our method under various experimental and real-world conditions.

5 Conclusion

We proposed a face privacy protection steganography framework based on dif-
fusion models. This framework combines mask extraction models, conditional
diffusion models, and deterministic DDIM techniques, which leverage the unique
advantages of diffusion models to achieve coverless steganography and is difficult
to detect with steganalysis tools. A large number of experiments show that com-
pared with the existing techniques, our method has obvious advantages in the
process of steganography and restoration. Moreover, the generated steganogra-
phy images are diverse. Our method achieves a good balance in terms of security,
controllability, and robustness.

In the future, image steganography based on diffusion models has tremendous
potential for development. Continued exploration of new methods to enhance the
steganographic capabilities of diffusion models, particularly in improving the
ability to hide multiple pieces of information and achieving pixel-level fidelity,
will have important application value. We look forward to future research
addressing these limitations and further optimizing and refining the technical
architecture in this field.
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With the rapid development of generative technologies, Artificial Intelligence
Generated Images (AIGIs) have become increasingly ubiquitous in modern soci-
ety. From avatar generation on social media to visual effects production in movies
and television, and even content creation in virtual and augmented reality, gener-
ative technologies has become an integral part of our daily experiences. However,
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Abstract. With the rapid development of generative technologies, Al-
Generated Images (AIGIs) have been widely applied in various aspects
of daily life. However, due to the immaturity of the technology, the qual-
ity of the generated images varies, so it is important to develop quality
assessment techniques for the generated images. Although some models
have been proposed to assess the quality of generated images, they are
inadequate when faced with the ever-increasing and diverse categories
of generated images. Consequently, the development of more advanced
and effective models for evaluating the quality of generated images is
urgently needed. Recent research has explored the significant potential
of the visual language model CLIP in image quality assessment, finding
that it performs well in evaluating the quality of natural images. How-
ever, its application to generated images has not been thoroughly investi-
gated. In this paper, we build on this idea and further explore the poten-
tial of CLIP in evaluating the quality of generated images. We design
CLIP-AGIQA, a CLIP-based regression model for quality assessment of
generated images, leveraging rich visual and textual knowledge encap-
sulated in CLIP. Particularly, we implement multi-category learnable
prompts to fully utilize the textual knowledge in CLIP for quality assess-
ment. Extensive experiments on several generated image quality assess-
ment benchmarks, including AGIQA-3K and AIGCIQA2023, demon-
strate that CLIP-AGIQA outperforms existing IQA models, achieving
excellent results in evaluating the quality of generated images.
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Fig. 1. Performance of CLIP-AGIQA. The star icons represent human ratings, and the
green scores below the dashed line represent the scores predicted by our model. (Color
figure online)

alongside these technological advancements, assessing the quality of generated
images has become an emerging issue. Due to the immaturity of the technol-
ogy, the quality of generated images is uneven, which can lead to unsatisfactory
user experiences in some applications [14]. Therefore, developing techniques to
effectively evaluate the quality of generated images is particularly important.

Quality assessment of generated images involves evaluating various dimen-
sions through subjective and objective methods, such as the perceptual quality
and the content accuracy with respect to input prompts. Recent efforts have
focused on creating comprehensive databases for subjective quality assessment
based on human perception and developing approaches to enhance evaluation
performance [12,14,29]. Despite these advancements, existing methods struggle
to keep pace with the increasing diversity of generated images. For instance,
in the field of text-to-image (T2I) generative models alone, there have been at
least 20 representative T21 AGI models up to 2023, as indicated by recent statis-
tics [2,34]. Therefore, more research is needed to meet the quality assessment
demands in this field.

Recent research has begun to explore CLIP’s [18] (Contrastive Language-
Image Pre-training) potential in image quality assessment, revealing its effective-
ness in evaluating natural images [24]. CLIP demonstrates strong performance
across various visual and multimodal tasks due to its extensive pre-training on
language-image data. However, since CLIP is pre-trained on natural images, it
may have problems to model the quality distribution of generated images effec-
tively, leaving a gap in this area. To address this, we propose CLIP-AGIQA, a
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CLIP-based regression model that leverages CLIP’s comprehensive visual and
textual knowledge to evaluate the quality of generated images. First, we design
various prompts representing different quality levels to input into CLIP’s text
encoder, mitigating semantic ambiguities. Second, by introducing a learnable
prompts strategy and utilizing multiple quality-related auxiliary prompts, we
make full use of CLIP’s textual knowledge. Last, our regression network then
maps CLIP features to quality scores, effectively adapting CLIP’s capabilities to
the task of generated image quality assessment, thereby enhancing the model’s
performance. The specific performance of our CLIP-AGIQA can be seen in Fig. 1.
In summary, our primary contributions include:

— We propose CLIP-AGIQA, adapting the CLIP model to the task of evaluating
generated image quality;

— We introduce a learnable prompts strategy and design multiple prompts of
varying quality levels to fully utilize CLIP’s textual knowledge for assisting
in evaluating generated image quality;

— We conduct experiments on several benchmarks for generated image quality
assessment such as AGIQA-3K and AIGCIQA2023, achieving state-of-the-art
performance.

2 Related Work

2.1 Image Quality Assessment

Traditional image quality assessment aims to evaluate the quality of natural
images, including aspects like noise, blur, compression artifacts, etc. [3]. It is
categorized into three types: full-reference, reduced-reference, and no-reference.
Full-reference methods compare the original and test images, commonly using
metrics like PSNR and SSIM [26]. Reduced-reference methods utilize partial
information from a reference image, such as RRED [21] and OSVP [27]. No-
reference methods directly assess image quality using machine learning and deep
learning techniques, such as BRISQUE [16], IQA-CNN [9] and RankIQA [15].
In recent years, with the development of generative technologies, assessing the
quality of generated images has become increasingly important. Due to potential
abnormal distortions or unrealistic structures in generated images, evaluation
focuses on visual perception, including authenticity, naturalness, and coherence.
Common metrics include Inception Score (IS) for assessing image quality and
diversity based on classification results and KL divergence [19], Fréchet Inception
Distance (FID) for evaluating visual quality by comparing feature distributions
of real and generated images [7], and CLIP Score, which assesses image quality
based on similarity between generated images and textual descriptions [6].
Recently, datasets like AGIQA-3K [14] and PKU-I2IQA [33] have been pro-
posed to facilitate benchmark experiments for IQA models, focusing on the
quality assessment of generated images. AGIQA-3K provides a comprehensive
and diverse subjective quality database covering various generated images from
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GAN, autoregressive, and diffusion models. PKU-I2IQA, the first image-to-
image AIGC quality assessment database based on human perception, also con-
ducts benchmark experiments on different IQA models. Additionally, models
such as ImageReward [29] and HPS [28] construct datasets for generated images
from the perspective of human preferences and proposed corresponding evalua-
tion models, providing a benchmark for quality assessment in terms of human
preferences for generated images. Despite these advancements, there remains
a scarcity of specialized models for assessing the quality of generated images,
necessitating further research to advance this field.

2.2 CLIP-Based Methods

CLIP [18] is a large-scale vision-language pretrained model that leverages con-
trastive learning to achieve cross-modal knowledge understanding. It has demon-
strated strong transfer capabilities across various visual tasks such as semantic
segmentation (LSeg [13]), object detection (VILD [4]), and image generation
(CLIPasso [23]).

CLIP-IQA [24] is the first work to explore CLIP in image quality assessment
tasks, demonstrating that CLIP can be effectively extended to image quality
evaluation. Due to the significant impact of linguistic ambiguity in quality assess-
ment tasks [11], phrases such as “a rich image” can be particularly problematic.
This phrase could either refer to an image with rich content or an image asso-
ciated with wealth. CLIP-IQA design an antonym prompt strategy to leverage
CLIP’s prior knowledge. However, due to the limited variety of prompts, this
approach can result in inaccurate quality predictions. Moreover, this work only
explored the performance of CLIP in natural image quality assessment tasks
and did not address generated images. Building on this idea, we further investi-
gate the performance of CLIP in evaluating the quality of generated images and
propose a CLIP-based quality assessment regression model. By simultaneously
fine-tuning our designed multi-class learnable prompts and the regression net-
work added after CLIP, we achieve superior performance in assessing the quality
of generated images.

Notably, recent methods [8,10,36] also explore CLIP for IQA, with many
focusing on aesthetic evaluation. These methods stand out for their pioneering
efforts in multi-modality integration for low-level vision and their impressive
zero-shot performance. However, since CLIP is pre-trained on natural image-
text pairs, directly using CLIP in a zero-shot manner to evaluate the quality of
generated images, as done in the aforementioned methods, does not yield optimal
results. Therefore, we train a CLIP-based model using generated images to better
model the quality distribution of generated images.

3 Methodology

In this section, we first formalize the paradigm of a typical IQA model. Then,
we provide a detailed description of the various designs we implement to adapt
CLIP to the task of generative image quality assessment in CLIP-AGIQA.
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3.1 Preliminary on IQA Models

Given an image I, a typical IQA model uses a visual encoder V() to extract
visual features, followed by a regression model R(-) to predict the quality score.
This process can be represented as follows:

S =R(V(I)) (1)

In CLIP-IQA [24], only the visual encoder V() is used to extract visual features,
and then an antonym prompt strategy is employed to compute the cosine similar-
ity with the visual features to predict the quality score. Specifically, CLIP-IQA
adopts antonym prompts (e.g., “Good photo.” and “Bad photo.”) as a pair for
each prediction. Let x represent the features from the image, and ¢; and ¢, be
the features from the two prompts with opposite meanings. The cosine similarity
is computed as follows [24]:

I"ti
S = T
R

and Softmax is used to compute the final score § € [0, 1]:

ie{1,2}, (2)

e’!

ST et er 3)
When a pair of adjectives is used, the ambiguity of one prompt is reduced by
its antonym, casting the task as a binary classification where the final score is
regarded as a relative similarity [24]. Although this method effectively leverages
the prior knowledge of CLIP, the predicted quality score is solely dependent
on the contrastive similarity, which is not accurate. Therefore, in our design,
we improve the network by using a regression model R(-) to predict the quality
score, enhancing the precision of the prediction and better adapting CLIP to the
quality assessment task after further reducing ambiguity with more fine-grained
quality-related adjectives.

3.2 Overview of CLIP-AGIQA

The overall framework of our method is shown in Fig.2. CLIP-AGIQA consists
of four components: learnable context, quality category, image quality regression,
and the text encoder and image encoder in CLIP. In addition to the regression
design, to better utilize the prior knowledge of the CLIP model, we incorporate
learnable context for fine-tuning, inspired by the CoOp approach [37]. We also
introduce additional quality category to address the ambiguity issues mentioned
in CLIP-IQA. These two types of text-related information together form supple-
mentary textual information to assist CLIP in adapting to the task of generative
image quality assessment.
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Fig. 2. Overall Architecture of CLIP-AGIQA.

Learnable Context. Since prompt engineering is a significant challenge in the
application of CLIP, and the design of prompts can greatly impact performance,
even with extensive manual tuning, the resulting prompts are by no means guar-
anteed to be optimal for downstream tasks [37]. Therefore, we abandon tradi-
tional subjective prompt settings in favor of a learnable prompt strategy. CLIP
is sensitive to the choice of prompts, so we need to design a suitable set to
leverage its prior knowledge. Similar to CoOp [37], we avoid manual prompt
adjustments by modeling the context words using continuous vectors, which are
end-to-end learned from the data, while freezing a large number of CLIP’s pre-
trained parameters. Specifically, as shown in Fig. 2, we use learnable context. We
employ a unified context version from CoOp, where all prompts share the same
context. The prompt design for the text encoder T'(-) is as follows:

P = [LC|1[LC)s . .. [LC) QO] (4)

Each [LC],, (m € {1,...,M}) is the learnable context, represented as a
vector with the same dimensionality as the word embeddings (i.e., 512 for CLIP).
Here, M is a hyperparameter specifying the number of context tokens.

Text Encoder and Image Encoder. We utilize the text encoder T'(-) and
image encoder V(+) from CLIP. The text encoder is based on a Transformer archi-
tecture [22] and is responsible for generating text representations from natural
language. In contrast, the image encoder is designed to map high-dimensional
images into a low-dimensional embedding space. This encoder’s architecture can
resemble a CNN like ResNet-50 [5] or a Vision Transformer (ViT) [1]. In our
setup, we employ these encoders separately to process our input textual infor-
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mation P and image information I, generating intermediate features used to
predict quality score.

Quality Category. Due to the inherent language ambiguity in quality assess-
ment tasks, utilizing CLIP as a versatile prior for visual perceptual evaluation
is not straightforward. Similar to the antonym design in CLIP-IQA, we employ
a series of quality-related auxiliary categories in Eq. (4) [QC] to enhance the
expression of the quality assessment task by describing the goodness of quality
in a finer granularity. When using a set of quality-related adjective categories,
they align with the correct category akin to the antonym prompts in CLIP-IQA,
thereby reducing ambiguity. This transforms the task into multi-class classifi-
cation, where the final score can be regarded as relative similarity, calculated
through regression rather than using softmax as in CLIP-IQA. Specifically, we
utilize six adjectives-terrible, bad, poor, average, good, and perfect-as quality
category words to reduce ambiguity, thus better leveraging CLIP’s priors. In
addition, we also explore in the Sect. 4.3 the impact of the number and types of
different words on its effectiveness. This design, together with the setting of the
first learnable context, constitutes additional textual information to assist CLIP
in transferring to the task of generated image quality assessment.

Image Quality Regression. To better fit the CLIP features to the data dis-
tribution for the task of evaluating the quality scores of generated images, we
follow the paradigm of general quality assessment tasks by using the regres-
sion model R(-) to predict quality scores. We concatenate the image features
F, = V(I) € R"™" and the textual features F, = T(P) € R*Y as the input
features F.

F = concat(F;, F)) (5)

We then process the concatenated features F' through two fully connected (FC)
layers. Here, the parameters of the FC layers are also learnable. The projection
sizes are from 7 * 512 to 512 and from 512 to 1, respectively. Finally, we obtain
the predicted quality score S, expressed as follows:

S = R(F) (6)

Throughout the entire learning process, we employ the Mean Squared Error
(MSE) as the loss function, with the specific formula shown below:

L=y s -0 7)

where S represents the predicted quality score, and y represents the ground truth
of the quality score.
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4 Experiments

4.1 Experimental Settings

Datasets. To validate the effectiveness of our method, we conduct evaluations
on two quality assessment benchmarks for generated images: AGIQA-3K [14]
ans AIGCIQA2023 [25]. AGIQA-3K is a database containing 2,982 Al-generated
images produced by six different models, including GAN-based, auto-regression-
based, and diffusion-based models and subjective experiments are organized
to obtain MOS (Mean Opinion Score) labels in terms of perceptual quality,
which range from 0 to 5. AIGCIQA2023 collects over 2000 images using 100
prompts and six state-of-the-art text-to-image generation models, and quality
and authenticity ratings are obtained by subjective experiments, which are ulti-
mately scaled to a range of 0-100.

Evaluation Metrics. We use three common metrics in image quality assess-
ment: PLCC, SRCC, and KRCC. PLCC (Pearson Linear Correlation Coefficient)
measures the linear relationship between the predicted quality scores and the
subjective scores. SRCC (Spearman Rank Correlation Coefficient) measures the
consistency in the ranking order between the predicted quality scores and the
subjective scores. KRCC (Kendall Rank Correlation Coefficient) measures the
consistency in pairwise comparisons between the predicted quality scores and
the subjective scores. All three metrics range from [—1, 1], with values closer to
1 indicating higher correlation.

Training Details. The proposed CLIP-AGIQA is implemented in PyTorch and
trained on 1 NVIDIA A100 GPU. ViT-B/16 [1] is used as the image encoder’s
backbone, and SGD is applied to optimize the network with an initial learning
rate of 0.002. The training process was conducted over 100 epochs with a batch
size of 32 and a learnable context length of 16. For learning rate scheduling,
we employed a cosine annealing strategy, allowing the learning rate to decrease
gradually throughout the training. Additionally, we implemented a warm-up
phase during the first epoch, where the learning rate was held constant at 1 x
107°.

4.2 Experiment on Different Datasets

We focus on exploring the potential of CLIP-AGIQA in overall quality percep-
tion assessment. We conduct experiments on two widely used AGIQA bench-
marks: AGIQA-3K [14] ans AIGCIQA2023 [25]. We also compare CLIP-AGIQA
with different IQA methods, including handcrafted-based methods such as
CEIQ [32], NIQE [17] and BRISQUE [16], and several learning-based methods
like DBCNN [35], CLIP-IQA [24] and CNNIQA [9].

Table 1 presents the performance results of different IQA models on AGIQA-
3K database, demonstrating that CLIP-AGIQA shows strong performance. As
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Table 1. Comparison with the state-of-the-art IQA methods on AGIQA-3K dataset.
The best performance results are marked in RED and the second-best performance
results are marked in BLUE

Methods PLCC | SRCC | KRCC

FID [7] 0.1860 | 0.1733 | 0.1158

CEIQ [32] 0.4166 | 0.3228 | 0.2220
NIQE [17] 0.5171 ] 0.5623 | 0.3876
GMLF [31] 0.8181|0.6987 | 0.5119
CNNIQA [9] 0.8469 | 0.7478 | 0.5580
DBCNN [35] 0.8759 | 0.8207 | 0.6336
CLIP-IQA [24] 0.8053 | 0.8426 | 0.6468
CLIPAGIQA (Ours) | 0.8978 | 0.8618 | 0.6776

we can see, CLIP-AGIQA achieves PLCC, SRCC, KRCC values of 0.8978, 0.8618
and 0.6776, respectively. These results outperform all compared methods, show-
casing the great potential of our approach.

Table 2 shows the comparison between our CLIP-AGIQA and other IQA
methods on the AIGCIQA2023 dataset. It can be seen that our method not only
meets or exceeds state-of-the-art performance in evaluating the quality of gen-
erated images but also significantly outperforms other IQA models in assessing
the authenticity of the dataset, which refers to the ability to evaluate whether an
image is Al-generated. This indicates that our model excels not only in quality
assessment but also has great potential to extend to other aspects of evaluating
generated images.

Figure 3 shows that CLIP-AGIQA is able to assess overall perceptual qual-
ity to a level comparable to human judgment. It can assign reasonable scores
based on the quality of the generated images. Notably, this model demonstrates
several interesting capabilities. For instance, in the first column of the first row,
where a strange bowl appears in the scenery image, it identifies common flaws
in generated images and assigns a low score. Similarly, although the person in
the second column of the second row looks lifelike, the model may detect subtle
defects such as issues with the fingers and assigns a relatively low score. The
first and second column of the third row also receive a low score maybe due to
unrealistic elements and detail issues.

4.3 Ablation Studies

As described in Sect. 3.2, we make three unique modifications to adapt CLIP
for the quality assessment task. In this section, to verify the effectiveness of the
proposed key components, we train five variants of CLIP-AGIQA in AGIQA-3K:

I) Without regression and using cosine similarity instead (following CoOp
and using classification loss for tuning the context); II) Changing the backbone
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Table 2. Comparison with the state-of-the-art IQA methods on AIGCIQA2023
dataset. The best performance results are marked in RED and the second-best perfor-
mance results are marked in BLUE

Methods Quality Authenticity
PLCC | SRCC | KRCC | PLCC | SRCC | KRCC
NIQE [17] 0.5218 | 0.5060 | 0.3420 | 3954 | 3715 | 2453
BRISQUE [16] 0.6389 ] 0.6239 | 0.4291 | 0.4796 | 0.4705 | 0.3142
HOSA [30] 0.6561 | 0.6317 | 0.4311 | 0.4985  0.4716 | 0.3101
CNNIQA [9] 0.7937 ] 0.7160 | 0.4955 | 0.5734 | 0.5958 | 0.4085
Resnet18 [5] 0.7763 | 0.7583 | 0.5360 | 0.6528 | 0.6701 | 0.4740
VGG16 [20] 0.7973 ] 0.7961 | 0.5843 | 0.6807 | 0.6660 | 0.4813
VGG19 [20] 0.8402 | 0.7733 | 0.5376 | 0.6565 | 0.6674 | 0.4843
CLIPAGIQA (Ours) | 0.8302 | 0.8140 | 0.5991 | 0.7797 | 0.7940 | 0.5849
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Fig.3. CLIP-AGIQA for assessing overall perceptual quality. Left: Model Scores,
Right: Human Scores

network; IIT) Changing the length of learnable contexts; IV) Changing the length
of quality categories; V) Changing the type of quality categories.

The results indicate that removing or changing any single factor leads to
a decrease in performance, confirming their contribution to the performance
results in Table 3. Tt is worth noting that CLIP-IQA™ [24] has already validated
the importance of learnable context and quality categories, so we only test the
impact of regression on CLIP in the quality assessment of generated images. In
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Table 3. Ablation Study Results

No. Ablation Setting PLCC | SRCC | KRCC
0 full model ViT-B/16, 16, 6 adjectives |0.8978 | 0.8618 | 0.6776
without regression | ViT-B/16, 16, 6 adjectives |0.8183|0.8201 | 0.6693

2 - (backbone) ViT-B/32, 16, 6 adjectives |0.8954 | 0.8614 | 0.6751

ResNet-101, 16, 6 adjectives | 0.8837 | 0.8544 | 0.6665
3 | - (context length) ViT-B/16, 8, adjective 0.8951 | 0.8595 | 0.6746
ViT-B/16, 32, 6 adjectives |0.8962 | 0.8605 | 0.6751
- (category length) | ViT-B/16, 16, 8 adjectives |0.8962 | 0.8616 | 0.6766
5 | - (category type) ViT-B/16, 16, 6 scores 0.8958 | 0.8604 | 0.6747

variant 1, we observed a significant improvement when regression is added. This
indicates that the combination of CLIP priors with a simple regression model is
already effective.

In variants 2-5, although the impact on the model’s performance is minimal,
exploring these variants still provides us with valuable insights to understand and
improve CLIP-AGIQA. Variants 2 and 3 are set up similarly to those explored
in CoOp [37]. In our investigation of the backbone, we find a similar conclusion:
the more advanced the backbone, the better the performance. However, the con-
clusion from CoOp that having more context tokens leads to better performance
is not satisfied when the context length increased from 16 to 32. This can be due
to the increased number of parameters making it harder for the model to con-
verge to an appropriate state, warranting further investigation in future work.
Additionally, we demonstrate that a “good” initialization does not make much
difference, though this is not explicitly included in the table.

In variants 4 and 5, when the length of quality categories increases indefi-
nitely, the task intuitively becomes a one-to-one classification task, yet the per-
formance does not improve. Possible reasons could be that having too many
quality categories makes synonyms indistinguishable, or the model parameters
are insufficient to differentiate between categories. Changing the type of quality
categories to numbers representing score relationships results in a performance
drop, likely because CLIP rarely uses numbers in training, making it difficult to
directly represent score magnitudes with numbers.

5 Conclusion

In this paper, we propose CLIP-AGIQA, a model that effectively adapts to
new assessment requirements for generated images by leveraging CLIP’s com-
prehensive visual and textual knowledge. Directly using CLIP has limitations
and does not align well with the task of generated image quality assessment. To
address this, we design various categories representing different quality levels to
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input into CLIP’s text encoder, mitigating semantic ambiguities. By introduc-
ing a learnable prompts strategy and utilizing multiple quality-related auxiliary
categories, we fully exploit CLIP’s textual knowledge. Our regression network
directly maps CLIP features to quality scores, effectively combining CLIP’s capa-
bilities with the task of generated image quality assessment, thereby enhancing
the model’s performance. Experiments demonstrate that CLIP-AGIQA, when
trained with different datasets, performs excellently in both datasets. Ablation
studies confirm the effectiveness of the proposed components. In the future, we
will further improve our work by developing CLIP’s own weights during training
or by using multiple learnable contexts to explore multi-dimensional, fine-grained
quality scores.
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Abstract. Deepfakes, synthetic media manipulated using Al, pose sig-
nificant challenges to credibility and security. With the increasing sophis-
tication of deepfake generation, robust detection methods are cru-
cial. In this paper, CoDeiT (Contrastive Data-efficient Transformers)
is introduced, a framework for deepfake detection integrating a hier-
archical attention mechanism in Hil.o Transformer architecture with
contrastive learning. It uses HiLo Attention to separate high-frequency
(Hi-Fi) and low-frequency (Lo-Fi) information, enhancing computational
efficiency and detection accuracy. The contrastive learning framework
further increases discriminative power by maximizing the similarity
between genuine instances and minimizing it between genuine and fake
ones. Extensive data augmentation improves robustness across diverse
datasets. Comprehensive experiments on benchmark datasets validate
CoDeiT’s effectiveness. Three variations of the architecture have been
proposed: CoDeiT-S, CoDeiT-L, and CoDeiT-XL, each differing in the
number of parameters and attention heads. CoDeiT-XL has achieved
86.9% accuracy and 0.95 AUC on DFDC, and 78.5% accuracy and
0.89 AUC on the challenging CelebDF dataset when trained on the
FaceForensic++ dataset. It outperformed all state-of-the-art deepfake
detection methods. CoDeiT is effective for deepfake detection due to
its unique architecture and ability to capture both high-frequency and
low-frequency information efficiently. The combination of high and low-
frequency information allows the CoDeiT to extract rich and detailed
features from the data. This dual focus is particularly effective in detect-
ing subtle inconsistencies and manipulations present in deepfakes.
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1 Introduction

A deepfake is a synthetic media creation, typically in the form of a video or
audio recording, generated using artificial intelligence (AI) techniques, particu-
larly deep learning. The term “deepfake” is a combination of “deep learning”
and “fake.” These Al-generated media are designed to convincingly mimic real
people, often making it appear as though they are saying or doing something
they never actually did. There has been a recent increase in videos, often obscene,
where faces are swapped with others using neural networks, known as deepfakes®,
which have become a significant public concern?. The availability of open-source
software and apps for face swapping has resulted in a large number of syntheti-
cally generated deepfake videos surfacing on social media and in the news, cre-
ating a major technical challenge for their detection and filtering. Consequently,
the creation of effective tools to automatically detect these videos with swapped
faces is of utmost importance.

1.1 Need for Deepfake Detection

The need for deepfake detection is critical due to the significant risks associ-
ated with their misuse. Deepfakes can spread misinformation and disinforma-
tion, manipulate political outcomes, and incite public panic or unrest. They pose
severe threats to privacy and reputation, such as in cases of revenge porn and
defamation, and undermine trust in digital media by making it difficult to dis-
cern authentic content. The detection of deepfakes is crucial to counteract their
potential to mislead, harm, and erode trust in digital media. It is essential for
protecting individuals’ privacy and reputation, maintaining public trust, ensur-
ing national security, and upholding legal and ethical standards. Developing and
deploying robust deepfake detection technologies is vital to mitigate these risks
and safeguard society against the malicious use of this powerful technology.

Consequently, the identification of deepfakes has attracted a lot of atten-
tion in recent years. Recent developments in deep learning [19] have made it
more challenging for humans to identify deepfakes. Current deepfake detection
methods face significant limitations, including poor generalization across differ-
ent datasets, vulnerability to adversarial attacks, high computational costs, and
a lack of interpretability. These challenges hinder their reliability and practical
deployment. Segregating high and low-frequency information is crucial because
high-frequency details capture subtle artifacts and fine-grained textures indica-
tive of manipulations, while low-frequency information provides the broader con-
textual integrity of the image or video. This balance between detailed local anal-
ysis and comprehensive global understanding enhances the model’s ability to
detect deepfakes accurately and robustly, improving performance and general-
ization across diverse scenarios.

! Open source: https://github.com/deepfakes/faceswap.
2 BBC report (Feb 3, 2018): http://www.bbc.com/news/technology-42912529.
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1.2 Contributions

In this paper, an approach for deepfake detection has been proposed. The pro-
posed approach is based on the HiLo Transformer architecture with a contrastive
learning framework. The effectiveness of the proposed approach has been demon-
strated through a series of experiments on multiple benchmark datasets. The
main contributions of the work are:

— Introduction of the HiLo Transformer Architecture for Efficient Deepfake
Detection: The HiLo Transformer’s design focuses on high-frequency details
locally and low-frequency structures globally, reducing redundant processing
and enhancing data efficiency. Its hierarchical attention mechanism ensures
effective feature extraction from each image or video frame.

— Integration of a Contrastive Learning Framework to Enhance Model Discrim-
inative Power: Contrastive learning boosts the HiLo transformer’s ability to
distinguish real from fake images by learning robust features from contrasting
pairs. Data augmentation enhances generalization with limited labeled data.

— Comprehensive Evaluation on Multiple Benchmark Datasets Demonstrating
State-of-the-Art Performance: Evaluations on benchmark datasets show the
HiLo transformer’s superior performance, setting new state-of-the-art results.
This combination improves accuracy and data efficiency, effective with smaller
training datasets.

The rest of the paper is organized as follows. The related work is discussed in
Sect. 2. Next, the proposed architecture is discussed in Sect. 3. The experimental
results are discussed in Sect. 4. At last, conclusions and future work are discussed
in Sect. 5.

2 Related Work

Initial attempts [11,15] used a combination of CNNs and LSTMs to learn tem-
poral patterns of extracted features. The work [15] uses CNN-based methods to
detect the difference in the resolution between warped faces and its surroundings.
There have also been attempts to analyze the Photo Response Non-Uniformity
(PRNU) noise patterns in forged images in work [14]. Another approach is per-
forming mesoscopic level analysis in [1]. However, with the increasing quality of
forged content, the performance of these detectors becomes challenging.

Over the years, CNN-based methods have become popular. These methods
focus on comparing features contrasting near the blending boundary. Although
these CNN-based methods perform well, CNN with LSTM methods are compe-
tent.

Recent methods still use CNNs to accurately detect deepfakes leveraging the
concept of attention. Approaches [8] have also used transformers in this context
to distinguish the identities of forged images near the blending boundary. In
[12] self-supervised methods to detect deepfakes works are currently performing
better compared to supervised models in the cross-dataset testing setting.
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Contrastive learning has emerged as a powerful paradigm for representation
learning, particularly in the context of unsupervised and self-supervised learning.
The fundamental idea behind contrastive learning is to bring similar instances
closer in the representation space while pushing dissimilar instances apart. This
approach has been successfully applied in various domains, including computer
vision and natural language processing.

The InfoNCE loss, introduced by Oord et al. [20], is a popular objective
function in contrastive learning that aims to maximize the mutual information
between different views of the same data. Chen et al. [4] further advanced this
concept with SimCLR, demonstrating the effectiveness of simple yet powerful
augmentations and a contrastive loss for visual representation learning. MoCo
(Momentum Contrast) by He et al. [13] introduced a dynamic dictionary with a
queue and a moving-averaged encoder, significantly improving the scalability of
contrastive learning methods.

In the context of deepfake detection, contrastive learning frameworks have
been leveraged to enhance the discriminative power of models by learning robust
feature representations that differentiate genuine content from manipulated
media. Works such as Li et al. [3] have shown the efficacy of self-supervised learn-
ing in improving the generalization of deepfake detection models across diverse
datasets. Grill et al. [10] introduced BYOL (Bootstrap Your Own Latent), which
avoids the use of negative pairs and demonstrates state-of-the-art performance in
self-supervised learning. Caron et al. [2] presented SwAV (Swapping Assignments
between Views), which combines contrastive learning with clustering to improve
feature learning. Zbontar et al. [28] proposed Barlow Twins, which uses redun-
dancy reduction to achieve competitive performance without requiring large
batch sizes or negative pairs.

HiLo Attention, proposed by Pan et al. [21], extends the capabilities of vision
transformers by disentangling high and low frequency patterns, enhancing the
efficiency and effectiveness of attention mechanisms. This approach has been par-
ticularly beneficial for tasks requiring detailed analysis of fine-grained features
and broader contextual understanding.

In the realm of deepfake detection, the application of vision transformers
offers a promising direction, leveraging their ability to model intricate visual
patterns and capture subtle inconsistencies in manipulated media. Works such
as ViT-G by Kolesnikov et al. [9] and DelIT by Touvron et al. [26] have shown that
vision transformers can achieve competitive performance with efficient training
strategies.

3 Proposed Architecture: Extending HiLLo Transformer
with Contrastive Learning

Extending the HiLo Transformer with contrastive learning can enhance its ability
to distinguish between authentic and fake data by learning more discriminative
feature representations. Contrastive learning is a self-supervised learning tech-
nique that aims to maximize the similarity between related data points (positive
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pairs) while minimizing the similarity between unrelated data points (negative
pairs). This section explains enhancing performance by integrating contrastive
learning with the HiLo Transformer. The flow diagram of the proposed archi-
tecture is shown in Fig.1. It has several different stages which are explained
below.

Maximize Agreement
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Fig. 1. Proposed CoDeiT architecture.

3.1 Data Preparation

The dataset is obtained from publicly available sources namely Celeb-DF [16],
FaceForensics++ (FF++) [23], and Deepfake Detection Challenge (DFDC) [7].
All these datasets contain both real and deep fake videos. Frames are extracted at
regular intervals to create images. It ensures the dataset has diverse examples
of different types of deep fakes.

3.2 HiLo Transformer Architecture

The traditional transformer is replaced with the HiLo Transformer with a hier-
archical attention mechanism namely local attention and global attention.
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— Local Attention (high-frequency): The model processes small patches or
regions of the input to capture fine-grained details.

— Global Attention (low-frequency): The model aggregates information from
the entire input to maintain contextual understanding.

HiLo Attention is motivated by the observation that natural images con-
tain rich frequencies where high/low frequencies play different roles in encoding
image patterns, (i.e.) local fine details and global structures, respectively [21].
A typical multi-head self-attention (MSA) layer enforces the same global atten-
tion across all image patches without considering the characteristics of different
underlying frequencies. HiL.o Attention separates an MSA layer into two paths:
High-frequency attention (Hi-Fi) and Low-frequency attention (Lo-Fi) as shown
in Fig. 2.

High Frequency Attention (Hi-Fi)

Scaled
Dot-Product —E; :
Attention

Scaled
Dot-Product —’3

Attention

[ concat |
v
Projection

}
g

==
v
Projection

l

Low Frequency Attention (Lo-Fi)

Fig. 2. Framework of HiLo attention. N, refers to the total number of self-attention
heads at this layer. a denotes the split ratio for high/low frequency heads; reproduced
from [22].

Multi-head Self-Attention (MSA): The MSA mechanism operates by
splitting the input into multiple heads, each learning different representations.
The attention calculation is defined as:

Attention(Q, K, V) ft QKT v (1)
ention , V) = softmax
) /fdk

where @ (queries), K (keys), and V' (values) are linearly transformed versions
of the input, and dj is the dimensionality of the keys.

HiLo Attention: HiLo Attention extends MSA by disentangling high and
low frequency patterns. The process involves:

Linear Transformations: First, apply linear transformations to the input to
get the query Q, key K, and value V matrices:

Q=XW,, K=XWg, V=XWy, (2)

where Wqo, Wg, Wy € R?*4 are learnable weight matrices.
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Step 2: Compute Hi-Fi Attention. Hi-Fi Attention focuses on local details.
This can be done using standard scaled dot-product attention:

. QK7”
Attention y;7(Q, K, V) = softmax 7 A% (3)

Step 3: Compute Lo-Fi Attention. Lo-Fi Attention focuses on global struc-
tures. One way to implement this is by using a different set of linear transfor-
mations that aggregate information over larger regions:

Qro = XWg 10, Ko = XWi 16, Vo = XWy 1, (4)
KT
Attention i (Qro, Kro, VLo) = softmax (QL\O[CZLO> Vio (5)

Step 4: Combine Hi-Fi and Lo-Fi Attention. Finally, combine the outputs of
Hi-Fi and Lo-Fi attention:

HiLo Attention(X) = Wyir; Attentiong;p(Q, K, V)

. (6)

+ W poriAttentionpori (QLo, Kro, Vo)
where Wyir; and W, are learnable weights that balance the contributions of
Hi-Fi and Lo-Fi attention. The advantages of using HiLo Transformer for deep
fake detection are as follows.

— Enhanced Sensitivity to Artifacts: The HiLo Transformer’s local attention
mechanism can detect fine-grained artifacts commonly present in deep fakes,
such as subtle pixel-level anomalies and inconsistencies in facial features.

— Improved Contextual Analysis: The global attention mechanism allows the
model to understand and analyze the entire image or frame context, making
it capable of identifying broader inconsistencies, such as unnatural expressions
or movements.

— Scalability and Efficiency: By efficiently handling high-resolution images and
video frames, the HiLo Transformer can process and analyze large datasets,
which is essential for robust deep fake detection.

— Flexibility: The architecture’s adaptability enables it to handle various types
of deep fakes, including different styles and techniques used to generate fake
images and videos.

Three variations of the architecture have been proposed: CoDeiT-S, CoDeiT-
L, and CoDeiT-XL, each differing in the number of parameters and attention
heads. The configurations of these architectures are given in Table 1.

These variations have been introduced to assess the performance of the pro-
posed architecture at different computational costs. The larger models, CoDeiT-
L and CoDeiT-XL, offer better accuracy but demand more computational
resources. CoDeiT-S balances performance and efficiency, making it suitable for
resource-constrained environments.
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Table 1. Comparison of model variations in terms of parameters, FLOPs, and attention
heads.

Model Params/FLOPs|Attention Heads
CoDeiT-S 22M 4.8B |6
CoDeiT-L [86M  [15.1B |12
CoDeiT-XL[307TM 60.9B |24

3.3 Contrastive Learning Framework

— Feature Extraction: The HiLo Transformer is used to extract features from
the input data. The hierarchical attention mechanism ensures that both local
details and the global context are captured.

— Projection Head: A projection head is added on top of the HiLo Transformer
to map the extracted features to a lower-dimensional space suitable for con-
trastive learning.

To further enhance detection capability, a contrastive learning framework is
integrated with the HiLo Transformer. Contrastive learning has demonstrated
remarkable success in unsupervised and self-supervised learning tasks by max-
imizing the similarity between positive pairs and minimizing it between nega-
tive pairs [4,13]. In this work, a contrastive loss function, specifically InfoNCE
(Information Noise Contrastive Estimation) loss, is defined as follows:

exp(z; - 2i /T
log — p(2i - 2/7)
> =1 Liksti) xp(2i - 21/ 7)

where z; and z; are the encoded representations of a positive pair, 7 is a temper-
ature parameter that scales the logits, and 1, is an indicator function equal to
1if k # i and 0 otherwise. The InfoNCE loss maximizes the agreement between
positive pairs while minimizing the agreement with negative pairs, thereby learn-
ing a feature space where similar instances are closely clustered, and dissimilar
instances are further apart.

In this framework, the latent space learns representations by aligning simi-
lar instances and pushing apart dissimilar ones. This is particularly useful for
deepfake detection, as it enhances the discriminative capability of the model by
learning subtle differences between genuine and fake instances.

The advantages of using the HiLo Transformer with contrastive learning for
deep fake detection are as follows.

(7)

LintoncE = —

— Enhanced Feature Discrimination: Contrastive learning helps the HiLoo Trans-
former learn more discriminative features, improving its ability to distinguish
between similar and dissimilar instances, such as real and fake data.

— Robustness to Variations: By learning to differentiate between positive and
negative pairs, the model becomes more robust to variations and noise in the
data, leading to better generalization.
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— Improved Data Efficiency: Contrastive learning leverages unlabeled data effec-
tively, reducing the reliance on large labeled datasets and improving perfor-
mance even with limited labeled data.

3.4 Training Process

— Pretraining with Contrastive Learning: Train the HiLo Transformer with the
contrastive loss on a large dataset to learn robust feature representations.

— Fine-Tuning: After pretraining, fine-tune the model on a labeled dataset for
the specific task, such as deep fake detection, using a cross-entropy loss which
is a supervised loss function.

3.5 Overall Framework
The overall deepfake detection framework involves the following steps:

— The HiLo Transformer is used to extract hierarchical features from input
images or videos. These features capture various levels of abstraction, making
it easier to identify subtle inconsistencies characteristic of deepfakes.

— The extracted features are projected into an embedding space suitable for
contrastive learning. In this space, the contrastive loss function operates,
helping the model learn discriminative representations that are effective for
deepfake detection.

— The model is trained using a dataset containing both genuine and deepfake
instances. Its performance is evaluated across different datasets to ensure
robustness and generalizability.

— Robust data augmentation techniques, such as random cropping, flipping,
color jittering, and noise addition, create diverse training samples. These aug-
mentations expose the model to a wide variety of data, enhancing its ability to
generalize across different datasets and improving its robustness in real-world
applications.

By combining the hierarchical design and HiL.o Attention of the HiLo Trans-
former with a robust contrastive learning framework, the proposed method
achieves high precision and efficiency in deepfake detection tasks.

4 Experimental Results

4.1 Datasets

We evaluated our method on three widely used deepfake detection datasets:
Celeb-DF [16], FaceForensics++ (FF++) [23], and Deepfake Detection Chal-
lenge (DFDC) [7]. The Celeb-DF dataset consists of 5,639 high-quality deepfake
videos, split into 70% for training and 30% for testing. The FaceForensics++
dataset comprises manipulated videos generated using various methods, divided
into a 70% training set and a 30% testing set. The DFDC dataset is a large-scale
collection of 100,000 videos, with 60% for training, 20% for validation, and 20%
for testing as described in 2.
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Table 2. Deepfake Datasets with Train-Test Split

Dataset |# of Images|/Train Split/Test Split| Real: DF

Celeb-DF| 2,342,200 | 1,639,540 | 702,660 | 590: 5,639
(FF++) | 1,019,800 | 713,860 | 305,940 |1,000: 1,000
DFDC 2,271,700 | 1,363,020 | 454,340 |1,131: 4,113

4.2 Training Setup

The codebase is built on the PyTorch framework using the timm deep learning
library. All experiments have been conducted on a Linux machine with a 40GB
NVIDIA A100 GPU. The networks are trained using Cross Entropy Loss and
optimized with SGD with momentum, an initial learning rate of 0.005, momen-
tum of 0.9, and a mini-batch size of 512. The larger batch size was selected to
efficiently utilize the available GPU RAM.

4.3 Evaluation Metrics

To evaluate the performance of the proposed approach, accuracy, and AUC are
used. Accuracy is the ratio of correctly predicted instances to the total instances,
providing a basic measure of correctness. However, the primary metric we focus
on is the Area Under the Receiver Operating Characteristic Curve (AUC-ROC).
AUC-ROC is preferred as it provides an aggregate measure of performance across
all classification thresholds, offering a comprehensive view of the model’s abil-
ity to distinguish between genuine and fake instances. Unlike accuracy, which
can be misleading in imbalanced datasets, AUC-ROC considers the true positive
rate and false positive rate, making it a more reliable metric for comparing the
performance of deepfake detection models. By focusing on AUC-ROC, the eval-
uation captures the nuanced performance of the model in identifying deepfakes,
crucial for real-world applications.

4.4 Cross-dataset Evaluation

To demonstrate the effectiveness of the proposed approach in learning robust
latent representations, it is performed cross-dataset evaluations. The proposed
architecture is trained on the FF++ dataset and evaluated on the Celeb-DF and
DFDC datasets, and vice versa. The results show that CoDeiT architecture, par-
ticularly CoDeiT-XL, has achieved the highest accuracy and AUC-ROC scores
across all evaluations. This indicates that the proposed architecture can gener-
alize well across different datasets.

Trained on FF++4 and Tested on Others: The first set of experiments
involved evaluating video-level deep fake detection accuracy and AUC of CoDeiT
architecture (CoDeiT-S, CoDeiT-L, and CoDeiT-XL). These architectures are
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trained on FF++ and tested on DFDC and CelebDF datasets using high-quality
videos and the results are given in Table 3. The existing method results are taken
from their references. It can be observed that all three versions of CoDeiT archi-
tectures outperformed state-of-the-art methods, including MesoNet [1], Xception
[5], Efficient-B7 [25], FFD [17], ISPL [18], Seferbekovv [24], ResNet + LSTM [29],
and Efficient-B1 + LSTM [27]. Among the three, the CoDeiT-XL architecture
has achieved the highest accuracy and AUC of 86.9 and 0.95 for DFDC (HQ)
dataset while it is 78.5 and 0.89 for the CelebDF (HQ) dataset respectively. It
demonstrates superior performance in detecting deepfakes compared to other
methods.

Table 3. Trained on FF++4 and Tested on DFDC and CelebDF HQ videos: Comparing
performance (Accuracy/AUC) of the proposed architecture with existing state-of-the-
art methods

Model DFDC (HQ) |[CelebDF (HQ)

Accuracy AUC|Accuracy|AUC
MesoNet [1] 53.6 0.74 |50.1 0.75
Xception [5] 72.0 0.79 |77.2 0.88
Efficient-B7 [25] 71.8 0.78 |71.4 0.80
FFD [17] 63.1 0.69 69.2 0.76
ISPL [18] 69.6 0.78 |71.2 0.83
Seferbekov [24] 72.0 0.85 |75.3 0.86

ResNet + LSTM [29]61.2  0.67 [58.2  0.72
Eff.B1 4+ LSTM [27] 67.2  [0.75 75.3  0.84

ID-Reveal [6] 80.4 0.91 |71.6 0.84
CoDeiT-S 82.5 0.92|73.8 0.85
CoDeiT-L 84.7 0.9476.1 0.87
CoDeiT-XL 86.9 0.95|78.5 0.89

Trained on DFDC and Tested on Others: The second experiment evalu-
ates the performance of the proposed architecture trained on DFDC and tested
on the FF++ and CelebDF datasets with high-quality videos and the results
are given in Table4. The CoDeiT architecture demonstrated superior perfor-
mance compared to other methods across all three versions. Among the three,
the CoDeiT-XL architecture has achieved the highest accuracy and AUC of 88.1
and 0.95 for FF++ (HQ) dataset while it is 78.6 and 0.87 for the CelebDF (HQ)
dataset respectively. This demonstrates the robustness of CoDeiT when trained
on different datasets, showcasing its ability to learn effective representations for
deepfake detection.
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Trained on Celeb-DF and Tested on Others: The third experiment eval-
uates the performance of the proposed architecture trained on Celeb-DF and
tested on the FF++4 and DFDC datasets with high-quality videos and, the
results are given in Table5. The CoDeiT architecture demonstrated superior
performance compared to other methods across all three versions. Among the
three, the CoDeiT-XL architecture has achieved the highest accuracy and AUC
of 85.6 and 0.93 for FF++ (HQ) dataset while it is 86.1 and 0.95 for the DFDC
(HQ) dataset respectively. This demonstrates the robustness of CoDeiT when
trained on different datasets, showcasing its ability to learn effective representa-
tions for deepfake detection. Figure 3 shows the accuracy graph obtained for the
cross-dataset evaluation of CoDeiT with the top four state-of-the-art methods.
This evaluation was conducted across two datasets DFDC (HQ) and CelebDF

(HQ).

Table 4. Trained on DFDC and tested on FF++ and CelebDF HQ videos: Comparing
performance (Accuracy/AUC) of the proposed architecture with existing state-of-the-
art methods

Model FF++ (HQ) CelebDF (HQ)

Accuracy AUC|Accuracy AUC
MesoNet [1] 55.4 0.58 [50.1 0.75
Xception [5] 74.1 0.81 |77.2 0.88
Efficient-B7 [25] 726 0.80 71.4  (0.80
FFD [17] 64.3  0.71(69.2  0.76
ISPL [18] 70.8 0.79 |71.2 0.83
Seferbekov [24] 73.5 0.86 |75.3 0.86

ResNet + LSTM [29]62.4  0.70 [58.2  0.72
Eff.B1 + LSTM [27] 68.3  0.77 [75.3  [0.84

ID-Reveal [6] 8.7  0.92 71.6  (0.84
CoDeiT-S 83.4 (0.8973.9  |0.82
CoDeiT-L 85.8  0.93 76.2 0.84
CoDeiT-XL 88.1  0.9578.6  (0.87

4.5 Ablation Study

To justify the model architecture choices, an extensive ablation study has been
conducted. Variations in the number of attention heads, MLP layers, and other
hyperparameters are explored to evaluate their impact on the model’s perfor-
mance. These are summarized in Table 6. The ablation study demonstrates that
the chosen architecture and hyperparameters effectively balance performance
and computational efficiency. Increasing the number of attention heads improves
the model’s ability to capture complex patterns and subtle inconsistencies in
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Table 5. Comparing performance (Accuracy/AUC) of our models with existing state-
of-the-art models on FF++ and DFDC HQ videos, trained on Celeb-DF.

Model FF++ (HQ) DFDC (HQ)

Accuracy AUC|Accuracy AUC
MesoNet [1] 55.4 0.58 160.1 0.72
Xception [5] 55.6 0.58 |77.2 0.88
Efficient-B7 [25]  54.9 059 714 0.80
FFD [17] 544 056 69.2  (0.76
ISPL [18] 56.6 0.59 |71.2 0.83
Seferbekov [24] 58.3 0.62 |75.3 0.86

ResNet + LSTM [29]/55.0 0.58 [65.2 0.78
Eff B1 + LSTM [27] |57.2 0.62 [75.3 0.84

ID-Reveal [6] 78.3 0.87 [79.6 0.90
CoDeiT-S 80.4  0.89 81.2 0.91
CoDeiT-L 83.2  0.9183.7  0.93
CoDeiT-XL 85.6  0.9386.1  0.95
1001 86.9
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Fig. 3. CoDeiT-XL: Accuracy of cross-dataset is shown trained on FaceForensic++
tested across two datasets with SOTA Methods. The orange bars represent DI'DC
(HQ) and the blue bars represent CelebDF (HQ). (Color figure online)

deepfake content, but this also increases the computational cost. Similarly, more
MLP layers allow the model to learn more complex representations, but the per-
formance gains diminish beyond 4 layers, indicating an optimal balance between
model complexity and performance. The larger models, CoDeiT-L and CoDeiT-
XL, provide better accuracy at the cost of increased computational cost, making
them more suitable for offline analysis. CoDeiT-S, with 22 M parameters, pro-
vides a good balance between efficiency and performance, making it suitable for
real-time applications.
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Table 6. Ablation study results showing the impact of different configurations of atten-
tion heads and MLP layers on CoDeiT-XL trained on FF+4+. Best results are indicated
in bold.

Attention HeadsMLP Layers Train Acc. (%)
6 2 85.3
6 4 87.1
12 2 88.4
12 4 89.7
24 4 91.2
24 8 91.5

5 Conclusions

In this paper, CoDeiT, a novel framework for deepfake detection, is intro-
duced that leverages the strengths of the hierarchical attention mechanism
and contrastive learning. The proposed Hierarchical Data-efficient Transformer
(HiLo Transformer) employs HiLo Attention to effectively disentangle and pro-
cess high and low-frequency information, significantly enhancing the model’s
ability to detect subtle manipulations indicative of deepfakes. A contrastive
learning framework using the InfoNCE loss function was incorporated, which
further improved the discriminative power of the model by maximizing the sim-
ilarity between genuine instances and minimizing the similarity between gen-
uine and fake instances. The use of comprehensive data augmentation tech-
niques ensured robustness and generalizability across diverse datasets. Three
variations of the architecture have been proposed: CoDeiT-S, CoDeiT-L, and
CoDeiT-XL, each differing in the number of parameters and attention heads.
CoDeiT-XL has achieved 86.9% accuracy and 0.95 AUC on DFDC, and 78.5%
accuracy and 0.89 AUC on the challenging CelebDF dataset when trained on the
FaceForensic++ dataset. Extensive experiments on widely used deepfake detec-
tion datasets, including Celeb-DF, FaceForensics++, and the Deepfake Detec-
tion Challenge, demonstrated that CoDeiT outperforms existing state-of-the-art
methods across all three versions.
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Abstract. We present LW-GeneFace, a lightweight and high-fidelity
model for generalized audio-driven facial animation, in this paper. We
develop this model by reducing the size while maintaining the synthetic
quality of GeneFace, an audio-driven facial animation model known for
its high fidelity and generalization capabilities. Specifically, we com-
press the first and the third stages of GeneFace as they dominate the
model size. In the first stage, we propose a lightweight version of the
WaveNet-based network inspired by MobileNetV3 and DP-block. It uti-
lizes depthwise separable convolution and dual-path feature extraction
to compress the network while maintaining effective feature extraction.
The shared network structure in the dual-path feature extraction further
reduces model complexity and improves training efficiency.

In the third stage, we generate realistic 3D renderings at reduced
model size by introducing novelties in RAD-NeRF. Technically, we
reduce the hash table sizes in the grid-based encoding modules, as well
as present a lightweight bottleneck MLP architecture to increase the
non-linearity of the model. Experimental results demonstrate that LW-
GeneFace achieves state-of-the-art performance with both model size and
synthetic quality considered. The source code of LW-GeneFace will be
released after acceptance of this paper.

Keywords: audio-driven facial animation - talking face synthesis -
lightweight WaveNet - lightweight RAD-NeRF - bottleneck MLP

1 Introduction

The intersection of Artificial Intelligence (AI) and content creation has led to a
vibrant field known as Artificial Intelligence Generated Content (AIGC), which
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has recently witnessed a surge in interest, particularly in the realm of audio-
driven facial animation [5]. This burgeoning area of research is poised to revo-
lutionize the way we perceive and interact with digital characters and environ-
ments, offering a seamless integration of speech and lifelike facial expressions.

Our research endeavors to harness the nuances of speech signals to generate
highly realistic facial animations, thereby enabling a voice-controlled animation
experience. The state-of-the-art in this domain has demonstrated the potential
to produce facial expressions that not only mirror the spoken content but also
reflect the emotional and tonal subtleties of human speech. Despite the strides
made, challenges remain, particularly regarding the computational complexity
and resource requirements of advanced models. The need for efficient processing
on low-configuration computing platforms further compounds these challenges.

This study aims to address these concerns by developing a lightweight model
that maintains the fidelity of lifelike facial animations based on audio input. We
refine the GeneFace model [21], leveraging its renowned accuracy and adaptabil-
ity, through novel optimizations that streamline its core components without
compromising on the quality of synthesis. Major contributions of this work are
summarized as follows.

— In the first stage of variational motion generator, we re-design the WaveNet-
based network by employing depthwise separable convolution and dual-path
feature extraction, and further making a Siamese structure of the dual paths.
This design substantially reduces the model size with almost negligible com-
promise on motion estimation accuracy.

— In the third stage of NeRF renderer, we make optimizations by reducing the
hash table sizes in the grid-base encoding modules and using bottleneck MLPs
for promoted modeling capability. These optimizations lead to substantial
reduction in model size with quality of animation synthesis well maintained.

— We conduct extensive experiments to show that our proposed model achieves
state-of-the-art performance when both model size and animation synthesis
quality are considered.

2 Related Work

2.1 Speech-Driven Facial Animation

The task of speech-driven facial animation aims to reproduce arbitrary input
speech audio from a specific person. It has received considerable attention of
the computer vision community in recent years. Researchers in the early stage
predominantly utilized methodologies including cross-modal retrieval technol-
ogy [17] and hidden Markov models [15]. These approaches were designed to
establish the mapping between auditory speech signals and facial animation
datasets, thereby facilitating the production of animated sequences. Nonethe-
less, such technologies introduce more rigorous requirements for the deployment
environment of the model and compel the need for manual annotation of visual
phonemes, which can be a labor-intensive process.
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The rapid advancement of deep learning in recent years has greatly accel-
erated the progress of speech-driven facial animation technology. Zhou et al.
[25] proposed the MakeltTalk model, which extracted the content and speaker
information from the auditory input. Leveraging this data, the model predicts
facial landmarks that reflect the speaker’s dynamic expressions. Prajwal et al.
[13] proposed a rigorous evaluation benchmark for measuring lip synchroniza-
tion in unconstrained videos. Zhou et al. [24] modularized audio-visual represen-
tations through the formulation of an implicit, low-dimensional pose code. Lu et
al. [11] employed a three-stage network structure to extract facial action poses
from speech features and generate facial animations. Wang et al. [19] developed
a model for predicting head posture using a recurrent neural network based on
motion perception. The model extracts the low-frequency overall motion pattern
of the head from the speech signal. Fan et al. [3] proposed the FaceFormer, a
model leveraging the Transformer architecture to generate a sequence of seman-
tic 3D facial animations. They designed two attention mechanisms to learn the
connection and sequence dependence between speech and vision, respectively.
Furthermore, they employed periodic positional encoding for input representa-
tion, performed deep encoding of the audio signal, and adopted an autoregressive
prediction approach. Fang et al. [4] presented FE-GAN;, a facial animation gen-
eration algorithm utilizing a generative adversarial network (GAN) framework,
which integrates dual auxiliary classifiers along with a pair of recognizers to
enhance the animation’s fidelity. Ye et al. [22] proposed a dynamic convolution
kernel (DCK) strategy to enhance convolutional neural networks. The approach
utilizes a fully convolutional network featuring Dynamic Convolutional Kernels
(DCKs), which is capable of real-time selection between two modalities: speech
and video. This method yields high-quality facial animation videos from the
data source. Shen et al. [14] designed a latent diffusion model for visual atten-
tion mechanisms. Ye et al. [21] put forward GeneFace, a three-stage framework
that uses 3D facial landmarks as intermediate variables.

The aforementioned deep learning based approaches primarily concentrate on
audio-visual synchronization or generalization capabilities. However, the light-
weight performance of the model is relatively an oversight. Indeed, there remains
potential for further improvement in the complexity management of the state-
of-the-art approaches.

2.2 Neural Radiance Field for Face Rendering

NeRF (Neural Radiance Field) is a novel approach in the field of computer graph-
ics and 3D modeling, which has been applied in various research projects for cre-
ating speech-driven facial animation. Guo et al. [6] proposed AD-NeRF, an app-
roach that integrates audio signal characteristics into a conditional implicit func-
tion, thereby generating a dynamic neural radiance field. Yao et al. [20] presented
DFA-NeRF, which combines neural radiance fields and the audio information.
The model considers lip movement characteristics and personal attributes as two
independent parts of the NeRF condition, and predicts lip movements synchro-
nized with the corresponding speech content. Liu et al. [10] proposed Semantic-
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aware Speaking Portrait NeRF, which designs two semantic-aware modules to
handle the local facial semantics and the global head-torso relationship. Based
on the recent advancements in Grid-based NeRF, Tang et al. [16] established
a novel decomposition of the complex, high-dimensional conversational portrait
representation into three more tractable, low-dimensional feature grids.

Though flexible modeling and high-fidelity rendering has been achieved, there
remains significant room for optimizing the NeRF models in both model size and
modeling capability in the context of audio-driven facial animation.

3 Methodology

In this work, we are motivated to construct a lightweight and high-fidelity model
for generalized audio-driven facial animation. We choose GeneFace [21] as the
base and introduce novelties to optimize it for reduced model size with main-
tained level of animation synthesis quality.

The GeneFace model [21] consists of three stages in sequence: audio-to-
motion stage that generates facial landmark positions from the input audio,
motion domain adaption stage that refines the predicted 3D landmarks
from the multi-speaker domain into the target person domain, and motion-
to-image stage that renders high-fidelity frames guided by the 3D landmarks
using a NeRF-based renderer.

As part of the data preprocessing, GeneFace [21] utilizes the pretrained
HuBERT model [9] to extract audio features that are used in the first stage. In
general, there are alternative audio feature extractors with highly varied perfor-
mance and complexity characteristics [12], and different audio-driven 3D taking
face synthesis models [3,11,21,25] have employed different pretrained audio fea-
ture extractors. In this work, we focus on compressing the GeneFace model less
the HUBERT feature extractor and leave better choice or simplification of audio
feature extractor for our future investigation.

Excluding the HuBERT feature extractor, the total parameters of the first
and third stages amount to 24.620M, accounting for 96.87% of the overall
parameter count across the three stages. As detailed in the Ablation Study in
Sect. 4.4, these first and third stages dominate the model size. Consequently, we
have reduced the complexity of these two stages in our model design and have
adopted the same second stage structure as utilized in GeneFace. As a result,
we construct a lightweight audio-driven facial animation model, which we name
lightweight GeneFace (LW-GeneFace). Details of the first and the third stages
of LW-GeneFace are given in the following subsections.

3.1 Variational Motion Generator

The first stage utilizes a variational auto-encoder (VAE) to complete the audio-
to-motion transform and is named variational motion generator. HuBERT fea-
tures [9] of the input audio wave are extracted and used as input to the motion
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Fig. 1. Structures of the WN in GeneFace (top) and the LW-WN in LW-GeneFace
(bottom).

generator, and the motion generator infers 3D positions of 68 facial landmarks
at each frame that represent the facial motion.

Major components of the first stage in GeneFace include pretrained HuBERT
feature extractor, flow-based prior, pretrained SyncNet, encoder and decoder.
Due to the space limit, we refer the readers to the original paper [21] for detailed
explanation. In our design of the first stage, we adopt the same framework but
optimize the encoder and the decoder for reduced model size.

In the first stage of GeneFace, the encoder and decoder primarily use a struc-
ture similar to that of the WaveNet (WN) [18], as briefly shown in the top
portion of Fig.1. This module utilises multi-layer 5x5 and 3x3 convolutions
and residual modules to extract speech features and predict facial landmarks
positions, where the dilation factors of convolution incrementally increase with
depth. In contrast to WN, our proposed lightweight WaveNet (LW-WN) model
is inspired by MobileNetV3 [8] and DP-block [23] and made highly compact.
It utilizes depthwise separable convolution and dual-path feature extraction to
compress the WaveNet structure, as depicted in the bottom portion of Fig. 1 and
explained below.

Drawing inspiration from MobileNetV3 [8], we modify WN by using more
lightweight depthwise separable convolution in place of normal convolution. The
multi-layer depthwise separable convolution utilises a combination of depth con-
volutions with N (N = 4 in the encoder and N = 8 in the decoder) layers of con-
volution kernels at size of 3 x 3 and 5 x 5 to enhance the learning of multi-scale
features. Besides, we are inspired by DP-block [23] and develop a network struc-
ture for dual-path feature extraction. The feature tensors are divided equally
and input into the two paths of the dual-path feature extraction network for
further processing.
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It is important to note that our dual-path feature extraction network utilises
a Siamese structure. That is, the two paths share the same network structure
and parameters. Regardless of which path the input data comes from, it will go
through the same network structure for feature extraction. This design substan-
tially reduces the model size and helps improve the training efficiency.

Head-NeRF 5
[[Ijn—  AFE >a-> M >l —_—
7777777 T E2audio
A ray - x—>| (1T
% i
P 3
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Fig. 2. Structure of the LW-RAD-NeRF model. AFE is an Audio Feature Extractor,
a is an extracted audio feature, x is a 3D spatial coordinate, and x; is a 2D torso
coordinate. Egp,m-al, E2,40 and EZ, ., are all gird encoders.The original MLP layers
are colored yellow and the introduced ones are colored red. (Color figure online)

3.2 NeRF-Based Renderer

Following GeneFace, the proposed LW-GeneFace also employs RAD-NeRF [16]
to render the head and the torso parts, respectively, in the third stage. The
Head-NeRF is firstly trained and, thereafter, the torso-NeRF is trained with the
rendering image of the Head-NeRF as background. Contrastively, we propose
a lightweight NeRF-based renderer (LW-RAD-NeRF) with reduced model size
while maintaining the quality of animation synthesis.

A key insight of LW-RAD-NeRF is to decompose the holisitc high-
dimensional audio-guided protrait representation into separate low-dimensional
trainable feature grids for simplified computation. Two NeRF modules, i.e.
Decomposed Audio-spatial Encoding Module and Pseudo-3D Deformable Mod-
ule, are designed to render the head and the torso, respectively. Both modules
are grid-based NeRF models, where trainable features are associated with grid
points and an arbitrary sample is encoded by the linear interpolation of the
grid features. All the grid features are learned as network parameters. As shown

. . . 3 2 .
in Fig.2, two grid encoders, £, .., and EZ, ., are used in the Decomposed
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Audio-spatial Encoding Module to encode the 3D spatial coordinate x and the
2D audio coordinate x,, respectively, and one grid encoder, EZ, . is used in the
Pseudo-3D Deformable Module to encode one torso coordinate x; per pixel. Note
that, instead of a complete grid data structure, a hash table is used for each grid
encoder to store the trainable feature vectors for memory efficiency, which is
indexed by hashing the grid positions. Each trainable feature vector contains
both color and density information, and increasing the hash table size should
lead to more precise color and density modeling and better quality of rendering.
Nevertheless, we observed that once the hash table size goes beyond a certain
threshold, the model accuracy sees only marginal improvement while the model
parameter count is significantly increased. As such, hash table size is one key
factor that trades off representational quality and memory efficiency.

As model compactness is one of our primary goals and an overly large hash
table has little impact on model accuracy, we propose to reduce the number of
grid features at the first step. Specifically, we reduce the hash table sizes for
all three grid encoders in the LW-RAD-NeRF models. Furthermore, we observe
that there are complicated interactions among various portions of a face, and a
high order of non-linearity should be involved for accurate modeling of facial
animation. As such, we further propose an optimized MLP module for enhanced
modeling capability, which we name bottleneck MLP. Technically, the bottleneck
MLP module is constructed by integrating additional MLP layers into the two
NeRF modules. These added layers include ones with diminished widths. The
original MLP layers are denoted in yellow, while the newly introduced layers are
indicated in red, as shown in Fig. 2. Note that, although we have increased the
number of layers in the bottleneck MLP module, the computational increase is
manageable due to the reduction in width of some layers.

To be specific, the original hash table sizes for E? .1, Eoyagi, and Ef,,., are
all 216, We reduce them to 2!, 219 and 2'2, respectively. Further, we add MLP
layers to form bottleneck MLPs, as shown in Fig. 2, for enhanced modeling capa-
bility at controlled computation increase. Note that the extra storage required
by the introduced MLP layers is far less than that saved by the reduction of
hash table size. As a net effect, we obtain a significantly reduced model size with
quality of animation maintained.

4 Experimental Evaluation

4.1 Metrics and Datasets

We compare our LW-GeneFace with several leading approaches, including Wav-
2Lip [13], MakeltTalk [25], PC-AVS [24], LSP [11], AD-NeRF [6], and GeneFace
[21]. To evaluate the precision of lip synchronization, we employ the landmark
distance (LMD) [2], and the SyncNet confidence score (Sync) [13]. We utilize the
Fréchet Inception Distance (FID) score [7] to measure the full image quality. To
further assess the generalizability, a set of out-of-domain (OOD) audio tests are
applied for all benchmark methods.
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Additionally, we employ two metrics to evaluate the complexity of the model:
the number of parameters (Param) and the computational cost in Giga Floating-
Point Operations (GFLOPs) during inference. The number of parameters indi-
cates the memory footprint for model storage. GFLOPs measures the model’s
computing load, reflecting the amount of floating-point calculations performed
per second. In this experiment, we utilize an audio segment of approximately
10s to test GFLOPs.

Regarding the dataset, we utilize the LRS3-TED corpus by Fouras et al.
[1], to train the first two stages, i.e., the variational motion generator and the
post-net, of GeneFace and LW-GeneFace. Furthermore, a video featuring the
target person speaking for several minutes with an accompanying audio track
is required to facilitate the training of a NeRF-based person portrait renderer.
In order to compare with the state-of-the-art baselines, we utilize the same five
facial videos of GeneFace [21], each of which consists of a video with an average
length of 6,000 frames, recorded at a frame rate of 25 frames per second (fps).

4.2 Implementation Details

The Adam optimizer was used during the training process with an initial learn-
ing rate of 1 x 1074, and 3; and (3, values of 0.9 and 0.999, respectively. The
network was trained on one GPU (NVIDIA RTX 3090 24 GB) with 40k steps
for the Variational Motion Generator, 20k steps for the postnet, and 500k iter-
ations for the NeRF-based renderer.

4.3 Results and Analysis

We compare our method with the state-of-the-art audio-driven talking head ani-
mation baselines. All the test input audio sequences are unseen during training.
We evaluate the quality of synthesized animations through quality metrics and
a user study. Further, we evaluate the complexity of models through complexity
metrics. Statics of these evaluations are provided in Tables 1, 2 and 3, which are
analyzed in the following subsections, respectively.

Metrics-Based Quality of Synthesized Animation. The image synthesis
quality of various algorithms is shown in Table 1, where the data of Wav2Lip,
MakeltTalk, PC-AVS, LSP, and AD-NeRF are all from the GeneFace paper [21].
Since complete inference models for all target faces are not released by the
authors of GeneFace, we retrained the GeneFace models for all target characters
and placed the test results in Table 1.

First we compare our approach with image-based generation baselines which
generate a talking-head video from one or several reference images. Specially,
we compare with Wav2Lip, MakeltTalk and PC-AVS. We have the following
observations. (1) Wav2Lip, MakeltTalk, and PC-AVS perform poorly on the
FID metric due to low image fidelity. (2) Both the Sync and Sync(OOD) scores
of Wav2Lip outperform that of ground truth’s. An expert lip-sync discriminator
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is trained by Wav2Lip to suit the lip generation task. However, it synthesizes
just a lower face patch and blend it into the target frame without taking target
expressions and head-poses into account. Different from their paradigm, our
method directly renders both full head and the background. (3) We achieve the
best scores on the FID and FID (OOD) metrics, meaning that we can generate
high-fidelity images for arbitrary audio sources.

Then we compare our method with model-based generation baselines includ-
ing LSP, AD-NeRF and GeneFace. Among the compared methods, LSP, Gene-
Face and LW-GeneFace use 3D facial landmarks as an intermediate represen-
tation. AD-NeRF, GeneFace and LW-GeneFace are all based on NeRF while
LSP utilizes an image-to-image translation network to generate animated videos.
The statistics of the compared models are listed in Table 1. It can be seen that,
while LSP, AD-NeRF, GeneFace and LW-GeneFace achieve roughly compara-
ble performance in terms of image quality and generalizability, LW-GeneFace
outperforms the rest by a large margin on FID and FID(OOD).

Table 1. Comparison with state-of-the-art methods. Key: [Best, Second Best,

].

Method FID |LMD | Sync TFID(OOD) | Sync(OOD) 1
Wav2Lip 71.40 3.988 9.212 68.05 9.645
MakeltTalk  57.96 4.848 4.981 53.33

PC-AVS 96.81 5.812 6.239 98.31 6.156
LSP 29.30 4.589 4.320
AD-NeRF 27.52 4.199 4.894 35.69 4.225
GeneFace 5.412 28.66 4.372
Ground Truth 0 0 8233 N/A N/A
LW-GeneFace 26.52 4.679 5.471 26.73 4.314

User Study on Quality of Synthesized Animation. For this study, we
sampled 2 audio clips in English and 2 audio clips in Korean and used them
to synthesize the animations for Obama2 by all the 7 methods compared in
Table 1. We engaged 26 participants and asked them to rank the synthesized ani-
mations (rendered as videos) in each of 5 aspects, i.e. lip-sync accuracy, image
quality, naturalness of lip movement, emotion expression, and audio-expression
synchronization. For each audio clip, seven animations were generated by all
the methods. These animations were ranked by each participant in each aspect,
respectively, with the 1st and best one receiving 7 points, the 2nd best one
receiving 6 points, and so on, down to the 7th and worst one receiving 1 point.
Corresponding to each method and aspect, the statistics of all the 26 partici-
pants rankings on all the 4 synthesized animations were gathered and marked
in Table 2.
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We make several key observations from Table2. Firstly, LSP, AD-NeRF,
GeneFace and LW-GeneFace are all person-specific methods and all achieved
excellent image qualities. Secondly, while GeneFace achieved outstanding results
in emotion expression and audio-expression synchronization, LW-GeneFace fur-
ther advanced the performance. This should be attributed to the enhanced non-
linearity of modeling by the extended MLP structure and, probably, the deeper
feature extraction by the devised LW-WN as well. Thirdly, Wav2Lip performs
the best in lip-sync accuracy and naturalness of lip movement as it is specifically
designed for the particular task of lip simulation.

Table 2. User study with different methods. The error bars are 95% confidence interval.
Key: [Best, Second Best, ]

Methods Wav2Lip MakeltTalk PC-AVS LSP  AD-NeRF GeneFace LW-GeneFace
Lip-sync Accuracy 6.77+0.16 2.154+0.10 5.62 +£0.13 1.314+0.123.12+£0.10 4.08+0.21
Image Quality 2.88+£0.18 3.23+0.40 1.88+£0.226.00+0.514.35+£0.13 5.00+£0.17
Naturalness of Lip Movement 6.77 £ 0.11 2.15+0.16 1.08 +0.075.924+0.164.04 £0.113.08 £0.11

Emotion Expression 2.154£0.10 1.00+0.004.38 0.203.19 £ 0.125.92 £ 0.07 6.64+£0.18
Audio-Expression Sync 4.04+£0.22 2.124+0.12 1.04 £0.08 3.19+£0.125.92+0.15 6.624+0.18

Table 3. Comparison with state-of-the-art methods on Parameter count and GFLOPs.
Key: [Best, Second Best, ]

Method Wav2Lip MakeltTalk PC-AVS LSP AD-NeRF|GeneFace LW-GeneFace
Param(M)| 36.298 76.603  152.244 83.535 1.736 12.548
GFLOPs | 1,536 74,971 4,478 99,96815,959,832 29,214

Model Complexity. We compare the proposed LW-GeneFace with the state-
of-the-art approaches in terms of model complexity, as shown in Table 3. Consid-
ering that audio feature extractors with highly varied complexity characteristics
may be alternatively utilized for audio-driven facial animation, the statistics
in Table3 are measured with the exclusion of the audio feature extractors to
guarantee a fair comparison.

Comparing with image-based generation baselines, i.e., Wav2Lip,
MakeltTalk and PC-AVS, the proposed LW-GeneFace has the smallest param-
eter count, though Wav2Lip and PC-AVS have smaller GFLOPs. Note again
that Wav2Lip and PC-AVS produce worse image fidelity than LW-GeneFace, as
analyzed in Sect. 4.3.

Then we compare LW-GeneFace with model-based generation baselines, i.e.,
LSP, AD-NeRF and GeneFace. The parameter count and GFLOPs of LSP are
multiple times higher than those of LW-GeneFace. Although AD-NeRF has the
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smallest parameter count, it entails the largest amount of computing as shown by
its GFLOPs. Comparing with GeneFace, LW-GeneFace reduces the model size
(in terms of Param.) sharply by more than a half, with GFLOPs also showing a
decrease. This clearly demonstrates the effect of lightweighting optimization by
LW-GeneFace.

Table 4. Ablation study results. The settings are described in Sect. 4.4. Best results
are in bold.

Setting FID | LMD [|Sync T|FID(OOD) ||Sync(OOD) f|Param(M) | (VMG)Param(M) | (NBR)/GFLOPs |
LW-GeneFace 26.52| 4.679 |5.471 26.73 4.314 11.425 0.327 26,247
GeneFace 28.2214.321 | 5.412 28.66 4.372 20.431 4.189 29,214
w. LW-WN 29.07| 4.703 | 4.953 29.71 4.495 11.425 4.189 29,213
w. LW-RAD-NeRF|26.54 | 4.685 | 5.387 27.24 4.475 20.431 0.327 26,246

4.4 Ablation Study

In this section, we perform ablation experiments to demonstrate the necessity
of each component in LW-GeneFace. Excluding the HuBERT feature extractor,
the total parameters of the GeneFace base model amount to 25.416M, of which
the first stage Variational Motion Generator (VMG) and the third stage NeRF-
Based Renderer (NBR) account for 20.431M and 4.189M parameters, respec-
tively. Since the volume of parameters in the first and third stages dominates the
overall size of the model, we focus on evaluating the necessity of the first and
third sections for the integrity of the whole LW-GeneFace model. The exper-
imental results are shown in Table4. Param(VMG) and Param(NBR) in the
table represent the parameters of the first and the third stages of LW-GeneFace,
respectively. Note that the data regarding complexity in Table 4 have been pro-
cessed with the exclusion of the HuBERT extraction module.

We test two settings in this experiment. In the setting w. LW-WN, it can
be seen that the addition of the LW-WN module slightly reduces the quality of
synthesized animation, and the number of parameters is lowered to almost half
of the base model GeneFace. In our dual-path feature extraction, although the
two branches share parameters, the calculations required for each branch still
need to be performed, so the amount of computation has not decreased much.

In the setting w. LW-RAD-NeRF, we can see that the addition of the LW-
RAD-NeRF module achieves better quality of synthesized animation on met-
rics Sync(OOD), FID and FID(OOD). Benefiting from our proposed bottleneck
MLPs, the model possesses generalization and high-fidelity capabilities. Further-
more, the metric Param(NBR) is reduced to one thirteenth, compared with that
of the base model GeneFace.

5 Conclusion

In this work, we have proposed LW-GeneFace, a lightweight model for gen-
eralized and high-fidelity audio-driven 3D talking face synthesis by optimizing
GeneFace. To be specific, we compress the first and the third stages of GeneFace,
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which dominate the model size, while introducing extra layers to the third stage
for enhanced modeling capability with controlled growth of computation. For
the first stage, we employ depthwise separable convolution and Siamese dual-
path feature extraction to simplify the model. For the third stage, we reduce
the hash table sizes for the grid-based encoders and enhance the MLP portions
by bottleneck MLP modules, which result in a compact NeRF model for head
and torso rendering. The experimental results demonstrated that LW-GeneFace
achieves state-of-the-art performance when both model size and quality of ani-
mation synthesis are considered.

The limitations of our work are two-fold. On the one hand, LW-GeneFace
is an offline model in essence. If this model is used for online interaction, it is
necessary to wait for the user to finish a segment of speech before creating the
corresponding character animation. Therefore, there will be a time delay between
the user’s speech and the character animation. It should be noted that this is
also a problem with all the other algorithms we compared (see Table2). On the
other hand, with an augmentation in the number of layers in the bottleneck
MLPs, the inference time cost also increases. For instance, in one of our tests,
LW-GeneFace reaches 2.26 frames per second (fps) in animation synthesis while
GeneFace achieves 2.99 fps.
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Abstract. In the field of computer vision, enhancing low-light images
is a significant challenge, primarily due to the reliance on high-quality
paired low-light and high-light images in supervised learning meth-
ods, which are expensive to acquire. This paper presents an unpaired
approach for low-light image enhancement, integrating a Joint Esti-
mation Network and a Multi-Domain Feature Fusion Network. The
Joint Estimation Network is trained exclusively with pairs of low-light
images of the same scene, while the Multi-Domain Feature Fusion Net-
work is trained solely with normal-light images that are not paired
with the aforementioned low-light images. The Joint Estimation Net-
work decomposes low-light images into components of illumination,
reflectance, and noise. After enhancing the illumination, it passes these
components, along with the reflectance, to the Multi-Domain Feature
Fusion Network. The Multi-Domain Feature Fusion Network employs
multi-scale encoder-decoder modules and frequency domain adjust-
ments to enhance details and maintain global consistency. Our method
addresses the issues of insufficient illumination and high noise in low-light
images, improving visual quality without the need for paired images,
thereby increasing the model’s practicality in real-world applications.

Keywords: Unpaired Low-light image enhancement - Retinex
Theory - FFT

1 Introduction

Enhancing images captured in low-light environments is a fundamental task in
computer vision, aimed at improving both the clarity and quality of such images.
The complexity of this task arises from challenges like inherent noise, low con-
trast, and color distortions typical of low-light scenarios. Traditional techniques,
including histogram equalization and methods based on the Retinex theory, often
struggle to provide satisfactory outcomes. These methods may introduce unde-
sirable artifacts or fail to adequately address the varying conditions found in
low-light environments [19,30].

In recent years, deep learning-based techniques have achieved significant
advancements in enhancing low-light images. Supervised learning methods,
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which depend on paired datasets of low-light and normal-light images, have
notably improved visual quality. For instance, the work by [6] and the Zero-
DCE model [15] utilize deep neural networks to predict enhancement functions
effectively. Despite their success, these approaches are limited by the necessity
for paired training data, which is often challenging and expensive to collect [24].

To overcome this limitation, unsupervised and zero-shot learning methods
have emerged as promising alternatives, eliminating the need for paired training
data. Methods such as RetinexDIP [48] and EnlightenGAN [18] leverage gen-
erative models and domain adaptation techniques to enhance low-light images
without ground truth references. Despite their effectiveness, these methods may
suffer from instability and artifacts due to the lack of direct supervision.

This paper presents an innovative unpaired approach for low-light image
enhancement, overcoming the drawbacks of existing methods. Our approach is
built on two key components: the Joint Estimation Network and the Multi-
Domain Feature Fusion Network. The Joint Estimation Network breaks down
low-light images into their illuminance, reflectance, and noise elements, enabling
focused enhancement of each aspect. The Multi-Domain Feature Fusion Network
integrates multiscale encoder-decoder modules with frequency domain adjust-
ments to improve both local detail and global coherence, drawing inspiration
from recent developments in frequency-based image processing [23,32]. Overall,
The primary contributions of this paper can be summarized as follows:

— We propose a groundbreaking unpaired method for low-light image enhance-
ment, which ingeniously integrates image decomposition with multi-domain
feature fusion. This methodology allows for substantial enhancements in
visual quality without relying on paired reference images, thereby offering
a versatile solution for real-world deployment.

— Our Joint Estimation Network is architected to deconstruct low-light images
into their essential components-illuminance, reflectance, and noise. This
strategic decomposition facilitates precise and targeted enhancement of each
constituent element, culminating in superior image quality. The network’s
design is meticulously optimized to capture and process the intricate inter-
dependencies among these components, resulting in more accurate and aes-
thetically refined enhancements.

— The Multi-Domain Feature Fusion Network synergizes spatial and frequency
domain information, employing Fast Fourier Transform (FFT) to preserve
both fine-grained image details and overall coherence. This dual-domain strat-
egy markedly improves the fidelity and texture of images, demonstrating
state-of-the-art performance on benchmark datasets.

2 Related Works

2.1 Unsupervised Low-Light Image Enhancement

Unsupervised low-light image enhancement has gained substantial attention due
to its ability to operate without paired training data, thus overcoming the
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limitations inherent in supervised learning. The LIME algorithm, which inte-
grates Retinex theory with illumination map estimation, effectively enhances
low-light images [16]. RetinexNet utilizes deep learning to decompose images
into reflectance and illumination components, marking a significant advance in
the field [38]. Inspired by tools like Photoshop, ExCNet introduced the concept
of learning an “S-curve” for image enhancement [45]. Zero-DCE (Zero-Reference
Deep Curve Estimation) built on this by proposing a zero-reference deep learning
framework that enhances low-light images without requiring paired or unpaired
data [15]. A survey by Li et al. highlighted the importance of various unsuper-
vised and zero-shot methods, underlining their critical role in low-light image and
video enhancement [24]. Additionally, Huang et al. proposed a Fourier-based
enhancement method, demonstrating the efficacy of frequency domain techniques
[17]. EnlightenGAN uses a U-Net architecture for the generator and employs
dual discriminators to capture both global and local information [18]. RUAS
focuses on modeling the intrinsic underexposed structures of low-light images,
while RRDNet decomposes images into illumination, reflection, and noise com-
ponents to achieve superior denoising effects [28,52]. SCI developed a cascaded
illumination learning process with weight sharing, enhancing the robustness and
effectiveness of the enhancement process [29]. NeRCo introduced multimodality
into low-light image enhancement, expanding the capabilities of existing meth-
ods [41]. PairLIE, based on Retinex theory, uses pairs of low-light images for
training and has achieved competitive results [13]. Despite these advancements,
many methods rely on redundant loss functions to ensure convergence, which
introduces numerous priors and limits their generalization ability. These develop-
ments illustrate the ongoing evolution of unsupervised low-light image enhance-
ment techniques, each contributing to more effective and efficient solutions for
enhancing images captured under challenging lighting conditions.

2.2 FFT-Based Image Enhancement

The Fast Fourier Transform (FFT) is a pivotal technique in image processing,
enabling efficient conversion between the spatial and frequency domains, which
facilitates various advanced methods. FFT-based low-pass and high-pass filtering
manipulate frequency components to suppress noise and enhance image edges [1].
Fourier Low-Light Image Enhancement (FourLLIE) utilizes frequency informa-
tion to enhance structural details and contrast in low-light images. Additionally,
FFT is integral to image compression and reconstruction. By reducing redun-
dancy in the frequency domain, it allows effective image restoration via inverse
FFT, as demonstrated by Huang et al. [17] and Cai et al. [4]. In image registra-
tion, FFT employs phase correlation techniques to determine translational shifts
between images, which is crucial for precise alignment in medical imaging [6].
These applications highlight FFT’s versatility and power in advancing image pro-
cessing technologies. Xu et al. [40] introduced a Fourier-based data augmentation
technique aimed at improving domain generalization. Fuoli et al. [14] employed
Fourier losses to restore high-frequency details in image super-resolution, while
Yu et al. [44] leveraged Fourier frequency information for image dehazing. Sim-
ilarly, Zhou et al. [49] applied these methods to pan-sharpening. Additionally,
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Zhou et al. [50] developed a Fourier-based up-sampling approach that enhances
various computer vision tasks in a plug-and-play manner. At the same time,
Huang et al. [17] and other researchers created Fourier-based algorithms for low-
light image enhancement. Despite some limitations, these approaches demon-
strate the wide-ranging applicability of Fourier frequency information. However,
FFT-based techniques are not without their drawbacks. A significant issue is the
potential loss of spatial information due to the global nature of the Fourier trans-
form. Furthermore, FFT methods can be computationally demanding, especially
for large images, and may perform poorly under non-uniform lighting condi-
tions. These challenges indicate the necessity for further research to optimize
FFT-based methods for practical use in low-light image enhancement.

2.3 Retinex Theory

Land and McCann introduced the Retinex theory [20,21] through a series of
optical experiments, demonstrating that intrinsic reflectance and incident illu-
mination together determine the radiation reaching the human eye. The math-
ematical representation is as follows:

I=LoR (1)

Here, the symbol o denotes the Hadamard product, where I represents the
radiation reaching the human eye, L represents illumination intensity, and R
represents reflectance. The reflectance R remains constant for images of the
same scene under varying exposure conditions, as it is determined solely by the
intrinsic properties of the object’s surface. This indicates that color perception
primarily depends on reflectance.

Various approaches have utilized the Retinex theory to enhance image qual-
ity. For example, numerous studies have employed this theory to improve image
quality under different conditions [9,11,33,35]. Other research has refined its
application in image processing [3,10,12,16,26,31,39]. Recently, deep learn-
ing has become prevalent in the field of low-light image enhancement (LLIE)
due to its robust learning capabilities and inference speed. Significant advance-
ments using deep learning techniques have been shown in various studies (8,34,
37,38,47]. Moreover, recent research has highlighted different approaches and
improvements achieved in LLIE through deep learning [22,28,29,42]. Approxi-
mately one-third of these deep learning methods incorporate the Retinex theory
to achieve better enhancement effects and provide a physical explanation for
the enhancement process [24]. Consequently, leveraging the Retinex theory to
guide image enhancement methods in deep learning is crucial for establishing an
effective physical model.

3 Proposed Method

The proposed method is structured to address the challenges of enhancing low-
light images through an unpaired learning approach, leveraging the inherent
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properties of the images themselves without reliance on paired high-light images
as ground truth. This approach allows for greater flexibility and applicability in
practical scenarios where high-light references may not be available. The method
is divided into two main components: the Joint Estimation Network and the
Multi-Domain Feature Fusion Network, each designed to tackle specific aspects
of low-light image enhancement, as shown in Fig. 1.
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Fig. 1. Overview of the network model structure. The diagram illustrates a two-stage
training process. In Stage 1, the Joint Estimation Network(JE) is trained using paired
low-light images. In Stage 2, the Joint Estimation Network(JE) is fixed, and the Multi-
Domain Feature Fusion Network is trained using another set of normal-light images.
R stands for Reflection, L stands for Illuminance, and N stands for Noise.

3.1 Dark ISP

We use the EC-Zero-DCE model [51] to randomly degrade images from normally
illuminated inputs. The process involves converting the input images to the LAB
color space to isolate the luminance channel.

The core transformation applied to generate low-light images can be
expressed as:
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EC-Zero-DCE(L, E) x « 5
Lxa+e 2)
where I, is the original image, EC-Zero-DCE(L, E) is the output of the EC-
Zero-DCE model given the luminance channel L and exposure map E, and «
is a scaling factor.
The luminance channel L is extracted as follows:

how = Iorig X

L= fLAB (Iorig) (3)

where f;4p converts the RGB image to LAB color space and extracts the lumi-
nance channel.
The exposure map FE is defined as:

E:{ﬁ if L < v

L otherwise

(4)

where 7y is a threshold for saturated regions and ( is a randomly chosen exposure
degree.

To simulate realistic low-light conditions, we add Gaussian noise for sensor
noise and JPEG compression artifacts for quality loss. Then, we combine the
enhanced low-light luminance channel with the original chrominance channels
and convert back to RGB. This ensures the generated low-light images retain
the original structure and color, producing high-quality images for training and
evaluating low-light image enhancement algorithms.

During the training process, we generate moderately dark and extremely
dark images by controlling specific parameter ranges, and we randomly select
parameters to degrade the images. These low-light images are then processed
through the network separately. We calculate the loss not only between each
of these low-light images and the normal light image but also between the two
generated low-light images. This ensures that the network effectively learns the
features and details of image enhancement under different lighting conditions and
enhances images to a uniform level, preventing overexposure. Consequently, this
improves the network’s performance in enhancing low-light images in real-world
scenarios.

3.2 Joint Estimation Network

The Joint Estimation Network is crafted to decompose low-light images into
their constituent components of illuminance, reflectance, and noise. This decom-
position facilitates a focused enhancement of each attribute, thereby achieving
a comprehensive improvement in the overall image quality. The network oper-
ates by first estimating the noise within the image and subsequently isolating
the illuminance and reflectance components, which are crucial for reconstructing
the enhanced image.
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The input to this network consists of paired low-light images I;,,,, processed
to suppress noise features and enhance underlying details. The architecture effec-
tively models the complex interplay between the different components of the
image, using the following decomposition:

Ilow:ROL+N (5)

where R stands for Reflection, L stands for Illuminance, and N stands for Noise.
In the training phase, we employ a series of loss functions that independently
validate the accuracy of each decomposed component. These functions ensure that
the network can reconstruct high-quality images by accurately balancing the inter-
dependent relationships between illuminance, reflectance, and noise without the
need for high-light ground truth. The specific loss functions used are as follows:

INluminance Consistency Loss: This loss ensures the estimated illuminance
map L closely matches the perceived illuminance of the low-light input, ;. It also
incorporates a total variation (TV) loss to smooth the illuminance map [13].

I
Lilluminance = HL oR — Ilow”% + ||R - L iw€||§ + ||L - maX(Ilow)H%

+ (IViLlly + [VwL1)

(6)

where € is a small constant to prevent division by zero, max(Ij,,) is the maximum
pixel value in Ij,y, and the TV loss term is expanded as ||VpL|1 + |[VwI] 1,
promoting smoothness in the illuminance component.

Reflectance Consistency Loss: This loss ensures that the reflectance compo-
nent R remains consistent in the same scene, particularly focusing on maintaining
texture and color consistency.

Ereﬂectance - ||R1 - RQH% (7)

where R; and Ry are reflectance estimates from different images of the same
scene, emphasizing the model’s ability to produce stable reflectance maps.

Noise Loss: This loss assesses the effectiveness of the noise reduction by com-
paring the noise-reduced image I to the original low-light image Ij,,,.

£noise = ||Ilow - Il||§ (8)

where I; represents the image after noise has been processed and reduced by the
network.

This unpaired approach underscores the network’s adaptability to varied
lighting conditions, making it robust for real-world applications.

3.3 Multi-domain Feature Fusion Network

The Multi-Domain Feature Fusion Network adopts a novel approach to enhanc-
ing the quality of low-light images by simulating the conditions under which these



98 Z. Li

images might be captured. This network is trained using normal-light images
Inign, which are processed through a dark Image Signal Processor (ISP) sim-
ulation to generate corresponding low-light images Ijoy—_sim. These simulated
images serve as the training input, allowing the network to learn and adapt to
a range of low-light environments.

The network architecture is based on a series of encoder and decoder modules
that work across multiple scales. The key component, the Bidomain Nonlinear
Mapping module [7], extracts spatial features from the input images and then
translates these into the frequency domain using Fast Fourier Transform (FFT).
Adjustments in the frequency domain focus on enhancing both local details and
global consistency, which is crucial for low-light enhancement:

Xoutput = Xspatial 57 fﬁl(A(f(Xspatial))) (9)

where X,,qtiq is the input image in the spatial domain, F is the Fourier trans-
form operator, A is the adjustment function in the frequency domain, F~! is the
inverse Fourier transform, @ denotes the feature fusion operation, and Xytput
is the output image.

To ensure the network’s effectiveness across various scales, a multi-scale loss
function is employed. This function measures the discrepancy between the sim-
ulated low-light inputs and the network’s outputs, comparing them to normal
light images. It incorporates frequency domain losses to ensure a comprehensive
enhancement of image quality:

3 3
= i — Ihig i) — i
L =X Y |1 = Tnignlls + 2o Y [FFT(L) = FET(Inign) |1 (10)
=1 i=1

where I; represents the network’s output image at scale ¢, Ip;gs is the correspond-
ing normal light image used as the ground truth, A\; and A, are weighting factors
that balance the contribution of spatial domain loss and frequency domain loss,
respectively, |- ||1 denotes the L1 norm, which measures the absolute differences
between the predicted and ground truth images, and FFT(-) represents the Fast
Fourier Transform, which transforms the images to the frequency domain.

By using both spatial and frequency domain losses across multiple scales, the
network is encouraged to produce outputs that are not only visually similar to
the ground truth in terms of pixel values but also consistent in their frequency
content, leading to a more comprehensive enhancement of image quality. The
input to the network is a simulated low-light image, and the output is compared
to the normal light image for evaluation.

4 Experiment

4.1 Experimental Settings

Compared Methods. We compare our methods with model-based method
including LIME [16], supervised learning methods including RetinexNet [38],
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RUAS [28], and ExCNet [45], semi-supervised learning methods including
DRBN [43], unpaired supervised learning methods including CLIP-LIT [27],
EnlightenGAN [18], and QuadPrior [36], and zero-shot learning methods
including RRDNet [52], Zero-DCE [15], Zero-DCE++ [25], NeRCo [41],
RetinexDIP [48], SCI [29], and PairLIE [13].

Datasets. We utilized the official test sets of LOL-v1 [38] comprising 15 pairs of
low-light and normal-light images and LOL-v2 [43] comprising 100 pairs. Addi-
tionally, we followed Retinexformer [5] to split 500 pairs from the MIT-Adobe
FiveK dataset [2] for testing. On the LOL and MIT datasets, we reported PSNR,
SSIM, and LPIPS [46]. During the first phase of training the Joint Estimation
Network, we exclusively use the paired low-light images from the LOL dataset.
In the second phase, for the overall network training, we only utilize the normal-
light images from the corresponding training datasets. For instance, when train-
ing with the FiveK dataset, we only use the normal-light images from the FiveK
training set.

Implementations. We use ADAM as the optimizer and employ a learning rate
scheduler for learning rate adjustments. The initial learning rate is set to 1x10™*
and adjusted every 50 epochs at a decay rate of 0.5. The network is trained for
400 epochs. During training, we crop image patches to (128, 128). The batch size
is set to 8. All experiments are conducted on an NVIDIA GeForce RTX 3090
GPU and implemented using PyTorch.

4.2 Quantitative Results

LOL Dataset. Table 1 presents the benchmarking results for low-light enhance-
ment on the LOL-v1 dataset and Table 2 presents the benchmarking results for
low-light enhancement on the LOL-v2 dataset. The proposed method achieved
the highest scores in PSNR, SSIM, and LPIPS among unsupervised methods,
and it was competitive with supervised methods.

MIT-Adobe FiveK Dataset. Table 3 shows the benchmarking results on the
MIT-Adobe FiveK dataset. The proposed method achieved competitive perfor-
mance, particularly in PSNR, SSIM and LPIPS.

4.3 Visual Comparison

Figure 2 and Fig. 3 show a visual comparison of the proposed method with other
methods on the MIT-Adobe FiveK and LOL-v1 dataset. The proposed method
generates images with better illumination, color consistency, and naturalness.
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Table 1. Benchmarking results for low-light enhancement on the LOL-v1 dataset. The
highest scores are highlighted in red, and the second highest scores are marked in blue.

Input LIME [16] |RetinexNet [38] RUAS [28] |DRBN [43]
PSNRT|7.77 16.76 16.77 16.40 15.13
SSIMT 10.181 0.560 0.462 0.537 0.472
LPIPS||0.560 0.350 0.474 0.350 0.316

EnlightenGAN [18]RRDNet [52] RetinexDIP [48] ZeroDCE [15] ZeroDCE++ [25]
PSNRT(17.48 11.38 11.65 14.86 15.34
SSIMT 10.677 0.470 0.501 0.589 0.603
LPIPS]|0.322 0.361 0.317 0.335 0.316

SCT [29] PairLIE [13] |QuadPrior [36] Ours
PSNR1(14.78 18.46 18.34 20.91
SSIM7T 10.553 0.749 0.827 0.773
LPIPS]||0.332 0.290 0.209 0.261

Table 2. Benchmarking results for low-light enhancement on the LOL-v2 dataset.

Input LIME [16] |RetinexNet [38] RUAS [28] |DRBN [43]
PSNRT19.72 15.24 15.47 15.33 19.60
SSIMT 10.190 0.470 0.560 0.520 0.764
LPIPS||0.333 0.360 0.421 0.322 0.246

EnlightenGAN [18]|RRDNet [52] RetinexDIP [48] ZeroDCE [15] ZeroDCE++ [25]
PSNRT(18.23 14.85 14.51 18.06 18.49
SSIMT 10.610 0.560 0.546 0.605 0.617
LPIPS]|0.309 0.265 0.274 0.298 0.290

SCT [29] PairLIE [13] |QuadPrior [36] |Ours
PSNRT(17.30 19.89 20.31 20.44
SSIMT 10.565 0.778 0.808 0.780
LPIPS]|0.286 0.282 0.202 0.264

4.4 Ablation Studies

To thoroughly evaluate the contributions of each component in our proposed
model, we conducted ablation studies on the LOL-v1 dataset. Specifically, we
removed certain modules from the full model to understand their impact on
the overall performance. Here, w/o Multi-Domain Feature Fusion refers to con-
necting a decoder directly after the Joint Estimation Network. The quantitative
results are presented in Table 4.

From these ablation studies, it is evident that both the Joint Estimation
Network and the Multi-Domain Feature Fusion module play crucial roles in
our model. The Multi-Domain Feature Fusion significantly contributes to the
perceptual quality and accurate reconstruction of the images, as evidenced by the
LPIPS and PSNR metrics. On the other hand, the Joint Estimation Network is
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Table 3. Benchmarking results for low-light enhancement on the MIT-Adobe FiveK

dataset.

ExCNet [45] |EnlightenGAN [18]PairLIE [13] NeRCo [41]
PSNRT [14.21 13.28 10.55 17.33
SSIMT 10.719 0.738 0.642 0.767
LPIPS||0.197 0.203 0.273 0.208

CLIP-LIT [27] ZeroDCE [15] ZeroDCE++ [25] RUAS [28]
PSNRT [17.00 13.53 12.33 9.53
SSIMT 10.781 0.725 0.408 0.610
LPIPS||0.159 0.201 0.280 0.301

SCI [29] QuadPrior [36] Ours
PSNRT [16.29 18.51 20.90
SSIMT |0.795 0.785 0.833
LPIPS||0.143 0.163 0.163

Input

GroundTruth

PairLIE

Zero-DCE

SCI

QuadPrior

Ours

Fig. 2. Example low-light enhancement results on the MIT-Adobe FiveK.

Input

RetinexNet

RRDNet

Zero-DCE++

RetinexDIP

PairLIE

QuadPrior

GroundTruth

Fig. 3. Example low-light enhancement results on the LOL-v1 dataset.

Table 4. Ablation study results on the LOL-v1 dataset.

Model Variant PSNR 1|SSIM 7/ LPIPS |
Full Model 20.91 0.773 |0.261
w/o Joint Estimation Network 19.19 |0.718 ]0.359
w/o Multi-Domain Feature Fusion|17.59 [0.793 |0.385
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essential for capturing fine structural details, thereby improving the SSIM and
ensuring better overall image quality. These findings validate the design choices
made in our proposed model, demonstrating their effectiveness in enhancing
low-light image enhancement tasks.

5 Conclusion

In this paper, we proposed a novel unpaired method for low-light image enhance-
ment that leverages Retinex theory and Fast Fourier Transform (FFT)-based
processing. The method consists of a Joint Estimation Network and a Multi-
Domain Feature Fusion Network, which decompose low-light images into illumi-
nance, reflectance, and noise components, and integrate spatial and frequency
domain information to enhance image details and maintain global consistency.
Extensive experiments on public datasets demonstrate that our approach signif-
icantly improves the visual quality of low-light images, outperforming existing
unsupervised and zero-shot learning methods in both qualitative and quantita-
tive metrics. The key advantages of our approach include the ability to enhance
images without paired training data, making it highly applicable in real-world
scenarios. Future work could explore integrating additional domain adaptation
techniques and extending the framework to handle video sequences, providing
further benefits for applications in surveillance, autonomous driving, and low-
light photography.

Acknowledgment. This work was supported by the innovation fund (No.
2021YFB3601400). I would like to express my sincere gratitude to my advisors, Prof.
Fanjiang Xu and Prof. Xiongxin Tang, for their invaluable guidance and support
throughout this research. I also extend my thanks to Prof. Hanxiang Yang, and Prof.
Chunle Guo for their insightful feedback and assistance in the development of this
work. Furthermore, I am deeply grateful to the development team of the SEE series
software for providing the essential simulation support that greatly contributed to the
completion of this research.

References

1. Afifi, M., Derpanis, K.G., Ommer, B., Brown, M.S.: Learning multi-scale photo
exposure correction. In: IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 9157-9167 (2021)

2. Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global
tonal adjustment with a database of input/output image pairs. In: CVPR (2011)

3. Cai, B., et al.: A joint intrinsic-extrinsic prior model for retinex. In: Proceedings
of the IEEE International Conference on Computer Vision, pp. 4000-4009 (2017)

4. Cai, J., Gu, S., Zhang, L.: Learning a deep single image contrast enhancer from
multi-exposure images. IEEE Trans. Image Process. 27(4), 2049-2062 (2018).
https://doi.org/10.1109/TIP.2017.2786696

5. Cai, Y., Bian, H., In, J., Wang, H., Timofte, R., Zhang, Y.: Retinexformer: one-
stage retinex-based transformer for low-light image enhancement. In: ICCV (2023)


https://doi.org/10.1109/TIP.2017.2786696

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

RFLLIE 103

Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3291-3300 (2018)
Cong, X., Gui, J., Zhang, J., Hou, J., Shen, H.: A semi-supervised nighttime dehaz-
ing baseline with spatial-frequency aware and realistic brightness constraint (2024).
https://arxiv.org/abs/2403.18548

Fan, M., et al.: Integrating semantic segmentation and retinex model for low-light
image enhancement. In: Proceedings of the 28th ACM International Conference
on Multimedia, pp. 2317-2325 (2020)

Fu, X., et al.: A novel retinex based approach for image enhancement with illumi-
nation adjustment. In: 2014 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1190-1194. IEEE (2014)

Fu, X., et al.: A fusion-based enhancing method for weakly illuminated images.
Sig. Process. 129, 82-96 (2016)

Fu, X., et al.: A weighted variational model for simultaneous reflectance and illu-
mination estimation. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2782-2790 (2016)

Fu, X., et al.: Retinex-based perceptual contrast enhancement in images using
luminance adaptation. IEEE Access 6, 61277-61286 (2018)

Fu, Z., Yang, Y., Tu, X., Huang, Y., Ding, X., Ma, K.: Learning a simple low-light
image enhancer from paired low-light instances. In: CVPR (2023)

Fuoli, D., Gool, L.V., Timofte, R.: Fourier space losses for efficient perceptual image
super-resolution. IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2360-2369 (2021)

Guo, C.G., et al.: Zero-reference deep curve estimation for low-light image enhance-
ment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1780-1789 (2020)

Guo, X., Li, Y., Ling, H.: Lime: low-light image enhancement via illumination map
estimation. IEEE Trans. Image Process. 26(2), 982-993 (2016)

Huang, J., et al.: Deep Fourier-based exposure correction network with spatial-
frequency interaction. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M.,
Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13679, pp. 163-180. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-19800-7_10

Jiang, Y., et al.: EnlightenGAN: deep light enhancement without paired supervi-
sion. IEEE TIP 30, 2340-2349 (2021)

Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the
gap between color images and the human observation of scenes. IEEE TIP 6(7),
965-976 (1997)

Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108-129 (1977)
Land, E.H., McCann, J.J.: Lightness and retinex theory. JOSA 61(1), 1-11 (1971)
Li, C., et al.: Lightennet: a convolutional neural network for weakly illuminated
image enhancement. Pattern Recogn. Lett. 104, 15-22 (2018)

Li, C., et al.: Embedding Fourier for ultra-high-definition low-light image enhance-
ment. In: ICLR (2023)

Li, C., et al.: Low-light image and video enhancement using deep learning: a survey.
IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 9396-9416 (2021)

Li, C., Guo, C., Loy, C.C.: Learning to enhance low-light image via zero-reference
deep curve estimation. IEEE TPAMI 44(8), 4225-4238 (2021)

Li, M., et al.: Structure-revealing low-light image enhancement via robust retinex
model. IEEE Trans. Image Process. 27(6), 2828-2841 (2018)

Liang, Z., Li, C., Zhou, S., Feng, R., Loy, C.C.: Iterative prompt learning for
unsupervised backlit image enhancement. In: ICCV (2023)


https://arxiv.org/abs/2403.18548
https://doi.org/10.1007/978-3-031-19800-7_10

104

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Z. Li

Liu, R., Ma, L., Zhang, J., Fan, X., Luo, Z.: Retinex-inspired unrolling with cooper-
ative prior architecture search for low-light image enhancement. In: CVPR (2021)
Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light
image enhancement. In: CVPR (2022)

Pizer, S.M., Johnston, R.E., Ericksen, J.P., Yankaskas, B.C., Muller, K.E.:
Contrast-limited adaptive histogram equalization: speed and effectiveness. In: VBC
(1990)

Ren, W., et al.: Low-light image enhancement via a deep hybrid network. IEEE
Trans. Image Process. 28, 4364-4375 (2019)

Wang, C., Wu, H., Jin, Z.: Fourllie: boosting low-light image enhancement by
Fourier frequency information. arXiv preprint arXiv:2308.03033 (2023)

Wang, L., et al.: Variational Bayesian method for retinex. IEEE Trans. Image
Process. 23(8), 3381-3396 (2014)

Wang, R., et al.: Underexposed photo enhancement using deep illumination esti-
mation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6849-6857 (2019)

Wang, S., et al.: Naturalness preserved enhancement algorithm for non-uniform
illumination images. IEEE Trans. Image Process. 22(9), 3538-3548 (2013)

Wang, W., Yang, H., Fu, J., Liu, J.: Zero-reference low-light enhancement via
physical quadruple priors (2024)

Wang, Y., et al.: Progressive retinex: mutually reinforced illumination-noise per-
ception network for low-light image enhancement. In: Proceedings of the 27th ACM
International Conference on Multimedia, pp. 2015-2023 (2019)

Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light
enhancement. In: BMVC (2018)

Xu, J., et al.: Star: a structure and texture aware retinex model. IEEE Trans.
Image Process. 29, 50225037 (2020)

Xu, Q., Zhang, R., Zhang, Y., Wang, Y., Tian, Q.: A Fourier-based framework for
domain generalization. IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 14383-14392 (2021)

Yang, S., Ding, M., Wu, Y., Li, Z., Zhang, J.: Implicit neural representation for
cooperative low-light image enhancement. In: ICCV (2023)

Yang, W., et al.: Sparse gradient regularized deep retinex network for robust low-
light image enhancement. IEEE Trans. Image Process. 30, 2072-2086 (2021)
Yang, W., Wang, S., Fang, Y., Wang, Y., Liu, J.: From fidelity to perceptual
quality: a semi-supervised approach for low-light image enhancement. In: CVPR
(2020)

Yu, H., Zheng, N., Zhou, M., Huang, J., Xiao, Z., Zhao, F.: Frequency and spatial
dual guidance for image dehazing. In: Avidan, S., Brostow, G., Cissé, M., Farinella,
G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13679, pp. 181-198. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-19800-7_11

Zhang, L., Zhang, L., Liu, X., Shen, Y., Zhang, S., Zhao, S.: Zero-shot restoration
of back-lit images using deep internal learning. In: ACM MM (2019)

Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 586-595 (2018)
Zhang, Y., et al.: Kindling the darkness: a practical low-light image enhancer. In:
Proceedings of the 27th ACM International Conference on Multimedia, pp. 1632—
1640 (2019)


http://arxiv.org/abs/2308.03033
https://doi.org/10.1007/978-3-031-19800-7_11

48.

49.

50.

51.

52.

RFLLIE 105

Zhao, Z., Xiong, B., Wang, L., Ou, Q., Yu, L., Kuang, F.: Retinexdip: a unified
deep framework for low-light image enhancement. IEEE Trans. Circuits Syst. Video
Technol. 32(3), 10761088 (2022). https://doi.org/10.1109/TCSVT.2021.3073371
Zhou, M., et al.: Adaptively learning low-high frequency information integration for
pan-sharpening. In: ACM International Conference on Multimedia, pp. 3375-3384
(2022)

Zhou, M., et al.: Deep Fourier up-sampling. In: Advances in Neural Information
Processing Systems, vol. 35, pp. 22995-23008 (2022)

Zhou, S., Li, C., Change Loy, C.: LEDNet: joint low-light enhancement and deblur-
ring in the dark. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner,
T. (eds.) ECCV 2022. LNCS, vol. 13666, pp. 573-589. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-20068-7_33

Zhu, A., Zhang, L., Shen, Y., Ma, Y., Zhao, S., Zhou, Y.: Zero-shot restoration of
underexposed images via robust retinex decomposition. In: ICME (2020)


https://doi.org/10.1109/TCSVT.2021.3073371
https://doi.org/10.1007/978-3-031-20068-7_33

l‘)

Check for
updates

PSTNet: A Progressive Sparse
Transformer Network for Image Deraining

Raj Ahamed Shaik, Navjot Singh®™) Antony Verriboina,
and Debesh Kumar Shandilya

Computer Vision and Biometrics Lab, Department of Information Technology,
Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
navjot@iiita.ac.in

Abstract. Image deraining aims to transform a rainy input image into
an image of high quality. Transformer-based techniques have demon-
strated remarkable efficacy in image deraining because of their capacity
to represent non-local information, a crucial element for high-quality
image reconstruction. Our findings indicate that most transformers used
for feature aggregation nowadays leverage all token similarities between
query-key pairs. If the query tokens differ from the key tokens, the
quality of the recovered image is compromised by the self-attention
values derived from these tokens if these are considered during fea-
ture aggregation. For this purpose, we propose the Progressive Sparse
Transformer Network (PSTNet), which progressively learns to restore
degraded inputs by retaining the helpful self-attention information dur-
ing feature aggregation and discarding the remaining values which
obstruct the restoration. Transformer blocks help to capture interactions
between distant pixels. Thorough experimental outcomes on widely used
benchmarks show that the suggested approach performs better than most
existing techniques.

1 Introduction

Single image deraining is a prevalent ill-posed vision challenge that has surfaced
in the recent decade, which makes an effort to reconstruct a clear output from
the rain-degraded input. The unknown rain streak pattern constitutes a hard
situation that requires solid image priors for effective restoration. To address
this issue, early techniques [25,29,67] usually impose different priors depending
on the statistical features of rain streaks. The deraining performance of these
handcrafted priors is limited since they cannot withstand complex and varied
rainy settings.

Convolutional neural networks (CNN) obtain generalizable priors from vast
amounts of data, making them a better choice than traditional restoration
approaches. The fundamental process of CNNs is convolution’, which provides
local connection and translation equivariance. These characteristics increase
CNNSs’ effectiveness and generality, but they also present two significant chal-
lenges: (a) Because of its small receptive field, the convolution operator cannot
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describe long-range pixel interactions, and (b) The static weights of convolution
filters restrict their capacity to adjust to input data.

Transformers [5,30,39,54] have been used for image deraining to get over
these restrictions, and they’ve done an admirable job of it since they can more
accurately represent the non-local relations required to rebuild images with high
quality. However, when clear images are restored, these techniques fall short
of accurately simulating the localized characteristics of images. Transformers’
self-attention fails to model the local invariant features that CNNs excel at,
which is one of the key causes. In local regions, rain streaks are often mistaken
for background. To overcome these constraints, recent works [10,23,61] combine
CNN operations with transformers.

Conventional transformers [46] consider all attention values based on query-
key pairs to aggregate features. Sometimes, as the tokens from the key tokens
may not always be relevant to the query tokens, applying the self-attention val-
ues computed from these tokens may hinder the process when reconstructing
the output. The reason is that smaller similarity weights are often amplified
by the dense computation pattern of self-attention, allowing implicit noise into
the feature interaction and aggregation process. Consequently, when modelling
global feature dependencies, redundant or unnecessary representations are fre-
quently included [48,73]. These realizations motivate us to determine and use
the best self-attention values to maximize feature utilization for enhanced image
restoration.

To overcome the difficulties, we have developed PSTNet, an efficient progres-
sive sparse Transformer network to restore the image. The core of this frame-
work is the selective multi-head attention (SMHA) and a simple Gate Feed-
forward network (SGFN). The SMHA mechanism replaces the traditional self-
attention by retaining only the k most crucial similarity scores between queries
and keys, thus enhancing feature aggregation, and the remaining scores are dis-
carded. The gating mechanism in SGFN regulates the flow of complementary
features, enabling subsequent network layers to concentrate on more refined
image attributes. Three main benefits come with our suggested method: (1)
better robustness because of less sensitivity to irrelevant feature interference;
(2) better localization and global feature utilization; and (3) better deraining
performance by utilizing both data and content sparsity.

An overview of the primary contributions is provided below.:

— We introduce a sparse Transformer architecture to achieve better deraining
results with improved detail and texture recovery.

— We propose using SMHA as part of a sparse transformer in the encoder-
decoder architecture. This mechanism is intended to gather the most crucial
data from the collected feature maps.

— A novel, simple gate feed-forward network (SGFN) that regulates feature
transformation by filtering out less informative features in the network has
been developed.

— Comprehensive tests on multiple benchmarks demonstrate that our model
performs over state-of-the-art (SOTA) techniques.
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2 Related Work

2.1 Single Image Deraining

Conventional techniques [19,25,29,35,67] for image deraining frequently create
an image-prior to impose extra constraints, but these manually created priors are
dependent on empirical observations and find it difficult to capture the intrin-
sic characteristics of distinct images. Many frameworks based on CNN have
been developed to tackle it [57], and their performance greatly surpassed that of
older approaches. By taking into account attributes like rain direction [32], den-
sity [68], and veiling effect [20], as well as by optimizing network architectures
through the use of transfer mechanisms [21,53,59,60] or recursive computation
[24,28,41], certain studies have improved the depiction of rain. Despite their
achievements, the constraints of convolution make it difficult for these algorithms
to capture long-range dependencies. Because of its computational efficiency and
hierarchical multi-scale representation, encoder-decoder-based U-Net architec-
tures [1,11,27,51,63,66,71] are very popular. Furthermore, skip connection-
based methods that concentrate on residual signal learning [18,31,65,72] have
shown effectiveness. Selectively attending to relevant details [28,65,66] has also
benefited from integrating spatial and channel attention modules. We can effec-
tively simulate non-local information by employing a transformer as the net-
work’s backbone.

2.2 Vision Transformers

Transformers were initially created for challenges involving the processing of
sequences in natural language, [46] and have since been adapted for various
vision tasks, including image recognition [13,45,62], detection [3,33,75] and seg-
mentation [49,55,74]. Vision Transformers break down an image into a series of
patches and discover how they relate to each other [13,45], providing a strong
capability to understand long-range relationships and adjust to input data [26].
These characteristics have led to their application in image deraining [51]. Jiang
et al. [23] combined a background restoration network with self-attention in a
Transformer to create a dynamic deraining network. Recently, Xiao et al. [54]
introduced the image deraining Transformer (IDT), which uses a dual Trans-
former approach combining spatial and window-based attention to get out-
standing outcomes. However, most of the current approaches rely on all the
self-attention scores, which can include redundant or irrelevant features with
smaller weights, leading to potential noise in the output features. To address it,
we propose using sparse attention in Transformers to focus on the most relevant
information and reduce noise.

2.3 Sparse Attention

Inspired by the neural activity in biological brains, the concept of sparsity in
hidden representations within deep neural networks offers significant advantages
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SimpleGate

Fig. 1. Architecture of Progressive sparse transformer network (PSTNet) for image
deraining. The primary modules of STB are selective multi-head attention (SMHA),
which masks out unwanted information, and a simple gate feed-forward network
(SGFN) with a simple gate for useful information to propagate further.

for both problems related to NLP and vision [48,73]. Sparse representation
addresses low-level vision issues like super-resolution [37] and image draining
[50]. Sparse attention mechanisms can be classified as content-driven sparse
attention and fixed (data-driven) sparse attention [9,12,43]. Data~driven sparse
attention often involves introducing local attention operations into a CNN back-
bone, focusing primarily on local window sizes. Recent studies [17,47] have
explored enforcing sparsity in Transformer architectures, such as Zhang et al.’s
[70] attention retractable Transformer, which allows interaction among features
from sparse areas. Unlike these approaches, we implement a straightforward yet
effective approximation for self-attention based on the most crucial attention
values.

2.4 Selective Attention

For NLP tasks, Zhao et al. were the first to provide an explicit selection strategy
based on the most crucial attention values. Vision transformer has been improved
with the introduction of k-NN attention, building on its success. We have created
an effective SMHA, contrasting to the selective attention used in the spatial
dimension.

3 Proposed Model

First, as illustrated in Fig. 1, we provide the overall flow of our PSTNet architec-
ture. Next, we outline the essential elements of the suggested sparse transformer:
(a) Selective multi-head attention (SMHA) and (b) SimpleGate feed-forward net-
work (SGFN). Lastly, we provide a progressive training strategy.



110 R. A. Shaik et al.

3.1 Overall Pipeline

The flow of our proposed PSTNet, as seen in Fig. 2, a modified U-net encoder-
decoder design is used. Given a rainy image I,.q;, € RT*W>3: where C represents
channel count and HxW is the spatial resolution. First, to acquire low-level fea-
tures F' € RTXWXC PSTNet applies convolution. These shallow features Fp
are converted into deep features D € RHXW>*2C after passing through a sym-
metric encoder-decoder network. At every stage, the encoder-decoder targets a
different spatial resolution and channel dimension to extract multi-scale rep-
resentations from rainy images. Encoder is used to increase channel capacity
by reducing the spatial size hierarchically, beginning with the high-resolution
input. Next, the decoder gradually restores the high-resolution representations
from low-resolution input (latent features) L € RS> 5 X80 We employ pixel-
unshuffle and pixel-shuffle methods [44] for downsampling and upsampling fea-
tures, respectively.

Skip connections [42] is used to concatenate encoder and decoder charac-
teristics to facilitate recovery. After concatenation, a 1 x 1 convolution reduces
channels by a scale of 0.5 at all levels except level one. At the top level, sparse
transformer blocks combine low-level details from the encoder with high-level
details from the decoder, which helps preserve subtle structural and textural
characteristics in the recovered images. In each sparse transformer, we intro-
duce SMHA instead of the standard self-attention to achieve feature sparsity,
enhancing the feature aggregation process. Additionally, we incorporate a SGFN
into the block, aiding in image restoration. This hybrid approach allows PSTNet
to leverage both intrinsic properties and the adaptive content of rainy images,
effectively separating unwanted rain streaks from the latent clear background.
Experiments confirm that these design choices lead to improved image quality.
Finally, the refined features are passed through a convolution layer to obtain a
residual image Iesiquar € RT3 it is added to the degraded input to obtain
the clean output I ean = Irain + Iresidual- The network is trained to minimize
the error function:

E= ||Iclean - Irain”l (1)

where |.||; is Li-norm. Now, we present the components of the sparse Trans-
former.

3.2 Sparse Transformer

Standard transformers [13,46,64] compute self-attention globally across all
tokens, which can lead to noisy interactions between irrelevant features, making
them less effective for image deraining. To resolve the problem, we introduce
a sparse transformer for feature extraction, leveraging the benefits of sparsity
found in neural networks. For the input features from the (t-1)-th block F;_1, the
encoding process of the sparse transformer can be formally described as follows:

F/ = F,_y + SMHA(LN(F,_,)) (2)
F, = F/ + SGFN(LN(F})) (3)
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where LN stands for layer normalization; F} and F} are the outputs from the
selective multi-head self-attention (SMHA) and the simple Gate feed-forward
network (SGFN) respectively, as described below.

Selective Multi-head Self-attention (SMHA). Let us revisit the typical
self-attention mechanism used in Transformers prevalent in many existing mod-
els. In typical attention, given matrices @ (query), K (key), and V (value) with
dimensions RY*¢ the output is:

a@rv) = (B (@)

where o represents the softmax function. Here, A is an optional scaling factor
defined as A\ = v/d. Generally, multi-head attention computes k separate Q, K,
and V matrices for each head, which gives d = C/k dimensional results per
head. The final result is then obtained across all heads by concatenating and lin-
early projecting the outputs. The main computational challenge in Transformers
is the self-attention layer. In conventional self-attention mechanisms [13,46], the
time and memory complexity of taking the dot-product between keys and queries
grows quadratically as input spatial resolution increases, specifically O(W?2 H?)
for W x H images. Therefore, applying self-attention to many image restora-
tion tasks involving high-resolution images becomes impractical due to these
computational demands. So instead of computing self-attention (SA) over spa-
tial dimensions [64], we apply over channels. This involves calculating cross-
covariance between channels to produce an attention map with a linear time
complexity that implicitly captures the global context. Our strategy prevents
irrelevant information from being included throughout the feature interaction
phase by replacing previous methods with SMHA.

To capture channel-wise spatial context, we first use 1 x 1 convolutions to
integrate cross-channel context by each pixel, followed by 3 x 3 depth-wise con-
volutions. Next, self-attention can be determined across channels. After, the
similarity between pairs of pixels is calculated using reshaped queries and keys.
Next, we eliminate elements with lower attention weights in the transposed atten-
tion map M with size R®*¢. We choose the k most contributive scores from M
using an adaptive method instead of a dropout strategy that arbitrarily discards
results. This approach aims to keep the most important elements and eliminate
the less beneficial ones [8,9]. Here, k is a parameter that dynamically regulates
the sparsity level that can be adjusted. Specifically, it is determined by averag-
ing weighted fractions, such as % or % Elements in M that do not rank among
the k highest scores are not considered when computing probabilities. The sparse
attention can be derived as:

SparseAttention(Q, K,V) = o (Hk <Q§{T>> v, (5)
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here Hk(-) can be learnt and selects highest k values:

A;; if A;; € highest k values(row j) (6)

Hk(A)];; =
Hk(A)]:s {O otherwise
Finally, we multiply the matrix to combine the softmax output and the value
matrix. Using the multi-head technique, we concatenate the outputs from each
attention head and apply a linear projection to get the desired outcome.

SimpleGate Feed-Forward Network. A typical feed-forward network (FN)
[13,46] handles each pixel location evenly and separately to modify features.
It uses two 1 x 1 convolutions: the first decreases the channels to the original
input size, and the second increases the number of feature maps (usually by a
factor of v = 4). In the hidden layer, a non-linear activation function is used.
Recently, efforts have been made to include a gating mechanism where two paral-
lel channels of linearly transformed layers and non-linearity are induced in one of
them (usually GELU) [64]. GELU may be seen as a variant of a Gated Linear
Unit (GLU). GLU is formulated as follows:

GLU(Z, 0, f,9) = f(Z) © 0(9(Z)) (7)

It is possible to think of GLU as an extension of activation functions, with
the potential to replace nonlinear activation functions [6]. It is observed that
nonlinearity exists in the GLU itself without o: GLU(Z) = f(Z) ®g(Z) contains
nonlinearity even in the absence of o, which is termed as SimpleGate, and it is
formulated as:

simpleGate(Z, f,g) = f(Z) ® g(Z) (8)

where M and N are identically sized feature maps. It simply divides the input
into two equal parts across channel dimensions and multiplies them. For an input
tensor Z € RI*WxC SGFN is represented as:

7 = SimpleGate(LN(Z)) + Z (9)

where LN is layer normalization [2]. By controlling the flow of information across
the many hierarchical stages of our pipeline, the SGFN allows each step to
focus on specific aspects that enhance the work of the other stages. This char-
acteristic sets SGFN apart from SMHA, which is mostly focused on integrating
contextual data with features enhancing them.

3.3 Progressing Learning

Typical training for CNN-based restoration models uses fixed-size patches in an
image. Nevertheless, suppose a transformer model is trained on small patches;
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Table 1. Dataset details showing samples count for image deraining.

Datasets Rain14000 [15]) Rain12 [29] Rain1800 [56] Rain100L [56]Rain100H [56] Rain1200 [68] Rain800 [69]
Train 11200 12 1800 0 0 0 700

Test 2800 0 0 100 100 1200 100

Testset name|Test2800 - - Rain100L Rain100H Test1200 Test100

it may not be able to acquire global image statistics well enough, which could
lead to less-than-ideal performance when tested on full-resolution photos. We use
progressive learning to address this, gradually increasing the patch size in later
epochs after beginning with smaller image patches in the earlier epochs. This
method improves performance while testing with different-resolution images,
which is typical for image deraining. Like curricular learning, progressive learn-
ing ensures fine image structure and texture preservation by starting the network
with easier tasks and working on more difficult ones. To maintain constant opti-
mization time, the batch size is decreased as the patch size grows.

4 Experiments and Analysis

Our model is trained using 13,712 rainy-clean image pairs from several datasets
[15,29,56,56,56,68,69], as shown in Table1. We assess the proposed PSTNet
for image deraining on the datasets listed.

Evaluation Metrics. Evaluation measures that are frequently used in derain-
ing benchmarks include PSNR [22] and SSIM [52]. Similar to previous deraining
methods [16,24], we calculate SSIM and PSNR measures in YCbCr colour space.

Implementation Details. Our PSTNet architecture is a four-level deep
encoder-decoder structure. The number of sparse transformers for levels 1
through 4 is [4, 6, 6, 8], while the attention heads in SMHA are [1, 2, 4, 8]. The
original channel count (C) is 32, and 2 is the expansion factor. The refinement
stage comprises four blocks. The sparsity parameters for STB in SMHA are set
to [%, %] Models are trained with the AdamW optimizer (81 = 0.9, 82 = 0.999,
weight decay = 1x10~%) and L1 loss for 300K iterations. The initial learning rate
is 3x10~*, which gradually decreases to 1x10~° using cosine annealing [34]. Data
augmentation also includes random flips both horizontally and vertically. Data

augmentation includes random vertical and horizontal flips.

Image Deraining Results. Table2 demonstrates that our PSTNet consis-
tently outperforms existing methods across five datasets, delivering performance
improvements. When compared to the latest method, Restormer [64], PSTNet
shows an average improvement of 0.47 dB across the datasets. Figure 2 presents a
visual example where our PSTNet successfully generates a rain-free image while
maintaining the structural details effectively. Table 3 shows that our model is
more efficient and has fewer parameters and MACs.
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Table 2. Comparison of results across five datasets. The best and second-best results
are highlighted in bold and underlined, respectively.

Method Test100 Rain100L Rain100H Test1200 Test2800 Average

PSNR1|SSIMTPSNRTSSIMT|PSNRT|SSIM T PSNRTSSIMT|PSNRT|SSIM{PSNR SSIMT
DerainNet [14](22.77 |0.810 [27.03 |0.884 [14.92 |0.592 [23.38 |0.835 [24.31 |0.861 [22.48 |0.796
SEMI [53] 22.35 |0.788 [25.03 |0.842 |16.56 |0.486 [26.05 |0.822 [24.43 |0.782 [22.88 |0.744
DIDMDN [68] 22.56 [0.818 [25.23 0.741 |17.35 |0.524 29.65 (0.901 |28.13 |0.867 [24.58 |0.770
UMRL [58] 24.41 0.829 29.18 |0.923 [26.01 |0.832 30.55 0.910 [29.97 |0.905 [28.02 |0.880
RESCAN [28] 25.00 [0.835 [29.80 0.881 |26.36 |0.786 30.51 0.882 |31.29 |0.904 28.59 |0.857
GCANet [4] [24.93 |0.846 [30.63 |0.892 [26.45 |0.783 [30.49 |0.881 [31.42 |0.882 [29.58 |0.856
PreNet [41] 24.81 0.851 (32.44 |0.950 [26.77 |0.858 31.36 0.911 [31.75 |0.916 [29.42 |0.897
MSPFN [24] [27.50 [0.876 |32.40 0.933 [28.66 |0.860 32.39 [0.916 |32.82 0.930 |30.75 0.903
MRPNet [66] [30.27 [0.897 |36.40 (0.965 [30.41 |0.890 32.91 [0.916 |33.36 0.926 |32.67 |0.919
SPAIR [38] 30.35 10.909 36.93 |0.969 [30.95 [0.892 33.04 0.922 (33.34 |0.936 [32.80 |0.925
HINet [7] 30.29 0.905 [37.28 |0.970 [30.65 [0.894 33.05 0.919 (33.91 |0.940 [33.03 |0.926
IDLIR [36] 28.33 0.894 (35.72 |0.965 [29.33 |0.886 32.06 0.917 (32.93 |0.936 [31.67 |0.920
Uformer-B [51]/28.71 [0.896 [35.91 0.964 [27.54 0.871 [32.34 0.913 |30.88 |0.928 31.08 |0.914
IDT [54] 29.69 10.905 [37.01 |0.971 29.95 |0.898 31.38 0.908 (33.38 |0.937 [32.28 |0.924
Semi-Swin [40]28.54 |0.893 [34.71 |0.957 28.79 |0.861 [30.96 0.909 [32.68 [0.932 [31.14 |0.910
Restormer [64](30.86 [0.906 [37.56 0.974 |31.46 |0.904 |33.19 10.926 33.98 |0.942 33.41 |0.930
PSTNet 31.16 0.905 |39.52 |0.980 31.21 |0.903 33.35 |0.925 |34.20 0.941 |33.88 |0.931

Rainy Image RCANet PreNet MPRNet Restormer PSTNet Ground fruth

Fig. 2. Our PSTNet produces rain-free images that retain structural integrity.

4.1 Ablation Studies

Effectiveness of Selecting Highest K Attentions. To assess the contribu-
tion of selective attention in the SMHA, we compare the deraining results of
SMHA without selective attention (see Table4). The PSNR values of images
processed by selecting the highest k attention values are better than those with-
out them. Our method reconstructs finer features and enhances the restoration
quality compared to normal self-attention operations without selective attention.
Long-range pixel dependencies are less likely to contain unnecessary context
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Table 3. Model computational complexity evaluation for an input size 256 x 256

Method |Params (M)MACs (G)
MPRNet 20.1 778.2
HINet 88.7 170.7
Restormer 26.13 140
PSTNet 12.4 89.1

Table 4. Ablation experiments for highest-k selection. PSNR is computed for the
datasets.

Dataset |w/o highest-k'w highest-k
Rain100L 39.32 39.52
Rain100H|31.13 31.21

when using the highest-k selection operator since neighbouring pixels are more
comparable than distant ones. During the self-attention computation, this selec-
tion phase eliminates smaller similarity weights from certain long-range feature
interactions, improving representation accuracy and producing higher-quality
output.

Effect of k Value. The effect of the key parameter k of our proposed SMHA is
analysed in Table 5. The k value significantly influences the sparsity. If value of k
fixed, like %, it greatly affects how well it performs. We construct a configurable
interval range for k to prevent an exhaustive search. The model dynamically
determines the most contributive score. Performance suffers greatly when & is
too small because insufficient global information is captured. The best result,
31.21 dB, is achieved when [A1, Ay] for SMHA is set in the range [, 3]. Never-
theless, performance declines as k increases because of the addition of irrelevant
characteristics.

Table 5. Ablation experiments for k value in SMHA. PSNR is computed for Rain100H

L (240, 21 42, g

57211147 31127 51137 6

PSNR/|30.60|31.12|31.21|31.16

Effectiveness of SGFN. We evaluate the suggested SGFN by contrasting it
with GDFN [64]. Compared to the complex implementation of GELU, simple-
Gate is easy to implement. By replacing GELU of GDFN with SimpleGate, the
image deraining performance (PSNR) (on Test100) is increased from 31.09 to
31.16. The results show that SimpleGate can replace GELU.
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5 Conclusion

We developed an efficient sparse Transformer network, PSTNet, for image
deraining. Significant improvements are made to the sparse Transformer’s pri-
mary components to improve feature aggregation and transformation. Observing
that vanilla self-attention in Transformers can be hampered by global interac-
tions with irrelevant information. we developed selective attention, which keeps
the most valuable self-attention values. The proposed simpleGate feed-forward
network (SGFN) also simplifies the gating mechanism for controlled feature
transformation. Experimental results demonstrate that our PSTNet performs
better than state-of-the-art methods.

Acknowledgements. The authors express their gratitude to the Council of Science
and Technology, U.P. (CST-UP), India, for their financial assistance in performing
this research work. This work is one of the project’s outcomes entitled “Road object
detection during rainy nights for autonomous vehicles” with sanction no. CST/D-1396
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Abstract. Underwater images frequently experience quality degrada-
tion due to refraction, back-scattering, and absorption, leading to color
distortion, blurriness, and reduced visibility. Such degradation present
in the underwater images can cause inaccuracies while functioning
with higher advanced level computer vision applications, equipped for
autonomous underwater vehicles. Despite the ability of enhancing the
degraded images, existing approaches fail at preserving the localized
fine edges also producing the true colors. Therefore, an effective pre-
processing network is necessary for underwater image enhancement.
With this motivation, we propose a frequency modulated deformable
transformer network for underwater image enhancement. Initially, the
features are extracted with the proposed multi-scale feature fusion feed-
forward module. Further, the frequency modulated deformable atten-
tion module is proposed to reconstruct fine-level texture in the restored
image. Here, we propose a spatio-channel attentive offset extractor in
the modulated deformable convolution for focusing on relevant contex-
tual information. Also, adaptive edge-preserving skip connections are
proposed for propagating prominent edge features from the network’s
shallow layers to its deeper layers. A comprehensive evaluation of the pro-
posed method on synthetic and real-world datasets and extensive abla-
tion analysis demonstrates that the proposed approach shows superior
performance than existing state-of-the-art methods. The testing code is
provided at https://github.com/adinathdukre/FMDTUIE.
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1 Introduction

Recent advancements have seen the use of autonomous underwater vehicles
(AUVs) furnished with visual perception systems to collect high-quality pho-
tographs in hazardous and contaminated environments, such as underwater
archaeology, marine environment monitoring, etc.. Additionally, sub-tasks like
object grasping, object recognition, and image segmentation, etc., are routinely
involved in these applications to maintain efficient performance. These sub-tasks
need clean data as input. However, capturing high-quality clean underwater pho-
tos is challenging due to the wavelength dependent absorption, reflection, and
scattering issues, leading to hazy blur, color cast, and restricted visibility. There-
fore, an effective underwater image enhancement (UIE) is highly favorable to
maintain the significant performance of these sub-tasks.

Although remarkable success has been achieved in underwater image
enhancement, the problem of restoring proper textural detail in an image is
still an open challenge. Existing works such as histogram distribution [13], prior
probability [7], and attenuation prior [27] are not adaptive to the varied underwa-
ter degraded circumstances. Also, researchers introduced various deep learning-
based methods for achieving adaptation to the varying degradations present in
underwater images. However, These techniques utilize a convolution operator
with a restricted receptive field, which limits their ability to capture long-range
pixel dependencies. To handle this, the UIE network should have a significantly
adaptive receptive field for capturing the long-range pixel dependencies.

To address the above problem, researchers have proposed vision transformer
[29] based approaches due to its capabilities of capturing long-range dependen-
cies for UIE. Shen et al. [23] proposed a transformer with depth-wise convolution

CLUIE (TCSVT-22) WWPF (TCSVT-23)

SMDR IS (AAAI-24) Ushape (TIP-23) Proposed

Fig. 1. Sample visual results of the proposed and existing state-of-the-art methods.
Ezisting methods are unable to generate the localized edges whereas the proposed app-
roach is able to generate effective localized edges and true color. (Color figure online)
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and multi-head self-attention to extract low-level features and capture struc-
ture variations of the object. In [19], dilated convolution is employed to make
the network lightweight and expand the receptive field. Tang et al. [25] pro-
posed a neural architecture search-based transformer approach for UIE. Another
transformer-based approach along with gray-scale attention is proposed in [11].
Even though these approaches produce fruitful results, structural details in the
enhanced images are missing. Further, [23,26] approaches employ transformer
architecture with direct skip connections between encoder-decoder, which may
transfer the degraded information from the shallow layer to the deep layer. Shen
et al. 23], and Wang et al. [26] employed a feed-forward network from a vision
transformer for UIE. Further, Liu et al. [17] fused two scale features in a feed-
forward network. As a result, these methods struggle to capture and reconstruct
images with more localized edges and textural details.

Motivated by the above challenge, we propose frequency modulated
deformable transformer network for underwater image enhancement. In order
to capture the structural variations in the input image, we propose a frequency
modulated deformable attention (FMDA) module. Also, we propose the adaptive
edge-preserving (AEP) module to traverse the fine edges without degradation
from shallow layers to deep layers via skip connections. Further, we propose the
multi-scale feature fusion (MSF) module to capture more localized edges and
textural features during restoration. Our main contributions are:

e We propose a frequency modulated deformable attention module with multi-
scale feature fusion-based feed-forward architecture for underwater image
enhancement.

e Spatio-channel attentive offset extractor is proposed in modulated deformable
convolution for extracting color correlation and spatially relevant information
from the features.

e The adaptive edge-preserving module is proposed to forward the structural
information from the encoder to the respective decoder for effective enhance-
ment.

Comprehensive experimental study, on synthetic and real-world datasets
depicts our proposed underwater image enhancement method is superior to exist-
ing methods. The sample visual results analysis among proposed and previous
methods is provided in Fig. 1, which shows that the proposed method preserves
the structural details with fine edges and true colors in the image along with
minimizing degradations.

2 Related Work

Over the recent years, numerous techniques for restoring and enhancing underwa-
ter images have emerged, aiming to elevate the visual excellence of such images.
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2.1 Traditional Methods

Earlier research on underwater image enhancement relied on handcrafted and
model-based approaches. Hitam et al. [8] employed contrast manipulation and
adaptive histogram equalization techniques in both RGB and HSV color spaces
to augment the contrast of underwater photographs and decrease noise levels. Fu
et al. [7] introduced the retinex model which encompasses layer decomposition,
color correction, and enhancement techniques for UIE. Similar to air-medium
dark-channel prior that modifies preceding dark-channel prior is proposed in
[4]. Moreover, Huang et al. [9] presented a technique that employs dynamic
hyperparameter-based histogram stretching as well as bilateral filters to preserve
details for underwater image enhancement. However, these methods mainly rely
on assumptions on which priors are defined and fail to cope with real complex
scenarios.

2.2 Deep Learning-Based Methods

In recent years, the use of deep learning techniques has become more significant
in addressing issues in computer vision. For UIE, Islam et al. [10] and Fabbri
et al. [5] employed conditional generative adversarial network (CGAN). In [14],
authors introduced underwater image enhancement convolutional neural network
(UWCNN). However, this method employs a convolutional operator which has
a restricted receptive field. Therefore, it does not account for fine structural
details of the image. Sharma et al. [22] suggested an attention-based and multi-
receptive network that performs both underwater image enhancement and super-
resolution simultaneously. Further, the color, global, and local contrast issues
are solved in [31]. Li et al. [17] proposed a color histogram approach for UIE.
These methods achieve superior performance but focus only on maintaining color
details. However, enhancing the structural information has equal importance,
which is ignored in the above-discussed methods.

2.3 Transformers for Image Restoration

The transformer architecture leverages self-attention, where attention coeffi-
cients signify the interplay between data on both global and local scales [6].
Therefore, transformers are extensively employed for diverse image restoration
tasks [29]. Zamir et al. [29] developed an effective transformer network that
can be used for a variety of restoration tasks, including image de-raining, and
deblurring. Liu et al. [20] introduced the “Swin Transformer” which calculates
attention within shifted windows to reduce the computational load in tasks like
image de-noising and de-blurring. Tang et al. [25] proposed a neural architecture
search-based transformer approach. Wang et al. [26] proposed a network that
takes swin transformer block as its basic unit for UIE. Further, these methods
employ the simple skip connection which may traverse the degradation from
shallow to deep features.
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However, considering the above issues, we propose a frequency modulated
deformable transformer UIE network which preserves structural detail and color
along with reducing degradation’s.

3 Proposed Framework

The schematic of the proposed network for UIE is provided in Fig. 2. The detailed
significance of each proposed module is provided in the next subsections.

\
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Fig. 3. Illustration of proposed spatio-channel attentive offset extractor and spatio-
channel aware deformable convolution.

3.1 Multi-scale Feature Fusion Feed-Forward (MSF) Module

Existing feed-forward module based transformer network [23] are unable to pro-
cess high-frequency components like texture, edge information, etc.. Also, they
are not capable of capturing more fine details and contextual information. To
handle this issue, we propose multi-scale feature fusion feed-forward (MSF) mod-
ule. In proposed MSF module (refer MSF module from Fig.2), we first exploit
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the adaptive frequency preserving (AFP) block based on the reverse process of
the JPEG compression algorithm which contains quantization learnable matrix
(for more details refer Sect.3.3). In MSF, the input tensor X is given to the
AFP block after applying layer normalization and 1x1 convolution. Here, quan-
tization learnable matrix in AFP block is used to learn processing of the high-
frequency components and restrict the low frequencies like hazy blur [12]. Fur-
ther, the output of the AFP is given to two parallel different paths that utilize
1x1 convolution Succeeded by a depth-wise convolution given kernel size 5x5,
and 3x3 with Swish activation function. Here, we have integrated two multi-scale
depth-wise convoluted features with each other and passed through respective
depth-wise convolution followed by Swish activation function. Finally, these fea-
tures are merged to capture fine details and improve the local and contextual
information.

3.2 Frequency Modulated Deformable Attention (FMDA) Module

Transformers are adept at capturing long-range dependencies using self-
attention, their superiority over conventional CNNs and GANs on both high-level
and low-level vision tasks like segmentation, object detection, deblurring, dehaz-
ing, deraining, and denoising, etc., is remarkable. Also, modulated deformable
convolutions have proven to be more effective due to their ability to accom-
modate the shape variation of objects. However, the attention with depth-wise
convolution may suffer from limited receptive fields [28], which restricts the over-
all network from capturing structural variations present in the image. To tackle
this issue, we proposed spatio-channel aware modulated deformable convolution
(SCMDC) for extracting features of queries (Fy), keys (Fy), and values (F,) as:

F,, Fy,F, = SCMDCs5435 (C1(L(Xin))) (1)

where, SCM DCj3y3(-) is spatio-channel aware modulated deformable convolu-
tion (see Fig. 3), C is convolution with 1 x 1 kernel, and L(-) is layer normal-
ization.

The offsets in modulated deformable convolution may exceed their contextu-
ally relevant regions [32], resulting in the emergence of irrelevant features and,
the formation of partially restored pictures. To address this, we have introduced a
spatio-channel attentive offset extractor that is sensitive to color shifts induced
by underwater conditions (see Fig.3). Here, the extraction of offsets and mod-
ulation values originates from the same offset convolution process, employing
channel-wise spatially attentive features as its input as:

N
F,= Z DFconvsxs (Xntn;+an; ) Am; (2)

i=1

where, N represents a sampling location within a 3x3 convolutional grid,
DFconvsxs(-) denotes a modulated deformable convolution with a 3x3 kernel
size and y € (g, k,v). The variable n signifies a feature location, while An rep-
resents the offsets obtained from the spatio-channel attentive offset extractor.
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Similarly, Am denotes the extracted modulator scalars from the Spatio-Channel
attentive offset extractor block, and n; € {(—1, -1), (=1, 0)...(1, 1)}. Feature
map visualization of various combinations of offset extractors (see Fig.4) shows
proposed SCM DC' offset extractor can extract more local spatial information.
With this process, we have extracted the F, F,, and Fy, (More detailed infor-
mation is available in the supplementary material.).

Further, to reduce overall computation cost, the frequency domain correlation
between F;, and Fy, is calculated (see FMDA in Fig. 2) with fast Fourier transform
(FFT) [12] as:

A=F (F(F) F(F)) (3)
where, F(-) represents the FFT, F~!(-) represents the inverse FFT, and F(-)
represents the conjugate transpose operation. Lastly, we compute the summa-
rized feature through:

Vatr = L(A).F, (4)

where, L(-) is layer normalization. Finally, the output features of FMDA are
generated as:
FMDA = X;,, + Convy 1 (Vatt) (5)

where, X, is the input features. Spatio-channel aware modulated deformable
convolution-based frequency domain self-attention layer, likewise known as the
frequency modulated deformable attention module (FMDA). This proposed
FMDA module used three times at various levels to get the enhanced image.

Input Modulated Deformable Spatially Attentive SCMDC Offset
Offset Deformable Offset (Proposed)

Fig. 4. Feature map visualization of various combinations of offset extractor. The pro-
posed SCMDC offset extractor can extract more local spatial information (as shown in
the red box) than the modulated deformable offset and spatially attentive deformable
offset extractor, resulting in a superior structural variation in the proposed method
output images. (Color figure online)

3.3 Adaptive Edge Preserving (AEP) Module

To achieve better performance in our UIE task, we must deal with preserving
edge-sensitive regions, and reduce irrelevant information propagated via feature
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extraction. The previous approaches [23,26] employed direct skip connections
that passes the extracted features without refining and considering sensitive
information like edges. To tackle this issue, we proposed an adaptive edge-
preserving module for processing the features during skip connection.

Initially, the input features X; are passed through adaptive frequency preser-
vation (AFP) block [12] to generate refined the features X5. The details of AFP
block are shown in Fig. 2. The output of AFP (X5) is given as:

X, = P! (F*l (X{)) X{ = F (P (X)) (6)

where, P(-) and P~1(-) represents patch unfolding and folding operations respec-
tively, F(-) and F~!(-) denotes FFT and the inverse FFT . After FFT, on the
transformed features, the learnable quantization matrix is used to process high
frequency information and suppress low frequency component present in the fea-
ture maps.

Further, these refined features from AFP are passed through downsample-
upsample operator and subtracted from the refined input feature map to pass
only refined edge and texture information as:

Xout = C1(X2 — D2(C2(X32))) (7)

where, Dy and Cy represents de-convolution with up-sampling factor 2 and con-
volution with down-sampling factor 2 respectively (see adaptive edge preserving
skip connection in Fig.2). Overall the proposed adaptive edge preserving module
assist the proposed network by obtaining refined high-frequency edge informa-
tion. The Performance of all proposed blocks is examined in the ablation studies
(refer Sect. 5.4 for more details).

4 Training Details

We trained the proposed network on the EUVP [10] and UIEB [15] dataset. Dur-
ing training phase, we crop randomly the original input image into a 256 x 256
patch Size. Also, data augmentation like horizontal flip and vertical flip is
adopted to make enough training samples. The patch size for the quantization
matrix estimation in the adaptive edge-preserving module is empirically set to be
8 x 8 [12]. To optimize ours proposed network parameters, we have used ADAM
as an optimizer with initial learning rate of the 10~* and a minimum of 10~7,
which is changed with the cosine annealing technique. The network is trained
on Nvidia Titan Xp having a 2.2 GHz clock speed. The various losses like L,
FFT, perceptual, and contrastive are employed to optimize the performance of
proposed network. The details of each loss function are given: Loss Functions:
The network is trained with the content loss function (L;). Further to reduce
difference in between frequency space, we have employed FFT loss (L) [3] which
calculates the likeness between ground truth and network output. Furthermore
to maintain the feature level textural and structure similarity, the perceptual
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loss (L) is computed using the VGG-16 [24] pre-trained module. Also, the con-
trastive loss (L) is calculated to maximize and minimize the difference between
input-output and output-ground truth respectively Therefore, the total loss is
represented as:

Liotat = MLy + Xollp + Az, + MLe (8)

we set weights as A\ = 1, Ao = 0.1, A\3 = 15 and \y = 5. The detailed explanation
and ablation for loss functions is available in supplementary material.

5 Experimental Analysis

5.1 Datasets

EUVP [10]: The Enhancing Underwater Visual Perception (EUVP) database
covers underwater images captured with many types of cameras in various con-
figurations. The dataset comprises 11,435 image pairs (clean and degraded) for
training and 515 image pairs for testing.

UIEB [15]: The underwater image enhancement benchmark (UIEB) dataset
contains 890 underwater images from various scenarios. From this, the training
set is created by randomly picking 800 images and the remaining 90 images for
testing.

Sea-Thru [1]: We used 10 real-world underwater images from this dataset for
qualitative and non-reference evaluation.

Color-Checker [2]: This dataset consists of 7 real-world underwater images,
we have utilized this dataset to evaluate color correction effectiveness based on
qualitative and non-reference color metrics.

Table 1. Analysis of the proposed (Ours) and existing methods on the UIEB [15]
and EUVP [10] dataset in the terms of an average SSIM (1), PSNR (1), and LPIPS
(l) for underwater image enhancement (Note: |: lower is better, 1: higher is better).

Method Publication [UIEB EUVP

PSNR 1|SSIM 1|LPIPS || PSNR 1|SSIM 1/LPIPS |
LANet [18] |RAL-22 24.05 0.90 |0.13 25.82  ]0.86 |0.28
CLUIE [16] |TCSVT-22{20.37 0.89 [0.18 - - -
Wave Net [22] TMCCA-23121.57 |0.80 |0.12 28.62 0.83 ]0.24
WWPF [31] |TCSVT-23 18.59 (0.79 |0.22 - -
U-shape [21] |TIP-23 21.39 10.85 |0.24 26.77 ]0.87  0.26
SMDR-IS [30] AAAI-24 [23.71 [0.92 |0.14 - - -
Ours - 25.79 10.95 |0.11 30.90 [0.92 |0.22
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Table 2. Evaluations of different methods on non-reference metrics for Color-checker
[2] and Sea-thru [1] dataset in terms of UIQM (1), UCIQE (1), UICM (1) and NIQE
(1) (Note: |: lower is better, T: higher is better).

Method Publication |Color-checker Sea-thru
UIQM|UCIQE|UICM |[NIQE UIQM|UCIQE UICM |NIQE
LANet [18] RAL-22 4.06 [32.89 |—24.59/3.09 4.57 [29.54 |—19.74 |4.39
WaveNet [22] TMCCA-234.13 |33.15 |—21.023.14 4.60 |30.25 |—21.24 |5.22
CLUIE [16] |TCSVT-22 443 |33.58 |—18.64/3.10 (3.91 29.86 |—37.72 |4.61
WWPF [31] |TCSVT-23 3.96 [33.03 |—26.863.10 (3.84 (30.50 |—18.00 |6.43
U-shape [21] |TIP-23 4.03 [30.65 |—13.91/5.30 [4.01 |29.05 |—22.55 |4.54
SMDR-IS [30]AAAI-24 397 [32.84 |—-31.76/3.11 [