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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. In ICRP 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. In July 2020, Versatile Video Coding (VVC/H.266) has been
finalized as the next-generation video coding standard. Due to the
diverse characteristics of video, motion prediction in fractional precision
is required in the video coding. For this, VVC/H.266 uses Discrete Cosine
Transform-based Interpolation Filter (DCTIF) but, it is being a typical
low-pass filter with fixed integer coefficients so it cannot guarantee opti-
mal performance across all videos. Recently, deep learning-based tech-
nology has been continually developed onwards. This paper proposed
the In-Loop Interpolation Filter (ILIF) which can generate high-quality
fractional pixels. ILIF is an Super-Resolution (SR) model with our pro-
posed pixel embedding technique. Pixel Embedding allows the correla-
tion between integer and sub-pixels to be maintained during learning and
it is highly effective in the inter coding. Optimized through a divide-and-
conquer learning approach, ILIF replaces the DCTIF and is integrated
with inter prediction in VVC/H.266. ILIF considered only the Y com-
ponent of YUV420 format and the BD-rate performance was compared
and analyzed with the anchor of VVC/H.266. Two integration methods
(MODE 1, 2) between ILIF and VVC/H.266 were presented. As a result of
the experiment, for MODE 1 which applies ILIF only for fractional pixel
generation, the gains were −1.42% for All-QP, −1.54% for High-QP, and
−1.24% for Low-QP. Additionally, in MODE 2 which integrates integer
pixel filtering and sub-pixel generation with ILIF, it showed the gains of
−3.92% for All-QP, −4.01% for High-QP, and −3.13% for Low-QP.

Keywords: Versatile Video Coding (VVC/H.266) · fractional
interpolation · Convolutional Neural Network (CNN) · Pixel
Embedding

1 Introduction

In July 2020, Versatile Video Coding (VVC/H.266) was officially announced
as the final standard [2]. VVC/H.266 was developed with the goal of achieving
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Fig. 1. Architecture of VVC/H.266

more than twice the coding efficiency of the previous standard the HEVC/H.265.
Additionally, it was designed to handle Ultra-High Definition (UHD) videos
ranging from 4K to 16K more efficiently and to support Virtual Reality (VR)
content. As the display technology advanced, VVC/H.266 also supports High
Dynamic Range (HDR), 10-/16-bit color depths as well as brightness levels of
4,000 nits and 10,000 nits. Consequently, the computational complexity signifi-
cantly increased with encoding predicted to be up to 10 times higher and decod-
ing predicted up to 2 times larger compared to HEVC/H.265.

Figure 1 illustrates the schematic overall architecture of VVC/H.266. As
shown in the figure, VVC/H.266 has a block-based hybrid video coding struc-
ture that integrates various element technologies. Conceptually, video coding
technology eliminates spatial, temporal, and statistical redundancies present in
videos.

A video is a digital signal that quantizes continuous natural signals into
discrete forms. Therefore, as continuous signals are represented by limited pix-
els, the performance of motion prediction for reference blocks is observed to
degrade due to aliasing, rapid object movements, and other factors. Addition-
ally, reference frames are transformed signals that have undergone quantization
and inverse quantization in a block-wise manner during encoding and decoding.
Although in-loop filters improve these, there are still quality differences between
current frames making accurate motion prediction difficult.

To address the prediction performance degradation caused by the discontinu-
ity of digital signals and quantization of brightness values, inter frame prediction
applies low-pass filters to interpolate signals between pixels at sub-pixel levels
[18]. VVC/H.266 uses the Discrete Cosine Transform-based Interpolation Filter
(DCTIF) to generate sub-pixels from integer pixels. Although fractional pix-
els generated by interpolation filters enable more precise motion prediction, the
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Fig. 2. Example of Integer Pixel Embedding.

input signal does not always respond ideally to handcrafted filters. Moreover, the
filter coefficients are approximated to integer values for hardware optimization
and high-speed computation which inherently introduces fundamental errors.
These errors can become significant for certain input signals.

Recently, deep learning-based methods have shown remarkable results in
image and video processing, outperforming classical methods. Video coding is
also actively researching deep learning, with in-loop filters being representative
examples [10]. However, several significant issues remain with the introduction
of deep learning technologies for sub-pixel generation.

Firstly, there is the challenge of constructing datasets for training. NN models
for image or video quality typically set unmodified original quality as the target
value following general supervised learning principles. However, there are no
target values for sub-pixels generated from integer pixels. To overcome this,
sub-pixels generated by DCTIF are used as target values or low-pass filters
are applied to the original quality images such as gaussian. Nevertheless, these
approaches do not consider the sub-pixel-based inter prediction process and fail
to guarantee performance in highly efficient VVC/H.266.

Secondly, the approach to sub-pixel generation as a SR problem causes issues.
SR research is also an active research field in video coding, such as Reference
Picture Resampling (RPR) or Video Super-Resolution (VSR) [5]. The output
of SR models includes both integer and sub-pixels. In this case, the output integer
pixels may not match the input integer pixels. Since sub-pixel motion estimation
during the coding process is entirely dependent on input integer pixels, such
discrepancies negatively impact coding efficiency.

In a real environment, the correlation between integer pixels and sub-pixels
is a factor that greatly determines coding efficiency. This because of the sub-
pixel motion estimation occurs after the integer pixels have been determined.
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Fig. 3. Two-Stage Model using Pixel Embedding Methods.

Also, the reason why the SR model which shows a higher quality improvement
surprisingly does not improve coding efficiency significantly.

In conclusion, a new approach that simultaneously consider both integer and
sub-pixels during the learning and coding process is necessary unlike traditional
deep learning-based sub-pixel generation research.

2 Related Work

Traditional approaches to enhance the interpolation filter have mainly focused on
three aspects: enhancing fixed filters, designing adaptive filters, and developing
hardware for fractional interpolation. Lakshman et al. have proposed a gener-
alized interpolation framework for MCP that uses fixed-point Infinite Impulse
Response (IIR) and Finite Impulse Response (FIR) filters to enhance the perfor-
mance of fixed filters [9]. Wittmann et al. introduced the concept of a separable
adaptive interpolation filter using 1-dimensional tap filters sequentially, which
reduced computational cost and improved efficiency [23].

Ye et al. also proposed an enhanced adaptive interpolation filter that includes
full pixel position filters, filter offsets, radial 12-position filters, and RD-based
filter selection [26]. Lv et al. proposed a resolution-adaptive tap filter, selecting
a 4-tap filter for high-resolution and 6-/10-tap filters for low-resolution videos
[13]. Guo et al. proposed an efficient VLSI design by configuring the tap filters
of HEVC/H.265 with an optimized parallel pipeline structure from a hardware
perspective [6].

Kim and Lee suggested an 11-/12-tap Discrete Sine Transform-based Inter-
polation Filter (DSTIF) to emphasize high-frequency components [8]. Choi and
Lee also designed a 12-tap DCTIF to improve filter response in high-frequency
bands, enhancing the efficiency of VVC/H.266 [4].

As deep learning-based computer vision technology develops, attempts to
apply it to interpolation filter research have been reported. Pham et al. have
proposed a Convolutional Neural Network (CNN)-based interpolation filter for
the luma and chroma components of HEVC/H.265, utilizing the sub-pixel values
generated during the encoding process as the training dataset. Additionally, they
applied an RDO-based interpolation filter selection method to achieve coding
efficiency, adding two syntax elements for this purpose [17].
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Fig. 4. Architecture of 1-st Stage Filter Model.

Similarly, Yan et al. used data generated by DCTIF to train a CNN model
for 1/2 sub-pixel generation. They enhanced the efficiency of HEVC/H.265 by
individually training 1/2 sub-pixels in vertical, horizontal, and diagonal direc-
tions [25]. In subsequent research, they proposed a CNN model for unidirectional
and bidirectional motion compensation (MC), guiding the training to predict the
current block to be encoded rather than generating sub-pixels from the refer-
ence block [24].

Liu et al. also proposed a CNN-based filter for sub-pixel interpolation in
HEVC/H.265. They designed a grouped network structure for inferring sub-
pixel blocks, reflecting that sub-pixel interpolation in video coding is generated
at the same resolution as integer blocks. Additionally, they introduced Gaussian
blurring to the target values used in training the sub-pixel generation model [11].

Murn et al. proposed a CNN-based interpolation filter for low-complexity
inter prediction in VVC/H.266, demonstrating the potential for performance
improvement [15].

Zhang et al. designed an interpolation filter based on the VDSR model [7],
using the results of DCTIF for the dataset and introducing a constraint mask
during training to maintain integer positions [27].

In this study, we prioritized maintaining the correlation and dependency
between integer/fractional pixels. Likewise, recent studies on neural networks
targeting video coding have attempted to utilize these kind of semantic features.
Tian et al. suggested a framework aimed at unsupervised video semantic com-
pression. The framework optimizes video compression by focusing on preserving
semantic features rather than purely visual quality using a novel Non-Semantics
Suppressed (NSS) learning strategy [20–22].

Deep learning-based interpolation filters must be designed to maintain cor-
relation between pixels. In particular, in the case of VVC/H.266 which has very
high coding efficiency, it is difficult to guarantee performance when applying a
model designed for HEVC/H.265. To solve this problem, a fundamental app-
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Table 1. Summary of 1-st Stage Filter Model.

Step Layer Structure Output Size Parameters

Input Luma Pixel + QP-Map 2×128×128 -

1 Conv (3×3) + PReLU 128×128×128 2,433

2∼17 Conv (3×3) + PReLU + Conv (3×3): ResBlock (×16) 128×128×128 4,722,704

18 Conv (3×3) + PReLU + Skip-Connection with Step 1 128×128×128 147,585

Output Conv (3×3) 1×128×128 1,153

Total Parameters 4,873,875

roach is needed that can maintain correlation during model design and learning
processes.

3 In-Loop Interpolation Filter

The proposed Pixel Embedding (PE) refers to the process of directly inserting
specific pixel values into specific locations in the high-resolution output image.
To clarify the concept, the resolution of the input (E) and the output (F ) in the
SR model can be expressed as follows:

Hout = r × Hin ,

Wout = r × Win ,
(1)

Here, (Hin,Win) and (Hout,Wout) are the resolutions of the input image and
output image, respectively. r is the scaling factor of the SR model. Therefore, the
equation for embedding E into the integer pixel positions of F can be expressed
as follows:

F (ri, rj) = E(i, j) for 0 ≤ i < Hin , 0 ≤ j < Win . (2)

All pixel values F (i, j) in the output are used to calculate the loss function with
the target values during the training process. Since the pixel value F (ri, rj) is
always equal to the input pixel E(i, j) of the model, the correlation between the
integer pixels and the sub-pixels is maintained even as training progresses.

However, the limitation of this approach is that since the value F (ri, rj) does
not change, it is difficult to expect an overall improvement in high-resolution
quality due to training. Originally, SR models aim for both quality improvement
and up-scaling simultaneously, so this kind of constraint needs to be improved.

The quality of all pixels F (i, j) in the output image is constrained by the qual-
ity of the fixed pixels F (ri, rj). Therefore, if the quality of F (ri, rj) is improved
compared to the input pixel E(i, j), the quality of all pixels F (i, j) can also be
improved. From this perspective, we can introduce a filter model V(·) that gen-
erates a high-quality output (I) with the same resolution as the input image
(E). So, we can modify the equation as follows:
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Fig. 5. 2-nd Stage Model.

I(i, j) = V(E)(i, j) ,

F (ri, rj) = I(i, j) for 0 ≤ i < Hin , 0 ≤ j < Win .
(3)

By changing the target of pixel embedding to the output of the filter model
V(·), the quality of the output pixels F (i, j) from the SR model is also improved
compared to the previous results. Thus, this approach achieves improved qual-
ity of integer pixels, generation of high-quality sub-pixels, and maintains the
dependency between integer and sub-pixels through pixel embedding.

Figure 2 details this process. I represents the integer pixel samples output
from the filter model, exemplified as having a size of 2 × 2. F represents the
sub-pixel samples output from the SR model, exemplified as having a size of
8 × 8, which is four times the input resolution. The final output maintains the
correlation between integer and sub-pixels by embedding I into the integer pixel
positions of F. Through the pixel embedding process, the quality of the opti-
mized integer pixel samples from filter model is preserved Also, high-quality
sub-pixel samples with well-preserved correlation to the integer pixels are gen-
erated.

However, introducing the filter model V(·) and the SR model separately
can lead to additional issues. To reduce the complexity of the neural network
model, we did not consider an ensemble approach of separate models. Therefore,
we adopted a two-stage training strategy that divides the network module to
achieve filtering and SR with a single model simultaneously.

Figure 3 illustrates the Pixel Embedding process through the proposed two-
stage model. We have employed a two-stage learning method that separates the
filter part and the SR part within a single network and optimized them sepa-
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Table 2. Summary of 2-nd Stage SR Model.

Step Layer Structure Output Size Parameters

Input Luma Pixel + QP-Map 2×128×128 -

1 Conv (3×3) + PReLU 128×128×128 2,433

2∼17 Conv (3×3) + PReLU + Conv (3×3): ResBlock (×16) 128×128×128 4,722,704

18 Conv (3×3) + PReLU + Skip-Connection with Step 1 128×128×128 147,585

19 Conv (3×3) 1×128×128 1,153

Filter Part Parameters 4,873,875

20 Conv (3×3) 512×128×128 590,336

21 PixelShuffle (2×) 128×256×256 -

22 Conv (3×3) 512×256×256 590,336

23 PixelShuffle (2×) 128×512×512 -

24 Conv (3×3) 512×512×512 590,336

25 PixelShuffle (2×) 128×1,024×1,024 -

26 Conv (3×3) 512×1,024×1,024 590,336

27 PixelShuffle (2×) 128×2,048×2,048 -

28 Conv (3×3) 1×2,048×2,048 1,153

Output Pixel Embedding: F (ri, rj) = I(i, j) 1×2,048×2,048 -

SR Part Parameters 2,362,497

Total Parameters 7,236,372

rately. The two parts are optimized in separate stages, and the trained weights
of the filter part are fully shared in the SR part. This approach achieves the
same goal not using separate filter and SR models but with a single network.

As shown in Fig. 4, 1-st stage model functions as a typical filtering model
that performs an E2E mapping of low-quality input pixels to high-quality output
pixels. Thus, the goal of the first stage is to fine-tune the model to improve the
quality of the input image, excluding the up-scaling part. Table 1 summarizes
the configuration of the 1-st stage model and the dimensions and number of
parameters of the feature map output from each layer. The 1-st stage model is
a filter model with 4,873,875 parameters.

As shown in Fig. 5, this 2-nd stage model tunes the up-scaling part to generate
sub-pixel samples. All parameters tuned in the 1-st stage (Feature Extraction,
Feature Refinement, Integer-Pixel Reconstruction) are transferred and shared.
Also, these are frozen and excluded from the weight update process in the 2-
nd stage learning. This means that the integer pixel output from the 1-st stage
does not change at this point. However, since the integer pixel part included
in the output of the this stage changes, the output values of the 1-st stage are
embedded into the output values of the 2-nd stage to correct this in the final
output.

Discontinuity between integer pixels and subpixels caused by embedding
naturally disappear during the process of backpropagating the loss function.
This is because the loss function is calculated over the entire plane containing
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Fig. 6. Flow Chart of the proposed Inter Prediction with ILIF.

the embedded integer pixels. Table 2 summarizes the configuration of the 2-nd
stage model and the dimensions and number of parameters of the feature map
output from each layer. The 2-nd stage model is an SR model with 7,236,372
parameters. Among them, excluding the parameters shared and freezed from the
1-st stage model, the number of parameters is 2,362,497.

The proposed ILIF simultaneously performs the roles of an in-loop filter
and an interpolation filter in the inter prediction process targeting VVC/H.266.
Thus, there are 2 modes for integrating ILIF into the VVC/H.266 inter prediction
process as follows:

– MODE 1: Sampling Fractional Pixels of ILIF for DCTIF Replacement:
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• Use only the fractional-pixel output F from ILIF to replace the DCTIF
• This method enhances the motion compensation accuracy by providing

high-quality fractional pixels
– MODE 2: Combined Integer Pixel Filtering and Fractional Pixel Sampling:

• Use both the integer pixel output I to filter the reference frame and the
fractional-pixel output F to replace DCTIF

• This combined approach leverages the strengths of both integer pixel
filtering and fractional-pixel generation for optimal performance

Figure 6 illustrates the inter prediction process within VVC/H.266 integrated
with ILIF. The components numbered as (1), (2), (3) in the figure represent the
additional logic introduced with ILIF integration. The ILIF model is trained
considering only the luma components. During the inter prediction stage, the
ILIF model is called to generate fractional samples at 16 times the size when the
reference sample is a luma component as shown in component (1). The generated
fractional samples include enhanced integer pixel samples.

MODE 1 corresponds to using the fractional samples generated by ILIF as
shown in component (3) for 1/4 and 1/16 level motion compensation (MC)
in AFFINE AMVP mode or 1/2 and 1/4 level MC in Normal AMVP mode. In
MODE 2, both components (2) and (3) correspond to the active state. Therefore,
the overall efficiency may be further improved since motion prediction becomes
more accurate from the integer pixel unit.

The proposed ILIF-based inter prediction technique is designed with the goal
of achieving high performance in MODE 3, even if the performance or gains in
MODE 2 are lower or minimal. This strategy is based on the fundamental design
of DCTIF which maintains the correlation between integer and fractional pix-
els Also, the interdependence of the inter prediction process were considered.
Ultimately, proposed ILIF can contribute to improving the efficiency of inter
prediction in VVC/H.266 through the integration of in-loop filter and interpo-
lation filter.

4 Experimental Results

We used two main datasets for training ILIF. First, we used 22 sequences from
Class A to E of the Common Test Condition (CTC) for VVC/H.266 [1]. Second,
the sequence dataset from Bristol University (BVI-DVC) including four different
resolutions, ranging from 270p to 2160p, with 200 sequences for each resolution,
totaling 800 sequences [14]. The primary purpose of using the BVI-DVC dataset
is for the 2-nd stage of ILIF training. For the purpose, the original sequences of
BVI-DVC were first downsampled to 1/4 of their size before being encoded.

The CTC sequences and the 1/4 downsampled BVI-DVC sequences were
encoded using the VVC Test Model version 11.0 (VTM-11.0) which is the ref-
erence software for VVC/H.266 [3]. For encoding, the Random Access (RA)
configuration file (encoder randomaccess vtm.cfg) was used.

ILIF was trained as a single integrated model not by QP but using normalized
QP-Map [19] for the input samples. To train the 256 times output model using
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datasets where most sequences have resolutions smaller than 4K, we utilized
the DCTIF coefficients of VVC/H.266. We normalized the integer-scaled 8-tap
luma DCTIF coefficients and then constructed 9-tap filter coefficients to ensure
symmetry. During training, we applied horizontal and vertical filtering to the
target values t to generate new target values t̂ and calculated the loss between
these and the outputs y of the SR Part. This approach has the advantage of fully
utilizing the CTC and BVI-DVC sequences without the need for a downsampling
process. Additionally, it offers benefits in both original quality and fractional
sample generation by applying DCTIF to the original target values.

The proposed ILIF is designed with the goal of simultaneously improving the
visual quality of integer pixels and generating ultra-high-resolution sub-pixels.
For the training of the 2-nd stage model, we generated the upscaled target values
from the uncompressed original frames using the normalized DCTIF (D).

Given an original target pixel data t, we apply a convolution process to
upscale the data both horizontally and vertically by a factor of r = 16. The
process involves the following steps:

th(i, rj + c) =
4∑

k=−4

t(i, j + k) · D(c, k + 4) ,

t̂(ri + c, rj + c) =
4∑

k=−4

th(i + k, rj + c) · D(c, k + 4) .

(4)

Here, th is the result after horizontal convolution, of size (H × (W × r)) and t̂
is the final upscaled result, of size (H × r) × (W × r). D is a 16 × 9 matrix
containing the nomalized filter coefficients. c is the index value for 16 tap filters
assigned by sub-pixel generation positions. The 16 sets of normalized 9-tap luma
DCTIF filter coefficients D as follows:

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0156 −0.0469 0.9844 0.0625 −0.0313 0.0156 0.0000
0.0000 −0.0156 0.0313 −0.0781 0.9688 0.1250 −0.0469 0.0156 0.0000
0.0000 −0.0156 0.0469 −0.1250 0.9375 0.2031 −0.0625 0.0156 0.0000
0.0000 −0.0156 0.0625 −0.1563 0.9063 0.2656 −0.0781 0.0156 0.0000
0.0000 −0.0156 0.0625 −0.1719 0.8125 0.4063 −0.1250 0.0469 −0.0156
0.0000 −0.0156 0.0469 −0.1406 0.7344 0.4844 −0.1563 0.0625 −0.0156
0.0000 −0.0156 0.0625 −0.1719 0.7031 0.5313 −0.1563 0.0625 −0.0156
0.0000 −0.0156 0.0625 −0.1719 0.6250 0.6250 −0.1719 0.0625 −0.0156
0.0000 −0.0156 0.0625 −0.1563 0.5313 0.7031 −0.1719 0.0625 −0.0156
0.0000 −0.0156 0.0625 −0.1563 0.4844 0.7344 −0.1406 0.0469 −0.0156
0.0000 −0.0156 0.0469 −0.1250 0.4063 0.8125 −0.1719 0.0625 −0.0156
0.0000 0.0000 0.0156 −0.0781 0.2656 0.9063 −0.1563 0.0625 −0.0156
0.0000 0.0000 0.0156 −0.0625 0.2031 0.9375 −0.1250 0.0469 −0.0156
0.0000 0.0000 0.0156 −0.0469 0.1250 0.9688 −0.0781 0.0313 −0.0156
0.0000 0.0000 0.0156 −0.0313 0.0625 0.9844 −0.0469 0.0156 0.0000

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)



12 Y.-W. Lee et al.

We used Mean Absolute Difference (MAD) for the cost function. Therefore,
the loss function was defined as follows:

L16 =
1
N

N∑

i=1

wqp · |yi − t̂i| . (6)

Here, wqp is a weight value according to the base QP of the dataset and was
introduced to prevent the model from overfitting to data of a specific QP. The
weight values for each of the 5 base QPs (22, 27, 32, 37, and 42) were set to 1.7,
1.5, 1.3, 1.1, and 1.0, respectively.

PyTorch was used as the framework for implementing the proposed ILIF [16].
We used Adaptive Moment Estimation with Weight Decay (ADAMW) optimiza-
tion algorithm for training [12]. The training utilized a multi-GPU environment
with 4 GPUs.

To verify the performance of ILIF, we modified the VVC reference software
(VTM-11.0) and integrated them using LibTorch, the C++ API of PyTorch.
We encoded the Class A∼E sequences of the CTC using the RA Main 10 con-
figuration. All results were presented as BD-rate performance for 50 frames per
sequence between proposed ILIF the VVC/H.266 (VTM-11.0) anchor. Both the
training of the ILIF model and the integration with the reference software con-
sidered only the luma (Y) component. Therefore, only the results for Y are
significant in the experimental results.

The experimental results for the integration of ILIF and VVC covered whole
AMVR resolution are summarized in Tables 3, and 4, respectively. These results
are implemented to support up to 1/16-luma-sample resolution which is used
in the AFFINE AMVP mode.

MODE 1 presents the results when the proposed ILIF is applied only for
sub-pixel generation. The experimental results show the gains of −1.42% for
All-QP, −1.54% for High-QP, and 1.24% for Low-QP. It can be seen that the
performance improvement due to AFFINE mode and 1/16 ultra-high resolution
sub-pixel samples is significant.

MODE 2 involves applying the proposed ILIF for both integer pixel improve-
ment and sub-pixel generation. The experimental results show the gains of
−3.92% for All-QP, −4.01% for High-QP, and −3.13% for Low-QP, respectively.
The performance improvement in MODE 2 can be attributed to maintaining the
dependency between integer and sub-pixels.
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Table 3. BD-Rate Comparison of the ILIF: MODE 1 (1/16-luma-sample).

Random Access Main 10 (50 frames, 1/16-luma-sample)

Class Sequence All-QP High-QP Low-QP

{22, 27, 32, 37, 42} {27, 32, 37, 42} {22, 27, 32, 37}
Y U V Y U V Y U V

A1 Tango2 −0.70% 2.50% 3.40% −0.80% 2.30% 3.50% −0.60% 2.00% 3.30%

FoodMarket4 −1.10% 2.70% 3.10% −1.20% 2.80% 3.20% −1.00% 2.60% 3.00%

Campfire 0.50% 1.30% 1.40% 0.40% 1.40% 1.50% 0.60% 1.20% 1.30%

A2 CatRobot −4.40% 3.10% 3.00% −4.50% 3.20% 3.10% −4.30% 3.00% 2.90%

DaylightRoad2 −5.00% 3.30% 3.10% −5.10% 3.40% 3.20% −4.90% 3.20% 3.00%

ParkRunning3 −0.10% 1.50% 1.60% −0.20% 1.60% 1.70% −0.10% 1.40% 1.50%

B MarketPlace −0.80% 3.40% 3.50% −0.90% 3.30% 3.60% −0.70% 3.20% 3.40%

RitualDance −0.90% 1.80% 2.20% −1.00% 1.70% 2.30% −0.80% 1.90% 2.10%

Cactus −3.30% 3.50% 3.60% −3.40% 3.40% 3.70% −3.20% 3.60% 3.50%

BasketballDrive −0.70% 3.70% 3.40% −0.80% 3.60% 3.50% −0.60% 3.80% 3.30%

BQTerrace −9.80% 2.60% 2.70% −9.90% 2.50% 2.80% −9.70% 2.70% 2.60%

C BasketballDrill −1.10% 3.22% 2.35% −1.24% 3.93% 2.68% −0.96% 2.64% 1.94%

BQMall −0.11% 2.03% 2.74% −0.28% 2.28% 3.46% 0.27% 1.76% 2.11%

PartyScene −0.12% 1.61% 1.75% −0.36% 2.15% 1.98% 0.14% 1.25% 1.53%

RaceHorses 1.62% 2.04% 2.90% 1.99% 2.17% 3.78% 1.39% 1.75% 2.10%

D BasketballPass 2.30% 4.01% 2.52% 2.57% 4.95% 2.72% 2.01% 3.54% 2.22%

BQSquare −1.25% 3.28% 3.43% −1.94% 3.36% 3.25% −0.68% 3.22% 3.33%

BlowingBubbles 1.29% 2.14% 2.65% 1.23% 2.51% 2.90% 1.30% 2.02% 2.25%

RaceHorses 2.70% 2.25% 2.25% 2.87% 2.28% 2.09% 2.50% 1.63% 1.21%

E FourPeople −4.07% 2.08% 1.88% −4.51% 2.34% 1.93% −2.94% 1.94% 1.62%

Johnny −4.50% 2.49% 2.81% −4.67% 2.84% 3.14% −4.13% 2.13% 2.41%

KristenAndSara −1.69% 3.01% 2.53% −2.24% 3.48% 2.71% −0.77% 2.65% 2.24%

Class A1 −0.77% 2.17% 2.63% −0.87% 2.30% 2.93% −0.73% 2.00% 2.57%

Class A2 −4.28% 2.61% 2.92% −4.40% 2.68% 3.04% −4.17% 2.39% 2.76%

Class B −3.32% 2.95% 3.34% −3.49% 2.96% 3.49% −3.14% 2.98% 3.32%

Class C 0.07% 2.22% 2.44% 0.03% 2.63% 2.97% 0.21% 1.85% 1.92%

Class D 1.26% 2.92% 2.72% 1.18% 3.27% 2.74% 1.28% 2.60% 2.25%

Class E −3.42% 2.53% 2.40% −3.81% 2.89% 2.59% −2.62% 2.24% 2.09%

Overall −1.42% 2.62% 2.67% −1.54% 2.80% 2.85% −1.24% 2.42% 2.40%
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Table 4. BD-Rate Comparison of the ILIF: MODE 2 (1/16-luma-sample).

Random Access Main 10 (50 frames, 1/16-luma-sample)

Class Sequence All-QP High-QP Low-QP

{22, 27, 32, 37, 42} {27, 32, 37, 42} {22, 27, 32, 37}
Y U V Y U V Y U V

A1 Tango2 −1.21% 1.49% 2.60% −1.22% 1.38% 2.82% −1.40% 1.10% 2.17%

FoodMarket4 −2.18% 1.65% 2.02% −2.21% 2.01% 2.49% −2.21% 1.11% 1.62%

Campfire −0.48% 0.23% 0.51% −0.76% 0.42% 0.78% −0.28% 0.14% 0.36%

A2 CatRobot −5.49% 2.13% 1.95% −5.46% 2.36% 2.16% −5.31% 1.41% 1.42%

DaylightRoad2 −6.04% 2.19% 1.98% −6.71% 2.29% 2.25% −5.89% 1.58% 1.67%

ParkRunning3 −1.14% 0.40% 0.65% −1.34% 0.46% 0.81% −1.05% 0.34% 0.48%

B MarketPlace −1.33% 2.36% 2.45% −1.28% 2.36% 2.71% −1.52% 2.12% 1.76%

RitualDance −1.46% 0.75% 1.23% −1.66% 1.04% 1.24% −1.33% 0.44% 0.82%

Cactus −4.34% 2.54% 2.48% −4.86% 2.78% 2.58% −3.50% 2.15% 2.20%

BasketballDrive −1.74% 2.65% 2.37% −2.03% 2.62% 2.13% −1.43% 2.16% 2.03%

BQTerrace −10.76% 1.57% 1.68% −14.72% 1.56% 1.73% −8.52% 1.73% 1.68%

C BasketballDrill −4.59% 0.29% 0.20% −5.32% 0.26% −0.11% −4.00% 0.31% 0.19%

BQMall −4.04% 0.15% 0.92% −4.99% 0.06% 1.02% −2.99% 0.10% 0.60%

PartyScene −3.18% −0.14% 0.38% −4.48% −0.37% 0.26% −2.12% −0.20% 0.35%

RaceHorses −0.03% 0.43% 0.28% 0.05% 0.25% 0.66% −0.09% 0.33% −0.06%

D BasketballPass −0.44% 1.30% 0.97% −1.36% 1.12% 0.74% 0.23% 1.47% 1.29%

BQSquare −7.04% 0.16% 0.31% −8.20% 0.08% −0.02% −6.11% 0.17% 0.37%

BlowingBubbles −1.29% −0.14% −0.14% −1.77% −0.25% −0.03% −0.93% 0.24% −0.31%

RaceHorses 0.21% −1.02% −0.55% 0.18% −1.33% −0.90% 0.06% −0.41% −0.62%

E FourPeople −7.96% 0.71% 0.71% −8.95% 0.57% 0.55% −6.03% 0.83% 0.61%

Johnny −9.22% 0.47% 1.09% −9.99% 0.51% 0.79% −8.01% 0.31% 1.21%

KristenAndSara −7.28% 1.01% 0.78% −8.45% 1.01% 0.69% −5.32% 0.97% 0.78%

Class A1 −1.29% 1.12% 1.71% −1.40% 1.27% 2.03% −1.29% 0.78% 1.38%

Class A2 −4.22% 1.57% 1.53% −4.50% 1.70% 1.74% −4.08% 1.11% 1.19%

Class B −3.92% 1.97% 2.04% −4.91% 2.07% 2.08% −3.26% 1.72% 1.70%

Class C −2.96% 0.18% 0.45% −3.68% 0.05% 0.46% −2.30% 0.14% 0.27%

Class D −2.14% 0.07% 0.15% −2.79% −0.10% −0.05% −1.69% 0.37% 0.18%

Class E −8.15% 0.73% 0.86% −9.13% 0.70% 0.68% −6.45% 0.70% 0.87%

Overall −3.92% 0.97% 1.22% −4.01% 0.90% 1.28% −3.13% 0.88% 0.96%

5 Conclusion

The ultimate goal of this dissertation is to propose a deep learning-based SR
model to improve the efficiency of inter-coding within video coding standards and
apply it simultaneously for integer pixel enhancement and sub-pixel generation.

The proposed ILIF was an SR model with a fully convolutional neural net-
work structure containing 16 Residual Blocks and 4 Pixel Shuffling Blocks. In
addition, this model divided the network into a filtering part and an SR part to
achieve the aforementioned dual objectives. The output of the filtering part and
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the output of the SR part were combined into one output but, unlike common
SR models the Pixel Embedding techniques were utilized to maintain correla-
tion. Pixel Embedding was a method of embedding the integer pixel output of
the filtering part directly into the sub-pixel output of the SR part. This induced
the sub-pixels to correlate to the integer pixels.

ILIF totally replaced DCTIF in the inter prediction technology of
VVC/H.266 and was used as a high-performance interpolation filter. Depending
on the utilization of integer and sub-pixel samples generated from ILIF, it was
categorized 2 integration methods with VVC/H.266 as named MODE 1 and 2.

The experimental results showed improvement in performance was observed
when ILIF was applied up to 1/16-luma-sample resolution. The results showed
the gains of −1.42% for All-QP, −1.54% for High-QP, and −1.24% for Low-QP
in MODE 1 which applies ILIF only for sub-pixel generation However, significant
BD-rate gains were observed as −3.92% for All-QP, −4.01% for High-QP, and
−3.13% for Low-QP in MODE 2 which integrates both integer pixel filtering and
sub-pixel generation.

The comprehensive experimental results demonstrated that incorporating
both integer pixels and sub-pixels in the learning model could enhance the per-
formance of inter prediction techniques.
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Abstract. Scene Text Image Super-Resolution (STISR) plays a crucial role in
enhancing text readability within natural scenes, impacting OCR systems, visual
question answering, and image retrieval. Existing STISRmethods often fall short,
either neglecting textual information entirely or utilizing it ineffectively. We
attempt to bridge this gap with a novel two-fold approach. Firstly, we use CLIP
(Contrastive Language-Image Pre-Training), a powerful model that can map both
images and text into a shared latent space, enabling it to assess image-text align-
ment. We harness CLIP’s ability to understand the semantic relationship between
images and text. By incorporating CLIP-generated image representations that
capture these inherent textual features, we effectively guide the super-resolution
process, leading to more accurate reconstructions. Secondly, we propose a novel
TrOCR (Transformer-based OCR) loss function to supervise the super-resolution
process from a text-centric perspective. Our loss function enforces consistency
between the super-resolved output and the high-resolution ground truth image in
terms of their text content. Experiments conducted on the benchmark TextZoom
dataset demonstrate that our approach not only improves visual quality but also
boosts text recognition accuracy.

Keywords: Scene Text Image Super-Resolution · CLIP Embeddings ·
StyleGAN2 · TrOCR Loss · Deep Learning

1 Introduction

Digital images are a cornerstone of modern information transmission, yet limitations
in image acquisition systems can lead to images with insufficient detail or resolution.
Super-Resolution (SR) techniques address this by reconstructing high-resolution (HR)
images from low-resolution (LR) inputs.

Early SR methods relied on interpolation techniques, but these often resulted in
artifacts such as blurring and aliasing due to their inherent inability to introduce new
information corresponding to the finer details that appear at high resolution. More recent
advancements incorporate learning-based approaches, utilizing large datasets of paired
LR and HR images to train deep neural networks. These methods, such as SRCNN [6],
VDSR [13], and SRGAN [15], have shown significant improvements by intelligently
filling in plausible details and maintaining the natural characteristics of images.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15332, pp. 17–32, 2025.
https://doi.org/10.1007/978-3-031-78125-4_2
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However, while significant progress has been made in enhancing natural images,
applying SR to scene text images presents unique challenges. Scene Text Image Super-
Resolution (STISR) focuses on improving the resolution and legibility of text within
complex backgrounds, varying illuminations, and diverse fonts and styles. Early meth-
ods directly used generic SR approaches and ignored these text characteristics in
scene text images. Then STISR methods like TSRN (Text Super Resolution Network)
[28] and TPGSR (Text Prior Guided Super-Resolution) [23] started incorporating text-
specific features and loss functions, but they still struggle to extract and harness the full
potential of the textual features.

Our work aims to bridge this gap by proposing a novel STISR approach that
addresses the unique challenges of scene text images. Our key contributions are as fol-
lows:

1. We explore the use of CLIP for STISR, highlighting its strengths in text feature
extraction through fine-tuning with literal text pairings.

2. We introduce the TrOCR loss function, designed to improve both visual quality and
text recognition accuracy. The effectiveness of TrOCR is demonstrated by its ability
to elevate these metrics when applied to existing STISR methods.

3. We propose a comprehensive new method by modifying StyleGAN2, integrating
CLIP image embeddings, and introducing our novel TrOCR loss, enhancing scene
text image resolution and readability.

2 Related Work

2.1 Single Image Super Resolution (SISR)

SISR techniques aim to reconstruct HR images from LR inputs. Early methods like
SRCNN [6] introduced the potential of deep learning with a three-layer CNN. VDSR
[13] expanded on this with deeper networks, while SRGAN [15] utilized generative
adversarial networks (GANs) and perceptual loss for more realistic images. Subsequent
models, such as EDSR [18], RDN [31], LapSRN [14], and RCAN [30], optimized net-
work design and training for better performance and efficiency. The advent of trans-
formers further advanced SISR with models like IPT [3] and SwinIR [17], showcasing
state-of-the-art performance. Other approaches like AND [21] and FuncNet [20] have
further improved SISR by addressing degradation robustness and parametric restora-
tion, respectively.

2.2 Scene Text Image Super-Resolution (STISR)

STISR enhances text resolution in natural scenes, addressing challenges like blurred
characters and distorted shapes. Early research, exemplified by TSRN [28], highlighted
limitations in generic SISR for text data. TSRN employs sequential residual blocks
and a boundary-aware loss function to enhance character flow and sharpness. TPGSR
[23] integrates text recognition models to generate “character probability sequences”,
improving reconstruction accuracy.
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Adversarial learning methods like TSRGAN [7] maintain text spatial structure
through the Sinkhorn distance and enhance visual realism with triplet attention. STT
[4] uses Transformers for accurate character reconstruction despite distortions. Text
Gestalt [5] prioritizes stroke clarity with a Stroke-Focused Module (SFM), while TATT
[22] employs global attention mechanisms for spatial coherence. C3-STISR [32] inte-
grates visual, textual, and linguistic features for enhanced reconstructions, and DPMN
[34] refines text and graphic recognition priors to modulate super-resolution for
improved visual and textual clarity. Additionally, text-conditional diffusion models [24]
have been proposed, utilizing their powerful text-to-image synthesis capabilities to sig-
nificantly surpass existing STISR methods, particularly in producing superior quality
super resolution text images.

2.3 Scene Text Recognition (STR)

Scene Text Recognition (STR) deals with deciphering text in natural images, facing
challenges like variable fonts, orientations, and occlusions. Unlike Optical Character
Recognition (OCR) designed for clean documents, STR requires robust methods to
handle diverse text appearances. Standard recognizers such as CRNN [26], ASTER
[27], and MORAN [19] are commonly used to evaluate STISR methods, with OCR
accuracy being a key metric for assessing super-resolved images.

Current super-resolution methods often rely on pixel-domain losses (e.g., Mean
Absolute Error or Root Mean Squared Error, pixel-wise), which may not correlate well
with perceptual quality or semantic fidelity, especially for text. To address this, some
approaches incorporate perceptual losses like VGG loss [10], focusing on visual aes-
thetics. Our work proposes a novel loss function inspired by TrOCR [16], capturing
both visual and semantic information, aiming to improve downstream text recognition
tasks.

3 Methodology

3.1 Preliminaries

Contrastive Language-Image Pre-Training (CLIP): CLIP [25] bridges the semantic
gap between low-level image features and high-level concepts through pre-training on a
massive dataset of image-text pairs. It employs separate image and text encoders to gen-
erate aligned embeddings, maximizing cosine similarity between matching pairs. This
capability is crucial for STISR, where reconstructing semantically meaningful text from
low-resolution images is essential. CLIP’s proficiency in understanding textual content,
even in challenging scenarios like noise and occlusions [33], strengthens its potential
application in STISR.

StyleGAN: StyleGAN [11,12] is a generative adversarial network known for high-
quality image generation. It introduces a style-based generator that maps latent codes
to an intermediate latent space (W ), which controls the generator via adaptive instance
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normalization (AdaIN) [8]. This separation allows fine-grained control over image fea-
tures, enabling detailed texture modeling. StyleGAN2 [12] further refines this approach
for superior image synthesis. StyleGAN’s ability to capture intricate textures makes
it suitable for generating high-resolution text images, addressing the diverse textures
found in natural text settings. By combining CLIP’s semantic understanding with Style-
GAN’s texture synthesis, we propose a novel STISR approach that overcomes current
limitations.

TextZoom: Our work utilizes the TextZoom dataset [28], a comprehensive collection
of real-world text images specifically designed for STISR. The dataset is constructed
from SR-RAW [29] and RealSR [1], with images captured at varying focal lengths,
leading to inherent misalignment and ambiguity between LR and HR pairs. TextZoom
comprises 21,740 LR-HR image pairs, with 17,367 pairs for training and 4,373 for test-
ing, divided into three subsets: Easy (1,619 samples) with minimal misalignment and
ambiguity, Medium (1,411 samples) with moderate challenges, and Hard (1,343 sam-
ples) with significant misalignment and ambiguity. These variations make TextZoom
an ideal and challenging test-bed for evaluating STISR algorithms. In our analysis, we
utilize all subsets of the TextZoom dataset to ensure a comprehensive evaluation.

3.2 Architecture and Rationale

Our proposed architecture for STISR comprises three key modules, each playing a cru-
cial role in the super-resolution process (Fig. 1). The first module focuses on textual
understanding, the second on guided image generation, and the third on super-resolution
reconstruction.

Fine-Tuning CLIP for Textual Understanding: A pre-trained CLIP model is fine-
tuned on image-text pairs in the TextZoom dataset. This training process incorporates
two distinct types of pairs: (1) HR images paired with their corresponding text labels,
and (2) LR versions of the same images with the same text labels. This fine-tuning
ensures that CLIP learns to associate both image resolutions with the same textual
content. In essence, CLIP becomes adept at producing similar embeddings, numeri-
cal representations capturing essential information, for both LR and HR versions of an
image as long as they contain the same text. The image encoder of this fine-tuned CLIP
model serves as our “textual understanding” component. This fine-tuned CLIP is now
frozen for further downstream uses.

Adapting StyleGAN2 for Guided Image Generation: Instead of using a randomly
sampled latent code as input, we use the text-aware embeddings from the fine-tuned
CLIP model to guide StyleGAN2’s generator. This modification allows us to incor-
porate crucial textual information into the image generation process. Furthermore, we
incorporate the LR input image at various scales to provide localized visual cues, com-
plementing CLIP’s global semantic guidance. This combined approach leads to a more
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faithful reconstruction during the super-resolution process. We further modify Style-
GAN2 to output a set of feature maps enriched with both textual and visual information,
providing a more comprehensive representation for the subsequent SR branch.

Integrating with SR Branch: Inspired by TPGSR, we use the feature maps generated
by the modified StyleGAN2 as textual priors for the SR branch. These priors effectively
integrate the semantic text information from CLIP and the visual details extracted from
the LR image. The SR branch, based on TPGSR’s SRModule, utilizes these informative
priors alongside the LR image to produce the final super-resolution text image. This SR
Module comprises TP-Guided SR blocks, which build upon established SR and STISR
methods [15,18,28,31]. However, unlike TPGSR which relies on features from its TP
transformer, our architecture directly feeds the richer feature maps produced by our
modified StyleGAN2. These features are concatenated along the channel dimension and
then projected back to image features, guiding the SR Module to generate a textually
accurate HR output.

This combined approach allows our architecture to harness the strengths of CLIP for
textual understanding, StyleGAN2 for guided image generation with textual influence,
and established SR techniques for reconstructing high-quality HR images.

Fig. 1. Overall Architecture: The fine-tuned CLIP model provides text-aware image embeddings,
guiding the modified StyleGAN2. The resulting feature maps are infused into SR branch.
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3.3 Training Loss

To train our model effectively, we use a combination of pixel-level and text recognition
losses. The pixel-level loss ensures the visual quality of the generated HR image (ÎH )
compared to the ground truth HR image (IH ). As shown in Eq. 1 the pixel-level loss
combines the MSE loss and the Gradient Prior Loss, which encourages sharp edges
around characters and smooth backgrounds by comparing gradients in the generated
and ground truth images.

Lpix = α||IH − ÎH ||22 + β||∇IH − ∇ÎH ||1 (1)

We also introduce a novel text recognition loss in Eq. 2 by utilizing an already exist-
ing pre-trained text recognition model, TrOCR [16], to guide the super-resolution pro-
cess. TrOCR consists of an encoder (ET ) and a decoder (DT ). The encoder converts an
image into a compact representation that captures essential information about the text,
while the decoder predicts the actual characters in the image, outputting logits which
are nothing but numerical scores for each possible character.

Let eH and êH be the encodings of the real and generated HR images, respectively,
i.e., eH = ET (IH) and êH = ET (ÎH). Let dH and d̂H be the corresponding logits,
i.e., dH = DT (eH) and d̂H = DT (êH).

The text recognition loss in Eq. 2 encourages the generated HR image to have simi-
lar encodings and logits to the real HR image.

LTrOCR = λ1||eH − êH ||1 + λ2||dH − d̂H ||1 + λ3KL(dH , d̂H) (2)

In Eq. 2 the first two terms minimize the difference between the encodings and
logits of the real and generated HR images. The third term uses the Kullback-Leibler
(KL) divergence to ensure the predicted character probabilities (derived from the logits)
of the real and generated HR images are similar.

The final training loss given in Eq. 3 is a combination of the pixel-level and text
recognition losses that guides our model using the strengths of TrOCR.

L = γLpix + δLTrOCR (3)

3.4 Evaluation Metrics

Standard image quality metrics like Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity Index (SSIM) are commonly used to gauge the fidelity of reconstructed
images. However, these metrics do not fully capture the effectiveness of STISR for
improving text recognition.

To address this, we follow a two-step evaluation process. First, we apply different
STISR methods to LR text images to generate their SR counterparts. Next, we evaluate
the recognition accuracy of the generated SR images using established text recognition
models like ASTER, CRNN, and MORAN. By evaluating recognition accuracy, we
directly quantify the impact of STISR on downstream text understanding tasks. This
ensures that STISR models are evaluated not just for visual quality but also for their
ability to enable accurate text recognition in real-world scenarios.
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4 Experiments and Results

4.1 Experiment Settings

Environment: We trained our models on a Google Cloud Platform instance with 8
NVIDIA V100 GPUs (16GB VRAM each), 8 CPU cores (16 virtual CPUs), and
104GB of memory. The software environment consisted of Ubuntu 20.04.6 LTS, Python
3.10.14, and PyTorch 2.3.1. We employed PyTorch’s DistributedDataParallel (DDP)
module, achieving faster training than the DataParallel module used in prior works.

Training Procedure: We adopted a three-stage training process to optimize model
performance and stability:

1. Initial Training (500 epochs): We train the model solely on image super-resolution,
excluding the TrOCR loss. This stage utilizes a larger batch size of 128 for faster
training.

2. Batch Size Reduction (30 epochs): Before introducing the TrOCR loss, we reduce
the batch size to 8.

3. Fine-tuning with TrOCR Loss (100 epochs): We incorporate our novel TrOCR loss
and continue training with the reduced batch size. This stage refines the model to
produce sharper and more textually accurate results.

Hyper-parameters: Our model uses the Adam optimizer, a widely used optimizer
for deep learning models, with standard parameters β1 = 0.9 and β2 = 0.99. The
learning rate, controlling the optimization step size, starts at 0.001 and is reduced to
0.0001 during fine-tuning with the TrOCR loss. This schedule is a common practice for
initial coarse learning followed by task-specific refinement.

The loss function weights, which balance the influence of different loss components,
were empirically determined. We set α to 1 and β to 0.0001 to balance the pixel-level
MSE and gradient losses. For the TrOCR loss, we use equal weights (λ1 = λ2 = 1) for
the encoding and logits terms and a higher weight (λ3 = 100) for the KL divergence to
emphasize similarity in predicted character probabilities. Finally, we weigh the overall
pixel loss (γ) at 100 and the TrOCR loss (δ) at 5.

4.2 Fine-Tuning CLIP

We experimented with various CLIP models and fine-tuning strategies, focusing on
over 30 models from OpenCLIP [9], an open-source implementation offering access to
diverse pre-trained models trained on various datasets. These models encompass a range
of capabilities and computational costs.

Fine-Tuning with Literal Text: We fine-tuned CLIP using paired examples of images
and their corresponding literal text descriptions. To visualize the impact, we employed
Relevance Maps [2], a state-of-the-art method for explaining CLIP models. These maps
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Fig. 2. Relevance Maps and similarity scores for LR and HR images before fine-tuning CLIP on
literal text pairings.

highlight the parts of an image that are most influential in matching a given text descrip-
tion.

Figures 2 and 3 showcase these Relevance Maps alongside similarity scores for both
LR and HR images before and after fine-tuning, respectively. The significant increase in
similarity scores after fine-tuning demonstrates improved alignment between image and
text embeddings, particularly for LR images, which approach the scores of HR images.

Fig. 3. Relevance Maps and similarity scores for LR and HR images after fine-tuning CLIP on
literal text pairings.

A deeper analysis of the Relevance Maps reveals even more interesting details.
Before fine-tuning, the attention patterns for LR and HR images differ considerably.
The scattered attention on LR images suggests the model’s struggle to focus on rele-
vant textual features at lower resolutions. However, after fine-tuning, both LR and HR
images exhibit focused attention on the same textual regions. This alignment signi-
fies CLIP’s ability to consistently capture semantic textual features regardless of image
resolution. This successful fine-tuning equips CLIP to extract meaningful textual infor-
mation even from blurry or low-quality images.



Scene Text Image Super-Resolution with CLIP Prior Guidance 25

Fig. 4. Fine-tuning CLIP with Blur-Sharp Text Pairings

Fine-Tuning with Blur-Sharp Text Pairings: We further explored fine-tuning with
a different approach, aiming to learn the relationship between blurry and sharp text
representations directly. We used pairings of (LR image, blurry text) and (HR image,
clear text) instead of literal text descriptions to fine-tune the model. Figure 4 illustrates
the substantial improvements achieved in similarity scores after fine-tuning. We further
investigated using this fine-tuned CLIP directly as a loss function during training. This
involved calculating the similarity scores between image embeddings and text prompts
“blurry” and “clear” for both SR and HR images, and backpropagating the difference
as a loss. However, this approach did not outperform our proposed TrOCR loss.

4.3 Visual Comparisons

We present visual comparisons of our method’s super-resolution outputs against exist-
ing techniques. Figure 5 compares the LR image, the SR outputs from the original
TSRN model [28] and our TrOCR-trained TSRN. This comparison highlights the
improvements achieved by incorporating our TrOCR loss into TSRN (trained with a
batch size of 8 throughout).

Similarly, Fig. 6 showcases the LR image, outputs from TPGSR (Stage 1: without
TrOCR loss), TrOCR-TPGSR (Stages 2 & 3: with our TrOCR loss), and the HR ground
truth. This visualization emphasizes the benefits of incorporating our TrOCR loss within
the TPGSR architecture. From the examples in the figure, we can observe several key
improvements with our TrOCR loss. Firstly, the font style and edge clarity are signifi-
cantly closer to the HR ground truth with TrOCR-TPGSR than with plain TPGSR, as
illustrated by the “(Camille” and “11:00 am - 11:00” examples. Secondly, the text recon-
struction quality is notably better in our case, evident from the “R” in “CALIFORNIA”
example. Additionally, our approach performs better even under distortions and poor
lighting conditions, as demonstrated by the “Japanese” and “SIEMENS” examples.
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Fig. 5. Visual Comparison: LR input, SR output from the original TSRN [28] and SR output from
TSRN trained with our TrOCR loss.

Fig. 6.Visual Comparison: LR input, TPGSR output after Stage 1 (TPGSR only), TrOCR-TPGSR
output after Stage 3 (with TrOCR loss), and HR ground truth.

Figure 7 presents a comprehensive qualitative assessment of our method’s perfor-
mance compared to existing state-of-the-art approaches. The figure showcases the LR
image alongside outputs from TrOCR-TSRN, TPGSR, TrOCR-TPGSR, our proposed
method, and the HR ground truth. Notably, the visualizations reveal interesting insights
into the strengths of each method. We can see that TrOCR-TPGSR excels at capturing
specific font styles, as evidenced by its preservation of the blunt bend at the apex of
“M” and “N” in the “SIEMENS” example, including the thicker strokes in these char-
acters at appropriate positions. While TPGSR reconstructs the “c” and “o” well in the
word “copy,” our method demonstrates an advantage in reconstructing the more chal-
lenging “p” character. Additionally, TrOCR-TPGSR maintains a better font style for
the letter “y” in the same word. Interestingly, when looking at the overall visual qual-
ity, our super-resolved version of words like “Diagnostic” and “Solutions” surpasses
the other methods, which exhibit inconsistencies in character reconstruction. In fact,
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our method’s output for “Solutions” appears visually superior even compared to the HR
ground truth. These observations highlight the effectiveness of our proposed approach
in achieving high-quality STISR.

Fig. 7. Visual Comparison: LR input, outputs from TROCR-TSRN, TPGSR, TROCR-TPGSR,
our method, and the HR ground truth.

4.4 Quantitative Comparision

Our method’s quantitative performance is evaluated against some of the state-of-the-art
STISR approaches on the TextZoom dataset. Tables 1, 2, and 3 report the recognition
accuracies achieved by different methods using CRNN, ASTER, and MORAN as text
recognizers, respectively. These tables present results for the easy, medium, and hard
subsets of the TextZoom test set, along with the average accuracy across all subsets.

The results reveal interesting insights into the strengths of different approaches.
Analyzing the CRNN recognizer’s results, we observe that while plain TPGSR per-
forms slightly better on the easy subset, our method outperforms it in the medium,
hard, and overall average categories. This improvement, however, is modest at around
0.8%. Notably, the clear winner in CRNN recognizer’s results is TPGSR trained with
our proposed TrOCR loss, achieving an average accuracy of 50.33% and surpassing all
other methods across all subsets. This suggests that, disregarding factors like font style
and reconstruction details, TPGSR with TrOCR loss achieves the most accurate char-
acter reconstruction as recognized by CRNN. Additionally, TSRN also demonstrates
improvement when incorporating our TrOCR loss.
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Table 1. Recognition Accuracy (%) with CRNN

Method CRNN

Easy MediumHard Average

BICUBIC 36.4% 21.1% 21.1% 26.8%

SRCNN 41.1% 22.3% 22.0% 29.2%

SRGAN 45.2% 32.6% 25.5% 35.1%

TSRN 52.5% 38.2% 31.4% 41.4%

TSRN (with our TrOCR loss) * 53.61% 41.32% 32.02% 43.0%

TPGSR * 56.27% 43.44% 32.02% 44.68%

TPGSR (with our TrOCR loss) * 61.09% 51.10% 36.56% 50.33%

Our Method * 55.71% 44.44% 34.25% 45.48%

HR 76.4% 75.1% 64.6% 72.4%

The results with the ASTER recognizer showcase a contrasting trend. Here, TSRN
with our TrOCR loss exhibits a slight decrease in accuracy compared to plain TSRN.
This could be attributed to ASTER’s superior recognition capabilities, potentially
allowing it to better recognize characters in the original TSRN outputs. This aligns with
the observation that the performance gain for TPGSR with and without TrOCR loss is
around 4% for ASTER, while it is around 6% for CRNN. Nevertheless, our method still
surpasses plain TPGSR by 1.2% in ASTER recognition accuracy.

Table 2. Recognition Accuracy (%) with ASTER

Method ASTER

Easy MediumHard Average

BICUBIC 67.4% 42.4% 31.2% 48.2%

SRCNN 70.6% 44.0% 31.5% 50.0%

SRGAN 69.4% 50.5% 35.7% 53.0%

TSRN 75.1% 56.3% 40.1% 58.3%

TSRN (with our TrOCR loss) * 73.13% 54.50% 39.54% 56.80%

TPGSR * 73.75% 57.90% 38.94% 57.95%

TPGSR (with our TrOCR loss) * 77.08% 61.45% 42.96% 61.56%

Our Method * 73.44% 58.68% 42.37% 59.14%

HR 94.2% 87.7% 76.2% 86.6%

Similar behavior is observed with the MORAN recognizer, suggesting that the
impact of the TrOCR loss on TSRN method might vary depending on the specific
text recognizer used. Overall, these quantitative results highlight the effectiveness of
our proposed method in improving STISR, with TPGSR incorporating our TrOCR loss
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demonstrating the most significant gains in recognition accuracy irrespective of the rec-
ognizer.

Table 3. Recognition Accuracy (%) with MORAN

Method MORAN

Easy MediumHard Average

BICUBIC 60.6% 37.9% 30.8% 44.1%

SRCNN 63.9% 40.0% 29.4% 45.6%

SRGAN 66.0% 47.1% 33.4% 49.9%

TSRN 70.1% 55.3% 37.9% 55.4%

TSRN (with our TrOCR loss) * 67.33% 49.75% 37.01% 52.35%

TPGSR * 68.44% 52.59% 37.08% 53.69%

TPGSR (with our TrOCR loss) * 71.28% 58.54% 40.36% 57.67%

Our Method * 68.19% 53.93% 38.64% 54.51%

HR 91.2% 85.3% 74.2% 84.1%

Table 4 compares PSNR and SSIM scores. Our method excels in PSNR but has a
lower SSIM over TPGSR. Whereas TPGSR with TrOCR loss improves on both met-
rics. Similar to recognition results with ASTER/MORAN, TSRN with TrOCR loss sees
a decrease in PSNR/SSIM. This suggests the TrOCR loss’s impact on these metrics
depends on the base STISR method. Overall, TPGSR with TrOCR loss achieves the
highest PSNR, solidifying its pixel-level reconstruction performance, while its SSIM
remains competitive with TSRN.

Table 4. Quantitative Evaluation

Method PSNRSSIM (×10−2)

BICUBIC 20.35 69.61

SRCNN 20.78 72.28

SRGAN 21.03 73.31

TSRN 21.42 76.91

TSRN (with our TrOCR loss) * 21.27 76.02

TPGSR * 21.28 76.20

TPGSR (with our TrOCR loss) * 21.68 76.62

Our Method * 21.37 75.71
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5 Conclusion and Future Work

Extracting clear and readable text from images is crucial for various applications, and
STISR plays a vital role in achieving this goal. However, conventional STISR methods
often fall short when dealing with the intricacies of text information within images. This
limitation can manifest as blurry or poorly structured text, hindering accurate recog-
nition. In this work, we address this by proposing a novel deep learning framework
specifically designed for STISR. Our approach leverages CLIP embeddings, Style-
GAN2 modifications, and a newly introduced TrOCR loss function. CLIP, with its
text feature extraction strengths validated by relevance maps, strengthens our model.
The effectiveness of the TrOCR loss function is further demonstrated by its ability
to enhance both visual quality and recognition accuracy, even when applied to estab-
lished STISR techniques. Notably, while our CLIP-StyleGAN-TrOCR model surpasses
the baseline TPGSR, incorporating TrOCR loss into TPGSR yields even better results,
highlighting the potential for further refinement.

While our approach demonstrates clear advancements, limitations like increased
computational complexity from CLIP embeddings and potential performance drops for
heavily degraded text require further exploration. Additionally, the significant perfor-
mance gains from the TrOCR loss come at the cost of tenfold training time. Future
work can address these limitations and explore promising avenues such as text specific
perceptual losses, domain adaptation techniques for specific text domains, investigat-
ing alternative vision-language models beyond CLIP, and exploring alternative training
prompts for CLIP itself.
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Abstract. As a highly recognizable biometric feature, human face has
become the first choice for identity verification. With the application of
face in various important fields of society, the serious threat caused by
face image information leakage has become prominent, and its privacy
and security protection is becoming more and more important. Apply-
ing steganography to face images can not only effectively protect per-
sonal privacy, but also realize the secure transmission and sharing of
sensitive information. Therefore, we propose a face privacy-preserving
coverless steganography framework based on diffusion models. Firstly,
the facial features are extracted and the feature masks are generated.
Then, the DDIM sampling is used to generate the coverless stego image
by combining the conditional diffusion model with the text secret key
by using the generation ability of diffusion model. DDIM Inversion is
used to recover the secret image with high quality. We conduct extensive
experiments on CelebA-HQ and FFHQ public face datasets. Compared
with the existing methods, the stego images generated and recovered
by our method have higher quality and can better resist steganalysis.
Our method also achieves significant advantages in terms of robust-
ness and security, maintaining sharper recovery effects under Gaussian
noise, JPEG compression, and real-world transmission. In addition, we
can combine custom masks to achieve controllable local steganography,
which has stronger controllability and flexibility. The proposed method
can achieve a good unity of security, controllability and robustness, and
is superior to the traditional steganography methods without any addi-
tional training.

Keywords: Coverless Steganography · Diffusion Model · DDIM ·
Privacy Protection

1 Introduction

Steganography, as a widely researched topic, aims to hide secret information
within a host medium [1]. Image steganography specifically aims to covertly
embed information such as images, audio, and text within a host image, meaning
the host medium in image steganography is an image. The goal is to hide secret
messages within the image. In typical scenarios, the sender hides the secret
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message in a cover image and transmits it to the receiver, who recovers the
message. Even if the image is intercepted, no one besides the sender and receiver
can detect the presence of the message [2]. Nowadays, image steganography has
been widely applied in fields such as copyright protection, digital watermarking,
secure information transmission, and digital forensics.

Traditional image steganography techniques often involve transforming hid-
den messages within the spatial or adaptive domains. Some widely used data hid-
ing algorithms include the Least Significant Bit (LSB) method [3] and histogram-
based approaches [4]. Typically, spatial domain techniques offer higher embed-
ding capacity. With the advancement of deep neural networks, researchers have
started employing autoencoder networks or invertible neural networks (INNs)
[5] for data hiding, a technique known as deep steganography. The main goals
of image steganography are to ensure security, preserve reconstruction quality,
and improve robustness. Traditional methods typically use cover images to hide
secret messages, but they often unintentionally leave behind traces of the hid-
den information as artifacts or local details within the carrier image. This can
lead to information leakage, thereby compromising transmission security. Addi-
tionally, while these methods may achieve good reconstruction fidelity of the
recovered image, they are often trained in noise-free simulated environments,
rendering them vulnerable to noise, compression artifacts, and nonlinear trans-
formations in real-world scenarios. This significantly undermines their practical-
ity and robustness [6]. To address these challenges, recent years have seen the
development of coverless data hiding methods, where secret messages are hidden
without modifying the cover image. Current coverless steganography techniques
frequently utilize frameworks such as CycleGAN [7] and encoder-decoder mod-
els [8], leveraging the concept of cycle consistency. Despite this, the generated
container images often suffer from limited controllability, lack user-defined cus-
tomization, and predominantly focus on bit-level hiding, thereby overlooking the
more challenging task of embedding complete secret images.

Drawing inspiration from diffusion-based generative models, we aim to over-
come the limitations of existing approaches. Research on diffusion-based gener-
ative models [9] has gained significant traction, as these models add noise to a
dataset incrementally and then learn how to reverse the process, allowing for the
generation of high-quality data. This method enables the production of highly
accurate and detailed outputs, ranging from realistic images to coherent text
sequences. The core function of these models is to gradually degrade data quality
and then either restore it to its original form or transform it into a new creation.
Moreover, diffusion models offer several unique attributes, such as zero-shot
task performance [10], strong control over the generation process [11], natural
resilience to image noise [12], and capabilities for image-to-image translation [13].
Due to their progressive denoising process, diffusion models show promising
potential across various fields. The powerful control capabilities of conditional
diffusion models make the generation of steganographic images highly control-
lable, while their generative priors ensure the visual quality of the steganographic
outputs. Furthermore, diffusion models possess inherent robustness, allowing the
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main content of the hidden image to be retrieved even if the steganographic image
is degraded during transmission.

Therefore, in this paper, we propose a face privacy protection steganography
framework based on diffusion models, which aims to achieve secure, controllable
and robust face privacy protection steganography. Our framework is realized by
combining many properties of diffusion model, and a coverless steganography
framework is implemented by using DDIM inversion [14] technique. It ensures
that the hidden image has higher security and can play a more important role
in information security and privacy protection.

Our contributions are summarized as follows:

(1) We propose a face image coverless steganography technique based on diffusion
models, combining face feature masks and conditional diffusion models, and
utilizing DDIM for inversion. Our method achieves a steganography frame-
work specifically for face images without any additional complex training
processes.

(2) We introduce the Stable Diffusion inpainting model to coverless steganog-
raphy of face images, ensuring higher quality of generated steganographic
and recovered images. We also achieve controllable local steganography by
creating customized masks, enhancing its controllability and flexibility.

(3) Experimental results on the CelebA-HQ and FFHQ public datasets demon-
strate that our method significantly outperforms existing methods in both
network environments and real-world degradations, effectively resisting ste-
ganalysis while successfully achieving better reconstruction quality, higher
robustness, and security.

2 Related Work

2.1 Steganography

Cover-Based Methods: Traditional Image Steganography: Traditional image
steganography can be divided into two categories based on the domain where
the steganography process occurs: spatial domain and frequency domain. Spatial
Domain: The most popular methods include the Least Significant Bit (LSB) [3],
Pixel Value Differencing (PVD) [15], and Histogram Shifting (HS) [4]. Fre-
quency Domain: Frequently used methods include Discrete Cosine Transform
(DCT) [16] and Discrete Wavelet Transform (DWT) [17]. In recent years,
deep learning has been introduced into image steganography. HiDDeN [18],
SteganoGAN [19], and Baluja [20] have achieved a balance between capacity,
secrecy, and noise robustness, significantly improving the effective payload capac-
ity of steganography. HiNet [21] and PRIS [22] incorporated invertible neural
networks (INNs) [5] into image steganography, enabling both image hiding and
recovery within a single INN model.
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Coverless Methods: This emerging technology in information hiding embeds
secret information without altering the cover medium. Zhou et al. [23] proposed a
coverless data hiding scheme using partially repeated images. Mu and Zhou [24]
used secret image copies, each sharing a similar patch with the secret image. Liu
et al. [25] proposed a scheme based on DenseNet features and DWT sequence
mapping. Lu et al. [26] developed a method using unsupervised learning to con-
struct a complete basis set. Li et al. [27] proposed a method based on face fusion
recognition with CNNs for encryption and decryption. Yu et al. [28] introduced
a reversible image transformation technique using diffusion models, achieving
better performance.

2.2 Diffusion Models

Diffusion models are currently one of the most advanced generative models, ini-
tially proposed by Sohl-Dickstein et al. in 2015 [29]. Owing to their remarkable
generative capabilities, diffusion models have recently found widespread appli-
cation across various image-related domains, including image generation [30],
restoration [12], and translation [13]. To address the main drawback of extended
training and inference times for diffusion models, numerous studies have focused
on optimizing these models [11]. Recent studies have also proposed limiting
the change region by using masks [31], thus retaining the background while per-
forming meaningful image editing. “Text Inversion” [32] and “DreamBooth” [33]
techniques allow users to fine-tune diffusion models by providing a few example
images, enabling personalized image content generation.

3 Method

3.1 Relevant Definitions in Our Steganography

Before delving into the specifics of our method, we will first clearly define the
components involved in the image steganography task, as depicted in Fig. 1.
This task involves four types of images: the secret image (Xsecret), the secret
image mask (Xmask), the stego image (Xstego), and the recovered image (Xrev),
along with two key processes: the hiding process and the revealing process. To
precisely control this process, we use the FaceParsing model [34] to extract
the mask Xmask from the secret image. This mask together with the secret
image goes through the hiding process to generate the stego image Xstego. When
the stego image is transmitted over the Internet, the quality of the image may be
degraded, and a degraded stego image X ′

stego can be obtained. Despite this, our
revealing process can still recover the recovered image Xrev from X ′

stego using
X ′

mask, maintaining semantic consistency of the content.
In the following sections, we will provide a detailed explanation of how to

utilize the diffusion model and the FaceParsing model [34] to implement our
method. Specifically: In Sect. 3.2, we will analyze the principles of the Denoising
Diffusion Implicit Model (DDIM). In Sect. 3.3 we will describe in depth how to
implement our face coverless steganography framework.



A Coverless Steganography of Face Privacy Protection with Diffusion Models 37

Fig. 1. The definition and composition of steganography of face image.

3.2 DDIM for Image Reversible Transformation

The DDIM is a diffusion model that utilizes deterministic inference to generate
high-quality images. This model aims to improve the generation process of tradi-
tional diffusion models by reducing randomness, thereby enhancing the quality
and efficiency of the generated samples.

DDIM defines its diffusion model through two main phases: the forward
phase and the reverse sampling phase. In the forward phase, the model gradu-
ally adds noise to a clean image, simulating the process of the image becoming
progressively distorted. Specifically, the forward process in DDIM [14] can be
described by the following equations:

xt =
√

αtxt−1 +
√

1 − αtε, ε ∼ N (0, 1) (1)

where αt is a pre-defined noise level parameter, ε is the random noise sampled
from a standard Gaussian distribution, and xt is the image state at time step t.
The range of time step t is [1, T ].

In the reverse sampling phase, the model adopts the inverse process, gradually
restoring the clean image by estimating and removing the noise. This process not
only reduces random variations during generation but also improves the clarity
and detail representation of the image, thereby generating more realistic and
high-quality images. The reverse sampling process of DDIM can be described
by the following equation:

xs =
√

ᾱsfθ(xt, t) +
√

1 − ᾱs − σ2
sεθ(xt, t) + σsε, fθ(xt, t) =

xt − √
1 − ᾱtεθ(xt, t)√

ᾱt

(2)
where ε ∼ N (0, 1) represents Gaussian noise randomly sampled with σ2

s as the
noise variance, and fθ(., t) relies on a pre-trained noise estimator εθ(., t) with
ᾱs =

∏
i = 1tαi. DDIM uniquely allows for non-adjacent sampling steps, mean-

ing t and s can take any two steps where s < t, enhancing the flexibility and
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speed of the sampling process. Additionally, if set the noise variance σs to zero in
Eq. 2, the DDIM sampling process becomes deterministic, meaning the sampling
result is fully determined by the initial value xT , which acts as a latent encoding.
This deterministic process can also be described through the framework of an
ordinary differential equation (ODE), where an ODE solver [14] is employed to
resolve the corresponding ODE.

Fig. 2. We employ a conditional diffusion model for image translation across various
scenarios. In this instance, we utilize two distinct prompts to transform an image of a
woman into an image of an old man.

We choose to implement the diffusion model using deterministic DDIM,
which not only simplifies the model’s complexity but also enhances its pre-
dictability and controllability. Using the conditional diffusion model, text con-
dition and mask are used as inputs to precisely guide the generation of image
content. As illustrated in Fig. 2, our process involves transforming an image of a
woman into an image of an elderly man. In this process, we begin by applying
Eq. 1 to introduce noise into the woman’s image during the forward sampling
stage, resulting in an intermediate noise state. Next, for the backward sampling
phase detailed in Eq. 2, we input a specific text condition (prompt: “an old man
with a beard”) to remove the noise and produce the stego image. Both the text
condition (c) and mask (Xmask) are utilized as input conditions. The sampling
process that iteratively refines the image from the noisy state (xT ) back to the
clean state (x0) is executed using the pre-trained noise estimator εθ is as follows:

x0 = ODESolve(xT ,Xmask; εθ, c, T, 0) (3)

To achieve reversible image transformation, we employ the DDIM Inversion
method based on deterministic DDIM. As the name implies, this method trans-
forms the image into potential noise and then restores it to the original image.
The concept draws on the approximation of forward and backward differen-
tials used in solving ordinary differential equations. Intuitively, for deterministic
DDIM, it allows for flexibility in the steps s and t in Eq. 1, with Eq. 2 accom-
modating any two steps. When s < t, Eq. 2 performs the backward process,
while when s > t, Eq. 2 carries out the forward process. Given the similarity
in trajectories between the backward and forward processes, the input and out-
put images are nearly identical, and the intermediate noise xT as an effective
inverted latent variable. In our research, we apply the following formulation:

xT = ODESolve(x0,Xmask; εθ, c, 0, T ), x′
0 = ODESolve(xT ,X ′

mask; εθ, c, T, 0)
(4)
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DDIM Inversion describes the transformation where the original image x0 is
converted to a latent code xT , and subsequently, this latent code xT is reverted
back to the original image, with the output image being denoted as x′

0 and
approximately equal to x0. Using the DDIM Inversion method, we establish a
reversible relationship between the image and latent noise. By utilizing the image
translation framework constructed with deterministic DDIM, we can complete
the entire reversible image transformation through two DDIM Inversion cycles.
This technique not only serves as the core of our coverless image steganography
framework but also is key to ensuring the reversibility of the steganography
process. The reversibility of this method means that even in complex image
processing, the integrity and accuracy of the image content can be maintained.

3.3 Face Steganography Based on Diffusion Models

Our framework is built upon a conditional diffusion model, where the noise
estimator utilizes a mask and two different conditions as inputs. In our approach,
these conditions function as private and public keys, denoted as Kpri and Kpub

respectively. The detailed workflow is illustrated in Fig. 3. We will introduce our
coverless steganography framework in two segments: the hiding process and the
revealing process.

Fig. 3. We opt for a conditional diffusion model that accommodates conditional inputs
to steer the outcomes of generation. Furthermore, we employ deterministic DDIM as
our sampling approach and utilize two distinct conditions specified by the model (Kpri

and Kpub) to serve as the private and public keys, respectively.
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Hiding Process: In the hiding phase, we facilitate the transformation between
the secret image Xsecret and the steganographic image Xstego via the determinis-
tic DDIM’s forward and backward processes. To ensure variability in the images
pre- and post-transformation, we engage the pre-trained conditional diffusion
model with differing conditions for each process. These conditions also serve dual
roles as private and public keys (Kpri and Kpub). Specifically, we use a generated
mask Xmask from the original secret image to control the depiction of people
independently from the background and other elements, employing Kpri in the
forward process and Kpub in the reverse. The resulting steganographic image
Xstego is then sent across the Internet, accessible to all potential recipients. This
setup hinges on the effectiveness of the conditions: the private key outlines the
content of the secret image, while the public key influences the steganographic
image’s content. In this model, the public key is inferable from the stegano-
graphic image itself, thus, it need not be transmitted separately. Conversely, the
private key is crucial for accurate image recovery and must remain confidential.

Revealing Process: In the revealing phase, we assume the steganographic
image X ′

stego has been transmitted online and possibly altered. The recipi-
ent utilizes the same conditional diffusion process with the corresponding keys,
employing a reverse sequence to the hiding process, to restore the original secret
image. This involves regenerating a control mask from the steganographic image
X ′

stego, now called X ′
mask, using Kpri in the forward process. Unlike the hid-

ing phase, where Kpub is used forward and Kpri backward, the revealing phase
adjusts these roles. This method of coverless image steganography doesn’t require
training or fine-tuning the diffusion model specifically for steganography tasks;
rather, it leverages the inherent reversible image transformation capabilities
of DDIM Inversion. The forthcoming section will delve into this framework’s
specific applications and operational details, demonstrating its efficacy in safe-
guarding the privacy and security of image content in real-world scenarios.

4 Experimental Results

4.1 Implementation Details and Setup

Experimental Settings: In our experiments, we utilized the FaceParsing
model to generate facial masks and chose Stable Diffusion V2-Inpainting, pro-
vided by Huggingface, as our conditional diffusion model. We used deterministic
DDIM inversion to perform the inversion, with both forward and reverse pro-
cesses comprising 50 steps each. To facilitate reversible image transformation,
we adjusted the guidance scale to 1.0 and set the strength to 0.99.

Data Preparation: We used two facial image datasets, CelebA-HQ and FFHQ.
CelebA-HQ contains 30,000 high-resolution facial images, and FFHQ has 70,000
high-definition images at 1024 × 1024 resolution. From these, we curated 240
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images, named StegFace240. We used the BLIP [13] model to generate descrip-
tive textual information for the images as the private key, with the public key
manually modified. To validate our method, we compared it against several state-
of-the-art image steganography techniques, demonstrating its effectiveness. Our
method requires no training, and all experiments were conducted using a GeForce
RTX 3090 GPU card.

4.2 Comparison with SOTA Methods

In our experiments, we compared our method with various techniques on the
StegFace240 dataset. Considering that the application of diffusion models in
image steganography is relatively novel, we implemented several versions of the
Stable Diffusion model, including SDXL, SDXL-Inpt, and SD-Inpt. As shown in
Fig. 4, we compared the quality of steganographic and recovered images gener-
ated by different methods. It is evident that the steganographic images produced
by our method efficiently conceal the secret images without introducing notice-
able artifacts or unrealistic details, making anomalies virtually undetectable
to the human eye. Moreover, our steganographic images support seamless mod-
ifications of facial features such as gender, age, and beard, with high control-
lability. Regarding controllability (Fig. 5), our approach enables steganography
in targeted regions while leaving other areas unaffected. It ensures the accurate
preservation of the secret image’s semantic information using the private key,
thereby exhibiting outstanding fidelity.

Our method not only allows for highly accurate recovery of the secret image
but also minimizes the difference between the original and recovered images. We
adopt four different metrics to evaluate the quality of the secret image and the
recovered image, including PSNR, SSIM, LPIPS and FID as shown in Table 1.
Higher PSNR and SSIM scores indicate better quality of the recovered images,
while lower LPIPS and FID scores suggest that the generated images are closer
to real images in terms of visual perception and style, reducing the likelihood of
being detected as containing steganographic information. Additionally, we used
Face++ and Aliyun’s facial recognition models to verify the recovery effective-
ness (Table 1). The facial recognition rate between the recovered images and the
secret images achieved over 90% on both models, attaining the highest confi-
dence levels. The results show that our method significantly outperforms other
methods across all metrics.

4.3 Steganalysis

To evaluate the security of the steganographic images, we employed both tra-
ditional statistical methods and deep learning-based steganalysis techniques to
determine whether the images can withstand detection by existing steganalysis
tools. As shown in the left side of Fig. 6, we used the open-source steganalysis
tool StegExpose [35] to test the anti-steganalysis capability of our model. By
adjusting different detection thresholds, we generated ROC curves. The closer
the area under the ROC curve is to 0.5, the closer the detection accuracy is
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Fig. 4. Our method compares with other methods for steganography and image recov-
ery. It can be seen that the steganographic image generated by our method has high
visual quality, is not easy to be detected, and the recovered image has a high similarity
to the secret image.

to random guessing, indicating better resistance to steganalysis detection. The
results clearly show that our method exhibits low detection accuracy, suggesting
that the steganographic images generated by our model possess high security
and can effectively deceive the StegExpose tool.

In the right side of Fig. 6, we used the deep learning-based steganalysis tool
SRNet [36] and tested the steganographic images produced by various meth-
ods using the StegFace240 dataset. We retrained SRNet by gradually increas-
ing the number of steganographic images used for training. The data in the
figure indicates that compared to other methods, our proposed method shows
significantly lower detection accuracy, further demonstrating the strong anti-
steganalysis capability of our method. Table 2 presents the detection accuracy
of different image hiding methods using SRNet. Ideally, the closer the detec-
tion accuracy is to 50%, the better the performance of the image hiding algo-
rithm. Our method achieved a detection accuracy of 55.25%, indicating that the
steganographic images are almost impossible to accurately detect as containing
hidden information.

4.4 Robustness Analysis

To assess the robustness of our method, we performed a series of simulated degra-
dation experiments, including the addition of Gaussian noise and JPEG compres-
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Fig. 5. Our method, combined with custom face mask control, realizes controllable
local steganography and has good semantic consistency.

Table 1. Comparison results of our proposed method and other methods on the
StegFace240 dataset. The best results are highlighted in bold.

Methods
Secret/Reverse

PSNR↑ SSIM↑ LPIPS↓ FID↓ Face++↑ Aliyun↑
CRoSS 23.79 0.74 0.18 48.85 89.20 70.85

SDXL 24.56 0.75 0.31 71.71 86.02 63.14

SDXL-Inpt 19.82 0.65 0.33 117.94 68.37 32.48

SD-Inpt 26.38 0.78 0.11 30.62 93.86 81.48

Ours 28.76 0.82 0.08 21.82 96.21 90.36

sion. As illustrated in Table 3, our method exhibited remarkable adaptability to
different levels of degradation, with minimal performance decline. Notably, in
the presence of Gaussian noise and JPEG compression, our method achieved the
highest PSNR values. Even under severe conditions such as Gaussian noise with
σ = 30 and JPEG compression with QF = 20, the PSNR values remained above
20dB and 25dB respectively, whereas other methods exhibited a significant drop
in fidelity.

To further prove the robustness of our method, we tested real-world degrada-
tion scenarios. We conducted steganographic image transmission and reception
experiments via the WeChat network to simulate the effects of network trans-
mission. As illustrated in Fig. 7, under such complex degradation conditions, all
other methods either failed entirely or exhibited significant color distortions. In
contrast, our method not only successfully revealed the general content of the
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Fig. 6. The left is the ROC curves generated by different methods under the StegEx-
pose detector. The closer the area under the curve is to 0.5, the better the method is at
ideally evading the detector. The right is the results of steganalysis using SRNet. The
slower the curve grows and the closer the accuracy is to 50%, the higher the method’s
resistance to steganalysis.

Table 2. Detection accuracy of different methods on SRNet. The best results are
highlighted in bold.

Methods Accuracy (%)±std

HiNet 77.17±0.251

PRIS 74.33±0.219

CRoSSt 57.50±0.059

SD-Inpt 53.50±0.023

Ours 55.25±0.049

Fig. 7. In real-world scenarios, when subjected to visual downgrades under conditions
labeled “Shoot” and “WeChat,” our method effectively reconstructs the contents of a
secret image, whereas other methods display significant color distortion or fail entirely.
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Table 3. Comparison of PSNR (dB) results for our proposed method and other tech-
niques under various levels of degradation. The best results are highlighted in bold.

Methods
Gaussian Noise JPEG

σ = 10 σ = 20 σ = 30 QF = 20 QF = 40 QF = 80

HiNet 20.45 13.55 10.22 11.06 11.12 12.75

PRIS 23.83 18.29 14.90 12.86 13.02 15.66

CRoSS 20.78 19.10 17.49 20.73 21.36 22.96

SD-Inpt 24.04 21.40 19.65 24.16 25.09 25.79

Ours 25.96 23.99 22.48 25.49 26.87 28.15

secret image but also maintained good semantic consistency with the private key,
once again proving the significant superiority of our approach. Compared to the
latest methods, our proposed method also successfully maintained higher recon-
struction quality. These experimental results fully validate the efficiency and
robustness of our method under various experimental and real-world conditions.

5 Conclusion

We proposed a face privacy protection steganography framework based on dif-
fusion models. This framework combines mask extraction models, conditional
diffusion models, and deterministic DDIM techniques, which leverage the unique
advantages of diffusion models to achieve coverless steganography and is difficult
to detect with steganalysis tools. A large number of experiments show that com-
pared with the existing techniques, our method has obvious advantages in the
process of steganography and restoration. Moreover, the generated steganogra-
phy images are diverse. Our method achieves a good balance in terms of security,
controllability, and robustness.

In the future, image steganography based on diffusion models has tremendous
potential for development. Continued exploration of new methods to enhance the
steganographic capabilities of diffusion models, particularly in improving the
ability to hide multiple pieces of information and achieving pixel-level fidelity,
will have important application value. We look forward to future research
addressing these limitations and further optimizing and refining the technical
architecture in this field.
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Abstract. With the rapid development of generative technologies, AI-
Generated Images (AIGIs) have been widely applied in various aspects
of daily life. However, due to the immaturity of the technology, the qual-
ity of the generated images varies, so it is important to develop quality
assessment techniques for the generated images. Although some models
have been proposed to assess the quality of generated images, they are
inadequate when faced with the ever-increasing and diverse categories
of generated images. Consequently, the development of more advanced
and effective models for evaluating the quality of generated images is
urgently needed. Recent research has explored the significant potential
of the visual language model CLIP in image quality assessment, finding
that it performs well in evaluating the quality of natural images. How-
ever, its application to generated images has not been thoroughly investi-
gated. In this paper, we build on this idea and further explore the poten-
tial of CLIP in evaluating the quality of generated images. We design
CLIP-AGIQA, a CLIP-based regression model for quality assessment of
generated images, leveraging rich visual and textual knowledge encap-
sulated in CLIP. Particularly, we implement multi-category learnable
prompts to fully utilize the textual knowledge in CLIP for quality assess-
ment. Extensive experiments on several generated image quality assess-
ment benchmarks, including AGIQA-3K and AIGCIQA2023, demon-
strate that CLIP-AGIQA outperforms existing IQA models, achieving
excellent results in evaluating the quality of generated images.

Keywords: AI-Generated Images · CLIP · Perceptual Quality

1 Introduction

With the rapid development of generative technologies, Artificial Intelligence
Generated Images (AIGIs) have become increasingly ubiquitous in modern soci-
ety. From avatar generation on social media to visual effects production in movies
and television, and even content creation in virtual and augmented reality, gener-
ative technologies has become an integral part of our daily experiences. However,
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Fig. 1. Performance of CLIP-AGIQA. The star icons represent human ratings, and the
green scores below the dashed line represent the scores predicted by our model. (Color
figure online)

alongside these technological advancements, assessing the quality of generated
images has become an emerging issue. Due to the immaturity of the technol-
ogy, the quality of generated images is uneven, which can lead to unsatisfactory
user experiences in some applications [14]. Therefore, developing techniques to
effectively evaluate the quality of generated images is particularly important.

Quality assessment of generated images involves evaluating various dimen-
sions through subjective and objective methods, such as the perceptual quality
and the content accuracy with respect to input prompts. Recent efforts have
focused on creating comprehensive databases for subjective quality assessment
based on human perception and developing approaches to enhance evaluation
performance [12,14,29]. Despite these advancements, existing methods struggle
to keep pace with the increasing diversity of generated images. For instance,
in the field of text-to-image (T2I) generative models alone, there have been at
least 20 representative T2I AGI models up to 2023, as indicated by recent statis-
tics [2,34]. Therefore, more research is needed to meet the quality assessment
demands in this field.

Recent research has begun to explore CLIP’s [18] (Contrastive Language-
Image Pre-training) potential in image quality assessment, revealing its effective-
ness in evaluating natural images [24]. CLIP demonstrates strong performance
across various visual and multimodal tasks due to its extensive pre-training on
language-image data. However, since CLIP is pre-trained on natural images, it
may have problems to model the quality distribution of generated images effec-
tively, leaving a gap in this area. To address this, we propose CLIP-AGIQA, a
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CLIP-based regression model that leverages CLIP’s comprehensive visual and
textual knowledge to evaluate the quality of generated images. First, we design
various prompts representing different quality levels to input into CLIP’s text
encoder, mitigating semantic ambiguities. Second, by introducing a learnable
prompts strategy and utilizing multiple quality-related auxiliary prompts, we
make full use of CLIP’s textual knowledge. Last, our regression network then
maps CLIP features to quality scores, effectively adapting CLIP’s capabilities to
the task of generated image quality assessment, thereby enhancing the model’s
performance. The specific performance of our CLIP-AGIQA can be seen in Fig. 1.

In summary, our primary contributions include:

– We propose CLIP-AGIQA, adapting the CLIP model to the task of evaluating
generated image quality;

– We introduce a learnable prompts strategy and design multiple prompts of
varying quality levels to fully utilize CLIP’s textual knowledge for assisting
in evaluating generated image quality;

– We conduct experiments on several benchmarks for generated image quality
assessment such as AGIQA-3K and AIGCIQA2023, achieving state-of-the-art
performance.

2 Related Work

2.1 Image Quality Assessment

Traditional image quality assessment aims to evaluate the quality of natural
images, including aspects like noise, blur, compression artifacts, etc. [3]. It is
categorized into three types: full-reference, reduced-reference, and no-reference.
Full-reference methods compare the original and test images, commonly using
metrics like PSNR and SSIM [26]. Reduced-reference methods utilize partial
information from a reference image, such as RRED [21] and OSVP [27]. No-
reference methods directly assess image quality using machine learning and deep
learning techniques, such as BRISQUE [16], IQA-CNN [9] and RankIQA [15].

In recent years, with the development of generative technologies, assessing the
quality of generated images has become increasingly important. Due to potential
abnormal distortions or unrealistic structures in generated images, evaluation
focuses on visual perception, including authenticity, naturalness, and coherence.
Common metrics include Inception Score (IS) for assessing image quality and
diversity based on classification results and KL divergence [19], Fréchet Inception
Distance (FID) for evaluating visual quality by comparing feature distributions
of real and generated images [7], and CLIP Score, which assesses image quality
based on similarity between generated images and textual descriptions [6].

Recently, datasets like AGIQA-3K [14] and PKU-I2IQA [33] have been pro-
posed to facilitate benchmark experiments for IQA models, focusing on the
quality assessment of generated images. AGIQA-3K provides a comprehensive
and diverse subjective quality database covering various generated images from
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GAN, autoregressive, and diffusion models. PKU-I2IQA, the first image-to-
image AIGC quality assessment database based on human perception, also con-
ducts benchmark experiments on different IQA models. Additionally, models
such as ImageReward [29] and HPS [28] construct datasets for generated images
from the perspective of human preferences and proposed corresponding evalua-
tion models, providing a benchmark for quality assessment in terms of human
preferences for generated images. Despite these advancements, there remains
a scarcity of specialized models for assessing the quality of generated images,
necessitating further research to advance this field.

2.2 CLIP-Based Methods

CLIP [18] is a large-scale vision-language pretrained model that leverages con-
trastive learning to achieve cross-modal knowledge understanding. It has demon-
strated strong transfer capabilities across various visual tasks such as semantic
segmentation (LSeg [13]), object detection (ViLD [4]), and image generation
(CLIPasso [23]).

CLIP-IQA [24] is the first work to explore CLIP in image quality assessment
tasks, demonstrating that CLIP can be effectively extended to image quality
evaluation. Due to the significant impact of linguistic ambiguity in quality assess-
ment tasks [11], phrases such as “a rich image” can be particularly problematic.
This phrase could either refer to an image with rich content or an image asso-
ciated with wealth. CLIP-IQA design an antonym prompt strategy to leverage
CLIP’s prior knowledge. However, due to the limited variety of prompts, this
approach can result in inaccurate quality predictions. Moreover, this work only
explored the performance of CLIP in natural image quality assessment tasks
and did not address generated images. Building on this idea, we further investi-
gate the performance of CLIP in evaluating the quality of generated images and
propose a CLIP-based quality assessment regression model. By simultaneously
fine-tuning our designed multi-class learnable prompts and the regression net-
work added after CLIP, we achieve superior performance in assessing the quality
of generated images.

Notably, recent methods [8,10,36] also explore CLIP for IQA, with many
focusing on aesthetic evaluation. These methods stand out for their pioneering
efforts in multi-modality integration for low-level vision and their impressive
zero-shot performance. However, since CLIP is pre-trained on natural image-
text pairs, directly using CLIP in a zero-shot manner to evaluate the quality of
generated images, as done in the aforementioned methods, does not yield optimal
results. Therefore, we train a CLIP-based model using generated images to better
model the quality distribution of generated images.

3 Methodology

In this section, we first formalize the paradigm of a typical IQA model. Then,
we provide a detailed description of the various designs we implement to adapt
CLIP to the task of generative image quality assessment in CLIP-AGIQA.
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3.1 Preliminary on IQA Models

Given an image I, a typical IQA model uses a visual encoder V (·) to extract
visual features, followed by a regression model R(·) to predict the quality score.
This process can be represented as follows:

S = R(V (I)) (1)

In CLIP-IQA [24], only the visual encoder V (·) is used to extract visual features,
and then an antonym prompt strategy is employed to compute the cosine similar-
ity with the visual features to predict the quality score. Specifically, CLIP-IQA
adopts antonym prompts (e.g., “Good photo.” and “Bad photo.”) as a pair for
each prediction. Let x represent the features from the image, and t1 and t2 be
the features from the two prompts with opposite meanings. The cosine similarity
is computed as follows [24]:

si =
x · ti

||x|| · ||ti|| , i ∈ {1, 2}, (2)

and Softmax is used to compute the final score s̄ ∈ [0, 1]:

s̄ =
es1

es1 + es2
. (3)

When a pair of adjectives is used, the ambiguity of one prompt is reduced by
its antonym, casting the task as a binary classification where the final score is
regarded as a relative similarity [24]. Although this method effectively leverages
the prior knowledge of CLIP, the predicted quality score is solely dependent
on the contrastive similarity, which is not accurate. Therefore, in our design,
we improve the network by using a regression model R(·) to predict the quality
score, enhancing the precision of the prediction and better adapting CLIP to the
quality assessment task after further reducing ambiguity with more fine-grained
quality-related adjectives.

3.2 Overview of CLIP-AGIQA

The overall framework of our method is shown in Fig. 2. CLIP-AGIQA consists
of four components: learnable context, quality category, image quality regression,
and the text encoder and image encoder in CLIP. In addition to the regression
design, to better utilize the prior knowledge of the CLIP model, we incorporate
learnable context for fine-tuning, inspired by the CoOp approach [37]. We also
introduce additional quality category to address the ambiguity issues mentioned
in CLIP-IQA. These two types of text-related information together form supple-
mentary textual information to assist CLIP in adapting to the task of generative
image quality assessment.
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Fig. 2. Overall Architecture of CLIP-AGIQA.

Learnable Context. Since prompt engineering is a significant challenge in the
application of CLIP, and the design of prompts can greatly impact performance,
even with extensive manual tuning, the resulting prompts are by no means guar-
anteed to be optimal for downstream tasks [37]. Therefore, we abandon tradi-
tional subjective prompt settings in favor of a learnable prompt strategy. CLIP
is sensitive to the choice of prompts, so we need to design a suitable set to
leverage its prior knowledge. Similar to CoOp [37], we avoid manual prompt
adjustments by modeling the context words using continuous vectors, which are
end-to-end learned from the data, while freezing a large number of CLIP’s pre-
trained parameters. Specifically, as shown in Fig. 2, we use learnable context. We
employ a unified context version from CoOp, where all prompts share the same
context. The prompt design for the text encoder T (·) is as follows:

P = [LC]1[LC]2 . . . [LC]M [QC] (4)

Each [LC]m (m ∈ {1, . . . ,M}) is the learnable context, represented as a
vector with the same dimensionality as the word embeddings (i.e., 512 for CLIP).
Here, M is a hyperparameter specifying the number of context tokens.

Text Encoder and Image Encoder. We utilize the text encoder T (·) and
image encoder V (·) from CLIP. The text encoder is based on a Transformer archi-
tecture [22] and is responsible for generating text representations from natural
language. In contrast, the image encoder is designed to map high-dimensional
images into a low-dimensional embedding space. This encoder’s architecture can
resemble a CNN like ResNet-50 [5] or a Vision Transformer (ViT) [1]. In our
setup, we employ these encoders separately to process our input textual infor-
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mation P and image information I, generating intermediate features used to
predict quality score.

Quality Category. Due to the inherent language ambiguity in quality assess-
ment tasks, utilizing CLIP as a versatile prior for visual perceptual evaluation
is not straightforward. Similar to the antonym design in CLIP-IQA, we employ
a series of quality-related auxiliary categories in Eq. (4) [QC] to enhance the
expression of the quality assessment task by describing the goodness of quality
in a finer granularity. When using a set of quality-related adjective categories,
they align with the correct category akin to the antonym prompts in CLIP-IQA,
thereby reducing ambiguity. This transforms the task into multi-class classifi-
cation, where the final score can be regarded as relative similarity, calculated
through regression rather than using softmax as in CLIP-IQA. Specifically, we
utilize six adjectives-terrible, bad, poor, average, good, and perfect-as quality
category words to reduce ambiguity, thus better leveraging CLIP’s priors. In
addition, we also explore in the Sect. 4.3 the impact of the number and types of
different words on its effectiveness. This design, together with the setting of the
first learnable context, constitutes additional textual information to assist CLIP
in transferring to the task of generated image quality assessment.

Image Quality Regression. To better fit the CLIP features to the data dis-
tribution for the task of evaluating the quality scores of generated images, we
follow the paradigm of general quality assessment tasks by using the regres-
sion model R(·) to predict quality scores. We concatenate the image features
Fi = V (I) ∈ R

1×N and the textual features Fp = T (P ) ∈ R
6×N as the input

features F .
F = concat(Fi, Fp) (5)

We then process the concatenated features F through two fully connected (FC)
layers. Here, the parameters of the FC layers are also learnable. The projection
sizes are from 7 * 512 to 512 and from 512 to 1, respectively. Finally, we obtain
the predicted quality score S, expressed as follows:

S = R(F ) (6)

Throughout the entire learning process, we employ the Mean Squared Error
(MSE) as the loss function, with the specific formula shown below:

L =
1
N

n∑

i=1

(S − y)2 (7)

where S represents the predicted quality score, and y represents the ground truth
of the quality score.
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4 Experiments

4.1 Experimental Settings

Datasets. To validate the effectiveness of our method, we conduct evaluations
on two quality assessment benchmarks for generated images: AGIQA-3K [14]
ans AIGCIQA2023 [25]. AGIQA-3K is a database containing 2,982 AI-generated
images produced by six different models, including GAN-based, auto-regression-
based, and diffusion-based models and subjective experiments are organized
to obtain MOS (Mean Opinion Score) labels in terms of perceptual quality,
which range from 0 to 5. AIGCIQA2023 collects over 2000 images using 100
prompts and six state-of-the-art text-to-image generation models, and quality
and authenticity ratings are obtained by subjective experiments, which are ulti-
mately scaled to a range of 0–100.

Evaluation Metrics. We use three common metrics in image quality assess-
ment: PLCC, SRCC, and KRCC. PLCC (Pearson Linear Correlation Coefficient)
measures the linear relationship between the predicted quality scores and the
subjective scores. SRCC (Spearman Rank Correlation Coefficient) measures the
consistency in the ranking order between the predicted quality scores and the
subjective scores. KRCC (Kendall Rank Correlation Coefficient) measures the
consistency in pairwise comparisons between the predicted quality scores and
the subjective scores. All three metrics range from [−1, 1], with values closer to
1 indicating higher correlation.

Training Details. The proposed CLIP-AGIQA is implemented in PyTorch and
trained on 1 NVIDIA A100 GPU. ViT-B/16 [1] is used as the image encoder’s
backbone, and SGD is applied to optimize the network with an initial learning
rate of 0.002. The training process was conducted over 100 epochs with a batch
size of 32 and a learnable context length of 16. For learning rate scheduling,
we employed a cosine annealing strategy, allowing the learning rate to decrease
gradually throughout the training. Additionally, we implemented a warm-up
phase during the first epoch, where the learning rate was held constant at 1 ×
10−5.

4.2 Experiment on Different Datasets

We focus on exploring the potential of CLIP-AGIQA in overall quality percep-
tion assessment. We conduct experiments on two widely used AGIQA bench-
marks: AGIQA-3K [14] ans AIGCIQA2023 [25]. We also compare CLIP-AGIQA
with different IQA methods, including handcrafted-based methods such as
CEIQ [32], NIQE [17] and BRISQUE [16], and several learning-based methods
like DBCNN [35], CLIP-IQA [24] and CNNIQA [9].

Table 1 presents the performance results of different IQA models on AGIQA-
3K database, demonstrating that CLIP-AGIQA shows strong performance. As
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Table 1. Comparison with the state-of-the-art IQA methods on AGIQA-3K dataset.
The best performance results are marked in RED and the second-best performance
results are marked in BLUE

Methods PLCC SRCC KRCC

FID [7] 0.1860 0.1733 0.1158

CEIQ [32] 0.4166 0.3228 0.2220

NIQE [17] 0.5171 0.5623 0.3876

GMLF [31] 0.8181 0.6987 0.5119

CNNIQA [9] 0.8469 0.7478 0.5580

DBCNN [35] 0.8759 0.8207 0.6336

CLIP-IQA [24] 0.8053 0.8426 0.6468

CLIPAGIQA(Ours) 0.8978 0.8618 0.6776

we can see, CLIP-AGIQA achieves PLCC, SRCC, KRCC values of 0.8978, 0.8618
and 0.6776, respectively. These results outperform all compared methods, show-
casing the great potential of our approach.

Table 2 shows the comparison between our CLIP-AGIQA and other IQA
methods on the AIGCIQA2023 dataset. It can be seen that our method not only
meets or exceeds state-of-the-art performance in evaluating the quality of gen-
erated images but also significantly outperforms other IQA models in assessing
the authenticity of the dataset, which refers to the ability to evaluate whether an
image is AI-generated. This indicates that our model excels not only in quality
assessment but also has great potential to extend to other aspects of evaluating
generated images.

Figure 3 shows that CLIP-AGIQA is able to assess overall perceptual qual-
ity to a level comparable to human judgment. It can assign reasonable scores
based on the quality of the generated images. Notably, this model demonstrates
several interesting capabilities. For instance, in the first column of the first row,
where a strange bowl appears in the scenery image, it identifies common flaws
in generated images and assigns a low score. Similarly, although the person in
the second column of the second row looks lifelike, the model may detect subtle
defects such as issues with the fingers and assigns a relatively low score. The
first and second column of the third row also receive a low score maybe due to
unrealistic elements and detail issues.

4.3 Ablation Studies

As described in Sect. 3.2, we make three unique modifications to adapt CLIP
for the quality assessment task. In this section, to verify the effectiveness of the
proposed key components, we train five variants of CLIP-AGIQA in AGIQA-3K:

I) Without regression and using cosine similarity instead (following CoOp
and using classification loss for tuning the context); II) Changing the backbone
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Table 2. Comparison with the state-of-the-art IQA methods on AIGCIQA2023
dataset. The best performance results are marked in RED and the second-best perfor-
mance results are marked in BLUE

Methods Quality Authenticity

PLCC SRCC KRCC PLCC SRCC KRCC

NIQE [17] 0.5218 0.5060 0.3420 3954 3715 2453

BRISQUE [16] 0.6389 0.6239 0.4291 0.4796 0.4705 0.3142

HOSA [30] 0.6561 0.6317 0.4311 0.4985 0.4716 0.3101

CNNIQA [9] 0.7937 0.7160 0.4955 0.5734 0.5958 0.4085

Resnet18 [5] 0.7763 0.7583 0.5360 0.6528 0.6701 0.4740

VGG16 [20] 0.7973 0.7961 0.5843 0.6807 0.6660 0.4813

VGG19 [20] 0.8402 0.7733 0.5376 0.6565 0.6674 0.4843

CLIPAGIQA(Ours) 0.8302 0.8140 0.5991 0.7797 0.7940 0.5849

Fig. 3. CLIP-AGIQA for assessing overall perceptual quality. Left: Model Scores,
Right: Human Scores

network; III) Changing the length of learnable contexts; IV) Changing the length
of quality categories; V) Changing the type of quality categories.

The results indicate that removing or changing any single factor leads to
a decrease in performance, confirming their contribution to the performance
results in Table 3. It is worth noting that CLIP-IQA+ [24] has already validated
the importance of learnable context and quality categories, so we only test the
impact of regression on CLIP in the quality assessment of generated images. In
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Table 3. Ablation Study Results

No. Ablation Setting PLCC SRCC KRCC

0 full model ViT-B/16, 16, 6 adjectives 0.8978 0.8618 0.6776

1 without regression ViT-B/16, 16, 6 adjectives 0.8183 0.8201 0.6693

2 - (backbone) ViT-B/32, 16, 6 adjectives 0.8954 0.8614 0.6751

ResNet-101, 16, 6 adjectives 0.8837 0.8544 0.6665

3 - (context length) ViT-B/16, 8, adjective 0.8951 0.8595 0.6746

ViT-B/16, 32, 6 adjectives 0.8962 0.8605 0.6751

4 - (category length) ViT-B/16, 16, 8 adjectives 0.8962 0.8616 0.6766

5 - (category type) ViT-B/16, 16, 6 scores 0.8958 0.8604 0.6747

variant 1, we observed a significant improvement when regression is added. This
indicates that the combination of CLIP priors with a simple regression model is
already effective.

In variants 2–5, although the impact on the model’s performance is minimal,
exploring these variants still provides us with valuable insights to understand and
improve CLIP-AGIQA. Variants 2 and 3 are set up similarly to those explored
in CoOp [37]. In our investigation of the backbone, we find a similar conclusion:
the more advanced the backbone, the better the performance. However, the con-
clusion from CoOp that having more context tokens leads to better performance
is not satisfied when the context length increased from 16 to 32. This can be due
to the increased number of parameters making it harder for the model to con-
verge to an appropriate state, warranting further investigation in future work.
Additionally, we demonstrate that a “good” initialization does not make much
difference, though this is not explicitly included in the table.

In variants 4 and 5, when the length of quality categories increases indefi-
nitely, the task intuitively becomes a one-to-one classification task, yet the per-
formance does not improve. Possible reasons could be that having too many
quality categories makes synonyms indistinguishable, or the model parameters
are insufficient to differentiate between categories. Changing the type of quality
categories to numbers representing score relationships results in a performance
drop, likely because CLIP rarely uses numbers in training, making it difficult to
directly represent score magnitudes with numbers.

5 Conclusion

In this paper, we propose CLIP-AGIQA, a model that effectively adapts to
new assessment requirements for generated images by leveraging CLIP’s com-
prehensive visual and textual knowledge. Directly using CLIP has limitations
and does not align well with the task of generated image quality assessment. To
address this, we design various categories representing different quality levels to
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input into CLIP’s text encoder, mitigating semantic ambiguities. By introduc-
ing a learnable prompts strategy and utilizing multiple quality-related auxiliary
categories, we fully exploit CLIP’s textual knowledge. Our regression network
directly maps CLIP features to quality scores, effectively combining CLIP’s capa-
bilities with the task of generated image quality assessment, thereby enhancing
the model’s performance. Experiments demonstrate that CLIP-AGIQA, when
trained with different datasets, performs excellently in both datasets. Ablation
studies confirm the effectiveness of the proposed components. In the future, we
will further improve our work by developing CLIP’s own weights during training
or by using multiple learnable contexts to explore multi-dimensional, fine-grained
quality scores.
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Abstract. Deepfakes, synthetic media manipulated using AI, pose sig-
nificant challenges to credibility and security. With the increasing sophis-
tication of deepfake generation, robust detection methods are cru-
cial. In this paper, CoDeiT (Contrastive Data-efficient Transformers)
is introduced, a framework for deepfake detection integrating a hier-
archical attention mechanism in HiLo Transformer architecture with
contrastive learning. It uses HiLo Attention to separate high-frequency
(Hi-Fi) and low-frequency (Lo-Fi) information, enhancing computational
efficiency and detection accuracy. The contrastive learning framework
further increases discriminative power by maximizing the similarity
between genuine instances and minimizing it between genuine and fake
ones. Extensive data augmentation improves robustness across diverse
datasets. Comprehensive experiments on benchmark datasets validate
CoDeiT’s effectiveness. Three variations of the architecture have been
proposed: CoDeiT-S, CoDeiT-L, and CoDeiT-XL, each differing in the
number of parameters and attention heads. CoDeiT-XL has achieved
86.9% accuracy and 0.95 AUC on DFDC, and 78.5% accuracy and
0.89 AUC on the challenging CelebDF dataset when trained on the
FaceForensic++ dataset. It outperformed all state-of-the-art deepfake
detection methods. CoDeiT is effective for deepfake detection due to
its unique architecture and ability to capture both high-frequency and
low-frequency information efficiently. The combination of high and low-
frequency information allows the CoDeiT to extract rich and detailed
features from the data. This dual focus is particularly effective in detect-
ing subtle inconsistencies and manipulations present in deepfakes.
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1 Introduction

A deepfake is a synthetic media creation, typically in the form of a video or
audio recording, generated using artificial intelligence (AI) techniques, particu-
larly deep learning. The term “deepfake” is a combination of “deep learning”
and “fake.” These AI-generated media are designed to convincingly mimic real
people, often making it appear as though they are saying or doing something
they never actually did. There has been a recent increase in videos, often obscene,
where faces are swapped with others using neural networks, known as deepfakes1,
which have become a significant public concern2. The availability of open-source
software and apps for face swapping has resulted in a large number of syntheti-
cally generated deepfake videos surfacing on social media and in the news, cre-
ating a major technical challenge for their detection and filtering. Consequently,
the creation of effective tools to automatically detect these videos with swapped
faces is of utmost importance.

1.1 Need for Deepfake Detection

The need for deepfake detection is critical due to the significant risks associ-
ated with their misuse. Deepfakes can spread misinformation and disinforma-
tion, manipulate political outcomes, and incite public panic or unrest. They pose
severe threats to privacy and reputation, such as in cases of revenge porn and
defamation, and undermine trust in digital media by making it difficult to dis-
cern authentic content. The detection of deepfakes is crucial to counteract their
potential to mislead, harm, and erode trust in digital media. It is essential for
protecting individuals’ privacy and reputation, maintaining public trust, ensur-
ing national security, and upholding legal and ethical standards. Developing and
deploying robust deepfake detection technologies is vital to mitigate these risks
and safeguard society against the malicious use of this powerful technology.

Consequently, the identification of deepfakes has attracted a lot of atten-
tion in recent years. Recent developments in deep learning [19] have made it
more challenging for humans to identify deepfakes. Current deepfake detection
methods face significant limitations, including poor generalization across differ-
ent datasets, vulnerability to adversarial attacks, high computational costs, and
a lack of interpretability. These challenges hinder their reliability and practical
deployment. Segregating high and low-frequency information is crucial because
high-frequency details capture subtle artifacts and fine-grained textures indica-
tive of manipulations, while low-frequency information provides the broader con-
textual integrity of the image or video. This balance between detailed local anal-
ysis and comprehensive global understanding enhances the model’s ability to
detect deepfakes accurately and robustly, improving performance and general-
ization across diverse scenarios.

1 Open source: https://github.com/deepfakes/faceswap.
2 BBC report (Feb 3, 2018): http://www.bbc.com/news/technology-42912529.

https://github.com/deepfakes/faceswap
http://www.bbc.com/news/technology-42912529
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1.2 Contributions

In this paper, an approach for deepfake detection has been proposed. The pro-
posed approach is based on the HiLo Transformer architecture with a contrastive
learning framework. The effectiveness of the proposed approach has been demon-
strated through a series of experiments on multiple benchmark datasets. The
main contributions of the work are:

– Introduction of the HiLo Transformer Architecture for Efficient Deepfake
Detection: The HiLo Transformer’s design focuses on high-frequency details
locally and low-frequency structures globally, reducing redundant processing
and enhancing data efficiency. Its hierarchical attention mechanism ensures
effective feature extraction from each image or video frame.

– Integration of a Contrastive Learning Framework to Enhance Model Discrim-
inative Power: Contrastive learning boosts the HiLo transformer’s ability to
distinguish real from fake images by learning robust features from contrasting
pairs. Data augmentation enhances generalization with limited labeled data.

– Comprehensive Evaluation on Multiple Benchmark Datasets Demonstrating
State-of-the-Art Performance: Evaluations on benchmark datasets show the
HiLo transformer’s superior performance, setting new state-of-the-art results.
This combination improves accuracy and data efficiency, effective with smaller
training datasets.

The rest of the paper is organized as follows. The related work is discussed in
Sect. 2. Next, the proposed architecture is discussed in Sect. 3. The experimental
results are discussed in Sect. 4. At last, conclusions and future work are discussed
in Sect. 5.

2 Related Work

Initial attempts [11,15] used a combination of CNNs and LSTMs to learn tem-
poral patterns of extracted features. The work [15] uses CNN-based methods to
detect the difference in the resolution between warped faces and its surroundings.
There have also been attempts to analyze the Photo Response Non-Uniformity
(PRNU) noise patterns in forged images in work [14]. Another approach is per-
forming mesoscopic level analysis in [1]. However, with the increasing quality of
forged content, the performance of these detectors becomes challenging.

Over the years, CNN-based methods have become popular. These methods
focus on comparing features contrasting near the blending boundary. Although
these CNN-based methods perform well, CNN with LSTM methods are compe-
tent.

Recent methods still use CNNs to accurately detect deepfakes leveraging the
concept of attention. Approaches [8] have also used transformers in this context
to distinguish the identities of forged images near the blending boundary. In
[12] self-supervised methods to detect deepfakes works are currently performing
better compared to supervised models in the cross-dataset testing setting.
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Contrastive learning has emerged as a powerful paradigm for representation
learning, particularly in the context of unsupervised and self-supervised learning.
The fundamental idea behind contrastive learning is to bring similar instances
closer in the representation space while pushing dissimilar instances apart. This
approach has been successfully applied in various domains, including computer
vision and natural language processing.

The InfoNCE loss, introduced by Oord et al. [20], is a popular objective
function in contrastive learning that aims to maximize the mutual information
between different views of the same data. Chen et al. [4] further advanced this
concept with SimCLR, demonstrating the effectiveness of simple yet powerful
augmentations and a contrastive loss for visual representation learning. MoCo
(Momentum Contrast) by He et al. [13] introduced a dynamic dictionary with a
queue and a moving-averaged encoder, significantly improving the scalability of
contrastive learning methods.

In the context of deepfake detection, contrastive learning frameworks have
been leveraged to enhance the discriminative power of models by learning robust
feature representations that differentiate genuine content from manipulated
media. Works such as Li et al. [3] have shown the efficacy of self-supervised learn-
ing in improving the generalization of deepfake detection models across diverse
datasets. Grill et al. [10] introduced BYOL (Bootstrap Your Own Latent), which
avoids the use of negative pairs and demonstrates state-of-the-art performance in
self-supervised learning. Caron et al. [2] presented SwAV (Swapping Assignments
between Views), which combines contrastive learning with clustering to improve
feature learning. Zbontar et al. [28] proposed Barlow Twins, which uses redun-
dancy reduction to achieve competitive performance without requiring large
batch sizes or negative pairs.

HiLo Attention, proposed by Pan et al. [21], extends the capabilities of vision
transformers by disentangling high and low frequency patterns, enhancing the
efficiency and effectiveness of attention mechanisms. This approach has been par-
ticularly beneficial for tasks requiring detailed analysis of fine-grained features
and broader contextual understanding.

In the realm of deepfake detection, the application of vision transformers
offers a promising direction, leveraging their ability to model intricate visual
patterns and capture subtle inconsistencies in manipulated media. Works such
as ViT-G by Kolesnikov et al. [9] and DeIT by Touvron et al. [26] have shown that
vision transformers can achieve competitive performance with efficient training
strategies.

3 Proposed Architecture: Extending HiLo Transformer
with Contrastive Learning

Extending the HiLo Transformer with contrastive learning can enhance its ability
to distinguish between authentic and fake data by learning more discriminative
feature representations. Contrastive learning is a self-supervised learning tech-
nique that aims to maximize the similarity between related data points (positive
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pairs) while minimizing the similarity between unrelated data points (negative
pairs). This section explains enhancing performance by integrating contrastive
learning with the HiLo Transformer. The flow diagram of the proposed archi-
tecture is shown in Fig. 1. It has several different stages which are explained
below.

Fig. 1. Proposed CoDeiT architecture.

3.1 Data Preparation

The dataset is obtained from publicly available sources namely Celeb-DF [16],
FaceForensics++ (FF++) [23], and Deepfake Detection Challenge (DFDC) [7].
All these datasets contain both real and deep fake videos. Frames are extracted at
regular intervals to create images. It ensures the dataset has diverse examples
of different types of deep fakes.

3.2 HiLo Transformer Architecture

The traditional transformer is replaced with the HiLo Transformer with a hier-
archical attention mechanism namely local attention and global attention.
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– Local Attention (high-frequency): The model processes small patches or
regions of the input to capture fine-grained details.

– Global Attention (low-frequency): The model aggregates information from
the entire input to maintain contextual understanding.

HiLo Attention is motivated by the observation that natural images con-
tain rich frequencies where high/low frequencies play different roles in encoding
image patterns, (i.e.) local fine details and global structures, respectively [21].
A typical multi-head self-attention (MSA) layer enforces the same global atten-
tion across all image patches without considering the characteristics of different
underlying frequencies. HiLo Attention separates an MSA layer into two paths:
High-frequency attention (Hi-Fi) and Low-frequency attention (Lo-Fi) as shown
in Fig. 2.

Fig. 2. Framework of HiLo attention. Nh refers to the total number of self-attention
heads at this layer. α denotes the split ratio for high/low frequency heads; reproduced
from [22].

Multi-head Self-Attention (MSA): The MSA mechanism operates by
splitting the input into multiple heads, each learning different representations.
The attention calculation is defined as:

Attention(Q,K, V ) = softmax
(

QKT

√
dk

)
V (1)

where Q (queries), K (keys), and V (values) are linearly transformed versions
of the input, and dk is the dimensionality of the keys.

HiLo Attention: HiLo Attention extends MSA by disentangling high and
low frequency patterns. The process involves:

Linear Transformations: First, apply linear transformations to the input to
get the query Q, key K, and value V matrices:

Q = XWQ, K = XWK , V = XWV (2)

where WQ,WK ,WV ∈ R
d×d are learnable weight matrices.
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Step 2: Compute Hi-Fi Attention. Hi-Fi Attention focuses on local details.
This can be done using standard scaled dot-product attention:

AttentionHiFi(Q,K,V) = softmax
(
QKT

√
d

)
V (3)

Step 3: Compute Lo-Fi Attention. Lo-Fi Attention focuses on global struc-
tures. One way to implement this is by using a different set of linear transfor-
mations that aggregate information over larger regions:

QLo = XWQ,Lo,KLo = XWK,Lo,VLo = XWV,Lo (4)

AttentionLoFi(QLo,KLo,VLo) = softmax
(
QLoKT

Lo√
d

)
VLo (5)

Step 4: Combine Hi-Fi and Lo-Fi Attention. Finally, combine the outputs of
Hi-Fi and Lo-Fi attention:

HiLo Attention(X) = WHiFiAttentionHiFi(Q,K,V)
+ WLoFiAttentionLoFi(QLo,KLo,VLo)

(6)

where WHiFi and WLoFi are learnable weights that balance the contributions of
Hi-Fi and Lo-Fi attention. The advantages of using HiLo Transformer for deep
fake detection are as follows.

– Enhanced Sensitivity to Artifacts: The HiLo Transformer’s local attention
mechanism can detect fine-grained artifacts commonly present in deep fakes,
such as subtle pixel-level anomalies and inconsistencies in facial features.

– Improved Contextual Analysis: The global attention mechanism allows the
model to understand and analyze the entire image or frame context, making
it capable of identifying broader inconsistencies, such as unnatural expressions
or movements.

– Scalability and Efficiency: By efficiently handling high-resolution images and
video frames, the HiLo Transformer can process and analyze large datasets,
which is essential for robust deep fake detection.

– Flexibility: The architecture’s adaptability enables it to handle various types
of deep fakes, including different styles and techniques used to generate fake
images and videos.

Three variations of the architecture have been proposed: CoDeiT-S, CoDeiT-
L, and CoDeiT-XL, each differing in the number of parameters and attention
heads. The configurations of these architectures are given in Table 1.

These variations have been introduced to assess the performance of the pro-
posed architecture at different computational costs. The larger models, CoDeiT-
L and CoDeiT-XL, offer better accuracy but demand more computational
resources. CoDeiT-S balances performance and efficiency, making it suitable for
resource-constrained environments.
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Table 1. Comparison of model variations in terms of parameters, FLOPs, and attention
heads.

Model Params FLOPs Attention Heads

CoDeiT-S 22M 4.8B 6

CoDeiT-L 86M 15.1B 12

CoDeiT-XL 307M 60.9B 24

3.3 Contrastive Learning Framework

– Feature Extraction: The HiLo Transformer is used to extract features from
the input data. The hierarchical attention mechanism ensures that both local
details and the global context are captured.

– Projection Head: A projection head is added on top of the HiLo Transformer
to map the extracted features to a lower-dimensional space suitable for con-
trastive learning.

To further enhance detection capability, a contrastive learning framework is
integrated with the HiLo Transformer. Contrastive learning has demonstrated
remarkable success in unsupervised and self-supervised learning tasks by max-
imizing the similarity between positive pairs and minimizing it between nega-
tive pairs [4,13]. In this work, a contrastive loss function, specifically InfoNCE
(Information Noise Contrastive Estimation) loss, is defined as follows:

LInfoNCE = − log
exp(zi · zj/τ)∑2N

k=1 1[k �=i] exp(zi · zk/τ)
(7)

where zi and zj are the encoded representations of a positive pair, τ is a temper-
ature parameter that scales the logits, and 1[k �=i] is an indicator function equal to
1 if k �= i and 0 otherwise. The InfoNCE loss maximizes the agreement between
positive pairs while minimizing the agreement with negative pairs, thereby learn-
ing a feature space where similar instances are closely clustered, and dissimilar
instances are further apart.

In this framework, the latent space learns representations by aligning simi-
lar instances and pushing apart dissimilar ones. This is particularly useful for
deepfake detection, as it enhances the discriminative capability of the model by
learning subtle differences between genuine and fake instances.

The advantages of using the HiLo Transformer with contrastive learning for
deep fake detection are as follows.

– Enhanced Feature Discrimination: Contrastive learning helps the HiLo Trans-
former learn more discriminative features, improving its ability to distinguish
between similar and dissimilar instances, such as real and fake data.

– Robustness to Variations: By learning to differentiate between positive and
negative pairs, the model becomes more robust to variations and noise in the
data, leading to better generalization.
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– Improved Data Efficiency: Contrastive learning leverages unlabeled data effec-
tively, reducing the reliance on large labeled datasets and improving perfor-
mance even with limited labeled data.

3.4 Training Process

– Pretraining with Contrastive Learning: Train the HiLo Transformer with the
contrastive loss on a large dataset to learn robust feature representations.

– Fine-Tuning: After pretraining, fine-tune the model on a labeled dataset for
the specific task, such as deep fake detection, using a cross-entropy loss which
is a supervised loss function.

3.5 Overall Framework

The overall deepfake detection framework involves the following steps:

– The HiLo Transformer is used to extract hierarchical features from input
images or videos. These features capture various levels of abstraction, making
it easier to identify subtle inconsistencies characteristic of deepfakes.

– The extracted features are projected into an embedding space suitable for
contrastive learning. In this space, the contrastive loss function operates,
helping the model learn discriminative representations that are effective for
deepfake detection.

– The model is trained using a dataset containing both genuine and deepfake
instances. Its performance is evaluated across different datasets to ensure
robustness and generalizability.

– Robust data augmentation techniques, such as random cropping, flipping,
color jittering, and noise addition, create diverse training samples. These aug-
mentations expose the model to a wide variety of data, enhancing its ability to
generalize across different datasets and improving its robustness in real-world
applications.

By combining the hierarchical design and HiLo Attention of the HiLo Trans-
former with a robust contrastive learning framework, the proposed method
achieves high precision and efficiency in deepfake detection tasks.

4 Experimental Results

4.1 Datasets

We evaluated our method on three widely used deepfake detection datasets:
Celeb-DF [16], FaceForensics++ (FF++) [23], and Deepfake Detection Chal-
lenge (DFDC) [7]. The Celeb-DF dataset consists of 5,639 high-quality deepfake
videos, split into 70% for training and 30% for testing. The FaceForensics++
dataset comprises manipulated videos generated using various methods, divided
into a 70% training set and a 30% testing set. The DFDC dataset is a large-scale
collection of 100,000 videos, with 60% for training, 20% for validation, and 20%
for testing as described in 2.
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Table 2. Deepfake Datasets with Train-Test Split

Dataset # of Images Train Split Test Split Real: DF

Celeb-DF 2,342,200 1,639,540 702,660 590: 5,639

(FF++) 1,019,800 713,860 305,940 1,000: 1,000

DFDC 2,271,700 1,363,020 454,340 1,131: 4,113

4.2 Training Setup

The codebase is built on the PyTorch framework using the timm deep learning
library. All experiments have been conducted on a Linux machine with a 40GB
NVIDIA A100 GPU. The networks are trained using Cross Entropy Loss and
optimized with SGD with momentum, an initial learning rate of 0.005, momen-
tum of 0.9, and a mini-batch size of 512. The larger batch size was selected to
efficiently utilize the available GPU RAM.

4.3 Evaluation Metrics

To evaluate the performance of the proposed approach, accuracy, and AUC are
used. Accuracy is the ratio of correctly predicted instances to the total instances,
providing a basic measure of correctness. However, the primary metric we focus
on is the Area Under the Receiver Operating Characteristic Curve (AUC-ROC).
AUC-ROC is preferred as it provides an aggregate measure of performance across
all classification thresholds, offering a comprehensive view of the model’s abil-
ity to distinguish between genuine and fake instances. Unlike accuracy, which
can be misleading in imbalanced datasets, AUC-ROC considers the true positive
rate and false positive rate, making it a more reliable metric for comparing the
performance of deepfake detection models. By focusing on AUC-ROC, the eval-
uation captures the nuanced performance of the model in identifying deepfakes,
crucial for real-world applications.

4.4 Cross-dataset Evaluation

To demonstrate the effectiveness of the proposed approach in learning robust
latent representations, it is performed cross-dataset evaluations. The proposed
architecture is trained on the FF++ dataset and evaluated on the Celeb-DF and
DFDC datasets, and vice versa. The results show that CoDeiT architecture, par-
ticularly CoDeiT-XL, has achieved the highest accuracy and AUC-ROC scores
across all evaluations. This indicates that the proposed architecture can gener-
alize well across different datasets.

Trained on FF++ and Tested on Others: The first set of experiments
involved evaluating video-level deep fake detection accuracy and AUC of CoDeiT
architecture (CoDeiT-S, CoDeiT-L, and CoDeiT-XL). These architectures are
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trained on FF++ and tested on DFDC and CelebDF datasets using high-quality
videos and the results are given in Table 3. The existing method results are taken
from their references. It can be observed that all three versions of CoDeiT archi-
tectures outperformed state-of-the-art methods, including MesoNet [1], Xception
[5], Efficient-B7 [25], FFD [17], ISPL [18], Seferbekovv [24], ResNet + LSTM [29],
and Efficient-B1 + LSTM [27]. Among the three, the CoDeiT-XL architecture
has achieved the highest accuracy and AUC of 86.9 and 0.95 for DFDC (HQ)
dataset while it is 78.5 and 0.89 for the CelebDF (HQ) dataset respectively. It
demonstrates superior performance in detecting deepfakes compared to other
methods.

Table 3. Trained on FF++ and Tested on DFDC and CelebDF HQ videos: Comparing
performance (Accuracy/AUC) of the proposed architecture with existing state-of-the-
art methods

Model DFDC (HQ) CelebDF (HQ)

Accuracy AUC Accuracy AUC

MesoNet [1] 53.6 0.74 50.1 0.75

Xception [5] 72.0 0.79 77.2 0.88

Efficient-B7 [25] 71.8 0.78 71.4 0.80

FFD [17] 63.1 0.69 69.2 0.76

ISPL [18] 69.6 0.78 71.2 0.83

Seferbekov [24] 72.0 0.85 75.3 0.86

ResNet + LSTM [29] 61.2 0.67 58.2 0.72

Eff.B1 + LSTM [27] 67.2 0.75 75.3 0.84

ID-Reveal [6] 80.4 0.91 71.6 0.84

CoDeiT-S 82.5 0.92 73.8 0.85

CoDeiT-L 84.7 0.94 76.1 0.87

CoDeiT-XL 86.9 0.95 78.5 0.89

Trained on DFDC and Tested on Others: The second experiment evalu-
ates the performance of the proposed architecture trained on DFDC and tested
on the FF++ and CelebDF datasets with high-quality videos and the results
are given in Table 4. The CoDeiT architecture demonstrated superior perfor-
mance compared to other methods across all three versions. Among the three,
the CoDeiT-XL architecture has achieved the highest accuracy and AUC of 88.1
and 0.95 for FF++ (HQ) dataset while it is 78.6 and 0.87 for the CelebDF (HQ)
dataset respectively. This demonstrates the robustness of CoDeiT when trained
on different datasets, showcasing its ability to learn effective representations for
deepfake detection.
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Trained on Celeb-DF and Tested on Others: The third experiment eval-
uates the performance of the proposed architecture trained on Celeb-DF and
tested on the FF++ and DFDC datasets with high-quality videos and, the
results are given in Table 5. The CoDeiT architecture demonstrated superior
performance compared to other methods across all three versions. Among the
three, the CoDeiT-XL architecture has achieved the highest accuracy and AUC
of 85.6 and 0.93 for FF++ (HQ) dataset while it is 86.1 and 0.95 for the DFDC
(HQ) dataset respectively. This demonstrates the robustness of CoDeiT when
trained on different datasets, showcasing its ability to learn effective representa-
tions for deepfake detection. Figure 3 shows the accuracy graph obtained for the
cross-dataset evaluation of CoDeiT with the top four state-of-the-art methods.
This evaluation was conducted across two datasets DFDC (HQ) and CelebDF
(HQ).

Table 4. Trained on DFDC and tested on FF++ and CelebDF HQ videos: Comparing
performance (Accuracy/AUC) of the proposed architecture with existing state-of-the-
art methods

Model FF++ (HQ) CelebDF (HQ)

Accuracy AUC Accuracy AUC

MesoNet [1] 55.4 0.58 50.1 0.75

Xception [5] 74.1 0.81 77.2 0.88

Efficient-B7 [25] 72.6 0.80 71.4 0.80

FFD [17] 64.3 0.71 69.2 0.76

ISPL [18] 70.8 0.79 71.2 0.83

Seferbekov [24] 73.5 0.86 75.3 0.86

ResNet + LSTM [29] 62.4 0.70 58.2 0.72

Eff.B1 + LSTM [27] 68.3 0.77 75.3 0.84

ID-Reveal [6] 81.7 0.92 71.6 0.84

CoDeiT-S 83.4 0.89 73.9 0.82

CoDeiT-L 85.8 0.93 76.2 0.84

CoDeiT-XL 88.1 0.95 78.6 0.87

4.5 Ablation Study

To justify the model architecture choices, an extensive ablation study has been
conducted. Variations in the number of attention heads, MLP layers, and other
hyperparameters are explored to evaluate their impact on the model’s perfor-
mance. These are summarized in Table 6. The ablation study demonstrates that
the chosen architecture and hyperparameters effectively balance performance
and computational efficiency. Increasing the number of attention heads improves
the model’s ability to capture complex patterns and subtle inconsistencies in
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Table 5. Comparing performance (Accuracy/AUC) of our models with existing state-
of-the-art models on FF++ and DFDC HQ videos, trained on Celeb-DF.

Model FF++ (HQ) DFDC (HQ)

Accuracy AUC Accuracy AUC

MesoNet [1] 55.4 0.58 60.1 0.72

Xception [5] 55.6 0.58 77.2 0.88

Efficient-B7 [25] 54.9 0.59 71.4 0.80

FFD [17] 54.4 0.56 69.2 0.76

ISPL [18] 56.6 0.59 71.2 0.83

Seferbekov [24] 58.3 0.62 75.3 0.86

ResNet + LSTM [29] 55.0 0.58 65.2 0.78

Eff.B1 + LSTM [27] 57.2 0.62 75.3 0.84

ID-Reveal [6] 78.3 0.87 79.6 0.90

CoDeiT-S 80.4 0.89 81.2 0.91

CoDeiT-L 83.2 0.91 83.7 0.93

CoDeiT-XL 85.6 0.93 86.1 0.95

Fig. 3. CoDeiT-XL: Accuracy of cross-dataset is shown trained on FaceForensic++
tested across two datasets with SOTA Methods. The orange bars represent DFDC
(HQ) and the blue bars represent CelebDF (HQ). (Color figure online)

deepfake content, but this also increases the computational cost. Similarly, more
MLP layers allow the model to learn more complex representations, but the per-
formance gains diminish beyond 4 layers, indicating an optimal balance between
model complexity and performance. The larger models, CoDeiT-L and CoDeiT-
XL, provide better accuracy at the cost of increased computational cost, making
them more suitable for offline analysis. CoDeiT-S, with 22 M parameters, pro-
vides a good balance between efficiency and performance, making it suitable for
real-time applications.
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Table 6. Ablation study results showing the impact of different configurations of atten-
tion heads and MLP layers on CoDeiT-XL trained on FF++. Best results are indicated
in bold.

Attention Heads MLP Layers Train Acc. (%)

6 2 85.3

6 4 87.1

12 2 88.4

12 4 89.7

24 4 91.2

24 8 91.5

5 Conclusions

In this paper, CoDeiT, a novel framework for deepfake detection, is intro-
duced that leverages the strengths of the hierarchical attention mechanism
and contrastive learning. The proposed Hierarchical Data-efficient Transformer
(HiLo Transformer) employs HiLo Attention to effectively disentangle and pro-
cess high and low-frequency information, significantly enhancing the model’s
ability to detect subtle manipulations indicative of deepfakes. A contrastive
learning framework using the InfoNCE loss function was incorporated, which
further improved the discriminative power of the model by maximizing the sim-
ilarity between genuine instances and minimizing the similarity between gen-
uine and fake instances. The use of comprehensive data augmentation tech-
niques ensured robustness and generalizability across diverse datasets. Three
variations of the architecture have been proposed: CoDeiT-S, CoDeiT-L, and
CoDeiT-XL, each differing in the number of parameters and attention heads.
CoDeiT-XL has achieved 86.9% accuracy and 0.95 AUC on DFDC, and 78.5%
accuracy and 0.89 AUC on the challenging CelebDF dataset when trained on the
FaceForensic++ dataset. Extensive experiments on widely used deepfake detec-
tion datasets, including Celeb-DF, FaceForensics++, and the Deepfake Detec-
tion Challenge, demonstrated that CoDeiT outperforms existing state-of-the-art
methods across all three versions.
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Abstract. We present LW-GeneFace, a lightweight and high-fidelity
model for generalized audio-driven facial animation, in this paper. We
develop this model by reducing the size while maintaining the synthetic
quality of GeneFace, an audio-driven facial animation model known for
its high fidelity and generalization capabilities. Specifically, we com-
press the first and the third stages of GeneFace as they dominate the
model size. In the first stage, we propose a lightweight version of the
WaveNet-based network inspired by MobileNetV3 and DP-block. It uti-
lizes depthwise separable convolution and dual-path feature extraction
to compress the network while maintaining effective feature extraction.
The shared network structure in the dual-path feature extraction further
reduces model complexity and improves training efficiency.

In the third stage, we generate realistic 3D renderings at reduced
model size by introducing novelties in RAD-NeRF. Technically, we
reduce the hash table sizes in the grid-based encoding modules, as well
as present a lightweight bottleneck MLP architecture to increase the
non-linearity of the model. Experimental results demonstrate that LW-
GeneFace achieves state-of-the-art performance with both model size and
synthetic quality considered. The source code of LW-GeneFace will be
released after acceptance of this paper.

Keywords: audio-driven facial animation · talking face synthesis ·
lightweight WaveNet · lightweight RAD-NeRF · bottleneck MLP

1 Introduction

The intersection of Artificial Intelligence (AI) and content creation has led to a
vibrant field known as Artificial Intelligence Generated Content (AIGC), which
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has recently witnessed a surge in interest, particularly in the realm of audio-
driven facial animation [5]. This burgeoning area of research is poised to revo-
lutionize the way we perceive and interact with digital characters and environ-
ments, offering a seamless integration of speech and lifelike facial expressions.

Our research endeavors to harness the nuances of speech signals to generate
highly realistic facial animations, thereby enabling a voice-controlled animation
experience. The state-of-the-art in this domain has demonstrated the potential
to produce facial expressions that not only mirror the spoken content but also
reflect the emotional and tonal subtleties of human speech. Despite the strides
made, challenges remain, particularly regarding the computational complexity
and resource requirements of advanced models. The need for efficient processing
on low-configuration computing platforms further compounds these challenges.

This study aims to address these concerns by developing a lightweight model
that maintains the fidelity of lifelike facial animations based on audio input. We
refine the GeneFace model [21], leveraging its renowned accuracy and adaptabil-
ity, through novel optimizations that streamline its core components without
compromising on the quality of synthesis. Major contributions of this work are
summarized as follows.

– In the first stage of variational motion generator, we re-design the WaveNet-
based network by employing depthwise separable convolution and dual-path
feature extraction, and further making a Siamese structure of the dual paths.
This design substantially reduces the model size with almost negligible com-
promise on motion estimation accuracy.

– In the third stage of NeRF renderer, we make optimizations by reducing the
hash table sizes in the grid-base encoding modules and using bottleneck MLPs
for promoted modeling capability. These optimizations lead to substantial
reduction in model size with quality of animation synthesis well maintained.

– We conduct extensive experiments to show that our proposed model achieves
state-of-the-art performance when both model size and animation synthesis
quality are considered.

2 Related Work

2.1 Speech-Driven Facial Animation

The task of speech-driven facial animation aims to reproduce arbitrary input
speech audio from a specific person. It has received considerable attention of
the computer vision community in recent years. Researchers in the early stage
predominantly utilized methodologies including cross-modal retrieval technol-
ogy [17] and hidden Markov models [15]. These approaches were designed to
establish the mapping between auditory speech signals and facial animation
datasets, thereby facilitating the production of animated sequences. Nonethe-
less, such technologies introduce more rigorous requirements for the deployment
environment of the model and compel the need for manual annotation of visual
phonemes, which can be a labor-intensive process.
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The rapid advancement of deep learning in recent years has greatly accel-
erated the progress of speech-driven facial animation technology. Zhou et al.
[25] proposed the MakeItTalk model, which extracted the content and speaker
information from the auditory input. Leveraging this data, the model predicts
facial landmarks that reflect the speaker’s dynamic expressions. Prajwal et al.
[13] proposed a rigorous evaluation benchmark for measuring lip synchroniza-
tion in unconstrained videos. Zhou et al. [24] modularized audio-visual represen-
tations through the formulation of an implicit, low-dimensional pose code. Lu et
al. [11] employed a three-stage network structure to extract facial action poses
from speech features and generate facial animations. Wang et al. [19] developed
a model for predicting head posture using a recurrent neural network based on
motion perception. The model extracts the low-frequency overall motion pattern
of the head from the speech signal. Fan et al. [3] proposed the FaceFormer, a
model leveraging the Transformer architecture to generate a sequence of seman-
tic 3D facial animations. They designed two attention mechanisms to learn the
connection and sequence dependence between speech and vision, respectively.
Furthermore, they employed periodic positional encoding for input representa-
tion, performed deep encoding of the audio signal, and adopted an autoregressive
prediction approach. Fang et al. [4] presented FE-GAN, a facial animation gen-
eration algorithm utilizing a generative adversarial network (GAN) framework,
which integrates dual auxiliary classifiers along with a pair of recognizers to
enhance the animation’s fidelity. Ye et al. [22] proposed a dynamic convolution
kernel (DCK) strategy to enhance convolutional neural networks. The approach
utilizes a fully convolutional network featuring Dynamic Convolutional Kernels
(DCKs), which is capable of real-time selection between two modalities: speech
and video. This method yields high-quality facial animation videos from the
data source. Shen et al. [14] designed a latent diffusion model for visual atten-
tion mechanisms. Ye et al. [21] put forward GeneFace, a three-stage framework
that uses 3D facial landmarks as intermediate variables.

The aforementioned deep learning based approaches primarily concentrate on
audio-visual synchronization or generalization capabilities. However, the light-
weight performance of the model is relatively an oversight. Indeed, there remains
potential for further improvement in the complexity management of the state-
of-the-art approaches.

2.2 Neural Radiance Field for Face Rendering

NeRF (Neural Radiance Field) is a novel approach in the field of computer graph-
ics and 3D modeling, which has been applied in various research projects for cre-
ating speech-driven facial animation. Guo et al. [6] proposed AD-NeRF, an app-
roach that integrates audio signal characteristics into a conditional implicit func-
tion, thereby generating a dynamic neural radiance field. Yao et al. [20] presented
DFA-NeRF, which combines neural radiance fields and the audio information.
The model considers lip movement characteristics and personal attributes as two
independent parts of the NeRF condition, and predicts lip movements synchro-
nized with the corresponding speech content. Liu et al. [10] proposed Semantic-
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aware Speaking Portrait NeRF, which designs two semantic-aware modules to
handle the local facial semantics and the global head-torso relationship. Based
on the recent advancements in Grid-based NeRF, Tang et al. [16] established
a novel decomposition of the complex, high-dimensional conversational portrait
representation into three more tractable, low-dimensional feature grids.

Though flexible modeling and high-fidelity rendering has been achieved, there
remains significant room for optimizing the NeRF models in both model size and
modeling capability in the context of audio-driven facial animation.

3 Methodology

In this work, we are motivated to construct a lightweight and high-fidelity model
for generalized audio-driven facial animation. We choose GeneFace [21] as the
base and introduce novelties to optimize it for reduced model size with main-
tained level of animation synthesis quality.

The GeneFace model [21] consists of three stages in sequence: audio-to-
motion stage that generates facial landmark positions from the input audio,
motion domain adaption stage that refines the predicted 3D landmarks
from the multi-speaker domain into the target person domain, and motion-
to-image stage that renders high-fidelity frames guided by the 3D landmarks
using a NeRF-based renderer.

As part of the data preprocessing, GeneFace [21] utilizes the pretrained
HuBERT model [9] to extract audio features that are used in the first stage. In
general, there are alternative audio feature extractors with highly varied perfor-
mance and complexity characteristics [12], and different audio-driven 3D taking
face synthesis models [3,11,21,25] have employed different pretrained audio fea-
ture extractors. In this work, we focus on compressing the GeneFace model less
the HuBERT feature extractor and leave better choice or simplification of audio
feature extractor for our future investigation.

Excluding the HuBERT feature extractor, the total parameters of the first
and third stages amount to 24.620M, accounting for 96.87% of the overall
parameter count across the three stages. As detailed in the Ablation Study in
Sect. 4.4, these first and third stages dominate the model size. Consequently, we
have reduced the complexity of these two stages in our model design and have
adopted the same second stage structure as utilized in GeneFace. As a result,
we construct a lightweight audio-driven facial animation model, which we name
lightweight GeneFace (LW-GeneFace). Details of the first and the third stages
of LW-GeneFace are given in the following subsections.

3.1 Variational Motion Generator

The first stage utilizes a variational auto-encoder (VAE) to complete the audio-
to-motion transform and is named variational motion generator. HuBERT fea-
tures [9] of the input audio wave are extracted and used as input to the motion
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Fig. 1. Structures of the WN in GeneFace (top) and the LW-WN in LW-GeneFace
(bottom).

generator, and the motion generator infers 3D positions of 68 facial landmarks
at each frame that represent the facial motion.

Major components of the first stage in GeneFace include pretrained HuBERT
feature extractor, flow-based prior, pretrained SyncNet, encoder and decoder.
Due to the space limit, we refer the readers to the original paper [21] for detailed
explanation. In our design of the first stage, we adopt the same framework but
optimize the encoder and the decoder for reduced model size.

In the first stage of GeneFace, the encoder and decoder primarily use a struc-
ture similar to that of the WaveNet (WN) [18], as briefly shown in the top
portion of Fig. 1. This module utilises multi-layer 5×5 and 3×3 convolutions
and residual modules to extract speech features and predict facial landmarks
positions, where the dilation factors of convolution incrementally increase with
depth. In contrast to WN, our proposed lightweight WaveNet (LW-WN) model
is inspired by MobileNetV3 [8] and DP-block [23] and made highly compact.
It utilizes depthwise separable convolution and dual-path feature extraction to
compress the WaveNet structure, as depicted in the bottom portion of Fig. 1 and
explained below.

Drawing inspiration from MobileNetV3 [8], we modify WN by using more
lightweight depthwise separable convolution in place of normal convolution. The
multi-layer depthwise separable convolution utilises a combination of depth con-
volutions with N (N = 4 in the encoder and N = 8 in the decoder) layers of con-
volution kernels at size of 3× 3 and 5× 5 to enhance the learning of multi-scale
features. Besides, we are inspired by DP-block [23] and develop a network struc-
ture for dual-path feature extraction. The feature tensors are divided equally
and input into the two paths of the dual-path feature extraction network for
further processing.
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It is important to note that our dual-path feature extraction network utilises
a Siamese structure. That is, the two paths share the same network structure
and parameters. Regardless of which path the input data comes from, it will go
through the same network structure for feature extraction. This design substan-
tially reduces the model size and helps improve the training efficiency.

Fig. 2. Structure of the LW-RAD-NeRF model. AFE is an Audio Feature Extractor,
a is an extracted audio feature, x is a 3D spatial coordinate, and xt is a 2D torso
coordinate. E3

spatial, E
2
audio and E2

torso are all gird encoders.The original MLP layers
are colored yellow and the introduced ones are colored red. (Color figure online)

3.2 NeRF-Based Renderer

Following GeneFace, the proposed LW-GeneFace also employs RAD-NeRF [16]
to render the head and the torso parts, respectively, in the third stage. The
Head-NeRF is firstly trained and, thereafter, the torso-NeRF is trained with the
rendering image of the Head-NeRF as background. Contrastively, we propose
a lightweight NeRF-based renderer (LW-RAD-NeRF) with reduced model size
while maintaining the quality of animation synthesis.

A key insight of LW-RAD-NeRF is to decompose the holisitc high-
dimensional audio-guided protrait representation into separate low-dimensional
trainable feature grids for simplified computation. Two NeRF modules, i.e.
Decomposed Audio-spatial Encoding Module and Pseudo-3D Deformable Mod-
ule, are designed to render the head and the torso, respectively. Both modules
are grid-based NeRF models, where trainable features are associated with grid
points and an arbitrary sample is encoded by the linear interpolation of the
grid features. All the grid features are learned as network parameters. As shown
in Fig. 2, two grid encoders, E3

spatial and E2
audio, are used in the Decomposed
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Audio-spatial Encoding Module to encode the 3D spatial coordinate x and the
2D audio coordinate xa, respectively, and one grid encoder, E2

torso is used in the
Pseudo-3D Deformable Module to encode one torso coordinate xt per pixel. Note
that, instead of a complete grid data structure, a hash table is used for each grid
encoder to store the trainable feature vectors for memory efficiency, which is
indexed by hashing the grid positions. Each trainable feature vector contains
both color and density information, and increasing the hash table size should
lead to more precise color and density modeling and better quality of rendering.
Nevertheless, we observed that once the hash table size goes beyond a certain
threshold, the model accuracy sees only marginal improvement while the model
parameter count is significantly increased. As such, hash table size is one key
factor that trades off representational quality and memory efficiency.

As model compactness is one of our primary goals and an overly large hash
table has little impact on model accuracy, we propose to reduce the number of
grid features at the first step. Specifically, we reduce the hash table sizes for
all three grid encoders in the LW-RAD-NeRF models. Furthermore, we observe
that there are complicated interactions among various portions of a face, and a
high order of non-linearity should be involved for accurate modeling of facial
animation. As such, we further propose an optimized MLP module for enhanced
modeling capability, which we name bottleneck MLP. Technically, the bottleneck
MLP module is constructed by integrating additional MLP layers into the two
NeRF modules. These added layers include ones with diminished widths. The
original MLP layers are denoted in yellow, while the newly introduced layers are
indicated in red, as shown in Fig. 2. Note that, although we have increased the
number of layers in the bottleneck MLP module, the computational increase is
manageable due to the reduction in width of some layers.

To be specific, the original hash table sizes for E3
spatial, E2

audio and E2
torso are

all 216. We reduce them to 210, 210 and 212, respectively. Further, we add MLP
layers to form bottleneck MLPs, as shown in Fig. 2, for enhanced modeling capa-
bility at controlled computation increase. Note that the extra storage required
by the introduced MLP layers is far less than that saved by the reduction of
hash table size. As a net effect, we obtain a significantly reduced model size with
quality of animation maintained.

4 Experimental Evaluation

4.1 Metrics and Datasets

We compare our LW-GeneFace with several leading approaches, including Wav-
2Lip [13], MakeItTalk [25], PC-AVS [24], LSP [11], AD-NeRF [6], and GeneFace
[21]. To evaluate the precision of lip synchronization, we employ the landmark
distance (LMD) [2], and the SyncNet confidence score (Sync) [13]. We utilize the
Fréchet Inception Distance (FID) score [7] to measure the full image quality. To
further assess the generalizability, a set of out-of-domain (OOD) audio tests are
applied for all benchmark methods.
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Additionally, we employ two metrics to evaluate the complexity of the model:
the number of parameters (Param) and the computational cost in Giga Floating-
Point Operations (GFLOPs) during inference. The number of parameters indi-
cates the memory footprint for model storage. GFLOPs measures the model’s
computing load, reflecting the amount of floating-point calculations performed
per second. In this experiment, we utilize an audio segment of approximately
10 s to test GFLOPs.

Regarding the dataset, we utilize the LRS3-TED corpus by Fouras et al.
[1], to train the first two stages, i.e., the variational motion generator and the
post-net, of GeneFace and LW-GeneFace. Furthermore, a video featuring the
target person speaking for several minutes with an accompanying audio track
is required to facilitate the training of a NeRF-based person portrait renderer.
In order to compare with the state-of-the-art baselines, we utilize the same five
facial videos of GeneFace [21], each of which consists of a video with an average
length of 6,000 frames, recorded at a frame rate of 25 frames per second (fps).

4.2 Implementation Details

The Adam optimizer was used during the training process with an initial learn-
ing rate of 1 × 10−4, and β1 and β2 values of 0.9 and 0.999, respectively. The
network was trained on one GPU (NVIDIA RTX 3090 24 GB) with 40k steps
for the Variational Motion Generator, 20k steps for the postnet, and 500k iter-
ations for the NeRF-based renderer.

4.3 Results and Analysis

We compare our method with the state-of-the-art audio-driven talking head ani-
mation baselines. All the test input audio sequences are unseen during training.
We evaluate the quality of synthesized animations through quality metrics and
a user study. Further, we evaluate the complexity of models through complexity
metrics. Statics of these evaluations are provided in Tables 1, 2 and 3, which are
analyzed in the following subsections, respectively.

Metrics-Based Quality of Synthesized Animation. The image synthesis
quality of various algorithms is shown in Table 1, where the data of Wav2Lip,
MakeItTalk, PC-AVS, LSP, and AD-NeRF are all from the GeneFace paper [21].
Since complete inference models for all target faces are not released by the
authors of GeneFace, we retrained the GeneFace models for all target characters
and placed the test results in Table 1.

First we compare our approach with image-based generation baselines which
generate a talking-head video from one or several reference images. Specially,
we compare with Wav2Lip, MakeItTalk and PC-AVS. We have the following
observations. (1) Wav2Lip, MakeItTalk, and PC-AVS perform poorly on the
FID metric due to low image fidelity. (2) Both the Sync and Sync(OOD) scores
of Wav2Lip outperform that of ground truth’s. An expert lip-sync discriminator
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is trained by Wav2Lip to suit the lip generation task. However, it synthesizes
just a lower face patch and blend it into the target frame without taking target
expressions and head-poses into account. Different from their paradigm, our
method directly renders both full head and the background. (3) We achieve the
best scores on the FID and FID (OOD) metrics, meaning that we can generate
high-fidelity images for arbitrary audio sources.

Then we compare our method with model-based generation baselines includ-
ing LSP, AD-NeRF and GeneFace. Among the compared methods, LSP, Gene-
Face and LW-GeneFace use 3D facial landmarks as an intermediate represen-
tation. AD-NeRF, GeneFace and LW-GeneFace are all based on NeRF while
LSP utilizes an image-to-image translation network to generate animated videos.
The statistics of the compared models are listed in Table 1. It can be seen that,
while LSP, AD-NeRF, GeneFace and LW-GeneFace achieve roughly compara-
ble performance in terms of image quality and generalizability, LW-GeneFace
outperforms the rest by a large margin on FID and FID(OOD).

Table 1. Comparison with state-of-the-art methods. Key: [Best, Second Best, Third
Best].

Method FID ↓LMD ↓Sync ↑FID(OOD) ↓Sync(OOD) ↑
Wav2Lip 71.40 3.988 9.212 68.05 9.645

MakeItTalk 57.96 4.848 4.981 53.33 4.933

PC-AVS 96.81 5.812 6.239 98.31 6.156

LSP 29.30 4.589 6.119 35.21 4.320

AD-NeRF 27.52 4.199 4.894 35.69 4.225

GeneFace 28.22 4.321 5.412 28.66 4.372

Ground Truth 0 0 8.233 N/A N/A

LW-GeneFace 26.52 4.679 5.471 26.73 4.314

User Study on Quality of Synthesized Animation. For this study, we
sampled 2 audio clips in English and 2 audio clips in Korean and used them
to synthesize the animations for Obama2 by all the 7 methods compared in
Table 1. We engaged 26 participants and asked them to rank the synthesized ani-
mations (rendered as videos) in each of 5 aspects, i.e. lip-sync accuracy, image
quality, naturalness of lip movement, emotion expression, and audio-expression
synchronization. For each audio clip, seven animations were generated by all
the methods. These animations were ranked by each participant in each aspect,
respectively, with the 1st and best one receiving 7 points, the 2nd best one
receiving 6 points, and so on, down to the 7th and worst one receiving 1 point.
Corresponding to each method and aspect, the statistics of all the 26 partici-
pants rankings on all the 4 synthesized animations were gathered and marked
in Table 2.
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We make several key observations from Table 2. Firstly, LSP, AD-NeRF,
GeneFace and LW-GeneFace are all person-specific methods and all achieved
excellent image qualities. Secondly, while GeneFace achieved outstanding results
in emotion expression and audio-expression synchronization, LW-GeneFace fur-
ther advanced the performance. This should be attributed to the enhanced non-
linearity of modeling by the extended MLP structure and, probably, the deeper
feature extraction by the devised LW-WN as well. Thirdly, Wav2Lip performs
the best in lip-sync accuracy and naturalness of lip movement as it is specifically
designed for the particular task of lip simulation.

Table 2. User study with different methods. The error bars are 95% confidence interval.
Key: [Best, Second Best, Third Best].

Methods Wav2Lip MakeItTalk PC-AVS LSP AD-NeRF GeneFace LW-GeneFace

Lip-sync Accuracy 6.77 ± 0.16 2.15 ± 0.10 5.62 ± 0.134.96 ± 0.221.31 ± 0.123.12 ± 0.10 4.08 ± 0.21

Image Quality 2.88 ± 0.18 3.23 ± 0.40 1.88 ± 0.226.00 ± 0.514.35 ± 0.134.88 ± 0.48 5.00 ± 0.17

Naturalness of Lip Movement6.77 ± 0.11 2.15 ± 0.16 1.08 ± 0.075.92 ± 0.164.04 ± 0.113.08 ± 0.11 4.96 ± 0.21

Emotion Expression 4.88 ± 0.23 2.15 ± 0.10 1.00 ± 0.004.38 ± 0.203.19 ± 0.125.92 ± 0.07 6.64 ± 0.18

Audio-Expression Sync 4.04 ± 0.22 2.12 ± 0.12 1.04 ± 0.085.08 ± 0.223.19 ± 0.125.92 ± 0.15 6.62 ± 0.18

Table 3. Comparison with state-of-the-art methods on Parameter count and GFLOPs.
Key: [Best, Second Best, Third Best].

Method Wav2LipMakeItTalkPC-AVS LSP AD-NeRF GeneFaceLW-GeneFace

Param(M)↓ 36.298 76.603 152.244 83.535 1.736 25.416 12.548

GFLOPs ↓ 1,536 74,971 4,478 99,96815,959,832 29,214 26,247

Model Complexity. We compare the proposed LW-GeneFace with the state-
of-the-art approaches in terms of model complexity, as shown in Table 3. Consid-
ering that audio feature extractors with highly varied complexity characteristics
may be alternatively utilized for audio-driven facial animation, the statistics
in Table 3 are measured with the exclusion of the audio feature extractors to
guarantee a fair comparison.

Comparing with image-based generation baselines, i.e., Wav2Lip,
MakeItTalk and PC-AVS, the proposed LW-GeneFace has the smallest param-
eter count, though Wav2Lip and PC-AVS have smaller GFLOPs. Note again
that Wav2Lip and PC-AVS produce worse image fidelity than LW-GeneFace, as
analyzed in Sect. 4.3.

Then we compare LW-GeneFace with model-based generation baselines, i.e.,
LSP, AD-NeRF and GeneFace. The parameter count and GFLOPs of LSP are
multiple times higher than those of LW-GeneFace. Although AD-NeRF has the
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smallest parameter count, it entails the largest amount of computing as shown by
its GFLOPs. Comparing with GeneFace, LW-GeneFace reduces the model size
(in terms of Param.) sharply by more than a half, with GFLOPs also showing a
decrease. This clearly demonstrates the effect of lightweighting optimization by
LW-GeneFace.

Table 4. Ablation study results. The settings are described in Sect. 4.4. Best results
are in bold.

Setting FID ↓ LMD ↓ Sync ↑ FID(OOD) ↓ Sync(OOD) ↑ Param(M) ↓ (VMG) Param(M) ↓ (NBR) GFLOPs ↓
LW-GeneFace 26.52 4.679 5.471 26.73 4.314 11.425 0.327 26,247

GeneFace 28.22 4.321 5.412 28.66 4.372 20.431 4.189 29,214

w. LW-WN 29.07 4.703 4.953 29.71 4.495 11.425 4.189 29,213

w. LW-RAD-NeRF 26.54 4.685 5.387 27.24 4.475 20.431 0.327 26,246

4.4 Ablation Study

In this section, we perform ablation experiments to demonstrate the necessity
of each component in LW-GeneFace. Excluding the HuBERT feature extractor,
the total parameters of the GeneFace base model amount to 25.416M, of which
the first stage Variational Motion Generator (VMG) and the third stage NeRF-
Based Renderer (NBR) account for 20.431M and 4.189M parameters, respec-
tively. Since the volume of parameters in the first and third stages dominates the
overall size of the model, we focus on evaluating the necessity of the first and
third sections for the integrity of the whole LW-GeneFace model. The exper-
imental results are shown in Table 4. Param(VMG) and Param(NBR) in the
table represent the parameters of the first and the third stages of LW-GeneFace,
respectively. Note that the data regarding complexity in Table 4 have been pro-
cessed with the exclusion of the HuBERT extraction module.

We test two settings in this experiment. In the setting w. LW-WN, it can
be seen that the addition of the LW-WN module slightly reduces the quality of
synthesized animation, and the number of parameters is lowered to almost half
of the base model GeneFace. In our dual-path feature extraction, although the
two branches share parameters, the calculations required for each branch still
need to be performed, so the amount of computation has not decreased much.

In the setting w. LW-RAD-NeRF, we can see that the addition of the LW-
RAD-NeRF module achieves better quality of synthesized animation on met-
rics Sync(OOD), FID and FID(OOD). Benefiting from our proposed bottleneck
MLPs, the model possesses generalization and high-fidelity capabilities. Further-
more, the metric Param(NBR) is reduced to one thirteenth, compared with that
of the base model GeneFace.

5 Conclusion

In this work, we have proposed LW-GeneFace, a lightweight model for gen-
eralized and high-fidelity audio-driven 3D talking face synthesis by optimizing
GeneFace. To be specific, we compress the first and the third stages of GeneFace,
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which dominate the model size, while introducing extra layers to the third stage
for enhanced modeling capability with controlled growth of computation. For
the first stage, we employ depthwise separable convolution and Siamese dual-
path feature extraction to simplify the model. For the third stage, we reduce
the hash table sizes for the grid-based encoders and enhance the MLP portions
by bottleneck MLP modules, which result in a compact NeRF model for head
and torso rendering. The experimental results demonstrated that LW-GeneFace
achieves state-of-the-art performance when both model size and quality of ani-
mation synthesis are considered.

The limitations of our work are two-fold. On the one hand, LW-GeneFace
is an offline model in essence. If this model is used for online interaction, it is
necessary to wait for the user to finish a segment of speech before creating the
corresponding character animation. Therefore, there will be a time delay between
the user’s speech and the character animation. It should be noted that this is
also a problem with all the other algorithms we compared (see Table 2). On the
other hand, with an augmentation in the number of layers in the bottleneck
MLPs, the inference time cost also increases. For instance, in one of our tests,
LW-GeneFace reaches 2.26 frames per second (fps) in animation synthesis while
GeneFace achieves 2.99 fps.
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Abstract. In the field of computer vision, enhancing low-light images
is a significant challenge, primarily due to the reliance on high-quality
paired low-light and high-light images in supervised learning meth-
ods, which are expensive to acquire. This paper presents an unpaired
approach for low-light image enhancement, integrating a Joint Esti-
mation Network and a Multi-Domain Feature Fusion Network. The
Joint Estimation Network is trained exclusively with pairs of low-light
images of the same scene, while the Multi-Domain Feature Fusion Net-
work is trained solely with normal-light images that are not paired
with the aforementioned low-light images. The Joint Estimation Net-
work decomposes low-light images into components of illumination,
reflectance, and noise. After enhancing the illumination, it passes these
components, along with the reflectance, to the Multi-Domain Feature
Fusion Network. The Multi-Domain Feature Fusion Network employs
multi-scale encoder-decoder modules and frequency domain adjust-
ments to enhance details and maintain global consistency. Our method
addresses the issues of insufficient illumination and high noise in low-light
images, improving visual quality without the need for paired images,
thereby increasing the model’s practicality in real-world applications.

Keywords: Unpaired Low-light image enhancement · Retinex
Theory · FFT

1 Introduction

Enhancing images captured in low-light environments is a fundamental task in
computer vision, aimed at improving both the clarity and quality of such images.
The complexity of this task arises from challenges like inherent noise, low con-
trast, and color distortions typical of low-light scenarios. Traditional techniques,
including histogram equalization and methods based on the Retinex theory, often
struggle to provide satisfactory outcomes. These methods may introduce unde-
sirable artifacts or fail to adequately address the varying conditions found in
low-light environments [19,30].

In recent years, deep learning-based techniques have achieved significant
advancements in enhancing low-light images. Supervised learning methods,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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which depend on paired datasets of low-light and normal-light images, have
notably improved visual quality. For instance, the work by [6] and the Zero-
DCE model [15] utilize deep neural networks to predict enhancement functions
effectively. Despite their success, these approaches are limited by the necessity
for paired training data, which is often challenging and expensive to collect [24].

To overcome this limitation, unsupervised and zero-shot learning methods
have emerged as promising alternatives, eliminating the need for paired training
data. Methods such as RetinexDIP [48] and EnlightenGAN [18] leverage gen-
erative models and domain adaptation techniques to enhance low-light images
without ground truth references. Despite their effectiveness, these methods may
suffer from instability and artifacts due to the lack of direct supervision.

This paper presents an innovative unpaired approach for low-light image
enhancement, overcoming the drawbacks of existing methods. Our approach is
built on two key components: the Joint Estimation Network and the Multi-
Domain Feature Fusion Network. The Joint Estimation Network breaks down
low-light images into their illuminance, reflectance, and noise elements, enabling
focused enhancement of each aspect. The Multi-Domain Feature Fusion Network
integrates multiscale encoder-decoder modules with frequency domain adjust-
ments to improve both local detail and global coherence, drawing inspiration
from recent developments in frequency-based image processing [23,32]. Overall,
The primary contributions of this paper can be summarized as follows:

– We propose a groundbreaking unpaired method for low-light image enhance-
ment, which ingeniously integrates image decomposition with multi-domain
feature fusion. This methodology allows for substantial enhancements in
visual quality without relying on paired reference images, thereby offering
a versatile solution for real-world deployment.

– Our Joint Estimation Network is architected to deconstruct low-light images
into their essential components-illuminance, reflectance, and noise. This
strategic decomposition facilitates precise and targeted enhancement of each
constituent element, culminating in superior image quality. The network’s
design is meticulously optimized to capture and process the intricate inter-
dependencies among these components, resulting in more accurate and aes-
thetically refined enhancements.

– The Multi-Domain Feature Fusion Network synergizes spatial and frequency
domain information, employing Fast Fourier Transform (FFT) to preserve
both fine-grained image details and overall coherence. This dual-domain strat-
egy markedly improves the fidelity and texture of images, demonstrating
state-of-the-art performance on benchmark datasets.

2 Related Works

2.1 Unsupervised Low-Light Image Enhancement

Unsupervised low-light image enhancement has gained substantial attention due
to its ability to operate without paired training data, thus overcoming the



RFLLIE 93

limitations inherent in supervised learning. The LIME algorithm, which inte-
grates Retinex theory with illumination map estimation, effectively enhances
low-light images [16]. RetinexNet utilizes deep learning to decompose images
into reflectance and illumination components, marking a significant advance in
the field [38]. Inspired by tools like Photoshop, ExCNet introduced the concept
of learning an “S-curve” for image enhancement [45]. Zero-DCE (Zero-Reference
Deep Curve Estimation) built on this by proposing a zero-reference deep learning
framework that enhances low-light images without requiring paired or unpaired
data [15]. A survey by Li et al. highlighted the importance of various unsuper-
vised and zero-shot methods, underlining their critical role in low-light image and
video enhancement [24]. Additionally, Huang et al. proposed a Fourier-based
enhancement method, demonstrating the efficacy of frequency domain techniques
[17]. EnlightenGAN uses a U-Net architecture for the generator and employs
dual discriminators to capture both global and local information [18]. RUAS
focuses on modeling the intrinsic underexposed structures of low-light images,
while RRDNet decomposes images into illumination, reflection, and noise com-
ponents to achieve superior denoising effects [28,52]. SCI developed a cascaded
illumination learning process with weight sharing, enhancing the robustness and
effectiveness of the enhancement process [29]. NeRCo introduced multimodality
into low-light image enhancement, expanding the capabilities of existing meth-
ods [41]. PairLIE, based on Retinex theory, uses pairs of low-light images for
training and has achieved competitive results [13]. Despite these advancements,
many methods rely on redundant loss functions to ensure convergence, which
introduces numerous priors and limits their generalization ability. These develop-
ments illustrate the ongoing evolution of unsupervised low-light image enhance-
ment techniques, each contributing to more effective and efficient solutions for
enhancing images captured under challenging lighting conditions.

2.2 FFT-Based Image Enhancement

The Fast Fourier Transform (FFT) is a pivotal technique in image processing,
enabling efficient conversion between the spatial and frequency domains, which
facilitates various advanced methods. FFT-based low-pass and high-pass filtering
manipulate frequency components to suppress noise and enhance image edges [1].
Fourier Low-Light Image Enhancement (FourLLIE) utilizes frequency informa-
tion to enhance structural details and contrast in low-light images. Additionally,
FFT is integral to image compression and reconstruction. By reducing redun-
dancy in the frequency domain, it allows effective image restoration via inverse
FFT, as demonstrated by Huang et al. [17] and Cai et al. [4]. In image registra-
tion, FFT employs phase correlation techniques to determine translational shifts
between images, which is crucial for precise alignment in medical imaging [6].
These applications highlight FFT’s versatility and power in advancing image pro-
cessing technologies. Xu et al. [40] introduced a Fourier-based data augmentation
technique aimed at improving domain generalization. Fuoli et al. [14] employed
Fourier losses to restore high-frequency details in image super-resolution, while
Yu et al. [44] leveraged Fourier frequency information for image dehazing. Sim-
ilarly, Zhou et al. [49] applied these methods to pan-sharpening. Additionally,
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Zhou et al. [50] developed a Fourier-based up-sampling approach that enhances
various computer vision tasks in a plug-and-play manner. At the same time,
Huang et al. [17] and other researchers created Fourier-based algorithms for low-
light image enhancement. Despite some limitations, these approaches demon-
strate the wide-ranging applicability of Fourier frequency information. However,
FFT-based techniques are not without their drawbacks. A significant issue is the
potential loss of spatial information due to the global nature of the Fourier trans-
form. Furthermore, FFT methods can be computationally demanding, especially
for large images, and may perform poorly under non-uniform lighting condi-
tions. These challenges indicate the necessity for further research to optimize
FFT-based methods for practical use in low-light image enhancement.

2.3 Retinex Theory

Land and McCann introduced the Retinex theory [20,21] through a series of
optical experiments, demonstrating that intrinsic reflectance and incident illu-
mination together determine the radiation reaching the human eye. The math-
ematical representation is as follows:

I = L ◦ R (1)

Here, the symbol ◦ denotes the Hadamard product, where I represents the
radiation reaching the human eye, L represents illumination intensity, and R
represents reflectance. The reflectance R remains constant for images of the
same scene under varying exposure conditions, as it is determined solely by the
intrinsic properties of the object’s surface. This indicates that color perception
primarily depends on reflectance.

Various approaches have utilized the Retinex theory to enhance image qual-
ity. For example, numerous studies have employed this theory to improve image
quality under different conditions [9,11,33,35]. Other research has refined its
application in image processing [3,10,12,16,26,31,39]. Recently, deep learn-
ing has become prevalent in the field of low-light image enhancement (LLIE)
due to its robust learning capabilities and inference speed. Significant advance-
ments using deep learning techniques have been shown in various studies [8,34,
37,38,47]. Moreover, recent research has highlighted different approaches and
improvements achieved in LLIE through deep learning [22,28,29,42]. Approxi-
mately one-third of these deep learning methods incorporate the Retinex theory
to achieve better enhancement effects and provide a physical explanation for
the enhancement process [24]. Consequently, leveraging the Retinex theory to
guide image enhancement methods in deep learning is crucial for establishing an
effective physical model.

3 Proposed Method

The proposed method is structured to address the challenges of enhancing low-
light images through an unpaired learning approach, leveraging the inherent
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properties of the images themselves without reliance on paired high-light images
as ground truth. This approach allows for greater flexibility and applicability in
practical scenarios where high-light references may not be available. The method
is divided into two main components: the Joint Estimation Network and the
Multi-Domain Feature Fusion Network, each designed to tackle specific aspects
of low-light image enhancement, as shown in Fig. 1.

Fig. 1. Overview of the network model structure. The diagram illustrates a two-stage
training process. In Stage 1, the Joint Estimation Network(JE) is trained using paired
low-light images. In Stage 2, the Joint Estimation Network(JE) is fixed, and the Multi-
Domain Feature Fusion Network is trained using another set of normal-light images.
R stands for Reflection, L stands for Illuminance, and N stands for Noise.

3.1 Dark ISP

We use the EC-Zero-DCE model [51] to randomly degrade images from normally
illuminated inputs. The process involves converting the input images to the LAB
color space to isolate the luminance channel.

The core transformation applied to generate low-light images can be
expressed as:
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Ilow = Iorig × EC-Zero-DCE(L,E) × α

L × α + ε
(2)

where Iorig is the original image, EC-Zero-DCE(L,E) is the output of the EC-
Zero-DCE model given the luminance channel L and exposure map E, and α
is a scaling factor.

The luminance channel L is extracted as follows:

L = fLAB(Iorig) (3)

where fLAB converts the RGB image to LAB color space and extracts the lumi-
nance channel.

The exposure map E is defined as:

E =

{
β if L < γ

L otherwise
(4)

where γ is a threshold for saturated regions and β is a randomly chosen exposure
degree.

To simulate realistic low-light conditions, we add Gaussian noise for sensor
noise and JPEG compression artifacts for quality loss. Then, we combine the
enhanced low-light luminance channel with the original chrominance channels
and convert back to RGB. This ensures the generated low-light images retain
the original structure and color, producing high-quality images for training and
evaluating low-light image enhancement algorithms.

During the training process, we generate moderately dark and extremely
dark images by controlling specific parameter ranges, and we randomly select
parameters to degrade the images. These low-light images are then processed
through the network separately. We calculate the loss not only between each
of these low-light images and the normal light image but also between the two
generated low-light images. This ensures that the network effectively learns the
features and details of image enhancement under different lighting conditions and
enhances images to a uniform level, preventing overexposure. Consequently, this
improves the network’s performance in enhancing low-light images in real-world
scenarios.

3.2 Joint Estimation Network

The Joint Estimation Network is crafted to decompose low-light images into
their constituent components of illuminance, reflectance, and noise. This decom-
position facilitates a focused enhancement of each attribute, thereby achieving
a comprehensive improvement in the overall image quality. The network oper-
ates by first estimating the noise within the image and subsequently isolating
the illuminance and reflectance components, which are crucial for reconstructing
the enhanced image.
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The input to this network consists of paired low-light images Ilow, processed
to suppress noise features and enhance underlying details. The architecture effec-
tively models the complex interplay between the different components of the
image, using the following decomposition:

Ilow = R ◦ L + N (5)

where R stands for Reflection, L stands for Illuminance, and N stands for Noise.
In the training phase, we employ a series of loss functions that independently

validate the accuracy of each decomposed component. These functions ensure that
the network can reconstruct high-quality images by accurately balancing the inter-
dependent relationships between illuminance, reflectance, and noise without the
need for high-light ground truth. The specific loss functions used are as follows:

Illuminance Consistency Loss: This loss ensures the estimated illuminance
map L closely matches the perceived illuminance of the low-light input, Ilow. It also
incorporates a total variation (TV) loss to smooth the illuminance map [13].

Lilluminance = ||L ◦ R − Ilow||22 + ||R − Ilow
L + ε

||22 + ||L − max(Ilow)||22
+ (‖∇hL‖1 + ‖∇wL‖1)

(6)

where ε is a small constant to prevent division by zero, max(Ilow) is the maximum
pixel value in Ilow, and the TV loss term is expanded as ‖∇hL‖1 + ‖∇wL‖1,
promoting smoothness in the illuminance component.

Reflectance Consistency Loss: This loss ensures that the reflectance compo-
nent R remains consistent in the same scene, particularly focusing on maintaining
texture and color consistency.

Lreflectance = ||R1 − R2||22 (7)

where R1 and R2 are reflectance estimates from different images of the same
scene, emphasizing the model’s ability to produce stable reflectance maps.

Noise Loss: This loss assesses the effectiveness of the noise reduction by com-
paring the noise-reduced image I1 to the original low-light image Ilow.

Lnoise = ||Ilow − I1||22 (8)

where I1 represents the image after noise has been processed and reduced by the
network.

This unpaired approach underscores the network’s adaptability to varied
lighting conditions, making it robust for real-world applications.

3.3 Multi-domain Feature Fusion Network

The Multi-Domain Feature Fusion Network adopts a novel approach to enhanc-
ing the quality of low-light images by simulating the conditions under which these
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images might be captured. This network is trained using normal-light images
Ihigh, which are processed through a dark Image Signal Processor (ISP) sim-
ulation to generate corresponding low-light images Ilow−sim. These simulated
images serve as the training input, allowing the network to learn and adapt to
a range of low-light environments.

The network architecture is based on a series of encoder and decoder modules
that work across multiple scales. The key component, the Bidomain Nonlinear
Mapping module [7], extracts spatial features from the input images and then
translates these into the frequency domain using Fast Fourier Transform (FFT).
Adjustments in the frequency domain focus on enhancing both local details and
global consistency, which is crucial for low-light enhancement:

Xoutput = Xspatial ⊕ F−1(A(F(Xspatial))) (9)

where Xspatial is the input image in the spatial domain, F is the Fourier trans-
form operator, A is the adjustment function in the frequency domain, F−1 is the
inverse Fourier transform, ⊕ denotes the feature fusion operation, and Xoutput

is the output image.
To ensure the network’s effectiveness across various scales, a multi-scale loss

function is employed. This function measures the discrepancy between the sim-
ulated low-light inputs and the network’s outputs, comparing them to normal
light images. It incorporates frequency domain losses to ensure a comprehensive
enhancement of image quality:

L = λ1

3∑
i=1

‖Îi − Ihigh‖1 + λ2

3∑
i=1

‖FFT(Îi) − FFT(Ihigh)‖1 (10)

where Îi represents the network’s output image at scale i, Ihigh is the correspond-
ing normal light image used as the ground truth, λ1 and λ2 are weighting factors
that balance the contribution of spatial domain loss and frequency domain loss,
respectively, ‖ · ‖1 denotes the L1 norm, which measures the absolute differences
between the predicted and ground truth images, and FFT(·) represents the Fast
Fourier Transform, which transforms the images to the frequency domain.

By using both spatial and frequency domain losses across multiple scales, the
network is encouraged to produce outputs that are not only visually similar to
the ground truth in terms of pixel values but also consistent in their frequency
content, leading to a more comprehensive enhancement of image quality. The
input to the network is a simulated low-light image, and the output is compared
to the normal light image for evaluation.

4 Experiment

4.1 Experimental Settings

Compared Methods. We compare our methods with model-based method
including LIME [16], supervised learning methods including RetinexNet [38],
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RUAS [28], and ExCNet [45], semi-supervised learning methods including
DRBN [43], unpaired supervised learning methods including CLIP-LIT [27],
EnlightenGAN [18], and QuadPrior [36], and zero-shot learning methods
including RRDNet [52], Zero-DCE [15], Zero-DCE++ [25], NeRCo [41],
RetinexDIP [48], SCI [29], and PairLIE [13].

Datasets. We utilized the official test sets of LOL-v1 [38] comprising 15 pairs of
low-light and normal-light images and LOL-v2 [43] comprising 100 pairs. Addi-
tionally, we followed Retinexformer [5] to split 500 pairs from the MIT-Adobe
FiveK dataset [2] for testing. On the LOL and MIT datasets, we reported PSNR,
SSIM, and LPIPS [46]. During the first phase of training the Joint Estimation
Network, we exclusively use the paired low-light images from the LOL dataset.
In the second phase, for the overall network training, we only utilize the normal-
light images from the corresponding training datasets. For instance, when train-
ing with the FiveK dataset, we only use the normal-light images from the FiveK
training set.

Implementations. We use ADAM as the optimizer and employ a learning rate
scheduler for learning rate adjustments. The initial learning rate is set to 1×10−4

and adjusted every 50 epochs at a decay rate of 0.5. The network is trained for
400 epochs. During training, we crop image patches to (128, 128). The batch size
is set to 8. All experiments are conducted on an NVIDIA GeForce RTX 3090
GPU and implemented using PyTorch.

4.2 Quantitative Results

LOL Dataset. Table 1 presents the benchmarking results for low-light enhance-
ment on the LOL-v1 dataset and Table 2 presents the benchmarking results for
low-light enhancement on the LOL-v2 dataset. The proposed method achieved
the highest scores in PSNR, SSIM, and LPIPS among unsupervised methods,
and it was competitive with supervised methods.

MIT-Adobe FiveK Dataset. Table 3 shows the benchmarking results on the
MIT-Adobe FiveK dataset. The proposed method achieved competitive perfor-
mance, particularly in PSNR, SSIM and LPIPS.

4.3 Visual Comparison

Figure 2 and Fig. 3 show a visual comparison of the proposed method with other
methods on the MIT-Adobe FiveK and LOL-v1 dataset. The proposed method
generates images with better illumination, color consistency, and naturalness.
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Table 1. Benchmarking results for low-light enhancement on the LOL-v1 dataset. The
highest scores are highlighted in red, and the second highest scores are marked in blue.

Input LIME [16] RetinexNet [38] RUAS [28] DRBN [43]

PSNR↑ 7.77 16.76 16.77 16.40 15.13

SSIM↑ 0.181 0.560 0.462 0.537 0.472

LPIPS↓ 0.560 0.350 0.474 0.350 0.316

EnlightenGAN [18] RRDNet [52] RetinexDIP [48] ZeroDCE [15] ZeroDCE++ [25]

PSNR↑ 17.48 11.38 11.65 14.86 15.34

SSIM↑ 0.677 0.470 0.501 0.589 0.603

LPIPS↓ 0.322 0.361 0.317 0.335 0.316

SCI [29] PairLIE [13] QuadPrior [36] Ours

PSNR↑ 14.78 18.46 18.34 20.91

SSIM↑ 0.553 0.749 0.827 0.773

LPIPS↓ 0.332 0.290 0.209 0.261

Table 2. Benchmarking results for low-light enhancement on the LOL-v2 dataset.

Input LIME [16] RetinexNet [38] RUAS [28] DRBN [43]

PSNR↑ 9.72 15.24 15.47 15.33 19.60

SSIM↑ 0.190 0.470 0.560 0.520 0.764

LPIPS↓ 0.333 0.360 0.421 0.322 0.246

EnlightenGAN [18] RRDNet [52] RetinexDIP [48] ZeroDCE [15] ZeroDCE++ [25]

PSNR↑ 18.23 14.85 14.51 18.06 18.49

SSIM↑ 0.610 0.560 0.546 0.605 0.617

LPIPS↓ 0.309 0.265 0.274 0.298 0.290

SCI [29] PairLIE [13] QuadPrior [36] Ours

PSNR↑ 17.30 19.89 20.31 20.44

SSIM↑ 0.565 0.778 0.808 0.780

LPIPS↓ 0.286 0.282 0.202 0.264

4.4 Ablation Studies

To thoroughly evaluate the contributions of each component in our proposed
model, we conducted ablation studies on the LOL-v1 dataset. Specifically, we
removed certain modules from the full model to understand their impact on
the overall performance. Here, w/o Multi-Domain Feature Fusion refers to con-
necting a decoder directly after the Joint Estimation Network. The quantitative
results are presented in Table 4.

From these ablation studies, it is evident that both the Joint Estimation
Network and the Multi-Domain Feature Fusion module play crucial roles in
our model. The Multi-Domain Feature Fusion significantly contributes to the
perceptual quality and accurate reconstruction of the images, as evidenced by the
LPIPS and PSNR metrics. On the other hand, the Joint Estimation Network is
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Table 3. Benchmarking results for low-light enhancement on the MIT-Adobe FiveK
dataset.

ExCNet [45] EnlightenGAN [18] PairLIE [13] NeRCo [41]

PSNR↑ 14.21 13.28 10.55 17.33

SSIM↑ 0.719 0.738 0.642 0.767

LPIPS↓ 0.197 0.203 0.273 0.208

CLIP-LIT [27] ZeroDCE [15] ZeroDCE++ [25] RUAS [28]

PSNR↑ 17.00 13.53 12.33 9.53

SSIM↑ 0.781 0.725 0.408 0.610

LPIPS↓ 0.159 0.201 0.280 0.301

SCI [29] QuadPrior [36] Ours

PSNR↑ 16.29 18.51 20.90

SSIM↑ 0.795 0.785 0.833

LPIPS↓ 0.143 0.163 0.163

Fig. 2. Example low-light enhancement results on the MIT-Adobe FiveK.

Fig. 3. Example low-light enhancement results on the LOL-v1 dataset.

Table 4. Ablation study results on the LOL-v1 dataset.

Model Variant PSNR ↑ SSIM ↑ LPIPS ↓
Full Model 20.91 0.773 0.261

w/o Joint Estimation Network 19.19 0.718 0.359

w/o Multi-Domain Feature Fusion 17.59 0.793 0.385
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essential for capturing fine structural details, thereby improving the SSIM and
ensuring better overall image quality. These findings validate the design choices
made in our proposed model, demonstrating their effectiveness in enhancing
low-light image enhancement tasks.

5 Conclusion

In this paper, we proposed a novel unpaired method for low-light image enhance-
ment that leverages Retinex theory and Fast Fourier Transform (FFT)-based
processing. The method consists of a Joint Estimation Network and a Multi-
Domain Feature Fusion Network, which decompose low-light images into illumi-
nance, reflectance, and noise components, and integrate spatial and frequency
domain information to enhance image details and maintain global consistency.
Extensive experiments on public datasets demonstrate that our approach signif-
icantly improves the visual quality of low-light images, outperforming existing
unsupervised and zero-shot learning methods in both qualitative and quantita-
tive metrics. The key advantages of our approach include the ability to enhance
images without paired training data, making it highly applicable in real-world
scenarios. Future work could explore integrating additional domain adaptation
techniques and extending the framework to handle video sequences, providing
further benefits for applications in surveillance, autonomous driving, and low-
light photography.
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Abstract. Image deraining aims to transform a rainy input image into
an image of high quality. Transformer-based techniques have demon-
strated remarkable efficacy in image deraining because of their capacity
to represent non-local information, a crucial element for high-quality
image reconstruction. Our findings indicate that most transformers used
for feature aggregation nowadays leverage all token similarities between
query-key pairs. If the query tokens differ from the key tokens, the
quality of the recovered image is compromised by the self-attention
values derived from these tokens if these are considered during fea-
ture aggregation. For this purpose, we propose the Progressive Sparse
Transformer Network (PSTNet), which progressively learns to restore
degraded inputs by retaining the helpful self-attention information dur-
ing feature aggregation and discarding the remaining values which
obstruct the restoration. Transformer blocks help to capture interactions
between distant pixels. Thorough experimental outcomes on widely used
benchmarks show that the suggested approach performs better than most
existing techniques.

1 Introduction

Single image deraining is a prevalent ill-posed vision challenge that has surfaced
in the recent decade, which makes an effort to reconstruct a clear output from
the rain-degraded input. The unknown rain streak pattern constitutes a hard
situation that requires solid image priors for effective restoration. To address
this issue, early techniques [25,29,67] usually impose different priors depending
on the statistical features of rain streaks. The deraining performance of these
handcrafted priors is limited since they cannot withstand complex and varied
rainy settings.

Convolutional neural networks (CNN) obtain generalizable priors from vast
amounts of data, making them a better choice than traditional restoration
approaches. The fundamental process of CNNs is ’convolution’, which provides
local connection and translation equivariance. These characteristics increase
CNNs’ effectiveness and generality, but they also present two significant chal-
lenges: (a) Because of its small receptive field, the convolution operator cannot
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15332, pp. 106–120, 2025.
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describe long-range pixel interactions, and (b) The static weights of convolution
filters restrict their capacity to adjust to input data.

Transformers [5,30,39,54] have been used for image deraining to get over
these restrictions, and they’ve done an admirable job of it since they can more
accurately represent the non-local relations required to rebuild images with high
quality. However, when clear images are restored, these techniques fall short
of accurately simulating the localized characteristics of images. Transformers’
self-attention fails to model the local invariant features that CNNs excel at,
which is one of the key causes. In local regions, rain streaks are often mistaken
for background. To overcome these constraints, recent works [10,23,61] combine
CNN operations with transformers.

Conventional transformers [46] consider all attention values based on query-
key pairs to aggregate features. Sometimes, as the tokens from the key tokens
may not always be relevant to the query tokens, applying the self-attention val-
ues computed from these tokens may hinder the process when reconstructing
the output. The reason is that smaller similarity weights are often amplified
by the dense computation pattern of self-attention, allowing implicit noise into
the feature interaction and aggregation process. Consequently, when modelling
global feature dependencies, redundant or unnecessary representations are fre-
quently included [48,73]. These realizations motivate us to determine and use
the best self-attention values to maximize feature utilization for enhanced image
restoration.

To overcome the difficulties, we have developed PSTNet, an efficient progres-
sive sparse Transformer network to restore the image. The core of this frame-
work is the selective multi-head attention (SMHA) and a simple Gate Feed-
forward network (SGFN). The SMHA mechanism replaces the traditional self-
attention by retaining only the k most crucial similarity scores between queries
and keys, thus enhancing feature aggregation, and the remaining scores are dis-
carded. The gating mechanism in SGFN regulates the flow of complementary
features, enabling subsequent network layers to concentrate on more refined
image attributes. Three main benefits come with our suggested method: (1)
better robustness because of less sensitivity to irrelevant feature interference;
(2) better localization and global feature utilization; and (3) better deraining
performance by utilizing both data and content sparsity.

An overview of the primary contributions is provided below.:

– We introduce a sparse Transformer architecture to achieve better deraining
results with improved detail and texture recovery.

– We propose using SMHA as part of a sparse transformer in the encoder-
decoder architecture. This mechanism is intended to gather the most crucial
data from the collected feature maps.

– A novel, simple gate feed-forward network (SGFN) that regulates feature
transformation by filtering out less informative features in the network has
been developed.

– Comprehensive tests on multiple benchmarks demonstrate that our model
performs over state-of-the-art (SOTA) techniques.
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2 Related Work

2.1 Single Image Deraining

Conventional techniques [19,25,29,35,67] for image deraining frequently create
an image-prior to impose extra constraints, but these manually created priors are
dependent on empirical observations and find it difficult to capture the intrin-
sic characteristics of distinct images. Many frameworks based on CNN have
been developed to tackle it [57], and their performance greatly surpassed that of
older approaches. By taking into account attributes like rain direction [32], den-
sity [68], and veiling effect [20], as well as by optimizing network architectures
through the use of transfer mechanisms [21,53,59,60] or recursive computation
[24,28,41], certain studies have improved the depiction of rain. Despite their
achievements, the constraints of convolution make it difficult for these algorithms
to capture long-range dependencies. Because of its computational efficiency and
hierarchical multi-scale representation, encoder-decoder-based U-Net architec-
tures [1,11,27,51,63,66,71] are very popular. Furthermore, skip connection-
based methods that concentrate on residual signal learning [18,31,65,72] have
shown effectiveness. Selectively attending to relevant details [28,65,66] has also
benefited from integrating spatial and channel attention modules. We can effec-
tively simulate non-local information by employing a transformer as the net-
work’s backbone.

2.2 Vision Transformers

Transformers were initially created for challenges involving the processing of
sequences in natural language, [46] and have since been adapted for various
vision tasks, including image recognition [13,45,62], detection [3,33,75] and seg-
mentation [49,55,74]. Vision Transformers break down an image into a series of
patches and discover how they relate to each other [13,45], providing a strong
capability to understand long-range relationships and adjust to input data [26].
These characteristics have led to their application in image deraining [51]. Jiang
et al. [23] combined a background restoration network with self-attention in a
Transformer to create a dynamic deraining network. Recently, Xiao et al. [54]
introduced the image deraining Transformer (IDT), which uses a dual Trans-
former approach combining spatial and window-based attention to get out-
standing outcomes. However, most of the current approaches rely on all the
self-attention scores, which can include redundant or irrelevant features with
smaller weights, leading to potential noise in the output features. To address it,
we propose using sparse attention in Transformers to focus on the most relevant
information and reduce noise.

2.3 Sparse Attention

Inspired by the neural activity in biological brains, the concept of sparsity in
hidden representations within deep neural networks offers significant advantages
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Fig. 1. Architecture of Progressive sparse transformer network (PSTNet) for image
deraining. The primary modules of STB are selective multi-head attention (SMHA),
which masks out unwanted information, and a simple gate feed-forward network
(SGFN) with a simple gate for useful information to propagate further.

for both problems related to NLP and vision [48,73]. Sparse representation
addresses low-level vision issues like super-resolution [37] and image draining
[50]. Sparse attention mechanisms can be classified as content-driven sparse
attention and fixed (data-driven) sparse attention [9,12,43]. Data-driven sparse
attention often involves introducing local attention operations into a CNN back-
bone, focusing primarily on local window sizes. Recent studies [17,47] have
explored enforcing sparsity in Transformer architectures, such as Zhang et al.’s
[70] attention retractable Transformer, which allows interaction among features
from sparse areas. Unlike these approaches, we implement a straightforward yet
effective approximation for self-attention based on the most crucial attention
values.

2.4 Selective Attention

For NLP tasks, Zhao et al. were the first to provide an explicit selection strategy
based on the most crucial attention values. Vision transformer has been improved
with the introduction of k-NN attention, building on its success. We have created
an effective SMHA, contrasting to the selective attention used in the spatial
dimension.

3 Proposed Model

First, as illustrated in Fig. 1, we provide the overall flow of our PSTNet architec-
ture. Next, we outline the essential elements of the suggested sparse transformer:
(a) Selective multi-head attention (SMHA) and (b) SimpleGate feed-forward net-
work (SGFN). Lastly, we provide a progressive training strategy.
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3.1 Overall Pipeline

The flow of our proposed PSTNet, as seen in Fig. 2, a modified U-net encoder-
decoder design is used. Given a rainy image Irain ∈ R

H×W×3; where C represents
channel count and H×W is the spatial resolution. First, to acquire low-level fea-
tures F ∈ R

H×W×C , PSTNet applies convolution. These shallow features F0

are converted into deep features D ∈ R
H×W×2C after passing through a sym-

metric encoder-decoder network. At every stage, the encoder-decoder targets a
different spatial resolution and channel dimension to extract multi-scale rep-
resentations from rainy images. Encoder is used to increase channel capacity
by reducing the spatial size hierarchically, beginning with the high-resolution
input. Next, the decoder gradually restores the high-resolution representations
from low-resolution input (latent features) L ∈ R

H
8 ×W

8 ×8C . We employ pixel-
unshuffle and pixel-shuffle methods [44] for downsampling and upsampling fea-
tures, respectively.

Skip connections [42] is used to concatenate encoder and decoder charac-
teristics to facilitate recovery. After concatenation, a 1× 1 convolution reduces
channels by a scale of 0.5 at all levels except level one. At the top level, sparse
transformer blocks combine low-level details from the encoder with high-level
details from the decoder, which helps preserve subtle structural and textural
characteristics in the recovered images. In each sparse transformer, we intro-
duce SMHA instead of the standard self-attention to achieve feature sparsity,
enhancing the feature aggregation process. Additionally, we incorporate a SGFN
into the block, aiding in image restoration. This hybrid approach allows PSTNet
to leverage both intrinsic properties and the adaptive content of rainy images,
effectively separating unwanted rain streaks from the latent clear background.
Experiments confirm that these design choices lead to improved image quality.
Finally, the refined features are passed through a convolution layer to obtain a
residual image Iresidual ∈ R

H×W×3, it is added to the degraded input to obtain
the clean output Iclean = Irain + Iresidual. The network is trained to minimize
the error function:

E = ‖Iclean − Irain‖1 (1)

where ‖.‖1 is L1-norm. Now, we present the components of the sparse Trans-
former.

3.2 Sparse Transformer

Standard transformers [13,46,64] compute self-attention globally across all
tokens, which can lead to noisy interactions between irrelevant features, making
them less effective for image deraining. To resolve the problem, we introduce
a sparse transformer for feature extraction, leveraging the benefits of sparsity
found in neural networks. For the input features from the (t-1)-th block Ft−1, the
encoding process of the sparse transformer can be formally described as follows:

F ′
t = Ft−1 + SMHA(LN(Ft−1)) (2)

Ft = F ′
t + SGFN(LN(F ′

t )) (3)
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where LN stands for layer normalization; F ′
t and Ft are the outputs from the

selective multi-head self-attention (SMHA) and the simple Gate feed-forward
network (SGFN) respectively, as described below.

Selective Multi-head Self-attention (SMHA). Let us revisit the typical
self-attention mechanism used in Transformers prevalent in many existing mod-
els. In typical attention, given matrices Q (query), K (key), and V (value) with
dimensions R

L×d, the output is:

A(Q,K, V ) = σ

(
QKT

λ

)
V, (4)

where σ represents the softmax function. Here, λ is an optional scaling factor
defined as λ =

√
d. Generally, multi-head attention computes k separate Q,K,

and V matrices for each head, which gives d = C/k dimensional results per
head. The final result is then obtained across all heads by concatenating and lin-
early projecting the outputs. The main computational challenge in Transformers
is the self-attention layer. In conventional self-attention mechanisms [13,46], the
time and memory complexity of taking the dot-product between keys and queries
grows quadratically as input spatial resolution increases, specifically O(W 2 H2)
for W × H images. Therefore, applying self-attention to many image restora-
tion tasks involving high-resolution images becomes impractical due to these
computational demands. So instead of computing self-attention (SA) over spa-
tial dimensions [64], we apply over channels. This involves calculating cross-
covariance between channels to produce an attention map with a linear time
complexity that implicitly captures the global context. Our strategy prevents
irrelevant information from being included throughout the feature interaction
phase by replacing previous methods with SMHA.

To capture channel-wise spatial context, we first use 1 × 1 convolutions to
integrate cross-channel context by each pixel, followed by 3 × 3 depth-wise con-
volutions. Next, self-attention can be determined across channels. After, the
similarity between pairs of pixels is calculated using reshaped queries and keys.
Next, we eliminate elements with lower attention weights in the transposed atten-
tion map M with size R

Ĉ×Ĉ . We choose the k most contributive scores from M
using an adaptive method instead of a dropout strategy that arbitrarily discards
results. This approach aims to keep the most important elements and eliminate
the less beneficial ones [8,9]. Here, k is a parameter that dynamically regulates
the sparsity level that can be adjusted. Specifically, it is determined by averag-
ing weighted fractions, such as 1

2 or 2
3 . Elements in M that do not rank among

the k highest scores are not considered when computing probabilities. The sparse
attention can be derived as:

SparseAttention(Q,K, V ) = σ

(
Hk

(
QKT

λ

))
V, (5)



112 R. A. Shaik et al.

here Hk(·) can be learnt and selects highest k values:

[Hk(A)]ij =

{
Aij if Aij ∈ highest k values(row j)
0 otherwise

(6)

Finally, we multiply the matrix to combine the softmax output and the value
matrix. Using the multi-head technique, we concatenate the outputs from each
attention head and apply a linear projection to get the desired outcome.

SimpleGate Feed-Forward Network. A typical feed-forward network (FN)
[13,46] handles each pixel location evenly and separately to modify features.
It uses two 1 × 1 convolutions: the first decreases the channels to the original
input size, and the second increases the number of feature maps (usually by a
factor of γ = 4). In the hidden layer, a non-linear activation function is used.
Recently, efforts have been made to include a gating mechanism where two paral-
lel channels of linearly transformed layers and non-linearity are induced in one of
them (usually GELU) [64]. GELU may be seen as a variant of a Gated Linear
Unit (GLU). GLU is formulated as follows:

GLU(Z, σ, f, g) = f(Z) � σ(g(Z)) (7)

It is possible to think of GLU as an extension of activation functions, with
the potential to replace nonlinear activation functions [6]. It is observed that
nonlinearity exists in the GLU itself without σ: GLU(Z) = f(Z)�g(Z) contains
nonlinearity even in the absence of σ, which is termed as SimpleGate, and it is
formulated as:

simpleGate(Z, f, g) = f(Z) � g(Z) (8)

where M and N are identically sized feature maps. It simply divides the input
into two equal parts across channel dimensions and multiplies them. For an input
tensor Z ∈ R

Ĥ×Ŵ×Ĉ , SGFN is represented as:

Ẑ = SimpleGate(LN(Z)) + Z (9)

where LN is layer normalization [2]. By controlling the flow of information across
the many hierarchical stages of our pipeline, the SGFN allows each step to
focus on specific aspects that enhance the work of the other stages. This char-
acteristic sets SGFN apart from SMHA, which is mostly focused on integrating
contextual data with features enhancing them.

3.3 Progressing Learning

Typical training for CNN-based restoration models uses fixed-size patches in an
image. Nevertheless, suppose a transformer model is trained on small patches;
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Table 1. Dataset details showing samples count for image deraining.

Datasets Rain14000 [15] Rain12 [29] Rain1800 [56] Rain100L [56] Rain100H [56] Rain1200 [68] Rain800 [69]

Train 11200 12 1800 0 0 0 700

Test 2800 0 0 100 100 1200 100

Testset name Test2800 - - Rain100L Rain100H Test1200 Test100

it may not be able to acquire global image statistics well enough, which could
lead to less-than-ideal performance when tested on full-resolution photos. We use
progressive learning to address this, gradually increasing the patch size in later
epochs after beginning with smaller image patches in the earlier epochs. This
method improves performance while testing with different-resolution images,
which is typical for image deraining. Like curricular learning, progressive learn-
ing ensures fine image structure and texture preservation by starting the network
with easier tasks and working on more difficult ones. To maintain constant opti-
mization time, the batch size is decreased as the patch size grows.

4 Experiments and Analysis

Our model is trained using 13,712 rainy-clean image pairs from several datasets
[15,29,56,56,56,68,69], as shown in Table 1. We assess the proposed PSTNet
for image deraining on the datasets listed.

Evaluation Metrics. Evaluation measures that are frequently used in derain-
ing benchmarks include PSNR [22] and SSIM [52]. Similar to previous deraining
methods [16,24], we calculate SSIM and PSNR measures in YCbCr colour space.

Implementation Details. Our PSTNet architecture is a four-level deep
encoder-decoder structure. The number of sparse transformers for levels 1
through 4 is [4, 6, 6, 8], while the attention heads in SMHA are [1, 2, 4, 8]. The
original channel count (C) is 32, and 2 is the expansion factor. The refinement
stage comprises four blocks. The sparsity parameters for STB in SMHA are set
to

[
1
2 , 4

5

]
. Models are trained with the AdamW optimizer (β1 = 0.9, β2 = 0.999,

weight decay = 1×10−4) and L1 loss for 300K iterations. The initial learning rate
is 3×10−4, which gradually decreases to 1×10−6 using cosine annealing [34]. Data
augmentation also includes random flips both horizontally and vertically. Data
augmentation includes random vertical and horizontal flips.

Image Deraining Results. Table 2 demonstrates that our PSTNet consis-
tently outperforms existing methods across five datasets, delivering performance
improvements. When compared to the latest method, Restormer [64], PSTNet
shows an average improvement of 0.47 dB across the datasets. Figure 2 presents a
visual example where our PSTNet successfully generates a rain-free image while
maintaining the structural details effectively. Table 3 shows that our model is
more efficient and has fewer parameters and MACs.
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Table 2. Comparison of results across five datasets. The best and second-best results
are highlighted in bold and underlined, respectively.

Method Test100 Rain100L Rain100H Test1200 Test2800 Average

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DerainNet [14] 22.77 0.810 27.03 0.884 14.92 0.592 23.38 0.835 24.31 0.861 22.48 0.796

SEMI [53] 22.35 0.788 25.03 0.842 16.56 0.486 26.05 0.822 24.43 0.782 22.88 0.744

DIDMDN [68] 22.56 0.818 25.23 0.741 17.35 0.524 29.65 0.901 28.13 0.867 24.58 0.770

UMRL [58] 24.41 0.829 29.18 0.923 26.01 0.832 30.55 0.910 29.97 0.905 28.02 0.880

RESCAN [28] 25.00 0.835 29.80 0.881 26.36 0.786 30.51 0.882 31.29 0.904 28.59 0.857

GCANet [4] 24.93 0.846 30.63 0.892 26.45 0.783 30.49 0.881 31.42 0.882 29.58 0.856

PreNet [41] 24.81 0.851 32.44 0.950 26.77 0.858 31.36 0.911 31.75 0.916 29.42 0.897

MSPFN [24] 27.50 0.876 32.40 0.933 28.66 0.860 32.39 0.916 32.82 0.930 30.75 0.903

MRPNet [66] 30.27 0.897 36.40 0.965 30.41 0.890 32.91 0.916 33.36 0.926 32.67 0.919

SPAIR [38] 30.35 0.909 36.93 0.969 30.95 0.892 33.04 0.922 33.34 0.936 32.80 0.925

HINet [7] 30.29 0.905 37.28 0.970 30.65 0.894 33.05 0.919 33.91 0.940 33.03 0.926

IDLIR [36] 28.33 0.894 35.72 0.965 29.33 0.886 32.06 0.917 32.93 0.936 31.67 0.920

Uformer-B [51] 28.71 0.896 35.91 0.964 27.54 0.871 32.34 0.913 30.88 0.928 31.08 0.914

IDT [54] 29.69 0.905 37.01 0.971 29.95 0.898 31.38 0.908 33.38 0.937 32.28 0.924

Semi-Swin [40] 28.54 0.893 34.71 0.957 28.79 0.861 30.96 0.909 32.68 0.932 31.14 0.910

Restormer [64] 30.86 0.906 37.56 0.974 31.46 0.904 33.19 0.926 33.98 0.942 33.41 0.930

PSTNet 31.16 0.905 39.52 0.980 31.21 0.903 33.35 0.925 34.20 0.941 33.88 0.931

Fig. 2. Our PSTNet produces rain-free images that retain structural integrity.

4.1 Ablation Studies

Effectiveness of Selecting Highest K Attentions. To assess the contribu-
tion of selective attention in the SMHA, we compare the deraining results of
SMHA without selective attention (see Table 4). The PSNR values of images
processed by selecting the highest k attention values are better than those with-
out them. Our method reconstructs finer features and enhances the restoration
quality compared to normal self-attention operations without selective attention.
Long-range pixel dependencies are less likely to contain unnecessary context
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Table 3. Model computational complexity evaluation for an input size 256 × 256

Method Params (M) MACs (G)

MPRNet 20.1 778.2

HINet 88.7 170.7

Restormer 26.13 140

PSTNet 12.4 89.1

Table 4. Ablation experiments for highest-k selection. PSNR is computed for the
datasets.

Dataset w/o highest-k w highest-k

Rain100L 39.32 39.52

Rain100H 31.13 31.21

when using the highest-k selection operator since neighbouring pixels are more
comparable than distant ones. During the self-attention computation, this selec-
tion phase eliminates smaller similarity weights from certain long-range feature
interactions, improving representation accuracy and producing higher-quality
output.

Effect of k Value. The effect of the key parameter k of our proposed SMHA is
analysed in Table 5. The k value significantly influences the sparsity. If value of k
fixed, like 1

2 , it greatly affects how well it performs. We construct a configurable
interval range for k to prevent an exhaustive search. The model dynamically
determines the most contributive score. Performance suffers greatly when k is
too small because insufficient global information is captured. The best result,
31.21 dB, is achieved when [Δ1,Δ2] for SMHA is set in the range [12 , 4

5 ]. Never-
theless, performance declines as k increases because of the addition of irrelevant
characteristics.

Table 5. Ablation experiments for k value in SMHA. PSNR is computed for Rain100H

k [ 1
5
, 1
2
] [ 1

4
, 2
3
] [ 1

2
, 4
5
] [ 2

3
, 5
6
]

PSNR 30.60 31.12 31.21 31.16

Effectiveness of SGFN. We evaluate the suggested SGFN by contrasting it
with GDFN [64]. Compared to the complex implementation of GELU, simple-
Gate is easy to implement. By replacing GELU of GDFN with SimpleGate, the
image deraining performance (PSNR) (on Test100) is increased from 31.09 to
31.16. The results show that SimpleGate can replace GELU.
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5 Conclusion

We developed an efficient sparse Transformer network, PSTNet, for image
deraining. Significant improvements are made to the sparse Transformer’s pri-
mary components to improve feature aggregation and transformation. Observing
that vanilla self-attention in Transformers can be hampered by global interac-
tions with irrelevant information. we developed selective attention, which keeps
the most valuable self-attention values. The proposed simpleGate feed-forward
network (SGFN) also simplifies the gating mechanism for controlled feature
transformation. Experimental results demonstrate that our PSTNet performs
better than state-of-the-art methods.

Acknowledgements. The authors express their gratitude to the Council of Science
and Technology, U.P. (CST-UP), India, for their financial assistance in performing
this research work. This work is one of the project’s outcomes entitled “Road object
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Abstract. Underwater images frequently experience quality degrada-
tion due to refraction, back-scattering, and absorption, leading to color
distortion, blurriness, and reduced visibility. Such degradation present
in the underwater images can cause inaccuracies while functioning
with higher advanced level computer vision applications, equipped for
autonomous underwater vehicles. Despite the ability of enhancing the
degraded images, existing approaches fail at preserving the localized
fine edges also producing the true colors. Therefore, an effective pre-
processing network is necessary for underwater image enhancement.
With this motivation, we propose a frequency modulated deformable
transformer network for underwater image enhancement. Initially, the
features are extracted with the proposed multi-scale feature fusion feed-
forward module. Further, the frequency modulated deformable atten-
tion module is proposed to reconstruct fine-level texture in the restored
image. Here, we propose a spatio-channel attentive offset extractor in
the modulated deformable convolution for focusing on relevant contex-
tual information. Also, adaptive edge-preserving skip connections are
proposed for propagating prominent edge features from the network’s
shallow layers to its deeper layers. A comprehensive evaluation of the pro-
posed method on synthetic and real-world datasets and extensive abla-
tion analysis demonstrates that the proposed approach shows superior
performance than existing state-of-the-art methods. The testing code is
provided at https://github.com/adinathdukre/FMDTUIE.

Keywords: Deformable Transformer · Spatio-Channel Attentive ·
Offset Extraction · Underwater Image Enhancement
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1 Introduction

Recent advancements have seen the use of autonomous underwater vehicles
(AUVs) furnished with visual perception systems to collect high-quality pho-
tographs in hazardous and contaminated environments, such as underwater
archaeology, marine environment monitoring, etc.. Additionally, sub-tasks like
object grasping, object recognition, and image segmentation, etc., are routinely
involved in these applications to maintain efficient performance. These sub-tasks
need clean data as input. However, capturing high-quality clean underwater pho-
tos is challenging due to the wavelength dependent absorption, reflection, and
scattering issues, leading to hazy blur, color cast, and restricted visibility. There-
fore, an effective underwater image enhancement (UIE) is highly favorable to
maintain the significant performance of these sub-tasks.

Although remarkable success has been achieved in underwater image
enhancement, the problem of restoring proper textural detail in an image is
still an open challenge. Existing works such as histogram distribution [13], prior
probability [7], and attenuation prior [27] are not adaptive to the varied underwa-
ter degraded circumstances. Also, researchers introduced various deep learning-
based methods for achieving adaptation to the varying degradations present in
underwater images. However, These techniques utilize a convolution operator
with a restricted receptive field, which limits their ability to capture long-range
pixel dependencies. To handle this, the UIE network should have a significantly
adaptive receptive field for capturing the long-range pixel dependencies.

To address the above problem, researchers have proposed vision transformer
[29] based approaches due to its capabilities of capturing long-range dependen-
cies for UIE. Shen et al. [23] proposed a transformer with depth-wise convolution

Fig. 1. Sample visual results of the proposed and existing state-of-the-art methods.
Existing methods are unable to generate the localized edges whereas the proposed app-
roach is able to generate effective localized edges and true color. (Color figure online)
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and multi-head self-attention to extract low-level features and capture struc-
ture variations of the object. In [19], dilated convolution is employed to make
the network lightweight and expand the receptive field. Tang et al. [25] pro-
posed a neural architecture search-based transformer approach for UIE. Another
transformer-based approach along with gray-scale attention is proposed in [11].
Even though these approaches produce fruitful results, structural details in the
enhanced images are missing. Further, [23,26] approaches employ transformer
architecture with direct skip connections between encoder-decoder, which may
transfer the degraded information from the shallow layer to the deep layer. Shen
et al. [23], and Wang et al. [26] employed a feed-forward network from a vision
transformer for UIE. Further, Liu et al. [17] fused two scale features in a feed-
forward network. As a result, these methods struggle to capture and reconstruct
images with more localized edges and textural details.

Motivated by the above challenge, we propose frequency modulated
deformable transformer network for underwater image enhancement. In order
to capture the structural variations in the input image, we propose a frequency
modulated deformable attention (FMDA) module. Also, we propose the adaptive
edge-preserving (AEP) module to traverse the fine edges without degradation
from shallow layers to deep layers via skip connections. Further, we propose the
multi-scale feature fusion (MSF) module to capture more localized edges and
textural features during restoration. Our main contributions are:

• We propose a frequency modulated deformable attention module with multi-
scale feature fusion-based feed-forward architecture for underwater image
enhancement.

• Spatio-channel attentive offset extractor is proposed in modulated deformable
convolution for extracting color correlation and spatially relevant information
from the features.

• The adaptive edge-preserving module is proposed to forward the structural
information from the encoder to the respective decoder for effective enhance-
ment.

Comprehensive experimental study, on synthetic and real-world datasets
depicts our proposed underwater image enhancement method is superior to exist-
ing methods. The sample visual results analysis among proposed and previous
methods is provided in Fig. 1, which shows that the proposed method preserves
the structural details with fine edges and true colors in the image along with
minimizing degradations.

2 Related Work

Over the recent years, numerous techniques for restoring and enhancing underwa-
ter images have emerged, aiming to elevate the visual excellence of such images.
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2.1 Traditional Methods

Earlier research on underwater image enhancement relied on handcrafted and
model-based approaches. Hitam et al. [8] employed contrast manipulation and
adaptive histogram equalization techniques in both RGB and HSV color spaces
to augment the contrast of underwater photographs and decrease noise levels. Fu
et al. [7] introduced the retinex model which encompasses layer decomposition,
color correction, and enhancement techniques for UIE. Similar to air-medium
dark-channel prior that modifies preceding dark-channel prior is proposed in
[4]. Moreover, Huang et al. [9] presented a technique that employs dynamic
hyperparameter-based histogram stretching as well as bilateral filters to preserve
details for underwater image enhancement. However, these methods mainly rely
on assumptions on which priors are defined and fail to cope with real complex
scenarios.

2.2 Deep Learning-Based Methods

In recent years, the use of deep learning techniques has become more significant
in addressing issues in computer vision. For UIE, Islam et al. [10] and Fabbri
et al. [5] employed conditional generative adversarial network (CGAN). In [14],
authors introduced underwater image enhancement convolutional neural network
(UWCNN). However, this method employs a convolutional operator which has
a restricted receptive field. Therefore, it does not account for fine structural
details of the image. Sharma et al. [22] suggested an attention-based and multi-
receptive network that performs both underwater image enhancement and super-
resolution simultaneously. Further, the color, global, and local contrast issues
are solved in [31]. Li et al. [17] proposed a color histogram approach for UIE.
These methods achieve superior performance but focus only on maintaining color
details. However, enhancing the structural information has equal importance,
which is ignored in the above-discussed methods.

2.3 Transformers for Image Restoration

The transformer architecture leverages self-attention, where attention coeffi-
cients signify the interplay between data on both global and local scales [6].
Therefore, transformers are extensively employed for diverse image restoration
tasks [29]. Zamir et al. [29] developed an effective transformer network that
can be used for a variety of restoration tasks, including image de-raining, and
deblurring. Liu et al. [20] introduced the “Swin Transformer” which calculates
attention within shifted windows to reduce the computational load in tasks like
image de-noising and de-blurring. Tang et al. [25] proposed a neural architecture
search-based transformer approach. Wang et al. [26] proposed a network that
takes swin transformer block as its basic unit for UIE. Further, these methods
employ the simple skip connection which may traverse the degradation from
shallow to deep features.
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However, considering the above issues, we propose a frequency modulated
deformable transformer UIE network which preserves structural detail and color
along with reducing degradation’s.

3 Proposed Framework

The schematic of the proposed network for UIE is provided in Fig. 2. The detailed
significance of each proposed module is provided in the next subsections.

Fig. 2. An architectural diagram of proposed method for enhancing underwater images.

Fig. 3. Illustration of proposed spatio-channel attentive offset extractor and spatio-
channel aware deformable convolution.

3.1 Multi-scale Feature Fusion Feed-Forward (MSF) Module

Existing feed-forward module based transformer network [23] are unable to pro-
cess high-frequency components like texture, edge information, etc.. Also, they
are not capable of capturing more fine details and contextual information. To
handle this issue, we propose multi-scale feature fusion feed-forward (MSF) mod-
ule. In proposed MSF module (refer MSF module from Fig. 2), we first exploit
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the adaptive frequency preserving (AFP) block based on the reverse process of
the JPEG compression algorithm which contains quantization learnable matrix
(for more details refer Sect. 3.3). In MSF, the input tensor X is given to the
AFP block after applying layer normalization and 1×1 convolution. Here, quan-
tization learnable matrix in AFP block is used to learn processing of the high-
frequency components and restrict the low frequencies like hazy blur [12]. Fur-
ther, the output of the AFP is given to two parallel different paths that utilize
1×1 convolution Succeeded by a depth-wise convolution given kernel size 5×5,
and 3×3 with Swish activation function. Here, we have integrated two multi-scale
depth-wise convoluted features with each other and passed through respective
depth-wise convolution followed by Swish activation function. Finally, these fea-
tures are merged to capture fine details and improve the local and contextual
information.

3.2 Frequency Modulated Deformable Attention (FMDA) Module

Transformers are adept at capturing long-range dependencies using self-
attention, their superiority over conventional CNNs and GANs on both high-level
and low-level vision tasks like segmentation, object detection, deblurring, dehaz-
ing, deraining, and denoising, etc., is remarkable. Also, modulated deformable
convolutions have proven to be more effective due to their ability to accom-
modate the shape variation of objects. However, the attention with depth-wise
convolution may suffer from limited receptive fields [28], which restricts the over-
all network from capturing structural variations present in the image. To tackle
this issue, we proposed spatio-channel aware modulated deformable convolution
(SCMDC) for extracting features of queries (Fq), keys (Fk), and values (Fv) as:

Fq, Fk, Fv = SCMDC3×3 (C1(L(Xin))) (1)

where, SCMDC3×3(·) is spatio-channel aware modulated deformable convolu-
tion (see Fig. 3), C1 is convolution with 1 × 1 kernel, and L(·) is layer normal-
ization.

The offsets in modulated deformable convolution may exceed their contextu-
ally relevant regions [32], resulting in the emergence of irrelevant features and,
the formation of partially restored pictures. To address this, we have introduced a
spatio-channel attentive offset extractor that is sensitive to color shifts induced
by underwater conditions (see Fig. 3). Here, the extraction of offsets and mod-
ulation values originates from the same offset convolution process, employing
channel-wise spatially attentive features as its input as:

Fy =
N∑

i=1

DFconv3×3 (Xn+ni+Δni
) Δmi (2)

where, N represents a sampling location within a 3×3 convolutional grid,
DFconv3×3(·) denotes a modulated deformable convolution with a 3×3 kernel
size and y ∈ (q, k, v). The variable n signifies a feature location, while Δn rep-
resents the offsets obtained from the spatio-channel attentive offset extractor.
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Similarly, Δm denotes the extracted modulator scalars from the Spatio-Channel
attentive offset extractor block, and ni ∈ {(−1, -1), (−1, 0). . . (1, 1)}. Feature
map visualization of various combinations of offset extractors (see Fig. 4) shows
proposed SCMDC offset extractor can extract more local spatial information.
With this process, we have extracted the Fq, Fv, and Fk (More detailed infor-
mation is available in the supplementary material.).

Further, to reduce overall computation cost, the frequency domain correlation
between Fq and Fk is calculated (see FMDA in Fig. 2) with fast Fourier transform
(FFT ) [12] as:

A = F−1
(
F (Fq) .F (Fk)

)
(3)

where, F (·) represents the FFT, F−1(·) represents the inverse FFT, and F (·)
represents the conjugate transpose operation. Lastly, we compute the summa-
rized feature through:

Vatt = L(A).Fv (4)

where, L(·) is layer normalization. Finally, the output features of FMDA are
generated as:

FMDA = Xin + Conv1×1 (Vatt) (5)

where, Xin is the input features. Spatio-channel aware modulated deformable
convolution-based frequency domain self-attention layer, likewise known as the
frequency modulated deformable attention module (FMDA). This proposed
FMDA module used three times at various levels to get the enhanced image.

Fig. 4. Feature map visualization of various combinations of offset extractor. The pro-
posed SCMDC offset extractor can extract more local spatial information (as shown in
the red box) than the modulated deformable offset and spatially attentive deformable
offset extractor, resulting in a superior structural variation in the proposed method
output images. (Color figure online)

3.3 Adaptive Edge Preserving (AEP) Module

To achieve better performance in our UIE task, we must deal with preserving
edge-sensitive regions, and reduce irrelevant information propagated via feature
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extraction. The previous approaches [23,26] employed direct skip connections
that passes the extracted features without refining and considering sensitive
information like edges. To tackle this issue, we proposed an adaptive edge-
preserving module for processing the features during skip connection.

Initially, the input features X1 are passed through adaptive frequency preser-
vation (AFP) block [12] to generate refined the features X2. The details of AFP
block are shown in Fig. 2. The output of AFP (X2) is given as:

X2 = P−1
(
F−1

(
Xf

1

))
;Xf

1 = F (P (X1)) (6)

where, P (·) and P−1(·) represents patch unfolding and folding operations respec-
tively, F (·) and F−1(·) denotes FFT and the inverse FFT . After FFT, on the
transformed features, the learnable quantization matrix is used to process high
frequency information and suppress low frequency component present in the fea-
ture maps.

Further, these refined features from AFP are passed through downsample-
upsample operator and subtracted from the refined input feature map to pass
only refined edge and texture information as:

Xout = C1(X2 − D2(C2(X2))) (7)

where, D2 and C2 represents de-convolution with up-sampling factor 2 and con-
volution with down-sampling factor 2 respectively (see adaptive edge preserving
skip connection in Fig. 2). Overall the proposed adaptive edge preserving module
assist the proposed network by obtaining refined high-frequency edge informa-
tion. The Performance of all proposed blocks is examined in the ablation studies
(refer Sect. 5.4 for more details).

4 Training Details

We trained the proposed network on the EUVP [10] and UIEB [15] dataset. Dur-
ing training phase, we crop randomly the original input image into a 256 × 256
patch Size. Also, data augmentation like horizontal flip and vertical flip is
adopted to make enough training samples. The patch size for the quantization
matrix estimation in the adaptive edge-preserving module is empirically set to be
8× 8 [12]. To optimize ours proposed network parameters, we have used ADAM
as an optimizer with initial learning rate of the 10−4 and a minimum of 10−7,
which is changed with the cosine annealing technique. The network is trained
on Nvidia Titan Xp having a 2.2 GHz clock speed. The various losses like L1,
FFT, perceptual, and contrastive are employed to optimize the performance of
proposed network. The details of each loss function are given: Loss Functions:
The network is trained with the content loss function (L1). Further to reduce
difference in between frequency space, we have employed FFT loss (LF ) [3] which
calculates the likeness between ground truth and network output. Furthermore
to maintain the feature level textural and structure similarity, the perceptual
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loss (Lp) is computed using the VGG-16 [24] pre-trained module. Also, the con-
trastive loss (LC) is calculated to maximize and minimize the difference between
input-output and output-ground truth respectively Therefore, the total loss is
represented as:

Ltotal = λ1L1 + λ2LF + λ3Lp + λ4LC (8)

we set weights as λ1 = 1, λ2 = 0.1, λ3 = 15 and λ4 = 5. The detailed explanation
and ablation for loss functions is available in supplementary material.

5 Experimental Analysis

5.1 Datasets

EUVP [10]: The Enhancing Underwater Visual Perception (EUVP) database
covers underwater images captured with many types of cameras in various con-
figurations. The dataset comprises 11,435 image pairs (clean and degraded) for
training and 515 image pairs for testing.

UIEB [15]: The underwater image enhancement benchmark (UIEB) dataset
contains 890 underwater images from various scenarios. From this, the training
set is created by randomly picking 800 images and the remaining 90 images for
testing.

Sea-Thru [1]: We used 10 real-world underwater images from this dataset for
qualitative and non-reference evaluation.

Color-Checker [2]: This dataset consists of 7 real-world underwater images,
we have utilized this dataset to evaluate color correction effectiveness based on
qualitative and non-reference color metrics.

Table 1. Analysis of the proposed (Ours) and existing methods on the UIEB [15]
and EUVP [10] dataset in the terms of an average SSIM (↑), PSNR (↑), and LPIPS
(↓) for underwater image enhancement (Note: ↓: lower is better, ↑: higher is better).

Method Publication UIEB EUVP

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
LANet [18] RAL-22 24.05 0.90 0.13 25.82 0.86 0.28

CLUIE [16] TCSVT-22 20.37 0.89 0.18 - - -

Wave Net [22] TMCCA-23 21.57 0.80 0.12 28.62 0.83 0.24

WWPF [31] TCSVT-23 18.59 0.79 0.22 - -

U-shape [21] TIP-23 21.39 0.85 0.24 26.77 0.87 0.26

SMDR-IS [30] AAAI-24 23.71 0.92 0.14 - - -

Ours - 25.79 0.95 0.11 30.90 0.92 0.22
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Table 2. Evaluations of different methods on non-reference metrics for Color-checker
[2] and Sea-thru [1] dataset in terms of UIQM (↑), UCIQE (↑), UICM (↑) and NIQE
(↓) (Note: ↓: lower is better, ↑: higher is better).

Method Publication Color-checker Sea-thru

UIQM UCIQE UICM NIQE UIQM UCIQE UICM NIQE

LANet [18] RAL-22 4.06 32.89 −24.59 3.09 4.57 29.54 −19.74 4.39

WaveNet [22] TMCCA-23 4.13 33.15 −21.02 3.14 4.60 30.25 −21.24 5.22

CLUIE [16] TCSVT-22 4.43 33.58 −18.64 3.10 3.91 29.86 −37.72 4.61

WWPF [31] TCSVT-23 3.96 33.03 −26.86 3.10 3.84 30.50 −18.00 6.43

U-shape [21] TIP-23 4.03 30.65 −13.91 5.30 4.01 29.05 −22.55 4.54

SMDR-IS [30] AAAI-24 3.97 32.84 −31.76 3.11 4.20 30.35 −28.48 4.86

Ours - 4.53 33.67 −7.84 3.17 4.74 30.29 −10.23 3.57

Fig. 5. Qualitative analysis of the proposed (Ours) and existing methods: LA-Net [18],
F-GAN [10] CLUIE [16], Wave net [22], WWPF [31], SMDR IS [30], Ushape [21] on
UIEB [15] (top row) and EUVP [10] (bottom row) database for underwater image
enhancement. (Color figure online)

5.2 Quantitative Analysis

We have used the existing, LANET [18], Wave Net [22], CLUIE [16], WWPF [31],
SMDR-IS [30], and Ushape [21] methods for analysis. Peak signal-to-noise ratio
(PSNR), structural similarity index measure (SSIM), and learned perceptual
image patch similarity (LPIPS) metrics are used for reference based analysis
and is provided in Table 1. Along with this, we also have provided non-reference
parameter based analysis in terms of average Underwater Image Quality Mea-
surement (UIQM), Underwater Color Image Quality Evaluation (UCIQE),
Underwater Image Colourfulness Measure (UICM), and Natural Image Qual-
ity Evaluator (NIQE) on the Color-checker and Sea-thru real-world datasets in
Table 2 (More analysis over UIEB, EUVP, UFO-120, and U-45 datasets is avail-
able in supplementary material). The reference and non-reference results depict



Frequency Modulated Deformable Transformer 131

that the proposed method competes favorably for both synthetic and real world
underwater image-enhancing tasks with recent state-of-the-art methods.

5.3 Qualitative Analysis

Our proposed method is qualitatively evaluated against previous state-of-the-
art approaches on various synthetic datasets (EUVP and UIEB) and real-world
datasets (Sea-thru and Color-checker) for enhancing underwater deteriorated
images. The synthetic and Real-World underwater visual results on EUVP, UIEB
are provided in Fig. 5 and 6. The Fig. 7 shows applicability of our proposed
approach on higher-level computer vision application such as depth estimation
applied on underwater degraded images and restored outputs with existing and
proposed methods. From these provided visual results, it’s clear that our pro-
posed method produces real colors and clear images as compared to state-of-
the-art methods. More qualitative results on real-world and synthetic datasets
are available in supplementary material.

5.4 Ablation Studies

We analyse the contributions of each proposed module and UIEB dataset is used
for ablation experimentation in terms of average PSNR and SSIM.

Fig. 6. Qualitative results comparison on sea-thru dataset with state-of-the-art (LA-
Net [18], WaveNet [22], CLUIE [16], WWPF [31], SMDR-IS [30] and Ushape [21])
methods for underwater image enhancement. (Color figure online)

Multi-scale Feature Fusion Feed-Forward (MSF) Module: In the pro-
posed MSF, we have utilized multi-scale convolution in the multi-scale feature



132 A. Dukre et al.

Table 3. Performance analysis on proposed MSF module (Note: w/i:with and w/o:
without, AFP: Adaptive frequency preserving).

Setting PSNR SSIM

MSF w/o Multi-scale and w/o AFP 23.94 0.930

MSF w/i Multi-scale and w/o AFP 24.38 0.940

MSF w/o Multi-scale and w/i AFP 24.60 0.943

MSF w/i Multi-scale w/i AFP (Proposed) 25.79 0.955

Table 4. Performance analysis with various types of attention modules (Note: SA: Self
Attention).

Attention Type PSNR SSIM

MDTA [29] 23.40 0.930

Depthwise Convolution SA 23.81 0.933

Deformable Convolution SA 24.42 0.937

FMDA (Proposed) 25.79 0.955

fusion feed forward module, after the adaptive frequency preserving (AFP) block
to capture the fine details and improve contextual information. Is this utilization
of multi-scale convolution along with encompassing AFP block in MSF module
effective to capture local and global contextual information. The quantitative
analysis with MSF w/o multi-scale and w/o AFP (normal feed-forward net-
work), MSF w/i multi-scale w/o and AFP, MSF w/o multi-scale w/i AFP and
MSF w/i multi-scale w/i AFP (proposed MSF) is given in the Table 3. It is
evident from these results that the proposed MSF module is more effective as
compared to other combinations of feed forward network.

Table 5. Performance analysis with various offset settings.

Offset Type PSNR SSIM

Modulated Deformable Offset 23.65 0.930

Spatially Attentive Deformable Offset 24.10 0.941

SCMDC Offset (Proposed) 25.79 0.955

Frequency Modulated Deformable Attention Module: Along with effec-
tively capturing local contextual information, having long range dependencies
with ability to accommodate according to variation in image is crucial task. To
do this, we have proposed FMDA module. Whether the proposed FMDA helps
the network to capture contextual information effectively? To examine this, we
have performed the experimentation with MDTA [29], Depthwise convolution
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Table 6. Analyzing the performance of various skip connection types (Note: w/i:with
and w/o: without).

Skip Connection (SC) Type PSNR SSIM

Regular SC 24.26 0.931

SC w/i up-sample w/o AFP block 24.75 0.931

SC w/o up-sample w/i AFP block 24.76 0.934

SC w/i AFP and up-sample (Proposed) 25.79 0.955

SA, Deformable convolution SA and proposed FMDA. Quantitative analysis
for above experimentation is provided in Table 4. Based on these findings, it is
clear that the proposed FMDA is efficient for the UIE Task.

Spatio-channel Attentive Offset Extractor: In modulated deformable con-
volution, significant worry arises over offsets that may exceed their contextually
relevant regions, resulting in the emergence of irrelevant features. To tackle this
issue, we have proposed spatio-channel attentive offset extractor. To scrutinize
the efficiency of the proposed offset extractor over other offset extractor, we
trained the proposed network with various offset extractor. Here, the accuracy is
analysed with modulated deformable offset, spatially attentive deformable and
proposed SCMDC offset. A quantitative analysis can be found in Table 5 and
(see Fig. 4), demonstrating the effectiveness of our proposed offset extractor. to
focus on contextually relevant regions and color variations.

Adaptive Edge Preserving Skip Connection: Applying direct skip con-
nection may led to traversing of degraded intermediate features from encoder to
respective decoder. Thus, we have proposed AEP module to traverse the refine
edge information from encoder to respective decoder. Whether the proposed AEP
module able to refine edge information for the underwater enhancement? To ana-
lyze this, the accuracy of the proposed network is analysed with various com-
bination of skip connections. The experimental quantitative results is shown in
Table 6. From the Fig. 8 results, it’s clear that our proposed AEP module in skip
connection is more effective as compared to other modules.

Fig. 7. Depth estimation analysis on input and enhanced images with existing CLUIE
[16], SMDR-IS [30], Ushape [21] and proposed method (Ours). (Color figure online)
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Fig. 8. Feature map visualization of various types of skip connections.

6 Conclusion

In this work, we have proposed novel frequency modulated deformable trans-
former for underwater image enhancement. In that, we proposed multi-scale
feature fusion feed forward module for effective feature extraction. Further, the
frequency modulated deformable transformer with spatio-channel attentive off-
set extractor is proposed for relevant contextual underwater image enhance-
ment. Finally, we proposed adaptive edge-preserving module for propagating
prominent edge features from the network’s shallow layers to its deeper lay-
ers via skip connection. Experimental studies are carried out on both synthetic
and real-world data sets using both reference and also non-reference parame-
ters, and these are compared with recent state-of-the-art approaches. Numerous
experimental analyses on synthetic and real-world images, along with a detailed
ablation study scrutinize the effectiveness of the proposed method for underwa-
ter image enhancement.
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Abstract. Existing low-light image enhancement approaches based
upon pixel-wise reconstruction losses are inadept at capturing the com-
plex distribution of well-exposed images, resulting in residual noise, insuf-
ficient illuminance, and artifacts. Additionally, the mapping relation-
ship between weakly-illuminated and normally exposed images is one-
to-many, making low-light image enhancement a vastly ill-posed prob-
lem. In this work, we probe into this one-to-many relationship via an
attention and frequency driven normalizing flow network by minimiz-
ing the negative log-likelihood loss. The proposed model comprises of
two parts: a dual-attention-oriented frequency encoder network and an
invertible network which inputs the conditional low-light images and
changes the mapping of the complex distribution of well-light images
to simpler Gaussian distribution. The proposed model not only utilizes
the spatial information inherent in the image for improving the contrast
but also extracts the frequency information for preserving the intricate
details. To sum up, the distribution of the well-exposed images can be
characterized better, and the overall enhancement mechanism becomes
analogous to being restrained by a loss function which defines the man-
ifold structure of natural images during the training. Detailed experi-
ment analysis on a variety of challenging low-light images exemplifies
the potency of the model and shows its primacy over the state-of-the-art
in terms of enhanced quality and efficiency.

Keywords: Normalizing flow · Low-Light Image Enhancement ·
Frequency driven attention

1 Introduction

The visual quality of images is paramount in information transmission, signif-
icantly influencing human visual perception and the performance of computer
vision systems, including autonomous driving [23], image segmentation [27], and
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object detection [35]. Nevertheless, due to the intrinsic properties of camera imag-
ing mechanisms and the environmental conditions during photography, images
captured in low-light conditions frequently suffer from low contrast, substan-
tial noise, and poor color fidelity. Addressing these issues necessitates effective
low-light image enhancement techniques, which are increasingly demanded in
computer vision tasks. Contemporary deep learning-based enhancement meth-
ods typically employ pixel-wise loss functions in their network training to estab-
lish mappings between normally exposed and low-light images. However, this
paradigm encounters notable challenges: firstly, pixel-to-pixel mappings are often
constrained by the regression-to-the-mean issue, resulting in images that are unde-
sired amalgamations of several targets, leading to under-exposed regions and arti-
facts. Secondly, the simplistic assumption underlying pixel-wise losses may fail to
capture the visual distance between the enhanced image and the ground truth
within the image manifold. While certain GAN-based approaches have mitigated
this issue, they require meticulous tuning during training and are susceptible to
overfitting the visual features of the training data.

Recent studies [16,21,33] have demonstrated the effectiveness of normalizing
flow in learning conditional distributions rather than relying on basic pixel-
wise loss, thereby overcoming the aforementioned limitations. Unlike traditional
CNN-based methods [2,20], which learn deterministic mappings from low-light to
well-exposed images, normalizing flow models map the image manifold to a latent
distribution through a sequence of invertible and differentiable transformations.
However, classical normalizing flows, which are biased towards learning graphical
properties such as local pixel correlations [15] may fail to effectively model global
image properties like color saturation, potentially undermining their performance
in low-light image enhancement tasks. The proposed approach, by facilitating the
construction of complex posterior distributions, overcomes this limitation by
enhancing the modeling of structural details, illumination adjustment, and noise
suppression, which are crucial for improving the quality of low-lit images.

We introduce an Attention-Driven Normalizing Flow network (ADNFNet),
engineered to model the complex distributions of normally exposed images corre-
sponding to low-light inputs. ADNFNet consists of two main components: a dual-
attention-oriented frequency encoder for precise noise-free color map extraction
and for the integration of global information into the latent space, and an invert-
ible network for learning one-to-many mappings from low-light images to well-
lit image distributions. In this framework, we refrain from using the standard
Gaussian distribution as the prior for latent features, opting instead to use the
illumination-invariant color map as the mean value of the prior distribution. The
encoder is specifically designed to learn a one-to-one mapping to extract the color
map, representing the intrinsic attributes of the scene that remain unchanged
by illumination. Concurrently, the invertible network is crafted to learn a one-
to-many mapping from low-light images to the distribution of normally exposed
images. This design aims to achieve superior low-light image enhancement per-
formance through the proposed framework. The principal contributions are as
follows:
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– An efficient attention-driven normalizing flow-based model that learns rich
distributions through precise visual distance measurements, improving illu-
mination adjustment and efficiently manage the noise/artifact suppression.

– A novel dual-attention-oriented frequency encoder module that minimizes
color distortion and enhances saturation to extract an illumination-invariant
color map.

Comprehensive experiments conducted on state-of-the-art enhancement method-
ologies substantiate the effectiveness of the proposed network. Through rigorous
testing and comparison with existing techniques, we have demonstrated signifi-
cant improvements in image quality, including enhanced contrast, reduced noise,
and better color fidelity. Moreover, detailed ablation studies have been performed
to isolate and validate the contribution of each individual module within the
architecture. These studies confirm the rationality and necessity of each com-
ponent, highlighting how they collectively contribute to the overall performance
and robustness of the network.

2 Related Work

2.1 Low Light Enhancement

Early advancements in image quality enhancement primarily leveraged heuris-
tic algorithms. For example, histogram equalization [10] effectively redis-
tributes image brightness to enhance global contrast. Retinex theory-based
methods [7,22] improve low-light images by decomposing them into reflectance
and illumination components. The LIME algorithm [7] estimates the illumination
intensity of each pixel and refines the initial illumination map using structural
priors, thereby enhancing image quality. Despite their independence from train-
ing data, traditional methods often struggle with detail preservation and noise
control. In recent years, deep learning-based methods have gained prominence
due to their accuracy, robustness, and speed, setting new benchmarks in image
enhancement tasks. Consequently, several methods with variations in architec-
tural design were proposed. For example, where LLNet [20] deployed a deep
autoencoder, multi-scale features were adopted in [25,26] for enlightening the
image. The authors in [25] exemplifies the relationships between Retinex and
convolutional neural networks (CNNs) via Gaussian kernels in a mutually rein-
forced manner. In addition, several approaches experimented with the overall
training via different losses, e.g. L1 loss [2], MSE [2,20], smoothness [29], and
color loss [28]. The Restormer model [37] achieves high-resolution image restora-
tion through a sophisticated Transformer architecture. Concurrently, Zhou et
al. [42] address joint low-light enhancement and deblurring, introducing the
extensive LOL-Blur dataset and demonstrating effectiveness on both synthetic
and real-world data. Additionally, hybrid methods that integrate Retinex the-
ory with deep learning [3,18,39] enhance images by optimizing reflectance and
illumination components within the network. Unlike previous approaches that
meticulously design different architectures or losses for end-to-end training, in
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this work, we intend to deploy attention-driven normalizing flow network for
building the complex distribution that has shown to be proficient in generating
images with better quality, lesser distortion, and artifacts.

2.2 Normalizing Flow

Normalizing flow transforms a simple probability distribution (e.g., standard
normal) into a complex distribution through a sequence of invertible and dif-
ferentiable mappings [16]. This transformation allows exact computation of the
probability density function (PDF) of a sample by reverting to the simple dis-
tribution. To ensure network invertibility and computational tractability, net-
work layers must be meticulously designed to facilitate easy computation of the
inversion and the Jacobian matrix determinant, which constrains the genera-
tive model’s capacity. Consequently, various transformations have been devel-
oped to enhance the model’s expressiveness, such as affine coupling layers [4],
split and concatenation [4,5,14], permutation [14], and 1×1 convolution [14].
Conditional normalizing flows have been explored to bolster model expressive-
ness. Recently, conditional affine coupling layers [1,21,33] have been employed
to strengthen the connection with conditional features, improving memory and
computational efficiency. The development of normalizing flow has broadened
its application scope significantly. For example, in [19], the authors generated
faces with specific attributes, while Pumarola et al. [24] and Yang et al. [36]
used conditional flow for point cloud generation. For the super-resolution tasks,
the authors in [21], and [33] utilized conditional normalizing flow to generate
high-resolution images from low-resolution inputs. Unlike other approaches for
conditioning the probability distribution, the method incorporates both spatial
and frequency domain features of the input.

3 Proposed Method

We propose an attention-driven normalizing flow (ADNFNet) framework to
characterize the complex distribution of well-lit images. The overall paradigm
of ADNFNet is demonstrated in Fig. 1, which embodies two key components:
a dual attention oriented frequency (DAoFE) encoder and a series of invert-
ible networks. DAoFE takes a low-light image (yl) as input and outputs an
illumination-invariant color map g(yl), and an invertible network maps a nor-
mally exposed image to a latent code z. The DAoFE component further consists
of several dual-channel spatial attention modules (DCSAMs) which embodies
residual channel attention blocks (RCABs), convolutional block attention mod-
ules (CBAMs), and spatial-frequency information refinement (SFIR) modules.
In what follows, we illustrate in detail all the components.

3.1 Dual Attention Oriented Frequency Encoder

For boosting the generation of high-quality light invariant color maps, the con-
catenated feature maps of the low light image (yl), and its equivalent his-
togram equalized image h(yl), and color map C(yl) are given as an input to
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Fig. 1. Schematic illustration of the proposed ADNFNet. The proposed model com-
prises of a dual attention oriented frequency (DAoFE) encoder (light orange color) to
extract the color map of the low light images and a series of invertible network for
learning the distribution of well-lit images that are conditioned on a low-light image. A
random selector is deployed for getting the mean value of latent variable z that follows
the Gaussian distribution from the color map of the reference image, C(yref ) or the
extracted color map g(yl) from the low-light image via DAoFE. For training the exact
likelihood of a high-light image (yh) is maximized and for inference, we randomly select
z from N(g(yl), 1) to generate multiple normally exposed images. (Color figure online)

the ADNFNet network. Basically, histogram equalization is used to enhance the
global contrast of low-light images, making the histogram-equalized image more
illumination invariant. By incorporating this image into the network’s input,
the network can more effectively handle areas that are excessively dark or
bright. Further, inspired by Retinex theory [32], the color map is calculated as
C(y) = y/meanc(y), where meanc(.) computes the mean value of each pixel
across RGB channels. This color map serves as a reflectance-like representa-
tion, with C(yl) and C(yref ) maintaining consistency across different lighting
conditions despite noise in C(yl).

For boosting the generation of high-quality light invariant color maps, the
concatenated feature maps of the low light image (yl), and its equivalent his-
togram equalized image h(yl), and color map C(yl) are first pre-processed via
two 3×3 convolution layers for extracting the appropriate features as depicted in
Fig. 1. The extracted features are thereafter given as input to the cascaded dual
channel spatial attention module (DCSAM) which encompasses parallel residual
channel attention blocks (RCAB) [41] and convolutional block attention module
(CBAM) [34] as shown in Fig. 1 to fine-tune the color maps. This parallel design
facilitates the extraction of the contextual associations by taking merit of the
internal prior information among the concatenated feature maps and thus helps
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to subsequently enhance the textural details of the incoming low-light image.
For making a trade-off between the local details for fine texture and global infor-
mation for the overall brightness level, we deployed RCAB. CBAM is inserted
to perform feature attention in both channel-wise and spatial-wise views. The
essence of the dual attention in CBAM is to redistribute weights and to gather
more global structural information inherited in the extracted feature maps.

To further enhance the global contextual learning capability of the proposed
ADNFNet, we introduce the spatial-frequency information refinement (SFIR)
module at two strategic locations, as depicted in Fig. 1. The design of the SFIR
module incorporates both a spatial residual stream and a parallel channel-wise
Fast Fourier Transform (FFT) stream. This module provides several key advan-
tages. Firstly, by integrating the spatial and frequency domains, it leverages the
benefits of both pixel-level and kernel-level features. This dual-domain represen-
tation fusion enables the network to capture more comprehensive and nuanced
information from the input images. Specifically, the spatial stream processes the
image details at the pixel level, while the FFT stream analyzes the image in
the frequency domain, which is particularly effective for identifying repetitive
patterns and textures. Secondly, the SFIR module effectively addresses the issue
of blur and low semantic contrast in low-illuminated images. Low-light condi-
tions often lead to poor contrast and noise, which can obscure important details.
The frequency domain analysis in the SFIR module helps to filter out this noise,
thereby enhancing the clarity and quality of the features extracted from the
images. This results in a richer and cleaner set of features being passed on to
the subsequent stages of the network.

Additionally, the SFIR module enriches the input features for the next invert-
ible layer stage by removing noise and preserving essential details. The combina-
tion of spatial and frequency information ensures that the extracted features are
robust and informative, facilitating better performance in the invertible network
layers. In summary, the DAoFE component in the proposed ADNFNet frame-
work learns a one-to-one mapping for extracting the color map g(yl) in both
spatial and frequency domains. This approach yields a superior representation
that is well-suited for conditioning in all flow layers of the invertible network,
ultimately enhancing the network’s ability to handle low-light image enhance-
ment tasks.

3.2 Invertible Network

The invertible network in the framework is designed to handle one-to-many
relationships due to the diverse illumination maps extracted from DAoFE net-
work for the same scene. The overall objective is to capture the full conditional
probability distribution pyref|yl

(yref|yl, φ) of well-lit images yref corresponding to
low-light images yl. The normalizing flow aims to parameterize this distribution
via an invertible neural network fφ.

The invertible network maps the well-exposed image yref into a latent variable
z = fφ(yref; yl). This mapping must be invertible with respect to yref for any given
yl. Thus, the well-lit image yref can be reconstructed from the latent encoding
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z as yref = f−1
φ (z; yl). By defining a distribution pz(z) in the latent space, the

conditional distribution pyref|yl
(yref|yl, φ) can be implicitly defined by mapping

samples z ∼ pz. The probability densities are explicitly computed using the
change of variable theorem:

pyref|yl
(yref|yl, φ) = pz(fφ(yref; yl))

∣
∣
∣det ∂fφ

∂yref
(yref; yl)

∣
∣
∣ (1)

To achieve a tractable expression for this term, the invertible network fφ

is decomposed into sequential invertible layers. The network consists of three
levels, each containing a squeeze layer and twelve flow steps, with each flow step
comprising four distinct invertible layers. The careful design of these flow layers
ensures a well-conditioned and tractable Jacobian determinant, minimizing the
negative log-likelihood function. The key components of the network are:

– Squeeze Layer: Captures the incoming features from DAoFE at different
scales by reshaping the feature map from C×H×W to 4C× H

2 × W
2 , increasing

the network’s receptive field.
– Invertible 1×1 Convolution: Functions similarly to a vanilla convolution

layer with a kernel size of 1, allowing efficient determinant calculation.
– Conditional Affine Coupling Layer: Introduces the conditional feature

g(xl) into the network, establishing a connection between low-light and nor-
mally exposed images. The operation is defined as:

hA
i+1 = hA

i ; hB
i+1 = exp(θs

i ([h
A
i ; zi])) · hB

i + θb
i ([h

A
i ; zi]) (2)

where zi is the conditional feature, and θs
i and θb

i are networks predicting
scale and bias.

– Affine Injector: Strengthens the connection between the conditional feature
and the well-lit image yref, defined as:

hi+1 = exp(θs
i (zi)) · hi + θb

i (zi) (3)

– Actnorm: Performs channel-wise normalization via learned scaling and bias,
similar to batch normalization.

Fig. 2. Qualitative comparison with SoTA low-light enhancement approaches on LOL
Dataset. The proposed ADNFNet effectively generate images that are visually closer
to the reference, artifact-free, and more natural.
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The networks θs
i and θb

i in the conditional affine coupling layer and affine
injector layer consist of two shared convolutional layers with 64 hidden channels
and PReLU activation, followed by a convolutional layer to predict the scale and
bias.

4 Experiment

4.1 Experimental Settings

Following the settings in [30], the size of all patches has been set at 160×160,
and the overall batch size is set at 16. The model has been trained for 3×104

iterations and the overall learning rate is decremented by a factor of 0.5 at
1.5 × 104, 2.25 × 104, 2.7×104, and 2.85 × 104 iterations for LOL dataset. For
VE-LOL dataset, the model is trained for 4 × 104 iterations, and the overall
learning rate is reduced by a factor of 0.5 at 2×104, 3 × 104, 3.6 × 104, and
3.8 × 104 iterations. In the entire training, we utilized Adam as the optimizer
with a learning rate of 5×10−4. In order to efficiently mark the properties of
well-lit images, we deploy the maximum likelihood estimation for estimating
the learnable parameter, φ in Eq. 1 and we aim at reducing the negative log-
likelihood (NLL) loss for training samples (yl, yref ).

L(φ; yl, yref ) = − log pyref |yl
(yref |yl, φ); (4)

Using Eq. 1, the above equation reduces to minimizing the following loss:

= − log pz(fφ(yref ; yl)) − log |det ∂fφ

∂y (yref ; yl)| (5)

4.2 Experiments on LOL

We evaluate the proposed ADNFNet using 15 images for testing and 485 images
for training from LOL dataset [32]. For quantitative comparison, three metrics

Fig. 3. Qualitative comparison with SoTA low-light enhancement approaches on
LOL-v2 Dataset. THe proposed ADNFNet effectively synthesizes images that exhibit
enhanced visual fidelity to the reference and possess a more natural appearance in cross
dataset evaluation settings.
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are used, PSNR, SSIM [31], and LPIPS [38]. As indicated in Table 1, the pro-
posed approach considerably surpasses all other competitors. Higher PSNR val-
ues indicate the method’s superior capability in suppressing artifacts and accu-
rately recovering color information. Improved SSIM values demonstrate that the
approach excels in preserving structural information with high-frequency details.
Furthermore, the method achieves the best performance in terms of LPIPS, a
metric designed for human perception, indicating a closer alignment with human
visual quality. The visual results in Fig. 2 further demonstrate that ADNFNet
exposes more image details, and achieves more natural, and artifact-free results.

4.3 Experiments on VE-LOL

We further investigate the proposed method on VE-LOL dataset [17] in order
to more accurately assess its effectiveness and generalizability. It is a sizeable
dataset with 2500 paired photos having diverse themes and scenes, making it
beneficial for evaluation in a cross-dataset manner.

Table 1. Quantitative comparison in terms of PSNR, SSIM and LPIPS on the LOL
Dataset. ↑ (↓) denotes that, larger (smaller) values generate finer quality.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
RetinexNet [32] 16.77 0.56 0.47

Zero-DCE [6] 14.86 0.54 0.33

EnlightenGAN [11] 17.48 0.65 0.32

RUAS [18] 18.23 0.72 0.35

RCTNet [13] 22.67 0.79 0.23

Night-Enhancement [12] 21.52 0.76 0.25

Retinexformer [3] 25.16 0.84 0.18

GSAD [9] 25.75 0.82 0.16

Ours 25.70 0.91 0.14

1. Cross-dataset evaluation: We initially assess the universality of the pro-
posed approach in a cross-dataset manner, i.e. training via LOL dataset
and testing on VE-LOL dataset. The quantitative and qualitative results in
Table 2 and Fig. 3 signify that the approach clearly beats the competing SoTA
methods on all the metrics and outcome images with less noise and improved
color saturation. The generated images via ADNFNet preserve more intricate
details as compared to the other approaches.

2. Intra-dataset evaluation: For additional evaluation of the performance of
ADNFNet, we analyze it with other SoTA methods in an intra-dataset man-
ner, where we retrain on VE-LOL dataset and its corresponding test set is
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Table 2. Quantitative comparison on VE-LOL dataset where all the models are trained
on the training dataset of LOL.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
RetinexNet [32] 14.68 0.53 0.64

DeepUPE [28] 13.19 0.49 0.46

KinD [40] 18.42 0.77 0.29

Zero-DCE [6] 21.12 0.77 0.25

KinD++ [39] 17.63 0.79 0.23

EnlightenGAN [11] 20.43 0.79 0.24

Ours 24.47 0.87 0.17

Table 3. Quantitative comparison on the VE-LOL dataset where the models are
trained on the training set of VE-LOL.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
KinD [40] 22.15 0.85 0.26

Zero-DCE [6] 20.54 0.78 0.33

Ours 26.37 0.92 0.13

used for reporting performance. From Table 3 we can observe that the app-
roach exhibits comparable performance. Meanwhile, it can be seen that with
more diverse data, all the compared metrics have improved in comparison to
the model trained on LOL dataset.

4.4 Ablation Study

Here is the detailed ablation study where all the evaluations have been metic-
ulously carried out on the LOL dataset to ensure consistency and reliability of
the results.

Table 4. Ablation study on different components of ADNFNet.

Modules A1 A2 A3 A4 A5

Baseline � � � � �
DCSAM � � � �
SFIR � �
CBAM � �
PSNR 22.12 25.09 25.27 25.35 25.70
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Effectiveness of the Proposed Components: In this section, we demon-
strate the importance of each module in the proposed ADNFNet as shown in
Tables 4 and5. For the baseline (A1), we deployed simple residual block [8] in
place of DCSAM, channel attention [41] in place of CBAM, and no SFIR mod-
ule. After appending each proposed component sequentially into the baseline as
depicted in Table 4, there seems to be a consistent improvement in the overall
performance on the LOL dataset. It clearly indicates that each module is pro-
ficient in performing the dedicated task. Overall, the proposed ADNFNet (A5)
attains a captivating performance gain of 3.58 dB over the baseline (A1). After
confirming the validity of the proposed components, we also analyze the effect of
the different configurations of the two main components in the proposed DAoFE.
From Table 5, it is clear that the parallel combination of the proposed compo-
nents exhibits a performance gain of 5.63 and 1.44 dB in comparison to deploying
only RCAB, and CBAM blocks, respectively.

Table 5. Ablation study on two main components of DCSAM.

Components PSNR ↑ SSIM ↑
RCAB 20.07 0.74

CBAM 24.26 0.90

RCAB + CBAM (series) 25.57 0.91

RCAB + CBAM (parallel) 25.70 0.91

Effectiveness of Different Latent Distributions: The latent feature z fol-
lows the probability density function (PDF):

fz(z) =
1√
2π

exp
(

− (x − r(C(yref), g(yl)))2

2

)

where C(yref), and g(yl) denotes the color map of the well-lit image, and
g(yl) denotes the illumination invariant color map extracted from the encoder
(DAoFE) and r(a, b) is a random selection function defined as:

r(a, b) =

{

a β ≤ p

b β > p
with β ∼ U(0, 1)

The hyper-parameter p is set to 0.2 for all experiments. To evaluate the effec-
tiveness of the proposed illumination-invariant color map and various hyper-
parameters p, we tested them using the LOL dataset (Wei et al. 2018). The
results, shown in Table 6, indicate that the proposed model with the newly
designed color map achieves better PSNR values. Additionally, the higher SSIM
and LPIPS values demonstrate that the color map improves color and brightness
consistency.
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Table 6. The overall effect of distinct latent distributions on LOL

Latent Space Distribution PSNR ↑ SSIM ↑ LPIPS ↓
ADNFNet (w/o color map) 25.11 0.91 0.15

ADNFNet (w color map, p = 0.5) 24.91 0.91 0.16

ADNFNet (w color map, p = 0.2) 25.70 0.91 0.14

5 Conclusion

In this paper, we introduce a sophisticated framework for low-light image
enhancement leveraging a novel normalizing flow model. Unlike conventional
techniques that rely on pixel-wise reconstruction losses and deterministic pro-
cesses, the proposed approach utilizes negative log-likelihood (NLL) loss with
low-light images/features as conditions. This inherently allows for superior char-
acterization of structural context and a more accurate measurement of visual
distance within the image manifold. Furthermore, the method exploits attention
mechanisms to effectively capture contextual relationships and frequency infor-
mation, which enhances the modeling of complex conditional distributions of
normally exposed images. Consequently, this leads to superior low-light enhance-
ment, characterized by well-exposed illumination, reduced noise and artifacts,
and enriched color fidelity. Experimental evaluations on established benchmark
datasets demonstrate that the framework achieves superior quantitative and
qualitative performance compared to state-of-the-art methodologies, thus vali-
dating its efficacy and robustness.
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Abstract. Due to various challenging conditions during video record-
ing, such as camera shake and out-of-focus issues, video deblurring
remains a difficult problem. To address this, we propose the Spatial-
Temporal Frequency domain Fusion network (STFFNet) and improve
the network from three key aspects. Firstly, we introduce the Encoder-
Decoder idea to create a novel backbone to combine global and
local features effectively. Secondly, a new feature fusion module that
focuses on the differences between frames is proposed to help bet-
ter deblur the current frame. Finally, STFFNet introduces a Fre-
quency Domain Converter (FDC) to transform the image informa-
tion from the spatial domain to the frequency domain, enhancing
image restoration by narrowing the gap between the deblurring and
ground truth images in the frequency domain. Experimental results
demonstrate that the proposed method achieves state-of-the-art deblur-
ring performance on benchmark datasets. The code is available at:
https://github.com/Paige-Norton/STFFNet.

Keywords: Video deblurring · Multi-domain Fusion · Differential
Amplifier

1 Introduction

Video recordings often encounter quality problems caused by various factors,
such as out-of-focus and camera shake, which can seriously affect the perfor-
mance of downstream tasks, such as detection and tracking. Enhancing the
quality of model recovery thus becomes a pressing problem for video-deblurring
tasks. In the deblurring task, a blurred image is usually seen as the result of a
blurring kernel acting on a sharp image. Earlier, researchers needed to design
features to estimate sharp images manually. It was essential to develop image
deblurring research, but it performed poorly in more complex scenarios.

Deep learning technology has brought about new solutions, and some novel
approaches [1–6] have been proposed. Using deep learning technology, researchers
can save the extra overhead of manually designing features and give full authority
to the network model. In the deblurring task of video, utilizing the front and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15332, pp. 152–166, 2025.
https://doi.org/10.1007/978-3-031-78125-4_11
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back frame images becomes the key. The CNN-based methods [7,8] deal with the
problem by stacking neighbouring frames as input to the model. This method
often makes it challenging to learn the time-domain information of the input
data, resulting in a limited modelling effect. The RNN-based methods [9–12] use
a recurrent neural network architecture to process the input information frame
by frame, and the spatio-temporal information between frames is better utilized.
However, due to limited information exchange between frames in this approach,
information extraction lacks feedback and interaction. At the same time, there is
a significant difference in representation between the blurred and sharp images in
the frequency domain, as shown in Fig. 1. Whereas video deblurring algorithms
usually focus on utilizing spatial and time domain information, they lack the
utilization of frequency domain information. Therefore, it is very important to
study how to use frequency domain information.

Fig. 1. The comparison chart. It shows the difference between blur images and
ground-truth images in terms of amplitude(amp) and phase(pha) information.

This paper proposes an efficient video deblurring network that incorporates
information from the frequency domain called the Spatio-Temporal Frequency
Domain Fusion Network (STFFNet). The new backbone proposed for this net-
work can decode each frame by combining all the features of the frame sequence
so that the decoded features can contain global and local information. Also, we
propose a new feature fusion module to selectively refer to frames with different
degrees of blurring and pay more attention to the different parts of blurring.
To utilize the difference between a blurred image and a sharp image in the fre-
quency domain, we introduced a Frequency Domain Converter (FDC). It allows
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us to transform the spatial domain into the frequency domain and compute this
difference in the frequency domain. In conclusion, we construct the network in
this paper in three main ways to get more competitive deblurring performance:

– We propose a novel network structure as the backbone of STFFNet. This
backbone can utilize the spatio-temporal information of video frames to pro-
vide a better basis for image recovery.

– We propose a novel data fusion module called Difference Amplification Blocks
(DABs). This module focuses more on the blurring differences between frames
and devotes more attention to the difference part.

– We introduce frequency domain information to minimize the content detail
differences between the deblurring and ground-truth images.

– The experimental results show that our proposed method reaches the state-
of-the-art on the benchmark datasets. Our method achieves the best visual
and quantitative results.

2 Related Work

2.1 Video Deblurring

Unlike image-deblurring tasks [9,13,14], video-deblurring tasks correlate
strongly with data. More than image work, video work needs to investigate how
to utilize the spatio-temporal information among the data. In the early devel-
opment of deep learning technology, researchers mainly invested in CNN-based
methods [7,8,15]. Su et al. [7] proposed the first end-to-end data-driven video
deblurring method, which aligns the video frame data by frame-by-frame single-
response alignment or optical flow alignment and lets the pairs of subsequent
frame data go through a model to estimate the center blurring frame. Wang
et al. [8] use deformable convolution to achieve frame alignment at the feature
level in a coarse to fine manner and propose a temporal and spatial attention
(TSA) fusion module to emphasize essential features for subsequent recovery. As
a result of these proposed modules, the EDVR achieves a huge advantage in the
face of motion-heavy data. However, the attractive CNN-based approach stacks
the input data, which does not use the time domain information well.

Thanks to the excellent performance shown by RNN in processing time-series
signals, this has attracted the attention of another group of researchers [9,10,16,
17]. Zhou et al. [10] proposed a spatio-temporal variant of RNN for video deblur-
ring. The RNN is usually used to utilize the previous frames efficiently. Similarly,
Park et al. [9] proposed to recycle previous feature information in each iteration
and used an incremental temporal training procedure, not to train from the
worst blurred image to the ground-truth image, but to gradually train from the
image with higher blurring to the image with lower blurring. However, the struc-
ture of RNN still needs to be improved for information transfer and extraction,
and its inability to effectively utilize global information restricts feature extrac-
tion. More advanced networks (e.g. Bi-LSTM [18], GRU [19], Seq2Seq [20]) have
been proposed in natural language processing to extract more advanced features.
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Inspired by these, the focus of this paper is on how to combine these advanced
networks with video deblurring tasks.

2.2 The Frequency Domain in the Image

In the early days of image work, researchers usually focused on the spatial
domain of the image for pixel-level processing. Continuing with the video work,
the time domain information is introduced into the study because of the natu-
ral temporal connection between frames. Meanwhile, frequency domain analysis
is an essential method in image work. The image can be better analyzed and
understood by transforming the image from the time domain to the frequency
domain. For example, image blurring results from insufficient high-frequency
components in the image, and some blurring can be eliminated by increasing
the high-frequency components or decreasing the low-frequency components in
the frequency domain. Another example is that images are sometimes affected
by recurring regular periodic noise, which has a specific frequency, so a frequency
domain filtering approach can be taken to filter out the corresponding noise fre-
quency, thus eliminating the periodic noise. Cai et al. [21] proposed that FDIT
decompose an image into high-frequency and low-frequency features, using the
former to capture object structures similar to identity recognition, thus achiev-
ing better image translation. Jiang et al. [22] used fast fourier convolution [23] to
expand the network sensing field and enhance the network perception, enhancing
the network generalization performance and reducing computational cost.

3 Methods

To recover the video frames to better results, STFFNet is proposed in this paper.
It consists of three parts, and the framework is shown in Fig. 2. Firstly, every
five successive blurred video frames extract the feature f for each frame using
backbone (Fig. 2 (a)). Secondly, pass f to the feature fusion network (Fig. 2 (b))
to blend the five features f into mixed features F , and use the reconstructor
(Fig. 2 (c)) to recover the mixed features F into a sharp image. Finally, the
loss is passed back to guide the following process. In the following section, we
describe the main components of our method in detail.

3.1 A Novel Backbone Network

In video work, the time domain information between frames is crucial. With the
development of deep learning technology, RNN-based methods have replaced
CNN-based methods as mainstream methods. However, this paper argues that
global features can be incorporated more obviously in the RNN propagation pro-
cess to improve the global nature of the generated features. Inspired by Seq2Seq
and Bi-LSTM, we propose a novel backbone network named Decoding Every
Frame (DEF). It uses the Encoder-Decoder idea, and it is shown in Fig. 2(a).
The architecture is designed as follows: sequential encoding of video frames to
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Fig. 2. The overall architecture of STFFNet. It contains three main compo-
nents:(a). A novel backbone network called DEF to extract features of video sequences.
(b). Our proposed feature fusion module is named DABs. It focuses on processing the
differences between frames. (c). A reconstructor is designed to transform features into
images.

obtain global features and decoding of each video frame only by the global fea-
tures to obtain local features that contain global information. More specifically,
sequential frames are first sequentially encoded in memory information h by the
RDB cell and passed to the following frames. Then, the last memory informa-
tion, h, is sequentially decoded by the RDB cell in combination with the video
frames to obtain the feature f. With this framework, more advanced features are
extracted.

hi =

{
∅ i = 0
Encoder(xi, hi−1) i ∈ [1, 5] ,

(1)

fi = Decoder(xi, hlast), i ∈ [1, 5] . (2)

In this architecture, the memory information hi is generated in the encoder
stage (where i stands for the ith frame and a video sequence is set to 5 frames).
When in the first frame of the video, i = 0, and hi is empty, then hi is Encoder
with each frame of the image. hi generated in the last frame, denoted by hlast,
contains the global information of the sequence of frames, formulized as Eq. 1.
The global information hlast generated by the Encoder is utilized in the Decoder
stage to decode the feature fi with the ith frame respectively, and no more
hi is generated, formulized as Eq. 2. Each decoding process is independent and
does not communicate with each other. Compared to the Seq2Seq network, it
removes the hi that is communicated between frames in the decoder phase while
the encoder phase remains unchanged, and the Decoder retains only the output
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feature fi. This change is experimentally driven, and this paper validates the
effectiveness of this treatment in an ablation study. This paper argues that this
is because the present frame already contains enough information to transfer.
However, Seq2Seq passes too much redundant information in this task, further
degrading network performance and increasing the difficulty of fitting.

3.2 Feature Fusion Module

After obtaining the features fi of each frame, An urgent problem is the effective
use of these features. In this paper, video deblurring is viewed as a problem of
restoring a sharp frame from a sequence of blurred frames. Different frames have
different effects on the reduction effect and cope with different attention during
processing. In this paper, inspired by the GSA [24] module, we propose a new
data fusion method called Difference Amplification Blocks (DABs), which con-
sists of a fusion of multiple blocks, and the structure is shown in Fig. 2(b). The
five features generated by DEF are fused here. The center frame features and the
other four frame features are combined into four groups of feature sets, respec-
tively, which go to Block to learn the differences between each set of features.
Then, the four groups of feature differences are concatenated and convolved to
the appropriate dimension to obtain the hybrid feature F, which is passed to the
next step.

In contrast to the GSA structure, the DABs split a branch parallel to the
GAP in each block, which uses the Differential Amplifier (DA) proposed in this
paper to centralize the blurring differences between frames. The DA structure is
shown in Fig. 3.

Specifically, the difference between a pair of frames DA(fj)(where j denotes
the jth pair of frames and j ∈ [1, 4] ) is expressed as a pair of characteristic fea-
tures of noncenter frames fj minus characteristic of the center frame to obtain
the difference information (expressed as differ(fj)) and the product of the con-
volution of fj , formulized as Eq. 4. DA(fj) and the result after convolution of
the GAP branch constitutes a block, four pairs of feature group fj after the DA
block will form the total features F, formulized as Eq. 5.

fj = Concat(ft±k, ft), (3)

DA(fj) = Conv(fj) × differ(fj), (4)

F =
4∑

j=1

Concat + Conv [GAP (fj) × Conv(fj),DA(fj)] , (5)

where t denotes the center frame of the frame sequence and t ∈ [3, N+ − 2],
where k denotes the number of frames that differ from the center frame and
k ∈ [1, 2].
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Fig. 3. The structure of a Differential Amplifier (DA). It is designed to focus on
the differences between video frames. The structure’s core is the Differ section, which
focuses on the difference between the center video frame and the other frames.

3.3 Frequency Domain Guidance

Blurring or not blurring is expressed as a significant difference in the frequency
domain, as shown in Fig. 1. It is usually considered that the frequency domain
information can be utilized to guide image restoration from an additional per-
spective. In image processing, the amplitude usually indicates the magnitude of
the contribution of each spatial frequency in the image. High amplitude usu-
ally corresponds to high-frequency portions of the image, such as edges or tex-
tures, which often contain detailed information in the picture. Low amplitude,
on the other hand, corresponds to smooth regions or low-frequency portions.
Blurred images tend to have weaker high-frequency information compared to
sharp images. Then, increasing the high-frequency information of the recov-
ered image while reducing the influence of low-frequency blurred information is
another focus of this paper. This paper uses the Frequency Domain Converter
(FDC) to introduce information in the frequency domain, the framework shown
in Fig. 4. The predicted images and ground-truth are transformed into ampli-
tude(amp) and phase(pha) information by FDC, respectively. The final disparity
is obtained by calculating the Manhattan distance between the predicted images
and ground-truth in amplitude and phase.

Formulized as Eq. 6, specifically using the extraction of amplitude and
phase information for the predicted image and ground-truth, expressed as
preamp, prepha, gtamp, gtpha, respectively, and then calculating the manhattan of
the difference between the predicted image and the ground-truth in amplitude
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Fig. 4. The frequency domain information is utilised. In this, the Frequency
Domain Converter (FDC) is used to extract the amplitude and phase of the image. Fur-
thermore, they are used to calculate the Manhattan distance between the blurred and
sharp images in terms of amplitude and phase.

and phase distance LossFDC .⎧⎪⎨
⎪⎩

gtamp, gtpha = FDC(gtimg)
preamp, prepha = FDC(preimg)
LossFDC = L1(gtamp, preamp) + L1(gtpha, prepha).

(6)

3.4 Loss Function

The method proposed in this paper consists of two main losses: MSE and FDC
losses. The entire loss function can be formulated as Eq. 7:

L = σ1Lmse + σ2Lfdc, (7)

where σ1 and σ2 are two weighting parameters, which are set to 1 and 0.1,
respectively. The loss function Lmse is the mean-square error in pixels between
the ground-truth and the prediction. Lfdc is the manhattan distance in the
frequency domain between the ground-truth and the prediction.
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4 Experimental Evaluation

4.1 Dataset

Beam-Splitter Deblurring Dataset (BSD) [24]. It uses a beam splitter
acquisition system with two synchronized cameras and obtains sharp and blurred
images by controlling the exposure time and exposure intensity. Unlike the way
of obtaining blur from sharp frame degradation, BSD is a real-world dataset
in the true sense of the word, containing three different frame rate datasets of
1ms-8ms, 2ms-16ms and 3ms-24ms. There are 60 training video datasets, 20 test
video datasets, and 20 validation video datasets, each of which contains sharp
frames and the corresponding blurred frames.

Gopro Dataset (Gopro) [25]. It is a dataset for deblurring tasks. The dataset
consists of 3,214 blurred images of size 1,280 × 720, of which 2,103 are train-
ing images and 1,111 are test images. The dataset consists of one-to-one corre-
spondence of real blurred images and ground-truth images, both captured by a
high-speed camera.

REalistic and Diverse Scenes Dataset (Reds) [26]. It is a dataset that
provides realistic and dynamic scenes for video deblurring and super-resolution.
The dataset consists of 300 video sequences with a resolution of 720 × 1,280, of
which 240 are training videos, 30 are validation videos, and 30 are test videos.

4.2 Experimental Setup

This paper was all performed on a Pytorch equipped with two 3090 GPUs.
The code in this article is based on the ESTRNN [24]. The models are not
pre-trained on the rest of the dataset. We train the model for 500 epochs with
the Adam optimizer. The initial learning rate is 5 × 10−4. We train the model
using RGB patches of size 256 × 256 in subsequences of 5 frames as input. In
addition, we implement horizontal and vertical flipping for each subsequence for
data enhancement. The batch size is set to 8.

4.3 Ablation Study

We conducted ablation studies to demonstrate the effectiveness of DEF, CABs,
and frequency domain information. As shown in Table 1 (a) and Table 1 (b), this
paper conducts a series of comparison experiments to prove the effectiveness of
the DEF. DEF has a large improvement over both RNN and Bi-LSTM.

In this paper, we set up a comparison where one group uses DABs to replace
the GSA network, and the other group uses the Global Max Pooling(GMP)
Operation to replace the DA in DABs. The results are shown in Table 1 (c),
which shows that the structure of multi-branching can lead to an improvement
of the network effect. And the network can have a more significant improvement
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Table 1. Ablation study table. (a) is a comparison of the backbone network of the
DEF(Ours) proposed in this paper with the RNN in ESTRNN. (b) is a comparison of
the backbone network of the DEF and Bi-LSTM. (c) is a comparison of the different
feature fusion networks. (d) is the effect of the use of information in the frequency
domain with or without the use of the information in the frequency domain. For quan-
titative experimental comparisons, the remaining parameters are kept constant while
comparing a particular parameter. The ablation studies are all performed on BSD
for 2ms-16ms. (✗ denotes not using frequency information, ✓ denotes using frequency
information. Best and second best scores are highlighted and underlined).

Group Backbone Frequency domain Fusion network PSNR↑ SSIM↑
(a) RNN ✗ GSA 31.93 0.925

DEF ✗ GSA 32.61 0.932

(b) Bi-LSTM ✓ GSA 32.63 0.931

DEF ✓ GSA 32.98 0.937

(c) DEF ✓ GSA 32.98 0.937

DEF ✓ GMP 32.99 0.938

DEF ✓ DABs(Ours) 33.03 0.938

(d) DEF ✗ GSA 32.61 0.932

DEF ✓ GSA 32.98 0.937

Fig. 5. Visualization of different feature fusion networks.

only when DA is used instead of GMP. Moreover, analyzing the visual effect
in Fig. 5, it can be found that the left part of the text produced by using the
DABs module is clearer and has fewer color differences. The overall visual effect
of DABs is better than the results of the other two modules.

The effect of DABs is better than GSA and GMP because the GSA structure
focuses more on the result between two frames after various transformations.
Moreover, the transformations contain much content, and learning the difference
between the two frames requires more time. DABs can speed up the convergence
process while focusing on the difference between frames, as shown in Fig. 6.
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Fig. 6. Plot of DA Block’s impact on PSNR metrics during training. The model con-
verges better and is more stable when using the DA Block (blue line). (Color figure
online)

Finally, based on the ablation experiments, we find that the introduction of
frequency domain information significantly improves network performance, as
shown in Table 1 (d).

4.4 Quantitative and Visual Results

Table 2. Quantitative results of our method comparing other methods on the BSD
dataset(Best and second best scores are highlighted and underlined).

Methods Reference 1ms8ms 2ms16ms 3ms24ms

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
STRCNN (ICCV 2017) [11] 32.20 0.924 30.33 0.902 29.42 0.893

DBN (CVPR 2017) [7] 33.22 0.935 31.75 0.922 31.21 0.922

IFI-RNN (CVPR 2017) [9] 33.00 0.933 31.53 0.919 30.89 0.917

SRN (ICCV 2018) [27] 31.84 0.917 29.95 0.891 28.92 0.882

STFAN (ICCV 2019) [10] 32.78 0.922 32.19 0.919 29.47 0.872

MTRNN (ECCV 2020) [15] 28.06 0.868 26.85 0.841 27.17 0.866

CDVD-TSP (CVPR 2020) [28] 33.54 0.942 32.16 0.926 31.58 0.926

MSDI-Net (ECCV 2022) [29] 28.40 0.885 27.87 0.865 28.03 0.875

DeepRFT (AAAI 2023) [30]) 29.81 0.902 29.76 0.910 28.14 0.890

ESTRNN (IJCV 2023) [24] 33.36 0.937 31.95 0.925 31.39 0.926

Ours 33.68 0.938 33.03 0.938 31.66 0.929

We conducted side-by-side comparison experiments on the real-world dataset
BSD using many methods [7,9–11,24,27–30]. The visual results are shown in
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Fig. 7. Visual results of our method compared to other methods.

Fig. 7. Our approach achieves more visually appealing results in BSD. The quan-
titative results are shown in Table 2. Compared to all methods, our method
reaches the state-of-the-art. Both visual and quantitative results validate the
effectiveness of our method in real-world video deblurring tasks.
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In addition, our method conducts comparative experiments on the Gopro and
Reds datasets, and the quantitative results are shown in Table 3. Our methods
also reach state-of-the-art.

Table 3. Quantitative results of our method comparing other methods on the Gopro
and Reds datasets(Best and second best scores are highlighted and underlined).

Method Reference Gopro Reds

PSNR↑ SSIM↑ PSNR↑ SSIM↑
STRCNN (ICCV 2017) [11] 28.74 0.8465 30.23 0.8708

DBN (CVPR 2017) [7] 29.91 0.8823 31.55 0.8960

IFI-RNN(c2h1) (CVPR 2017) [9] 29.79 0.8817 31.29 0.8913

IFI-RNN(c2h2) (CVPR 2017) [9] 29.92 0.8838 31.35 0.8929

IFI-RNN(c2h3) (CVPR 2017) [9] 29.97 0.8859 31.36 0.8942

STFAN (ICCV 2019) [10] 30.51 0.9054 32.03 0.9024

ESTRNN (IJCV 2023) [24] 31.07 0.9023 32.63 0.9110

Ours 31.01 0.9131 33.22 0.9240

5 Conclusion

This paper proposes an efficient video deblurring method (STFFNet) for per-
ceptually oriented and metrically favourable enhancement. Specifically, we first
explore using an Encoder-Decoder to construct a novel backbone. It combines
global features while generating current frame features to extract more profound
and broader information for better recovery. In addition, we develop a new fea-
ture fusion module to speed up the fitting and improve the modelling results.
Finally, we added frequency domain information to the network to make the
network more focused on high-frequency information, resulting in more explicit
images. Experimental results show that STFFNet performs up to the current
state-of-the-art methods in the benchmark datasets.
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Abstract. In the field of image processing, blind image deblurring aims
to restore sharp details in images blurred by an unknown convolution
kernel. Recent advancements have shown that deep networks can act as
effective image generative priors (DIP) for restoring clear images with-
out requiring external datasets. However, the inherent non-uniqueness
of solutions in blind image deblurring often leads DIP-based methods to
converge on local optima, resulting in over- or under-deblurred images.
To overcome this limitation, we propose a novel deblurring framework
featuring dual image generators. These generators mutually constrain
each other during training, guiding the model towards the optimal solu-
tion. Building on our network structure, we employ a self-ensemble and
self-distillation strategy to guide network training, further enhancing per-
formance. Additionally, we introduce a novel loss function based on a
pixel screening method, which focuses on the important pixels. This loss
enables the network to model the blur kernel more accurately and facili-
tates the restoration of image details. Our experiments demonstrate that
our deblurring approach outperforms most existing methods both qual-
itatively and quantitatively.

Keywords: Blind Image Deblurring · Dual-Network ·
Self-Distillation · Pixel Screening

1 Introduction

Blind image deblurring (BID) is a classical problem in the domain of image
restoration, focusing on the elimination of unknown blur caused by camera shake.
When the blur kernel is spatially invariant, the blurred image B to be restored
can be formulated as:

B = I ⊗ k + n, (1)

where I represents the sharp image we aim to recover, ⊗ denotes the 2D convolu-
tion operation, k is the blur kernel, and n represents the additive white Gaussian
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noise. Thus, in the task of blind image deblurring, our goal is to estimate both
I and k from the blurred image B. Given the multitude of solutions for I and k
that satisfy the equation, this problem is also a typical example of an ill-posed
problem.

Most of the existing traditional optimization-based methods for addressing
this issue are based on the Maximum a Posteriori (MAP) framework,

(k, I) = arg max
k,I

P (k, I|B) = arg max
k,I

P (B|k, I)P (I)P (k), (2)

where P (B|k, I) is the likelihood term and P (I), P (k) model the priors of clean
image and blur kernel, respectively. Numerous outstanding works focus on the
design of priors P (I) and P (k) in (2), to enhance the accuracy of kernel esti-
mation [3,7,18,24,41]. Although these manually designed priors are powerful,
they still have limitations in fully modeling both the sharp images and the blur
kernels.

Ulyanov et al. [33] demonstrated that neural network architectures possess
an intrinsic image generative prior, termed as “Deep Image Prior” (DIP), which
can be leveraged for image restoration tasks. This finding suggests that Con-
volutional Neural Networks (CNNs) can inherently grasp low-level statistical
information [20], acting as an effective prior without the need for training on
extensive datasets. Building on the concept of DIP, Ren et al. [26] proposed using
a DIP network, specifically the asymmetric autoencoder [28] with skip connec-
tions [33], along with a fully connected network (FCN) to map noise inputs to
sharp images and blur kernels. The optimization problem for this framework can
be formulated as:

min
GI ,Gk

‖GI (ZI) ⊗ Gk (Zk) − B‖2, (3)

where GI and Gk are the generators, ZI and Zk are noise inputs.

Motivation. Recently, several efforts have been made to optimize this frame-
work [1,4,9,17,32]. For instance, Tian et al. [32] proposed using CNNs to model
the blur kernel and incorporating attention mechanisms into the image generator
to better capture priors, Bredell et al. [1] suggested using Wiener deconvolution
to guide DIP during optimization and achieved more stable deblurring perfor-
mance. However, due to the non-uniqueness of solutions, DIP-based methods
are prone to converging to local optima, making it challenging to accurately
restore image details. Additionally, since the image and kernel generators are
optimized simultaneously, an erroneous solution generated by any one network
can affect the final results. Therefore, we aim to develop a new deblurring method
to address the inherent issues of DIP-based blind deblurring approaches.

Our Approach. In this paper, we introduce a network framework with dual
image generators (See § 3.1). These two generators work simultaneously to model
the image, where their mutual constraints help prevent the model from converg-
ing to local optima, significantly improving image detail restoration. We also uti-
lize a self-ensemble and self-distillation strategy that ensembles the clear image
outputs of the network and incorporates them into the loss function to guide
network training, further enhancing performance (See § 3.2). Inspired by recent
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work [40], which introduced a pixel screening method to exclude the impact of
adverse pixels, we propose a novel loss function (See § 3.3). This loss function
weights the importance of each pixel in loss calculation, allowing the network to
focus more on the parts beneficial for modeling the blur kernel during training.
A more precise blur kernel helps the image generators produce images with finer
details, thereby enhancing the overall performance of the network.

Contributions. Our contributions in this paper are as follows:

• We propose a network architecture with dual image generators that effectively
mitigates the model’s convergence to local optima. Building upon our pro-
posed model, we further employ a self-ensemble and self-distillation strategy
to enhance the network’s performance.

• We propose a pixel screening loss, aiding the network in more accurately
modeling the blur kernel, thereby enhancing the restoration of image details.

• Qualitative and quantitative experiments on popular datasets demonstrate
that our method is competitive with state-of-the-art approaches.

2 Related Work

2.1 Optimization-Based Deblurring

A popular traditional approach for blind image deblurring is based on the Max-
imum a Posteriori (MAP) framework. Research in this area primarily focuses on
designing prior constraints for sharp images and blur kernels. These methods aim
to make intermediate images closer to the clear image and improve the accuracy
of blur kernel estimation. Notable priors include total variation (TV) [3], l0-norm
gradient prior [38], edge-based patch priors [30], and color-line prior [13].

On top of or instead of the aforementioned priors, recent works have proposed
stronger ones, such as dark channel prior [24], local minimal intensity prior [35],
and superpixel segmentation prior [19], achieving state-of-the-art results. How-
ever, despite the effectiveness of these manually designed priors, they still face
limitations in fully representing both sharp images and blur kernels.

2.2 Supervised Learning-Based Deblurring

Many existing deep learning methods address this by constructing datasets with
clear images and true kernels to train neural networks in a supervised manner.
Some studies [2,29] use deep neural networks to directly learn map blurry images
to the blur kernels that need to be estimated. However, due to the diversity of
the motion blur kernels, it is impossible to construct a comprehensive training
set that enables the network to estimate arbitrary blur kernels.

Therefore, many methods focus on kernel-free neural networks, which aim to
directly map blurry images to their corresponding sharp images. Nah et al. [22]
use a “multi-scale” training strategy to train a deep neural network composed
of stacked residual blocks. Tao et al. [31] build on this by introducing inter-scale
weight sharing, which reduces the number of parameters in the network. Zhang
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et al. [39] employ a recursive weight setting method to increase the receptive
field of the network, allowing it to handle more severe motion blur. Kupyn et al.
[12] use generative adversarial networks (GANs) to obtain more realistic sharp
images. While these learning-based deblurring methods can effectively address
non-uniform blur issues, their performance is limited when dealing with severe
blur and is constrained by the datasets.

2.3 DIP-Based Deblurring

To avoid the collection cost and generalization issues associated with external
training sets in deep learning, recent studies [1,4,9,17,26,32] focus on developing
dataset-free blind image deblurring methods. These methods are based on the
Deep Image Prior (DIP) [33], which suggests that convolutional neural networks
can act as implicit regularizers when fitting images using random seeds as input.

Inspired by this, Ren et al. [26] proposed SelfDeblur to address the blind
deblurring problem. This method uses a CNN to fit the image while employing
a fully connected network to model the prior of the blur kernel. Jan et al. [9]
incorporated ideas from traditional MAP methods into SelfDeblur, enhancing
the stability and performance of the deblurring process. Tian et al. [32] suggested
using CNNs to model the blur kernel and integrating attention mechanisms
into the image generator to more effectively capture the priors. However, the
problem of solution non-uniqueness in blind image deblurring can cause DIP-
based methods to converge on local optima, leading to images that are either
over-deblurred or under-deblurred. Our method is also based on DIP, but we
aim to alleviate the issue of neural networks converging to local optima when
fitting images. Additionally, we seek to better guide network training to achieve
more accurate results.

3 Method

3.1 Dual-Network Architecture

Most DIP-based methods focus on using one network to model the sharp image
and another network to model the blur kernel separately. However, since the
blind image deblurring problem is a typical ill-posed problem, it is highly prone
to converging to suboptimal solutions, resulting in unsatisfactory sharp images.

Hence, we propose a novel dual-network architecture, which is shown in Fig. 1.
In our framework, there are two DIP networks dedicated to modeling the sharp
image. These networks independently map their respective noise inputs to clear
images. Consequently, our optimization problem is defined as follows:

min
G1

I ,G
2
I ,Gk

Ldata

(
G1

I

(
Z1
I

) ⊗ Gk (Zk) ;B
)

+ Ldata

(
G2

I

(
Z2
I

) ⊗ Gk (Zk) ;B
)
, (4)

where Ldata is the data-term measuring the degradation model error. This error
can be measured by its l2 norm as in (3) or others. Given that the inputs of
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the two noises are different, the image generation networks G1
I and G2

I will learn
distinct parameter distributions, which in turn leads to varied output results.
Nonetheless, as the images generated by both networks are convolved with the
same blur kernel, they independently aid Gk in accurately modeling the blur
kernel. Throughout the optimization process, the dual image generators mutu-
ally constrain each other, effectively preventing the model from converging to
suboptimal solutions.

Fig. 1. Overview of proposed method. The dual image generators G1
I and G2

I estimate
sharp images, while Gk generates the blur kernel. The error with the blurred image B
is measured using Ldata which can be either Lps (See §3.3) or SSIM, and the ensemble
output is utilized to guide the network training process.

3.2 Self-ensemble and Self-distillation

Chen et al. [4] have demonstrated that ensembling deblurred images can sig-
nificantly enhance the visual quality of images. However, they employed metic-
ulously designed complex modules to ensure image alignment. Benefiting from
our dual-network architecture, we can also average the two clear images gen-
erated by the dual image generators to achieve better results. Unlike training
two image generators independently, our image generators are simultaneously
constrained by the same blur kernel. As a result, the sharp images we obtain
are naturally aligned, allowing us to directly integrate the two images without
additional alignment operations.

Additionally, to achieve better integration results, we aim to combine the
outputs of the image generator at each step of the iterative process. Therefore,
we have adopted the concept of temporal ensembling [15] by calculating the
Exponential Moving Average (EMA) of the results from each image generator
and then averaging these to derive the final integrated result.
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Let I1, I2 respectively represent the G1
I

(
Z1
I

)
and G2

I

(
Z2
I

)
at each step of the

training process, the EMA output for each generator Ĩi (i = 1, 2) at each step
can be computed by:

Ĩi ← μĨi + (1 − μ)Ii, (5)

where μ is a hyperparameter that takes values ranging from zero to one. Their
total integrated output IE can be represented as:

IE =
1
2

(
Ĩ1 + Ĩ2

)
. (6)

While self-ensemble can enhance performance, the base model itself remains
unaffected by the integrated result. To address this, we further apply knowledge
distillation [6] to improve the base model’s capabilities. The self-distillation loss
function can be written as:

Lsd = ‖I1 − IE‖2 + ‖I2 − IE‖2. (7)

This means that at each iteration step, the superior integrated output guides the
network training, allowing the model to converge towards a better solution. Our
ablation studies show that with the help of self-ensemble and self-distillation,
the model tends to exhibit improved performance. This technique effectively
enhances the network’s ability to learn from its own predictions, thereby refining
its output and contributing to overall better results.

3.3 Pixel Screening Loss

Fig. 2. Pixel screening loss. This involves calculating the pixel screening map of the
intermediate generated image and using it as a weight combined with the Mean Squared
Error (MSE).

In traditional optimization-based methods of blind image deblurring [23,24,
27], the blur kernel and intermediate image are typically estimated alternately,
ultimately aiming to converge to the blur kernel. Zhang et al. [40] have proposed
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an intermediate image correction method that leverages Bayesian posterior esti-
mation. This method screens through the intermediate image to identify and
exclude unfavorable pixels, thereby reducing their impact on kernel estimation.

As described by Zhang et al. [40], given the estimated I and k, the pixel
screening map Pij can be explicitly represented as:

Pij =
N

(
(I ⊗ k)ij , σ2

)
(1 − P0)

N
(
(I ⊗ k)ij , σ2

)
(1 − P0) + cP0

, (8)

where P0 is a parameter that can be adjusted and c = 1
cmax−cmin

, cmax and
cmin are for the range of the image values. However, this method is primarily
applicable to traditional optimization-based approaches. Since neural network
methods estimate both the image and the blur kernel simultaneously and involve
gradient backpropagation, the intermediate image correction method cannot be
directly applied.

To integrate this approach with neural network methods, we propose a novel
loss function, which can be written as:

Lps = ‖√
P ⊗ k � (B − I ⊗ k)‖2, (9)

where I denotes G1
I

(
Z1
I

)
or G2

I

(
Z2
I

)
, k denotes Gk (Zk), � is the pointwise

multiplication operator, and P represents the pixel screening map applied to I.
This map, P , is calculated using the intermediate results I and k obtained during
the network’s training process. The loss function underscores the significance of
each pixel’s contribution to the loss by performing a weighted average, based on
the correctness of the contribution, rather than a simple average. This specialized
loss helps the model more accurately model the blur kernel, leading to improved
performance. The pipeline of this loss function is shown in Fig. 2.

3.4 Total Loss

In addition to the previously mentioned loss, we also use l2 regularization for
the kernel values, and the the data-term is switched from Lps to the Structural
Similarity Index Measure (SSIM) after a certain number of steps. The total loss
for training our model can be represented as:

Ltotal = Ldata (I1 ⊗ k;B) + Ldata (I2 ⊗ k;B) + λLsd + β‖k‖2, (10)

where Ldata is Lps if iter < 2000, SSIM otherwise, λ = 1 if iter > 2000, 0
otherwise, and β = 0.1.
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4 Experiments

Fig. 3. Visual comparison on sample images from Levin et al. [16]. The estimated
kernels are displayed in the top left corner of the image.

Table 1. Average PSNR, SSIM comparison on the dataset of Levin et al., � indicates
the final deblurring results are using the method from [34].

Method PSNR SSIM

Krishnan et al.� [11] 29.88 0.8666

Cho&Lee� [5] 30.57 0.8966

Levin et al.� [34] 30.80 0.9092

Xu&Jia� [37] 31.67 0.9163

Sun et al.� [30] 32.99 0.9330

Zuo et al.� [41] 32.66 0.9332

Pan-DCP� [24] 32.69 0.9284

SRN [31] 23.43 0.7117

SelfDeblur [26] 33.07 0.9313

W-DIP [1] 33.61 0.9329

Ours 34.79 0.9446

4.1 Implementation Details

The method we proposed is implemented in PyTorch. We use the Adam [8] opti-
mizer to adjust the parameters of both the image generator and the blur kernel
generator, and each employs a different learning rate. We set the initial learning
rate to 1e − 4 for image generators and 1e − 2 for the kernel generator, and
decrease it by multiplying with 0.5 at the 2K, 3K, and 4K iterations following
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the implementation by Ren et al. [26]. For the evalutions, we run this opti-
mization process for 5K iterations, and after 2K iterations, we apply the EMA
(Exponential Moving Average) algorithm with a parameter set to 0.9. Addition-
ally, for the pixel screening loss, we set the hyperparameter P0 to 0.1. It is also
worth emphasizing that, similar to other DIP-based methods, our approach is
self-supervised and does not require any external training dataset.

4.2 Comparison with the State-of-the-Art Methods

We opt to conduct our experiments using the popular datasets from Levin et
al. [16] and Lai et al. [14]. We use the ensemble output of the method we pro-
posed as final results. For traditional optimization-based approaches, we begin
by estimating the blur kernel using these methods, followed by employing a
non-blind deconvolution method to recover the sharp image.

Results on the Dataset of Levin et al. On the Levin dataset, we com-
pared several traditional optimization-based methods and neural network meth-
ods based on DIP [33], among which we reproduced the results of method [1]
using its source code. The results in Table. 1 indicate that our method outper-
forms others in terms of both PSNR and SSIM, achieving the best results. At
the same time, it can be seen from Fig. 3 that, compared to other methods, our
method can obtain more image details and a more accurate blur kernel.

Results on the Dataset of Lai et al. While the dataset of Levin et al. [16]
consists of 32 greyscale images with relatively small kernels, the Lai et al. [14]
dataset includes 25 clean color images and 4 large blur kernels. The blurry images
in the Lai et al. dataset are organized into five categories: Manmade, Natural,
People, Saturated, and Text. Each category contains 20 blurry images, providing
a diverse set of images for comprehensive evaluation. We present our results
alongside those of other methods in Table. 2, demonstrating that our method
remains competitive even on more challenging datasets.

Fig. 4. Real-world blur image from the Lai et al. [14] dataset comparing our
method with other methods.
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Table 2. Average PSNR/SSIM comparison of 5 categories on the dataset of Lai et
al. [14]. The methods marked with � adopt [10] and [36] as non-blind deconvolution
after blur kernel estimation.

Images Cho&Lee� [5] Xu&Jia� [37] Michaeli et al. � [21] Perrone et al.� [25]

Manmade 16.35/0.3890 19.23/0.6540 17.43/0.4189 17.41/0.5507

Natural 20.14/0.5198 23.03/0.7542 20.70/0.5116 21.04/0.6764

People 19.90/0.5560 25.32/0.8517 23.35/0.6999 22.77/0.7347

Saturated 14.05/0.4927 14.79/0.5632 14.14/0.4914 14.24/0.5107

Text 14.87/0.4429 18.56/0.7171 16.23/0.4686 16.94/0.5927

Average 17.06/0.4801 20.18/0.7080 18.37/0.5181 18.48/0.6130

Images Pan-DCP� [24] SelfDeblur [26] W-DIP [1] Ours

Manmade 18.59/0.5942 20.35/0.7543 20.23/0.7406 20.43/0.7713

Natural 22.60/0.6984 22.05/0.7092 22.30/0.7382 22.49/0.7525

People 24.03/0.7719 25.94/0.8834 26.29/0.8991 26.18/0.8932

Saturated 16.52/0.6322 16.35/0.6364 17.06/0.6717 17.12/0.6847

Text 17.42/0.6193 20.16/0.7785 20.25/0.7719 20.93/0.7928

Average 19.89/0.6656 20.97/0.7524 21.23/0.7643 21.43/0.7789

Results on the Real-World Images. We also test our method on real-world
blurry images, which typically involve unknown blur kernels and pose significant
challenges. As shown in Fig. 4, our method produces results that are as good as
or even better than other blind image deblurring methods.

4.3 Ablation Study

Network Architecture. To evaluate the benefits of our proposed dual-
generator network structure, we conducted experiments on the Levin dataset
three times and recorded the distribution of all results based on the PSNR met-
ric. We did not use any additional proposed losses and focused solely on the
impact of the network structure. As shown in Fig. 5, with all other factors being
the same, the dual-generator structure resulted in overall better performance
compared to a single generator. We also observed that, although the images
generated by the two generators had a similar overall distribution, they still
exhibited differences. This indicates that the two generators can function inde-
pendently while also constraining each other during training, helping the model
avoid converging to suboptimal solutions.

We further designed experiments to investigate the impact of different num-
bers of generators (ranging from 1 to 4) on network performance. This evaluation
was also done without incorporating the other proposed losses, focusing solely
on the effect of changing the quantity of generators. As indicated in the results
presented in Table. 3, we observe a gradual improvement in performance with
an increasing number of generators. The most notable improvement is observed
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Fig. 5. The PSNR results distribution for whether using the dual-generator structure
on the Levin et al. [16].

Table 3. PSNR results of our method with different quantities of image generators,
tested on Levin et al. [16].

generator numbers 1 2 3 4

PSNR 34.01 34.61 34.74 34.80

when the number of generators is set to two. Taking into account the balance
between model size and performance, we opt for two image generators for our
network structure, as this setup provides a significant enhancement in perfor-
mance without excessively increasing the complexity of the model.

Self-ensemble. Figure 6 shows the PSNR results of our method on each image
in the Levin dataset, highlighting both the outputs of the individual image gen-
erators and the results integrated using our self-ensemble method. As can be
seen, integration improves performance for almost every image. This indicates
that using EMA and integrating the outputs of the two generators can yield
more accurate sharp images, laying the groundwork for our subsequent use of
self-distillation.

Self-distillation and Pixel Screening Loss. Table 4 highlights the improve-
ments in the PSNR metric for the model when utilizing self-distillation and pixel
screening loss. In this context, “Max” refers to using the maximum metric value
from the outputs of the two generators as the final result, whereas “Ensemble”
indicates the use of the integrated output from both generators.

The data reveal that implementing the self-distillation loss improves PSNR
values for both individual outputs and the integrated output. Additionally,
the inclusion of pixel screening loss further optimizes the model’s performance,
achieving the highest improvements. Figure 7 shows a visual quality comparison
with and without using pixel screening loss. This demonstrates the effectiveness
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Fig. 6. The PSNR results of each generator’s output and the self-ensemble output for
each image in the dataset.

Fig. 7. Visual quality comparison of whether using pixel screening loss on an image in
the dataset of Lai et al. [14]. The estimated kernels are displayed in the top left corner
of the image.

Table 4. Ablation study of the proposed method on Levin et al.

Method Max Ensemble

Dual-Network 34.26 34.61

Dual-Network + Self-Distillation 34.49 34.68

Dual-Network + Self-Distillation + Pixel Screening Loss 34.56 34.79
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of combining these techniques: self-distillation maximizes the benefits of inte-
grating outputs from multiple generators, while pixel screening loss refines the
focus on more accurate pixel contributions. Together, these techniques drive the
model toward optimal performance.

5 Conclusions

In this paper, we propose a novel dual-network architecture featuring two image
generators, complemented by self-distillation and pixel screening loss, aimed at
tackling the challenge of blind image deblurring. Through comprehensive experi-
ments, we demonstrate that our approach effectively improves the restoration of
sharp image details by mitigating the model’s convergence to suboptimal solu-
tions and refining the accuracy of blur kernel estimation. The results confirm that
our method not only enhances the visual quality of deblurred images but also
outperforms existing methods, marking a significant advancement in the field
of image processing. In the future, we will explore how to apply our method to
other image restoration problems, such as non-uniform blind image deblurring.
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Abstract. Space-time video super-resolution aims to simultaneously
increase the space-time resolution of low-resolution and low frame-rate
videos. Existing deep learning-based methods have made notable strides,
predominantly achieving space-time video super-resolution through the
relatively simple integration of modules for video super-resolution and
video frame interpolation sub-tasks. However, these methods typically do
not fully exploit the inherent relationships between the two sub-tasks.
To address this limitation, we propose a Complementary Dual-Branch
Network designed to better explore the interdependence of the two sub-
tasks.Specifically,ourdual-brancharchitecture facilitatesmutualenhance-
ment between video super-resolution and video frame interpolation sub-
tasks within each branch and provides mutual guidance between the two
branches. Additionally, we introduce a simple yet effective strategy for the
rough estimation of optical flow, incorporating Flow-Guided Deformable
Alignment into space-timevideo super-resolution to achieveprecisemotion
estimation. In addition, we use an RNN-based Backward and Forward
Recurrent module to ensure that all frames can utilize the information of
the whole sequence. It is more efficient and memory saving compared to the
currentlypopularbidirectionalLSTMmodule.Experimentalresultsonsev-
eral datasets show that ourmethodachieves superior accuracy and requires
fewer parameters compared to state-of-the-art methods.

Keywords: Feature aggregation · Feature interpolation · Space-time
video super-resolution

1 Introduction

With the growing popularity of advanced display technologies and the increas-
ing demand for high-quality videos, space-time video super-resolution (STVSR)
technology [23] has emerged. STVSR aims to leverage the spatial and temporal
information in video sequences to generate high-resolution (HR), high-frame-rate
videos (HFR) from given low-resolution (LR), low-frame-rate (LFR) videos.

Traditional STVSR methods have relied on manually designed regulariza-
tion [6], prior knowledge such as the space-time directional smoothness prior
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15332, pp. 182–195, 2025.
https://doi.org/10.1007/978-3-031-78125-4_13
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[24], and assumptions like illumination consistency [20]. However, these meth-
ods often fall short in complex real-world scenarios. The advent of Convolutional
Neural Networks (CNNs) have significantly advanced video enhancement tasks,
including video super-resolution (VSR) [3,4,9,26,29,36], and video frame inter-
polation (VFI) [1,5,11,21,25]. Intuitively, executing VFI and VSR models sepa-
rately on LR, LFR videos could achieve STVSR. However, these phased methods
do not explore the interplay between temporal interpolation and spatial super-
resolution. Moreover, these methods require separate model design and separate
training for VFI and VSR, leading to redundancy, increased parameters, and
reduced processing speed.

Recently, one-stage end-to-end models for STVSR [8,27,32,33,35] have
gained popularity. These models extract features from the input LFR and LR
frames, and then implement STVSR in the order of temporally interpolated
frames and spatially aggregated super-resolution. However, similar to the phased
methods, the interactions between VSR and VFI have not been fully investi-
gated. These methods extract and aggregate features sequentially according to
temporal and spatial dimensions, utilising only the help provided by VFI for
VSR. Specifically, they leverage the additional temporal information generated
by VFI to enhance the reconstruction of spatial details. These single-stage serial
models also inevitably result in error accumulation. In addition, most align-
ment strategies of the current methods use either optical flow-based alignment
or deformable convolution-based alignment. Explicit optical flow-based align-
ment is very dependent on the accuracy of motion estimation, and if the motion
estimation is not accurate, the generated results are prone to have artifacts.
Deformable convolution-based alignment is difficult to train in practice [3].

To overcome these issues, we introduce a Complementary Dual-Branch Net-
work (CDBNet). Firstly, it implements mutual assistance between VSR and VFI
within the two branches separately, using more temporal information generated
by VFI for detail recovery in VSR and more spatial information generated by
VSR for refinement in VFI. Secondly, linkages are established between the two
branches, employing mutual guidance to mitigate the error accumulation inher-
ent in the sequential models of each branch. Moreover, we propose a straight-
forward, efficient estimation strategy for estimating optical flow between miss-
ing and existing frames, and thus use the Flow-Guided Deformable Alignment
(FDA) for frame alignment within our STVSR model. By using the coarse flow
estimates between frames as the baseline part of the offset, the Deformable Con-
volution Network [37] (DCN) is required only to learn the residual of the offset,
easing its training burden and promoting stable, quick convergence. In addition,
for the feature aggregation and super-resolution, we use the excellent design of
Backward and Forward Recurrent module to ensure that all frames utilize more
information from the whole sequence. Connecting the RNN-based backward and
forward module in series is more efficient compared to the module of parallel
bidirectional ConvLSTM.
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In this paper, we highlight our contributions as follows:
1) We introduce a Complementary Dual-Branch Network, which effectively

leverages the synergy between the VSR and VFI and reduces error accumulation
across the serial branches through inter-branch linkages.

2) We intorduce a practical estimation strategy for determining the optical
flow of missing frames. This approach allows for the implementation of FDA in
the STVSR task, leading to more accurate frame alignment.

3) Integrating the Backward and Forward Recurrent Module into CDBNet,
our model significantly surpasses current state-of-the-art methods on different
datasets, while maintaining a minimum parameter count.

2 Related Work

2.1 Video Super-Resolution

VSR aims to reconstruct high-resolution video from corresponding low-resolution
video. For the VSR task, it is crucial to align features of neighboring frames
with the reference frame and jointly extract their information to achieve super-
resolution. Some methods [2,3,28,34] use optical flow for explicit alignment.
However, with fast motion, optical flow alignment can be inaccurate, leading
to artifacts. Therefore, TDAN [26] introduces deformable convolution to implic-
itly align inter-frame features, achieving impressive performance. EDVR [29]
incorporates deformable convolution into a multi-scale pyramid module to fur-
ther improve feature alignment. Moreover, combining the advantages of both,
BasicVSR++ [4] proposes alignment based on both optical flow and deformable
convolution. Recently, Liang et al. [14] realized alignment based on deformable
attention [31].

2.2 Video Frame Interpolation

The goal of VFI is to synthesize an intermediate frame with two adjacent video
frames, improving the temporal resolution of the video sequence. Some radi-
tional methods based on path [18] and phase [19] struggle in complex scenar-
ios. In recent years, deep learning-based methods have achieved significant suc-
cess. Learning-based VFI methods can be categorized into flow-based methods
and kernel-based methods. Flow-based methods [11,16,34] synthesize interme-
diate frames by estimating the optical flow between two frames and interpolat-
ing. SuperSlowMo [11] uses the U-net architecture to compute the optical flow
between two frames. In addition, to address inaccuracies in optical flow estima-
tion due to occlusion, DAIN [1] introduces a depth-aware module for occlusion
detection. Kernel-based methods [5,21,25] use adaptive convolution to directly
predict the kernels, which are then used to estimate intermediate frames. Niklaus
et al. [21] use 1D kernels for adaptive convolution. To expand the receptive field,
Cheng et al. [5] uses deformable and separable convolution.
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Fig. 1. Overview of the proposed CDBNet. For ease of drawing, we show only two input
frames in the figure. It consists of two branches where the FTI and BFR modules are
executed in different orders, and linkages are added between the two branches to guide
each other.

2.3 Space-Time Video Super-Resolution

The goal of STVSR is to increase both spatial and temporal resolutions of LFR
and LR videos. Recent deep learning-based work has made significant progress in
this area. Haris et al. [8] propose an end-to-end network called STARnet, which
achieves STVSR by additional optical flow branching to extract the association
between temporal and spatial features, and jointly learning spatial and temporal
content. xiang et al. [32] propose a ConvLSTM-based approach called Zoom-
ing Slow-Mo to align and interpolate intermediate features through deformable
convolution. Xu et al. [33] introduce a temporal modulation block based on
Zooming Slow-mo, thereby realizing time-controllable STVSR. LSTM architec-
tures require significant memory to store intermediate states, making them less
efficient than standard RNN architectures. Zhang et al. [35] propose an optical-
flow-reuse-based bidirectional recurrence network, which balances the memory
footprint and performance. Wang et al. [27] propose a deformable attention-
based bidirectional network called STDAN. Geng et al. [7] propose a multiscale
Transformer-based network called RSTT, which significantly reduces the num-
ber of parameters while maintaining similar performance to the above methods.
However, all of these methods follow a single-branch serial structure that imple-
ments STVSR in the order of temporal frame interpolation and spatial super-
resolution. The interaction between VSR and VFI subtasks has not been fully
explored.
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3 Method

3.1 Structure of the Complementary Dual-Branch Network

The architecture of our method is depicted in Fig. 1. First, we extract feature
from the LR, LFR video sequence {IL2t−1}N+1

t=1 using five residual blocks, resulting
in the features {FL

2t−1}N+1
t=1 . To reduce the number of parameters in the model,

we divide the features FL along the channel dimension and direct them into
two branches. In TS-Branch, the Feature Temporal Interpolation (FTI) module
conducts temporal alignment and interpolates frames within the features FL,
producing FL

T . The refined temporal features FL
T are then enhanced spatially

through the Backward and Forward Recurrent (BFR) module to produce FH
T .

The super-resolution of details in the spatial dimension is helped by richer infor-
mation in the temporal sequence. The process is formulated as:

FL
2t = FTI(FL

2t−1, F
L
2t+1),

FL
T = {FL

t }2N+1
t=1 ,

FH
T = BFR(FL

T ).

(1)

ST-Branch adopts the reverse process, which can help refine the temporal inter-
polation by using larger features in the spatial dimension.

Furthermore, we establish linkages between two branches to minimize error
accumulation. The features interpolated by the FTI module of TS-Branch are
upsampled and added to the features interpolated by the FTI module of ST-
Branch to achieve guidance for interpolating the features of ST-Branch. The
process is formulated as:

FH = BFR(FL),

FH
2t = FTI(FH

2t−1, F
H
2t+1)+ ↑ (FL

2t),

FH′
T = {FH

t }2N+1
t=1 ,

(2)

where ↑ denotes the upsampling operator. ST-Branch guides TS-Branch by con-
catenating its final features with those of TS-Branch. The combined features are
processed through a convolution block for error correction, thus producing the
final HR, HFR video sequence {IHt }2N+1

t=1 . The process is formulated as:

IH = f3×3(FH
T , FH′

T ), (3)

where f3×3 denotes the convolution block for error correction.

3.2 Feature Alignment

Feature alignment is crucial in STVSR. For example, Zooming Slow-Mo [32]
employs DCN for alignment, OFR-BRN [35] employs optical flow for alignment
and the optical flow estimation of missing frames is achieved by IFnet [10].
However, both methods have limitations. Drawing inspiration from Basicvsr++
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Fig. 2. An illustration of Flow-Guided Deformable Alignment (FDA).

[4] we use alignment based on FDA. In FDA, optical flow serves merely as a
baseline for the offset, while the precise residual offset is determined through
convolution. In STVSR, since half of the frames are missing, the optical flow
of the missing frame and the existing frame cannot be directly obtained. It’s
necessary to first estimate the optical flow for both missing and existing frames.
We employ pre-trained SPyNet [22] to calculate the optical flow of existing
frames. We simplify the motion estimation between frames by assuming uniform
linear motion, allowing us to approximate the optical flow between existing and
missing frames by halving the optical flow betwee existing frames. The optical
flow estimation can be formulated as:

Si→i+1 ≈ Si+1→i+2 ≈ 1
2
Si→i+2, (4)

where Si→j denotes the optical flow from i to j.
The FDA structure is shown in Fig. 2. We initially pre-align the feature Fi

using the optical flow Si→j . Then calculate the residual part of offset by con-
catenating the feature F ′

j with the feature Fj . We add up residual part of offset
and the optical flow to get the DCN offset oi→j . Finally, applying the DCN to
feature Fi to get the aligned feature F ′′

j , the process is formulated as:

F ′
j = warp(Fi, Si→j),

oi→j = Si→j + ResBlock(Concat(F ′
j , Fj)),

F ′′
j = DCN(Fi, oi→j),

(5)

where warp denotes the spatial warping operation.

3.3 Feature Temporal Interpolation

For the features F2t−1 and F2t+1 of the existing frames, we need to interpolate
the feature F2t of the missing frame. The interpolation process needs to draw on
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the forward and backward motion information between the existing and missing
frames, and with the optical flow estimation strategy in the previous section, we
can introduce the FDA to implicitly capture the forward and backward motion
information, as shown in Fig. 3. After obtaining the two aligned features, we
fuse them by channel cascading and a 1 × 1 convolution layer to obtain F2t, the
process is formulated as:

Ff = FDA(F2t−1, F2t+1),
Fb = FDA(F2t+1, F2t−1),
F2t = Fuse(Ff , Fb),

(6)

where Ff denotes the feature containing forward motion information, Fb denotes
the feature containing backward motion information and Fuse denotes the 1×1
convolution layer.

Fig. 3. An illustration of Feature Temporal Interpolation (FTI) module.

3.4 Backward and Forward Recurrent Module

Many previous works such as Zooming-Slow-Mo [32], TMNet [33] have high-
lighted the benefits of using a bidirectional ConvLSTM structure to capture
information across entire video sequence. Despite its effectiveness, ConvLSTM
requires significant memory due to the need to store multiple intermediate states,
making it less efficient than vanilla RNN architecture. As depicted in Fig. 4,
we utilize an RNN-like Backward and Forward Recurrent Module, where fea-
ture information from different frames is alternately propagated and extracted
in the forward and backward branches. Both the forward and backward direc-
tions can utilise the information from the whole sequence. Compared to exist-
ing works, such as Zooming Slow-Mo and TMNet, which propagate features
using simple parallel bidirectional architecture, this architecture can reduce the
cumulative error of feature propagation in long sequences and improve feature
expressiveness. f2

i is obtained by feeding f2
i−1, which contains information about

the forward sequence, and f1
i , which contains information about the backward

sequence, to the FDA for alignment extraction. The same process is applied to
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Fig. 4. An illustration of Backward and Forward Recurrent (BFR) module.

f3
i . Thus, both f2

i and f3
i are generated utilizing information from the whole

sequence. We concatenate the two and feed them into the residual block and
Pixel-Shuffle to obtain the feature FH

i with increased spatial size, the process is
formulated as:

FH
i = PS(ResBlock(Concat(f2

i , f3
i )))+ ↑ (FL

i ), (7)

where PS denotes the Pixel-Shuffle operator.

4 Experiments

4.1 Implementation Details

For training, we utilized the Vimeo-90K dataset [34], which comprises 64,612
video sequences, each containing 7 consecutive frames. Our evaluation datasets
include Vid4 [15] and the Vimeo-90K test set. To assess the performance across
different motion scenarios, we divided the Vimeo-90K test set into three subsets
based on motion speed: Fast, Medium and Slow, following the categorization
in [32]. The LR frames were generated from the HR frames through bicubic
interpolation by a factor of 4. For our experiments, we used the odd-indexed LR
frames as inputs to predict continuous HR frames. The performance of various
methods in STVSR was evaluated using Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index [30] (SSIM) metrics, where higher values indicate
closer resemblance to the ground truth.
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We implemented our CDBNet in PyTorch and trained it on two NVIDIA
GeForce RTX 4090 GPUs for 600,000 iterations. The Adam optimizer [12] was
utilized in conjunction with the Charbonnier loss function [13] for optimization.
The Charbonnier loss function can be formulated as:

Lrec =
√

‖IGT
t − IHt ‖2 + ε2, (8)

where IHt refers to the restoration outputs and IGT
t denotes ground-truth HR

video frames. ε is a constant value, and we empirically set it to 1e−3. The initial
learning rate was set to 4e − 4 and was gradually reduced to 1e − 7 using cosine
annealing [17] every 150,000 iterations.

Table 1. Quantitative comparison of our method with other sota methods for STVSR.
The best results are in bold and the second best results are with underline.

Method Vid4 Vimeo-Fast Vimeo-Medium Vimeo-Slow Speed Parameters

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM FPS millions

SuperSloMo [11]+RBPN [9] 23.76 0.6362 34.73 0.9108 32.79 0.8930 30.48 0.8584 5.62 19.8+12.7

SepConv [21]+RCAN [36] 24.92 0.7236 34.97 0.9195 33.59 0.9125 32.13 0.8967 6.10 21.7+16.0

DAIN [1]+EDVR [29] 26.12 0.7836 35.81 0.9323 34.66 0.9281 33.11 0.9119 12.21 24.0+20.7

STARnet [8] 26.06 0.8046 36.19 0.9368 34.86 0.9356 33.10 0.9164 19.19 111.61

Zooming Slow-mo [32] 26.31 0.7973 36.81 0.9415 35.41 0.9361 33.36 0.9138 31.18 11.1

TMNet [33] 26.43 0.8016 37.04 0.9435 35.60 0.9380 33.51 0.9159 27.53 12.26

RSTT [7] 26.43 0.7994 36.80 0.9403 35.66 0.9381 33.50 0.9147 30.97 7.67

OFR-BRN [35] 26.72 0.8141 37.32 0.9465 35.72 0.9393 33.58 0.9167 40.12 11.77

CDBNet(Ours) 26.83 0.8144 37.39 0.9512 35.71 0.9399 33.75 0.9194 49.31 5.05

4.2 Comparisons with State-of-the-Art Methods

We benchmarked our method against both phased and one-stage end-to-end
state-of-the-art (SOTA) methods. For phased methods, we implemented Sepconv
[21], SupersloMo [11], DAIN [1] for VFI and RCAN [36], RBPN [9], EDVR [29]
for VSR. One-stage end-to-end methods include STARnet [8], Zoom-Slow-Mo
[32], TMNet [32], RSTT [7], OFR-BRN [35].

For a fair assessment of inference speed, all methods were evaluated on an
NVIDIA GeForce RTX 4090 GPU. The quantitative outcomes are summarized
in Table 1, demonstrating our method’s superior performance in both PSNR and
SSIM [30] across all datasets. Furthermore, our method is the fastest computa-
tionally (with the highest FPS) while minimizing the number of parameters.
It can be seen that on the Vid4 and Vimeo datasets, our method outperforms
the suboptimal method almost across the board in terms of PSNR and SSIM
metrics, while running faster than it and with less than half the number of param-
eters. Figure 5 presents the qualitative results for the top-performing methods,
demonstrating that our method excels in recovering the most accurate details.
Our method generates better finger appearances and effectively improves aliasing
due to poor alignment and error accumulation.
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Fig. 5. Visual comparisons of different STVSR methods on Vimeo dataset. Parts of
the areas are zoomed in and framed with red boxes to facilitate comparison. (Color
figure online)

4.3 Ablation Study

We also tested the role of modules in our method. The results are shown in
Table 2 and Fig. 6.

1) The Structure of Dual-Branch Mutual guidance: To evaluate the benefits
of the dual-branch structure with mutual guidance, we modified the network
structure to a single-branch structure in the order of temporal interpolation and
spatial aggregation as well as a dual-branch structure without mutual guidance.

2) The Flow-Guided Deformable Alignment : To evaluate the benefits of incor-
porating FDA, we replaced the alignment module with a Pyramid, Cascading
and Deformable (PCD) module for comparison.

The outcomes presented in Table 2 confirm that both the dual-branch archi-
tecture with mutual guidance and the FDA significantly enhance performance.
The optimal results are achieved when integrating both elements. The results in
Fig. 6 show that the structure generation using Single-Branch is visually poor,
with the triangular distribution pattern on the backpack in the figure turning
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Table 2. Ablation study on different modules.

Module (a) (b) (c) (d)

Dual-Branch
√ √ √

Mutual Guidance
√ √

FDA
√

Vid4 (PSNR) 26.04 26.25 26.59 26.83

Vimeo (PSNR) 35.05 35.22 35.44 35.57

Fig. 6. Visual comparisons of ablation study on Vimeo dataset. Parts of the areas are
zoomed in and framed with red and purple boxes to facilitate comparison. (Color figure
online)

into a striped pattern. The result of structure generation using Dual-Branch can
improve the error to some extent. After adding Mutual Guidance, the pattern
pattern generation of the backpack was effectively improved. However, the gen-
eration results of the wooden windows have a mixing situation because of the
inaccuracy of the inter-frame alignment. The best visual results were generated
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after using the FDA alignment on the structure of Dual-Branch and Mutual
Guidance.

5 Conclusion

In this paper, we proposed a Complementary Dual-Branch Network (CDB-
Net) for STVSR. Our network has a dual-branch structure with links between
branches that can fully exploit the relationship between the two subtasks of VSR
and VFI and reduce error accumulation. Additionally, we have designed an effi-
cient estimation strategy for the optical flow of missing frames, thus introducing
FDA for more stable frame alignment. Experimental evaluations across various
datasets have demonstrated that CDBNet outperforms current STVSR methods
in terms of quantitative performance, visual quality, computational efficiency,
and parameter count. In the future, we aim to extend our method to address a
broader spectrum of real-world video degradation scenarios.
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Abstract. Confronting the critical challenge of insufficient training data in the
field of complex image recognition, this paper introduces a novel 3D viewpoint
transformation technique initially tailored for label recognition. This technique
can be used not only for data augmentation by generating synthetic data from any
perspective but also transform photos taken from any angle into a frontal view,
thereby reducing the complexity of the recognition task. Given the extensive use
of wine-related applications with over 20 million users and the continuous publi-
cation of wine label datasets, we decided to focus this study on wine labels. This
method enhances deep learningmodel performance bygenerating visually realistic
training samples from a single real-world label image, overcoming the challenges
posed by the intricate combinations of text and logos. Unlike classical Generative
Adversarial Network (GAN) methods, which fall short in synthesizing such intri-
cate content combinations and require a large amount of training data to become
effective, our proposed solution leverages time-tested computer vision and image
processing strategies. By using just a single monocular wine label image, we can
expand our training dataset, thereby broadening the range of training samples for
deep learning applications. This innovative approach to data augmentation circum-
vents the constraints of limited training resources. We then utilize the augmented
training images through the Vision Transformer (ViT) architecture, performing
one-shot recognition of existing wine labels in the training classes or future newly
collected wine labels unavailable in the training. Experimental results show a sig-
nificant increase in recognition accuracy over conventional 2D data augmentation
techniques, indicating the potential for broader application in various labeling
scenarios.

Keywords: 3D viewpoint augmentation · Label recognition · Single-image
training · Data synthesis · Frontalization

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15332, pp. 196–211, 2025.
https://doi.org/10.1007/978-3-031-78125-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78125-4_14&domain=pdf
https://doi.org/10.1007/978-3-031-78125-4_14


Single-Image Driven 3D Viewpoint Training Data Augmentation 197

1 Introduction

Label recognition system [1, 18] has become increasingly popular recently due to its
practical usage. OCR (Optical Character Recognition) techniques are commonly used
to extract text for wine label recognition, similar to offline handwriting methods [14].
Deep learning-based scene text detection methods [6, 7, 21–23] further help identify
text regions [28]. However, challenges arise from defaced text [17], language variations,
mixed fonts, and intertwined text and graphics [15], complicating the recognition [25].
As a result, recently research works [18–20, 34] are focus on using image-based method
rather than text-based method such as OCR, due to the image-based recognition system
can build end-to-end model only by images. However, learning-based methods always
face the challenge of having insufficient training data, which remains to be a critical
issue for suchmodels to perform satisfactorily. Regardless of the improvements inmodel
design and training techniques, using insufficient and unrepresentative data for training
can result in inadequate performance of generalization [8, 24]. Also, obtaining enough
large and diverse training data that are representative of the target dataset remains a
challenging task for many practical applications [11, 16, 27]. Moreover, when applying
deep learning to real-world tasks, it is often encountered that the training data are very
different from the test data.

Fig. 1. Pipeline of wine label recognition with limited data. The upper green section illustrates
the process of generating synthetic data using the 3D viewpoint transformation technique, which
serves as training data for the model. The lower blue section represents the inference stage, where
the 3D viewpoint transformation is utilized to simplify the testing of the model. This allows the
model to more easily identify the corresponding labels based on cosine similarity.

To address the challenges in label recognition, this paper justifies focusing on wine
labels due to their significant market presence, as evidenced by high sales in the beverage
sector and over twenty million downloads of wine recognition apps [1]. We propose an
innovative 3D viewpoint augmentation pipeline that generates a diverse and realistic
training dataset from a single label image. This method effectively trains a deep learning
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model for label recognition, as illustrated in Fig. 1. Moreover, to further enhance the
robustness of our label recognition system, particularly during the inference stage, we
also implement a 3D viewpoint transformation as well during inference step. Each photo
captured is systematically transformed into a consistent frontal view and same-distance
perspective prior to the template matching process. This standardization is crucial as it
mitigates the variable factors associated with user-taken photographs, such as differing
angles and distances, which can significantly impact the recognition accuracy.

The ViT model with an MLP head is typically trained to classify input images into
predefined categories. However, in the case of recognition, the market is continuously
introducing new varieties, often with subtle variations, such as different vintages [4]. A
significant challenge with direct classification is the model’s adaptability to these new
labels without the need for retraining. Therefore, for wine label recognition, we employ
metric learning based one-shot recognition, which involves comparing the similarity of
feature vectors (embeddings) from the frontal view test data with those of the original
training data embeddings.

By combining 3D viewpoint training data augmentation for metric learning of
embedding features, we have developed an efficient and precise wine label recognition
system. This approach not only addresses the shortcomings of traditional methods in rec-
ognizing new varieties of wine labels but also demonstrates the tremendous potential of
applying deep learning techniques in rapidly changing product categories. Contributions
of the paper include:

(i) Our label recognition pipeline can be effectively trained with very limited training
data, requiring as few as only one sample.

(ii) Our proposed 3D viewpoint transformation method can transform any taken photo
into a consistent front and same-distance view. Not only does it save the labor of
manually capturing various angles, but it also enhances accuracy.

(iii) Our proposed 3D viewpoint data augmentation for metric learning can improve
the Top-1 accuracy significantly, i.e., more than 13.8%, over the standard 2D data
augmentation based deep learning model.

2 Related Work

2.1 Data Augmentation

The challenge of having insufficient training data remains a critical issue for such a
model to perform satisfactorily. Regardless of the improvements in model design and
training techniques, using insufficient and unrepresentative data for training can result
in inadequate performance of generalization [8, 24]. Also, obtaining enough large and
diverse training data that are representative of the target dataset remains a challenging
task for many practical applications [11, 16, 27]. Moreover, when applying deep learn-
ing to real-world tasks, it is often encountered that the training data are very different
from the test data. Many works [10, 12] have shown that appropriate data augmentation
techniques can help address this issue by generating additional training samples from the
existing ones. Specifically, as described in [32], image data augmentation approaches
can be roughly classified into two categories, which are: (i) based on basic image manip-
ulations or (ii) based on deep learning. For (i), image augmentations can be carried out
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by geometric transformation (flipping, cropping, rotation, translation, shearing), noise
injection, random erasing, color space transformation, and image mixing. Such manip-
ulations try to preserve the main features of existing images from the training dataset,
while adding potential variations for better generalization in the test dataset. Similarly,
deep-learning-based augmentations of (ii), such as adversarial training, style transfer,
and generative adversarial networks (GANs), exploit CNN-based network(s) to achieve a
variety of image styles, e.g., changing lighting directions and intensities, or generate real-
istic images through learned image features from the training dataset [2]. While existing
data augmentation methods enhance test accuracy in various learning-based tasks, they
often fall short in more specialized applications [3]. Specifically, standard image manip-
ulations fail to produce realistic images for certain tasks [30], while deep-learning-based
augmentations necessitate additional, specific training images [5].

These limitations are especially pronounced in the task of wine label recognition,
where conventional methods cannot adequately simulate the realistic perspective of
labels on cylindrical wine bottles, while advanced methods require diverse images from
multiple viewpoints for effective training. Therefore, our 3D augmentation method aims
to address the inefficiencies and inaccuracies of traditional approaches, as well as the
time-consuming and labor-intensive of learn-methods that require extensive training
data.

2.2 Frontalization

Frontalization techniques, originally developed for facial recognition [32, 33], involve
transforming images of faces from any viewpoint into a standardized, frontal position.
This transformation significantly enhances the performance of face recognition systems
by effectively handling variations in lighting, facial expressions, and occlusions. Its
effectiveness in real-world scenarios, where such inconsistencies are prevalent, under-
scores the robustness and practicality of this method for improving face recognition
tasks. To achieve this, the process begins with 2D alignment, which identifies six key
fiducial points on the face, such as the centers of the eyes, the tip of the nose, and mouth
locations. These points are utilized to scale, rotate, and translate the image through a
series of transformations [31]. However, to overcome the limitations of 2D alignment,
especially with out-of-plane rotations which are crucial for accurate frontalization, the
process extends into 3D alignment. The method proposed in [34] uses a generic 3D
shape model and a 3D affine camera to project the 2D aligned image onto a 3D plane.
This sophisticated approach not only enhances alignment by incorporating additional
fiducial points into the 3D model but also ensures an accurate correspondence between
detected and reference points. The affine transformation is further optimized through a
loss function that takes into account the covariances of fiducial point locations, ensuring
the frontalization is precise and reliable.

Adapted for wine labels, our method involves reorienting images of labels captured
from various angles to a consistent, front-facing view. By standardizing the orientation
of wine labels at the inference stage, this technique ensures that all labels are uniformly
aligned and presented, thus enhancing the model’s ability to recognize and process them
accurately.
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3 Proposed Method

3.1 3D Viewpoint Augmentation from a Single Image

In this section, the proposed 3D viewpoint data augmentation scheme for a single wine
label image is presented. This scheme needs to estimate, to some extent, the correspond-
ing pose of the cylindrical bottle, and generate perspective realistic texts and patterns of
the wine label in the augmented image. As shown in the green upper section of Fig. 1,
the 3D viewpoint augmentation consists of three critical steps:

2D Description of 3D Surface: The process begins with converting the 3D cylin-
drical surface of the wine label into a 2D representation. This involves identifying both
the upper and lower elliptical rims (latitudinal edges) and the two straight longitudinal
edges.

Line Sample Extraction: Next, we use the vanishing point from the above
longitudinal edges to extract 2D line samples along the label’s longitudinal direction.

Perspective Mapping: The final step involves mapping these line samples onto an
image of a cylindrical surface with a different pose. This mapping, which uses a view-
invariant cross-ratio technique, ensures the correct perspective of the wine label on each
line sample.

Fig. 2. Projective geometry of a cylinder

3.2 Projective Geometry of a Cylinder

According to projective geometry, images of the (circular) top and bottom plates of a
(3D) cylinder, as illustrated in Fig. 2, will have elliptical shapes. As for the two edges of
the cylinder in the image, i.e., a1a2 and b1b2, they correspond to the intersections of the
image plane and planes OCA1A2 and OCB1B2, respectively, with both planes tangent to
the 3D cylinder and passing through the camera center (OC ). Moreover, the intersection
of a1a2 and b1b2 corresponds to the vanishing point (VP) of all 3D lines parallel to the
axis of the cylinder.
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3.3 Obtaining the Image Region of a Rectangular Wine Label Pasted on a Bottle

In this section, a 2D geometric description of the image of a rectangular wine label
pasted on a 3D cylindrical surface (of a wine bottle) is provided. Such description will
be used in the next section to obtain 1D (longitudinal) line samples of the wine label
region.

3.3.1 Deriving Upper and Lower (Elliptical) Rims of the Wine Label Region

For the geometry shown in Fig. 2, elliptical expressions of the upper/lower rims of a
roughly vertically oriented wine label region, e.g., for the image shown in Fig. 3(a), can
be obtained with the following procedure:

1. Convert the color image to a gray-level image (Fig. 3(b))
2. Identify edge pixels with a large image gradient in the vertical direction (Fig. 3(c))
3. Identify image blocks, i.e., edge blocks, with enough (relative to block dimension)

edge pixels (Fig. 3(d))
4. Label positive/negative (red/green) edge block according to the gradient direction of

most edge pixels (Fig. 3(e))
5. Establish the longest chains of positive, and negative, edge blocks (Fig. 3(f))
6. Obtain (thinned) rim pixels by performing non-maximum suppression in the vertical

direction (Fig. 3(g))
7. Obtain elliptical expressions of the upper and lower rims via curve fitting (Fig. 3(h))

Fig. 3. Obtaining the elliptical expressions of the upper and lower rims of a wine label region
(see text).

While the elliptical expressions in Step 7 can be obtained, for the rim pixels identified
in Step 6, with an OpenCV function, default parameters need to be selected for some
of the above processes, including minimum gradient (80, Step 2), block size (1/80 of
image width, Step 3), minimum edge pixels (60% of block width, Step 3), and maximum
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gap in the chain (2 blocks, Step 5). Like a typical image processing procedure, different
parameters may need to be determined, possibly manually, for some extreme imaging
conditions.Nonetheless, such effort isworthwhile as unlimited synthetic, andperspective
realistic, images can be obtained from such data augmentation, which will ultimately
benefit the subsequent task of wine label recognition.

3.3.2 Obtaining the Left and Right Edges of the Wine Label

As described in Sect. 3.2, left and right (longitudinal) edges of the wine label in an image
correspond two common external tangents of the two ellipses obtained in Sect. 3.3.1. The
procedure of finding these edges for two ellipses, e.g., E1 and E2 depicted in Fig. 4(a),
can be summarized as follows:

1. Identify search range for their intersection (VP) using bounding boxes of E1 and E2
(Q1 to QN in Fig. 4(a)).

2. Obtain initial four tangents toE1 andE2 withQ1 (m11,m12,m21, andm22 in Fig. 4(b)).
3. Obtain the two common external tangents via binary search (m11 = m21 and m12 =

m22 in Fig. 4(c)).

Fig. 4. Obtaining left and right edges of a wine label region.

For Step 2, two tangents of an ellipse from an arbitrary point outside of the ellipse
can be obtained analytically, which are omitted here for brevity. As for Step 3, it is not
hard to see that the slopes of all tangent lines will change monotonically with respect
to the location of their intersection along a line and will not be the same except for a
common external tangent; therefore, binary search can be employed to solve the problem
efficiently.

3.4 Obtaining 2D (Longitudinal) Line Samples

To synthesize the image for a novel view of a wine label, point samples of the label need
to be obtained from a real image captured in advance. To facilitate the geometrically
natural synthesis process presented in the next subsection, these samples will first be
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obtained along the longitudinal direction of the wine label, i.e., is parallel to the axial
direction of the wine bottle. As parallel lines in the 3D space will intersect at a VP
(Sect. 3.2) in an image, the following sampling scheme is adopted (see Fig. 5(a)).

1. Identify the two common external tangents’ intersection as the VP (D in Fig. 5(a)).
2. Identify the wider rim, and its leftmost/rightmost rim pixels (A1 and AN in Fig. 5(a)).
3. Obtain line samples by connecting rim pixels between A1 and AN toward D, e.g.,

AkCk is identified as the k-th line sample with Ck belonging to the smaller rim.

Fig. 5. (a) Obtaining (longitudinal) line samples of a wine label region, and (b) re-projecting them
onto a virtual (invisible) wine bottle with an arbitrary pose (see text).

3.5 SynthesizingWine Label Images for Perspective Realistic Data Augmentation

Once foregoing line samples are obtained, they can be pasted onto the image of a cylin-
drical surface obtained from a novel view of the wine bottle, possibly via perspective
projection of a graphic model. In this paper, such process is performed by pasting these
line samples one at a time, with nonlinear mapping of pixel locations (based on the view-
invariant cross-ratio between these locations) along each line according to the geometry
of perspective projection, as shown in Fig. 5(b), so as to achieve perspective realistic
appearance of the resultant synthetic image. In particular, the above re-projection process
can be summarized as follows.

1. Identify the two common external tangents’ intersection as the VP (D′ in Fig. 5(b)).
2. Identify the wider rim, and its leftmost/rightmost rim pixels (A′

1 & A′
N in Fig. 5(b)).

3. Re-project image pixels of each line sample, e.g., AkCk in Fig. 5(a), to the corre-
sponding line segment connecting the two new rims, e.g., the k-th line segment A′

kC
′
k

in Fig. 5(b), using the cross-ratios.
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While Steps 1 and 2 are like their counterparts in Sect. 3.4, locations of A′
1 and

A′
N in Fig. 5(b), and thus the number of line samples need to be synthesized in Step3,

need to be determined. As we have just a single image of wine label, i.e., the image
shown in Fig. 5a), without having other camera/environmental information, these two
locations are approximately estimated with respect to the width of the larger rim.1 As
for the re-projection performed in Step 3, since the location of three points are already
determined along A′

kC
′
k , any image pixel of A′

kC
′
k can be determined by solving the

following equation of view-invariant cross-ratio, with B′k being the only unknown.

A′
kC

′
k · B′

kD
′

A′
kD

′ · B′
kC

′
k

= AkCk · BkD

AkD · BkCk
(1)

As the geometry of perspective projection is approximately satisfied in the foregoing
process of re-projection, numerous visually realistic images of wine label can be gener-
ated from a real wine label image. Figure 6 shows some synthetic images thus obtained
from a single wine label image; wherein only one-dimensional rotation/translation of
the virtual wine bottle is considered in each image so that the variation of its pose can
be observed more easily. Note that the foregoing results are based on a virtual camera
systemwhich is established tomimic the imaging process of a typical cell phone camera.
In particular, a virtual wine bottle with diameter equal to 76 mm is placed about 150 mm
in front of the camera which has a focal length of about 6.8 mm.

3.6 Embedding Features from Metric Learning of a ViT

Recently, ViT [13] has achieved superior results in computer vision compared to tradi-
tional CNN-based approaches. Its ability to exploit global contextual information, cou-
pled with its strong representation learning capabilities, makes it particularly suitable
for wine label classification tasks.

3.6.1 Training and Testing Procedure

During training stage of ViT, we employ 3D viewpoint augmentation to augment our
training data, obtaining 2D images of wine labels observed from different perspectives.
Second, we train the model using the augmented images through metric learning to
obtain the discriminative embeddings of wine labels. The objective of the model is to
minimize the cosine distance between embeddings of wine labels of the same class,
while simultaneously increasing such distance between embeddings of different classes.
For the testing stage, our model primarily relies on the embedding feature representation
of a single 3D viewpoint generated frontal view image, even though we have expanded
the dataset through data augmentation. Therefore, during similarity calculations, we do
not compare with all the embeddings or the average embedding of all augmented training
data. Instead, we focus on comparing with the embedding of the single frontal view 3D
viewpoint generated image. Moreover, considering the importance of the original data’s

1 Although further investigation is still needed for such issue, images synthesized with these
simple estimations seem to work satisfactorily, as will be demonstrated in the experimental
results.
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Fig. 6. Visually realistic (640 × 480) images synthesized upon a virtual (invisible) wine bottle
which is translated between (a) x = − 40 mm and x = 40 mm, (b) y = − 20 mm and y = 20 mm,
and (c) z = 230 mm and z = 270 mm and rotated between (d) − 30° and 30° w.r.t. the x-axis, and
(e) − 10° and 10° w.r.t. the z-axis.

quality on model performance, we use the method mentioned above to ensure test data
are compared with the embedding of a 3D viewpoint generated frontal view image. This
method is particularly crucial for handling wine labels with subtle variations, as it allows
the model to accurately identify new or slightly altered labels based on a reliable and
consistent reference point.

3.6.2 ViT Dino and Loss Function

In our study, we have adopted the ViT architecture [13] which has been further advanced
in the context of self-supervised learning within the DINO framework by Caron et al.
[9]. Our approach is in line with the implementation utilized in DeiT [29], known for its
effectiveness across a range of image processing tasks. For loss function, we use batch
all triplet loss strategy proposed by [14], which is a variation of the conventional triplet
loss [26].

With triplet loss, given an anchor sample xa, the projection distance D of a positive
sample xp belonging to the same class xa should be closer to the anchor’s projection than
that of a negative sample belonging to a different class xn, by at least a margin m. On
the other hand, the batch all triplet loss aims to enhance the efficiency and effectiveness
of training deep metric learning models. The batch all triplet loss, denoted as LBA,
involves forming batches by randomly selectingP classes (wine identities) and randomly
sampling K images from each class (wine). Then, it computes the triplet loss for all
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possible combinations of triplets, given by:

LBA(θ;X ) =

all anchors
︷ ︸︸ ︷

P
∑

i=1

K
∑

a=1

all pos.
︷ ︸︸ ︷

K
∑

p = 1
p �= a

all negatives
︷ ︸︸ ︷

P
∑

j = 1
j �= i

K
∑

n=1

[
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]
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)
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))
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(
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)
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3.6.3 Inference Stage

During the trainingphase, due to our 3Dviewpoint transformation technique,wegenerate
a large number of augmented copies. This is crucial as it ensures that we have ample
training data with slight deviations, allowing the deep learning model to learn from a
broader range of perspectives and nuances. This enriched training phase is designed to
robustly prepare the model for diverse real-world scenarios.

On the other hand, during the testing phase, we use the same 3D viewpoint trans-
formation technique to simplify the inference stage by standardizing all test data to a
frontal view with the orientation set to zero degrees (x, y, z = 0). This standardization is
instrumental in reducing unnecessary noise and variability in the inference stage, thus
enabling more consistent and accurate model predictions. By aligning all test images
to a uniform orientation, we mitigate the impact of angle variations and ensure that the
model’s performance is evaluated based on its ability to recognize and process the essen-
tial features of the input data without the confounding factor of orientation differences.
This approach helps in achieving higher precision and reliability in the model’s output
during real-world applications.

4 Experiments

In this study, we utilize WineSensed [34], an extensive multimodal wine dataset, to
explore the relationships between visual perception, language, and flavor. This dataset
comprises approximately 897,000 wine label images sourced from the Vivino platform.
For our wine label recognition experiments, we selected classes from WineSensed that
contain more than two images. We used one image per class with our 3D augmentation
for training and the remaining images for testing, totaling 32,217 classes.

4.1 Improvement Achieved Through Viewpoint Augmentation

Firstly, we evaluated the performance of various deep learning models, including sev-
eral ViT architectures, on the wine dataset using conventional 2D data augmentation,
advanced2D techniques such asCutOut,Mixup, andCutMix, aswell as our 3Dviewpoint
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augmentation. Table 1 provides a comprehensive evaluation of thewine label recognition
accuracy. It is readily observable that our 3D viewpoint augmentation, which produces
visually more realistic images, outperforms not only the conventional 2D data augmen-
tation but also the more advanced 2D techniques by a significant margin. Specifically,
there is up to a 13.8% improvement in the Top-1 accuracy results for the ViT-S/16 model
whenusing 3Dviewpoint augmentation, indicating thatmore relevant image embeddings
can be generated with our 3D scheme compared to both basic and advanced 2D data
augmentations.

Table 1. Performance comparison of 2D traditional augmentation method and our 3D viewpoint
augmentation method across different models.

Condition 2D Augmentation Advanced 2D
Augmentation

3D Augmentation

Top-1 Acc. Top-5 Acc. Top-1 Acc. Top-5 Acc. Top-1 Acc. Top-5 Acc.

VIT-S/16 70.8% 80.3% 74.3% 83.4% 84.6% 90.5%

VIT-S/8 67.3% 77.8% 71.5% 80.1% 82.3% 89.2%

VIT-B/16 70.4% 80.7% 73.5% 82.7% 84.3% 90.4%

When comparing the performance of ViT with our proposed data augmentation and
metric learning techniques, we observe a significant improvement facilitated by our 3D
viewpoint augmentation for ViT. Specifically, taking ViT-S/16 as an example, it achieves
remarkably high performance. This can be attributed to the higher discriminative power
of the embeddings generated by ViT, as depicted in Fig. 7. The heatmap illustrates that
ViT’s attention mechanism is not concentrated on a single point, but rather distributed
across multiple regions of the image. This characteristic enables ViT to capture subtle
differences in wine labels, including variations in textures, fonts, and design elements.
Through metric learning, this distributed attention pattern further enhances the model’s
classification capabilities.

Fig. 7. Heatmaps from ViT-S/16 showing embeddings for various input images.
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4.2 Enhancing Wine Label Recognition with Background Replacement

3D viewpoint augmentation involves augmenting the wine bottle data by introducing
different poses of the bottles. However, it only generates foreground wine labels, while
the background remains unspecified (black). Having a purely black background not
only fails to fully exploit the data synthesis characteristics but also increases the risk of
model overfitting. Therefore, we replace the black background with randomly sourced
background images from the internet, as shown in Fig. 8. It is shown in Table 2, after
such replacement, the accuracy of recognition may increase by 4.1%. The reason behind
such an improvement is that complex backgrounds introduce additional variations and
noises into the data. This challenges the model to discern relevant foreground features
and learn to focus on the important aspects of the input. By learning to ignore or adapt
to complex backgrounds, the model becomes more robust in distinguishing signal from
noises.

Fig. 8. Image synthesis examples with black background regions replaced by random background
images.

Table 2. Accuracy of ViT-S/16 in wine label recognition using 3D viewpoint augmentation, and
for different backgrounds.

ViT-S/16 + 3D Aug Condition Top-1 Acc. Top-5 Acc.

w/o Background Replacement 80.4% 87.3%

w/ Background Replacement 84.6% 90.5%

4.3 Comparative Analysis of Perspective Transform

2D perspective transform is a commonly used data augmentation technique that allows
images to be transformed from one perspective to another. Similar to our approach, it can
alter the position, angle, and size of objects in an image to simulate the viewpoint of an
observer to some extent. Nonetheless, due to the special curved surface of wine labels
cropped from wine bottles, our 3D viewpoint augmentation can create more realistic
augmentation of wine label images than those created by 2D perspective transform.
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To show the performance difference of 2D perspective transform compared with
our method, we conduct experiments on the ViT-S/16 model for different degrees of
perspective transforms. As shown in Table 3, where all our 3D viewpoint augmentation
results outperform the 2D augmentation with different settings of perspective transform.
Interestingly, while adding more 2D perspective transformations will indeed improve
the accuracy for 2D augmentation methods in the ViT-S/16 model, it may actually have
negative impacts on the performance of our 3D augmentation results. For example,
our best results for the Top-1 accuracy are achieved by skipping the 2D perspective
transformation completely.

Table 3. Accuracy of wine label recognition using ViT-S/16 and different perspective transfor-
mation schemes.

Condition 2D Augmentation 3D Augmentation

Top-1 Top-5 Top-1 Top-5

ViT-S/16 + Little Perspective Aug 70.8% 80.3% 84.6% 90.5%

ViT-S/16 + Big Perspective Aug 76.6% 82.7% 82.7% 87.9%

ViT-S/16 + No Perspective Aug – – 85.5% 90.3%

4.4 Frontal Test Data for Enhanced Accuracy

In pursuit of higher accuracy in wine label recognition, we also employ the 3D viewpoint
transformation method described in Sect. 3 for preprocessing the test data, converting
wine labels into a frontal view 3D viewpoint generated image. This step is particularly
crucial for handling real-world wine label images, which are often captured by users
under less-than-ideal conditions, resulting in images that may be skewed or contain
a high level of noise. By transforming these images into a standardized frontal view
before testing, we can significantly enhance the accuracy of our wine label recognition
model. As Table 4 shown, there is an improvement of 3% in Top-1 accuracy and 4.5% in
Top-5 accuracy, indicating that the ViT model can more precisely recognize the correct
label with this step. This ensures that even real-world, imperfect images are accurately
recognized by the deep learning model.

Table 4. Accuracy of ViT-S/16 in wine label recognition task using 3D view-point transformation
for test data.

ViT-S/16 + 3D Aug Condition Top-1 Acc. Top-5 Acc.

w/o transformed frontal-view test data 84.6% 90.5%

w/ transformed frontal-view test data 87.2% 94.9%
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5 Conclusion

Data augmentation is a way to extend training data so that deep learning models can
achieve good results in situations where such data are limited, of poor quality, or even
absent. In this paper, such a problem is investigated for the task of automatic wine label
recognition, and a novel data (3D viewpoint) augmentation technique is proposed to
generate visually realistic training images, for essentially unlimited number of wine
bottle poses, from a single wine label image captured in the real world. Experimental
results show that the proposed augmentation technique can significantly improve the
performance of the task of wine label recognition, by 13.8% over the traditional 2D
image data augmentation, when the training data is extremely limited, e.g., having only
one image for each wine class.
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Abstract. Recently, remarkable progress has been achieved in single
image super-resolution using methods based on CNN and Transformer
architectures. However, existing approaches often construct a substan-
tial number of network layers, leading to a significant increase in per-
formance requirement and memory consumption, thereby limiting the
practical deployment and usability of the models. To address this issue,
we propose an Alternating CNN Transformer Block and an Integra-
tive CNN Efficient Transformer for single image super-resolution. We
enhance feature extraction efficiency by combining CNN within and
between Transformer modules. In addition, we propose two novel struc-
tures: Multi-branch Gated CNN and Parallel Channel Attention, aim-
ing to efficiently extract local spatial information and global channel
information from images. Extensive experiments demonstrate that our
model achieves high performance while maintaining low model complex-
ity. The proposed model attains PSNR values of 32.32 and 30.78 for the
Set5 and Manga109 benchmark datasets, respectively, at a scale factor
of ×4. Compared to other lightweight super-resolution models, our pro-
posed model outperforms them at lower computational costs. The source
codes are available at https://github.com/kylechuuuuu/ICTSRN.

Keywords: SISR · CNN · Transformer · Attention · Deep Learning

1 Introduction

Single Image Super-Resolution (SISR) is an image processing technique
employed to enhance the details and textures of images. Its objective is to
enhance the clarity of low-resolution (LR) images by restoring blurred details,
ultimately leading to a visually refined output that resembles high-resolution
(HR) images. As a low-level visual task, SISR finds widespread applications
in fields such as medical image enhancement [1,2], satellite image processing
[3,4], video enhancement [5,6], and security surveillance [7,8]. Additionally, it
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15332, pp. 212–225, 2025.
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Fig. 1. Comparison of PSNR and Parameters on Manga109 (4×).

contributes to high-level vision tasks like object detection [9] and image segmen-
tation [10].

In recent years, with the rapid development of hardware accelerators such as
GPU and FPGA, deep learning-based SISR methods have experienced substan-
tial progressions at a rapid pace. The inaugural efficacious endeavor employing
CNN for SISR manifested in SRCNN [11]. Using a linear stack of convolution
layers, SRCNN adeptly encapsulated the intricate interdependencies between
LR and HR images, thereby achieving commendable results in the domain of
high-quality image restoration. The work by Lim et al. [12] attained notewor-
thy performance enhancements by incorporating conventional residual modules
into their methodology. Cheng et al. [13] introduced an encoder-decoder residual
network specifically designed for efficient HR image restoration. Tian et al. [14]
proposed a lightweight CNN-based SISR method by comprehensively integrating
deep-channel and wide-channel features. However, to capture higher-level global
feature information, CNN-based SISR models require incorporating deeper and
larger network architectures. This gives rise to an undesirable escalation in com-
putational complexity and hardware consumption, thereby presenting challenges
in the deployment and utilization of the model. Additionally, purely CNN-based
SISR methods lack competitiveness.

To enhance feature extraction efficiency and further reduce computational
complexity, we propose an Alternating CNN-Transformer Block (ACTB), which
alternately integrates CNN and Transformer modules to enhance feature extrac-
tion efficiency. Additionally, we propose a novel Integrative CNN Efficient Trans-
former (ICET). In ICET, we redesign Multi-branch Gated CNN (MGC) layer
to obtain local spatial feature information and capture global channel feature
information through Parallel Channel Attention (PCA). By combining local spa-
tial information with global channel information, we achieve more efficient fea-
ture extraction, leading to excellent super-resolution performance with fewer
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computational resources. We compared ICTSRN with other recent lightweight
SISR models in terms of PSNR and parameters, as shown in Fig. 1. From
the figure, it can be observed that ICTSRN achieves high PSNR with low
parameters.

The main contributions of our study can be summarized as follows:

• We propose a lightweight SISR network with lower computational cost, called
ICTSRN. Compared with other existing lightweight models, our model has
better performance at lower computational cost.

• To better integrate CNN and Transformer, we propose ICET, in which we
redesign and introduce two novel components: MGC and PCA, to extract
local spatial information and global channel information.

• We propose the ACTB module, which achieves a simple and efficient inte-
gration of CNN and Transformer modules by alternately stacking them and
incorporating residual connections.

2 Related Work

2.1 CNN-Based SISR Method

Early CNN-based SISR methods, such as SRCNN [11] and VDSR [15], demon-
strated the huge potential of deep learning in SISR. These pioneering studies
established a foundational framework for subsequent research, demonstrating
significant advancements over traditional non-deep learning approaches. Recent
years have seen the development of more sophisticated CNN architectures.
Notable examples include EDSR [12], which leveraged residual learning, and
RCAN [16], which introduced channel attention mechanisms. Mei et al. [17] pro-
posed a novel non-local sparse attention mechanism for SISR by combining non-
local operations with sparse representation. Addressing the need for efficient
SISR methods, especially for resource constrained devices, several lightweight
architectures have been proposed. FALSR [18] employed neural architecture
search to find efficient network designs, and IMDN [19] focused on information
multi-distillation to reduce model size while maintaining performance.

2.2 Transformer-Based SISR Method

Transformer architectures have recently made significant advancements into
computer vision tasks, including SISR. These models have demonstrated remark-
able performance, often outperforming conventional CNN-based approaches in
quality and efficiency. IPT [20] pioneered this approach, utilizing a pre-trained
model and fine-tuning strategy to achieve remarkable performance in SISR tasks.
SwinIR [21] adapted the Swin Transformer architecture for image restoration,
introducing shifted windows to efficiently capture both local and global depen-
dencies, thus striking a balance between computational cost and restoration qual-
ity. HAT [22] proposed to enhance image reconstruction by integrating channel
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attention and window-based self-attention mechanisms, leveraging their comple-
mentary strengths: the utilization of global statistical information and powerful
local fitting capabilities. Another notable contribution came from the ESRT
[23], which focused on efficiency while maintaining high performance by employ-
ing a progressive learning strategy and introducing an efficient multi-scale self-
attention mechanism, significantly reducing computational complexity compared
to previous Transformer-based models.

2.3 Lightweight CNN-Transformer Fusion for SISR

SISR methods leveraging Transformer have exhibited noteworthy performance.
Nevertheless, the computational complexity of the Vanilla Transformer is exces-
sively high, rendering it unsuitable for direct integration into the SISR domain.
Furthermore, the Transformer model encounters challenges related to its lim-
ited capacity for extracting local detailed features. Therefore, a viable solution
involves combining it with CNN. HNCT [24] encapsulated the CNN and Trans-
former into a block to achieve both local and global feature extraction. LBNet
[25] innovatively integrates a Symmetric CNN for local feature extraction with
a Recursive Transformer to capture long-term dependencies, culminating in a
lightweight and efficient approach for SISR. Yoo et al. [26] proposed a super-
resolution network composed of a parallel fusion of CNN and Transformer back-
bone. Liu et al. [27] proposed a lightweight super-resolution network composed
of a Transformer cluster and a CNN module cluster. However, existing meth-
ods often fail to achieve an optimal integration of the local feature extraction
capabilities of CNN and the intrinsic attention mechanisms of Transformer. Fur-
thermore, the substantial complexity of these models, in terms of both parameter
count and FLOPs, remains a significant consideration.

3 The Proposed Method

3.1 Overall Structure

The main structure of the proposed ICTSRN is illustrated in Fig. 2, generally
divided into three parts: a basic feature extraction module consisting of a 3×3
convolution layer, a deep feature extraction module composed of ACTB concate-
nation and an image reconstruction module consisting of a 3×3 convolution and
a pixel-shuffle layer. In the basic feature extraction stage, we employ a 3×3 con-
volution to capture fundamental features from the LR image XLR ∈ R

3×H×W

and expand the channels
XB = HSF (XLR), (1)
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Fig. 2. The main structure of the ICTSRN, ACTB, CCB and ICET.

where HSF denotes the basic feature extraction module and XB denotes the
extracted basic feature. Subsequently, we utilize a deep feature extraction mod-
ule, which is constructed by concatenating the ACTB blocks, to extract high-
level feature information

HD = Hn
ACTB(Hn−1

ACTB · · · (H1
ACTB(XB))), (2)

where Hn
ACTB represents the n-th ACTB module and HD represents the high-

level features output from the n-th ACTB module. Finally, the integration of
HB and HD is fed into the reconstruction module to generate a HR image ISR

IHR = HRC(HB + HD), (3)

where HRC represents the reconstruction module, and IHR ∈ R
3×H×W repre-

sents the reconstructed HR image.
We utilize the L1 loss function for training our model due to its efficient com-

putation and robustness against outliers, which collectively enhance the model’s
generalization capabilities. The loss function of ICTSRN can be expressed as
follows:

LOSS =
1
N

N∑

i=1

||HICTSRN

(
Li
LR

) − IiHR||1, (4)

where HICTSRN represents the ICTSRN, ‖·‖1 represents the L1 norm, N is the
number of training samples, IiLR and IiHR represent the i-th input LR image and
its corresponding HR image respectively.
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3.2 Alternative CNN Transformer Block

The objective of the ACTB design is to enhance the integration between CNN
and Transformer to improve the efficiency of feature extraction. ACTB consists
of three ICET and three Compact CNN Block (CCB) blocks, which are alter-
nately arranged as shown in Fig. 2(a). The primary advantage of the alternating
architectural design resides in its capacity to synergistically harness the unique
strengths of convolutional layers and Transformers. This strategy facilitates an
enhanced extraction and comprehensive analysis of both local and global feature
information from the input imagery, thereby augmenting the model’s feature
extraction capability. The CCB module consists of a 1×1 convolution, Leaky-
ReLU activation function and a 3×3 convolution. The structure of ICET will be
explained in detail in Sect. 3.3. For the n-th input Fn

in of ACTB, the function of
ACTB can be described as follows:

Fn
out = Hn

ACTB(Fn
in) + Fn

in

= Hn,3
CCB(Hn,3

ICET (· · · (Hn,1
CCB(Hn,1

ICET (Fn
in))))) + Fn

in

(5)

where Hn
ACTB and Fn

out represents the n-th ACTB and the output; Hn,i
CCB and

Hn,i
ICET represents the i-th CCB and ICET in the n-th ACTB module.

3.3 Integrative CNN Efficient Transformer

Fig. 3. The structure of the MGC and PCA in ICET.

The Transformer exhibits a strong capability for capturing global information
and global receptive field. However, it lacks local feature extraction ability in
comparison to CNN. To address this issue, we propose ICET. As illustrated in
Fig. 3, the self-attention in the Vanilla Transformer is replaced with the proposed
MGC and PCA. Starting with the MGC, the input features’ channels are initially
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expanded to three times their original size using a 1×1 convolution, as shown
in Fig. 3(a). Following the expansion, the augmented channels are partitioned
into three equal segments along the channel axis. And local spatial information
is obtained through a 3×3 convolution. Subsequently, branch 1 is multiplied by
branch 2 to form a gating mechanism; the product undergoes an activation func-
tion and is multiplied by branch 3, forming another gating mechanism. Finally,
feature aggregation is accomplished through a 1×1 convolution, and the result is
output after passing through a Leaky-ReLU activation function. For the module
input FMGC

in , MGC is formulated as:

HMGC
mid = φ(C1

1 (C1
3 (FMGC

in )) ⊗ C2
1 (C2

3 (FMGC
in ))), (6)

HMGC = φ(C4
1 (HMGC

mid ⊗ C3
1 (C3

3 (FMGC
in )))), (7)

where HMGC represents MGC; Ci
1, Ci

3, φ and ⊗ represent the i-th 1×1 convo-
lution, i-th 3×3 convolution, Leaky-ReLU activation and element-wise multipli-
cation respectively.

The attention has the ability to extract global features, which can comple-
ment CNN with smaller receptive fields and achieve more detailed feature extrac-
tion. However, self-attention is computationally expensive and not suitable for
lightweight models. Therefore, we use channel attention for feature extraction.
Unlike traditional channel attention mechanisms, we were inspired by parallel
mechanism to propose PCA. The object of PCA is to enhance valuable channel
informations by summing up the multiple parallel branches. As illustrated in
Fig. 3(b), given an input FPCA

in , PCA first reshapes the input through global
pooling, compressing global spatial information. To reduce parameter overhead,
we use group convolution instead of setting a reduction ratio. Additionally, to
minimize the loss of information during dimensionality reduction, each branch
is equipped with a single layer of 3×3 convolution using group convolution.
Subsequently, the weights from different parallel branches are aggregated by
summation and then multiplied with the input FPCA

in . Ultimately, the output
is obtained after passing it through Leaky-ReLU function. To summarize, the
function of PCA can be outlined as follows:

HPCA = φ(FPCA
in ⊗

j∑

i=1

σ(φ(Cj
3(P (FPCA

in ))))), (8)

where HPCA represents the function of PCA; Cj
3 represents the j-th 3×3 convolu-

tion; σ and P represent the Sigmoid activation and Pooling respectively. Finally,
the Feed-Forward Network (FFN) in Transformer, which has the same structure
as CCB, is used to perform feature transformation and generate output. Given
the input F ICET

in , the ICET can be formulated as follow:

HICET
mid = HPCA(HMGC(Norm(F ICET

in ))) + F ICET
in , (9)

HICET = FFN(Norm(HICET
mid )) + HICET

mid , (10)

where HICET represents the function of ICET; Norm represents Layer Normal-
ization and FFN represents a Feed-Forward Network.
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4 Experiments

4.1 Experimental Setup

We utilized the DF2K [28] for both training and validation and employed five
benchmark datasets: Set5 [29], Set14 [30], BSD100 [31], Urban100 [32] and
Manga109 [33] as our test sets. Our ICTSRN architecture incorporated 5 ACTB
modules, while the PCA component was designed with 12 branches. Addition-
ally, we configured the channel count to be expanded to 64. All experiments
were executed on a computer running the Ubuntu 20.04 operating system with
a NVIDIA RTX A5000 24G GPU. The model architecture was designed and
implemented leveraging the PyTorch framework. Model training involved mini-
mizing the loss using the Adam optimizer, with β1 = 0.9 and β2 = 0.999, over
a total of 900,000 iterations. The initial learning rate was set to 5 × 10−4, and a
cosine annealing scheduler was employed to reduce it to 5 × 10−6. The training
batch size was set to 48, with a patch size of 256×256. Data augmentation tech-
niques, including random rotation and random horizontal flipping, were applied
during training.

Fig. 4. Qualitative comparison for ×4 upscaling in four pictures.
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Table 1. Model comparison results with different lightweight sisr methods, red repre-
sents the best performance, while blue indicates the second best.

Method Scale Set5 [29] Set14 [30] BSD100 [31] Urban100 [32] Manga109 [33]

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556

SRCNN [11] 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989 30.59/0.9107

GSCN [34] 34.40/0.9271 30.35/0.8425 29.11/0.8053 28.20/0.8535 33.54/0.9445

EMASRN [35] 34.36/0.9264 30.30/0.8411 29.05/0.8035 28.04/0.8493 33.43/0.9433

ShuffleMixer [36]×3 34.40/0.9272 30.37/0.8423 29.12/0.8051 28.08/0.8498 33.69/0.9448

HNCT [24] 34.47/0.9275 30.44/0.8439 29.15/0.8067 28.28/0.8557 33.81/0.9459

ACDN [37] 34.39/0.9262 30.32/0.8419 29.12/0.8053 28.26/0.8542 -

VLESR [38] 34.40/0.9272 30.34/0.8415 29.08/0.8043 28.16/0.8519 33.61/0.9445

LMDFFN [39] 34.32/0.9264 30.20/0.8392 29.03/0.8034 28.01/0.8483 33.36/0.9430

Our 34.46/0.9278 30.40/0.8430 29.13/0.8058 28.30/0.8553 33.76/0.9457

Bicubic 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866

SRCNN [11] 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 27.66/0.8505

GSCN [34] 32.18/0.8950 28.60/0.7821 27.59/0.7364 26.12/0.7872 30.50/0.9080

EMASRN [35] 32.17/0.8948 28.57/0.7809 27.55/0.7351 26.01/0.7838 30.41/0.9076

ShuffleMixer [36]×4 32.21/0.8953 28.66/0.7827 27.61/0.7366 26.08/0.7835 30.65/0.9093

HNCT [24] 32.31/0.8957 28.71/0.7834 27.63/0.7381 26.20/0.7896 30.70/0.9112

ACDN [37] 32.30/0.8950 28.64/0.7819 27.59/0.7361 26.22/0.7891 -

VLESR [38] 32.17/0.8945 28.55/0.7802 27.55/0.7345 26.03/0.7830 30.48/0.9073

LMDFFN [39] 32.08/0.8930 28.46/0.7792 27.51/0.7341 25.93/0.7804 30.25/0.9053

Our 32.32/0.8967 28.70/0.7838 27.64/0.7384 26.25/0.7909 30.78/0.9118

Table 2. Model complexity comparisons for ×4 scale factor. The assessment of model
Params, FLOPs, and Runtime is conducted using input images sized at 256×256.

Method EMASRN [35] ShuffleMixer [36] HNCT [24] VLESR [38] Our

Params 546K 411K 372K 331K 578K

FLOPs 480.3G 17.9G 39.4G 19.5G 26.9G

Runtime 70.1 ms 24.7 ms 325 ms 47 ms 41.1 ms

4.2 Experimental Results

Quantitative Evaluation. Based on the experimental results presented in
Table 1, we conducted a comprehensive evaluation of our proposed lightweight
SISR model. Our model was compared with several state-of-the-art methods
across five widely used benchmark datasets (Set5, Set14, BSD100, Urban100,
and Manga109). These competing methods include CNN-based structures such
as SRCNN [11], ShuffleMixer [36], ACDN [37], and VLESR [38], attention-
based mechanisms like EMASRN [35] and GSCN [34], and the hybrid CNN-
Transformer structure HNCT [24]. The results demonstrate that at ×3 scale,
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our model exhibits excellent performance on most datasets, typically ranking
second or third. At ×4 scale, our model’s performance is even more impres-
sive, achieving the best or second-best results across all datasets. Specifically,
for the ×4 scale, our model attains the highest PSNR and SSIM scores on Set5,
BSD100, Urban100, and Manga109 datasets. These findings strongly validate
the effectiveness and advanced nature of our proposed method, particularly for
the more challenging ×4 scale SR task. Notably, as a lightweight approach, our
model achieves such outstanding performance while maintaining low computa-
tional complexity, indicating a favorable balance between model efficiency and
SR quality. As shown in Table 2, our model outperforms several existing meth-
ods in terms of both accuracy and computational efficiency. Specifically, our
model has 578K parameters, 26.9G FLOPs, and a runtime of 41.1 ms, which is
a notable improvement over the compared methods. This result has significant
implications for resource-constrained scenarios in practical applications.

Qualitative Analysis. We selected images from Set5, BSD100, Urban100,
and a smartphone-captured photo for qualitative experimentation. As shown in
Fig. 4, our model excels in reconstructing texture details compared to other mod-
els. In the “Butterfly” image from Set5, our model achieves a PSNR of 32.82 and
an SSIM of 0.9155, showing superior detail restoration. For the BSD100 “134035”
image, our model attains a PSNR of 30.68 and an SSIM of 0.7516, maintaining
clarity in complex textures. The Urban100 “Img010” image demonstrates our
model’s capability with a PSNR of 34.42 and an SSIM of 0.8784, effectively han-
dling urban textures. In the smartphone-captured image, our method achieves a
PSNR of 32.83 and an SSIM of 0.7721, outperforming other models in retaining
fine textural details. These results confirm our model’s superior performance in
practical applications.

4.3 Ablation Study

Fig. 5. Single Branch, Multi Branch and Multi-Branch Gate in ablation study.

Ablation Study of the MGC. To validate the effectiveness of the MGC,
we designed two additional modules as replacements. Their structures are illus-
trated in Fig. 5, featuring a single-branch structure, a multi-branch structure,
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and our proposed MGC. As shown in Table 3, experimental results on the Set5
and BSD100 datasets demonstrate that our proposed MGC enhances perfor-
mance without significantly increasing computational costs.

Fig. 6. SCA, CA and PCA in ablation study.

Ablation Study of the PCA. As depicted in Fig. 6, we also designed two addi-
tional modules, Simple Channel Attention and Channel Attention, to replace
PCA in the ICET and validate its effectiveness. The results, shown in Table 3,
demonstrate improved PSNR and SSIM on the Set5 and BSD100 datasets with-
out increasing computational costs.

Table 3. Ablation study of the MGC and PCA.

Model Params FLOPs Runtime Set5 BSD100

Single 484K 20.5G 43 ms 32.17/0.8946 27.39/0.7347

Multi 669K 33.9G 46 ms 32.26/0.8963 27.58/0.7373

MGC 578K 26.9G 41.1 ms 32.32/0.8967 27.64/0.7384

SCA 540K 26.9G 28.6 ms 32.19/0.8949 27.43/0.7352

CA 484K 26.9G 32.6 ms 32.25/0.8957 27.56/0.7364

PCA 578K 26.9G 41.1 ms 32.32/0.8967 27.64/0.7384

5 Conclusion

In this paper, we propose ACTB, MGC and PCA to construct a lightweight
super-resolution network ICTSRN. To achieve better results, we combine the
advantages of both CNN and Transformer. Extensive experiments have demon-
strated the effectiveness of our approach. However, the performance of our model
in ×3 super-resolution is not outstanding, and there is overfitting in the model.
In the future, we will further improve the efficiency of feature extraction in PCA
to enhance the performance of the model under ×3 scale and reduce computa-
tional costs.
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Abstract. Accurate camera calibration is crucial for various computer
vision applications. However, measuring calibration accuracy in the real
world is challenging due to the lack of datasets with ground truth to
evaluate them. In this paper, we present SynthCal, a synthetic camera
calibration benchmarking pipeline that generates images of calibration
patterns to measure and enable accurate quantification of calibration
algorithm performance in camera parameter estimation. We present a
SynthCal-generated calibration dataset with four common patterns, two
camera types, and two environments with varying view, distortion, light-
ing, and noise levels for both monocular and multi-camera systems. The
dataset evaluates both single and multi-view calibration algorithms by
measuring re-projection and root-mean-square errors for identical pat-
terns and camera settings. Additionally, we analyze the significance of
different patterns using different calibration configurations. The exper-
imental results demonstrate the effectiveness of SynthCal in evaluating
various calibration algorithms and patterns.

Keywords: camera calibration · benchmarking · synthetic dataset ·
pattern recognition

1 Introduction

When we capture an image using a camera, the captured digital image can
differ from the real-world scene in terms of perspective, distortion, color, reso-
lution, and other visual properties. This is because real-world scenes are three-
dimensional and continuous, while digital images captured by a camera are two-
dimensional and discrete, and contain distortion and other imperfections. To
minimize these differences and improve the accuracy of image-based computer
vision tasks, camera calibration is essential.

Camera calibration involves calculating camera parameters that refer to its
intrinsic and extrinsic characteristics for accurately mapping points in the 3D
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world to their corresponding 2D image coordinates. Once the camera is cali-
brated, it can accurately measure distances, angles, and sizes of objects in the
3D world and perform other image-based computer vision tasks such as object
tracking [21], 3D reconstruction [12,20], medical imaging [2], and autonomous
driving [8].

Geometric camera calibration [11,13] is one of the most widely used cali-
bration methods. It involves using a calibration target with known geometric
features, such as a calibration grid, to estimate the camera parameters.

However, creating real camera calibration data with ground truth for calibra-
tion algorithms can be challenging because it is difficult to measure camera posi-
tion and rotation accurately, and the camera’s intrinsic parameters can change
with changes in the zoom level, focus distance, or temperature. Moreover, cam-
eras can have different intrinsic parameters, even if they are of the same make
and model, because of manufacturing tolerances, assembly errors, and differences
in lens quality. Observing the calibration pattern in the image along with the
previous knowledge of the pattern, we can determine the intrinsic and extrinsic
parameters using various calibration algorithms, such as Zhang [22], Tsai [17], or
Bouguet calibration method [3]. Previous works have tried to compare different
camera calibration algorithms [19]. However, there is a need for a benchmarking
procedure that can provide a quantitative comparison of calibration algorithms
due to the unknown ground truth of the calibration dataset.

Fig. 1. SynthCal pipeline to generate calibration dataset from a set of input attributes:
Pattern attributes, camera intrinsic, distortion, extrinsic matrix. The accuracy is then
evaluated using RMSE and RPERMS for monocular cameras.

To overcome these problems, we introduce an overall pipeline, named Synth-
Cal, which generates a synthetic camera calibration dataset with user-defined
intrinsic camera parameters while precisely measuring the extrinsic camera
parameters. It enables the selection of the optimal camera calibration algorithm
for specific configurations by considering all intrinsic, extrinsic, and distortion
parameters. Additionally, it ensures that lighting conditions and noise are iden-
tical for the different captured datasets for accurate comparison of different
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calibration patterns which is not possible in the real world. The idea of generat-
ing synthetic calibration data has been previously applied in other works, such
as sports-based synthetic calibration [5] and evaluating closed-form solutions
of principal line calibration [6], but not necessarily for comparing calibration
algorithms.

Our main contributions can be summarized as follows:

– We present a pipeline to generate a camera calibration dataset with ground
truth parameters and select the optimal camera calibration algorithm for the
specific configurations, as depicted in Fig. 1.

– We validate the proposed pipeline on three different camera calibration algo-
rithms which is consistent with previous works and then use SynthCal-
generated dataset to compare four different calibration patterns given in Fig.
2 for monocular and multi-camera systems with two distinct camera config-
urations, and two different lighting and noise conditions.

2 Proposed Method

We created a modular web-based interface with OpenCV and Blender API in
the back-end to generate a synthetic camera calibration dataset with ground
truth which has functionalities to create different camera calibration patterns,
simulate a camera inside Blender using the light-field analysis add-on [10], ren-
der the camera calibration pattern from various positions and orientations, add
radial distortions while establishing the camera’s intrinsic, extrinsic and distor-
tion parameters to formulate the ground truth. We used an OpenCV to gen-
erate geometric patterns that take input pattern type, and pattern attributes
to generate a PNG image. Our script allows us to create checkerboard patterns
(Ch), symmetric circular patterns (Sc), asymmetric circular patterns (Ac), and
Charuco [1] patterns (Cu) of different configurations as shown in Fig. 2. Let
K be the intrinsic matrix of the camera, which includes the parameters that
describe the internal configuration of the camera, such as the focal length (fx,
fy) and principal point (cx, cy):

K =

⎡
⎣
fx 0 cx
0 fy cy
0 0 1

⎤
⎦ (1)

We used a Blender python API and a light-field add-on to create synthetic
cameras that take camera attributes (fx, fy) and (cx, cy) to create a camera
configuration file for simulating the camera inside Blender. To capture the cali-
bration pattern for dataset creation, we moved the pattern in a path resembling
the shape of a conical spring, as depicted in Fig. 1. The center of the calibration
pattern is always in the camera’s direction, so the planar pattern can be cap-
tured in different angles, sizes, and orientations and have consistency without
going out of the camera frame. Let R be the rotation matrix that describes the
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orientation of the camera in the global coordinate system, and let t be the trans-
lation vector that describes the position of the camera in the world coordinate
system:

P =
[
R t
0 1

]
(2)

The extrinsic matrix P combines the rotation matrix and the translation vector.
R is, and t are evaluated by extracting the global position and orientation of
the camera and calibration pattern at each frame. The camera parameters can
also be described using the distortion parameters, which describe the deviations
from the ideal imaging system. The distortion parameters can be represented as
a vector

d = [k1, k2, p1, p2, k3, k4, k5, k6] (3)

Fig. 2. (a) 9 × 12 Charuco pattern, (b) 10 × 10 Symmetric circle grid, (c) 9 × 10
Asymmetric circle grid, (d) 9 × 12 Checkerboard pattern.

where k1, k2, k3, k4, k5, k6 are radial distortion coefficients and p1, p2 are tangen-
tial distortion coefficients. The distortions are added later using Blender undis-
torted node by setting up a tracking scene in Blender and defining K and d.
The final equation for mapping X a 3D point in the global coordinate system
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to x a 2D point in the image plane and s scale factor, including the distortion
parameters, can be written as:

sx = K[R | t]X + d(
xd

fx
,
yd
fy

) (4)

Fig. 3. (a, b) Original clean and noisy capture, undistorted render using the camera
parameters predicted by (c, d) Zhang, (e, f) Tsai, (g, h) Bouguet method.



SynthCal 231

where xd and yd are the distorted image coordinates, the distortion model d maps
the distorted image coordinates to the corrected image coordinates. The captures
are saved in PNG formats, while camera parameters are saved as NumPy arrays.

For a multicamera system, the synthetic dataset generation process involves
considering the intrinsic matrices of multiple cameras and simulating their inter-
actions. In this scenario, let’s denote the intrinsic matrices of the two cameras
as K1 and K2 respectively, with corresponding distortion parameters d1 and d2.
The extrinsic matrices P1 and P2 represent the position and orientation of the
cameras in the global coordinate system.

To extend the methodology for a multicamera setup, the calibration pattern
is moved along a trajectory that ensures visibility from both cameras. The conical
spring-like path is designed to capture the pattern from varying angles, sizes,
and orientations for each camera while maintaining consistency. The rotation
matrices R1 and R2, as well as translation vectors t1 and t2, are determined
individually for each camera frame.

The distortion parameters d1 and d2 are applied separately to the distorted
image coordinates xd1 and xd2 of each camera. The final mapping equation for
a point X in the global coordinate system to its respective distorted image
coordinates x1 and x2 in the image planes of Camera 1 and Camera 2 with scale
factor si is given by:

[
s1x1

s2x2

]
=

[
K1[R1 | t1]
K2[R2 | t2]

]
X +

⎡
⎣d1

(
xd1
fx1

, yd1
fy1

)

d2

(
xd2
fx2

, yd2
fy2

)
⎤
⎦ (5)

In this formulation, the intrinsic matrices K1 and K2 encapsulate the param-
eters specific to each camera, while the distortion parameters d1 and d2 account
for individual radial and tangential distortions. The resulting synthetic dataset
includes images from both cameras, with their respective intrinsic and extrinsic
parameters saved for each frame in the dataset.

3 Results

3.1 Dataset

We created a dataset of four widely used distinct pattern types that are a 9×12
checkerboard pattern with a checker width of 15 mm, one 10×10 symmetric cir-
cle pattern with a 7 mm circle diameter, and 15 mm circle spacing, one 9×10
asymmetric circle pattern with 9 mm diameter, and 22 mm diagonal spacing and
9×12 Charuco pattern checker width of 15 mm and ArUco dictionary [18] of
7×7. Two distinct camera configurations representing a high-resolution rectilin-
ear lens with focal length (3000, 3000), principal point (2048, 1536) with distor-
tion parameters [0.05, 0.02, 0.001, 0, 0, 0, 0, 0] and a low resolution wide, angle lens
with focal length (600, 450), principal point (320, 240) with distortion parame-
ters [0.5, 0.1, 0.03, 0, 0, 0, 0, 0] are simulated for capturing the patterns. Multiple
cameras with either camera configuration are added to the scene to create a
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stereo dataset. Skew and tangential distortion are kept at zero for all camera
configurations. The extrinsic parameters R a 3×3 identity matrix and t a 3×1
zero vector are calculated using vector calculation with the relative position and
orientation of the camera and target pattern to establish the ground truth. Two
different external lighting conditions are used while rendering, one with uniform
light across the scene without noise (Clean) and another with Directional lights
with additive Gaussian noise (Noisy) in the camera captures. We created 40 data
configurations with 127 captures with camera intrinsic and extrinsic matrix for
each configuration with mono and stereo settings as specified in Table 1.

Table 1. Dataset statistics specifying eight different configurations based on two cam-
era types, four pattern types, and two different environment factors available in the
dataset.

Camera Pattern Environment

Rectilinear lens 9×12 Ch, 10×10 Sc, Clean

(mono + stereo) 9×10 Ac, 9×12 Noisy

Wide angle lens 9×12 Ch, 10×10 Sc, Clean

(mono + stereo) 9×10 Ac, 9×12 Cu Noisy

Rectilinear + Wide angle 9×12 Ch, 10×10 Sc, Clean

(stereo) 9×10 Ac, 9×12 Cu Noisy

Table 2. RPERMS and RMSE calculated for different lens using different camera cal-
ibration methods for 9×12 Ch.

Camera Algorithm RPERMS RMSE

Zhang’s method 0.510 1.221

Rectilinear lens. Tsai’s method 0.551 1.880

Bouguet method 0.373 1.127

Zhang’s method 1.316 2.219

Wide angle lens. Tsai’s method 1.433 2.344

Bouguet method 0.811 1.861

3.2 Evaluation

We used RMS Reprojection Error (RPERMS) as a metric to compare the algo-
rithms and calibration patterns which can be defined as:

RPERMS =

√√√√ 1
N

N∑
i=1

‖xi − x̂i‖2 (6)
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Table 3. RPERMS and RMSE calculated for four different calibration patterns in two
different environmental conditions.

Environment Pattern Zhang’s Method Tsai’s Method Bouguet’s Method

RPERMS RMSE RPERMS RMSE RPERMS RMSE

Clean 9×12 Ch 0.510 1.221 0.561 1.233 0.483 1.166

10×10 Sc 0.508 1.206 0.559 1.216 0.490 1.214

9×10 Ac 0.506 1.205 0.554 1.198 0.497 1.193

9×12 Cu 0.493 1.093 0.542 1.139 0.476 1.012

Noisy 9×12 Ch 1.116 2.219 1.227 2.290 1.062 2.252

10×10 Sc 1.20 2.263 1.320 2.347 1.140 2.373

9×10 Ac 1.118 2.261 1.234 2.224 1.155 2.319

9×12 Cu 0.898 1.916 0.987 1.868 0.853 2.020

Table 4. RMSEcal calculated over the global position of the calibration pattern for
different multi-camera systems for 9×12 Ch using the triangulation method.

Zhang’s Method Tsai’s Method Bouguet’s Method

Cameras Environment RMSEcal

2×Rectilinear lens Clean 2.365 2.456 2.143

Noisy 4.604 4.812 4.746

2×Wide angle lens Clean 3.780 3.998 3.612

Noisy 5.611 5.742 5.798

Rectilinear & Clean 4.118 4.236 4.052

wide angle lens Noisy 6.401 6.552 6.577

where N is the number of points, xi is the observed image point in the captured
image, and x̂i is the corresponding projected image point using the estimated
intrinsic and extrinsic parameters from the camera calibration. We also calcu-
lated accuracy by comparing the estimated intrinsic and extrinsic parameters of
the camera to the ground truth values using Root Mean Square Error (RMSE)
that can be defined as:

RMSE =

√√√√ 1
L

L∑
i=1

(
Xi − X̂i

)2

(7)

where L is the number of parameters being estimated, Xi is the ground truth
value for the i-th parameter, and X̂i is the estimated value for the i-th parameter.

In our multicamera setup, we employed stereo triangulation [9] using the
following equation to calculate the global position (X) of a calibration pattern,
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assuming knowledge of the camera parameters for two cameras within the sys-
tem:

X =
(X1 − t1) × (X2 − t2)

‖(X1 − t1) × (X2 − t2)‖ (8)

Here, X1 and X2 represent the 3D points in the coordinate systems of Cam-
era 1 and Camera 2, respectively, and t1 and t2 are the translation vectors of
Camera 1 and Camera 2. Subsequently, we utilized the Root Mean Square Error
(RMSE) to quantify the disparity between the calculated global positions and
the corresponding positions extracted from a simulation. The RMSE equation
for a set of XYZ points involves calculating the square root of the average of
the squared differences between the simulated XYZ coordinates (Xsim) and the
calculated XYZ coordinates (Xcalc):

RMSEcal =

√√√√ 1
N

N∑
i=1

((Xsimi
− Xcalci)2) (9)

This facilitated a comprehensive evaluation of the accuracy of our global
position calculations in comparison to simulated ground truth, providing a quan-
titative measure through the RMSEcal metric (which is impossible to estimate
in a real-world).

3.3 Analysis

Validation of SynthCal. We conducted an extensive assessment of three dis-
tinct camera calibration algorithms, taking into account both rectilinear and
wide-angle camera configurations. The dataset employed in this study was gen-
erated using a 9×12 checkerboard pattern, and the findings are summarized in
Table 2. Our analysis indicates that Bouget’s method outperforms both Zhang’s
and Tsai’s methods. This outcome is consistent with previous research, specifi-
cally validating the established efficacy of various calibration methods reported
by Zollner et al. [23]. Upon examining the table, it becomes apparent that cal-
ibration accuracy decreases in the case of wide-angle lenses depicted in Fig. 3.
This observation aligns with expectations, considering the inherent complexities
associated with wide-angle lenses compared to rectilinear lenses. This discovery
further underscores the reliability of our synthetic benchmark, demonstrating
that center-based patterns are more effective than edge-based patterns in chal-
lenging environments. However, the increased complexity of wide-angle lenses
negatively impacts their performance compared to edge-based patterns. The
Charuco pattern, achieving the highest score, demonstrates its robustness to
noise compared to other patterns, indicating its alignment with real-world data.

Monocular Configuration. In the context of monocular settings, our objec-
tive was to assess the effectiveness of various camera calibration patterns with
different calibration algorithms. We conducted a comprehensive analysis by cal-
culating both the RPERMS and RMSE for all eight available configurations using
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Zhang’s method, as detailed in Table 3. Our observations revealed that under
normal conditions, the Charuco pattern consistently yielded the best results
across various camera calibration algorithms. Interestingly, Bouguet’s method
consistently exhibited the least amount of error, regardless of the pattern type.
The combination of both methods produced optimal results in terms of RPERMS

and RMSE metrics. In the presence of noise, our findings indicated that irrespec-
tive of the calibration pattern type, Zhang’s method outperformed Bouguet’s
method. This distinction was particularly evident when considering RMSE met-
rics, as opposed to the traditional RPERMS metrics. We attribute this phe-
nomenon to algorithmic differences and the robustness of calibration algorithms
to noise. These insights highlight the importance of considering RMSE metrics
when evaluating the performance of camera calibration patterns and algorithms
in monocular settings.

Fig. 4. Using SynthCal pipeline with DMCB [15] and EasyMocap [7] to estimate 3D
pose from multiple view points

Multi-camera Configuration. Due to the availability of the absolute position
of the calibration pattern, we employed RMSEcal to quantitatively assess the
accuracy of various camera setups and calibration algorithms in multicamera
settings, as outlined in Table 4. Across all camera setups in clean environments,
Bouget’s method consistently outperformed both Zhang’s and Tsai’s methods.
However, in noisy setups, Zhang’s method exhibited greater accuracy compared
to Bouget’s method. Interestingly, in some camera setups involving wide-angle
lenses, Bouget’s method performed worse than Tsai’s method, reaffirming our
earlier observation of Bouget’s method’s lack of robustness in noisy conditions.
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Table 5. MPJPE calculated by comparing the original 24 joint SMPL pose with the
predicted SMPL pose using EasyMocap [7] for different calibration configurations.

Zhang’s Method Tsai’s Method Bouguet’s Method

Cameras Environment MPJPE

2×Rectilinear Clean 5.974 6.011 5.967

lens. Noisy 6.313 6.381 6.344

2×Wide angle Clean 5.986 6.028 5.962

lens. Noisy 6.440 6.485 6.478

Rectilinear & wide Clean 6.212 6.343 6.413

angle lens Noisy 6.511 6.595 6.620

Additionally, our observations revealed that, for stereo setups, identical cam-
era pairs demonstrated superior performance compared to non-identical pairs.
This trend persisted even when wide-angle lenses, known for their complexity,
were involved. Surprisingly, the combination of two rectilinear lenses consistently
outperformed setups comprising one wide-angle and one rectilinear lens.

To further validate our model and assess the accuracy of 3D pose estimation
across various camera configurations and calibration algorithms, we utilized the
DMCB [15] to simulate a textured human mesh in SMPL [14] format using the
motion imported from TotalCapture dataset [16] and texture imported from
SMPLitex [4] within Blender as visualized in Fig. 4. This simulated mesh was
then captured by multiple cameras positioned at different angles, employing
different calibration algorithms and calibration patterns using SynthCal. The
rendered videos are then given as input to EasyMocap [7] to estimate the 24-
joint SMPL pose.

Unlike real-world scenarios where ground truth pose data might be unavail-
able, here we have access to the real ground truth of the 3D pose, as it was
used to create the animated mesh. By comparing the estimated 3D poses with
this ground truth, measured through metrics like Mean Per Joint Position Error
(MPJPE) which is defined as:

MPJPE =
1
N

N∑
i=1

√√√√
J∑

j=1

‖Pij − PGT
ij ‖22

where N is the number of frames, J is the number of joints, Pij denotes the
estimated joint position, and PGT

ij represents the ground truth joint position, we
were able to validate our findings.

The results given in Table 5 follow a similar trend already established in
Table 4 hence validating our benchmark. Our results underscored the impact
of calibration patterns and algorithms on the accuracy of 3D pose estimation
models, although not to a very high extent. This validation highlights the impor-
tance of meticulous calibration procedures and algorithm selection in enhancing



SynthCal 237

the accuracy and reliability of machine learning models for tasks like 3D pose
estimation.

4 Conclusion

In this paper, we introduced the SynthCal pipeline evaluating camera cali-
bration methods. Our research underscores the efficacy of the Charuco pat-
tern coupled with Bouguet’s method under standard conditions, while Zhang’s
method demonstrates superiority in noisy environments. Bouguet’s approach
fares admirably in pristine setups but encounters challenges with wide-angle
lenses and noise. Consistency among camera pairs surpasses mixed configura-
tions, underscoring the significance of uniformity. Our results demonstrated the
importance of considering diverse metrics in calibration assessment.

For future work, we could expand SynthCal to incorporate non-planar cali-
bration algorithms, thereby enhancing its relevance across various camera models
and applications.
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Abstract. In recent years, style transfer has become increasingly promi-
nent in various domains, especially fashion. As a tool for designers, cloth-
ing style transfer generates a wide array of styles, enabling rapid experi-
mentation and fostering creative inspiration. However, current methods
have poor performance in transferring textures and colors from style
images to clothing, and commonly result in blurred boundaries between
clothing and background. To address these challenges, an arbitrary style
transfer algorithm for clothing is proposed, utilizing attention network
and feature fusion for more effective and efficient style application. In this
paper, the criss-cross attention network is incorporated to extract com-
prehensively global features and capture long-range dependencies, thus
minimizing artifacts and enhancing texture transfer. Through a novel
multi-level feature fusion approach, color transfer becomes more natural
and coherent, closely aligning with the color palette of the style image.
Additionally, semantic segmentation is employed to separate clothing
from the background, preserving the original background and character.
The experimental results show that the user preference of this paper’s
algorithm is much higher than existing methods, and single 512× 512
image style transfer takes only 0.314 s with real-time performance.

Keywords: Style transfer · Criss-cross attention · Feature fusion ·
Semantic segmentation

1 Introduction

As the overall economic level of society improves, there is a growing demand
for personalized clothing styles. Traditionally, clothing design relies heavily on
the designer’s experience, requiring significant time for conceptualization and
numerous sketches to compare different styles. This process is labor-intensive
and resource-consuming. Clothing style transfer addresses these challenges by
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enabling the quick and easy application of various styles to clothing, allowing
designers to rapidly experiment with and compare designs. This technology not
only provides abundant design inspiration but also shortens the design cycle and
improves design efficiency.

Several methods for style transfer have been developed, including the pio-
neering work by Gatys et al. [3], adaptive instance normalization (AdaIN) [5],
style attention network (SANet) [12], multi-adaption style transfer(MAST) [2],
internal-external learning and contrastive learning(IECAST) [1], exact feature
distribution matching(EFDM) [22], and content affinity preserved versatile style
transfer(CAP-VSTNet) [20]. Although capable of single style, multi-style, and
arbitrary style transfer, these methods often struggle to effectively transfer tex-
ture and color from the style image to the clothing image. This results in local
artifacts and diminishes visual quality in the stylized images. Thus, there remains
a need for improved methods to enhance the visual effects and accuracy of style
transfer in clothing images.

Moreover, due to the broad application prospects of style transfer in cloth-
ing, researchers have increasingly focused on exploring methods for conducting
style transfer specifically in the realm of fashion. Sbai et al. [15] introduced a
StyleGAN-based algorithm for generating clothing design images, while Liu et
al. [9] proposed an Attribute-GAN model to tackle clothing matching issues. Han
et al. [4] developed fashion inpainting networks to synthesize diverse and com-
patible clothing images, and Yu et al. [21] designed a network structure to match
user preferences and clothing design creation. Despite their advancements, these
methods primarily execute global style transfer on clothing images, potentially
distorting crucial background features such as facial characteristics and yielding
subpar transfer results. To address this, researchers have proposed methods that
preserve the background during style transfer. Mo et al. [11] enhanced Insta-
GAN using a CycleGAN-based approach, incorporating semantic segmentation
to separate original image information before transferring styles. Similarly, Sun
et al. [16] proposed a two-stage unsupervised approach, constructing a network
to unsupervisedly split out the clothing texture region in the first stage.

To better assist clothing designers, clothing style transfer should avoid spatial
distortion and preserve meaningful information in the clothing image, ensuring
that the color and texture of the stylized image are harmonious and coherent.
Moreover, preserving important features such as faces in the background of the
clothing image is crucial. To achieve these objectives, this paper proposes an
arbitrary style transfer algorithm for clothing based on attention mechanism.
This algorithm can synthesize high-quality stylized images while retaining the
original background and character. The main contributions of this paper can be
summarized as follows:

– This paper proposes an arbitrary clothing style transfer network that incor-
porates the criss-cross attention mechanism. This network comprehensively
extracts the global features of the clothing image and captures long-range
dependencies, reducing artifacts in the stylized image and enhancing texture
transfer.
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– This paper proposes the Criss-cross Attention Feature Fusion Module
(CCAFFM). This module employs an innovative multi-level feature fusion
method, facilitating enhanced transfer of the style image’s color to the cloth-
ing, resulting in high-quality stylized clothing images with natural and har-
monious color tones.

– This paper incorporates a semantic segmentation network to separate clothing
from the background. This enables the creation of stylized clothing images
that retain the original background and character.

2 Related Work

2.1 Arbitrary Style Transfer

Style transfer, originating from non-photorealistic rendering, is closely associ-
ated with texture synthesis and texture transfer. Gatys et al. [3] pioneered a
method using Convolutional Neural Network (CNN) to achieve style transfer by
minimizing the difference in feature representations between content and style
images. [7,8,17] proposed real-time feed-forward style transfer networks for real-
time applications, although these typically require separate training for each
style. To broaden the applicability of style transfer, arbitrary style transfer has
emerged as a key research area, with significant efforts dedicated to improving
its efficiency and effectiveness.

The AdaIN algorithm [5] adjusts the mean and variance of content images
to match those of style images by utilizing global feature statistics, effectively
transferring texture but exhibiting limitations in color transfer. To overcome
the shortcomings of AdaIN, the SANet [12] incorporates a self-attention-based
module for arbitrary style transfer, though it can result in the loss of crucial
information and artifacts in localized regions. The MAST algorithm [2] intro-
duces adaptive modules for capturing a wide range of styles but incurs significant
computational costs. The IECAST algorithm [1] employs contrastive losses to
facilitate simultaneous learning from individual style images and large-scale style
datasets, yet it may not effectively transfer the textures and colors of the target
style. The EFDM [22] performs cross-distribution feature matching in a single
step, providing a more precise measurement of distribution divergence. Although
its texture transfer effect improves, the color transfer is still insufficient. The
CAP-VSTNet [20] uses a reversible residual network to preserve content affinity
and reduce redundant information. Despite the improvements, it still fails to
effectively address the issue of color transfer, leaving much to be desired in this
aspect.

The existing arbitrary style transfer methods often struggle to effectively
coordinate local and global styles, transfer texture and color from the style
image, and generate high-quality stylized images. To address these limitations,
this paper proposes an advanced arbitrary style transfer algorithm known as
the Criss-cross Attention Feature Fusion Module (CCAFFM). This algorithm
introduces criss-cross attention network to comprehensively extract global fea-
tures and capture long-range dependency relationships, allowing for the flexible
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matching of style features based on the semantic spatial distribution of cloth-
ing images. Additionally, this paper presents a novel multi-level feature fusion
method that improves the transfer of color from the style image to the cloth-
ing. The proposed module effectively reduces artifacts in the stylized images and
significantly improves the transfer of texture and color, resulting in high-quality
stylized outputs.

2.2 Attention

In contemporary deep learning tasks, attention mechanisms have proven to be
highly effective. Unlike traditional models that compress entire images into static
representations, attention mechanisms enable models to focus dynamically on the
most relevant parts and features of an image. Vaswani et al. [18] introduced the
self-attention mechanism, enabling models to establish associations between dif-
ferent locations within the same sequence. This mechanism computes the output
at each position as a weighted sum of all positions in the input sequence, with
weights determined by an attention distribution. To address the limitations of
receptive fields, Wang et al. [19] proposed a non-local attention mechanism that
captures global information rather than just local areas. This non-local app-
roach improves feature representation by considering relationships across the
entire sequence, but it is significantly constrained by computational complexity.
In order to reduce the amount of computation, Huang et al. [6] proposed the
criss-cross attention mechanism, which reduces computational load while effec-
tively capturing and fusing context information along criss-cross paths. This app-
roach enhances the model’s semantic understanding capabilities and addresses
the issue of computational complexity.

3 Approach

3.1 Network Architecture

The proposed network takes a clothing image Ic and a style image Is to synthe-
size a clothing stylized image Ics. In the proposed network, a pre-trained VGG-
19 network is employed as the encoder to extract multi-scale feature maps. This
encoder consists of a series of convolutional and pooling layers. The decoder uses
a symmetric structure of VGG-19. As shown in Fig. 1, firstly, the VGG feature
maps Fc and Fs are extracted at each layer of the encoder from a clothing image
Ic and style image Is pair, including Relu1 1, Relu2 1, Relu3 1, Relu4 1 and
Relu5 1. After encoding the clothing and style images, the feature maps from
Relu4 1 and Relu5 1 are fed into CCAFFM module. This module maps the cor-
respondences between the clothing features and the style features, producing the
stylized feature map Fcsc:

Fcsc = CCAFFM (Fc 4 1, Fc 5 1, Fs 4 1, Fs 5 1) . (1)

Then, a 3× 3 convolution operation is applied to produce the final stylized
feature map. This map is then fed into the decoder to reconstruct the global
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Fig. 1. Structure of proposed arbitrary clothing style transfer network.

stylized image. Finally, Ic and Ics g are passed through the Segmentation Fusion
Module(SFM), yielding the final clothing-stylized image Ics.

Fig. 2. The overall structure of the Criss-cross Attention Feature Fusion Module
(CCAFFM).

3.2 Criss-Cross Attention Feature Fusion Module (CCAFFM)

The Criss-cross Attention Feature Fusion Module (CCAFFM) proposed in this
paper is shown in Fig. 2. Firstly, the clothing feature maps, Fc 4 1 and Fc 5 1, and
the style feature maps, Fs 4 1 and Fs 5 1, extracted from the encoder are input
into the criss-cross attention module to conduct spatial reorganization, resulting
in the feature maps Fcs 4 1 and Fcs 5 1. In addition, the clothing feature maps,
Fc 4 1 and Fc 5 1, separately undergo instance normalization to get Fc 4 1 and
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Fc 5 1. The formula is as follows:

Fc = γ

(
Fc − μ (Fc)

σ (Fc)

)
+ β, (2)

where γ and β are parameters learned from data. Then, Fcs 4 1, Fcs 5 1, Fc 4 1 and
Fc 5 1 are input into the feature fusion module to get the stylized feature map
Fcsc.

During the feature fusion process, as shown in Fig. 2, firstly, the feature maps
Fcs 4 1 and Fcs 5 1 are initially multiplied by their corresponding normalized
clothing feature maps Fc 4 1 and Fc 5 1. The resulting products are then summed
with the original feature maps Fcs 4 1 and Fcs 5 1, respectively. Following this
step, a 1× 1 convolution and an upsampling operation are applied. Finally, the
results are concatenated to generate the stylized feature map Fcsc. The process
can be summarized by the following formula:

Fcsc =concat(conv(Fcs 4 1 ∗ Fc 4 1 + Fcs 4 1),

upsampling(conv(Fcs 5 1 ∗ Fc 5 1 + Fcs 5 1))).
(3)

Fig. 3. The Criss-cross Attention Mechanism.

As illustrated in Fig. 3, the criss-cross attention network processes the cloth-
ing feature map Fc and the style feature map Fs by first normalizing them to F c

and F s, respectively. Following normalization, F c, F s and Fs each pass through
a 1× 1 convolutional layer, generating feature maps q(F c), k(F s) and v(Fs).
Here, v(Fs) represents the output response of the style feature at position j. The
Affinity operation then computes the similarity between the position i of cloth-
ing feature and all positions j of style feature within the same row and column
as position i. This operation is defined as follows:

f(F c, F s) = q(F c)Tk(F s). (4)
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The results are then converted into probability distributions by softmax oper-
ation to better represent the relative importance between different positions,
so that the model can better capture and understand the relationship between
clothing features and style features. Aggregation operation fuses the original style
feature map with the feature map output by softmax to obtain the clothing style
feature map Fcs.

The incorporation of the criss-cross attention network in the proposed Criss-
cross Attention Feature Fusion Module (CCAFFM) enables the precise map-
ping of relationships between clothing features and style features. This approach
embeds local style features into the appropriate positions within the clothing
features and integrates global style patterns efficiently and flexibly. Moreover,
by utilizing a novel multi-level feature fusion method, this paper’s approach
enhances significant features while reducing the impact of less important ones,
thereby improving the accuracy of color transfer from style images. Consequently,
the CCAFFM synthesizes high-quality stylized images in real time and markedly
enhances the transfer of textures and colors to the clothing image.

Fig. 4. The Segmentation Fusion Module (SFM).

3.3 Segmentation Fusion Module (SFM)

To retain the original background and character, this paper presents the Seg-
mentation Fusion Module (SFM). As shown in Fig. 4, using a pre-trained U2Net
model [14], semantic segmentation is performed on the clothing image Ic, gen-
erating the saliency map Imap and the segmented image Iseg. The segmented
image is then combined with the stylized global image Ics g to produce the styl-
ized segmented image Iseg cs. Finally, the stylized segmented image is fused with
the original clothing image to create the final clothing stylized image Ics. Dur-
ing this blending process, smooth edge processing is applied to ensure seamless
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integration. The saliency map Imap values range from 0 to 1, and the process is
mathematically described as follows:

Ics = ImapIseg cs + (1 − Imap)Ic. (5)

3.4 Loss Function

The overall loss function consists of two parts: the clothing loss and the style
loss. As shown in Fig. 1, the VGG encoder is used to calculate the loss. The
formula is as follows:

L = λcLc + Ls, (6)

where Lc denotes the clothing loss, Ls represents the style loss. λc is the weight
of the clothing loss.

The clothing loss is the sum of the Euclidean distances between the clothing
features and the stylized features. It is defined as follows:

Lc = ‖Fcsc − Fc 4 1‖2 + ‖Fcsc − Fc 5 1‖2 . (7)

The style loss consists of two components. The first component is the sum
of two Euclidean distance: one between the mean of the encoder’s style features
and the stylized features, and the other between the variance of the encoder’s
style features and the stylized features. Here, Fs(i) represents the feature map at
each layer of the encoder extracted from the style image. The second component
is inspired by SANet [12] and focuses on preserving the clothing structure of the
image rather than changing the style. Fccc and Fsss represent the feature map
obtained from the CCAFFM module using identical clothing images or identical
style images, respectively. Fc(i) represents the feature map at each layer of the
encoder extracted from the clothing image. λ1 and λ2 are the weights for the
style loss components. The style loss is defined as follows:

Ls = λ1

N∑
i=1

(‖μ(Fcsc) − μ(Fs(i))‖2 + ‖σ(Fcsc) − σ(Fs(i))‖2)

+ λ2

N∑
i=1

(‖Fccc − Fc(i)‖2 + ‖Fsss − Fs(i)‖2
)
.

(8)

The weighting parameters are set as λc = 1, λ1 = 3, and λ2 = 50 in the
experiments.

4 Experimental Results

4.1 Experimental Settings

This study utilizes the DeepFashion [10] dataset for clothing images and the
WikiArt [13] dataset for style images. The experiments were conducted on an
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NVIDIA Tesla V100 GPU with 32 GB RAM. The Adam optimizer was employed
with a learning rate of 0.0001 and a batch size of 5 for the clothing-style image
pairs. Each training image was resized to 512× 512, maintaining the aspect ratio,
and then randomly cropped to 256× 256. The training process consists of 100,000
iterations. During testing, the network shows flexibility in handling various input
sizes due to its fully convolutional architecture.

4.2 Comparison with State-of-the-Art Methods

To assess the performance of the proposed method, this paper compared it with
five established arbitrary style transfer techniques: AdaIN [5], SANet [12], MAST
[2], IECAST [1] and EFDM [22]. This paper’s approach uniquely integrates a
Segmentation Fusion Module (SFM) for background separation, as illustrated
in Fig. 5. This module effectively segments the clothing from the background in
the generated stylized images, thereby enhancing visual quality. The semantic
segmentation clarifies the differences between the stylized and original images,
aiding designers in their creative processes. To ensure a fair comparison of arbi-
trary style transfer effectiveness, SFM is also applied to the stylized images
generated by the other methods.

Fig. 5. The effect of background separation by using SFM.

Qualitative Comparison. In Fig. 6, this paper presents comparisons of cloth-
ing style transfer results among various state-of-the-art methods and the pro-
posed approach. As shown in rows 3 in Fig. 6, AdaIN adjusts clothing feature
mean and variance for stylized image generation, but its results often lack visual
appeal and fail to achieve satisfactory color transfer. As shown in rows 4 in Fig. 6,
SANet utilizes the weighted average sum of all pixels to represent features, yet
it struggles to adjust local style features adequately, resulting in image arti-
facts and unclear texture structures. The MAST employs a non-local approach
to calculate local similarity between clothing and style features and adjust the
style feature distribution based on clothing features. However, similar to SANet
method, MAST-generated stylized images suffer from artifacts and poor color
transfer. As shown in rows 6 in Fig. 6, IECAST incorporates style information
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Fig. 6. Qualitative comparisons on image style transfer. The first row shows the cloth-
ing images. The second row shows the style images. The rest of the rows show the
stylization results generated by different style transfer methods.

from large-scale datasets and the target style image, but it fails to effectively
transfer the textures and colors of the target style image. EFDM adopts exact
feature distribution matching, yet, like AdaIN, it faces challenges in color trans-
fer, as shown in rows 7 in Fig. 6. In contrast, this paper’s method demonstrates
exceptional capability in generating high-fidelity stylized images characterized by
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clear texture definition and nuanced style representation. These images adeptly
preserve the intricate texture details and vibrant color schemes inherent in the
style images while faithfully capturing both global and local stylistic elements.
Notably, the stylized images exhibit clearer textures and more natural color tran-
sitions compared to other methods, minimizing the occurrence of image artifacts.
For example, in the eighth row and first column of Fig. 6, the stylized image
demonstrates notably clear texture without variegated colors in the collar and
skirt regions. Additionally, accurate color transfer of the shirt and pants in rows
8 and columns 3 of Fig. 6 contributes to a clean and crisp overall appearance
with distinct textures. Furthermore, the stylized images in rows 8 and columns
4, 5 of Fig. 6 demonstrate superior style feature transfer by effectively capturing
the style characteristics of different regions in the style images when compared
to other methods.

User Study. Given the inherently subjective nature of artistic style transfer,
this paper conducted a user study to assess the performance of the proposed
method. Firstly, 10 clothing images and 50 style images were randomly selected,
creating a total of 500 clothing-style pairs. From these, 20 pairs were sampled to
generate stylized images using different methods. Participants were shown these
images side-by-side in random order and asked to select the most appealing image
based on the texture transfer effect and color transfer effect. Finally, this paper
collected 800 votes from 20 users and displayed the results in a bar diagram.
The results, depicted in Fig. 7, indicate that this paper’s method can produce
more appealing stylized images in terms of both texture and color compared to
the other methods.

Fig. 7. User preference result of six style transfer algorithms.

Efficiency Analysis. Table 1 presents the runtime performance of the proposed
method compared to other methods at image resolutions of 256 and 512 pixels.
The experiments were conducted on a 4 GB NVIDIA GeForce RTX 2050 GPU.
To ensure a fair evaluation, the runtime for each method was averaged over 100
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images, with each image processed 10 times to mitigate variations in GPU per-
formance. As shown in Table 1, the proposed algorithm is faster than SANet,
MAST and IECAST. Despite slightly slower than AdaIN and EFDM, the differ-
ence in speed is minimal. Therefore, the proposed algorithm can be considered
efficient for fast arbitrary style transfer, achieving real-time performance.

Table 1. Execution time comparison (in seconds).

Method Time (256px) Time (512px)

AdaIN [5] 0.065 0.245

SANet [12] 0.085 0.336

MAST [2] 0.117 0.710

IECAST [1] 0.085 0.330

EFDM [22] 0.065 0.246

Ours 0.084 0.314

Fig. 8. Ablation studies of Criss-cross Attention Feature Fusion Module (CCAFFM).

4.3 Ablation Studies

To evaluate the effectiveness of the proposed Criss-cross Attention Feature
Fusion Module (CCAFFM), ablation experiments were conducted by comparing
it with two variants: utilizing only the criss-cross attention network (CCA) and
the baseline model SANet. The results depicted in Fig. 8 demonstrate that com-
pared to the baseline, integrating the CCA module enhances texture transfer
and reduces artifacts in the stylized image. Furthermore, the incorporation of
new feature fusion method improves the accuracy of color transfer from the style
image, resulting in visually appealing outcomes. Overall, the CCAFFM module
enhances texture clarity and effectively transfers both texture and color from the
style image, leading to a more natural color distribution in the stylized image.
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5 Conclusions

In conclusion, the proposed arbitrary clothing style transfer network in this
paper presents solutions to prominent challenges in the field. Through the uti-
lization of the criss-cross attention network, the network achieves comprehensive
feature extraction and dependency relationship capture, thereby reducing arti-
facts and enhancing texture transfer in stylized images. Additionally, the novel
multi-level feature fusion method improves color transfer from style images. By
integrating a semantic segmentation network, the original background and char-
acter details are preserved in the stylized clothing images. These improvements
collectively facilitate the generation of high-quality, visually appealing stylized
clothing images. However, although the proposed method has achieved signifi-
cant results, it needs additional semantic segmentation network to realize back-
ground separation. The future research will explore how to retain the background
during the process of style transfer, ultilizing the attention mechanism to transfer
style to clothing only without affecting the background.
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Abstract. A combinatorial algorithm is presented here which partitions
a given orthogonal polyhedron, P , (genus zero and non-self-intersecting)
into approximately minimum number of cuboids in O(n logn) time where
n is the number of vertices of P . The proposed cuboidization algo-
rithm may start from any rectangular face. The combinatorial rules are
formed to determine a cuboid from a given rectangular face. The gener-
ated cuboid is removed from the polyhedron, the new faces are created
thereof are inserted in a queue. The next rectangular faces of traversal
is selected from the queue. If cuboid extraction disconnects the input
polyhedron, all the disconnected parts will be tracked through the queue
as it stores newly generated faces. The cuboidization algorithm has var-
ious applications in 3D modelling and 3D shape analysis.

Keywords: Cuboidization · Orthogonal Polyhedron · Polyhedron
Decomposition · Minimal Partitioning · Shape Analysis

1 Introduction

Decomposition of complex polyhedron or polygons into meaningful smaller parts
is an important area of research in the field of digital geometry. The decom-
position can be categorised into two types of problems- covering problem and
partitioning problem, where the input polyhedron may be hole-free or with
holes [3,9,20]. In 2D, some polynomial time polygon splitting algorithms are
studied in [4,8,11,14,17,23,24,27,29,33]. The approximate decomposition of
orthogonal polygon is proposed in [12,13]. In [30], minimum decomposition of
any arbitrary polygons with holes is proposed which is NP-hard. The 2D parti-
tioning and covering both problems are NP-hard in the orthogonal domain [7].
In general, the task becomes NP-hard in three dimensions, as proved by Dielis-
sen and Kaldewaij [5,10]. In computational geometry, partitioning a geometric
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15332, pp. 253–269, 2025.
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object or shape into simpler components is a classic problem which has various
applications [15,17,19,21,25]. The decomposition of an orthogonal polygon into
rectangles (which are related to the straight skeleton) is presented in [26].

Fig. 1. (a) Orthogonal Polyhedron, P . (b) Approximate minimum cuboidization of P ,
where polyhedron edges are marked in blue color and cuboids are marked with two
different colors (red and sky-blue). (Color figure online)

The minimal convex decomposition of polyhedra was proposed by Chazelle in
1981 [6]. The algorithm runs in O(nN3) time, where n is number of vertices and
N is number of reflex edges. It has been found that the decomposition problem
is NP-hard when it partitions an orthogonal polyhedron into a minimal number
of rectangular boxes [5] or it partitions a 3D-histogram into a minimum number
of boxes [18]. In 1992, C. L. Bajaj et al. [2] devised an algorithm to decompose a
non-convex polyhedron with arbitrary genus and interior voids in O(nr2) time,
where n is the number of edges and r is the number of reflex edges. In 2018,
P. Floderus et al. [18] developed a 4-approximation algorithm to partition 3D
histograms in O(m logm) time, where m is the number of corners in orthogo-
nal polyhedra. The t-approximation algorithm to partition a 3D-histogram into
a minimum number of boxes is NP-hard [5] even if the height of histogram is
two. In 2007, J. M. Lien and N. M. Amato [22] introduced an additional tech-
nique that partitions the polyhedron in a way that minimizes the concavity of
the identified features after determining which feature(s) is the most concave in
each iteration. It requires O(n3 log n) time where n is number of edges. In 2002,
S. Svensson et al. [32] presented a distance transform-based technique for nearly
convex decomposition. A 3D object is approximated by a set of spheres which
are obtained by surface points as stated in [28]. A 3D object is decomposed into
smaller parts based on splitting the branches of curve skeleton with less curvature
variations [31]. In [34], a 3D mesh is decomposed into almost convex components
to minimize the number of components by measuring concavity within a spe-
cific threshold value. The simple orthogonal polyhedron can be characterized
by graph. In [16], algorithms for constructing orthogonal polyhedra from their
graphs is presented.
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Fig. 2. A part of orthogonal polyhedron and one of its rectangular faces, concave edges,
and convex edges are marked.

Here, a combinatorial algorithm is proposed to partition an orthogonal poly-
hedron (non self-intersecting, genus zero) into approximately minimum number
of cuboids in O(n log n) time, where n is the total number of vertices in the
polyhedron. In Fig. 1(a), an orthogonal polyhedron is given and its approximate
minimum cuboidization is depicted in Fig. 1(b). The number of vertices of the
polyhedron is 36, the number of edges is 50, the number of faces is 18, the number
of concave edges is 8, and the number of components is 5 which is minimum. The
paper is organized as follows. The definitions and preliminaries are explained in
Sect. 2. In Sect. 3, the combinatorial rules, algorithm, time complexity, proof of
correctness, and the demonstration are proposed. The experimental results are
given in Sect. 4. The concluding remarks are presented in Sect. 5.

2 Definitions and Preliminaries

Definition 1 (Orthogonal Polyhedron). An orthogonal polyhedron is one all
of whose faces meet at right angles, and all of whose edges are parallel to the
axes of a Cartesian coordinate system.

Definition 2 (Simple Orthogonal Polyhedron). A simple orthogonal poly-
hedron has axis-parallel faces that are simple polygons and three perpendicular
edges incident at each vertex.

A simple orthogonal polyhedron is genus zero and non-self-intersecting.

Definition 3 (Convex Edge). If the angle between two faces of an orthogonal
polyhedron, P , incident at an edge, e, is 90◦ considering the interior of P , then
the edge e is termed as convex edge.

Definition 4 (Concave Edge). If the angle between two faces of an orthogonal
polyhedron, P , incident at an edge, e, is 270◦ considering the interior of P , then
the edge e is termed as concave edge.

Definition 5 (Convex Vertex and Concave Vertex). The vertices associ-
ated with convex edges are termed as convex vertices and the vertices associated
with concave edges are termed as concave vertices.
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In [1], the relationship between convex and concave vertices in an orthogo-
nal polyhedron is described. There are eight more convex vertices compared to
concave vertices in an orthogonal polyhedron.

Definition 6 (Cuboid). A cuboid is a simple orthogonal polyhedron with six
faces and twelve convex edges.

Definition 7 (Rectangular Face). A rectangular face of an orthogonal poly-
hedron consists of four edges.

In Fig. 2, a part of orthogonal polyhedron is shown. A rectangular face, con-
cave edge, and convex edge are shown. All the faces, edges, and vertices of the
orthogonal polyhedron are stored in a doubly connected edge list (DCEL). Three
lexicographically sorted lists are generated from DCEL, say Lxy, Lyz, and Lzx.
Since orthogonal polyhedron is considered, each face has same x or y or z value.
For Lxy, the face with same z-value are sorted in ascending order of z-value at
the first level. At the second level, the faces are sorted w.r.t. x as primary key
and y as secondary key. Similarly, Lyz and Lzx are generated.

3 Procedure to Partition Into Cuboids

The starting rectangular face is selected from Lxy. The cuboid is formed based on
the combinatorial rules and included in the set of cuboids. The detected cuboid
is deducted from the orthogonal polyhedron and the new faces thus formed are
inserted into a queue. The next face of traversal is determined from the queue and
the procedure continues until the orthogonal polyhedron is reduced to a single
cuboid. If the next face of traversal is not a rectangular face, then a rectangular
face is selected from that part of the polyhedron using any of the lists Lxy, Lyz,
and Lzx. In Sect. 3.1, the rules to obtain a cuboid are presented. The algorithm of
partitioning the 3D orthogonal polyhedron into approximate minimum number
of cuboids is discussed in Sect. 3.2. The time complexity analysis is presented in
Sect. 3.3. Section 3.4 presents a demonstration of cuboidization of an orthogonal
polyhedron. In Sect. 3.5, the proof of correctness of the algorithm is proposed.

3.1 Rules for Cuboidization

The rules to detect cuboid is discussed as follows. A rectangular face is selected
from the queue (marked in purple in Fig. 3 and Fig. 4). The face may lie in any
one of the plane, xy-plane, yz-plane, or zx-plane. If the rectangular face, f , is in
xy-plane, Lxy is traversed to find the faces which are obtained while sweeping f
through the interior of the polyhedron. If f is in yz-plane or zx-plane, Lyz and
Lzx are traversed respectively. The rectangular face f is swept until it gets an
obstacle which is one or more faces. In Fig. 2, the obstacle for the rectangular
face, f is the face formed by the vertices {v5, v6, v7, v8}.

Rule-1: This rule is applied when f (shown in purple color) is swept until
it hits an obstacle (face(s) f1 and/or f2) and correspondingly the cuboid is
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Fig. 3. Rule-1 is illustrated. The polyhedron (P ) is marked in yellow color, convex
face (f) is marked in purple color and the removed cuboid is marked in gray color. f ′

(orange color) is inserted into the queue. The planar graph of the polyhedron is shown
at the right column where the extracted cuboid is in gray color. (Color figure online)

determined from f to obstacle face(s) (shown in gray color) (see Fig. 3). The
different cases are shown in Fig. 3. The extraction of cuboid creates one or more
new faces (f ′ and f ′′ in Fig. 3) and they are included in the queue.

Rule-2: This rule is applied when f (shown in purple color) is swept up
to a rectangular face, f1, where all four or three edges are concave edges. The
corresponding cuboid is determined from f to f1 (shown in gray color) (see
Fig. 4). The extraction of cuboid creates one new face f ′ and it is included in
the queue.
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Fig. 4. Rule-2 is illustrated. The polyhedron (P ) is marked in yellow color, convex
face (f) is marked in purple color and the cuboid is marked in gray color. f ′ (orange
color) is inserted into the queue. The planar graph of the polyhedron is shown at the
right column where the extracted cuboid is in gray color. (Color figure online)

In case of Rule 2, if the face f is swept up to the obstacle to extract
the cuboid, the remaining polyhedron will not remain genus-zero. It is to be
noted here that the inserted faces in the queue may not be always rectangular.
The polyhedron can be represented by planar graph. The extracted cuboids are
marked in gray color in the planar graph.

3.2 Algorithm for Cuboidization

The algorithm 3D-Cuboidization finds approximate minimum partition of
orthogonal polyhedron P . The DCEL, L, of P is taken as input. The output
is the list of cuboids, Lc. Step 1 finds lexicographically sorted lists, Lxy, Lyz, Lzx

w.r.t. each plane by calling the procedure Sort-List which takes the DCEL,
L, as input. In step 2, Lxy is scanned to find a rectangular face which is the
start face (say, f) of determining cuboidization (procedure Find-Start-Face is
called). The queue, Q and the list of cuboids, Lc, are initially empty (step 3).
The start face, f , is inserted in the queue, Q (step 4). Steps 5–21, the cuboids
are determined. The loop runs until the Q is empty. If the face in the front of Q
is not rectangular (checked by the procedure Check-Rect), then a rectangular
face is found from that part of the polyhedron using the lists Lxy, Lyz, or Lzx

by the procedure Find-Rect-Face and inserted in Q (steps 6–7). The rectan-
gular face f is extracted from Q (step 8). The face, f , may lie in anyone of the
plane, which is detected by the procedure Face-Alignment and the value is
assigned to t (step 9). If f is in xy-plane, t = 0. t = 1 when f is in yz-plane.
Otherwise, t = 2, i.e., when f is in zx-plane. Based on the values of t, obstacle
faces are found using the procedure Find-Obstacle and those faces are stored
in Lobs (step 10–15). In Sect. 3.1, the obstacle faces are discussed with figures.
If four or three edges of obstacle face are concave edges (detected by the proce-
dure Check-Edge), Rule 2 is used (steps 16–17), otherwise Rule 1 is applied
(steps 18–19). The procedure Apply-Rule2 is used and the extracted cuboid



Approximate Cuboidization of an Orthogonal Polyhedron 259

Algorithm 1: 3D-Cuboidization

Input: DCEL of the given polyhedron, L
Output: List of Components, Lc

1 Lxy, Lyz, Lzx ← Sort-List(L)
2 f ← Find-Start-Face(Lxy)
3 Q ← ∅, Lc ← ∅
4 Q ← Q ∪ {f}
5 while Q �= ∅ do
6 if Check-Rect(Head(Q)) =false then
7 Find-Rect-Face(Q,Lxy, Lyz, Lzx)

8 f ← DEQUEUE(Q)
9 t ← Face-Alignment(f)

10 if t = 0 then
11 Lobs ← Find-Obstacle(f, Lxy)

12 else if t = 1 then
13 Lobs ← Find-Obstacle(f, Lyz)

14 else
15 Lobs ← Find-Obstacle(f, Lzx)

16 if Check-Edge(Lobs) = true then
17 c, Lf ← Apply-Rule2(f, Lobs, t, Lxy, Lyz, Lzx)

18 else
19 c, Lf ← Apply-Rule1(f, Lobs, t, Lxy, Lyz, Lzx)

20 Q ← ENQUEUE(Q,Lf )
21 Lc ← Lc ∪ {c}
22 return Lc

is assigned to c (step 17). After extraction of the cuboid, the next face as per
Rule 2 is inserted in to the list Lf (step 17). In steps 18–19, Rule 1 is applied
by calling the procedure Apply-Rule1. After extraction of the cuboid, the lists
Lxy, Lyz, and Lzx are updated. The next faces are inserted into Q (step 20) and
the extracted cuboid is included in the list of cuboids, Lc (step 21). The total
list of cuboids are returned when the loop terminates (step 21).

3.3 Time Complexity Analysis

Let n and f be the total number of vertices and faces in the orthogonal polyhe-
dron respectively. To create the lexicographically sorted lists of faces Lxy, Lyz,
and Lzx, O(f log f) time is needed. The procedure Find-Start-Face will tra-
verse sequentially the list Lxy and takes linear time w.r.t. the number of faces
(i.e., O(f)). It is to be noted here that the faces of polyhedron which are in
xy-plane are in Lxy. The loop will traverse linearly w.r.t. the number of rect-
angular faces (i.e., O(f)). To check whether there is a rectangular face at the
front of the queue, Q, it takes constant time. When a face is rectangular, there
are only four vertices and four convex edges. If the extracted face from Q is not
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Fig. 5. Demonstration of cuboidization of a simple orthogonal polyhedron.

rectangular, then a rectangular face is found from that part of the polyhedron
using the lexicographically sorted lists. Thus, to find next rectangular face takes
O(f) time. The procedures ENQUEUE and DEQUEUE take constant time.
The alignment of face can be determined in constant time by checking the coor-
dinates of the vertices in the face. The procedure Find-Obstacle traverses a
part of any of the lexicographically sorted lists, which is linear w.r.t. the total
number of faces in the corresponding plane. To check whether four or three edges
at the obstacle face are concave, the procedure Check-Edge checks face and
edge lists, which needs linear time (linear w.r.t. the number of edges of the cor-
responding faces). The procedures Apply-Rule1 and Apply-Rule2 take linear
time. The lists, Lxy, Lyz, and Lzx are updated in O(f) time. Since, f < n in an
orthogonal polyhedron, O(f) < O(n). Thus, total time complexity is O(n log n)
time.

3.4 Demonstration of Cuboidization

In Fig. 5, a demonstration is illustrated. The starting face is indicated by an
arrow and the first cuboid, c1 is extracted based on Rule 2 (Fig. 5(a)). The next
face of traversal is determined and next cuboid, c2, is extracted based on Rule 1
(Fig. 5(b)). Again, the next face of traversal is determined and based on Rule 1
the cuboid c3 is extracted (Fig. 5(c)). The rest of the polyhedron is a cuboid and
the algorithm terminates.

The algorithm is starting face dependent as shown in Fig. 6. For the one
orthogonal polyhedron, the algorithm is applied from two different start faces as
shown in Fig. 6(a) and Fig. 6(b). In Fig. 6(a), the minimum number of compo-
nents are not obtained whereas in Fig. 6(b), the minimum number of components
are obtained.

3.5 Proof of Correctness

The total number of cuboids depend on the number of concave edges.

Lemma 1. The maximum number of cuboids which can be extracted from an
orthogonal polyhedron (genus zero and non-self-intersecting) is one more than
the total number of concave edges in the orthogonal polyhedron.
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Fig. 6. A demonstration of approximate minimum cuboidization.

Fig. 7. Illustration of net concave edges. The concave edges are marked by red
color. (a) There is one net concave edge out of the two concave edges (v7v8) and
(v9v10(Colorfigureonline)), (b) There is one net concave edge out of the three con-
cave edges (v7v11), (v10v11), and (v2v10), (c) There is one net concave edge out of the
four concave edges (v8v5), (v5v6), (v6v7), and (v7v8).

Proof. Let k be the total number of concave edges in a given orthogonal polyhe-
dron (genus zero and non-self-intersecting). For each of the concave edges, one
cuboid is extracted. Whenever a cuboid is extracted no more concave edges are
generated in the residual polyhedron. Thus, at last there will not be any concave
edge in the residual polyhedron. When a polyhedron does not have any concave
edge, the polyhedron will contain only convex edges. A polyhedron with convex
edges only must be a cuboid. At last the rest of the polyhedron will be there
as the last cuboid. Thus, total number of cuboids is one more than the total
number of concave edges. ��
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If the two concave edges, ei and ej , are at the same plane (along any of the
three planes) and ei and ej can be connected by a rectangular face (which is
not a polyhedron face) such that the face totally lies within the polyhedron and
the face can move along the normal of the said plane, then one of the edges is
counted as net concave edge and another is discarded as joining the two concave
edges extract one cuboid instead of two. If there are three or four concave edges
forming a rectangular face which can move along the normal of the said plane,
then out of three or four concave edges only one is taken as net concave edge and
the others are discarded. These three or four concave edges extract one cuboid
(see Fig. 4). The net concave edges are shown in Fig. 7. If the rectangular face
formed by the concave edges as said above (see Fig. 7) is in xy-plane, then the face
can sweep along z-axis. Other concave edges which cannot form a rectangular
face as said above, are counted as one as net concave edge.

Lemma 2. The minimum number of cuboids which can be extracted from an
orthogonal polyhedron (genus zero and non-self-intersecting) is one more than
the total number of net concave edges.

Proof. When two or three or four concave edges are in the same plane such
that they can be connected by a rectangular face and they can be counted
as one net concave edge, then one cuboid can be extracted for those concave
edges considered together. Let k′ be the net concave edges in the orthogonal
polyhedron. If each cuboid in the orthogonal polyhedron is extracted per net
concave edge, then rest of the polyhedron contains no more concave edges but
only convex edges. It is to be noted here that whenever a cuboid is extracted
no more concave edges are generated in the extracted cuboid or in the residual
polyhedron. When there are only convex edges, the corresponding polyhedron
is a cuboid. It can be said that the minimum number of cuboids extracted is
one more than the total number of net concave edges as rest of the polyhedron
extracts the last cuboid. ��

Let k be the total number of concave edges and k′ be the total number of
net concave edges. The approximation ratio is k′+1

k+1 � k′
k which is less than or

equal to one as k′ ≤ k. The algorithm provides approximate minimum number of
cuboids for the given polyhedron. As the algorithm is dependent on the starting
face, the set of concave edges belonging to a single net concave edge may be
considered separately. This increases the count of extracted components but lie
within the range [k′ + 1, k + 1].

Theorem 1. If k′ is the net concave edges, then in the worst case maximum
and minimum number of components are 4 × k′ + 1 and k′ + 1 respectively.

Proof. If k′ is the net concave edges then k′ + 1 is the minimum number of
components as proved in Lemma 2. As per Lemma 2, four or three or two
concave edges may be considered as one net concave edge. At the worst case,
one net concave edge is equivalent to four concave edges. The total number
of concave edges is four times of net concave edges in the worst case. Thus,
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maximum number of components in an orthogonal polyhedron is one more than
the total number concave edges as per Lemma 1. Hence maximum number of
components in the orthogonal polyhedron is 4 × k′ + 1. ��

All the cuboids extracted reconstructs the orthogonal polyhedron. The
extracted cuboids do not overlap. Only common face(s) or part of face(s) is
shared. The whole polyhedron is traversed to extract the cuboids. When a cuboid
is extracted, it is added in the list of cuboids, C. If the cuboid ci is extracted,
then C = C ∪ ci and the orthogonal polyhedron P becomes P \C. When all the
cuboids are extracted P = C. The algorithm is designed for orthogonal cases
only. For general polyhedrons, the algorithm needs to be modified.

Theorem 2. The algorithm 3D-Cuboidization terminates properly and gen-
erates correct results.

Proof. Whenever a cuboid is extracted one or more new faces are created and
those faces are inserted in a queue. Thus, if the polyhedron gets disconnected
after the extraction of a cuboid, no parts of the polyhedron are left out for the
traversal as per the algorithm. Each face is retrieved from the queue and the
corresponding rule is applied to extract the cuboid. Accordingly, new faces are
inserted in the queue. If the new face in the queue is non-rectangular, a rectangu-
lar face is searched from that part of the polyhedron. When the queue contains
only one face and the remaining polyhedron is only a cuboid, the algorithm ter-
minates after considering the last cuboid. It can be stated here that the algorithm
traverses the whole polyhedron. The extraction of cuboid does not generate a
new concave edge. The combinatorial rules are formed in such a way that cuboids
are extracted from concave edge(s). Thus the total number of generated cuboids
lies between the maximum and minimum range. Rule 2 extracts cuboids up to
the face constructed by net concave edges. Thus, after extraction of the cuboid
the remaining polyhedron remains genus-zero and non self-intersecting. Hence
when the algorithm terminates, it generates correct result. ��

4 Experimental Results

The experimental results are generated using Python programming language
(Python 3.6.5) on a computer system with Intel core i5 processor and OS Ubuntu
16.04. Some of the experimental results of the cuboidization on different orthog-
onal polyhedra are given in Fig. 9, Fig. 10 and Fig. 11. Cuboidization is use-
ful for shape analysis. Several parameters of cuboidization can be useful shape
descriptors of 3D objects. The data related to experimental results are shown
in Table 1 which are the number of vertices, edges, faces, concave edges, con-
vex edges, components as per the given algorithm, and net concave edges. The
maximum and minimum number of components can be derived from the above
mentioned data as discussed in Sect. 3.5. It has been observed that the gener-
ated results in Fig. 9, Fig. 10 and Fig. 11 give the minimum number of cuboids.
If there is more difference in the number of concave edges and net concave edges,
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then the shape of the polyhedron is complex. Depending on the start face, the
number of extracted components may vary but lie within the range between the
maximum and minimum number of components for the polyhedron. In Fig. 8 a
demonstration of approximate minimum cuboidization is shown. There are five
components in total which can be glued again to make the original polyhedron.
The approximate minimum cuboidization can be applied in different fields like
additive manufacturing, gluing, 3D printing, etc.

Fig. 8. A demonstration of approximate minimum cuboidization.

Table 1. The data of experimental results shown in Fig. 10

PolyhedronVertices EdgesFacesConvexConcaveNet concaveCompo-

edges edges edges nents

Fig. 9(a) 24 36 14 31 5 2 3

Fig. 9(b) 28 42 16 36 6 4 5

Fig. 9(c) 32 46 18 39 7 4 5

Fig. 9(d) 44 58 24 48 10 5 6

Fig. 9(e) 24 36 14 31 5 3 4

Fig. 9(f) 32 46 16 38 8 4 5

Fig. 9(g) 48 70 22 60 10 6 7

Fig. 9(h) 24 32 14 28 4 3 4

Fig. 9(i) 24 36 14 32 4 3 4

Fig. 10(a) 36 54 20 45 9 4 5

Fig. 10(b) 26 39 15 34 5 3 4

Fig. 10(c) 30 40 17 34 6 4 5

Fig. 10(d) 38 50 18 42 8 5 6

Fig. 10(e) 44 60 22 15 9 7 8

Fig. 10(f) 38 50 17 40 10 5 6

Fig. 10(g) 30 40 17 33 7 4 5

Fig. 10(h) 34 44 18 36 8 5 6

Fig. 10(i) 38 56 18 47 9 6 7

Fig. 11(a) 94 128 54 106 22 16 17

Fig. 11(b) 104 156 54 130 26 18 19

Fig. 11(c) 280 356 138 292 64 30 31

Fig. 11(d) 288 384 142 315 69 37 38
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Fig. 9. Experimental results of Cuboidization for a set of orthogonal polyhedrons.
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Fig. 10. Experimental results of Cuboidization for another set of orthogonal polyhe-
drons.

Fig. 11. Experimental results of Cuboidization for another set of orthogonal polyhe-
drons.
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5 Conclusion

This paper presents a combinatorial algorithm to decompose an orthogonal poly-
hedron (genus zero and non-self-intersecting) into approximately minimum num-
ber of cuboids in O(n log n) time, where n is the number of vertices of the poly-
hedron. The combinatorial rules are formed to extract cuboids at each step. The
algorithm is not starting point invariant. The approximation ratio is stated in
the paper. The demonstration and proof of correctness are presented here. The
experimental results show the efficacy of the algorithm. In future, the algorithm
can be used for 3D shape analysis, shape retrieval, shape matching, etc. The
approximate minimum cuboidization has applications in various fields.
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Abstract. High dynamic range (HDR) imaging technique aims to create
realistic HDR images from low dynamic range (LDR) inputs. Specifically,
Multi-exposure HDR imaging uses multiple LDR frames taken from the
same scene to improve reconstruction performance. However, there are
often discrepancies in motion among the frames, and different exposure
settings for each capture can lead to saturated regions. In this work, we
first propose an Overlapped codebook (OLC) scheme, which can improve
the capability of the VQGAN framework for learning implicit HDR rep-
resentations by modeling the common exposure bracket process in the
shared codebook structure. Further, we develop a new HDR network
that utilizes HDR representations obtained from a pre-trained VQ net-
work and OLC. This allows us to compensate for saturated regions and
enhance overall visual quality. We have tested our approach extensively
on various datasets and have demonstrated that it outperforms previous
methods both qualitatively and quantitatively.

Keywords: Exposure fusion · HDR imaging · Vector quantization

1 Introduction

The task of multi-exposure high dynamic range (HDR) imaging is to create a
high-quality HDR image from multiple low dynamic range (LDR) images that
were taken with different exposure settings. This approach is superior to single-
image HDR imaging, which lacks information and produces lower-quality results.
By utilizing more information from multiple frames when LDR frames are per-
fectly still, multi-exposure HDR imaging can produce finer HDR results. How-
ever, LDR frames taken by exposure bracketing have motion differences from
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Fig. 1. Illustration of (a) conventional exposure bracketing process with triangle func-
tion (Λ1, Λ2, Λ3) and (b) proposed Overlapped Codebook (OLC) scheme for multi-
exposure HDR imaging. The proposed OLC scheme is able to represent HDR images
with a combination of LDR representations by aligning the exposure bracket process
with its codebook structure.

each other, and each LDR image has over- or under-exposed regions, which can
lead to undesirable artifacts such as ghosting and washed-out areas in the final
HDR image. To deal with these issues, earlier works [7,8,22] used pre-processing
steps to align the LDR frames before merging them, by using optical flow or
homography transformation. However, such explicit alignment methods can have
estimation errors, bringing misaligned frames to the following merging stage.

Recently, convolutional neural networks (CNNs) have achieved notable
successes in various computer vision areas, including HDR imaging.
Kalantari et al. [7] first proposed a CNN-based merging network for multi-
exposure HDR imaging. Yan et al. [9] proposed an attention-based network that
implicitly aligns non-reference frames at the feature level. More recently, Niu
et al. [11] proposed an HDR method based on the generative adversarial net-
work (GAN) [10], and Liu et al. [16] presented an algorithm based on the Vision
Transformer (ViT) [12]. Although CNN-based methods generally outperform
traditional methods in HDR reconstruction, they still struggle with saturated
regions and missing details on severely under-/over-exposed LDR frames.

In this work, we introduce a novel HDR reconstruction network with a dual-
decoder structure that leverages learned HDR representations to restore fine
details and compensate for saturated regions. Our approach employs a vector
quantization (VQ) mechanism for learning HDR image representations, specifi-
cally proposing the Overlapped Codebook (OLC) scheme that models the expo-
sure bracket fusing process (Fig. 1(a)). The proposed OLC learns LDR frame
representations within specific codebook segments based on exposure bias (short,
mid, long) while utilizing the full codebook for HDR priors, enhancing the learn-
ing of implicit HDR representations (Fig. 1(b)). This scheme allows the proposed
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OLC to represent HDR information by combining LDR representations, similar
to the traditional exposure bracket process. The HDR network integrates latent
features from the pre-trained VQ decoder and frame context into the fidelity
decoder a residual fusing modules, improving HDR image quality. To address
frame misalignment, we introduce a parallel alignment module and a dynamic
frame merging module to combine LDR frame context with valid regional fea-
tures. These components collectively enhance the HDR reconstruction process.
Experimental results demonstrate that our method outperforms previous meth-
ods across various datasets and metrics.

Our contributions can be summarized as follows:

– We introduce an Overlapped Codebook (OLC) scheme for implicitly captur-
ing HDR representations via the VQGAN framework. The OLC aligns with
the common exposure bracketing process, achieving improved representation
learning ability for multi-exposure HDR imaging.

– We present a dual-decoder HDR network, integrating learned HDR repre-
sentations from a pre-trained VQ decoder and OLC into the fidelity decoder
for high-quality HDR image generation. Additionally, we introduce a parallel
alignment module and a frame-selective merging module to address misalign-
ment and incorporate frame context effectively.

– Extensive experiments demonstrate that our HDR network with learned rep-
resentation in pre-trained OLC achieves superior performance on various
datasets and metrics.

2 Related Works

2.1 Multi-exposure HDR Imaging

Multi-exposure HDR imaging generally produces higher-quality results com-
pared to single-image HDR imaging. This is because it can leverage more infor-
mation from multiple LDR frames. However, taking multiple LDR images can
cause hand or object motions, and some LDR images may have under-/over-
exposed regions due to scene conditions and exposure biases. Therefore, aligning
LDR frames and compensating for saturated areas are the primary concerns in
multi-exposure HDR imaging schemes.

Earlier methods proposed a pixel rejection approach for multi-exposure HDR
imaging, assuming the images are globally registered. For instance, Grosch [1]
uses the color difference of input images as an error map. Jacobs et al. [2] mea-
sure weighed variance for detecting ghost regions. The registration-based meth-
ods were also proposed, which search for similar regions. Kang et al. [3] utilize
exposure bias information to transform LDR images to the luminance domain
and apply optical flow for finding corresponding pixels from non-reference LDR
frames. Sen et al. [6] introduced a patch-based energy minimization method for
jointly optimizing input alignment and HDR image reconstruction.

Recently, CNN-based methods have shown superior performance in various
image restoration areas, including HDR imaging. Kalantari et al. [7] first pro-
posed a CNN-based method for multi-exposure HDR imaging. They adopted
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optical-flow estimation for aligning LDR frames in the pre-processing stage,
then merged LDR images at the feature level. Wu et al. [8] aligned the back-
ground through the homography transformation and applied a network with
skip-connection for merging. Yan et al. [9] proposed a network with a spatial
attention module for aligning LDR frames implicitly in the feature domain.
Non-local [28] method was also proposed by Yan et al.. [17], which constructs
a non-local module and triple-pass residual module in the network bottleneck.
More recently, Niu et al. [11] proposed a GAN-based network for producing a
more realistic result, which consists of a generator with reference-based residual
merging block. Liu [33] employed a pyramid cascading deformable (PCD) mod-
ule [34] to align frame features. Vision Transformer (ViT) [12] has also achieved
impressive performance in image restoration areas [13,14], and thus applied to
HDR imaging. Liu et al. [16], Chen et al. [35] and Yan et al. [32] introduce
Transformer-based models for capturing the complex relationship between LDR
frames. Further, Song et al. [25] proposed a Transformer network with a ghost
region detector to make the network focus on valid regions. Tel et al. [36] intro-
duced an inter-/intra-frame merging Transformer network with a cross-attention
mechanism for utilizing spatial and semantic information.

2.2 Vector Quantization

VQ-VAE [4] was the first to introduce a VQ mechanism to neural networks,
which learns discrete code vectors for encoding images. Recently, Esser et al. [5]
proposed VQGAN for achieving high-quality generated images, which trains
the codebook over Transformer architecture and adversarial objectives. The
VQ mechanism has also been widely adopted in image restoration areas. Guo
et al. [29] proposed a super-resolution method with a texture codebook and local
autoregressive model for producing finer details. Chen et al. [26] introduced a
super-resolution network with the pre-trained codebook to leverage learned high-
resolution priors. Gu et al. [27] proposed a face restoration network that takes
advantage of the high-quality feature in the VQ codebook to produce images
with realistic face details.

3 Proposed Methods

Given a set of LDR frames with different exposure biases, our target is to com-
pose a single HDR image by the best use of LDR frames’ information. Specifi-
cally, we propose a 2-step method for multi-exposure HDR imaging which can
be summarized as follows:

– Step 1, Learning implicit HDR representations with the Overlapped
Codebook (OLC).

– Step 2, HDR reconstruction with the pre-trained OLC and VQ
decoder.

The details of each step are described in the following subsections.
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Fig. 2. Illustration of proposed Overlapped Codebook (OLC) scheme with VQGAN
framework. In every iteration, we sample η ∼ Unif [1, 4] for randomly selecting input
image X and indexing the corresponding codebook segment Z ′.

3.1 Learning HDR Representation with the OLC

In this section, we present an OLC, a method that enhances the learning pro-
cess for capturing HDR representation by aligning with the HDR image gen-
eration process. The traditional method for creating ground-truth images in
multi-exposure HDR imaging tasks involves merging captured bracketed expo-
sure images [7,30]. For instance, Kalantari et al.. [7] employed a triangular
weighting function to blend differently exposed static LDR images (S1, S2, S3)
as:

H =
∑

i αi(S
γ
i /ti)∑

i αi
, i = 1, 2, 3, (1)

where H is the generated HDR image, γ is a parameter for the gamma-correction
function. The αi is the weights for each LDR frame, which can be defined:

α1 = 1 − Λ1(S2), α2 = Λ2(S2), α3 = 1 − Λ3(S2), (2)

where Λi(·) is the triangle function described in Fig. 1(a). To reflect the above-
stated weight blending process in multi-exposed LDR fusing, we propose the
OLC method that concurrently learns LDR and HDR representations, forming
HDR information through a combination of LDR representations. As illustrated
in Fig. 1(b), within the OLC framework, each LDR frame is linked to a spe-
cific codebook segment based on its exposure bias (short, mid, long) and shares
codebook elements with other LDR frames. In contrast, the HDR image is rep-
resented using the entire codebook. This distinctive approach employed by OLC
improves the capability to represent HDR images within VQ mechanisms.

As illustrated in Fig. 2, we employ the VQGAN framework [5], which consists
of encoder E, decoder D, and the overlapped codebook Z = {zk}K

k=1 ∈ R
K×nz ,

where K is the codebook size and nz is the code vector dimension. Given an
input image X ∈ R

H×W×3, the encoder produces feature z̄ = E(X) ∈ R
h×w×nz .

Note that input image X can be each frame of LDR images Li, i = 1, 2, 3 or HDR
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image H. We randomly select an input from those images with the uniformly
sampled parameter η ∼ Unif [1, 4], which can be defined as:

X =

{
Lγ

η/tη, η ∈ {1, 2, 3}
H, η == 4

(3)

where γ = 2.2 is the parameter of the function and tη is the exposure bias of the
corresponding input LDR image. Note that we use a gamma-correction function
on LDR inputs, which maps LDR images into the HDR domain to alleviate
the discrepancy between LDR and HDR images. Then, the vector-quantized
feature ẑ is obtained by finding the nearest neighbors of each feature element in
the codebook Z. Different from the common codebook in the VQ scheme, the
proposed OLC uses a specific part of codebook Z following the type of input
image X. For instance, when input image X is one of LDR image frame Li,
partial codebook Zi ∈ R

(K/2)×nz can be defined as:

Zi = {zi×α+1, zi×α+2, ..., z(i+1)×α}, i ∈ {1, 2, 3}, (4)

where α = K
4 is the offset parameter, and i is the index of the LDR frame.

When the input image X is an HDR image H, all K code vectors are used (Z).
Note that the codebook Zi for each LDR frame shares K

4 of code vectors. For
instance, in the case of partial codebook Z1, Z2 for L1, L2, they share code
vectors {zα+1, zα+2, ..., z2×α} ∈ R

α×nz . The VQ process for encoded feature
z̄ = E(X) can be formulated as:

ẑj = Q(z̄j ,Z ′) = arg min
zk∈Z′

‖z̄j − zk‖, η ∈ {1, 2, 3, 4},

where Z ′ =

{
Zη, η ∈ {1, 2, 3}
Z, η == 4

(5)

where Q(·) is a quantization function conditioned by the partial codebook Z ′,
ẑ ∈ R

h×w×nz is a quantized feature, and j ∈ {1, 2, ..., h × w}. Then, the decoder
D reconstructs the result X̂ ≈ X, which can be formulated as:

X̂ = D(Q(E(X),Z ′)) ∈ R
H×W×3. (6)

Since the quantization function Q(·) is non-differentiable, we follow previous
works [4,5] for backpropagation, which simply copies the gradients from the
decoder D to the encoder E. Thus, the codebook, encoder, and decoder can be
optimized with loss function Lvq, Lrec, and Lper, which can be defined as:

Lvq = ‖sg[E(X)] − ẑ‖22 + β‖sg[ẑ] − E(X)‖22, (7)

where β = 0.25 is the commitment weight and sg[·] is the stop-gradient oper-
ation. It is worth noting that our partial codebook Z ′ uses a specific part of
the codebook Z by indexing code vectors. Thus, updating Z ′ with Eq. 7 is the
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Fig. 3. Illustration of proposed dual-decoder HDR network with fidelity decoder DF

and pre-trained VQ decoder DV Q. The HDR network consists of (a) a Frame-Selective
Merging (FSM) unit and (b) a Residual Fusing (RF) unit.

same as updating corresponding code vectors in the master codebook Z. The
reconstruction loss and perceptual loss are defined as follows:

Lrec = ‖τ(X) − τ(X̂)‖1,Lper = ‖φ(τ(X)) − φ(τ(X̂))‖1, (8)

where τ(·) is a μ-law tone-mapping function, and φ(·) is the pre-trained VGG-
16 [20] network. Note that we follow [7,9,11] to train networks more effectively,
which apply the tone-mapping function τ(·) to an HDR image in the training
objective. Given an HDR image H, the τ(·) is defined as follows:

τ(H) =
log(1 + μH)
log(1 + μ)

, (9)

where μ = 5000 is a parameter of the tone-mapping function. The final loss for
training our VQGAN with the OLC is a weighted sum of all losses:

LOLC = λrecLrec + λperLper + λvqLvq + λadvLadv, (10)

where Ladv = −EX̂ [D(X̂))] is the adversarial loss from discriminator D. With
the above codebook structure and learning method, OLC is capable of learning
the HDR representations over the LDR subspace.

3.2 HDR Imaging with Learned Representation

Following the acquisition of HDR representation through OLC, we introduce an
HDR network designed to generate HDR images from multiple LDR images.
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Specifically, we utilize the acquired HDR representations to enhance the real-
ism of HDR images. To achieve this, we employ a pre-trained codebook and
VQ decoder, which is introduced in Sect. 3.1. The learned HDR representation
proves beneficial in the HDR reconstruction process by compensating for satu-
rated regions and recovering fine details. However, GAN-based methods often
encounter fidelity distortions despite improving perceptual quality which is cru-
cial in multi-exposure HDR imaging. Hence, we propose a network with a dual-
decoder structure to address both saturated regions and missing details while
preserving image fidelity. Given a set of LDR images Li ∈ R

H×W×3, i = 1, 2, 3,
we follow previous works that also use corresponding HDR-mapped images as
input Ii ∈ R

H×W×6 for the network:

Ii = [Li, L
γ
i /ti] , i = 1, 2, 3, (11)

where γ = 2.2 is the parameter of the gamma-correction function and ti is the
exposure bias (time) of the corresponding LDR frame. We apply a convolution
layer to all frames to map them into feature space as: Fi = Conv(Ii), i = 1, 2, 3.
Since input LDR frames are not aligned, we construct the parallel alignment
(PA) unit at the initial layer in the HDR network for feature-level alignment.

Parallel Alignment. As shown in Fig. 4, the PA module aligns non-reference
frames (I1, I3) to the reference frame I2 in the feature space. Features of both
frames are concatenated and processed through an offset module with feature-
selective mechanisms and multiple receptive fields. Specifically, 3 × 3 and 5 × 5
convolutions are applied to generate an offset feature Fo, enabling the PA to
handle diverse motion differences. Using the offset feature, the PA aligns the non-
reference frame feature FNR with deformable convolution and spatial attention.
The aligned input features Fd and Fs are then concatenated to produce the
final aligned output F ′

NR. This parallel approach with dual alignment methods
ensures more accurate alignment. This can be defined as:

Fd = DF (FNR,Conv(Fo)),
Fs = SA(FNR,Conv(Fo)),
F ′

NR = Conv([Fd, Fs]),
(12)

where DF (·) and SA(·) denote deformable convolution and spatial attention
operation, respectively. Note that we have two non-reference frames I1, I3, we
define two PA for each non-reference frame, F ′

i = PAi(Fi, F2), i = 1, 3. And a
convolutional layer applied to reference frame F2 as: F ′

2 = Conv(F2).
Following the alignment of non-reference frame features, we establish individ-

ual multi-scale encoders to extract features from each LDR frame. Each encoder
processes the frame feature F ′

i ∈ R
H×W×C and progressively reduces the spa-

tial size to H
8 × W

8 × 8C. As depicted in Fig. 3, we combine frame features at
both H

4 × W
4 and H

8 × W
8 scales for the fidelity decoder DF and pre-trained VQ

decoder DV Q, respectively. Given that the pre-trained VQ decoder is trained
on H

8 × W
8 spatial size, we input the same spatial size of the quantized merged
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Fig. 4. Illustration of the Parallel Alignment (PA) unit.

Table 1. Quantitative comparison on Kalantari et al. [7] and Hu et al. [24] dataset.
The boldface and underlined numbers denote the best and second-best performances.
H.V-2 is HDR-VDP-2 metric. † indicates that the method is excluded from several
metrics and experiments since its implementation is not available.

Dataset Method PSNR-μ PSNR-� PSNR-PU SSIM-μ SSIM-� SSIM-PU H.V-2

Kalantari [7] Sen [6] 40.95 38.30 34.44 0.9829 0.9745 0.9783 59.38

Kalantari [7] 42.74 41.23 36.35 0.9888 0.9846 0.9843 64.42

DeepHDR [8] 41.91 40.36 35.52 0.9770 0.9602 0.9805 64.78

AHDRNet [9] 43.70 41.17 37.37 0.9904 0.9856 0.9869 65.11

NHDRRNet† [17] 42.41 – – 0.9887 – – –

HDR-GAN [11] 43.92 41.57 37.47 0.9905 0.9865 0.9870 65.58

ADNet [33] 43.97 41.78 37.62 0.9905 0.9882 0.9867 65.84

TransHDR† [25] 44.10 41.70 – 0.9909 0.9872 – –

CA-ViT [16] 44.32 42.18 37.73 0.9916 0.9884 0.9878 66.33

HFT† [35] 44.45 42.14 – 0.9920 0.9880 – 66.32

SCTNet [36] 44.47 42.33 37.95 0.9922 0.9885 0.9887 66.40

HyHDRNet† [32] 44.64 42.47 – 0.9915 0.9894 – 66.03

Ours 44.89 42.60 38.32 0.9935 0.9898 0.9899 66.69

Hu [24] Sen [6] 31.51 33.45 30.81 0.9533 0.9630 0.9783 59.38

Kalantari [7] 42.74 41.23 36.35 0.9888 0.9846 0.9843 63.72

DeepHDR [8] 41.88 41.96 35.81 0.9790 0.9856 0.9860 63.15

AHDRNet [9] 46.87 50.70 41.26 0.9959 0.9983 0.9956 64.29

HDR-GAN [11] 46.69 50.42 41.02 0.9958 0.9988 0.9954 64.33

ADNet [33] 47.27 51.83 41.44 0.9961 0.9988 0.9957 64.47

CA-ViT [16] 47.98 52.12 41.68 0.9967 0.9990 0.9960 64.67

SCTNet [36] 48.18 52.15 41.72 0.9967 0.9991 0.9962 64.84

HyHDRNet† [32] 48.46 51.91 – 0.9959 0.9991 – –

Ours 48.73 52.39 42.47 0.9970 0.9992 0.9966 65.12
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Fig. 5. Visual comparison on a test sample in Kalantari’s [7] dataset.

feature zq = Q(zvq,Z) ∈ R
H
8 ×W

8 ×8C into the VQ decoder to minimize discrepan-
cies. Note that we use full codebook Z to quantize since we target reconstructing
HDR images in the HDR network. Conversely, for the fidelity decoder, we input
merged features zm ∈ R

H
4 ×W

4 ×4C with a less reduced scale to preserve structural
information. Specifically, the fidelity decoder incorporates features from the VQ
decoder and a frame context feature from the encoding stage. Different from
existing methods that solely deliver the reference frame feature with a skip con-
nection, we introduce a Frame-Selective Merging (FSM) unit, which aggregates
encoded frame contexts for delivering richer frame information to the decoder.

Frame-Selective Merging. In Fig. 3(a), we illustrate the Frame-Selective
Merging (FSM) unit. Inspired by [31], FSM employs attention-based mecha-
nisms to aggregate frame features Fi. It first combines input features through
summation, then applies global average pooling and a 1 × 1 convolution to gen-
erate a feature vector v. This vector undergoes three individual 1 × 1 convolu-
tions and channel-wise softmax to produce attention vectors vi for each frame.
The attention vectors vi are then multiplied by their corresponding frame fea-
tures, and the processed features are summed to produce the merged context
U =

∑
i(Fi � vi). By selecting valid features from each frame, FSM effectively

merges frame context, thereby supporting the decoding process.

Residual Fusing. As we stated earlier, our HDR network features a dual-
decoder structure. We use a pre-trained VQ decoder DV Q with OLC and add a
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Fig. 6. Visual comparison on test samples in (a) Hu’s dataset and (b) Tursun’s dataset.
Note that samples in Tursun’s dataset has no ground-truth HDR images.

fidelity decoder DF for HDR reconstruction. To leverage the VQ decoder’s HDR
representation capabilities, we propose a Residual Fusing (RF) module. As shown
in Fig. 3(b), RF takes intermediate features Fvq from DV Q and merged contexts
U from FSM to fuse internal features in DF . Both Fvq and U are concatenated
and fed into a resblock to produce parameter features γ and β. RF then fuses
the input feature with γ and β through affine transformation, finally producing
output feature F ′ with a residual connection. This can be defined as:

γ, β = Conv([U,Fvq]),
F ′ = (γ � F + β) + F.

(13)

With this residual fusing method, RF is able to incorporate VQ features and
context while retaining image fidelity with the residual connection.

The training objective of our HDR network is the combination of three losses:
1) reconstruction loss Lrec for maintaining data fidelity; 2) perceptual loss Lper

for producing realistic details; 3) mapping loss Lmap for mapping extracted fea-
tures to code vectors in the learned codebook. Given the ground-truth HDR
image H and a predicted HDR image Ĥ, the Lrec,Lper can be defined as:

Lrec = ‖τ(H) − τ(Ĥ)‖1,Lper = ‖φ(τ(H)) − φ(τ(Ĥ))‖1, (14)

where φ(·) is pre-trained VGG-16 network [20]. The mapping loss Lmap calculates
the distance between the extracted feature zgt ∈ R

H
8 ×W

8 ×8C in the HDR network
and ground-truth VQ representation zgt = Q(E(H),Z), defined as:

Lmap = ‖zvq − zgt‖22. (15)

The final loss LHDR is weighted sum of all losses:

LHDR = Lrec + λperLper + λmapLmap. (16)
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4 Experiments

4.1 Dataset and Metrics

Dataset. We train and test our method on Kalantari et al.’s dataset [7] and
Hu et al.’s dataset [24]. Specifically, Kalantari et al.’s dataset consists of 74
samples for training and 15 samples for testing. Each data pair contains three
LDR images that are captured with {−2, 0, +2} or {−3, 0, +3} of exposure bias
sets and a single HDR image. Hu et al.’s dataset [24] synthesized with the game
engine, and captured with an exposure bias of {−2, 0,+2}.

Evaluation Metrics. We compute metrics on both results linear HDR image
Ĥ and tone-mapped HDR image τ(Ĥ). The PSNR-	, SSIM-	 are calculated
between linear HDR image H, Ĥ and PSNR-μ, SSIM-μ are calculated between
tone-mapped images τ(H), τ(Ĥ). Furthermore, we also measure HDR-VDP-
2 [18], which evaluates the quantitative quality of HDR images on specified
display and luminance conditions. Lastly, we report the PU21 [19] metric, which
measure the similarity between perceptually uniform values of the HDR images.

4.2 Training Details

For training both the OLC and the HDR network, we crop patches of size
256 × 256 with a stride of 64 from training samples. Further, we also apply a
set of augmentation, including horizon/vertical flipping and rotation. All exper-
iments are implemented with the Pytorch framework and a single NVIDIA RTX
3090 Ti GPU. We adopt Adam optimizer [15] with 1e-4 learning rate for train-
ing generators in OLC and HDR network. For the discriminator in VQGAN, a
learning rate of 4e-4 is set. The number of code vectors in the OLC is set as
K = 1024 and the base channel size of the HDR network is C = 32.

4.3 Comparison with Previous Methods

Quantitative Comparison. Table 1 shows a quantitative comparison with
previous methods on Kalantari’s dataset [7] and Hu’s dataset [24]. Gener-
ally, deep learning-based methods [7–9,11,33] show improved performance com-
pared to patch-based [6,21] algorithms. Furthermore, Transformer-based meth-
ods [16,32,35,36] outperform previous methods by notable margins. Our method
achieves the best performance on most metrics, including HDR-VDP-2 and
PU21. This result implies our method is not only producing more realistic HDR
images but also robust on certain display and luminance conditions.

Qualitative Comparison. We further evaluate the qualitative results in Fig. 5
and Fig. 6. Note that we use a tone-mapping function of Photomatix to visual-
ize HDR images. Figure 5 displays the ability to reconstruct heavily saturated
regions. AHDRNet [9], ADNet [33], and HDR-GAN [11] produce blurry detail
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Fig. 7. Code vector visualization (first row) and distribution (second row) in the vanilla
VQ codebook and proposed Overlapped codebook (OLC).

Table 2. Performance on Test samples in [7]
with vanilla codebook and OLC. K denotes
the number of code vectors.

Method PSNR-μ PSNR-� H.V-2

Vanilla (K=512) 44.38 42.20 66.31

OLC (K=512) 44.55 42.36 66.42

Vanilla (K=1024) 44.57 42.32 66.44

OLC (K=1024) 44.89 42.60 66.69
Fig. 8. Visual comparison on
vanilla codebook and OLC
(K=1024).

component and edges regions. CA-ViT [16] and SCTNet [36] show the resulting
image with better-detailed regions, but there are distorted region remains on
the edges. In contrast, our method produces clear edges and fine details without
distortion. In Fig. 6 (a), a large motion difference exists between LDR frames.
Different from other methods that leave ghosting artifacts on moving objects, our
method effectively address misalignment with PA modules and produces result
HDR images without undesired artifacts. We also compare our method on the
Tursun et al. [23] dataset, which has no ground-truth HDR image in Fig. 6 (b).
Since the scene information in the reference frame and high exposure frame was
severely lost due to over-exposure, other methods failed to compensate for satu-
rated regions from valid regions in other frames. In contrast, our method shows
more realistic HDR images in extreme cases. We report additional quantitative
and qualitative results in the supplementary materials.

4.4 Analysis on the Proposed OLC

As previously discussed, proposed OLC significantly enhances the capacity to
learn implicit HDR representations. In Fig. 7, we provide visualizations of code
vectors within the pre-trained VQGAN framework and display the code index
distribution for reconstructing HDR images. It’s important to note that both
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Table 3. Ablation on proposed components.
Sum and Concat in variants 3, 4 denote the frame
merging method.

Method PSNR-μ PSNR-� H.V-2

1. Baseline 43.92 41.77 65.79

2. + PA 44.20 41.94 66.02

3. + PA + Sum 44.31 42.11 66.15

4. + PA + Concat 44.38 42.22 66.22

5. + PA + FMU 44.49 42.30 66.35

6. + PA + FMU + DV Q 44.74 42.51 66.60

7. + PA + FMU + DV Q + RF 44.89 42.60 66.69 Fig. 9. Visual comparison on vari-
ants in ablation.

the vanilla VQ codebook (a) and the OLC (b) are trained under identical condi-
tions, including training iteration and network settings. The visualization illus-
trates that the proposed OLC explores a more diverse range of HDR representa-
tions, learning additional valid code vectors and utilizing them to restore HDR
images. Furthermore, we compare the performance of OLC with the vanilla code-
book in Table 2. OLC demonstrates superior performance in reconstructing HDR
images, particularly with a larger codebook size (K). In Fig. 8, we showcase pre-
dicted HDR patches with the vanilla codebook (first row) and OLC (second row).
Compared to the vanilla codebook, OLC exhibits enhanced capability in restor-
ing saturated and detailed regions. These results affirm that our OLC offers
improved representation learning ability, consequently enhancing performance
without additional computational burden in reconstructing HDR images.

4.5 Impact of Proposed Modules

In Table 3 and Fig. 9, we conduct an ablation study on Kalantari’s dataset to
demonstrate the effectiveness of the proposed modules in the HDR network.
The Baseline model consists of an encoder and fidelity decoder. Variants 3 and
4 merge frame contexts by summing (U = F1 + F2 + F3) or concatenating
(U = Conv([F1, F2, F3])) instead of using the FMU. Variants 3–6 also incorporate
merged context U or VQ feature Fvq without the RF module. Variant 2, with
PA modules, reduces ghosting artifacts and improves quality in misalignment
regions. Variant 5, with FMU modules, better compensates for saturated regions.
Variant 7, the proposed network that incorporating all proposed components,
achieves the best performance, producing more realistic HDR images. These
results validate the effectiveness of each proposed module and the pre-trained
VQ component in enhancing HDR reconstruction performance.

5 Conclusion

We proposed an Overlapped Codebook (OLC) scheme for multi-exposure HDR
imaging, which effectively learns implicit HDR representations within the
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VQGAN framework by modeling the HDR generation process in exposure brack-
eting. Additionally, we introduced a dual-decoder HDR network that leverages
these acquired HDR representations from the pre-trained OLC to produce high-
quality HDR images. Our network includes a parallel alignment module to cor-
rect misalignment among LDR frames and features frame-selective merging and
residual fusing modules to integrate HDR representations with valid frame con-
texts during decoding. Extensive experiments demonstrate significant improve-
ments with our method on benchmark datasets.
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Abstract. Snowfall severely degrades outdoor video visibility while
reducing the performance of subsequent vision tasks. Although video
recovery methods based on deep learning have achieved amazing accom-
plishments, video snow removal still faces problems such as varying
scales and intricate trajectories of snowflakes, which makes it difficult
to remove snowflakes and easy to create artifacts on moving objects. To
address these issues, we propose a deformable multi-scale video desnow-
ing network. Specifically, we design a multi-scale pseudo-3D residual
block(MSRB-P3D) that can effectively remove snowflakes of different
scales. Furthermore, a deformable large kernel attention 3Dblock(D-LKA
3Dblock) is introduced to capture the inter-frame dynamic information
and reduce the artifacts. Due to the scarcity of dataset, we proposed a
new dataset named Synthetic and Real Snowy Video Dataset(SRSVD).
Extensive experiments have proven that our proposed method not only
outperforms other state-of-the-art methods on both synthetic and real
snowy videos, but also effectively improves performance on subsequent
vision task.

Keywords: Video desnowing · Multi-scale pseudo-3D residual block ·
Deformable large kernel attention 3Dblock

1 Introduction

In the past decade, computer vision technology has been a research hotspot
in the field of deep learning. With the continuous deepening and maturing of
research, it is widely used in many aspects such as automatic driving and video
surveillance. However, inclement weather (e.g., rain, snow, etc.) often affects the
visual quality of the images and videos, thereby degrading the performance of
subsequent vision tasks such as object tracking. As a result, video recovery in
adverse weather has become an issue of great concern.
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Snowfall is a very common natural phenomena that severely degrades outdoor
video visibility while reducing the performance of subsequent vision tasks. Due to
the lack of video snow datasets, research on video desnowing is relatively rare.
Some scholars [1,2] believed that snow and rain share similar characteristics.
They categorized the rain and snow removal into the same processing task that
could be solved with the model-driven methodology. Such conventional methods
[1,3–5] utilized physical models of rain/snow to encode a variety of well-designed
prior knowledge into an optimization problem. Nevertheless, these approaches
refer to deal with specific rainfall/snowfall patterns, but have difficulty handling
complex real-world scenarios.

Over the past few years, deep learning based methods have been favored in
video restoration, and achieved better performance on rain/snow removal, such
as [6–8]. Although [6,7] achieved good results in rainy video, they tended to
perform poorly when directly applied to video snow removal tasks. [8] obtained
good performance on video desnowing, but it did not take into account the
domain gap between synthetic and real-world data.

Taking S2VD [6] as an example, we retrain it with our dataset SRSVD, and
test it on real snowy video. As shown in Fig. 1, the snowflakes are hard to removed
and artifacts appear on moving object. We analyze that it is due to the differences
in physical properties between rain and snow: Snowflakes are more opaque and
multi-scale than rain streaks, which make it difficult to remove completely. The
motion trajectories of snowflakes are more complex than rain streaks, and are
more prone to producing artifacts in the process of video desnowing.

Fig. 1. The performance of S2VD [6] on a real snowy video. Red box indicates area
where snowflakes have not been completely removed and green box indicates area where
artifacts appear.

To address these issues, we propose a deformable multi-scale video desnow-
ing network. In view of the multi-scale characteristic of snowflakes, a multi-scale
pseudo-3D residual block (MSRB-P3D) is designed to capture snowflakes of dif-
ferent sizes and shapes. In addition, we introduce a deformable large kernel
attention 3Dblock (D-LKA 3Dblock) to handle spatio-temporal features more
effectively. Our contributions are summarized as follows:
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1. We design MSRB-P3D to extract spatial and temporal information respec-
tively through temporal convolution and spatial convolution module. In this
novel module, a dual-channel approach is applied to extracting multi-scale spa-
tial features, so as to improve the network’s ability to detect snowflakes of dif-
ferent scales.

2. A D-LKA 3Dblock is introduced, which allows the receptive field to be
freely deformed based on features by adjusting the learnable offsets. In this way,
our network can better acquire dynamic information between video frames and
reduce the artifacts caused by 3D convolution.

3. We propose a new snowy video dataset(SRSVD) and a deformable multi-
scale network(DMSNet) for Snow Removal in Video. On this basis, we conduct
experimental comparisons with numerous state-of-the-art algorithms and abla-
tion experiments on our method. Furthermore, we evaluate the performance of
snow removal methods on object tracking.

2 Related Work

2.1 Video Desnowing Datasets

While there are several single image snow removal datasets available, such as
Snow100K [9], CSD [10] and SnowCityScapes [11], video snow removal dataset
receives little attention. Chen et al. [8] synthesized the first high-quality video
snow removal dataset(RVSD) by Unreal Engine, and it has been publicly avail-
able. RVSD includes 110 synthetic snowy videos, in which 80 videos are used for
training and 30 videos for testing, and video resolutions range from 480p to 4k.
However, the RVSD lacks the real snowy videos.

2.2 Single Image Deraining/Desnowing

Single image rain/snow removal has attracted academic attention earlier. Chen
et al. [12] improved the robustness of unsupervised single image deraining using
double-contrast learning. Considering the lack of background information, Chen
et al. [13] proposed a network called JSTASR and reformulate the snow model to
achieve end-to-end learning. In [10], the contradict channel loss and hierarchical
decomposition paradigm was proposed to improve snow removal performance.
Liu et al. [9] proposed a new subnetwork expansion pyramid that enhances the
ability to extract features in scale invariance. Since temporal information is not
utilised, these methods have difficulty in achieving satisfactory results on video
desnowing.

2.3 Video Deraining/Desnowing

Different from single image, the video has a lot of temporal redundancies that
provides more information for video restoration, which can assist in removing
rain/snow. Yue et al. [6] modeled the video as a 3D Hidden Markov Model and
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designed a semi-supervised rain removal algorithm to improve the performance
on real-world scenarios. Zhang et al. [7] designed an end-to-end video derain-
ing network called ESTINet to extract advanced spatial features and temporal
correlations respectively. Yang et al. [14] first introduced a self-supervised video
deraining method that exploits temporal consistency to further improve the qual-
ity of rain removal. Wang et al. [15] devised a new video rain synthesis model
with the concept of rain streak motions and developed a recurrent disentangled
deraining network. Yang et al. [16] proposed ViWS-Net that can recover videos
under various adverse weather conditions. Very recently, Chen et al. [8] synthe-
sized the first video snow removal dataset, but they did not consider the domain
gap between synthetic and real-world data, which makes it hard to desnow in
real-world scenarios. Xue et al. [17] proposed a two-stage desnowing network and
solved the domain gap problem by a domain adaptive module. It can be seen
that there are fewer studies on video snow removal. As [8] said, deep learning
based video desnowing remains an under-researched area.

3 The Proposed Method

3.1 Synthetic and Real Snowy Video Dataset

Unlike previous work [8] that only considered synthetic videos, We propose a
new dataset named Synthetic and Real Snowy Video Dataset(SRSVD), which
includes both synthetic and real snowy videos. We have collected 62 videos
in total, among which the training set includes 24 groups of synthetic snowy
videos and 8 groups of real snowy videos(180 frames/group, 30fps), and the test
set includes 15 groups of synthetic snowy videos and 15 groups of real snowy
videos(60 frames/group, 30fps). All of them are nighttime videos and the reso-
lution is 640*480 pixels. In order to ensure the richness and complexity of snowy
videos, our dataset covers a variety of scenes such as pedestrians, buildings,
streets, cars, nature scenes, etc.

By downloading from websites and shooting in reality, we collect a lot of
real snowy videos and snow-free videos in different scenarios. Then, we employ
Adobe After Effect [18] to composite our synthetic snowy videos by overlaying
snow layers on snow-free videos. The snow layers are made by both snow video
materials and the “CC Snowfall” simulation of Adobe After Effect. Snow video
materials are collected from the web, which have black backgrounds and dynamic
snowflakes. “CC Snowfall” is used to simulate snow effects with depth of field,
light effects and motion blur.

When compositing different snow videos, we change the parameters of CC
Snowfall (speed, scene depth, size, flakes, amount, etc.) and deform the snow
video materials (time-stretching and spatial deformation, etc.). This is useful for
producing more realistic snow layers.
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3.2 Overall Architecture

Fig. 2. Overall network architecture of our method.

The overall network is shown in Fig. 2, which consists of DesnowNet and
Snowmask Generator. As shown in formula(1), the snowy video Y is decomposed
into three parts:

Y = f(Y ;m) + S + ε (1)

where f(Y ;m) and S is the output of DesnowNet and Snowmask Generator
respectively, and ε is the residual element that is assumed to follow a zero-
mean Gaussian distribution with variance σ2 at point of pixel. m is the model
parameter of DesnowNet.

According to the semi-supervised rain removal algorithm proposed by [6],
the snow-free background video is encoded via 3D Markov Random Field(MRF)
probability distribution as formula(2):

p(W ) ∝ exp {−ρV } (2)

where ρ is a manual hyper-parameter, and

V =
∑

i,j,t

(γ1 ∗ |fi+1,j,t − fijt| + γ2 ∗ |fi,j+1,t − fijt| + γ3 ∗ |fi,j,t+1 − fijt|) (3)

fijt denotes the element of f(Y ;m) at location (i, j, t). γ1, γ2 and γ3 are man-
ual hyper-parameters that can be understood as the smoothness constraints on
horizontal pixels, vertical pixels, and temporal dimensions respectively.

As for synthetic snowy video, the known groundtruth X can be further
embedded as another strong prior as formula(4):

p(W ) ∝ exp(−Iprior − ρV ) (4)
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where

Iprior =
‖f(Y ;m) − X‖2 +

∑
i,j,t

‖(fijt − fij,t−1) − (Xijt − Xij,t−1)‖2
μ2
0

(5)

μ0 is a hyper-parameter close to zero. In the same vein as fijt, Xijt denotes the
element of X at location (i, j, t).

In addtion, manual hyper-parameters ρ, σ2, γ1, γ2 and γ3 and μ2
0 are set as

0.5, 1, 1, 1, 2 and 1e-6, respectively.

DesnowNet. After multiple consecutive video frames input, DesnowNet
reduces required computational resources through pixel-unshuffle. Then, the
D-LKA 3Dblock generates adaptive 3D large convolutional kernel in a learn-
able manner to improve the dynamic ability to capture inter-frame information,
which enhances the power to handle background changes and object movements
between frames with the help of more free receptive field. In addition, unlike 3D
convolution that extracts spatiotemporal features simultaneously, MSRB-P3D
extracts temporal and spatial information separately. It adopts dual channel
spatial convolution kernels to extract features of different scales, and enables the
network to detect snowflakes of different sizes and shapes. Then, the residual
connection after pixel-shuffle makes the network to learn and converge better,
and finally 3D convolutions are used for refinement to obtain sequences without
snow.

Snowmask Generator. The Snowmask Generator consists of a transition
model and an emission model. The transition model has three fully connected
layers, where ki

t(features=128) represents the hidden state variable of t-th frame
in the i-th snowy video, and cit(features=64) is introduced to account for the
variation of snow appearances or patterns. The noise vector zit(features=64)
encodes the random factors(e.g., wind, camera motion, etc.) at time t. Firstly,
zit and hidden state variables of the previous frame(i.e. ki

t−1) pass through the
first fully connected layer(FC). The output of first FC layer concats with cit, and
then passes through the last two FC layers to generate the current frame’s ki

t.
After that, ki

t passes through the emission model to generate the snow mask
Si
t of the current frame. In this process, the FC layer of emission model outputs

256 neurons, which are reshaped to 16*16 in the next step. Finally, the snow mask
is obtained through multiple convolutional layers and pixelshuffle operations. For
the convenience of formula representation, the collection of all snow masks are
defined as SG.

3.3 Multi-scale Pseudo-3D Residual Block

In order to improve the multi-scale perception ability of the network, we design
multi-scale pseudo-3D residual block(MSRB-P3D) that can be seen in Fig. 3.
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Compared to 2D convolution, 3D convolution can extract both temporal and
spatial features simultaneously. However, the multi-scale design based on 3D
convolution will inevitably lead to a significant increase in network parameter
count and FLOPs. Therefore, we adopt the idea of pseudo 3D networks, dividing
3D convolution into a spatial convolution module and a temporal convolution,
which are connected in series to extract spatial and temporal information respec-
tively. Due to the excellent performance of residual connectivity, the MSRB-P3D
has two levels of nested residual learning.

Fig. 3. Multi-scale Pseudo-3D Residual Block.

The spatial convolution module adopts a dual path parallel structure with
xin as input. First, we utilize the different pseudo-3D spatial convolution kernels
to obtain features of different scales, and concatenate them to generate xcon.
Then, the multi-scale feature extraction and integration are performed again to
generate the features of double branch (i.e. x1 and x2). Ultimately, we concate-
nate them and do residual connection with xin to generate the output xs. As a
result, the multi-scale spatial features xs are beneficial to improve the network’s
ability to capture snowflakes of different sizes and shapes.

3.4 Deformable Large Kernel Attention 3Dblock

Combining the broad receptive field of large kernel convolutional attention mech-
anism with the flexiblity of deformable convolution, Azad et al. [19] proposed
D-LKANet that is capable of handling complex visual information and has made
significant improvements in the field of medical segmentation.
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The ability of small receptive fields to capture inter frame information is
insufficient, especially when dealing with moving objects between frames. It is
the primary reason for the appearance of artifacts. There is temporal correla-
tion between video frames, which can lead to information leakage during video
reconstruction [20]. As a result, the content of the current frame appears on the
neighbouring frames. Therefore, we introduce a deformable large kernel atten-
tion 3Dblock(D-LKA 3Dblock) that improves the ability to capture the inter-
frame dynamics and reduces the artifacts caused by 3D convolution. The D-LKA
3Dblock is shown in Fig. 4, which can be formulated as:

output = 3DConv(Attention ⊗ F ′) + F (6)

F ′= GELU(3DConv(F )) (7)

where F denotes the input features of this block and F ′ is the input features
of LKA3d-Deform. Attention is obtained by 3D convolution, large lernel dilated
3D convolution(kernel size=(7,7, 7), dilation=3) and deformable 3D convolution
[21]. Unlike traditional attention methods, this network does not require addi-
tional normalization functions (sigmoid or Softmax), and each value represents
the relative importance of the corresponding feature. Operator ⊗ is element-wise
multiplication operation. The residual connection is corresponding to formula(6).

Fig. 4. Deformable Large Kernel Attention 3Dblock.

By this way, a large 3D convolution kernel can be constructed with fewer
parameters and computational complexity. In this module, the large kernel pro-
vides a receptive field similar to the self attention mechanism. What’s more,
deformable 3D convolution adjusts the learnable offset to allow the receptive
field to deform freely. The deformable convolution can assist with interframe
feature extraction to capture changes in background and object movements, and
eliminate the video artifacts caused by the fixed field. As a result, the ability of
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the network to capture the temporal correlation is improved, which is essential
for video desnowing.

3.5 Loss Functions

Based on the inference and learning algorithm of [6], the total loss of the network
is divided into four parts. As shown in formula(8):

LOverall = Llikelihood + LMRF + λ(LMSE + Linterframe) (8)

where λ is equal to 1 when the input of the DesnowNet is synthetic snowy videos,
otherwise λ = 0(real snowy videos), and

Llikelihood =
1

2σ2
‖Y − f(Y ;m) − SG‖ (9)

LMRF = ρV (10)

LMSE =
‖f(Y ;m) − X‖2

μ2
0

(11)

Linterframe =

∑
i,j,t

‖(fijt − fij,t−1) − (Xijt − Xij,t−1)‖2
μ2
0

(12)

The Llikelihood is derived from formula(1). It represents the similarity between
snowy video Y and estimation results f(Y ;m) + SG, where SG and f(Y ;m) are
the output of Snowmask Generator and DesnowNet, respectively; The LMRF

originates from the MRF prior in formula(2); The LMSE and Linterframe are
utilized only for synthetic snowy videos, which correspond to Iprior in formula(5).
In addition, LMSE is the inaccuracy between the groundtruth X and desnowing
video f(Y ;m). Linterframe is time loss based on interframe differences. The
hyper-parameter μ2

0 can help adjust the balance between losses.

4 Experiment

The above model is trained by Monte Carlo-based EM algorithm proposed by
[6,22]. In E-step, the hidden variable ki

t−1 is updated to ki
t by Langevin Dynamics

[23] in Snowmask Generator. Then, the M-step computes the total loss and
achieves the optimization of the whole network parameter.

During the experiments, we use a Linux server equipped with GeForce RTX
3090 GPU and Pytorch. In training, we set the initial value of the learning rate
as 1e-4, and it is halved every 20 epochs. Both synthetic and real snowy videos
are clipped into patches of size 64 × 64. We train 100 epochs totally and the
Adam algorithm is used to optimize the model parameters.

We use full-reference metrics (e.g., PSNR, SSIM) and non-reference metrics
(e.g., NIQE, BRISQUE) to evaluate the results of the synthesized snowy video
and real-world snowy video respectively. Furthermore, in order to verify the
effectiveness of our method for subsequent vision tasks, we use the BoxMOT
[24] to conduct further experiments of multiple object tracking.
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4.1 Comparison with Existed Methods

In this section, we compare our method with advanced rain/snow removal meth-
ods based on deep learning in the past three years, including video deraining
methods ESTINet [7], S2VD [6], video restoration method BasicVSR++ [25],
as well as single image desnowing methods SnowFormer [26], HDCWNet [10].
Because of the poor performance of directly applying the deraining model to
snowy videos, we retrain ESTINet, S2VD and BasicVSR++ with our dataset
before testing.

Table 1. Comparison with state-of-the-art methods.

Methods SRSVD RVSD [8]

Synthetic Dataset Real Dataset Synthetic Dataset

PSNR↑ SSIM↑ NIQE↓ BRISQUE↓ PSNR↑ SSIM↑
ESTINet [7] 30.14 0.8981 3.8828 35.54 23.56 0.8614

S2VD [6] 34.74 0.9450 3.4196 37.71 22.95 0.8590

BasicVSR++ [25] 35.59 0.9426 3.0407 30.66 22.64 0.8618

SnowFormer [26] 20.20 0.7760 3.7469 33.85 24.01 0.8939

HDCWNet [10] 19.12 0.6963 3.6093 38.39 22.63 0.8592

ours 36.57 0.9577 3.3345 30.19 24.89 0.8756

We performed snow removal experiments on RVSD [8] and our dataset
SRSVD. The quantitative results of the tests are illustrated in Table 1, and
the best results are shown bold and the second best are underlined. For SRSVD,
our method improves at least 0.98 dB PSNR and 0.0127 SSIM compared to
other methods. Overall, the PSNR and SSIM metrics of methods based on video
are generally better, which proves the importance of temporal correlation. On
the real dataset, our method ranks first in BRISQUE and second in NIQE. For
RVSD, our method also achieves good results.

Fig. 5. Visual comparison of different methods on real-world snowy video of SRSVD.

The test results on the real dataset of SRSVD are shown in Fig. 5. As indi-
cated in the red-boxed region, our method is the best to remove snow in this
area. Through comparison, (d) has the worst performance, which may be because
(d) only considers the synthetic snowy videos, resulting in poor generalization
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to desnow in real-world scenarios. In addition, methods(e)(f) based on single
image are struggle to completely eliminate the snowflake and preserve the details
due to the lack of interframe information. In contrast, The methods based on
video(b)(c) and our method(g) generally outperform (e)(f). It proves that tem-
poral correlation is significant to remove snow and supplement the background
details occluded by snowflakes based on information from adjacent frames.

Fig. 6. Visual comparison of different methods on synthetic snowy video of SRSVD.

Fig. 7. Visual comparison of different methods on synthetic snowy video of RVSD.

The results on the synthetic dataset of SRSVD are shown in Fig. 6. In the
red-boxed region of (b)(c)(d), there are still a few small snow spots left. In
particular, methods(e)(f) have trouble removing snow from pedestrians because
of a lack of interframe information. It is obvious that our method outperforms
other state-of-the-art methods on video desnowing.
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The results on the synthetic dataset of RVSD are shown in Fig. 7. It shows
that our method and (c)(d) have good snow removal performance, while (b)(e)(f)
obviously have residual snow.

In addition, we conduct object tracking experiments on real dataset. Through
the video/Image labeling and annotation tool named DarkLabel(ver2.4), the real
snowy videos are labeled in the format of MOT17 [27]. Then the initial videos and
the desnowing videos are input into BoxMOT [24] for testing. BoxMOT provides
a great variety of tracking methods that meet different hardware limitations.

Fig. 8. Object tracking results on snowy and restored real-world video.

Table 2. Quantitative performance of object tracking on snowy and restored real-world
video.

Input HOTA↑ MOTA↑ IDF1↑
snowy video 36.01 29.32 38.17

ESTINet [7] 42.96 36.43 42.75

S2VD [6] 44.31 38.65 44.61

BasicVSR++ [25] 46.23 38.53 41.93

SnowFormer [26] 40.12 32.22 40.59

HDCWNet [10] 37.11 33.05 38.80

Ours 47.34 38.19 44.89

The experimental results on the real dataset are shown in Fig. 8. It can be seen
that all methods except (c)(g) have residual snowflakes and misclassify bus as
truck or car. Although our method misses one of the four traffic lights, it is still
better than others methods. In Table 2, the MOTA(Multiple Object Tracking
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Accuracy) [28], HOTA(Multiple Object Tracking Precision) [29] and IDF1(ID
F1 score) [30] are used to evaluate the performance of object tracking. All three
metrics are low for the original video due to snow occlusion. After desnowing,
the tracking performance is improved. In particular, our method achieves the
best scores on HOTA and IDF1.

4.2 Ablation Study

We take an ablation experiment to measure the effectiveness of the MSRB-P3D,
the D-LKA 3Dblock and Linterframe. To do so, we build a basic model M1
by removing Linterframe and D-LKA 3Dblock and replacing MSRB-P3D with
residual blocks [31]. Then we add MSRB-P3D into M1 to construct M2 and add
D-LKA 3Dblock into M2 to construct M3. Finally, Linterframe is added into M3
to construct our network.

As shown in Table 3, it reports that combing three components together has
the best performance of video desnowing. Compared to the baseline network M1,
our network improves the PSNR score from 34.68 to 36.57, the SSIM score from
0.9444 to 0.9577, the NIQE score from 3.7408 to 3.3345 and the BRISQUE score
from 30.83 to 30.19. From the experiment of the synthetic dataset, it can be
seen that MSRB-P3D, D-LKA 3Dblock and Linterframe improve the desnowing
indicator score to some extent.

Table 3. Ablation study of different architectures in our work.

Index MSRB-P3D D-LKA 3Dblock Linterframe SRSVD

Synthetic Dataset Real Dataset

PSNR↑ SSIM↑ NIQE↓ BRISQUE↓
M1 34.68 0.9444 3.7408 30.83

M2 � 35.28 0.9473 3.6740 31.00

M3 � � 35.55 0.9506 3.6401 30.62

ours � � � 36.57 0.9577 3.3345 30.19

5 Conclusion

To solve the problems of incomplete snowflake removal and artifacts on moving
objects in snowy video restoration, a deformable multi-scale video desnowing
network is proposed in this paper. Experiments prove that our method not only
outperforms other state-of-the-art methods on both synthetic and real snowy
videos, but also effectively improves performance on subsequent vision task. In
future work, we will further investigate video desnowing to improve the perfor-
mance of subsequent vision task, such as building an end-to-end network.
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Abstract. Orthogonal Matching Pursuit (OMP) has been a powerful
method in sparse signal recovery and approximation. However, OMP
suffers computational issues when the signal has a large number of non-
zeros. This paper advances OMP and its extension called generalized
OMP (gOMP) by offering fast algorithms for the orthogonal projection
of the input signal at each iteration. The proposed modifications directly
reduce the computational complexity of OMP and gOMP. Experiment
results verified the improvement in computation time. This paper also
provides sufficient conditions for exact signal recovery. For general signals
with additive noise, the approximation error is at the same order as OMP
(gOMP), but is obtained within much less time.

Keywords: Greedy Algorithm · Compressive Sensing · Sparse Signal
Recovery · Approximation · Orthogonal Matching Pursuit

1 Introduction

Let x be a d-dimensional real signal. Suppose there is a real measurement
matrix Φ ∈ R

N×d, through which we can obtain an N -dimensional measure-
ment y = Φx. Usually N < d, which presents an underdetermined system. How
to reconstruct the original signal x from an underdetermined system? If x is
sparse, then by exploiting sparsity, we may be able to find a unique solution. x
is called a k-sparse signal if x has at most k non-zero components.

The measurement matrix Φ is also called a dictionary, and each column ϕ
of the dictionary called an atom. Let J = {1, . . . , d} represent the index set of
all atoms in the dictionary. If the dictionary is overcomplete, there are many
representations of y =

∑

γ∈J
aγϕγ . Intuitively, we would like to find the sparsest

solution: min
x

‖x‖0 subject to y = Φx, but it is an NP-hard problem. Different
optimization principles lead to different sparse representations of y, for example,
basis pursuit (BP) [5,6,12] and the method of frames (MOF) [8] among many
others [13,28]:

– Find a representation of the input signal whose coefficients have the minimal
�1 norm.

min
x

‖x‖1 subject to y = Φx (BP)
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– Find a representation of the input signal whose coefficients have the minimal
�2 norm.

min
x

‖x‖2 subject to y = Φx (MOF)

BP and MOF both provide convex relaxation to the �0 norm minimization prob-
lem, however, neither of them provides the sparsest solution, except those satis-
fying the sparsity condition specified in [11].

Matching Pursuit (MP) [18] uses an iterative procedure that directly
addresses the sparsity issue. Orthogonal Matching Pursuit (OMP) [21,25,26]
inherits the greedy approach from MP that selects an atom with the maximal
correlation with the residual at present, but improves over the standard MP by
adding least square minimization at each iteration. Let Γ be the index set of
atoms found so far, the least square estimation is used for computing the orthog-
onal projection of the input signal y onto the subspace spanned by the atoms
indexed by Γ :

min
xΓ

‖y − ΦΓ xΓ ‖22 with |Γ | ≤ k (OMP)

OMP has been shown to have better results than MP. Many variations of
OMP have been developed [7,10,17,19,20,27]. Under certain conditions OMP
provides recovery guarantee [2–4,9,25,26]. The excellent performance of OMP
results from the orthogonal projection of y onto the subspace spanned by the
atoms selected so far. The least square solution is obtained by xΓ = Φ+

Γ y. As
Γ increases, solving the least square problem significantly increases the com-
putational load. In this paper, we propose a fundamental improvement over
classical OMP to avoid the high complexity of computing pseudo inverse over
an increasing-sized matrix, which can be generalized to other OMP-based algo-
rithms:

– When solving the least square problem at each iteration, instead of computing
Φ+

Γ y over the entire support Γ , it uses successive regression over a single atom.
It makes the same greedy choice as OMP does at each iteration, but is much
faster due to reduced computation load. The proposed algorithm is called
OMP-SR.

– The blocked version of OMP is called Generalized Orthogonal Matching Pur-
suit [27], which extends the greedy choice to multiple atoms at each iteration
but still preserve the convergence property of OMP. We propose a blocked
version of OMP-SR, called Blocked Successive Regression (BSR). BSR is an
improvement over gOMP, analagous to OMP-SR being an improvement over
OMP.

In general, the measurement y is often with noise. A general signal may be
represented as the linear combination of atoms from the dictionary with additive
noise,

y = Φx + ε.
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We are interested in the best approximation of y using a linear combination of
atoms. The best approximation is the one with the smallest approximation error
measured by the �2 norm of the residual, and hence, the optimization principle
is,

min
x

‖y − Φx‖2 subject to ‖x‖0 ≤k (Sparse Approximation)

OMP is a fundational approach for signal reconstruction, therefore, any direct
improvement over OMP can benefit many applications that use various imple-
mentation of OMP. The proposed method is also different from previous efforts
that use matrix factorization based solutions (e.g., [22,29]) and matrix inversion
bypass (MIB) technique ([14,15]). In [24], a simulation-based comparison have
been provided over various implementation of OMP. In this paper we not only
provide simulation based comparison, but also analytical complexity analysis.

The rest of the paper is organzied as follows: In Sect. 2, we present our algo-
rithms for exact recover; in Sect. 3, we show the main theoretical results for the
BSR algorithm1; in Sect. 4, we show the performance of our algorithms in real
datasets compared to the baseline methods OMP and gOMP.

1.1 Notation

– Φ�: transpose of matrix Φ
– Φ+: pseudo inverse of matrix Φ
– (Φ�Φ)−1: inverse of matrix (Φ�Φ)
– ‖A‖p→q = sup

x �=0

‖Ax‖q

‖x‖p
: operator norm of matrix A.

– ‖A‖p→p is abbreviated to ‖A‖p .

2 Recovery Algorithms by Successive Regression

2.1 Orthogonal Matching Pursuit Through Successive Regression
(OMP-SR)

OMP-SR is a fast implementation of OMP. When solving the least square
problem at each iteration of OMP, it avoids the expensive computation for
the pseudo inverse of ΦJt−1 ; instead, it only projects onto the atom selected
in the current iteration via univariate regression, and then updates the coef-
ficients of atoms selected in previous iterations through a backtracking proce-

dure: bl = βl −
t∑

k=l+1

bkγl,k(see Algorithm 1), where βt = 〈zt,y〉
〈zt,zt〉 is the coefficient

newly obtained in the current iteration, bl is the updated coefficient for the
atoms selected in previous iterations. Note that the inner product 〈zl,zl〉 does
not need to be recomputed. It only needs to be computed once, that is when we
compute βl in the l-th iteration.

1 The proofs for theorems and lemmas can be found in arXiv:2404.00146.
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Algorithm 1. OMP-SR
Initialization: a0 = z0 = 1, r0 = y, J0 = φ
for t = 1 to κ do

Choose jt = arg max
j∈J \Jt−1

∣
∣〈ϕj , r

t−1〉∣∣ � ϕj is the j-th column of Φ

Let at be the jt-th column of matrix Φ.
Regress at on zl and get coefficients

γl,t =
〈zl, at〉
〈zl, zl〉 , for l = 0, . . . , t − 1

Compute zt = at −
t−1∑

l=0

γl,tzl

Regress y on zt to get βt = 〈zt,y 〉
〈zt,zt〉

Let bt = βt

if t > 1 then
for l = t − 1 to 1 do

bl = βl −
t∑

k=l+1

bkγl,k

end for
end if
Update index set J t = J t−1 ⋃{jt}
Update residual rt = y −

t∑

l=1

blϕjl

end for
Let xjt = bt for t = 1, . . . , κ, and let xj = 0 for j /∈ Jκ

Return x

OMP-SR selects the same atom and generates the same residual as OMP
does at each iteration, and therefore returns the same result as OMP. OMP-SR
starts to show performance gain over OMP when the number of non-zeros in x
increases due to not having to compute the pseudo inverse of a growing matrix.

2.2 Complexity Comparison with QR-Based OMP

In practice, OMP implementation based on incremental QR decomposition may
be used for improved efficiency (e.g., [1,16,22,23,29]). In each iteration, Qt and
Rt matrices are updated as in the algorithm. To obtain the updated solution for
the least square problem, one needs to compute h = Q�

t y, and then use back-
substitution to solve Rtx = h. However, despite the cost saving over standard
OMP, the operation cost of OMP based on QR decomposition is still higher
than that of the proposed OMP-SR. Table 1 and Table 2 show the floating-point
operations of them for each iteration of the OMP algorithm.

A term-by-term comparison shows OMP-SR uses fewer flops than QR-based
OMP. The cost analysis is for Φ ∈ R

N×d. For sparse signals with k non-zeros,
as long as t(2N − 1) < (d − t)(4N − 1), OMP-SR outperforms QR-based OMP
by a margin of at least N + 2 per iteration. Typically in OMP, t ≤ k � d for
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Table 1. Operation cost for the t-th iteration of OMP using QR update

Operation Flops

Update Qt, Rt (d − t)(4N − 1) + 3N + 1

Update h = Q�
t y 2N

Solve Rtx = h t2

Total cost (d − t)(4N − 1) + 5N + 1 + t2

Table 2. Operation cost for the t-th iteration of the proposed OMP-SR

Operation Flops

Compute γl,t 2Nt

Compute βt 4N − 1

Update coefficients bl t2 − t

Total cost t(2N − 1) + 4N − 1 + t2

sparse recovery problems, therefore, the condition t(2N − 1) < (d − t)(4N − 1)
is easily satisfied.

2.3 Blocked Successive Regression (BSR)

BSR builds on the idea of successive regression in OMP-SR but selects a block of
atoms at each iteration. The block size c is a hyper parameter, usually decided
by a grid search. The algorithm is still greedy in nature: in each iteration it
selects the atoms that have the largest correlations with the residual measured
by the �2 norm. Each iteration of BSR performs an orthogonal projection of y
over c newly selected atoms, instead of over |Γ | atoms, which could be costly
as |Γ | increases with iterations. Subsequently the coefficients for atoms selected

in previous iterations are updated through bi = βi −
t∑

k=l+1

∑

j∈Γk

bjγi,j (see Algo-

rithm 2).
The BSR algorithm halts if the residual becomes too small or it has exhausted

κ iterations, which amounts to two of the three halting rules listed in [19] for
matching pursuit type of algorithms.

The columns selected by BSR shall be the same as the columns selected by
gOMP [27] in each iteration. However, the two algorithms differ in the way they
solve the least square problem.

3 Conditions for Exact Recovery

3.1 Background

Assume there are k non-zero entries in a d-dimensional signal x, and k � d. Let
Λopt = {i1, . . . , ik} be the set of indices for the non-zero entries of x. Without



Fast Orthogonal Matching Pursuit Through Successive Regression 307

Algorithm 2. BSR
Initialization: r0 = y, Γ = φ, z0 = 1
for t = 1 to κ do

Γt = arg max
Ω:|Ω|=c
Ω⊂J \Γ

∥
∥Φ�

Ωrt−1
∥
∥
2

for each j ∈ Γt do
Let aj be the j-th column of matrix Φ.

Regress aj on z0 to get coefficient γ0,j =
〈z0,a j〉
〈z0,z0〉

Compute zj = aj − γ0,jz0

if t > 1 then
Regress aj on ZΓl to get coefficients

γΓl,j = Z+
Γl

aj , for l = 1, . . . , t − 1

Compute zj = zj −
t−1∑

l=1

∑

i∈Γl

γi,jzi

end if
end for
Regress y on ZΓt to get coefficients βΓt = Z+

Γt
y

Let bΓt = βΓt

if t > 1 then
for l = t − 1 to 1 do

for i ∈ Γl do

bi = βi −
t∑

k=l+1

∑

j∈Γk

bjγi,j

end for
end for

end if
Update index set Γ = Γ

⋃
Γt

Update residual rt = y − ΦΓ bΓ

Break if ‖rt‖2 ≤ δ
end for
Let xΓ = bΓ , and let xJ \Γ = 0
Return x

loss of generality, we can partition the measurement matrix as Φ = [Φopt|Ψ ] so
that Φopt has k columns, Φopt = [ϕi1 , . . . ,ϕik

], and Ψ has the remaining d − k
columns.

In the absence of noise, the measured signal y has a sparse representation:
y = Φx =

∑

j∈Λopt

ajϕj . Exact recovery aims to recover the coefficients aj for all

atoms indexed by Λopt, which are the non-zero entries in x.

The Exact Recovery Condition of OMP-SR. Algorithm OMP-SR essen-
tially is an OMP algorithm with fast implementation: it starts with the same
initial residual r0 and selects the same atom in the next iteration, so the residual
rt after the t-th iteration is the same. Since rt is used as input to the next itera-
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tion when choosing a column, the next iteration will result in the same residual
rt+1. By induction, after k iterations the algorithm returns the same result as
OMP does. The exact recovery condition for OMP-SR is the same as for OMP.

3.2 The Exact Recovery Conditions of BSR

BSR is essentially a greedy algorithm, which makes a greedy choice at each
iteration, except that BSR selects a block of columns at each iteration with a
fixed block size c (c ≥ 1). If c = 1, BSR reduces to OMP-SR. We have learned
that under the condition of ρ(r) < 1, OMP and OMP-SR can find one optimal
column in each iteration. Then for BSR, under what condition will each iteration
of BSR only select the optimal columns from Φopt except the last iteration?
This is the best case, in which BSR can locate all optimal columns within 	k/c

iterations. We call the condition for the best case as the strong exact recovery
condition for BSR.

A Strong Exact Recovery Condition for BSR. Recall that Φ = [Φopt|Ψ ]
so that Φopt has the k optimal columns, and Ψ has the remaining d−k columns.
Let r denote the residual at the current iteration before the greedy choice is
made.

For a fixed block size c, the greedy choice ratio is defined as follows:

ρc(r) def=
max
Ω1

∥
∥Φ�

Ω1
r
∥
∥
2

max
Ω2

∥
∥Φ�

Ω2
r
∥
∥
2

, (1)

such that |Ω1| = |Ω2| = c and |Ω2 ∩ Λopt| > |Ω1 ∩ Λopt|, i.e., Ω2 has at least
one more optimal column than Ω1. Given a k-sparse signal, BSR can recover the
signal within 	k/c
 iterations if the following condition holds.

Theorem 1 (The strong exact recovery condition for BSR). A sufficient
condition for BSR to recover a k-sparse signal within 	k/c
 iterations is that

ρc(r) < 1 (2)

holds for all iterations.

A Weak Exact Recovery Condition for BSR. What is the condition for
ρc(r) < 1 to hold in Theorem 1? In the absence of a straightforward answer, we
first discuss the condition for BSR to recover a k-sparse signal within k iterations,
then revisit the condition (2).

We call the condition for BSR to recover a k-sparse signal within k iterations
the weak exact recovery condition for BSR. For the weak condition, we use the

following greedy choice ratio: ρ(r) =
‖Ψ�r‖∞
‖Φ�

optr‖∞
.
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Theorem 2 (The Weak Exact Recovery Condition for BSR). A suffi-
cient condition for BSR to recover a k-sparse signal within k iterations is that

ρ(r) < 1 (3)

holds for all iterations.

Although intuitive, the condition in (3) expressed in terms of the greedy
choice ratio cannot be checked before we know the residuals in all iterations. We
need to establish a sufficient condition for the exact recovery by BSR in terms
of the property of the dictionary Φ.

BSR will select at least one optimal column at each iteration but can also
possibly select some non-optimal columns. We can split the columns of Ψ into
two parts: Ψ = [ΨJ |ΨJ ], where ΨJ are the non-optimal columns that have been
selected by BSR algorithm so far, and ΨJ include the remaining columns.

Let matrix X be the submatrix of Φ that includes all columns of Φopt and
the columns in Ψ that have been selected by BSR at the previous iterations, i.e.,
X = [Φopt|ΨJ ].

Let Π denote the index set for the columns in Φopt that have not been selected
by the algorithm so far, so |Π| ≤ k. Let (·)Π denote the columns in the matrix
indexed by Π, and (·)Π,: denotes the rows of the matrix indexed by Π.

Lemma 1. If max
ψ

∥
∥
∥(X+)Π,: ψ

∥
∥
∥
1

< 1, where vector ψ ranges over columns of

ΨJ , then the residual r satisfies ρ(r) < 1.

Although condition max
ψ∈Ψ

J

∥
∥
∥(X+)Π,: ψ

∥
∥
∥
1

< 1 is expressed in terms of the prop-

erty of the dictionary, this condition still cannot be checked without executing
the algorithm. In practice it is unlikely that the optimal columns are known a
priori, so the submatrices X,ΨJ cannot be located before the execution of the
algorithm. More practical methods are needed to check the sufficient condition
without the execution of the algorithm.

In [25], a fundamental property of the dictionary Φ, called coherence is defined
as:

μ
def= max

j �=k
|〈ϕj ,ϕk〉| (4)

Coherence μ is the maximum absolute value of pairwise inner product
between the columns of the dictionary.

For a positive integer m, the cumulative coherence function, μ1(m) of the
dictionary, is defined as

μ1(m) def= max
|Λ|=m

max
ψ

∑

j∈Λ

|〈ϕj ,ψ〉| (5)

where Λ is the set of indices for any m columns of Φ, and ψ ranges over the
columns of Φ not indexed by Λ. μ1(m) is the maximum cumulative coherence
from any m columns of Φ.
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Next, we use the cumulative coherence property of the dictionary to derive
a sufficient condition.

Lemma 2. max
ψ∈Ψ

J

∥
∥
∥(X+)Π,: ψ

∥
∥
∥
1

< 1 whenever μ1(l) + μ1(n) < 1 holds, where n

is the number of columns in X, and l = min(|Π|, k − 1).

Lemma 2 and Lemma 1 together lead to the following conclusion: the residual
r satisfies ρ(r) < 1 whenever

μ1(l) + μ1(n) < 1. (6)

Revisit Theorem 1: the Sufficient Condition for ρc(r) < 1. It is easy to
show that μ1(l) + μ1(n) < 1 is also sufficient for ρc(r) < 1 to hold in Theorem
1, which leads to the following theorem.

Theorem 3 (The strong exact recovery condition for BSR). Suppose
that μ is the coherence of the dictionary as defined in (4). A sufficient condition
for BSR to recover a k-sparse signal within 	k/c
 iterations is that

μ(2k − 1) < 1. (7)

4 Experiments

Data used in the experiments are posted at github.

Fig. 1. Images used for experiments, (a) phantom, (b) transaxial CT, (c) trees, (d)
letters.

https://github.com/arsarting/Compressed-Sensing
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4.1 Sparse Signal Recovery

We first show sparse signal recovery performance when the signal has a sparse
representation. The first experiment is on image data, where the non-zero ele-
ments constitute the content of an image, and exhibit continuity in the true
signal x. The images we used include the phantom, a CT scan, an image for
trees, an image for letters (see Fig. 1), and MNIST dataset handwritten digits.
The second experiment is on signals defined on graph structures, where the non-
zero elements are distributed among the nodes of a graph. We used synthetic
data defined on a binary tree, and data that are collected from IEEE 118-bus
power system and IEEE 1354-bus power system, where the true signal x consists
of the values of the state variables of a power system. Since the algorithms do
not depend on the signal structure to find the non-zeros, they worked well with
both types of data. Table 3 and Table 4 show the performance of the proposed
OMP-SR and BSR, and we report the number of iterations, the recovered opti-
mal atoms, normalized MSE (NMSE), and running time in seconds. Image data
are reported in Table 3, and graph data are reported in Table 4.

Fig. 2. Running time (top) and iterations (bottom) used by the algorithms to recover
k non-zeros in the signal. OMP and OMP-SR use the same number of iterations, and
gOMP and BSR use the same number of iterations. The datasets used: (a),(c) phantom;
(b),(d) MNIST dataset handwritten digit ‘7’.
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If a k-sparse signal can be recovered by OMP within k iterations, it can cer-
tainly be recovered by BSR within k iterations. Those that cannot be recovered
by OMP within k iterations are shown to take far less than k iterations and
far less time by the BSR algorithm to fully recover. Since OMP-SR picks the
same atoms as OMP does, we reported the result of OMP-SR in the same row
as OMP and only reported its time (in blue text). Similarly, we report BSR in
the same row as gOMP, and report its running time (in blue text). It is observed
that OMP-SR is faster than OMP, and BSR is faster than gOMP. The block
size c in BSR is a hyper parameter searched from {2, 3, 4, 8}.

The third experiment is to show the relation between k and running time.
Image data for the phantom and the MNIST handwritten digit ‘7’ were used. We
created different versions from the original image to have different image sizes
d and different k/d ratios. Figure 2 shows how the running time and iteration
number increase as the number of non-zeros k increases. The number of iterations
is reduced by several folds in the blocked version, which is shown in (c) and (d).
BSR is faster than gOMP per iteration, however, due to the reduced number of
iterations, the advantage of BSR over gOMP becomes less significant compared

Table 3. Image datasets. Reported NMSE and time in seconds. Running time of our
methods is highlighted in blue. OMP-SR is faster than OMP, and BSR is faster than
gOMP.

Data k method ite foundNMSE time

MNIST(3)

392×784
126

OMP (OMP-SR) 126 110 0.0656 0.4077 (0.2977)

OMP (OMP-SR) 142 126 <1e−11 0.5799 (0.3280)

gOMP (BSR) 51 126 <1e−11 0.2167 (0.1298)

MNIST(5)

392×784
162

OMP (OMP-SR) 162 99 0.7058 0.5902 (0.4204)

OMP (OMP-SR) 784 162 <1e−11 18.0441 (12.9938)

gOMP (BSR) 85 162 <1e−11 0.5632 (0.3926)

MNIST(8)

392×784
174

OMP (OMP-SR) 174 92 0.8275 0.7703 (0.4934)

OMP (OMP-SR) 546 174 <1e−11 11.0087 (6.5816)

gOMP (BSR) 84 174 <1e−11 0.5570 (0.3855)

MNIST(9)

392×784
130

OMP (OMP-SR) 130 125 0.0727 0.4453 (0.3190)

OMP (OMP-SR) 135 130 <1e−11 0.5620 (0.3917)

gOMP (BSR) 35 130 <1e−11 0.1521 (0.1111)

Phantom

4512×9024
641

OMP (OMP-SR) 641 638 0.0278 89.0610 (70.8633)

OMP (OMP-SR) 644 641 <1e−11 97.9924 (75.9530)

gOMP (BSR) 81 641 <1e−11 13.0361 (9.1253)

Transaxial CT

4225×8450
1089

OMP (OMP-SR) 1089 1064 0.0675 282.6071 (250.1557)

OMP (OMP-SR) 1115 1089 <1e−11 302.0011 (263.0615)

gOMP (BSR) 57 1089 <1e−11 17.5773 (14.0619)

Trees

19200×38400
4670

OMP (OMP-SR) 4670 46520.00114 2391.0661 (702.4279)

OMP (OMP-SR) 4688 4670 <1e−11 2571.1333 (754.8234)

gOMP (BSR) 117 4670 <1e−11 23.0564 (20.0294)

Letters

5712×11424
851

OMP (OMP-SR) 851 851 <1e−11 191.7733 (129.9197)

gOMP (BSR) 107 851 <1e−11 20.0811 (16.4433)
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to the advantage of OMP-SR over OMP, as the iteration number is reduced
significantly.

4.2 Sparse Approximation

The fourth experiment is for the sparse approximation of general signals with
noises. We add noise ε to the Phantom image, and report approximation errors
when the measurements are subject to increasing levels of noise. Table 5 shows
that at each noise level, BSR found the k non-zeros with fewer iterations than
OMP and significantly less running time.

Table 4. Synthetic data for signals defined on graph structures. Reported NMSE and
time in seconds. Running time of our methods is highlighted in blue. OMP-SR is faster
than OMP, and BSR is faster than gOMP.

Data k method ite found NMSE time

Binary Tree

256×512
70

OMP (OMP-SR) 70 70 <1e−11 0.1105 (0.0798)

gOMP (BSR) 25 70 <1e−11 0.02778 (0.024294)

118 Bus

59×118
14

OMP (OMP-SR) 14 14 <1e−11 0.0284 (0.0172)

gOMP (BSR) 5 14 <1e−11 0.00609 (0.003876)

118 Bus

59×118
100

OMP (OMP-SR) 100 86 0.8406 0.0706 (0.0582)

OMP (OMP-SR) 118 100 <1e−11 0.0922 (0.0659)

gOMP (BSR) 40 100 <1e−11 0.03400 (0.025842)

1354 Bus

677×1354 270

OMP (OMP-SR) 270 215 0.2029 3.7723 (2.1686)

OMP (OMP-SR) 336 270 <1e−11 5.4101 (3.4590)

gOMP (BSR) 96 270 <1e−11 1.2641 (0.982119)

Table 5. Results for the phantom image with increasing noise level ‖ε‖2. Reported

normalized approximation error ‖y −Φx‖2
‖y ‖2

, and running time in seconds. Running time
of our methods is highlighted in blue. OMP-SR is faster than OMP, and BSR is faster
than gOMP.

Noise k method ite found ‖y −Φx‖2
‖y ‖2

time

‖ε‖2 = 0.1 641

OMP (OMP-SR) 641 638 0.0231 88.7496 (70.3730)

OMP (OMP-SR) 644 641 0.0001 94.6122 (72.1749)

gOMP (BSR) 81 641 0.0001 11.3051 (9.1572)

‖ε‖2=50 641

OMP (OMP-SR) 641 638 0.0777 87.1276 (70.6804)

OMP (OMP-SR) 644 641 0.0727 95.4393 (71.5545)

gOMP (BSR) 81 641 0.0720 11.7429 (9.7602)

‖ε‖2=100 641

OMP (OMP-SR) 641 631 0.1470 88.9356 (72.0881)

OMP (OMP-SR) 684 641 0.1337 165.5339 (138.7913)

gOMP (BSR) 101 641 0.1287 16.0534 (13.8060)

‖ε‖2=150 641

OMP (OMP-SR) 641 621 0.2687 89.2221 (70.3730)

OMP (OMP-SR) 789 641 0.1671 134.5601 (101.7830)

gOMP (BSR) 197 641 0.1671 27.9475 (25.4323)
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5 Discussion and Future Work

OMP has the advantage of simplicity. A greedy algorithm such as OMP is easy
to implement but difficult to analyze. This work offered significant performance
improvement over the classical OMP and its extension gOMP with theoretical
analysis for convergence and approximation error bound. In addition, the pro-
posed changes for OMP come from a principled approach. They work well when
combined with other heuristic or ensemble approaches. One possible future work
direction is to improve the greedy choice by leveraging the structure in the signal
model.

In addition, the minimal �1 norm solution is the sparsest only when the signal
is sparse enough [11]. Therefore, another future work direction is to identify
the specific measurement matrix property that drives sparsity during �1 norm
minimization and use that to improve the greedy choice in an iterative procedure.
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Abstract. Scene text image super-resolution (STISR) aims at enhanc-
ing the visual clarity of a low-resolution text image for human perception
or tasks like text recognition. In recent STISR work, various visual and
semantic clues of the text play a key role in recovering the details of the
text, but the utilization of different clues and their interactions is still
insufficient, which often results in distorted or blurred appearances of the
reconstructed text. To address this problem, we propose a multi-prompt
guided text image super-resolution network (MPGTSRN). Specifically,
we introduce multiple visual prompts for the text and combine them with
semantic features to comprehensively capture the diverse characteristics
of the text. We then propose a recurrent reconstruction network inte-
grating multiple visual-semantic prompts to enhance the representation
of the text and yield a high-resolution text image. We further propose a
cross-representation attention mechanism that utilizes the complemen-
tarity of different prompts to guide the reconstruction network to adap-
tively focus on salient parts of the text and effectively improves the text
details. The experimental results show the superiority of our proposed
MPGTSRN in the STISR task.

Keywords: Super-resolution · Scene text image · Multiple prompts ·
Visual-semantic clue

1 Introduction

The textual content in images is an important source of information in people’s
daily lives. However, scene text images often suffer from various forms of qual-
ity degradation such as low resolution and blurring, which hinders the reliable
extraction and interpretation of the textual information in the image. For exam-
ple, most recent deep learning-based text recognition methods do not work well
enough on low-resolution images [3,25,31]. Therefore, scene text image super-
resolution (STISR), which aims to enhance the resolution and visual clarity of
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Fig. 1. The architecture of the proposed text image super-resolution network MPGT-
SRN.

the text in low-resolution images, has a wide range of applications in various
text-related fields.

A variety of STISR methods have been proposed in recent years, which can
be roughly categorized into two schemes—generic approaches and text-specific
approaches. Taking text images as general images, most existing single-image
super-resolution methods can be employed for STISR, and variant deep neural
network models such as convolutional neural network (CNN) and generative
adversarial network (GAN) have been used to learn the LR-HR mapping and
accordingly reconstruct the super-resolution (SR) image.

To exploit the characteristics of the text to improve the quality of the recon-
structed text image, recent STISR methods [9,15,16,25,27,31] introduce vari-
ous text clues such as character-level or stroke-level appearance/structural clues
and probability-based semantic clues, which capture inherent visual or semantic
characteristics of text, to guide the super-resolution process and usually achieve
better SR quality and higher text recognition accuracy than general image SR
models. For example, TATT [16] introduces text semantic priors into the model
and exploits them as guidance for the text reconstruction process. Similarly, C3-
STISR [31] introduces visual and linguistic clues of text to help generate higher
quality text images.

Despite the encouraging results achieved, existing STISR methods still suffer
from loss or distortion of text details such as blurred edges and irregular character
shapes in the output text image. The use of a wider range of characteristics of the
text in SR models has been shown to be an effective way to improve SR results,
but the forms of text cues utilized so far are still quite limited and monolithic,
and few studies have focused on modeling and utilizing correlations between
different cues to improve their effectiveness in STISR.

In this paper, we propose a novel multi-prompt guided text image super-
resolution network MPGTSRN, which introduces and leverages multiple visual-
semantic prompts and their interactions to guide the recurrent reconstruction
process and effectively improves the quality of the generated high-resolution text
images. Figure 1 shows the overall architecture of MPGTSRN.
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The main contributions of our work are summarized as follows:

– We introduce edge- and segmentation-based prompts as additional informa-
tion channels of the text image super-resolution model, which capture dis-
tinctive and complementary appearance details of the text and are further
combined with semantic features to provide richer clues of the text for the
reconstruction model.

– We propose an effective multi-prompt reconstruction network for text images.
The network integrates multiple recurrent reconstruction branches to pro-
gressively enhance the representation of the text utilizing different text cues
captured by each prompt, and finally aggregates the outputs of all branches
to yield a high-resolution text image with improved text details.

– We propose a cross-representation attention mechanism to exploit the com-
plementarity of different prompts to guide the multi-prompt reconstruction
network to adaptively focus on salient parts of the text in the reconstruction,
which effectively enhances the super-resolution results.

– Our method achieves leading performance on the mainstream TextZoom
benchmark, demonstrating the effectiveness of the proposed SR model.

2 Related Work

2.1 Single Image Super-Resolution

General single-image super-resolution techniques aim to generate a high-
resolution image with recovered details based on its low-resolution (LR) coun-
terpart through learning the mapping from LR patches to HR patches. For this
purpose, some methods such as SRCNN [6], EDSR [13] and RDN [28] employ
convolutional neural networks to learn the LR-HR mapping in an end-to-end
framework. On the other hand, some methods such as SRGAN [11], GLEAN [2]
and LDL [12] train generative adversarial networks to recover missing realistic
image details for the SR task and improve the restoration quality with diverse
losses and priors. Despite their effectiveness on generic images, these methods
do not take advantage of the characteristics of text and therefore cannot achieve
optimal performance in the STISR task.

2.2 Scene Text Image Super-Resolution

Early scene text image super-resolution methods [19] employed general SR mod-
els with varied deep network structures to enhance the resolution of input text
images. To further improve the quality of the output text image, most recent
STISR methods [3,4,25] introduced and exploited specific characteristics of text
in the recovery process. For example, TSRN [25] employs BLSTM to model
the sequential characteristic of text and introduces gradient profile loss to help
reconstruct high quality text images. Text Gestalt [4] proposes a stroke focused
module (SFM) to concentrate more on stroke regions with the guidance of stroke-
level attention maps. Besides the structural property, a variety of other text clues
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have also been utilized. For instance, the semantic features of the text (aka. text
prior) are often employed in recent STISR work [15,16,31] as a guidance for text
reconstruction, which usually take the form of a vector of character classification
probability distributions obtained using an additional text recognizer. C3-STISR
[31] further introduces visual and linguistic clues to improve the details of the
generated text images. LEMMA [9] introduces an explicit character location
modeling mechanism to distinguish character regions from the background.

Our work extends previous clue-guided STISR methods which mostly exploit
the features extracted from the text image as the only visual clue, by introducing
edge- and segmentation-based prompts and their interactions as additional clues
for recovering the text with enhanced readability.

3 Methodology

Our proposed MPGTSRN improves the text image super-resolution results over
previous methods through two main mechanisms. First, MPGTSRN introduces
edge and segmentation prompts of the text and combines them with semantic
cues as effective text clues for the reconstruction model. Second, MPGTSRN
employs an effective multi-branch recurrent reconstruction framework with cross-
modal attention mechanism to enhance the representation of the text under the
guidance of multiple prompts and their complementarity to produce high-quality
text images.

As shown in Fig. 1, MPGTSRN consists of five main components: the feature
extraction backbone, the visual-semantic (V-S) prompts generator (VSPG), the
multi-prompt reconstruction (MPR) module, the adaptive fusion module, and
the pixel shuffle layer [23]. Unlike the image-semantic features exploited by pre-
vious STISR methods like TSRN and TATT, the proposed VSPG module com-
bines semantic priors of the text with the edge and segmentation features of the
input LR text image to generate complementary visual-semantic prompts, which
capture multi-aspect visual and semantic characteristics of the text. The MPR
module recurrently enhances the representation of the text with visual-semantic
prompts through the sequential recurrent block and cross-representation atten-
tion mechanism. Finally, the fusion module adaptively combines the dual rep-
resentation branches, and the pixel shuffle layer reconstructs the SR text image
based on the enhanced image representations. We describe each component of
the network in the following sections.

3.1 Multiple Representations of Text Image

In order to capture multi-aspect visual cues of the text to help recover the details
of the high-resolution text, we extract both the edge and segmentation maps of
an input low-resolution (LR) text image I ∈ R

H×W×3 (H and W are the height
and width of the image) as complementary representations to the original image
to provide useful clues of text shape.
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Fig. 2. Visual-semantic prompts generator (VSPG).

Specifically, we employ a pre-trained convolutional network (described in
Sect. 4.2) to predict the pixel-level segmentation map of the input LR text image,
assigning each pixel a score indicating its probability of belonging to the text or
the background. On the other hand, we use the Canny operator to extract the
edge map of the LR text image. We then employ a large kernel (9×9) convolution
layer to extract the initial feature representations of the input text image and
the edge and segmentation maps and capture global, long-range dependencies
between the features.

3.2 Visual-Semantic Prompts Generator

The visual-semantic prompts generator integrates the edge and segmentation
representations of the text image with semantic features to generate enhanced
visual-semantic prompts of the text for text representation reconstruction.
Figure 2 shows the structure of the VSPG module.

Specifically, we first feed the input text image to a pre-trained text recognizer
[1] to obtain a sequence of character category probability distribution vectors,
which are used as semantic features and guidances for relevant locations in the
initial edge and segmentation feature representations. Next, as shown in Fig. 2,
we apply deconvolution and batch normalization layers on the semantic features
to obtain a 2D semantic feature map of the same size as the image representation,
and a deformable convolutional network (DCN) is further employed to model the
correlations in the feature representation.

To enhance the edge and segmentation representations with the semantic fea-
tures of the text, inspired by Transformer [24] attention mechanism and the work
[30], we propose a sparse cross-attention (SPCA) block to capture and incorpo-
rate global correlations between semantic features and the edge/segmentation
features to generate edge prompt and segmentation prompt respectively. The
structure of the SPCA block is shown in Fig. 2, which can be formulated as:

SPCA(Q,K,V) = softmax
(

Φtop−k

(
QK�
√

dk

))
V (1)

[Φtop−k(S)]ij =
{

Sij , Sij ∈ TopK (S)
0, otherwise

(2)
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X′
q = Xq + SPCA(Conv (LN (DCN (Xq))) ,Conv (LN (Xk)) ,Conv (LN (Xv))) (3)

Xout = X′
q + FFN

(
X′

q

)
(4)

where the 2D semantic feature map Xq is taken as Q, and the edge or seg-
mentation feature map is taken as K and V (denoted by Xk and Xv). The
similarity matrix S is calculated and sorted in descending order based on the
similarity scores between features in Q and K respectively, and the operation
Φtop−k further retains only the top K scores while ignoring the other scores and
corresponding features. We then multiply the matrix resulting from the softmax
operation with V and obtain the final edge/segmentation prompt Xout after the
residual connection and the feed-forward network (FFN). In this way, the impact
of artifacts in the edge and segmentation maps can be adaptively alleviated by
the top-k mechanism.

3.3 Recurrent Multi-prompt Reconstruction Pipeline

Given the semantic-enhanced segmentation and edge prompts which have a size
of C×H×W (C is the number of channels), MPGTSRN reconstructs text image
details with a pipeline composed of a series of multi-prompt sequential recurrent
blocks (MPSRBs) as shown in Fig. 1. After the last MPSRB, an adaptive fusion
module is employed to combine the outputs of the two reconstruction branches
of MPSRB to produce the final representation of the reconstructed image.

Multi-prompt Sequential Recurrent Block. MPSRB takes the two output
representations from the previous block as the inputs, and employs two recon-
struction branches to enhance the image representation with the segmentation
and edge prompts respectively and recover the details of the text.

As shown in Fig. 1, a MPSRB branch first employs a prompt-enhanced
sequential recurrent block (PE-SRB) to combine image and prompt informa-
tion for text representation reconstruction. Figure 3 shows the structure of a
PE-SRB. Different from the work [16] which adds directly the input image and
prompt features together, PE-SRB combines the two features with an adaptive
fusion mechanism, which is formulated as:

Fout = F3
in + F2

in ⊗ Sigmoid
(
WF1

in

)
(5)

where ⊗ denotes Hadamard product, and W is the learned linear transforma-
tion. Fin is the concatenation of the two input feature maps along the channel
dimension. The resulting feature maps are projected into three different feature
spaces F1

in, F2
in and F3

in through convolution, which are then combined into the
final output feature Fout by channel attention.

Next, similar to [25], PE-SRB models the sequential relationships in the
combined text features through convolution and BLSTM layers and outputs a
representation of the size C × H × W .
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Fig. 3. Prompt-enhanced sequential recurrent block (PE-SRB).

Cross-Representation Attention Through Mutual-Learning Dynamic
Convolution. Since the edge and segmentation representations convey rich and
complementary appearance details of the text, after integrating the image repre-
sentations in two reconstruction branches with edge and segmentation prompts
respectively, we propose to further make use of the visual clues of the text cap-
tured in one representation to guide the enhancement of the other representation
through a cross-representation attention (CRA) mechanism.

Specifically, MPGTSRN employs a mutual-learning dynamic convolution
(MLDC) block to bridge the information of two reconstruction branches. As
shown in Fig. 1, MLDC dynamically predicts the parameters of the convolution
that is applied on the representation in one branch n, based on the output repre-
sentation of PE-SRB in the other branch n′. In this way, a reconstruction branch
can utilize the text clues obtained by the other branch to adaptively focus on
certain salient parts of the text representation to improve the recovered details
of the text.

Moreover, to better capture the linear morphological structure characteris-
tics of character strokes, inspired by the work [20], we employ the dynamic snake
convolution (DSConv) in the proposed MLDC block. As shown in Fig. 4, DSConv
straightens the standard convolution kernel in both the x- and y-axis and aug-
ments each sampling (grid) position of the kernel by a predicted offset. Taking
a DSConv kernel of size 9 and the x-axis direction as an example, the specific
position of each grid in the kernel K is represented as Ki±c = (xi±c, yi±c), where
c ∈ [0, 4] represents the horizontal distance from the central grid Ki. The offset
of the grid Ki±c relative to Ki is the summation of the predicted offset between
every pair of neighbouring grids from Ki to Ki±c. The kernel also includes a
series of sampling grids in the y-axis direction similarly.

Note that, to allow mutual learning between two reconstruction branches,
as shown in Fig. 4, we modify the original DSConv model, which uses the same
features for the grid prediction and the convolution operation, by taking the
features F′

in from the complementary branch as the input for predicting the
grids of the DSConv kernel, which is applied on the features Fin of the current
branch to produce the output features Fout. The experiment results demonstrate
the effectiveness of our proposed CRA mechanism based on MLDC and DSConv
in improving the recovery quality of the text.

Adaptive Fusion Module. The adaptive fusion (AF) module fuses the com-
plementary representations of the text image obtained by two reconstruction
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branches with dynamically computed aggregation weights to produce more accu-
rate text details.

Fig. 4. Mutual-learning dynamic
convolution (MLDC) block based on
DSConv.

Given the reshaped representations Fs ∈
R

C×N and Fe ∈ R
C×N (N = H × W ) out-

put by the two branches of the last MPSRB,
AF first predicts the fusion weights WF

based on Fs and Fe, which adaptively adjust
the importance of individual features. The
fusion weights are then multiplied by the
transformed features to obtain the aggre-
gated enhanced representation of the text
image. The fusion mechanism can be formu-
lated as follows:

WF = Sigmoid (W1 [Fs;Fe])
F̄ = WF � (W2 [Fs;Fe]) (6)

where W1 and W2 are learned linear transformations, � denotes the element-
wise multiplication operation, and F̄ is the fused and enhanced representation
of the text image.

Finally, a pixel shuffle layer [23] is employed to transform the enhanced rep-
resentation F̄ into the output SR text image.

3.4 Loss Function

MPGTSRN is trained with a loss function consisting of the super-resolution loss
LSR, the text prior loss LTP , and the text-focused loss LTFL proposed in [3]:

L = λ1LSR + λ2LTP + λ3LTFL (7)

where λ1, λ2, and λ3 are the balancing weights, which are set to 1.0, 0.01, and
0.5 as in [9].

The super-resolution loss LSR is the L2 norm of the difference between the
SR output and the ground-truth high-resolution (HR) image. The text prior loss
LTP is the cross-entropy loss of the pre-trained text recognizer used for semantic
feature extraction:

LTP = Cross-entropy (prec, ylabel) (8)

where prec denotes the character probability distribution vectors predicted by
the pre-trained text recognizer on LR images, and ylabel denotes the ground
truth. A detailed description of the text-focused loss LTFL can be found in [3].

4 Experiments

4.1 Dataset

We evaluate MPGTSRN on the state-of-the-art STISR dataset TextZoom [25],
which includes 21,740 LR-HR text image pairs captured through lens zooming
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in real-world scenarios. The training set consists of 17,367 image pairs, while the
test set is further divided into three sets—easy (1,619 samples), medium (1,411
samples), and hard (1,343 samples) based on camera focal length.

4.2 Implementation Details

We implement MPGTSRN based on the PyTorch framework and conduct the
experiments on two NVIDIA Tesla V100 GPUs. The multi-prompt reconstruc-
tion module comprises five MPSRB blocks, and the text recognizer proposed
in [1] is used in MPGTSRN to generate the semantic features of the text. The
hyperparameters in our method are consistent with the previous methods TSRN
[25] and TATT [16]. We train the network using Adam optimizer with a learning
rate of 0.001. LR and HR images are resized to 16×64 and 32×128 respectively.

The text segmentation network mentioned in Sect. 3.1 has an U-Net struc-
ture. We generate the ground-truth text segmentation map by applying K-means
clustering on image pixels, with K being set to 2 corresponding to the text and
background categories. We train the text segmentation network on the synthetic
MJSynth (MJ) dataset [10] for one epoch with a learning rate of 0.001 since the
image backgrounds in the dataset are simple enough to distinguish from the text
foreground. MPGTSRN consists of 29.95M parameters and achieves an average
processing time of 3.49ms per image in the inference on the benchmark dataset.

4.3 Ablation Study

Effectiveness of Multiple Prompts in Text Reconstruction. We verify
the effectiveness of the proposed multi-prompt framework for text representation
enhancement and reconstruction. In Table 1, we compare the text recognition
accuracy obtained by the CRNN [21] recognizer on the SR images generated
by the proposed model and two variant models which make use of the edge or
segmentation prompts solely. It can be seen that the edge prompt is slightly
more effective than the segmentation prompt for recovering the text representa-
tion for recognition, as it better captures high-frequency shape characteristics of
character which play an important role in the recognition. By further incorpo-
rating the supplementary text clues provided by the segmentation prompt, the
proposed model achieves overall improved recognition accuracies on all bench-
marks owing to the higher-quality text image generated based on the enhanced
representation.

Table 2 further shows the text recognition accuracy on the SR images
obtained by a variant of the proposed reconstruction model that replaces the
edge and segmentation prompts with the text semantic prior used in [31], which is
composed of a sequence of probability distribution vectors predicted by the text
recognizer. Compared to it, the proposed multiple prompts effectively enhance
the representation of the text with distinctive visual cues of characters cap-
tured by the edge and segmentation maps, which help to enhance the super-
resolution and recognition accuracy and demonstrate the effectiveness of the
proposed mechanism.
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Table 1. Text recognition accuracy (%)
of the SR images obtained with variant
prompts

Model Easy Medium Hard Avg

Edge prompt 67.9 60.5 45.9 58.8
Seg. prompt 66.1 58.0 44.7 56.7
Proposed 68.8 60.6 46.8 59.4

Table 2. Text recognition accuracy (%)
of the SR images obtained with the text
semantic prior and the proposed multiple
prompts

Model Easy Medium Hard Avg

Text prior [31] 66.2 59.7 45.5 57.7
Multi-prompts 68.8 60.6 46.8 59.4

Table 3. Effectiveness of the sparse cross-
attention (SPCA) block

Model Easy Medium Hard Avg

MHCA 67.6 60.2 45.2 58.3
DSTA [31] 67.6 58.7 46.8 58.4
SPCA 68.8 60.6 46.8 59.4

Table 4. Effectiveness of the cross-
representation attention (CRA) mecha-
nism

Model Easy Medium Hard Avg

w/o CRA 69.3 58.5 44.2 58.1
CRA w. DC 68.8 60.3 45.7 59.0
CRA w. DCN 69.0 60.0 46.5 59.2
CRA w. MLDC 68.8 60.6 46.8 59.4

Effectiveness of Sparse Cross-Attention in Multi-modal Fusion. We
compare the proposed sparse cross-attention (SPCA) block with the stan-
dard multi-head cross-attention (MHCA) of Transformer and the DSTA block
employed in C3-STISR [31] for fusing features of different modalities for prompt
generation. As shown in Table 3, compared to MHCA and DSTA which inte-
grates concatenated visual and semantic features through deformable convolu-
tion and channel attention, SPCA employs a more effective and flexible query-
based attention with top-k filtering to reduce the influence of defective features
in fusing multi-modal representations, which helps to improve the recognition
accuracy of the reconstructed text.

Figure 5 presents some visualizations of the feature maps resulted from the
top-k weighting in SPCA. The highlighted features mostly concentrate in salient
positions in the edge and segmentation maps, which shows the effectiveness of
the mechanism.

Fig. 5. Examples of the edge-based (2nd row) and segmentation-based (3rd row) fea-
ture maps resulted from the top-k weighting in SPCA on some LR images (1st row).
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Fig. 6. Examples of the reconstructed SR text images obtained by variant models in
the ablation study. The corresponding text recognition results are displayed below the
images. Incorrect recognition results are displayed in red text, and ‘_’ denotes a missing
character in the recognition result. (Color figure online)

Effectiveness of Cross-Representation Attention. We evaluate the effect
of the proposed cross-representation attention (CRA) mechanism on text recon-
struction. Table 4 compares the text recognition accuracy on the SR images
generated by the SR model without the CRA mechanism and three SR models
with different CRA implementations, one using dynamic convolution (DC) with
conventional convolution kernels [5], one using deformable convolutional net-
work (DCN), and one using the proposed DSConv-based MLDC, respectively.
Both DC and DCN have two feature inputs as the proposed MLDC, one from
the current reconstruction branch and the other one from the complementary
branch.

Comparing the results of the models with and without the CRA mechanism,
we can see that the cross-representation attention effectively improves the recog-
nition accuracy, especially for images with significant loss of textual structural
information, by exploiting the knowledge about the target text obtained from
the other complementary representation to adaptively enhance the text repre-
sentation in the current reconstruction branch through mutual-learning dynamic
convolution. Moreover, it can be seen that, compared to the DC and DCN vari-
ants, the proposed MLDC based on DSConv further enhances the SR results as
the introduced constraints on convolution kernel shapes make it easier for the
reconstruction module to recover stroke-level information of text and improve
the readability of the generated SR images.

Figure 6 presents some examples of the reconstructed SR text images
obtained by the proposed MPGTSRN and the variant models that are compared
in the ablation study, along with corresponding text recognition results yielded
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Table 5. Text recognition accuracy (%) of the SR images obtained by different methods

Method ASTER [22] MORAN [14] CRNN [21]
Easy Med. Hard Avg Easy Med. Hard Avg Easy Med. Hard Avg

SRCNN [7] 70.6 44.0 31.5 50.0 63.9 40.0 29.4 45.6 41.1 22.3 22.0 29.2
SRResNet [11] 69.4 50.5 35.7 53.0 66.0 47.1 33.4 49.9 45.2 32.6 25.5 35.1
HAN [18] 71.1 52.8 39.0 55.3 67.4 48.5 35.4 51.5 51.6 35.8 29.0 39.6
TSRN [25] 75.1 56.3 40.1 58.3 70.1 53.3 37.9 54.8 52.5 38.2 31.4 41.4
TBSRN [3] 75.7 59.9 41.6 60.0 74.1 57.0 40.8 58.4 59.6 47.1 35.3 48.1
PCAN [4] 77.5 60.7 43.1 61.5 73.7 57.6 41.0 58.5 59.6 45.4 34.8 47.4
TG [29] 77.9 60.2 42.4 61.3 75.8 57.8 41.4 59.4 61.2 47.6 35.5 48.9
TPGSR [15] 77.0 60.9 42.4 60.9 72.2 57.8 41.3 57.8 61.0 49.9 36.7 49.8
TATT [16] 78.9 63.4 45.4 63.6 72.5 60.2 43.1 59.5 62.6 53.4 39.8 52.6
C3-STISR [31] 79.1 63.3 46.8 64.1 74.2 61.0 43.2 60.5 65.2 53.6 39.8 53.7
TSAN [33] 79.6 64.1 45.3 64.1 78.4 61.3 45.1 62.7 64.6 53.3 38.8 53.0
LEMMA [9] 81.1 66.3 47.4 66.0 77.7 62.5 44.6 63.2 67.1 58.8 40.6 56.3
RGDiffSR [32] 81.1 65.4 49.1 66.2 78.6 62.1 45.4 63.1 67.6 56.5 42.7 56.4
RTSRN [27] 80.4 66.1 49.1 66.2 77.1 63.3 46.5 63.2 67.0 59.2 42.6 57.0
MPGTSRN 82.1 68.9 52.6 68.8 80.2 66.3 50.3 66.5 68.8 60.6 46.8 59.4

by the CRNN [21] text recognizer. Comparing the images obtained with the
edge prompt and the segmentation prompt respectively, e.g. the first two exam-
ples, we can see that both prompts have some advantages in handling variant
degraded text and are usually complementary to each other. By integrating the
visual clues of the text captured by both prompts, MPGTSRN effectively over-
comes the defects in text segmentation and edge extraction caused by blur and
distortion and accurately recovers the details of the text. On the other hand, as
cross-representation attention provides an effective mechanism for joint enhance-
ment of two complementary representations, MPGTSRN significantly improves
the quality of the recovered text image compared to the model without CRA,
as shown in all the examples in Fig. 6.

4.4 Comparison with State-of-the-Arts

We compare the text recognition accuracy of the SR images obtained by MPGT-
SRN and some other state-of-the-art STISR methods that employ the same
training data and settings as ours in Table 5. As common practice, three differ-
ent pre-trained text recognition models, ASTER [22], MORAN [14], and CRNN
[21] which are not fine-tuned on the TextZoom STISR dataset, are employed to
recognize the SR text image. For the fairness of comparison, we do not include
some methods that additionally trained these test recognizers end to end on the
SR dataset in the comparison.
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Table 6. Performance comparison using ABINet, MATRN and PARSeq recognizers
on SR images obtained by different methods

Method ABINet [8] MATRN [17] PARSeq [1]
Easy Med. Hard Avg Easy Med. Hard Avg Easy Med. Hard Avg

TATT [16] 80.7 65.8 50.3 66.5 81.1 66.6 51.7 67.4 82.2 65.9 52.1 67.7
C3-STISR [31] 81.4 66.9 49.9 67.0 81.9 68.0 51.1 68.0 84.3 68.3 50.9 68.8
LEMMA [9] 82.6 69.2 50.6 68.5 82.8 70.4 51.7 69.3 83.6 69.2 52.3 69.3
RGDiffSR [32] 84.6 66.3 53.3 69.1 84.7 67.4 53.5 69.5 84.2 67.5 53.2 69.3
MPGTSRN 84.8 71.1 56.1 71.6 85.0 71.3 56.7 71.9 86.0 72.0 57.5 72.7

MPGTSRN outperforms previous STISR methods in the comparison in all
test benchmarks, showing the effectiveness of the proposed multi-prompt guid-
ance mechanism in the STISR task. Particularly, compared to C3-STISR which
exploits the language model for generating semantic clues and uses a text skele-
ton painter to generate additional visual clues of the text, our MPGTSRN makes
use of the edge and segmentation clues of the text which can be easily obtained
from the standard SR dataset itself and achieves significantly enhanced perfor-
mance. On the other hand, compared to RTSRN which conducts a multi-stage
training strategy to improve the SR performance, MPGTSRN has only gone
through one stage of training but still achieves better results than RTSRN.

Table 6 further shows the recognition results obtained using three newer text
recognizers ABINet [8], MATRN [17] and PARSeq [1] on the SR results of dif-
ferent methods. MPGTSRN achieves the best results in all comparisons.

In Table 7, we compare the peak signal to noise ratio (PSNR) and structural
similarity index measure (SSIM) [26] between the ground-truth HR image and
the SR image obtained by MPGTSRN and some representative STISR meth-
ods. MPGTSRN achieves PSNR and SSIM that are comparable to those of the
best methods. It should be noted that, due to the semantic nature of the text
image, the recognition accuracy is usually a more meaningful measurement for
comparing different STISR methods than PSNR and SSIM.

Table 7. PSNR and SSIM
Method PSNR SSIM
TSRN [25] 21.4 0.7690
TBSRN [3] 20.9 0.7603
TPGSR [15] 21.0 0.7719
TATT [16] 21.5 0.7930
C3-STISR [31] 19.8 0.7408
LEMMA [9] 20.9 0.7792
RGDiffSR [32] 21.3 0.7865
MPGTSRN 21.1 0.7788

Figure 7 shows several super-resolution
results obtained by some representative
STISR models and the corresponding
text recognition results yielded by the
CRNN recognizer. MPGTSRN demon-
strates a remarkable ability to generate
text with more regular character shapes
and sharper edges, which effectively dis-
tinguish the text from the background and
in turn lead to more accurate recognition
results.
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Fig. 7. Examples of super-resolution results obtained by different methods. LR denotes
the input low-resolution image. HR denotes the ground-truth high-resolution image.
Text under an image is the recognition result, in which the red characters are incorrectly
recognized ones and ‘_’ denotes a missing character. (Color figure online)

Fig. 8. Examples of the failure cases of MPGTSRN. Text under an image is the recog-
nition result, in which the red characters are incorrectly recognized ones. ‘GT’ denotes
the ground truth text. (Color figure online)
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4.5 Limitations

Although the proposed MPGTSRN demonstrates a good ability to improve the
visual clarity of low-resolution text, it’s still possible for MPGTSRN to produce
incorrectly reconstructed text when dealing with some challenging scene text
images. Figure 8 shows some of the failure cases of MPGTSRN, which are usually
caused by the very low quality of the input text image such as heavily blurred
characters and the severely distorted shape of the text.

5 Conclusions

We present a novel super-resolution network MPGTSRN for scene text images.
MPGTSRN introduces edge- and segmentation-based prompts and integrates
them with semantic features as effective text clues to enhance the representa-
tion of the text. MPGTSRN further introduces dynamic cross-representation
attention mechanism to exploit the complementarity of prompts to guide the
reconstruction model to yield high-resolution text images with enhanced details
and clarity, which effectively improves the accuracy of the subsequent text recog-
nition task.
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Abstract. In this paper, we address the problem of localization of
narrow rivers in remote sensing images. Because these rivers may be
occluded, thin, or under-resolved, pixel-based methods might not be sta-
ble enough to ensure satisfying recovery. In this paper, we propose a
two-step approach: first, we detect the main river course and larger seg-
ment through a pixel-based approach relying on the normalized difference
water index. Second, after missing segments are identified, we propose
to connect the dots through a Bézier curve adjustment using a dedicated
greedy optimization approach. Results on synthetic and real images show
the interest of the proposed approach, with respect to dedicated pixel-
based alternatives.

Keywords: Narrow Rivers · Isolated Trails · Curve Optimization

1 Introduction

The monitoring of water bodies is crucial for society, ranging from protect-
ing ecosystems to managing resources. Classical monitoring techniques of river
health and networks have been well-documented. However, with the significant
technological advancements in electronics and, subsequently, high-performance
satellites, the monitoring of land class features from remotely sensed images has
become a wide research domain. It includes but not limited to monitoring of
water bodies, different fires, forest degradation, and agriculture areas [1]. The
contemporary issues of river networks, such as climate change, reduced flow,
pollution, and others, necessitate the utilization of advanced and cost-effective
technologies [2]. Consequently, fluvial remote sensing has garnered considerable
attention [3].

The configuration of surface topography significantly influences the devel-
opment of river networks, leading to widespread utilization of digital terrain
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model (DTM) data in scholarly research for river network detection [4]. The
DTM data has proven to be a convenient tool for delineating drainage net-
works at both global and regional scales [4,5]. However, in hydrological appli-
cations, the significant drawback of DTM has found to be its limited accuracy
and uncertainties [6,7]. Recognition of river drainage patterns and detection
of the delineation of the rivers trails have been few of the domain of interests
in Synthetic aperture radar (SAR) image applications [8]. Global water bodies
including rivers are mapped through the probability distribution of backscatter -
incidence angle combination in [9]. River drainage patterns and delineations are
considered in [8,10] through supervised image classifications techniques. How-
ever, rivers have heterogeneous features including their wide varieties of width,
flow pattern, sedimentation and other. It is difficult to achieve wider applicabil-
ity by such supervised techniques for a such dynamic land class. Although, there
are a few techniques to detect a rivers, the multi-scale characteristics of rivers,
mostly narrow rivers, have garnered comparatively less experimentation.

Detection of open water features from multi-spectral images predominantly
uses dedicated indexes to enhances features. Several water body indexes such as
normalized difference water index (NDWI) [11], modified normalized difference
water index (MNDWI) [12], automated water extraction index (AWEI) [13],
etc. have been proposed in the literature extensively. However, these indexes
operate at a pixel level, and may suffer from mixing different land classes or
low contrast, thus may detect narrow rivers as a series of isolated trail segments
rather than a continuous one [2,14]. Additionally, separating rivers from other
water bodies using such indexes needs more experimentation [2]. Gabor filtering
has been found instrumental to enhance objects features in a lower contrast
environment, which can be applied to rivers too [15]. However, [15] detects rivers
with significant width and forgoes the additional complexities of narrow rivers
and their disconnected curvilinear feature. [16] proposes a technique to detect
narrow rivers with the presence of highways which shows similar characteristics
in spectral domain. They consider the high curvilinear feature as a distinguishing
factor, which may not be found useful for a river with significant width. Thus,
rivers with significant width and narrow width need to be identified separately,
as in [2,17]. However, the authors use a Otsu thresholding, hence assuming
a bimodal image histogram, for separating rivers and does not consider the
presence of road networks nearby. In [2] a connected-component based technique
detects rivers with significant width and narrow width separately. As narrow
rivers have lower contrast with the background [14,17] and may suffer from
discontinuity, a technique is required where isolated trails of these narrow rivers
can be modeled and be connected.

Such identification of river trails primarily requires analysis of linear and
curvilinear features, a research problem extensively explored within the field
of image processing. This has been explored through various techniques, such
as learning-based technique [18], graph based approaches [19], image deriva-
tives [20], gradient vector flow [21]. Most of these methods work on pixel level,
including advanced morphology operators: in [22] path opening using 2D filter-
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ing has been proposed for such delineation, and in [23] a novel operator based
on push-pull inhibition is used for the detection of curvilinear structures.

In this paper, we propose to model the problem off-the-grid, i.e. to model
the curve to search for as a continuous-valued object. The objective is to enforce
continuity of the recovered river trails.

2 Methodology

2.1 From a Pixel Perspective

In this part, rivers are detceted in two phases as discussed in [2]. First, rivers
with significant widths are detected. Further, narrow rivers are isolated from
other open water bodies. Prior to this, water bodies are sensed using NDWI
(λGreen−λNIR

λGreen+λNIR
). Here λGreen and λNIR represent reflectance values in green and

near infra-red bands. Higher values of the NDWI index highlight open water
features, allowing for the detection of significant portions of wide rivers using
NDWI. Only isolated segments of narrow rivers are detected by NDWI due to
the presence of other land classes such as river sandbank. A lower threshold
of NDWI may also detect narrow rivers but will also yield irrelevant regions.
It also provides low contrast with the background, hence a Gabor filter based
enhancement has been used [2]. Figure 1 summarizes the process for this first
part. Nonetheless, numerous portions of narrow rivers remain indiscernible, and
endpoints of these trails will be used in the next part.

Fig. 1. Pixelwise Technique to Detect Rivers: (A) NDWI Image. (B) Outcome of Gabor
Filter. (C) Enhanced Image. (D) Detecting Rivers with Significant Width. (E) Detect-
ing Narrow Rivers. (F) Detected Rivers with isolated trails

2.2 Connecting the Dots

In this section, we provide a method to recover parameterized curves within
images, given two known endpoints.
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Model and Estimation Problem. We model the curves to recover as Bézier curves
with a Gaussian profile. Hence, a given curve is parametrized by K knots (or
control points) such that ∀t ∈ [0, 1]:

b(t) =
K∑

k=0

bk,K(t)pk, (1)

with bk,K the Bernstein basis polynomials of degree K, b(t) and pk ∈ R
2. The

curvilinear shape is then transcribed at pixel s in the image as:

xs = w exp(−‖s − b‖2
2σ2

) with ‖s − b‖ = arg min
t∈[0,1]

‖s − b(t)‖2 (2)

with w > 0 and σ > 0 the weight and width of the resulting shape with a
Gaussian profile.

Hence, given the number of knots K and endpoints p0 and pK , estimating
the shape of the curve within a given image amounts to finding the adequate
w, σ, and intermediate knots p1, . . . ,pK−1. In the following, we will denote θ =
{w, σ,p1, . . . ,pK−1}.

Then, given an observation y, the estimation problem for K knots is:

θ∗ = arg min
θ∈R+×R+×RK−2

‖y − x(θ)‖2, (PK)

with x(θ) ∈ R
S the image produced from θ according to Eq. (2).

Fig. 2. Criterion of (P3) for fixed w, σ and varying position of p1 (left) and solution
at the global minimum (right).

Inverse Problem Considerations. The criterion in (PK) is not convex, and more
generally present several local minima, as shown in the minimalist example of
P3 in Fig. 2. Noteworthy, local minima are visually not relevant for our purpose.
Besides, the number of knots K controls the complexity of the curve, and there
is no straightforward method to estimate it beforehand. We propose to take
a greedy approach to solve, for a given target K, the intermediates series of
problems P3, . . . ,PK−1.
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Algorithm 1 Greedy curve optimization procedure
Require: Number of knots K > 3, input NDWI image y0, endpoints p0 and pK

Ensure: Estimation of θ̂[K]

Preprocessing of y0, yielding y.
Initialization. Starting from a grid search on p1, solve (P3) using MH and L-BFGS-B.
This yields θ̂[3]

for each k ≤ K do
From θ̂[k−1], find the closest starting point containing one more knot, via least

squares.
Solve (Pk) using MH and L-BFGS-B, yielding θ̂[k].

Initialization. To avoid local minima, the starting point of the search for a
solution to (P3) is performed through grid search for the p1 parameter (see
Fig. 2). Thus, the resulting Bézier curve should be reasonably well located in the
image.

Pre-processing. To bring closer the image model (2) and the NDWI images,
the latter need to be preprocessed. As rivers are expected to be thin, the low
frequency in the images are suppressed, and the directional features are enhanced
through Gabor filtering.

Solving a (PK) problem. To yield more chances to reach the global minimum,
we split this step in two:

• A coarse optimization, that is made through Metropolis-Hastings (MH) [24]
sampling. It is designed to attain more favorable regions which are potentially
distant, in the parameter space, from the current point.

• A refined optimization to reach the local minima within the region, and is in
practice performed via the L-BFGS-B [25] method.

The overall procedure is summarized in Algorithm 1, and insights on the main
intermediate steps are given in Fig 3.

3 Numerical Results

3.1 Synthetic Images

At first, we study the behavior of the proposed method on synthetic images. To
generate the latter, we first generate images x from random curves with varying
width (see Fig. 4a) before adding a noisy background b. This background itself
is sampled along a Gaussian fractional random field [26], in order to sample
uniformly along frequencies. Thus, we generate:

y = x + σbb, (3)

where σb is tuned according to the signal-to-noise ratio (SNR), defined as:

SNR = 20 log
( ‖x‖2

σb‖b‖2

)
. (4)
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Fig. 3. Summary of the proposed method. The final result is summarized in Fig. 6g.

Fig. 4. Examples of synthetic images.

Fig. 5. Average scores on synthetic images. Each point depict the average results over
50 trials, with the shaded regions depicting the first and fourth quartiles.
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Fig. 6. Example results on real images, with the same legend as in Fig. 3.

The process is depicted in Figs. 4 (b-d).
Sampling several y under varying SNR, we measure the performance of the

considered method (target K = 15) in terms of precision, recall, false and true
positive rate. KL divergence is additionally calculated to assess the precision
of detecting similar curves. Here, the curve is treated as the probability mass
and background values are treated as the complement probability. These are
used to compute KL divergence values between the ground truth and detected
curves. To do so, resulting continuous images are thresholded at w/10. Besides,
we also evaluate a simpler version of Algorithm 1, for which optimization is
made without the coarse MH step. Results are reported in Fig. 5 and suggest
the following observations:

• The MH step does effect favorably the results, and in particular at low SNR.
• Overall, the false positive rate is very low. Indeed, the proposed method is

conservative, as almost all detected pixel are true positives.
• Our proposed method achieves stable performances between −10 and 0 dB,

which is appealing for applications on real images.

3.2 Real Images

Table 1. Result summary on the real images, in percent (excepting KL divergence).

Error Prec. Recall FP FN KL

RORPO [22] 2.3 55.0 32.5 0.7 67.5 11.8

Alg. 1 with L-BFGS-B 2.4 51.2 40.8 0.8 59.2 10.3

Alg. 1 with L-BFGS-B and MH 1.9 64.2 54.2 0.6 45.8 8.0

To evaluate Algorithm 1 on real images, we select by hand regions from the
pixel-wise method [2] for which a segment is missing, and locate the endpoints
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manually. Ground truths were also manually obtained, resulting in a total of
20 real test images. The results on these images are summarized in Table 1 and
some examples are given in Fig. 6.

We compare our results with the RORPO [22] method, that aims at finding
oriented thin structures in images through path operators. The threshold on the
resulting intensity was selected to best match the result of Algorithm 1.

The outcomes can be summarized as follows:

• The RORPO method, while yielding overall interesting results, is outper-
formed by our proposition. The main explanation is that it is not designed,
as most pixel-based method, to yield continuous trails.

• Overall, the addition of the MH step is valuable as well, as all scores are
improved.

• Nevertheless, real images remain challenging: indeed, the attained precision
and recall are at the same scale as worst-case SNR in synthetic images. This
might be explained by the complexity of river courses, as exemplified by
abrupt changes seen in Fig 6l. The number of control points, in such case,
might also be too low.

• Measures are made pixel-wise, hence a discrepancy might happen because the
ground truth have a variable width while our estimation do not.

4 Discussion

Results on real images obtained by our proposition are overall satisfying but sug-
gest also several leads for improvement. First, the number of knots is a parameter
that ought to be automatically selected, e.g. through an automatic sparsity-
aware approach [27]. Besides, there is a need for a global method incorporating
segment detection, endpoint detection, and endpoint connection, leveraging the
problem to another amplitude, as this implies the recovery of a whole fluvial
network. From the viewpoint of remote sensing, linking nearby isolated trails
can be addressed using morphological operators. However, connecting distant
isolated trails with high sinuosity poses a greater challenge. Mathematical mod-
els to represent the sinuosity of narrow rivers and connecting their isolated trails,
which this works studies, will be advantageous to different fluvial applications
in future.
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Abstract. Mandalas are renowned for their sacred symmetry, a prin-
ciple that resonates deeply with human consciousness. This symmetry
is manifested in the circular arrangement of their motifs. However, the
circular layers derived from mandala images are often error-prone and
unreliable for structural analysis. In contrast, using convex-hull layers
and partitioning them into regular layers proves to be more reliable. We
demonstrate this interesting fact through various illustrations and novel
theoretical results. These findings, grounded in discrete geometry, facil-
itate the exploration of mandala structures using a novel peel-and-pool
technique based on iterative convex-hull layers (‘peeling’) and regular
layers (‘pooling’). Our technique can rectify handcrafted or distorted
mandalas, restoring their overall symmetry and enhancing their geomet-
ric harmony. These concepts offer fresh insights into the mathematical
beauty of mandalas, with applications in art analysis, pattern recog-
nition, and cultural studies. We validate the efficacy of our approach
through experiments and visualizations.

Keywords: Mandala · Vedic art · Computational art · Art for
society · Convex hull · Onion peeling · Symmetry

1 Introduction

The word ‘mandala’, derived from the ancient Sanskrit language, evocatively
translates to ‘circle’ or ‘discoid object’. In the rich spiritual tapestries of Hin-
duism and Buddhism, mandalas are celebrated as potent symbols of unity and
cosmic interconnectedness. Far from being mere artistic creations, each mandala
is a visual symphony of sacred symmetry and minimalist beauty. These intricate
designs weave together interrelated motifs—circles, crescents, lotus petals, and
other floral patterns—into harmonious, symmetrical arrangements that embody
simplicity and balance. This meticulous symmetry invites profound introspec-
tion and spiritual connection, making mandalas powerful tools for meditation
and reflection. The lasting appeal and sacred geometry of mandalas have crossed
cultural boundaries, significantly influencing the art and culture of the Indian
subcontinent and beyond [4,19,22].
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Fig. 1. Two classes of mandalas. Our work is focused on Class I.

1.1 Origin and History of Mandalas

Vedic sacred symbols laid the foundation for mandalas [7,13]. Emerging from
primitive art, mandalas evolved alongside written scripts as folk art expressions.
Their decorative and auspicious nature makes them ideal for sacred platforms
and wall paintings during worship and celebrations, captivating us with their
enduring charm [17].

Mandalas, while largely maintaining their core structure, have evolved in
response to socio-economic changes and have deeply ingrained in human cul-
tural history. Hence, their aesthetic and socio-cultural significance is extensively
documented in literary studies [4,7,13,15,17,22]. As heritage arts with univer-
sal appeal, they have influenced esteemed artists across the Indian subconti-
nent. Recent research by [7] traces the global evolution of their designs, partic-
ularly highlighting the journey of Bengal’s traditional mandalas from folk art
to symbols of cultural identity, as seen in places like Rabindranath Tagore’s
Santiniketan.

Mandalas are unique forms of art, deeply rooted in psychology. They evolve
systematically from existing structures, reflecting psychic growth. As symbols
of the ’Self’ archetype, mandalas have shown great promise in psychotherapy,
a potential first revealed over half a century ago [10]. Studies exploring the
connection between art and the psyche have been ongoing since that time [2,3,9–
11,18]. Recent research highlights the potential of mandalas in treating severe
medical conditions such as Alzheimer’s disease and cancer [1,6,12,14].

Constructed from a limited set of motifs, mandalas provide consistent designs
that offer satisfaction through new combinations. In today’s digital world, peo-
ple globally are developing various computer-based methods to create mandalas.
These methods often use loop generation and array grammars to facilitate man-
dala creation [5,16]. Recent advancements in this field are discussed in works
such as [20,21].

1.2 Our Contribution

Our research is focused on analysis and correction of handcrafted mandalas. The
digital images obtained from them lack symmetry or coherence due to manual
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Fig. 2. (a) Central motif (red), symmetric motifs (saffron), and asymmetric motifs
(blue).(b, c) Two possible ways of defining a sector (black). (d) Groups of motifs. (Color
figure online)

errors during their creation or during digital acquisition. We deal with mandalas
where the constituent elements are connected components distributed across
symmetric sectors, which we refer to as Class I. There is another class in contrast,
referred to as Class II, in which mandalas are essentially a curvilinear partition
of a circular region. Some examples are given in Fig. 1. Henceforth, the term
‘mandala’ solely refers to Class I mandalas.

It may be noted that the existing works primarily focus on Class II mandala
generation based on predefined models and do not address the analysis or refine-
ment of handcrafted mandalas to achieve optimal configurations. In contrast,
our research is centered on analyzing and streamlining handcrafted mandalas,
which are manually drawn on paper or by a computer or graphics tablet. The
novel contributions of our research can be summarized as follows.

1. Theoretically, we have introduced important facts and theorems necessary for
the scientific analysis of mandalas.

2. We demonstrate how these theorems can be adapted to address practical
challenges when working with digital images of handcrafted mandalas.

3. We have shown how an existing concept from computational geometry, known
as ‘onion peeling’, can be transformed into a novel ‘peel-and-pool’ technique
to extract motif arrangements and determine their symmetry.

4. This peel-and-pool technique is also used to correct structural errors in the
digital versions of mandalas, ensuring precise and error-free representations.

2 Principles of Mandala Composition

Using the binary image of a mandala M, its connected components are clas-
sified into distinct shapes known as motifs or primitives. Understanding these
motifs is crucial for interpreting a mandala’s composition. Refer to Fig. 2 for
terminologies.
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Fig. 3. Geometric characterization of a mandala (mta602b1) using motif centroids. The
order of symmetry is 6, because for some regular layers, the number of centroids is 6,
while for the others it is a multiple of 6.

At the mandala’s center is the central motif, which appears exactly once in the
entire mandala.1 A sector is defined as the smallest set of connected components
(excluding the central motif) whose rotation generates the entire mandala. The
number of sectors determines its angle of rotational symmetry, or equivalently,
the number of axes of reflection symmetry, referred to as the mandala’s order of
symmetry and denoted by ψ

M
.

In Fig. 2, the mandala consists of 79 connected components. Excluding the
central motif, they can be grouped into 6 identical sectors, giving ψ

M
= 6. Each

sector thus comprises 13 connected components, featuring 7 distinct motifs. A
sector can be defined in more than one way, as shown in Fig. 2. In this example,
only one motif is asymmetric and appears in a pair with reflection; we call it
a non-singular motif. The ‘disc’ appears six times in different sizes, making it
also non-singular. Every other motif occurs exactly once and is referred to as a
singular motif. A non-singular motif may occur in different orientations and/or
sizes.

2.1 Important Facts

The literature on mandalas, as referenced in §1, reveals key aspects of their com-
position, detailed in the following facts. It is crucial to note that these observa-
tions pertain strictly to mandalas of flawless precision. Handcrafted mandalas,
and their digital counterparts, often exhibit noise and deviations, necessitating
adjustments for accurate analysis and scientific interpretation. This is addressed
later in §3. We first explicate here certain important facts related to mandala
composition, with a reference to Fig. 3.

Fact 1. A mandala typically features a concentric, rotationally symmetric cen-
tral motif, which acts as its focal point.

Fact 2. The focal point of a mandala being invariably its center, every
symmetric-and-singular motif aligns its axis towards this central point.
1 A mandala typically has a unique central motif, but occasionally it may have more

than one, such as a disc encircled by a ring.



346 T. Sarkar et al.

Fact 3. To maximize symmetry and harmony, mandalas typically feature a pre-
dominance of symmetric motifs over asymmetric ones.

Fact 4. An asymmetric motif typically appears in a non-singular manner, along-
side its mirror image.Furthermore, when it is large in terms of area or perimeter,
the mirroring occurs relative to the axis of symmetry of the corresponding sector.

Fact 5. Excluding the central motif, every motif occurs a multiple of ψ
M

times
throughout the mandala.Furthermore, if a motif X appears k times in sector j,
labeled X

(j)
i for i ∈ [1, k] and j ∈ [1, ψ

M
], then, for every i ∈ [1, k], the centroids

of
{
X

(j)
i : j ∈ [1, ψ

M
]
}

form a regular ψ
M

-vertex convex polygon concentric with
the center of the mandala.

The above facts collectively describe the composition of a mandala, ensur-
ing its overall symmetry, sector symmetry, and motif symmetry. This symme-
try converges towards the focal point, reflecting a mandala’s symbolism and
enhancing its spiritual significance for deep contemplation. These facts, along
with additional geometric characterizations of motif centroids presented in the
forthcoming section, are used to analyze the structural properties of a mandala,
as discussed in §3.

2.2 Geometric and GCD-Based Characterization

We first introduce a few terminologies and their definitions needed for our work,
with reference to Fig. 4. Consider a perfectly composed mandala M, with its set
of motif centroids (real points) denoted by S. A point p in S is said to be covered
by a curve (e.g., a circle or a polygon) if p lies on that curve. A set K of curves
is said to cover S if every point in S is covered by some curve in K.

A polygon is convex if all its interior angles are less than 180◦. For example,
in Fig. 4(c), the topmost point is covered by the blue polygon, which is convex.
A convex polygon is termed regular if all its sides are of equal length and all
interior angles are also equal. In Fig. 4(c), all but the blue polygon are regular.

The convex hull of S is the smallest convex polygon that contains all the
points in S. Hull peeling (a.k.a. ‘onion peeling’) is the technique of finding the
convex hull of S, removing its vertices, and then repeatedly finding the convex
hull of the remaining points until no points remain. In a similar manner, circular
peeling is the technique of finding the smallest enclosing circle of S, and then
repeatedly finding the next, until no points remain. Each circle found by this is
termed a circular layer. The point set S in Fig. 4 has three hull layers and four
circular layers. With the above terminologies in place, we herein introduce the
following definitions. Let S denote the set of motif centroids of a perfect mandala
excluding its central motif, and let V (·) denote the set of vertices of a polygon
or of a collection of polygons, as applicable.

Definition 1. Each convex hull found by the hull peeling of S is termed a
hull layer, while each circle obtained by its circular peeling is a circular layer.
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Fig. 4. Top row: A point set S and its three classes of cover, demonstrating The-
orem 1 and the many-to-one maps from Kr(S) to Kh(S) and from Kr(S) to Kc(S).
Bottom row: Corresponding covers for a point set S′, which is obtained by perturbing
a few points of the set S in (a); perturbed points are colored red; K�

r (S
′) =pseudo-

regular cover of S′.

Definition 2. The hull cover of S, denoted by Kh(S), is defined as the collec-
tion of its hull layers, while its circular cover, denoted by Kc(S), is defined as
the collection of its circular layers.

Observe that a hull layer may not be regular, and in that case, its vertex set
may be partitioned into a collection of fewest subsets so that each subset gives a
regular polygon. For example, the blue polygon in Fig. 4(c) is not regular but its
vertex set can be partitioned into three subsets, each forming a regular hexagon,
as shown in Fig. 4(d). This minimum partition corresponds to a regular cover,
as defined below.

Definition 3. The regular cover of S, denoted by Kr(S), is the smallest col-
lection of regular polygons whose vertex sets are obtained by a partitioning of the
vertex sets of the individual layers in Kh(S). A polygon in Kr(S) is termed a
regular layer of S.

In practical scenarios, a small perturbation of the points will increase the
number of circular layers, with minimal or no effect on the number of hull layers.
This is illustrated in Fig. 4(e–h). Notice that some of the polygons in Fig. 4(h) are
not regular, and we refer to them as ‘pseudo-regular’ because they can be made
regular with a little adjustment of the vertices. We revisit such scenarios later
in §3.
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We complete this section with the following theoretical findings, which are
essential for analyzing the structural composition of mandalas. In the context
that follows, “points in a layer” refers to the points of S covered by the layer.
Similarly, “a layer covers another layer” means the points of S in the latter are
covered by the former.

Theorem 1. Each layer in Kh(S) covers at least one layer in Kc(S). Addition-
ally, it may cover all or some points of other layers in Kc(S).

Proof. We provide a constructive argument. Let C1, . . . , Cm be the layers in
the collection Kc(S), and H1, . . . , Hn be those in Kh(S), arranged in decreasing
order of size in each collection. Observe that the polygon obtained by joining
any set of points lying on any circle (in clockwise or counterclockwise order) is
always convex. Hence, all points in the layer C1 are covered by H1. Moreover,
H1 may cover some points lying in another layer Ci, where i ≥ 2. Proceeding in
this manner, assume that C1, . . . , Ci are all covered by H1, . . . , Hi, where i ≥ 1.
For the next circular layer Ci+1, there are three possibilities as follows:

i) Ci+1 is covered by Hi alone.
ii) No point of Ci+1 is covered by Hi.
iii) Some but not all points of Ci+1 are covered by Hi.

For the first case, no new hull layer is needed. For the other two cases, we
need a new hull layer, namely Hi+1, to cover Ci+1. ��

Definition 3 implies that each layer P in Kr(S) is covered by a unique layer
in Kh(S). Further, being a regular polygon, P is covered by a unique layer in
Kc(S). Combining these two facts, we get the following corollary.

Corollary 1. There exists a many-to-one map from Kr(S) to Kh(S), and
another from Kr(S) to Kc(S).

Using the above result, we obtain the following two theorems that are impor-
tant in the context of our work.

Theorem 2. Let H be any layer in Kh(S). Let P := {Pi : i ∈ [1,m]} be the
collection of regular layers obtained from H. Let Sj be the subset of V (P) covered
by a circle Cj in Kc(V (P)). Then, gcd{|V (Pi)| : i ∈ [1,m]} divides |Sj |.
Proof. Since every layer Pi in P is a regular polygon, V (Pi) gets covered by a
unique circle in Kc(V (P)). Let that circle be Cj . Additionally, due to the many-
to-one map from Kr(S) to Kc(S) (Corollary 1), Cj may cover the vertices of
some more polygons in P. Denote by Pj := {P i

j : i ∈ [1,mj ]} the layers in P

covered by Cj . Let gj denote gcd{|V (P i
j )| : i ∈ [1,mj ]}. Since the polygons in P

are pairwise vertex-disjoint, and the sum of two or more numbers is divisible by

their GCD, it follows that gj divides
mj∑
i=1

|V (P i
j )| := |Sj |.

Let n be the number of layers in Kc(V (P)). Let g denote gcd{gj : j ∈ [1, n]},
which is identical with gcd{|V (Pi)| : i ∈ [1,m]}. Since g divides gj and gj divides
|Sj | for j ∈ [1, n], the result follows. ��
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The following theorem is an extension of the above theorem and states how
the same GCD can be used to for a characterization of Kh. The notations H
and P remain the same as above.

Theorem 3. For any H in Kh(S), gcd{|V (Pi)| : i ∈ [1,m]} divides |V (H)|.
Proof. Let g := gcd{|V (Pi)| : i ∈ [1,m]}. Observe that g divides |V (Pi)| for
i ∈ [1,m], and hence divides |V (P)| = |V (H)|, as explained in the proof of
Theorem 2. ��

The above theorems are used to characterize the order of symmetry ψ
M

for
a perfect mandala M, stated in the following theorem.

Theorem 4. The number of points in S covered by every layer, whether in
Kc(S), Kh(S), or Kr(S), is divisible by ψ

M
.

Proof. Consider any motif X in M. Suppose that it appears k times in the j-th
sector, denoted as X

(j)
i , where k � 1, i ∈ [1, k], and j ∈ [1, ψ

M
]. By Fact 5, we

know that for every i ∈ [1, k], the centroids of
{
X

(j)
i : j ∈ [1, ψ

M
]
}

form a regular

ψ
M

-vertex convex polygon P
(j)
i whose center coincides with that of the mandala.

Clearly, for the set PX :=
{

P
(j)
i : i ∈ [1, k]

}
, the corresponding vertices will be

covered by a single circle C in Kc(S). The circle C additionally may cover all
the centroids corresponding to another motif. By Theorem 2, the number of
points covered by C will be divisible by ψ

M
. By Theorem 3, and with a similar

argument, this will also be true for every layer in Kh(S) or Kr(S). ��
Absolute precision or perfection is not found in handcrafted or computer-

generated mandalas. Hence, Theorem 4 is not directly applicable for determining
the value of ψ

M
in practice. However, it can be adapted to align with our needs,

as discussed next.

3 Peel and Pool: Analyzing Digitized Mandalas

As we mentioned earlier, the digital image of a mandala is usually not perfect
because its motifs are not accurately arranged in different layers. Further, the
different instances of a particular motif in a particular layer are not exactly same.
As a result, to identify and rearrange the motifs, we have to do a rectification.
For this, we verify different measures associated with the motifs. Two values of
any measure are considered the same if their relative difference (with respect to
their sum) is within a small error margin, ε. This error margin is the same as
the one used in Algorithm 1 (Line 4). Based on our experiments and empirical
observations, we have set the value of ε to 0.05. A rationale for this is explained
in §4.

The measures are taken for both the motifs and the layers. For motifs, the
measures include their attributes as well as polar radii. For each layer, the mea-
sure depends on the type of layer. For example, a set of motifs are considered to
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Fig. 5. Hull layers and regular layers in a mandala (hda14a). The order of symmetry
is 6, as the number of centroids in each regular layer is either 6 or a multiple of 6.

Algorithm 1: PeelAndPool(M)
1 Extract the hull layers {Hi : 1 � i � h} by onion peeling of M
2 for every layer Hi do
3 set Vi ← sequence of vertices of Hi

4 Compute a minimum partition of Vi: π(Vi) ← {Vi,1, . . . , Vi,m} such that
∀ 1 � s � m, ∀ f ∈ {α, β, γ, φ}, max{fu:u∈Vi,s}−min{fu:u∈Vi,s}

max{fu:u∈Vi,s}+min{fu:u∈Vi,s} � ε

5 for j ∈ [1, m] do
6 Compute a minimum partition of Vi,j : π(Vi,j) ← {Vi,j,1, . . . , Vi,j,t}

such that each Vi,j,k is pseudo-regular and the twin motifs are in
different parts // pseudo-regular layers

7 for each V ∈ π(Vi,j) do
8 r ← 1

|V |
∑

u∈V

ru // ru = polar radius of u

9 Fix the motif centroids uniformly on a circle of radius r
// regular layers

10 gi ← gcd{|V | : (V ∈ π(Vi,j)) ∧ (1 � j � m)} // Theorem 2

11 ψM ← gcd{|gi| : 1 � i � h} // Theorem 4

be in the same circular layer if the polar radii of their centroids, taken pairwise,
have a relative difference of at most ε. For the hull layers, the interior angles of
the polygons are used as measures, and for the regular layers, the edge lengths
are considered to determine whether motifs belong to the same layer. Figure 5
shows an example, illustrating hull layers and regular layers.

3.1 Identification of Layers and Order of Symmetry

To identify hull layers and regular layers, and to determine the order of symme-
try, we use the theoretical concepts discussed in §2.2. The main steps are given in
Algorithm 1. After computing the motif centroids, the hull layers are extracted,
as shown in Line 1. Then the following features of the motifs are extracted for
each hull layer to partition it into pseudo-regular layers:

1. α = area of a motif, measured by its number of pixels.
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Fig. 6. Demonstration of our algorithm on hdalpona9. The mandala is imperfect
because the collection of circular layers changes after rectification. All its layers are
rectified by our algorithm to obtain a structurally perfect mandala.

2. β = compactness ratio, defined as the ratio of the square of the perimeter to
the area of a motif [8].

3. γ = solidity, defined as the ratio of the area of the motif to the area of its
convex hull.

4. φ = interior angle of the hull layer (polygon) measured at the motif centroid.

The pseudo-regular layers are obtained in two stages, shown in Line 4 and
Line 6. In Line 4, the above four features are used to partition a hull layer,
while in Line 6 the partition is further subdivided based on edge lengths and
twin motifs. We call two asymmetric motifs X′ and X′′ a ‘twin’ if they are
approximately identical under reflection, i.e., their relative difference (ratio of
difference to α(X′)+α(X′′)) after reflecting one of them is at most ε. To compare
the edge lengths we also use ε as a tolerance. We ensure that the maximum
normalized standard deviation (ratio of standard deviation to the average) of
all edge lengths in every pseudo-regular layer is at most ε. Using the number of
motifs in these pseudo-regular layers, we determine the value of ψ

M
in Line 11.

A demonstration is given in Fig. 6. After obtaining the hull layers, the pseudo-
regular layers and the order of symmetry are derived.

3.2 Mandala Rectification

After gathering all the pseudo-regular layers of M in Line 6 of Algorithm 1, we
proceed to correct the imperfections in M. As shown in Lines 7–9, we adjust the
polar coordinates (r, θ) of the centroids for each pseudo-regular layer to equalize
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Fig. 7. Result obtained by our algorithm on the mandala mta802a2 (one half shown).
This is found to be almost perfect by our algorithm (σmax = 0.008, Table 1).

their edge lengths so that the layer is regular. This is done by setting the polar
radii of the centroids to the same value given by the arithmetic mean r̄ of all the
polar radii within the layer. We then identify the centroid u ∈ V whose polar
radius ru is closest to r̄. By aligning u to its nearest line of symmetry and setting
ru = r̄, we position the remaining centroids of V with an angular spacing of 360◦

|V |
between every two consecutive centroids. This process is demonstrated in Fig. 6.

4 Experiments and Results

The algorithm is completely implemented in Python. The code is executed
in a Lenovo IdeaPad Flex 5 laptop having 11th Gen Intel Core i7-1165G7
CPU@2.80GHz and 16GB RAM. The mandalas in our test dataset are either
handcrafted by professional artists on paper or on a tablet using a stylus, or they
are computer-generated. The physical sizes of the mandalas range from 4 inches
to 12 inches in diameter. The images of the ones drawn on paper are acquired by
cameras in ordinary mobile phones. Visual results on some of them are presented
in Figs. 6, 7, 8 and 9.

In Table 1, we have presented the results for some images to assess the per-
formance of our algorithm. It contains the image details including geometric
properties of the mandalas and CPU times for different stages of our algorithm.
An important property of a mandala image is the amount of perfection in its
structural composition captured in its regular layers. For every pseudo-regular
layer, we use the normalized standard deviation of its edge lengths, measured
by the usual standard deviation divided by their average. We consider σmin,
σmax, and σavg as the respective minimum, maximum, and average values of the
normalized standard deviations over all pseudo-regular layers of the mandala.
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Table 1. Statistical details demonstrating the performance of the algorithm on different
mandalas. Tprim, Thull, Tregu = respective CPU times (in seconds) for extraction of
motifs and their features, for extracting hull layers and computing ψM , and for pooling
pseudo-regular layers. Trect = time for rectification. T = Tprim + Thull + Tregu + Trect.

Image name n ψM size |Kh(S)| |Kr(S)| σmin σmax σavg Tprim Thull Tregu Trect T

1 hda9 41 4 1467 × 1500 6 9 0.006 0.027 0.015 0.024 0.010 0.002 10.645 10.681
2 mta602b1 79 6 536 × 536 8 10 0.001 0.0035 0.002 0.020 0.018 0.003 1.408 1.449
3 hda14 79 6 1000 × 1000 7 13 0.001 0.009 0.004 0.018 0.016 0.003 3.324 3.361
4 mta803c 193 8 1000 × 1000 10 13 0.002 0.011 0.006 0.017 0.046 0.005 3.251 3.319
5 mta12d1 217 8 1000 × 1000 8 8 0.01 0.022 0.014 0.019 0.052 0.005 3.237 3.313
6 mta802a2 353 8 1000 × 1000 11 15 0 0.008 0.003 0.021 0.082 0.008 3.411 3.522
7 mta607c2 529 6 1000 × 1000 14 16 0.001 0.013 0.004 0.023 0.154 0.012 3.31 3.499
8 mta16j1 889 8 594 × 594 19 22 0 0.012 0.006 0.027 0.295 0.022 3.225 3.569

From our experiments we can see that the value of σmin is quite low for all the
mandala images, whether they are handcrafted or computer-generated. On the
contrary, the value of σmax differs from one mandala to the other quite signifi-
cantly depending on the level of accuracy. In computer-generated instances, the
accuracy is more, whereas it is usually not so for handcrafted ones. For example,
for the first image in Table 1, the value of σmax is much higher than that in the
second image because the former is handcrafted by an artist but the latter is
computer-generated. Observe that for all the mandalas in this table, the value
of σmax is within 0.05, which provides a justification of setting the value of ε to
0.05, as mentioned earlier in §3. In Fig. 7, we can see an example of an almost
perfect mandala, which is evident from its low value of σmax in Table 1.

Regarding the execution time of our algorithm, an important observation
is that the time to extract motifs and their features and the time to rectify
distortions depend on the size of the image. This is evident from the fact
that hdalpona9 requires significantly longer time to be analyzed and corrected,
in spite of having fewer motifs. Additionally, the time to rectify is influenced by
the degree of distortion present in the mandala, as seen particularly with the
fourth image, which has a high σmax.

Observe that most of the execution time is consumed by the rectification
process. This step is lengthy because it evaluates and corrects each pixel in
every motif of the mandala. In contrast, the time required for extracting hull
and regular layers is much shorter, as it only involves the motif centroids. The
CPU execution time for layer extraction primarily depends on the number of
motifs.

In Fig. 9, we provide a step-by-step demonstration of our algorithm on a
larger and denser computer-generated mandala. The mandala is distorted to test
our algorithm’s performance. The improvement is evident from the decreased
number and better alignment of the circular layers after rectification, as shown
in Fig. 9(c, g).
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Fig. 8. Results by our algorithm on mta12d1. It accurately identifies the hull layers in
a mandala, even in the presence of distortions. Circular layers are grossly incorrect in
the original image but corrected in the final result.

The correctness of our algorithm depends on whether it can extract the hull
layers and the pseudo-regular layers correctly. In case of excessive distortions and
noise, these layers may not be correctly identified, which is illustrated through
an example in Fig. 10. From this example, it is apparent that the coalescence of
certain motifs causes our algorithm to fail in correctly extracting the hulls.

5 Concluding Notes

To the best of our knowledge, no existing work analyzes and characterizes the
structural composition of mandalas, particularly when they are imperfect. The
novel technique introduced in this paper is based on the classical concept of
repeated convex hulls for peeling a point set, offering a high-level description
of a mandala that can be applied in subsequent computational art applications.
This technique can be further explored to address mandalas with abnormal noise
and distortions and may be enhanced by incorporating suitable machine learning
techniques. Additionally, the contours of the motifs, often quite jagged, may be
smoothed in the final mandala after rectification. Furthermore, the technique’s
applicability can be extended to other similar art forms such as Alpona, Rangoli,
and Kolam.
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Fig. 9. Demonstration of our algorithm on mta803c. It is identified as an imperfect
mandala and its pseudo-regular layers are corrected to regular layers to obtain a recti-
fied mandala. (i) Yellow = pixels in the motifs of the rectified mandala but not in the
original one; blue = those in the original mandala but not in the rectified one.
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Fig. 10. The mandala mta503b with excessive noise.In such images, our algorithm does
not yield perfect results.The main reason is that some motifs coalesce together or break
apart, resulting in incorrect centroids.
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Abstract. Towards Video Anomaly Detection (VAD), existing meth-
ods require labor-intensive data collection and model retraining, making
them costly and domain-specific. The proposed method, termed as Multi-
modal Caption Aware Network (MCANet), introduces a novel paradigm
that identifies anomalies in video sequences without requiring prior
domain knowledge. This training-free VAD approach dynamically gener-
ates and analyzes textual descriptions of video frames by utilizing off-the-
shelf vision-language model (VLM), audio-language model (ALM) and
large language model (LLM). MCANet has four primary modules. The
first module utilizes image-text similarities to clean noisy captions gen-
erated by the image captioning model, while the second module applies
audio-text similarities to refine noisy captions produced by the audio cap-
tioning model. The third module employs a LLM to consolidate scene
dynamics over time. Finally, the fourth module enhances the results by
aggregating scores from semantically similar frames based on video-text
similarity. To validate the effectiveness of the proposed method, experi-
ments are conducted on two large-scale benchmark datasets (UCF-Crime
and XD-Violence). Experimental results demonstrate that MCANet sur-
passes existing unsupervised and one-class approaches without requiring
any training or data collection.

Keywords: Video Anomaly Detection · Large Language Model ·
Vision Language Model · Audio Language Model · Multimodal captions

1 Introduction

Video Anomaly Detection (VAD) has emerged as a pivotal method in identifying
abnormal events within video sequences, garnering significant attention due to
its broad applications in public safety and video content analysis. VAD method-
ologies are broadly classified based on the annotation type of the training data
into unsupervised, weakly-supervised, and fully-supervised categories. Unsuper-
vised approaches are designed to train on normal or unlabeled videos, while
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weakly supervised methods utilize video-level labels for both normal and abnor-
mal videos. Though less prevalent due to the intensive requirement for frame-
by-frame annotations, fully-supervised methods offer precise anomaly detec-
tion. Recent advancements in VAD leverage multi-modal large language models
(MLLMs) pre-trained on extensive datasets, significantly enhancing detection
accuracy and efficiency. The practical applications of VAD span various domains,
including intelligent manufacturing, traffic surveillance, and public security. Con-
ventional VAD techniques predict anomaly scores for each frame in the video
sequence, with higher scores indicating a greater likelihood of anomalies. These
methodologies emphasize automation, progressively advancing towards more
robust and reliable VAD systems.

Existing state-of-the-art(SOTA) methods necessitate a training procedure to
establish an accurate VAD system, which entails certain limitations. A primary
concern is generalization: a VAD model trained on a specific dataset tends to
underperform in videos recorded under different conditions (e.g., daylight versus
night scenes). Moreover, data collection poses a significant challenge, particu-
larly in application domains like video surveillance, where privacy issues can
impede data acquisition. Therefore, to address these issues, a novel training-
free approach is introduced that identifies anomalies in video sequences without
requiring prior domain knowledge. The comaparison of the proposed method
with existing methods is showcased in Fig. 1.

This paper aims to address these challenges by proposing the training-free
Multi-modal Caption Aware Network (MCANet), which leverages pre-trained
vision-language models (VLMs) and large language models (LLMs) for VAD.
MCANet employs an off-the-shelf captioning model to generate textual descrip-
tions for each video frame and integrates an audio-text captioning model to
capture audio cues that contribute to the detection process. The combination
of visual-text and audio-text captions provides a richer context, enhancing the
model’s ability to identify anomalies. To address noise in the captions, a cleaning
process based on cross-modal similarity between captions and frames is intro-
duced. Additionally, to capture scene dynamics, an LLM summarizes captions
within a temporal window, generating an anomaly score for each frame, which is
refined by aggregating anomaly scores from frames with similar temporal sum-
maries. MCANet is evaluated on two large-scale benchmark datasets UCF-Crime
and XD-Violence, demonstrating that this training-free approach outperforms
unsupervised and one-class VAD methods, showing that VAD can be effectively
addressed with no training and no data collection.

In summary, the contributions of this paper are as four-fold:

1. A novel training-free VAD approach is introduced that identifies anomalies
in video sequences without requiring prior domain knowledge.

2. A Multi-modal Caption Aware Network (MCANet) is introduced as the first
language-based method for training-free VAD, utilizing Large Language Mod-
els (LLMs) to detect anomalies solely from scene descriptions.
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Fig. 1. Comparison with existing methods

3. MCANet consists of four main modules: the first two clean and refine noisy
captions using image-text and audio-text similarities, respectively. The third
module consolidates scene dynamics using an LLM, while the fourth aggre-
gates scores from semantically similar frames based on video-text similarity.

4. Experiments results demonstrate that MCANet achieves competitive results
on UCF-Crime and XD-Violence compared to unsupervised and one-class
VAD methods without task-specific supervision or training.
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2 Related Work

2.1 Video Anomaly Detection

Unsupervised video anomaly detection aims to identify unusual events in video
data without requiring labeled training samples. This approach is crucial in sce-
narios where acquiring annotated data is challenging or impractical. For instance,
Zhao et al. [1] utilized LSTM to leverage the spatio-temporal correlations among
consecutive frames in normal videos. Lee et al. [2] employed Vision Transformer
with spatio-temporal contextual prediction streams to enhance performance on
the VAD task. These methods typically rely on the assumption that anomalies
are rare and distinct from normal patterns. These unsupervised methods [3–6]
offers scalability and adaptability by learning from unlabeled data, it often falls
short in accuracy and robustness due to the lack of explicit guidance on what
constitutes anomalies. Consequently, Weakly supervised video anomaly detec-
tion has emerged as a highly attractive and widely adopted technique in the
research community. This approach leverages limited labeled data, often only
at the video level, to learn discriminative features that can distinguish between
normal and abnormal events. For instance, Sultani et al. [7] pioneered the use
of a weakly supervised multiple instance learning (MIL) framework for video
anomaly detection, where videos are considered as bags of segments. Their model
is designed to assign higher anomaly scores to anomalous segments and lower
scores to normal ones. However, their approach does not account for the temporal
relationships between video segments and struggles to extract features that effec-
tively discriminate between normal and anomalous snippets. Addressing these
limitations, Huang et al. [8] enhanced the MIL framework by introducing a dis-
criminative feature encoder that improves the distinction between normal and
anomalous segments, along with a temporal feature aggregator that captures
long-term dependencies across video sequences. Ullaha et al. [9] also developed a
novel anomaly detection based on deep convolutional neural network and multi-
head sequential attention-based temporal mechanism. Recently, Karim et al. [10]
proposed an online video anomaly detection model that utilizes an end-to-end
methodology. This approach enables the automatic extraction of features directly
from raw videos, contrasting with traditional methods that depend on separate
feature encoders and classifiers in ad-hoc settings.

2.2 Video-Based Large Language Models (VLLMs)

Video-based Large Language Models (VLLMs) have shown substantial progress
in understanding and reasoning over language and visual content, reflecting the
growing interest in applying Large Language Models (LLMs) to multimodal
challenges. These models integrate the dynamic visual information of videos
with the rich contextual details provided by textual descriptions. The efficacy of
VLLMs in tasks such as video captioning [11], video understanding [12,13], image
patch summarization [14], and interactive learning [15] highlights their potential
to transform how machines understand and interact with complex, real-world
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data. Bain et al. [16] proposed an end-to-end dual encoder architecture for text-
video retrieval. Li et al. [17] introduced a chat-centric video dialogue system by
leveraging LLM. Zhang et al. [18] developed an audio-visual language framework
empowering LLM for effective video understanding. Chen et al. [13] utilized
LLM to handle video understanding tasks seamlessly. Lin et al. [19] presented a
robust large vision language model that integrates visual representations into the
language feature space, enabling the model to effectively interpret both images
and videos. He et al. [20] devised a memory bank to store historical video content,
enabling effective long-term video analysis without exceeding LLMs’ context
length or GPU memory limits. This approach significantly enhanced performance
in tasks like video question answering and captioning, surpassing state-of-the-art
models.

3 Methodology

In this section, the Video Anomaly Detection (VAD) problem is formalized,
and the proposed training-free approach is outlined. The capabilities of Large
Language Models (LLMs) in assigning anomaly scores to video frames are then
examined. The proposed method framework is presented in Fig. 2.

3.1 Problem Formulation

Given a test video V = [f1, . . . , fN ] of N frames, traditional VAD methods aim
to learn a model g, which can classify each frame f ∈ V as either normal (score 0)
or anomalous (score 1), i.e., g : (I ×A)N → [0, 1]N with I being the image space
and A being the audio space. g is usually trained on a dataset D that consists
of tuples in the form (V, y). Depending on the supervision level, y can be either
a binary vector with frame-level labels (fully-supervised), a binary video-level
label (weakly-supervised), a default one (one-class), or absent (unsupervised).
However, in practice, it can be costly to collect y as anomalies are rare, and V
itself due to potential privacy concerns. Moreover, both label and video data
may need regular updates due to evolving application contexts.

In contrast to traditional methods, this paper presents a novel approach to
VAD, termed training-free VAD. In this innovative setup, the goal is to estimate
the anomaly score for each f ∈ V using only pre-trained models during inference,
eliminating the need for any training or fine-tuning involving a training dataset
D.

3.2 MCANet

A novel approach, Multi-modal Caption Aware-Video Network (MCANet) for
video anomaly detection, is proposed by leveraging advancements in Large Lan-
guage Models (LLMs). The framework is depicted in Fig. 2. Recognizing the
emerging use of LLMs in VAD, the initial step involves evaluating their abil-
ity to generate anomaly scores based on textual descriptions of video frames. A
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Fig. 2. Proposed Framework

state-of-the-art image-to-text captioning model, θI , specifically FUSECAP [21],
is utilized to convert each frame f ∈ V into a textual description, along with an
audio-to-text captioning model, θA, specifically HTSAT, to convert each frame
f ∈ V into a textual description. Anomaly score estimation is then addressed as
a classification task, instructing an LLM, θLLM , to choose a score from a list of
uniformly sampled values ranging from 0 to 1, with 0 indicating normal and 1
indicating an anomaly. The anomaly score is computed as follows:

θLLM (PC ◦ PO ◦ θI(f) ◦ θA(f)) (1)

Here, PC is a context prompt that provides priors to the LLM regarding
VAD, and PO guides the LLM on the desired output format for automated text
parsing. The symbol ◦ denotes the text concatenation operation. PC is used
to simulate the perspective of a potential user of the VAD system, such as a
security analyst, to enhance the LLM’s effectiveness in generating the output.
For instance, a PC prompt could be: “If you are a security analyst, how would
you rate the event described on a scale from 0 to 1, where 0 represents a normal
event and 1 denotes an event with anomalous activities?” It is important to note
that PC does not inherently encode any specific information about the type of
anomalies but rather provides context.

MCANet breaks down the VAD function f into seven components. As in
the initial study, the first two are the captioning module θC and θA, which
maps images to textual and audio to textual descriptions in the language space
T respectively. Mathematically, θC : I → T and θA : A → T and the LLM
θLLM which generates text from language queries, i.e., θLLM : T → T . The
remaining elements involve three encoders that map input representations to a
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shared latent space Z. Specifically, these are the image encoder EI : I → Z,
the textual encoder ET : T → Z, the audio encoder EA : A → Z and the
video encoder EV : V → Z for videos. Note that all seven elements employ only
off-the-shelf frozen models.

Following the encouraging results of the preliminary analysis, MCANet uti-
lizes θLLM and θC to compute the anomaly score for each frame. MCANet
is designed to address limitations related to noise and lack of scene dynamics
in frame-level captions by introducing three components: i) Image-Text Cap-
tion Cleaning through the vision-language representations of EI and ET , ii)
LLM-based Anomaly Scoring, encoding temporal information via θLLM , and
iii) Video-Text Score Refinement of the anomaly scores via video-text similar-
ity, using EV and ET . Each component is described in detail in the following
sections.

3.3 Image Captioning Branch

Image-Text Caption Cleaning. For each test video V, θC is first employed
to generate a caption C

(img)
i for each frame fi ∈ V. Specifically, C(img) denotes

the sequence of captions, C(img) = [C(img)
1 , . . . , C

(img)
M ], where C

(img)
i = θC(fi).

However, as discussed in Sect. 3.2, the raw captions can be noisy, containing
broken sentences or incorrect descriptions.

To address this issue, the entire set of captions C is used, under the assump-
tion that within this set, there exist accurate and complete captions for the
frames. This assumption is based on the typical scenario where a video features
a scene captured by static cameras at a high frame rate, leading to overlapping
semantic content among frames regardless of their temporal distances. There-
fore, caption cleaning is treated as finding the semantically closest caption to a
target frame fi within C(img). Formally, vision-language encoders are used to
create a set of caption embeddings by encoding each caption in C(img) via ET ,
i.e., {ET (C(img)

1 ), . . . ,ET (C(img)
M )}. For each frame fi ∈ V, its closest semantic

caption is computed as:

Ĉ
(img)
i = arg max

C∈C(img)
〈EI(fi) · ET (C(img))〉, (2)

where 〈·, ·〉 denotes cosine similarity, and EI is the image encoder of the VLM.
The cleaned set of captions is then constructed as Ĉ(img) = [Ĉ(img)

i , . . . , Ĉ
(img)
M ],

replacing each initial caption C
(img)
i with its counterpart Ĉ

(img)
i retrieved from

C(img). By performing this caption-cleaning process, captions of frames that are
semantically more aligned with the visual content can be propagated, regardless
of their temporal positioning, to improve or correct noisy descriptions.

3.4 Audio Captioning Branch

Audio-Text Caption Cleaning. For each test video V, θA is first employed
to generate a caption C

(aud)
i for each audio segment ai ∈ V. Specifically,
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C(aud) denotes the sequence of captions, C(aud) = [C(aud)
1 , . . . , C

(aud)
M ], where

C
(aud)
i = θA(ai). However, as discussed in Sect. 3.2, the raw captions can be

noisy, containing broken sentences or incorrect descriptions.
To address this issue, the entire set of captions C is used, under the assump-

tion that within this set, there exist accurate and complete captions for the audio
segments. This assumption is based on the typical scenario where a video fea-
tures a scene captured with continuous audio recording, leading to overlapping
semantic content among audio segments regardless of their temporal distances.
Therefore, caption cleaning is treated as finding the semantically closest caption
to a target audio segment ai within C(aud). Formally, audio-language encoder is
used to create a set of caption embeddings by encoding each caption in C(aud)

via ET , i.e., {ET (C(aud)
1 ), . . . ,ET (C(aud)

M )}. For each audio segment ai ∈ V, its
closest semantic caption is computed as:

Ĉ
(aud)
i = arg max

C∈C(aud)
〈EA(ai) · ET (C(aud))〉, (3)

where 〈·, ·〉 denotes cosine similarity, and EA is the audio encoder of the VLM.
The cleaned set of captions is then constructed as Ĉ(aud) = [Ĉ(aud)

i , . . . , Ĉ
(aud)
M ],

replacing each initial caption C
(aud)
i with its counterpart Ĉ

(aud)
i retrieved from

C(aud). By performing this caption-cleaning process, captions of audio segments
that are semantically more aligned with the auditory content can be propagated,
regardless of their temporal positioning, to improve or correct noisy descriptions.

3.5 LLM-Based Anomaly Scoring

The obtained caption sequence Ĉ(img), while cleaner than the initial set, lacks
temporal information. To address this, the LLM is leveraged to provide temporal
summaries. Specifically, a temporal window of T seconds, centered around fi, is
defined. Within this window, N frames are uniformly sampled, forming a video
snippet Si, and a caption sub-sequence Ĉ(img)

i = {Ĉ
(img)
n }Nn=1. The LLM is then

queried with Ĉ(img)
i and a prompt PS to get the temporal summary TSi centered

on frame fi:

TSi = θLLM (PS ◦ Ĉ(img)
i ) ◦ Ĉ(aud)

i (4)

where the prompt PS is formed as “Please summarize what happened in a few
sentences, based on the following temporal description of a scene. Do not include
any unnecessary details or descriptions.”

Coupling Eq. (4) with the refinement process of Eq. (3), a textual description
of the frame (TSi) which is semantically and temporally richer than C

(img)
i and

C
(aud)
i is obtained. With TSi, the LLM is queried for estimating an anomaly

score. Following the same prompting strategy described in Sect. 3.2, the LLM is
asked to assign to each temporal summary TSi a score zi in the interval [0, 1].
The score is obtained as:

zi = ΦLLM (PC ◦ PF ◦ TSi) (5)
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where, as in Sect. 3.2, PC is a context prompt containing VAD contextual priors,
and PF provides information on the desired output format.

3.6 Video-Text Score Refinement

By querying the LLM for each frame in the video with Eq. 5, the initial anomaly
scores of the video z = [z1, . . . , zM ] are obtained. However, z is purely based
on the language information encoded in their summaries, without considering
the whole set of scores. To further refine them, visual information is leveraged to
aggregate scores from semantically similar frames. Specifically, the video snippet
Si centered around fi and all the temporal summaries are encoded using EV and
ET , respectively. Let Ki be the set of indices of the K-closest temporal summaries
to Si in {TS1, . . . ,TSM}, where the similarity between Si and a caption TSj

is the cosine similarity, i.e., 〈EV (Si),ET (TSj)〉. The refined anomaly score z̃i is
obtained as:

z̃i =
∑

k∈Ki

zk · e〈EV (Si),ET (TSk)〉
∑

k∈Ki
e〈EV (Si),ET (TSk)〉 (6)

where 〈·, ·〉 denotes the cosine similarity. Note that Eq. (6) applies the same
principles as Eq. (3), refining frame-level estimations (i.e., score/captions) using
their visual-language similarity (i.e., video/image) with other frames in the video.
Finally, with the refined anomaly scores for the test video z̃ = [z̃1, . . . , z̃M ], the
anomalous temporal windows are identified via thresholding.

4 Experiments

This section provides a thorough evaluation of the MCANet framework. It begins
with a description of the datasets and evaluation metrics used in the experi-
ments, detailed in Sect. 4.1. The subsequent Sect. 4.2, outlines the implementa-
tion details of the approach. Qualitative results demonstrating the effectiveness
of MCANet are presented in Sect. 4.3. A detailed comparison with state-of-the-
art methods is presented in Sect. 4.4, followed by ablation studies in Sect. 4.5,
which assess the impact of each component of MCANet.

4.1 Datasets and Evaluation Metrics

Datasets: The experiments are conducted on two benchmark large-scale
datasets, namely UCF-Crime [7] and XD-Violence [22]. The UCF-Crime dataset
is a large-scale collection comprising 1,900 untrimmed real-world surveillance
videos. It includes both outdoor and indoor environments, offering a total dura-
tion of 128 h. The dataset is divided into 13 distinct classes of anomalous events
such as fighting, stealing, assault etc. XD-Violence is a large-scale multimodal
dataset that includes audio signals encompassing 4754 movies and YouTube
videos. The total duration of this dataset is 217 h. It includes 6 distinct classes
of anomalous events such as car accident, riot, explosion etc.
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Evaluation Metrics: To evaluate the anomaly detection performance, the
Area Under the Curve (AUC) of the frame-level receiver operating characteris-
tics (ROC) is used as the main evaluation metric for the UCF-Crime dataset.
Following [23], this evaluation calculates AUC for the entire test set, denoted
as AUC. Additionally, the AUC is computed specifically for abnormal videos,
referred to as Ano-AUC. This approach excludes normal videos where all clips
are labeled as normal (label 0), retaining only the abnormal ones containing
both normal and abnormal clips (labels 0 and 1). Moreover, the AUC of the
frame-level precision-recall curve (AP) is utilized for the XD-Violence dataset.

4.2 Implementation Details

The experiments are conducted on NVIDIA RTX 4070 GPU using the PyTorch
framework. For the optimization of the network, Adam is leveraged as the opti-
mizer with a batch size of 128. On the XD-Violence dataset, the learning rate
and total epoch are set as 5 × 10−4 and 50, respectively, and on the UCF-Crime
dataset, the learning rate and total epoch are set as 3 × 10−4 and 50, respec-
tively. In this study, the ViT in the LanguageBind model [24] serves as the Video
Encoder, the pre-trained ViT L/14 [25] is used as the image encoder, and the
VGGish network [26] is employed as the audio encoder. FUSECAP [21] is used
as vision-language model, while Pengi [27] is used as audio-language model that
serves as caption generators from visual frames and audio signals respectively.
Additionally, the pre-trained LLaMA from Video-LLaMA [18] is implemented
to retain general video description. For computational efficiency, each video is
randomly sampled at 16-frame intervals.

4.3 Qualitative Results

The frame-wise AUC results of sample test videos of UCF-Crime and XD-
Violence dataset are visualized in Fig. 3. Figure 3(a) and (b) depicts the quali-
tative results of Vandalism and Robbery anomaly from the UCF-Crime dataset.
Figure 3(a) and (b) shows the qualitative results of Vandalism and Robbery
anomaly from the XD-Violence dataset. It has been observed that the temporal
summaries generated by LLMs accurately capture the visual content of anoma-
lous situations. This depiction empowers MCANet to effectively identify the
anomalies, ensuring accurate detection of the abnormal events.

4.4 Quantitative Results

The proposed MCANet is compared with state-of-the-art(SOTA) approaches,
including one-class approaches [37–39], unsupervised approaches [4,6,42,43],
weakly-supervised approaches [7,23,28,29,31], training-free approaches [24,44–
46]. The performance comparison on the UCF-Crime dataset is presented in
Table 1. Remarkably, the proposed MCANet achieves better performance com-
pared to both one-class and unsupervised baselines. It achieves a higher AUC,
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Fig. 3. Qualitative results of the proposed method on UCF-Crime and XD-Violence
dataset. Figure 3(a) and Fig. 3(b) are from UCF-Crime. Figure 3(c) and Fig. 3(d) are
from the XD-Violence dataset. Blue curves show anomaly scores of our method. Light
Pink areas indicate the ground-truth abnormal frames. Each red and green box shows
the abnormal and normal event. Best viewed in color. (Color figure online)

with a significant improvement of +9.77% when compared to SACR [40] and
a minor improvement of +1.62% against the current state of the art obtained
by C2FPL [6]. Compared to training-free approaches, the proposed MCANet
achieves highest AUC of 82.47% and The performance comparison on the XD-
Violence dataset is reported in Table 2. Consistent with the results on UCF-
Crime, the proposed method outperforms all one-class [37–39], unsupervised
approaches [4,6,42,43] and training-free approaches [24,44–46] by a significant
margin in Average Precision (AP). For example, using I3D features, MCANet
performs better than BODS [39] by 13.08%, GODS [39] by +10.88%, DyAn-
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Table 1. Performance comparison on UCF-Crime

Supervision Method Features Explanation AUC(%) Ano-AUC(%)

Deep-MIL [7] C3D ✗ 75.42 54.25

HL-Net [28] I3D ✗ 82.45 60.27

MS-BSAD [29] I3D ✗ 83.54 –

Weak MSDeepNet [30] I3D ✗ 84.72 –

NG-MIL [31] I3D ✗ 85.63 –

RTFM [32] I3D ✗ 85.66 63.86

AnomalyCLIP [33] ViT ✗ 86.36 –

MGFN[34] VideoSwin ✗ 86.67 –

DMU [35] I3D ✗ 86.75 66.8

UB-MIL [23] X-CLIP ✗ 86.97 68.94

CLIP-TSA [36] CLIP ✗ 87.58 69.31

SVM baseline [7] – ✗ 50.10 –

Hasan et al. [37] – ✗ 51.20 39.43

One-Class SSV [38] – ✗ 58.50 –

BODS[39] I3D ✗ 68.26 –

GODS[39] I3D ✗ 70.46 –

SACR[40] – ✗ 72.70 –

Tur et al.[41] ResNet ✗ 65.22 –

Tur et al.[42] ResNet ✗ 66.85 –

Un Zaheer et al.[4] ResNext ✗ 74.20 –

DyAnNet[43] I3D ✗ 79.76 –

C2FPL[6] I3D ✗ 80.85 –

ZS-CLIP[44] ViT ✓ 53.16 48.67

ZS IMAGEBIND (IMAGE) [24] ViT ✓ 53.65 50.65

Training-Free ZS IMAGEBIND (VIDEO) [24] ViT ✓ 55.78 52.93

LLAVA-1.5 [45] ViT ✓ 72.84 62.14

LAVAD [46] ViT ✓ 80.28 63.21

Training-Free MCANet (Ours) I3D ✓ 81.34 65.78

MCANet (Ours) ViT ✓ 82.47 67.12

Net [43] by +1.58%, C2FPL [6] by +0.49%. However, the proposed training-free
approach fails to achieve satisfactory performance compared to recent weakly-
supervised approaches. This performance gap is due to the lack of specific visual
priors and the limitations of vision-language models (VLMs) and audio lan-
guage models (ALMs) in focusing predominantly on prominent foreground sig-
nals rather than contextually relevant background information.
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Table 2. Performance Comparison on XD-Violence

Supervision Method Features Explanation AUC(%) AP(%)

Deep-MIL [7] C3D ✗ – 75.18

HL-Net [28] I3D ✗ – 78.10

MS-BSAD [29] I3D ✗ – 78.92

Weak NG-MIL [31] I3D ✗ – 78.51

RTFM [32] I3D ✗ – 78.27

AnomalyCLIP [33] ViT ✗ – 78.55

MGFN [34] I3D ✗ – 79.19

MGFN [34] VideoSwin ✗ – 80.11

DMU [35] I3D ✗ – 82.41

CLIP-TSA [36] CLIP ✗ – 82.17

Hasan et al. [37] AERGB ✗ 50.32 –

One-Class Lu et al. [47] Dictionary ✗ 53.56 –

BODS [39] I3D ✗ 57.32 –

GODS [39] I3D ✗ 61.56 –

Un RareAnom [48] I3D ✗ 68.33 –

C2FPL [6] I3D ✗ 80.09 –

ZS-CLIP [44] ViT ✓ 38.21 17.83

ZS IMAGEBIND (IMAGE) [24] ViT ✓ 58.81 27.25

Training-Free ZS IMAGEBIND (VIDEO) [24] ViT ✓ 55.06 25.36

LLAVA-1.5 [45] ViT ✓ 79.62 50.26

LAVAD [46] ViT ✓ 85.36 62.01

Training-Free MCANet (Ours) I3D ✓ 86.81 68.19

MCANet (Ours) ViT ✓ 87.43 69.72

4.5 Ablation Studies

The ablations were carried out only on the UCF-Crime dataset. Initially, the
effectiveness of each proposed component of MCANet was evaluated. Subse-
quently, the influence of task priors in the context prompt on the estimation of
anomaly scores was analyzed.

Impact of Each Component of the Proposed MCANet. Experiments are
conducted to investigate the impact of each component of the proposed MCANet.
As shown in Table 3, The first row shows the results when both Image-Text
Caption Cleaning and Audio-Text Caption Cleaning components are omitted,
resulting in a significant degradation in performance, with an AUC of 78.53%.
In the second row, when only the Audio-Text Caption Cleaning component is
omitted, the AUC drops to 75.31%, demonstrating a substantial decrease of
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7.16% compared to the full model (row 5). The third row excludes LLM-based
Anomaly Scoring, relying solely on cleaned captions and video-text score refine-
ment, leading to an AUC of 74.70%. The significant drop of 7.77% in AUC
highlights the importance of the LLM’s role in summarizing temporal informa-
tion and accurately estimating anomaly scores. In the fourth row, when Video-
Text Score Refinement is not used, the AUC decreases to 75.79%, showing a
6.68% reduction compared to the full MCANet model. This result confirms the
critical contribution of score refinement, which aggregates scores from semanti-
cally similar frames to enhance the overall VAD accuracy. The final row shows
the complete MCANet model with all components included, achieving the high-
est AUC of 82.47%. This demonstrates the cumulative effectiveness of integrat-
ing Image-Text Caption Cleaning, Audio-Text Caption Cleaning, LLM-based
Anomaly Scoring, and Video-Text Score Refinement in boosting VAD perfor-
mance.

Table 3. Impact of each proposed component on the UCF-Crime Dataset.

Image-Text Audio-Text LLM-based Anomaly Video-Text Score AUC(%)

Caption Cleaning Caption Cleaning Scoring Refinement

✗ ✗ ✓ ✓ 78.53

✓ ✗ ✗ ✓ 75.31

✗ ✓ ✗ ✓ 74.70

✓ ✓ ✓ ✗ 75.79

✓ ✓ ✓ ✓ 82.47

Impact of Task Priors in the Context Prompt. The impact of task priors
in the context prompt was examined, and the results are presented in Table 4.
Specifically, two types of priors were investigated: anomaly prior and imper-
sonation. The anomaly prior involves guiding the LLM with context related to
anomalies, such as criminal activities, which could enhance the relevance of the
semantic context. Impersonation, on the other hand, allows the LLM to pro-
cess the input from the viewpoint of potential end-users of a VAD system, such
as law enforcement agencies. The ablation studies begin with a base context
prompt that does not include any specific priors: “How would you rate the event
described on a scale from 0 to 1, where 0 represents normal and 1 represents
anomalous behavior?” (Row 1). When only the anomaly prior is added to this
prompt (Row 2), there is a slight improvement in the AUC, reaching 81.79%,
suggesting that the anomaly prior does contribute positively, but not drastically,
to the performance of LLM. When the impersonation prior is used on its own
(Row 3), the AUC increases to 80.82%, indicating that having the LLM adopt
the perspective of a law enforcement agency improves its ability to detect anoma-
lies, though still not as effectively as the full context. Finally, incorporating both
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the anomaly prior and the impersonation (Row 4) results in the highest AUC of
82.47%, demonstrating the combined benefits of these priors in enhancing the
performance of LLM for anomaly detection. This suggests that both priors are
complementary, with their integration providing a more robust framework for
the LLM to assess anomalies in video data.

Table 4. Impact of task priors in the context prompt when querying for anomaly
scores.

Anomaly Prior Impersonation AUC(%)

✗ ✗ 80.48

✗ ✓ 80.82

✓ ✗ 81.79

✓ ✓ 82.47

5 Conclusion

To address training-free video anomaly detection (VAD), a novel framework
called MCANet is introduced. MCANet identifies anomalies in video sequences
without prior domain knowledge by leveraging off-the-shelf vision-language
model (VLM), audio-language model (ALM) and large language model (LLM).
It dynamically generates and analyzes textual and audio-visual descriptions of
video frames, using an innovative image-text and audio-text caption cleaning
module. These descriptions are processed through a prompting mechanism for
LLMs to perform temporal aggregation and anomaly score estimation. Experi-
mental results on two large-scale benchmark datasets demonstrate that MCANet
outperforms existing unsupervised and one-class approaches without any train-
ing or data collection. However, the performance of the MCANet heavily depends
on the quality of pre-trained models and the effectiveness of prompting strate-
gies, highlighting areas for further research and community involvement.
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Abstract. This paper presents a simple yet effective approach for the
poorly investigated task of global action segmentation, aiming at group-
ing frames capturing the same action across videos of different activities.
Unlike the case of videos depicting all the same activity, the temporal
order of actions is not roughly shared among all videos, making the task
even more challenging. We propose to use activity labels to learn, in
a weakly-supervised fashion, action representations suitable for global
action segmentation. For this purpose, we introduce a triadic learning
approach for video pairs, to ensure intra-video action discrimination, as
well as inter-video and inter-activity action association. For the back-
bone architecture, we use a Siamese network based on sparse transform-
ers that takes as input video pairs and determine whether they belong to
the same activity. The proposed approach is validated on two challenging
benchmark datasets: Breakfast and YouTube Instructions, outperform-
ing state-of-the-art methods.

Keywords: Temporal Action Segmentation · Weakly-Supervised
Learning · Video Alignment

1 Introduction

Action segmentation, the task of classifying each frame of an untrimmed
video plays a fundamental role in various applications such as video surveil-
lance, sports analysis, and content-based video retrieval [21,50]. Recently,
this task has received significant attention from the research community. The
most reliable approaches for action segmentation are fully supervised meth-
ods, which require expensive data annotations [5,6,19,27,32,48]. The need
for more scalable and practical solutions has led to an increasing interest
in developing weakly-supervised [9,30,31,33,41,46,49] and unsupervised tech-
niques [7,11,12,14,23,24,26,28,35,37,42,43,45,47].

Weakly-supervisedmethods learn topartitionvideos intoaction segmentsusing
only transcript annotations for each video, typically in the form of actions tran-
scripts (ordered lists of actions) or action sets (unique actions derived from narra-
tions, captions or meta-tags) [31,41,46,49]. This weakly-supervised paradigm con-
trastswith unsupervisedmethods, broadly categorized into three types, depending
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Fig. 1. Our approach compares video pairs through a Siamese network by using binary
labels indicating if the videos belong to the same activity or not. We propose a tri-
adic loss function modelling intra-video discrimination, inter-video and inter-activity
associations for clustering actions across videos of different activities.

on the matching objective [13]: video-level, activity-level, and global-level. Video-
level segmentation methods aim to segment a single video sequence into distinct
actions without considering the relationships between actions in different videos
[7,16,28,35,47]. While they can be effective for practical applications requiring to
segment isolated videos one by one, they fail to generalize actions across differ-
ent videos. Instead, activity-level segmentation methods focus on matching actions
across videos that depict the same complex activity [14,23,24,26,42,46]. These
methods generally perform poorly at video-level unless temporal smoothing within
segments is explicitly modelled. In addition, as they assume or estimate a tran-
script for each video or set of videos belonging to the same activity, their generaliza-
tion ability to other activities is hampered. Only Ding et al.[14] directly addressed
global-level segmentation railing on complex activity labels to help discover the
constituent actions; however, they do not explicitly model the alignment of actions
across videos of the same activity.

In this paper, we propose a strategy to discover actions across various com-
plex activity videos, offering a broader and more generalized understanding of
actions. Our approach does not require knowledge of video transcripts, but only
binary labels indicating whether each pair of videos belongs to the same activity.
Therefore, as a weakly-supervised method, it occupies a unique position in the
spectrum of action segmentation methods.

Our solution, depicted in Fig. 1, aims to enhance the clustering of actions in
videos on a global scale through the implementation of a Siamese network based
on transformers. This network is designed to address the task of determining
whether two videos depict the same activity. Instead of using a standard cross-
entropy loss, we propose a triadic loss function capturing the temporal dynamics
within individual videos, between similar videos, and across various activities.
Our contributions are as follows:

1. We propose a novel weakly-supervised framework for the task of global action
segmentation that relies on binary activity labels to discover action clusters
across videos of different activities.
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2. We introduce a transformer-based Siamese architecture that takes as input
pairs of videos, determines if they belong to the same activity or not and
aligns them temporally if predicts that they depict the same activity.

3. We introduce a triadic loss function that models intra-video action discrimi-
nation at the video-level, inter-video and inter-activity action associations at
activity and global-level respectively, for robust action understanding.

4. We achieve state-of-the-art results on the Breakfast (BF) and Inria Instruc-
tional Videos (YTI) benchmark datasets, demonstrating the method’s effec-
tiveness and generalization ability across activities.

2 Related Work

2.1 Action Segmentation

For a comprehensive and recent survey on temporal action segmentation tasks,
readers are referred to [13].

Supervised Action Segmentation. Supervised approaches have seen signif-
icant advancements over recent years [5,6,19,27,32,48]. Recently, UVAST [6]
integrates fully and timestamp-supervised learning paradigms via sequence-to-
sequence translation. This method refines predictions by aligning frame labels
with predicted action sequences. LTContext [5] iterates between windowed local
attention and sparse long-term context attention, effectively balancing computa-
tional complexity and segmentation accuracy. Lastly, FACT [32] performs tem-
poral modelling at both frame-level and action-level, facilitating bidirectional
information transfer and iterative feature refinement. However, being fully super-
vised, all these methods are not scalable and not suited for real applications.

Weakly-Supervised Action Segmentation. Weakly-supervised techniques
have been developed to reduce the need for large annotated datasets. These
approaches typically learn to partition a video into several action segments
from training videos only using transcripts or other human-generated informa-
tion to generate pseudo-labels for training [30,31,33,41,46,49]. Transcripts have
been shown to outperform action set-based methods, while timestamp-based
approaches achieve the best results. This suggests that higher levels of super-
vision generally lead to better performance. In recent years, DP-DTW [9] has
advanced weakly-supervised segmentation by training class-specific discrimina-
tive action prototypes. This method represents videos by concatenating proto-
types based on transcripts and improves inter-class distinction through discrim-
inative losses. Some methods leverage machine learning models to infer video
segments, such as TASL [30]. Recently, more efficient alignment-free methods
have been proposed. MuCon [41] learns from the mutual consistency between
two forms of segmentation: framewise classification and category/length pairs.
POC [31] introduces a loss function to ensure the output order of any two
actions aligns with the transcript. Conversely, ATBA [46] propose an approach
that incorporates alignment by directly localizing action transitions for effi-
cient pseudo-segmentation generation during training, eliminating the need for
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time-consuming frame-by-frame alignment. None of these methods explicitly
addresses the problem of global action segmentation.

Unsupervised Action Segmentation. Unsupervised approaches have been
explored by several studies to eliminate the need for annotations [1,7,11,14,
16,23,24,26,28,35–37,42,43,45,47]. As the estimated clusters, lack of semantic
labels, the evaluation process requires finding the Hungarian correspondence
between the clusters and the actual action classes. The Hungarian matching
can be performed for video-level segmentation [1,7,16,28,35,36], activity-level
segmentation [14,23,24,26,37,42,43,45,47], or for a global scope across an entire
set of videos [14,23,26]. Depending on the hierarchical level used, methods aim to
improve segmentation through these correspondences. Unsupervised techniques
in action segmentation typically involve a two-step process: first, learning action
representations in a self-supervised manner, followed by employing clustering
algorithms to perform action segmentation, assuming a prior knowledge of the
number of clusters.

In the realm of video-level action segmentation, LSTM+AL [1] introduced
a novel self-supervised methodology for real-time action boundary detection.
Furthermore, it is worth noticing that clustering approaches based on specific
similarity metrics have been relatively under-explored in the field of action seg-
mentation. One such method is TW-FINCH [35], which captures spatio-temporal
similarities among video frames. This employs a temporally weighted hierarchi-
cal clustering algorithm, grouping video frames without the need for extensive
pre-training, as it directly operates on pre-computed features that augment the
conventional FINCH approach with temporal considerations [36]. In a similar
vein, ABD [16] identifies action boundaries by detecting abrupt change points
along the similarity chain between consecutive features.

Action representation learning at the individual video level has also gained
interest. TSA [7] proposed a method that focuses on this aspect, employing a
shallow neural network trained with a triplet loss and a novel triplet selection
strategy to learn action representations. These learned representations can be
processed using generic clustering algorithms to obtain segmentation outputs.
Lastly, the OTAS framework has emerged, offering an unsupervised boundary
detection method that combines global visual features, local interacting features,
and human-object relational features, contributing to the evolving landscape of
action segmentation techniques [28].

Some approaches at the activity-level leverage the order of scripted activities,
emphasizing the minimization of prediction errors, like CTE [23]. Other works
combined temporal embedding with visual encoder-decoder pipelines with visual
reconstruction loss [43] or with discriminative embedding loss [40]. ASAL [26]
explored deep learning architectures, such as ensembles of autoencoders and clas-
sification networks that exploit the relationship between actions and activities.
CAD [14] introduced a framework that discovers global action prototypes based
on high-level activity labels. One notable aspect of these methods is the recogni-
tion that actions in task-oriented videos tend to occur in similar temporal con-
texts. As a result, strong temporal regularization techniques have been developed
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to partially obscure visual similarities [23,37]. Recently, optimal transport has
gained popularity in unsupervised learning to generate effective pseudo-labels
and train for frame-level action classification. TOT [24] proposed a joint self-
supervised representation learning and online clustering approach that directly
optimizes unsupervised activity segmentation using video frame clustering as a
pretext task. UFSA [42] extends TOT by combining frame and segment-level
cues to improve permutation-aware activity segmentation. Furthermore, TOT
and UFSA use a Hidden Markov Model (HMM) approach to decode segmenta-
tions given a fixed or estimated action order, respectively. In contrast, ASOT [47]
proposed a method via optimal transport that yields temporally consistent seg-
mentations without prior knowledge of the action ordering, required by previous
approaches. Suitable for both pseudo-labeling and decoding.

Although global-level understanding provides the most comprehensive insight
into the relationships between activities and actions in videos, only a few meth-
ods have explored training at this level. CAD [14] is the first work to operate at
the highest level of global matching. In CTE [23], the methods extended their
configuration considering all complex activities. Firstly, the protocol executes
a bag-of-words clustering on the videos to divide them into multiple pseudo-
activities. Subsequently, they perform action clustering within each pseudo-
activity individually. In other words, they apply their action segmentation at
the activity level within classes of pseudo-activity. Their approach still does not
accommodate potential actions shared between activities. ASAL [26] and CAD
[14] present their results aligned with this protocol.

2.2 Video Alignment

Video alignment is a process aimed at synchronizing and matching video
sequences for various applications, such as action recognition model creation,
behavioural analysis, and multimedia content generation. This field encom-
passes a range of techniques. Traditionally, methods like Dynamic Time Warping
(DTW), Canonical Correlation Analysis, ranking or match-classification objec-
tives, and the differentiable version of DTW, Soft-DTW, have been used to tackle
the challenging task of aligning video frames [3,4,10,38] in videos depicting a
same action. Recently, LAV [20] have utilized Soft-DTW combined with tempo-
ral intra-video contrastive loss to align video frames effectively. Drop-DTW [17],
an extension of DTW, introduces a “trash bucket” to the cost matrix, allowing
for the classification of background frames and robust alignment in the presence
of outliers. VAVA [29] employs optimal transport with a bi-modal Gaussian prior
and a virtual frame for unmatched frames.

TCC [18] was the first to introduce cycle-consistency for aligning video
frames by maximizing cycle-consistent embeddings between sequences. GTCC
[15] extends the TCC approach to manage more complex alignment scenarios.
However, most of these techniques were developed for general video alignment or
related tasks, and their direct application to unsupervised action segmentation
has been never explored so far. In this paper, we propose for the first time to
leverage video alignment for action segmentation.
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Fig. 2. Overview of the proposed 2by2 framework. The figure illustrates our triadic
learning approach: intra-video action discrimination, which enhances cross-temporal
consistency within a single video (first box); inter-video action associations, which align
action frames among similar videos (second box); and inter-activity action associations,
which establish global correspondence between different videos (third box). The red
arrows indicate steps specific to the training phase. (Color figure online)

3 2by2: Learning Unknown Actions in a Global Manner

This section presents a weakly-supervised, triadic action learning approach for
global action segmentation (see Fig. 2), aiming at modeling:

(i) Intra-video action discrimination (video level): Video frames sharing the
same action with their nearest neighbours exhibit temporal consistency.
Moreover, actions typically do not occur at the beginning or end of videos.
Thus, a video can be interpreted as a cyclic temporal sequence.

(ii) Inter-video action associations (activity level): For videos categorized under
the same activity, segments within these videos exhibit similarity, facilitating
the alignment of actions across them.

(iii) Inter-activity action associations (global level): Videos representing different
activities that share common actions should be closer in the representational
space compared to those that do not share actions.

3.1 Problem Formulation

Given a large set V of complex activity videos from a dataset belonging to C
complex activities, each video vi in V is annotated with a complex activity label
a ∈ [1, C]. Our objective is to associate each video frame xt, with an action label
n from N possible actions. These N actions are constituent steps shared among
the C complex activities. For each video vi, we define the feature matrix Fi,
where each row F t

i corresponds to an d-dimensional feature vector at time t in
a video vi. Given the initial features of a video Fi, our objective is to learn a
parametric function φ that categorizes video frames into the N possible actions,
resulting in embeddings Ei, obtained as Ei = φ(Fi),∀vi ∈ V .
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3.2 Architecture

To learn φ, we propose a Siamese architecture that takes as input pairs (Fi, Fj)
for all vi, vj ∈ V with i �= j. This architecture consists of two identical LTContext
networks [5], specifically designed to capture long-term temporal dependencies,
that work in tandem and compare the similarity between their outputs, denoted
as (Ei, Ej) at the end.

During training, to ensure that videos sharing the same activity have well-
aligned representations, we introduce a context-drop function c, inspired by
[15]. This function is designed to handle background and redundant frames by
enforcing multi-cycle consistency for alignable embeddings and poor alignment
for droppable embeddings. The context-adjusted embeddings are calculated as
Ai = c(Ei),∀vi ∈ V .

3.3 Triadic Loss

Intra-video Discrimination Loss. The output of φ at different stages,
denoted as φs, is used to calculate the loss at video level, enhancing the model’s
ability to learn fine-grained temporal structures. We incorporate a mean squared
error smoothing loss, as introduced by [19] and used in [5,27,48]. Considering
that actions occurring in an activity video should be temporally contiguous, this
loss is applied to the per-frame actions to alleviate over-segmentation. Moreover,
we also propose a cyclic variant, based on the assumption (i) described at the
beginning of Sect. 3. Specifically, this variant compares the embeddings at the
end of the output sequence with those at the start, across different stages of
the feature extraction network φ. This is driven by the fact that actions often
exhibit cyclical patterns in videos. Mathematically, our video-level loss is defined
as follows:

Lvideo(i) =
1

|S||T + 1|
(∑

s

∑
t

∣∣log φs(F t+1
i ) − log φs(F t+1

i )
∣∣

+
∣∣log φs(FT

i ) − log φs(F 0
i )

∣∣ )
, (1)

where T is the total number of frames and S is the number of stages in φ in a
video i, ∀vi ∈ V .

Inter-video Associations Loss. For segment-level learning, we adopt the
GTCC loss function proposed by [15], denoted as Lactivity, to synchronize frames
of videos depicting the same activity. We utilize context-adjusted embeddings
Ai generated by our context-drop function layer c. Specifically, for each pair
vi, vj ∈ V of videos, GTCC computes the probability of dropping vt

i given vj for
all t ∈ T using the function c. The loss function is defined as:

LGTCC(vi|vj) =
∑
t

(
(1 − Pdrop(vt

i |Aj)) · Lmulti−cbr +
Pdrop(vt

i |Aj)
Lmulti−cbr

)
, (2)
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where Lmulti−cbr is a multi-cycle back regression loss, and Pdrop(vt
i |Aj) is the

probability of dropping each video frame vt
i given Aj (refer to [15] for more

details). Our activity loss, Lactivity is defined as the sum of GTCC loss of vi
given Aj and vice-versa. This loss leverages the principle of Temporal Cycle Con-
sistency (TCC) [18], ensuring that corresponding frames in videos with identical
action sequences are closely aligned in the feature space. This approach addresses
variations in action order, redundant actions, and background frames, thereby
enhancing the quality of video representations. To the best of our knowledge, this
marks the first application of video alignment for temporal action segmentation.

Inter-activity Associations Loss. We learn the global representation of a
video clip by using a contrastive loss. We employ contrastive learning to minimize
the distance between videos of the same activity while maximizing the distance
between videos of different activities. This ensures that videos depicting the
same activity are closer in the feature space than videos that are not. The global
contrastive loss has the following formulation:

Lglobal(i, j) = (1 − y) · d(Ei, Ej) + y · max(0,m − d(Ei, Ej)) (3)

where d(Ei, Ej) denotes the distance between the representations Ei and Ej

obtained by φ, and y ∈ {0, 1} is a binary value such that y = 0, if the two videos
belong to the same activity (ai = aj), and y = 1, if they belong to different
activities (ai �= aj). The margin m ensures sufficient separation between videos
of different activities. The term (1−y)·d(Ei, Ej) minimizes the distance for videos
of the same activity, while y · max(0,m − d(Ei, Ej)) maximizes the distance for
videos of different activities by pushing them apart by at least the margin m.

The combined loss function that governs the training for all pair videos
{vi, vj} ∈ V of our model is formulated as:

Ltrain(φ, c)) =

⎧
⎪⎨
⎪⎩

αLglobal(i, j) + (1 − α)Lactivity(i, j)
+β(Lvideo(i) + Lvideo(j)), if vi = vj

Lglobal(i, j) + β(Lvideo(i) + Lvideo(j)), if vi �= vj

(4)

where α, and β are hyperparameters that balance the contributions of the global,
activity, and video loss components. Incorporating this loss in our model allows
us to leverage the weak supervision effectively, making the clustering of video
frames more discriminative and improving the overall performance of action
segmentation and classification tasks in a global manner.

4 Experimental Setup

Datasets. We present results on two well-known datasets used for temporal
action segmentation: Breakfast Action Dataset (BF) [22] is one of the
largest fully annotated collections available for temporal action segmentation.
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It includes 1712 videos, featuring 10 activities related to breakfast preparation.
These activities are performed by 52 individuals across 18 different kitchens.
Each video has an average of 2099 frames. Remarkably, only 7% of the frames
are background frames. Youtube INRIA Instructional Dataset (YTI) [2]
includes 150 instructional videos from YouTube, covering 5 different activities
such as changing a car tire, preparing coffee, and performing cardiopulmonary
resuscitation (CPR). The videos have an average duration of 2min. A significant
challenge with this dataset is the high proportion of background frames, which
make up 63.5% of the total frames.

Features. To ensure a fair comparison with related work, we utilized the same
input features as recent methods. For the BF dataset, we used the IDT features
[44] provided by the authors of CTE [22] and SCT [34]. These features cap-
ture motion information by tracking dense points in the video and computing
descriptors such as Histogram of Oriented Gradients, Histogram of Optical Flow
(HOF) [25], and Motion Boundary Histogram. Additionally, for further compari-
son in the BF dataset, we employ I3D features [8] extracted from the Inflated 3D
ConvNet, which leverages both spatial and temporal convolutions to learn video
representation. For the YTI dataset, we use the same features as [2,14]. These
3000-dimensional feature vectors are formed by concatenating HOF descriptors
with features extracted from the VGG16-conv5 layer [39].

Metrics. To evaluate the performance of our temporal action segmentation
methods, we employ 1) Mean over Frames (MoF), which calculates the accuracy
as the mean percentage of correctly classified frames across all videos, providing
a direct indication of overall segmentation performance; 2) F1-Score, which is
the harmonic mean of precision and recall, accounting for both false positives
and false negatives. Precision is the ratio of correctly predicted action frames
to the total predicted action frames, while recall is the ratio of correctly pre-
dicted action frames to the total actual action frames; 3) MoF with Background
(MoF-BG), which calculates the accuracy considering both action and back-
ground frames, essential for understanding how well the segmentation method
distinguishes between action and non-action frames, especially given the high
proportion of background frames in the YTI dataset. To enable direct compar-
ison, we follow the procedure used in previous work [7,16,23,28,37], reporting
results by removing the ratio (τ = 75%) of the background frames from the
video sequence.

Evaluation Setting. In our study, we adopt the global evaluation methodol-
ogy proposed by [23]. This methodology involves grouping videos into coherent
subsets K and representing them using a bag-of-words (BoW) approach. These
representations are then clustered into K ′ groups of pseudo-activities and K sub-
groups of actions are inferred. Each video is temporally segmented by assigning
each frame to one of the ordered groups using the Viterbi decoder. A back-
ground model is introduced to deal with irrelevant segments. Throughout the
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results of this work, the inclusion of BoW and Decoding refers to the integra-
tion of the aforementioned global inference process, which we will refer to as the
post-processing protocol.

For evaluation, we perform a Hungarian matching between the inferred clus-
ters and the ground-truth labels to compute the metrics. Specifically, we assume
in the case of the Breakfast dataset K ′ = 10 activity clusters with K = 5 sub-
actions per cluster. Subsequently, we match 50 different sub-action clusters with
48 ground-truth sub-action classes, with frames of the leftover clusters set as
background. Finally, we assess the accuracy of the unsupervised learning con-
figuration on the YouTube Instructions dataset, employing K ′ = 5 and K = 9,
subsequently matching 45 distinct sub-action clusters with 47 ground-truth sub-
action classes.

Training Details. To ensure that each video in our training set has at least one
pair from the same activity and one pair from a different activity, we construct
the training set by including all possible combinations of videos belonging to
the same activity. Since segment-level learning requires a strong initialization to
align actions between videos, we adopt a two-stage training approach. Initially,
the model is trained with global-level and video-level modules using Eq. 1 and
3, respectively. Subsequently, the model is used to initialize the second stage,
where it is trained using the full loss function in Eq. 4. In a stratified fashion,
we select a subset of pairs from different activities, ensuring an equal number of
same-activity and different-activity pairs. Given a large number of combinations,
in each epoch, we take a batch including 50% of the dataset of possible pairs
for each epoch. Note that each epoch uses a batch size of 32 pairs for the BF
dataset and 8 pairs for the YTI dataset. We simultaneously train a 4-layer feed-
forward neural network for the drop-context function, c, along with φ. To enhance
computational efficiency, we down-sample all videos to 256 frames per video by
randomly removing frames distributed throughout each video, similar to [24,42].
This technique reduces frame redundancy and ensures that the frames represent
the entire video. We use the same parameters as specified in [5,15] for each
network. The training process employs the ADAM optimizer, with a learning
rate of 2e−4 and a weight decay of 10−4. For the parameters α and β, we select
the values 0.15 and 0.5, respectively.

4.1 Comparative Methods

The method more similar to ours in terms of scope, i.e. global action segmen-
tation, and information used, i.e. activity labels, is CAD [14]. For the sack of
completeness, we compute results with a global matching scope of state-of-the-
art methods conceived for action segmentation at activity level. These include
on the one side unsupervised methods such as ASOT [47], CTE [23] and ASAL
[26] that train a network for each activity hence using our same pseudo-labels;
on the other side, they include weakly-supervised methods such as ATBA [46]
that instead use a transcript for each video, resulting in a much stronger level
of supervision.
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Table 1. Action Segmentation results on the BF and YTI datasets by applying the
Hungarian matching at global-level. The dash indicates “not reported.” (*) denotes
results computed by ourselves. “F” denotes the type of features used. “D” indicates the
use of Viterbi decoding. Both marks denote evaluation as per [23]. The best results are
marked in bold.

BF

Supervision Approach F BoW D F1 MoF

Unsupervised

CTE [23] IDT ✓ ✓ – 18.5
ASAL [26] IDT ✓ ✓ – 20.2
ASOT* [47] IDT ✓ ✓ 20.2 21.6

Weak

CAD [14]
IDT

✗ ✗ – 10.9
✓ ✗ – 17.7
✓ ✓ – 23.4

2by2 IDT ✓ ✓ 20.624.6

Unsupervised ASOT* [47] I3D ✓ ✓ 16.9 18.1
Weak-transcripts ATBA* [46] I3D ✓ ✓ 20.0 17.7

Weak-activity labels
CAD [14] I3D ✗ ✗ – 19.2
2by2 I3D ✓ ✓ 17.520.7

YTI

Supervision Approach BoW D F1 MoFMoF-BG

Unsupervised
CTE [23] ✓ ✓ – 19.4 10.1
ASOT* [47] ✓ ✓ 15.26 18.6 9.9

Weak
CAD [14] ✗ ✗ 12.10 15.7 –
2by2 ✓ ✓ 16.53 23.6 11.4

5 Results

5.1 Comparison with the State-of-the-Art

Breakfast Dataset (BF). The results obtained by using the IDT features as
input demonstrate a consistent performance improvement over prior methods
(refer to left-hand Table 1). We achieved a +1.2% improvement in MoF with
respect to CAD, highlighting the efficacy of our global training approach with
binary labels.

We computed the results at the global level of ASOT [47], by following the
evaluation protocol described above. 2by2 outperforms it in terms of MoF by
+3% and in terms of F1-score by +0.4%. Similar trends are observed when
using I3D features as input. Compared to state-of-the-art methods, the 2by2
framework proves effective regarding MoF and F1-score. ATBA [46] exhibits a
higher F1-score but a lower MoF than 2by2, likely due to its use of transcripts
for each video, providing stronger supervision with respect to our method but
poorer generalization across activities. This could be attributed to the fact that
these methods were not specifically designed for global training, highlighting the
critical importance of inter-activity learning which is currently lacking in other
unsupervised methods.

Inria Instructional Videos (YTI). The performance of our 2by2 framework
also shows marked improvements over previous methods on the YTI (refer to
right-hand Table 1). We achieve an increase in MoF of +4.2% without back-
ground and +1.3% with background. This improvement in the F1 score is likely
attributed to the non-repetitive nature of actions within activities in this dataset.
Our 2by2 framework effectively enhances segmentation accuracy compared to
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Table 2. Ablation studies on the YTI
dataset, highlighting the importance
of the three loss terms, as well as of
the concept of temporal cycles and the
initialization with k-means.

YTI

Lvideo Lactivity Lglobal MoF
✓ ✓ ✓ 23.6
✗ ✓ ✓ 21.9
✓ ✗ ✓ 22.5
✗ ✗ ✓ 21.8

Base 23.6
No k_means init 21.1
No cycled MSE 21.0
No k_means init and cycled 20.4

Fig. 3. Examples from BF (“scrambled
egg” and “fried egg” activities). Compar-
ison of ground truth (GT) segmentation
and our 2by2 framework. 2by2 discov-
ers common action steps across activities
(see yellow segments) and captures the
cyclic nature of the videos (see purple seg-
ments). (Color figure online)

ASOT, the leading unsupervised activity-level segmentation method. Similar to
BF, our results underscore the effectiveness of inter-activity training. Further-
more, leveraging global-level training with CAD, we observe significant improve-
ments of +7.9% in MoF and +4.4% in F1 score.

The observed performance improvements in both datasets are likely due to
the framework’s ability to identify better shared actions among pseudo-activity
classes caused by inaccurate pseudo-labels and the enhanced initialization of the
Bag of Words (BoW) model through video alignment.

Qualitative Result. In Fig. 3, we observe examples closely aligning with the
ground truth segments, accurately capturing both large and small segments.
The enhanced segmentation arises from multi-level processing within our frame-
work. The activity-level component (GTCC) facilitates precise segment align-
ment, while the global aspect improves activity differentiation and reduces mis-
classification. At the video level, our framework maintains temporal consistency
and cyclic patterns, reducing over-segmentation and enhancing alignment.

5.2 Ablation Study

In Table 2, we show the importance of modelling all three levels of learning, by
using Lvideo, Lactivity and Lglobal. Specifically, we observe that the elimination
of the intra-video component significantly impacts our method’s performance,
highlighting the detrimental effect of relying solely on the global loss. Addi-
tionally, since the inter-video component is introduced in the second stage, it
becomes clear that robust initialization in the first stage is essential for Lactivity
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to effectively guide the alignment and segmentation processes. This underscores
that the global loss alone in the first stage is insufficient for achieving optimal
performance.

Furthermore, we ablate the effect of initializing the activity cluster for the
last layer used for Lglobal by using k-means instead of random initialization.
Additionally, the negative impact of removing the cyclic component from Lvideo
is evident.

6 Conclusion

This paper introduced 2by2, a novel framework for weakly supervised tempo-
ral action segmentation in untrimmed videos encompassing different activities.
The proposed architecture consists of a Siamese transformer-based network that
takes input pairs of videos and determines if they belong to the same activity
or not. If they do, the videos are also temporally aligned. A key innovation of
our approach is the direct action alignment between videos, crucial for accu-
rately matching corresponding segments. This is enabled by the Siamese two-
stage architecture that ensures robust initialization for temporal alignment. By
explicitly modelling intra-video action discrimination, inter-video action associ-
ations, and inter-activity action associations, our method significantly outper-
forms state-of-the-art approaches on the challenging BF and YTI datasets.
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Abstract. In the realm of computer vision, image denoising remains a
formidable challenge with profound implications for fields like medical
imaging, remote sensing, and photography. Despite notable advancements
in deep learning, there are enduring challenges: current convolutional neu-
ral networks (CNNs) frequently struggle with training complexities due
to their emphasis on increased network depth. At the same time, these
networks often fail to adequately consider the crucial role of gradient
information in the denoising process. Furthermore, there is a distinct gap
in leveraging transform domain analysis in image denoising. This study
addresses these limitations with MDFIDNet, a novel triple-phase atten-
tive fusion network tailored for image denoising. MDFIDNet integrates
three independent feature extraction pipelines: a frequency domain pro-
cessing pipeline (FDP) enhanced by a multi-scale convolutional attention
Block (MSCAB), a spatial domain processing pipeline (SDP) focusing
on detail feature preservation, and a gradient-domain processing pipeline
(GDP) driven by multidirectional gradient information. Experimental val-
idation demonstrates that MDFIDNet surpasses existing benchmarks,
exhibiting robust performance across diverse datasets. Comprehensive
ablation studies underscore the individual contributions of each network
component, elucidating the novel advancements that underpin MDFID-
Net’s superior denoising efficacy. The source code and further details are
available in the https://github.com/debashis15/MDFIDNet.

Keywords: Computer vision · Deep Learning · Image denoising ·
Gradient information · Real images · Experimentation · Training
Complexity

1 Introduction

Image denoising is a highly active area of research in computer vision, focusing
on restoring clean images from noisy ones. This process is essential for many
real-world applications, as the quality of denoised images profoundly impacts
the performance of downstream tasks such as image classification, image seg-
mentation, object detection, and other advanced computer vision tasks [14,24].
Despite its importance, image denoising remains a challenging task due to the
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complexity of real-world scenes and inherent information loss. To address this
challenge effectively, our goal is to develop a versatile approach that embodies
the following key attributes: 1) end-to-end image denoising; 2) computationally
efficient; and 3) applicable to real-world data. In recent years, Several tradi-
tional methods leverage geometric features of images, such as sparse coding [7],
self-similarity [8], and low-rank estimators [9], to perform denoising. Notably,
methods like block matching 3-D filter (BM3D) [5] and weighted nuclear norm
minimization (WNNM) [9] are considered state-of-the-art. However, these meth-
ods often involve iterative processes, leading to high computational costs and
inefficiencies. They also rely on manually crafted priors such as sparsity or NSS,
which may not universally apply to all natural images.

With the advent of Convolutional Neural Networks (CNNs), many CNN-
based denoising models have effectively addressed the limitations of traditional
methods, offering reduced hyperparameters and shorter inference times. The
adaptable and robust learning capabilities of CNNs have led to significant
advancements in image denoising. Dong et al. [6] pioneered the use of CNNs in
this domain with SRCNN, which employed three convolutional layers for image
super-resolution, greatly improving performance over previous techniques. Sim-
ilarly, DnCNN [33] was the first CNN-based model to implement batch normal-
ization and residual learning, achieving superior denoising results. Since then,
numerous CNN-based denoising methods have been developed. FFDNet [34]
effectively handles various noise levels by incorporating a down-sampling oper-
ation and a noise level map. CBDNet [10] employs a noise estimation strategy
through two sub-networks, enhancing its deep learning approach. DCTNet [11]
leverages a DCT transform-based architecture with shrinkage blocks and residual
learning to achieve competitive results. Liu et al. [18] introduced a deep multi-
level wavelet CNN (MWCNN), which integrates wavelet and U-Net architectures
to extract frequency features, and MWDCNN [26] a multi-stage denoiser with
wavelet transform further advancing the field of image denoising. Gradient infor-
mation integration has become instrumental in enhancing denoising methodolo-
gies. For instance, Liu et al. developed GradNet [19], a CNN-based framework
that combines horizontal and vertical image gradients with DnCNN [33] to effec-
tively preserve essential edge and texture details. In another innovative approach
by Li et al. [16], a hybrid denoising model was proposed, leveraging the combi-
nation of BM3D [5] and WNNM [9]. This model decomposes noisy images into
subbands before applying BM3D [5], achieving robust denoising results.

Despite the impressive learning capabilities of CNNs, early CNN-based
denoisers often emphasize uniform feature extraction, which can fail to ade-
quately capture complex image structures and textures, leading to significant
performance degradation. To mitigate this limitation, attention mechanisms have
been incorporated into network architectures, resulting in promising denoising
outcomes. For instance, RIDNet [2], a single-stage denoiser, leverages channel
and spatial dependencies within feature maps to enhance performance. Pan et
al. [22] introduced GrencNet, which utilizes a guided feature domain denois-
ing residual network, dynamic joint attention modules, and an iterative noise
correction scheme to effectively address noise in real-world images. NIFBGDNet



394 D. Das and S. K. Maji

[25], another versatile denoiser, employs a dual-path attention-based architecture
that uses the negative of the input image as a prior. Similarly, DRANet [29], a
dual residual attention network, is designed to handle both synthetic and real-
world noise effectively. MPRNet [31] incorporates a multi-stage architecture with
encoder-decoder configurations, while MIRNetv2 [32] utilizes a recursive resid-
ual design based on multi-scale feature representation. Additionally, APD-Nets
[14], a deep encoding-based Regularization Priors (RP) network, achieves supe-
rior results through its innovative approach. However, attention-based denoisers
frequently encounter challenges due to increased network depth, which leads to
a higher number of parameters and extended inference times, making them less
suitable for real-world applications.

Recently, vision transformers have gained prominence in visual tasks like
denoising due to their ability to capture long-range dependencies via global self-
attention mechanisms. IPT [4] employed an encoder-decoder architecture but
faced high computational demands. Building on this, SwinIR [17] integrated
residual attention with Swin transformer elements, setting new performance
benchmarks. Uformer [27], a U-shaped LeWin transformer-based model using
multi-scale restoration modulator showed impressive results. However, these
transformer-based methods often suffer from substantial computational over-
head and increased memory footprint due to their large network architectures.

Motivated by the effective fusion of CNNs and attention mechanisms and
driven to address the aforementioned challenges, this paper introduces MDFID-
Net (Multi -Domain Feature Integration Denoising Network), a novel approach
for advanced image denoising. MDFIDNet leverages three distinct parallel pro-
cessing phases: the frequency domain processing pipeline (FDP), spatial domain
processing pipeline (SDP) and the gradient domain processing pipeline (GDP).
FDP employs Discrete Cosine Transform (DCT) and Inverse Discrete Cosine
Transform (IDCT) with a multi-scale convolutional Attention Block (MSCAB)
to capture transform-domain features. SDP extracts shallow image features, in
the spatial domain, crucial for detail preservation. GDP further enhances struc-
tural fidelity by leveraging gradient domain information with the help of the
gradient sensitive attention block (GSAB). The synergistic integration of neural
attentive mechanisms in GSAB significantly reduces noise while preserving essen-
tial image details. Experimental results demonstrate that MDFIDNet achieves
competitive denoising performance, marking a substantial advancement in image
restoration techniques. The primary contributions of the proposed network are
outlined as follows:

1. A novel triple-phase feature extraction mechanism operating in the frequency
domain, spatial domain and gradient domain.

2. A novel multi-scale convolutional attention block (MSCAB) for extracting
features from noisy images, in the frequency domain, across multiple scales.

3. A novel spatial domain processing pipeline (SDP) is proposed to enhance the
preservation of spatial structures and finer feature components.

4. Introduction of gradient enhanced neural unit (GENU), which integrates gra-
dient information from input image using horizontal, vertical, primary diago-
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Table 1. Notation Table: Describing Operations and Functions

NotationDescription
⊕ Element wise addition operation
� Concatenate operation
α(x) LeakyRelu Operation on x-th input
�(x) Conv2D operation on x-th input
�(iD)(x) i-th dilated Conv2D operation on x-th input
⊗ Multiplication operation

nal, and secondary diagonal directions to enrich feature maps. To the best of
our knowledge, this investigation into diagonal gradient potential for image
denoising is a pioneering effort in the literature.

5. Novel multi stage feature aggregation module (MSFAM) synergestically inte-
grated for enhanced detail preservation at multiple stage Table 1.

2 Problem Formulation and Objective

Image denoising centers around formulating the problem through the degrada-
tion model represented in Eq. 1:

Y = X + N (1)

Here, N denotes the additive white Gaussian noise (AWGN) commonly present
in optical image and Y represents the resulting noisy image. The main goal of
image denoising is to reconstruct X̂, the most accurate approximation of the
original image (X), from the observed noisy image (Y ) while minimizing distor-
tion. In this context, we approach the problem as a mapping function. Therefore,
we present MDFIDNet, a convolutional neural network (CNN)-based approach
designed for image denoising. MDFIDNet transforms the image denoising prob-
lem into a learning task, focusing on understanding and learning the mapping
function that relates the noisy image (Y ) to the clean image (X) using extensive
training datasets.

3 Proposed Methodology

The architecture of MDFIDNet, depicted in Fig. 1, is tailored for denoising
applications, where the input (Y ) is a noisy image and the output (X̂) is the
denoised version. The network is structured into three main phases: the first
phase processes the input in the frequency domain to extract features, the second
phase operates in the spatial domain, and the third phase focuses on extracting
gradient-enriched features from the noisy image. Each phase incorporates mul-
tiple attention mechanisms designed to capture specific feature characteristics,
as outlined in their respective sections.
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Fig. 1. The architecture of proposed (MDFIDNet)

Fig. 2. The architecture of the proposed Multi-Scale Convolutional Attention
(MSCAB) and Multi-Stage Feature Aggregation Module (MSFAM).

3.1 Frequency Domain Processing Pipeline (FDP)

The Discrete Cosine Transform (DCT) is used for image denoising due to its
ability to convert an image from the spatial domain to the frequency domain,
concentrating most of the image’s energy into low-frequency components. Noise,
typically high-frequency, becomes distinguishable and can be selectively reduced
in this domain, preserving the image’s structural integrity.

Inspired by DCT’s effectiveness, the novel frequency domain processing
(FDP) pipeline is introduced, as shown in Fig. 1. The pipeline transforms the
input image into the frequency domain using DCT, applies a multi-scale convolu-
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tional attention block (MSCAB) for robust feature extraction, and then reverts
the image to the spatial domain using the inverse DCT (IDCT). This sequence is
mathematically represented as Eq. 2, where M(•) signifies the processing func-
tion by the MSCAB block, and D(•) and D−1(•) denote the DCT and IDCT
operations, respectively.

C(Y ) = D−1(M(D(Y ))) (2)

Multi-scale Convolutional Attention Block (MSCAB). The multi-scale
convolutional attention block (MSCAB), shown in Fig. 2, extracts features from
input images across multiple scales. The input first passes through a 2D convo-
lution layer followed by Leaky ReLU activation to generate weighted features.
These features are then processed through three distinct kernel sizes (3 × 3, 2× 2,
and 1 × 1) to capture intermediate features at various scales, as formulated in
Eq. 3.

Ii(•) = �(i%3)+1(α(�(•))) ∀i ∈ [1, 2, 3, 4, 5, 6] (3)

Two of the convolved outputs are combined using element-wise addition to
create a comprehensive feature map, which is then processed through another
2D convolution layer followed by Leaky ReLU layer. This intermediate output is
added to the remaining convolved output, and the final feature map is obtained
after passing through a 2D convolution layer followed by a sigmoid function.
This sequence of operations ensures that refined textures remain within the
intended range, enhancing denoising performance by preserving critical details,
as depicted in Eq. 4, where ⊕ denotes element-wise addition and Ii(•) represents
the i-th kernel 2D convolution operation.

{
M(D(Y )) = σ(�(α(�(α(�(I1(D(Y )) ⊕ I2(D(Y ))) ⊕ �(α(I3(D(Y )))⊕
I6(D(Y )))))) ⊕ �(α(I4(D(Y ))) ⊕ I5(D(Y )))))

(4)

3.2 Spatial Domain Processing Pipeline (SDP)

The spatial domain denoising pipeline is designed to capture spatial relationships
between pixels by extracting relative intra-positional features. The process starts
with the noisy input image being processed through an initial combination of
2D convolution, Batch Normalization (β), and Leaky ReLU layers to generate
the initial feature map. Next, a primary feature attention module (PFAM) is
employed to refine this feature map, ensuring that more useful information is
retained. Mathematically, the intra-operation can be expressed as Equation 5,
where P (•)) represents the processing function of the PFAM block.

Q(Y ) = P (α(β(�(Y )) (5)
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Primary Feature Attention Module (PFAM). The primary feature atten-
tion module (PFAM) uses a progressive refinement mechanism inspired by the
hierarchical feature learning seen in biological vision systems, where broad struc-
tures are perceived before specific areas are focused on. The module aims to refine
pixel attention maps iteratively, moving from coarse to fine details.

The process begins with an average pooling operation that reshapes the input
Q(Y) from C × H × W to C × 1 × 1, which can be formulated as Eq. 6.

Ap(Q(Y )) =
1

H × W

H∑
i=1

W∑
j=1

Q(Y )(i,j)) (6)

This is followed by a 2D convolution layer and Leaky ReLU activation to
extract standard features. To reduce the number of parameters and enhance
feature diversity, dilated convolutions followed by Leaky ReLU is utilized in
alternating stages. Finally, a TanH (τ) activation function, followed by a skip
connection via element-wise multiplication, is applied to stabilize the learning,
ensure gradient flow, and prevent extreme values. The mathematical formulation
of this process is described as Eq. 7.

P (Q(Y )) = τ
(
α
(
�

(
α
(
�(2D)

(
α
(
�

(
α
(
�(3D)

(
α
(
�

(
α
(
�(2D)

(
α
(
�

(
ApQ(Y )

))))))))))))))) ⊗ Q(Y )
(7)

3.3 Gradient Domain Processing Pipeline (GDP)

The gradient domain processing pipeline is responsible for extracting detailed
structural information from the input image using multi-directional gradients.
This information is then fed to the subsequent step in a controlled manner,
ensuring a precise and nuanced understanding of the image’s structure.

Gradient Enhanced Neural Unit (GENU). The gradient enhanced neural
unit (GENU) block enhances gradients and detects intensity variations, high-
lighting textural shifts across different regions within the input image. By ana-
lyzing gradient, the GENU block discerns clear image details from noise, with
high gradients typically indicating sharp edges. Directional filters (kh, kv, kd1,
kd2) are utilized for horizontal, vertical, primary, and secondary diagonal direc-
tions, respectively, as shown in Eq. 8. These filters emphasize areas with signifi-
cant gradient magnitudes, thereby enriching the structural representation of the
image. The enhanced structural intricacies are then used for further processing
within the proposed network.

G(Y ) =
√

[�Kh
(Y )]2 + [�Kv (Y )]2 + [�Kd1 (Y )]2 + [�Kd2 (Y )]2

Kh =

⎡
⎣
−1 0 1
−2 0 2
−1 0 1

⎤
⎦ , Kv =

⎡
⎣
−1 −2 −1
0 0 0
1 2 1

⎤
⎦ , Kd1 =

⎡
⎣

0 1 2
−1 0 1
−2 −1 0

⎤
⎦ , Kd2 =

⎡
⎣
−2 −1 0
−1 0 1
0 1 2

⎤
⎦ .

(8)
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Following gradient extraction, this module uses a convolutional block for sig-
nificant feature extraction, consisting of a 2D convolution layer followed by a
leaky ReLU activation. The resulting feature map, enriched with convolutional
features, is combined with structural gradient information for advanced process-
ing. This enables the denoising algorithm to understand the image’s composi-
tion and identify specific features for targeted noise reduction. The operational
framework is represented in Eq. 9, where G(Y ) is the extracted gradient feature.

F (Y ) = α(�(Y )) � G(Y ) (9)

Gradient Sensitive Attention Block (GSAB). The gradient sensitive
attention block integrates processed gradient features using the multi-stage fea-
ture aggregation module (MSFAM), which is designed around the principle of
cumulative feature integration. Initially, the gradient-enriched feature map is
sequentially fused with the MSFAM across four stages to progressively integrate
contextual information in a controlled manner. The final feature map undergoes
further processing with a single 2D convolutional layer and a skip connection
via concatenation to enhance training stability and ensure smooth gradient flow.
This integration process is defined by Eq. 10, where Mi(•) denotes the MSFAM
processing operation at the respective stage.

V (F (Y )) = (M4(M3(M2(M1(F (Y )))),�F (Y )) (10)

Multi-stage Feature Aggregation Module (MSFAM). The multi-stage
feature aggregation module (MSFAM) is designed to facilitate diverse feature
extraction across multiple stages, as illustrated in Fig. 2. Initially, it employs
four parallel convolved Layers comprising two 2D convolution and two dilated
2D convolution operations to capture initial features with varying receptive fields
which can be represent by Eq. 11.

U1(•) = �(•) ⊗ �(2D)(•) ⊗ �(•) ⊗ �(2D)(•) (11)

These operations yield a feature map that integrates diverse feature rep-
resentations. Following this initial feature capture, the resultant feature map
undergoes processing through a single 2D convolution layer to consolidate and
refine the extracted features. Subsequently, a sequence of dilated 2D convolution
layers, configured as [2, 3, 2], further enhances feature extraction by progressively
controlling the receptive fields. To ensure comprehensive feature integration and
promote efficient training, the module utilizes skip connections with additive
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Table 2. Average PSNR and SSIM for gaussian grayscale dataset

Dataset σ BM3D DNCNN NIFBGDNetFFDNet APD-Net SWINIR DRANet MWDCNN Proposed
Metric [PSNR/SSIM]

30 27.35/0.763 27.17/0.754 28.03/0.783 27.94/0.732 28.10/0.754 27.98/0.760 28.38/0.807 28.32/0.80228.71/0.826
40 22.44/0.495 25.31/0.682 26.84/0.737 27.55/0.702 27.71/0.733 26.53/0.650 27.54/0.785 27.40/0.78127.59/0.801
50 18.19/0.316 23.75/0.616 25.99/0.701 26.49/0.677 26.47/0.683 25.83/0.54326.85/0.738 26.68/0.72526.85/0.759

BSD68

60 15.73/0.220 22.29/0.546 25.17/0.669 25.24/0.642 25.20/0.629 24.73/0.502 26.43/0.701 26.32/0.68726.47/0.703
30 28.72/0.791 27.84/0.758 30.22/0.849 30.18/0.845 30.26/0.843 29.64/0.820 30.59/0.857 30.23/0.84830.64/0.859
40 23.12/0.509 25.38/0.683 28.98/0.821 29.03/0.830 29.12/0.828 28.03/0.782 29.66/0.832 29.52/0.82529.68/0.833
50 18.73/0.324 23.47/0.614 27.98/0.795 28.02/0.791 28.09/0.796 26.64/0.751 28.40/0.803 28.33/0.78528.45/0.811

Set5

60 16.24/0.222 21.85/0.545 26.91/0.756 26.97/0.778 27.01/0.774 24.44/0.703 27.85/0.773 27.77/0.76727.91/0.777
30 23.34/0.628 26.11/0.620 27.44/0.828 27.59/0.833 27.88/0.831 28.84/0.810 28.89/0.805 27.65/0.74930.54/0.838
40 22.78/0.562 25.51/0.587 26.76/0.794 27.01/0.798 27.22/0.802 27.08/0.788 27.15/0.771 26.74/0.70127.28/0.803
50 22.07/0.519 24.77/0.533 25.18/0.712 26.22/0.720 26.73/0.725 26.43/0.660 26.58/0.678 26.02/0.65026.75/0.723

Urban100

60 21.11/0.498 24.02/0.502 24.59/0.607 25.11/0.634 25.14/0.648 25.92/0.638 25.89/0.640 25.23/0.59725.97/0.662

operations. These connections facilitate the incorporation of global image fea-
tures learned across multiple stages, thereby enhancing the module’s ability to
capture intricate image details which is structured as mathematically in Eq. 12.

U2(•) = α(�(2D)(α(�(3D)(α(�(2D)(�(U1(•))))))) ⊕ U1(•)) (12)

The final output of the module is a comprehensive feature map generated by a
2D convolution layer followed by a sigmoid activation function, ensuring normal-
ization of values within the range of 0 to 1. This entire operational framework
can be summarized as Eq. 13.

U3(F (Y )) = σ(�(U2(F (Y )))) (13)

The final denoised image is achieved by integrating features from the fre-
quency domain processing pipeline (FDP), spatial domain processing pipeline
(SDP), and gradient domain processing pipeline (GDP). Initially, the features
extracted independently by GDP and SDP undergo convolutional layer process-
ing. This step is iteratively applied to further processed feature of (FDP) block.
Finally, a sigmoid activation function yields the ultimate denoised image output.

X̂ = σ(�(�(P (Q(Y )) ⊕ V (F (Y ))) ⊕ C(Y ))) (14)

4 Loss Function

MDFIDNet trains by selecting patches: Icleani from pristine images and Inoisyi

by adding AWGN to synthetics. For real-world images, which inherently con-
tain noise, patches are extracted and precisely aligned with their corresponding
ground truth. The objective is to reconstruct Idenoisedi

∗ = MDFIDNet(Inoisyi
)

from the noisy input Inoisyi
. The loss function L is defined as follows:

L � 1
2N

N∑
i=1

∥∥I∗
denoisedi

− Icleani

∥∥2 (15)
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Table 3. Average PSNR and SSIM for gaussian color dataset

Dataset σ BM3D DNCNN NIFBGDNetFFDNet APDNet SWINIR DRANet MWDCNN Proposed
Metric [PSNR/SSIM]

30 27.21/0.748 28.78/0.853 30.08/0.855 29.78/0.842 30.04/0.853 29.76/0.815 30.08/0.856 29.95/0.85130.18/0.860
40 26.58/0.738 27.92/0.808 28.71/0.814 28.50/0.803 29.11/0.783 28.50/0.791 28.79/0.820 28.72/0.81429.16/0.822
50 25.85/0.729 26.49/0.766 27.71/0.779 27.66/0.771 27.88/0.763 27.49/0.769 27.92/0.782 27.84/0.77327.93/0.780

CBSD68

60 24.83/0.695 25.23/0.729 26.90/0.749 26.93/0.747 26.98/0.753 25.37/0.753 27.31/0.772 27.22/0.75727.34/0.773
30 23.03/0.615 26.45/0.623 28.14/0.849 28.19/0.856 28.42/0.861 29.53/0.834 29.67/0.866 29.02/0.84329.84/0.873
40 22.66/0.576 25.01/0.589 27.40/0.782 27.33/0.778 27.51/0.786 28.76/0.801 29.02/0.840 28.69/0.83129.22/0.841
50 22.03/0.512 24.56/0.521 26.21/0.723 26.56/0.745 26.96/0.756 28.02/0.745 28.52/0.814 28.03/0.80128.71/0.820

CUrban100

60 21.54/0.489 23.69/0.502 25.88/0.682 26.02/0.667 26.22/0.691 27.62/0.70227.86/0.793 27.75/0.787 27.84/0.790
30 28.80/0.858 26.78/0.725 31.09/0.897 31.02/0.871 31.03/0.884 29.82/0.868 31.29/0.894 31.22/0.88531.30/0.895
40 23.54/0.607 23.98/0.638 29.58/0.873 30.21/0.879 30.05/0.871 27.72/0.81530.18/0.874 30.06/0.87130.18/0.878
50 19.20/0.428 21.82/0.569 28.34/0.849 28.36/0.839 28.45/0.841 26.34/0.793 29.04/0.848 28.95/0.84429.07/0.855

Manga109

60 16.63/0.296 20.03/0.493 27.10/0.811 27.03/0.804 27.11/0.801 25.21/0.729 27.82/0.816 27.78/0.80727.88/0.818

Fig. 3. Visuals of grayscale image denoising on BSD68 dataset(σ = 50).

Fig. 4. Visuals of color image denoising on CBSD68 dataset. Top row: Penguine (σ =
30). Bottom row: Man (σ = 50).

Fig. 5. Real image denoising results on SIDD validation dataset.
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Fig. 6. Real image denoising results on SIDD validation dataset.

5 Experimentation

5.1 Training Setup

The training of the proposed MDFIDNet model was conducted using both syn-
thetic and real datasets. For synthetic noisy image denoising, we utilized BSD400
[20] for grayscale images and CBSD432 [23] for color images, applying Additive
White Gaussian Noise (AWGN) with random standard deviations ranging from
0 to 55. The performance of synthetic image denoising was evaluated on five
benchmark datasets: Set5 [3], BSD68 [20], CBSD68 [23], and Urban100 [13]. For
real image denoising, we employed the SIDD dataset [1], consisting of 512× 512
image patches, which includes 24,000 training images and 1,280 validation images
taken from various smartphone cameras under diverse lighting conditions. The
evaluation was performed using the SIDD Validation [1], PolyU [30], and Nam
[21], with all patches resized to 256 × 256.

To augment the training data, we applied techniques such as horizontal, ver-
tical flipping and rotations of 90, 180, and 270◦, thus enhancing data diversity
while retaining essential features. MDFIDNet was trained over 120 epochs with
mini-batches of 32 instances, using the Adam optimizer [15] with an initial learn-
ing rate of 10−3 and a fixed kernel size of 5 × 5. To ensure stable convergence,
the learning rate was dynamically reduced by 0.5 every 25th iteration, and a
fixed weight decay was used to prevent overfitting.

5.2 Evaluation on Synthetic Image

The study rigorously evaluated MDFIDNet against several state-of-the-art
denoising techniques using PSNR [12] and SSIM [28] metrics across four noise
levels (σ = 30, 40, 50, 60) (Tables 2 and 3). Compared to BM3D [5], DnCNN
[33], NIFBGDNet [25], FFDNet [34], APDNet [14], SwinIR [17], DRANet [29],
and MWDCNN [26], MDFIDNet consistently achieved the highest PSNR [12]
and SSIM [28] scores, indicating superior preservation of original signals and
structural details.
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Table 4. Average PSNR/SSIM of real images denoising. (Red denotes best)

Dataset Metric DnCNNFFDNetCBDNetRIDNetGrencNetMPRNetAPD-NetsMIRNetv2MCWNNMDRANetUformerProposed

SIDD
PSNR 29.50 34.22 33.26 38.70 39.42 39.71 39.75 39.82 39.54 39.53 39.89 39.98
SSIM 0.610 0.855 0.869 0.914 0.957 0.958 0.959 0.959 0.952 0.959 0.960 0.962

PolyU
PSNR 36.24 36.84 37.81 38.57 39.69 39.84 39.92 39.85 39.68 39.71 39.85 40.14
SSIM 0.944 0.892 0.956 0.960 0.965 0.966 0.968 0.967 0.965 0.966 0.968 0.970

Nam
PSNR 37.45 37.67 39.09 39.20 39.79 39.97 40.24 40.12 39.72 39.93 40.22 40.28
SSIM 0.954 0.936 0.969 0.973 0.979 0.981 0.989 0.989 0.986 0.977 0.990 0.992

Table 5. Assessment of computational complexity for various denoising methodologies,
using the PolyU testing dataset with dimensions of 512 × 512.

Method BM3DMPRNetFFDNetUformerAPDNetDRANetGrencNetMirNet-v2MWDCNNMDFIDNet
Device CPU GPU GPU GPU GPU GPU GPU GPU GPU GPU
Params (M) – 15.8 0.87 51.22 18.61 5.62 5.1 5.9 4.6 4.1
Depth – 66 64 111 – 48 68 42 36 28
MACs – 587 71.13 141.88 212.13 116.36 106.46 106.21 112.21 102.46
FLOPs – 294 18.02 217.56 282.26 187.24 164.76 142.18 174.21 158.33
times (s) 4.23 0.83 0.28 0.72 0.80 0.33 0.59 0.48 0.55 0.31
PSNR 36.35 39.84 36.83 39.85 39.92 39.71 39.69 39.85 39.68 40.14
SSIM 0.861 0.966 0.892 0.968 0.968 0.966 0.965 0.967 0.965 0.970

Table 6. Ablation study on CBSD68 dataset for σ = 30. (Red denotes best).

Methodw/o frequency Transformw/o MSCABw/o SDPw/o GENUw/o GSABMDFIDNet
PSNR 30.11 30.08 29.91 29.98 30.01 30.18
SSIM 0.854 0.849 0.828 0.818 0.843 0.860

Qualitative assessments supported these findings. Visual inspections of
grayscale images from the BSD68 dataset at σ = 30 (Fig. 3) demonstrated
MDFIDNet’s effectiveness in retaining fine details without artifacts or over-
smoothing, unlike its competitors. For color images from (Fig. 4) the CBSD68
dataset at σ = 30 and 50, MDFIDNet preserved key features better than
DnCNN [33], MWDCNN [26], and SwinIR [17], which either oversmoothed or
retained noise. Overall, MDFIDNet consistently outperformed other methods
both quantitatively and qualitatively, confirming its robustness and efficacy in
image denoising tasks.

5.3 Evaluation on Real Image

To evaluate the effectiveness of our method in real-world noise reduction tasks,
the proposed method, MDFIDNet, was evaluated on three prominent real-world
denoising datasets: SIDD validation [1], PolyU [30], and Nam [21]. Results in
Table 4 show that MDFIDNet outperforms existing state-of-the-art techniques
in terms of PSNR [12] and SSIM [28] metrics. Visual comparisons in Fig. 5 and
Fig. 6 highlight that CBM3D [5], RIDNet [2], and DRANet [29] struggle with
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maintaining structural details, while SWINiR [17] fails to remove noise. In con-
trast, our method demonstrates superior structural preservation and visually
appealing results. Both quantitative and qualitative assessments confirm that
MDFIDNet achieves competitive performance, preserving fine details and struc-
tural integrity more effectively than other leading approaches.

5.4 Analysis and Evaluation of Model Complexity

Table 5 compares parameter count, depth, and runtime of denoising methods
using PolyU testing images (512 × 512 pixels). MDFIDNet, with a minimal depth
of 28 layers, excels in performance metrics like PSNR and SSIM compared to
FFDNet [34], known for its efficiency but struggles with complex noise patterns.
BM3D [5], on the other hand, requires substantial computational resources due
to its block-matching approach. Methods such as MPRNet [31], Uformer [27],
and APDNet [14] exhibit significant computation costs owing to their heavy
and complex architectures. In contrast, MDFIDNet emerges as a lightweight
and effective denoising solution, optimizing performance through a streamlined
model design.

5.5 Ablation Study

The ablation study of the proposed network, detailed in Table 6, investigates the
impact of including or excluding various blocks within the network architecture.
It reveals that the removal of different blocks consistently affects the performance
of the proposed method. Notably, the removal of the gradient enhanced neural
unit (GENU) significantly decreases the SSIM by (↓ 0.042), underscoring the
importance of gradient information. Similarly, the removal of the MSCAB and
SDP blocks leads to notable performance drops. Overall, the integration of all
modules yields the best results, demonstrating the network’s peak efficacy.

6 Conclusion

In conclusion, MDFIDNet (Multi-Domain Feature Integration Denoising Net-
work) represents a significant advancement in image denoising within computer
vision. By integrating a triple-phase feature extraction approach (frequency
domain, spatial domain, and gradient domain) MDFIDNet effectively addresses
longstanding challenges in noise reduction. The novel frequency Domain Pro-
cessing Pipeline (FDP) leverages multi-scale convolutional attention blocks
(MSCAB) to extract transform-domain features, enhancing its capability to han-
dle diverse noise patterns. Simultaneously, the spatial domain processing pipeline
(SDP) preserves spatial structures and finer details crucial for image fidelity.
The introduction of the gradient enhanced neural unit (GENU), which exploits
diagonal gradient information, marks a pioneering effort in utilizing gradients
for denoising. Experimental results demonstrate that MDFIDNet outperforms
existing benchmarks across various datasets, delivering competitive denoising
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performance with computational efficiency. Further ablation studies confirm the
effectiveness of MDFIDNet’s design choices, solidifying its role as a leading solu-
tion in the realm of image denoising.
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Abstract. Facial expression recognition (FER) plays a crucial role in
human-computer interaction and emotion analysis. However, recogniz-
ing expressions in low-resolution images remains a significant challenge.
This paper introduces a practical method called Dynamic Resolution
Guidance for Facial Expression Recognition (DRGFER) to effectively
recognize facial expressions in images with varying resolutions without
compromising the accuracy of the FER model. Our framework comprises
two main components: the Resolution Recognition Network (RRN) and
the Multi-Resolution Adaptation Facial Expression Recognition Network
(MRAFER). The RRN determines the resolution of the input image,
and the MRAFER assigns the image to the most suitable facial expres-
sion recognition network according to its resolution. We evaluated the
performance of DRGFER on two widely used datasets, RAF-DB and
FERPlus. The results demonstrate that our method maintains opti-
mal model performance at each resolution and outperforms alterna-
tive resolution-handling approaches. The proposed framework exhibits
robustness against variations in both resolution and facial expressions,
offering a promising solution for real-world applications.

Keywords: Facial Expression Recognition · Dynamic Resolution
Guidance · Resolution Recognition Network

1 Introduction

Facial expression recognition (FER) is an essential task in video analysis and
image understanding, with widespread applications in various fields [6,13,19].
In recent years, FER methods have evolved by employing Convolutional Neu-
ral Network (CNN)-based backbone networks to achieve robust feature extrac-
tion and facial expression classification is typically conducted using fully con-
nected layers, Support Vector Machines (SVMs), and other similar approaches.
Notably, networks such as ResNet [5], Inception network [18], and others have
demonstrated impressive feature extraction capabilities, leading to satisfactory
performance in training models with individual and static facial images as input.
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Fig. 1. This is a group photo featuring Chinese celebrities. Due to the shooting angle
and distance, the resolution of each individual’s face varies. We have selected facial
images of three celebrities on the right for an intuitive visual comparison. The images
demonstrate the differences in clarity at three distinct resolutions: high, medium, and
low.

However, real-world crowd scenes present numerous challenges for FER. One
primary challenge is the prevalence of low-resolution images, which can cause the
loss of vital feature information, leading to decreased discrimination capabilities.
Additionally, as the resolution declines, the feature distribution changes, posing
another hurdle for FER in crowd scenes. Specifically, in crowd scenes, facial
images of different individuals vary in size (as shown in Fig. 1), presenting a
significant challenge in achieving high performance with a single FER model.
The reduction in image resolution can be traced to limitations in camera equip-
ment quality and the distance between the subject and the lens. As a result,
captured facial images display varying sizes. Figure 5 presents two examples of
facial expressions at various resolutions. While the overall expression remains
discernible at lower resolutions, the emotional information’s characteristics dif-
fer significantly from those at higher resolutions.

Image super-resolution (ISR) technology can recover high-resolution images
with abundant details from low-resolution images, as demonstrated in previ-
ous studies [4,7,9,11,22,23]. In some instances, ISR methods have been applied
to enhance low-resolution images to improve performance in FER tasks [3,12].
However, earlier studies [8] have focused mainly on improving the accuracy of
the model at a fixed resolution, which can restrict the adaptability of the model
to data with varying resolutions. However, the real-world application of low-
resolution facial expression recognition algorithms has received insufficient atten-
tion, and few studies have focused on applying expression classification models
at varying resolutions.
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Due to the inherent characteristics of convolutional neural networks, it is
challenging to apply them to a wide range of data with different resolutions
simultaneously. As a result, using a model trained on a specific resolution or
one that has been adapted to incorporate varying resolutions directly is unlikely
to yield optimal performance. To address the aforementioned challenges, this
paper initially investigates adaptation algorithms at varying resolutions and
confirms that it is quite difficult to employ a single model for handling facial
expression recognition problems across different resolutions. Subsequently, we
propose the Dynamic Resolution Guidance for Facial Expression Recognition
(DRGFER) framework that can automatically identify the resolution of the
input facial image and forward it to the corresponding FER network for recogni-
tion. To determine the resolution of each face, a Resolution Recognition Network
(RRN) is introduced, and Multi-Resolution Adaptation Facial Expression
Recognition Network (MRAFER) will classify expressions based on resolu-
tion decisions. Finally, we validate our proposed framework using several widely
adopted facial expression datasets, and the experimental results show that our
algorithm achieves superior performance.

2 Related Work

Facial expression recognition (FER) [2] has become an important issue with
extensive applications in various tasks. However, recognizing facial expressions
in low-resolution images poses significant challenges, particularly under realis-
tic conditions where environmental factors and image capture equipment affect
image quality. Current FER networks primarily focus on ideal-resolution images,
leading to decreased recognition accuracy for low-resolution images, which are
common in practical scenarios like surveillance camera footage.

To address this limitation, Jie Shao et al. [17] introduced an edge-aware
feedback convolutional neural network (E-FCNN) for recognizing facial expres-
sions in low-resolution images. The E-FCNN incorporates feedback connections
between convolutional layers and employs edge-aware convolutional layers to
capture detailed information. Wu Gang et al. [20] investigated sample construc-
tion and feature embedding, proposing a task-friendly embedding network based
on adversarial learning. This network facilitated better reconstruction of lost
high-frequency information by generating information-rich positive samples and
challenging negative samples in the frequency space. This approach enhanced the
model’s adaptability to basic-level tasks requiring rich texture and contextual
information, thereby advancing research in single-image super-resolution (SISR).
However, the single-image super-resolution model struggles to effectively handle
multi-scale images, with its reconstruction performance being significantly influ-
enced by the reduced resolution of the input image. Consequently, it is unable
to ensure the discriminative sufficiency of recovered features for specific tasks
such as object detection and expression classification. Nan Fang et al. [14] also
proposed a feature super-resolution-based FER method and employed a novel
GAN training strategy that directed the model’s attention toward samples that
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were difficult to classify into the corresponding categories. However, they only
focus solely on fixed-resolution problems without considering real-world applica-
tions and the implementation of models that adapt to input images with varying
resolutions.

The recognition of facial expressions in multi scale low-resolution images has
been largely overlooked. Previous approaches treated this as a separate task,
training a distinct model for each resolution, which is inefficient. These meth-
ods ignore the fact that in real-world scenarios, the resolution of the acquired
image data is unknown, making it impossible to determine which model should
process the current image. Moreover, existing super-resolution methods require
the input image resolution as a priori, which is impractical in the application
stage. To address these limitations, we propose the DRGFER framework, which
automatically identifies the resolution of the input facial image and forwards it
to the corresponding FER network for recognition. So, our method is orthogonal
to existing super-resolution methods and addresses different problems.

3 Single Model Adaptation

We explored various methods to enable a single FER to effectively adapt to multi
low-resolution facial expression images.

Multi Scale Training (MSTrain). This approach represents a straightfor-
ward and essential methodology [15]. By incorporating data augmentation tech-
niques into the training process, a diverse range of low-resolution facial expres-
sion image data can be effectively simulated. The underlying objective is to
enable the neural network to effectively adapt to these varying resolutions,
thereby facilitating targeted training specifically tailored to a particular reso-
lution setting. Regrettably, despite its initial promise, this method did not yield
the desired outcome. In fact, it resulted in a noticeable decrease in the model’s
accuracy across different resolutions.

Domain Adaptive. Domain adaptation [21] has emerged as a prominent
research area in recent years. It primarily addresses the effects of data distribu-
tion discrepancies on the performance of machine learning models. This concept
can be applied to the challenge of multi-scale, low-resolution facial expression
recognition. Although data resolutions may vary, leading to distribution biases,
the representations used for classification exhibit similarities. Domain adapta-
tion primarily employs feature vectors to accomplish two distinct recognition
tasks: the original task of expression recognition and domain recognition, where
different resolutions represent separate domains. The training process is based
on adversarial learning, to enable the feature encoder to deceive the domain rec-
ognizer. The aim is to enable the domain identifier to treat images of different
resolutions as equivalent, allowing expression features from varying resolutions
to be mapped onto a shared feature space, thereby enabling the classifier to
recognize. But, we discovered that this approach cannot prevent a decline in
accuracy.
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Resolution-Aware BN. Zhu et al. [24] conducted research and determined
that varying resolution data exhibit distribution shifts, making it challenging
for a single neural network model to adapt to multiple resolutions concurrently.
To address this issue, they introduced multiple independent BatchNorm modules
in parallel following the convolutional layer, as opposed to the traditional app-
roach of using a single convolutional layer and BatchNorm module. For images of
differing resolutions, each respective BatchNorm layer performs an independent
normalization operation on the current data. This technique enables the authors
to project data from various resolutions into a consistent latent space, thereby
reducing the distribution discrepancy between different resolutions. We applied
this method to facial expression recognition as well. However, our experimenta-
tion showed that this approach does not alleviate the issue of a single model’s
recognition accuracy degradation when applied to multiple-resolution scenarios.

Upon investigating several aforementioned techniques, we discovered that
certain methods, although showing advantages in some studies, do not yield
satisfactory results in practical applications in the multi-scale low-resolution
facial expression recognition scenario.

4 Methodology

Our proposed method is both simple and practical, Dynamic Resolution Guid-
ance for Facial Expression Recognition (DRGFER). By utilizing our framework,
it is possible to achieve end-to-end automatic recognition of multi scale low-
resolution facial expressions without compromising the accuracy of the FER
model. As depicted in Fig. 2, our proposed framework comprises two stages.
Initially, the Resolution Recognition Network(RRN) is utilized to determine
the resolution of the input facial expression image. Subsequently, a binariza-
tion operation is performed to convert the network’s output into a 0–1 vector.
The original image, denoted as Ii, and the binarized vector, denoted as ri, are
then fed into the Multi-Resolution Adaptation Facial Expression Recognition
Network(MRAFER) as a pair. The network model will automatically select the
appropriate facial expression recognition network according to ri and ultimately
generate the recognition result.

4.1 Resolution Recognition Network

To address the problem of facial expression recognition at different resolutions,
we first propose the RRN to guide the subsequent recognition model for more
accurate classification of facial expressions.

RRN Architecture. We employ the ResNet18, which uses the same architec-
ture as the FER network used later in the process. The structure of the network,
as shown in Fig. 3a, is divided into six parts: stage 1, stages 2–5, and the final
resolution predictor. The first stage consists of a convolutional layer, batch nor-
malization layer, ReLU, and max-pooling layer, which extract low-level features
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Fig. 2. This is pipeline of our proposed method.

Fig. 3. (a) The structure of RRN, which is based on ResNet18, (b) The Detail of
BasicBlock.

from the image while performing the downsampling operation twice. As a result,
after the first stage of computation, the feature map resolution is only 1/4 of
the input image. The subsequent four stages are composed of BasicBlocks, with
two BasicBlocks in each stage. Each BasicBlock is a residual module, as illus-
trated in Fig. 3a, consisting of two convolution operations, after each convolution
operation, BatchNorm is employed to normalize the data, followed by the ReLU
operation, which performs nonlinear mapping on the data. The most crucial
aspect is that the input and output of the module are added together, utilizing
the residual concept to guide the weights in the module during training. Among
stages 2–5, only stage 2 does not include any downsampling operations, while the
others do. Finally, the resolution predictor consists of an average pooling layer
and a fully connected layer. The feature map is converted into a feature vector
through average pooling, followed by a predictor to determine the resolution of
each image.

The model’s output is an unnormalized vector for classification purposes,
which is a kind of distribution, we can donate it as pi for Ii image.

Loss. Essentially, our RRN is a classification task. Therefore, we employ Soft-
max to normalize the output vector and utilize the cross-entropy loss function
to guide the learning process for this specific component, by Eq.(1) and Eq.(2).
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ŷij =
exp(pij)

∑C
k=1 exp(pik)

(1)

LRRN (yi, ŷi) = −
C∑

j=1

yij log(ŷij) (2)

where C represents the total number of distinct resolution categories, ŷij
denotes the probability of the ith image belonging to the jth resolution category,
ŷi = {ŷi0, ŷi1, ..., ŷiC} represents the vector of probabilities for the ith image across
all resolution categories, and yi is the ground truth.

Binarization. The binarization operation is employed to convert the vector
output by the network, as the vector output by the RRN cannot be directly
used by our MRAFER. This binarization operation does not rely on a preset
threshold, instead, it is based on the maximum value. In this approach, the
element with the maximum value in the vector is set to 1, while all other elements
are set to 0, the whole process can be defined as the following:

ri =

{
1 if j = argmax(ŷi)
0 otherwise

(3)

In this equation, ri represents the resolution desicion for image Ii. The operation
sets the element j to 1 if it is equal to the maximum value in the corresponding
ŷi, and to 0 otherwise. This results in a binary vector, which can be effectively
utilized by the MRAFER to select the appropriate FER Block for facial expres-
sion recognition.

4.2 Multi-resolution Adaptation Facial Expression Recognition
Network

As illustrated in Fig. 4, our Multi-Resolution Adaptation Facial Expres-
sion Recognition(MRAFER) is comprised of three main components: Assign,
FER Block, and Gather. First, our Assign module traverses the resolution pre-
dictions in the entire batch data, then combines images with different resolu-
tions into new batch data, and sends different batches to the corresponding
FER Block. The network structure of our FER module is shown in Fig. 3b. The
structure is the same as that of RRN. The only difference is that the number of
outputs of the last fully connected layer is different. This is related to the dataset
used. Finally, we need to splice the batch data predicted by each FER Block and
use the Gather operation. We divide the whole process into the following steps:

1) Traverse the resolution predictions ri, in the entire batch data, B.
2) Grouping images with different resolutions into a new batch data, B′ =

{B1, B2, ..., Bk}, k is the number of FER Blocks.
3) Send B′ to the corresponding FER Blocks.
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Fig. 4. Multi-Resolution Adaptation Facial Expression Recognition Network.

4) Process the images through the FER Block.
5) Obtain the predictions Bp

k for each Bk and splice the batch data predicted
by each FER Block into a single output Bp.

B′ = Assgin(B) (4)
Bk = {Ii|ri[k] = 1} (5)

Bp = Gather({Bp
1 , B

p
2 , ..., B

p
k}) (6)

Bp[ri[k]] = Bp
k (7)

We can use Eq.(4) and Eq.(7) to define two operations, Assign and Gather.
Equation(5) provides the details of Eq.(4), Bk represents the set of images Ii
with their binarized vector ri[k] equal to 1. This indicates that they belong to
the k-th resolution group. And Eq.(7) provides the details of Eq.(6), Bp[ri[k]]
denotes the prediction for each image Ii in the k-th resolution group. The Gather
operation assigns the prediction from the corresponding resolution group Bp

k to
the final output Bp.
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Fig. 5. Two samples from the RAF-DB dataset are visualized. The first column
presents the original size image, while the subsequent columns display downsampling
to the corresponding magnification.

5 Experiment

5.1 Dataset

To assess the performance of expression recognition, we utilize the RAF-DB [10]
and FERPlus [1] datasets in our experiments. RAF-DB was compiled using
various search engines, and approximately 40 annotators independently labeled
each image. The dataset comprises 15,339 images labeled with seven basic emo-
tion categories, with 12,271 designated for training and 3,068 for validation.
FERPlus is an extension of FER2013, as used in the ICML 2013 Challenges. It
is a large-scale dataset collected via the Google search engine, containing 28,709
training images, 3,589 validation images, and 3,589 test images, each resized to
48×48 pixels. The dataset includes an additional class, contempt, resulting in a
total of 8 classes. The overall sample accuracy serves as the performance metric.

Similar to most super-resolution studies, we apply a bicubic kernel function to
downsample high-resolution images and obtain low-resolution counterparts. The
original input size is 100 × 100 pixels, and we achieve low-resolution images by
employing integer down-sample factors of ×2, ×4, ×6, and ×8. Consequently,
the total pixel count is reduced to 1/4, 1/16, 1/36, and 1/64, Fig. 5 displays
several examples.

5.2 Experiment Setup

Baselines. To evaluate the performance of DRGFER, we compare it with
simple max-pooling (Max), average-pooling (Mean) strategies, and the previ-
ously mentioned multi-scale augmentation training (MSTrain), domain adapta-
tion (DA), and resolution-aware batch normalization (RA-BN) methods. In our
experiments, we use accuracy to evaluate different methods.

For the Max method, we perform a max pooling operation on the logits
output by the FER networks trained on different resolutions. This approach
selects the most confident prediction among the networks, assuming that the
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Table 1. Results of accuracy on RAF-DB with different resolution.

Ratio

Accuracy Methods
Mean Max RA-BN DA MSTrain DRGFER

×1 86.11% 86.64% 86.96% 81.10% 85.88% 89.24%

×2 86.34% 86.28% 86.73% 81.10% 85.91% 88.23%

×4 83.93% 82.92% 84.41% 77.22% 84.35% 85.30%

×6 75.98% 75.62% 80.18% 69.04% 80.93% 81.91%

×8 66.85% 70.47% 76.43% 61.01% 77.18% 77.35%

Mean 79.84% 80.38% 82.94% 73.89% 82.85 % 84.41%

network trained on the closest resolution to the input image will provide the
most accurate prediction. Similarly, for the Mean method, we average the logits
output by the FER networks trained on different resolutions. This approach gives
equal weight to the predictions from all networks, assuming that the collective
knowledge from various resolutions can contribute to a more robust prediction.
Both Max and Mean methods aim to leverage the information from multiple
resolution-specific networks to improve the overall facial expression recognition
performance.

Implementation Details. We resize the input images to 224 pixels, and use
random horizontal flipping for data argumentation. We implement the code using
the PyTorch [16] framework. All experiments are conducted with a batch size
of 256, a learning rate of 3e-4, and the Adam optimizer for 80 epochs. Our
experiments are performed on an Nvidia 1080Ti GPU.

5.3 Facial Expression Recognition Result

The Table 1 presents the total accuracy results of six different methods (Mean,
Max, RA-BN, DA, MSTrain, and DRGFER) on the RAF-DB dataset, with
varying input image resolutions represented by down-sampling ratios (×1, ×2,
×4, ×6, and ×8). The best results in each row are highlighted in bold.

For the highest resolution (×1 down-sampling ratio), DRGFER achieves an
impressive accuracy of 89.24%, surpassing the second-best method, RA-BN, by
a notable margin of 2.28%. This suggests that DRGFER is capable of extracting
fine-grained features and making accurate predictions when provided with high-
quality input images. As the down-sampling ratio increases and the image res-
olution decreases, the performance of all methods declines. However, DRGFER
maintains its superior performance, with accuracies of 88.23%, 85.30%, 81.91%,
and 77.35% for ×2, ×4, ×6, and ×8 down-sampling ratios, respectively. The
consistent lead of DRGFER over other methods across all resolutions highlights
its ability to effectively handle the challenges posed by low-resolution images.

In the last row, the table displays the mean accuracy for each method
across all down-sampling ratios. DRGFER achieves the highest mean accu-
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Table 2. Results of accuracy on FERPlus with different resolutions.

Ratio

Accuracy Methods
Mean Max RA-BN DA MSTrain DRGFER

x1 82.66% 80.86% 83.85% 80.77% 82.42% 84.12%

x2 83.18% 81.24% 83.27% 80.37% 82.54% 83.76%

x4 80.05% 79.53% 82.02% 71.90% 81.47% 82.23%

x6 70.94% 73.41% 78.48% 49.26% 77.50% 78.48%

x8 62.01% 68.04% 74.05% 40.91% 75.01% 75.01%

Mean 75.77% 76.61% 80.33% 64.64% 79.79 % 80.72%

racy of 84.41%, followed by MSTrain at 82.85%, RA-BN at 82.94%, Max at
80.38%, Mean at 79.84%, and DA at 73.89%. The results indicate that the
DRGFER method consistently outperforms the other tested approaches across
various input image resolutions. From Table 1, the experimental results provide
strong evidence for the effectiveness of the proposed DRGFER method in facial
expression recognition tasks, particularly in scenarios involving varying image
resolutions. The ability of our DRGFER to maintain high accuracy across dif-
ferent down-sampling ratios and its notable performance lead over other methods
highlight its potential for real-world applications where image quality may vary
significantly.

Table 2 presents experiment results conducted on the FERPlus dataset, while
all other settings remain the same as in Table 1.

At the original resolution (×1), DRGFER obtains an accuracy of 84.12%, out-
performing the second-best method, RA-BN, by a small margin of 0.27%. This
indicates that DRGFER is capable of effectively capturing and utilizing the fine-
grained details present in high-resolution images for accurate facial expression
recognition. As the down-sampling ratio increases, the performance of all meth-
ods generally declines due to the loss of image quality and information same as
in RAF-DB dataset. However, DRGFER maintains its competitive edge, secur-
ing the top position in most cases. For instance, at the ×4 down-sampling ratio,
DRGFER achieves an accuracy of 82.23%, surpassing the second-best method,
RA-BN, by 0.21%. This highlights the robustness of DRGFER in handling mod-
erately degraded image resolutions. Interestingly, at the ×6 down-sampling ratio,
DRGFER and RA-BN obtain the same accuracy of 78.48%, outperforming other
methods by a significant margin. This suggests that our DRGFER is particularly
effective in extracting meaningful features from low-resolution images, enabling
accurate facial expression recognition even in challenging scenarios. At the lowest
resolution (×8), DRGFER and MSTrain achieve the highest accuracy of 75.01%,
demonstrating their ability to maintain a relatively high performance even when
the image quality is drastically reduced. This is particularly impressive consid-
ering the substantial performance drop experienced by other methods, such as
DA, which obtains an accuracy of only 40.91%.
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The mean accuracy across all resolutions further confirms the overall superi-
ority of DRGFER, with an average accuracy of 80.72%, indicates that DRGFER
not only excels at specific resolutions but also maintains a consistently high
level of performance across a wide range of image resolutions. the experimen-
tal results on the FERPlus dataset validate the effectiveness and robustness of
the proposed DRGFER method for facial expression recognition under varying
image resolutions. DRGFER’s ability to achieve competitive performance across
different down-sampling ratios, particularly in challenging low-resolution scenar-
ios, highlights its potential for real-world applications where image quality may
be compromised. The consistent performance of DRGFER across both RAF-
DB and FERPlus datasets demonstrates its generalizability and adaptability to
different data distributions and characteristics.

5.4 Ablation Study

Table 3. The result comparison with different training resolution. ×1 means training
with original resolution data, ×1 − 6 means training with multi resolution data (×1,
×2, ×4, and ×6).

Train Resolution×1 ×2 ×4 ×6 ×8

×1 89.24% 86.17% 77.11% 65.41% 56.22%

×2 86.96% 88.23% 79.27% 66.30% 54.50%

×4 81.42% 83.51% 85.20% 73.89% 59.84%

×6 66.72% 70.76% 78.39% 80.35% 69.82%

×8 54.27% 54.60% 64.34% 73.50% 76.86%

×1 − 2 88.33% 88.07% 81.55% 68.12% 56.19%

×1 − 4 87.61% 87.48% 85.30% 76.37% 64.24%

×1 − 6 86.67% 86.41% 84.94% 81.91% 73.01%

×1 − 8 85.88% 85.88% 84.25% 80.96% 77.21%

DRGFER 89.24% 88.23% 85.30% 81.91% 77.35%

Table 3 investigates the impact of data augmentation at different resolutions on
models trained with various low-resolution data. The results show that when a
model is trained using a single resolution, it achieves the best performance only
at that specific resolution, which is consistent with the training setting. However,
when multiple resolutions are combined for joint training, the accuracy at some
lower resolutions can be improved, albeit at the cost of decreased performance
at higher resolutions. For example, in Table 3, when we use ×1 − 6 to train the
model, it brings a 1.56% improvement compared with only training with single
×6 resolution on the result of testing with ×6. However, the accuracy of ×1, ×2,
and ×4 decreases by 2.57%, 1.82%, and 0.71%, respectively, compared to their
single-resolution training counterparts.
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In this case, similar observations can be made for the ×4 and ×8 downsample
ratio, where multi scale low-resolution training leads to accuracy improvements
of 0.1% and 0.35%, respectively. These results reinforce the idea that combining
multiple resolutions during training can enhance the performance of the model
in handling lower-resolution input images. By training jointly on a variety of res-
olutions, the model becomes more adaptable and robust. However, this increased
adaptability comes at the cost of decreased performance at higher resolutions, as
the model learns to generalize across different resolutions rather than specializing
in high-resolution details.

Fig. 6. Comparison of recognition accuracy.

Furthermore, the more joint resolutions included in the training, the lower
the accuracy becomes, as shown in Fig. 6 and Fig. 6b. This phenomenon can be
attributed to the fact that models trained on low-resolution images may not be
as effective in capturing high-resolution features, leading to poorer performance
on high-definition input images. Therefore, while joint training can enhance the
model’s adaptability to lower-resolution images, it may also compromise its per-
formance at higher resolutions.

The DRGFER proposed in this paper can directly avoid the FER model
from facing data of inappropriate resolution, thereby maximizing the recognition
effect.

6 Conclusion

In this paper, we proposed a novel method called Dynamic Resolution Guid-
ance for Facial Expression Recognition (DRGFER) to effectively recognize facial
expressions in different low-resolution images without compromising the accu-
racy of the FER model. Our framework consists of two main components: the
Resolution Recognition Network (RRN) and the Multi-Resolution Adaptation
Facial Expression Recognition Network (MRAFER). Our proposed DRGFER
framework demonstrates a practical and effective approach to handle and pro-
cess facial expression images with varying resolutions.
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Limitations and Future Works. While our method can automatically adapt
to a variety of low-resolution facial expression recognition tasks, there are still
some limitations to be addressed. One limitation is that our definition of low res-
olution is discrete and not sufficiently detailed, which may lead to inconsistencies
between the settings during training and real-world applications. To mitigate this
issue, we plan to continue exploring ways to refine the resolution strength within
our framework, enabling a more fine-grained and continuous representation of
resolution variations.

Another limitation of our current approach is the requirement of multiple
independent FER Blocks, which, although not introducing additional computa-
tional overhead, can increase memory usage. To address this, we aim to inves-
tigate the establishment of more weight-sharing mechanisms to reduce memory
overhead. Additionally, we believe that incorporating the concept of knowledge
sharing among the FER Blocks can further improve the overall performance of
our method.

By addressing these limitations and exploring these potential improvements,
we strive to develop a more robust, efficient, and adaptable solution for real-
world applications.
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