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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. Recently the analysis of remotely sensed images has played
a vital role in various aspects of research. The current researches ignore
the unique prior knowledge in remote sensing images and do not con-
sider exploring the contextual information of the object, while the exis-
tence of multi-scale and high image resolution of objects in remote sens-
ing images also affects the accuracy of the object detection task. Based
on the above problems, this paper proposes a object detector DCI-Net
(Dynamic Context-Aware IoU Network) based on remote sensing images,
in which the proposed CASK (Context-Aware Selective Kernel) module
can explicitly model the interdependence between the convolutional fea-
ture channels. A loss function Pi_IoU is proposed, which adaptively
adjusts the penalty factor in combination with the size of the detected
object. A DySample module is introduced, which is able to effectively
extract and utilize the spatial structure features. The model in this
paper improves the detection accuracy of complex objects in remote
sensing images. On the DIOR dataset, compared with the baseline model
YOLOV9, the accuracy is improved by 0.6%, the number of parameters
is decreased by 4%, and the floating point operation speed is improved
by 27.8%.

Keywords: Remote sensing images · Object detection · Sample less
learning · Context-aware

1 Introduction

Remote sensing images analysis is pivotal in current research, providing key
information support for environmental monitoring, resource management, disas-
ter warning and other fields. Among them, object detection is a crucial task in
the analysis of remote sensing images [12]. In recent years, Convolutional Neu-
ral Networks (CNNs) have driven significant advances in remote sensing images
(RSI) object detection tasks [2,15,21,22]. However, due to the complexity of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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remote sensing data acquisition, RSI often shows the problem of sparse category
labeling. Traditional CNN-based object detectors are prone to severe overfitting
with limited training data [6]. Therefore, enabling the model to achieve accu-
rate detection and recognition of objects from limited labeled data with efficient
algorithms is known as Few Sample Object Detection (FSOD).

Currently, the mainstream methods used to solve FSOD are categorized into
two main groups: based on Few-Shot Learning and based on Migration Learning.
Among them, Few-Shot Learning enables the model to learn effectively with a
small amount of labeled data. This type of learning is especially suitable for real-
world scenarios where data is scarce, and is therefore very applicable to the task
of object detection in remote sensing images [5]. For example, MetaYOLO [9] and
FRW [13] introduce reweighting vectors to recalibrate query features at various
scales. Building on the two-stage object detector Meta R-CNN [34], Zhang et al.
[36] extended the method to train data to handle objects in arbitrary directions
in RSI. However, there is a significant limitation of few-sample learning in that
it may be difficult to generalize effectively to unseen classes when faced with
diverse or highly complex object domains.

The multi-scale presence of objects in remote sensing images and the large
size of the images data are also two great challenges [25]. First of all, the multi-
scale problem that exists in objects in images is mainly caused by the large
difference in the scale size of the objects. Small-scale objects are easily ignored,
and large-scale objects may appear partially obscured because of the boundary
[6], which is not well solved by many current two-stage object detectors. Secondly,
remote sensing images have the problem of too large data size. This type of
images is generally taken by taking a bird’s eye view from the air downward, and
the images contain a relatively large range and has a high resolution. Therefore,
the characteristics of this type of images not only require a model that can solve
the problem of small sample size and multi-scale objects, but also have the ability
to handle large-scale images.

Based on the above analysis, this paper proposes a new object detection
model DCI-Net, which is mainly used to realize the object detection task
in remote sensing images. In order to better cope with the multi-scale and
high-resolution problems existing in remote sensing images, this paper adopts
YOLOV9 [32] as a benchmark to construct the feature extraction module and
the detection module in the DCI-Net model, respectively, to make full use of its
lightweight features as well as its extensive global receptive field. The contribu-
tions of this paper are as follows:

1) Propose the DCI-Net model, which outperforms the baseline model in all
aspects of object detection performance on the DIOR dataset.

2) Propose the CASK module, which detects more contextual information of the
object while reducing the number of parameters, thus improving the accuracy
of detection.

3) Propose the loss function Pi_IoU to adaptively adjust the penalty factor
according to the size of the object and combine with the loss function of
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the anchor frame quality for gradient adjustment, so that the object can be
detected more accurately.

4) Introducing the DySample module, which not only reduces the GPU mem-
ory, but also has a great advantage over other up-sampling modules in the
detection task.

2 Related Work

2.1 Object Detection

Currently, popular object detectors are trained on datasets of predefined cate-
gories (e.g., the COCO dataset [18] and the Objects365 dataset [30]), and the
rapid development of object detectors has benefited from these rich datasets.
Modern object detection models are usually categorized into two types: two-
stage object detectors [4,16], such as Faster R-CNN [29] and R-FCN [4], and
single-stage object detectors [10,17,26], such as YOLO [28] and FCOS [31].
Two-stage detectors first generate candidate frames through a candidate frame
generation network, and then extract features and feed these features into a
object classifier and bounding box regressor. The single-stage object detectors,
on the other hand, accomplishes object detection by generating and classifying
candidate frames directly on the input images, omitting the step of explicitly
generated candidate frames. This paper is mainly based on the more popular
single-stage YOLOV9 to improve. Compared with the baseline model, the DCI-
Net in this paper has more powerful object detection ability, and achieves better
detection effect in the detection of remote sensing images.

2.2 Object Detection in Remote Sensing Images

Object detection in remotely sensed images is an important problem in the field
of aerial images analysis and plays an important role in many applications with
the wide availability of satellite images [1]. However, remote sensing images usu-
ally exhibit unique characteristics in terms of multi-scale objects. The complex-
ity and diversity of the surface landscapes they capture usually require in-depth
exploration of objects at different scales for a comprehensive analysis [6]. The
dense distribution of detection objects in remote sensing images and the com-
plexity of the background, as well as the relatively large number of objects in
the images, generally make it difficult to achieve good detection results using
current object detectors. These limitations have hindered the progress of tra-
ditional deep learning object detectors because they require large amounts of
well-labeled, carefully curated data. The inherent properties of remote sensing
images themselves present challenges and opportunities for the task of object
detection and analysis, and existing research has explored this area. Deng et al.
[13] introduced a reweighting module on the YOLO architecture for recalibrat-
ing the feature maps from a set of annotated support images. Wolf et al. [33]
designed a two-header architecture to prevent the loss of base class knowledge
and to work with sampling and preprocessing strategies to better utilize base
class annotations.
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2.3 Few Sample Object Detection in Remote Sensing Images

Few sample object detection aims to cope with the situation of insufficient sam-
ples of object objects in large datasets [37,38]. As an emerging field in the field
of remote sensing images detection, the core concept of FSOD is to accurately
detect objects in images by training the model using a small number of labeled
samples. Compared to natural images, remote sensing images show greater diver-
sity in terms of object size and orientation [22]. To cope with these challenges,
some studies have introduced more advanced feature extraction modules for
few sample object detection in remote sensing images [1,7,13,33]. For example,
Cheng et al. [3] proposed a prototype-guided region proposal network (RPN)
that integrates support feature information into candidate box scoring for better
region proposal generation. And Zhang et al. [8] used directional enhancement of
support features to mitigate diversity in object orientation. Compared to these
existing methods, the method in this paper aims to achieve sample balance and
to make the model more focused on the features in the images to better improve
the object detection accuracy of the network.

Fig. 1. DCI-Net model.
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3 Methodology

In this section, the DCI-Net model is designed and implemented, which includes
CASK module, DySample module, and Pi_IoU loss.

3.1 DCI-Net Model

Compared to natural images, remote sensing images usually exhibit unique char-
acteristics in terms of multi-scale objects. The complexity and diversity of the
surface landscapes they capture usually require in-depth exploration of objects
at different scales for a comprehensive analysis [6]. At the same time, object
detection tasks in remote sensing images face dense object distribution, complex
backgrounds, and a large number of objects, which are difficult to be recognized
by only one appearance factor. In order to solve the above problems, this paper
proposes the DCI-Net model, as shown in Fig. 1.

As can be seen in Fig. 1, this object detection model modifies the Upsample
layer in YOLOV9 to DySample, and at the same time modifies the loss func-
tion to Pi_IoU. Finally, DCI-Net replaces the RepNCSPELAN4 module inside
Backbone with the CASK module proposed in this paper, so as to realize the
sample balancing and make the model pay more attention to the features in the
images, which in turn better improves object detection capability.

3.2 CASK Module

Recently, the improvement of the directed bounding box is more popular in
the research of object detection tasks in remote sensing images, but it ignores
the unique prior knowledge in remote sensing images. Because aerial images
are mainly captured from high altitude at a high resolution [14], in order to
successfully and correctly recognize a object in an image, it is often necessary
to rely on the content of its broad context. The CASK module proposed in this
paper is a good solution to the above problem. The module uses an innovative
hybrid convolutional kernels strategy to capture richer contextual information
and extract features with more details and different levels, which can improve
the accuracy especially for the detection of complex objects in remote sensing
images, as shown in Fig. 2.

This module divides the data after convolutional processing according to
channels and processes only part of it at a time, which reduces the amount
of computation. The CASK module consists of two main branches: one branch
goes into the Bottleneck layer, which extracts and fuses more useful features
while reducing the amount of computation by using a low-latitude feature space,
since this module retains the results of each process through the Bottleneck
module. Another branch carries out the attention residual join operation, in
order to pay more attention to the object information, this branch adopts the
strategy of using hybrid convolutional kernels, which greatly reduces the number
of parameters under the premise of guaranteeing the sensing field. At the same
time extracts richer features and improves the module’s ability to detect the
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Fig. 2. CASK module.

objects of different scales. Combined with the spatial selection mechanism, the
sensing field is dynamically adapted to capture the multiscale features. Thus,
flexible adaptation and accurate recognition of different object contexts can be
realized in remote sensing images object detection.

3.3 Pi_IoU Loss Function

The computation of existing bounding box regression loss functions is constantly
updated and optimized, which has a significant impact on the performance of the
object detection task. However, the existing IoU loss function generally improves
the speed of convergence by adding a loss function, ignoring the limitations of
the IoU loss value itself. Although the IoU loss can describe the regression state
of the bounding box, it can be seen after a large number of experiments that
it is unable to realize its own adjustment according to different detectors and
detection tasks [35]. Meanwhile the existing IoU loss function has the problem
of unreasonable penalty factor [20]. In order to solve the above problems, a new
loss function Pi_IoU is proposed in this paper. This function combines the size
of detection object with self-adaptive penalty factor and gradient adjustment is
done based on the loss function of anchor frame quality. Meanwhile, in order
to make up for the shortcomings of the existing IoU loss function, which has
poor generalization and slow convergence speed in different detection tasks, this
paper introduces a scaling factor for different datasets and detectors, so as to
control the scale size of the auxiliary bounding box when calculating the loss.

In Eq. 1, this paper introduces the scaling factor ratio to control the size of
the auxiliary bounding box and perform coordinate transformation. b and bgt are
denoted as the predicted bounding box and the real bounding box, respectively.
xi and yi are the coordinates of the upper-left and lower-right corners, and are
the width and height of the bounding box.

bgtx1
= xgt

c − wgt ∗ ratio, bgtx2
= xgt

c + wgt ∗ ratio
bgty1

= ygtc − hgt ∗ ratio, bgty2
= ygtc + hgt ∗ ratio

bx1 = xc − w ∗ ratio, bx2 = xgt
c + w ∗ ratio

by1 = yc − h ∗ ratio, by2 = ygtc + h ∗ ratio

(1)
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The coordinates obtained from Eq. 1 are then used to calculate the intersection
and concurrency ratio of the bounding box, as shown in Eq. 2.

inter =
(
min

(
bgtx2

, bx2

) − max
(
bgtx1

, bx1

)) ∗(
min

(
bgty2

, by2

) − max
(
bgty1

, by1

))

union = (wgt ∗ hgt) ∗ ( ratio )2 + (w ∗ h) ∗ ( ratio )2 − inter + eps
iou1 = inter

union

(2)

In order to evaluate and optimize the positioning accuracy and spatial coher-
ence of the bounding box using a more accurate method, thus enhancing the
performance and robustness of the object detection and tracking algorithm. In
Eq. 3, this paper calculates the bounding differences in the directions of x and
y respectively. dwi and dhi calculate the minimum and maximum boundary dif-
ferences between the two bounding boxes in the direction of the coordinate axes,
respectively.

dw1 =
∣
∣min (bx1 , bx2) − min

(
bgtx1

, bgtx2

)∣∣
dw2 =

∣
∣max (bx1 , bx2) − max

(
bgtx1

, bgtx2

)∣∣
dh1 =

∣
∣min (by1 , by2) − min

(
bgty1

, bgty2

)∣∣
dh2 =

∣
∣max (by1 , by2) − max

(
bgty1

, bgty2

)∣∣

(3)

In this paper, the position and size differences of the bounding boxes are consid-
ered together to provide a more comprehensive and fine-grained similarity evalu-
ation, using the boundary difference values calculated in Eq. 3 for the boundary
difference metric operation, as shown in Eq. 4.

P =
(

(dw1+dw2)
wgt + (dh1+dh2)

hgt

)
/4 (4)

Combining the overlap metric and the positional difference metric, this in turn
provides a more fine-grained similarity evaluation of the bounding boxes, as
shown in Eq. 5. This evaluation takes into account not only the overlap of the
bounding boxes, but also the exact location of the bounding boxes, enabling the
model to focus more on accurate bounding box prediction, thus improving the
accuracy of object detection.

iou = 1 − iou1 − e−P 2
+ 1 (5)

3.4 DySample Module

Feature up-sampling is a key component of dense predictive modeling to pro-
gressively restore feature resolution. Since backbone networks typically output
multi-scale features and low-resolution features need to be upsampled to high
resolution, a lightweight and efficient upsampler is beneficial for dense prediction
models. While the performance gains of the more recent popular kernel-based
dynamic upsamplers such as FADE [27] and SAPA [26] are impressive, they
impose a significant workload on the detectors because of the time-consuming
dynamic convolution and the additional sub-networks used to generate the
dynamic kernel. Thus, the DySample module was proposed in the paper [24],
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which no longer required a customized CUDA package compared to previous
dynamic upsamplers. At the same time, there are extensive tuning of parame-
ters such as GFLOPs, GPU memory and latency.

Fig. 3. DySample module. X, X’, O and G denote the input features, the up-sampled
features, the generated offsets and the original mesh, respectively. The sample set is
generated by the sample point generator and the input features are resampled using the
mesh sampling function. In the generator, the sampling set is the sum of the generated
offsets and the original mesh positions, where the offsets are generated through a linear
layer.

The DySample module is shown in Fig. 3. In this paper, the static range factor
in the DySample module is used, and the offsets are generated directly from the
input data through a linear layer without further dynamic adjustments. This
version can be used as the base implementation of DySample, which is simpler
in implementation and has fewer parameters. And the choice is a Linear+Pixel
Shuffle style of processing, i.e., a linear layer is first used to generate the offsets,
and then these offsets are rearranged to fit the spatial dimensions, which is done
by a Pixel Shuffle operation. This approach is more advantageous in terms of
memory footprint, inference speed, etc.

4 Experiments

This section begins with a description of the dataset DIOR to be used, followed
by a comparison of the performance of the model investigated in this paper with
that of current state-of-the-art models, and finally ablation experiments are also
performed on the proposed method.

4.1 Dataset

The DIOR (Dense Image Overlapping Regions) dataset is a large and compre-
hensive object detection dataset for remote sensing images from Google Earth
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released by Northwestern Polytechnical University (NWPU) in 2018, aiming to
promote object detection research in the field of remote sensing images [11].
The DIOR dataset contains 20 different classes of objects from a wide range of
sensors, covering multiple geographic regions and time periods, providing a rich
diversity of scenarios and diversity of object classes. The dataset consists of a
total of 23,463 high-resolution images of 800 * 800 pixels labeled with 192,472
instances, which are mainly used for the task of object detection in remote sens-
ing images.

4.2 Implementation Details

For the DIOR dataset, the model is trained and validated in this paper using
an NVIDIA GeForce RTX 3090Ti GPU with 24 GB of graphics memory. In
addition, the model uses a Stochastic Gradient Descent (SGD) optimizer with a
batch size of 8, a learning rate of 0.01, a weight decay coefficient of 0.0005, and
an epoch of 500.

4.3 Comparison with State-of-the-Art Models

In order to demonstrate the effectiveness of the DCI-Net model proposed in this
paper for object detection in remote sensing images, its performance is analyzed
in this paper in comparison with the performance of different existing models on
the DIOR dataset. This work uses several metrics to evaluate the performance
and effectiveness of DCI-Net. These metrics include precision (P) and mean
average precision (mAP). Table 1 shows the accuracy of detecting each class
compared to existing models.

As can be seen from Table 1, the proposed model DCI-Net achieves the best
accuracy in most of the categories, especially in categories C9 and C20, where
DCI-Net outperforms the baseline model by nearly 2.1% and 0.6%.

Table 2 compares the detection results of other models as well as the DCI-Net
model in this paper on the DIOR dataset. From the table, the model proposed
in this paper improves 0.6% in accuracy and 0.1% in mAP@50:95 relative to the
baseline model. Although mAP@50 is slightly inferior to the model YOLOV9-C,
which exhibits that the performance may not be optimal under certain categories
or thresholds, the subsequent ablation experiments show that the number of
parameters of the DCI-Net model is relatively lower and the computing speed is
faster as well. The substantial improvement in accuracy indicates that the model
proposed in this paper performs excellently in reducing false positives, which is
crucial for remote sensing images analysis tasks that require high confidence.
The model in this paper is able to identify and localize objects more accurately,
which is particularly suitable for application scenarios that require high accuracy
and allow for some inference delay, and can provide better performance than the
lightweight model when the computational resources are sufficient.
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Table 1. Mean accuracy values of detection in 20 classes. The 20 classes are air-
craft (C1), airports (C2), baseball stadiums (C3), basketball courts (C4), bridges (C5),
chimneys (C6), dams (C7), highway service areas (C8), highway toll booths (C9), golf
courses (C10), surface runways (C11), harbors (C12), overpasses (C13), ships (C14),
stadiums (C15), storage tanks (C16), tennis courts (C17), train stations (C18), vehicles
(C19) and windmills (C20).

Model PANet [23] MRCNN [7] RetinaNet [29] FPN [16] Carafe CSFF [4] GCF [2] FFPF [19] YOLOV8 YOLOV9 OURS

C1 61.9 53.8 53.3 60.2 58.9 57.2 62.8 65.5 94.7 97.6 97.7
C2 70.4 72.3 77.0 83.4 83.7 79.6 86.5 86.7 95.0 98.3 97.2
C3 71.0 63.2 69.3 73.8 77.8 70.1 74.8 79.4 95.8 98.0 98.1
C4 80.4 81.0 85.0 88.7 88.9 87.4 89.2 89.0 93.9 97.1 97.2
C5 38.9 38.7 44.1 49.0 50.6 46.1 49.2 50.3 57.1 67.7 68.1
C6 72.5 72.6 73.2 78.9 79.1 76.6 76.6 79.2 86.9 94.1 93.2
C7 56.6 55.9 62.4 66.7 72.7 62.7 72.5 73.3 79.3 89.0 89.3
C8 68.4 71.6 78.6 85.4 82.8 82.6 85.7 87.6 96.6 98.3 98.4
C9 60.0 67.0 62.8 71.3 72.7 73.2 75.1 73.6 81.3 90.9 93.0
C10 69.0 73.0 78.6 81.5 82.8 78.2 81.3 83.5 86.6 93.8 92.0
C11 74.6 75.8 76.6 82.8 84.3 81.6 83.3 85.1 90.4 93.6 93.8
C12 41.6 44.2 49.9 54.7 55.8 50.7 60.2 57.3 74.7 77.8 76.3
C13 55.8 56.5 59.6 62.4 62.4 59.5 62.7 63.5 71.0 77.1 77.8
C14 71.7 71.9 71.1 73.3 74.3 73.3 72.7 74.1 94.3 96.1 95.7
C15 72.9 58.6 68.4 77.3 75.2 63.4 77.3 78.4 96.8 97.7 98.3
C16 62.3 53.6 45.8 59.4 59.0 58.5 61.9 59.3 88.1 91.7 89.0
C17 81.2 81.1 81.3 87.5 88.7 85.9 88.0 88.6 95.5 97.2 96.8
C18 54.6 54.0 55.2 65.0 70.4 61.9 69.9 71.0 71.6 82.0 82.3
C19 48.2 43.1 44.4 42.2 43.6 42.9 47.0 43.3 64.3 75.0 72.6
C20 86.7 81.1 85.5 85.1 86.8 86.9 89.7 87.4 91.4 95.6 96.2

Table 2. Comparison results between DCI-Net and other models.

Model P mAP@50 mAP@50:95

CSFF [4] — 68.0 —
FPN [16] — 71.4 —
Carafe — 72.8 —
GCF [2] — 73.3 —
FFPF [19] — 73.8 —
YOLOV8 88.9 85.3 62.7
YOLOV9-S 90.3 89.2 68.6
YOLOV9-M 90.6 89.9 69.5
YOLOV9-C 90.0 90.5 70.5
OURS 90.6 90.3 70.6

4.4 Ablation Experiments

To further demonstrate the effectiveness of the CASK module, Pi_IoU loss func-
tion proposed in this paper, and the introduced DySample on the remote sensing
images object detection task. Four sets of ablation experiments are set up on the
DIOR dataset to evaluate the performance impact of incorporating each com-
ponent into the proposed DCI-Net model, and the results are shown in Table 3.
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Table 3. Ablation experiments. P is the precision, mAP is the mean average precision,
Parameters is the number of parameters, and GFLOPs is the value of floating point
operations.

Baseline DySample CASK Pi_IoU P mAP@50 mAP@50:95 Parameters GFLOPs

� 90.0 90.5 70.5 51.18M 239.9
� � 90.2 90.4 70.6 51.08M 239.2
� � � 90.4 90.4 70.5 49.15M 306.5
� � � � 90.6 90.3 70.6 49.15M 306.5

1) DySample: compared to the baseline model, the introduced DySample mod-
ule achieves a significant improvement of 0.2% in precision and a perfor-
mance gain of 0.1% in the mAP@50:95 metric. This result is attributed to
the optimized design of the DySample module in capturing image geometric
information, which enables more efficient extraction and utilization of spatial
structural features. In addition, the introduction of the DySample module is
accompanied by a reduction in the number of parameters, which reduces the
overall complexity of the model, which is a significant advantage in model
lightweight design.

2) CASK module: the CASK module proposed in this paper similarly achieves
0.2% improvement in accuracy, 4% reduction in the number of parameters,
and 27.8% improvement in computing speed. The CASK module enhances
the model’s ability to learn the object features through deep learning of the
object’s contextual information, which further improves the recognition accu-
racy. In addition, the CASK module exhibits a higher concentration on bound-
ing box prediction, which demonstrates its potential for fine-grained object
localization.

3) Pi_IoU loss function: the proposed Pi_IoU loss function effectively improves
the accuracy of the model prediction by 0.2% by enhancing the focus on the
internal matching and size ratio of the bounding box. This loss function is
designed to take into account the geometric consistency of the bounding box,
thus achieving better localization accuracy in object detection tasks.

4.5 Visualization

This section demonstrates comparing the DCI-Net model with other state-of-
the-art models for detection visualization, as shown in Fig. 4.

From the visualization results in Fig. 4, it can be seen that the model in this
paper shows excellent performance in the task of object detection in remote sens-
ing images, especially in terms of object accuracy and the accuracy of bounding
box localization, which is significantly better than the other comparative models.
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Fig. 4. Visualization results.

In the evaluation of the first set of images, the model proposed in this paper
demonstrates significant advantages in object detection accuracy. Especially in
recognizing the ship object in the images, the model achieves a high confidence
level of 0.96, which reflects the high accuracy of the model detection. In the sec-
ond set of images, the DCI-Net model outperforms the other models in detecting
the category of “airports” with a confidence level of 0.93, which is 2% higher than
the secondary high value. In the third set of images, the model in this paper
achieves the best confidence level for the category of “windmill” compared with
other models by effectively combining the contextual information. In the fourth
set of images, the DCI-Net achieves a significant increase in the detection accu-
racy of small objects by utilizing its highly refined feature extraction capability,
and its confidence level is 10% higher than the secondary high value.

5 Conclusion

In this paper, a object detector DCI-Net based on remote sensing images is
proposed. This model addresses the challenges posed by multi-scale and high
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resolution in remote sensing images. This object detector is based on the current
widely recognized YOLOV9 architecture and improves the accuracy of object
detection. The CASK module is designed in this paper to extract the object
features in the images more accurately, and the representation of the features is
significantly improved. The Pi_IoU loss function is proposed and replaces the
original loss function to further improve the detection accuracy. The DySample
module is introduced to replace the Unsample module, which achieves significant
optimization in the number of parameters and other indicators. The experimen-
tal results show that the DCI-Net model proposed in this paper can effectively
improve the object detection accuracy, and can improve the operation speed
and reduce the number of parameters. However, DCI-Net still has subtle defi-
ciencies in mAP@50, and there is room for further improvement in its overall
performance. In addition, the model needs more in-depth evaluation and care-
ful optimization in areas such as the accuracy of small object detection. Future
research can focus on enhancing the generalizability of the model and optimiz-
ing its architecture to meet the application requirements of real-time process-
ing, in the expectation of achieving better performance and a wider range of
applications.
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Abstract. A growing body of research indicates that employing large
models for adaptation to downstream tasks often yields remarkable per-
formance. However, in the domain of ship detection, the potential of these
large models is frequently underutilized due to domain shift issues. This
paper introduces the Cross-Modal Ship Grounding (CSG) model, which
leverages an efficient Cross-Modal Adapter (CMA) technology to transfer
the general detection capabilities of large models to ship images, address-
ing domain shift with minimal training costs. To mitigate the challenges
posed by complex and variable background interference, the Water-Land
Separation (WLS) module is proposed to focus specifically on the water
area. This module effectively addresses the issue of background target
interference, thereby enhancing the model’s accuracy in complex scenes.
Empirical evaluations on both private and public datasets demonstrate
that the CSG model surpasses all state-of-the-art models in performance.

Keywords: Ship detection · Large model · Cross-modal · Few-shot

1 Introduction

The application scenarios of ship detection are diverse. With the rapid advance-
ment of digital cameras, intelligent video surveillance systems are increasingly
being deployed in ports and coastal areas, facilitating visible ship detection.
Through video surveillance, port management systems can automatically assign
suitable berthing positions based on the ship detection results, thereby reducing
ship waiting times and enhancing the throughput of berthing areas. Addition-
ally, unmanned ships utilize camera-based sensing to perform water operations
autonomously according to the detection outcomes.

In recent years, ship detection has garnered increasing attention. Kim et al.
[7] combined the Bayesian method with the Faster R-CNN network to achieve
high average accuracy in ship detection tasks using a self-constructed dataset
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15330, pp. 16–28, 2025.
https://doi.org/10.1007/978-3-031-78113-1_2
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through deep learning techniques. Lee et al. [10] adapted the passthrough app-
roach and improved YOLOv2 to realize real-time detection of 10 types of targets,
including speedboats and sailing ships, on the Singapore maritime dataset. Shao
et al. [20] released the SeaShips dataset, a public dataset for visual image ship
detection, encompassing 31,455 images of six common ship types (ore ships, bulk
carriers, general cargo ships, container ships, fishing boats, and passenger ships)
and 7,000 pieces of public data, providing a robust database for visual image
ship detection. Based on the SeaShips dataset, Shao et al. [19] proposed the
Saliency-Aware CNN, which uses coastline segmentation to reduce background
interference, narrow the detection area, and enhance the accuracy of ship target
positioning by integrating significance maps. However, the introduction of signif-
icance maps resulted in a decline in detection efficiency. Liu et al. [13] improved
the loss function based on the YOLOv3 model and added uncertain border
regression to enhance ship object location capability. Their proposed eYOLOv3
improved the detection of small targets, increasing the average detection accu-
racy on the SeaShips dataset. Huang et al. [4] enhanced the YOLOv4 algorithm
from the theoretical perspectives of feature extraction, feature fusion, and loss
function design, applying these improvements to ship detection tasks.

Currently, image-based object detection algorithms, predominantly from the
YOLO series and its variants, exhibit limitations in terms of accuracy. Recent
advancements in cross-modal object detection, integrating visual and textual
information, have demonstrated superior performance. Kamath et al. [5] project
visual language features into a multimodal space and introduce contrastive align-
ment loss to maintain alignment between textual and visual features within this
mapped space. Gu et al. [2] employ CLIP’s model for knowledge distillation,
transforming the detection task into a proposal classification challenge. Zareian
et al. [27] leverage image-text description pairs for learning, utilizing the richer
semantic information present in descriptions to enhance model understanding.
Liu et al. [14] adopt a dual-encoder single-decoder architecture and integrate
semantic information across the network’s neck, query initialization, and head
components, achieving state-of-the-art results in zero-shot learning on COCO
dataset.

Inspired by the impressive generalization and zero-shot capabilities of large-
scale object detection models, this study extends the adaptive approach proposed
by Hu et al. [3] to cross-modal applications. We incorporate a learnable adapter
module into the existing structure, harnessing the robust generalization and
semantic expressiveness of large models while leveraging cross-modal information
guidance. Through minimal data training, our method aims to achieve high-
precision ship detection.

Furthermore, the presence of ship-like objects on land can sometimes inter-
fere with surface ship detection. The Segment Anything Model (SAM) [8] has
demonstrated impressive zero-shot segmentation performance, often rivaling or
surpassing previous fully supervised results. The CLIP model [16], trained on 400
million image-text pairs, exhibits strong zero-shot image classification capabili-
ties. By providing SAM with grid point prompts and incorporating text prompts



18 Q. Hu et al.

from CLIP, our approach requires no additional training data. Instead, it lever-
ages the zero-shot capabilities of these large models to distinguish between water
and land and filter out interfering objects, thereby further improving ship detec-
tion accuracy.

2 Related Work

2.1 Large Models

Large models refer to models trained on extensive datasets that can be adapted
to a wide range of downstream tasks, often employing techniques like self-
supervised learning, transfer learning, and prompt learning. The Segment Any-
thing Model (SAM) [8] has been introduced for various Computer Vision tasks.
SAM utilizes prompt learning with a foundational model to perform multiple
tasks on unseen images. However, SAM’s performance on medical images is lim-
ited. To address this, Ma et al. [15] constructed a large-scale medical dataset and
refined SAM through fine-tuning processes. Zhang et al. [28] applied knowledge
distillation to compress SAM into a smaller model suitable for mobile devices,
reducing its size by 60 times compared to the original. Ke et al. [6] enhanced
segmentation precision by adding parameters and conducting training without
altering SAM’s weight significantly.

CLIP [16] utilizes a large-scale dataset of paired images and textual descrip-
tions. It effectively retrieves images based on given text prompts, with applica-
tions spanning image classification and generation.

2.2 Visual Grounding

Current methods typically extend object detection frameworks [24,30] to address
visual grounding tasks. Two-stage approaches [12,22] initially employ a detec-
tor to generate region proposals from the image and subsequently match these
proposals with textual inputs to select the most suitable ones. However, this
method heavily relies on the accuracy of the detector in the initial stage; if the
detector fails to produce correct region proposals, the matching process in the
second stage may yield inaccurate results.

In response to these challenges, recent developments have introduced single-
stage methods [11,25] aimed at directly predicting target locations without pre-
generated region proposals. For instance, FAOA [26] encodes textual inputs into
embeddings and integrates them into YOLOv3. The model conducts intensive
object detection to identify objects with confidence scores, selecting the highest-
ranking object as the reference for prediction. Grounding DINO [14] achieves
SOTA performance by integrating text features into three parts of the detector
for closed-set, open-set object detection, and visual grounding tasks.
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2.3 Few-Shot Learning

After extensive training on large datasets, deep learning models can rapidly
adapt to new data with only a small number of samples, a capability known
as few-shot learning. Koch et al. [9] trained a dual twin network in a super-
vised manner and utilized the extracted features for subsequent few-shot learning
tasks. Ravi et al. [17] investigated the limitations of gradient-based optimization
algorithms when applied to few-shot learning scenarios due to insufficient data.
They proposed methods to enhance generalization by iteratively optimizing the
few-shot learner to converge effectively on new tasks. Yang et al. [23] advanced
few-shot learning research in histopathological images by introducing three cross-
domain tasks to simulate real-world clinical challenges. Su et al. [21] introduced
a technique for automatically selecting self-supervised learning images tailored
to specific datasets from a large pool of unlabeled images.

Fig. 1. The CSG architecture is designed such that the upper half of the WLS can
be precisely positioned within the target area range, while the lower half of the CMA
seamlessly adapts to the unique characteristics of the ship. This approach fully har-
nesses the pre-training potential of large-scale models, introducing ship detection into
the realm of cross-modal applications.

3 Method

The execution process of CSG begins with the CMA extracting multimodal
features using two encoders. Subsequently, feature enhancement and fusion pro-
cesses are employed to decode the output positioning box. To address domain
shift challenges, adapters are strategically placed at various locations within
the architecture. Additionally, integrating results from the WLS module ensures
focused attention on the water surface area, thereby enhancing the accuracy of
the final detection results.
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3.1 Cross-Modal Adapter

To leverage the extensive knowledge from general object detection for the spe-
cialized field of ship detection, we adopt a strategy where we do not completely
fine-tune all parameters. Throughout the training process, the text input remains
consistent, allowing us to freeze the weights of pre-trained text encoders. Instead,
we introduce Adapter modules at specific locations within the architecture. This
approach enables us to utilize few-shot learning, requiring only a small amount
of data to adapt the representation of the general large model to ship detection
tasks.

Fig. 2. Cross-Modal Adapter structure. This work does not use the Adapter to learn
individual text features, but primarily uses it to learn multimodal features of the larger
model.

Each Adapter module consists primarily of three components: down-
projection, ReLU activation, and up-projection. The down-projection reduces
the dimensionality of the input embedding using a simple MLP layer. Subse-
quently, the up-projection expands the compressed embedding back to its orig-
inal dimensionality using another MLP layer. Additionally, a skip connection is
employed to add the Adapter’s input directly to the final output. This design
ensures that even if the initial parameters of the Adapter are initialized close to
zero, the skip connection allows the Adapter to function effectively as an iden-
tity map during training. This approach guarantees the Adapter’s effectiveness
in learning specific task adaptations.

h ← h+ f(hWdown)Wup (1)

where h represents Adapter input, Wdown represents downward projection, Wup

represents upward projection, and the function f represents non-linear activa-
tion.
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In the Image Encoder, an Adapter block is incorporated for each Swin Trans-
former block, positioned within the residual pathway before the MLP layer fol-
lowing window attention (as depicted in Fig. 2(a)). Given the diverse sizes of ship
objects, the Adapter module is introduced to fine-tune the Swin Transformer,
originally pretrained for general object detection in everyday scenes. Leverag-
ing the Swin Transformer’s capability to hierarchically extract multi-scale image
features, this adaptation enables the model to specifically learn and adjust multi-
scale features tailored for ship detection tasks.

In the Image Features Enhancer, we integrate an Adapter module follow-
ing the Deformable Self-Attention of each image feature enhancement layer and
preceding the Cross-Attention. Similarly, within the cross-modal decoder, an
Adapter block is introduced after the Self-Attention and before the cross-modal
Cross-Attention in each layer (as illustrated in Fig. 2(b, c)). The fused multi-
modal features exhibit a strong correlation between visual and textual inputs,
and the global attention of the large model ensures comprehensive consideration
of both large and small object features. By incorporating Adapters, we aim to
enhance the alignment between ship object representations and textual prompts,
thereby improving the model’s attention to ship features across different scales.

3.2 Water Land Separation

In specific scenarios, we have observed instances where the model erroneously
detects objects on land. To address this issue, we propose the Water-Land Sepa-
ration algorithm, inspired by traditional ship detection methods that detect the
sea-sky-line. The aim of this algorithm is to mitigate background interference and
concentrate on identifying the relevant areas. This paper adopts a multimodal
approach using a large model to implement the WLS algorithm effectively.

SAM achieves segmentation primarily through box and point prompts. Due
to the typically large and irregular shape of water areas in images, accurately seg-
menting water with box prompts can be challenging. Therefore, point prompts
are utilized where a point is placed randomly on the water surface, effectively
segmenting the entire water area. While achieving a more detailed mask requires
additional point prompts, the computational cost increases exponentially. Uti-
lizing an 8×8 grid of points proves adequate, focusing specifically on segmenting
water areas efficiently.

Masks without class are generated using point prompts, extracting the cor-
responding areas which are then passed to the CLIP image encoder. Since these
areas do not encompass the entire image, background information is excluded.
To preserve more edge details, the mask is expanded.

IE(
N∑

i=1

Ii ∗ k) (2)

where IE represents CLIP’s image encoder. N represents the number of masks
generated by SAM. Ii represents the region image. k represents the expansion
factor, and k is set to 1.3 in this work.
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Use predefined classes such as “mountain”, “water”, “sky”, “building”, “tree”,
combined with text to enhance the template. These feed into CLIP’s text
encoder, giving the model more precise text instruction.

TE(
M∑

i=1

Template(Ci)) (3)

where TE represents CLIP’s text encoder. M represents the number of classes.
Ci represents the input class. Template represents a text enhancement template.
Use “a picture region of object” to enhance class input.

CLIP computes similarity scores between masks and different classes, select-
ing the mask with the highest similarity to water as the desired result. Some
model detections include correctly identified ships in water and false detections
of objects on land. WLS partitions a water isolation zone.

It is important to note that WLS extends the functionality of the large model
to detect water surfaces, achieving the separation of water and land. However,
it is not suitable for detecting small targets due to the randomness of point
prompts, which may cause target misses. Moreover, generating a point prompt
for every pixel in the entire image requires an excessively large amount of com-
putation, making it an impractical solution. Therefore, WLS focuses on selecting
water surfaces with strong connectivity and high coverage ratios as the target
for segmentation.

4 Experiments

4.1 Dataset

To evaluate the ship grounding performance of the CSG model, this experiment
was trained and tested on the SeaShips dataset and RealShips dataset.

SeaShips Dataset. The SeaShips dataset comprises 7,000 images, each with a
resolution of 1920 × 1080 pixels, annotated with precise ship labels and bound-
ing boxes. These images were captured by an on-site video surveillance system
deployed around Hengqin Island, Zhuhai, China. The dataset includes a diverse
range of ship types, hull sections, scales, viewing angles, lighting conditions, and
varying levels of occlusion within complex environments.

RealShips Dataset. The RealShips dataset was captured in real-world condi-
tions and comprises 715 images featuring 1,048 annotated ships with labels and
bounding boxes. The dataset includes diverse shooting angles, showcasing ships
with varying scales and complex, cluttered backgrounds. It also features ships
partially visible and ships overlapping with each other.

4.2 Performance Metric

Precision (P), recall (R), and F1-score (F1 ) are employed to evaluate the detec-
tion performance of the model.
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(a) remote overlap (b) obscured by haze (c) remote small object

(d) partially visible (e) object occlusion (f) dark environment

Fig. 3. The detection results (a, b, c from RealShips dataset; d, e, f from SeaShips
dataset) demonstrate the robust performance of the CSG model in various complex
scenarios. Figure 3(a) and 3(b) showcase the algorithm’s ability to accurately distin-
guish between closely positioned ships, correctly identifying them as separate entities.
Furthermore, CSG effectively locates ships with low visibility, even when obscured
by haze. Figure 3(c) illustrates the model’s capability to detect both a distant small
ship and a nearby large ship simultaneously, adapting well to scale differences. Real-
world scenarios often feature partially captured ships or ships obscuring one another (as
shown in Fig. 3(d) and 3(e)). Our algorithm excels in these situations, accurately locat-
ing ships even in challenging lighting conditions (Fig. 3(f)). These results underscore
the effectiveness and robustness of the proposed CSG method.

IoU is the ratio of the overlap area between the prediction box and the label
box of the object detection to the union of their areas. An IoU threshold is
usually set, which we set as 0.5 in the experiment.

IoU =
Bpred ∩ Bgt

Bpred ∪ Bgt
(4)

where Bgt is the area of annotated ground truth box and Bpred is the area of
predicted bounding box.

It needs to calculate the IoU to determine whether a test result is correct or
wrong. So, if the IoU is > 0.5, we consider the test result to be True Positives.
If IoU < 0.5 or the same GT is detected with redundant detection boxes, we
consider the detection result to be a False Positive. FN is originally a real box,
but not detected. Refers to the number of GT boxes that are not detected.

4.3 Experiment Results

We conducted a comparative evaluation of the CSG model against other SOTA
methods for ship detection, including Grounding DINO [14], YOLOv8 [18],
DETR [1], and RT-DETR [29]. Experiments were performed on two datasets: the
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Table 1. The experimental results are compared with other methods in SeaShips. Best
results are denoted as bold.

Models F1↑ P↑ R↑
Zero-shot
Grounding DINO(tiny) 0.710 0.627 0.816
Grounding DINO(base) 0.739 0.675 0.816
YOLOv8-L 0.631 0.694 0.579
YOLOv8-X 0.643 0.655 0.631
DETR(r50) 0.414 0.346 0.516
DETR(r101) 0.481 0.403 0.595
RT-DETR(r50) 0.649 0.716 0.593
RT-DETR(r101) 0.713 0.725 0.701
Fine-tuning Turnable Param(M)↓
Grounding DINO(tiny) 65M 0.831 0.790 0.876
Grounding DINO(base) 127M 0.853 0.828 0.881
YOLOv8-L 43M 0.865 0.872 0.859
YOLOv8-X 68M 0.869 0.865 0.873
DETR(r50) 41M 0.821 0.800 0.843
DETR(r101) 60M 0.879 0.859 0.899
RT-DETR(r50) 42M 0.867 0.845 0.890
RT-DETR(r101) 76M 0.892 0.887 0.897
CSG(ours) 4M 0.9010.899 0.902

public SeaShips dataset, with results summarized in Table 1, and the proprietary
RealShips dataset we curated, presented in Table 2. Our evaluation encompassed
two methodologies: Zero-shot experiments and Fine-tuning experiments.

In Table 1, the Zero-shot performance of the four methods exhibits signifi-
cant variation. Grounding DINO (base) achieved the highest F1 score, surpass-
ing DETR (r50) by 32.3%, highlighting the pivotal role of encoding strategies in
algorithm accuracy. Notably, using the same algorithm with different backbone
scales yields notably different results. Specifically, DETR (r101) outperforms
DETR (r50) by 6.7%, indicating that deeper network layers with more parame-
ters can learn richer representations.

During the fine-tuning of Grounding DINO, we followed a typical approach
for large model fine-tuning: freezing the text encoder and training the remaining
parameters. This strategy aligns with common transfer learning practices where
models are pre-trained on large, general-purpose datasets before fine-tuning on
task-specific data. As shown in Table 1, fine-tuning improves the F1 score by
an average of approximately 20%. Effective training strategies can achieve or
even surpass the performance of full-parameter fine-tuning while using fewer
parameters. CSG achieved SOTA performance with only 4 M trained parameters.
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Table 2. The experimental results are compared with other methods in RealShips.
Best results are denoted as bold.

Models F1↑ P↑ R↑
Zero-shot
Grounding DINO(tiny) 0.704 0.758 0.657
Grounding DINO(base) 0.780 0.729 0.838
YOLOv8-L 0.697 0.669 0.728
YOLOv8-X 0.714 0.610 0.862
DETR(r50) 0.470 0.366 0.656
DETR(r101) 0.535 0.429 0.711
RT-DETR(r50) 0.779 0.771 0.786
RT-DETR(r101) 0.790 0.764 0.817
Fine-tuning Turnable Param(M)↓
Grounding DINO(tiny) 65M 0.811 0.851 0.774
Grounding DINO(base) 127M 0.892 0.927 0.859
YOLOv8-L 43M 0.805 0.796 0.814
YOLOv8-X 68M 0.837 0.812 0.863
DETR(r50) 41M 0.887 0.939 0.841
DETR(r101) 60M 0.889 0.934 0.848
RT-DETR(r50) 42M 0.891 0.912 0.870
RT-DETR(r101) 76M 0.909 0.941 0.879
CSG(ours) 4M 0.926 0.974 0.882

In comparison, Grounding DINO (base) utilizes 30 times more parameters than
CSG, yet achieves a slightly lower F1 score by 4.2%.

In Table 2, it’s observed that larger backbone architectures generally exhibit
better robustness for the same algorithm. The Zero-shot performance shows con-
siderable variation between the SeaShips and RealShips datasets. Specifically, the
difference in F1 score between Grounding DINO (base) and Grounding DINO
(tiny) is 2.9% in Table 1, while it increases to 7.6% in Table 2. This discrepancy
can be attributed to the SeaShips dataset images being captured from adjacent
frames in a video, resulting in high similarities between images. Conversely, the
RealShips dataset contains images with diverse backgrounds and angles, provid-
ing a more challenging test of the model’s generalization capability.

4.4 Ablation Study

We conducted a comprehensive ablation study to evaluate the effectiveness of
WLS and CMA as proposed in Table 3. The baseline (first row) involved fine-
tuning pre-training weights using Grounding DINO, with the text encoder frozen
and the remaining parameters trained. Introducing WLS on top of this baseline
significantly reduced false positives, demonstrating the algorithm’s ability to
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Table 3. Ablation Study in RealShips. Best results are denoted as bold.

WLS CMA F1↑ P↑ R↑
0.892 0.927 0.859

� 0.898 0.941 0.859
� 0.918 0.959 0.882

� � 0.926 0.974 0.882

accurately focus on the water surface area and filter out background interference.
Incorporating the CMA module into the baseline model further reduced false
positives and missed detections, indicating improved transfer of large model
representation capabilities from general images to ship images with minimal
training resources required.

4.5 Limitation

The proposed CSG method can achieve high precision ship grounding with min-
imal training cost. But it has some limitations. Due to the large number of
parameters, large models may not be as fast as small models in terms of rea-
soning speed. In real-time inspection applications, the computation time and
processing delay of CSG may not meet the requirements of some specific situ-
ations. Therefore, we will work hard on the lightweight of large models in the
future, so that they can be applied to scenarios that require high-speed inference.

5 Conclusion

This paper introduces CSG, an extension of large object detection models specif-
ically tailored for ship detection, evaluated using the RealShips dataset under
complex backgrounds. By integrating Cross-modal Adapter modules strategi-
cally within the architecture, CSG achieves effective few-shot learning capabili-
ties, leveraging the large model’s ship detection prowess with minimal training
data. Leveraging the zero-shot ability of the large model, CSG accurately sepa-
rates water and land areas, effectively eliminating land-based object interference.
Experimental results underscore the effectiveness of our approach in ship detec-
tion and highlight the potential for large models to excel in diverse downstream
tasks.

Acknowledgement. This work was supported by National Natural Science Founda-
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Abstract. Despite advancements in technology, including deep learn-
ing techniques, Single-frame InfraRed Small Target (SIRST) detection
in InfraRed (IR) imagery remains challenging, requiring further research
and innovation. The lack of high-level semantic information causes small
IR target features to diminish in the deeper layers of convolutional neu-
ral networks, reducing the network’s ability to accurately represent and
identify these targets. This paper proposes a novel SIRST detection app-
roach, STNet (Small Target detection Network), built on the U2-Net
(Nested U-shape Network) architecture. STNet incorporates two key
components: the MultiLayer Feature Fusion (MLFF) module and the
Fast Fourier Block (FFB). The MLFF module enhances the model’s
ability to integrate and leverage features from multiple layers, com-
bining low-level details with high-level semantic information for more
accurate SIRST detection. The FFB further improves the model’s per-
formance by enabling feature extraction in the frequency domain, pre-
serving small target features in the deep layers of the network, which
enhances the performance of the detection process. Experimental results
on the NUDT-SIRST and IRSTD-1K datasets show that STNet consis-
tently outperforms other state-of-the-art methods. On the NUDT-SIRST
dataset, STNet achieves the highest performance with an IoU of 87.25%,
nIoU of 87.23%, and Pd of 98.51%, coupled with a low FA of 5.92×10−6.
Similarly, on the IRSTD-1K dataset, STNet achieves the best perfor-
mance with 72.04% IoU, 68.95% nIoU, 95.29% Pd, and 1.92 × 10−6 FA.
These results underscore STNet’s effectiveness in detecting and segment-
ing small IR targets in cluttered backgrounds.

Keywords: Infrared Small Target Detection · SIRST Detection · Deep
Learning · Multi Layer Feature Fusion Module · Fast Fourier Block

1 Introduction

Tasks like military surveillance, search and rescue missions, and environmental
monitoring often demand precise identification of small targets [4–6,16] within
cluttered and complex backgrounds [18], where the ability to identify subtle
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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target signatures can be the difference between success and failure. For instance,
in military operations, accurately detecting aerial targets or ground targets from
long ranges can provide a strategic advantage.

A small target is defined as one that occupies less than 0.12% of the total
pixels in an image, meaning that in a 320 × 256 image, targets smaller than 98
pixels fall into this category. Detecting such small targets at considerable dis-
tances, sometimes extending to several hundred kilometers, is crucial in many
military scenarios. At these distances, IR sensors can only perceive distant tar-
gets with small angular sizes and limited pixel-based target signatures. This
makes the detection process highly complex, as the targets appear dim and
blend into the background clutter. Successfully identifying these small targets is
essential for effective surveillance and defense operations, as it can significantly
impact strategic decision-making and response times. SIRST methods are partic-
ularly valuable in scenarios where quick and accurate detection of small targets
is crucial. The ability to detect targets in a single frame allows for real-time
processing, which is essential for applications requiring immediate response and
decision-making. Consequently, a wide range of SIRST detection methods have
been developed, each aiming to improve detection accuracy, reduce false alarms,
and enhance performance in cluttered and dynamic environments. Furthermore,
the complexity of detecting these targets is increased by factors such as noise,
clutter, and varying environmental conditions. These factors can obscure the
faint thermal signatures of small targets, posing a significant challenge for tra-
ditional detection methods. To address these challenges, innovative approaches
are required to enhance the representation of small target features and improve
overall detection accuracy in complex IR imagery.

Small targets in IR images are typically areas of high intensity within clut-
tered backgrounds, making them visually salient but lacking specific semantic
information [1,6]. To effectively detect and segment these targets at the pixel
level, it is essential to focus on the most salient regions. Recognizing these targets
as both salient and small in IR images necessitates multi-level deep feature inte-
gration. The methods must integrate low-level details with high-level semantic
features to ensure precise localization and segmentation of small IR targets.

In this work, we propose a novel approach STNet (Small Target detection
Network), an encoder-decoder paradigm that employs feature fusion to combine
low-level detail features with high-level semantic features. To achieve this Multi
Layer Feature Fusion (MLFF) module has been proposed, which significantly
improves performance through hierarchical feature fusion. Furthermore, STNet
performs feature extraction in both the spatial and frequency domains using
Fast Fourier Block (FFB), which enriches the extracted features. Apart from
this, the fast Fourier block also plays a crucial role in preventing the vanish-
ing of small target features in deep layers. By performing feature extraction in
the frequency domain, the FFB ensures that small but significant features are
preserved throughout the network. This is particularly important for maintain-
ing the integrity of small IR targets, which can be easily lost in deeper layers
[17,31] of conventional networks. Experimental results on the NUDT-SIRST
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and IRSTD-1K datasets show that STNet consistently outperforms other state-
of-the-art methods. Empirical evaluations underscore STNet’s effectiveness in
detecting and segmenting small IR targets in cluttered backgrounds.

2 Related Work

2.1 Traditional Paradigm for SIRST

There exist several algorithms for detecting small and dim targets in the IR
domain. Initially, researchers relied on conventional image processing techniques.
These approaches include human vision system (HVS) inspired methods for
small target detection in IR imagery, utilizing various local contrast measures
to enhance target signals and suppress background clutter. LCM [5], ILCM [14],
RLCM [13], HBMLCM [28], TLLCM [15], MPCM [33], DLCM [24] WLDM [9]
are major algorithms under this category. Entropy-based small and dim target
detection techniques [8,27,38] are also rooted in conventional image processing
approaches. These methods employ various techniques to enhance signal-to-noise
ratios and improve target differentiation. MGDWE [8], LEF [38], LR [27] are
examples under this category. Gradient-based methods [35,41] represent another
significant category within conventional image processing for small and dim tar-
get detection. These methods leverage gradient properties to enhance target vis-
ibility and suppress background clutter. Representative algorithms include LIG
[41] and DGRAD [35]. Background reconstruction [1–3,10,22] a key approach
of image processing plays a crucial role in small target detection algorithms,
significantly enhancing their ability to identify targets by effectively differenti-
ating them from complex backgrounds. Prominent examples of this approach
include AAGD [1], ADMD [22], THM [12], MTHM [2,3], MAXMEAN [10] and
MAXMED [10]. These approaches, while effective to some extent, often struggled
with varying background conditions and noise.

2.2 Deep Learning Paradigm for SIRST

The emergence of deep learning, especially CNNs, has significantly advanced
image detection tasks. The field of fully supervised detection features a vari-
ety of innovative approaches. YOLO-FR [23] is known for its fully supervised
detection type. ACM [6] employs customized down-sampling with attention mod-
ules, while ALCnet [7] integrates feature learning with a model-driven approach.
DNAnet [17] uses a nested U-Net with attention mechanisms. MDvsFA [32] lever-
ages a GAN-based method, and ISNet [43] incorporates Taylor finite difference-
based attention. DBR [25] stands out with its vision transformer-based strategy.
MPAnet [30] utilizes axial attention modules, and Ganet [40] focuses on global
attention. RDIAN [29] is a receptive-field and direction-induced attention net-
work designed to address the interclass imbalance between targets and back-
grounds by leveraging the characteristics of target size and grayscale. AGPCNet
[44] includes an Attention-Guided Context Block (AGCB) for computing local
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and global associations, a context pyramid module for integrating features from
multi-scale AGCBs, and an asymmetric fusion module for enhancing feature
utilization by integrating low-level and deep-level semantics. RepISD-Net [36]
introduced an edge compensation block to improve local salient features and
capture finer contour details of small targets. UIU-Net [37] integrates a small
U-Net within a larger U-Net framework, facilitating multi-level and multi-scale
representation learning of objects. SRNet [20] provides a unified framework for
learning shape-based representations, enhancing SIRST detection by explicitly
integrating shape information into the model’s learning process. SSPS [16] intro-
duced single-point supervision combined with Monte Carlo linear clustering.
CSENet [19] integrated a contrast-shape encoder and a shape-reconstructable
decoder in a cascading manner to learn discriminative representations for effec-
tively identifying target objects. DCFR [11] is a diffusion-based continuous fea-
ture representation network equipped with a dedicated block to accurately cap-
ture the contours of extremely small targets. RPCANet [34] addresses the detec-
tion task by performing sparse target extraction, low-rank background estima-
tion, and image reconstruction within a relaxed robust principal component anal-
ysis model. IRPruneDet [42] represents the weight matrix in the wavelet domain
and formulates a wavelet channel pruning strategy. However, applying CNNs
to SIRST detection has highlighted certain limitations. The lack of high-level
semantic information causes small target features to weaken in the deeper layers
of the CNN, reducing the network’s ability to effectively represent and detect
these small targets. Our STNet addresses this shortcoming by using multi-layer
feature fusion and feature extraction in the frequency domain.

3 Methodology

In this section, we first introduce the underlying architecture of the STNet, which
is based on the Residual U-Net [26]. Then, we will delve into the Multi-Layer
Feature Fusion (MLFF) module that fuses the extracted multi-layer features,
which are then used by the subsequent decoder. Furthermore, due to the deep
layers, the target may suffer from the vanishing problem. To overcome this, we
leverage the Fast Fourier Block (FFB) to capture local and global context and
avoid the vanishing problem of small targets.

3.1 STNet

The architecture underlying the proposed STNet is a stacked U-Net with a dual-
level nested U-Structure [26] as shown in Fig. 1. This configuration facilitates
the extraction of diverse multi-scale and multi-level features. STNet consists of
encoders and decoders, each utilizing a Residual U-block. Within the Resid-
ual U-block, the input transforms into intermediate feature maps that capture
local features. These feature maps undergo progressive down sampling to extract
multi-scale features at varying levels of detail. Subsequently, these multi-scale
features are up sampled through convolution to produce high-resolution feature
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Fig. 1. The overview of our proposed STNet. The architecture is based on U-Net
structures, where each encoder-decoder pair follows a residual U-block structure. Fea-
ture maps are gradually downsampled by encoders and subsequently upsampled by
decoders. We introduce a Fast Fourier Block (FFB) at the bottleneck encoder to cap-
ture global features. Furthermore, the MLFF module combines subsequent encoder and
decoder features, which are then passed to the next decoder. We concatenate deep and
shallow features from the decoder to obtain the final output.

maps. Residual connections are employed to merge local features and multi-scale
features, preserving detailed local and multi-scale information.

The input IR image is passed on to six encoders that integrate a Residual U-
block with feature map down sampling. Furthermore, as shown in Fig. 1 STNet
incorporates five decoder blocks, where each decoder upsamples the feature map
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Fig. 2. The illustration of the Multi-Layer Feature Fusion (MLFF module) and Atten-
tion Module.

from the previous stage and fuses it with the corresponding encoder output in
the MLFF module, serving as input for the next subsequent decoder.

To integrate the outputs globally and dynamically from each decoder, we
merge the shallow outputs (from decoders D1, D2, and D3) and the deep outputs
(from decoders D4, D5, and encoder E6) using a scaling mechanism. As illus-
trated in Fig. 1, shallow outputs undergo point-wise convolution and upsampling
to generate feature maps. Similarly, deep outputs undergo point-wise convolu-
tion and upsampling to obtain their respective feature maps. Then, we derive
scaling weights using the following steps: performing point-wise convolution,
upsampling (for D2 and D3), concatenating the outputs, and finally applying
a sigmoid function. Each feature map from the deep outputs is multiplied by
these scaling weights. Finally, scaled deep output and shallow outputs are con-
catenated and undergo point-wise convolution to produce the final output of
STNet.

3.2 Multi-layer Feature Fusion Module

Figure 2 illustrates the proposed MLFF module, which also includes an inte-
grated attention module. The encoder increases the receptive field and extracts
high-level information, while the decoder restores the size of feature maps to
match that of the input images. To achieve gradual fusion, we introduced an
MLFF module. The features from the subsequent encoder and decoder are passed
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Fig. 3. The illustration of the Fast Fourier Block (FFB). FFB converts features from
the spatial domain into the frequency domain and applies the CBR (convolution, batch
normalization, and ReLU) layer in the frequency domain. We then use the inverse
Fourier transform, a residual connection, and convolution to capture local and global
information.

to the attention module, and a residual connection is used to retain the input
features. Both features are fused by element-wise addition and passed to the
convolution, batch norm, and ReLU layers.

The attention module is used for feature enhancement and to improve repre-
sentation. The feature map for the respective encoder/decoder is passed to the
attention module. The attention process can be summarized in Eq. 1 and Fig. 2
(Lower). The input features (L) are passed through global average pooling and
then processed by the PRP (Point-wise convolution, ReLU, and Point-wise con-
volution) layer. The sigmoid activation function is then applied to get the final
output from the attention module.

Ma(L) = σ ((PRP(Pavg(L)))) (1)

Here, L represents the input features, and Pavg denotes the global average
pooling operation. PRP represents the point-wise convolution, ReLU, and point-
wise convolution operations. σ is a sigmoid function.

3.3 Fast Fourier Block

As depicted in Fig. 3, our approach utilizes FFB block with a Fast Fourier Trans-
form (FFT) operation to extract global information using convolution in the
frequency domain. This technique is crucial for preserving small target features
in deep network layers. The FFT block analyzes the frequency components of
the image, allowing for the separation of high-frequency target signals from the
lower-frequency background components. By amplifying these high-frequency
components associated with the targets, the FFT block improves the signal-to-
noise ratio, making the targets more distinguishable.

The FFB operates as a 2D block based on Real FFT, transforming spatial
features into the frequency domain to capture broader context. The process
involves several steps: initial convolution, followed by batch normalization and
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ReLU activation; then, applying Real FFT2d to convert spatial features into
complex frequency representations, extracting both real and imaginary parts as
shown in Eq. 2:

Real FFT2d : RH×W×C → C
H×W

2 ×C (2)

After concatenating real and imaginary parts, another round of convolution,
batch normalization, and ReLU activation is applied within the frequency
domain. Notably, Real FFT operates on real-valued signals, ensuring the output
remains in the real domain. To revert to the spatial domain while preserving
features, we employ the inverse Real FFT operation as described in Eq. 3:

Inverse Real FFT2d : CH× W
2 ×C → R

H×W×C . (3)

Here, H, W , and C denote the height, width, and number of channels of the fea-
ture map, respectively, with R and C representing the real and complex domains.

4 Experiment

4.1 Datasets

IRSTD-1K [43] dataset is a real-world image collection featuring 1000 IR
images, each with dimensions of 512×512 pixels, showcasing diverse backgrounds
such as sea, river, field, mountain, city, and cloud scenes. Each image is anno-
tated with ground truth data that includes targets classified into three types:
point, spot, and extended. To ensure precise annotations, the targets within
these images have been meticulously labeled at the pixel level. This extensive
and varied dataset is ideal for advancing and benchmarking small target detec-
tion algorithms. The diversity of backgrounds and target types makes IRSTD-1K
a valuable resource for research in small target detection in IR imagery.

NUDT-SIRST [17] dataset consists of a total of 1,327 synthetically generated
images, encompassing a diverse array of background scenarios such as clouds,
urban environments, and maritime scenes. Accompanying the dataset is ground
truth data, which provides valuable information for accurate evaluation and
benchmarking. The dataset includes both point and extended targets, offering a
comprehensive resource for developing and testing small target detection meth-
ods in the IR domain.

4.2 Performance Metric

In this work, performance evaluation has been conducted at both the pixel level
and the object level. Following previous works, we use the following metrics:
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Metrics Defined at Pixel Level: Intersection over Union (IoU) is a funda-
mental evaluation metric used in computer vision, particularly for object detec-
tion and image segmentation tasks. It measures the accuracy of a predicted
bounding box or segmentation mask by comparing it with the ground truth. It
is expressed as given in the following Eq. 4:

IoU =
Ai

Au
=

n∑

i=1

TP i

n∑

i=1

Ti + Pi − TP i

, (4)

where Ai and Au are the intersection and union, respectively. T denotes the
pixels predicted as the targets. P denotes the pixels of the ground truth targets.
TP is the true positive pixels. n represents the number of IR images in the test
set.

Normalized Intersection over Union (nIoU) is a normalized version of the
traditional IoU metric, which is particularly important in datasets where objects
vary significantly in size [6]. It is expressed as the following Eq. 5:

nIoU =
1
n

n∑

i=1

TP i

Ti + Pi − TP i
. (5)

Metrics Defined at Object Level: The object level metrics for Probability of
Detection Pd and False Alarm rate Fa are defined in the following Eqs. 6 and 7.

Pd =
1
n

n∑

i=0

Npred
i

Nall
i

(6)

Fa =
1
n

n∑

i=0

P false
i

P all
i

(7)

Here, Npred represents the number of correctly detected objects, while Nall

signifies the total number of objects. Similarly, P false indicates the pixels of
falsely detected objects and P all denotes the total pixels of objects. A detection
is considered accurate when the distance between the centroid of the predicted
result and the ground truth is less than 3 pixels [17].

4.3 Implementation Details

Experiments were conducted using Python 3.8.13 and PyTorch Version 1.13.1+
cu117. The training phase utilized an NVIDIA RTX A5000 GPU and an AMD
EPYC 7543 CPU, with a batch size of 8 over 600 epochs. The Adan optimizer
[39] was used, featuring 10 warm-up epochs and a learning rate of 1e−3. Input
images were resized to 512×512 for both training and testing. The binary cross-
entropy loss was applied with a weight decay of 1e−4. The STNet architecture
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consists of 6 encoder blocks and 5 decoder blocks. In the PRP block (Sect. 3.2), a
point-wise convolution with a kernel size of 1 is used, and a reduction factor of 16
is used to reduce the output channels by a factor of 16. After ReLU activation,
this is followed by another point-wise convolution with a kernel size of 1, and the
reduced channels are increased by a factor of 16 in output to match the original
number of channels. The training time of STNet on IRSTD-1k is 43 s per epoch,
and the test inference time is 45 milliseconds per infrared image sample.

Table 1. Performance Comparison of various SOTA Deep Learning based methods for
SIRST detection on IRSTD-1K Dataset. ↑ arrow signifies that a higher value is better,
and ↓ arrow signifies that a lower value is best.

Method Venue Pixel Level Object Level
IoU(%) ↑ nIoU(%)↑ Pd(%)↑ FA(10−6)↓

MDvsFA [32] ICCV-2019 49.03 46.94 82.49 51.93
ACM [6] WACV 2021 60.28 57.00 89.90 18.11
ALCNet [7] TGRS-2021 62.63 60.70 89.23 19.28
DNA-Net [17] TIP-2022 62.66 60.86 90.24 9.565
ISNet [43] CVPR-2022 61.80 62.27 89.56 2625
RDIAN [29] TGRS-2023 58.33 60.73 91.92 26.53
APGCNet [44] TAES-2023 62.82 63.01 90.57 29.72
RepsISD [36] TGRS-2023 65.45 – 91.59 7.62
UIU-Net [37] TIP-2023 62.49 61.91 91.88 21.65
SRNet [20] TMM-2023 69.45 65.51 96.77 13.05
SSPS [16] ICCV-2023 64.13 – 90.74 14.93
CSENet [19] TIP-2024 66.70 65.87 98.16 12.08
DCFR [11] TGRS-2024 65.41 65.45 96.30 7.345
RPCANet [34] WACV-2024 – 63.21 88.31 4.39
IRPruneDet [42] AAAI-2024 64.54 62.71 91.74 16.04
MSHNe [21] CVPR-2024 67.16 - 93.88 15.03
STNet(Ours) - 72.04 68.95 95.29 1.92

5 Comparison to State-of-the-Art Methods

The performance comparison of SOTA deep learning-based methods for SIRST
reported on the IRSTD-1K dataset is detailed in Table 1, focusing on metrics
such as IoU, nIoU, Pd, and FA. Our proposed STNet stands out with the highest
IoU of 72.04% and nIoU ofs 68.95%, along with a Pd of 95.29% and the lowest FA
of 1.92×10−6. Other noteworthy methods include SRNet, which achieved an IoU
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Table 2. Performance Comparison of various Deep Learning based SIRST methods
for NUDT-SIRST dataset. ↑ arrow signifies that a higher value is better, and ↓ arrow
signifies that a lower value is best.

Method Venue Pixel Level Object Level
IoU(%)↑ nIoU(%)↑ Pd(%)↑ FA(10−6)↓

MDvsFA [32] ICCV-2019 67.01 60.78 90.56 27.25
ACM [6] WACV 2021 63.33 65.86 93.26 52.88
ALCNet [7] TGRS-2021 76.35 77.53 96.96 16.78
DNA-Net [17] TIP-2022 84.00 84.23 97.17 4.090
ISNet [43] CVPR-2022 74.72 74.69 93 21
RDIAN [29] TGRS-2023 73.04 74.59 95.65 22.11
APGCNet [44] TAES-2023 85.48 86.60 98.04 7.124
UIU-Net [37] TIP-2023 72.44 69.47 97.83 21.51
MSHNe [21] CVPR-2024 80.55 - 97.99 11.77
STNet(Ours) - 87.25 87.23 98.51 5.92

of 69.45%, nIoU of 65.51%, Pd of 96.77%, and FA of 13.05× 10−6, and CSENet
with an IoU of 66.70%, nIoU of 65.87%, Pd of 98.16%, and FA of 12.08 × 10−6.

Table 2 presents the performance comparison of various state-of-the-art deep
learning-based methods for SIRST detection on the NUDT-SIRST dataset, eval-
uated using pixel-level and object-level metrics including IoU, nIoU, Pd, and FA.
Our proposed method STNet achieves the highest performance with an IoU of
87.25%, nIoU of 87.23%, and Pd of 98.51% coupled with a low FA of 5.92×10−6.
In comparison, other notable methods such as APGCNet reported an IoU of
85.48%, nIoU of 86.60%, Pd of 98.04%, and FA of 7.12 × 10−6, and DNA-Net
achieved an IoU of 84%, nIoU of 84.23%, Pd of 97.17%, and FA of 4.09 × 10−6.

The proposed STNet method outperforms other state-of-the-art deep
learning-based methods for SIRST detection on both the IRSTD-1K and NUDT-
SIRST datasets. It achieves the highest scores in key metrics such as IoU, nIoU,
and Pd and the lowest false alarm rates. This performance highlights STNet’s
effectiveness in detecting and segmenting small targets in cluttered backgrounds.

Table 3. A comparison of different components of STNet on the IRSTD-1K dataset is
presented. The results are evaluated in terms of IoU, nIoU, Pd, and FA, with the best
results highlighted in bold.

Component IOU(%) nIOU(%) Pd(%) Fa(10−6)

STNet w/o MLFF 68.23 65.55 94.27 5.58
STNet w/o FFB 71.06 67.19 94.61 3.23
STNet 72.04 68.95 95.29 1.92
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Fig. 4. Illustration of qualitative results obtained using our proposed STNet.

Fig. 5. STNet training loss and IoU with respect to the training epochs.

5.1 Abalation Study

Qualitative Results. Qualitative results of STNet on the IRSTD-1K dataset
are shown in Fig. 4. The visualization demonstrates that STNet is able to accu-
rately detect small targets in infrared images, with the better fusion of low-level
detail features with high-level semantic features, along with small target preser-
vation.

Effectiveness of Components. Experiments were conducted to analyze the
effectiveness of the major components of STNet, specifically the MLFF and
FFB modules. The results, as reported in Table 3, demonstrate that the fusion
of multi-layer features (MLFF) significantly improved the IoU, as without the



STNet: Small Target Detection Network for IR Imagery 41

MLFF block, the IoU was reduced from 72.04% to 68.23%. Furthermore, the
removal of the FFB from STNet resulted in an IoU being reduced from 72.04%
to 71.06%, underscoring its role in enhancing the model’s ability to learn both
local and global contexts more effectively.

Training and Inference Time. The time required for training and evaluation
of our STNet model was analyzed. Training the STNet model on the IRSTD-1K
dataset took 43 s per epoch, while test time was 0.045 s per sample. Additionally,
we visualized the convergence of the training loss and the improvement in IoU
throughout the training process, as depicted in Fig. 5. This highlights the effi-
ciency of our model in both the training and evaluation phases, demonstrating
its rapid processing capabilities and effective learning progression.

6 Conclusion and Future Scope

In this work, we proposed STNet, a novel SIRST detection approach designed
to address the inherent challenges of detecting small targets in IR images. Our
approach leverages U2-Net architecture and integrates the MLFF module and
the FFB block in this architecture. The MLFF module enhances feature inte-
gration across multiple layers, effectively combining detailed low-level features
with high-level semantic information. Meanwhile, the FFB extends the model’s
capability by extracting features in the frequency domain, thereby preserving
crucial small target details even in deep network layers. Extensive experiments
on the IRSTD-1K and NUDT-SIRST datasets demonstrate STNet’s superior-
ity over other state-of-the-art methods on both public datasets. Notably, STNet
is able to accurately identify and segment small targets amidst cluttered back-
grounds. Moving forward, the effectiveness of STNet highlights the potential of
integrating frequency-domain feature extraction and multi-layer feature fusion in
deep learning models for infrared small target detection. Future research should
explore other approaches to accurately fuse multi-layer features for better detec-
tion. Furthermore, more work is needed to preserve small targets in the deeper
layers of CNN-based methods to overcome the vanishing small target problem.
These efforts could expand the applicability of SIRST methods across diverse
infrared imaging tasks.
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Abstract. The foreign object debris (FODs) on airport runways often
disrupt operations while taking off and landing flights, leading to acci-
dents. Small-scale FODs cannot manually rule out on time, which threat-
ens aviation safety. This paper presents an intelligent computer vision sys-
tem for small-scale FOD detection. This work proposes a Feature-Fusion
Yolo (FF-Yolo) to accelerate the Yolov5 model to detect FODs in airports.
A lightweight convolution-based attention module (CBAM) is considered
in the backbone of the proposed architecture to improve the model effi-
ciency by focusing on the target features. In addition, to reduce the over-
fitting problem, a C3TR module is included in the FF-Yolo model’s back-
bone and neck, which captures both spatial and temporal features. Fur-
ther, GhostConv is used in neck network, which helps in increasing the
overall accuracy. Finally, an improved detection head is introduced in FF-
Yolo to find out the size of the small-scale FODs along with their pixel loca-
tion, which helps the aviation personnel to measure the severity and take
prompt action. The experiments are performed on a FOD-A dataset with
a runway and taxiway background, including different light and weather
conditions. The proposed model achieved 98.61% mAP@0.5 and 83.21%
mAP@0.95, which are higher than other state-of-the-art (SOTA) models.
An overall improvement of 7.33%, 6.43%, 5.79%, and 4.93% of mAP@0.5
and 6.26%, 16.51%, and 5.1% of mAP@0.95 are noted compared to the
Yolov5 baseline models. The FF-Yolo model achieves a detection speed of
33.31 frame/s, much higher than the other SOTA models. Consequently,
the ablation study verifies the robustness of the FF-Yolo model for small-
scale FOD detection.

Keywords: Attention Module · Foreign Object Debris · FODs
Detection · Improved Yolov5 model · FF-Yolo model · FODs in ariport
runways

1 Introduction

1.1 Literature Study and Research Gaps

To ensure runway security and safety, the detection of FOD is an important
task in aviation. Constant supervision of airport runways is essential for smooth
operations in the airport. Missed identification of FOD may cause missed iden-
tification of FODmissed identification of FODand lead to accidents. In recent
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A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15330, pp. 45–60, 2025.
https://doi.org/10.1007/978-3-031-78113-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78113-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-78113-1_4


46 S. Biswas and A. Ganesh

times, many airports have performed the inspection manually with the help of
human labor which is crucial and may lead to missed identification of FOD
[1]. Generally, FOD refers to various artifacts such as parts of equipment, lug-
gage straps, small tire parts, aircraft components, repairing components, etc.
are present in the airport runways. The presence of FOD sometimes delays the
operations of aircraft and increases repair costs [2]. Figure 1 shows an example
of FOD in airport runways.

Fig. 1. Images of small scale FODs in airport runways (a)–(d) Sample FOD from
airport runways [1], (e) Sample FOD from FOD-A [21] Datasets.

The airport authorities are trying to mitigate the problem of FOD identifi-
cation in many ways as it leads to high financial losses [3]. Hence, it is essential
to find an innovative approach to detect FOD in runways. Recent advancements
in technology have come up with various solutions from time to time to mitigate
different problems in various industries. The computer vision technique leads
among all because of its robustness and efficiency in the detection of objects.
In the literature, researchers introduced different object detection models in
various fields other than aviation [4]. Few are findings in the literature where
researchers have developed FOD detection systems but the use of hardwires
leads those systems to high cost [5]. Also, few of them are based on cameras
to capture the runway areas and later human efforts are required to identify
those FODs [6]. In the last decade, few researchers have reported some effective
methods to detect FOD [7–10]. The methods or systems are based on LiDAR
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[7], mm-wave FMCW radar technology [8], which produces good results in dif-
ferent environmental setups. Authors in [11] introduced a region-based CNN for
FOD detection. In this research, authors introduced a region proposal network
and spatial transformation network to detect FOD using optical camera sensors.
There are also few studies in literature based on Faster RCNN [12] and Mask
RCNN [13] to extract the FOD region and classify the types of FOD. Authors
in [14] demonstrate the FOD detection using region-based CNN. The authors
described a transfer learning and deep neural network-based methodology to
improve the overall detection results. The key point detection using CNN is one
of the challenges in FOD detection which is improved by authors in [15]. In the
literature, many methodologies exist to detect airport FODs using sensor data,
unmanned aerial vehicle (UAV) images, LiDAR data, radar-based data, etc.
However, all this equipment needs higher computational costs and a large-scale
setup to implement in real time [7–10]. The data collection itself is challeng-
ing for FODs. The intelligent computer vision system is an emerging technique
that mitigates various problems and computational costs. Collecting data using
UAVs, sensors, and mm-wave radar technology involves high computational costs
and requires continuous attention to handle the failures of detection systems. A
research gap exists in the artificial intelligence (AI) domain for FOD detection
and identification. The major limitation of this research may include data col-
lection from the airport authorities, which leads to the problem needing to be
solved. Timely detection of FODs is essential to handle unavoidable situations.
Intelligent computer vision systems come up with various advantages that may
resolve the difficulties of identifying the FODs in airport runways. Object detec-
tion models can identify and detect various objects in real-time. Also, it helps
in reducing the computational complexity by retaining higher accuracy results.
In literature, object detector in YOLO network improves the speed by lowering
the regression loss and producing higher accuracy [16,17]. There are also few
studies on FOD detection other than airport runways using YOLO architecture
where authors improved the architecture to achieve good results [18,20]. The
research is still open to detect FOD in airport runways using computer vision
and artificial intelligence (AI) due to the limitation of methodology in this area.

1.2 Contributions

Motivated by the advantages of YOLO architecture, the present paper intro-
duced a FF-Yolo to detect the FOD in airport runways. It is essential to mitigate
the missed detection problem in aviation by detecting the FOD. Also, the size of
the FOD is often small and difficult to detect. Thus, we introduced an improved
Yolov5 model where we changed the backbone and neck of the architecture. Also,
the detection head added the novelty of calculating the approximate size of FOD.
In backbone, fusion of C3TR and lightweight CBAM layers are used to get the
refined features from the backbone. Subsequently, the Ghost Convolution is used
in the neck replacing the traditional convolution layer that helps to capture the
spatial and temporal features to improve the efficiency of the model. This strat-
egy not only improves the computational time but also improves the accuracy of
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the model. The FF-Yolo achieved map@0.5 of 98.61% and mAP@0.95 of 83.21%
on the FOD-A [21] dataset.

The main contributions are summarized as follows:

1. The C3TR layer is used as a bridge between the convolution layer and the
CBAM layer that helps in enhancing the feature on combined image blocks.
The size of the input images is initially divided into different image blocks and
later combined results for feature extraction. Further, C3TR is also added in
the neck after concat layer to fusion the features.

2. The lightweight CBAM layer is used before SPPF layer to extract more essen-
tial feature information from channel and Spatial attention. The fusion of
these features helps in enhancing the feature quality.

3. In neck of FF-Yolo, Convolution layer is replaced by Ghost Convolution layer
after upsampling feature layers which help in regularizing features to improve
the detection accuracy.

4. The novelty of FF-Yolo is the arrangement in uses of CBAM, C3TR and
ghost convolution in the architecture along with the feature enhancement
methodology.

5. Finally, we introduced a detection head, where we added a size estimation
function based on the object bounding box to get an approximate size of
FOD.

The rest of the paper is arranged as follows: Sect. 2 describes the architecture
of FF-Yolo. The comparative analysis, ablation study and results are discussed
in Sect. 3. Finally, Sect. 4 concludes the research work and future scope followed
by references.

2 Improvement Method: Proposed FF-Yolo Model

2.1 Overall Framework

The architecture of the FF-Yolo is shown in Fig. 2. The traditional Yolov5 con-
sists of backbone, neck, and prediction heads. The backbone of the network
extracts the features whereas the neck performs the feature fusion followed by
three prediction heads. In the proposed architecture, we consider three modifi-
cations in backbone and head and they are: 1) we added C3TR and CBAM layer
in the backbone. The C3TR layer is a bridge between the Convolution layer and
CBAM and the extracted features are fed into SPPF layer which is the last layer
in backbone, 2) In addition, C3TR layer is also added in neck of FF-Yolo after
concat layer to fusion the features that helps in reducing overfitting problem,
3) After upsampling layers, convolution layers are replaced by ghost convolu-
tion layers to regularize the feature fusion to improve the detection accuracy, 4)
Introduced a detection head, where we include size estimation of the object from
the bounding box information of the detected objects.
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Fig. 2. Architecture of FF-Yolo for FOD Detection

2.2 Convolution Block Attention Module (CBAM) in FF-Yolo

The CBAM module is based on an attention mechanism that can be integrated
into CNN architecture. The CBAM consists of two Attention modules, namely
Channel Attention and Spatial Attention. The purpose of using CBAM is to get
the features in backbone instead of using them in neck to generate the feature
fusion of pyramids. Also, it is very lightweight which makes the model smaller in
terms of size as the number of parameters required is very less. In general, during
training existence of a large number of parameters will affect the model perfor-
mance as it is difficult to train a large number of parameters and also require
high computational time. So using the CBAM in the backbone reduces the size
of feature maps. Further, Fig. 2 includes the structure of CBAM where Global
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Max-pooling and Average pooling are performed in channel attention module to
extract the feature maps on different channels. The elementwise summation and
sigmoid activation execute to redesign the feature maps. Similarly, on separate
feature maps global max-pooling and average pooling operations are performed
on pixel values and then concatenated with these features followed by a two-
dimensional convolution layer and sigmoid activation function. The following
formula can express the whole process.

Fig. 3. Channel Attention Module

Fig. 4. Spatial Attention Module

I ′
F = Mc(IFi

)× IF (1)

YF = Ms(I ′
Fi
)× IF (2)

where × denote element-wise multiplication. I ′
F is channel module output

whereas YF is the spatial attention module output.
Figure 3 depicts that the channel attention module is used to find more inter-

section areas [22]. In the channel attention module, two feature descriptor is used
to find the features by performing global average pooling (Iavgc ) and max-pooling
operations (Imax

c ). These feature maps are fed to multi-layer perceptron (MLP)
to produce channel attention maps (Mc).

Mc = σ(MLP (AvrgPool(IF )) + MLP (MaxPool(IF )))
= σ(W ′′(W ′(Iavgc )) + W ′′(W ′(Imax

c )))
(3)
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where, σ denotes a sigmoid function. W ′ and W ′′ are the weights shared for both
the inputs.

In Fig. 4, the Spatial attention layer [22] is used to find the spatial infor-
mation of defects by performing average pooling or max-pooling operations to
generate the feature maps for average pool and max-pool layers. The convolution
operation of both features produces spatial attention feature maps.

2.3 C3TR and Ghost Convolution in FF-Yolo

The C3TR is an improved version of C3 layer which is used in the backbone
of the FF-Yolo for feature extraction. The advantage of this layer is to improve
the efficiency of the network by reducing computational cost as it combines
the benefits of CSPNet and C3 layer [23]. Hence, the motivation of using this
layer is to facilitate the low-level features to high-level representations of the
feature information. Similarly, Ghost convolution is used in neck of the pro-
posed architecture to refine the features and extract the feature maps. It ensures
the lightweight convolution operation which makes the model low in size while
improving the speed. The working strategy of the Ghsot convolution is to spit
the input tensors into multiple ghost tensors which effectively helps in reducing
the computational cost. It captures the contextual information and same time
enhances the extracted features from the backbone. Also, uses of this layer in
the neck maintains the performance of FF-Yolo in terms of accuracy. Figure 5
illustrate the structure of C3TR and Ghost Convolution layer.

Fig. 5. Illustration of C3TR and GhostConv layers

2.4 Modified Prediction Heads of FF-Yolo

The proposed model consists of three detection heads of small, mid, and large
feature maps. In each prediction head the output vectors are fused maps from
backbone and neck. These output vectors represent the regression bounding box
that illustrates the coordinate and size. From the regression bounding box, we
extract the variable of size into a new function to get the approximate object
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size. Along with this, it consists of the confidence score of each class detected by
the prediction head. The final bounding box is generated by anchors to visually
represent the objects in a frame or image.

2.5 Loss Function in FF-Yolo

The loss function of the FF-Yolo is expressed as follows:

Loss = xLossobjectness + yLossBounding_box + zLossClassfication_prob (4)

where, x, y and z are denoted as objectness loss weight, bouding box loss weight
and classification probability loss weight. In our experiments, we set the values
as 1, 0.05 and 0.5.

In proposed model binary cross entropy loss is used for both classification
probability and objectness. Similarly, for bounding box regression we used CIoU
loss [24].

3 Experimental Results

We perform the experiments on FOD-A dataset using FF-Yolo model. The exper-
imental results demonstrate the robustness of the proposed model for FOD detec-
tion in terms of accuracy and computational time.

3.1 Experiment Settings

The experiments are performed on 13th Gen Intel(R) Core(TM) i9-13900K CPU
with 24 GB GPU Memory NVIDIA GeForce RTX 4090. The proposed model is
implemented on pytorch using CUDA version 12.2.

3.2 Dataset

For the experimental purpose, we consider FOD-A dataset [21] to have 31 differ-
ent classes of FOD objects with 30,000 instances. The instances include different
lightening and weather category condition images. A total of 15,000 images are
considered from the dataset with 13950 instances for this research experiment.
We split the dataset into 70:20:10 for train, validation, and test sets respectively.
Figure 6 shows the sample images from the dataset and details of annotation
instances.

3.3 Hyperparameter Settings

The experiments in this paper considered the values of hyperparameter as men-
tioned below. The training epoch is 200 epochs with a batch size of 16. In these
experiments using FF-Yolo, we set early stop criteria during training and it set
to 10 epochs. The initial learning rate is considered as 0.001 and the considerable
input size is 640× 640.
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Fig. 6. Sample images from FOD-A dataset, types of FODs and Number of annotation
Instances [21]

3.4 Evaluation Criteria

The performance evaluation of the FF-Yolo is measured using different param-
eters, namely mean average precision (mAP), precision, and recall. The mAP
can be calculated by calculating the average precision (AP) value for each class
and then taking an average over the number of classes [19]. The formula can be
defined as:

mAP =
1
N

N∑

i=1

APi (5)

Further, precision (PR) is a calculation of finding all true positives (TP) out
of all TP and false positive (FP) which can be expressed as below [25]:

PR =
TP

TP + FP
(6)

Similarly, recall (RE) is calculated for all TP out of all TP and false negatives
(FN). The Re can be expressed as below [25]:

RE =
TP

TP + FN
(7)
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The significance of calculating mAP as it incorporates the trade-off between
PR and RE . Also mAP matric considered both TP and FN .

Further, mAP@0.5 and mAP@0.95 are calculated when the IoU is 0.5 and
0.95 for all classes.

3.5 Experimental Results

The experiments on the FOD dataset using FF-Yolo produce better results in
terms of accuracy while comparing the results with other existing state-of-the-
art (SOTA) models, namely Yolovs [25], Yolov5m [25], Yolov5x [25], Yolov3 [26],
Yolov3-tiny [26], Yolov3-SPP [26] and Li et al. [27]. It is noted that all the exper-
iments performed using SOTA models are on FOD dataset. The experimental
results also show the robustness of the proposed model while comparing it to the
baseline Yolov5s model. Table 1 illustrates a comparison of the FF-Yolo model
with other SOTA models. From Table 1 it can be depicted that FF-Yolo model
outperforms the baseline Yolov5s, Yolov5x, and Yolov5m by 7.33%, 6.43% and
5.79% in terms of mAP@0.5, respectively. Similarly, proposed model shows an
improvement of 6.26%, 16.51%, and 5.1% in terms of mAP@0.95 while com-
pared to Yolov5s, Yolov5x and Yolov5m, respectively. Also, there is a significant
improvement of FF-Yolo in terms of mAP@0.5 and mAP@0.95 while comparing
it with the Yolov3 [26] and Li et al. [27] models. Further, FF-Yolo outperforms
the other existing models in terms of Precision (PR) and Recall (RE). Figure 7
shows the output detection results using proposed model. It can be observed
that the proposed model is also efficient in calculating the size of FOD and the
location of those objects in the specific frame. It is noted that for calculating
the size of objects we consider the camera calibration parameter of pixel size of
0.01 cm per pixel.

Table 1. A comparative analysis of Improved YOLOv5 model compared to other
existing models

Models PR(%) RE(%) mAP@0.5(%) mAP@0.95 (%)

Yolov5s [25] 93.57 89.56 91.28 76.95
Yolov5x [25] 94.26 90.10 92.18 66.70
Yolov5m [25] 95.04 91.31 92.28 78.12
Yolov3 [26] 90.80 89.87 90.75 62.83
Yolov3-tiny [26] 92.80 92.40 96.40 70.00
Yolov3-SPP [26] 92.0 86.91 94.00 71.40
Li et al. [27] 93.00 90.00 93.68 79.68
yolov8 [28] 94.90 94.20 97.30 79.20
FF-Yolo (Ours) 97.08 95.97 98.61 83.21

Further, Fig. 8 below shows the comparison of the mAP@0.5-0.95 values curve
of FF-Yolo with other SOTA models.
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Fig. 7. Detection results of FODs using FF-Yolo model.

Fig. 8. Comparison Curve of mAP@0.5-0.95 values

3.6 Ablation Study

We perform the ablation study to evaluate the performance of proposed FF-Yolo
model. Different experimental setups is formed to train FOD dataset. Table 2
explains the ablation study performed in this research. In first setup, we con-
sidered only Ghost Convolution layer in neck and removed C3TR and CBAM
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Table 2. The Ablation study on FOD dataset

Model Ablation Setting mAP@0.5 (%) mAP@0.95
(%)

GhostConv
(A)

C3TR (B) CBAM (C)

Yolov5s ✗ ✗ ✗ 91.28 76.95

Yolov5s + A ✓ ✗ ✗ 93.67 77.32

Yolov5s+A+B ✓ ✓ ✗ 97.45 77.92

Yolov5s+A+C ✓ ✗ ✓ 97.27 77.65

Yolov5s+B+C ✗ ✓ ✓ 97.56 77.90

FF-Yolo ✓ ✓ ✓ 98.61 83.21
(Ours)

Fig. 9. Ablation study analysis for (a) mAP@0.5 and (b) mAP@0.95 [A= GhostConv,
B= C3TR, and C=CBAM]

layers from backbobe of the architecture shown in Fig. 2. Instead of C3TR, C3
layer was added, and performed the experiment. It is depicted from the table
that it achieve 93.67% of mAP@0.5 and 77.32% of mAP@0.95 which are lower
than the proposed model results. In second setup, Ghost Convolution layers and
C3TR layer are considered in neck and backbone, respectively while we removed
CBAM from backbone. This arrangement in the architecture produces 97.45%
and 77.92% of mAP@0.5 and mAp@0.95 values, respectively. In third setup,
we considered Ghost Convolution and CBAM in the architecture and replaced
C3TR with C3 layer in backbone. It produces 97.27% of mAP@0.5 and 77.65%
of mAP@0.95 which are lower than proposed FF-Yolo model. In final setup of
ablation study, instead of Ghost Convolution layer traditional convolution layer
was used in neck, and rest no changes were made in the backbone. This arrange-
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Fig. 10. Training Loss using FF-Yolo

Table 3. A comparative analysis of FPS and Runtime

Models FPS Runtime(in Sec.)

Yolov5s [25] 31.24 28.08
Yolov5x [25] 25.21 34.71
Yolov5m [25] 29.93 29.23
Yolov3 [26] 26.01 33.63
Yolov3-tiny [26] 30.92 28.30
Yolov3-SPP [26] 25.77 33.95
Li et al. [27] 24.69 35.44
FF-Yolo 33.31 26.27

ment in architecture produces 97.56% of mAP@0.5 and 77.90% of mAP@0.95
which are also less compared to FF-Yolo model. Hence, it is depicted that FF-
Yolo is superior in detecting FOD as it produces higher mAP@0.5-0.95 values.
Further, Fig. 9 and Fig. 10 illustrate mAP@0.5 values curve of ablation study
and loss curve of FF-Yolo, respectively. It is depicted that the training loss is
minimal and it convergence using the FF-Yolo model.

3.7 Inference Time Analysis

Table 3 depicts the comparative study of runtime and FPS using FF-Yolo model
with other SOTA models. The experiments are performed on a test video of 875
frames of FOD. It depicts that the proposed model meets the criteria of detecting
FOD in a real-world scenario by providing FPS of 33.31 and a total execution time
or runtime of 26.27 s. The FPS value using the FF-Yolo is quite high compared to
the other SOTA models which is evidence of fast detection of FOD.
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4 Conclusion and Future Scope

The present paper introduces an improved Yolov5, namely the FF-Yolo model
for FOD detection in airport runways. Detecting FOD is essential to ensure avia-
tion safety, thereby reducing unavoidable circumstances. The improved FF-Yolo
model not only detected FODs with higher accuracy but was also capable of
identifying the approximate size of FODs and their pixel locations. The FF-Yolo
is considered a lightweight attention module, i.e., CBAM, that helps decrease
the computational time and enhances the feature fusion quality by integrat-
ing channel and spatial information. It also reduces the number of parameters,
which helps in reducing the training cost. Additionally, the use of the C3TR
layer enhances the feature maps, and the adaptation of ghost convolution layer
regularizes the fusion features to improve detection accuracy. The proposed FF-
Yolo model achieved higher mAP@0.5 of 98.61% and mAP@0.95 of 83.21%,
which are higher than the other SOTA models. Also, results using the proposed
model show the effectiveness while detecting the FODs in less time compared to
SOTA models, which is 33.31 frame/s. Further, the ablation study also proves
the robustness of the FF-Yolo model. In the future, we intend to collect FOD
data from a certain distance of airport runways and evaluate the performance
using the proposed model. Further, including other types of FOD in the dataset
is also possible to make the model more robust.
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Abstract. Multi-spectral pedestrian detection has attracted extensive
attention in recent years. In particular, the combination of RGB and ther-
mal infrared images allows the around-the-clock applications, even in the
poor illumination conditions. Considering the fact that RGB and thermal
infrared (RGB-T) image pairs are not well aligned, it leads to the inac-
curacy of pedestrian detection. To this end, this paper proposes a Multi-
scale Alignment and Differential Enhancement Network (MADENet) for
multi-spectral pedestrian detection, consisting of Cross-Modality Differ-
ential Enhancement Module (CDEM) and Multi-scale Spatial Alignment
Module (MSAM). CDEM module is embedded in the backbone to sup-
press the redundant features and extract complementary information
between modalities, and MSAM module is designed to align the RGB-
T features by the transformation of thermal features using features of
RGB image as the reference. The proposed network is evaluated on the
public KAIST dataset across different scenarios. Experimental results
demonstrate that the proposed method outperforms the state-of-the-art
methods. Miss rate using all test set can reach 8.01.

Keywords: Pedestrian Detection · Multi-spectral · Image Processing

1 Introduction

Pedestrian detection is an active research area in the field of computer vision
and widely used in several applications, including autonomous driving [1], video
surveillance [2] and so forth. Although a lot of progress has been made in deep
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Fig. 1. Weak alignment of RGB-T image pairs.

learning based pedestrian detection using RGB images, the performance usu-
ally suffers from the poor illumination, resulting in false or missing detection.
Considering the thermal infrared imaging principle that captures the thermal
radiation on the surface of objects [3], pedestrian detection based on RGB and
thermal infrared (RGB-T) images pairs becomes draws more and more atten-
tions in recent years. How to extract and fuse the multi-spectral complementary
features from both modalities is the key for pedestrian detection.

Since the KAIST multi-spectral pedestrian detection dataset [4] was proposed
in 2015, several RGB-T multi-spectral pedestrian detection methods have been
presented [5–7]. These methods are proposed under the assumption that RGB-T
image pairs are geometrically aligned. However, there exists a weak position shift
problem, i.e., positions of the same pedestrian are different in both modalities,
as shown in Fig. 1. This problem can be caused by the physical properties of
different sensors, imperfection of alignment algorithm or external disturbance.
It becomes a concern to improve the performance of multi-spectral pedestrian
detection.

According to the plausible solutions provided by the traditional methods,
the aforementioned problem is narrowed down to the alignment of features in
the candidate region proposals, which are generated using the scheme of anchor-
based object detection method. AR-CNN [8] is proposed using a random RoI jit-
tering strategy to align the features of region proposals (bounding box), followed
by the regression of bounding box for pedestrian detection. Similarly, Zhou et
al. predicts the proposal offset of both modalities, and proposes the deformable
anchors for regression [9]. However, the alignment procedure is implemented
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using the limited amount of features in each region proposal in existing meth-
ods, which might mismatch the features of both modalities, leading to the failure
of pedestrian detection. In addition, the redundancy of multi-spectral fusion is
required to be considered to extract the complementary features.

To address above problems, this paper proposes a novel network for pedes-
trian detection with the weakly aligned RGB-T image pairs as inputs. Two effec-
tive modules, Cross-modality Differential Enhancement Module (CDEM) and
Multi-scale Spatial Alignment Module (MSAM), are proposed. Inspired by the
principle of differential circuit, CDEM is embedded in the backbone to suppress
the redundant information and extract the complementary information. MSAM
allows the multi-scale feature alignment before generating the region proposal,
avoiding the mismatch caused by the limited features in the traditional meth-
ods. In this paper, the features of thermal infrared image is transformed with the
RGB image as the reference. The main contributions of this paper are three-fold:

– A novel network for multi-spectral pedestrian detection called MADENet
(Multi-scale Alignment and Differential Enhancement Network) is proposed.
In particular, the features of RGB-T images are globally aligned in multiple
scales, compared with local feature alignment of region proposals in tradi-
tional methods.

– CDEM is presented to extract the complementary features from RGB-T
image pairs, providing more discriminative representations for MSAM.

– The proposed method is evaluated on the challenging KAIST multispec-
tral pedestrian dataset. Experimental results demonstrate that the proposed
method outperforms the state-of-the-art approaches.

2 Related Work

Hwang et al. proposes an extended all-weather pedestrian recognition method
ACF based on aligned color and thermal image pairs [4]. Inspired by the Faster R-
CNN [10], Liu et al. presents four fusion methods for RGB-T pedestrian detection
task based on Faster R-CNN [11]. Song et al. proposed a multi-spectral pedes-
trian detection network with simultaneous detection and segmentation, MSDS-
RCNN [12], and introduced an auxiliary segmentation task to further improve
the performance of this network. CIAN [13] designed a cross-modal interaction
attention network in which the cross-modal interaction attention mechanism
encodes interactions between modalities and is able to adaptively fuse features.

FusionRPN was first proposed to generate proposals on color and thermal
infrared images using independent RPNs, and then FusionRPN was evaluated
using support vector regression [5]. Cao et al. [7] fed annotation information into
the Two-Stream Region Proposal Network (TS-RPN) to learn visible and ther-
mal features. Guan et al. introduced a new light-aware weighting mechanism to
RGB-T pedestrian detection [14], which can learn multi-modal features under
different lighting conditions. In addition to these huge models, Cheng et al. pro-
posed a lightweight unified network to balance multi-level information features
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Fig. 2. Overall architecture of MADENet.

from different channels [15]. IAF R-CNN model integrates RGB sub-network [16],
thermal IR sub-network and weighting layer into a unified framework, which can
effectively improve the multi-spectral pedestrian detection accuracy.

In the earlier literature with respect to multi-spectral pedestrian detection,
the weak alignment between RGB and thermal infrared image pairs is not consid-
ered. Recently, AR-CNN [8] first try to deal with the weak alignment problem
in multi-modality and proposes a new alignment region CNN for end-to-end
processing of weakly aligned multi-spectral data. Zhou et al. proposes a modal
balance network MBNet based on the KAIST-Paired dataset to perform the
alignment of the two modealities [9]. In MBNet, the illumination conditions are
modeled to calculate the weights of the complementary features of RGB and
thermal images and predict the offset values. To solve the problem that the
features of different modalities are independent of each other, Hua et al. [17]
proposed a multi-spectral feature cross-guided learning mechanism to enhance
the interaction between multi-spectral feature generation modules and reduce
the multi-modal differences. In our view, the intrinsic differences between two
modalities can be eliminated by an explicit and simple mechanism, and further
improve the performance of multi-spectral pedestrian detection.

3 MADENet: Multi-scale Alignment and Differential
Enhancement Network for Pedestrian Detection

3.1 Overall Architecture

Figure 2 presents the overall architecture of proposed network. It is built based on
the SSD detection framework [18] and uses a two-branch structure to extract the
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Fig. 3. Cross-modality differential enhancement module. This module uses both global
average pooling and maximum pooling features to obtain global receptive fields, which
can improve the spatial information aggregation capability of the network.

features of RGB-T modalities, respectively. ResNet-50 [19] is chosen as the back-
bone. Cross-modality Differential Enhancement Modules (CDEMs) are embed-
ded between both branches to exchange the features and obtain the complemen-
tary information for pedestrian detection later. Following the backbone, Multi-
scale Spatial Alignment Module (MSAM) is introduced to register the features
of weakly aligned modalities. CDEM and MSAM will be presented in detail in
Subsects. 3.2 and 3.3.

Inspired by MBNet [9], an illumination network is adopted to estimate the
weights to balance the influence of illumination in the stage of detection, as shown
in the upper right corner of Fig. 2. To reduce the computational complexity, the
resolution of RGB image is firstly resized to 56× 56. For the detection header,
a cascaded prediction strategy is used to improve the detection performance,
following the concept of ALFNet [20]. wd and wn are two illumination param-
eters used in the first anchor proposal stage. To balance the effect of different
illumination environments and improve the detection accuracy, a illumination
mechanism is introduced, consisting of the ReLU activation function and the
maxpooling layer. wn and wd are adjusted to obtain the illumination weights wr

and wt, which are used in the second anchor proposal stage.

3.2 CDEM: Cross-Modality Differential Enhancement Module

CDEM module is presented to effectively suppress redundant information and
extract complementary information, inspired by the ability of differential ampli-
fication circuits to suppress common mode signals to amplify differential signals.
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CDME is embedded in the backbone, as shown in Fig. 2. Figure 3 illustrates the
detailed structure of CDEM.

By denoting the RGB features as FR and thermal infrared features as FT ,
the difference FD is denoted by

FD = FR − FT . (1)

Then FD is processed by a 1×1 convolution to obtain FD, followed by global
average pooling and global maximum pooling operations to obtain s1 and s2,
respectively.

s1 = FGAP (FD) =
1

H × W

H∑

i=1

W∑

j=1

FD (i, j), (2)

s2 = FGMP

(
FD

)
= max

(
FD (i, j)

)
, (3)

where FGAP denotes global average pooling, FGMP indicates global maximum
pooling, H and W represent the height and width of the feature map, respec-
tively, followed by the summation of s1 and s2. Sigmoid activation function σ is
chosen to yield MD, as shown in Eq. (4).

MD = σ (s1 + s2) . (4)

Subsequently, to capture the complementary features of both modalities, FT

and FR are augmented by MD encoded in the residual structure.

F ′
T = FT +Res (FT + (MD · FR)) , (5)

F ′
R = FR +Res (FR + (MD · FT )) , (6)

where Res () denotes the residual function, F ′
T and F ′

R are the augmented ther-
mal infrared and RGB features generated by CDEM. CDEM is able to enhance
the features of one modality by fusing the features of the other, e.g., the informa-
tion lost at night in RGB image can be partially recovered by the complementary
information provided by thermal infrared image. It allows the around-the-clock
pedestrian detection.

3.3 MSAM: Multi-scale Spatial Alignment Module

Once the enhanced RGB-T features are obtained based on CDEM, Multi-scale
Spatial Alignment Module is implemented to align both features at multiple
scales, as shown in Fig. 4. Four scales of features are chosen in this paper, which
are generated by the different layers in the backbone. In this paper, features of
thermal infrared image are transformed to align ones of RGB image, which is
used as the reference.

The multi-scale RGB and thermal features are first spliced, and then the
spliced features are input to the localisation network to obtain the affine trans-
formation parameters Mj at scale j, which is formulated by
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Fig. 4. Multi-scale Spatial Alignment Module.

Mj = Lnet ([Fr,j , Ft,j ]) , (7)

where Lnet denotes the localisation network, RGB-T features at scale j are
denoted as Fr,j and Ft,j , respectively. Mj is fed into the grid generator to cal-
culate gridj . Then combined with thermal features, gridj goes forward into the
sampler Φ to generate aligned features with RGB modality.

F̃t,j = Φ (Ft,j , gridj) . (8)

3.4 Loss Function

Motivated by focal loss [21], focal weights are used to alleviate the positive and
negative imbalance problem, while the classification loss can be expressed as:

Lcls = −α
∑

i∈S+

(1− si)
γ log (si)− (1− α)

∑

i∈S−

si
γ log (1− si) (9)

where S+ and S− denote positive sample anchor frames and negative sample
anchor frames, respectively, si is the confidence score of sample i. α and β are
the focal parameters, which are empirically set to 0.25 and 2, respectively.

The proposed network is optimized by minimizing the cross-entropy loss
between the illumination parameters wn and wd and the ground true ŵd and ŵn

during the day and night, which is the illumination loss L1.

L1 = −ŵd · log (wd)− ŵn · log (wn) (10)

The total loss L consists of two stages of classification loss Lcls1 and Lcls2,
regression loss Lreg1 and Lreg1, and illumination loss L1, with smoothed L1 loss
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used for regression loss [10], and the total loss function L equation is shown
below:

L = L1 + Lcls1 + Lcls1 + [y = 1]Lreg1 + [y = 1]Lreg2 (11)

Fig. 5. Comparison results in daytime scenes. From top to bottom: Ground truth, and
detection results based on AR-CNN, MBNet and our method. The green box indicates
the ground truth, and the red box shows the result of detected pedestrian. (Color figure
online)

4 Experimental Results and Discussion

To evaluate our proposed method, two sets of experiments are conducted using
the KAIST dataset [4]. In the first set of experiments, the proposed method
is compared with the state-of-the-art approaches. The ablation study is imple-
mented in the second set of experiments to verify the effects of CDEM and
MSAM modules for pedestrian detection, respectively. Miss rate (MR) is used
as the metric for evaluation in experiments.
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KAIST pedestrian dataset consists of images of various traffic scenes under
different lighting conditions, which contains about 95,000 RGB-thermal image
pairs and 1,182 different pedestrian annotations with 640× 512 image resolution.
The scenes set00-set05 containing 8,892 image pairs are classified as the training
set, and scenes set06-set11 containing 2,252 image pairs are the test set. To verify
the performance of proposed method, the test set is further divided into nine
subsets based on lighting conditions (all, day and night subsets), pedestrian
scales (near, medium and far subsets), and occlusion levels (including none,
partial, heavy subsets). The MADENet is implemented on a computer with
12GB RAM Nvidia GeForce GTX 2080Ti GPU.

4.1 Comparison with the State-of-the-Art Methods

In this paper, the proposed method is compared with ACF [4], Halfway Fusion
[11], Fusion RPN+BF [5], IAF R-CNN [16], IATDNN + IASS [14], CIAN [13],
MSDS-RCNN [12], AR-CNN [8], and MBNet [9] as the state-of-the-art methods.
As shown in Table 1, our method outperforms the state-of-the-art methods using
the entire test set (all subset). MR can reach 8.01, lower than MBNet by 0.12.
It indicates that the complementary information from thermal infrared images
are better fused, and extract more prominent features for pedestrian detection
using RGB-T image pairs. Additionally, the proposed method performs the best
in night, near, medium, far, none, and partial subsets among the nine subsets. In
particular, in the night subset, MR is decreased by 1.04, compared with MBNet
that is the best in the state-of-the-art methods. For the remaining two subsets
(day and heavy), our method ranks second, lower than MBNet and AR-CNN,
respectively.

Table 1. Miss rate comparison with the state-of-the-art methods using nine subsets
of test set.

Methods All Day Night Near Medium Far None Partial Heavy

ACF [4] 47.32 42.57 56.17 28.74 53.67 88.20 62.94 81.40 88.08
Halfway Fusion [11] 25.75 24.88 26.59 8.13 30.34 75.70 43.13 65.21 74.36
Fusion RPN+BF [5] 18.29 19.57 16.27 0.04 30.87 88.86 47.45 56.10 72.20
IAF R-CNN [16] 15.73 14.55 18.26 0.96 25.54 77.84 40.17 48.40 69.76
IATDNN + IASS [14] 14.95 14.67 15.72 0.04 28.55 83.42 45.43 46.25 64.57
CIAN [13] 14.12 14.77 11.13 3.71 19.04 55.82 30.31 41.57 62.48
MSDS-RCNN [12] 11.63 10.60 13.73 1.29 16.19 63.73 29.86 38.71 63.37
AR-CNN [8] 9.34 9.94 8.38 0.00 16.08 69.00 31.40 38.63 55.73
MBNet [9] 8.13 8.28 7.86 0.00 16.07 55.99 27.74 35.43 59.14
Ours 8.01 8.89 6.82 0.00 14.28 54.52 26.91 34.98 58.10

To better demonstrate the effectiveness of proposed method, the results
of pedestrian detection under different illumination conditions are visualized,
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Fig. 6. Comparison results in night scenes. From top to bottom: Ground truth, and
detection results of AR-CNN, MBNet and our method. The green box indicates the
ground truth, and the red box shows the result of detected pedestrian. (Color figure
online)

compared with AR-CNN [8] and MBNet [9], which perform better in Table 1.
Figure 5 shows the results in the two classical scenes in day time. It can be
observed that both AR-CNN and MBNet have missed pedestrians in the day-
time scenes in Fig. 5, especially the pedestrians at a longer distance in the scene
are not detected. According to Table 1, although the performance of our pro-
posed method is not improved compared with MBNet in the day subset, our
method performs better when the pedestrian is at distance, as shown in the
second daytime scene in Fig. 5. The corresponding results in the night scenes
are shown in Fig. 6, our proposed method has the superior performance, while
AR-CNN has missed and false detection and MBNet has missed detection.

4.2 Ablation Study

To assess how CDEM and MSAM modules affect the performance of pedestrian
detection, the ablation study using the KAIST dataset is carried out. The base-
line is the model without CDEM and MSAM modules in the proposed method,
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Table 2. Miss rate comparison of ablation study using nine subsets of test set.

CDEM MSAM All Day Night Near Medium Far None Partial Heavy

11.45 12.54 9.53 0.00 18.74 57.90 29.65 39.95 62.20
� 9.56 10.13 8.72 0.00 16.49 56.79 28.32 37.19 60.87

� 9.44 10.49 7.45 0.00 16.08 57.42 28.05 37.86 62.14
� � 8.01 8.89 6.82 0.00 14.28 54.52 26.91 34.98 58.10

using a simple feature summation instead as the fusion strategy. Table 2 shows
the comparison results with different configurations of modules. By any one of
CDEM and MSAM modules, both MRs are reduced greatly, which means the
proposed modules can effectively improve the performance of pedestrian detec-
tion. In particular, for the night subset, although the thermal infrared image
provides the complementary information in CDEM module, the performance
of pedestrian detection is improved less than the model with MSAM only. The
main cause is the weak alignment of image pairs. Considering the results of other
subsets, CDEM module performs better in day, far, partial and heavy subsets.
The reasons are analyzed as follows.

– Only RGB image can provide enough features for detection in the day time;
– The position shift of both modalities becomes tiny in the far subset with small

pedestrian scale;
– Thermal infrared images can preserve less representative features in subsets

with partial and heavy occlusion.

By combining CDEM and MSAM modules in the proposed method, all MRs
of nine subsets is reduced further. Especially, the performance is improved by
1.9, compared with the result using the model with only CDEM module. For
the worst case using the heavy subset, MR can reach 58.10. It is decreased by
4.1, compared with the baseline. Therefore, the proposed CDEM and MSAM
modules can effectively improve the performance of pedestrian detection.

5 Conclusion

This paper presents a multi-spectral pedestrian detection, named Multi-scale
Alignment and Differential Enhancement Network (MADENet). Two key compo-
nents are Cross-Modality Differential Enhancement Module (CDEM) and Multi-
scale Spatial Alignment Module (MSAM). The former one is used to suppress the
redundant features and extract complementary information between modalities,
and the latter is designed to transform thermal features to align the features of
RGB image. The public KAIST dataset is used to verify the proposed method.
Experimental results show that the proposed method has the superior perfor-
mance, compared with the existing approaches. The ablation study also proves
that the proposed CDEM and MSAM modules can effectively improve the per-
formance of pedestrian detection.
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Abstract. Crack segmentation plays a crucial role in ensuring the struc-
tural integrity and seismic safety of civil structures. However, existing
crack segmentation algorithms encounter challenges in maintaining accu-
racy with domain shifts across datasets. To address this issue, we propose
a novel deep network that employs incremental training with unsuper-
vised domain adaptation (UDA) using adversarial learning, without a
significant drop in accuracy in the source domain. Our approach leverages
an encoder-decoder architecture, consisting of both domain-invariant and
domain-specific parameters. The encoder learns shared crack features
across all domains, ensuring robustness to domain variations. Simul-
taneously, the decoder’s domain-specific parameters capture domain-
specific features unique to each domain. By combining these compo-
nents, our model achieves improved crack segmentation performance.
Furthermore, we introduce BuildCrack, a new crack dataset compara-
ble to sub-datasets of the well-established CrackSeg9K dataset in terms
of image count and crack percentage. We evaluate our proposed app-
roach against state-of-the-art UDA methods using different sub-datasets
of CrackSeg9K and our custom dataset. Our experimental results demon-
strate a significant improvement in crack segmentation accuracy and
generalization across target domains compared to other UDA methods -
specifically, an improvement of 0.65 and 2.7 mIoU on source and target
domains respectively. Additional details and code can be accessed from
https://crackuda.github.io.

Keywords: Crack Segmentation · Civil Inspection · Domain
Adaptation · Dataset · Incremental Learning

1 Introduction

Identifying cracks in structures such as roads, pavements, and buildings is an
important civil engineering task. This is especially crucial in determining a build-
ing’s structural health and risk of failure during seismic activity [37]. This task is
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Fig. 1. BuildCrack dataset was captured by imaging building facades using a drone-
mounted camera from different angles and distances. BuildCrack has images with low
contrast, occlusions, and shadows, which challenge the model’s robustness. Sample
images from our building crack dataset are shown. This dataset will be made public.

being increasingly performed using visual imagery. However, the small footprint
of cracks relative to building size and lack of regular structure make crack local-
ization a challenging image segmentation problem. Different approaches have
been explored over the years, ranging from rule-based to data-driven methods,
for crack segmentation. Data-driven methods [24] have gained prominence with
the rise in the availability of crack datasets [1,23,30,45,50]. These methods have
shown remarkable results in segmentation tasks.

However, a key limitation of these approaches is their poor generalization
across different domains, as datasets from various sources often have different
distributions. This lack of generalization is evident when a model trained on
one domain (source domain) is applied to a dataset from a different domain
(target domain). Several factors contribute to the domain shift observed in
crack datasets. These include differences in image features, such as the contrast
between cracks and their background, variations in crack shapes due to surface
textures and lighting conditions, and the overall appearance of cracks [25,34].

To address this challenge, domain adaptation techniques can be employed to
reduce the domain shift. It is a viable solution since it alleviates the need for
costly and labor-intensive annotation of crack segmentation data. Unsupervised
Domain Adaptation (UDA) is a specific approach that adapts a network trained
on a labeled source dataset to an unlabeled target dataset, effectively mitigating
the problems associated with domain shift across datasets and high annotation
costs [3,17,35,41,42,46,47,57]. While these UDA approaches have been exten-
sively tested in domain adaptation tasks using real and synthetic autonomous
driving datasets, our work demonstrates that these methods do not yield satis-
factory results for the challenging crack segmentation setting

Our approach is designed to address the challenges of crack segmentation
through an incremental learning setting. We employ a two-step process to
adapt our network, trained on a labeled source dataset, to an unlabeled tar-
get dataset. To overcome catastrophic forgetting often observed in incremental
learning approaches [32], our network architecture learns both domain-invariant
and domain-specific feature representations. Our paper makes the following key
contributions:
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– We propose CrackUDA, a novel incremental UDA approach that ensures
robust adaptation and effective crack segmentation (Sect. 4).

– We demonstrate the effectiveness of CrackUDA by achieving higher accuracy
in the task of building crack segmentation, surpassing the state-of-the-art
UDA methods. Specifically, CrackUDA yields an improvement of 0.65 and
2.7 mIoU on the source and target domains, respectively (Sect. 6).

– We introduce BuildCrack, a new building crack dataset collected via a drone
(Sect. 6).

2 Related Works

Crack segmentation approaches can be broadly categorized into two types: (i)
rule-based and (ii) data-driven methods. Rule-based methods use human-defined
rules to make decisions. Most of the rule-based methods have low accuracy
because of non-uniform backgrounds, varying light conditions, and the brittle
nature of the parameters [20]. Data-driven methods leverage data samples to
learn patterns and adjust the parameters of a model for a specific task. In par-
ticular, deep learning-based methods have demonstrated significant potential in
crack segmentation and can be divided into supervised, weakly supervised, and
semi-supervised based on the extent of supervision.

Crack segmentation is dominated by supervised learning approaches. Encoder-
decoder architecture [2,30,55] has been popular for excellent performance in pixel-
wise segmentation, provided accurately labeled segmentation maps are available.
The encoder downsamples the input images to form a high-dimensional feature
vector while the decoder reconstructs unique segmentation maps using this feature
vector. CrackNet [51] modifies the encoder-decoder architecture by using same-
size convolution filters across layers to maintain explicit pixel-pixel representation.
DeepCrack [30] uses a fully convolution network (FCN) architecture with addi-
tional convolution layers at the end of a traditional CNN which upsamples feature
maps of different scales to the original size and recovers fine-grained structures.
CrackSeg9K [23] compared different state-of-the-art segmentation models. It was
concluded that DeepLab v3+ [2] with ResNet and XceptionNet as the backbones
worked best on linear cracks but the accuracy drops on webbed and branched
cracks. With the introduction of vision transformer [10], self-attention has become
an efficient tool for learning non-local features. Crackformer [29] uses sequential
self-attention networks for crack segmentation. The performance of supervised
segmentation approaches relies on accurate semantic labels. Such approaches sel-
dom generalize to datasets of different domains. [6] proposed a curvilinear struc-
ture segmentation approach for crack segmentation on diverse datasets such as
Crack500 [50] and CrackTree200 [55].

[22] propose a weakly supervised approach that uses inferior quality labels
for crack segmentation. They demonstrated their network’s capability to per-
form in out-of-domain (OOD) cases, but accuracy suffers when there are thin
cracks in the target dataset. Semi-supervised approaches have used generative
adversarial networks [27] and super-resolution [21] to generate pseudo-labels for
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training their network. However, the performance of these methods depends on
the quality of the pseudo-labels. Though semi-supervised approaches perform
well in the case of OOD, they require some labeled data of the target domain.

Since the conspicuous hurdle is reliable labeled data and poor generalization,
our work uses UDA. UDA has demonstrated its potential for various vision
tasks such as object detection [4,5,28,54], classification [12,31,36,44,49], and
more relevantly, semantic segmentation [3,17,35,41,42,47,56,57] as well as crack
segmentation [48].

3 Preliminaries

In this section, we formally define our problem statement and provide an
overview of UDA and incremental learning.

3.1 Problem Statement

Consider a source distribution S and target distribution T , both defined on the
input-label space X × Y . In this setting, X ∈ R

H×W×3 represents RGB images,
while Y ∈ R

H×W corresponds to semantic labels. Both the source and target
distributions share the same K semantic class labels, 1, ...,K. Specifically, X
represents building patches, and Y contains label maps with two class labels,
namely background and crack (K = 2). We have access to a set of labeled source
samples S = (xs

j , y
s
j ), j = 1, 2, . . . ns and unlabeled target samples T = xt

j , j =
1, 2, . . . nt, where ns and nt denote the total number of source and target samples,
respectively. Our objective is to train a network using the labeled source domain
data S and the unlabeled target domain data T to generate accurate predictions
ŷt

j , j = 1, 2, . . . nt. In the context of crack segmentation, this problem is reduced
to a binary segmentation task. However, due to the relatively small number of
crack pixels present in each patch, a significant class imbalance exists.

3.2 Incremental Learning

Incremental learning involves training an existing model on a sequence of τ tasks,
where each task τi corresponds to a distinct dataset of domains Di. In our spe-
cific setting, Di represents an image dataset consisting of pairs of input images
and their corresponding semantic labels, denoted as Di = {Xj , Yj}. We will use τ
and D interchangeably. Each task τi is focused on semantic segmentation. Typi-
cally, a domain shift exists between consecutive tasks (i.e. Dt exhibits non-trivial
differences compared to Dt−1). The objective is to train a single semantic seg-
mentation model M that can effectively segment image data across each domain
Dt in a sequential manner. Thus, for a given task τ , at each step t, our aim is
to learn a mapping Mt(Xt, t) = Yt for the tth domain Dt = (Xt, Yt). Impor-
tantly, the learned model should maintain satisfactory performance on previous
domains Dt−i, where 0 < i < t, ensuring minimal degradation in performance.
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Fig. 2. Overview of our proposed architecture (Sect. 5). In step 1 we train our network,
M1, using the labeled source dataset S for binary segmentation. In step 2, decoder D1

and φs1 are frozen, and a new set of domain-specific parameters φs2 are added and we
call this model M2. An alternating training strategy is followed in which we first train
for binary segmentation on the source domain followed by adversarial training on both
source and target domains.

3.3 Unsupervised Domain Adaptation (UDA)

UDA methods for semantic segmentation can be broadly classified into three
groups: Self-training, Feature Alignment. and Adversarial Training approaches.
Self-training approaches involve training a segmentation model on the labeled
source domain to compute pseudo-labels [26] for the target domain. These
pseudo-labels can be pre-computed offline [57] or online during training. To
avoid training instabilities, several methods such as consistency regularization
[40] based on data augmentation [7], domain mix-up [41], and pseudo-label pro-
totypes [52] have been used. Several methods also combine [47] self-training and
adversarial training to perform UDA. Feature alignment [16] approaches aim to
align the feature representations of the source and target domains. This tech-
nique involves training a segmentation model with a domain adaptation loss,
which encourages the feature representations of the source and target domains
to be similar. For further details about UDA, we recommend reading [39]. In the
context of this work, we mainly focus on adversarial training.

Adversarial training aims to minimize the domain discrepancy between the
source and target distributions in a GAN framework [13]. The distributions can
be aligned at the input [15], output [46], or patch [43] levels. For a GAN frame-
work, the architecture (see Step 2 in Fig. 2) is composed of a feature extractor
(Eφ2), a label predictor (D1 and D2), a domain classifier (dρ), and a gradi-
ent reversal layer (GRL) in between Eφ2 and dρ. dρ is trained to classify the
source and target domains, while the segmentation model is trained to generate
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segmentation maps that are domain indistinguishable. A high-dimensional fea-
ture vector x corresponding to input X can be obtained below.

Eφ(X) = x (1)

In forward propagation, the GRL is implemented as an identity-mapping func-
tion while in back-propagation the GRL multiples the gradient calculated from
the domain-classification error by a negative scalar. This negative gradient is
propagated to the feature extractor. It can be formulated as below.

Rλ(x) = x (2)
dRλ

dx
= −λI (3)

x is the corresponding feature vector for input X obtained from Eq. 1, I is an
identity matrix and Rλ is the GRL. To mitigate the impact of large domain
classification errors at the early stages of training, the value of λ is regulated
adaptively as given below where p stands for the number of elapsed epochs.

λ =
2

1 + e−λp
− 1 (4)

4 Methodology

4.1 Proposed Framework (CrackUDA)

We design CrackUDA, a two-step unsupervised domain adaptation approach for
binary segmentation of cracks (see Fig. 2). Our model M comprises an encoder
Eφk

, two domain-specific decoders D1 and D2 for predicting domain-specific
labels, and a discriminator network dρ which acts as a domain classifier. The
encoder Eφk

consists of a set of shared domain-invariant parameters φi which
are universal to all domains and a set of domain-specific parameters φsk

which
are exclusive to respective domains. Domain-invariant parameters learn common
features across all domains and domain-specific parameters learn domain-specific
features for the respective domains.

As shown in Fig. 2, the first step involves learning a binary segmentation M1

on the source dataset S. M1 is composed of decoder D1 and encoder Eφ1 in which
both φi and φs1 (domain-specific parameters for source dataset) are trainable. In
step 2, we add new domain-specific parameters, φs2 , to the new encoder Eφ2 and
a domain-specific decoder D2 and call this model M2. We follow an alternating
training strategy in which M2 is trained for binary segmentation followed by
adversarial training through the discriminator dρ. This training strategy enables
our model to adapt to T while retaining its performance on S.

4.2 Optimization Strategy

For any given step k, the domain-specific layers φsk
are trained only on the soft-

max cross-entropy loss function over the label space of the source domain S. The
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Table 1. Quantitative comparison of existing datasets and our dataset. The datasets
mentioned above (except our new dataset) have been aggregated as CrackSeg9K [23].

Dataset Size % of Crack Description

Crack500 [50] 3126 6.03 Collected using a smartphone

Rissbilder [1] 2736 2.70 Architectural Cracks

SDNET2018 [9] 1411 0 Non-crack images

Volker [45] 427 4.05 Cracks collected from pavements and buildings.

DeepCrack [30] 443 3.58 Cracks collected from pavements and buildings.

GAPS384 [11] 383 1.21 Cracks collected from pavements

BuildCrack (ours) 358 4.30 Building Cracks collected using a drone.

Masonry [8] 240 4.21 Contains crack in masonry walls

CrackTree200 [55] 175 0.31 Cracks collected from pavements and buildings.

CFD [19] 118 1.61 Urban road surface cracks

Ceramic [18] 100 2.05 Cracks on different colors and textures of ceramics.

forward pass and the softmax cross-entropy loss function, ζ, can be formulated
as given below.

Dk(Eφk
(Xj , φi, φsk

)) = Ŷj (5)

LCE =
1
N

∑

Xj ,Yj∈S

ζ(Yj , Ŷj) (6)

In step 2, in addition to the cross-entropy loss, we use a regularization loss
LKLD to optimize the shared weights φi during the segmentation phase as given
in the equations below.

ŷ1
j = M1(Xj , φi, φs1) (7)

ŷ2
j = M2(Xj , φi, φs1) (8)

LKLD =
∑

Xj∈S

ψ(ŷ2
j , ŷ1

j ) (9)

where ŷ1
j and ŷ2

j are the softmax probability distributions maps of M1 and M2

on samples from the source domain respectively and ψ is the KL-divergence loss
between the two probability distributions. The total loss for the segmentation
phase is given as below.

LTotal = λCE · LCE + λKLD · LKLD (10)

For the adversarial training phase, we use a binary cross-entropy loss, Ladv to
classify whether the feature vector obtained from Eφ2 corresponds to an image
sample from the source or target domain. This loss function can be formulated
as given in the equations below.

dρ(Eφ2(Xj , φi, φs2)) = d̂j (11)

LBCE =
1
N

∑

Xj∈S,T

ω(dj , d̂j) (12)
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where ω is the binary cross-entropy loss, dj and d̂j are the true and predicted
domain labels and dρ is the discriminator network. dj is a binary variable that
indicates whether the sample is from the source or the target domain.

5 Implementation Details

5.1 Network Architecture

We use ERFNet [38] as the backbone for our network with the discriminator
as an FCN. The value of λ is updated as per Eq. 4. The encoder comprises
residual-adapter blocks [14]. Each residual-adapter block has a set of domain-
invariant parameters (φi = {φw1, φw2}) and a set of domain-specific parameters
(φsk

= {αw, αs, αb}). φw1 and φw2 are 3 × 3 convolutional layers of a residual
unit shared across all the domains. Domain-specific layers in the residual adapter
unit are of two kinds: Domain-specific parallel residual adapter layers (DS-RAP)
and domain-specific batch normalization layers (DS-BN). DS-RAP (αw) are 1×1
convolutional layers added to the shared convolutional layers in parallel. DS-BN
shifts and scales the normalized input as s · x + b where αs and αb represent the
scaling and shifting parameters respectively.

5.2 Training

In step 1 (see Fig. 2), we train M1 on the source domain S in a binary segmenta-
tion setting. In step 2, we follow an alternating training strategy. We first train
M2 for binary segmentation for 10 epochs on S followed by adversarial train-
ing on a mini-batch of an equal number of samples from S and T for 5 epochs.
Overall, M2 is trained for 150 epochs. λCE and λKLD are set to 1 and 0.1 respec-
tively. In Step 1, segmentation is performed on S for a total of 150 epochs. The
Adam optimizer is utilized with a learning rate (LR) of 5e−4, and a batch size
of 8. In Step 2, segmentation is again performed on S for 10 epochs, employing
the same optimizer, learning rate, and batch size as in Step 1. Additionally, an
adversarial training step is introduced, involving both the source (S) and target
(T ) datasets. This adversarial training step is conducted for 5 epochs. Training
protocols have been summarized in Algorithm 1 and 2 in the supplementary
material. For both steps, the model checkpoints were saved during training. For
Step 2, The model checkpoints are saved only if there is an increase in mIoU
scores for both the source and target domains.
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Table 2. mIoU scores of CrackUDA (our approach) for steps 1 and 2 for sub-datasets
of CrackSeg9K and BuildCrack (our custom dataset). Here, Dataset Excluded is the
sub-dataset left out of training and validation sets of the source domain. This Dataset
Excluded is aggregated with our dataset to form the overall dataset. Source mIoU is the
performance of the network on the CrackSeg9K validation set excluding the mentioned
dataset. The results show that using an incremental learning strategy for UDA leads to
better performance in the target domain (see columns Dataset Excluded, Our Dataset,
and Overall for Step 2) without a severe drop in performance in the source domain.

Dataset Excluded Step 1 Step 2

Source mIoU Target mIoU Source mIoU Target mIoU

Dataset Excluded Build Crack Overall (Excluded + Our) Dataset Excluded Build Crack Overall (Excluded + Our)

Mason 82.72 53.03 54.69 54.12 79.94 61.94 55.35 57.62

Ceramic 82.67 49.55 62.55 59.98 78.86 50.55 63.73 62.16

CFD 82.87 78.83 62.57 67.92 79.91 79.08 55.91 63.80

Crack500 83.30 56.84 62.58 57.27 78.33 79.24 54.16 78.10

CrackTree200 82.52 77.64 57.69 66.61 79.26 81.48 52.05 65.28

DeepCrack 82.24 78.92 59.61 72.78 78.61 82.55 59.02 74.71

GAPS 82.77 65.03 60.37 62.71 78.47 70.62 59.57 65.26

Rissbilder 82.90 71.92 57.02 70.19 79.97 78.33 55.36 75.40

Volker 82.64 75.20 57.80 69.98 79.77 76.80 57.60 70.40

Fig. 3. Qualitative results for CrackSeg9K validation set for CrackUDA and FADA
[47].

6 Experiments and Results

6.1 Datasets and Evaluation Metrics

We validate the performance of our approach using two datasets: CrackSeg9K
[23] and BuildCrack, the custom dataset that we introduce (see Fig. 1). Build-
Crack has images with low contrast, occlusions, and shadows, which challenge
the model’s robustness. CrackSeg9K is a culmination of smaller open-source
crack datasets (CFD [19], Masonry [8], Ceramic [18], Rissbilder [1], Volker [45],
SDNET2018 [9], DeepCrack [30], GAPS384 [11], Crack500 [50], and Crack-
Tree200 [55]) with more consistent labeling. Details regarding these 10 sub-
datasets can be found in Table 1. After removing duplicate images in the original
dataset of 9255 images, we divided the remaining 8513 images into 6794 training
images, and 1719 validation images. This ratio of 4:1 was maintained across all
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Fig. 4. Qualitative results for BuildCrack for our network and FADA [47].

Fig. 5. Some cases in which our approach does not perform well in CrackSeg9K and
BuildCrack.

sub-datasets to ensure an equal proportion of each sub-dataset in both the train-
ing and validation sets. Our dataset BuildCrack comprises 358 binary labeled
crack images collected using DJI Mavic Mini1. All the ground-truth labels in
both CrackSeg9K and BuildCrack have two class labels: background and crack.
We use all 358 BuildCrack images for training and validation. We use mean
Intersection-over-Union (mIoU) to evaluate the performance of our approach.

6.2 UDA Baselines

We evaluate the performance of our network (CrackUDA) against 8 state-of-the-
art UDA baselines and a state-of-the-art self-supervised UDA baseline in which
CrackSeg9K and our dataset (BuildCrack) are the source and target datasets
respectively. The performance of our approach and the baselines are reported
on the validation set of CrackSeg9K and all 358 images of the BuildCrack (see
Table 3). [17,33,46,56] did not converge for this setting. Out of the baselines,

1 UAV specification details can be found at the official DJI website: https://www.dji.
com/mavic-mini.

https://www.dji.com/mavic-mini
https://www.dji.com/mavic-mini
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Table 3. Comparison of mIoU scores on the validation set of CrackSeg9K and Build-
Crack (target dataset) with state-of-the-art UDA methods. * approaches did not con-
verge for our setting. Our approach achieves the best generalization performance.

DA Method Source (CrackSeg9k) Target (BuildCrack)

AdaptSegnet∗ [42] 47.53 48.47

MaxSquare (ICCV ’19) [3] 57.60 50.50

ADVENT∗ (CVPR ’19) [46] 47.51 48.47

IAST∗ (ECCV ’20) [33] 46.79 46.78

DAFormer∗ (CVPR ’22) [17] 47.54 48.47

DACS (WACV ’21) [41] 58.46 58.11

CBST ∗ (ECCV ’18) [56] 47.53 48.47

ProDA (CVPR ’21) [53] 50.32 47.94

FADA (ECCV ’20) [47] 79.18 60.73

CrackUDA 79.83 63.43

FADA [47] obtains the best mIoU score of 79.18 on the validation set of Crack-
Seg9K and 60.73 on our dataset. CrackUDA outperformed FADA by 0.65 and
2.7 mIoU on the validation set of CrackSeg9K and the entire BuildCrack dataset
respectively.

6.3 Experiments on Sub-datasets of CrackSeg9K

We conduct experiments on sub-datasets of CrackSeg9K, systematically exclud-
ing one sub-dataset at a time from both the training and validation sets of the
source domain S during the two-step process. This exclusion preserves the 4:1
ratio between training and validation sets, maintaining the proportion of sam-
ples within each subset. The excluded dataset, combined with BuildCrack, forms
the target dataset T . Table 2 presents the mIoU scores obtained on the source
dataset, excluded dataset, BuildCrack, and the new target dataset (excluded
dataset + BuildCrack). The results show a significant increase in mIoU scores
for the excluded datasets in Step 2. We observe an mIoU increase of 8.91 for
Masonry, 0.99 for Ceramic, 0.25 for CFD, 22.4 for Crack500, 3.84 for Crack-
Tree200, 3.63 for DeepCrack, 5.59 for GAPS, 6.41 for Rissbilder, and 1.60 for
Volker. This demonstrates the generalization capabilities of our approach across
target domains without notable decline in performance on the source domain. A
comparison of our approach against a state-of-the-art supervised approach and
performance impact due to switching source and target domains can be found
in the supplementary material.

6.4 Ablation Studies

In step 2 of our approach, we use LKLD to optimize the shared parameters
φi through the softmax probability maps obtained from the domain-specific
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Table 4. Ablation study on the contribution of each component of CrackUDA for the
validation set of CrackSeg9K (source domain) and BuildCrack (target domain) setting.

Method LKLD GRL CrackSeg9K BuildCrack

1 Step × × 82.17 60.44

2 Step w/o GRL � × 78.99 61.82

2 Step w/o KLD × � 78.99 53.5

2 Step � � 79.83 63.43

decoders. Our experiments show that removing this loss from step 2 leads to
a 9.93 mIoU drop for the target dataset and a 0.84 mIoU drop for the source
dataset (‘2 Step w/o KLD’ in Table 4). This shows that optimizing for the shared
parameters φi in step 2 helps the network learn common features of the source
and target domain leading to better generalization across both domains. Next,
we show that disabling adversarial training in step 2 leads to a 0.84 mIoU drop
in the source dataset and a 1.61 mIoU drop in the target dataset (referred to as 2
Step w/o GRL in Table 4). Intuitively, GRL plays a significant role in adapting
the network to unlabeled target data. Overall, these ablation studies indicate
that our proposed network with GRL and LKLD leads to the best overall per-
formance on both the source and target domains. Analysis of the impact of λCE

and λKLD can be found in the supplementary material.

7 Conclusion

We propose CrackUDA, a novel two-step incremental Unsupervised Domain
Adaptation (UDA) approach to address the challenging task of crack segmenta-
tion in civil structures. Our approach stands out from existing UDA methods by
effectively addressing the issue of catastrophic forgetting through simultaneous
learning of domain-invariant and domain-specific representations. Our experi-
mental results demonstrate notable improvements, with 0.65 mIoU and 2.7 mIoU
improvement on the source and target domains. Furthermore, we showcase the
generalization capabilities of our approach across various sub-datasets of Crack-
Seg9K, and BuildCrack, our custom-created dataset. By providing an effective
solution through incremental UDA, our work makes significant contributions to
crack localization and structural health assessment in civil engineering. Addi-
tionally, our approach could serve as a benchmark to the research community
focusing on unsupervised domain adaptation for semantic segmentation.
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Abstract. Accurate real-time object detection enhances the safety of
advanced driver-assistance systems, making it an essential component
in driving scenarios. With the rapid development of deep learning tech-
nology, CNN-based YOLO real-time object detectors have gained sig-
nificant attention. However, the local focus of CNNs results in perfor-
mance bottlenecks. To further enhance detector performance, researchers
have introduced Transformer-based self-attention mechanisms to lever-
age global receptive fields, but their quadratic complexity incurs sub-
stantial computational costs. Recently, Mamba, with its linear com-
plexity, has made significant progress through global selective scanning.
Inspired by Mamba’s outstanding performance, we propose a novel object
detector: DS MYOLO. This detector captures global feature informa-
tion through a simplified selective scanning fusion block (SimVSS Block)
and effectively integrates the network’s deep features. Additionally, we
introduce an efficient channel attention convolution (ECAConv) that
enhances cross-channel feature interaction while maintaining low com-
putational complexity. Extensive experiments on the CCTSDB 2021
and VLD-45 driving scenarios datasets demonstrate that DS MYOLO
exhibits significant potential and competitive advantage among similarly
scaled YOLO series real-time object detectors.

Keywords: Driving Scenarios · Object Detection · SSM · YOLO

1 Introduction

In recent years, the rapid development of deep learning has continuously injected
new energy into the field of object detection. In autonomous driving scenarios,
real-time detection and accurate identification of traffic signs and vehicle iden-
tities are crucial for enhancing the safety of driving systems [1]. However, in
driving scenarios, targets often vary significantly in scale and size, leading to
poor visual features and susceptibility to noise interference. This makes object
detection one of the most challenging tasks in autonomous driving. CNNs, with
their parameter sharing and optimized hardware acceleration, have made sig-
nificant progress in real-time object detectors. However, their local focus makes
it difficult to effectively capture targets of different scales in driving scenarios,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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limiting their performance. Therefore, developing a high-performance real-time
object detector is an important and meaningful endeavor.

In the past, general object detection paradigms primarily focused on CNN-
based two-stage detection networks, such as Faster R-CNN [2], Mask R-CNN [3],
and Cascade R-CNN [4]. However, the pre-generation of candidate region pro-
posals in two-stage detectors often results in inadequate real-time performance.
Recently, research in object detection has increasingly shifted towards end-to-
end single-stage detection algorithms, such as YOLO [5], SSD [6], CornerNet
[7], and FCOS [8]. Single-stage detection models feature simpler architectures,
with the YOLO series models, in particular, achieving a commendable balance
between speed and accuracy. This has garnered significant attention from both
the academic and industrial communities.

The YOLO networks, especially from YOLOv3 [9] onwards, typically consist
of three main structures: backbone, neck, and head. The backbone extracts deep
features from input images. For instance, YOLOv3, YOLOX [10], YOLOv7 [11],
and YOLOv8 [12] use Darknet-53 [9], while YOLOv4 [13] and YOLOv5 [14] use
CSPDarknet-53 [13]. YOLOv6 [15] employs EfficientRep [15], and YOLOv9 [16]
uses the lightweight GELAN. The neck structure fuses multi-scale features to
enhance multi-scale representation capabilities. SPPELAN [16] optimizes multi-
scale feature extraction efficiency, and PAN [17] enhances feature fusion based
on FPN [18]. The head structure decodes the features from the neck to generate
final detection results, evolving from anchor-based (e.g., YOLOv5 [14], YOLOv7
[11]) to more efficient anchor-free (e.g., YOLOv6 [15], YOLOv8 [12], YOLOv9
[16]) and NMS-free (YOLOv10 [19]) designs.

Object detectors based on the Transformer encoder-decoder architecture,
such as the DETR [20] series, leverage the global feature modeling capabilities of
the self-attention mechanism to achieve performance comparable to state-of-the-
art detectors. However, the quadratic computational complexity poses challenges
in balancing speed and accuracy. Inspired by the effectiveness of attention mech-
anisms, channel attention mechanisms based on CNNs, such as SE [21], ECA
[22], and their variants [23,24], have also demonstrated significant gains. Recent
research has shown that methods based on State Space Models (SSMs), such as
Mamba [25,26], have achieved remarkable success in visual tasks due to their
powerful global modeling capabilities and linear complexity advantages [27–29].

Inspired by previous works, we propose a novel object detector named DS
MYOLO. This detector integrates a Simplified Volitional Scan Fusion Block
(SimVSS Block) to achieve deep global feature fusion, and introduces an Efficient
Convolutional Operator (ECAConv) to address the shortcomings of the Standard
Convolution(SC) in cross-channel interactions. We validate the superiority of DS
MYOLO on the publicly available CCTSDB 2021 [30] traffic sign dataset and
the VLD-45 [31] vehicle logo dataset. Experimental results demonstrate that
DS MYOLO exhibits strong competitiveness among state-of-the-art detectors of
similar scale. In summary, our contributions can be outlined as follows:

1) To further enhance detection performance through feature fusion, we design
a Simplified Volitional Scan Fusion Block (SimVSS Block) to achieve deep
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global feature fusion. This block consists of a State Space Model (SSM) in
series with a feedforward network, enhanced by residual connections, effec-
tively integrating global and local features.

2) We propose an Efficient Channel Attention Convolutional Operator (ECA-
Conv). By decoupling the channels post-convolution and performing cross-
channel attention interactions, ECAConv significantly establishes dependen-
cies between channels and enhances representation, while maintaining com-
putational complexity similar to SC.

3) We further design different scales of DS MYOLO (-N/-S/-M) real-time object
detectors based on the proposed SimVSS Block and ECAConv. On the
CCTSDB 2021 [30] and VLD-45 [31] traffic scene datasets, DS MYOLO
demonstrates robust competitiveness compared to existing state-of-the-art
real-time object detectors.

2 Related Works

2.1 Real-Time Object Detectors

With the rapid development of autonomous driving, developing real-time and
efficient object detectors is crucial for real-world applications. To balance speed
and accuracy, researchers have dedicated significant time and effort to devel-
oping efficient object detectors. Among these, the YOLO series models have
garnered widespread attention due to their simple structure and end-to-end
detection characteristics. Starting from the initial YOLOv3 [9], the architec-
tural design of backbone-neck-head networks has been a key factor in enhancing
model performance. YOLOv4 [13], based on CSPNet [32], optimized the previ-
ously used DarkNet backbone structure [9] and introduced a series of data aug-
mentation methods [13,33]. YOLOv5 [14] incorporated strategies such as adap-
tive anchor box computation and automated learning rate adjustment. YOLO-X
[10] employed a label assignment strategy (SimOTA) and introduced a decoupled
head to further improve training efficiency and detection performance. YOLOv6
[15] integrated re-parameterization methods into the YOLO architecture to bal-
ance accuracy and speed. YOLOv7 [11] introduced the Extended Efficient Layer
Aggregation Network (E-ELAN) as the backbone to further enhance perfor-
mance. YOLOv8 [12] focused on analyzing the shortcomings of previous YOLO
models and achieved higher performance by integrating their strengths. Gold-
YOLO [34] proposed the GD mechanism to improve multi-scale object fusion
performance. YOLOv9 [16] introduced the GELAN backbone and enhanced the
model’s expressive capabilities through PGI. YOLOv10 [19] proposed a dual-
label assignment strategy without NMS, improving the overall efficiency of the
model.

2.2 Transformer-Base Object Detection

Transformers [35], with their self-attention mechanism, excel in addressing long-
range dependency issues. DETR [20] was the first to apply the Transformer
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architecture to object detection, simplifying the pipeline by eliminating manu-
ally designed anchor boxes and NMS components, garnering significant atten-
tion. However, DETR’s training convergence remains inefficient. Subsequently,
Deformable-DETR [36] improved upon DETR by combining deformable con-
volutions with self-attention calculations, effectively accelerating convergence.
Conditional DETR [37] introduced the Conditional Cross-Attention mechanism
to expedite DETR’s training. DAB-DETR [38] utilized dynamic anchor boxes
directly as queries in the Transformer decoder, enhancing training speed and
inference performance. Anchor DETR [39] incorporated anchor-based query
design and Row-Column Decoupled Attention (RCDA), achieving comparable
performance to DETR while improving efficiency. DN-DETR [40] introduced a
query-denoising training method to accelerate DETR’s training process and fur-
ther enhance performance. Group DETR [41] employed a group-based training
strategy with one-to-many assignments to increase training efficiency. RT-DETR
[42] proposed an efficient hybrid encoder architecture by separating intra-scale
interactions and cross-scale fusion, further improving model efficiency and accu-
racy. Rank-DETR [43] introduced a rank-oriented architecture design, signifi-
cantly boosting inference precision.

2.3 SSMs-Based Vision State Space Model

Recently, Mamba [25,26] has garnered significant attention for its linear complex-
ity in addressing long-range dependency problems. Subsequently, Vision Mamba
[27] was the first to apply the SSM to visual backbone networks, achieving perfor-
mance comparable to, or even surpassing, Vision Transformers (ViT). VMamba
[44] introduced the Cross-Scan Module (CSM) to capture the global recep-
tive field, enhancing visual representation with linear computational complex-
ity. LocalMamba [45] proposed a local scanning strategy to strengthen feature
dependencies within local windows while maintaining a global perspective. Effi-
cientVMamba [29] combined efficient selective scanning with convolution in the
backbone, achieving a balance between accuracy and efficiency. MambaOut [46]
explored the necessity of SSM in visual tasks, experimentally validating SSM’s
higher value for tasks with long sequences and autoregressive characteristics, and
providing foundational support for downstream tasks like segmentation. MSV-
Mamba [47] introduced a multi-scale scanning mechanism, enhancing the ability
to learn dependencies across different resolutions. Inspired by Mamba’s outstand-
ing contributions to various visual tasks, we integrated the SSM module into our
network’s feature fusion, achieving significant performance enhancement.

3 Method

3.1 Overall Architecture of DS MYOLO

The overall architecture of DS MYOLO is illustrated in Fig. 1. In the backbone
network, the Stem is composed of SC, batch normalization, and a SiLU acti-
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Fig. 1. Overall architecture of DS MYOLO.

vation function, stacked sequentially and downsampled twice, resulting in a 2D
feature map with dimensions (H

4 , W
4 ), and Ci channels. To effectively extract rich

features in the backbone network, ECAConv is used for downsampling with a
stride of 2, and ECACSP is employed to further extract abundant local features.
Our object detection model introduces a fusion layer before the neck network.
This fusion layer uses three SimVSS Blocks to achieve deep integration of fea-
ture layers {P3, P4, P5} while maintaining low computational complexity. In the
neck, we follow the PAFPN [12] approach, using 3×3 SC for downsampling with
a stride of 2 and further integrating local features through ECACSP. We adopt
a practical decoupled head and NMS-free design [19], which effectively decodes
small, medium, and large targets in the input, enabling efficient detection across
different scales.

3.2 Fusion Layer Based on SimVSS Block

The traditional YOLO model transmits features extracted by the backbone net-
work directly to the neck network for feature communication. While this method
effectively enhances the salience of local features, it overlooks the feature depen-
dencies within the global receptive field. Previous research has demonstrated
that increasing the receptive field can beneficially enhance model performance.
Given the larger feature map size of shallow networks, we employ a simplified
SimVSS Block based on SSM to process the output features of the backbone net-
work. The fused global features are then subjected to nonlinear transformations
through a forward network to improve the model’s fitting capacity.

The structure of SimVSS Block is illustrated in Fig. 2. The primary design
is based on the SSM and a feedforward network, with residual connections and
normalization layers included to stabilize gradient training and accelerate model
convergence. A traditional SSM can be viewed as a linear time-invariant system
function that maps a univariate sequence x(t) ∈ R to an output sequence y(t) ∈
R via an intermediate hidden state h(t) ∈ R

N . Given the state transition matrix
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Fig. 2. Detailed structure of SimVSS Block ((a) represents component modules of
SimVSS Block, (b) represents key internal architecture of VSS module).

A ∈ R
N×N as the evolution factor, the weight matrix and the observation matrix

B,P ∈ C
N as projection factors respectively, and the skip connection defined as

Q ∈ C
1, the mathematical formulation is as follows:

h′(t) = Ah(t) + Bx(t) (1)

y(t) = Ph(t) + Qx(t) (2)

Moreover, the system function can be discretized for handling discrete-time
sequence data by incorporating a time scale parameter Δ ∈ R

Q. This trans-
formation can be defined as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ht = Āhk−2 + B̄xk

yt = Phk + Q̄xk

Ā = eΔA

B̄ = (eΔA − μ)A−1B
P̄ = P

(3)

where B,P ∈ R
D×N , To refine the approximation of B using a first-order Taylor

series expansion:

B̄ = (eΔA − μ)A−1B ≈ (ΔA)(ΔA)−1ΔB = ΔB (4)

For the input I ∈ R
H×W×C , the processing steps within the SimVSS Block can

be described as follows:

Zl−1 = split{SiLU(BN(Conv1×1(I)))} (5)

Zl = VSS(LN(Zl−1)) + Zl−1 (6)

Zl+1 = Zl + FFN(BN(Zl)) (7)

where Zl−1, Zl and Zl+1 represent the output states of the input I at different
layers l of the SimVSS Block. The Feedforward Network (FFN) consists of two
1 × 1 SC and a SiLU non-linear activation function.
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3.3 ECAConv and ECACSP Module

Previous studies [21,22] have shown that standard convolutions lack attention
to channel salience. Inspired by ECA [22], we propose a novel Efficient Channel
Attention Convolution (ECAConv), as illustrated in Fig. 3. Specifically, we per-
form adaptive channel peeling after standard convolution and aggregate salient
features through global pooling. Then, we use a one-dimensional convolution
with adaptive kernels to quickly map salient features and generate weights.
These weights are applied to the corresponding channels and enhance salient fea-
ture expression via element-wise multiplication. Finally, the weighted channels
are merged with the unweighted channels, and a Shuffle operation is employed
to reorganize the channels, facilitating inter-channel information exchange and
enhancing feature representation diversity.

Fig. 3. Key architectures and components of ECAConv and ECACSP ((a) Basic archi-
tecture of ECAConv, (b) Detailed structure of ECACSP).

It is noteworthy that as the number of channels C increases, capturing more
effective features and establishing channel correlations become critically impor-
tant. Therefore, we have designed an adaptive channel allocation strategy to
ensure the effective interaction range of features. Specifically, for a given extended
linear function φ(k) = γ×k−b, when the number of channels C ∈ 2n (where n is
a positive integer), the mapping relationship between the adaptive convolution
kernel and the channels can be defined as:

C = φ(k) = 2(γ×k−b) (8)

Furthermore, the channel stripping ratio σ ∈ (0, 1] can be expressed as follows:

σ = min(1,max(0.1,
log2(C)

10
)) (9)

In practice, by focusing on channel Ĉ = σ×C as the object of channel attention,
and setting the parameters γ and b to 2 and 1 respectively, the mapping relation-
ship between the adaptive convolution kernel of the one-dimensional convolution
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and the target channel can be defined as:

k =

∣
∣
∣
∣
∣

log2(Ĉ)
γ

+
b

γ

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

log2(Ĉ) + 1
2

∣
∣
∣
∣
∣

(10)

Clearly, as the channel stripping ratio expands, the higher-dimensional channels
possess a larger receptive field, while the lower-dimensional channels establish a
non-linear mapping to capture the local channel correlations. In this work, we
set σ to 0.5 and k to 3.

Furthermore, we designed a lightweight feature extraction module named
ECACSP, whose architecture is illustrated in Fig. 3(b). Specifically, ECACSP
adjusts the dimensions through a 1 × 1 SC and applies two 3 × 3 ECAConv
layers for deep feature extraction. These deep features are then merged with
the input features processed by depthwise separable convolution, followed by a
Shuffle operation to achieve inter-channel feature interaction. In the backbone
network, we use ECAConv for downsampling and employ ECACSP to extract
rich information from the feature maps.

4 Experiments

4.1 Setups

Dataset: We conducted extensive experiments on the publicly available traf-
fic sign detection dataset CCTSDB 2021 [30] and the vehicle logo detection
dataset VLD-45 [31] to validate the effectiveness of the proposed object detector.
Notably, the CCTSDB 2021 dataset includes three categories, each consisting of
multi-scale targets from real traffic scenes under different lighting conditions. The
VLD-45 dataset comprises 45 categories of large vehicle logos collected from the
internet using web crawlers. To ensure a fair comparison, we followed the dataset
division methods provided in CCTSDB 2021 and VLD-45.

Implementation Details: We conducted experiments using a single NVIDIA
4090 GPU within the PyTorch framework. All experiments were trained from
scratch for 200 epochs without using pre-trained weights, with a 3-epoch warm-
up period. We used the SGD optimizer, setting the initial learning rate to
decrease from 0.01 to 0.0001 and the momentum to 0.937. The input size was
fixed at 640 × 640, and the batch size was set to 16. Our data augmentation
strategies included random scaling, translation, and Mosaic [13], with Mosaic
data augmentation being disabled during the last 10 epochs.

4.2 Comparison with State-of-the-Arts

In this section, we compare the proposed DS MYOLO with other latest state-of-
the-art real-time detectors in the YOLO series, including YOLOv5 [14], YOLOv6
[15], YOLOv7 [11], YOLOv8 [12], Gold YOLO [34], YOLOv9 [16], and YOLOv10
[19]. We primarily measure model parameters(M), FLOPs(G), mAP(%), detec-
tion box precision, and recall rate.
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Table 1. Comparison with state-of-the-art real-time object detectors from the YOLO
series on the CCTSDB 2021 [30] test set.

Method #Params.
(M)

FLOPs
(G)

mAP50:95

(%)
mAP50

(%)
mAP75

(%)
P

(%)
R

(%)
YOLOv5-N [14] 2.5 7.2 47.31 75.39 54.4 86.1 67.6
YOLOv6-N [15] 4.2 11.8 47.05 74.91 54.17 85.8 67.9
YOLOv7-Tiny [11] 6 13.2 48.61 76.43 55.85 86.5 68.4
YOLOv8-N [12] 3 8.1 49.72 78.66 57 88.1 71
Gold YOLO-N [34] 5.6 12.1 49.98 79.05 57.1 87.5 71.3
YOLOv10-N [19] 2.3 6.5 51.37 79.36 60.81 87.9 72
DS MYOLO-N (Ours) 4 9 52.22 79.63 62.02 88.1 71.1

YOLOv5-S [14] 9.1 23.8 53.21 82.15 61.87 88.6 72.7
YOLOv6-S [15] 16.3 44 51.9 80.44 59.87 86.9 73.2
YOLOv8-S [12] 11.1 28.5 54.35 82.52 64.73 89.6 75
Gold YOLO-S [34] 21.5 46 54.17 82.33 64.29 89.1 75.1
YOLOv10-S [19] 7.2 21.4 55.2 82.55 65.34 89.1 75.6
DS MYOLO-S (Ours) 14.8 31.4 55.78 80.98 66.13 89.7 73.5

YOLOv5-M [14] 25 64.1 55.63 83.56 65.57 88 76.4
YOLOv6-M [15] 32.8 81.4 53.36 81.89 62.44 88.5 74.7
YOLOv7 [11] 36.5 104.3 56.12 83.77 66.48 88.1 75.3
YOLOv8-M [12] 25.9 78.7 56.97 84.85 67.11 87.7 78.6
Gold YOLO-M [34] 41.3 87.3 56.22 83.81 67.16 89.2 76.2
YOLOv9-C [16] 25.3 102.3 57.85 84.72 68.87 89.3 77
YOLOv10-M [19] 15.3 58.9 56.36 83.35 67.22 89.3 76.7
DS MYOLO-M (Ours) 30.7 82.7 58.35 85.11 69.83 91 75.4

As shown in Table 1, we compared different versions of DS MYOLO (-N/-S/-
M) with the latest YOLO series real-time detectors on CCTSDB 2021. Overall,
DS MYOLO models excelled in multiple metrics. In the lightweight models,
DS MYOLO-N achieved a 52.22% mAP with 4M parameters and 9G FLOPs,
outperforming similar models like YOLOv5-N [14], YOLOv6-N [15], YOLOv7-
Tiny [11], and surpassing the latest Gold YOLO-N [34] (49.98%) and YOLOv10-
N [19] (51.37%). With the increase of the channel scaling factor, DS MYOLO
showed further performance improvement, with DS MYOLO-S and DS MYOLO-
M increasing mAP by 0.58% and 0.5%, respectively. Notably, the introduced
SimVSS Block significantly improved the precision of detection boxes, achieving
88.1%, 89.7%, and 91%, respectively, surpassing all versions of state-of-the-art
real-time detectors.

On the VLD-45 dataset, we performed a similar comparison of DS MYOLO
with lightweight models of different YOLO variants. As shown in Table 2, several
lightweight models achieved over 95% detection accuracy. In terms of mAP, our
DS MYOLO achieved the highest mAP, mAP50, and mAP75. Regarding detec-
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Table 2. Comparison with state-of-the-art real-time object detectors from the YOLO
series on the VLD-45 [31] test set.

Method #Params.
(M)

FLOPs
(G)

mAP50:75

(%)
mAP50

(%)
mAP75

(%)
P

(%)
R

(%)
YOLOv5 [14] 2.5 7.2 69.08 94.86 85.2 95.4 90.5
YOLOv6 [15] 4.2 11.8 68.15 94.3 84.75 95.1 89.6
YOLOv7 [11] 6 13.2 69.66 95.77 85.81 96.5 91.4
YOLOv8 [12] 3 8.1 70.71 96.25 87.59 96.8 91.8
Gold YOLO [34] 5.6 12.1 70.83 96.6 87.19 96.6 92.2
YOLOv10 [19] 2.3 6.5 71.4 96.52 88.31 97.1 92.7
DS MYOLO (Ours) 4 9 72.3 97.59 89.51 97.7 93.2

Fig. 4. Trends in validation metrics for DS MYOLO-N across epochs ((a) results on
CCTSDB 2021 [30], (b) results on VLD-45 [31]).

tion accuracy and recall rate, DS MYOLO demonstrated the best performance,
reaching 97.7% and 93.2%, respectively. Overall, DS MYOLO significantly out-
performed others in terms of overall performance. Our model excelled in key
metrics such as mAP and mAP75 and also surpassed the current state-of-the-art
YOLO models in both detection accuracy and recall rate.

Figure 4 shows the trends in validation metrics for our DS MYOLO on the
CCTSDB 2021 [30] and VLD-45 [31] datasets as epochs progress. It can be
observed that the DS MYOLO models exhibit high accuracy and stable detection
capabilities across different datasets and model scales. Specifically, on CCTSDB
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2021, the detection accuracy and recall rate of DS MYOLO rapidly increase
within the first 50 epochs and then continue to improve steadily, with mAP con-
sistently trending upwards. On VLD-45, DS MYOLO maintained considerable
stability and significant performance, converging as epochs increased to their
maximum.

4.3 Ablation Studies

In this section, we perform a series of ablation studies on the proposed DS
MYOLO using the CCTSDB 2021 dataset. To further validate the effectiveness of
DS MYOLO, we take DS MYOLO-N as an example and independently examine
each of its major modules, focusing on Params (M), FLOPs (G), and mAP (%).
To facilitate observation of the impact of each module on the overall model
performance, all models are trained for 80 epochs to amplify the differences.

Table 3. Ablation study results of DS MYOLO on CCTSDB 2021 [30].

# ECAConv SimVSS Block ECACSP #Params.(M) FLOPs(G) mAP(%)

1 2.7 6.8 46.53
2 ✓ 2.7 6.8 47.67
3 ✓ 4 8.9 48.7
4 ✓ 2.7 6.9 48.21
5 ✓ ✓ 4 8.9 49.08
6 ✓ ✓ ✓ 4 9 49.35

As shown in Table 3, ECAConv significantly improved the mAP by 1.14%
with similar parameter and computational costs, demonstrating the enhance-
ment of model performance through the incorporation of local inter-channel
dependencies. The addition of the SSM-based fusion layer in the SimVSS Block
further boosted model performance by 2.17%, albeit with an increase of 1.3M
parameters and 2.1G FLOPs, highlighting its effectiveness. The introduced
ECACSP improved model performance by 1.68% while maintaining nearly the
same level of model complexity. When both ECAConv and SimVSS Block were
incorporated, there was a slight increase in parameters and computational cost,
but the mAP reached 49.08%. The subsequent inclusion of ECACSP resulted in
an additional mAP improvement of 0.27%. Overall, the integration of these mod-
ules into DS MYOLO significantly enhanced object detection performance with
relatively low computational cost. Additionally, we conducted an ablation study
on the performance of ECAConv compared to other downsampling operators on
YOLOv8 [12], as shown in Table 4.
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Table 4. Ablation study results of ECAConv and other downsampling operators on
CCTSDB 2021 [30].

Downsampling #Params.(M) FLOPs(G) mAP50:75(%) mAP50(%) mAP75(%)

Conv [12] 3.0 8.1 45.31 73.29 51.17
GhostConv [48] 2.8 7.8 45.07 74.55 50.31
GSConv [49] 2.8 7.8 45.22 73.43 51.5
Waveletpool [50] 2.7 7.5 45.74 73.92 51.82
SPDConv [51] 4.2 10.2 46.25 74.66 52.49
ADown [16] 2.7 7.6 44.8 73.17 48.73
SCDown [19] 2.7 7.7 45.92 74.17 51.65
ECAConv 3.1 8.2 46.33 75.05 52.87

5 CAM Visualization

Figure 5 shows the CAM visualization results for YOLOv5 [14], YOLOv8 [12],
YOLOv10 [19], and our DS MYOLO on CCTSDB 2021 [30]. It can be observed
that our model accurately detects target locations and assigns higher weights
to the detection areas. Additionally, our DS MYOLO is capable of focusing on
targets at different scales, thereby reducing the false detection rate.

CCTSDB 2021 YOLOv5-N YOLOv8-N YOLOv10-N DS MYOLO-N(Ours)

Fig. 5. CAM visualization results for YOLOv5 [14], YOLOv8 [12], YOLOv10 [19], and
our DS MYOLO-N on CCTSDB 2021 [30].
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6 Conclusions

In this paper, we propose a novel high-performance object detector for driving
scenarios, named DS MYOLO. The designed SimVSS Block effectively enhances
feature fusion in deep networks. Additionally, the proposed Efficient Channel
Attention Convolution (ECAConv) significantly boosts cross-channel feature
interactions. Extensive experiments conducted on the CCTSDB 2021 traffic sign
dataset and the VLD-45 vehicle logo dataset demonstrate that our DS MYOLO
achieves the highest performance among YOLO series real-time object detectors
of comparable scale and exhibits strong competitiveness.

Acknowledgements. This work is supported by China NSFC Program under Grant
NO. 61603257.
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Abstract. This paper presents an cost-effective approach for geo-
localization and location-aware object detection using a single 360◦ fish-
eye camera lens on mobile platforms such as street cleaning vehicles. We
propose a system that captures a comprehensive view of the surroundings
and accurately detects people and objects. Using the camera’s geometry,
the system infers distances to objects on the ground and projects them
into global coordinates, creating a temporal spatial map. This ‘memory
map’ is continuously updated, allowing for the accumulation of detection
predictions over time. This approach significantly enhances the robust-
ness and accuracy of object detection in dynamic environments. Our
experiments demonstrate the system’s efficacy, making it a strong can-
didate for implementation in various real-world applications requiring
enhanced situational awareness and autonomous decision-making capa-
bilities.

Keywords: Object Detection · Localization · 360 footage · Robotics

1 Introduction

Accurately perceiving and interpreting the surrounding environment is crucial,
especially for autonomous vehicles operating in dynamic settings. Traditional
object detection systems frequently encounter difficulties due to their restricted
field of view, limiting their effectiveness in monitoring dynamic changes across
entire environments. This paper introduces a new approach that addresses these
challenges by integrating a single 360◦ camera with advanced object detectors
on mobile platforms, such as street cleaning vehicles.

Our motivation stems from the critical need for enhanced situational aware-
ness in these vehicles. In agricultural and urban maintenance applications, the
ability to detect people and objects reliably in real-time is not just a matter
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of efficiency, but of safety and operational effectiveness. The dynamic nature of
these environments, coupled with the diverse range of dynamic obstacles encoun-
tered, poses a unique set of challenges. Current methods often fall short in pro-
viding a comprehensive and accurate detection necessary for these applications
[1,2].

Fig. 1. With just a single camera, we obtain a full surround view: top left fisheye view,
bottom equirectangular view. We propose a triangulation-based distance estimation
and downstream ‘memory map’ in world space to improve object detection and alleviate
missing detections caused by (partial) occlusions. With the ‘memory map’, we boost
the confidence of our object detector in regions where we’ve seen more detections before
(top right). A standard object detector only detects the green box, whereas the memory
map is able to detect the blue boxes as well (top left).

While LiDAR has been a solution for many autonomous systems, offer-
ing precise distance measurements and object detection [3,4], it comes with
notable downsides: LiDAR systems are often expensive, adding significant cost to
the deployment of autonomous technologies. Additionally, LiDAR data requires
intensive computational resources to process, which can introduce latency in real-
time decision-making scenarios. Furthermore, LiDAR sensors often only provide
sparse point clouds that may miss objects and are insufficient for obtaining a
comprehensive semantic understanding of the scene [5].
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While multi-camera systems enhance situational awareness by offering a
panoramic view, they also present challenges. Calibration and stitching com-
plexity, increased data processing demands, and susceptibility to environmental
conditions such as varying lighting and weather disturbances are notable disad-
vantages [6]. These systems require sophisticated setup and high-capacity com-
puting resources, leading to higher costs and potential limitations in scalability
and adaptability [7].

To address this, we propose a simple and inexpensive system that leverages
the expansive field of vision offered by a 360◦ camera, combined with an object
detection system running in real-time (≈20 FPS). This setup not only captures
a complete view of the surrounding environment but also uses the camera’s
geometric properties to infer the distance to detected objects. These objects are
then projected into global coordinates, forming a temporal spatial map. A key
innovation of our approach is the development of a “memory map” – an averaged
aggregation of detection predictions over time, enhancing the robustness and
accuracy of the object detection process.

Our main contributions are:

– Dataset: We collected a dataset comprising omnidirectional images with
accompanying ground truth object detection labels and point cloud data on
a mobile platform and make it publicly available1. This dataset features a
novel setup that requires only a single camera without the need for stitching.

– 3D Localization: We explore an application by merging omnidirectional
images with point cloud data for 3D localization, where the point cloud serves
as a ground truth for evaluating our image-based localization method. This
approach seeks to refine the precision and extend the application of localiza-
tion techniques in varied outdoor settings.

– Memory Map: Our method enhances the object detection process by inte-
grating geometric projections and 3D spatial information into a memory map.
This enhancement aims to improve both the accuracy and robustness of
detecting objects in complex outdoor environments, using spatial data to
navigate the intricacies of such scenes effectively.

2 Related Work

Traditional object detection systems often are constrained by the narrow field of
view (FOV) of perspective cameras, facing challenges in dynamic environments.
Most of the works on surround view systems have been done on multi-camera
systems [8,9], requiring extensive installation and calibration procedures along-
side heavy compute demands.

The integration of a single 360◦ camera offers a broader FOV, mitigating data
synchronization and stitching issues and enhancing environmental perception.
[10] represents a seminal approach in fast and accurate environment modeling
using omnidirectional vision. Their methodology emphasizes the importance of
1 https://cloud.cs.uni-tuebingen.de/index.php/s/SPcSPDsigYboy7S.

https://cloud.cs.uni-tuebingen.de/index.php/s/SPcSPDsigYboy7S
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a panoramic view for complete environmental analysis. However, while their
approach contributes significantly to indoor environment modeling, our method
extends these concepts to address the dynamic nature of outdoor settings.

The LOAF dataset [11] employs a fisheye camera for large-scale person detec-
tion and localization, focusing on fisheye-specific distortion through novel net-
work training techniques. However, the method employed for evaluating local-
ization accuracy, measuring the pixel-distance relationship with a static camera
placement and a single instance measurement using a measuring tape on the
floor, poses limitations in terms of dynamic accuracy and real-world applicabil-
ity. In contrast, our work advances this approach by leveraging LiDAR-recorded
point cloud data as a ground truth. This method not only provides a more robust
and accurate basis for evaluating localization but also enables the exploration of
camera performance on dynamic platforms, offering a significant enhancement
over the static and singular measurement technique employed previosuly.

Complementing this, [12] leverages UAV metadata to create robust dynamic
maps for improved object tracking and localization, showcasing the potential of
integrating metadata for enhanced UAV surveillance capabilities. DAB-DETR
[13] integrates dynamic anchor boxes with the DETR model, significantly accel-
erating training convergence and enhances detection precision, showcasing the
power of combining explicit positional priors with transformer architectures. Our
work benefits from this advancement, applying DAB-DETR within context of
360◦ environmental understanding, pushing the boundaries of detection accuracy
in dynamic settings.

The class of (occupancy) grid maps [14] is related to the simple memory
map we discuss in our work. We are not concerned with creating static maps
and occupancies, but rather with high-likelihood areas to make object detection
temporally more robust. There are related concepts of dynamic maps, e.g. [15],
but our focus to leverage these is on the improvement of object detection in
surround view object detection via employing a simple memory map.

3 Methodology

3.1 Dataset Generation

Our dataset comprises of omnidirectional images and point cloud data, collected
from a mobile platform equipped with a single-lens Ricoh Theta Z1 camera
and three Ouster OS-1 sensors. The downward-facing camera was mounted atop
the platform via a camera pole mounted at varying lengths above the vehicle,
aligning the lens’ central axis perpendicular to the platform. This setup gives us
a full 360◦ horizontal field of view and a vertical view up to the horizon line. It
mitigates the need for image stitching, simplifying the data processing pipeline
considerably.

We focus on person detection and manually annotated each visible individ-
ual with radius-aligned rotated bounding boxes on the collected omnidirectional
images, using our own newly designed annotation tool. This annotation app-
roach significantly enhances the dataset’s accuracy by facilitating exact person
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Fig. 2. Sensor setup on the data collection vehicle. Ouster lidar sensors are positioned
at the front, right, and left (B, C, D). The 360◦ camera is mounted at A.

positioning on the ground and enabling precise 3D geolocation from 2D pixel
coordinates. In contrast, classical axis-aligned bounding boxes do not allow for
precisely geolocating objects as their ground surface point is not as exact, as
shown in Fig. 3. Moreover, it establishes a ground truth for evaluating our 3D
geo-location-aware detection model against traditional detectors that do not use
3D geo-location information. Figure 2 shows the setup of our sensor platform.

To capture accurate 3D positions of objects surrounding the platform, we
used three Ouster OS-1 LiDAR sensors, oriented towards the front, left, and
right. The integration of these sensors with the camera enabled the synchro-
nization of omnidirectional imagery with dense point cloud data for precise 3D
localization of detected objects. The transformations among the camera and
lidar sensors are pre-defined. The camera is located inside the field of view of at
least one of the ouster sensors. See an overview of the dataset in Table 1.

Table 1. Overview of Recorded Dataset. The arrow ↓ indicates down-sampling.

Data Type #Frames FPS Resolution #Instances

Total Image Frames 5770 3 (↓ 30)1920 × 1920 17275
Total Point Cloud Frames 1921 1 (↓ 10) 1024 × 108 5536
Image Frames - Occlusion 859 3 (↓ 30)1920 × 1920 1875

Point Cloud Frames - Occlusion 286 1 (↓ 10) 1024 × 108 725
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Fig. 3. (a) The axis-aligned box (red) exhibits worse properties for downstream geolo-
calization as the surface contact point is not as precise as for the radially corrected
bounding box (green). (b)-(e) illustrate the labeling process: A rotated bounding box
of default size is initially placed using mouse cursor input (b), the box size is adjusted
via mouse wheel (c). We copy the annotation to the next frame (d), from where its
position needs to be adjusted (e). (Color figure online)

Fig. 4. Visual representation of geo-localization results using our lens model. The right
panel shows an omnidirectional image captured by the Ricoh, with the green dots
representing the person detections. In the middle, the point cloud data from the LiDAR
sensor is displayed, where white points indicate the LiDAR’s person-classified points.
The centroids of these white point clusters are projected onto the ground, depicted as
gray cubes, representing the actual standing locations of persons in 3D space. The gray
spheres correspond to the projected locations of the green dots from the omnidirectional
image, transformed into the 3D coordinate system using the fisheye lens model. (Color
figure online)
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3.2 Lens Model for Passive Geo-Localization

Figure 5 illustrates the fisheye lens model. Through radial distortion, a point
P on the ground plane is mapped to a point p on the image plane. The figure
delineates how the distortion caused by the fisheye lens alters the projection
compared to that of a traditional perspective lens, represented by point p′.

As stated in [16], a general mapping between the radial distance on the image
plane r and the incidence angle θ measured with respect to the optical axis can
be described as following, where ki are the distortion coefficients of the lens
model.

r(θ) = k1θ + k2θ
3 + k3θ

5 + k4θ
7 + k5θ

9 + . . . (1)

Fig. 5. Fisheye lens model for 3d localization, illustrated from [11] (left). Interpolation
between θ in degrees measured with respect to the optical axis and r in millimeters on
the chip. (right).

Rather than calculating the coefficients ki for the general lens model as
expressed in Eq. 1, we establish the correlation between θ and r through lin-
ear interpolation between the calibration data supplied by Ricoh, as shown in
Fig. 5. This approach not only bypasses the need for higher-order polynomial
computations and their inverses but also enhances the inference speed.

Once the mapping between θ and r has been set, the location of P on the
ground plane can be determined from geometric calculations, knowing the pro-
jected pixel location p′ on image, and the camera focus length f , the camera
height Z. In the following formulae, (u, v) represent the pixel coordinates of
point p, (uc, vc) denote the central pixel of the image. The function θ(r) relates
the radial distance r to the angle θ, where θ is the angle of incidence. The angle φ
is calculated between the vector pointing to the pixel and the image’s horizontal
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axis. Ires represents the image resolution in pixels, and Ssize is the sensor size
in millimeters.

x = Z · tan(θ(r)) · cos(φ) (2)

y = Z · tan(θ(r)) · sin(φ) (3)

z = 0 (4)

φ = arctan 2(v − vc, u − uc) (5)

r =

√
(u − uc)2 + (v − vc)2

Ires
· Ssize (6)

Figure 4 presents a visual exemplification of our lens model’s capabilities in
geolocating objects from image data.

3.3 Confidence Calibration via Memory Mapping

The dynamic nature of the observed scene, both from the sensor platform’s
mobility and the subjects’ movements, prompts a shift in pixel coordinates within
the image space. However, the physical constraints on a person’s movement
speed in the real world imply a relative constancy in 3D space. Leveraging this
disparity, we propose a method that employs a temporal-spatial memory map
to calibrate detection confidence levels, particularly in the presence of partial
occlusions.

Further developing the work from [12], we construct a 3D memory map that
evolves over time, informed by the projection of detected object locations and
their confidence scores. This probabilistic-like approach extrapolates the change
of object presence in future frames based on accumulated historical data. For
the next frame, we project the newly detected bounding boxes into this 3D
memory map to retrieve the corresponding memory values, which then inform
the calibration of the confidence scores of the newly detected bounding boxes.
This method not only fortifies detection reliability in areas with a history of
presence but also reduces false positives in areas without prior detections.

The memory map M spans a predefined area centered at the sensor platform,
encompassing a 100 by 100m region, discretized with grid size s × s. In the
following, M t(x, y) denotes the grid cell containing x and y in the discretization
M for arbitrary x, y at time t ∈ N0. For t = 0, each grid cell the memory map is
initialized to a value of 0.5 to represent an equi-probable state of object presence:

M0(x, y) := 0.5, ∀x, y. (7)

For each of the raw detections on image at timestamp t > 0, ct
i denotes its

confidence, pt
i its bottom center pixel, and lti = (xt

i, y
t
i) its coordinate in the
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world frame. This is obtained from the pixel to 3D projection as described in
Eqs. 2,3,4,5 and 6. These contribute to the memory map update in the close
vicinity of the respective point, in detail:

M t(x, y) = normMean
(
M t−1(lti) + ct

i

)
,∀i (8)

lti = proj3D(pt
i), (9)

where normMean() is an operation that shifts the values within the memory
map M t to ensure an average value of 0.5, thus standardizing the probable state
distribution. Above, the update step in Eq. 8 is applied to all indices in a 3 × 3
grid around lti ,

(x, y) ∈ {xt
i, x

t
i ± s} × {yt

i , y
t
i ± s}. (10)

In the following, β > 1 is a boosting factor for updating the confidence value.
Then the calibrated confidence value c̃i

t of the detected object can be formulated
as follows:

c̃i
t =

{
ct
i · β, if M t−1(lti) ≥ 0.5,

cti/β, if M t−1(lti) < 0.5.
(11)

Equation 11 increases the confidence of a detection if the memory map M t−1

from last time step suggests there should be an object and vice versa.
Afterwards, the detected object with the calibrated confidence will be filtered

by the confidence threshold or by the non maximum suppression following the
standard processes of the detection model, leading to the final detection result.

Figure 6 shows a visual representation of the 3D memory map, which is pro-
jected back onto the image plane, offering a color-coded likelihood of person
presence within each grid cell.

4 Experimental Results

This section provides a detailed overview of our hardware used, experimental
setup and the results obtained.

4.1 Hardware and Tools

– Ricoh Camera: the camera Ricoh Theta Z1 was configured to capture image
data at a resolution of 1920× 1920 pixels at a frequency of 30Hz. The camera
orientation was horizontal, with one lens directed towards the ground and
the other skyward. This setup was deliberately chosen to circumvent the
complexities and potential inaccuracies associated with image stitching. While
this configuration results in the camera pole being visible within the image
frame, we contend that the obstruction is minimal and does not significantly
impact the overall effectiveness of our method’s evaluation.
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Fig. 6. Illustration of the reprojected 3D memory map onto the image space, where
bright yellow indicates high likelihood areas for person presence. The grid size is set at
1m. For optimal clarity, only regions with map values exceeding a selected threshold are
used for overlay. Please see how the memory map evolves overtime in the supplementary
video. The right image visualizes the discretization of the geo-memory map. (Color
figure online)

– Ouster Lidar: The three Ouster Lidar OS1 sensors, each with 64 chan-
nels, are operating at 10Hz. They were mounted on the front, left, and right
sides of our mobile platform. The front sensor was angled 20◦C downward
from the horizontal plane, while the side sensors were tilted 60◦C downward,
optimizing the field of view for comprehensive spatial data capture. This con-
figuration ensured a rich point cloud dataset, enhancing the evaluation of our
localization model.

– Custom Annotation Tool for Object Detection: We developed an anno-
tation tool2 tailored to produce radius-aligned rotated bounding boxes for
person in 360◦ footage. Our annotation framework characterizes each bound-
ing box by a set of parameters that denote its position, dimensions, and
orientation in the image space. Specifically, each bounding box is defined by
the coordinates of its center (xcenter, ycenter), its dimensions given by the
width and height, and the angle of rotation α relative to the image axes. This
precise parameterization allows us to accurately pinpoint the location of a
person’s stance in the image space. This annotation approach, as illustrated
in the right panel of Fig. 4, is crucial for the subsequent accurate projection
into the person’s 3D location.

2 https://cloud.cs.uni-tuebingen.de/index.php/s/SPcSPDsigYboy7S.

https://cloud.cs.uni-tuebingen.de/index.php/s/SPcSPDsigYboy7S
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Fig. 7. The 3D localization error relative to object distance, where the clustering of
points below the 0.5-meter error margin up to 10m highlights the method’s precision.

4.2 Experimental Setup and Results

To evaluate our lens model and geo-localization approach, we synchronized our
point cloud and image data. The bottom center pixel of each annotated bounding
box in the images is projected into 3D space to obtain a geolocation estimate.
For the point cloud data, given the tilted positioning of the lidar sensors, we used
RANSAC [17] to define the ground plane’s coefficients. Following this, DBSCAN
[18] was applied to identify individual clusters, with their centroids projected
onto the ground plane to serve as ground truth for our 3D location estimates
from the lens model. Figure 7 showcases the 3D localization error of our method
with respect to the distance from the mobile platform. The error values generally
remain below 0.5m for distances up to 10m, indicating a high degree of accuracy
in the localization process. This consistent error margin underscores the model’s
reliability, particularly notable in the mid-range distances where the density of
data points suggests robust performance despite increasing distance. The plot
emphasizes the method’s accuracy in estimating positions in 3D space.

Table 2. Experimental results for temporal-spatial memory mapping approach with
model DAB-DETR. Here, s is the map grid size, and β is the boosting factor. Columns
with - for s and β denote the baseline without memory maps.

Non-occlusion Partial occlusion
s – 1.5 1 – 0.75 1.5 1 1.5

β – 1.3 2 – 2 1.3 2 2
AP@50 0.9702 0.9702 0.9703 0.410 0.425 0.426 0.430 0.473
AR10 0.5778 0.5778 0.5778 0.1695 0.176 0.178 0.176 0.198

To assess the effectiveness of our confidence calibration approach through
temporal-spatial memory mapping, we conducted the following experiments:
detection performance with vs. without 3D location information, impact of spa-
tial memory map resolution, evaluation of memory map and confident update
functions.

We adopted the DAB-DETR [13] as our primary model for image-based
object detection, in alignment with the methodologies proposed in [11]. We
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Table 3. Experimental results with model YoloV7-tiny.

Non-occlusion Partial occlusion
s – 1.5 1 – 0.75 1.5 1 1.5

β – 1.3 2 – 2 1.3 2 2
AP@50 0.6773 0.7087 0.6989 0.1412 0.1458 0.1543 0.1420 0.1409
AR10 0.4072 0.4093 0.4065 0.0915 0.1127 0.1127 0.1127 0.1127

Table 4. Experimental results with YoloV9-tiny.

Non-occlusion Partial occlusion
s – 1.5 1 – 0.75 1.5 1 1.5

β – 1.3 2 – 2 1.3 2 2
AP@50 0.5425 0.5698 0.5841 0.0829 0.0869 0.0926 0.0869 0.0925
AR10 0.2972 0.3065 0.3102 0.0559 0.0636 0.0627 0.0636 0.0627

trained the model on the LOAF dataset for 50 epochs and then fine-tuned further
on our custom annotated dataset for an additional 20 epochs with the default
settings.

To assess the efficacy of our temporal-spatial memory mapping approach
for confidence calibration, we selected AP@50 and AR10 as our metrics due to
their established reliability in object detection evaluation [19–22]. AP@50 pro-
vides a balanced measure of precision at a 50% IoU threshold, emphasizing the
accuracy of detections, while AR10 evaluates the model’s recall, considering the
top 10 detection results, to gauge its ability to detect relevant objects without
being overwhelmed by false positives. Our experiments were stratified into two
distinct scenarios. For the first, absent of occlusions, we explored a variety of
memory map grid sizes (0.5, 0.75, 1, and 1.5m) and confidence boost factors
(1.3, 1.5, and 2). The AP@50 observed across these configurations ranged from
0.9700 to 0.9703, closely aligning with the baseline of 0.9702, achieved without
incorporating 3D geo-information. This outcome shows the robustness of our
detection method even in configurations not optimized for the highest perfor-
mance, without significantly compromising detection accuracy in scenarios free
from occlusions.

In the second scenario, with partial occlusions by tree trunks or leaves, the
application of 3D geolocation data significantly elevated the AP@50 and AR10,
highlighting the method’s value in visually complex situations. The AP@50
ranges from 0.428 to 0.473, while the baseline is 0.410. Among the 12 settings we
explored, ten showed significant improvement over the baseline, underscoring the
effectiveness of our approach. The best four performances are quantitatively pre-
sented in Table 2. To test the generalization of our approach, we also conducted
the same experiments on other models, e.g. YOLOv7-tiny [23] and YOLOv9-tiny
[24], obtaining similar results. Specifically, on an NVIDIA Orin AGX, our app-
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roach with the YOLOv7-tiny model achieved real-time performance of 25 FPS.
The results are presented in Table 3 and Table 4.

5 Conclusion, Limitations and Future Work

We presented a new approach for surround view object localization and enhanc-
ing object detection in dynamic environments through the integration of a single
360◦ camera. Our method significantly improves the detection and mapping of
partially occluded objects by using the comprehensive view provided by the cam-
era and the aggregating object detection proposals to create a temporal spatial
map. This map is continuously updated, enhancing the detection accuracy in
complex settings.

Despite its promising results, our approach has limitations, such as the
assumption of an underlying 2D surface and a perpendicular 360◦ camera facing
downwards. Furthermore, the camera pole is currently blocking the view slightly.
Future work will aim to refine these aspects and explore further applications.
In particular, we aim to design a construction where the lens is placed directly
above the pole, and having a transparent mounting around it, so that there is
no pole blocking the view.
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Abstract. In this paper, we present a novel method for reliable frontier selection
in Zero-Shot Object Goal Navigation (ZS-OGN), enhancing robotic navigation
systems with foundation models to improve commonsense reasoning in indoor
environments. Our approach introduces a multi-expert decision framework to
address the nonsensical or irrelevant reasoning often seen in foundation model-
based systems. The method comprises two key components: Diversified Expert
Frontier Analysis (DEFA) and Consensus Decision Making (CDM). DEFA uti-
lizes three expert models—furniture arrangement, room type analysis, and visual
scene reasoning—while CDM aggregates their outputs, prioritizing unanimous
or majority consensus for more reliable decisions. Demonstrating state-of-the-
art performance on the RoboTHOR and HM3D datasets, our method excels at
navigating towards untrained objects or goals and outperforms various baselines,
showcasing its adaptability to dynamic real-world conditions and superior gener-
alization capabilities.

Keywords: Zero-shot Object Goal Navigation · Foundation Model Reasoning

1 Introduction

Leveraging foundation models has greatly advanced robotic navigation systems, par-
ticularly for frontier-based object goal navigation in indoor environments [58,60,64,
66,67]. These models enable robots to apply commonsense reasoning during explo-
ration and object search [17,26,53,54,59]. For instance, when the target is a desk, the
robot understands that desks are often paired with chairs. This enhanced perception
and reasoning allow navigation systems to more effectively identify promising frontiers
for exploration, resulting in higher success rates compared to traditional methods like
distance-based and Gaussian-process-based frontier selection [1,2,21,38,46,65].
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Recently, researchers have integrated chain-of-thought (COT) prompting [49,57,
61] into foundation models to enhance commonsense reasoning in navigation sys-
tems [27,42,56,67]. COT generates short, human-like reasoning steps during navi-
gation tasks. For example, when searching for a desk, the system might reason, “A
desk is often found in a study room, which typically contains books, laptops, and
chairs. If I encounter these objects near an unexplored frontier, I should explore it first.”
COT enhances navigation performance by offering a more transparent and interpretable
decision-making process. However, it often relies on greedy decoding, which can lead
to suboptimal reasoning [8,48,49], resulting in nonsensical or irrelevant conclusions
and decreasing system reliability [47]. This limitation highlights the need for more
advanced methods to enhance the robustness of foundation model-driven navigation
systems (Fig. 1).

Fig. 1. Instances of nonsensical or irrelevant reasoning, during the frontier selection in Zero-Shot
Object Goal Navigation. The green text indicates a correct understanding of the scene, while the
red text refers to the reasoning that contradicts human intuition. (Color figure online)

In real-world dynamic environments, the reliability of foundation model-driven
navigation systems is vital, especially in adapting to changing scenarios where con-
sistent performance is difficult to maintain. Our research addresses this challenge by
developing robust commonsense reasoning for zero-shot object goal navigation. This
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approach is critical for navigating unpredictable conditions where robots encounter
previously unseen objects or situations. Unlike traditional tasks, zero-shot navigation
[16,67] requires the system to orient toward goals without prior explicit training,
demanding advanced generalization and commonsense knowledge to reliably adapt
across unfamiliar objects and situations in dynamic environments.

In this paper, we introduce a novel frontier selection method for zero-shot object
goal navigation (ZS-OGN). The method features two key components, with the first
being Diversified Expert Frontier Analysis (DEFA), inspired by Portfolio Theory [9,
32–34]. DEFA leverages the expertise of three foundation models, each serving as an
expert in a specific aspect of frontier selection. The first expert focuses on selecting
frontiers based on furniture arrangements, such as identifying desk-like setups with
chairs. The second expert prioritizes frontiers leading to rooms where the target object,
like a desk, is more likely to be found, such as study rooms. The third expert uses visual
observation to apply commonsense reasoning dynamically based on the scene.

We introduce Consensus Decision Making (CDM) as the second component for
frontier selection, inspired by self-consistency. CDM first seeks unanimous expert
approval, and if not achieved, selects a frontier endorsed by at least two experts.
This approach balances the diversity of DEFA experts while enhancing reliability in
zero-shot object goal navigation. Our system’s state-of-the-art performance on the
RoboTHOR [10] and HM3D [39] datasets validates its effectiveness, with detailed
analysis further demonstrating the reliability of our method compared to baseline
approaches.

2 Related Work

2.1 Language-Driven Zero-Shot Object Navigation

In Object Goal Navigation (OGN), the goal is to efficiently explore a new environment
while searching for a non-visible target object. Previous research often relies on visual
context through imitation [24,44] or reinforcement learning [23,51], which require
extensive data collection and annotations, limiting their practicality in real-world envi-
ronments. The focus has shifted towards zero-shot object navigation, enabling robots
to adapt to new objects and environments without specific training [12,30,62,63].
Clip-Nav [13] and CoW [15] use CLIP [37] for zero-shot navigation, while L-
ZSON [16] employs Frontier-Based Exploration (FBE) [55] to navigate between known
and unknown spaces, outperforming learning-based methods [40,50]. Unlike recent
works [3,52] that train policy networks for frontier exploration, we leverage Large Lan-
guageModels (LLMs) like GPT-3.5 [36] and GPT-4 [35] to make navigational decisions
directly, bypassing the need for any training process.

2.2 Commonsense Reasoning in Navigation

Commonsense reasoning [25,28] is critical for achieving human-like intelligence in
robotics [19,45]. Large pre-trained LLMs with reasoning capabilities are becoming
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increasingly vital for navigation. For instance, BERT [11] enhances navigation by link-
ing language instructions to navigational paths [31], while GPT-4 further improves com-
monsense reasoning in navigation [6,12,43,66]. NavGPT [66] integrates prompt-based
methods, like ReAct [58], with discrete action spaces for better navigation. Other work
leverages commonsense knowledge and semantic mapping to improve goal identifi-
cation and navigation [4,5,7]. Recent research also integrates predictions from lan-
guage models with planning or probabilistic inference [20,43], while some focus on
grounding language models in image observations [14,18,22]. JARVIS [64] offers a
neuro-symbolic framework for generalizable conversational embodied agents, while
ESC [67] pre-computes object-room relationships for zero-shot navigation, though it
struggles with evolving environments. We propose a novel approach that dynamically
infers commonsense knowledge from observed scenes, overcoming this limitation.

Fig. 2.Workflow of the proposed ZS-OGN system, RF-NAV, for Zero-Shot Object Goal Naviga-
tion (ZS-OGN). The process begins with RGB and depth observations leading to the creation of
a semantic map, which includes identified objects and room labels. This map informs the Diver-
sified Expert Frontier Analysis (DEFA) and subsequent Consensus Decision Making (CDM) to
select the most viable frontier or goal, here exemplified by the search for a ‘Toilet.’ The chosen
goal is then fed into the Local Navigation Policy, which determines the actions necessary for the
robot to explore the unknown environment.

3 Problem Formulation

In ZS-OGN, the robot must navigate to a target object gi in an unfamiliar envi-
ronment si, without prior training on navigation data. Each episode is defined as
Ei = {gi, si, p0}, where p0 is the robot’s starting position. At each step t, the
robot receives an observation Ot = {It, dt, xt, yt, θt}, which includes a color
image It, depth image dt, and its pose (position (xt, yt) and orientation θt). Over
time, the robot accumulates pose readings to track its relative position pt. Based
on these observations, the robot selects an action a from the action space A =
{“move forward”, “turn left”, “turn right”, “stop”} via a policy function π(·). Success
is achieved if the robot executes the “stop” action within a predefined distance of the
target object. In this study, we frame the navigation task as a sequence of decisions
starting at time step t = 0 and ending at the final step T , either when the target is found
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or the maximum steps are reached. The challenge lies in developing a zero-shot policy
π, designed to select the optimal action at at each step t based on the observation Ot.

4 Method

To tackle the problem outlined above, we employ Frontier-based Exploration [55]. Our
method is organized into three modules: Mapping, Global Commonsense Policy, and
Local Navigation Policy, as illustrated in Fig. 2. First, RF-NAV constructs a seman-
tic and frontier map based on the observation Ot (see Sect. 4.1). Next, in the Global
Commonsense Policy, we introduce Diversified Expert Frontier Analysis (DEFA) and
Consensus Decision Making (CDM) to select the most promising frontier for further
exploration (see Sect. 4.2). Finally, the Local Navigation Policy plans the path to the
frontier or target object and generates the necessary actions to reach it, as detailed in
Sect. 4.3.

4.1 Mapping

Constructing semantic and frontier maps are fundamental modules in various frontier-
based navigation systems [38]. Following the approach outlined in [5], we construct
the semantic map using RGB-D images and the agent’s pose. The RGB-D input is
transformed into 3D voxels and then projected onto a top-down 2D navigation map.
We utilize the ESC [67] framework to extract semantic information, including com-
mon objects and room types in Ei, using the Grounded Language-Image Pre-training
(GLIP) model [29]. This model enables zero-shot detection capabilities through natu-
ral language prompting, allowing us to detect both objects and room types. The zero-
shot detection process using object prompting Po and room prompting Pr is formally
described as: {ot,n, bot,n} = GLIP (It, Po), {rt,n, brt,n} = GLIP (It, Pr). Here, ot,i
and rt,i represent the predicted labels of objects and rooms, respectively, while bot,i
and brt,i denote their bounding boxes. The index i indicates the detected room or object
at step t. The locations of detected rooms and objects are then projected to form the
semantic map.

To generate the frontier map from the navigation map, we adhere to the method-
ology outlined in [38]. Initially, we identify the edges of the free area, defined as the
space visible to the agent and not obstructed by obstacles. Subsequently, the boundary
points between the free area and the unexplored space are identified as candidate fron-
tiers. These candidates are then sent to the Global Commonsense Policy to determine
the most promising frontier for the next phase of exploration.
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Algorithm 1. Consensus Decision Making
1: Input: Sets FO2F, FR2F, FSLE of frontiers recommended by three experts; frontier distance

matrix d � Define inputs
2: Output: A frontier � Define output
3: procedure FINDCONSENSUS(FO2F, FR2F, FSLE) � Begin consensus finding
4: Funanimous ← FO2F ∩ FR2F ∩ FSLE � Check for unanimous consensus
5: if Funanimous �= ∅ then
6: return Funanimous � Return if unanimous consensus exists
7: Fpartial ← (FO2F ∩ FR2F) ∪ (FO2F ∩ FSLE) ∪ (FR2F ∩ FSLE) � Check for partial consensus
8: if Fpartial �= ∅ then
9: return Fpartial � Return if partial consensus exists
10: else
11: return CLOSESTFRONTIER(d) � Return the closest frontier

12: procedure SELECTFRONTIER � Begin frontier selection
13: Fconsensus ← FINDCONSENSUS(Fobject, Froom, Fproximity) � Get consensus set
14: Fselected ← argmaxf∈Fconsensus d[f ] � Select max confidence frontier
15: return fselected � Return selected frontier

16: ffinal ← SELECTFRONTIER � Determine final selection
17: Output ffinal � Output the final selected frontier

4.2 Global Commonsense Policy

Global Commonsense Policy, πglobal, is responsible for selecting the best frontier by
leveraging the commonsense reasoning ability from the foundation models. The selec-
tion of a frontier is based on the nearby objects, the room type, and the room configu-
ration. The output is a chosen frontier ft, which is a point in the environment the robot
aims to reach. Global Commonsense Policy consists of two components: (1) Diversified
Expert Frontier Analysis (DEFA) to analyze the frontiers from diverse perspectives and
(2) Consensus Decision Making (CDM) to produce the final decision by considering all
the options produced by the DEFA.

Diversified Expert Frontier Analysis. In the DEFA module, we employ three dis-
tinct expert models to realize the decision-making process in ZS-OGN, each bringing a
unique perspective to frontier selection. The Object2Frontier Expert (O2F) specializes
in analyzing the objects near potential frontiers, identifying frontiers that are indicative
of the target object’s likely presence. We leverage the reasoning ability from an LLM
to realize this, as FO2F ({o}) → {SO2F }, where {o} is the set of observed objects near
each frontier, and SO2F is the selected frontiers. We use ChatGPT-3.5 as the O2F in all
of our experiments.

In addition to the O2F, we further employ an LLM as the Room2Frontier Expert
(R2F). R2F assesses the room type associated with each frontier, prioritizing those that
align with the expected location of the target, such as study rooms for a desk, denoted
as FR2F ({r}) → SR2F , with r denoting room types and SR2F the selected frontier by
this expert. We also adopt the ChatGPT-3.5 as the R2F throughout our experiments.

Lastly, to complement the analysis, we adopt a Scene Layout Expert (SLE) specif-
ically to compensate for the loss of visual information not addressed by the previous
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experts. This expert leverages visual data to dynamically reason commonsense knowl-
edge based on the observed scene. The SLE is implemented using a Multimodal Large
Language Model (MLLM), GPT-4V, which processes RGB observations {I}, alongside
detected objects and room types. This is formulated as FSLE({I}, {o}, {r}) → SSLE .
Each expert operates independently, diversifying the frontier evaluation criteria and
determining a reliable frontier to navigate. To integrate the decisions from various
experts, we utilize the Consensus Decision Making component.

Consensus Decision Making. We introduce Consensus Decision Making (CDM) for
selecting the frontier from all recommendations from the experts. This straightforward
yet effective approach relies on majority voting and reduces the occurrence of instances
of nonsensical or irrelevant reasoning. Ideally, all experts agree upon a single frontier.
When a unanimous selection is not achieved, the strategy chooses the frontier endorsed
by the majority. After the selection is made, we rank the frontiers according to their
distances to the robot’s current location to determine the final selection.

While we have demonstrated that the lower bound of our method to produce an
irrational result is lower than that of relying on a single expert to determine the fron-
tier, it is important to note that our algorithm might still encounter situations where the
three experts do not reach any consensus. To mitigate this issue, we have incorporated
a fallback strategy, in which the robot will select the closest frontier if no consensus is
achieved. We detail this entire Consensus Decision-Making (CDM) process in Algo-
rithm 1. After the goal (either the frontier or the location of the target object) has been
selected, the Local Navigation Policy generates the path planning and sequences the
actions needed to reach the goal.

Algorithm 2. Frontier-based Exploration Method
Require: Observation Ot, Semantic Map Msemantic, Frontier Map Mfrontier

1: Mapping:
2: Detect objects and room types using GLIP model
3: Construct a semantic map using RGB-D images and the agent’s position
4: Construct a frontier map and identify candidate frontiers
5: End Mapping
6: Global Commonsense Policy πglobal:
7: Diversified Expert Frontier Analysis (DEFA):
8: SO2F ← FO2F ({o}) � Object2Frontier Expert
9: SR2F ← FR2F ({r}) � Room2Frontier Expert
10: SSLE ← FSLE({I}, {o}, {r}) � Scene Layout Expert
11: Consensus Decision Making (CDM):
12: ffinal ← CDM(SO2F , SR2F , SSLE)
13: End Global Commonsense Policy
14: Local Navigation Policy πlocal:
15: Plan path to ffinal using Fast Marching Method (FMM)
16: at ← πlocal(Ot, ffinal)
17: End Local Navigation Policy
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4.3 Local Navigation Policy

To navigate from the agent’s current location to a goal produced from the CDM, we
employ the Fast Marching Method (FMM) [41], a numerical technique that efficiently
solves the Eikonal equation, providing a way to estimate the minimal time necessary
for the agent to reach the selected frontier from its starting point in the environment.
Once a frontier is selected, the local navigation policy πlocal is responsible for planning
the path to this frontier and generating the appropriate actions to navigate along this
path. This network takes as input the current observation Ot and the selected frontier
ffinal, and outputs the action at to be taken at time step t. at = πlocal(Ot, ffinal). The
combined policy π operates by first using πglobal to select a frontier and then using πlocal

to navigate towards this frontier. This process is repeated at each time step t until the
robot either reaches the target object or the episode ends.

In this formulation, πglobal provides a strategic decision-making capability, selecting
waypoints or goals that guide the overall navigation task. In contrast, πlocal is focused
on the immediate, tactical decisions required to navigate safely and efficiently to the
chosen frontier. This division allows the policy to effectively manage both the high-
level navigation objectives and the detailed, moment-to-moment challenges of robot
movement in an unknown environment. The formulation of our complete navigation
system flow can be found in Algorithm 2

5 Simulation Studies

5.1 Datasets and Metrics

HM3D [39], a foundational dataset for the Habitat 2022 ObjectNav challenge, includes
142,646 object instances across 40 classes and 216 3D environments, covering 3,100
rooms. We follow prior validation settings [16,67] to evaluate our method.RoboTHOR
[10] serves as a real-world benchmark with 89 apartment scenes and 731 unique objects.
We assess our method on 1,800 validation episodes across 15 environments, focusing
on 12 target object categories for zero-shot object goal navigation.

We use Success Rate (SR) and Success Weighted by Path Length (SPL) to evaluate
the effectiveness of our proposed method. SR metric focuses on the agent’s accuracy in
reaching the designated target, expressed as a percentage, where a higher value indicates
better performance. SR is a binary indicator of whether the robot successfully stops
within 0.1m of the target object gi within the episode. In addition, we also measure
SPL.

SPL is a metric that evaluates success relative to the shortest possible path, normal-
ized by the actual path taken by the agent. It effectively measures the efficiency of the
agent’s success in reaching its goal.

5.2 Baselines

We compare our method with two state-of-the-art (SOTA) approaches in zero-shot
object goal navigation (ZS-OGN) and our own baseline methodologies. CoW (CLIP
on Wheels) [16] tackles language-driven ZS-OGN without fine-tuning, using CLIP to
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Table 1. Comparison of Zero-shot OGN methods on the HM3D and RoboTHOR benchmarks
using SPL and SR metrics, showing our models’ superior performance, especially with the Con-
sensus Commonsense strategy.

Model Frontier Selection HM3D RoboTHOR

SPL↑ SR↑ SPL↑ SR↑
CLIP-Ref Closest – – 2.1 2.7

MDETR Closest – – 8.4 9.9

CLIP-Grad Closest – – 9.7 13.8

CLIP-Patch Closest – – 10.6 20.3

CoW Closest – – 16.9 26.7

ESC Commonsense 17.8 35.4 18.2 34.5

Ours (k = 3)Majority Commonsense 18.9 36.3 20.6 35.2

Ours (k = 5)Majority Commonsense 19.1 36.6 20.8 35.6

Ours Consensus Commonsense 21.7 37.4 22.3 36.8

identify target objects and select frontiers. We also evaluate CoW variants: CLIP-Ref,
CLIP-Patch, CLIP-Grad, MDETR. ESC [67] applies commonsense knowledge from
a pre-trained LLM to navigate unseen environments, combining vision and language
models for object identification and reasoning. Additionally, we developed a baseline
where a single expert repeatedly determines the next frontier, selecting the most fre-
quent outcome for exploration, unlike the more sophisticated reasoning process in ESC.

5.3 Results on HM3D

In this dataset, our ZS-OGN system outperforms the CoW and ESC models in both
SPL and SR metrics, as shown in Table 1. The SR improvement from 35.4 to 37.4
highlights our model’s enhanced understanding of environmental semantics, aided by
the Multimodal Large Language Model expert. The SPL increase from 17.8 to 21.7
demonstrates the effectiveness of our multi-expert approach in exploring unknown envi-
ronments. Additionally, our model surpasses the Ours (M.V) approach, which relies on
a single expert’s majority consensus. The collaborative decision-making process in our
model results in a more refined navigation strategy, leading to higher SPL in complex
real-world HM3D environments.

5.4 Results on RoboTHOR

In this dataset, we test our ZS-OGN system in an unknown environment, where it out-
performs the CoW and ESC models in both SPL and SR metrics, as shown in Table 1.
The increase in SR from 35.4 to 37.4 suggests that our model’s understanding of envi-
ronmental semantics, enhanced by the Multimodal Large Language Model expert, sig-
nificantly improves navigation capabilities. Similarly, the SPL improvement from 17.8
to 21.7 indicates that our model’s multi-expert approach is particularly effective in
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exploring unknown environments. Moreover, the superiority of our proposed frontier
selection method is further confirmed by our model’s improved performance over the
single expert’s majority consensus baseline, indicating that the improvements in our
navigation strategy generalize to RoboTHOR’s environments as well (Fig. 3).

Fig. 3. Success rates for ZS-OGN in twelve target goal categories. The comparison is among our
proposed method, our baseline method, and ESC [67]

6 Analysis

6.1 Effect of Reliable Frontier Selection

In this section, we analyze the effectiveness of our proposed frontier selection method
within the RoboTHOR environment. For a fair comparison, we evaluate our method
alongside ESC and GoW (GLIP on Wheel) [16,67]. GoW is a variant of CoW, utiliz-
ing GLIP instead of CLIP. The key difference among these models lies in their frontier
selection mechanisms. Our method introduces a novel multi-expert frontier reasoning
process combined with an innovative, condensed decision-making approach. In con-
trast, ESC employs a single expert (GPT-3) for frontier reasoning, while GoW uses a
closest frontier strategy.

We visualize the navigation paths of ESC and our method across unknown envi-
ronments with three room layouts and four object placements each. Figure 4 shows
our approach is more reliable and efficient than ESC. In Floor Plan 1, ESC’s zigzag-
ging, highlighted by red ellipses, indicates indecision and poor frontier selection, while
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Fig. 4. A comparison of the generated paths to target objects between our proposed method and
ESC [67]. Paths generated by our proposed method are more direct and efficient. Instances of
zigzagging motion are marked in red ellipses.

Table 2. Comparison of models across different metrics.

Metric GoWESCOurs

FrontierDist (m) 8.2 7.6 6.8

Exploration (%) 14.3 10.6 9.2

Detection (%) 40.6 40.8 40.6

Planning (%) 12.1 9.5 9.6

our method takes a more direct path, demonstrating better reasoning and efficiency.
These results emphasize a more effective frontier selection and a navigation strategy
that enhances reliability, reduces detours, and shortens goal-reaching time.

We evaluate the number of actions required by robots to locate target objects across
categories in unknown environments using RoboTHOR, comparing our method with
ESC and GoW. The box plot in Fig. 5 shows the median actions, 25th and 75th per-
centiles, and overall range. Our method consistently achieved lower median values
across most categories compared to ESC, indicating higher efficiency, despite greater
variability. ESC showed more predictable performance but required more actions, while
CoW had fewer outliers due to its nearest-frontier strategy but resulted in higher median
values. Overall, our method demonstrated more efficient navigation with fewer actions
on average.
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Fig. 5. The comparison of the distribution of the average number of actions to complete the zero-
shot OGN across different target objects between our method and ESC. [67]

6.2 Error Analysis

In this section, we conduct an error analysis of our proposed method, ESC and GoW.
We follow the standard protocols in [16,67] to analyze three types of error: 1) Detec-
tion error happens when the agent either misses the goal or incorrectly believes it has
detected the goal. 2) Planning error arises when the agent either recognizes the target
but cannot reach it or gets stuck without spotting the goal, reflecting the path-planning
ability of the system. 3) Exploration error occurs when the agent fails to see the goal
object due to issues other than planning or detection, assessing its ability to approach
the goal.

In Table 2, we note that the detection errors for our method, ESC, and GoW are
nearly identical, which is expected given that all three methods employ the same detec-
tion head. The similarity of detection errors across all methods suggests that enhancing
zero-shot object detection models could be a valuable direction for future ZS-OGN
research. Regarding planning errors, our method and ESC exhibit similar rates, as both
use FMM for path planning, whereas GoW, which employs A*, shows a higher error
rate in this specific dataset. Concerning the Exploration Error, our method outperforms
ESC, indicating that it more effectively aids the agent in exploring the environment and
approaching the object.

6.3 Effect of Different Experts

We conducted an experiment to validate the effectiveness of various experts. The results
are presented in Table 3, where, for the multi-expert method, we adjusted the consensus
decision-making process by only proceeding once both experts concurred.

The results indicate that visual cues improve the outcome significantly. Notably,
SLE+R2F and SLE+O2F exhibit similar performances, which is expected since visual
information can provide insights into both room type and object co-occurrence.



Exploring the Reliability of Foundation Model-Based Frontier Selection in ZS-OGN 131

Table 3. Comparison of models across different metrics.

Metric O2FR2F SLE SLE+R2F SLE+O2FO2F+R2F

SPL 17.8 18.2 19.6 21.7 21.7 20.9

7 Conclusion and Future Work

Our study introduces an innovative approach to enhance the reliability of founda-
tion model-driven frontier selection for navigation systems, particularly in zero-shot
object goal navigation scenarios. By integrating the Diversified Expert Frontier Analy-
sis (DEFA) and Consensus Decision Making (CDM), our method improves common-
sense reasoning for frontier selection by diversifying the reasoning and decision-making
process. The CDM component, inspired by the concept of self-consistency, further
ensures reliability by requiring majority expert agreement for frontier selection. The
promising performance on the RoboTHOR and HM3D datasets, along with a compre-
hensive analysis against various baselines, demonstrate its effectiveness and reliabil-
ity in zero-shot navigation tasks. While our approach shows great promise, there are
opportunities for future improvement. The system’s complexity introduces computa-
tional demands that can be optimized to enhance real-time performance. Additionally,
although decision-making consistency has improved, occasional instances of nonsen-
sical or irrelevant reasoning highlight areas where further refinement can increase rea-
soning accuracy. These enhancements will be key to advancing the system’s efficiency
and reliability, particularly in complex and dynamic environments.
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Abstract. We introduce an innovative approach to advancing semantic
understanding in zero-shot object goal navigation (ZS-OGN), enhancing
the autonomy of robots in unfamiliar environments. Traditional reliance
on labeled data has been a limitation for robotic adaptability, which
we address by employing a dual-component framework that integrates a
GLIP Vision Language Model for initial detection and an Instruction-
BLIP model for validation. This combination not only refines object and
environmental recognition but also fortifies the semantic interpretation,
pivotal for navigational decision-making. Our method, rigorously tested
in both simulated and real-world settings, exhibits marked improvements
in navigation precision and reliability.
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1 Introduction

Object navigation is crucial for the autonomous operation of robots, which
has traditionally depended on extensive labeled visual data. In Object Goal
Navigation (OGN), the objective is to navigate uncharted environments in search
of a specified, yet initially unseen, target object. Traditional methodologies in
this domain have predominantly hinged on visual cues through either imitation
[11,20] or reinforcement learning [10,22] techniques, necessitating substantial
data and annotations for effective training, thereby constraining their utility in
diverse, real-world settings.

This necessity has catalyzed a paradigm shift towards ZS-OGN strategies,
designed to imbue robots with the capacity for immediate adaptation to novel
objects and contexts [6,17,27,28]. Zero-shot object goal navigation (ZS-OGN)
[2–4,25,29–31] equips robots with the ability to identify and interact with objects
they have not previously encountered, leveraging sensory inputs and exploratory
behaviors [17]. This process allows robots to transcend the limitations of their
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Fig. 1. Illustration of the key component of our method ZS-OGN. The process begins
with the GLIP Vision Language Model detecting the target object, in this case, an
espresso machine. Subsequently, the InstructBLIP model evaluates the detection, either
confirming the GLIP’s proposal (‘Agree’) or not (‘Disagree’), which influences the con-
tinuation or adjustment of the navigational plan.

training data, enhancing their versatility and expanding their potential for oper-
ation in dynamic and novel settings [8,31]. Advancements in ZS-OGN bring us
closer to developing robots that can comprehend and engage with a more diverse
array of environments, representing a notable evolution in the field of robotics.

The existing ZS-OGN framework can be broken down into distinct compo-
nents: semantic understanding, high-level exploration, and low-level navigation
[8,19,24,31]. Semantic understanding is crucial as it provides the robot with
the ability to discern unseen objects through environmental observations, and it
lays the groundwork for subsequent exploration and navigation strategies. This
underscores its critical role and highlights the significance of advancing semantic
understanding within ZS-OGN.

Addressing the inherent limitations of direct visual embedding reliance, as
observed in the ZER framework’s [1] two-stage process which begins with an
ImageNav agent’s foundational training, subsequent innovations have pivoted
towards the exploitation of multimodal, semantic embedding spaces. This shift
not only facilitates the comprehension of objects articulated in natural language
but also circumvents the semantic void typical of image-goal embeddings bereft
of semantic annotations. Alternative sensor modalities, such as LiDAR point
cloud data, can enhance the semantic scene understanding via geometry-based
reasoning [13,23].
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To enhance the semantic knowledge of the robot within its environment, the
integration of vision-language models into robotic systems has proved highly
effective. These models merge the perceptual power of visual data with the deep
contextual insights offered by linguistic information, creating a robust framework
for interpreting complex environments. A notable innovation in this domain
is VLMaps [9], which integrates pre-trained visual-language features with 3D
environmental reconstructions to improve spatial and semantic understanding
and facilitate more natural interaction with the environment. The versatility of
vision-language models in ZS-OGN [8,17] is further demonstrated by the use
of CLIP [7], a pre-trained model that excels in diverse navigation scenarios.
Moreover, ESC [31] proposes a commonsense reasoning for an efficient frontier
selection during robot exploration and enhances the CLIP-based model using
a GLIP [15], which represents a significant leap in scene comprehension. These
advancements highlight the essential role of vision-language models in advancing
the semantic understanding aspect of ZS-OGN and pushing robotic navigation
toward higher levels of intelligence and adaptability. Despite such progress, the
success rates for ZS-OGN approaches have not been fully satisfactory, often due
to errors in object detection—either false identifications of visible goal objects
or mistaken detections of nonexistent ones. This highlights the need for a more
reliable semantic scene understanding framework that does not rely on further
training. Addressing this gap, our research aims to develop a robust semantic
understanding framework to reduce detection errors and enhance the precision
and effectiveness of robot navigation.

Further advancements, as demonstrated by EmbCLIP and CoW [8,12], incor-
porate CLIP for enhanced vision-and-language navigation and object goal nav-
igation, respectively, leveraging Frontier-Based Exploration (FBE) [24] to effec-
tively demarcate and traverse the boundary between explored and unexplored
territories. Such methodologies underscore a significant leap forward in navi-
gating autonomously through open-world settings with unprecedented efficiency
and adaptability.

Many of the aforementioned papers conduct studies in simulated or pre-
recorded data. The common benchmarks and datasets provide photorealistic
data, and the rate of improvement in the field is astounding. However, the real-
life realizations of such systems are lacking. Attempts to run the proposed algo-
rithms require many additional considerations for safety, one of which is the
lack of accurate positioning information in indoor environments. To that end,
we adapted parts of the ZS-OGN framework to be resilient to real-world uncer-
tainty, noise, and latency, by integrating a safe global path planner and a local
planner with dynamic obstacle avoidance. To the best of our knowledge, this
work is the first in a ZS-OGN framework deployed in a real-life task.

In this paper, we present a novel approach to improve the semantic under-
standing of ZS-OGN through a two-part semantic pipeline, as shown in Fig. 1,
and demonstrate its efficacy in both simulated and real-world scenarios. The pro-
posed framework consists of the GLIP Vision Language Model (VLM), responsi-
ble for the initial object and context detection, and InstructionBLIP, a validating
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VLM, to verify GLIP’s detections. These components collaboratively enhance
the accuracy of identifying objects and their surroundings.

The contributions of this work are:

– A “Doubly Right” semantic understanding framework for Zero-Shot Object
Goal Navigation (ZS-OGN), which employs a dual verification system to
enhance the reliability and accuracy of object detection in unfamiliar envi-
ronments,

– State-of-the-art performance on common simulation platforms, indicating
that the proposed framework effectively improves the semantic understanding
necessary for ZS-OGN,

– Implementation of a safety-optimal path planning algorithm to minimize
chances of collision in real-world conditions, and

– Experimental validation of the ZS-OGN pipeline in a real-world apartment

The rest of the paper is structured as follows: Problem details are provided in
Sect. 2. Implementation details of the proposed system are given in Sect. 3, and
simulation and real-world study results are shown in Sects. 4 and 5, respectively.

2 Problem Statement

In ZS-OGN tasks, a robot is tasked with locating the target object, denoted as
gi, which it has not previously encountered within an unexplored environment
si, and this must be accomplished without prior navigational data training. At
each timestep t, the robot captures a color image It, depth data dt, and its own
pose—comprising its coordinates (xt, yt) and heading θt. The robot integrates its
pose data over time to compute its current location. Utilizing the data from each
timestep, the robot selects an action a from a set of possible actions A which
includes actions such as advancing, rotating left, rotating right, and halting. The
navigation process is deemed successful when the robot elects to halt within a
specified proximity to the target object.

3 Approach

In this section, we delineate our framework for ZS-OGN. As depicted in Fig. 2,
our approach incorporates a frontier-based exploration method, which is widely
recognized in the field of ZS-OGN. The process initiates with the transformation
of the input image into semantic data, subsequently integrating this information
into a semantic map. The framework then harnesses the commonsense reason-
ing capabilities of large language models to determine the subsequent frontier
for exploration. Next, the Fast Marching Method is employed to compute the
shortest path from the agent’s current location to the designated target. Lastly,
our innovative ‘Doubly Right’ semantic understanding framework is applied to
verify the accurate detection of the target object.
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Fig. 2. The flow of our proposed method in a real-world scenario.

3.1 Doubly Right Semantic Understanding

In developing a robust framework for ZS-OGN, we introduce a novel method
called “Doubly Right,” which incorporates a dual verification system using
Vision-Language Models (VLMs) to mitigate common detection errors. This
approach, provided in Algorithm 1, seeks to increase the reliability of object
detection and room recognition within navigational tasks.

The process begins with an Initiator VLM. Following the ESC framework,
we employ the Grounded Language-Image Pre-training (GLIP) model for the
preliminary identification of objects and rooms in environmental representations.
The GLIP model processes visual inputs using zero-shot learning capabilities
to generalize its detection beyond the training data through natural language
prompts. When the GLIP model detects an object or room type, it assigns a
provisional label and triggers the Validator VLM, InstructionBLIP, to assess the
detection for accuracy. For each visual input It at time t, the framework executes
an initial detection with the GLIP model:

Oinit = GLIP(It, Po), (1)

where Oinit denotes the set of detected target objects by GLIP, and Po represent
the respective object prompting phrases applied to GLIP. Regardless of whether
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Oinit is an empty set or contains detections, the Validator VLM, Instruction-
BLIP, then reviews these initial findings. It cross-references the output from
the GLIP with the task instructions to confirm their validity. If Instruction-
BLIP identifies a need for reassessment, it advises that the environment be re-
examined, indicating potential discrepancies in the initial detection. The algo-
rithm will then return to the Initiator VLM to conduct a reevaluation. In cases
where InstructionBLIP does not advise further inspection, a flag Goal is set to
True, indicating that the target object has been reliably detected and the nav-
igational task is complete. This flag’s status is critical as it confirms the end of
the navigational sequence, ensuring that erroneous detections are addressed and
the accuracy of the navigational decision-making is improved.

The validation process serves as a double-check mechanism, confirming the
detected objects and their spatial contexts are indeed relevant and accurate for
the navigational task at hand. By implementing this two-fold verification strat-
egy, our framework aims to reduce detection errors that impede the success of
autonomous navigation systems. The approach ensures that navigation decisions
are based on a reliable semantic understanding of the environment, enhancing
the system’s performance in novel or previously unseen settings.

Algorithm 1. Doubly Right: Zero-Shot Object Goal Navigation Framework
1: Input: Visual input It at time t, object prompting phrases Po, validation prompt-

ing Pv

2: Output: a flag Goal indicates whether the target object is found.
3:
4: Initiator VLM: Employ GLIP model following the ESC framework
5: Oinit ← GLIP(It, Po) � Detect objects and rooms with GLIP
6: Validator VLM: Invoke InstructionBLIP model
7: if InstructionBLIP(It, Oinit, Pv) advises reassessment then
8: Goto Initiator VLM � Reassess the detections
9: else

10: Goal = True

3.2 Semantic and Frontier Map

Our approach for ZS-OGN follows the ESC framework to construct a semantic
navigation map critical for autonomous navigation. Utilizing depth input dt
and the agent’s 2D pose

[
xt yt θt

]� ∈ R
2 × S, we generate a foundational 2D

navigation map. The GLIP model is then applied to enrich this map semantically
by detecting objects and room types via zero-shot learning:

Smap = f(dt, xt, yt, θt,Ri), (2)

where Smap represents the semantic map, dt is the depth input at time t, and
Ri symbolizes the environmental representation obtained from the GLIP model
including room types and commonly occurring objects.
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Then, the frontier map is constructed to delineate the boundaries for explo-
ration. The process begins by identifying the periphery of the unoccupied
area within the navigation map, forming candidate frontiers between free and
unknown spaces [18]. These candidates are scrutinized by the Commonsense
Policy πcs to prioritize the next exploration target:

Ft = πcs

(
F̂

)
, (3)

where F̂ denotes the set of candidate frontiers, and Ft is the selected target
frontier.

The semantic navigation map Smap is critical for the understanding of envi-
ronmental semantics, enhancing the robot’s interaction with the environment.
Concurrently, the frontier map guides the exploratory progression, enabling sys-
tematic and informed exploration of new areas. Together, these maps form a
comprehensive navigation system that supports autonomous agents in complex
and dynamic settings.

3.3 Commonsense Policy for Exploration

Our navigation framework assimilates a commonsense reasoning module,
adapted from the established ESC framework, to complement the autonomous
navigation process. This module leverages the semantic understanding derived
from our semantic navigation map to make contextual inferences, enhancing
navigational decision-making.

The adopted ESC commonsense module ESCcs analyzes spatial relationships
and object functionalities, drawing on a knowledge base of object-room corre-
lations and navigational heuristics. Such inferences enable the anticipation of
environmental elements indirectly indicated by the current sensory data:

Ci = ESCcs(Smap), (4)

where Ci denotes the reasoned inferences based on the semantic map Smap.
These inferences feed into the Global Commonsense Policy, informing frontier
selection for targeted exploration.

By incorporating the ESC commonsense reasoning, the framework attains
a sophisticated level of environmental interpretation, pivotal for navigating
through dynamic spaces. This integration, although not our core innovation,
significantly enhances the overall efficacy of the navigation system.

4 Simulation Studies

4.1 Dataset

RoboTHOR. The RoboTHOR dataset has been developed to validate naviga-
tion systems within authentic real-world scenarios. This benchmark features 89



142 H. U. Unlu et al.

meticulously designed apartment scenes, augmented by a comprehensive collec-
tion of 731 unique objects. Adhering to protocols from previous studies [8,31],
our proposed method is subjected to an assessment comprising more than 1,800
validation episodes across 15 different environments. The evaluation is focused
on 12 principal object categories crucial for navigation.

PASTURE. The Pasture dataset augments RoboTHOR’s validation scenarios
with additional object variations and complexity across 2,520 navigation tasks,
enhancing the robustness of navigational model testing. It introduces an intricate
mix of object sizes, colors, and materials, alongside detailed spatial relationships,
to create a more challenging benchmark that closely mimics real-world condi-
tions.

4.2 Metrics

Consistent with established benchmarks in the field, we utilize Success Rate (SR)
and Success Weighted by Path Length (SPL) to evaluate agent performance. SR
measures the agent’s accuracy in reaching the target within a meter’s distance,
presented as a percentage, where a higher rate indicates better performance.
Conversely, SPL gauges the efficiency of the navigation, comparing the agent’s
actual traveled path with the ideal shortest path, thus reflecting the agent’s
navigational efficacy and the optimization of its chosen route.

4.3 Baselines

In our experiment, we measure the performance of our method against baseline
models such as CoW and ESC. CoW, designed for Zero-Shot Object Navigation
(ZS-OGN), leverages CLIP for dynamic object detection, enabling localization
without prior navigational training. We further evaluate CoW’s efficacy by com-
paring it with its variants that utilize different CLIP-based localization strate-
gies, namely CLIP-Ref, CLIP-Patch, CLIP-Grad, MDETR, and OWL. Addition-
ally, we assess ESC, which incorporates commonsense knowledge into navigation
actions through a pre-trained vision and language model, enhancing the agent’s
ability to navigate and reason about objects and rooms in unseen environments.

4.4 Results

The performance data in Table 1 reveals that our method leads with an aver-
age Success Rate (SR) of 23.0% and Success Weighted by Path Length (SPL)
of 13.7, indicating effective and efficient navigation in diverse scenarios. It sur-
passes others, particularly in challenging categories involving uncommon objects
and hidden distractions, underscoring its robustness and sophisticated seman-
tic understanding. Notably, the OWL model also demonstrates commendable
SRs, especially in environments with spatial distractions. In contrast, the CoW
model and other CLIP-based methods display more modest performance, high-
lighting the complexities these models face in the richly varied navigation tasks



Reliable Semantic Understanding for Real World ZS-OGN 143

Table 1. Zero-shot object goal navigation results on PASTURE [8] benchmarks.

Method Uncom. Appear. Space Appear. distract Space distract Hid. Hid. distract Average

SR SR SR SR SR SR SR SPL SR

CoW CLIP-Ref. 3.6 2.8 2.8 3.1 3.3 4.7 5.0 1.7 2.5

CLIP-Patch 18.1 13.3 13.3 10.8 10.8 17.5 17.8 9.0 14.2

CLIP-Grad. 16.1 11.9 11.7 9.7 10.3 14.4 16.1 9.2 12.9

MDETR 3.1 7.2 5.0 7.2 4.7 8.1 8.9 5.4 6.3

OWL 32.8 26.9 19.4 19.4 16.1 19.2 15.8 12.6 21.1

Ours 33.0 29.0 22.4 19.7 18.2 20.8 17.6 13.7 23.0

of the Pasture dataset, which is designed to evaluate navigation models with its
intricate array of objects. In addition to the evaluation on the Pasture Dataset,
We conduct further experiments on the RoboTHOR dataset. The results on
the RoboTHOR dataset, as presented in Table 2 reveal that our method stands
out with superior performance, achieving the highest Success Weighted by Path
Length (SPL) at 18.3 and Success Rate (SR) at 35.2, demonstrating exceptional
navigation efficacy among the 12 crucial object categories across 15 environ-
ments.

Table 2. Zero-shot object navigation results on RoboTHOR [5] benchmarks. * denotes
the reproduced result using the official implementation.

Method Performance

SPL SR

CLIP-Ref. [8] 1.0 1.8

CLIP-Patch. [8] 7.7 15.3

CLIP-Grad. [8] 7.4 12.1

MDETR. [8] 8.4 9.9

CLIP-OWL. [8] 13.4 21.9

ESC* [31] 18.2 34.5

Ours 18.3 35.2

5 Experimental Studies

The proposed ZS-OGN pipeline was validated in real-world scenarios on real
robot hardware. Following the procedures from the simulation environments and
benchmarks, the robotic agent was tasked with navigation near various house-
hold objects with no prior information about the environment or the actual
object.

Additional modifications were necessary to allow the system to operate in a
real-world environment to improve overall system robustness and safety in the
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face of noise and uncertainties. All such modifications are mentioned in their
respective sections below.

5.1 Environment

The layout of the apartment in which the tests are performed is provided in
Fig. 3, along with the locations of sample items to be detected and the first-
person view from the robot when they are detected.

Fig. 3. Layout of the apartment used in the experiment, along with the first-person
views of the detected mug (red), remote (green), and trash can (blue). The starting
location is marked with a star. (Color figure online)

The placement of the objects was guided by common sense: a TV remote is
expected to be found near the TV in a living room, and a garbage can can be
found in a bathroom or a kitchen.

5.2 Robotic Platform

For the study, a Unitree B1 quadruped robot, equipped with a LiDAR (Pandar
XT16) and an RGBD camera with IMU (Realsesne D455) was used. Simultane-
ous localization and mapping (SLAM), path planning, navigation, and low-level
control were executed entirely on the robot’s internal CPU, whereas the common-
sense module for identifying goal location was run on the additional computer,
attached to the robot. A photo of the vehicle is provided in Fig. 4.

The platform additionally streams depth images from 5 extra depth cameras,
inertial measurements from an internal IMU, and a proprioceptive odometry
estimate. However, none of the aforementioned data is used for this study.
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Fig. 4. A photo of the Unitree B1 robotic platform.

5.3 Odometry and Mapping

The related literature for ZS-OGN utilizes RGBD-based mapping schemes that
assume the agent pose is always available. However, without external infrastruc-
ture (e.g. GNSS for outdoors, motion capture for indoors, or dead-reckoning in
both) the agent pose is neither readily available nor always accurate.

RTAB-Map [14] was selected as the main driver for pose estimation, mapping,
and localization. The robotic platform uses the onboard LiDAR and IMU sensors
to estimate its odometry using RTAB-Map’s ICP odometry module. With the
addition of color images from the RGBD sensor, RTAB-Map’s SLAM module is
used for localization and mapping with global loop closure identification. Pose
estimation and mapping are restricted to 3DoF (xy-coordinates and yaw angle
θ) since the environment is a single-story indoor location.

5.4 Safe Path Planning

Many of the ZS-OGN frameworks output an action from the action space, such
as “move forward” or “turn left” to carry out the navigation task. While such
schemes function well in simulated environments, in which the actions can be
carried out instantaneously and precisely, the real-world interaction needs to per-
form a trade-off between speed and accuracy. discrete action spaces prevent the
agents from executing complex maneuvers (e.g. go through a narrow opening for
a robot with non-circular footprint). Finally, inherent noise in sensors and esti-
mation for robotic platforms necessitate enhanced safety precautions to prevent
inadvertent collisions with the environment. While a distance-optimal or effort-
optimal path could take the robot to its desired location with high efficiency,
the robot usually needs to navigate close to the obstacles in the environment.
Latency in state estimation, control, and/or the actual movement can lead to
collisions.
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To that end, a medial-axis-based path planning algorithm, as proposed
in [21], was adopted. In this scheme, the agent is directed to follow a path
that is maximally distant from any obstacles in the environment. Contrary to
the original implementation, the system was adapted to use a 2D cost map for
planning, to allow the paths to extend the unknown space, albeit at a high cost.

Let M ⊆ Z
2
+ denote the coordinates of the 2D occupancy grid map, with the

occupancy encoded as an integer through a mapping C : M → [0, 255]. Since the
cost map obtained from RTAB-Map is metric, there exists a surjective mapping
between the real, metric coordinates p ∈ R

2 and the map coordinates p̄ ∈ Z
2
+.

Let pr (p̄r) and pg (p̄g) denote the metric (map) coordinate of the robot’s current
position and target location, respectively.

The traversable set is a subset of the 2D cost map that does not map to a
lethal cost (i.e. fully occupied or dangerous to approach) in the original cost map.
The exact encoding may differ between different implementations, but defining
the lethal cost set as Cl ⊂ [0, 255], the traversable region is defined formally as

Mt = {p ∈ Z
2
+, C(p) /∈ Cl}, (5)

with a cost to traverse the coordinate determined via the mapping C. The
traversable set need not be connected. However, only the portion of the
traversable set that contains the current coordinate of the robot is of interest,
which will be denoted as Mt for simplicity.

The medial axis for this context is defined as the set of coordinates S ⊆ Mt

that are equidistant to multiple closest points in the boundary of the traversable
region. Many implementations exist, but the thinning algorithm implementation
in OpenCV [26] is used over a binary image representation in this work.

Finally, let p̄entry ∈ S be the closest coordinate to p̄r with a linear path
completely contained in Mt. Similarly, let p̄exit ∈ S be the closest coordinate to
p̄g in the same fashion.

Given the above definitions, the path planning algorithm generates a path
for navigation from the current position to the target position in 3 different
segments:

– A linear path Pentry from p̄r to p̄entry,
– An ordered set Paxis ⊆ S, comprised of a series of adjacent coordinates that

connect p̄entry to p̄exit, and
– A linear Pexit from p̄exit to p̄g.

A sample demonstration of the algorithm on a cost map computed during
the experiment is provided in Fig. 5

Under the appropriate handling of the cost map to account for the robot
dimensions (e.g. circular footprint with correct inflation parameters), the above
algorithm generates a path that minimizes the chance of collisions with the
environment and provides a margin of error for uncertainty and latency.
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Fig. 5. Sample path generated from the medial axis algorithm. The path (light gray)
connects the current (magenta) and target (dark blue) coordinates through the medial
axis (dark gray), entirely within the traversable region (green) and maximizing distance
from obstacles (red). Black denotes lethal cost. (Color figure online)

5.5 Implementation Details

The path planning algorithm as proposed was implemented as a planner plugin
within Nav2 [16] framework, an open-source navigation stack with production
deployments.

Since the robot doesn’t have a circular footprint, the cost map calculation,
and in return the safe path planning, becomes challenging, as the orientation of
the robot has an impact on its footprint. To avoid collisions and to follow the
generated path, the DWB controller, a critic-based local planner with a dynamic
window approach, is used. With basic tuning of DWB parameters and critics,
the local and global planner combination was found to provide sufficient agility
while preventing collisions.

5.6 Results

The path taken by the robot to find a remote controller overlaid on the archi-
tectural plan of the apartment, is given in Fig. 6, and the path for finding a
trashcan is provided in Fig. 7.

In finding the TV remote, the system appears to recognize the living room
area, prioritizing exploration of the right-hand side of the apartment. Upon
getting closer to the television, the remote controller was successfully recognized,
and the mission was over.

For the setup to find a trash can, the robot initially attempts to navigate
towards the bedroom on the left. At the time of exploration, the algorithm
confused the featureless environment to be a bathroom and focused on its explo-
ration. Eventually, the robot sees the bed and proceeds to focus on another
frontier point. The robot observed the trashcan located in the kitchen initially,
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Fig. 6. Robot path in searching for a TV remote, overlaid on the architectural plan of
the apartment.

Fig. 7. Robot path in searching for a trashcan, overlaid on the architectural plan of
the apartment.

but the path planning algorithm proposed a more indirect approaching angle for
the trashcan, in an attempt to minimize the cost of traversal. Eventually, the
robot reached the trashcan, completing the task.

6 Conclusion

Our work presents the ‘Doubly Right’ framework, a step forward in Zero-Shot
Object Goal Navigation (ZS-OGN), enabling reliable semantic understanding in
robotics. Our approach stands out as the first to implement ZS-OGN in real-
world settings, demonstrating strong potential through simulation and practical
application. Real-world tests demonstrated that lack of discerning features in the
environment can result in the system making a poor initial choice in hindsight,
due to the lack of knowledge about the observed environment, but the system
is nevertheless able to correct course and complete the task. This breakthrough
lays the groundwork for future autonomous systems to navigate novel environ-
ments without prior training, offering a glimpse into the next frontier of robotic
adaptability and intelligence.
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Abstract. Adverse conditions like snow, rain, nighttime, and fog, pose
challenges for autonomous driving perception systems. Existing meth-
ods have limited effectiveness in improving essential computer vision
tasks, such as semantic segmentation, and often focus on only one spe-
cific condition, such as removing rain or translating nighttime images
into daytime ones. To address these limitations, we propose a method to
improve the visual quality and clarity degraded by such adverse condi-
tions. Our method, AllWeather-Net, utilizes a novel hierarchical archi-
tecture to enhance images across all adverse conditions. This architecture
incorporates information at three semantic levels: scene, object, and tex-
ture, by discriminating patches at each level. Furthermore, we introduce
a Scaled Illumination-aware Attention Mechanism (SIAM) that guides
the learning towards road elements critical for autonomous driving per-
ception. SIAM exhibits robustness, remaining unaffected by changes in
weather conditions or environmental scenes. AllWeather-Net effectively
transforms images into normal weather and daytime scenes, demonstrat-
ing superior image enhancement results and subsequently enhancing the
performance of semantic segmentation, with up to a 5.3% improvement
in mIoU in the trained domain. We also show our model’s generalization
ability by applying it to unseen domains without re-training, achieving
up to 3.9 % mIoU improvement. Code can be accessed at: https://github.
com/Jumponthemoon/AllWeatherNet.

Keywords: Image enhancement · Semantic segmentation ·
Hierarchical discrimination · Illumination-aware attention

1 Introduction

Autonomous driving systems heavily rely on clear and optimal environmental
images; however, these are not guaranteed in real life due to natural conditions,
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like snow, rain, fog, low light at night, etc. This can significantly reduce visibility
and distort the captured information within an image, which impacts the per-
formance of autonomous driving perception systems, including but not limited
to object detection and semantic segmentation (Fig. 1).

(a) Original Input Images

(b) Enhanced Output Images

Fig. 1. Given images captured under adverse conditions in (a), we propose a method
that can effectively adjust color and texture, modify lighting and shadows, and remove
weather effects within a unified model. This results in a visually appealing appearance
that resembles normal, day-like weather conditions (b), thereby enhancing the robust
performance of autonomous driving perception systems.

To counter the mentioned problem, some methods remove weather artifacts
via deraining [22,24], dehazing [3,25], and desnowing [15,21,27]. Moreover, some
unified frameworks [4,12,14] handle three types of weather while mainly focusing
on removing hydrometer particles, neglecting alterations in color and texture
details; hence, restricting their effectiveness under adverse weather conditions
for autonomous driving computer vision systems.

In contrast to weather artifacts removal, pixel-level image translation
approaches transform challenging weather situations into clear, sunny-day image
styles. Regardless, these methodologies mainly focus only on specific individual
conditions, such as rain [13] or nighttime scenarios [2]. In addition, the model
may alter irrelevant pixels or areas and introduce unwanted changes, leading to
visual discrepancies and negatively impacting the performance of downstream
tasks. Likewise, low-light enhancement aims to improve the visibility and quality
of images captured in low-light conditions. This involves enhancing the bright-
ness, contrast, and details of dark images due to insufficient lighting; however,
this technique can mistakenly brighten already well-lit areas, leading to overex-
posure in weather conditions like snow, as shown in Fig. 2.

We aim to improve image quality and clarity by adjusting image attributes
and enhancing texture under four distinct adverse conditions, all within a uni-
fied framework. Subsequently, we seek to improve semantic segmentation perfor-
mance. To achieve this goal, we need to consider several critical factors:

Firstly, while a unified network is cost-effective, weather variability intro-
duces instability in the learning process. Therefore, it is crucial to identify a
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Fig. 2. (a) Original Image. The evaluation of image processing techniques for semantic
segmentation under adverse conditions reveals the deficiencies of (b) weather effect
removal [4], (c) pixel-level translation [29], and (d) low-light enhancement [16]. Images
processed by these methods either fail to sufficiently enhance image quality or intro-
duce artifacts, affecting semantic prediction accuracy. (e) Our method, AllWeather-Net,
effectively enhances color and texture detail while preserving most of the original image
information, achieving the best performance.

stable and invariant signal that can guide the network’s learning, ensuring con-
sistent performance across all conditions. Secondly, unfavorable conditions dif-
ferently impact various regions within a captured image. For example, in foggy
scenes, distant objects are more blurred than nearby ones due to light scattering
and attenuation. In addition, adverse weather conditions tend to preserve larger
patterns in images while diminishing the clarity of finer details. So, it is essential
to focus on both the overall enhancement and the intricate recovery of texture
details. This motivates us to design a network architecture that is contextually
aware and sensitive to variations in texture. Lastly, employing a pair-to-pair
training strategy can improve performance, yet finding perfectly matched pairs
in autonomous driving scenes is challenging due to inaccurate GPS pairing and
environmental variations. Alternatively, we consider adopting a strategy that
utilizes roughly aligned images for more robust discrimination during training
when exactly matched pairs are unavailable.

To address these challenges, we propose a novel architecture, namely
AllWeather-Net, and our contributions can be summarized as follows:

– We are the first to introduce a unified image enhancement method to address
image quality degradation under adverse weather and low-light conditions,
including snow, rain, fog, and nighttime.

– To achieve robust image enhancement across various adverse conditions, we
introduce a Scaled Illumination-aware Attention Mechanism (SIAM) that
directs a balanced learning process towards different road elements irrespec-
tive of changes in weather and scenes.

– To achieve both overall image consistency and detailed enhancement, we
design a novel architecture that enhances input images by conducting discrim-
ination tasks at three hierarchical levels of semantic patches: scene, objects,
and texture.
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2 Related Work

In this section, we review the image processing techniques for adverse weather
conditions and low-light environments.

Weather Effect Removal. Current methods for removing visual artifacts,
including raindrops, fog particles, and snowflakes, utilize processes such as
deraining [22,24], dehazing [3,25,26] and desnowing [15,21,27]. Recently, a uni-
fied bad weather removal network was proposed in [14]. In [12], the researcher
simplifies this architecture with a single encoder-single decoder network. To
reduce the computational cost, [4] proposed a knowledge transfer mechanism
via teacher-student architecture.

Pixel-Level Translation transforms the visual representation and convert
adverse weather conditions into scenes resembling sunny, daytime environments.
It involves a direct modification of the image pixels, altering the fundamen-
tal appearance and context of the scene. CycleGAN [29] introduced a cycle-
consistency loss for unsupervised translation between the source and target
domains. CUT [18] uses contrastive learning to ensure content preservation and
style transfer. Santa [23] proposes an approach to find the shortest path between
source and target images without paired information.

Low-Light Enhancement aims to adjust attributes of an image, such as light-
ing and color balance, to enhance the visual appearance in low-light conditions.
Traditional methods utilize histogram equalization [1] and Retinex [10] to per-
form low-light image enhancement. Recent deep learning approaches proposed
end-to-end framework [7,8,16]. Compared to traditional methods, these frame-
works demonstrate the capability of enhancing the quality of images captured
in low-light conditions.

Limitation of Existing Works. Removing weather-related unfavourable
effects typically targets minor disturbances such as snowflakes or raindrops in
the image. However, merely eliminating these atmospheric particles is insuffi-
cient, as the primary cause of image quality degradation often stems from alter-
ations in colors and texture details, which significantly contribute to domain
shifts. This limitation also applies to pixel-level translation, which frequently
introduces unwanted artifacts, thereby reducing the overall image quality and
constraining their applicability in safety-critical scenarios. Similarly, low-light
enhancement techniques, while focusing on improving visibility under low-light
conditions, do not adequately address the challenges posed by adverse weather
conditions.

3 Proposed Method

Our proposed method uses a generative model for generating image enhancement
masks based on the original input image. We introduce a scaled illumination-
aware attention mechanism (SIAM) within a unified framework to focus learning
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on road elements regardless of weather condition. Additionally, our hierarchical
framework performs discrimination at multiple semantic levels, ensuring con-
sistent and detailed enhancement. To further ensure precise enhancement, we
utilize a ranked adaptive window pairing strategy for accurate discrimination.

3.1 Enhancement Pipeline

Our image enhancement method involves two networks: a generator and a dis-
criminator, which are trained simultaneously through adversarial training to
enhance image quality. Unlike pixel-level translation (Fig. 3a), where the gen-
erator takes the source image IS and directly outputs translation results to
mimic the style of the target image, our image enhancement generates inter-
mediate results that are then combined with the original image IS to produce
final enhancement results. As illustrated in Fig. 3b, the process of generating
enhanced image I ′ can be formulated as:

I ′ = G(IS) + IS . (1)

Pixel-level translation often suffers from generating unwanted artifacts, which
can be attributed to the large search space during the training process. By
conditioning the output on the input image, the image enhancement model can
effectively reduce the search space for the generated result through residual learn-
ing. This method ensures that the model’s outputs are contextually relevant to
the original image, thereby significantly reducing the likelihood of producing
unwanted artifacts and improving the quality of the generated images.

(a) Pixel-level translation (b) Image enhancement

Fig. 3. Comparison of pixel-level translation and image enhancement process.

In our model (Fig. 4), we initially cropped the same area from the paired
source images IS and target image IT as input. The cropped source scene patch
P s

S is processed through a scaled illumination-aware attention mechanism and
the generator to produce an enhancement mask Ms. This mask is then added to
generate the final enhanced results P s

f and evaluated by different discriminators
according to its scale.
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Fig. 4. Overview of AllWeather-Net architecture. SIAM: Scaled Illumination-aware
Attention Mechanism. AllWeather-Net can enhance images across all adverse condi-
tions (e.g., fog, snow, rain, nighttime) with the help of the proposed SIAM and Hier-
archical Discrimination Framework.

3.2 Scaled Illumination-Aware Attention Mechanism (SIAM)

Training a unified network for image enhancement across different adverse condi-
tions is cost-effective yet challenging. Each condition uniquely alters the scene’s
visibility, color, and texture, complicating the learning of consistent informa-
tion across different scenarios. This variability can significantly degrade the
model’s capacity to effectively enhance images, especially when adverse con-
ditions heavily obscure scene details. Given these complexities, the importance
of a condition-invariant signal in guiding the learning process is paramount. Such
a signal should guide the model to learn critical aspects of the scene regardless
of weather or lighting conditions.

Drawing inspiration from previous work [9] targeting low-light conditions,
we consider using illumination as a guiding cue. However, the naive approach
of employing illumination intensity as attention tends to overemphasize areas of
low illumination while neglecting well-lit regions. This can result in inadequate
focus on pixel regions obscured by snow or fog, which often appear brighter due
to higher illumination levels. This discrepancy can lead to suboptimal learning
outcomes, as crucial details in these areas may not receive sufficient attention,
resulting in inconsistent enhancements in the generated images.

To direct a balanced learning for different road elements, rather than merely
focusing on dark regions, we propose the scaled illumination-aware attention
mechanism (SIAM) to allocate reasonable attention based on illumination inten-
sity. Let Iij and Attij denote the illumination intensity and the naive illumination
attention value at the given pixel location (i, j), the scaled illumination attention
S_Attij can be formulated as follows:

Attij = 1 − Iij , (2)
S_Attij = −Attij · (Attij − 2). (3)
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Fig. 5. Scaled illumination-aware attention
mechanism in the generator.

Fig. 6. Attention scores by illumina-
tion: naive vs. scaled attention.

In the network, the SIAM will guide the learning throughout the genera-
tor shown in Fig. 5. As shown in Fig. 6, the scaled illumination-aware attention
exhibits higher scores for low illumination and maintains consistently high atten-
tion levels across the input range for low illumination. This design demonstrates
heightened sensitivity towards regions with low illumination while ensuring that
high-illumination areas are allocated reasonable focus. With the implementation
of the scaled attention, our model prioritizes objects in the distance obscured by
fog particles with high illumination (Fig. 7).

Fig. 7. The flow of generating attention map with SIAM and the comparison between
naive attention and SIAM at the image and patch levels. Note that a higher attention
score indicates that the model is paying more attention to such an area. This obser-
vation suggests that the presented SIAM, compared to naive attention mechanisms, is
more adapt at focusing on areas containing road elements.

3.3 Hierarchical Discrimination Framework

Hierarchical Discrimination. From the perspective of discrimination,
employing a single discriminator generates unrealistic colors, while the global-
local structure [9] has limited performance in providing fine-grained textural
details.
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To address this issue, we propose our hierarchical discrimination architecture
with scene-, object-, and texture-level patches/discriminators.

Fig. 8. The details of hierarchical discrimination framework.

The scene-level discriminator Ds assesses a randomly cropped scene patch
P s from the original image IS , as shown in Fig. 8. Its primary purpose is to
evaluate the overall coherence and realism of the generated scene. Next, we
crop object patches P s with 1/4 of the size of the scene-level patch for the
object-level discriminator Do. This selective cropping allows for the exploration
of intricate image details that the scene-level discriminator might overlook due to
its broader perspective. Lastly, we derive the texture-level patch P t by 1/4 center
cropping from each object-level patch P o. The texture-level discriminator Dt

represents the highest level of inspection in our discriminator hierarchy, focusing
on examining fine details and texture quality of the generated image.

By incorporating the mentioned three different levels of patches and discrimi-
nators, our model differentiates between the broad scales and fine levels of detail.
This enables generated images that are not only realistic in overall appearance
but also exhibit improved textural fidelity.

Ranked Adaptive Window Pairing. Scene-level discrimination is accurate
due to similar information in paired images. However, accuracy drops at the
object level, where patch pairs often show significant information shifts due to
more apparent changes in perspective, leading to suboptimal outcomes.

To address the above mentioned issue, we utilize an adaptive window with a
ranked score to identify the object-level patches that are most closely aligned.
We begin by cropping object-level patches P o at the same location from scene-
level patches P s. Moreover, we then define a fixed search area A with a width of
w and a height of h. Within this area, we deploy a dynamic window W , of size
z × z, to traverse the defined area with a stride of s, thereby generating object-
level patch candidates. These candidate patches are subsequently compared to
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the corresponding target patch using a ranked pairing score to determine the
best match of P o

S and P o
T . Finally, we center crop the top-matched object pairs

to obtain patches P t
S and P t

T for texture-level discrimination. Let (x, y) represent
the top-left coordinate of the matched source object patch. N = x+w−z

s repre-
sents the horizontal steps required, while M = x+h−z

s denotes the vertical steps
needed to traverse the search area with the dynamic window. The formulation
of the pairing score F is defined as:

F (P o
Sc, P

o
T ) =

N∑

i=0

M∑

j=0

∣∣IP o
T
(x, y) − IP o

Sc
(x + i · s, y + j · s)

∣∣ , (4)

where P o
Sc denotes the c-th candidate patch within the search window area and

I represents the RGB values of the patch. The variables i and j signify the
horizontal and vertical offsets within the search window, respectively. The best-
matched patch, denoted as Pbest, is then determined:

Pbest = arg min
P∈W

S(P o
Sc, P

o
T ). (5)

By identifying the location of Pbest in the source scene, we can locate its
counterpart in the corresponding generated scene patch.

3.4 Loss Function

We utilize a relativistic approach [11] that compares the realism between real
and generated images. We employ LSGAN [17] loss for direct assessment of the
realism of the object- and texture-level discrimination. The scene-level losses for
the discriminator and generator are given below:

Ls
D = EP s

r ∼Preal

[
(Ds(P s

r , P s
f ) − 1)2

]
+ EP s

f ∼Pfake

[
DR(P s

f , P s
r )

2
]
, (6)

Ls
G = EP s

f ∼Pfake

[
(Ds(P s

f , P s
r ) − 1)2

]
+ EP s

r ∼Preal

[
DR(P s

r , P s
f )

2
]
, (7)

where Ds represents the relativistic discriminator, P s
r and P s

f denote the real
and generated fake scene patch. EP s

r ∼Preal and EP s
f ∼Pfake represent expectations

over the real and fake data distributions. For object- and texture-level loss, The
discriminator and generator for losses P x ∈ {P o, P t} are given by:

Lx
D = EPx

r ∼Px
real

[(Dx(P x
r ) − 1)2] + EPx

f ∼Px
fake

[(Dx(P x
f ) − 0)2], (8)

Lx
G = EPx

f ∼Px
fake

[(Dx(P x
f ) − 1)2]. (9)

Here, P x
r and P x

f denote real and fake patches of type x, respectively. Dx

represents the discriminator for the patch type x, and EPx
f ∼Pfake and EPx

r ∼Preal

are the same meaning as for scene patch. Consider the set L = {s, o, t} cor-
responding to the types of losses and use λ1, λ2, and λ3 to control each loss
contribution to balance loss; the total training loss can be written as:

Total Loss =
∑

�∈L
Λ� · (L�

G + L�
D),
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where Λs = λ1, Λo = λ2, and Λt = λ3.

4 Experiments

We conduct our experiments on image enhancement and evaluate the outcomes
from two perspectives: image quality and semantic segmentation. Both aspects
are assessed qualitatively and quantitatively.

Fig. 9. Comparison with other image processing methods regarding weather effect
removal, pixel-level translation, and low-light enhancement, using zoomed-in red
regions to highlight visual distinctions. (Color figure online)

4.1 Dataset

For image enhancement model training, we use 1,600 images from the ACDC [20],
evenly distributed among snow, rain, night, and fog conditions, and 2,416 night-
time images from the Dark Zurich [5]. For the evaluation of semantic segmen-
tation, our model enhances images from both the ACDC and the Dark Zurich
validation set, which are subsequently tested using a pre-trained PSPNet [28]
model. To demonstrate the generalization capabilities of our model, we apply it
to the test datasets of Foggy Zurich [19] and Nighttime driving [6].

4.2 Comparisons

We evaluate AllWeather-Net against three distinct approaches: (a) weather effect
removal, (b) pixel-level translation, and (c) low-light enhancement. We employ
the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Mea-
sure (SSIM) to assess enhancement quality. We utilize the Natural Image Quality
Evaluator (NIQE) to evaluate the image naturalness. Additionally, we consider
the similarity between the improved and reference daytime images employing
the Learned Perceptual Image Patch Similarity (LPIPS). We adopt the Mean
Intersection over Union (mIoU) metric to evaluate semantic segmentation per-
formance.
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Image Quality. In Fig. 9, the first column represents the input images cap-
tured under different adverse conditions while the subsequent columns are the
enhanced results by different models. We observe that weather effect removal
methods such as WGWS-Net [30] and MultiAdverse [4] excel in eliminating
weather-related artifacts but fall short in achieving a sunny daytime appear-
ance. Pixel-level translation methods, including CUT [18] and Santa [23] can
effectively transform images from adverse conditions to daytime-like settings,
yet these models struggle with visual consistency in nighttime scenes and may
inadvertently remove less prominent objects, such as a car in the distance, in
foggy conditions. Low-light enhancement-based method SCI [16] and PairLIE [7]
can enhance lighting and brightness in night scenes but over-expose in well-lit
conditions, e.g. fog and snow. In contrast, our method demonstrates the most sig-
nificant improvements in brightness and contrast across various scenes. It delivers
the most realistic and clear daytime representation under diverse adverse condi-
tions, significantly enhancing visibility without introducing artifacts or excessive
noise. Additionally, it outperforms other models in color correction and detail
enhancement, offering a more comprehensive solution.

As shown in Table 1 and Table 2, our method achieves the most natural image
enhancement outcomes with the lowest NIQE score and excels in converting
images to the daytime domain, indicated by the lowest LPIPS scores for night-
time scenes.

Table 1. Qualitative evaluation of image quality and semantic segmentation perfor-
mance on ACDC dataset.

Method Type Models Metrics
SSIM↑ PSNR↑ NIQE↓ LPIPS↓ mIoU↑

Weather effect removal WGWS-Net [30] 0.3916 11.4812 0.1480 0.4740 36.4
MultiAdverse [4] 0.3822 10.9135 0.1782 0.4752 37.0

Pixel-level translation CycleGAN [29] 0.3981 12.2493 0.1578 0.4655 33.6
CUT [18] 0.3776 12.1043 0.1668 0.4833 29.3
Santa [23] 0.3920 12.0863 0.1374 0.4770 25.7

Low-light enhancement EnlightenGAN [9] 0.3905 11.8725 0.1651 0.4649 37.2
Zero-DCE [8] 0.3160 10.6015 0.2726 0.4428 32.4
SCI [16] 0.3239 8.5693 0.2600 0.5149 24.4
PairLIE [7] 0.3577 8.9133 0.1564 0.4598 28.3

All weather enhancementOurs 0.3983 11.6618 0.1257 0.4619 38.2

Semantic Segmentation. The effectiveness of our image enhancement model
for semantic segmentation is assessed by performing a direct evaluation using
the pre-trained PSPNet model [28]. We apply the model to datasets enhanced
by our model as well as those enhanced by others. As shown in last column
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Table 2. Qualitative evaluation of image quality and semantic segmentation perfor-
mance on Dark Zurich dataset.

Models Metrics
SSIM↑ PSNR↑ NIQE↓ LPIPS↓ mIoU↑

EnlightenGAN [9] 0.3791 10.2460 0.3186 0.4766 10.8
Zero-DCE [8] 0.3324 8.6448 0.3425 0.5109 10.6
SCI [16] 0.3519 8.5735 0.2554 0.5115 11.0
PairLIE [7] 0.3827 9.1442 0.2083 0.4844 7.1
Ours 0.3849 9.6121 0.1850 0.4589 17.6

in Table 1 and Table 2, our method demonstrates superior performance in both
adverse weather and nighttime scenes. This indicates that our model can enhance
the performance of semantic segmentation models by significantly improving
visual quality and visibility compared to other image processing models. In the
visualization results shown in Fig. 10, our method improves the detail recognition
of road elements such as trees, grass, and pedestrians in all conditions.

Fig. 10. Semantic segmentation results in comparison with other state-of-the-art meth-
ods of weather effect removal, pixel-level translation, and low-light enhancement, using
zoomed-in white regions to highlight visual distinctions.

Generalization to Unseen Datasets. We evaluate our trained model’s perfor-
mance in scenarios not seen during training using the Foggy Zurich and Night-
time Driving datasets. The results in Fig. 11 show that our model enhances
clarity of cars, traffic lights, and road signs in the Foggy Zurich dataset, and
corrects the yellowish glow on buildings and trees in the Nighttime Driving
dataset, restoring their true colors and visibility. The mIoU comparison (Table 3)
shows improvements of 1.8% and 3.9% respectively, highlighting the remarkable
generalization capability of our model and demonstrating its ability to enhance
semantic segmentation performance in unseen domains without re-training.
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Fig. 11. The generalization performance of our model on the Foggy Zurich and Night-
time Driving datasets. The red and green box corresponds to the zoomed-in patches.
(Color figure online)

Table 3. MIoU scores tested on pretrained PSPNet [28] for original and enhanced
versions of Foggy Zurich and Nighttime Driving test datasets.

Datasets Original Enhanced

Foggy Zurich [19] 26.3 28.1
Nighttime Driving [6] 23.0 26.9

4.3 Ablation Studies

To demonstrate the impact of each component in our method, we conduct abla-
tion experiments with a focus on image quality improvement. These experiments
examine different levels of discrimination, Ranked Adaptive Window Pairing
(RAWP), and the Scaled Illumination Attention mechanism (SIAM).

Table 4. Qualitative comparison of model components using SSIM. A higher SSIM
value indicates better image generation quality as it signifies greater similarity to a
clear daytime image in terms of structure, luminance, and contrast.

Models Components SSIM ↑
Ds Do Dt RWAP SIA

M1 � 0.3864
M2 � � 0.3879
M3 � � � 0.3910
M4 � � � � 0.3922
M5 � � � � � 0.3983

In Table 4, we observe enhanced image quality, as indicated by higher SSIM
values, with the incremental inclusion of discriminators: scene discriminator
Ds, object discriminator Do, and texture discriminator Dt. The introduction
of RWAP further increases SSIM, indicating that the model learns finer details
in local patches through pair-to-pair training. Subsequently, incorporating atten-
tion further elevates SSIM, demonstrating the effectiveness of attention in
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enhancing image quality. For various adverse conditions, the scaled illumina-
tion attention mechanism effectively focuses on road elements, as demonstrated
in Fig. 12. The enhanced image quality in Fig. 13 indicates that scaled attention
addresses uneven lighting issues by allocating attention appropriately, partic-
ularly to areas overlaid with high illumination. This highlights the capability
of the scaled attention mechanism to focus on both low and high-illumination
regions within road elements and adapt to all adverse conditions.

Fig. 12. Naive attention and SIAM maps for
various input adverse condition images. Darker
regions indicate higher attention scores.

Fig. 13. Results generated by
models trained with naive atten-
tion and scaled attention.

5 Conclusions

In this work, we introduced AllWeatherNet, a unified framework designed to
enhance image quality under various adverse conditions such as snow, rain, fog,
and nighttime. Our objective was to develop a singular model capable of simul-
taneously addressing these four conditions without introducing artifacts that
degrade image quality. The model can adjust lighting, brightness, and color
in images in both adverse and normal weather conditions, transforming them
into clear, daytime-like visuals. We implemented a hierarchical framework to
recover color and texture details, along with a ranked adaptive window pair-
to-pair training strategy to boost performance. We also developed a scaled-
illumination attention mechanism to direct the learning process towards low and
high-illumination areas, making it adaptable to different adverse scenarios. We
performed semantic segmentation experiments using our enhanced dataset and
observed notable improvements. Additionally, the model demonstrated excep-
tional generalization capability across a range of datasets without requiring re-
training.
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Abstract. The 4D auto-labeling system, with its potential to enhance
data annotation efficiency for 3D object detection, has garnered sig-
nificant attention. However, its adoption has been hampered by the
high costs associated with temporally annotated long-sequential train-
ing data and limited generalization capabilities across diverse scenar-
ios. In this paper, we hypothesize that a multi-dataset approach can
address these challenges and, accordingly, first introduce a Unified train-
ing pipeline for multi-dataset 4D Auto-Labeling, namely Uni4DAL. We
recognize that this is a challenging task, primarily due to data-level vari-
ations and feature-level inconsistencies among various datasets. Moti-
vated by this understanding, we initially propose a series of Data-Level
Alignment (DLA) operations to mitigate potential discrepancies between
diverse datasets and ensure synchronized training progress across sam-
ples from multiple datasets. Furthermore, to address feature-level incon-
sistencies, we introduce the Mixed Expert Models Voxel Feature Encod-
ing (MoE-VFE) module, which aims to extract both domain-specific
and domain-generalizable features. Additionally, we employ a Domain-
Adaptive Hard Example Mining (DA-HEM) technique to leverage both
data-level and feature-level consistencies, ensuring that the model pays
enhanced attention to the challenging samples during multi-dataset
training. Finally, comprehensive experiments demonstrate that Uni4DAL
significantly improves performance on the nuScenes, Argoverse2, and
Waymo datasets, and exhibits greater robustness with insufficient train-
ing data.
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1 Introduction

3D object detection for autonomous driving has gathered significant interest
and undergone rapid technological advancements in recent years. However, the
training of deep learning-based 3D object detectors often requires a substan-
tial amount of manually annotated data, which is both time-consuming and
labor-intensive. To address this issue and reduce the dependency on manual
labor, researchers [5,11,13,21] have increasingly focused on the development of
high-quality offline detectors for auto-labeling purposes. In a 4D auto-labeling
system, the long-term offline 3D object detector serves as a critical component.
As emphasized in the work of CTRL [5], these detectors leverage the entire
sequential point cloud and utilize temporal context to achieve higher perfor-
mance compared to state-of-the-art (SOTA) online 3D object detectors.

Fig. 1. Challenges in training a 4D auto-labeling detector. We conduct our experi-
ments on the cyclist category of the nuScenes dataset and the Waymo dataset. Figure
(a) illustrates a comparative analysis between single-dataset training and our proposed
Uni4DAL method when confronted with inadequate training samples. The results indi-
cate that 4D auto-labeling detectors trained solely on single dataset exhibit consider-
ably degraded performance, while our proposed Uni4DAL achieves significant improve-
ments. Figure (b) compares the performance of single-dataset training, direct merging,
and our Uni4DAL approach. Notably, the performance of directly merging datasets is
inferior to single-dataset training, while our proposed Uni4DAL surpasses other train-
ing methodologies.

However, two major challenges hinder the widespread adoption of 4D auto-
labeling systems: (1) the requirement for a vast quantity of high-quality, tem-
porally annotated training data; (2) the limited generalization capability of the
resulting models, which hinders their overall performance [8,16,23]. As depicted
in Fig. 1a, the lack of sufficient training data significantly degrades the detec-
tion performance, thereby limiting the effectiveness of these methods in diverse
autonomous driving scenarios.
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To enhance the generalization capability of models, research on object
detection has demonstrated that multi-dataset training strategies [3,8,16,19,23]
migrate the domain gap between various datasets. However, based on our
experiments, directly combining different datasets and conducting multi-dataset
training adversely affects the overall performance, as depicted in Fig. 1b. We
attribute this to data-level variations and feature-level inconsistencies across
various datasets, caused by the domain gap shift among distinct LiDAR point
clouds across datasets.

In this work, we propose a Unified training pipeline for multi-dataset 4D
Auto-Labeling, namely Uni4DAL. Firstly, to address the inferior performance
caused by data-level variations, we implement a series of Data-Level Alignment
(DLA) strategies to mitigate potential discrepancies between point cloud data
from various datasets and ensure synchronized training progress across multi-
ple datasets. Next, to mitigate feature-level inconsistencies, unlike the common
practices of previous research [8,19,23], we propose the Mixed Expert Models
Voxel Feature Encoding (MoE-VFE) module to extract both domain-specific
and domain-generalizable features from the aligned point cloud data. Finally,
a Domain-Adaptive Hard Example Mining (DA-HEM) technique is employed
to identify and select challenging, or “hard” examples from the datasets. The
selected hard examples are over-sampled during multi-dataset training, focusing
the model’s attention on those instances that are most difficult to classify or
localize.

Comprehensive experiments demonstrate that Uni4DAL significantly
enhances performance on the nuScenes, Argoverse2, and Waymo datasets. Fur-
thermore, Uni4DAL exhibits greater robustness with insufficient training data,
thereby emphasizing its aptness for real-world applications in the context of
autonomous driving. To the best of our knowledge, we are the first to investi-
gate the integration of multi-dataset training for offline 4D detection. Our key
contributions are summarized as follows:

– We introduce a novel offline multi-dataset 3D object detection method,
termed Uni4DAL, which utilizes long-term multi-dataset sequences for 4D
auto-labeling.

– Uni4DAL incorporates a series of Data-Level Alignment (DLA) techniques to
mitigate potential discrepancies in data-level variations, alongside the Mixed
Expert Models Voxel Feature Encoding (MoE-VFE) module, which addresses
feature-level inconsistencies.

– Uni4DAL proposes the Domain-Adaptive Hard Example Mining (DA-HEM)
technique that enhances the attention to the challenging samples during
multi-dataset training, leveraging data-level and feature-level consistencies.

– Extensive experiments demonstrate that Uni4DAL significantly improves per-
formance on the nuScenes, Argoverse2, and Waymo datasets, and exhibits
greater robustness with insufficient training data.
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2 Related Work

2.1 LiDAR-Based 3D Object Detection

Based on their spatial sparsity, previous LiDAR-based 3D object detectors can be
classified into three categories: dense detectors, semi-dense detectors, and sparse
detectors. VoxelNet [24] pioneered the use of dense convolutions for voxel feature
extraction. PointPillars [7] applies 2D dense convolutions on Bird’s Eye View
(BEV) feature maps to enhance computational efficiency. As a pioneering work
in the field of semi-dense detectors, SECOND [20] employs sparse convolution to
extract 3D sparse voxel features. CenterPoint [22] further established a robust
baseline with improved performance. FSD [4], being the first work to adopt a
fully sparse architecture, develops a comprehensive sparse pipeline and mitigates
time-consuming operations in purely point-based methods. Furthermore, FSD
has been adapted to process tracklet data with extensive spatial spans for offline
auto-labeling in CTRL [5], which is also utilized in our proposed Uni4DAL.

2.2 4D Object Automated Labeling

Accurate auto-labeling for data-driven models, which is critical due to costly
annotations, has attracted increasing attention in both academia and industry.
However, online detectors, although real-time, suffer from limited performance as
they cannot fully utilize temporal context. Conversely, offline detectors analyze
the entire sequence data, capturing temporal patterns and dependencies that
improve detection accuracy. Here, the pioneering work, 3DAL [13], proposes an
object-centric offline 3D object automated labeling pipeline, utilizing an off-
the-shelf 3D object detector and 3D multi-object tracker to process sequential
point cloud data, followed by refinement through a well-designed network. Sub-
sequently, Auto4D [21] presents a trajectory-centric pipeline to refine the size
and motion path of objects. Recently, DetZero [11] proposes a pipeline with
an attention-mechanism-based refining module to leverage long-term temporal
contextual information. Additionally, CTRL [5] introduces a track-centric per-
spective which incorporates all points and proposals from each tracklet, refining
all boxes simultaneously. However, the requirements of temporally annotated
training data and limited generalization capabilities hinder the application of
4D auto-labeling.

2.3 Multi-dataset Training

Employing a unified model trained on multiple datasets has been a prevalent
approach for traditional 2D perception tasks, including object detection [3] and
semantic segmentation, due to its demonstrated enhancement in robustness and
generalization capabilities. Various methods have been introduced to integrate
image datasets for applications such as object detection, image segmentation,
and depth estimation. In the realm of 3D vision, Uni3D [23] employs dataset-
specific detection heads and feature re-coupling techniques to train a unified 3D
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object detector. PPT [19] proposes a methodology to pre-train a point cloud
segmentation network utilizing data from multiple datasets. However, the sub-
sequent fine-tuning of the pre-trained weights on individual datasets undermines
the universal learning approach. M3Net [8] designs a unified framework for multi-
task, multi-dataset, multi-modality LiDAR segmentation. In our work, we are
the first to introduce a multi-dataset training strategy into the realm of offline
3D object detection.

3 Method

3.1 Framework Overview

We select CTRL [5] as our baseline, which is a LiDAR-based offline 3D detector
with high performance and low resource requirements. Moreover, its simpler
pipeline is more suitable for engineering implementation.

The overall pipeline of our proposed Uni4DAL framework is illustrated in
Fig. 2. Initially, the base 3D object detector and 3D multi-object tracker process
LiDAR points (and/or multi-view images) to yield tracking results, wherein each
tracked object is assigned a unique tracking ID. Secondly, the Uni4DAL frame-
work takes Object-Centric Long-Term Sequential Point Cloud (OCLT-PC) data
as its input. This data serves as the foundation for subsequent processing steps.
Further details regarding OCLT-PC are provided in the supplementary material.

Subsequently, the DA-HEM technique is utilized to identify and select chal-
lenging, or “hard” examples from the datasets. The selected hard examples are
then over-sampled during multi-dataset training, directing the model’s attention
towards those instances that are more difficult to classify or localize. Following
the DA-HEM step, DLA strategies are implemented to mitigate potential dis-
crepancies between the various datasets. Next, the MoE-VFE module is intro-
duced to extract both domain-specific and domain-generalizable features from
the aligned point cloud data. Finally, a 3D backbone network and a detection
head are employed to extract relevant features from both datasets. The 3D back-
bone functions as the primary feature extractor, while the detection head utilizes
these features to generate classification and localization results. A more detailed
description is provided as follows.

3.2 Data-Level Alignment

Contrary to traditional 2D image-based perception tasks, 3D point clouds are
captured by a diverse array of LiDAR sensors, introducing variations such as
differences in reflection intensity distributions and perspective ranges. These
inconsistencies significantly hinder the effectiveness of multi-dataset training.
Additionally, the varying positions of LiDAR sensors across datasets result in
disparities in ground height, further complicating the challenges associated with
multi-dataset training. To mitigate these issues and enhance the performance of
multi-dataset training, we employ three Data-Level Alignment (DLA) strategies:
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Fig. 2. Overview of the framework of Uni4DAL. Firstly, the Uni4DAL framework
takes the Object-Centric Long-Term sequential Point Cloud data (OCLT-PC) as its
inputs. Subsequently, a Domain-Adaptive Hard Example Mining (DA-HEM) technique
is employed to identify and select hard examples. These selected examples are over-
sampled during multi-dataset training. Following the DA-HEM step, Data-Level Align-
ment (DLA) strategies are implemented to mitigate potential discrepancies between dif-
ferent datasets. Next, the Mixed Expert Models Voxel Feature Encoding (MoE-VFE)
module is designed to extract both domain-specific and domain-generalizable features.
Finally, a 3D backbone and a detection head are utilized to extract features from both
datasets and output classification and localization results.

point cloud reflection intensity alignment, point cloud range alignment, and point
cloud ground height alignment. In this section, we primarily focus on the latter
strategy, namely ground height alignment. A more detailed description of these
alignment strategies is provided in the supplementary material.

Furthermore, given the diverse hyper-parameters and data processing
pipelines across different datasets, some methods [23] utilize multiple data load-
ers during the training process, each fetching an equal number of samples from
their respective datasets. However, the imbalance in sample scales across datasets
frequently results in an imbalanced training process and sub-optimal perfor-
mance. In this section, we introduce a simple yet effective method, named the
Balanced Batch Size Strategy (BBSS), for aligning the sample scales at the data
level across diverse datasets.

Point Cloud Ground Height Alignment. To mitigate discrepancies in sen-
sor installations across diverse datasets, we introduce a point cloud ground height
alignment operation. Specifically, we calculate the mean ground height of labels
in the training set for various datasets and categories. Subsequently, we adjust
the coordinate origins of both point clouds and labels to align them to a com-
mon ground height reference. Furthermore, Z-axis data augmentation is applied
to point clouds and labels to enhance detection robustness. Empirical results
demonstrate that this alignment technique significantly mitigates the degrada-
tion caused by variations in sensor configurations.
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Balanced Batch Size Strategy. To address the problems of imbalanced sam-
ple scales, we introduce the Balanced Batch Size Strategy (BBSS), a novel train-
ing approach designed for alignment across diverse datasets. In this strategy, the
training batch size is dynamically adjusted based on the proportional sample
counts from multiple datasets. Specifically, if dataset A contains NA samples and
dataset B comprises NB samples, the balanced batch sizes for datasets A and B
are defined as BA = NA/(NA+NB)×BS and BB = NB/(NA+NB)×BS , where
BA and BB represent the balanced batch sizes for datasets A and B, respectively,
and BS denotes the total batch size after balancing. The Balanced Batch Size
Strategy ensures synchronized training across multiple datasets, thereby achiev-
ing superior performance compared to using a uniform batch size across multiple
datasets.

3.3 Cross-Domain Feature Extraction

To enhance cross-domain feature interaction, previous studies [8,19,23] have
introduced domain-decoupled normalization modules for learning generalized
representations across diverse datasets. However, while mitigating feature-space
discrepancies through conventional 2D or 3D backbones, these approaches over-
look the beneficial role of domain-specific features, thus limiting their overall
performance. A similar concern has been observed by [1], which exploits the
domain-specific features to enhance domain generalization ability.

Fig. 3. Framework of VFE modules in Uni4DAL. VFE denotes Voxel Feature Encoding
module.
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To address this limitation and effectively extract both domain-specific and
domain-generalizable features, we introduce a novel yet efficient module, named
the Mixed Expert Models Voxel Feature Encoding (MoE-VFE), as illustrated
in Fig. 3c. Inspired by the Mixed Expert Models (MoE) [6,14], we design a
comprehensive framework that incorporates a mixture of multiple VFE modules.
These VFE modules can be categorized into two distinct parts: (1) the Naïve
VFE module, depicted in Fig. 3a, which serves as a baseline for common 3D point
cloud networks, extracting general features from the input data; (2) the Domain-
Decoupled VFE module, presented in Fig. 3b, which can be considered as the
specialized VFE modules within the MoE-VFE framework (depicted in Fig. 3c).
Specifically, one VFE module is employed to extract shared features Fshare,
whereas N VFE modules are dedicated to extracting domain-specific features
from each of the N datasets. Subsequently, a gating mechanism is employed to
effectively fuse domain-specific and domain-generalizable features.

Fsep = [F1, F2, . . . , FN ] (1)

Gσ(x) = Softmax(MLPσ(x)) (2)

Fm = Gshare([Fshare, Fsep])Fshare +Gsep([Fshare, Fsep])Fsep (3)

Where [·] denotes the concatenate operation, Fshare denotes the shared fea-
tures from the shared VFE, Fsep denotes the specialized features from N special-
ized VFEs. These fused features Fm are then fed into a 3D backbone network
(namely, Sparse UNet [15] in our framework) without any domain-decoupled
normalization modules. Our proposed MoE-VFE module ensures that both the
generalized and specialized information are leveraged optimally, thereby enhanc-
ing the overall performance of the model across different domains. It outperforms
both the Naïve VFE module and the Domain-Decoupled VFE module, while
maintaining a straightforward framework and high computational efficiency.

3.4 Domain-Adaptive Hard Example Mining

Despite the capabilities of data-level alignment strategies and the MoE-VFE
module in extracting domain-specific and domain-generalizable features, chal-
lenges persist with respect to a subset of samples. Unlike conventional posi-
tive and negative samples, these samples typically exhibit unique characteristics,
including longer tracklet lengths, higher detection confidence, but sparser point
clouds. Further statistical analysis is available in the supplementary materials.
Such samples pose significant challenges during multi-dataset training, as they
have the potential to disrupt the training process for other datasets.

To mitigate this issue and facilitate the identification of these challenging
samples, we define them as “hard examples” and propose a domain-adaptive
mining strategy, specifically, the Domain-Adaptive Hard Example Mining (DA-
HEM) strategy. Firstly, we develop a lightweight framework that comprises solely
the MoE-VFE module and an MLP-based classifier, as depicted in Fig. 4. The
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Fig. 4. Framework of Domain-Adaptive Hard Example Mining (DA-HEM) in
Uni4DAL. VFE denotes Voxel Feature Encoding module.

classifier’s task is to assign domain labels to voxel features originating from var-
ious domains. Thanks to the lightweight structures of the MoE-VFE module
and the MLP-based classifier, the training process does not consume excessive
resources. Secondly, we identify and select the samples with the top-k lowest
mean classification confidence scores across all voxel features within these sam-
ples. Finally, during the multi-dataset training process, these hard examples
are over-sampled to enhance the models’ ability to learn from these potentially
ambiguous samples.

4 Experiments

4.1 Experimental Setups

Dataset and Metrics. We conduct experiments on the nuScenes dataset [2],
the Waymo Open Dataset [17], and the Argoverse2 dataset [18]. The nuScenes
dataset comprises 1000 scenes, each capturing a duration of 20 s. These scenes
are recorded by six cameras operating at 12Hz and a 32-beam LiDAR sensor at
20Hz. To maintain synchronization between the cameras and LiDAR, the anno-
tated key frames are set to a frequency of 2Hz. We evaluate our approach using
mean Average Precision (mAP) for each category. The Waymo Open Dataset
contains 1150 LiDAR scenes, each providing point cloud data captured over
20 s, sampled at a frequency of 10Hz. We adhere to the official evaluation proto-
col and assess our approach using average precision (AP) and average precision
weighted by heading (APH) on LEVEL 1 (L1) difficulty levels for each category.
The Argoverse2 dataset encompasses 1000 scenes, where each scene provides
point cloud data captured by two 32-beam LiDAR sensors over 15 s, sampled at
a frequency of 10Hz. We evaluate our approach using mean Average Precision
(mAP) for each category.

Training Strategy. For our proposed approach, we follow the pipeline of CTRL
[5], incorporating various data augmentation strategies, including global random
flipping, rotation, scaling, and the injection of random box noise. Furthermore,
we concatenate box size and rotation information with the point cloud to enrich
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the feature representation. We employ AdamW [10] optimizer with a weight
decay of 1×10−2 to optimize our model, and employ a cosine annealing strategy
[9] to decay the learning rate. The models are trained on 8 Nvidia V100 GPUs.
Further details are provided in the supplementary material.

Table 1. Specifics of the merged categories from different datasets.

Waymo [17] nuScenes [2] Argoverse2 [18]

Vehicle Bus, Construction Vehicle,
Car, Trailer, Truck

Articulated Bus, Box Truck, Bus,
Large Vehicle, Regular Vehicle,
School Bus, Truck, Vehicular Trailer

Pedestrian Pedestrian Pedestrian
Cyclist Bicycle, Motorcycle Bicycle, Bicyclist,

Motorcycle, Motorcyclist

Merging Similar Categories. To maintain label space consistency across
multi-dataset training workflows and address the issue of insufficient train-
ing data for long-tail categories within the nuScenes [2] and Argoverse2 [18]
datasets, we implement a strategy to merge comparable categories during the
training phase. Specifically, we consolidate the tracklets belonging to vehicle-like
categories into a unified group, and similarly, combine the tracklets of cyclist-
like entities into another distinct group. This approach ensures that the model
can leverage a more balanced and comprehensive representation of these cate-
gories. Notably, during the inference stage, these merged categories are evaluated
individually to preserve their distinctiveness and accuracy. The specifics of the
merged categories are detailed in Table 1.

4.2 Main Results of Multi-dataset 4D Auto Labeling

Joint Training on nuScenes and Waymo Datasets. To investigate the
effectiveness of multi-dataset 4D automatic labeling, we conduct a comparative
analysis between our proposed Uni4DAL approach and the single-dataset 4D
auto labeling strategy, specifically CTRL [5]. This evaluation is performed on
both the nuScenes [2] validation set and the Waymo [17] validation set, and
the results are shown in Table 2. Our proposed Uni4DAL outperforms CTRL
(trained using a single-dataset strategy) by 0.8%/0.6%/3.0% in mAP on the
nuScenes dataset and 0.3%/0.5%/0.4% in APH L1 on the Waymo dataset, as
well as CTRL (trained using a multi-dataset strategy) by 0.9%/0.4%/3.5% in
mAP on the nuScenes dataset and 0.1%/3.2%/2.6% in APH L1 on the Waymo
dataset, demonstrating the effectiveness of our proposed Uni4DAL on both
datasets owing to the well-designed multi-dataset training strategies.
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Table 2. Results of joint training on the nuScenes, Argoverse2 and Waymo datasets.
We report mAP metrics on the nuScenes dataset, mAP metrics on the Argoverse2
dataset, and AP and APH of LEVEL 1 metrics on the Waymo dataset. The super-
script † indicates that we modified the input of CTRL [5] to accommodate the multi-
dataset pipeline, without any improvements from our paper. The notion of category:
Vehicle (Veh.), Pedestrian (Ped.), Cyclist (Cyc.). The notion of dataset: nuScenes (N),
Argoverse2 (A), Waymo (W).

Trained on Method nuScenes Argoverse2 Waymo
Veh. Ped. Cyc. Veh. Ped. Cyc. Veh. Ped. Cyc.

only nuScenes CTRL [5] 65.0 88.4 76.7 – – – – – –
only Argoverse2 CTRL [5] – – – 36.2 65.7 52.3 – – –
only Waymo CTRL [5] – – – – – – 87.2/86.6 87.3/84.6 86.9/86.0
N+W CTRL† 64.9 88.6 76.2 – – – 87.4/86.8 85.1/81.9 84.7/83.8
N+A CTRL† 65.2 88.3 76.3 36.4 65.1 46.5 – – –
A+W CTRL† – – – 37.0 65.1 53.9 86.3/85.7 87.0/84.0 85.4/84.5
N+W Uni4DAL(Ours) 65.8 89.0 79.7 – – – 87.5/86.9 87.9/85.1 87.3/86.4
N+A Uni4DAL(Ours) 65.7 88.8 80.2 36.6 65.7 55.4 – – –
A+W Uni4DAL(Ours) – – – 37.4 66.1 55.5 87.4/86.8 87.5/84.8 87.2/86.2

Joint Training on nuScenes and Argoverse2 Datasets. We also conduct
experiments on both the nuScenes [2] validation set and the Argoverse2 [18] vali-
dation set. The results, summarized in Table 2, indicate that Uni4DAL surpasses
CTRL (single-dataset) by 0.7%/0.4%/3.5% in terms of mAP on the nuScenes
dataset and by 0.4%/0.0%/3.1% on the Argoverse2 dataset, as well as CTRL
(multi-dataset) by 0.5%/0.5%/3.9% in terms of mAP on the nuScenes dataset
and by 0.2%/0.6%/8.9% on the Argoverse2 dataset.

Joint Training on Argoverse2 and Waymo Datasets. We further conduct
experiments on both the Argoverse2 [18] validation set and the Waymo [17] vali-
dation set. The results, summarized in Table 2, indicate that Uni4DAL surpasses
CTRL (single-dataset) by 1.2%/0.4%/3.2% mAP on the Argoverse2 dataset, and
by 0.2%/0.2%/0.2% APH L1 on the Waymo dataset. Furthermore, Uni4DAL
surpasses CTRL (multi-dataset) by 0.4%/1.0%/1.6% mAP on the Argoverse2
dataset, and by 1.1%/0.8%/1.7% APH L1 on the Waymo dataset, indicating
that directing merging multiple dataset may degrade the performance.

4.3 Ablation Studies

Ablation Studies of Components in Multi-dataset Training on
NuScenes and Waymo. To validate the effectiveness and universality of our
proposed Uni4DAL framework, we conducted ablation studies of all compo-
nents on the nuScenes and Waymo datasets, as presented in Table 3. The first
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Table 3. Ablation of each component on joint training on the nuScenes and Waymo
dataset. We report mAP metrics on the nuScenes dataset, and AP and APH of LEVEL
1 metrics on the Waymo dataset. DLA represents Data-Level Alignment strategies.
MoE-VFE represents Mixed Expert Models Voxel Feature Encoding module. DA-HEM
represents Domain-Adaptive Hard Example Mining. The notion of category: Vehicle
(Veh.), Pedestrian (Ped.), Cyclist (Cyc.). The notion of dataset: nuScenes (N), Waymo
(W).

Trained on DLA MoE-VFE DA-HEM nuScenes Waymo
Veh. Ped. Cyc. Veh. Ped. Cyc.

only nuScenes 65.0 88.4 76.7 – – –
only Waymo – – – 87.2/86.6 87.3/84.6 86.9/86.0
N+W 64.9 88.6 76.2 87.4/86.8 85.1/81.9 84.7/83.8
N+W � 65.1 88.6 79.2 87.4/86.8 87.4/84.7 86.8/85.9
N+W � � 65.2 88.9 79.4 87.5/86.9 87.9/85.1 87.3/86.4
N+W � � � 65.8 89.0 79.7 87.5/86.9 87.9/85.1 87.3/86.4

row, labeled “N+W”, demonstrates that directly merging the two datasets with-
out proper alignment or module enhancements results in significantly inferior
performance compared to training on a single dataset. The second row indi-
cates that employing data-level alignment strategies enhances performance by
0.2%/0.0%/3.0% on the nuScenes dataset and 0.0%/2.3%/2.8% on the Waymo
dataset. Notably, the slightly sub-optimal performance on the vehicle category
in the nuScenes dataset may be attributed to the varying average heights among
its five sub-categories. The third row shows that our proposed MoE-VFE mod-
ule improves performance by 0.1%/0.3%/0.2% on the nuScenes dataset and
0.1%/0.4%/0.5% on the Waymo dataset. These results suggest the module’s abil-
ity to extract domain-specific and domain-generalizable features from point cloud
data. Lastly, the fourth row demonstrates that our DA-HEM module enhances
performance by 0.6%/0.1%/0.3% on the nuScenes dataset, while it does not
yield significant improvements on the Waymo dataset. We attribute this sub-
optimal performance to the relatively higher domain classification confidence
scores achieved on the Waymo dataset, which subsequently results in fewer hard
examples being selected for training.

Ablation Studies of the MoE-VFE Module. To thoroughly evaluate the
effectiveness of the Mixed Expert Models Voxel Feature Encoding (MoE-VFE)
module, we conduct an ablation study comparing its performance with several
alternative VFE modules on the cyclist category within the nuScenes, Argoverse2
and Waymo datasets. Specifically, we analyze the performance of the MoE-VFE
module with the following VFE modules: (1) the Naïve VFE module, depicted in
Fig. 3a; (2) the Domain-Decoupled VFE module, presented in Fig. 3b. As sum-
marized in Table 4, our findings indicate that the Domain-Decoupled VFE mod-
ule outperforms the Naïve VFE module. Furthermore, the proposed MoE-VFE
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module exhibits even superior performance, thereby validating the effectiveness
of extracting both domain-specific and domain-generalizable features.

Table 4. Ablation on the Mixed Expert Models Voxel Feature Encoding (MoE-VFE)
module and other VFE modules.

Trained on Setting nuScenes Argoverse2 Waymo
Cyclist Cyclist Cyclist

nuScenes+Waymo Naïve VFE 79.2 – 86.8/85.9
nuScenes+Waymo Domain-decoupled VFE 79.1 – 87.2/86.2
nuScenes+Waymo MoE-VFE (ours) 79.4 – 87.3/86.4
nuScenes+Argoverse2 naïve VFE 79.0 53.3 –
nuScenes+Argoverse2 domain-decoupled VFE 79.8 54.4 –
nuScenes+Argoverse2 MoE-VFE (ours) 80.0 54.9 –

4.4 Further Analyses

Experiments on Reduced Training Samples. Given the substantial costs
associated with human-annotated long-sequential training data, in practical
applications, collecting sufficient LiDAR data for training 4D auto-labeling
models may be impractical, resulting in inferior performance. In this context,
Uni4DAL proposes an alternative approach to alleviate the requirement for
extensive training data by leveraging multi-dataset training, utilizing both the
target dataset and an additional source dataset. As demonstrated in Table 5,
joint training with few-shot data from the nuScenes dataset and the Waymo

Table 5. Results of reducing the number of samples in the nuScenes dataset under
the setting of nuScenes-Waymo joint training. The notion of category: Vehicle (Veh.),
Pedestrian (Ped.), Cyclist (Cyc.).

Trained on Sample Ratio nuScenes
Veh. Ped. Cyc.

only nuScenes 100% 65.0 88.4 76.7
only nuScenes 5% 60.3 87.1 71.1
only nuScenes 2% 58.0 86.1 50.9
only nuScenes 1% 54.8 43.6 30.5
nuScenes+Waymo 100% 65.2 (+0.2) 88.9 (+0.5) 79.4 (+2.7)
nuScenes+Waymo 5% 61.5 (+1.2) 88.1 (+1.0) 77.1 (+6.0)
nuScenes+Waymo 2% 60.8 (+2.8) 87.4 (+1.3) 74.3 (+23.4)
nuScenes+Waymo 1% 59.3 (+4.5) 86.4 (+42.8) 72.9 (+42.4)



180 Z. Yang et al.

dataset significantly improves performance on the nuScenes dataset, in compar-
ison to training solely on the nuScenes dataset. This improvement is primar-
ily attributed to Uni4DAL’s capability to extract generalized features, which
reduces the risk of over-fitting when dealing with limited nuScenes data. These
experiments validate Uni4DAL’s ability to reduce the data dependency of 4D
auto-labeling models in scenarios where only insufficient training data is avail-
able for the target dataset.

t-SNE Visualization of the MoE-VFE Module. To further investigate the
effectiveness of our proposed MoE-VFE module, we gather voxel-level features
from various VFE modules and visualize them using the t-SNE [12] technique.
Figure 5a depicts the features extracted from the Naïve VFE (as demonstrated in
Fig. 3a), where features from distinct domains share a relatively unified feature
space. A similar trend is observed in Fig. 5b, indicating that the shared compo-
nent within the MoE-VFE (as depicted in Fig. 3c) is also capable of extracting a
more coherent set of features across diverse datasets. In contrast, as illustrated
in Fig. 5c, the features from the two specialized components within the MoE-
VFE exhibit a notably diverse distribution. These experimental results validate
the capability of our proposed MoE-VFE module in extracting both domain-
specific and domain-generalizable features, ultimately resulting in enhanced per-
formance.

Fig. 5. t-SNE Visualization of the MoE-VFE Module. Figure (a) represents the features
extracted by the Naïve VFE module. Figure (b) depicts the features of the shared
component within the MoE-VFE module, whereas Fig. (c) illustrates the features of
the specialized components within the MoE-VFE module.

5 Conclusion

This paper proposed a novel and high-performance offline multi-dataset 3D
object detection method for processing long-term sequential multi-modal data,
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named Uni4DAL. Aiming to mitigate the data-level variations and feature-level
inconsistencies among various datasets, Uni4DAL leverages data-level align-
ment operations, enhanced cross-domain feature extraction and improved train-
ing strategies to mitigate the inconsistencies among various dataset during
multi-dataset training process. The improved generalization ability and greater
robustness, even with insufficient training data, demonstrate the effectiveness of
Uni4DAL. We hope that this simple pipeline design can provide further insights
into multi-dataset offline 3D object detection and 4D auto-labeling systems.
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Abstract. This paper investigates the problem of semantic segmenta-
tion in high-resolution remote sensing images, aiming to predict semantic
labels at a pixel-level granularity. Faced with the complexity and hetero-
geneity inherent in high-resolution remote sensing images, which lead to
challenges such as misclassification of edges and confusion in contextual
information, we propose a Dual-Attention Fusion Network with Edge and
Content Guidance (DAF-Net). The DAF-Net consists of three modules:
(1) the edge feature extraction module, responsible for extracting bound-
ary information; (2) the edge fusion module, which thoroughly integrates
the extracted edge features with the original features to improve intra-
class semantic consistency, particularly in pixels containing boundaries;
(3) the content guided attention fusion module (CGA), which produces
unique spatial importance maps for each channel, thereby highlighting
more useful information within the features and reducing redundancy.
Additionally, we introduce a CGA-based fusion strategy that more effec-
tively integrates the features from both the encoder and the decoder. The
effectiveness of DAF-Net is demonstrated through extensive experimen-
tal evaluations and ablation studies conducted on the ISPRS Vaihingen
and Potsdam datasets. DAF-Net achieves notable mIoU scores of 78.73%
and 83.81% on the Vaihingen and Potsdam datasets, respectively.

Keywords: Remote sensing · Semantic segmentation · Edge fusion ·
Content-Guided attention fusion · Transformer

1 Introduction

The semantic segmentation of remote sensing images is essential for numerous
remote sensing applications, such as monitoring environmental changes, preci-
sion agriculture, environmental conservation, urban planning, and 3D modeling.
The goal of semantic segmentation is to assign pixels belonging to the same
category with consistent color labels. However, current high-resolution remote
sensing image applications demand higher requirements for semantic segmenta-
tion. Traditional methods such as support vector machines and random forests
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have become inadequate to meet these demands. Therefore, there is significant
room for improvement in the performance of semantic segmentation for remote
sensing images. With the rapid advancement of deep learning techniques, Con-
volutional Neural Networks (CNNs) have achieved outstanding performance in
semantic segmentation by learning complex feature representations of images.
In particular, Long et al. [11] proposed Fully Convolutional Networks (FCNs),
which greatly enhance the performance of pixel-level segmentation. Ronneberger
et al. [12] developed UNet, an encoder-decoder network characterized by its sym-
metric structure, which employs skip connections to reduce the loss of feature
information during downsampling and improve segmentation accuracy. Liu et al.
[9] introduced the Scale Feature Attention Module (SFAM) to increase the net-
work’s depth. However, due to the complex scenes of remote sensing images, the
performance of CNN seems to reach a threshold. Because the convolution kernel
of feature extraction has great limitations, it is difficult to capture the global
information correlation. Global context information is crucial to fully extract fea-
tures. With the swift advancement of Transformers [4] in the realm of Natural
Language Processing (NLP), some researchers have attempted to apply Trans-
formers to semantic segmentation, [4,24]. Due to its remarkable ability in global
modeling, transformer-based models have the potential to continuously improve
performance. Xu et al. [20] proposed an efficient transformer to overcome the
computational burden associated with Transformers.

Despite the progress made by the above methods, there are still some limita-
tions. First, these methods largely ignore the importance of edge learning, and
have not considered fully integrating the supervised edge information with the
feature maps. Secondly, simply concatenating the encoder and decoder features
in the decoder stage directly increases the model’s parameter count, which may
hinder effective information extraction and impede the free flow of information
within the network. Although weighted feature fusion In the study by Tan et
al. [14] can reduce computational complexity, we posit that spatial importance
varies across different channels. Each channel in the feature space should have
distinct semantic significance, and direct weighted fusion might disrupt the spa-
tial specificity of these channels.

Inspired by the above literature, we propose a Dual-Attention Fusion Network
with Edge and Content Guidance (DAF-Net) for remote-sensing image semantic
segmentation. The main work of this paper is as follows:

1) We propose an edge extraction module (EEM), which uses shallow informa-
tion to accurately identify edges, and generates an edge guide graph while
deeply supervised learning edge prediction graph, so that it can further learn
edge features from rich features.

2) The simple use of edge prediction graphs to enhance the edge information of
feature maps may lead to spatial and semantic confusion of feature maps. To
overcome this problem, we proposed an edge fusion module (EFM), which
uses the edge guide graph in the edge extraction module to adaptively fuse
edge information, and introduces a spatial attention mechanism to filter the
fused redundant features.
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3) We propose a Content-Guided Attention (CGA) mechanism to generate
channel-specific spatial importance maps in a coarse-to-fine manner. CGA
produces unique spatial importance maps for each channel, thereby high-
lighting more useful information within the features and reducing redundancy.
Additionally, we introduce a CGA-based fusion strategy that more effectively
integrates the features from both the encoder and the decoder.

2 Related Work

2.1 CNN-Based Remote Sensing Image Semantic Segmentation

The advent of FCN [11] an end-to-end semantic segmentation network, has fun-
damentally disrupted traditional segmentation networks. Subsequently, CNN-
based networks have dominated the field. The encoder-decoder structure, with
its simple designand excellent performance, has become the primary framework
for semantic segmentation of remote sensing images. However, CNN’s limita-
tions in capturing fine-grained spatial and global semantic information, caused
by the complexity and blurry edges of remote sensing images, have prompted
the introduction of multi-scale aggregation and attention mechanisms into the
networks. Li et al. [6] proposed a Multi-level Attention Reconstruction Network
(MAResUNet) that incorporates LLM attention mechanism into the skip con-
nections of UNet to address semantic disparities across different scale feature
maps and establish long-range dependencies. Li et al. [7] introduced a Multi-
Attention Network (MANet) that partially compensates for CNN’s deficiency in
capturing global information. Despite various methods being developed to alle-
viate the limitations of CNN, the majority of them still rely on aggregating local
features extracted by CNN to form global information.

2.2 Transformer-Based Remote Sensing Image Semantic
Segmentation

In recent years, Transformer [24]-based models have exhibited remarkable per-
formance in numerous computer vision and natural language processing (NLP)
tasks. With exceptional sequence modeling capabilities, Transformers have
swiftly made their way into the field of semantic segmentation. Their unique
self-attention mechanism and parallel computing abilities enable them to capture
global contextual information, surpassing the limitations of local convolutions in
CNNs and extracting more valuable information. Consequently, a plethora of
segmentation methods based on Transformers have emerged, including Swin-
UNet [2] and SegFormer [19], Additionally, there are approaches that combine
the advantages of both CNNs and Transformers. For example, Zhang et al. [22]
introduced a hybrid architecture in which the encoder uses a Swin Transformer to
capture long-range dependencies, while the decoder leverages CNN-based tech-
niques to effectively maintain local information in the image. Dense Connection
Swin (DC-Swin) [15] leverages Transformers for feature extraction and utilizes
a designed feature aggregation module (DCFM) to extract multi-scale semanti-
cally enhanced feature relationships.
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3 Proposed Method

In this study, we adopt Swin Transformer Base as the backbone network for
extracting image features. This allows us to obtain feature maps with varying
receptive fields. We leverage the first three shallow-level features to extract edge
features. These features are then inputted into the Edge Extraction Module
(EEM). To better capture edge information, the Edge Truth Supervision Mod-
ule is employed. It facilitates the learning of edge information by supervising
the boundaries produced by the labels. The extracted edge features are subse-
quently merged with the original feature map using the Edge Fusion Module
(EFM). Finally, in the decoder, the aggregated information is passed through
skip connections for feature integration and is further processed by the Content-
Guided Attention Fusion module (CGAF) to extract key regions.The overall
architecture of DAF-Net is illustrated in Fig. 1.

Fig. 1. The overall architecture of the proposed DAF-Net consists of four main compo-
nents: an encoder, a decoder, an edge extraction and fusion module, and content-guided
attention fusion module.
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3.1 EEM

Edge information significantly contributes to enhancing the segmentation per-
formance of remote sensing images. To achieve accurate extraction of edge infor-
mation, we introduce the EEM as depicted in the Fig. 2.

Fig. 2. Illustration of EEM. Monitor learning edges and generate edge guide graphs.

The EEM module is designed to extract precise edge information from remote
sensing images. To maintain a higher resolution while preserving more semantic
information, we utilize the first three feature maps (c1, c2, c3) to extract edge
information. In the EEM module, these three feature maps are first unified to the
channel dimension of c2 through 1× 1 convolutions. Subsequently, c1 undergoes
downsampling while c3 undergoes upsampling to match the size of c2. They are
then concatenated and passed through a Channel Attention Module (SE) [5],to
adaptively learn feature channel information from different feature maps. Finally,
a 3×3 convolutional layer is applied to extract edge guide graph. To better learn
edge information, we incorporate boundary ground truth supervision generated
from labels. With shared parameters, each of the three feature maps of the same
scale is separately convolved by a 1 × 1 kernel to produce single-channel feature
maps, which are element-wise summed and passed through a sigmoid function
to generate the boundary probability map. The aforementioned process can be
represented as follows.

Ctotal = Cat(Down2(Conv1×1(C1)),Conv1×1(C2),Up2(Conv1×1(C3))) (1)

fE = (Conv3×3(SE(Ctotal))) (2)

Epred = Up8( Sigmoid
∑

k=1

Conv1×1 ((Ctotal[k]))) (3)

Where C1, C2, C3 represent input features, Conv1×1 denotes a 1×1 convolution,
Up2 and Down2 represent nearest-neighbor interpolation down-sampling and up-
sampling by a factor of two, respectively, and Cat denotes channel concatenation.
After these operations, the difference between Epred, calculated using a loss
function, and the ground truth edge labels is used to supervise the network for
better learning of fE .
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3.2 EFM

To integrate the edge information extracted by the EEM module into the orig-
inal feature maps to enhance edge information and reduce semantic confusion,
we propose the EFM (Edge Fusion Module) module as shown in the Fig. 3. The
EFM first applies weighting to the feature maps based on the extracted bound-
ary weight information while preserving the diversity of residual connections to
mitigate the impact of erroneous boundary information on the original feature
maps. After an initial fusion, to emphasize the spatial learning of the feature
maps, the fused features are passed through a spatial attention (SA [25]) to
generate a spatial weight map. The original features and the preliminary fused
features are then weighted separately and combined through simple addition to
obtain the final fused features. As for the feature maps from other layers, which
have different sizes compared to the extracted boundary features, the bound-
ary features are upsampled, downsampled, and convolved with a 1 × 1 kernel
before being fused with the other feature maps. The aforementioned process is
represented as follows.

fi = (Ci ⊗ fE) + Ci (4)

CEi = SA(fi) ⊗ (Ci + fi) (5)

Fig. 3. Illustration of EFM. The edge guide map is fused with the original feature map.

3.3 CGA and CGA-Based Fusion Module

The Convolutional Block Attention Module (CBAM) [17] utilizes separate mech-
anisms for channel attention and spatial attention, treating these two forms of
attention independently. This separation can limit the potential for integrated
feature enhancement. To address this limitation, we propose a Content-Guided
Attention (CGA) mechanism. The CGA mechanism creates specialized spatial
importance maps for each channel using a progressive refinement approach.
This method achieves a thorough integration of channel and spatial attention
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and enhances the effective exchange of information between these two attention
types.

The detailed steps of the Content-Guided Attention (CGA) are illustrated
in the Fig. 4. For input features, we apply two branches to extract the weights
for channel attention and spatial attention, denoted as Wc and Ws respectively.
Specifically, in the channel branch, global average pooling is initially employed
to generate the channel attention map. The channel dimension is then reduced
through a 1 × 1 convolution, processed with a ReLU activation function, and
restored to the original channel dimension with another 1 × 1 convolution. In
the spatial branch, max pooling and average pooling are first applied to gener-
ate feature maps, which are then concatenated along the channel dimension to
form the spatial attention map. The spatial weight distribution is then acquired
through a 7×7 convolution. Next, a simple addition operation is used to fuse Wc
and Ws, adhering to the broadcasting rule to produce the coarse spatial impor-
tance map. To obtain the final refined Spatial Importance Maps, each channel
is adjusted based on the relevant input features. Specifically, the content of the
input features guides the generation of the Spatial Importance Maps. Channel
shuffle operations are used to alternately rearrange every channel. Here, σ repre-
sents the Sigmoid operation, CS(.) represents is the operation for channel shuf-
fling, and GC7×7(.) indicates the group convolution. This approach emphasizes
the more useful information encoded within the features. The aforementioned
process is represented as follows.

X = C1×1 ([Flow, Fhigh]) (6)

Wc = C1×1 (max (0, C1×1 (Xc
GAP ))) (7)

Ws = C7×7 ([Xs
GAP ,Xs

GMP ]) (8)

Wcoa = Wc + Ws (9)

W = σ (GC7×7 (CS ([X,Wcoa]))) (10)

Fig. 4. Illustration of CGA. The CGA assigns unique spatial importance maps to every
channel.
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In the decoder, each pixel in the deep features corresponds to a pixel region
derived from the shallow features. Basic operations such as addition, concatena-
tion, or other combinations are inadequate for resolving the inconsistencies before
fusion. To address this issue, we introduce a CGA-based fusion module, as illus-
trated in Fig. 5. This module fuses and adjusts the low-level features from the
encoder with their matching high-level counterparts through the use of learned
spatial weights, enabling an adaptive fusion mechanism. The core method uti-
lizes CGA to compute the spatial weights necessary for feature modulation. The
low-level and corresponding high-level features from the encoder are processed
by CGA to generate these weights, which are then combined through weighted
summation. Additionally, skip connections are introduced to incorporate input
features. Finally, the fused features are passed through a 3 × 3 convolutional
layer to generate the output features.

Ffuse = C3×3 (Flow · W + Fhigh · (1 − W ) + X) (11)

Fig. 5. Illustration of CGA based Fusion Module. Used to fully integrate features at
different levels.

3.4 Loss Function

We define the loss function Lseg as cross-entropy loss (CE). The formulation is
as follows:

Lce = − 1
N

N∑

n=1

K∑

k=1

y
(n)
k log ŷ

(n)
k (12)

In edge-supervised learning, we utilize a combination of binary cross-entropy
(BCE) loss and binary Dice loss, formulated as follows:

Ledg = Lbce + Ldice (13)

Therefore, our total loss is defined as follows:

Ltotal = Lseg + λ · Ledg (14)

whereλ represents the weight, which was set to 0.2 in our experiment.
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4 Datasets and Experimental Settings

4.1 Datasets

ISPRS Vaihingen. This dataset comprises 33 orthorectified images with an
average size of 2494 × 2064. Each image consists of three bands: near-infrared,
red, and green, along with the corresponding Digital Surface Model (DSM) and
Normalized DSM (NDSM). It consists of six classes: impervious surfaces, build-
ings, low vegetation, trees, cars, and background.

ISPRS Potsdam. This dataset consists of 38 orthorectified images with an
image size of 6000 × 6000 and a Ground Sampling Distance (GSD) of 5 cm.
Each image contains near-infrared, red, green, and blue bands, as well as the
corresponding DSM and NDSM. Similar to the Vaihingen dataset, it includes
six classes: impervious surfaces, buildings, low vegetation, trees, cars, and back-
ground.

4.2 Evaluation Metrics

To evaluate the performance of our proposed model, we utilized three evaluation
metrics: Overall Accuracy (OA), mean Intersection over Union (mIoU), and
mean F1 score (mF1). These metrics were compared against state-of-the-art
methods. OA, mIoU, and mF1 were calculated based on the cumulative confusion
matrix as follows:

OA =
∑N

k=1 TPk∑N
k=1 TPk + FPk + TNk + FNk

(15)

mIoU =
1
N

N∑

k=1

TPk

TPk + FPk + FNk
(16)

precision =
1
N

N∑

k=1

TPk

TPk + FPk
(17)

recall =
1
N

N∑

k=1

TPk

TPk + FNk
(18)

F1 = 2 × precision × recall
precision + recall

(19)

Where TPk, FPk, TNk and FNk represent true positives, false positives, true
negatives, and false negatives, respectively, for objects with an index of class k.
OA is the ratio of correctly predicted pixels to the total number of pixels.
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4.3 Experimental Setup

We followed the official recommendations to partition the datasets. For the
ISPRS Vaihingen dataset, we used 16 images for training and 17 images for
testing. For the ISPRS Potsdam dataset, 24 images were used for training and
14 images for testing. To prevent overfitting, we employed a sliding window
operation to crop the training data into 512 × 512 patches with a stride of
256. Data augmentation was applied using random horizontal flips, random ver-
tical flips, and random multi-scale [0.5×, 0.75×, 1×, 1.25×, 1.5×] cropping.
The experiments on the Vaihingen dataset were conducted on a single NVIDIA
3060 GPU using the PyTorch framework, while the experiments on the Pots-
dam dataset employed the same data cropping and augmentation methods on
a single NVIDIA 3090 GPU with the PyTorch framework. During the training
phase, we utilized the AdamW optimizer with a weight decay parameter of 0.01
and an initial learning rate of 6e−5. The learning rate was updated using the
“poly” learning policy with a power of 0.9. The batch size was set to 4, and the
maximum training iteration was 105. During the testing phase, we employed a
test time augmentation (TTA) strategy using multiple scales [0.5×, 0.75×, 1×,
1.25×, 1.5×].

5 Experimental Results and Analysis

5.1 Comparison With State-of-the-Art Methods on ISPRS
Vaihingen

The experimental results of different methods on the ISPRS Vaihingen dataset
are presented in Table 1. Since the background occupies a relatively small pro-

Table 1. Quantitative comparison with the latest models on the ISPRS Vaihingen
dataset. The best values in each column are indicated in bold. All scores are reported
as percentages (%), measured in F1 scores for all categories.

Method Imp.surf Building Lowveg. Tree Car MeanF1 mIoU OA

UNet [12] 89.86 93.41 80.82 86.93 81.50 86.51 76.55 87.79

SegNet [1] 89.35 93.14 80.57 86.75 74.37 84.84 74.23 87.41

DeepLabv3+ [3] 90.40 94.06 81.45 87.20 81.23 86.87 77.13 88.36

PSPNet [23] 89.99 93.78 81.51 87.41 79.28 86.39 76.44 88.05

MAResU-Net [6] 90.43 94.13 81.73 87.17 80.18 86.73 76.95 88.39

Swin-UperNet [10] 90.26 94.07 81.13 87.04 81.58 86.82 77.05 88.21

BANet [16] 90.28 93.86 80.99 87.08 80.31 86.50 76.60 88.12

ABCNet [8] 89.73 93.38 80.91 87.23 78.72 85.99 75.83 87.86

CMTFNet [18] 90.61 94.21 81.93 87.56 82.77 87.42 77.95 88.71

MSGCNet [21] 90.75 94.43 81.48 87.13 83.19 87.4 77.93 88.58

DAF-Net(ours) 90.69 94.38 82.1 88.64 83.77 87.92 78.73 89.07
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portion of the pixels, the accuracy of the background was not included in the
experiments. The results in Table 1 demonstrate that our proposed DAF-Net
method achieved the highest MeanF1/mIoU/OA scores.

5.2 Comparison With State-of-the-Art Methods on ISPRS Potsdam

The experimental results of different methods on the ISPRS Potsdam dataset
are presented in Table 2. The results in Table 2 demonstrate that our proposed
EGMF-Net method achieved the highest MeanF1/mIoU/OA scores.

Table 2. Quantitative comparison with the latest models on the ISPRS Potsdam
dataset. The best values in each column are indicated in bold. All scores are reported
as percentages (%), measured in F1 scores for all categories.

Method Imp.surf Building Lowveg. Tree Car MeanF1 mIoU OA

UNet [12] 90.73 95.35 85.05 85.97 91.49 89.72 81.57 88.36

SegNet [1] 91.27 95.18 85.10 86.05 91.10 89.74 81.60 88.54

DeepLabv3+ [3] 91.76 96.33 85.74 86.87 92.23 90.59 83.02 89.45

PSPNet [23] 91.74 96.32 85.80 86.97 91.86 90.54 82.94 89.42

MAResU-Net [6] 91.79 96.33 85.69 87.03 92.19 90.61 83.05 89.46

Swin-UperNet [10] 91.60 96.04 86.09 87.00 91.70 90.49 82.82 89.43

BANet [16] 91.42 95.65 85.67 86.88 91.40 90.20 82.35 89.14

ABCNet [8] 91.21 95.92 85.28 86.56 90.74 89.94 81.94 88.94

CMTFNet [18] 92.12 96.41 86.43 87.26 92.41 90.93 83.57 89.89

MSGCNet [21] 92.2 96.62 86.34 87.15 92.51 90.91 83.49 89.87

DAF-Net(ours) 92.27 96.57 86.00 87.52 92.93 91.06 83.81 89.97

To visualize the differences between our method and other popular
approaches, we display the visual results of several methods in the Fig. 6. It
can be observed that DAF-Net achieves better segmentation results compared
to other methods. In environments with complex edges, DAF-Net can accurately
identify the complete contours of objects. For the small object category, such as
“car,” DAF-Net can segment each car more accurately than other methods. It
is evident that DAF-Net performs well in segmenting objects of different scales.

5.3 Ablation Experiment

To evaluate the performance of the modules included in our proposed DAF-
Net, ablation experiments were conducted on the ISPRS Vaihingen dataset.
Due to the interdependence of the edge extraction module and the edge fusion
module, separate experiments were not performed on these two modules. The
experimental results are shown in Table 3, as follows: Baseline: The baseline
consists of the swin-transformer-Base as the backbone network, with the seghead
[13] serving as the segmentation head.
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Fig. 6. Qualitative comparison of the visualization results of our method with other
methods on the Vaihingen dataset.

Baseline+EEM+EFM. utilizes shallow-level features for edge feature extrac-
tion and integrates edge information through the designed module. As shown
in Table 3, by incorporating EEM+EFM, the segmentation performance for all
categories is improved compared to the baseline. Particularly, there is a signifi-
cant improvement in the segmentation accuracy of small objects, such as cars.
MeanF1 is enhanced by 1.74%, resulting in an overall improvement of 0.68% in
MeanF1, 1.05% in mIoU, and 0.5% in OA.

Baseline+CGAF. CGAF mitigates the issue of detail loss during upsampling
by incorporating a carefully designed content-guided attention fusion module.
Additionally, it helps to bridge the semantic gap present in skip connections.
As shown in Table 3, by incorporating CGAF, the segmentation performance
for all categories is improved compared to the baseline, resulting in an overall
improvement of 0.74% in MeanF1, 1.12% in mIoU, and 0.55% in OA.

Table 3. Performance Analysis of DAF-Net Modules. The best values in each column
are highlighted in bold. All scores are presented as percentages (%), with F1 scores
used for all categories.

Method Imp.surf Building Lowveg. Tree Car MeanF1 mIoU OA

Baseline 90.26 94.07 81.13 87.04 81.58 86.82 77.05 88.21

Baseline+EEM+EFM 90.96 94.43 81.6 87.19 83.32 87.5 78.1 88.71

Baseline+CGAF 90.77 94.43 82.1 88.26 83.23 87.56 78.17 88.76

Baseline+total 91.31 94.87 82.38 87.29 84.04 87.98 78.84 89.20
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Effect of CGA. To verify the effectiveness of our proposed CGA, we conducted
comparative experiments. In order to ensure the uniqueness of the variables, we
only replace the CGA module in the CGAF with the CBAM to verify its validity.
As shown in Table 4, the results show that CGAF achieves better results, which
proves that CGAF can better guide feature fusion.

Table 4. Verify the effectiveness of content-guided attention module. The best values
in each column are highlighted in bold.

Method Imp.surf Building Lowveg. Tree Car MeanF1 mIoU OA

Baseline 90.26 94.07 81.13 87.04 81.58 86.82 77.05 88.21

Baseline+CBAMF 90.95 94.55 81.53 87.05 82.84 87.38 77.93 88.66

Baseline+CGAF 90.77 94.43 82.1 88.26 83.23 87.56 78.17 88.76

6 Conclusion

The aim of this paper is to improve segmentation results by fusing edge informa-
tion as accurately as possible, especially position pixels with similar edge colors.
The features of high and low levels are gradually upsampled by a Content-Guided
Attention fusion module containing jump connections. We have demonstrated
through experiments the superiority of the proposed network architecture and
the effectiveness of each module. However, using Swin Transformer as the encoder
has the drawbacks of high computational complexity and large memory con-
sumption. In future research, we will further optimize our network architecture,
focusing on model compression and addressing the issue of high computational
complexity.
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Abstract. This study proposes a novel method for semantic line cor-
rection utilizing deep Hough transform, aimed at tackling the chal-
lenges associated with detecting semantic straight lines and correcting
image distortions in natural scenes. Traditional approaches frequently
consider semantic straight line detection as a subset of object detec-
tion or simply adapt conventional object detection techniques, thereby
neglecting the inherent characteristics of straight lines and consequently
leading to suboptimal performance. Herein, we employ a deep Hough
transform-based algorithm to achieve semantic line detection in images.
The adopted approach utilizes parameterization and the Hough trans-
form to map depth representations into parameter space for straight line
detection, effectively exploiting the geometric properties of lines. Inno-
vatively, we introduce the Distortion Correction Sub-network (DTN) to
mitigate image distortion and enhance the success rate of deep Hough
transform line detection. Furthermore, the DTN can dynamically adjust
its spatial transformation according to various image transformations,
thereby achieving effective image distortion correction. Experimental
results demonstrate that the proposed method outperforms previous
state-of-the-art methods on both self-constructed and publicly available
datasets, thus substantiating its efficacy and superiority in addressing the
challenges of semantic line detection and image distortion correction.

Keywords: Distortion correction, Hough transform, Semantic line
detection, Deep Learning

1 Introduction

The detection of line structures in digital images has long been an enduring
challenge in the realm of computer vision. The organization of line structures
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represents a crucial stage in converting visual signals into intermediary concepts
for visual interpretation. However, in real-world natural scenes, the detection
of line structures becomes increasingly intricate and challenging owing to the
presence of image distortions and deformations. These distortions may stem
from various factors including camera lens shapes, shooting angles, and lens
distortions, among others.

Presently, a plethora of techniques have been proposed for detecting salient
objects [1] [2] and regions [3] [4] in digital images; however, scant attention has
been devoted to detecting prominent line structures that unveil the image’s struc-
ture [5] [6] [7]. Traditional methods for line detection typically employ techniques
such as the Hough transform [8] [9]; nevertheless, they frequently disregard the
semantic information embedded within line structures, thereby demonstrating
diminished robustness against distortions and deformations in images.

In recent years, deep learning has made significant strides in the field of
computer vision, offering fresh insights and solutions for detecting semantic
segmentation line structures. Nevertheless, existing deep learning methods still
encounter challenges when confronted with image distortions [10]. Owing to the
intricacy of distortions, traditional methods for line detection [11] frequently
falter in precisely identifying and rectifying line structures in images, thereby
yielding suboptimal detection results.

Consequently, this paper introduces an innovative correction approach for
semantic segmentation lines leveraging the deep Hough transform, with the
explicit objective of mitigating the effects of image distortion on semantic seg-
mentation lines. This method integrates deep learning with classical Hough
transform [12], thereby achieving effective detection and distortion correction
of semantic line structures in images. In comparison to traditional methods,
our approach not only facilitates more precise identification of line structures
but also adeptly manages distortions and deformations in images, consequently
enhancing the performance and robustness of line detection.

The main contributions of this paper include:

1. Based on the combination of deep learning and Hough transform, we propose
a novel line detection method for the correction deep Hough transform model,
which realizes the efficient detection and distortion correction of the semantic
line structure in the image.

2. A spatial transformation network is devised to dynamically alter images based
on diverse transformations, serving not only for rectifying image distortions
but also for facilitating other tasks such as classification, detection, and seg-
mentation.

3. Extensive experiments on public datasets validate the effectiveness and supe-
riority of our method, demonstrating its capability in handling image distor-
tion and warping.

4. The DTN exhibits versatility by not only seamlessly integrating with the deep
Hough transform, but also providing a convenient integration pathway into
the network architectures of diverse tasks including classification, detection,
and segmentation.
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2 Related Work

Within the realm of computer vision, the detection of image lines and the cor-
rection of distortion stand as two pivotal quandaries pivotal to the spectrum of
image processing and analysis. This section will delve into an array of method-
ologies and techniques concerning Hough transform, CNN-based line detection,
semantic line detection, edge activation function and distortion correction.

2.1 Hough Transform

The Hough transform, a classical image processing technique [13], is devised
for detecting geometric shapes within images, with a primary focus on lines.
Originally proposed by Hough in 1962, this technique serves as a foundation
for line detection methods. Its fundamental principle involves mapping image
pixels to curves in parameter space, thereby transforming the task into one of
curve detection. Through voting within parameter space, it identifies parameters
corresponding to collinear pixels in the image, typically expressed as slope and
intercept. Traditional approaches utilize accumulator arrays for parameter space
representation, extracting lines in the image via thresholding or non-maximum
suppression techniques.

While the Hough transform demonstrates efficacy in tasks such as line
detection, it exhibits limitations in mitigating image distortion and deforma-
tion. Owing to factors like lighting, noise, and geometric distortion affecting
line appearances in images, conventional Hough transform methods frequently
encounter challenges in accurately detecting and describing line structures. Con-
sequently, additional enhancements and refinements of the Hough transform
method are necessary to tackle issues related to semantic line detection and dis-
tortion correction in images [14], thereby augmenting its efficacy and resilience.

2.2 Line Detection Based on CNN

Convolutional Neural Networks (CNNs) [15] are a leading technique in image
processing, widely used for tasks like line detection. CNNs incrementally extract
features from images through convolutional and pooling layers, followed by clas-
sification or regression in fully connected layers.

Numerous studies explore CNNs in online detection. LeNet, introduced by
LeCun et al. [16], was one of the earliest successes in CNN-based image pro-
cessing, excelling in handwritten digit recognition. AlexNet, by Alex Krizhevsky
et al. [17], further advanced CNNs by achieving significant success in the 2012
ImageNet competition, using deeper networks and larger datasets.

For online detection tasks, several refined CNN architectures have emerged.
HoughNet, proposed by Samet N et al. [18], combines the traditional Hough
transform with deep learning to effectively detect lines and curves. Additionally,
semantic segmentation networks like U-Net are extensively used in line detection,
offering precise and robust position and shape information.
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2.3 Semantic Line Detection

Semantic line detection constitutes a pivotal subfield within line detection,
directing attention not solely to the geometric configurations of lines but also to
the comprehension of the semantic information they encapsulate. Among these
advancements, in 2015, Long et al. [19] introduced the concept of Fully Convolu-
tional Networks (FCN) and pioneered its application to semantic line detection,
culminating in end-to-end pixel-level prediction. FCN transforms the traditional
convolutional neural network structure into a fully convolutional form, empower-
ing it to concurrently generate semantic labels for every pixel within the image.
Consequently, it introduces a pioneering approach and methodology for semantic
line detection.

Apart from FCN, several enhanced neural network architectures have
emerged. For instance, the DeepLab series of networks, introduced by Chen
et al. [20] in 2016, attained heightened precision in semantic segmentation out-
comes by integrating dilated convolutions and multi-scale feature fusion mech-
anisms, heralding novel breakthroughs in the realm of semantic line detection
tasks. Moreover, Mask R-CNN, devised by He et al. [21] in 2017, amalgamates
principles from both object detection and semantic segmentation, facilitating
simultaneous object detection and semantic line generation in images, thereby
furnishing a more holistic solution.

2.4 Edge Activation Function

Edge activation functions, such as ReLU and its adaptations like Leaky ReLU,
Parametric ReLU, and ELU, are crucial in neural networks for their ability to
tackle gradient vanishing or exploding. They exhibit significant gradients near
specific values, enhancing training speed and efficacy. These functions, charac-
terized by their ease of implementation and practical performance, play a pivotal
role in improving neural network training.

ReLU, one of the most elementary edge activation functions, was initially
introduced by Hahnloser et al. [22] in 2000 and has undergone continual refine-
ment and expansion in subsequent studies. Conversely, Leaky ReLU was pro-
posed by Maas et al. [23] in 2013, offering the benefit of mitigating certain
challenges associated with ReLU, including the issue of “neuron death”.

2.5 Distortion Correction

Within the realm of distortion correction, substantial research endeavors are
immersed in deep learning methodologies. As an example, Noh et al. [24] intro-
duced a convolutional neural network (CNN)-based end-to-end distortion correc-
tion method in 2018, referred to as the Deep Homography Estimation Network
(Deep Homography). By learning homographic transformations between images,
this method achieves precise rectification of image distortions, thus furnishing
lucid inputs for subsequent image processing tasks.
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Furthermore, the fully convolutional network (FCN) proposed by Kendall et
al. [25] in 2017 has also found extensive application in tasks related to image
distortion correction. FCN has the capability of mapping each pixel in an image
to the output image, thus enabling end-to-end processing of images and providing
an efficient solution for tasks related to distortion correction.

3 Method

This section offers an elaborate exposition on the deep Hough transform (DHT)
and the Distortion Correction Sub-network (DTN). Our approach comprises the
following key components: 1) Line parameterization using polar coordinates;
2) Mapping the image coordinate space to the parameter space of the Hough
transform through the deep Hough transform; 3) Leveraging the parameter space
to characterize linear features in the image and employing specific techniques
for line detection; 4) Reverting the detected lines to the image space using the
Hough transform; 5)Semantic secant line acquisition for deep Hough transform;
6) Integration of the DTN into the deep object detection network.

3.1 Parameterization and Reverse Parameterization

Within the framework of the deep Hough transform, the parameterization of
a straight line can be accomplished utilizing polar coordinates,r = xcosθ +
ysinθ = x. In a two-dimensional Cartesian coordinate system, a straight line
can be delineated through two parameters: A directional parameter, denoted
as θ ∈ [0, π), represents the angle between r and the x-axis, and a distance
parameter, denoted as r, signifies the distance from line segment l to the origin.
as shown in Fig. 1.

Fig. 1. Illustrates the coordinate parameter diagram.
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3.2 Deep Hough Transform

The deep Hough transform (DHT) constitutes an image processing methodol-
ogy that meticulously maps the image coordinate space onto the Hough param-
eter space. It adeptly employs a voting mechanism to meticulously estimate the
parameters of the desired detection objects, finding widespread application in
the realm of line detection.

In the Cartesian coordinate system, lines are commonly expressed in the for-
mat of y = kx + b. However, in cases where the line is perpendicular to the x-axis,
the slope k tends towards infinity, posing challenges for subsequent processing
and computation tasks. Therefore, we first convert the Cartesian coordinate
system to the polar coordinate system, where the polar expression of the line is
ρ = x cos θ + y sin θ. Subsequently, the two parameters ρ and θ serve as axes to
construct the Hough space. Given the sum of parameters ρ and θ for a line, it
corresponds to a point within the Hough space. With multiple points existing in
the polar coordinate system, each point may correspond to numerous lines, each
characterized by a distinct pair of parameters ρ and θ, thereby forming curves
within the Hough space, as illustrated in Fig. 2. When aiming to determine a
line that encompasses as many points as feasible from multiple points within the
polar coordinate system, one can identify the maximum intersections of curves
within the Hough space, depicted in Fig. 3.

Fig. 2. Illustrates how a line in polar
coordinates corresponds to a point in the
Hough space.

Fig. 3. Shows how a point in the Hough
space corresponds to a line in polar coor-
dinates.

3.3 Line Detection in Parameter Space

Line detection in parameter space entails the description of straight-line features
within images by employing parameter space and detecting these lines through
specific methodologies. Initially, through the utilization of DHT, the features
within the image undergo transformation into parameter space, wherein each
grid position corresponds to the parameters of a straight line l depicted in the
image. The objective of feature transformation into parameter space is to depict
the geometric attributes of lines more efficiently, thus rendering the representa-
tion of lines in parameter space more succinct.
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Features within parameter space are aggregated utilizing convolution opera-
tions and other methodologies to facilitate the detection of straight-line features
within images. At different stages of the Feature Pyramid Network (FPN) [26],
convolution layers are employed to gather contextual line features, subsequently
followed by interpolation operations to align the resolution of features across dis-
tinct stages. Ultimately, the interpolated features are concatenated to generate
predictions for lines. For model training, it is imperative to transform the ground
truth straight lines into parameter space and represent them as binary maps
using specific methodologies. To expedite model convergence, the ground truth
straight lines can be smoothed utilizing Gaussian kernels for both smoothing
and expansion operations. Lastly, the cross-entropy loss between the smoothed
ground truth straight lines and the model-predicted lines can be computed within
parameter space to optimize the model parameters.

3.4 Reverse Mapping

The reverse Hough transform (RHT) denotes the procedure of converting the
linear representation from parameter space back to the representation of straight
lines in image space. In our line detector, initially, a prediction map is generated
using parameter space, which represents the likelihood of the presence of lines.
Subsequently, the positions where lines exist are determined by applying thresh-
olding and binarization to the prediction map. Afterwards, the centroids of each
connected region are computed, serving as the parameters for the detected lines.
Next, utilizing the reverse Hough transform, these parameters are remapped to
revert to the representation of straight lines in the image space. This process,
termed as the “reverse mapping of the Hough transform” in the field of image
processing, is aimed at remapping the linear parameters from parameter space
back to the original image space to achieve precise localization and description
of the detected lines.

3.5 Semantic Dividing Line Acquisition of the Deep Hough
Transformation

In the Fig. 4, DHT denotes the deep Hough transform, responsible for converting
the Cartesian coordinates of the image into polar coordinates; RHT, conversely,
undertakes the reverse transformation, converting from polar coordinates back
to Cartesian coordinates of the image, with RHT yielding the actual results
of semantic segmentation line detection. The DHT module employed in this
study is inspired by the deep Hough transform module outlined in reference
[27]. The disparity emerges in the coordinate transformation process, wherein
the image center is adopted as the origin, the polar angle range spans from 0
to 2pi, and a consistent sampling rate is applied. The maximum polar radius
fluctuates across diverse scales of feature layers in the image feature pyramid;
consequently, a diverse set of polar radii is devised [�r1,�r2, ...,�rn] to align
various feature layers with polar coordinate space layers of uniform dimensions,
thereby expediting the subsequent convolutional computations.
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Fig. 4. Deep Hough transform agent semantic secant detection network.

The abbreviation EATF denotes the Edge Activation Function Network. Tra-
ditional line detection methods relying on binary edge images as input, obtained
from edge detection results based on the Hough transform, often encounter chal-
lenges in achieving optimal performance for complex real-world scene images.
Nonetheless, the primary distribution of semantic segmentation lines tends to
occur at the boundaries delineating different regions, where the edge informa-
tion of the image assumes a pivotal role in semantic line segmentation tasks.
To harness the significance of edge information in semantic line localization, we
introduce the EATF. This network is designed to fulfill dual objectives: firstly, it
incorporates a channel self-attention mechanism to adaptively weight convolu-
tions, thus implicitly guiding the learning process towards convolutions benefi-
cial for semantic segmentation lines, drawing inspiration from the self-attention
mechanism employed in the SENet [28] model; secondly, it integrates the Tanh
activation function to mitigate the influence of sharp edges, thereby diminish-
ing the impact of short sharp lines, enabling the network to prioritize large-scale
semantic segmentation lines with distinct semantics. The detailed architecture of
EATF is illustrated in the subsequent Fig. 5. In contrast to a typical SENet that
employs the Sigmoid function as the final activation function, we incorporate
the Tanh activation function after the module. Consequently, we adopt the Relu
function in the channel attention mechanism to mitigate the issue of gradient
disappearance during network training, thereby expediting convergence.

Semantically distinct segmentation lines can be categorized into multiple
classes, and the optimization target loss function, designated during training, is
set to L = Lline + Lcls. Within polar coordinate space, a line is projected as a
point. Throughout the training process, the annotation for line projection man-
ifests as a point. Reference [27] introduces the process of smoothing a labeled
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Fig. 5. Edge activation function module EATF.

point using a Gaussian kernel to acquire a distribution within a neighborhood
range. Lline denotes the cross-entropy loss function between the predicted out-
come and the smoothed annotation map. Lcls denotes the loss associated with
the line category, wherein employing multi-class cross-entropy loss (softmax loss)
proves to be adequate.

3.6 Distortion Correction Sub-network

Given that distortions frequently manifest in cameras, with variation across dif-
ferent models, rectifying distortions for surveillance cameras exhibiting minor
aberrations is deemed unnecessary. Nonetheless, even subtle distortions possess
the potential to induce image aberrations, thereby hindering the extraction of
pivotal information crucial for object detection.

Despite lenses enhancing image fidelity, they represent the primary contribu-
tors to image distortion. The geometrical configuration of a lens influences light
propagation, and misalignment with the imaging plane induces displacement of
light positions. Radial distortion, stemming from the lens shape, exacerbates
with distance from the image periphery, encompassing barrel and pincushion
distortions, while tangential distortion arises from non-parallel imaging.

Radial distortion can be characterized through polynomial functions, with
its expression contingent on the distance from the center. Polynomial functions
of the second order or higher are applicable for rectifying coordinate alterations.
On the normalized imaging plane, the coordinates [x, y] of the uncorrected point
are depicted in polar notation as [r, θ], with r signifying the point’s distance from
the origin, representing the angle relative to the horizontal axis, and [xdis, ydis]
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delineating the coordinates where distortion manifests, as delineated below:

xdis = x(1 + k1r
2 + k2r

4 + k3r
6) (1)

ydis = y(1 + k1r
2 + k2r

4 + k3r
6) (2)

Typically, cameras can utilize these two parameters to effectively rectify
radial distortion. However, in the case of cameras exhibiting significant dis-
tortion, such as those equipped with fisheye lenses, alternative methodologies
become imperative for distortion rectification.

Tangential distortion is conventionally rectified employing the subsequent
two formulas, wherein p1 and p2 denote the respective parameters:

xdis = x + 2p1xy + p2(r2 + 2x2) (3)

ydis = y + p1(r2 + 2y2) + 2p2xy (4)

Combining equations (1)(2) and (3)(4), we have:

xdis = x(1 + k1r
2 + k2r

4 + k3r
6) + 2p1xy + p2(r2 + 2x2) (5)

ydis = y(1 + k1r
2 + k2r

4 + k3r
6) + p1(r2 + 2y2) + 2p2xy (6)

Points on the normalized imaging plane are projected onto the pixel plane
by the camera’s intrinsic matrix, resulting in the derivation of actual pixel coor-
dinates in the image, as depicted below:

u = fxxdis + cx (7)

v = fyxdis + cy (8)

Since the intrinsic matrices of different cameras vary, the parameters of fx,
fy, cx and cy also differ.

In order to alleviate the influence of distortion on the determination of bound-
ing boxes for object detection, we propose the incorporation of a Distortion Cor-
rection Subnetwork (DTN) into the architecture of the deep object detection
network. When presented with a distorted image (depicted in pixel coordinates
(u, v)), the process of acquiring an undistorted image (also depicted in pixel
coordinates (u

′
, v

′
)) necessitates computations according to equations (5)(6)

and (7)(8). The objective of the DTN is to acquire knowledge of the param-
eter matrix ρ = (k1, k2, k2, p1, p2, fx, fy, cx, cy), illustrated in Fig. 6. The DTN
comprises multiple convolutional layers and fully connected layers. Represent-
ing the computation of distortion correction transformation, based on equations
(5)(6) and (7)(8), at each pixel position of (u

′
, v

′
) the corrected output (V), the

value corresponds to the pixel position of (u
′′
, v

′′
) the uncorrected image (U).

Should the calculated result not yield an integer value, interpolation sampling
based on the pixel values of U is necessary to derive the output V.

The Dynamic Transformation Network exhibits the capability to dynami-
cally execute spatial transformations on images, accommodating various types
of transformations. As a modular entity independent of the Neural Network
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Fig. 6. Distortion Correction Sub-Network (DTN).

(NN), DTN has the flexibility to be integrated at any juncture within the NN
architecture. DTN integration options span from pre-object detection stages to
post-image processing or post-convolutional feature mapping stages. Moreover,
this DTN module holds potential utility in diverse tasks such as classification and
segmentation, culminating in comprehensive image distortion correction capa-
bilities.

The DTN module embodies a sophisticated network architecture, comprising
components such as a spatial transformer, a channel self-attention mechanism,
matrix transformations, sampling correction, and the EATF module. Notably,
the allocation of parameters primarily centers on the channel self-attention mech-
anism and the linear layers, commonly referred to as fully connected layers.
Specifically, within the channel self-attention mechanism, the parameter volume
is approximately one-sixteenth of the input channel count, while the parameter
volume associated with convolutional operations and fully connected layers is
contingent upon factors such as the input and output channel dimensions along-
side the convolution kernel size. The computational burden primarily arises from
convolutional operations and fully connected layers, the demands of which are
intricately linked to the dimensions of the input feature maps and the parameter
count. The DTN module is characterized by a substantial parameter count and
computational demands; however, the incorporation of the channel self-attention
mechanism and the EATF module serves to bolster the model’s expressiveness
and performance.

DTN training intricately intertwines with the overarching network training
process, with its primary optimization objective being the augmentation of image
fidelity in object detection outcomes, without necessitating supplementary anno-
tations for distorted images. As an integral component of the overall network
architecture, DTN seamlessly integrates without impeding the end-to-end train-
ing protocol for object detection.

4 Experiments

This section comprehensively evaluates the potential of integrating deep Hough
transform with DTN through an array of comparative experiments and ablation
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studies, thereby showcasing the reliability and feasibility of our proposed model.
A comparative analysis was conducted between the proposed method and both
classical algorithms as well as state-of-the-art approaches.

4.1 Experimental Setup

Dataset: At present, our repository comprises solely of a solitary semantic line
detection dataset denoted as SEL [29], encompassing 1,715 images, with 175
designated for testing purposes, and the remainder allocated for training. Rec-
ognizing the disparity between the capacities of CNN models and the incumbent
dataset sizes, we unveil a novel semantic line detection dataset.

Termed NKL (abbreviated from NanKai Lines) [27], this fresh dataset encom-
passes 6,500 images portraying more intricate scenarios and a broader spectrum
of lines. Termed NKL, this fresh dataset encompasses 6,500 images portray-
ing more intricate scenarios and a broader spectrum of lines. Within the NKL
dataset, an impressive majority of images (67%, 4,356 out of 6,500) feature at
least one semantic line, contrasting with a proportion of merely 45.5% observed
in the SEL dataset. For an in-depth analysis of the diversity inherent in the SEL
and NKL datasets, we subject all images to a ResNet50 network pre-trained on
Place365, capturing the resultant outputs as classification labels.

The Place365 dataset comprises 365 categories in total, of which we acquired
167 categories in the SEL dataset and 327 categories in the NKL dataset. More-
over, the distribution of scene labels in the NKL dataset exhibits a more equitable
distribution compared to that in the SEL dataset. For instance, within the SEL
dataset, the top three primary categories (sky, wilderness, desert) collectively
constitute over 25% of the dataset. Conversely, within the NKL dataset, the top
three primary categories comprise less than 20% of the dataset.

Training: Our proposed methodology is realized within the PyTorch frame-
work. The architecture of our neural network is trained from scratch, specifically
tailored for line segmentation data, and does not rely on pre-trained weights. In
this study, all experiments were conducted utilizing Python 3.8, PyTorch 1.10.0,
CUDA 11.3, and Ubuntu 20.04. We set the number of training to 30 rounds,
selected ResNet50 as the backbone network, with the initial learning rate set
to 2e-4 and the weight decay set to 0.9. To ensure equitable comparisons, we
standardized the random seed across all experiments. The training utilized a
batch size of 40 and was executed exclusively on the NVIDIA GeForce RTX
3090 GPU.

Evaluation Metrics: The quality of line detection is assessed through preci-
sion, recall, and F-measure. Initially, bipartite graph matching is employed to
align predicted lines with ground truth lines. Subsequently, true positives (TP),
false positives (FP), and false negatives (FN) can be computed post-matching.
The matching process is carried out utilizing the Hungarian algorithm, known
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for its polynomial time complexity. The matching outcomes determine the cor-
respondence between each ground truth line and a predicted line. This app-
roach effectively assesses the consistency between detection outcomes and ground
truth.

The Precision (P), Recall (R), and F-measure (F) are defined as:

P =
TP

TP + FP
,R =

TP

TP + FN
,F =

2PR

P + R
(9)

Through a series of meticulously conducted experiments, we acquire the aver-
age precision, recall, and F-measure metrics, and assess performance by metic-
ulously comparing these three values.

4.2 Comparative Experiment

We use different methods for comparative experiments, including SLNet with
different iterations, classical Hough transform, deep Hough transform and our
proposed distortion correction deep Hough transform, which includes EATF
modules and non-EATF modules (DHT+DTN+EATF and DHT+DTN).

Fig. 7. Examples of detection results of different methods on SEL dataset.

Both SLNet and HT methods necessitate the utilization of the HED edge
detector for image preparation. In addition, SLNet incorporates non-maximum
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suppression (NMS), and classical Hough transform similarly demands edge
images for processing. Moreover, SLNet adopts iterative fine-tuning of the net-
work to refine results, potentially affecting inference speed based on the number
of iterations. Conversely, our approach mandates solely one forward pass to yield
results, and NMS simplification facilitates computing the centroid of connected
regions in parameter space. Figure 7 illustrates the comparative outcomes of
diverse methodologies on the SEL dataset.

Table 1 encapsulates the test outcomes of multiple methodologies on the SEL
dataset. Notably, the experimental outcomes of both HED+Hough and SLNet
methodologies are drawn from the empirical data presented in the referenced
paper [27], whereas the residual experiments are conducted employing ResNet50
as the fundamental network architecture. Our proposed approach demonstrates
a noteworthy enhancement over the SLNet and Hough transformation results,
attaining superior F-measure across various thresholds when compared to alter-
native methodologies. The comprehensive index containing the EATF module is
the best, followed by the method without adding the ETAF module.

Table 1. Depicts the detection outcomes
of diverse methodologies on the SEL
dataset.

Dataset Method Precision Recall F-measure

SEL HED+Hough [27] 35.60 42.00 38.50

SLNet [27] 76.20 72.90 74.50

DHT 82.86 74.52 78.47

DHT+DTN 77.76 80.37 79.04

DHT+DTN+EATF 78.27 81.69 79.95

Table 2. Detection results of different
methods on NKL dataset.

Dataset Method Precision Recall F-measure

NKL HED+Hough [27] 21.30 62.20 31.80

DHT 68.42 76.65 72.30

DHT+DTN 70.16 80.12 74.81

DHT+DTN+EATF 72.92 77.43 75.10

Table 2 delineates the test findings of various methodologies on the NKL
dataset. Due to the unavailability of training code for SLNet, our compari-
son is limited to the results obtained from Hough transformation, DHT+DTN
and DHT+DTN+EATF. Moreover, the experimental data pertaining to the
HED+Hough method is cited from the empirical results presented in the ref-
erenced paper [27]. Figure 8 provides a visual representation of the detection
outcomes achieved by DHT+DTN+EATF on the NKL dataset.

The experimental findings obtained from the SEL and NKL datasets signify a
notable enhancement in the performance outcomes of DHT + DTN, but adding
the EATF module works better. It effectively improves the indicators in the
backbone network, further verifying the effectiveness of our proposed method.

In order to provide additional validation for the efficacy of our proposed
methodology, we elected to utilize the NKL dataset as our sample corpus and
implemented the radial distortion technique for image processing. Radial distor-
tion, a frequently employed image manipulation technique, serves to simulate
the effects of lens deformation on the captured images. Within the distortion
model, pixels located in proximity to the image’s central axis undergo stretch-
ing or compression in comparison to those situated at the periphery, thereby
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Fig. 8. Detection effect on NKL dataset.

inducing a perceptible curvature in straight lines within the image. Control over
this distortion model is governed by the radial distortion parameters k1 and k2,
pivotal factors that dictate the magnitude of distortion exhibited.

Initially, we delineated two distinct sets of radial distortion parameters,
denoted as k1 and k2. Subsequently, we constructed an array for distortion map-
ping to determine the new position of every pixel through the application of these
radial distortion parameters. Following that, we calculated the distortion factor
for each pixel position based on the formula derived from the radial distortion
model. Lastly, we applied the distortion mapping to the original images utiliz-
ing the remap function in OpenCV, thereby producing the distorted NKL1 and
NKL2 datasets. However, it’s noteworthy that the labels for the NKL dataset
remained unaltered. Given that only result testing was performed on the NKL1
and NKL2 datasets without prior training on the distorted dataset, only images
featuring distortion are essential, thus obviating the necessity of label processing.

The NKL1 dataset, characterized by the utilization of a smaller radial dis-
tortion parameter (k1=2 × 10−7), manifests relatively mild image distortion;
conversely, the NKL2 dataset employs a larger radial distortion parameter
(k1=1 × 10−6), thereby eliciting a more pronounced distortion effect on the
images.

Distortion processing was conducted on the NKL dataset to emulate the
deformations and distortions potentially encountered during real-world image
acquisition processes. Subsequently, our method and the DHT method were
employed to detect the distorted dataset, with the results compared against the
Ground Truth of the NKL dataset. Figure 9 illustrates that our semantic seg-
mentation line closely aligns with the Ground Truth. Distortion may engender
diminished detection performance, particularly at the peripheries where distor-
tions are pronounced, thereby engendering false positives or instances of unde-
tected phenomena. Nonetheless, our proposed methodology exhibits superior
performance compared to the DHT approach in managing distorted datasets.
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Fig. 9. Comparison of different methods in NKL distorted dataset.

As per the findings delineated in Table 3, our method surpasses the DHT
method concerning accuracy, recall, and F-measure. This implies that our
method possesses the capability to reconstruct the target information in the
original dataset with greater precision, notwithstanding the distortions applied
to the dataset. Furthermore, the disparity in F-measure post-distortion between
our method and the DHT method exhibits a greater magnitude compared to the
pre-distortion scenario. Deeper scrutiny of the data presented in Table 3 unveils
the veracity that varying degrees of distortion do impact the detection outcomes.
Specifically, it emerges that the NKL2 dataset is subject to more pronounced
distortion in contrast to its NKL1 counterpart, thereby culminating in dimin-
ished detection efficacy. This outcome aligns with our anticipated hypotheses,
suggesting that heightened dataset distortion correlates with increased detection
complexity, hence concomitantly yielding diminished performance outcomes.

Nonetheless, in the presence of more severe distortion, our proposed
methodology continues to exhibit superior performance relative to conventional
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Table 3. Quantitative comparison on the NKL data.

Dataset Method Precision Recall F-measure

NKL1 DHT 62.37 72.75 67.16

DHT+DTN+EATF67.63 74.47 70.89

NKL2 DHT 29.09 58.32 38.82

DHT+DTN+EATF37.27 63.12 46.86

approaches. The findings suggest that our approach demonstrates enhanced
robustness and generalization capabilities, effectively mitigating the effects of
diverse levels of data distortion.

4.3 Ablation Experiment

A comprehensive series of ablation studies was undertaken to meticulously assess
the efficacy of the proposed DHT+DTN +EATF architecture and verify its
performance across various scenarios. These scenarios encompassed: 1) variances
in DTN model architectures; 2) the incorporation of optimizer loading; 3) edge
alignment training procedures.

Impact of Different DTN Model Structures: During the experimenta-
tion phase, we devised two model configurations for comparative analysis: a sin-
gular convolutional layer framework and a multi-layer convolutional structure,
comprising convolutional layers, ReLU activation functions, and adjustments in
channel quantity. These configurations underwent identical training protocols
and parameter settings, followed by performance evaluation on the test dataset.

As delineated in Table 4, the multi-layer convolutional structure model
demonstrated pronounced performance benefits on the test dataset, achieving
an accuracy of 72.92%, surpassing that of the single convolutional layer model
by 4% points. This underscores the efficacy of augmenting convolutional layers
and integrating non-linear activation functions to bolster model performance
for specific tasks. In terms of training duration, despite the additional parame-
ters and computational load inherent in the multi-layer convolutional structure
model, it incurred a mere 6-minute extension compared to the single convolu-
tional layer framework. However, this supplementary training interval yielded
discernible performance enhancements.

Table 4. Segmentation Performance of Various Models on the NKL Dataset.

Dataset Model Train time(min) Precision Recall F-measure F@0.95

NKL Single Convolutional 160 68.95 78.78 73.54 47.62

Multi-layer Convolutional 166 72.92 77.43 75.10 49.16
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The Impact of Loading Optimizer: In the first scenario, an optimizer is
incorporated into the model training process, employing a variant of the Adam
gradient descent method to iteratively update model parameters; conversely,
the second scenario omits the use of an optimizer, relying solely on the original
gradient update rules.

According to the findings presented in Table 5, the inclusion of the opti-
mizer led to discernible alterations in the model’s performance metrics. Follow-
ing the incorporation of the optimizer, there was a notable augmentation in
the F-measure metric. This suggests an enhancement in the overall performance
attributable to the amelioration of the balance between precision and recall.
Nevertheless, the precision marginally declined with the incorporation of the
optimizer, juxtaposed with a slight increase in recall. This phenomenon implies
a propensity towards positive class predictions induced by the optimizer, thereby
augmenting recall while concurrently engendering more false positives, thereby
diminishing precision. Furthermore, the introduction of the optimizer resulted in
a slight augmentation of training duration. In summation, the optimizer yielded
a discernible enhancement in the model’s performance within the scope of this
experimental analysis.

Table 5. Evaluation of Optimizers’ Effects on Experiment.

Dataset Optimizer Train time (min) Precision Recall F-measure F@0.95

NKL
√

170 72.07 78.55 75.17 49.73

166 72.92 77.43 75.10 49.16

The Influence of Edge Alignment: This study investigates the impact of
edge alignment on the performance of the DHT+DTN+EATF model. Experi-
ments are carried out under two conditions: with and without edge alignment
training.

Table 6 illustrates that enabling the edge alignment operation has the poten-
tial to enhance the precision of the model moderately. The rise in model precision
suggests a reduction in false detections facilitated by this operation. However, an
observed marginal decline in model recall post-enablement of the edge alignment
operation implies that certain targets might not be detected accurately, thereby
diminishing the model’s recall rate. The comprehensive evaluation metrics, F-
measure and F@0.95, demonstrate that enabling the edge alignment operation
does not substantially influence the overall model performance but contributes
modestly to its enhancement. Particularly noteworthy is the marginal enhance-
ment observed in the model performance concerning F@0.95. Nonetheless, it
is important to note that the utilization of edge alignment leads to a twofold
increase in training time. Hence, the decision to enable edge alignment opera-
tion in practical scenarios should be carefully deliberated based on specific task
demands and data characteristics to attain optimal detection performance.
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Table 6. Impact of Edge Alignment on Experiments.

Dataset EDGE-ALIGN Train time(min) Precision Recall F-measure F@0.95

NKL
√

296 74.75 74.18 74.46 49.32

166 72.92 77.43 75.10 49.16

Integrating the EATF and DTN modules inevitably increases computational
demands. Nevertheless, these modules are specifically designed to enhance the
network’s representational capacity and image processing accuracy, particularly
in complex scenarios. Despite the increased computational complexity, the over-
all computational cost remains manageable, especially with optimized network
architecture. By appropriately adjusting the number of convolutional kernels
or reducing the input image resolution, computational load can be effectively
managed, thus preserving high processing efficiency in resource-constrained or
real-time applications. Overall, the increased computational burden facilitates a
more effective balance between accuracy and performance.

The proposed method exhibits superior performance in both image distortion
correction and semantic line detection, although it is not without its limitations.
While the DTN module markedly enhances correction accuracy, it concurrently
introduces additional computational overhead, potentially presenting challenges
for real-time applications. Nevertheless, strategic hardware optimizations and
algorithmic refinements can alleviate the computational burden while preserving
high accuracy. The design of the Tanh activation function within the EATF
module serves to mitigate the impact of short, sharp edges on the network.
Although this approach may influence certain details under specific conditions,
it predominantly enhances the detection of large-scale semantic lines.

5 Conclusions

This paper introduces the integration of the deep Hough transform with dis-
tortion correction subnetworks for the general task of detecting semantic seg-
mentation lines. The proposed distortion correction subnetwork fully leverages
deep learning and classical Hough transform to establish a robust global context,
while allowing the network to dynamically adapt its feature extraction process
to various image transformations. Extensive experimental results unequivocally
demonstrate that the fusion of deep Hough transform with DTN yields superior
performance and exceptional generalization capability when juxtaposed against
extant methodologies. Furthermore, the proposed method demonstrates a trade-
off between accuracy and efficiency. In future work, we will incorporate large lan-
guage models and use CLIP to enhance the description of semantic segmentation
lines, generating the required semantic segmentation lines.
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Abstract. Due to the limitation of training datasets and global motion
understanding to optical flow estimation, current methods only focus
on local clues and ignore the motion continuity of consecutive frames,
resulting in an inconsistent motion problem. After theoretical analysis,
we find the multi-frame methods need to pay more attention to the conti-
nuity between cost volumes than two-frame methods. Thus, our method
is based on a multi-frame framework and introduces extra object coor-
dinates in each frame by the segmentation model to revise the matching
pairs in cost volume. Specifically, we introduce a Cost Volume Adapta-
tion Module, including a Bbox Spatial Queries to store coordinates infor-
mation and a Correlation Query Queue to query the object position of
different frames. On the Sintel and KITTI test benchmark, our proposed
MemoFlow achieves 1.00 and 1.69 average endpoint error (AEPE) on
the clean and final passes and an F1-all error of 4.43%, ranking 1st
among all three-frame methods and two-frame methods.

Keywords: Inconsistency Motion · Correlation Query Queue · Bbox
Spatial Queries

1 Introduction

Optical flow estimation is a fundamental computer vision task that involves esti-
mating the pixel-level displacement field between consecutive frames. It is exten-
sively applied in a variety of downstream video-related tasks, such as video inter-
polation, motion recognition, object detection, video understanding and analysis.

With the update of advanced neural network architectures, many effective
optical flow methods have emerged [4,26,28]. However, existing optical flow esti-
mations are limited by two problems: (1) Limitations of simple motion scene
in datasets. Since it is difficult to label the ground truth of optical flow in the
real world, most existing methods use synthetic methods [3,16,20]. But some
methods [9] try to generate motions with simple 2D transformations. It greatly
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A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15330, pp. 219–234, 2025.
https://doi.org/10.1007/978-3-031-78113-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78113-1_15&domain=pdf
http://orcid.org/0009-0005-5586-4820
http://orcid.org/0000-0003-2882-2981
http://orcid.org/0000-0002-1579-3942
http://orcid.org/0009-0001-6655-188X
http://orcid.org/0000-0002-7478-4544
https://doi.org/10.1007/978-3-031-78113-1_15


220 M. Wang et al.

limits the robustness of the optical flow estimation model in the face of complex
motions. (2) Lack of global understanding of motion continuity. In gen-
eral, the motion of an object in continuous time under the same scene should
have continuity. The current methods ignore the global motion continuity and
only focus on local clues, leading to “inconsistent motion” . Here, inconsis-
tent motion refers to inconsistent optical flow of the same object in consecutive
frames. Figure 1(a) shows examples of inconsistent optical flow in consecutive
frames. It shows that the existing multi-frame methods have not paid attention
to this problem.

Fig. 1. (a) Examples of Inconsistency Motion in Optical Flow Estimation. We observed
that our MemoFlow continuously estimates the optical flow of the same object in
different frames. (b) Visualization of Motion Trail of Different Models.

Recent approaches have attempted to address these two problems by intro-
ducing some extra information. (1) Some methods [13,15,37,39] find that com-
bining large vision models for feature enhancement can improve optical flow esti-
mation. However, these methods based on feature level cannot solve the problem
caused by the motion structure. (2) MatchFlow [8] shows that the introduction
of extra matching relationship information can enhance the optical flow estima-
tion. And multi-frame optical flow methods [4,26] strengthen the motion match-
ing relationship of cost volume. In summary, we combine these components by
incorporating extra matching information generated by the segmentation model
into the cost volume of the multi-frame optical flow framework.

However, directly incorporating large segmentation models into the multi-
frame optical flow framework would significantly reduce the model’s efficiency,
especially considering that the multi-frame optical flow framework already has a
substantial number of parameters. To solve this problem, we divide the training
process into two stages. Specifically, for the first stage, we utilize a segmentation
model to segment the objects in the training image data and store their bounding
box information named Bbox Spatial Queries (BSQ). In the second stage, the
stored BSQ and corresponding flow data are fed into the optical flow training
framework to learn the optical flow with motion continuity. Specifically, we build
a Correlation Query Queue (CQQ) with BSQ and image features. Then, the
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CQQ and Cost Volume are transferred to the Cost Volume Adaption Module
(CVAM) to repair the matching relationship. With the above designs, we upload
our fine-tuned models to the benchmark sites of Sintel and KITTI-15, which show
significant superiority. Our contributions are encapsulated in three key areas:

– For the first time, we introduce the segmentation information into multi-frame
optical flow estimation, and we thus propose MemoFlow, a novel multi-frame
approach aimed at improving optical flow estimation by effectively addressing
issues of inconsistent motion.

– To prevent segmentation information from not being efficiently utilized, we
propose a two-stage training scheme by introducing BSQ information stored
in CQQ for subsequent query, and the CVAM to improve the cost volume
matching accuracy.

– MemoFlow achieves remarkable results on the Sintel and KITTI-2015 tests,
with AEPE of 1.00 and 1.69 on the clean and final passes and an F1-all
error of 4.43%, ranking 1st among all three-frame methods.

Fig. 2. Overview of our MemoFlow. The simplified training pipeline is shown at the
top, while details are specifically listed below. We design two modules to adapt cost
volumes, including the BSQ which stores bbox of objects, and the CQQ to perform
temporal interaction of BSQ. The boxes with different colors in the BSQ represent
objects stored in different frames.

2 Related Work

2.1 Multi-frame Optical Flow Framework

In the era of optimization-based optical flow, researchers use Kalman filters
[1,6,11] to estimate optical flow through the temporal dynamics of motion.



222 M. Wang et al.

PWC-Fusion [24,30] fuses information from frames with GRU-RCN at the U-
Net bottleneck. However, due to coarse feature encoding, the performance gain is
weak (0.65% higher than PWC-Net). MFCFlow [4] constructs a Motion-Guided
Feature Compensation unit to enhance blurry motion features based on the cor-
relation of previous features. VideoFlow [26] utilizes temporal cues to simultane-
ously estimate motion features of bidirectional flow for multiple frames available
in the video. Furthermore, SplatFlow [33] proposes a motion feature alignment
method based on splatting to replace commonly used backward flow compu-
tation or non-differentiable forward warping transformations. However, these
multi-frame methods focus more on network modules to learn and aggregate
feature information between frames, ignoring their correlation.

2.2 Optical Flow with Segmentation

Semantic segmentation has been widely integrated with optical flow estima-
tion [2,17,22]. These methods decompose optical flow estimation into motion
segmentation networks to estimate optical flow from the perspective of motion
segmentation. Some methods [5,34,36] guide the algorithm to determine smooth
positions of optical flow in the scene based on objective information. Further-
more, research on joint learning algorithms for video semantic segmentation and
optical flow is proposed [7]. However, these methods share the same drawbacks:
they neglect consecutive frame information interactions and motion continuity.

2.3 Motion Information Propagation

Motion guidance information is commonly applied to inter-frame target tracking
and multi-view 3D reconstruction tasks. CAMOT [23] employs stereo informa-
tion for mask-based tracking of generic objects on the KITTI dataset. Lu et al.
[18] achieve tracking by aggregating position and appearance features for each
frame using LSTM. MaskFusion [25] proposes a 3D mapping system that builds
entire geometric maps using object-aware fusion between multiple perspectives
at different times. Building upon these methods, we introduce motion continuity
information into the optical flow estimation task for the first time.

3 Method

3.1 Theoretical Analysis

Multi-frame optical flow estimation methods aim to find the mapping relation
F : (I1, I2, I3) �−→ (f1, f2), where I1, I2 and I3 are three consecutive frames, and
(f1, f2) are the 2D optical flow of (I1, I2) and (I2, I3). Through the perspective
of a probability density function, the optical flow network can be formulated as:

(f1, f2)∗ = Fθ(I1, I2.I3) = arg max
(f1,f2)

p(f1, f2 | I1, I2, I3), (1)
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where (f1, f2)∗ represent the most likely optical flows, Fθ is the network with
parameters θ and p(f1, f2 | I1, I2, I3) represents a posterior probabilistic distri-
bution of optical flow.

According to Bayes’ theorem, we expand p(f1, f2 | I1, I2, I3) as follows:

p(f1, f2 | I1, I2, I3) =
p(f1, f2)p(I1, I2, I3 | f1, f2)

p(I1, I2, I3)

=
p(f1, f2)p(I2 | f1, f2)p(I1 | I2, f1, f2)p(I3 | I1, I2, f1, f2)

p(I1, I2, I3)

=
p(I2)p(f1, f2 | I2)p(I1 | I2, f1)p(I3 | I1, I2, f1, f2)

p(I1, I2, I3)
.

(2)
In search of optimal solution of (f1, f2), we omit irrelevant items p(I2) and

p(I1, I2, I3), and apply maximum likelihood estimation. Then we get a new for-
mulation (Formula 3) of Formula 1 as follows:

(f1, f2)∗ = arg max
(f1,f2)

[{log(p(f1, f2 | I2))}
︸ ︷︷ ︸

context

+ {log(p(I1 | I2, f1))}
︸ ︷︷ ︸

cost volume 1

+ {log(p(I3 | I1, I2, f1, f2)}
︸ ︷︷ ︸

cost volume 2

].
(3)

The context term provides auxiliary information for optical flow estimation and
requires the model to have a deep understanding of image features. To achieve
this, optical flow models such as [39,40] enhance context features to help the
model to comprehend the image feature more deeply.

However, as the number of input frames increases, the influence of cost vol-
ume items on optical flow estimation gradually increases. These continuous
motion relationships are much more helpful to the model than the context item.
Earlier multi-frame approaches [4,26,31] overlook this aspect, with the conti-
nuity of motion constrained to local clues. In contrast, our endeavor involves
integrating consecutive cost volumes and introducing extra spatial information
to enhance motion continuity. However, not all the spatial information can help
to realize the continuity of motion. Empirically, segmentation information is a
suitable candidate with its capability to maintain the integrity of moving objects.

3.2 Pipeline Overview

As depicted in Fig. 2, the training pipeline includes two stages. For stage one,
the images of optical flow data are segmented panoramically. Information such
as the bounding box of objects with high confidence are saved as Bbox Spatial
Queries (BSQ) information (Sect. 3.3). Therefore, given a set of images (I1, I2, I3)
as inputs, the position coordinates of the objects with the highest confidence in
different frames are recorded as (BSQ1, BSQ2, BSQ3). For stage two, to bet-
ter fuse spatial information, we construct a Correlation Query Queue (CQQ)
to perform temporal interaction. Moreover, since CQQ has a recursive matching
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query ability, we design a Cost Volume Adaptation Module to revise the cost vol-
ume. This progressive pipeline allows our MemoFlow to learn motion continuity
better.

3.3 Bbox Spatial Queries

First, we elaborate on the concept of establishing Bbox Spatial Queries (BSQ)
using a panoramic segmentation model. Previous methods are trained directly
on optical flow data without incorporating additional information to learn scene
structure. MatchFlow [8] demonstrates that introducing simple scene-consistent
matching information early in training can aid the network in learning its repre-
sentation. However, MatchFlow requires additional pre-training, which increases
the model’s parameters and affects its inference efficiency. In contrast, we utilize
a pre-trained segmentation model with generalization capability [21,42] to seg-
ment the training images and save the Top-K bounding box information for each
frame. This information is then directly input into the optical flow model along
with the images for training, thus maintaining the model’s inference efficiency.

In the segmentation process, it is necessary to align the image size of segmen-
tation with the image size in the optical flow training. Specifically, we construct
the Bbox Spatial Queries as follows:

BSQ = ϕ(I) ∈ RK×4, (4)

where I is the training image of optical flow data, ϕ is the segmenta-
tion model, K is the number of object bounding boxes stored in the BSQ
(with Top-K highest confidence score) and Dimension “4′′ is information
(bboxx0, bboxy0, bboxw, bboxh) for each bounding box. According to the exper-
imental results of Table 4, we set K = 5.

3.4 Correlation Query Queue

We design a correlation query queue CQQ ∈ R2×K×4 for effective motion con-
tinuity modeling. Dimension “2′′ is the number of stored frames and “K × 4′′ is
the stored BSQ of every frame. When the input is I1, I2, the Correlation Query
Queue CCQ1 is as follows:

CCQ1 = [BSQ1, BSQ2]T ∈ R2×K×4. (5)

CCQ1 can help to revise the matching relationship in the cost volume CV1 of
I1, I2 to ensure the continuity of motion (Sect. 3.5).

Update of the CQQ: The entrance and exit of the correlation query queue
follow the first-in, first-out (FIFO) rule. As information BSQ3 from a new frame
I3 is added to the queue, the oldest information BSQ1 of I1 is discarded. The
formula of the new CQQ2 is as follows:

CCQ2 = [BSQ2, BSQ3]T ∈ R2×K×4. (6)

CCQ2 can help to revise the matching relationship in the cost volume CV2 of
I2, I3 (Sect. 3.5).
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Algorithm 1. The Process of the Cost Volume Adaptation Module
Input: Cost Volume CV1, CQQ1 with (BSQ1, BSQ2) and image features (Φ1, Φ2).
Output: The Adapted Cost Volume ACV1.
1: Compute the object feature queries (Ω1, Ω2) by Formula 7.
2: Compute the matching relationship M1 between (Ω1, Ω2) by Formula 8:

M1 ← softmax(
Ω1ΩT

2√
K

) ∈ RK×K .
3: Compute the column index of the maximum value of each row of the M1 matrix

and the matching index pairs are stored in the matrix P1 ∈ RK×2.
4: Set the first row of P1 be each index of object in Ω1 and the second row of P1 be

the index of each object in Ω2 that matches the object in Ω1.
5: Replace the coordinate matching relations of CV1 by the coordinate matching rela-

tion queried by (BSQ1, BSQ2) in P1 by Formula 9.
6: Adapt the Cost Volume:

ACV1 ← CV1

7: return ACV1

3.5 Cost Volume Adaption Module

To better utilize the object query information in BSQ to achieve motion con-
tinuity, we propose a Cost Volume Adaptation Module. Inspired by GMFlow
[37] and ReID [10] method, we calculate the matching of objects between frames
in CQQ and replace the optimized matching into the Cost Volume according
to the retained query information, which consists of three steps. As shown in
Algorithm 1, we show the adaption to Cost Volume CV1 of I1, I2 as an example:

(1) Object Feature Query: As shown in Fig. 2, K objects corresponding
to each frame feature are queried through the corresponding BSQ information
stored by CQQ:

Ω1 = BSQ1(Φ1) ∈ RK×h×w,

Ω2 = BSQ2(Φ2) ∈ RK×h×w,
(7)

where (Φ1, Φ2) are the features of (I1, I2), (Ω1, Ω2) are bounding box correspond-
ing object feature set in (BSQ1, BSQ2), K is the number of objects stored per
frame and h × w is the shape of each object. In the experiment, the shape is
determined by the bounding box with a uniform set size.

(2) Matching Relationship Between ( Ω1,Ω2): As shown in Formula 8,
we use the cross-attention layer to calculate the matching relationship. Before
the calculation, we compress the dimension of Ω1, Ω2 into the two-dimensional
RK×hw:

M1 = softmax(
Ω1Ω

T
2√

K
) ∈ RK×K , (8)

where matrix M1 is the correlation between K objects in Ω1 and K objects in
Ω2. By taking out the column index corresponding to the maximum value of each
row of M1, the index matching relation matrix P1 ∈ RK×2 can be constructed.
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The first row of the matrix P1 represents each index of each object in Ω1.
The second row of the matrix P1 represents the index of each object in Ω2 that
matches the object in Ω1.

(3) Adaptation of the Cost Volume: Through the index correspondence
contained in P1 and bounding box information stored by BSQ, the corresponding
coordinate matching can be obtained. Then replace the matching pairs in the
Cost Volume CV1 with the matching pairs of these objects.

CV1[BSQ1(P1[0, :])] = BSQ2(P1[1, :]). (9)

The Adapted Cost Volume CV1 is defined as ACV1.

4 Experiments

4.1 Implementation Details

According to the FlowFormer series [13,27], the image feature encoder and con-
text feature encoder are chosen as the first two stages of the ImageNet-pretrained
Twins-SVT. They are frozen during pretraining to achieve better performance.
Since the FlyingChairs [9] dataset contains only pairs of training frames, we mod-
ified it by taking multi-frames in a group and fine-tuned it on the FlyingThings
[20] dataset. For our model, we pretrain it for 300k iterations on the FlyingChairs
and FlyingThings dataset (denoted as “C + T ′′). Then, we fine-tune it for 120k
iterations on data from FlyingChairs, FlyingThings, Sintel [3], KITTI-2015 [12],
and HD1K [16] (denoted as “C + T + S + K(+H)′′). We further fine-tuned the
model for 50k iterations on the KITTI-2015 dataset. AdamW optimizer and a
one-cycle learning rate scheduler are employed. The batch size for all stages is set
to 6. The highest learning rate is set to 2×10−4 for FlyingChairs and 1.2×10−4

for other training datasets. We use Average Endpoint Error (AEPE) and F1-All
(%) as evaluation metrics. F1-All calculates the percentage of pixels with flow
errors greater than 3 pixels or exceeding 5% of the ground truth.

4.2 Comparison with State-of-the-Art Methods

Generalization Performance: In Table 1, the “C + T ” setting reflects the
model’s cross-dataset generalization ability. Specifically, in the challenging final
pass, MemoFlow ranks first and surpasses the VideoFlow series. It is notewor-
thy that VideoFlow and FlowFormer++ have 37.7% and 85.7% more parame-
ters than MemoFlow (13.5M vs. 18.2M vs. 9.8M). Additionally, FlowFormer++
undergoes pre-training using a masked autoencoder strategy on the YouTube-
VOS dataset [38]. And for the clean pass and KITTI-2015, MemoFlow achieves
performance on par with the state-of-the-art methods.
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Table 1. Experiments on Sintel [3] and KITTI [12] datasets. ‘*’ denotes the
multi-frame methods. We use bold and _ to highlight the methods that rank 1st and
2nd.

Training Data Method Sintel(train) KITTI-15(train) Sintel(test) KITTI-15(test)
Clean Final EPE F1-all Clean Final F1-all

C+T PWC-Net [29] 2.55 3.93 10.35 33.7 – – –
FlowNet2 [14] 2.02 3.54 10.08 30.0 3.96 6.02 –
SKFlow [31] 1.22 2.46 4.27 15.5 – – –
RAFT [32] 1.43 2.71 5.04 17.4 – – –
FlowFormer [13] 0.94 2.33 4.09 14.72 – – –
FlowFormer++ [27] 0.90 2.30 3.93 14.13 – – –
CRAFT [28] 1.27 2.79 4.88 17.5 – – –
GMFlow [37] 1.08 2.48 – – – – –
GMA [15] 1.30 2.74 4.69 17.1 – – –
Videoflow-BOF [26] 1.03 2.19 3.96 15.33 – – –
Videoflow-MOF [26] 1.18 2.56 3.89 14.20 – – –
Ours 0.98 2.09 3.91 14.39 – – –

C+T+S+K(+H) PWC-Net [29] (1.71) (2.34) (1.50) (5.3) 3.44 4.58 7.71
FlowNet2 [14] (1.45) (2.01) (2.29) (6.79) 4.14 5.73 11.47
GMFlow [37] – – – – 1.74 2.90 9.32
SKFlow* [31] (0.52) (0.78) (0.51) (0.94) 1.28 2.27 4.48
RAFT* [32] (0.75) (1.21) (0.63) (1.5) 1.94 3.18 5.11
CRAFT [28] (0.60) (1.06) (0.58) (1.33) 1.45 2.40 4.81
GMA [15] (0.62) (1.07) (0.57) (1.2) 1.39 2.48 5.14
PWC-Fusion* [24] – – – – 3.43 4.57 7.17
FlowFormer [13] (0.48) (0.74) (0.53) (1.11) 1.16 2.09 4.68
FlowFormer++ [27] (0.40) (0.60) (0.57) (1.16) 1.07 1.94 4.52
MatchFlow(R) [8] (0.51) (0.81) (0.59) (1.3) 1.33 2.64 4.72
SAMFlow [39] – – – – 1.00 2.08 4.49
MatchFlow(G) [8] (0.49) (0.78) (0.55) (1.1) 1.16 2.37 4.63
Videoflow-BOF* [26] (0.37) (0.54) (0.52) (0.85) 1.02 1.84 4.44
SplatFlow* [33] (0.53) (0.91) (0.80) (2.4) 1.12 2.07 4.61
Ours (0.30) (0.42) (0.49) (0.87) 1.00 1.69 4.43

Dataset-Specific Performance: After the “C + T + S + K(+H)” stage, we
submit results to the online Sintel and KITTI benchmark test. As shown in
Table 1, our model has outperformed most of the published methods, achiev-
ing 1.0 and 1.69 AEPE on the Sintel clean and final passes. In particular, our
model has a great advantage over SAMFlow and Matchflow on the final pass.
It is proved that although additional information is introduced, the
effect on motion continuity matching is superior to feature enhance-
ment. MemoFlow achieves a 4.43% F1-all error, surpassing the SOTA two-frame
and multi-frame methods, FlowFormer++ and VideoFlow-BOF on KITTI-2015.
Using the same three-frame setup, our model has achieved an overall improve-
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Fig. 3. It can be seen from the red box that MemoFlow better preserves the continuity
of motion and the integrity of the objects. It is helpful to use optical flow information
to understand the scene. (Color figure online)

Table 2. Results on the Sintel Test Set with Different Evaluation Metrics.
‘Unmatched’ refers pixels failed to match in adjacent frames and s0−10, s10−40, s40+
denote pixels with ground truth flow motion magnitude falling in 0 − 10, 10 − 40, and
more than 40 pixels, respectively.

Method Sintel Test(clean) Sintel Test(final)
All Mathced Unmatched s0−10 s10−40 s40+ All Matched Unmatched s0−10 s10−40 s40+

SKFlow [31] 1.298 0.567 7.251 0.282 0.950 7.173 2.261 1.138 11.415 0.577 1.681 12.015
SAMFlow [39] 1.000 0.384 5.966 0.252 0.760 5.245 2.080 1.036 10.60 0.515 1.488 11.278
VideoFlow-BOF [26] 1.005 0.389 6.023 0.229 0.695 5.605 1.713 0.812 9.054 0.387 1.242 9.422
FlowFormer++ [27] 1.073 0.390 6.635 0.252 0.796 5.810 1.943 0.878 10.627 0.438 1.404 10.712
Ours(MemoFlow) 1.000 0.399 5.889 0.233 0.708 5.503 1.692 0.805 8.917 0.407 1.262 9.098

ment over VideoFlow-BOF. It demonstrates that our method brings significant
accuracy improvements for multi-frame optical flow estimation. These results
can be found on Sintel and KITTI-15 benchmark websites.

Performance Analysis for Different Regions: To fully investigate the
performance of MemoFlow, additional metrics are provided in Table 2, where
“Unmatched” refers to the EPE on pixels failed to match in adjacent
frames, and s0−10, s10−40, s40+ respectively indicate the EPE on pixels with
ground truth flow magnitudes reduce to 0− 10, 10− 40, and over 40 pixels. We
select four of the most competitive methods, SKFlow, SAMFlow, VideoFlow,
and FlowFormer++ for comparison. Unmatched pixels pose challenges as they
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Table 3. Results of Different Segmentation Models.

Methods Sintel(train) KITTI(train)
clean final F1-epe F1-all

w/o Segmentation Model 0.48 0.74 0.69 1.11
MobileSAM [42] 0.30 0.42 0.48 0.92
EfficientPS [21] 0.34 0.49 0.54 0.91
YOSO [41] 0.37 0.40 0.49 0.87

Table 4. Results of Calculation Method of Matching Relationship in CVAM
and Number of Objects Stored in BSQ.

Calculation Method Length of the BSQ Sintel(train) Things(val) KITTI(train)
clean final clean final F1-epe F1-all

None 0 1.46 2.48 2.64 2.51 4.63 16.57
DeepSort [10,35] 1 1.37 2.34 2.29 2.04 4.32 15.11

3 1.24 2.25 2.01 1.69 4.05 14.86
5 1.12 2.12 1.67 1.42 3.89 14.44
7 1.14 2.11 1.52 1.44 3.91 14.52

Cosine Similarity [19] 1 1.41 2.46 2.17 2.04 4.29 15.31
3 1.33 2.25 1.64 1.57 4.03 14.92
5 1.09 2.14 1.45 1.36 3.92 14.53
7 1.1 2.13 1.44 1.39 3.91 14.4

Cross-Attention(Ours) 1 1.29 2.31 2.15 2.07 4.25 15.23
3 1.1 2.16 1.69 1.46 4.01 14.66
5 0.98 2.09 1.44 1.32 3.91 14.39
7 1.01 2.08 1.43 1.35 3.93 14.41

are invisible in the image compared to matched pixels. However, both on clean
pass and final pass, our MemoFlow achieves the best performance in the
“Unmatched” region. It is a strong validation of the effectiveness of our app-
roach. It proves that focusing on motion continuity can alleviate the
occlusion problems such as frame mismatch. As shown in Fig. 1 (b), Mem-
oFlow can describe the trail of objects more accurately.

Similarly, pixels with larger flow magnitudes are challenging, particularly
on the final pass, as faster motion leads to more severe motion blur. For large
displacement, feature enhancement has certain advantages. However, the per-
formance of our Memoflow on large displacement scenes is not inferior to the
method of enhancing features. It’s even better than SAMFlow and SKFlow on
the final pass. As shown in red boxes in Fig. 1 (b), MemoFlow can show accurate
motion trails with more precise details.
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Table 5. The Parameters and Inference of Different Models.

Model Para. Infer.

GMA [15] 5.9M 74 ms
FlowFormer [13] 18.2M 149 ms
SAMFlow [39] – 450 ms
CRAFT [28] 6.4M 116ms
MatchFlow(G) [8] 15.4M 126 ms
MemoFlow(Ours) 9.8M 163 ms

Qualitative Results: In Fig. 3, we present examples of visualization results
on the final pass of the Sintel and the KITTI test sets. Each row, from left to
right, represents input images and predicted flows of the multi-frame method
SplatFlow and our MemoFlow. Compared to SplatFlow, MemoFlow performs
better in regions with small object details (third row, fifth row) and areas prone
to unmatched issues such as occlusions (second row, fifth row). At the same time,
MemoFlow also demonstrates advantages in terms of object integrity (first row,
fourth row). It shows that motion continuity is still valid in large displacement
scenarios.

4.3 Ablation Experiment

Segmentation Model: We establish a baseline based on Flowformer with the
encoder replaced by a combination of SKFlow [31], Flowformer [13], and GMFlow
[37]. To verify the quality of Bbox Spatial Queries obtained by different segmen-
tation models, we perform the ablation. To prevent the segmentation in stage one
from taking too long time, we choose some efficient and lightweight segmentation
models, such as EfficientPS [21], YOSO [41], and MobileSAM [42].

As shown in Table 3, due to performance differences among different segmen-
tation models, it is evident that each segmentation model performs better than
the baseline (w/o Segmentation Model). It shows the efficiency of segmented
information. In different datasets, the performance ability of the model is differ-
ent. In Sintel, “MobileSAM” performs best. In KITTI, “YOSO” performs best.
Therefore, in the second training stage, different datasets can adopt different
segmentation results.

Number of Objects Stored in BSQ: As shown in Table 4, we validate the
number of objects stored in Bbox Spatial Queries as 3, 5, and 7, analyzing the
impact of different numbers K (Sect. 3.3, 3.4, 3.5) on optical flow estimation.
These results indicate that increasing the number of objects is not necessar-
ily beneficial for performance. The optimal value of K varies across different
datasets. We find that the features contained in multi-frames are sufficient to
capture the motion information of self-moving objects, so increasing the query
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length beyond this does not yield significant improvement. Considering compu-
tational efficiency and storage requirements, we set K to 5.

Calculation Method of Matching Relationship in CVAM: In the Cost
Volume Adaptation Module (CVAM), the method used to calculate inter-frame
object feature correlation significantly affects model performance. In the upper,
middle, and lower columns of Table 4, we present the results of various cal-
culation methods, including DeepSort [10,35], Cosine Similarity [19], and our
Cross-Attention approach. DeepSort and Cosine Similarity are commonly used
for recognizing similar pedestrian features in the ReID task. Our Cross-Attention
method outperforms the others due to its integration into the training stage.

Parameters and Runtime Analysis: We present the computational overhead
of our models in Table 5. Despite the inclusion of additional BSQ information,
MemoFlow has a relatively low parameter count (9.8M). It is particularly notable
when compared to MatchFlow (15.4M), which also incorporates additional infor-
mation. In terms of inference time, MemoFlow demonstrates shorter run times
(163ms) compared to SAMFlow (450ms), which shares a baseline (FlowFormer)
with MemoFlow.

5 Conclusion

This paper focuses on the challenging problem of motion inconsistency in opti-
cal flow estimation. Firstly, the importance of matching relations in multi-frame
optical flow estimation is analyzed theoretically. Therefore, we propose Memo-
Flow, which inputs additional matching information into the optical flow estima-
tion network. Next, to integrate the new matching information into the optical
flow estimation, we introduce a specific multi-frame Cost Volume Adaptation
Module, including BSQ and CQQ. In experiments, we demonstrated the effec-
tiveness of MemoFlow in motion consistent matching and its superiority in opti-
cal flow estimation accuracy, achieving state-of-the-art performance and ranking
1st among all three-frame methods on the Sintel and KITTI test sets. However,
our approach currently falls short in effectively encoding segmentation informa-
tion into the well-established knowledge domain of optical flow. In future work,
we consider how to take both advantages of segmentation and cost volume.
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Abstract. Accurate brain tumor segmentation in magnetic resonance
imaging (MRI) scans is crucial for diagnosis and treatment planning.
This paper presents an enhanced approach to brain tumor segmentation
by combining unsharp masking, normalization, and histogram equaliza-
tion with a 3D U-Net architecture. When compared to several state-of-
the-art techniques, our strategy considerably improves the Dice Score
for Whole Tumor (WT), Enhancing Tumor (ET), and Tumor Core (TC)
regions. In particular, we obtain Dice Scores of 91.84% for WT, 84.58%
for ET, and 85.00% for TC on the BraTS2020 dataset. The MRI images
quality is enhanced by the suggested preprocessing techniques, which
helps the model train and make more accurate predictions. Our app-
roach shows significant gains in segmentation accuracy, especially in the
difficult Enhancing Tumor region. These findings support the efficacy
of our method and offer significant improvements over the state-of-the-
art methods for brain tumor segmentation. Better contrast and feature
improvement in the images are also a result of the preprocessing stages
of normalization, unsharp masking, and histogram equalization, which
boost model performance. All things considered, our research validates
the usefulness of the suggested approach in clinical settings, providing
a solid brain tumor segmentation solution that can greatly facilitate
patient diagnosis and treatment planning.

Keywords: Brain Tumor Segmentation · 3D U-Net · Histogram
Equalization

1 Introduction

In medical image analysis, brain tumor segmentation from MRI images is essen-
tial because it helps with brain tumor diagnosis, therapy planning, and moni-
toring. The size, location, and type of brain tumors are critical determinants in
patient prognosis and therapy, and accurate segmentation of these tumors is nec-
essary to ascertain these details. Nevertheless, brain tumor manual segmentation
is a labor-intensive, time-consuming procedure that is subject to inter-observer
variability. As a result, the demand for automated and trustworthy techniques
for brain tumor segmentation is rising.
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Deep learning methods, in particular convolutional neural networks (CNNs),
have demonstrated considerable promise in medical picture segmentation tasks
in recent years. The introduction of topologies like U-Net and its variations has
resulted in notable advancements in accuracy of segmentation. Nevertheless, a
number of obstacles still need to be overcome before these models can be applied
to brain tumor segmentation. These include the unevenness of the tumor and
background regions, the variability of tumor appearance, and the existence of
noise and artifacts in MRI images.

A class of models known as transformers was first created for natural lan-
guage processing applications, but because of their capacity to capture contex-
tual information and long-range dependencies, they have lately been modified
for use in medical picture analysis. Transformers have great potential, but the
amount of processing power and training data they require can be a major obsta-
cle to their practical application. Transformers are less practical for application
in many clinical settings where access to high-performance computing resources
may be limited due to their high processing requirements.

In order to overcome these obstacles, we suggest a strategy that makes use of
strong CNN architecture and effective preprocessing methods to enhance brain
tumor segmentation performance without requiring the high processing overhead
of transformers. Our method involves improving the quality of MRI images using
histogram equalization, unsharp masking and normalization before feeding them
into a 3D U-Net model. These preprocessing techniques aid in enhancing the
contrast and emphasizing significant details in the photos, which helps the model
learn and predict more accurately.

The main contributions of this paper are as follows:

– Introduction of a preprocessing pipeline that includes histogram equaliza-
tion, unsharp masking, and normalization to enhance MRI images for better
segmentation.

– Implementation of a 3D U-Net architecture optimized for brain tumor seg-
mentation.

– Thorough testing of the suggested approach using the BraTS2020 dataset,
demonstrating significant improvements over state-of-the-art methods.

The rest of this paper is organized as follows: Sect. 2 provides an overview of
related work in brain tumor segmentation. Section 3 describes the preprocessing
techniques and the network architecture used in our method. Section 4 presents
the experimental setup, evaluation metrics and discusses the results and com-
pares our method with existing approaches. Finally, Sect. 5 concludes the paper
and outlines potential directions for future research.

2 Related Works

Numerous studies on brain tumor segmentation are included in this part, with a
focus on various methodologies and their results. The next papers provide an in-
depth examination of techniques and their efficacy in brain tumor segmentation
using MRI data.
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Ullah et al. [25] explored the impact of various pre-processing techniques
on brain MRI enhancement specifically for tumor segmentation using a 3D U-
Net architecture. Their study demonstrated that applying Gibbs ringing artifact
removal significantly improves segmentation accuracy. The work by Ullah et al.
underlines the importance of a comprehensive pre-processing framework, similar
to the approach proposed in our study, where multiple techniques are combined
to enhance the input data quality and consequently the performance of deep
learning models for brain tumor segmentation.

Messaoudi et al. [23] include the EfficientNet model in the encoding branch
for 3D brain tumor segmentation, hence proposing an asymmetric U-Net.
Futrega et al. [24] conducted in-depth ablation research on various components
and training regimens to optimize U-Net architecture for brain tumor segmenta-
tion; they were successful in the validation phase and placed third in the BraTS21
challenge.

Peng et al. [17] publish Multi-Scale 3D U-Nets for automatic brain tumor
segmentation, which leverages multi-scale feature extraction to increase segmen-
tation performance. To create an end-to-end brain tumor segmentation system
using multi-inception-UNET, Latif and colleagues [18] concentrated on combin-
ing inception modules to record various receptive fields. Chandra et al. [19] cre-
ated the Contextual Efficient Capsule Network, which employs capsule networks
to record spatial hierarchies in brain tumor segmentation.

Combining deep learning with semi-supervised learning techniques improved
the accuracy of brain tumor segmentation, according to Mlynarski et al. [20].
Zhou et al. [21] integrated features at different scales for brain tumor segmen-
tation using a multi-scale fusion convolutional neural network. Liu et al. [22]
introduced a deep convolutional neural network for brain tumor segmentation
using multi-modality MRI data, with the goal of improving the segmentation
accuracy of different tumor locations.

Qamar et al. [9] presented HI-Net, a hyperdense inception 3D UNet that use
factorized convolutional layers and dense connections to gather multi-scale infor-
mation. It was confirmed with notable performance gains on the BRATS 2020
dataset. Islam et al. [10] developed a 3D attention UNet that combines radiomic
and clinical characteristics with channel and spatial attention mechanisms for
enhanced segmentation, utilizing machine learning techniques to predict survival.

Sinha et al. [11] introduced a memory-efficient cascade 3D UNet for brain
tumor segmentation that reduces memory usage without compromising segmen-
tation accuracy. Fang et al. [12] describe a transformer-based model for brain
tumor segmentation that makes advantage of self-attention mechanisms.

Chen et al. [13] looked into anisotropic diffusion-based unsharp masking for
denoising and MRI image enhancement, and they found improved segmentation
results. Han et al. [14] created a novel feature improvement framework that
blends multi-scale feature extraction with an attention mechanism to improve
brain tumor segmentation accuracy.

Kaur et al. [15] developed a multi-scale lightweight 3D segmentation app-
roach with an attention mechanism for brain tumor segmentation with the goal
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of focusing on both computational efficiency and accuracy. Zhang et al. [16]
demonstrated the significance of attention techniques in improving model per-
formance by putting forth a 3D convolutional neural network with an attention
mechanism for better brain tumor segmentation.

Eman Sami et al. [6] present a comparison study of threshold segmentation
algorithms and find that k-means clustering outperforms other techniques on
the TCIA dataset in terms of RMSE, PSNR, and segmentation accuracy.

Liu et al. [5] offer a multiscale lightweight 3D segmentation method with an
attention mechanism, demonstrating significant improvements in computation
efficiency and segmentation accuracy.

Tahir et al. [7] provide a feature enhancement framework for brain tumor
segmentation and classification that incorporates advanced segmentation tech-
niques, contrast enhancement, and noise reduction in order to significantly
increase accuracy.

Ajai and Gopalan [8] propose an eight-direction Sobel edge detection algo-
rithm and demonstrate its superiority over traditional methods in detecting
irregular tumor edges with reduced error metrics and higher accuracy.

The collective findings of these studies show the advancements in MRI image
preprocessing and brain tumor segmentation techniques. Each method improves
the consistency and precision of brain tumor segmentation in clinical settings,
and each has advantages of its own.

3 Methods

3.1 Preprocessing Techniques

To improve the quality and standardize the inputs, we used multiple strate-
gies to preprocess the MRI images for brain tumor segmentation. Histogram
equalization, unsharp masking, and normalization with rescaling are some of
the techniques employed. A thorough explanation of each strategy is provided
below.

Histogram Equalization and Rescaling. To enhance the contrast of the
photographs, each slice of a 3D volume tensor is subjected to histogram equal-
ization. To keep intensity levels consistent, the equalized slices are rescaled to
the original range. The definition of the transformation is as follows:

Given a 3D volume tensor V with slices Si, the transformation can be
expressed as:

S′
i = rescale(equalize(Si),min(Si),max(Si)) (1)

where equalize(Si) is the histogram equalized slice, and rescale(S′
i,min(Si),

max(Si)) scales the slice back to its original intensity range.
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Unsharp Masking. By processing each 2D slice individually along a prede-
termined axis, unsharp masking is used to improve edge contrast in 3D medical
pictures. Each slice is subjected to Gaussian blur, the unsharp mask is com-
puted, and the original slice is enhanced by the addition of the scaled mask.
Mathematically, the procedure is expressed for a slice Si as follows:

S′
i = Si + α(Si − GaussianBlur(Si, σ)) (2)

where α is the strength factor, σ is the standard deviation for the Gaussian
kernel, and GaussianBlur(Si, σ) is the blurred slice.

Normalization and Rescaling. By using normalization, each slice’s intensity
levels are guaranteed to fall inside a predetermined range. First, the values must
be scaled to a range of [0, 1], and then they must be rescaled to a desired range
of [min_val, max_val]. The normalized and rescaled slice S′

i for a slice Si is
calculated as follows:

S′
i = rescale

(
Si − min(Si)

max(Si) − min(Si)
,min_val,max_val

)
(3)

This transformation ensures uniform intensity distribution across the dataset,
facilitating better training of the segmentation model.

3.2 Network Architecture

We used a 3D U-Net model for the brain tumor segmentation task. Because of its
encoder-decoder layout, which allows it to collect both local and global informa-
tion, the U-Net architecture is highly suited for biomedical picture segmentation.
The following describes our U-Net model’s exact configuration:

The U-Net model is defined with the following parameters:

– Spatial dimensions: 3D
– Input channels: 4 (corresponding to the different MRI modalities)
– Output channels: 4 (corresponding to the segmented regions: whole tumor,

enhancing tumor, tumor core, and background)
– Channels: (16, 32, 64, 128) - indicating the number of feature maps at each

layer in the encoder
– Strides: (1, 2, 2, 2) - specifying the downsampling factors at each layer
– Kernel size: 3 - the size of the convolutional kernels used throughout the

network

The model architecture is illustrated in Fig. 1.
The U-Net model consists of an encoder path, where the input is progressively

downsampled to capture context, and a decoder path, where the feature maps
are upsampled and combined with corresponding feature maps from the encoder
path through skip connections. This structure allows the network to effectively
learn and predict segmentation maps with high accuracy.
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Fig. 1. The architecture of the 3D U-Net model used for brain tumor segmentation.

3.3 Loss Function

To train the U-Net model for brain tumor segmentation, we employed the Dice
Loss function. The Dice Loss is particularly effective for segmentation tasks
as it directly optimizes the Dice coefficient, a measure of overlap between the
predicted segmentation and the ground truth.

The Dice coefficient D is defined as:

D =
2|P ∩ T |
|P | + |T | (4)

where |P ∩T | is the intersection of the predicted output P and the target T , |P |
is the sum of the predicted output, and |T | is the sum of the target. The Dice
coefficient ranges from 0 to 1, where 1 indicates perfect overlap.

However, to make this differentiable and suitable for optimization, we modify
it slightly and introduce a smoothing term ε to prevent division by zero. The
modified Dice coefficient is given by:

D =
2
∑

i(PiTi) + ε∑
i Pi +

∑
i Ti + ε

(5)

where the summation
∑

i is over all the elements in the predicted and target
tensors, and ε is a small constant (typically 1 × 10−6).

The Dice Loss L is then defined as:

L = 1 − D (6)

This formulation ensures that minimizing the Dice Loss maximizes the Dice
coefficient, thereby improving the overlap between the predicted and target seg-
mentations. The Dice Loss effectively handles the class imbalance often present
in medical imaging datasets, making it well-suited for brain tumor segmentation
tasks.
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4 Experiments

4.1 Dataset

The BraTS2020 dataset, a large collection of multi-modal MRI scans used for
brain tumor segmentation, was employed for our investigations. Four distinct
MRI modalities—T1-weighted, post-contrast T1-weighted (T1ce), T2-weighted,
and Fluid Attenuated Inversion Recovery (FLAIR)—are included in the anno-
tated data of the BraTS2020 dataset for every patient. The complementary
information provided by these modalities is essential for precise tumor segmen-
tation.

Dataset Details. The BraTS2020 dataset contains 369 cases with high-grade
gliomas (HGG) and low-grade gliomas (LGG) annotated by experts. Each MRI
scan in the dataset is provided as a 3D volume with a size of 240 × 240× 155
voxels. The dataset includes annotations for three tumor subregions:

– Whole Tumor (WT): Includes all tumor regions.
– Tumor Core (TC): Excludes the edema region.
– Enhancing Tumor (ET): Includes only the active tumor regions that show

up brightly on the T1Gd sequence.

Challenges. The BraTS2020 dataset presents several challenges:

– Class imbalance: The tumor regions occupy a much smaller volume com-
pared to the background, making it challenging to accurately segment the
tumor.

– Variability: Significant variability in tumor appearance across different
patients and MRI modalities.

– Artifacts: Presence of noise and artifacts in the MRI scans that can affect
the segmentation accuracy.

Despite these challenges, the BraTS2020 dataset remains a valuable resource
for developing and evaluating advanced brain tumor segmentation algorithms
due to its rich diversity and comprehensive annotations.

4.2 Evaluation Metrics

The performance of the segmentation model was evaluated using the Dice Simi-
larity Coefficient (DSC), a commonly used metric for image segmentation tasks.
We calculated the Dice coefficients for three specific regions:

– Whole Tumor (WT):

DSCwhole =
2
∑

i(P
WT
i · TWT

i )∑
i P

WT
i +

∑
i T

WT
i

(7)
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– Enhancing Tumor (ET):

DSCenhancing =
2
∑

i(P
ET
i · TET

i )∑
i P

ET
i +

∑
i T

ET
i

(8)

– Tumor Core (TC):

DSCcore =
2
∑

i(P
TC
i · TTC

i )∑
i P

TC
i +

∑
i T

TC
i

(9)

A custom Dice metric class was used to aggregate these metrics over the
entire validation dataset, providing a comprehensive evaluation of the model’s
performance.

4.3 Training Details

The U-Net model was trained using the Dice Loss function, which directly opti-
mizes the Dice coefficient. The Dice Loss L is defined as in (6).

This formulation ensures that minimizing the Dice Loss maximizes the Dice
coefficient, thereby improving the overlap between the predicted and target seg-
mentations.

The training process was carried out with the following details:

– Model: 3D U-Net with spatial dimensions of 3, input channels of 4, output
channels of 4, channels of (16, 32, 64, 128), and strides of (1, 2, 2, 2).

– Loss Function: Dice Loss.
– Optimizer: Adam optimizer with a learning rate of 1 × 10−4.
– Epochs: The model was trained for 100 epochs.
– Data Augmentation: Random transformations such as rotation, scaling,

and flipping were applied to increase the diversity of the training data.
– Validation: The model’s performance was evaluated on a separate validation

set at the end of each epoch.

During training, the Dice coefficients for the whole tumor, enhancing tumor,
and tumor core were monitored to ensure the model’s effectiveness across differ-
ent tumor regions.

4.4 Visualizations

Understanding the consequences of preprocessing methods and the segmentation
model’s performance depends heavily on visualizations. This section includes a
number of visualizations that show how the final segmentation results, unsharp
masking, and histogram equalization affect each other.

Histogram Equalization. Figures 2, 3, 4 and 5 show the comparison of MRI
slices before and after applying histogram equalization in the four modalities.
Histogram equalization enhances the contrast of the images by redistributing the
intensity values, which can improve the visibility of structures within the brain.
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Fig. 2. Comparison of MRI slices T1 Modality before and after histogram equalization.

Fig. 3. Comparison of MRI slices T2 Modality before and after histogram equalization.

Fig. 4. Comparison of MRI slices T1ce Modality before and after histogram
equalization.

Combined Preprocessing Effects. Figures 6, 7, 8 and 9 demonstrates the
effects of combined preprocessing techniques. It includes MRI slices for the four
modalities before preprocessing, after histogram equalization, and finally after
applying 3D unsharp masking. The combined preprocessing steps enhance the
image quality and highlight important features, aiding in better segmentation.
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Fig. 5. Comparison of MRI slices Flair Modality before and after histogram
equalization.

Fig. 6. Comparison of MRI slices T1 Modality before preprocessing, after histogram
equalization, and after applying 3D unsharp masking.

Fig. 7. Comparison of MRI slices T2 Modality before preprocessing, after histogram
equalization, and after applying 3D unsharp masking.

Segmentation Results. Figure 10 presents the ground truth segmentation and
the corresponding prediction by the U-Net model. These visualizations allow us
to evaluate the accuracy of the model in identifying and segmenting the tumor
regions.



Enhanced Brain Tumor Segmentation with Preprocessing and 3D U-Net 245

Fig. 8. Comparison of MRI slices Flair Modality before preprocessing, after histogram
equalization, and after applying 3D unsharp masking.

Fig. 9. Comparison of MRI slices T1ce Modality before preprocessing, after histogram
equalization, and after applying 3D unsharp masking.

Fig. 10. Comparison of ground truth segmentation and predicted segmentation by the
U-Net model.

4.5 Results

We compared our method’s performance with several state-of-the-art methods
for brain tumor segmentation based on Dice Score for Whole Tumor (WT),
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Table 1. Comparison of Dice Scores with selected methods on Brats2020

Model Whole Tumor (%) Enhancing Tumor (%) Tumor Core (%)

nnU-Net [1] 91.07 81.37 87.97
H2NF-Net [2] 91.3 78.8 85.5
nnUnet Ensemble [3] 91.0 77.6 84.4
dResU-Net [4] 86.6 80.04 83.57
ADHDC-Net [7] 89.75 78.01 83.31
Our Method 91.84 84.58 85.00

Tumor Core (TC), and Enhancing Tumor (ET) regions. Table 1 shows the com-
parison results.

The results in Table 1 demonstrate that our method outperforms several
state-of-the-art approaches in terms of Dice Score for brain tumor segmenta-
tion on Brats2020. Specifically, our method achieves a Dice Score of 91.84% for
the Whole Tumor (WT), 84.58% for the Enhancing Tumor (ET), and 85.00% for
the Tumor Core (TC). Compared to nnU-Net [1], which achieves 91.07% for WT,
81.37% for ET, and 87.97% for TC, our method shows a significant improvement
in the Enhancing Tumor region. Similarly, H2NF-Net [2] and nnUnet Ensem-
ble [3] also demonstrate lower performance in the Enhancing Tumor region com-
pared to our method.

Our method shows how to improve MRI images prior to segmentation by
applying unsharp masking, normalizing, and histogram equalization. These pre-
processing techniques aid in enhancing the contrast and emphasizing significant
details in the photos, which helps the model learn and predict more accurately.
Overall, the findings indicate that our technique to brain tumor segmentation
is highly competitive and offers notable advantages over current state-of-the-art
methods.

5 Conclusion

In this work, we provided an improved approach to brain tumor segmenta-
tion that combines a solid 3D U-Net architecture with effective preprocessing
methods. Our method involves enhancing MRI images with unsharp masking,
normalization, and histogram equalization. This greatly improves contrast and
highlights key characteristics for more accurate segmentation. We show that our
method outperforms various state-of-the-art approaches with the experimental
findings on the BraTS2020 dataset, attaining Dice Scores of 91.84% for Whole
Tumor (WT), 84.58% for Enhancing Tumor (ET), and 85.00% for Tumor Core
(TC).

The noteworthy enhancements in the segmentation accuracy, namely in the
Enhancing Tumor area, highlight the efficacy of our preprocessing procedure.
Our approach improves the quality of the input images, which helps the 3D
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U-Net model train and predict better, which results in higher segmentation per-
formance.

In order to increase segmentation accuracy, future work will concentrate on
refining preprocessing methods and investigating the incorporation of cutting-
edge deep learning models. To confirm the generalizability and robustness of
our method, we also intend to apply it to other medical imaging modalities and
segmentation tasks.

All things considered, our suggested approach offers a viable means of pre-
cisely and effectively segmenting brain tumors, and it may considerably help
with clinical diagnosis and treatment planning.
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Abstract. This paper tackles the challenging task of 3D visual
grounding–locating a specific object in a 3D point cloud scene based
on text descriptions. Existing methods fall into two categories: top-down
and bottom-up methods. Top-down methods rely on a pre-trained 3D
detector to generate and select the best bounding box, resulting in time-
consuming processes. Bottom-up methods directly regress object bound-
ing boxes with coarse-grained features, producing worse results. To com-
bine their strengths while addressing their limitations, we propose a joint
top-down and bottom-up framework, aiming to enhance the performance
while improving the efficiency. Specifically, in the first stage, we propose a
bottom-up based proposal generation module, which utilizes lightweight
neural layers to efficiently regress and cluster several coarse object pro-
posals instead of using a complex 3D detector. Then, in the second stage,
we introduce a top-down based proposal consolidation module, which
utilizes graph design to effectively aggregate and propagate the query-
related object contexts among the generated proposals for further refine-
ment. By jointly training these two modules, we can avoid the inherent
drawbacks of the complex proposals in the top-down framework and the
coarse proposals in the bottom-up framework. Experimental results on
the ScanRefer benchmark show that our framework is able to achieve
the state-of-the-art performance.

Keywords: 3D visual grounding · top-down · bottom-up

1 Introduction

The 3D visual grounding (3DVG) [2,12] is a fundamental yet important task in
3D understanding, which has recently received increasing attention due to its
wide range of applications, such as in robotics and AR/VR systems. The goal of
this task is to locate the target object in a 3D point cloud scene based on a given
free-form query text description. Different from previous mature 2D grounding
methods [5,10,24,27,28,30–32], 3D visual grounding has two more challenging
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Fig. 1. (a): Typical procedure of top-down based method. (b): Typical procedure of
bottom-up based method. (c): Procedure of our proposed method, where we generate
initial proposals in an efficient bottom-up manner, and subsequently consolidate the
proposals over graphs via an effective top-down approach.

aspects: Firstly, 3D visual grounding takes sparse, noisy, and information-dense
3D point clouds as input, making it more difficult to obtain visual information.
Secondly, the object-to-object and object-to-scene relationships in 3D space are
more complex than that in 2D images, further increasing the difficulty of 3D
visual grounding task.

Existing methods for the 3D visual grounding (3DVG) task can mainly be
grouped into two categories according to their model designs: (1) Top-down
approaches: these methods [1,2,6,8,14,33,34] typically first utilize pre-trained
3D object detection models [4,15,18,19,26] or segmenter [3,9] to generate a large
number of candidate proposals in the entire point cloud scene, and then select
the one that best matches the semantic meaning of the query text. Although
they are able to obtain high-quality proposals, they need to enumerate all pos-
sible objects to ensure that the generated proposals contain the object required
by the text, leading to a large number of redundant proposals. The general pro-
cedure of the top-down based methods is illustrated in Fig. 1(a). (2) Bottom-up
approaches: these methods [7,13,17] generally first interact the point set with
textual description via early-fusion strategy, then directly predict the target
bounding box from the learned query-related point-wise features. Compared to
the top-down methods, they do not rely on complex proposal generation and
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selection, and thus can achieve end-to-end efficient training. The general proce-
dure of the bottom-up based methods is illustrated in Fig. 1(b).

However, the above two types of methods have their own advantages and
disadvantages. For the top-down approaches, this category of methods can typi-
cally yield high-quality proposals and facilitate the better capture of relationship
information among a large number of proposals. However, its disadvantage is that
in order to ensure that the generated proposals contain the proposal required by
the query text, a large number of proposals need to be generated in abundance,
while the vast majority of the generated proposals are not related to the descrip-
tion in the query text, which reduces the efficiency of the method. However, if the
number of generated proposals is reduced, there is a higher risk of ignoring the
object required by the query. For the bottom-up approaches, because they avoid
the issue of generating and processing an excessive number of redundant propos-
als, higher computational efficiency is achievable. At the same time, since the
bounding box is directly regressed and not limited to the proposals generated by
the pre-trained model, this category of methods can capture smaller objects that
may be easily neglected by the pre-trained model. However, they overlook the
rich information between the global points as they struggle to model object-level
interactions. Therefore, their predicted object proposals obtained are relatively
coarse, and there is no additional design for further proposal refinement.

Through the analysis above, we find that the advantages and disadvantages
of these two methods actually complement each other. Specifically, bottom-up
approaches can generate a few proposals that closely relate to the query text,
thereby reducing redundancy caused by top-down approaches and significantly
improving computational efficiency. On the other hand, top-down approaches
can alleviate the issue of coarse proposals generated by bottom-up approaches
by capturing the relationship information among proposals and refining them.

This inspires us to propose a method that integrates the advantages of both
approaches while mitigating their limitations. Our proposed method consists of
two stages. In the first stage, we develop a proposal generation module similar
to bottom-up methods. This module aggregates from both 3D point clouds and
query texts, enabling us to predict bounding boxes for objects highly relevant to
the query text directly based on these features, and extract the corresponding
object features. This enables us to use the guidance of the query text informa-
tion to avoid the inefficiency caused by detecting and analyzing a large number
of redundant objects simultaneously, and to identify objects that may be over-
looked by pre-trained detectors. In the second stage, we address the issue of
rough proposals generated by bottom-up methods by developing a graph-based
proposal consolidation module inspired by top-down methods. This module fur-
ther captures object-to-object and object-to-scene relationships and updates the
features of objects accordingly. Subsequently, we generate more refined bounding
boxes for the objects based on these updated features. We conducted evaluations
on the commonly adopted ScanRefer [2] datasets, and the experimental results
demonstrated that our proposed method achieved the state-of-the-art perfor-
mance when compared to existing methods.
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In summary, the contributions of our work are:

1. We conduct an in-depth analysis of the strengths and weaknesses of existing
top-down and bottom-up-based methods for 3D visual grounding. Through
this analysis, we provide valuable insights into how to leverage their respective
advantages while mitigating their limitations effectively.

2. We propose a novel framework, which first develops a bottom-up based strat-
egy to generate a few object proposals and then devises a top-down based
strategy over graphs to consolidate and refine the proposals for final ground-
ing.

3. Through comprehensive experiments, we demonstrate the effectiveness of our
proposed method and shed light on the rationale behind the successful inte-
gration of bottom-up and top-down approaches.

2 Related Work

Top-Down Based 3D Visual Grounding. Most approaches for 3DVG are
top-down based. For example, ScanRefer [2] utilizes VoteNet [19] to extract
numerous proposals and combine their features with textual features to select
the matched proposal. Subsequently, several top-down approaches emerged.
TGNN [8] generates candidate proposals as graph nodes, leveraging object fea-
tures and relationships to generate attention heatmaps for sentence expressions.
InstanceRefer [34] uses a language model to determine the target object category
and identifies instances with the same category in the scene as candidates. The
final instance is chosen through a matching process. SAT [33] enhances under-
standing of 3D scenes by learning alignments between 2D object representations
and corresponding objects in 3D scenes While these methods aim to include
desired proposals specified by textual requirements, generating a large number
of proposals often leads to inefficiencies. Besides, reducing generated proposals
increases the risk of neglecting query-required objects.

Bottom-Up Based 3D Visual Grounding. To address the challenge of gen-
erating numerous irrelevant proposals in top-down methods, bottom-up method
3D-SPS [17] is proposed to progressively selects key points based on language
guidance and directly regresses the bounding box. Similarly, Refer-it-in-RGBD
[13] first constructs a confidence heat map from the input sentence and voxels,
then samples seed points according to the heat map, and regresses the object’s
bounding box. However, these bottom-up methods often produce coarse propos-
als, limiting their ability to exploit complementary information among different
bounding boxes for refinement.

3 The Proposed Method

Previous works generally follow a top-down or bottom-up framework, both of
which come with inherent limitations within their respective designs. In this
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Fig. 2. The pipeline of our proposed method. Initially, we encode the input 3D point
cloud and text with pre-trained encoders. In the bottom-up stage, our module fuses
these features for language-guided object proposals. In the top-down stage, our refine-
ment module enhances these proposals by graph-based features, followed by predicting
matching scores to select the best-matching bounding box.

paper, we propose a novel approach that leverages the strengths of both top-
down and bottom-up frameworks while mitigating their individual limitations
through a unified structure. In this section, we provide a comprehensive descrip-
tion of our method. We begin by offering an overview of the 3D visual grounding
task and our proposed framework. Then, we describe the multi-modal encoders
used in our method. After that, we elaborate on our proposed bottom-up based
3D proposal generation module and top-down based 3D proposal consolidation
module respectively. At last, we present the training objectives of our method.

3.1 Overview

Notation Definition. We first define 3D visual grounding task as follows. Given
point clouds P ∈ R

N×(3+F ) and free-form language query text D = {wn}Wn=1,
where N is the number of the points, F is the dimension of the additional features
of the point clouds such as colors and normals, and W denotes the number of
the input words. Our task is to predict the 3D bounding box of the object that
matches the input description.

Overall Pipeline. As illustrated in Fig. 2, our proposed method consists of two
stages: the bottom-up stage and the top-down stage. Firstly, we use pre-trained
encoders to independently encode the 3D point cloud and the query text infor-
mation. In the bottom-up stage, we feed these two types of features into our
proposed bottom-up based proposal generation module for feature fusion and
updating, which yields language-guided object proposals. Subsequently, in the
top-down stage, these proposals are input into our proposed top-down based
proposal consolidation module for further refinement, resulting in improved pro-
posals. Finally, we predict the matching scores between these proposals and the
query language, selecting the bounding box that best matches the query lan-
guage as the final output.
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3.2 Preliminaries

3D Scene Encoder. There have been many works [20,21,23,29] on encoding
3D point clouds, and theoretically, they can all be used for encoding the input 3D
scene point clouds. For consistency with previous works on 3D visual grounding
[2,13,33], we adopt the same pre-trained PointNet++ [21] for encoding the 3D
point cloud information. Let V ∈ R

M0×(3+Cv) denote the output of PointNet++,
where M0 is the number of the seed points obtained by PointNet++ and Cv is
the dimension of point features. Each point’s feature Vi can be divided into two
parts, which represent its 3D coordinates xi ∈ R

3 and other features fi ∈ R
Cv .

Description Encoder. We use a pre-trained CLIP model [22] to encode the
language information from the query text D = {wn}Wn=1. The output of the text
encoder is denoted as L ∈ R

W×Cl , where Cl here represents the dimension of
language features.

3.3 Bottom-Up Based Proposal Generation Module

To locate the object, previous top-down based methods directly utilize 3D detec-
tion models to produce all possible proposals of all objects in the 3D scene, which
not only severely rely on the proposal quality but also result in low computa-
tional efficiency. Although some recent bottom-up based methods try to directly
regress query-related proposals, they still rely on the complex decoding modules.

Therefore, we propose a simple yet lightweight bottom-up based proposal
generation module that generates candidate proposals guided by the query text.
This approach achieves higher efficiency compared to traditional top-down based
methods and is simpler than previous bottom-up based approaches.

To achieve this goal, we first utilize a multi-modal transformer-based module
[25] to fuse language and 3D visual information and eliminate points that are
irrelevant to the given language query. By leveraging the features generated
by the Transformer, we predict the center coordinates of the objects to which
each point in the point cloud belongs. Subsequently, based on each center, we
employ a vote-aggregation module to combine features of its neighboring points
belonging to the same object. Using these aggregated features, we can regress
language-guided object proposals.

Specifically, as for the multi-modal transformer-based module, we employ
two separate self-attention layers to encode the contexts in 3D point cloud fea-
tures and query language features, along with a cross-attention layer to encode
the correspondences between the two modalities. The self-attention mechanism
allows the model to capture relevant relationships and dependencies within each
modality, while the cross-attention mechanism helps in aligning the language
and visual features, enabling the model to focus on the most relevant informa-
tion for the task of generating object proposals guided by the language query.
The output of the transformer module is denoted as VT ∈ R

M0×Ct , and the
computation process can be represented as follows:

VT = Transformer(V,L). (1)
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By examining the attention scores produced by the cross-attention mecha-
nism, we can filter out points that have weak associations with the given query
language. Denoting the attention scores as attlang, we obtain the filtered set of
points VF ∈ R

Mf×Ct through the following computation:

VF = Vt[argtopk(Mean(attlang),Mf )]. (2)

Subsequently, for each of the points obtained above, we employ a center pre-
dictor based on its features VF to predict the object it belongs to. This process
yields the coordinates of the center of the corresponding object for each point,
denoted as cf ∈ R

Mf×3. Here, cf represents the three-dimensional coordinates
of Mf individual center points. The center predictor can be implemented using
a Multi-Layer Perceptron (MLP). Then, to obtain object candidate regions from
the points, we first employ farthest point sampling based on these center coor-
dinates to obtain several candidate proposal centers {ci}Ki=1, where K is the
number of candidates. Since points belonging to the same object have closely
related center coordinates, farthest point sampling helps to select those points
that belong to different objects. After obtaining the selected points using farthest
point sampling, we perform max pooling on the points within a certain distance
from each selected center. Let the set of points within a certain distance r from
point ci be denoted as {cij}nj=1 and their features denoted as {VF

ij}nj=1, the
feature VG

i of point ci can be computed as:

VG
i = Maxpool({MLP(VF

ij)}nj=1). (3)

The purpose of this max-pooling operation is to aggregate information from
points belonging to the same object.

The aggregated features{VG
i }Ki=1 are then fed into a Proposal Predictor,

which employs an MLP to regress preliminary proposal results. The Proposal
Predictor predicts the bounding box center ĉ0 and bounding box size r̂0 for each
point that defines the proposed regions corresponding to different objects in the
3D scene:

[ĉ0, r̂0] = MLP(VG). (4)

3.4 Top-Down Based Proposal Consolidation Module

Since the object proposals are not always accurate, i.e., it may contain only a
part of the object or include surrounding objects within the bounding box, it
is crucial to refine them. However, previous bottom-up based methods directly
output the regressed proposals as the final result, easily resulting in inaccurate
localization. Although top-down based methods try to correlate all proposals
for selecting the best one, they still haven’t refined the proposals. To address
these issues, we propose to construct a graph structure to learn the correla-
tions between the proposals. Different from previous methods, we additionally
develop a weighted edge for solely correlating the relevant proposals. Moreover,
we further devise a novel proposal consolidation strategy to enrich and refine the
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information in each proposal based on the contexts from its relevant proposals
belonging to the same object.

Specifically, we aim to refine each proposal using a graph-based method that
leverages information from its neighboring and relevant proposals. To achieve
this, we start by constructing a fully connected graph among the generated
proposals. However, we recognize that the correlations between different nodes
(objects) in the graph can vary significantly. Objects that are close in spatial
location and share similar categories often have stronger relationships. To make
the most of these correlations between nodes while reducing interference from
unrelated nodes, we define the edge weights Wuv between proposals as follows:

Wvu =
{

α cos
(
VG

v ,VG
u

)
+ β IoU (cv, cu) , v �= u
1, v = u.

(5)

Here, α and β are hyper-parameters that quantify the weights of the two
terms. The first term represents the semantic correlation strength between two
proposals, measured by their cosine similarity of features. The second term quan-
tifies the spatial correlation between the two proposals based on the Intersection
over Union (IoU) value of their preliminary bounding boxes. The bounding box
can be computed using the center ĉ0 and size r̂0.

Then, we employ the edge weights to update the features of the proposals
VA through a weighted summation process:

VA
v =

∑
u

WvuVG
u . (6)

Through this step, we refine the representation of the proposals, taking into
account their semantic and spatial associations with other relevant proposals in
the scene.

3.5 Training Objectives

Based on the enriched features of the proposals VA, we utilize a proposal pre-
dictor to refine the bounding box information [ĉ, r̂] for each proposal along with
the matching score ŝ between the proposal and the query text. We then select
the proposal with the highest matching score as the final result.

To ensure the model achieves satisfactory results, we adopt a combination of
multiple loss functions to supervise the entire pipeline.

During the preliminary proposal generation process, we utilize a center loss
Lcenter to supervise the center predictor and ensure the correct prediction of
object center coordinates. The center loss is computed by calculating the L1
loss between the predicted center coordinates cf and the ground truth center
coordinates cgt corresponding to that point.

Lcenter = ‖cf − cgt‖1. (7)

To obtain the ground truth center for a point, we leverage the dataset’s object
centers. For each point, we calculate its distance to all the ground truth object
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centers in the dataset. The point is then assigned to the object with the closest
center, making it the ground truth center for that point.

In the final selection stage, we employ a reference loss Lref to supervise the
selection of the best matching proposal for the query text. For each proposal,
with its matching score si and corresponding bounding box [ĉ, r̂], we determine
its corresponding label using the following approach. First, we calculate the IoU
between the predicted bounding box and the ground truth bounding box. Then,
we set the label of the proposal yi to 1 if it has the maximum IoU value among
proposals and the IoU value is greater than a specified threshold. For all other
proposals, the label is set to 0. The reference loss Lref is computed by calculating
the cross-entropy between the predicted matching score s and the corresponding
label y. The formula for the reference loss is as follows:

Lref = −
∑
i

(yi log(si) + (1 − yi) log(1 − si)). (8)

Additionally, similar to some previous works [2,19], we incorporate an object
detection loss Ldet to supervise the object detection process. This loss function
helps the model accurately localize and identifies objects within the scene. More-
over, we utilize a Language to Object classification loss Llang to aid in language
understanding.

Overall Loss. By combining these different loss functions, our proposed app-
roach aims to achieve improved performance in 3D visual grounding task. As a
summary, the total loss used during the training process can be represented as:

L = λ1Lcenter + λ2Lref + λ3Ldet + λ4Llang, (9)

where λ1, λ2, λ3 and λ4 are the weights assigned to different types of losses.

4 Experiments

4.1 Datasets and Evaluation Metric

To validate the effectiveness of our method and compare with previous works,
we conducted experiments on the commonly used ScanRefer dataset [2] and two
Referit3D dataset Nr3D and Sr3D [1]. ScanRefer is designed for the 3D visual
grounding task. It contains a total of 51,583 textual descriptions corresponding
to the objects provided in 806 scanned scenes from the ScanNet dataset. On
average, each scene contains 13.81 objects, and each object is associated with
4.67 textual descriptions in the ScanRefer dataset.

To evaluate the performance, we utilize the metric Acc@kIoU, where ‘k’
represents the threshold for the IoU between the predicted bounding box and
the ground truth. Following previous works, we set ‘k’ to 0.25 and 0.5 for our
experiments.

Nr3D and Sr3D [1] provides 41.5K and 83.6K textual descriptions for scenes
in ScanNet, respectively. We evaluate the effectiveness of our method on NR3D
using the same metrics.
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4.2 Implementation Details

During the training process, we employed 4 NVIDIA RTX3090 GPUs, with
a batch size of 6 on each of the 4 GPU, resulting in a total effective batch
size of 24. The training process was conducted for 32 epochs. We utilized the
AdamW optimizer [16] with an initial learning rate of 0.001 for optimization.
The pretrained language model is frozen. During the k-th epoch, the learning
rate was calculated using the following formula:

lr(k) = 0.5 ×
(

1 + cos
(k − 1)π

32

)
× 0.001. (10)

During the encoding stage, we employed pre-trained PointNet++ and CLIP
models. The input information includes point cloud coordinates, normal vectors,
color vectors and 2D multiview features. The number M0 of the output points of
pointnet++ is 2048. In the bottom-up proposal generation module, the number
of points Mf filtered based on attention coefficients is set to 512. Afterward, the
number of points K selected using the FPS is set to 128. In the top-down based
proposal consolidation module, the coefficients α and β in Eq. 5 are set to 0.7
and 0.3, respectively. As for the loss function, the coefficients λ1, λ2, λ3 and λ4

are set to 5, 0.1, 5, and 0.1, respectively.

Table 1. Comparison on ScanRefer dataset.

Method unique multiple overall

Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

ScanRefer [2] 76.33 53.51 32.73 21.11 41.19 27.40

InstanceRefer [34] 75.72 64.66 29.41 22.99 38.40 31.08

SAT [33] 73.21 50.83 37.64 25.16 44.54 30.14

3DVG-Transformer [35] 81.93 60.64 39.30 28.42 47.57 34.67

3D-SPS (reported) [17] 84.12 66.72 40.32 29.82 48.82 36.98

3D-SPS (Re-imple) [17] 82.82 64.77 39.58 29.11 47.97 36.03

Ours 82.60 66.83 40.96 30.81 49.04 37.80

4.3 Comparison with SOTA

We compared our experimental results on the ScanRefer dataset with those of
previous methods, as shown in Table 1. In our evaluation, we measured the pro-
portion of predicted bounding boxes with an IoU greater than 0.25 and 0.5
concerning the ground truth bounding boxes. All methods in the table utilize
3D point cloud features combined with 2D multiview features as inputs. The
methods we compare with encompass both top-down based approaches, such as
ScanRefer [2], InstanceRefer [34], SAT [33], and 3DVG-Transformer [35], as well
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as bottom-up based approaches, such as 3D-SPS [17]. To provide a comprehen-
sive analysis, we followed the example of previous works [2] and presented the
results separately for the “unique” and “multiple” subsets. The “unique” sub-
set refers to scenes where there is only one object of the same category as the
target object, while the “multiple” subset includes scenes with multiple objects
of the same category. In the table, “reported” represents the results reported in
the paper, while “our implementation” refers to the results of our reproduced
experiments.

From Table 1, our method has achieved the best results in five out of the
six metrics. Particularly, in the two primary metrics, “overall-Acc@0.25” and
“overall-Acc@0.5”, our method has demonstrated improvements of 0.56 and
1.61% points respectively compared to the previously leading approach. The
improvements in accuracy over the previous state-of-the-art method (our imple-
mentation) demonstrate the effectiveness of our proposed technique.

To further validate the effectiveness of our proposed method, we conducted
experiments on two datasets from ReferIt3D [1], namely NR3D and SR3D. We
adopted an experimental setup similar to ScanRefer [2], where we directly predict
the bounding box of the object described in the text, without relying on the pro-
vided bounding box information. We used a similar evaluation metric, Acc@0.25,
for assessment. The experimental results are presented in Table 2. The results
for other methods in the table were also obtained using the same experimental
setup. From the Table 2, it can be observed that our method outperforms all
others on both of these datasets.

Table 2. Comparison on Referit3D dataset.

Method SR3D/Acc@0.25 NR3D/Acc@0.25

ReferIt3D 27.7 24.0

InstanceRefer 31.5 29.9

LanguageRefer 39.5 28.6

SAT 35.4 31.7

Ours 41.4 32.0

4.4 Ablation Study

Main Ablation. To further demonstrate the effectiveness of our proposed
bottom-up based proposal generation module and top-down based proposal
consolidation module, we conduct the following experiments on the ScanRefer
dataset as shown in Table 3. In the first row, we report the performance achieved
using a pre-trained encoder and transformer module, along with a proposal gen-
eration method similar to ScanRefer, serving as our baseline for comparison. The
second and third rows illustrate the results when our proposed bottom-up mod-
ule and top-down module are incorporated, respectively. The last row presents
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Table 3. Ablation study results on ScanRefer dataset using ‘overall-Acc@0.25’ and
‘overall-Acc@0.5’ metrics.

bottom-up top-down Acc@0.25 Acc@0.5

× × 44.27 33.30

� × 45.30 34.32

× � 45.46 33.82

� � 49.04 37.80

Table 4. Ablation study on the num-
ber K of points selected during the far-
thest point sampling step in the bottom-
up based proposal generation module.

K Acc@0.25 Acc@0.5

256 45.90 34.50

128 49.04 37.80

64 45.83 34.50

Table 5. Ablation study on the number
n of graph-based information aggregation
iterations.

n Acc@0.25 Acc@0.5

0 45.30 34.32

1 49.04 37.80

2 44.81 33.28

the results achieved by the complete model, integrating all components. From
Table 3, it is evident that both of the proposed modules contribute to improv-
ing the experimental results. This observation highlights the essential role of
both bottom-up and top-down cues in the 3D visual grounding task. Notably,
when these two components are combined, they achieve the highest accuracy,
demonstrating their complementary roles in addressing the 3D visual grounding
task.

Ablation on Number K in the Farthest Point Sampling. Furthermore, we
conducted an ablation study on the number of points selected during the farthest
point sampling step in the bottom-up based proposal generation module. The
experimental results are presented in Table 4. From the results shown in Table 4,
we can conclude that selecting K=128 points yields the optimal performance.

Ablation on Graph Layers in Proposal Consolidation Module. We also
conducted experiments on the number n of graph-based information aggregation
iterations during the top-down stage, and the results are presented in Table 5.
It can be observed that performing graph-based information aggregation once
led to a significant improvement in the results. However, increasing the number
of aggregation iterations had a detrimental effect on the results, likely due to
factors such as oversmoothing [11], where excessive aggregation on the graph
data blurs features.

More experiments of ablation studies can be found in our supple-
mentary.
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Fig. 3. Visualization of our method. The first column displays the ground truth bound-
ing boxes provided by the ScanRefer dataset. The second and third columns represent
the output results of our bottom-up based proposal generation module and the final
output of the entire model, respectively. The last column shows the results obtained
from the 3D-SPS method.

4.5 Visualization

In Fig. 3, we present a visual comparison of the output results from the two mod-
ules of our method, as well as the results obtained from the 3D-SPS [17] method.
We can see that our bottom-up based proposal generation module, with the aid
of query language information, can locate the target objects. However, the qual-
ity of the bounding boxes generated in this step often falls short of being optimal.
For instance, in the first row, the bounding box only encompasses the lower part
of the shelf, and in the third row, the bounding box only covers the upper part of
the chair. Nevertheless, through the subsequent top-down based proposal con-
solidation module and by leveraging information from surrounding proposals,
the bounding boxes can be refined to better represent the entire object’s posi-
tion. This consolidation process allows our approach to provide more accurate
and complete bounding box predictions, enhancing the overall localization per-
formance. When comparing our method to the 3D-SPS [17] approach, we can
observe that our method excels at precisely localizing the objects described in
the query language. More visualizations are in our supplementary.

5 Conclusion

In this paper, we have analyzed two categories of methods used in 3D visual
grounding: the top-down based method and the bottom-up based method, each
with its respective strengths and weaknesses. Our proposed approach inte-
grates the advantages of both methods effectively while alleviating their lim-
itations. Firstly, we utilize a bottom-up based proposal generation module to
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produce high-quality candidate proposals relevant to the query information. Sub-
sequently, a top-down based consolidation module is employed to further enhance
the performance. As a result, our proposed method demonstrates superior per-
formance compared to the state-of-the-art results on the ScanRefer dataset. Fur-
thermore, our approach can serve as a flexible framework, enabling the replace-
ment of both the bottom-up based module and the top-down based module with
more advanced methods to achieve even better results in future research.
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Abstract. Despite the significant advancements in computer vision
models, their ability to generalize to novel object-attribute compositions
remains limited. Existing methods for Compositional Zero-Shot Learning
(CZSL) mainly focus on image classification. This paper aims to enhance
CZSL in object detection without forgetting prior learned knowledge.
We use Grounding DINO and incorporate Compositional Soft Prompting
(CSP) into it and extend it with Compositional Anticipation. We achieve
a 70.5% improvement over CSP on the harmonic mean (HM) between
seen and unseen compositions on the CLEVR dataset. Furthermore, we
introduce Contrastive Prompt Tuning to incrementally address model
confusion between similar compositions. We demonstrate the effective-
ness of this method and achieve an increase of 14.5% in HM across the
pretrain, increment, and unseen sets. Collectively, these methods pro-
vide a framework for learning various compositions with limited data,
as well as improving the performance of underperforming compositions
when additional data becomes available.

Keywords: compositional zero-shot learning · prompt tuning ·
incremental learning

1 Introduction

Although humans have never seen a blue apple, they can easily picture it. This
is due to the inherent human ability to generalize to novel concepts by combin-
ing the known entity “apple” with the color “blue”. However, do computer vision
models possess this capability? This question has motivated the development
of Compositional Zero-Shot Learning (CZSL) [5,21,22,26]. In CZSL, the goal is
to recognize unseen object-attribute combinations, referred to as compositions,
based on the compositions seen during training. For this, models should under-
stand the attributes and objects that compose these compositions to generalize
to all possible compositions.

Vision Language Models (VLMs), pretrained on large-scale image-text pairs,
are promising for CZSL due to their ability to understand the relationship
between the visual content and the textual description [16,22,26]. For object
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detection, VLMs such as Grounding DINO [10] and GLIP [7] learn to asso-
ciate regions of text with regions of images by pulling the embeddings of paired
image regions and text descriptions close while pushing others away [25]. These
models perform cross-modality fusion throughout the whole architecture, which
makes the textual features image-aware and the visual features text-aware. Liu
et al. [10] argue that VLMs benefit from frequent cross-modality fusion, making
Grounding DINO superior to GLIP. Therefore, throughout this paper, we will
solely focus on Grounding DINO.

Unfortunately, these models tend to be biased towards object categories
rather than attributes, which makes it suffer from feature misalignment when
used directly for attribute recognition [3]. Fine-tuning VLMs can solve this but
often leads to catastrophic forgetting of prior knowledge [28], thereby compro-
mising their generalization ability. To address this, we explore how to fine-tune
VLMs to perform well in CZSL without forgetting any prior knowledge. Nayak et
al. [15] introduced Compositional Soft Prompting (CSP), which combats catas-
trophic forgetting by adding auxiliary tokens for all words in a given dataset and
training only these tokens. This approach preserves the model’s original embed-
dings, allowing it to retain and revert to its initial knowledge when necessary,
unlike full fine-tuning, which alters the model’s parameters. CSP improves model
performance in CZSL for image classification. We incorporate CSP in Grounding
DINO, to leverage it for object detection.

We consider CSP as a baseline and improve it for CZSL by introducing Com-
positional Anticipation (CA), which recognizes that additional compositions may
exist beyond those present during training. In this context, the term “anticipa-
tion” does not refer to actively predicting new compositions. Instead, it involves
enhancing the model’s ability to handle potential new compositions by adjusting
how it processes partially correct predictions through Compositional Smoothing
and by guiding the model to disentangle attributes from objects via Compo-
sitional Independence. Compositional Smoothing prepares the model for novel
compositions by assigning soft labels when predictions are partially correct, e.g.,
the object is correct but the attribute is different. This approach deviates from
conventional Label Smoothing [20], which assigns soft labels to all classes. Com-
positional Independence disentangles objects from attributes through Separa-
tion and Decorrelation. Separation introduces a separation loss to maximize the
distinction between object and attribute classes by applying intra-class separa-
tion within objects and attributes and an inter-class separation between objects
and attributes. Decorrelation minimizes the correlation between objects and
attributes to reduce dependency between the two.

For incremental learning on newly added compositions, we use prior knowl-
edge to address specific mistakes related to confusion between similar composi-
tions. Inspired by recent developments in prompt tuning [17,29,30], we introduce
a novel method called Contrastive Prompt Tuning, specifically tailored for object
attributes. Contrastive Prompt Tuning addresses cases where the model confuses
similar compositions, such as mistaking a blue apple for a red apple, by adding
a trainable prompt in front of the confused class: “is not red apple but is blue
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apple”. This approach utilizes our prior knowledge to harness the ability of a
VLM to exploit language.

In summary, our main contributions are:

1. We incorporate CSP [15] into Grounding DINO [10] and extend it with Com-
positional Anticipation. Compositional Anticipation consists of:

– Compositional Smoothing, which assigns soft labels when predictions are
partially correct.

– Compositional Independence, which disentangles objects from attributes.
2. We develop Contrastive Prompt Tuning, a method that adds a learnable

prompt for compositions that are confused with each other during training.
This technique harnesses the power of language and our understanding of the
model to improve performance beyond simply training with additional data.

2 Related Work

In this section, we review literature related to our work. We cover Composi-
tional Zero-Shot Learning (CZSL), Prompt Tuning in Vision-Language Models
(VLMs), and Class Incremental Learning (CIL). Our research focuses on improv-
ing the CZSL capabilities of Grounding DINO [10], a VLM designed for object
detection, by utilizing prompt tuning. Additionally, we address underperforming
compositions in a class-incremental manner to further improve model perfor-
mance.

Compositional Zero-Shot Learning. The main objective of CZSL is to rec-
ognize unseen compositions from the compositions encountered during training.
In CZSL, individual objects and attributes are referred to as primitives. Misra
et al. [13] use a limited set of compositions to learn linear classifiers for each
primitive. Then, they learn a transformation network that takes these classifiers
as input and composes them to produce a classifier for their combination. Since
then, multiple works [8,12,14,19] have been proposed to tackle the CZSL task.

Recent works focus on adapting pretrained VLMs for CZSL by fine-tuning
primitive tokens. While CSP [15] only trains these tokens, others [11,21] also
introduce prompt disentangled tuning. This technique addresses entanglement,
where optimizing one primitive’s embedding affects another. Prompt disentan-
gled tuning divides the process into three phases with different prompts: one
for the entire composition, one for the attribute, and one for the object. This
ensures attributes and objects learn their optimal parameters independently.

While [11,21] improve upon [15] with an average performance increasement
of 1.7% and 2.3%, respectively, the gains are marginal relative to the increased
complexity. Our work is closely related to [11,15] as we adapt CSP for object
detection and address entanglement through Compositional Independence.
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Prompt Tuning in VLMs. Ever since CLIP [16] demonstrated that prompt
templates such as “a photo of a [CLASS]” improve the results of VLMs com-
pared to using only the classname, several other works [17,24,29,30] have been
introduced to replace the hand-crafted prompt with learnable soft prompts.
CoOP [30] introduces soft prompts that are shared across all classes, resulting in
prompts like [v1], [v2], . . . [vM ] for all images. CoCoOp [29] improves upon this by
proposing soft prompts that are image-conditioned, generating prompts such as
[v1(x)], [v2(x)], . . . [vM (x)] for each image x. Building upon these advancements,
Rao et al. [17] use contextual information from the image to prompt the language
model.

Our work is closely related to these works but is unique in its focus on
improving the performance of confused compositions using learnable prompts
that are initialized based on our knowledge of the model’s errors.

Class Incremental Learning. Class-Incremental Learning (CIL) refers to
learning new classes while retaining previously learned classes [27,28]. In typi-
cal CIL scenarios, learning occurs through a sequence of training tasks, each of
which introduce new classes without any overlap of the classes from previous
tasks. The main challenge is avoiding catastrophic forgetting, where learning
new classes leads to a loss of knowledge from previous tasks. Our approach bears
resemblance to Blurry CIL [1,2], where former classes can be revisited during
training. Similarly, we train incrementally with underperforming compositions
while allowing former compositions to be revisited.

3 Method

3.1 Problem Definition

Compositional Zero-Shot Learning. We follow [21,22,26] and formalize the
CZSL task as follows. Let A denote the set of attributes, and O the set of
objects, and C = A × O the set of all compositions. T = {(xj , cj)}N

j=1 denotes
the train set where xj ∈ X is a sample in the input (image) space X and
cj ∈ Cs is a composition in the subset Cs ⊆ C. The seen set Cs ⊆ C consists
of all compositions encountered during training, whereas the unseen set Cu ⊆ C
consists of compositions not seen during training. Let Cs and Cu be two sets such
that Cs ∩ Cu = ∅. While Cs and Cu are disjoint, the objects Ou and attributes
Au are defined such that Ou ⊆ Os and Au ⊆ As

Catastrophic Forgetting. VLMs, such as Grounding DINO [10], are known
for their ability to generalize well across diverse tasks due to the extensive and
varied data used during pre-training. However, fine-tuning these models on a
new dataset often compromises their generalization capability, as the rich fea-
tures learned during pre-training are replaced by features specific to the new
dataset. This can lead to catastrophic forgetting, where the model’s perfor-
mance on previously learned tasks significantly deteriorates. In the context of
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CZSL with VLMs, catastrophic forgetting is particularly problematic. While the
model may perform well on the specific compositions present in the new dataset
it was fine-tuned on, it risks becoming overly specialized. This specialization
may result in a model that loses its ability to generalize to other compositions,
objects, or concepts, and instead becomes exceptionally good at predicting the
compositions seen during training. Such a limitation is especially undesirable for
open-set object detectors like Grounding DINO, which are meant to recognize a
wide range of concepts.

3.2 Incremental CZSL

In practical settings, models often encounter new data or need to improve per-
formance on underperforming compositions after the initial training phase. To
address this, we introduce an increment set Ci ⊆ C to CZSL. Let Cp be the set
used for the initial fine-tuning of the model, with Cp = Cs. After introducing
Ci, the set of seen compositions becomes Cs = Cp ∪ Ci. The increment set Ci

consists of compositions introduced after the initial fine-tuning to improve per-
formance on underperforming compositions. Improving these underperforming
compositions with additional compositions is challenging because Cp is designed
to cover A and O with the minimum number of compositions. Extending Cs with
Ci makes the attributes and objects in Ci overrepresented in Cs, which can bias
the model towards these attributes and objects. In this paper, we focus solely on
improving performance on compositions cj ∈ C without extending the attribute
set A or the object set O.

3.3 Compositional Soft Prompting

To prevent catastrophic forgetting in Grounding DINO [10], we follow CSP [15]
and modify it for object detection. Objects and attributes that form compositions
are treated as learnable tokens within the VLMs vocabulary. Each attribute
aj ∈ A and each object oj ∈ O is represented as an auxiliary token taj

and toj

respectively, where taj
, toj

∈ R
d, with d being the dimension of the vocabulary

embedding. During training, only these auxiliary tokens are tuned, resulting in
(|A| + |O|) × d learnable parameters.

To illustrate, CSP creates auxiliary tokens for each attribute and object such
as tblue for the attribute “blue” and tapple for the object “apple”. These tokens
are adjusted during training while the rest of the weights, such as those of the
encoder and decoder in Grounding DINO, remain unchanged. By doing this,
CSP prevents catastrophic forgetting and preserves the pretrained weights of
the model.

3.4 Compositional Smoothing

To combat bias during training for Cs, where the model becomes overly confident
with the seen classes, we assign soft labels rather than hard labels (0 and 1) in
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Fig. 1. Our method anticipates unseen, future object-attribute compositions through
Compositional Independence and Compositional Smoothing. Forgetting is mitigated by
creating auxiliary tokens for the language embeddings and refining only these tokens.
Errors in compositions are incrementally corrected using Contrastive Prompt Tuning,
which contrasts confused compositions.

the classification loss. This is referred to as Label Smoothing [20], and it prevents
the model from becoming overly confident in its predictions, thereby improving
its generalization capability. Conventional Label Smoothing adjusts the target
labels by distributing a small portion of the probability mass to all other labels.
For a given true label y in a classification problem with k classes, the smoothed
label ysmooth is defined as:

ysmooth = (1 − ε)y +
ε

k
, (1)

where ε is the smoothing parameter, and the term ε
k distributes the smoothing

equally among all classes.
We deviate from conventional Label Smoothing [20] and assign soft labels

based on the correctness of the object, attribute, or the entire composition. We
refer to this as Compositional Smoothing. Let pO, pA, and pC represent the prob-
abilities for object, attribute, and overall composition predictions, respectively.
For a given true composition ct composed of object ot and attribute at, and
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predicted composition cp composed of object op and attribute ap, the smoothed
label yo,a is defined as:

yo,a =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pO if op = ot ∧ ap �= at,

pA if ap = at ∧ op �= ot,

pC if ap = at ∧ op = ot,

0 otherwise.

(2)

Compositional Smoothing ensures that there is a difference between having par-
tial correctness and no correctness in the prediction, guiding the model to learn
what the compositions are composed of rather than learning the compositions
themselves. This, in turn, should lead to better performance on Cu.

Figure 1 (top right) illustrates Compositional Smoothing. For a given ground
truth label (a1, o1), predictions where both the attribute and object are correct
are shown in black, and the smoothed label becomes pC . Partial correctness is
depicted in gray, with the smoothed label being either pO or pA. When both the
object and attribute are completely wrong, no smoothing is applied.

3.5 Compositional Independence

In CZSL, it is important to disentangle objects from attributes and have clear
distinctions withing each category. For example, a cube and a cylinder should
be easily distinguishable to prevent confusion. Additionally, colors should be
distinguished from specific objects, such as cubes, to ensure their independence.
This prevents similar attributes or objects to be confused with each other and
helps the model treat attributes and objects as distinct concepts.

We achieve this independence through two components: Separation and
Decorrelation. Separation enforces orthogonality within the embeddings of
objects and attributes and maximizes the distance between their mean embed-
dings. Decorrelation minimizes the correlation between the embeddings of
objects and attributes. This is achieved using the Hilbert-Schmidt Independence
Criterion (HSIC) [4], a kernel statistical test commonly used to measure inde-
pendence between two random variables, which proved to be effective for CZSL
image classification [18] and is leveraged here for object detection.

Separation. To help the model differentiate between similar attributes or
objects, we introduce an orthogonality loss. We achieve orthogonality within the
groups of attributes and objects by minimizing the average absolute similarity
between the normalized embeddings within each group:

Lorth(E) =
1

|E|2 − |E|

|E|∑

i=1

|E|∑

j=1
j �=i

|ei · ej | (3)

where E is the set of normalized embeddings, and ei and ej are embeddings
within this set. The summation

∑
j=1
j �=i

ignores self-similarity, and 1
|E|2−|E| ensures
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that self-similar terms are excluded during normalization. This orthogonality loss
is applied to both the attributes and objects:

LA = Lorth(EA) (4)

LO = Lorth(EO) (5)

where EA and EO represent the sets of normalized embeddings for the attributes
and objects, respectively.

Additionally, to enforce a clear distinction between attributes and objects,
we ensure that the mean embeddings of attributes and objects are significantly
separated:

Ldistance = − log(‖μA − μO‖2) (6)

where μA = 1
|A|

∑|A|
j=1 eAj

and μO = 1
|O|

∑|O|
j=1 eOj

represent the mean embed-
dings of attributes and objects, respectively. The distance is computed using the
L2 norm between the mean embeddings of the two groups.

The total Separation loss is a weighted combination of the orthogonality and
mean separation components:

Lseparation = λ1Ldistance + λ2LA + λ3LO (7)

where λ1,λ2 and λ3 are hyperparameters controlling the contribution of Ldistance,
LA and LO to the final loss, respectively.

Decorrelation. To further ensure the independence between object and
attribute embeddings, we introduce Decorrelation by using HSIC [4]. For an
object oj with attribute aj , we formulate the HSIC loss as follows:

Lhsic = λhHSIC(oj , aj) (8)

Here, λh is a hyperparameter that controls the contribution of the HSIC term
to the total loss.

3.6 Compositional Anticipation

Our method, which we refer to as Compositional Anticipation (CA), consists
of both Compositional Smoothing and Compositional Independence. While CA
does not actively predict unseen compositions, it prepares the model by refin-
ing how it handles potential new compositions and disentangles attributes from
objects. Figure 1 shows how we implement CA in Grounding DINO [10].

3.7 Contrastive Prompt Tuning

To improve the performance of some underperforming composition after training
with Cp, we extend Cs with an additional set Ci to improve performance. Our
approach begins with analyzing the predictions to identify compositions that are
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frequently confused with each other. For instance, if cj and ck are often mixed-
up, both compositions are included in Ci, and a trainable prompt is added in
front of the underperforming class(es). For example, if cj performs poorly, we
add the following prompt in front of the class: “is not ck but is cj”. This prompt
contains both a negative and an affirmative component.

We refer to this method as Contrastive Prompt Tuning and it does not modify
any of the tokens present in the sets A and O. Instead, it focuses solely on the
learnable prompt, which leads to fewer changes in the performance of other
compositions and mitigates catastrophic forgetting. By doing this, we exploit
the ability of a VLM to understand language and use a semantically meaningful
initial prompt to learn to distinguish between similar compositions. This step is
depicted as Incremental Learning in Fig. 1.

4 Experiments

4.1 Evaluation

Dataset. We evaluate our approach using a synthetic dataset generated follow-
ing the CLEVR framework [6]. This dataset consists of three types of objects:
cube, cylinder, and sphere. Each object is associated with six attributes: blue,
red, green, purple, brown, and yellow.

The dataset intentionally excludes non-visual attributes (e.g., heavy) and
attributes that exhibit significant variation across different objects (e.g., wet
in wet dog versus wet car). This yields a dataset that is reliable for assessing
a model’s performance in the CZSL task. Given that there are no ambiguous
attributes present in this dataset, a poorly performing model would indicate
that the model is bad in the CZSL task.

Train-Test Split. Throughout this section, all experiments for the CZSL task
are trained using the set: {red cube, blue cube, green sphere, purple sphere,
brown cylinder, yellow cylinder} as Cp with 10 shots per composition. This split
ensures that Cs covers the entire set of objects O and attributes A. Testing is
performed with the whole set of composition C with 60 samples per composition.

Evaluation Metric. We adopt the NMS mAP evaluation metric introduced
by Yoa et al. [23]. In this work they argued that the traditional COCO mAP
[9] is deceiving for open vocabulary detection models, such as Grounding DINO
[10]. Consider an image annotated with two ground-truth instances: a purple
cylinder and a green cylinder, assuming these are the only cylinder categories
in the model. These models tend to be able to detect and locate the presence
of all cylinders in the image, but they struggle with the contextual description.
They would predict two overlapping bounding boxes for each object, mistakenly
assigning both ‘green’ and ‘purple cylinder’ labels to each object. All four of
these boxes would be predicted with a high confidence score. Additionally, the
highest scoring label is not necessarily the correct one. Consequently, the AP for
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each category would misleadingly be 0.50, despite the model failing to correctly
comprehend the target objects. Yao et al. [23] refer to this as the ‘inflated AP
problem’.

To address this issue, Yao et al. [23] propose applying class-agnostic Non-
Maximum Suppression (NMS) before calculating the mAP. This method sup-
presses redundant bounding boxes, ensuring that only the prediction with the
highest confidence score is used in the calculation of the mAP. We adopt this
NMS mAP metric to provide a more realistic measure of our model’s perfor-
mance.

4.2 CSP Base

We adapt CSP [15] and modify it for Grounding DINO [10] and this integration
serves as our baseline method. To assess its performance, we begin by training
it with Cp = C. This yields an NMS mAP of 87.2±6.8, demonstrating that good
performance can be achieved by only training the embeddings of O and A.

Table 1. Compositional Anticipation improves both object detection performance and
generalization to unseen compositions. Compositional Smoothing contributes the most
to these improvements, followed by Separation and Decorrelation.

Compositional Anticipation (CA) Seen Unseen HM
Compositional Smoothing Separation Decorrelation

✗ ✗ ✗ 81.4 ± 7.6 4.5 ± 4.6 8.0 ± 8.1
✗ ✗ ✓ 81.3 ± 7.7 10.8 ± 6.7 18.2 ± 10.5
✗ ✓ ✗ 82.5 ± 6.8 15.1 ± 4.2 25.4 ± 6.1
✗ ✓ ✓ 84.4 ± 7.1 20.8 ± 4.7 33.1 ± 6.4
✓ ✗ ✗ 86.2 ± 6.8 64.3 ± 5.9 73.5 ± 5.3
✓ ✗ ✓ 92.4 ± 3.0 61.6 ± 5.7 73.8 ± 4.5
✓ ✓ ✗ 86.0 ± 6.1 67.7 ± 4.7 75.7 ± 5.0
✓ ✓ ✓ 88.7 ± 4.9 70.6 ± 7.4 78.5 ± 6.0

Table 2. Our model does not forget. It achieves good performance on the fine-tuned
CLEVR [6] dataset while preserving performance on MS-COCO [9], whereas conven-
tional fine-tuning of Grounding DINO [10] leads to forgetting on MS-COCO.

CLEVR [6] MS-COCO [9]

Model Before After Before After

Grounding DINO [10]
23.4

91.0 ↑67.6
41.1

11.8 ↓29.3

+ CSP [15] + CA (ours) 76.6 ↑53.2 41.1 =0.0
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4.3 CZSL Comparison

We compare the CSP [15] baseline with our proposed method, Compositional
Anticipation (CA) which extends CSP with Compositional Independence and
Compositional Smoothing. The results, averaged over 13 experimental runs,
are shown in Table 1 and are denoted using the NMS mAP metric [23]. Our
results show that our method substantially improves upon the CSP baseline,
with the harmonic mean (HM) between seen and unseen compositions improving
by 70.5%. This improvement is predominately achieved on the unseen composi-
tions, which improved by 66.1%.

Additionally, we showcase that our method does not suffer from catastrophic
forgetting by evaluating its generalization ability compared to the conventional
fine-tuning of Grounding DINO [10]. We compare the results on the MS-COCO [9]
dataset before and after fine-tuning on the CLEVR [6] dataset for the CZSL task.
Table 2 shows that conventional fine-tuning of Grounding DINO [10] achieves a
67.6% improvement on CLEVR, whereas our method achieves a 53.2% improve-
ment. This suggests that conventional fine-tuning of Grounding DINO is superior
in CZSL. However, conventional fine-tuning of Grounding DINO leads to a 29.3%
performance drop on MS-COCO, whereas our method maintains stable perfor-
mance with no drop at all. This demonstrates that conventional fine-tuning suffers
from catastrophic forgetting, while our method does not.

4.4 Improving Incrementally

In this experiment, we incrementally learn new classes using the model initially
trained with CSP [15] extended with Compositional Anticipation. We continue
training the model using a dataset that includes both Cp and Ci.

We explore two different fine-tuning methods: fine-tuning class-specific tokens
and our proposed method, Contrastive Prompt Tuning. For fine-tuning class-
specific tokens, we compare CSP [15] with CSP extended with Compositional
Anticipation. Additionally, we conduct this fine-tuning in two ways: (1) allow-
ing the fine-tuning of all tokens in the sets O and A, and (2) fine-tuning only
objects and attributes present in Ci, specifically Oi and Ai. For Contrastive
Prompt Tuning, all tokens are frozen and only the prompt is fine-tuned. The
prompt is initialized with semantically meaningful information, including both
an affirmative and a negative component. For instance, if “green cylinder” is often
confused with “green cube”, the prompt is initialized as “is not green cube but is
green cylinder”. We also analyze the individual contributions of each component
to the overall performance enhancements.

To evaluate performance, we compare the model’s results before and after
introducing Ci. Specifically, we determine performance across the sets Cp, Ci, and
Cu. Initially, Cu is defined as C −Cp. After introducing Ci, Cu becomes C −Cp −Ci.
The results on these sets after introducing Ci are shown in Table 3, with the
absolute changes compared to the initial values indicated with arrows.

Our results show that our method, Contrastive Prompt Tuning, which fine-
tunes a prompt initialized with prior knowledge to address specific mistakes
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Table 3. Our Contrastive Prompt Tuning is effective for incremental learning. It
improves performance across all classes including the unseen ones.

Class-Specific Tuning
Method Tunable Tokens Pretrained Increment Unseen HM

CSP O +A 88.1 ± 4.5 ↓2.9 72.9 ± 20.3 ↑13.6 0.0 ± 0.0 ↓74.3 0.0 ± 0.0 ↓71.7

+ CA O +A 80.9 ± 5.0 ↓10.1 60.5 ± 18.2 ↑1.2 76.5 ± 8.4 ↑2.1 69.6 ± 7.0 ↓2.1

CSP Oi +Ai 89.0 ± 2.3 ↓2.0 64.1 ± 20.9 ↑4.8 69.4 ± 8.3 ↓4.9 70.6 ± 8.2 ↓1.1

+ CA Oi +Ai 89.2 ± 3.9 ↓1.8 62.4 ± 19.6 ↑3.1 78.6 ± 4.9 ↑4.3 73.3 ± 9.1 ↑1.5

Compositional Prompt Tuning (ours)
Affirmation Prompt 88.8 ± 5.5 ↓2.2 82.8 ± 17.8 ↑23.5 74.8 ± 6.6 ↑0.5 80.2 ± 7.9 ↑8.5

Negation Prompt 91.2 ± 2.0 ↑0.2 81.9 ± 13.8 ↑22.6 76.6 ± 5.8 ↑2.3 82.1 ± 6.0 ↑10.4

Both Prompt 92.6 ± 1.5 ↑1.6 93.7 ± 2.1 ↑34.4 75.2 ± 5.0 ↑0.9 86.2 ± 2.1 ↑14.5

(a) Before incremental learning (b) After incremental learning

Fig. 2. Our Contrastive Prompt Tuning method is effective in incremental learning.
It improves performance on the increment compositions (in gray) while preserving
performance of the pretrained compositions (in black). (Color figure online)

related to confusion between similar compositions, is superior to the class-specific
tuning strategy. With Contrastive Prompt Tuning, we achieve a 12.9% enhance-
ment in the HM across the pretrain, increment, and unseen sets compared to the
best class-specific tuning method. This improvement is predominately achieved
across the increment set, which improved by 31.3% compared to the best class-
specific tuning method. Furthermore, Contrastive Prompt Tuning benefits from
both the affirmative and negative components of the prompt.

Figure 2 shows the effects of Compositional Prompt Tuning on the model’s
predictions. Figure 2a shows that before incremental learning, 39% of all
instances of “green cylinder” are misclassified as “green cube”, and all instances of
“brown sphere” are misclassified as “yellow sphere”. Figure 2b demonstrates that
after applying Compositional Prompt Tuning, “green cube”, “green cylinder”,
“yellow sphere”, and “brown sphere” are classified correctly on all instances.
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5 Conclusion

In this paper, we demonstrated that conventional fine-tuning of Grounding
DINO achieves an NMS mAP of 91.0 when fine-tuned on the CLEVR dataset for
CZSL. However, this approach suffers from catastrophic forgetting, as confirmed
by a 29.3% decrease in performance on the MS-COCO dataset post fine-tuning.
To address this, we proposed incorporating CSP into Grounding DINO to miti-
gate forgetting by only fine-tuning auxiliary tokens. However, we observed that
using CSP alone resulted in an NMS mAP of only 8.0 for the HM between
seen and unseen compositions. Therefore, we extended CSP with Compositional
Anticipation, which improved the HM by 70.5%. While our method improves
upon the CSP baseline, it does not surpass conventional fine-tuning of Grounding
DINO. Additionally, we introduced Contrastive Prompt Tuning to incrementally
improve compositions that are confused with each other during training. With
Contrastive Prompt Tuning, we improve performance on the HM across the pre-
train, increment, and unseen sets by 12.9% compared to the best class-specific
tuning method.

Given these findings, we recommend conventional fine-tuning of Grounding
DINO for applications where performance on a specific dataset is prioritized, and
our method for scenarios emphasizing overall performance across datasets. How-
ever, we acknowledge that our experiments are limited to the CLEVR dataset,
and it remains unclear how the proposed methods will perform on real-world
datasets beyond this toy dataset.

Considering that Grounding DINO excels in CZSL, likely due to the cross-
modality fusion between image and text embeddings and our proposed methods
involve strategically guiding the positioning of embeddings in the embedding
space. Having demonstrated the benefits of our approach for CZSL, further inves-
tigation into the positioning of embeddings in the fused embedding space could
potentially yield results approaching those achieved by conventional fine-tuning
of Grounding DINO, but without encountering catastrophic forgetting.
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Abstract. Referring expression comprehension aims to localize an
object in an image based on a natural language expression. This task
is challenging due to the scarcity of large-scale annotated data, which
prompts the research of zero-shot methods. In zero-shot scenarios, while
existing models excel at grounding, they struggle to identify the tar-
get described by textual query due to the presence of multiple objects
in a scene, as well as various spatial and attribute information. To
address these issues, we propose a method called Semantic and Positional
Knowledge (SPK), which leverages multimodal knowledge for fine-
grained cross-modal matching in the referring expression comprehension
task. Specifically, we pair words with visual representations as multi-
modal knowledge to match the information of expressions and images,
such as objects, attributes, and spatial information. This method can
be directly integrated with existing multimodal grounding models for
further performance improvement. Experiments on the RefCOCO/+/g
datasets demonstrate the effectiveness of our method, which can obtain
consistent improvements.

Keywords: Multimodal Knowledge · Referring Expression
Comprehension (REC) · Zero-shot

1 Introduction

Referring expression comprehension(REC) [24] is a fundamental task in com-
puter vision and natural language processing, requiring a model to localize the
target object in the corresponding image according to the referring expression.
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It has applications in various fields, including image content retrieval [6], robot
interaction [47], image captioning [27,32], etc. However, collecting large-scale and
annotated data to train supervised models is expensive. It prompts researchers
to find models pre-trained on widely available data and directly apply them to
the REC task, thus alleviating the need for annotated data. This scenario is also
known as zero-shot [25].

Due to the zero-shot generalization capacity of large-scale multimodal mod-
els [7,10,11,25], some approaches [4,28,33] leverage them to serve as bridges
connecting text and image domains. These approaches, however, fall short in
fine-grained instance understanding [1], because they are pre-trained on coarse-
grained image-text paired. This problem happens in ReCLIP [33], which pioneers
the use of multimodal models [11,25] for the zero-shot REC task, aligning indi-
vidual image-text object pairs in a training-free manner. Though RelVLA [4] fur-
ther pre-trains large-scale multimodal models on additional instance-level data
to address the problem of data granularity mismatching, it requires significant
computational resources and additional annotated data. Other models [12,16,23]
like GLIP [12] are effective and scalable to learn instance-level and language-
aware visual representations. However, these models also suffer from two issues
when dealing with the zero-shot REC. Firstly, these models are pre-trained on
datasets from domains different than REC. They merely perform simple ground-
ing on objects rather than selecting the referred object among multiple grounded
objects according to the description. Secondly, these models behave like “bags-
of-words” [44] when tasks require fine-grained image-text understanding. This
phenomenon indicates they can not handle the spatial information in referring
expressions.

To deal with these two issues, a straightforward idea is to use domain-free
knowledge to improve the generalization ability of pre-trained models. How-
ever, most of the existing knowledge-based methods are unimodal. They either
leverage linguistic knowledge [29] to supplement the description or utilize image
knowledge [22] to improve the visual representations. Although there are some
works [19,21,30] that propose multimodal knowledge, they are designed for other
tasks. Their effectiveness on the zero-shot REC task is unknown. More impor-
tantly, existing knowledge-based methods only focus on semantic knowledge,
which focuses on mapping each word to an object. However, for the zero-shot
REC, it is also necessary to model spatial knowledge, which focuses on distin-
guishing different words and different objects. Therefore, how to jointly model
these two types of knowledge for the zero-shot REC is challenging and unstudied.

In this work, we propose an approach namely Semantic and Positional Knowl-
edge (SPK) for zero-shot referring expression comprehension. The knowledge is
collected from word-region pairs of public datasets and can bridge the images
and texts in a fine-grained level. Specifically, for the modeling of semantic knowl-
edge, we extract image region features of word-region pairs to obtain the seman-
tic prototypes. The semantic prototypes can be used as knowledge matching to
alleviate the mismatching between the referred text object and image region.
For positional knowledge, we average all main object coordinates of the same
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orientation in images to obtain the positional masks. The positional masks can
be used as knowledge to represent the spatial information in referring expres-
sion. These two pieces of knowledge can be well-corporated to improve better the
performance of pre-trained models [12,16,23]. In particular, the proposed SPK
can achieve consistent improvements on the publicly available RefCOCO/+/g
datasets [20,43] and outperform state-of-the-art approaches on RefCOCO/g.

Our contributions are summarized as follows: (1) We construct a new knowl-
edge base containing both semantic and positional knowledge for multimodal
alignment. (2) We propose the SPK method that leverages pre-defined knowl-
edge to enhance the zero-shot performance of multimodal grounding models. (3)
Our method achieves consistent improvements on the RefCOCO/+/g datasets
by re-ranking with multimodal grounding models.

2 Related Work

2.1 Referring Expression Comprehension

Numerous methods have been established for the REC task. They can be
broadly categorized into one-stage [3,13,39] and two-stage [17,34,42] approaches.
One-stage methods generate bounding boxes directly in an end-to-end manner,
while two-stage methods utilize a proposal-query mechanism. In the zero-shot
REC task, researchers naturally decompose the task into parsing and query-
ing proposals steps [26], similar to two-stage methods. The parsing step often
involves using existing grounding models to provide bounding boxes and exter-
nal parsers to analyze the text. Then, the querying step leverages pre-trained
models [7,10,11,25] to align visual and language modalities. Building on this,
CPT [41], ReCLIP [33], and RelVLP [4] harness the power of pre-trained models
with strong visual-language alignment capabilities for the second step. Notably,
there exists a traditional definition of zero-shot REC where prediction occurs on
unseen objects during training, but training on a base dataset is still required.
But in our setup, CPT [41], ReCLIP [33], and our method do not require retrain-
ing the pre-trained models. And different from these methods, our approach
bridges the image-text modality from a knowledge modeling perspective.

2.2 Knowledge-Based Method

Leveraging knowledge has been applied in various vision-language tasks such as
visual question answering [9,30], image classification [21], and attempt reason-
ing [19]. Zhu et al. [50], Wang et al. [36], and Zhang et al. [46] have incorpo-
rated knowledge into visual-language tasks. However, only a few works introduce
knowledge into visual grounding tasks. In traditional zero-shot scenarios, Singh
et al. [31] encode external knowledge into image region proposals for object
detection, while Zhan et al. [29] construct commonsense knowledge in the form
of graphs, generating knowledge graphs with entities, relations, and objects as
nodes, and utilizing this knowledge for zero-shot reasoning. These two methods
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demonstrate different strategies for leveraging knowledge: embedding knowledge
within the learning process during training [2,37] or structuring knowledge as
graphs to facilitate query-based access [18,35,51]. Unlike these two methods, we
aim to leverage processed knowledge for instance-level image-text matching and
avoid additional model training.

Fig. 1. Overview of SPK. The above details the construction of the knowledge base,
while the below describes its reasoning. The Matching scores are used to re-rank the
proposals.

3 Semantic and Positional Knowledge

As shown in Fig. 1, the proposed method SPK mainly consists of two parts:
knowledge construction(above) and knowledge reasoning(below). When con-
structing knowledge, we incorporate semantic knowledge by collecting word-
region pairs and extracting image-region features. Then, we obtain the semantic
prototypes by averaging all image region features of the same semantic. These
prototypes are then finetuned to improve discrimination. Additionally, we incor-
porate positional knowledge by collecting word-region pairs of orientation seman-
tics, and we obtain positional knowledge by averaging all main object coordinates
of the same orientation in images and projecting them to a mask.

During knowledge reasoning, we use Large Language Models (LLMs)1 to
parse referring expressions and retrieve relevant information from the knowledge
1 We use Gemini as it has free and effective APIs.
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base based on the description of the referred target. Subsequently, we assess the
similarities between the features of proposals and the fetched semantic knowl-
edge, as well as the response scores between the positions of proposals and the
fetched positional knowledge. The proposals are generated by existing grounding
models. Finally, both similarities and response scores are calculated as matching
scores for re-ranking.

3.1 Knowledge Construction

Semantic Knowledge. We build the knowledge based on fine-grained image
and text semantics, similar to unpaired image-text matching knowledge in
MACK [5]. More specifically, it aligns semantic concepts with their correspond-
ing visual features, establishing a one-to-one correspondence between textual and
visual semantic concepts. Hence, the knowledge is represented as a set of semantic
concepts with paired multi-modal representations, (wk, vk), k = 1, ...,K, where
wk is k-th semantic concept and vk ∈ R

F represent real-valued region repre-
sentation of k-th semantic concept wk, K denotes the total number of semantic
concepts. vk can be computed as follows:

vk =
1
Jk

×
Jk∑

j=1

rj (1)

where Jk is the object number of k-th semantic concept and rj is j-th feature
of object belonging to k-th semantic concept. rj ∈ R

F is obtained by applying
global average pooling (GAP) [14] over the spatial dimensions (h,w) of frj ∈
R

F×h×w, which is the output of the last layer of the feature extractor.
We compute the initial knowledge by the feature extractor in VinVL [48],

which provides better features.

Positional Knowledge. We further extend our knowledge base to involve posi-
tional knowledge, which is absent in MACK [5]. When humans locate objects,
they often form a preliminary impression of the image’s layout. If the descrip-
tion mentions “bottom left”, attention is automatically directed to the lower left
corner of the image, implying heightened focus on that area. Based on this intu-
ition, we incorporate positional knowledge into our knowledge base. Positional
knowledge is divided into seven elements: top, bottom, left, right, front, back,
and center, representing seven locations. Combinations of these elements can
represent a broader range of locations.

To obtain the representation of positional knowledge, we utilize data from
Visual Genome [8] containing predicates with spatial indications in format
<subject predicate object>. In those data, the subject refers to the target, and
the predicate indicates the position. The union of the subject and object regions
is treated as the background and marked with 0; the subject’s position indi-
cates the spatial position and is marked with 1. Then, a mask is formed by
background(0) and subject position(1). After that, we accumulate all the masks
within the same type of element to represent the positional knowledge for that
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Fig. 2. From left to right, the elements represent above, under, left, right, front, and
behind, respectively.

element. Figure 2 demonstrates the representation of the positional knowledge.
When utilizing this positional knowledge, we project the mask to image and
calculate the average response score within the region of the mask encompassed
by proposals.

3.2 Knowledge Reasoning

Before utilizing knowledge, we employ an LLM to parse the referring expres-
sion. Unlike rule-based language parsers, the prompt’s length greatly impacts the
LLM’s responses. The LLM may exhibit serious forgetting or logical confusion as
the prompt length increases, leading to parsing failure. To avoid it, we designed
a simple prompt to inquire about the primary entity within the referring expres-
sion, along with its descriptive words and orientation words, which are then used
to query the knowledge base. Figure 3 shows an example of a prompt [4].

Fig. 3. An example of the prompt for LLM.

Then, on the one hand, we retrieve the knowledge in the knowledge base
by the entities and attributes parsed by LLMs. On the other hand, we aim to
focus on the parts of the proposal’s feature x ∈ R

h×w×F that is described by
the textual semantics. So, inspired by CAM [49], we calculate the knowledge-
similar parts within the proposal’s feature x extracted by the feature extractor.
We perform a weighted product on these knowledge-similar parts and apply the
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weighted product matrix on the proposal’s feature x, then use average pooling
to the features after the weighting operation:

x′ =
1

hw

∑

h

(
∑

w

(mx)), m = softmax(
∑

F

(xvk)) (2)

where m ∈ R
h×w is a weighted product matrix, x′ ∈ R

F is the proposal’s feature
after pooling.

Furthermore, we aim to fine-tune the knowledge to facilitate instance-level
alignment between knowledge and features. Specifically, we introduce a linear
layer to guide the fine-tuning process, where the refined knowledge v′

k is obtained
by v′

k = σ(Wvk), W ∈ R
F×F , σ is activate function. Finally, we compute the

cosine similarity between the fine-tuned knowledge v′
k and the weighted regional

features x′ to obtain the relevance score between feature and knowledge.

ss = cosine(x′,v′
k) (3)

Besides semantic knowledge, when utilizing positional knowledge, we project
the relevant mask to images and calculate the average response score within the
region of the mask encompassed by proposals. Both semantic knowledge and
positional knowledge are employed for re-ranking.

3.3 Knowledge Finetune

When performing a classification task, the features extracted by the feature
encoder are fed into a multi-layer perceptron (MLP), yielding probabilities for
specific classes. However, while these features perform well for classification, their
inter-class discrimination for knowledge matching is unsatisfactory. For instance,
opposite color semantics like black and white, despite being easily distinguished
by the classifier, may be close in the feature vector space, hindering accurate
differentiation in similarity calculations. To alleviate this, we employ contrastive
learning to enhance the separation between knowledge. Specifically, we introduce
a loss function termed Feature-Knowledge Contrastive (FKC) loss. It operates
as follows: from each batch, we randomly select negative samples of two types.
The first type consists of image features that do not match the currently queried
knowledge, potentially sharing similarities with it. We call it soft negative sam-
ples. Soft negative loss can be calculated by positive knowledge v′

p and negative
image feature x′

n .
Ln
1 = 1 − cosine(x′

n ,v′
p) (4)

The second type consists of knowledge that does not match the currently
computed proposal feature, where we expect less similarity between the com-
puted feature x′

p and the mismatched knowledge v′
n , we call it hard negative

samples.
Ln
2 = 1 − cosine(x′

p ,v′
n ) (5)

Ultimately, our contrastive learning loss can be formulated as:

Lp = 1 − cosine(x′
p ,v′

p) (6)
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L = max(Lp − Ln
1 + β1, 0) + max(Lp − Ln

2 + β2, 0) (7)

where β1 and β2 are hyper-parameters satisfying β1 < β2. The loss function
enforces that the loss on the positive sample is at least β1 smaller than the loss
on the soft negative sample and at least β2 smaller than the loss on the hard
negative sample.

3.4 Knowledge Re-rank

Multimodal grounding models have evolved from multimodal image-text match-
ing models. For example, GLIP [12] adapts CLIP [25] by replacing image-text
pairs with bounding box-entity pairs. These models require extensive training
on large datasets to achieve zero-shot capabilities for image-text understand-
ing. What’s more, although they are trained on lots of instance-level object-text
pairs but perform unsatisfying on the REC task in a zero shot manner. To
improve this situation, we use SPK to complement existing grounding models.
Specifically, current grounding models typically generate N proposals with cor-
responding scores S for each proposal, representing the model’s localization and
confidence for the proposals. After the post-processing, we re-rank the proposals
by combining the semantic scores ss and position scores sp with the original
grounding model’s scores, i.e. S + ss + sp.

4 Experiment

4.1 Dateset

We evaluate our model on three referring expression comprehension datasets:
RefCOCO [20], RefCOCO+, and RefCOCOg [43]. These datasets are derived
from MSCOCO [15], providing images and referring expressions for identifying
specific objects within the images. Each dataset exhibits distinct characteris-
tics: RefCOCO comprises 19,994 images and 142,210 referring expressions, and
its expressions emphasize simple feature descriptions and spatial relationships.
RefCOCO+ contains 19,992 images and 141,564 referring expressions. It focuses
on simple feature and state descriptions, excluding spatial relationships. Ref-
COCOg, with 25,799 images and 95,010 referring expressions, emphasizes diverse
descriptions. Its expressions are more extended, averaging 8.43 words in length.

4.2 Implementation Details

In the pre-trained initial knowledge, we collected all adjectives and nouns from
Visual Genome [19] as semantic concepts, resulting in a total of K = 40, 142
concepts. The image features for each semantic concept are extracted using
Faster R-CNN in VinVL [48], with each object feature having a dimension of
h × w × F = 7 × 7 × 2048. During the fine-tuned phase, we perform the model
training in batch size = 128; the optimizer is AdamW with a learning rate of 1e−5
for 18 epochs. The super parameter β1 = 0.6, β2 = 0.75. Fine-tuning was per-
formed on Visual Genome, excluding any data overlapping with the MSCOCO
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dataset. The task accuracy refers to the percentage of instances where the pro-
posal with the highest score has an Intersection over Union (IoU) of at least 0.5
with the ground truth.

4.3 Knowledge-Guided Re-ranking

We evaluate our approach on three visual grounding models, GLIP [12], Ground-
ingDINO [16] and KOSMOS-2 [23]. It is important to note that the RefCOCO
datasets were excluded from the training process of these models. During infer-
ence, they output N proposals, which are ranked based on their scores. The
proposal with the highest score is selected as the target matching the referring
expression. Our goal is to assess their zero-shot performance on REC, treating
this as a zero-shot scenario due to the absence of training data overlap.

Table 1. Results on REC re-ranking three grounding models in a zero-shot manner.
“+” denotes the re-ranking. SK and PK represent semantic knowledge and positional
knowledge, respectively.

Method RefCOCO RefCOCO+ RefCOCOg
TestA TestB Val TestA TestB Val Test Val

GLIP 54.69 43.06 49.96 53.44 43.42 49.01 66.08 65.58
+ SK 57.93 45.10 52.48 57.49 45.24 51.43 67.53 66.95
+ SK & PK 64.35 55.27 60.94 57.53 45.06 51.35 68.07 67.57
GroundingDINO 57.29 44.94 50.75 57.25 46.20 51.48 59.85 60.44
+ SK 59.18 45.85 52.59 59.19 47.58 53.76 68.36 67.46
+ SK & PK 69.12 60.75 64.96 59.40 48.21 53.78 70.12 69.24
Kosmos-2 57.41 47.26 52.32 50.73 42.24 45.48 60.57 60.57
+ SK 57.73 47.91 52.79 51.10 43.83 46.13 61.99 60.87
+ SK & PK 58.03 48.60 53.34 51.11 43.95 46.33 62.13 60.97

The results in Table 1 demonstrate consistent improvements across the Ref-
COCO datasets. Notably, we observed gains of 1–3% on RefCOCO, RefCOCO+,
and RefCOCOg about GLIP. This suggests that our knowledge augmenta-
tion through referring expression decomposition is effective. Furthermore, re-
ranking with scores derived from positional knowledge significantly boosted per-
formance by about 10% on RefCOCO and 2% on RefCOCOg. The improvement
is attributed to the abundance of location-related descriptions in these datasets,
whereas RefCOCO+ lacks such spatial terms.
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To demonstrate the generalizability of our knowledge-based approach, we
apply it to the GroundingDINO, GLIP, and KOSMOS-2. We observe the pat-
terns above across all three models, indicating the effectiveness of our method
and its applicability to diverse grounding models.

4.4 Compare with SOTA Methods

We compare our approach with existing zero-shot methods in Table 2. We
find that existing zero-shot methods achieve comparable performance to tra-
ditional supervised methods on RefCOCOg, but there is still a gap on Ref-
COCO/+. Meanwhile, compared with existing zero-shot methods, our method
can achieve 1%∼6% improvement on RefCOCO by re-ranking on the more
advanced GroundingDINO [16] model.

Compared with RelVLP [4], although it has additional training on CLIP [25]
and thus gains significant improvement, it still cannot comprehensively outper-
form our method. Since our method does not model semantic relationships, it is
not as good as SOTA on the RefCOCO+ dataset, which lacks spatial informa-
tion.

Furthermore, even with SPK, the performance on Kosmos-2 [23] still cannot
match GLIP and GroundingDINO. This is because the Kosmos-2 obtains the
coordinate description of the proposals by generating text from the language
model, which provides fewer proposals and thus limits the re-selection of re-
ranking.

Table 2. Results comparing with other zero-shot manner. The highest score is in bold.
Supervised SOTA refers to UNINEXT [38]. The Supervised mothed w/o VLP refers
to TransVG [3].

Method RefCOCO RefCOCO+ RefCOCOg
TestA TestB Val TestA TestB Val Test Val

Supervised SOTA [38] 94.33 91.46 92.64 89.63 79.79 85.24 89.37 88.73
Supervised w/o VLP [3] 82.72 78.35 81.02 70.70 56.94 64.82 67.73 68.67
CPT-Seg [40] 36.10 30.30 32.20 35.20 28.80 31.90 36.50 36.70
ReCLIP [33] 46.99 45.24 45.77 48.45 42.71 45.34 56.15 56.96
RelVLP w/o training 48.40 49.15 48.24 47.59 42.79 45.64 56.64 57.60
RelVLP [4] 66.52 54.86 60.62 62.56 45.69 55.52 59.90 59.87
GroundVLP [28] 61.30 43.53 52.58 64.77 47.43 56.38 63.54 64.30
Kosmos-2 + SPK 58.03 48.60 53.34 51.11 43.95 46.33 62.13 60.97
GLIP + SPK 64.35 55.27 60.94 57.53 45.06 51.35 68.07 67.57
GroundingDINO + SPK 69.12 60.75 64.96 59.40 48.21 53.78 70.12 69.24
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4.5 Ablation Study

We conduct ablation study to verify the effectiveness of certain components in
our method. The base model is GLIP.

Fine-Grained Alignment of Referring Objects. When performing knowl-
edge matching, we parse the fine-grained information of the referring expres-
sion into entities and attributes. Table 3 presents the results on entities and
attributes. Both entity and attribute information contribute to improved results.
When we use only the target entity, the scores significantly increase. Combining
both entity and attribute leads to further improvement. This demonstrates that
semantic knowledge can serve as a bridge for aligning referential targets with
image objects.

Table 3. Ablation study on the contributions of entity and attribute information.
Ent, Attr, and Pos represent using entity, attribute, and orientation words to fetch
knowledge in the knowledge base, respectively.

Ent Attr Pos RefCOCO RefCOCO+ RefCOCOg

� 56.76 55.92 66.74
� 54.81 53.20 65.98

� � 57.93 57.49 67.53
� � � 64.35 57.53 68.07

Effectiveness of Fine-Tuning. We aim to explore whether both the initial
knowledge and the fine-tuned knowledge are effective. For comparison, we con-
ducted two experiments: 1) Initial Knowledge: matching is performed using
knowledge extracted directly from the feature extractor in VinVL [48]. 2) Fine-
tuned Knowledge: knowledge is fine-tuned using cosine similarity as the loss
function, with contrastive learning. Results in Table 4 denote that fine-tuning
the knowledge is effective, but the improvement in scores is not substantial.
This is partly because the initial knowledge is already effective for common
objects, and the RefCOCO dataset contains relatively few uncommon objects.
Moreover, larger values for β1 and β2 are preferred. As shown in Eq. 7, smaller
values can lead to the convergence of positive and negative loss, hindering the
training process.

Impact of Weighted Feature Extraction. At last, we investigate the effec-
tiveness of weighted feature extraction. Table 5 presents results with and without
weighted feature extraction. This method allows the model to focus on features
relevant to the knowledge. We provide corresponding highlighted visualizations
in Fig. 4 that show the detailed attention maps given to the target features.

4.6 Limitations

Our experiments are based on multimodal grounding models, which are more
inclined towards grounding tasks compared to multimodal image-text models.
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Table 4. Ablation study of knowledge fintuning.

Method RefCOCO RefCOCO+ RefCOCOg

Initial knowledge 57.22 56.14 67.42
Finetuned knowledge
β1 = 0.30, β2 = 0.45 57.53 56.53 67.36
β1 = 0.60, β2 = 0.75 57.93 57.49 67.53

Table 5. Ablation study of weighted pooling on test parts.

Method RefCOCO RefCOCO+ RefCOCOg

w/o weighted pool 57.18 56.09 66.95
w weighted pool 57.93 57.49 67.53

This makes them sensitive to the precise location of specific targets, but their
ability to understand semantics is limited. Although we use LLMs to parse irreg-
ular referring expressions, we do not model the semantic relationships that link
objects and subjects. As illustrated in Fig. 5a and Fig. 5b, the model struggles
to handle “facing” and “holding” relationships, leading to failures in these cases.
While we model the spatial relationships in referring expressions, these are simple
two-dimensional planar positions that cannot fully cope with complex real-world

a. blue jeans b. pizza c. young girl

Fig. 4. Visualization of model attention

a. girl facing the
camera.

b. guy in black jacket
holding trumpet.

c. black screen next
to blue typewriter.

d. third from left
in back row.

Fig. 5. Incorrect examples, where blue box indicates ground truth, green box indicates
prediction. (Color figure online)
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positional descriptions. As illustrated in Fig. 5c and Fig. 5d, the model struggles
to handle cases that require scene spatial understanding.

4.7 Conclusion

In this paper, we have introduced SPK, an approach designed to enhance the
zero-shot performance of multimodal grounding models on the referring expres-
sion comprehension (REC) task. We have constructed a knowledge base encom-
passing semantic and positional knowledge, which is then integrated with exist-
ing multimodal grounding models. Our method effectively improves the perfor-
mance of these models on the REC task without retraining.

However, there remains room for further improvement. A critical limitation
is the lack of modeling relationships between two or more objects. Existing works
like neural motifs [45] essentially rely on statistics to capture the co-occurrence
probability of objects. However, using CNNs to extract holistic scene information
while preserving individual object details is challenging. In future work, we will
incorporate complex semantic relationships into our knowledge base, as well as,
explore more effective ways to fuse the semantic and positional knowledge.

Acknowledgements. This work was jointly supported by the National Key R&D
Program of China (2022ZD0116309), the National Natural Science Foundation of China
(62236010, 62322607 and 62276261) and the Double First-Class Construction Founda-
tion of China under Grant 23GH020227.

References

1. Bica, I., et al.: Improving fine-grained understanding in image-text pre-training.
arXiv preprint arXiv:2401.09865 (2024)

2. Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., Su, J.K.: This looks like that: deep
learning for interpretable image recognition. In: Advances in Neural Information
Processing Systems, vol. 32 (2019)

3. Deng, J., Yang, Z., Chen, T., Zhou, W., Li, H.: TranSVG: end-to-end visual ground-
ing with transformers. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 1769–1779 (2021)

4. Han, Z., Zhu, F., Lao, Q., Jiang, H.: Zero-shot referring expression comprehen-
sion via structural similarity between images and captions. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14364–
14374 (2024)

5. Huang, Y., Wang, Y., Zeng, Y., Wang, L.: Mack: multimodal aligned conceptual
knowledge for unpaired image-text matching. In: Advances in Neural Information
Processing Systems, vol. 35, pp. 7892–7904 (2022)

6. Jain, S., Pulaparthi, K., Fulara, C.: Content based image retrieval. Int. J. Adv.
Eng. Glob. Technol. 3(10), 1251–1258 (2015)

http://arxiv.org/abs/2401.09865


SPK: Semantic and Positional Knowledge 293

7. Jia, C., et al.: Scaling up visual and vision-language representation learning with
noisy text supervision. In: International Conference on Machine Learning, pp.
4904–4916. PMLR (2021)

8. Krishna, R., et al.: Visual genome: connecting language and vision using crowd-
sourced dense image annotations. Int. J. Comput. Vision 123, 32–73 (2017)

9. Li, G., Wang, X., Zhu, W.: Boosting visual question answering with context-aware
knowledge aggregation. In: Proceedings of the 28th ACM International Conference
on Multimedia, pp. 1227–1235 (2020)

10. Li, J., Li, D., Xiong, C., Hoi, S.: Blip: bootstrapping language-image pre-training
for unified vision-language understanding and generation. In: International Con-
ference on Machine Learning, pp. 12888–12900. PMLR (2022)

11. Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., Hoi, S.C.H.: Align before
fuse: vision and language representation learning with momentum distillation. In:
Advances in Neural Information Processing Systems, vol. 34, pp. 9694–9705 (2021)

12. Li, L.H., et al.: Grounded language-image pre-training. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10965–
10975 (2022)

13. Liao, Y., et al.: A real-time cross-modality correlation filtering method for refer-
ring expression comprehension. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10880–10889 (2020)

14. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400
(2013)

15. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

16. Liu, S., et al.: Grounding Dino: marrying Dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499 (2023)

17. Liu, X., Li, L., Wang, S., Zha, Z.J., Su, L., Huang, Q.: Knowledge-guided pairwise
reconstruction network for weakly supervised referring expression grounding. In:
Proceedings of the 27th ACM International Conference on Multimedia, pp. 539–
547 (2019)

18. Liu, Y., Li, H., Garcia-Duran, A., Niepert, M., Onoro-Rubio, D., Rosenblum, D.S.:
MMKG: multi-modal knowledge graphs. In: Hitzler, P., et al. (eds.) ESWC 2019.
LNCS, vol. 11503, pp. 459–474. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-21348-0_30

19. Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with
language priors. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016.
LNCS, vol. 9905, pp. 852–869. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46448-0_51

20. Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A.L., Murphy, K.: Generation
and comprehension of unambiguous object descriptions. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 11–20 (2016)

21. Marino, K., Salakhutdinov, R., Gupta, A.: The more you know: using knowledge
graphs for image classification. arXiv preprint arXiv:1612.04844 (2016)

22. Nauta, M., Van Bree, R., Seifert, C.: Neural prototype trees for interpretable fine-
grained image recognition. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 14933–14943 (2021)

23. Peng, Z., et al.: Kosmos-2: grounding multimodal large language models to the
world. arXiv preprint arXiv:2306.14824 (2023)

24. Qiao, Y., Deng, C., Wu, Q.: Referring expression comprehension: a survey of meth-
ods and datasets. IEEE Trans. Multimedia 23, 4426–4440 (2020)

http://arxiv.org/abs/1312.4400
https://doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/2303.05499
https://doi.org/10.1007/978-3-030-21348-0_30
https://doi.org/10.1007/978-3-030-21348-0_30
https://doi.org/10.1007/978-3-319-46448-0_51
https://doi.org/10.1007/978-3-319-46448-0_51
http://arxiv.org/abs/1612.04844
http://arxiv.org/abs/2306.14824


294 Z. Du et al.

25. Radford, A., et al.: Learning transferable visual models from natural language
supervision. In: International Conference on Machine Learning, pp. 8748–8763.
PMLR (2021)

26. Sadhu, A., Chen, K., Nevatia, R.: Zero-shot grounding of objects from natural
language queries. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 4694–4703 (2019)

27. Sharma, H., Padha, D.: A comprehensive survey on image captioning: from hand-
crafted to deep learning-based techniques, a taxonomy and open research issues.
Artif. Intell. Rev. 56(11), 13619–13661 (2023)

28. Shen, H., Zhao, T., Zhu, M., Yin, J.: GroundVLP: harnessing zero-shot visual
grounding from vision-language pre-training and open-vocabulary object detection.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, pp. 4766–
4775 (2024)

29. Shi, Z., Shen, Y., Jin, H., Zhu, X.: Improving zero-shot phrase grounding via rea-
soning on external knowledge and spatial relations. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, pp. 2253–2261 (2022)

30. Singh, A.K., Mishra, A., Shekhar, S., Chakraborty, A.: From strings to things:
knowledge-enabled VQA model that can read and reason. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 4602–4612 (2019)

31. Singh, K.K., Divvala, S., Farhadi, A., Lee, Y.J.: DOCK: detecting objects by trans-
ferring common-sense knowledge. In: Ferrari, V., Hebert, M., Sminchisescu, C.,
Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 506–522. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01261-8_30

32. Stefanini, M., Cornia, M., Baraldi, L., Cascianelli, S., Fiameni, G., Cucchiara, R.:
From show to tell: a survey on deep learning-based image captioning. IEEE Trans.
Pattern Anal. Mach. Intell. 45(1), 539–559 (2022)

33. Subramanian, S., Merrill, W., Darrell, T., Gardner, M., Singh, S., Rohrbach, A.:
Reclip: a strong zero-shot baseline for referring expression comprehension. arXiv
preprint arXiv:2204.05991 (2022)

34. Sun, M., Xiao, J., Lim, E.G., Liu, S., Goulermas, J.Y.: Discriminative triad match-
ing and reconstruction for weakly referring expression grounding. IEEE Trans.
Pattern Anal. Mach. Intell. 43(11), 4189–4195 (2021)

35. Sun, R., et al.: Multi-modal knowledge graphs for recommender systems. In: Pro-
ceedings of the 29th ACM International Conference on Information and Knowledge
Management, pp. 1405–1414 (2020)

36. Wang, S., Yue, J., Liu, J., Tian, Q., Wang, M.: Large-scale few-shot learning via
multi-modal knowledge discovery. In: Vedaldi, A., Bischof, H., Brox, T., Frahm,
J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 718–734. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58607-2_42

37. Xu, W., Xian, Y., Wang, J., Schiele, B., Akata, Z.: Attribute prototype network
for zero-shot learning. In: Advances in Neural Information Processing Systems, vol.
33, pp. 21969–21980 (2020)

38. Yan, B., et al.: Universal instance perception as object discovery and retrieval.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15325–15336 (2023)

39. Yang, Z., Gong, B., Wang, L., Huang, W., Yu, D., Luo, J.: A fast and accurate
one-stage approach to visual grounding. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 4683–4693 (2019)

40. Yao, Y., Zhang, A., Zhang, Z., Liu, Z., Chua, T.S., Sun, M.: CPT: colorful prompt
tuning for pre-trained vision-language models. arXiv preprint arXiv:2109.11797
(2021)

https://doi.org/10.1007/978-3-030-01261-8_30
http://arxiv.org/abs/2204.05991
https://doi.org/10.1007/978-3-030-58607-2_42
http://arxiv.org/abs/2109.11797


SPK: Semantic and Positional Knowledge 295

41. Yao, Y., Zhang, A., Zhang, Z., Liu, Z., Chua, T.S., Sun, M.: CPT: colorful prompt
tuning for pre-trained vision-language models. AI Open 5, 30–38 (2024)

42. Yu, L., et al.: Mattnet: modular attention network for referring expression compre-
hension. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1307–1315 (2018)

43. Yu, L., Poirson, P., Yang, S., Berg, A.C., Berg, T.L.: Modeling context in referring
expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016.
LNCS, vol. 9906, pp. 69–85. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-46475-6_5

44. Yuksekgonul, M., Bianchi, F., Kalluri, P., Jurafsky, D., Zou, J.: When and why
vision-language models behave like bags-of-words, and what to do about it? In:
The Eleventh International Conference on Learning Representations (2023)

45. Zellers, R., Yatskar, M., Thomson, S., Choi, Y.: Neural motifs: scene graph parsing
with global context. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 5831–5840 (2018)

46. Zhang, B., Hu, H., Qiu, L., Shaw, P., Sha, F.: Visually grounded concept compo-
sition. arXiv preprint arXiv:2109.14115 (2021)

47. Zhang, C., Chen, J., Li, J., Peng, Y., Mao, Z.: Large language models for human-
robot interaction: a review. Biomimetic Intell. Robot. 100131 (2023)

48. Zhang, P., et al.: VinVL: revisiting visual representations in vision-language models.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 5579–5588 (2021)

49. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep fea-
tures for discriminative localization. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

50. Zhu, X., et al.: Multi-modal knowledge graph construction and application: a sur-
vey. IEEE Trans. Knowl. Data Eng. 36(2), 715–735 (2022)

51. Zhu, Y., Zhang, C., Ré, C., Fei-Fei, L.: Building a large-scale multimodal knowledge
base system for answering visual queries. arXiv preprint arXiv:1507.05670 (2015)

https://doi.org/10.1007/978-3-319-46475-6_5
https://doi.org/10.1007/978-3-319-46475-6_5
http://arxiv.org/abs/2109.14115
http://arxiv.org/abs/1507.05670


Can Language Improve Visual Features
For Distinguishing Unseen Plant Diseases?

Jerad Zherui Liaw1(B), Abel Yu Hao Chai1, Sue Han Lee1, Pierre Bonnet2,
and Alexis Joly3

1 Swinburne University of Technology Sarawak Campus, Kuching, Malaysia
101234758@students.swinburne.edu.my, {aychai,shlee}@swinburne.edu.my

2 CIRAD, UMR AMAP, Montpellier, France
pierre.bonnet@cirad.fr

3 INRIA, Montpellier, France
alexis.joly@inria.fr

Abstract. Deep learning approaches have been pivotal in identifying
multi-plant diseases, yet they often struggle with unseen data. The chal-
lenge of handling unseen data is significant due to the impracticality of
collecting all disease samples for every plant species. This is attributed to
the vast number of potential combinations between plant species and dis-
eases, making capturing all such combinations in the field difficult. Recent
approaches aim to tackle this issue by leveraging a zero-shot compositional
setting. This involves extracting visual characteristics of plant species and
diseases from the seen data in the training dataset and adapting them to
unseen data. This paper introduces a novel approach by incorporating tex-
tual data to guide the vision model in learning the representation of multi-
ple plants and diseases. To our knowledge, this is the first study to explore
the effectiveness of a vision-language model in multi-plant disease identifi-
cation, considering the fine-grained and challenging nature of disease tex-
tures. We experimentally prove that our proposed FF-CLIP model outper-
forms recent state-of-the-art models by 26.54% and 33.38% in Top-1 accu-
racy for unseen compositions, setting a solid baseline for zero-shot plant
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1 Introduction

Pathogenic organisms like fungi, bacterium, mycoplasma, viruses, viroid, nema-
todes, or parasitic flowering plants are disease vectors, causing significant dam-
age that can result in major yield losses, particularly in agronomy. Identifying
plant diseases is a fundamental challenge for the general public, whose knowl-
edge is limited, and for botanists and agronomists, who are experts in their field
but not necessarily in plant pathologies. Furthermore, the task grows increas-
ingly complex due to the vast number of plant species [11] and diseases world-
wide, alongside the escalating risk of disease spread facilitated by globalization.
Traditional methods of disease identification, based on manual inspection and
expert knowledge, are not only time-consuming but also costly and are limited
by geographical constraints and the availability of competent expertise [1]. In
agriculture, there is an urgent need for rapid, accessible disease diagnosis. This
identification plays a crucial role as a reference point, enabling farmers to imple-
ment appropriate mitigation measures promptly [6], thus avoiding substantial
losses due to plant damage [10].

Deep learning (DL), a subset of machine learning, has emerged as an impor-
tant approach in this field, driven by diverse datasets to learn discriminative
features for plant diseases [15,17,24]. It has brought a new paradigm shift in the
field of multi-plant disease identification, allowing faster and large-scale diagno-
sis. Researchers have recently started conceptualising multi-plant disease rep-
resentation as compositions comprising individual plant and disease concepts.
Plant-disease pairs found in the training data are termed as “seen compositions”,
while those not present are termed as “unseen compositions”. Notably, individ-
ual concepts of the unseen compositions remain within the training dataset.
The common approach to multi-plant disease identification tasks is learning
the individual concepts’ features corresponding to their compositions [1,26]. In

Fig. 1. (a) Depiction of traditional supervised discriminative models where features are
not primarily learned to represent unseen data. (b) The recent FF-ViT [3] enhances the
composition diversity of the data to encompass unseen data purely based on visual cues.
It is effective, but the generated synthetic data is far from the real data distribution.
(c) The proposed model aims to reduce the gap between the synthetic features and the
real data distribution based on combined visual and textual language cues.
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contrast, Lee et al. [14] have introduced a new framework called Conditional
Multi-Task Learning (CMTL), which simultaneously learns individual plant and
disease classifiers with a conditional link between them. CMTL can identify
unseen plant disease compositions, provided that the individual plant or dis-
ease concept has been learned based on previously seen compositions. This is
important as obtaining a comprehensive range of all plant disease compositions
in real-world scenarios is not feasible.

This paper is also further motivated by the emerging trend of visual dis-
entanglement, particularly in the context of Compositional Zero-Shot Learn-
ing (CZSL) [9,30]. This involves breaking down visual concepts into smaller,
more manageable parts and then combining them to recognize new composi-
tions. Notably, the significance of visual disentanglement in CZSL has spurred
other researchers to explore its application in the domain of plant disease analy-
sis. Chai et al. [3] introduced a method using information from seen compositions
to help the model understand unseen compositions better, improving recognition
of new compositions. However, relying solely on visual cues poses challenges in
identifying plant diseases [7,27]. This is because plant diseases often appear as
subtle variations in leaf texture, colour, shape, and overall morphology, unlike
distinct objects typically encountered in general object recognition.

Recent work by El Banani et al. [5] proposed incorporating language guidance
into the learning process to leverage descriptions capturing conceptual similari-
ties between images. The emergence of Contrastive Language–Image Pre-training
(CLIP) has further underscored the importance of integrating visual and language
modalities in various domains [2,16]. It leverages large-scale datasets comprising
paired images and text captions to learn joint representations of images and corre-
sponding textual descriptions. This prompts the question: Can language enhance
visual features for such fine-grained unseen plant disease identification?

Inspired by a recent approach [20] demonstrating the potential of deploy-
ing CLIP in zero-shot compositional learning, we test our hypothesis by incor-
porating the concept of re-purposing joint pre-trained vision-language models
into our zero-shot plant disease composition task. We show that exploiting tex-
tual descriptions can further improve the performance of zero-shot compositional
tasks, outperforming state-of-the-art plant disease identification models. In sum-
mary, this paper makes two significant contributions. Firstly, our research intro-
duces a novel approach that demonstrates the effectiveness of language cues in
guiding visual features to improve the identification of unseen plant diseases.
Secondly, we show that our proposed method enhances the identification per-
formance of unseen plant disease compositions, surpassing state-of-the-art tech-
niques in multiple plant disease identification tasks.

2 Related Work

2.1 Multi-plant Disease Identification

Deep learning has proven effective inmulti-plant disease identification tasks. Exist-
ing multi-plant disease identification’s mainstream methodologies focus on trans-
forming this issue into a general supervised recognition task [17,24]. For instance,
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Leeetal. [13,15] tackledthischallengebytrainingaclassifierorientedtowardsvisual
symptoms, concentrating solely on diseases without considering plant species.
Other approaches, as presented in [14], propose various configurations for learning
plant species and disease features, employing either two-headed classifiers (sepa-
rate plant and disease concepts) or single-headed classifiers (plant disease composi-
tions).However, considerable roomremains for enhancingmodel performance, par-
ticularly for compositions with limited or zero training data. This is crucial as, in
real-world scenarios, collecting all plant disease samples exhaustively is not feasible
due to the immense diversity of plant species and diseases worldwide.

Recently, Chai et al. [3] explored the application of CZSL [18] techniques in the
domain by introducing the Feature Fusion Vision Transformer (FF-ViT) model
withpairwise feature learning forunseenplantdisease identification.This approach
leverages the visual features of seen compositions and employs a feature fusion (FF)
strategytogeneratesyntheticdata, facilitatingtheacquisitionofknowledgeto iden-
tifyseenandunseencompositions.However, sincesyntheticdata lacks inherentrela-
tionships with real-world data, the performance of unseen data may be affected,
leading to potential out-of-distribution issues, as illustrated in Fig. 1 (b). There-
fore, this paper introduces a novel approach to enhance visual cues using language
guidance. The idea is to improve the features of both the seen and unseen data by
projecting them into a feature space that better aligns with the real data distribu-
tion, as shown in Fig. 1 (c). To the best of our knowledge, our study is the first to
explore the potential of language cues in zero-shot plant disease identification.

2.2 Vision Language Models for Zero-Shot Classification

To address the limited representation of solely relying on visual features, we
aim to enhance the feature representation of plants and diseases by incorpo-
rating language guidance into the learning process. In a previous study, Frome
et al. [8] introduced DeViSE, a novel deep vision-semantic embedding model.
DeViSE learns to identify visual objects by leveraging both labelled image data
and semantic information extracted from unannotated text. Their model demon-
strates its capability to enhance zero-shot predictions for labels unseen by the
visual model.

Built on foundations in zero-shot transfer, natural language supervision, and
multi-modal learning, the recently proposed CLIP [21] associates images with
corresponding textual descriptions, allowing it to infer information based on
natural language supervision. The introduction of CLIP-based visual language
models marked a significant advancement, showcasing remarkable performance
in zero-shot classification tasks by efficiently learning visual concepts from tex-
tual descriptions, making it highly adaptable across diverse tasks and domains
[2,16]. Two main methodologies have emerged to improve classification tasks by
taking advantage of the CLIP model. Firstly, the CLIP model is used to refine
the descriptive captions associated with images. This approach, illustrated by
previous studies such as [25,29], use the CLIP model to generate descriptive cap-
tions, enriching the information content of composition labels. Secondly, the use
of the CLIP model as a guiding condition for other models. This is demonstrated
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in recent studies where the CLIP model serves as conditioning information to
guide generative models such as VQGAN [4] and decoder [23]. These approaches
aim to produce more diverse images while retaining photorealism. Inspired by
previous studies, our study utilises the CLIP model to enrich our composition
labels while guiding our visual model to extract features that are closer towards
real data distributions.

3 Dataset

We use the PlantVillage (PV) dataset [19], known as the largest publicly available
dataset covering multiple plant species and diseases, to evaluate the performance
of all models. The PV dataset comprises 38 distinct plant disease compositions,
C, encompassing a total of 54,305 images. In line with previous [15,19] studies,
we divided the dataset into an 80% training dataset and a 20% testing dataset.
In accordance with the experimental setup from [13,15] for unseen plant disease
identification, we strategically excluded the Pepper bell_bacterial spot class from
the training data, while retaining Pepper bell_healthy. The Pepper bell_healthy
samples drove our FF-CLIP model to generate synthetic Pepper bell_bacterial
spot composition. Subsequently, we separated the testing dataset into the seen
testing dataset (37 different plant disease compositions, with all compositions
available in the training dataset) and the unseen testing dataset (only Pepper
bell_bacterial spot). Given that the samples in the PV dataset have uniform
background characteristics, our study focuses on examining the generalizability
of our model by transferring knowledge learned from seen data to obtain effective
performance on both seen and unseen data.

4 Methods

This section outlines our problem formulation regarding unseen plant disease
identification tasks. We then delve into the details of our novel Feature Fusion
Contrastive Language-Image Pre-Training (FF-CLIP) model and our training
strategy.

4.1 Problem Formulation

This study conceptualises our multi-plant disease identification tasks as com-
positional tasks in which each sample, denoted C = (P,D), encapsulates
two distinct concepts. Specifically, we define these concepts as plant concept,
P = (p0, p1, ..., pm), and disease concept, D = (d0, d1, ..., dn), where m and n
represent the total number of unique plant entities and diseases in the train-
ing dataset respectively. The total unique plant and disease composition can be
defined as m × n. Furthermore, we split all available data into three subsets: a
training dataset denoted by Ct, a seen testing dataset denoted by Cs and an
unseen testing dataset denoted by Cu. Notably, the compositions present in Cu
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Fig. 2. This is the overview of the FF-CLIP model architecture, comprising three main
modules. The first module is the feature extractor module, utilizing CLIP models to
extract visual and textual features from input text-image pairs for both plant and
disease concepts. The second module, the pairwise feature generation module, sourced
from previous work [3], generates synthetic features of plant disease compositions using
visual features from the previous module. The third module, the synthetic feature
optimization module, consists of multiple self-attention layers and residual links to
extract synthetic plant and disease features. The FF-CLIP model is trained with both
cross-entropy and cosine similarity losses.

is not present in Ct and Cs, while all plant, P , and disease, D, concepts present
in Cu are present in Ct and Cs. We refer to the compositions, C, available in Cs

as seen data and the others as unseen data. The main goal of our study on unseen
plant disease identifications is to efficiently recognize the two compositions in Cs

and Cu using the knowledge acquired in Ct.

4.2 Feature Fusion Contrastive Language-Image Pre-training
(FF-CLIP) Model

Our research is motivated by the framework proposed by [3], in which the
model demonstrates the ability to generate synthetic features for both seen and
unseen plant disease identification tasks. In this study, we observed that the
previous model, as described in [3], relying solely on visual input, might not
adequately capture relevant real data distributions from the local distribution
within the training dataset. We then propose a new approach known as the Fea-
ture Fusion Contrastive Language Image Pre-Learning (FF-CLIP) model. This
model exploits textual information as external features to guide the original and
synthetic feature learning process, facilitating the acquisition of a generalized
distribution that closely aligns with the real data distribution.

The architecture of our novel FF-CLIP model, as shown in Fig. 2, can be
separated into three different modules, which are the feature extractor module,
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pairwise feature generation module and synthetic feature optimization module.
The feature extractor module extracts both visual and textual features from
the training dataset, which are then fed into the pairwise feature generation
module. This module generates both seen and unseen synthetic features. The
synthetic feature optimization module optimizes the feature output from the
pairwise feature generation module for the identification task.

Feature Extractor Module. The feature extractor module acts as a disentan-
gler, separating the data into two concepts: plant and disease. Previous studies in
[12,14] adopt separate models to extract the visual features of plant and disease
concepts. In the architecture of our FF-CLIP model, we include an additional
cue, the natural language description, forming the two distinct vision-textual
concepts: plants vision-textual and disease vision-textual concepts. We employ
the CLIP model proposed by [22] as the backbone for both visual and textual fea-
ture extraction. The rationale behind choosing CLIP lies in its design to optimize
both visual and textual extractors simultaneously, enabling seamless integration
of visual and textual features related to plant and disease concepts. Moreover,
CLIP is pre-trained on a vast dataset consisting of 400 million image-text pairs,
a crucial advantage in our study, where our training dataset is limited.

Specifically, we use two CLIP models (ViT-B/32) from [22] as plant feature
extractor, g(φ) and disease feature extractor, f(φ) for both visual and textual
input. Each model consists of 12 transformer layers with 12 attention heads
for visual input and 8 attention heads for textual input. Both models produce
embeddings with a 512-dimensional feature space. These models are pre-trained
on the WebImageText dataset as mentioned in [22], which comprises 400 million
image-text pairs. The image-text pairs from our training dataset are used as
input for both CLIP models. The plant feature extractor, g(φ) will extract orig-
inal visual plant features, ˆPvm

= g(Ct) and textual plant features, ˆPtm = g(Ct).
The disease feature extractor, f(φ) will extract original visual disease features,
D̂vn

= f(Ct) and textual disease features, D̂tn = f(Ct).

Pairwise Feature Generation Module. The pairwise feature generation
module is used to generate synthetic visual features of seen and unseen composi-
tion from the original visual plant, ˆPvm

and disease, D̂vn
features. The synthetic

data, denoted as S, encompasses a broader range of compositions compared
to the available compositions within the original training dataset, C, where S
contains m × n number of compositions. In particular, the module obtains the
original visual features of the plant, ˆPvm

and the disease, D̂vn
, from the feature

extraction module. These two inputs are then combined using different feature
fusion strategies to generate synthetic features of plant disease compositions,
Ŝ = ( ˆPvm

, D̂vn
).

For example, when the feature extraction module obtains Potato_early blight
and Corn_common rust as input from the original training dataset. It extracts
Potato and Corn as original plant visual features, and Early blight and Com-
mon rust as original disease visual features. The synthetic plant disease com-
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positions from the pairwise feature generation module will consist of 4 compo-
sitions, that is, Potato_early blight, Corn_common rust, Potato_common rust
and Corn_early blight, where Potato_common rust and Corn_early blight are
unseen compositions. All synthetic plant disease compositions will be used as
input for the following synthetic feature optimization module.

Synthetic Feature Optimization Module. The primary objective of our
synthetic feature optimization module is to enhance synthetic plant and disease
features, aligning the learned distributions of our model more closely with the
real data distributions. To determine the optimal weight, we perform an opti-
mization by gradient descent, minimizing the cross-entropy loss of the Concepts-
Oriented Classifiers. Simultaneously, we perform Text-Guided Visual Modelling
to bring the visual cues closer to the language cue through cosine similarity loss.

– Concepts-Oriented Classifiers. To train the classifier, we first deploy mul-
tiple attention layers to extract synthetic plant features, ˆSPv

and disease
features, ˆSDv

. In addition, we introduce the residual link to regularize the
classifier’s objective so that it aligns with the target’s original visual distri-
bution. This is illustrated in Fig. 2 with residual links. The synthetic plant
and disease features can be defined as ˆSPv

= Att1(Ŝ) and ˆSDv
= Att2(Ŝ).

Next, we use two linear classifiers to refine the decision boundaries for plant
and disease concepts, optimizing their discriminative ability through cross-
entropy loss. The cross-entropy loss of the plant and disease classifier can
be formulated as Plant classifier loss, LPCE

=
∑n

i=1 Pilog( ˆSPvi) and
Disease classifier loss, LDCE

=
∑n

i=1 Dilog( ˆSDvi) where Pi and Di rep-
resent the truth labels for the ith sample of the plant and disease concepts
respectively, and ˆSPvi and ˆSDvi are the ith sample of the synthetic plant and
disease features respectively.

– Text-Guided Visual Modelling. To further minimize the divergence
between our synthetic and real-world data distributions, we utilize the tex-
tual features extracted by the feature extraction module to guide the syn-
thetic data distribution. More specifically, we consider the distributions of
seen training data as references for real-world data distributions. Thus, we cal-
culate the cosine similarity between the synthetic visual features and textual
features extracted from the seen data distribution for the plant and disease
concept. The similarity loss is therefore formulated as Plant similarity loss,

LPCOS
=

∑n
i=1(1−(P̂ti · ˆSPvi)/(

∥
∥
∥P̂ti

∥
∥
∥

∥
∥
∥ ˆSPvi

∥
∥
∥)) and Disease similarity loss,

LDCOS
=

∑n
i=1(1−(D̂ti · ˆSDvi)/(

∥
∥
∥D̂ti

∥
∥
∥

∥
∥
∥ ˆSDvi

∥
∥
∥)) where P̂ti and D̂ti are the ith

sample of the plant and disease textual features, respectively, by the feature
extraction module. ˆSPv

and ˆSDv
are the ith sample of the synthetic plant and

disease features respectively.
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Table 1. Performance comparison between SOTA models and our proposed model on
seen and unseen plant disease identification for PV dataset.

Model Seen Top 1 Unseen Top 1 Harmonic Mean

VIT single network 99.52 4.17 8.00
CMTL-ViT [14] 99.49 6.94 12.97

FF-ViT (single head) [3] 99.58 19.44 32.53
FF-ViT (dual head) [3] 99.67 15.28 26.50

CLIP [22] 98.66 18.83 31.62
FF-CLIP (dual head) 99.22 41.82 58.84

Single head model performs plant and disease identifications with
a single classifier. Conversely, the dual head model performs plant
and disease identifications with different classifiers and derives plant
disease identification through post-predictions.

4.3 Training Strategy

In this section, we will discuss in detail all the hyperparameters and training
schemes for the FF-CLIP model. The model is trained end to end with a learning
rate of 0.001. We use an SGD optimiser with a momentum of 0.9 and weight
decay of 0.00001. We use NVIDIA A100 80GB GPUs.

The model consists of three modules: feature extraction module, pairwise
feature generation module and synthetic feature optimization module. First,
using cross-entropy loss, the model learns two linear classifiers for the plant
and disease concepts. The total classifier loss can be defined as LCE = LPCE

+
LDCE

where LPCE
and LDCE

are defined in Sect. 4.2. Secondly, the model aligns
the synthetic distribution with the real data distribution with a cosine loss of
similarity. Total cosine similarity loss can be defined as LCOS = LPCOS

+LDCOS

where LPCOS
and LDCOS

are also from Sect. 4.2. We assign α and β as weighting
coefficients to regulate between the two losses. As a result, the final loss function
for our FF-CLIP model can be defined as:-

Lfinal = α(LCE) + β(LCOS) (1)

5 Experimental Results and Discussions

In this section, we first conduct a comprehensive performance analysis of our pro-
posed FF-CLIP model with various SOTA models on both seen and unseen plant
disease identification tasks. Subsequently, we examine the similarity between syn-
thetic distribution and original distribution within similar architecture. Next, we
present an in-depth exploration of our FF-CLIP model through different ablation
studies.
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5.1 Comparison Between Different SOTA

In Table 1, we compare the performance of our novel FF-CLIP model with var-
ious SOTA models. In addition, we use the harmonic mean to balance the
accuracy of seen and unseen classes, highlighting the model’s generalizability
to unseen data without being overly influenced by its performance on seen data
[28]. For CLIP, we use two models: one for plant classification and another for
disease classification. We obtain the accuracy for each model separately and then
perform post-processing to derive the final results.

Our FF-CLIP (dual head) model significantly outperforms all other models
in the unseen task, achieving the highest accuracy of 41.82% and maintaining
comparable performance on the seen task with an accuracy of 99.22%. Notably,
our novel architecture improved upon the pre-trained CLIP model (ViT-B/32)
[22], especially in the unseen task, by a margin of 22.99%. This shows that our
FF-CLIP model with an additional feature fusion pairwise module is able to
learn more generalized features for both seen and unseen tasks. This is prob-
ably due to the fact that the features learned from the CLIP model exhibit
high generalization but may lack the fine details needed to address the challeng-
ing nature of disease textures. Our study validates that incorporating a feature
generation schema and synthetic feature optimization module enables us to dis-
cern these finer details, distinguishing visually similar plant and disease concepts
more effectively.

In addition, we observed that while both the ViT single-network and CMTL-
ViT [14] models demonstrate excellent performance on seen tasks, their efficiency
decreases significantly when dealing with unseen tasks, achieving only 4.17%
and 6.94% respectively for the unseen task. This observation underscores the
critical role of our pairwise feature generation method, which enriches the com-
position diversity of the training samples. This enrichment enables the learned
feature space to capture the features of the seen compositions and those of the
unseen compositions. As a result, our FF-CLIP model outperforms the ViT
single-network and CMTL-ViT models on the unseen task with a significant
margin of 37.65% and 34.88%, respectively.

Furthermore, our FF-CLIP (dual head) model outperformed the recent FF-
ViT (dual head) and FF-ViT (single head) [3] models with a margin of 26.54%
and 33.38% respectively on the unseen task. This shows that while FF-CLIP
and FF-VIT models can generate synthetic unseen data, incorporating textual
features as a guide in our architecture results in synthetic data distribution that
closely resembles real data distribution, effectively narrowing the performance
gap between seen and unseen tasks. The harmonic mean results further prove
the superior generalizability of FF-CLIP, as it outperforms both FF-ViT (sin-
gle head) and FF-ViT (dual head) by significant margins of 26.31% and 32.34%,
respectively. To quantitatively analyse the distributing gap, we conducted a sim-
ilarity check between the synthetic distribution and original distribution for both
FF-CLIP (dual head) and FF-ViT (dual head) models, the two best-performing
models in the following section.
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5.2 Analysis of Distribution Gap

Table 2. Similarity score between synthetic distribution and original distribution for
both plant and disease concepts.

Model
Plant concepts Disease concepts
similarity score similarity score

FF-ViT 0.1653 0.1255
FF-CLIP 0.4012 0.2954
Similarity scores range between −1 to 1.
Higher scores represent closer distribu-
tions.

Similarity scores range between −1 to 1. Higher scores represent closer dis-
tributions.
This section aims to evaluate the similarity between synthetic and original
distributions for FF-ViT and FF-CLIP models. While both models are capa-
ble of synthesizing data, the synthetic data produced by FF-CLIP is further
refined using textual features, potentially enhancing its alignment with the
original data. Specifically, the distribution obtained from the feature extrac-
tion module is referred to as the original distribution since it is obtained
directly from the original visual plant, ˆPvm

and disease, D̂vn
features. Next,

we derive the synthetic distribution from the synthetic plant, ˆSPv
and dis-

ease, ˆSDv
features from the synthetic feature optimization module. We compare

the original and synthetic features for all images within the testing dataset to
obtain both distributions. Specifically, the plant concept similarity scores are
defined as Plant concept similarity score =

∑n
i=1( ˆPvmi · ˆSPvi)/(

∥
∥
∥ ˆPvmi

∥
∥
∥

∥
∥
∥ ˆSPvi

∥
∥
∥)

and disease concept similarity scores as Disease concept similarity score =
∑n

i=1( ˆDvni · ˆSDvi)/(
∥
∥
∥ ˆDvni

∥
∥
∥

∥
∥
∥ ˆSDvi

∥
∥
∥). ˆPvmi and ˆDvni are the ith sample of the

original visual plant and disease features, respectively. ˆSPvi and ˆSDvi are the ith

sample of the synthetic plant and disease features respectively.
From Table 2, FF-CLIP has a higher similarity score for the plant and dis-

ease concepts, with a score of 0.4012 and 0.2954, respectively, compared to the
FF-ViT model. This observation underlines that while both models are capable
of mapping original visual images into their synthetic feature space via the pair-
wise feature generation module, the synthetic feature space resulting from the
FF-ViT model may lack robustness and present a potential bias in favour of the
seen compositions. In contrast, the FF-CLIP model exploits textual features as
a guide between the original and synthetic distributions, enabling the model to
exploit additional features beyond visual features. By leveraging the knowledge
distilled from many image-text pairs, textual features potentially encompass
salient information that can improve the model’s discrimination capabilities,
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Table 3. Comparison between different feature fusion strategies

Feature Fusion Seen Top 1 Unseen Top 1

Concatenation 99.06 34.26
Summation 99.12 29.48

Multiplication 99.13 24.85
These feature fusion strategies are per-
formed in the pairwise feature generation
module.

Table 4. Influence of different weighting coefficients

α β Seen Top 1 Unseen Top 1

1.0 0.0 99.16 26.16
1.0 0.5 99.16 31.64
1.0 1.0 99.06 34.26
0.5 1.0 99.22 41.82
α and β are weighting coefficient
in Eq. 1.

particularly by distinguishing visually similar concepts. As a result, the FF-
CLIP model generates synthetic distributions that show better alignment with
the original distribution. This alignment is crucial, enabling the synthetic dis-
tribution to more effectively encapsulate the unseen distributions. This is also
demonstrated by the result in Table 1, where FF-CLIP outperforms the FF-ViT
model on the unseen task with an accuracy advantage of 26.54%.

6 Ablation Studies

In this section, we present the empirical evaluation of our FF-CLIP model with
various ablation studies. Besides, we also include some studies of our model in
the supplementary materials.

6.1 Comparison Between Feature Fusion Strategies

In Table 3, we analyze the impact of different feature fusion strategies. The
results demonstrate that while all three techniques perform comparably in the
seen task, concatenation strategies outperform others in the unseen task with a
larger margin, achieving the highest accuracy of 34.26%. On the other hand, the
multiplication strategy shows the lowest accuracy of 24.85%. This difference is
likely due to the fact that while the multiplication strategy can amplify crucial
features and dampen irrelevant ones, such as background noise, this specificity
may unintentionally exclude generalized information crucial for unseen tasks.
Conversely, the concatenation strategy can better retain all features, ensuring a
comprehensive approach that is particularly effective in unseen tasks.
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6.2 The Importance of Weighting Coefficients

In this experiment, we analyze the impact of the weighting coefficients, α and β,
in Eq. 1. These parameters regulate the importance of the cross-entropy loss and
cosine similarity loss components in our FF-CLIP model. In Table 4, the FF-
CLIP model using only cross-entropy loss (α = 1.0 and β = 0.0) performs lowest
on unseen tasks, with an accuracy of 26.16%. However, a shift towards the cosine
similarity loss component (α = 0.5 and β = 1.0) yields substantial performance
improvements, outperforming the previous configuration with accuracy gains of
0.06% and 15.66%, respectively. These results underline the importance of cosine
similarity loss, which leverages textual features to enable the model to generate
synthetic data that not only discriminates effectively between classes but also
closely aligns with the distribution of real data.

Table 5. Comparative analysis for different input texts.

Model Seen Top 1 Unseen Top 1

Description Text 98.96 29.94
Label Text 99.06 34.26

The description text reflects the character-
istics and specificities of each disease label.

Fig. 3. The figure above shows various visual symptoms of bacterial spot disease which
present distinct visual appearances from one plant species to another.

6.3 Analysis of Text Prompts

In Table 5, we evaluate the performance of the FF-CLIP model with differ-
ent input texts. According to [21], the performance of the CLIP model can be
improved by using an appropriate prompt for the label text. These templates
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help overcome the polysemy challenge, whereby a text can have several possi-
ble meanings. By using the prompt, the model can effectively filter out textual
features irrelevant to the domain, thus refining its scope. Therefore, we con-
ducted a similar study on the FF-CLIP model, replacing original label text with
disease descriptions from Bugwood.org1. We detail the description text in the
supplementary material.

However, we observe a decrease in the performance of our FF-CLIP model
when using these descriptions compared to the original text. Specifically, the
FF-CLIP model with disease descriptions shows accuracy decreases of 0.10%
and 1.32% on seen and unseen tasks, respectively, compared to its counterpart
using the label text. This may be due to the fact that disease descriptions,
which describe characteristics and specificities, are too specific and not general
enough. In fact, disease symptoms can differ based on environmental conditions
and the growth stage of the disease, adding complexity. As a result, the text
descriptions may lack the ability to encompass the broad visual appearance of
symptoms associated with different plant species. Figure 3 shows the variability
in the visual appearance of bacterial spot symptoms across different plants.

7 Conclusion

Our study highlights the significant impact of incorporating text guidance with
visual features, particularly in distinguishing unseen plant diseases, which rely
heavily on fine-grained features. FF-CLIP demonstrates superior performance
over various state-of-the-art (SOTA) models in zero-shot plant disease identifi-
cation, emphasizing the effectiveness of textual features in enhancing the visual
representation of plant diseases.

Limitation. In some cases, we found that the improved performance of unseen
tasks was associated with a degradation in the performance of seen tasks.

Future Work. Future work should focus on finding appropriate descriptions and
achieving a balance where both seen and unseen compositions achieve optimal
performance without sacrificing either. To address this challenge, it is essential
to acquire extensive data and expertise to overcome the barriers of knowledge.
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Abstract. In this work, we study the task of “visually” translating scene
text from a source language (e.g., Hindi) to a target language (e.g.,
English). Visual translation involves not just the recognition and trans-
lation of scene text but also the generation of the translated image that
preserves visual features of the source scene text, such as font, size, and
background. There are several challenges associated with this task, such
as translation with limited context, deciding between translation and
transliteration, accommodating varying text lengths within fixed spa-
tial boundaries, and preserving the font and background styles of the
source scene text in the target language. To address this problem, we
make the following contributions: (i) We study visual translation as a
standalone problem for the first time in the literature. (ii) We present a
cascaded framework for visual translation that combines state-of-the-art
modules for scene text recognition, machine translation, and scene text
synthesis as a baseline for the task. (iii) We propose a set of task-specific
design enhancements to design a variant of the baseline to obtain per-
formance improvements. (iv) Currently, the existing related literature
lacks any comprehensive performance evaluation for this novel task. To
fill this gap, we introduce several automatic and user-assisted evaluation
metrics designed explicitly for evaluating visual translation. Further, we
evaluate presented baselines for translating scene text between Hindi
and English. Our experiments demonstrate that although we can effec-
tively perform visual translation over a large collection of scene text
images, the presented baseline only partially addresses challenges posed
by visual translation tasks. We firmly believe that this new task and the
limitations of existing models, as reported in this paper, should encour-
age further research in visual translation. We have publicly released the
code and dataset on our project website: https://vl2g.github.io/projects/
visTrans/.
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1 Introduction

Machine Translation has shown remarkable growth in the last few years, partly
attributed to the adoption of neural models [2,6,7,30,34]. In parallel, substantial
advancements have also been made in speech-to-speech translation [11,12,17,24]
where the goal is to develop systems that are capable of accurately interpreting
spoken language in one dialect and seamlessly translating it into another while
preserving the voice of the original speaker, thus enabling effective cross-lingual
communication in real-time. Drawing inspiration from these research directions,
we present an analogous problem in the scene text domain, namely “scene-text
to scene-text translation” or, in short, “visual translation”. The visual translation
task aims to translate text present in images from a source language to the target
language while preserving the visual characteristics of the text and background
as illustrated in Fig. 1. Visual Translation has extensive applications, e.g., trans-
forming the travel experience by allowing tourists to instantly understand sign
boards in foreign languages and enabling seamless interaction with the visual
world without language barriers.

Fig. 1. Imagine visiting Delhi, India, and arriving at the Rithala (Hindi: ) metro
station. If you are not familiar with Hindi, the signboard on the left might be incompre-
hensible. The result of our proposed baseline solution, shown on the right, seamlessly
transliterates the station name to English. In our work, we aim to visually trans-
late (or transliterate, when necessary, as in this case) text from the source language
to the target language while preserving the visual attributes of the source scene text.
Specifically, we focus on visual translation between Hindi and English in this work.

By drawing parallels with the speech-to-speech translation approaches, which
comprise three components: automatic speech recognition (ASR), text-to-text
machine translation (MT), and text-to-speech (TTS) synthesis, we propose a
visual translation baseline that integrates scene-text recognition (STR), text-
to-text machine translation (MT), and scene-text synthesis (STS). This cas-
caded system offers practical advantages over an end-to-end approach, as fully
supervised end-to-end training necessitates a substantial collection of source and
target scene text pairs, which can be challenging to obtain compared to paral-
lel text pairs for MT or image-text pairs for STR. As STR and MT models
are extensively explored in the literature, and several off-the-shelf methods are
available, we prioritize enhancing the performance of the STS model. To this
end, we extend a popular SRNet architecture [31] by decoupling background
and foreground generation. For background generation, we employ a diffusion-
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based model using ControlNet [33] to generate a text-erased image from an input
containing scene texts. We further modify SRNet so that it only focuses on fore-
ground generation on a plain background. Once foreground and background are
independently generated, we blend them into the scene image. To improve the
quality of visual translation further, we propose a set of design enhancements
such as using regular expressions to filter special strings, grouping words and
translating them together, and a planning strategy to blend the translated text
in the scene image appropriately.

We extensively evaluate the proposed baselines for Hindi-to-English and
English-to-Hindi visual translation using our new automatic and user evalua-
tion metrics. While the baselines show promising results, the problem remains
far from solved and requires further research.

We make the following contributions: (i) We study the under-explored task of
visual translation that aims to translate text in images to a target language while
preserving its font, style, position, and background. To the best of our knowl-
edge, the comprehensive study of this problem has largely been unexplored in
the existing literature. (ii) We introduce a generic cascaded approach for visual
translation, and we design a set of baselines using state-of-the-art approaches for
scene text recognition, machine translation, and scene text synthesis and their
task-specific design enhancements. (iii) Training a visual translation model with
real-world images is challenging due to the lack of large-scale paired scene text
images in different languages. Therefore, we use synthetic images for training.
We present a method to generate paired images with words sharing the same
visual properties, creating VT-Syn, a synthetic dataset of 600K paired visu-
ally diverse English-Hindi scene-text images. To evaluate performance on real
images, we provide extensive annotations of translated text from three users.
These benchmark datasets will support future research in visual translation.
(iv) Due to the lack of principled evaluation metrics for visual translation tasks
in the literature, we propose a set of automatic and user evaluation metrics.
We believe these metrics will help track the progress of visual translation tasks
effectively.

2 Related Work

Machine Translation: It is a well-studied area [5,6,9,10,26,30] that aims to
convert a text from its source language to a target language. Current state-of-the-
art models for machine translation are deep-learning based [6,9,30]. In the speech
domain, Speech-to-Speech Translation (S2ST) aims to translate speech from one
language to another while preserving the speaker’s voice and accent [11,12,17].
Inspired by these works, we focus on text translation in the visual modality,
which brings newer research challenges, such as preserving font properties and
integrity of the image background, which need to be addressed to produce visu-
ally appealing translations.

Translation of Text in Images: Recent years have seen growing interest in
translating text within images, both in research and commercial domains. Cur-
rent works primarily focus on recognition and translation methods for scene
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Fig. 2. Outline of proposed cascaded baseline for Visual Translation. We use
state-of-the-art approaches for scene text recognition, machine translation, and scene
text synthesis to design variants of our baseline. Moreover, we further investigate the
scene-text synthesis and propose an extension to existing SRNet architecture.

text [16,20], prioritizing accurate translation without addressing visually consis-
tent text generation. A popular commercial product – Google lens 1 also falls
into this category. These approaches often resort to simply overlaying translated
text on source images. While some studies explore end-to-end methods for text
translation in images that generate text directly in pixel space [15,22], they
typically deal with limited visual diversity in document-style images with plain
backgrounds and fixed fonts – without tackling the complexities of scene text
that we aim to address. The closest solution to our problem is Google Translate
for images2, a commercial product for visual translation of diverse scene text.
However, its underlying technology remains proprietary and closed-source. We
emphasize the need for the research community to study this problem openly,
establish proper open-source solutions, create a benchmark, and define evalua-
tion criteria – goals we pursue in this paper. Moreover, we observe that Google
Translate still lacks translation quality and often fails to produce visually consis-
tent results for complex cases, underlining the potential for better approaches. In
Section 6.2, we provide a qualitative comparison between our work and Google
Translate.

Editing Text in Images: The problem of editing text in images has wit-
nessed significant research interest in recent years [14,18,27,28,31,32]. This task
aims to modify scene text to target content while retaining visual properties
of the original text. SRNet [31] is one such method that learns an end-to-end
GAN-based style-retention network. SwapText [32] improved upon the SRNet
architecture by modeling the geometrical transformation of the text using spatial
points. More recently, TextStyleBrush [14], RewriteNet [18], and MOSTEL [27]
introduce a self-supervised training approach on real-world images for this task.
Further, TextStyleBrush is evaluated on handwritten images as well. Authors
in [28] proposed a character-wise text editor model for this task. However, their
approach assumes source and target text instances are of the same length, which
is not always true, especially in the translation task. A more recent approach,
MOSTEL [27], also introduces stroke-level modifications to produce more photo-
realistic generations. Despite these advances, these methods only address the
cross-lingual editing problem, which is just a component of the visual transla-
tion process and is insufficient on its own for achieving visual translation. Our
work aims to address the task of visual translation and its complexities more
comprehensively.
1 https://lens.google/#translate
2 https://translate.google.com/?op=images

https://lens.google/#translate
https://translate.google.com/?op=images
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3 Proposed Visual Translation Baseline

The task of Visual Translation can be reduced to a sequence of sub-tasks: locating
and reading text in scene images, translating the text into the target language,
and generating the final image containing the translated scene text. Motivated
by this observation, we propose a cascaded approach to visual translation by
combining models for (i) scene text recognition, (ii) machine translation, (iii)
scene-text synthesis, and (iv) seamlessly blending the generated scene text into
the image. These sub-tasks are well-explored independently in computer vision
literature; thus, we benefit from the availability of trained models. Further, such
an approach can perform generation at the word or phrase level, which can help
preserve the consistency of non-text regions in the image. The outline of our
cascaded baseline is illustrated in Fig. 2 and a detailed illustration is provided
in Fig. 3. We describe each module in detail in the following sections.

Training and evaluation of a visual translation baseline require real-world
images in the form of (I, I ′) where I and I ′ are visually identical images con-
taining corresponding scene text in two different languages with matching font
and style. However, such instances are not easily available in the real world. We
mitigate this data scarcity challenge by directly synthesizing the desired data: we
generate paired scene-text images that are (i) identical in the image background
and (ii) matching in font and style. A few examples are shown in Fig. 4.

In generating synthetic samples, we use a large corpus of words in both
languages, as well as a diverse collection of fonts. To simulate real-world scene
text, we also render the images on natural backgrounds, as well as vary the
orientation, positioning, and size of the scene text in images. A more detailed
procedure for generating the synthetic data is provided in Section 4.1.

(i) Locating and Recognizing Text in Images. The first step in our pro-
posed baseline is locating scene text in images, followed by recognizing the
detected text, which are both well-explored problems in computer vision litera-
ture. Given the source image, we use a scene-text detector to detect all occur-
rences of text in the image by predicting a bounding box around them. Next,
we use a text recognition model that predicts the text content from the crops of
words obtained from the previous step. In this work, we use DBNet [19] for text
detection and ParSeq [3] for the text recognition step pretrained on English and
Hindi language data, respectively.

(ii) Machine Translation of Text. After obtaining the recognized text in
the source language L, we map each instance to the desired target language L′

using an off-the-shelf neural machine translation method. We test our model with
two state-of-the-art neural machine translation methods, namely IndicTrans2 [8]
and M2M100 [7]. IndicTrans2 is trained on a large collection of Indic languages
(including Hindi), whereas M2M100 is a more general translation method trained
on a diverse collection of languages with support for Indic languages as well.

(iii) Scene-Text Synthesis. Our pipeline has thus far obtained source word
bounding boxes, recognized text, and translated text. The final step is to generate
the target word image containing the translated text while maintaining stylistic
consistency with the source text.
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Fig. 3. Our proposed baseline extends the SRNet scene text synthesis approach by
decoupling background and foreground generation. More details provided in Section 2.

Popularly, scene-text synthesis methods aim to generate this image using a
single end-to-end trained model [14,18,27,31]. However, in our empirical results,
we consistently observed two frequent limitations with such methods: (i) incom-
plete erasure of source text in the generated image and (ii) unintended alterations
to the background (non-text) regions. These errors often resulted in a "patchy"
effect, among other unnatural artifacts, when the generated images were inte-
grated into the full scene.

To address these issues, we propose a decoupled approach to scene-text syn-
thesis, consisting of three independent steps: background generation and fore-
ground generation, followed by a composition step. We collectively term this
approach SRNet++ – an enhancement to the original SRNet architecture [31].
The proposed SRNet++ works as follows: (a) Background Generation: In
this step, we employ a diffusion-based model using the ControlNet architec-
ture to generate a text-erased image from an input containing scene texts using
a publicly available implementation [29]. The model is conditioned on a binary
text-masked image. It takes the full-sized source image and a mask image indicat-
ing detected text regions as input, producing a full-size image with text regions
erased. These text-erased regions are then cropped to obtain clean background
images. (b) Foreground Generation: In this, we modify the SRNet [31] archi-
tecture to generate only the foreground text information on a plain background.
The model takes a source word crop and target text (rendered as black text
on a gray background) as input, generating colored foreground scene text on a
gray as output. During training, the model is optimized to generate both the
target text and a skeletal image of the text. This model is trained from scratch
using synthetic data. (c) Composition Step: This step combines the generated
background and foreground images for each word. We apply Otsu’s method [25]
to the foreground image to obtain a thresholded binary mask, which is used
to extract the foreground text region. The extracted text is then composited
onto the background image. This approach results in a clear, smooth image that
maintains visual consistency with the source, avoiding the jagged-edge artifacts
that can occur with simple overlay methods. The background generation model
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utilizes pre-trained weights, while the foreground generation model is trained
from scratch on our synthetic dataset. In Section 6, we compare the decoupled
approach of our proposed SRNet++ with direct scene-text generation methods
of MOSTEL [27] and SRNet [31].

Once we obtain all the target word images through this process, we compose
them onto the full-sized input image at their respective positions. This final
composition step yields the complete visually translated image.

3.1 Design Enhancements

To enhance the design, a series of refined and newly introduced steps have been
implemented. The process begins with the detection and recognition of text,
after which numbers, websites, and email addresses are filtered out using regular
expressions. Note that these elements do not need to be translated. Words are
then grouped into paragraphs and lines based on the geometry and coordinates
of the bounding box in conjunction with a heuristic function. These paragraphs
are translated and segmented into lines, ensuring alignment with the proportion
of lines present in each original paragraph. Through cubic spline interpolation,
new coordinates for each word within a line are determined, which are then
linked back to the original crops of the words. Depending on the new width
of the translated words, adjustments are made to the crops—either cutting or
replicating them—to maintain the original style of the text.

The process is finalized by accurately positioning the new words on the image
using the developed method. Although heuristically designed, this step shows a
significant boost in translation quality, as shown in the experiments.

3.2 Baseline Variants

We present several baseline variants for visual translation, each incorporat-
ing different combinations of techniques for scene text detection, recognition,
machine translation, and image synthesis. These variants are designed to evalu-
ate the impact of each individual component and improvements in the pipeline.
B-1: Utilizes ground truth scene text detection and recognition, pre-trained
M2M100 [7] for machine translation, and SRNet [31] for scene text synthesis.
B-2: Identical to B-1, but uses MOSTEL [27] instead of SRNet for scene text
synthesis. B-3: Modifies B-1 by employing SRNet++ (our proposed enhance-
ment of SRNet) for scene text synthesis. B-4: Modifies B-3 by replacing oracle
bounding boxes with state-of-the-art DBNet [19] for detection and ParSeq [3] for
recognition. B-5: Modifies B-3 by substituting M2M100 with IndicTrans2 [8], a
state-of-the-art translation module for Indic languages. B-6: Identical to B-5 but
uses DBNet and ParSeq instead of using Oracle bounding boxes. B-7: Addresses
the limitations of word-level translation by incorporating the design enhance-
ments proposed in Section 3.1. This variant is built upon the best-performing
baseline from B-1 to B-6. B-7, in particular, represents a significant departure
from the word-by-word translation approach, accounting for language-specific
word ordering and context.
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Fig. 4. VT-Syn dataset examples, which contains paired Eng → Hin and Hin → Eng
images with diverse fonts, text colors, sizes, orientations, and background images of
natural scenes, textures, and plain colors.

4 Dataset

The problem of visual translation has not been comprehensively studied in the
literature. Therefore, no benchmark dataset currently exists for its comprehen-
sive investigation. To fill this gap, we present the following datasets:

4.1 VT-Syn: Synthetic Training Data

For training the scene text synthesis components of our pipeline, we need paired
images of text in different languages with identical visual properties (style, font,
orientation, and size.). It is extremely difficult to get visually identical scene
images with text in different languages in the real world, and it is even more
difficult to generate accurate skeleton images required for training SRNet, MOS-
TEL, as well as our proposed SRNet++ method. Thus, we rely on generating
highly diverse synthetic images. We introduce VT-Syn, a synthetically gen-
erated corpus of 600K visually diverse paired bilingual word images in pairs of
English-Hindi as well as Hindi-English.

We utilized an Indic-language scene-text image generator [23] and modified
it to generate samples of scene-text in paired languages with controllable param-
eters for font, style, color, and spatial transformations to ensure visual diversity.
Each sample contains a source image, a target word image, a background image,
a foreground image, and a target image. We also generate source word images,
source and target masks, and skeleton images based on the requirements of var-
ious scene-text synthesis architectures. We collect 291 publicly available fonts
that support both Roman and Devanagari scripts and use a vocabulary of 3K
commonly used words in both languages.

A few samples from VT-Syn are shown in Fig. 4. Note that the paired image
words do not have to be translations as the STS module has to particularly learn
to render the target word using the same style as the source image.
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4.2 VT-Real: Real Test Dataset

For the purpose of evaluation, we propose VT-Real, which contains images from
ICDAR 2013 [13] and Bharat Scene Text Dataset [1] to evaluate English-to-Hindi
and Hindi-to-English translations, respectively. We filter images of moderate
complexity3 from these two sources. In all, our dataset contains 269 images and
1021 words. These images were given to three human annotators to translate
the text from Hindi to English and vice versa. A few example translation anno-
tations of this dataset are shown in Fig. 5. Even though the above-mentioned
datasets have no ground truths for Visual Translation (i.e., scene text in the
target language), they are still useful for automatic evaluation proposed in the
next section.

Fig. 5. A few examples from VT-Real dataset, showing image and Eng-Hin and Hin-
Eng ground truth translations, manually annotated by three independent annotators
(referred to as users here).

5 Performance Metrics

Evaluating visual translation methods is complex, even more so than evaluating
machine translation. While the evaluation of machine translation has been a
longstanding research area in the NLP community, recent research has saturated
the use of metrics such as BLEU, METOER, and ROUGE; visual translation
poses several additional challenges. Unlike machine translation, which is typically
evaluated for a sentence or paragraph of text, in visual translation, one has to
evaluate the correctness of translation for a single word or a small set of words
or phrases. Further, It requires not only assessing the linguistic accuracy of the
translation but also ensuring the preservation of background and font properties.

In this work, we propose automatic and user evaluation as follows:

5.1 Automatic Evaluation

We proposed the following three automatic evaluation metrics:

(i) Translation Quality (TQ): To measure translation quality, we first detect
and recognize scene text in the target language. We then group them and send
them to an off-the-self machine translator, i.e., IndicTrans2. We then evaluate
3 As a first work on Hindi-to-English and English-to-Hindi translation, we have opted

not to include highly complex curved and occluded text.
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BLEU-1 and BLEU-2 to measure translation quality using reference translation
annotations for each image and report mean scores for all images. It should be
noted that BLEU-2 is not computed for those images where there is only one
word in the target translation. Note that all BLEU scores are computed along
with smoothing techniques as suggested in literature [4]

(ii) Perception Quality (PQ): Visually translating also requires the model
to generate perceptually high-quality images without any patches or artifacts.
To evaluate perception quality, we propose to use CONTRastive Image QUal-
ity Evaluator, contrique [21], a recent approach for image quality assessment
without any reference.

(iii) VT-score: For high-quality visual translation, it is important to have a
high BLEU score, and perception quality along with font style preservation is
required. Due to the absence of a robust automatic model that can verify cross-
lingual font style similarity, we only consider Translation Quality and perception
quality to compute combined vt-score as follows:

vt-score =
2 · TQ · PQ

TQ+ PQ
. (1)

Please note that for images that contain only one word, we employ BLEU-
1 instead of BLEU-2 to assess translation quality. For the remaining images,
BLEU-2 is utilized in the above mentioned scoring measure.

5.2 User Evaluation

Despite the availability of automatic evaluation metrics, as discussed above, user
evaluation is crucial for assessing the accuracy, usability, and effectiveness of
visual translations. User feedback is essential for evaluating the clarity, cultural
appropriateness, and accessibility of translations. To this end, we conducted an
extensive user evaluation with four human users aged 20 to 25 who hold graduate
degrees and are proficient in both Hindi and English. They reviewed each visual
translation baseline using Beamer slides: slides for metrics (ii) and (iii) featured
single output images, while those for metrics (i) and (iv) displayed both input
and output images together. The user evaluation metrics are described here:

(i) Translation Quality (TQ) (score range: 1-4): This criterion focuses on
the accuracy of the translation. Users were asked to rate whether the translated
text accurately conveys the meaning of the original text. A higher score indicates
a more accurate translation. The different ratings by users convey the following:
4: Linguistically and culturally totally correct translation. 3: Some words are cor-
rect; translation can be improved. 2: Very few words are correct, and significant
improvement is required. 1: Totally incorrect translation.

(ii) Readability (R) (score range: 1-4): This criterion evaluates how easily
the translated text can be read within the scene image. Factors such as font size,
contrast, and placement of the text may influence readability. A higher score
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Table 1. Automatic Evaluation to evaluate baselines for visual translation.
We report translation quality (TQ) using BLEU-1 (BL-1) and BLEU-2 (BL-2) metrics
and perception quality (PQ). D.E.: Design Enhancements. More details in Section 5.1.

MethodSTR MT STS D.E.TQ (BL-1)TQ (BL-2) PQ VT-score

English-to-Hindi Translation

B-7 DBNet+ParSeqIndic SRNet++ � 25.28 20.54 53.79 27.51
B-6 DBNet+ParSeqIndic SRNet++ ✗ 22.57 15.69 53.93 25.59
B-5 Oracle Indic SRNet++ ✗ 22.36 16.90 53.38 23.95
B-4 DBNet+ParSeqM2MSRNet++ ✗ 19.09 14.51 54.02 21.52
B-3 Oracle M2MSRNet++ ✗ 19.82 15.33 53.52 22.22
B-2 Oracle M2MMostel ✗ 14.13 10.44 46.98 16.58
B-1 Oracle M2MSRNet ✗ 15.00 12.25 46.71 16.56

Hindi-to-English Translation

B-7 Oracle Indic SRNet++ � 38.30 29.30 55.49 40.08
B-6 DBNet+ParSeqIndic SRNet++ ✗ 29.10 18.51 55.77 28.52
B-5 Oracle Indic SRNet++ ✗ 31.31 19.70 55.62 32.27
B-4 DBNet+ParSeqM2MSRNet++ ✗ 03.22 02.19 55.60 03.81
B-3 Oracle M2MSRNet++ ✗ 04.20 02.89 55.58 04.97
B-2 Oracle M2MMostel ✗ 02.03 01.40 53.41 02.46
B-1 Oracle M2MSRNet ✗ 04.20 02.86 53.82 04.92

indicates better readability. The different readability ratings by users convey the
following: 4: Clearly readable. 3: Can read with some effort. 2: Can read with
significant effort; some words are not readable. 1: No text present in the target
language.

(iii) Perceptual Quality (PQ) (score range: 1-4): This criterion assesses
how well the translated text blends into the scene image, making it difficult to
distinguish from a real image. A higher score indicates better integration of the
translated text with the scene. Users were asked to rate approaches based on the
following: 4: Very clear, looks like real image. 3: Clear image, but some patches
are present if carefully seen. 2: There are a lot of patchy effects; looks like a fake
image. 1: Too much patchy effect; for sure, it is a fake image.

(iv) Source Style Preservation (SSP) (score range: 1-4): This criterion
examines whether the translated text preserves the style, font, color, and other
visual attributes of the original text in the scene image. A higher score indicates
that the translated text maintains consistency with the source text in terms of
visual presentation. 4: Font style, size, color, and background are coherent to the
source. 3: Only 2 or 3 of the following: font style, size, color, and background
are coherent to the source. 2: Only 1 or 2 of the following: font style, size, color,
and background are coherent to the source. 1: No source-style preservation.
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Table 2. User Study to evaluate baselines for visual translation. We report
mean Translation Quality (TQ), Readability (R), Perception Quality (PQ), and Source
Style Preservation (SSP). Four fluent Hindi-English speakers rated the output on a
four-point Likert scale, with 4 being the highest quality. D.E.: Design Enhancements.
For more details please refer to Section 5.2.

MethodSTR MT STS D.E.TQ R PQ SSP

English-to-Hindi Visual Translation

B-7 DBNet+ParSeq Indic SRNet++ � 2.25 2.60 2.27 1.85
B-6 DBNet+ParSeq Indic SRNet++ ✗ 2.05 2.86 2.86 1.97
B-5 Oracle Indic SRNet++ ✗ 2.13 3.00 2.92 1.96
B-4 DBNet+ParSeq M2M SRNet++ ✗ 1.93 3.12 2.94 1.91
B-3 Oracle M2M SRNet++ ✗ 1.94 3.27 2.72 1.92
B-2 Oracle M2M Mostel ✗ 1.88 2.65 2.42 1.85
B-1 Oracle M2M SRNet ✗ 1.94 2.51 2.50 1.88

Hindi-to-English Visual Translation

B-7 Oracle Indic SRNet++ � 2.42 2.45 2.19 1.79
B-6 DBNet+ParSeq Indic SRNet++ ✗ 1.92 2.11 2.05 1.67
B-5 Oracle Indic SRNet++ ✗ 2.23 2.30 2.23 1.75
B-4 DBNet+ParSeq M2M SRNet++ ✗ 1.36 2.07 1.95 1.42
B-3 Oracle M2M SRNet++ ✗ 1.64 2.19 2.15 1.56
B-2 Oracle M2M Mostel ✗ 1.38 2.03 1.94 1.63
B-1 Oracle M2M SRNet ✗ 1.53 2.09 1.96 1.58

6 Experiments

In this section, we comprehensively evaluate scene-text to scene-text translation
baseline approaches discussed in Section 3.2 using both automatic and user eval-
uation metrics proposed in Section 5. We use VT-Real introduced in Section 4
for all our evaluation.

The automatic evaluation results are reported in Table 1. We observe that
SRNet++ clearly emerges as the best scene text synthesis approach as compared
to other existing architectures. The proposed design enhancements also signif-
icantly boost translation quality while maintaining nearly identical perceptual
quality. We also observe that usage of IndicTrans2 as a translator consistently
leads to an increase in translation quality. The state-of-the-art scene text recog-
nition approaches are as good as ground truth annotations (Oracle) in the case
of detecting and recognizing English text.

We further perform a rigorous user study using metrics presented in
Section 5.2. As discussed in this section, we have collected user feedback from
four qualified users and report mean scores of TQ, R, PQ, and SSP in Table 2.
These scores nearly align with observations made via automatic evaluation. We
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also observe that there is significant room for improvement on all these metrics,
indicating the challenge associated with the task.

6.1 Qualitative Results

We show a selection of visual results for the proposed baseline variants in
Fig. 6. The illustrated results indicate the merits/demerits of various choices.
The use of IndicTrans2 as the translator instead of M2M improves translation
to a large extent and also enables the transliteration of words when necessary.
By using a ControlNet-based model for erasing scene-text regions in the image,
in SRNet++ instead of precariously erasing text from word crops as done by
MOSTEL or SRNet, we ensure complete erasing of the source text. The rendering
of the target text is also clearer and has a less patchy effect. Design enhance-
ments, particularly translating at paragraph level instead of word level, improve
the translation correctness by taking care of language-specific ordering of words.

6.2 Comparison with Commercial Systems

Google Translate for images4 is a commercial system that also handles scene
text-to-scene text translation. However, it is closed-source and only available
through a web interface, with no free API support. As a result, we do not include
it in our quantitative comparison. Nevertheless, Fig. 7 presents some qualitative
comparisons, illustrating that even Google Translate is not without flaws.

6.3 Limitations

The limitations of the proposed baselines are as follows: (i) It has limited success
in visually translating curved or occluded Hindi texts, partly because, unlike
English, scene text detection and recognition for Indian languages are still in
their infancy. (ii) There is a trade-off between image and translation quality.
Design enhancements allow for sentence-level translation, but approximations
in word positioning and size can cause slight blurring, as illustrated in Fig. 6.
While these issues affect perceptual quality, we prioritize translation accuracy
over image sharpness as long as the text remains readable. (iii) Ensuring the
natural alignment of generated text in the scene is challenging. Therefore, the
baselines have limited success in translating longer sentences or phrases. (iv) Our
baselines do not utilize visual cues from the scene, which impairs their ability
to choose between transliteration and translation, particularly for brand names.
Additionally, the absence of an automatic metric for evaluating source style
preservation or the visual consistency between source and generated scene text,
such as font, orientation, and style, limits our current evaluation framework.
Addressing these limitations is an important direction for future research.

4 https://translate.google.com/?op=images

https://translate.google.com/?op=images
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Original B-1 B-2 B-6 B-7

Fig. 6. A selection of visual translation results for proposed baseline variants for Eng
→ Hin in row 1–6 and Hin → Eng in row 7–8. Here, we show (left to right) the original
image and results of best-performing baselines B-1, B-2, B-6, and B-7 (please refer
to Section 3.2 for details about these baseline variants). We observe that B-7, which
uses SRnet++ for scene text synthesis and proposed design enhancements, is clearly
superior in visual translation. Native Hindi speakers can find that IndicTrans2 (used
in B-6 and B-7) produces superior translations, and the design enhancements in B-7
result in grammatically correct translations.
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Original B-7 Google Translate

Fig. 7. Comparison of our proposed baseline (B-7) with Google Translate for images
(a commercial application). For more details please refer to Section 6.2.

7 Conclusion

We have presented a comprehensive study for the task of visual translation
by proposing a series of baselines that utilize state-of-the-art approaches and
their enhancements across various modules. Our baselines demonstrate promis-
ing results for translating scene text images between English and Hindi. However,
it is evident that visual translation remains challenging, and addressing all of
its complexities extends beyond the scope of this single paper. We hope that
introducing this task, along with the dataset, baseline, and performance met-
rics, will inspire the research community to develop advanced models for visual
translation.
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Abstract. For 6-DoF grasp detection, we aim at introducing a new
interactive 2D-3D framework which filters out irrelevant information and
makes both modalities collaborate effectively to generate robust grasps
and accelerate inference speed greatly. This cannot be accomplished by
existing works on learning to grasp that merely utilize 3D point clouds
or leverage both 2D textures and 3D point clouds. Our framework is
called iGrasp, a novel three-step design between 2D textures and 3D
point clouds, where the interaction modelling enhances both modalities.
Concretely, we propose the 2D-to-3D interaction to leverage objectness
masks generated from 2D textures to filter out target-irrelevant infor-
mation in 3D point clouds. Then, we introduce the 3D-to-2D interaction
to leverage structural priors from 3D point cloud features with cross-
attention and cylinder grouping to refine 2D texture features. Finally,
we combine the refined 2D texture features and 3D point cloud features
for generating high-quality 6-DoF grasp poses. Our experiments on the
large-scale real-world dataset, namely GraspNet-1Billion, demonstrate
that iGrasp surpasses state-of-the-art methods by 4.66/3.53 mAP on
RealSense/Kinect and reduces the inference time by 28%. Real-world
experiments further verify the effectiveness of iGrasp.

Keywords: 6-DoF Grasp Detection · Deep Learning in Grasping.

1 Introduction

As a fundamental problem in robotics community, 6-DoF grasp detection aiming
at predicting grasp points and rotations in cluttered scenes has a wide range of
applications in picking [1], stowing [2] and home servicing [3], etc.
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In 6-DoF grasp detection, most regression-based methods [4–10] merely lever-
age 3D point clouds generated by depth cameras for predicting grasp poses and
grasp scores. Although 3D point clouds comprise rich geometric information, the
presence of heavy noise along with the numerous target-irrelevant background
points (about 78% on average in GraspNet-1Billion [4]) causes interference in the
perception of target objects. The noise degrades the performance and numerous
irrelevant non-target points hinder the inference speed. As depicted in Fig. 2
(a) and Fig. 2 (b), the experiments on a strong baseline [6] show that numer-
ous irrelevant information in redundant background points interfere with model
training, harm performance and slow down inference speed.

6-DoF
Grasp PosesFusion

2D-to-3D
Interaction

3D-to-2D
Interaction

Fusion
6-DoF

Grasp Poses

6-DoF
Grasp Poses

Pre-
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Specific
Grasp Poses

Optional Module

c) Our Three-Step Design based Method

a) Fusion based Methods

b) Pre-Processing / Post-Processing based Methods

3D Point Clouds
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3D Point Clouds
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3D Point Clouds
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2D Textures
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Filter Out Irrelevant Information
Enhance 3D Perceptual Abilities

Gain Comprehensive Perception

Fig. 1. Comparison of iGrasp with other 2D-3D 6-DoF grasping frameworks. Fusion
based methods (a) propose multi-modal fusion modules (indicated by the green arrow)
and use the fused features to predict grasp poses. Another pipeline (b) pre-processes
the 3D point clouds or post-processes the predicted 6-DoF grasps with 2D textures
(indicated by the red arrow). Our iGrasp model (c) adopts a three-step design (directed
by the three colored arrows), filtering out numerous irrelevant information in redundant
background points and generating high-quality grasp poses with reduced inference time.
(Color figure online)

To address the problem caused by 3D point clouds, we delicately introduce
2D textures and propose a new interactive 2D-3D framework. This framework
filters out numerous irrelevant information in redundant background points and
makes both modalities collaborate effectively. As a result, it can generate robust
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grasps and improve inference speed. This cannot be accomplished by previous
works on learning to grasp by using 2D textures and 3D point clouds, where they
only generate grasps with multi-modal and do not consider the target-irrelevant
information problem. As shown in Fig. 1 (a), some methods [11,12] combine 2D
textures and 3D point clouds in a simple fusion way to enhance the perception
of the grasp detector in target objects. While other methods depicted in Fig. 1
(b) [13–15] utilize 2D textures to pre-process input 3D points or to post-process
predicted grasps. To sum up, existing 2D-3D based methods improve the quality
of grasps with multi-modal in a simple unidirectional interaction way and do not
consider the numerous irrelevant information in 3D point clouds.
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Fig. 2. Some experiments on a strong grasp detection baseline [6]. To verify the disad-
vantages of irrelevant information in redundant background points, we conduct exper-
iments (a) and (b). Experiment (a) assesses the performance of the baseline with a
high foreground to background ratio (75:25) across different scales of input points.
The dashed line represents the original performance with 20000 input points at a
ratio of 22:78. Increasing the ratio to 75:25 significantly improves performance with
an increased number of input points, surpassing the original performance with fewer
than half the number of input points. Experiment (b) analyzes the performance of the
baseline with varying scales of background points, showing a continuous decline in per-
formance as background points increase while foreground points remain fixed (5625).
To verify the ineffectiveness of directly using original 2D texture features, we conduct
experiment (c), which shows that integrating the original 2D texture features into the
baseline is unsuitable and harms performance.

Our framework named iGrasp, contains three steps: the 2D-to-3D interaction
step, the 3D-to-2D interaction step and the fusion step, as depicted in Fig. 1 (c).
The 2D-to-3D interaction step leverages 2D textures to filter out target-irrelevant
information in 3D point clouds, where the objectness masks generated from
2D textures are utilized to guide point cloud downsampling. This guidance can
effectively filter out the disturbance caused by numerous irrelevant information
in redundant background points and help the feature extractor focus more on
target objects, thereby significantly decreasing the number of input points and
inference time while maintaining competitive performance.
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To further leverage the introduced 2D textures, we aim to use 2D texture
features to assist the generation of grasp poses. However, as depicted in Fig. 2 (c),
the experiment on a strong grasp detection baseline shows that merely combining
the original 2D texture features is insufficient for 6-DoF grasp detection and even
harms performance. We believe this is caused by the sensitivity and lack of 3D
perception in the original 2D texture features. Therefore, in the second step, we
design a novel 3D-to-2D interaction to utilize 3D point cloud features to refine
2D texture features. We employ cross-attention and cylinder grouping to refine
the 2D texture features with structural priors from 3D point cloud features. This
refinement enhances perceptual capabilities of 2D texture features in 3D space
while reducing their sensitivity, mitigating the problems related to 2D texture
sensitivity and their lack of 3D perceptual abilities.

Finally, the refined 2D texture features are combined with 3D point cloud
features in the fusion step to generate 6-DoF grasp poses. This process alleviates
the negative effects of point cloud noise. In this step, we employ a concatenation
operation to integrate the refined 2D texture features with 3D point cloud fea-
tures to predict grasp poses. Benefiting from these complementary modalities,
the grasp detector can better understand targets from different perspectives,
thereby generating robust grasp poses and effectively mitigating challenging sce-
narios caused by severe occlusions and point cloud noise.

In summary, benefiting from the three-step design, iGrasp can mitigate the
limitations of each modality. It enables the generation of effective grasps in
challenging scenarios and greatly reduces inference time by eliminating irrelevant
3D points through interaction modeling. Our extensive experiments on the large-
scale real-world dataset, namely GraspNet-1Billion [4], demonstrate that iGrasp
can greatly reduce the number of input 3D points (by about 80%). It outperforms
the state-of-the-art method by 4.66/3.53 mAP on RealSense/Kinect, achieving
a 28% reduction in inference time. Moreover, based on the three-step design,
iGrasp is capable of addressing challenging scenarios where successful grasps
cannot be generated and achieving a failure rate of 1/5 that of the SOTA method.
Real-world experiments further verify the effectiveness of iGrasp.

2 Related Work

2.1 6-DoF Grasp Detection based on Point Clouds

Point clouds based 6-DoF grasp detection methods can be divided into three
main categories. With the development of 6D object pose estimation, some
model based methods [16,17] typically predict 6D poses of objects and project
the predefined grasps to the scene. However, they rely on 3D object models and
cannot generalize to novel scenes involving unseen objects. Another pipeline is
sampling-evaluation [18–20] that comprises two steps. They densely uniformly
sample grasp candidates with heuristic sampling strategies at first and then eval-
uate them with deep neural networks. However, sampling-evaluation methods are
usually time-consuming because they need to sample numerous grasps to cover
the optimal grasp. Recently, lots of methods [4–10] predict grasp poses in an
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end-to-end manner, where 3D point clouds are directly processed by point cloud
backbones. Most of these methods focus on improving the quality of grasps, but
waste computing resources on irrelevant non-target points.

2.2 6-DoF Grasp Detection based on 2D-3D

For 6-DoF grasp detection, the application of 2D-3D has not been fully explored.
Recently, few methods [11–15] combine 2D textures and 3D point clouds simul-
taneously to accomplish this task. These approaches can be divided into two cat-
egories. With the development of multi-modal applications, some fusion based
methods [11,12] integrate 2D texture features with 3D point cloud features in
a simple fusion way and use the fused features to predict 6-DoF grasps (See
Fig. 1 (a)). Another pipeline [13–15] employs 2D textures to pre-process the 3D
input point clouds to identify regions of interest or to post-process the predicted
grasps to select specific grasp poses (See Fig. 1 (b)). However, all existing meth-
ods merely utilize the unidirectional interaction between modalities and do not
consider the target-irrelevant information in 3D point clouds.

In this work, we propose a new interactive 2D-3D framework for 6-DoF grasp
detection to filter out numerous target-irrelevant information so as to generate
accurate grasps and accelerate inference speed greatly. (See Fig. 1 (c)). iGrasp
is a novel three-step design between 2D textures and 3D point clouds, where
the interaction modelling can enhance both modalities and enable fast inference
speed and robust performance.

3 iGrasp: An Interactive 2D-3D Framework for 6-DoF
Grasp Detection

3.1 Problem Statement θ

v

d

w

obj

o

Fig. 3. The 6-DoF
grasp pose represen-
tation used in iGrasp.
A grasp can be repre-
sented as grasp view
v, grasp angle θ,
grasp width w, grasp
depth d from object
point “obj” to the
grasp origin o.

Given a single-view 2D texture (in this work we use a
RGB image as example) I ∈ R

H×W×3 and a single-view
point cloud P ∈ R

N×3 captured by a depth camera, 6-
DoF grasp detection task aims to generate a set of stable
6-DoF grasp poses in a cluttered scene. The 6-DoF grasp
pose can be represented as:

G = [R, t, w], (1)

where R ∈ R
3×3 denotes the grasp rotations, t ∈ R

3

denotes the grasp positions, and w ∈ R denotes the grasp
width that is suitable for grasping target objects. In this
work, we follow the setting in GraspNet-1Billion [4] and
decouple rotations R into grasp views v and angles θ, as
shown in Fig. 3. In addition, grasp points are determined
by the object point “obj” and the grasp depth d.
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Fig. 4. The architecture of iGrasp that utilizes a three-step design between 2D tex-
tures and 3D point clouds, achieving improved performance with reduced inference
time. The workflow of iGrasp is depicted by colored arrows. Before forward propa-
gation, as directed by the red arrow, we use 2D textures to perform segmentation
tasks. By employing the foreground-background mask, 2D-to-3D interaction filters out
information irrelevant to targets. Before the grasp generation, as directed by the blue
arrow, 3D-to-2D interaction enhances 2D texture features using 3D point cloud fea-
tures. Finally, as directed by the green arrow, the fusion step combines the refined 2D
texture and 3D point cloud features and uses them for 6-DoF grasp generation. (Color
figure online)

3.2 Overview of iGrasp

In this work, we propose a new interactive 2D-3D frame-
work for 6-DoF grasp detection to filter out irrelevant information in redun-
dant background points so as to generate accurate grasps and improve inference
speed. Our framework is called iGrasp, a novel three-step design between 2D
textures and 3D point clouds, making both modalities enhanced and collabo-
rate effectively. As shown in Fig. 4, before forward propagation, we utilize the
2D-to-3D interaction to filter out information irrelevant to target objects in 3D
point clouds, thereby greatly reducing the number of input points and inference
time while maintaining competitive performance. Then, before grasp generation,
we leverage the 3D-to-2D interaction to further refine the original 2D texture
features with 3D point cloud features, enhancing the robustness and 3D percep-
tual capabilities of them. Finally, in the fusion step, we combine the refined 2D
texture features with 3D point cloud features and utilize the fused features to
generate grasps.



iGrasp: An Interactive 2D-3D Framework for 6-DoF Grasp Detection 335

3.3 The 2D-to-3D Interaction

Benefiting from the strong perception of 2D textures in object edges, colors, etc.
and the development of lightweight 2D backbones [21–23], we use 2D textures
to address issues of high computation and numerous irrelevant information in
point clouds. In the 2D-to-3D interaction, we use objectness priors from 2D tex-
tures to interact with 3D point clouds. The key insight is that since 3D point
clouds from depth maps and 2D textures correspond one-to-one, we utilize 2D
textures for segmentation instead of point clouds and then use the predicted
masks to filter out target-irrelevant information in input points. We opt for
foreground-background segmentation over instance segmentation, which simpli-
fies the problem and enables a lightweight CNN to finish it. With the help of the
segmentation results, we can easily decrease the redundant background points,
thereby removing numerous information irrelevant to targets.

Specifically, we build a lightweight CNN model to segment cluttered scenes.
Given an image I, we can use our lightweight model to obtain objectness masks
M ∈ {0, 1}H×W , where 0 denotes the background and 1 denotes the foreground.
Based on the foreground and background mask, we separately select points from
3D point clouds for them with the uniform sampling algorithm. Concretely, we
sample N1 points in the foreground to basically preserve complete point clouds
of target objects and we sample N2 points in the background to maintain the
relationship between objects and the environment. The ratio of N1 to N2 is much
greater than 1 to filter out numerous irrelevant information.

It should be noted that it remains essential to preserve a limited number
of background points to guarantee that the grasp generator can establish the
relationship between target objects and the environment. This relationship offers
implicit constraint crucial for estimating grasp poses.

With the 2D-to-3D interaction, we greatly reduce the number of input points,
achieving competitive performance with a slight rise in parameters (only 3%).
The loss function employed to train this step is as follows:

Lseg = Lcls(M,M∗), (2)

M∗ means the ground truth of M and Lcls denotes the Cross Entropy loss.

3.4 The 3D-to-2D Interaction

To further leverage the introduced 2D textures, we aim to use 2D texture features
to assist the generation of grasps. However, as described in Sect. 1, the original
2D texture features are not well-suited for this task. We believe this is caused
by the lack of 3D perception and sensitivity in original 2D texture features.
To address this problem, in the 3D-to-2D interaction, we use 3D point cloud
features to interact with 2D texture features before predicting 6-DoF grasps.
This enables 2D texture features to have 3D perception, making them more
robust and suitable for this task. The key insight is that we use 3D point cloud
features to refine 2D texture features, introducing 3D structural priors into 2D
texture features. For this purpose, we design two novel submodules.
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Firstly, inspired by the cross-attention mechanism, we use 3D point cloud
features to aggregate 2D texture features, thereby allowing 2D textures to better
mitigate sensitivity and have 3D perception. Specifically, given M selected grasp
points, we can obtain the corresponding 2D texture features F2d ∈ R

M×C from
image feature volumes. Denote the 3D structural features as F3d ∈ R

M×C , and
we can generate the output 2D texture features by employing cross attention to
F3d, F2d, where F3d is the query and F2d is the key and value. With the cross-
attention mechanism, 2D texture features are endowed with the 3D perceptual
abilities and are suitable for 6-DoF grasp detection.

Moreover, cylinder grouping is a widely used strategy in this task [4,6,8],
which can integrate enough points into a cylinder, forming a suitable space for
grasp detection. Thus, we also use this strategy in iGrasp. To align 2D tex-
ture features with 3D point cloud features grouped by cylinders, we apply this
operation to 2D texture features. Given a height equal to the length of the grip-
per model, we sample neighboring points within the cylinder centered along the
grasp view to a fixed number. Based on the sampled point set, we extract the
corresponding 2D texture feature set from the cross-attention stage. Then, we
use max pooling to process features in the 2D texture feature set, thereby obtain-
ing 2D texture features grouped by cylinders. The resulting 2D texture features
are more robust, 3D perceptive and aligned with 3D point cloud features.

3.5 Finalizing iGrasp

The appearance information in the refined 2D textures and the geometry infor-
mation in 3D point clouds are complementary to enhance the perception of the
grasp detector in targets. Therefore, in the fusion step, we use concatenation to
combine the refined 2D texture and 3D point cloud features. Meanwhile, we use
a multi-layer perceptron to map the concatenated features to a lower dimension,
achieving the fusion of modalities for 6-DoF grasp detection.

Then, we constrain the output features by the following losses. Our loss
is divided into three parts. Firstly, we utilize Lseg to supervise the foreground-
background masks. Then, we follow previous methods [4,6] to conduct downsam-
pling and utilize Lo to guide the selection of grasp points. Finally, we supervise
the prediction of grasp views, scores and widths with Lv, Ls and Lw respectively.
To sum up, iGrasp is trained with a multi-task loss:

Lpred = λLv + β(Ls + Lw),
L = Lseg + αLo + Lpred.

(3)

Previous works [6,24] demonstrate that distinguishing graspable points from the
input 3D point clouds is significant. Therefore, we further divide Lo into object
point classification and graspable score regression.
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4 Experiments

4.1 Dataset and Settings

Dataset. We choose GraspNet-1Billion [4], which is widely used in 6-DoF grasp
detection [6,8,9,11,12,14]. It is a large-scale real-world dataset, which contains
190 scenes with 256 distinct views captured by two cameras (RealSense/Kinect).
Scenes are split into train and test set with 100 and 90 scenes respectively, where
the test set is further divided into seen, similar and novel.

Evaluation Metric. We adopt APµ and AP as provided by GraspNet-1Billion
[4] to evaluate the performance, where μ denotes the friction coefficient calcu-
lated by [25] and AP denotes the mean value of various APµ.

Table 1. GraspNet-1Billion quantitative results on RealSense.

Seen AP Similar AP Novel AP
Method

Input

Points

Time

(ms) AP AP0.8 AP0.4 AP AP0.8 AP0.4 AP AP0.8 AP0.4

GPD [18] N/A >1000 22.87 28.53 12.84 21.33 27.83 9.64 8.24 8.89 2.67

PointNetGPD [19] N/A >1000 25.96 33.01 15.37 22.68 29.15 10.76 9.23 9.89 2.74

Graspnet-baseline [4] 20000 151.58 27.56 33.43 16.95 26.11 34.18 14.23 10.55 11.25 3.98

TransGrasp [9] 20000 13.52 39.81 47.54 36.42 29.32 34.80 25.19 13.83 17.11 7.67

GSNet [6] 20000 51.79 65.70 76.25 61.08 53.75 65.04 45.97 23.98 29.93 14.05

RGB-Matters [14] N/A 554.36 27.98 33.47 17.75 27.23 36.34 15.60 12.25 12.45 5.62

Liu et al. [11] 20000 - 36.29 44.51 29.73 30.52 36.57 23.36 15.34 18.24 6.85

HGGD [12] 25600 38.11 59.36 - - 51.20 - - 22.17 - -

Ours 5000 29.18 69.7480.0765.20 61.6173.2154.92 26.0632.3414.87

The gray area in the table represents point clouds based sampling-evaluation methods,
the yellow area represents point clouds based regression methods, and the red area
represents 2D-3D based regression methods.

Table 2. GraspNet-1Billion quantitative results on Kinect.

Seen AP Similar AP Novel AP
Method

Input

Points

Time

(ms) AP AP0.8 AP0.4 AP AP0.8 AP0.4 AP AP0.8 AP0.4

GPD [18] N/A >1000 24.38 30.16 13.46 23.18 28.64 11.32 9.58 10.14 3.16

PointNetGPD [19] N/A >1000 27.59 34.21 17.83 24.38 30.84 12.83 10.66 11.24 3.21

Graspnet-baseline [4] 20000 151.58 29.88 36.19 19.31 27.84 33.19 16.62 11.51 12.92 3.56

TransGrasp [9] 20000 13.52 35.97 41.69 31.86 29.71 35.67 24.19 11.41 14.42 5.84

GSNet [6] 20000 51.79 61.19 71.46 56.04 47.39 56.78 40.43 19.01 23.73 10.60

RGB-Matters [14] N/A 554.36 32.08 39.46 20.85 30.40 37.87 18.72 13.08 13.79 6.01

HGGD [12] 25600 38.11 60.26 - - 48.59 - - 18.43 - -

Ours 5000 29.18 62.6573.0456.12 54.1764.5846.60 21.3626.5312.37

The gray area in the table represents point clouds based sampling-evaluation methods,
the yellow area represents point clouds based regression methods, and the red area
represents 2D-3D based regression methods.
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4.2 Implementation Details

In this work, the input RGB image size is 1280×720×3 and the number of input
points is 5000. In the 2D-to-3D interaction step, we uniformly select N1 = 4500
points and N2 = 500 points from the foreground and background respectively.
The point cloud backbone outputs C = 512 dimensional point cloud features
to select suitable grasp points from the input point clouds and the best grasp
view from the predefined 300 approaching directions. Notably, we utilize a 3D
UNet built upon the Minkowski Engine [26] as the 3D point cloud backbone and
MnasNet [23] as the 2D texture backbone.

Then, in grasp generator, we divide grasp angles into 12 classes and depths
into 4 classes to regress grasp scores and widths of (angle-depth) combinations.
In loss functions, we set α, β, λ = 10, 15, 100 respectively.

iGrasp is implemented with PyTorch [27] and trained on an NVIDIA GTX
1080Ti GPU or NVIDIA RTX 3090 GPU for 10 epochs with Adam optimizer
and the batch size of 2. The learning rate is 1.25 × 10−4 at the first epoch, and
multiplied by 0.95 every one epoch.

Seen

Seen

Similar

Similar

Novel

Failure Case

Fig. 5. Qualitative results of our predicted grasp poses. Scenes are constructed using
RGB-D images captured by a Kinect camera. The red gripper indicates a viable grasp
pose, while the blue one indicates an infeasible grasp pose. The figure at the bottom
right presents a failure case of iGrasp, where it fails to predict a feasible grasp in this
challenging scenario. In this figure, yellow boxes highlight areas with significant noise,
with red and pink points representing the noise point clouds. The red box indicates an
area that is more heavily shielded. Zoom in for the best view. (Color figure online)

4.3 Experiments on GraspNet-1Billion

Quantitative Results. We compare our method with previous representative
6-DoF grasp detection methods. GPD [18] and PointNetGPD [19] are sampling-
evaluation based methods, which classify the grasp candidates generated by
heuristic sampling strategies. GraspNet-baseline [4], TransGrasp [9] and GS-
Net [6] are regression based methods, which directly process scene points with
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point cloud backbones and predict grasp poses together with grasp scores. RGB-
Matters [14] incorporates 2D textures and 3D point clouds, which predicts grasp
orientations with 2D textures and searches grasp width-depth pairs with 3D
point clouds. Liu et al. [11] propose a novel method for integrating 2D texture
features with 3D point cloud features, utilizing the fused features for predicting
grasp poses. HGGD [12] utilizes RGB-D images to generate grasp heatmaps,
guiding local grasp generators to predict effective grasp poses.

We test iGrasp in three object categories. As shown in Table 1 and Table
2, we can see that: Our method utilizes fewer points (about 20%), surpassing
previous methods and resulting in faster inference speed. Compared with GS-
Net, the previous SOTA method, the results of our method are improved by
4.04/1.46 AP, 7.86/6.78 AP and 2.08/2.35 AP for Realsense/Kinect input on
seen, similar and novel scenarios respectively. Achieving such good performance
is due to our three-step design. The design filters out information irrelevant to
targets in point clouds, endows 2D texture features with 3D perception and uses
complementary data modalities to generate high-quality 6-DoF grasp poses.

Qualitative Results. We visualize top-20 grasps generated by iGrasp to qual-
itatively verify the performance of iGrasp, which can be seen in Fig. 5. It can be
concluded that: (1) In most scenarios, iGrasp performs well and achieves nearly
100% success rate, no matter in seen, similar or in novel setting. (2) However,
iGrasp may still fail when encountering challenging scenes, like the one depicted
in the bottom right that has heavy noise and severe occlusions.

Table 3. The performance of ablation studies on each component on Kinect.

2D-to-3D
Interaction

3D-to-2D
Interaction

Time(ms) Seen AP Similar AP Novel AP

AP AP0.8 AP0.4 AP AP0.8 AP0.4 AP AP0.8 AP0.4

19.82 48.41 59.64 37.41 42.88 53.74 31.68 16.01 20.22 7.65

� 23.29 58.37 69.65 50.05 49.77 61.08 40.22 18.81 23.46 10.47

� 25.71 53.39 63.77 44.94 49.28 59.89 40.73 17.91 22.49 8.66

� � 29.18 62.65 73.04 56.12 54.17 64.58 46.60 21.36 26.53 12.37

Table 4. The ablation studies of submod-
ules in 3D-to-2D interaction on Kinect.

Cross
Attention

Cylinder
Grouping

Seen AP Similar AP Novel AP

58.37 49.77 18.81

� 57.64 49.35 19.51

� 58.66 51.05 19.82

� � 62.65 54.17 21.36

Table 5. The ability of models to handle
challenging scenarios.

Method FailureScene Number FailureScene Ratio

GS-Net [6] 17 0.074%

Ours 3 0.013%

Ablation Study. We conduct ablation studies for iGrasp. Concretely, we use
5000 input points and test the effectiveness of the 2D-to-3D interaction and 3D-
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to-2D interaction. The results are shown in Table 3. We can conclude that: (1)
Due to the decrease in input points, randomly sampling in the workspace cannot
maintain the completeness of object points, resulting in low performance (line 1
in Table 3). (2) Utilizing the 2D-to-3D interaction to filter out target-irrelevant
information improves grasping performance, which adds 9.96 AP, 6.89 AP and
2.80 AP on Kinect across the three categories respectively (line 2 in Table 3). (3)
Then, to further leverage 2D textures, we use the 3D-to-2D interaction to pro-
cess 2D texture features, assisting in the generation of 6-DoF grasp poses. This
improves the model with 4.28 AP, 4.40 AP and 2.55 AP on Kinect across seen,
similar, and novel scenarios respectively (line 4 in Table 3). Above all, by com-
bining the 2D-to-3D and 3D-to-2D interaction, we achieve a high-performance
and high-speed 6-DoF grasp detection framework.

Analysis of Submodules in 3D-to-2D Interaction. We also conduct a
detailed ablation study for our 3D-to-2D interaction. Specifically, we fix the
input points equal to 5000 and the ratio of foreground points to background
points equal to 9:1 to test the effectiveness of our submodule in 3D-to-2D inter-
action. It should be noted that the 2D-to-3D interaction is used for all the
experimental results recorded in the Table 4. The results are depicted in Table
4. From the table, we can conclude that: (1) The submodules complement with
each other. Lacking either one cannot effectively improve the performance (line
2 in Table 4, line 3 in Table 4). (2) When we combine submodules together, we
achieve a significant improvement in performance by aligning the 3D-perceptive
2D texture features and 3D point cloud features in the feature space (line 4 in
Table 4).

Analysis of Mitigating Challenging Scenarios. We analyze the ability of
iGrasp in challenging scenes that are often caused by severe noise and occlu-
sions. We summarize all the scenarios in the test set of GraspNet-1Billion where
successful grasp poses cannot be generated with iGrasp compared with GS-Net.
Results are recorded in Table 5. This table shows that by using the three-step
design, iGrasp significantly mitigates the impact of challenging scenarios. Com-
pared with GS-Net, both the number and ratio of our failure cases are reduced to
only 1/5. We believe this is due to the fact that 2D textures, as a complementary
input, help iGrasp better understand the noisy environment.

Table 6. Illustration of the grasping performance with different foreground-background
ratios on Kinect.

Ratio Seen AP Similar AP Novel AP

AP AP0.8 AP0.4 AP AP0.8 AP0.4 AP AP0.8 AP0.4

Ori. (22:78) 53.3963.77 44.94 49.2859.89 40.73 17.9122.49 8.66

75:25 62.0872.62 55.07 52.9263.50 44.99 21.3126.52 12.27

85:15 62.1272.47 55.16 53.3363.90 45.21 20.7325.69 12.30

90:10 62.6573.04 56.12 54.1764.58 46.60 21.3626.53 12.37

100:0 60.9671.17 53.91 52.2962.42 44.75 19.5424.28 11.35
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Table 7. Illustration of performance with varying numbers of input points on Kinect.

Input Points Seen AP Similar AP Novel AP

AP AP0.8 AP0.4 AP AP0.8 AP0.4 AP AP0.8 AP0.4

3000 58.4668.50 51.54 50.7960.92 42.69 19.9224.77 11.50

5000 62.6573.04 56.12 54.1764.58 46.60 21.3626.53 12.37

7500 62.7372.94 56.36 53.2764.01 44.86 20.7725.76 12.48

10000 63.5973.96 57.01 54.3765.04 46.02 21.4426.61 12.90

Analysis of the Foreground-Background Ratio. We conduct some analysis
experiments on the foreground-background ratios. We maintain the default num-
ber of input points at 5000 and test the performance using different foreground-
background ratios, as seen in Table 6. It can be observed that: (1) As the ratio
of foreground points increases, performance continually improves, showing the
importance of filtering out irrelevant information for target objects. (2) Notably,
it is essential to preserve a limited number of background points. Completely
removing them leads to a decrease in performance (line 5 in Table 6).

Analysis of the Number of Input Points. We analyze how the number of
input points affects performance. We fix the foreground-background ratio at 9:1
and test different numbers of input points. Results are shown in Table 7. From
this table, it can be concluded that: (1) While the number of input points is
small, the performance is poor. (2) When the number of points reaches a certain
level, the performance will remain at a relative high level. Considering both
inference speed and performance, we choose 5000 input points as the default.

Analysis of Time Costs of Each Component. We report the time costs
comprising all components used by iGrasp and GS-Net. Results are shown in
Table 8. The reasons for our significantly lower time costs are: (1) Our 2D texture
backbone is a lightweight neural network (5.46 MB). (2) The number of input
points is significantly reduced (1/4 of GS-Net’s input points).

Table 8. The Time Costs of Each Com-
ponent.

Components Time (ms)

GS-Net [6] Ours

2D-to-3DInteraction - 5.89

3D-to-2DInteraction - 3.47

Point CloudBackbone 48.15 16.69

Grasp PosesPrediction 3.64 3.13

Total 51.79 29.18

Table 9. Quantitative results of real
world grasping experiments for normal
scenarios.

Object IDs Difficulty Object Number Attempt Number Success Rate

3,6,8,11,13 Normal 5 7 71.43%

3,6,9,12,16 Normal 5 5 100.00%

1,5,6,8,13,14 Normal 6 7 85.71%

4,7,10,13,15,16 Normal 6 6 100.00%

3,4,5,6,8,13,15,16 Normal 8 9 88.89%

2,3,4,5,6,7,12,16 Normal 8 8 100.00%

Average 6.33 7 90.43%
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1

Object sets System setup

Realsense D455
eye-in-hand

Franka Emika 
Panda

Target objects

Azure Kinect DK
eye-to-hand

Normal Senarios Hard Senarios

Realsense D455
eye-in-hand

Azure Kinect DK
eye-to-hand

5-8 Objects,
eye-to-hand configuration.

20 Objects,
eye-in-hand configuration.

2 3 4 5 6 7 8 9

1110 12 13 14 15

16 17 18 19

20 21 22 23
24 25

26 27
28

29 30

31 32 33 34 35

Fig. 6. The illustration of our real-world experiments settings.

4.4 Real World Grasping Experiments

Experimental Environment. To verify the real practical ability of iGrasp, we
conduct real world grasping experiments for cluttered scenes. The experiments
are conducted on a Franka Emika robot arm with an Azure Kinect DK and an
Intel Realsense D455. To comprehensively verify the performance of our model,
we assign the real world scenarios in two levels of difficulty: normal and hard.
The more difficult the scenarios, the more complex the occlusions and stacking of
the objects. We select 35 objects, which contain some of the objects in GraspNet-
1Billion and some unseen objects from daily life as shown in Fig. 6.

Quantitative Results for Normal Scenarios. For the normal scenarios, we
adopt an eye-to-hand configuration, positioning the Kinect DK camera at a fixed
location to capture the scene’s 2D textures and 3D point clouds, where each scene
contains 5 to 8 objects. As shown in Table 9, our model achieves a high success
rate in real-world deployment, showing the effectiveness of our method.

Quantitative Results for Hard Scenarios. Directing at the hard scenarios,
we use an eye-in-hand configuration, mounting the Realsense D455 camera on
the robotic arm, with each scene consisting 20 color-rich objects. To verify the
effectiveness of our method, we conduct the experiments five times and compare
the average success rate with that of GS-Net. As shown in Table 10, iGrasp
performs better, which we attribute to our novel three-step design.

Experiments on Objects with Special Materials. Benefiting from the intro-
duced 2D textures, our iGrasp can better utilize complementary information for
grasping black-body objects and transparent objects. The specific grasping pro-
cess can be viewed in Fig. 7 and our video demo.

Table 10. Quantitative results of real world grasping experiments for hard scenarios.

Method Object IDs Difficulty Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 AVG

GS-Net [6] 16-35 Hard 83.33%86.96%80.00%83.33%83.33% 83.39%

Ours 80.00%90.91%83.33%86.96%86.96% 85.63%
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(a) Black-body Objects (b) Transparent Objects

Fig. 7. The real-world experiments on objects with special materials.

5 Conclusion

In this paper, we propose a new interactive 2D-3D framework which filters out
irrelevant information and makes both modalities collaborate effectively to gener-
ate robust grasps and accelerate inference speed. Our framework is called iGrasp,
a novel three-step design between 2D textures and 3D point clouds where the
interaction modelling enhances both modalities. Specifically, we propose the 2D-
to-3D interaction to leverage objectness masks generated from 2D textures to
filter out target-irrelevant information in 3D point clouds, and introduce the
3D-to-2D interaction to leverage structural priors from 3D point cloud features
to refine 2D texture features. Finally, we combine the refined 2D texture fea-
tures and 3D point cloud features for generating high-quality 6-DoF grasp poses.
Our experiments on the large-scale real-world dataset namely GraspNet-1Billion
demonstrate that iGrasp surpasses state-of-the-art methods and reduces the
inference time greatly. Moreover, extensive experiments in the real world fur-
ther verify the practical ability of iGrasp.
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Project (No. 2023B1515040025).
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Abstract. Robot behavior learning has emerged as a crucial field, allow-
ing robots to adapt and improve their actions based on experiential
knowledge rather than being solely reliant on predefined instructions.
However, the effectiveness of such learning is often hindered by the limita-
tions of offline reinforcement learning, which relies on pre-defined reward
labels, and traditional imitation learning, which depends on high-quality
expert demonstrations. To address these challenges, in this paper, we
propose a novel Goal-Driven Transformer (GDT) for robotic behavior
learning from play data. The core module of the GDT is the inclu-
sion of the Goal-Driven Attention Block (GDAB) that utilizes attention
mechanisms to concentrate the model’s focus on particular objectives,
enabling the GDT to selectively focus on critical parts of the observa-
tion data to perform behavioral learning for specific goals. Moreover,
we employ the Standard Attention Block (SAB) to ensure that this goal-
directed learning occurs with a comprehensive understanding of the envi-
ronment and the sequence of actions required. Experimental validation
of the proposed GDT framework is conducted in two simulated environ-
ments: Block-pushing and Franka Kitchen. The results demonstrate that
the GDT framework has achieved state-of-the-art performance in the
realm of robot behavior learning from play data. Videos are available at:
https://gdt-bl.github.io/.
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1 Introduction

Robot behavior learning, a pivotal area in robotics, involves training robots
to autonomously execute a variety of tasks by learning from experiences. This
field holds significant potential for advancing the autonomy of robots, enabling
them to perform in unpredictable environments and adapt to new tasks without
explicit programming. As robotic systems grow more complex and are expected
to function in increasingly dynamic environments, the significance of efficient
robot behavior learning techniques has become more evident than ever.

One approach to achieving robot behavior learning is through offline rein-
forcement learning [8,13,14], a method where a model learns to make decisions
by optimizing a cumulative reward from a fixed dataset of previous interactions.
However, this method heavily relies on the availability of reward labels, which are
often difficult to specify accurately for complex tasks. Moreover, the dependence
on pre-defined reward functions can limit the flexibility and generalizability of
learned behaviors, making it challenging to adapt to tasks where the reward
structure is not well understood or is difficult to encode.

Alternatively, imitation learning [11,21] offers a pathway for robot behavior
learning by mimicking expert demonstrations. This method bypasses the need
for explicit reward functions by directly learning the actions demonstrated by
an expert in similar situations. While imitation learning can effectively transfer
expert knowledge to robots, it requires access to high-quality demonstrations,
which can be costly and time-consuming to produce. Additionally, the approach
may struggle with tasks that are not easily demonstrated or where expert knowl-
edge is not readily available. In contrast, play data, which comprises unstruc-
tured and varied interactions within an environment, presents an opportunity to
overcome these limitations. Play data allows for a richer exploration of possible
behaviors, offering a broader learning spectrum compared to structured expert
demonstrations.

Recent work has explored the utilization of play data in robot behavior learn-
ing, addressing the limitations of offline reinforcement learning and traditional
imitation learning. For example, Shafiullah et al. [23] introduce a Behavior Trans-
former (BeT) that integrates action discretization and correction into standard
transformers for predicting multi-modal continuous actions. However, the stan-
dard BeT is limited to unconditional behavior rollouts, preventing the selection
of a specific behavior mode during policy deployment. To address this issue,
some studies [3,16] have utilized a combination of the observed state with the
future or global state as inputs to their models for behavior learning. Instead
of this simple concatenation, we introduce a goal-driven attention mechanism
that significantly improves the robot’s proficiency in discerning and executing
complex action sequences to reach the intended future or goal state.

In this paper, we propose the Goal-Driven Transformer (GDT), a novel frame-
work specifically designed for robotic behavior learning from play data. The
GDT architecture comprises three critical components: the Embedding Layer,
the Goal-Driven Attention Block (GDAB), and the Standard Attention Block
(SAB). Among these, the GDAB is our primary innovation, employing attention
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Fig. 1. The framework of the proposed Goal-Driven Transformer (GDT). The GDT
model comprises three essential components: the Embedding Layer, the Goal-Driven
Attention Block, and the Standard Attention Block. The Embedding Layer is first
applied to produce Observation Embeddings Eo, Position Embeddings Ep, and Goal
Embeddings Eg, respectively. Subsequently, Eo, Ep, and Eg are processed through L
Goal-Driven Attention Blocks and N Standard Attention Blocks. The final output of
the GDT is a probability distribution over potential actions.

mechanisms to direct the model’s focus towards specific objectives. This enables
the GDT to streamline the decision-making process by emphasizing relevant
data and omitting irrelevant information. Specifically, the GDT first employs
embedding layers to transform raw data into a structured format amenable
to analysis by neural networks. Subsequently, the model leverages a carefully
orchestrated combination of GDABs and SABs to support the robot’s learning
of actions. The GDAB refines the model’s concentration on achieving the set
goals by accentuating features pertinent to those goals, while the SAB ensures
that such goal-oriented learning is grounded in a comprehensive understanding
of the surrounding context. The GDT’s effectiveness has been thoroughly evalu-
ated in two simulated environments: Block-Pushing and Franka Kitchen. In these
settings, the GDT achieved outstanding performance, surpassing other state-of-
the-art models designed for robot behavior learning. These empirical findings
demonstrate the GDT’s capability to generate robotic behaviors aligned with
overarching goals, thereby underscoring the framework’s significant potential as
a tool for behavior learning from play data.

2 Related Work

2.1 Demonstration and Play Data

Learning from Demonstrations (LfD) stands as a cornerstone in the realm of
behavioral learning algorithms, offering a robust framework for assimilating
expert knowledge into models for a variety of tasks [1]. Referred to as behavioral
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datasets, the data utilized within this framework display a broad spectrum of
variability: some datasets are enriched with goal or reward annotations [7], while
others are more open-ended, lacking explicit reward or task labels [19]. Typically,
these datasets presuppose that an expert executes a given task consistently and
precisely, facilitating straightforward learning from high-quality examples.

In contrast, play datasets constitute a unique segment of unlabeled behavioral
data, founded on the premise that demonstrations emanate from rational agents
guided by some latent intent [10,16]. The absence of explicit labels, coupled
with the assumption of underlying intents, indicates that play datasets might
feature a richer diversity in action distributions, presenting both challenges and
opportunities for learning algorithms to infer intent and adapt accordingly. It is
also pivotal to distinguish play-like behavior datasets from those used in standard
Offline Reinforcement Learning (Offline RL), which typically encompass entirely
random behaviors. Unlike the randomness in Offline RL datasets, play datasets
offer a structured, yet exploratory, compilation of actions indicative of rational,
albeit unspecified, objectives, providing a more nuanced substrate for behavior
learning.

2.2 Behavior Learning

The feasibility of learning behavior from offline data using neural networks was
first demonstrated by Pomerleau et al. [22]. Building upon these early applica-
tions of neural networks in behavior learning, the field has evolved towards more
sophisticated methods, paving the way for innovative approaches that extend
beyond traditional frameworks. Currently, behavior learning methods primar-
ily fall into two categories: offline reinforcement learning (RL) and imitation
learning.

Offline RL is characterized by its focus on learning from mixed-quality
datasets that include reward labels. For instance, Fujimoto et al. [8] enhanced
actor-critic methods in offline RL by integrating a Double Q-learning approach to
mitigate overestimation biases. Kumar et al. [13] introduced the BEAR algorithm
to stabilize off-policy Q-learning by addressing bootstrapping error, thus demon-
strating robustness across various off-policy datasets and continuous control
tasks without necessitating additional on-policy data collection. Subsequently,
Kumar et al. [14] proposed the Conservative Q-learning (CQL) algorithm, which
further advances offline RL by learning a conservative estimate of the Q-function
to ensure lower-bound values for policies and counteract overestimation biases
due to distributional shifts. In practice, CQL has significantly outperformed tra-
ditional offline RL methods, achieving substantial gains in environments with
complex, multi-modal data distributions.

Imitation learning, alternatively, aims to model behavior from data without
the necessity for explicit rewards. Ho and Ermon [11] innovatively combined
imitation learning with generative adversarial networks (GANs), resulting in a
model-free algorithm that can produce complex behaviors. Following this, Peng
et al. [21] leveraged reinforcement learning to significantly improve agents’ capa-
bilities in mimicking varied movements and adapting to intricate environments.
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However, the reliance on expert demonstrations for traditional imitation learning
methods poses a challenge to their applicability in diverse scenarios. To address
this issue, recent research has turned to play data for behavior learning. Lynch
et al. [16] introduced Play-LMP, which learns to organize play behaviors in a
latent space and reuses them at test time to achieve specific goals. Similarly,
Shafiullah et al. [23] developed the Behavioral Transformer (BeT) that enhances
standard transformer architectures with action discretization and action correc-
tion tailored to learning from play data. Addressing BeT’s inability to select
a targeted behavior mode during policy execution, Cui et al. [3] presented the
Conditional Behavior Transformer (CBeT), refining BeT by integrating future-
conditioned goal specification.

3 Methods

3.1 Problem Statement

Consider a play dataset comprising a sequence of paired tuples (ot, at) ∈ O ×A,
where o represents an observation at time t and a denotes the corresponding
action. In this paper, to enhance the model’s focus on information pertinent
to the goal state g ∈ G, we augment the dataset with triple tuples (ot, at, g)
, enriching each original pair with a goal state. Our aim is to learn a policy
π : O×G → D(A) that models the action distribution capable of transitioning the
agent from current observation ot to future goal state g. The ultimate objective
of this behavior model is to optimize the policy, which is formulated as:

π∗ = argmaxπ

∏

(ot,at,g)∈O×A×G
P[a ∼ π(·|ot, g)] (1)

3.2 Goal-Driven Transformer

In this paper, we propose a Goal-Driven Transformer that facilitates the behav-
ior learning process by focusing on achieving specific goal states from play data.
Figure 1 illustrates the overall framework of the Goal-Driven Transformer, which
comprises three key components: the Embedding Layer, the Goal-Driven Atten-
tion Block, and the Standard Attention Block. Given a sequence of observations
over k time steps, we utilize an observation embedding layer fOE , a position
embedding layer fPE , and a goal embedding layer fGE to encode the observa-
tions from time step t to t + k, denoted as ot:t+k, the corresponding sequence
of time steps, and the goal state into Observation Embeddings Eo, Position
Embeddings Ep, and Goal Embeddings Eg, respectively. Notably, to enhance the
training model’s stability, the goal state during the training process is defined
as future observations from time step t + h to t + h + k′ (where h > k). For
inference, the goal state is determined by the observation at the final target
time step. Subsequently, Eo, Ep, and Eg are processed through L Goal-Driven
Attention Blocks and N Standard Attention Blocks. This configuration enables
the aggregation of pertinent features and contextual information related to the
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final goal through the Goal-Driven Attention Blocks, while the Standard Atten-
tion Blocks are employed to refine the understanding of contextual relationships
between the observations and the ultimate goal. Ultimately, the Goal-Driven
Transformer outputs an action probability distribution.

Embedding Layer. The embedding layer serves as the foundational entry-
way into the Goal-Driven Transformer, translating the multifaceted input data
into nuanced vector representations. This layer is segmented into three pivotal
subcomponents, each dedicated to encoding different aspects of the input:

Observation Embedding Layer fOE : Tasked with encoding the information
contained within a sequence of observations ot:t+k, this subcomponent trans-
forms the discrete sequences of observations into dense, continuous vector rep-
resentations (Eo).

Position Embedding Layer fPE : The position embedding layer enhances the
model by infusing it with essential positional information, achieved through the
integration of positional encodings and observation embeddings. Specifically, this
layer employs time steps to explicitly represent the sequential order of observa-
tions, granting the model the capability to discern and comprehend the sequence
and relative timing of these observations.

Goal Embedding Layer fGE : Focused on the higher-level goals (g) associated
with the observation, this layer translates the specified goals into continuous
vector representations (Eg). These goal embeddings distill the core objectives
into a form that acts as a directional guide for the model, ensuring that the
processing is consistently aligned with achieving the predefined goal states.

Fig. 2. Illustration of the proposed Goal-Driven Attention Block.
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We can formulate the above layers as:

Eo = fOE(ot:t+k),
Ep = fPE({1, 2, . . . , k}),

Eg =

{
fGE(ot+h:t+h+k′) for training,

fGE(og) for inference.

(2)

Goal-Driven Attention Block. The goal-driven attention block is a piv-
otal component within the Goal-Driven Transformer architecture, specifically
designed to enhance the model’s focus on achieving predefined goal states. This
module employs an advanced attention mechanism that dynamically weights the
relevance of each input feature based on its significance towards accomplishing
the goal at hand. By prioritizing the information that is directly pertinent to the
goal, the goal-driven attention block enables the robot to more effectively dis-
cern and prioritize actions that contribute to the successful execution of action
sequences leading to the goal state. Figure 2 illustrates the details of the Goal-
Driven Attention Block. We first apply a linear layer to goal embedding Eg to
generate query Qg of attention mechanism and apply two liner layers to the
addition of observation embedding and position embedding to generate key Kop

and value Vop of attention mechanism. We formulate it as:

Qg =Linear(Eg),
Vop =Linear(Eo + Ep)
Kop =Linear(Eo + Ep)

(3)

Then, we proceed to calculate the attention scores (S) using a scaled dot-product
attention mechanism:

S = softmax(
Qg · KT

op√
D

), (4)

where the softmax function normalizes the dot products, providing attention
scores that signify the relevance of each observation with respect to the goal.
Next, we compute the goal-driven context vectors (C) by applying the attention
scores (S) to the values (Vop):

C = S · Vop. (5)

These context vectors capture the goal-driven representations of the input data,
emphasizing the parts of the observation that align with the specified high-level
goal.

Finally, to ensure that we preserve valuable information from earlier stages
of processing, we introduce a skip connection that combines the concatenation
of goal-driven context and input embedding with the concatenation of goal and
input embedding (O), which is formulated as:

F = [C,Eo + Ep] + [Eg, Eo + Ep] (6)
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This skip connection allows the model to retain the original contextual informa-
tion while incorporating goal-driven insights. By integrating the goal embedding
as the query, applying attention to the observation embedding, and adding a skip
connection, the Goal-Driven Attention Block not only enhances the model’s focus
on goal-related information but also maintains a rich contextual understanding
of the input data. This comprehensive approach empowers the model to make
well-informed decisions and actions based on both the high-level task objective
and the underlying context.

3.3 Loss Functions

To train the Goal-Driven Transformer, we employ the methodologies outlined
in prior work [3] by incorporating an action discretization module to partition
ground-truth actions Ā into discrete and continuous components. Specifically,
the k-means clustering algorithm is utilized to identify K, the designated number
of clusters, thereby generating a set of centroids {A1,A2, . . . ,AK}. Each Ai

represents a cluster centroid within the action space Ā. The configurations for
the k-means encoder and decoder are consistently maintained throughout the
training and evaluation stages of the GDT. During the training phase of the
GDT, the k-means encoder segments the ground-truth action Ā into:

Ac = min
Ai

‖Ā − Ai‖2,
Ares = Ā − Ac,

where Ac denotes the nearest discrete action centroid to the ground-truth action,
and Ares represents the continuous residual component of the action. The GDT
generates predictions characterized by π(o, g)d ∈ R

K for the discrete aspect and
π(o, g)c ∈ R

K×|Ā| for the continuous facet of actions. Consequently, the loss
function is formulated as:

L = Lfocal(π(o, g)d,Ac) + λ · LMT(〈Ā〉, π(o, g)c),
where Lfocal is the Focal loss predicated on negative log-likelihood [15], and LMT
is identified as the Masked Multi-Task loss [9].

4 Experiment

4.1 Experimental Datasets

Block-pushing Environment Drawing upon the multi-modal Block-pushing
framework established by [6], our investigation explores intricate interaction
demonstrations. In this context, an xArm robotic agent is designated the task
of pushing two blocks, one red and one green, to their corresponding square
targets, each matching the block’s color. The initial positioning of the blocks is
subject to both randomness and noise. To ensure a fair comparison, we utilize a
dataset, as introduced by [3], which consists of 1,000 demonstrations crafted via
a deterministic controller.
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Franka Kitchen Environment. Initially conceptualized by [10], the Franka
Kitchen environment presents a sophisticated scenario for robotic tasks within
a simulated kitchen, featuring seven possible tasks. This environment’s dataset
comprises 566 demonstrations, meticulously assembled by humans using Virtual
Reality (VR) controllers, that exemplify sequences encompassing four of the
seven potential kitchen tasks.

Fig. 3. Visualizations of key frames for completing a task in the Block Pushing envi-
ronment, representing moments of reaching the red block, pushing the red block to the
target red area, reaching the green block, and pushing the green block to the target
green area. (Color figure online)

Fig. 4. Visualizations of key frames for completing four tasks in the Franka Kitchen
environment, representing moments of completing the microwave, bottom burner, light
switch, and slide cabinet tasks.

Table 1. Overall Results of the GDT Model and Other Baselines on the Block-pushing
and Franka Kitchen Environments.

Environments GCBC [16]WGCSL [25]Play-LMP [16]RIL [10]C-IBC [6]GoFar [17]GTI [18]BeT [23]C-BeT [3]Ours

Block-pushing 0.06 0.10 0.02 0.07 0.01 0.04 0.04 0.34 0.90 0.96
Franka Kitchen0.74 1.17 0.04 0.39 0.13 1.61 1.24 1.77 2.80 3.05

4.2 Baselines

The baselines of this study have been selected from state-of-the-art algorithms
that learn from reward-free offline data. These include: Goal Conditioned BC
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(GCBC) [5,16], Weighted Goal Conditioned Supervised Learning (WGCSL) [25],
Learning Motor Primitives from Play (Play-LMP) [16], Relay Imitation Learn-
ing (RIL) [10], Conditional Implicit Behavioral Cloning (C-IBC) [6], Gener-
alization Through Imitation (GTI) [18], Goal-conditioned RL (GoFAR) [17],
Behavior Transformers (BeT) [23] and Goal-Conditioned Behavior Transform-
ers (C-BeT) [3]. Each baseline represents a unique approach to learning from
reward-free offline data, providing a comprehensive comparison for evaluating
the effectiveness of our proposed Goal-Driven Transformer.

4.3 Results

We initially evaluated the overall performance to compare our model with other
models. For the Block-pushing environment, we report the success rate of accu-
rately placing the green and red blocks in their respective target squares. For
the Franka Kitchen environment, we report the average number of the four
tasks that were successfully completed. Table 1 presents a comparison of our
model with the baseline methods previously mentioned. The results show that
our model achieved the highest performance in both settings. Specifically, in the
Block-pushing environment, we achieved a success rate of 96%, outperforming all
baseline methods. In the Franka Kitchen environment, we managed to complete
an average of 3.05 out of four tasks, which is still above all the baseline models.
Thus, it is evident that the proposed GDT model exhibits superior performance
across different environments. To visually show the results of our model, we plot-
ted key frames from a single task trajectory completed by our model in both the
Block-pushing and the Franka Kitchen environments in Fig. 3 and Fig. 4. These
visualizations demonstrate that our model has achieved satisfactory performance
in accomplishing the tasks within both environments.

Subsequently, to conduct a more detailed analysis of our model’s perfor-
mance in each environment, we refined the evaluation metrics for the respec-
tive settings. In the Block-pushing environment, we subdivided the results into
“reaching” and “pushing” sub-tasks. We reported the success rates of reaching
one and two blocks as R1 and R2, and the success rates of pushing one and
two blocks into their respective targets as P1 and P2. For the Franka Kitchen
environment, we detailed the success rates for completing one to five tasks. To
ensure a fair comparison with prior models, we adhered to the baseline setup
described in [23], selecting the following models as baselines: Multi-layer Per-
ceptron with Mean Square Error (RBC) [24], Nearest Neighbor (NN) [2], Locally
Weighted Regression (LWR) [20], Variational Autoencoders (VAE) [12], Normal-
izing Flow (Flow) [4], Implicit Behavioral Cloning (IBC) [6], Behavior Trans-
formers (BeT) [23], and Goal-Conditioned Behavior Transformers (C-BeT) [3].
Table 2 lists the results of the proposed GDT in the Block-pushing and Franka
Kitchen environments, respectively. As indicated in Table 2, for the relatively
simpler reach tasks, several baselines achieved commendable results. However,
their performance was limited for the more complex push tasks. In contrast, our
model achieved a 99% success rate for pushing one block and a 97% success
rate for pushing two blocks. Table 2 reveals that although the success rates of
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all models gradually decreased as the number of tasks required to be completed
increased, our model consistently maintained the highest success rates for com-
pleting 3, 4, and 5 tasks. These results reflect the effectiveness of applying an
attention mechanism focused on the goal, which enables the model to concen-
trate on the final objective, thereby enhancing the success rate of task com-
pletion. This performance not only demonstrates the rationality of our model’s
design but also its superiority, as it effectively utilizes goal-directed attention to
streamline the path toward task completion.

Table 2. Results of the GDT model on Block-pushing and Franka Kitchen environ-
ments. R1 and R2 denote the success rates of reaching one and two blocks, respectively.
P1 and P2 denote the success rates of pushing one and two blocks into their respective
target areas. Numbers 1 to 5 denote the success rates for completing one to five tasks
in the Franka Kitchen environment.

Models Block-pushing Franka Kitchen
Reach Push # Tasks completed
R1 R2 P1 P2 1 2 3 4 5

RBC [24] 0.67 0 0 0 0 0 0 0 0
1-NN [2] 0.49 0.05 0.01 0 0.90 0.72 0.44 0.17 0
LWR [20] 0.5 0.06 0 0 0.83 0.52 0.21 0
VAE [12] 0.60 0.05 0 0 1 0 0 0 0
Flow [4] 0.59 0.02 0 0 0.04 0 0 0 0
IBC [6] 1 0.04 0.01 0 0.99 0.87 0.61 0.24 0
BeT [23] 1 0.99 0.96 0.71 0.99 0.93 0.71 0.44 0.02
CBeT [3] 1 1 0.91 0.91 1 0.8 0.53 0.41 0.05
Ours 1 1 0.99 0.97 1 0.86 0.76 0.51 0.09

4.4 Ablation Study

The Effectiveness of the Proposed Goal-Driven Attention Block.
To further validate the efficacy of our proposed Goal-Driven Attention Block
(GDAB) i.e., its effectiveness in capturing goal-relevant features from observa-
tions, we conducted a comparison with a baseline model. This baseline integrates
the goal into the model by simple concatenation with observations, instead of
using attention mechanisms. To ensure a fair comparison, the baseline model
was kept consistent with the GDT in all aspects except for the incorporation of
the goal into the model. Table 3 lists the overall results of these two models in
both the Block-pushing and Franka Kitchen environments. Our model achieved
superior performance in both settings, thereby demonstrating that the GDAB
enhances behavior learning by enabling the model to focus on features relevant
to the goal.
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Table 3. Comparison of GDT Performance with Different Methods of Integrating the
Goal into the Model in the Block-pushing and Franka Kitchen Environments.

Block-pushingFranka Kitchen

GDT w/o GDAB 0.90 2.80
GDT w/ GDAB0.96 3.05

Table 4. Results of GDT model under varying number of GDAB and SAB on the
Block- pushing and Franka Kitchen Environments.

# GDAB# SABBlock-pushingFranka Kitchen

0 7 0.87 2.6
1 6 0.96 3.05
2 5 0.92 2.85
4 3 0.89 2.7
6 1 0.8 2.5

The Number of GDAB and SAB. In Sect. 3.2, we discussed utilizing L Goal-
Driven Attention Blocks (GDAB) and N Standard Attention Blocks (SAB) to
generate the action distribution. This section primarily addresses the selection
of values for L and N . Given the extensive range of possible combinations for L
and N , it is impractical to examine each one exhaustively. Drawing from con-
figurations commonly used in computer vision models, preliminary experiments
suggested that employing a total of seven blocks might yield optimal results.
Consequently, we focus on discussing the outcomes of the GDT model in the
Block-pushing and Franka Kitchen environments under varying distributions of
L and N . Table 4 presents the results for different configurations. It is observed
that the configuration with one GDAB and six SABs performs better. The find-
ings indicate that a greater quantity of GDABs doesn’t automatically enhance
the model’s performance. This may occur because the model might become too
goal-oriented, neglecting the need to grasp the complete environmental context
and the action sequences that follow. An ideal configuration is achieved with a
solitary GDAB that effectively grasps the goal’s core, while a set of SABs pro-
vides comprehensive environmental information, ensuring the model’s flexibility
and adaptability across diverse situations. These insights reveal that although
GDABs are critical in focusing the learning process on goals, they are not the
only factor in the model’s effectiveness but are nonetheless essential.

5 Conclusions

This paper proposes the Goal-Driven Transformer (GDT) framework for learn-
ing robot behavior from play data. GDT’s key innovation is the inclusion of a
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goal-driven attention block, enabling explicit integration of defined goals into the
model’s attention mechanism. This facilitates selective focus on crucial segments
of observational data for goal-specific behavior learning. Experimental valida-
tion, conducted in simulated environments such as the Block-pushing and Franka
Kitchen scenarios, demonstrates that the GDT framework has achieved state-
of-the-art performance in learning robot behavior from play data. We believe
that the adoption of goal-driven paradigms will not only enrich the field of robot
behavior learning but also encourage more sophisticated and adaptable robotic
applications across diverse real-world scenarios.
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Abstract. To tackle the challenges of adaptability and precision in VSLAM
for dynamic environments, we propose a joint refined semantic-geometric app-
roach that improves SLAM’s performance across various dynamic settings. Our
method integrates semantic segmentation networks with morphological process-
ing to extract stable boundary features from potential dynamic objects accu-
rately. By restoring depth information and applying geometric constraints that
account for camera motion, we facilitate the precise identification and removal
of dynamic objects. Additionally, we exploit static scene information to inpaint
the background areas occluded by dynamic objects, thus enabling complete
scene reconstruction. Quantitative evaluation using dynamic sequences from the
TUM dataset reveals a significant reduction in RMSE for both high and low
dynamic sequences compared to ORB-SLAM2, DynaSLAM, Yolo-SLAM and
Blitz-SLAM. Specifically, there is 95.23%–32.30% decrease in RMSE for high
dynamic sequences and 44.7%–5.52% decrease for low dynamic sequences,
respectively. These results demonstrate the method’s enhanced adaptability and
localization accuracy across different levels of dynamic scenes. Furthermore, the
dense reconstruction maps derived from the Static Background Inpainting pro-
cess offer more complete static scene information than original maps, providing
adequate technical support for autonomous localization and mapping of robots in
dynamic environments.

Keywords: Adaptive Dynamic VSLAM · Refining Semantic-Geometric
Fusion · Depth Image Restoration · Static Background Inpainting

1 Introduction

Simultaneous Localization and Mapping(SLAM) is a technique that enables robots to
perceive and map their surroundings in real-time within unknown environments while
simultaneously determining their position within the constructed maps [1]. This app-
roach provides essential advantages, including real-time processing, scalability, and the
autonomy to operate without relying on a prior map. Visual SLAM systems (VSLAM),
which primarily rely on cameras as sensors, typically comprise several core modules,
including front-end visual odometry, back-end optimization, loop closure detection, and
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mapping. RGB-D cameras provide a significant benefit for VSLAM by offering per-
pixel depth information directly, which greatly improves its real-time performance of
VSLAM. As a result, VSLAM based on RGB-D has been increasingly adopted across
various domains, including autonomous navigation [2,3], virtual and augmented reality
[4],and autonomous driving [5,6].

In recent years, classical VSLAM systems [7–9] have demonstrated impressive per-
formance on static environment datasets such as TUM, KITTI, and EuRoC. However,
their effectiveness is typically based on the assumption of a static environment [10].
When dynamic objects are present, these systems may encounter challenges in match-
ing feature points, adversely affecting the localization and mapping processes and even
leading to system failure. For VSLAM systems to function effectively in dynamic envi-
ronments, it is crucial to accurately identify and remove dynamic features, focusing
solely on static features for localization and mapping. Currently, methods that inte-
grate semantic and geometric information have proven effective. This approach first
employs deep learning models to obtain semantic information in the image, accurately
segmenting potential dynamic objects and enhancing the system’s comprehension and
perception of the environment. Subsequently, by combining the geometric informa-
tion of the scene, geometric constraint methods are used to analyze the correlation
and consistency of feature points, distinguishing the motion states of potential dynamic
objects. Finally, the features of genuine dynamic objects are removed, and the remain-
ing static features are utilized for localization and mapping. However, current VSLAM
methods that integrate semantic and geometric information still face several unresolved
issues. Firstly, the features on the boundaries of dynamic objects obtained directly using
semantic segmentation networks such as SegNet [11] and Mask-RCNN [12] have unsta-
ble dynamism. Secondly, holes in the depth images lead to inaccurate geometric infor-
mation, impacting geometric constraint methods’ accuracy. Additionally, most geomet-
ric constraint methods struggle to maintain robustness across various dynamic scenes,
such as camera movement, objects moving at high or slow speeds, and a high propor-
tion of dynamic areas. Finally, the removal of dynamic objects leads to holes in dense
mapping outcomes.

To address the issues above, we propose an adaptive dynamic VSLAM. This system
accurately utilizes refined semantic and geometric information with varying levels of
dynamics, such as different object velocities, varying proportions of dynamic area cov-
erage, and varying states of camera motion or stillness. It effectively removes dynamic
features and inpaints background information occluded by dynamic objects, utilizing
only static information for localization and dense mapping. The main contributions of
this paper are as follows:

(1) Dynamic Semantic Boundary Optimization. We integrate pixel-level semantic seg-
mentation networks with morphological methods to obtain stable boundary fea-
tures for potential dynamic objects. This process is executed in a separate thread
to ensure the visual odometry performs in real-time.

(2) Optimized Geometric Motion Recognition. We restore the lost depth information
due to holes. This refined geometric information is then integrated with geometric
constraint methods that account for camera motion, enabling the accurate distinc-
tion of the actual motion states of potential dynamic objects.
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(3) Static Background Inpainting. We use optical flow between consecutive frames to
complete the captured RGB and depth images, thereby inpainting the background
information occluded by dynamic objects and reconstructing the static scene infor-
mation. This process helps generate complete and accurate static dense mapping
in dynamic environments.

2 Related Work

Currently, most dynamic SLAM systems treat dynamic features as outliers and remove
them, relying solely on static features in the images for localization and mapping,
which achieves particular effectiveness [13]. These systems primarily employ segmen-
tation methods based on geometric constraints and segmentation methods integrating
semantic-geometric information.

2.1 Segmentation Methods Based on Geometric Constraints

The segmentation method based on geometric constraints operates from the perspec-
tive of geometric information constraints, utilizing the static features remain unchanged
between adjacent frames to identify dynamic objects. Yang [14] utilizes changes in the
edges connecting the same pair of feature points in consecutive image frames to detect
dynamic objects; Sun [15] employs sparse optical flow for dynamic object contour
detection and further applies the Grab-Cut algorithm [16] for segmentation. Although
these methods demonstrate effective dynamic feature removal, they are predicated on
the assumption of a stationary camera, making them less suitable for scenarios involv-
ing camera motion.

To address the above issues, geometric constraint methods considering camera
motion have been proposed. Wei [17] and Ai [18] initially calculate the homogra-
phy matrix between adjacent frames using the RANSAC algorithm and then separate
dynamic feature points using epipolar constraint and reprojection error. However, When
most features in the image are dynamic, the RANSAC may fail to accurately compute
the transformation between consecutive frames, which affects camera motion estima-
tion; Additionally, when dynamic objects move slowly in the scene, the reprojection
error between dynamic feature points in consecutive frames is small, and the variations
in epipolar lines are not pronounced. Therefore, relying solely on the geometric rela-
tionship between adjacent frames makes it challenging to effectively distinguish objects
in scenes with a high proportion of dynamic features and moving slowly. To address the
challenges above, Islam [19] employs Multiple View Geometry, which identifies five
local keyframes that are similar to the current frame’s feature points and considers the
geometric relationships of all feature points between multiple keyframes and the cur-
rent frame. It effectively possesses strong geometric reliability even in scenarios with a
high proportion of dynamic features and slow object motion.

The segmentation methods based on geometric constraints can ascertain the overall
motion state based on the local features of objects. However, this method cannot pro-
vide semantic attributes or identification of objects in the scene. It can only judge the
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actual dynamism of pixels in the current image frame, making it challenging to distin-
guish potential dynamic objects in the scene. This limitation results in issues such as
localization drift and inaccurate mapping in SLAM systems [20].

2.2 Segmentation Methods Integrating Semantic-Geometric Information

Segmentation methods integrating semantic-geometric information combine deep
learning based semantic labeling of feature points with geometric information to
improve dynamic removal accuracy. The Dyna-SLAM system by Bescos [21] integrates
semantic information from Mask R-CNN with Multiple View Geometry to remove
dynamic features effectively. However, Mask R-CNN’s segmentation of dynamic object
boundaries may be inaccurate, especially in scenes with a wide variety of objects. Addi-
tionally, when the camera rotation angle is too large, it is difficult to effectively inpaint
the static background information occluded by dynamic objects, resulting in noise in
dense mapping outcomes. The DS-SLAM system by Yu [22] divides dynamic objects
into natural scenes using SegNet and constructs a semantic map. However, this system
only utilizes epipolar constraint methods based on consecutive frames to distinguish
object motion states. As a result, it struggles to achieve precise estimation in scenes
with slow-moving objects. Moreover, the system lacks implementation of static back-
ground inpainting.

Deep learning can assign different semantic categories to each pixel in an image.
However, this process requires pre-learning and training on sample data, thus empha-
sizing the judgment of the potential dynamicity of objects with prior knowledge. It
cannot distinguish the actual motion states of objects in real-time [13]. Therefore, com-
bining deep learning networks with geometric constraint methods to utilize semantic
and geometric information [23] to filter out the scene’s dynamic features is an effective
solution.

3 System Introduction

3.1 System Overview

We propose an adaptive dynamic VSLAM across various dynamic setting. This
method accurately removes dynamic features and reconstructs static scenes by refining
semantic-geometric fusion and inpainting static backgrounds. In the visual odometry
stage, firstly, it integrates the YOLACT semantic segmentation network with morpho-
logical processing, which obtains semantic information about potential dynamic objects
with stable boundary features. Then, it enhances the accuracy of geometric information
by restoring scene depth information. Based on the refined semantic and geometric
information, it employs Moving Consistency Check(MCC) and Multiple View Geome-
try(MVG) methods to distinguish object motion states, thereby removing dynamic fea-
tures and using only static features to achieve localization. In the dense mapping stage,
the FGVC hole-filling algorithm and Local Frames Static Information Completion are
utilized to separately inpaint background for RGB and depth images, which achieves
dense mapping containing only static scene information. The specific framework of this
method is illustrated in Fig. 1.
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Fig. 1. The framework of adaptive dynamic VSLAM integrating refined semantic-geometric
information and static background inpainting.

3.2 Dynamic Semantic Boundaries Optimization

We integrate the YOLACT semantic segmentation network [24] with morphologi-
cal processing to segment and classify potential dynamic objects in the image. The
YOLACT network enhances the segmentation capability of dynamic object edges, and
morphological processing classifies the boundary features of objects as dynamic fea-
tures, which enhances adaptability in scenes with a wide variety of objects.

Semantic Segmentation. The YOLACT network serves as the segmentation network,
taking the RGB image as input to identify all potential dynamic objects in the scene
and outputting them in the form of binary image masks. YOLACT generates pixel-
level semantic segmentation and instance labels for each target box, producing a set of
potential masks and their corresponding mask coefficients. Then, each potential mask
is multiplied by its corresponding coefficient and summed to obtain the final semantic
mask, as shown in Eq.(1).

mThreshold =
n∑

i=1

maski × coe f f icienti (1)

Boundary Classification. In scenes with a wide variety of objects, the complexity of
traditional feature extraction algorithms like SIFT and SURF might increase, which
impacts the real-time performance of visual odometry. To tackle this, we employ ORB
(Oriented Fast and Rotated Brief) for feature extraction due to its speed and low com-
putational resource requirements. As shown in Fig. 2, ORB’s corner detection typi-
cally captures features spread along the object boundary. However, these features often
exhibit dynamic object edge features and static background features, ultimately affect-
ing the accuracy of visual odometry positioning.

To avoid this situation, a dilation layer is introduced for the masks obtained from
the YOLACT. Equation (2) shows that a square structuring element B of size 10 ×
10 is moved to the image pixel position(x, y). If the intersection between B and the
maskM(x, y)is not empty, the M(x, y) in the output image is set to 1; otherwise, it is
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Fig. 2. Schematic diagram of ORB’s corner detection.

set to 0. Using this method to extend the boundaries of dynamic objects outward, the
feature points on the boundaries are classified as dynamic features, thereby obtaining
the semantic information of potential dynamic objects with stable boundary features.

M(x, y) ⊕ B =
{
x, y | (M)xy ∩ A � ∅

}
(2)

3.3 Optimized Geometric Motion Recognition

After marking potential dynamic objects, their motion states are ascertained by using
geometric constraints. Initially, edge-preserving filling and curvature-driven diffusion
methods are employed to restore the scene’s depth information, thereby enhancing the
accuracy of geometric information. Subsequently, the MCC is utilized to preliminarily
evaluate the motion states of potential dynamic objects and identify objects with a rel-
atively large dynamic area in the scene. Then, the MVG is applied to more precisely
identify objects with slow motion speeds. Applying this set of geometric optimization
methods effectively enhances the performance of VSLAM accross various dynamic
settings.

Depth Image Restoration. Due to lighting conditions, depth images may contain
holes, making it challenging to estimate scene geometry information accurately, which
affects geometric constraint methods’ accuracy. We propose a depth image restoration
algorithm based on edge-preserving filling and curvature-driven diffusion. This method
effectively restores the missing information in depth images, thereby improving the
accuracy of the obtained geometric information.

This method first uses the Canny operator to extract edges from the RGB image,
as shown in Eq. (3), where R(x, y)gray is the grayscale image, and I(x, y) is the edge
structure map from Canny. Then, bitwise AND I(x, y) with the binary mask to ascertain
hole regions and edge positions. A neighborhood maximum value filling strategy is
applied to fill the holes and edges, as shown in Eq. (4), where I

′
(x, y) represents the

hole and edge position maps, and B(x, y) is the binary image of the hole region.

R(x, y)gray
Canny−−−−−→ I(x, y) (3)

I(x, y) ⊥ B(x, y) = I′(x, y) (4)

Finally, the CDD(curvature-driven diffusion) model is utilized to ascertain the dif-
fusion information and diffusion strength, as shown in Eq. (5), where ∇u denotes the
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gradient of the u(x, y), which denotes the depth image pixel values, 1
|∇u| represents the

diffusion coefficient, k denotes the curvature-driven factor, λ acting as the Lagrange
multiplier in the constrained variational problem.

− ∇u ·
[
g(k)
|∇u| ∇u

]
+ λ
(
u − u0

)
= 0 (5)

Dynamic Object Identification and Removal. To tackle the issue of segmentation
networks failing to distinguish object motion states, we employ the combination of
MCC and MVG, which consider camera motion. The MCC utilizes semantic informa-
tion to assist geometric constraints, effectively removing dynamic objects with a large
area proportion in the scene. MVG leverages the geometric relationships between mul-
tiple keyframes and the current frame to effectively remove slowly moving objects in
the scene. This combination approach enhances the system’s adaptability in scenes with
different levels of dynamics.

The MCC takes the feature points detected by the semantic segmentation network
as input and utilizes epipolar geometry constraints to ascertain the motion attributes
of feature points. The fundamental matrix F and epipolar lines L are calculated using
eq. (6). Then, eq. (7) is used to compute the distance D from the matched points in the
previous frame to their corresponding epipolar lines. The point is considered a dynamic
feature if D exceeds a threshold. When the number of dynamic feature points in a certain
semantic category reaches a predefined value, the object corresponding to that semantic
category is identified as a dynamic object. Here, f and f − 1 represent the current and
previous frames, respectively. K denotes the camera’s intrinsic parameters, H represents
the homogeneous coordinates of feature points, and R is the rotation matrix.

F = K−T t f ( f−1) ∧ Rf ( f−1)K
−1, L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A
B
C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = FHf−1 (6)

D =
HT

f FHf−1√
A2 + B2

(7)

The MVG takes the RGB image and depth image after filtering out dynamic objects
through the MCC as input. It selects five keyframes with the highest overlap with the
current frame. As shown in Fig. 3, the feature point x in the keyframes is projected onto
the current frame as x

′
and calculates the difference ∇z between the projected point’s

depth at the current frame position zpro j and the true depth z
′
. When∇z > 0.4, the feature

point x is classified as a dynamic feature.

3.4 Static Background Inapinting

When dynamic objects are removed, the color and depth information occluded by these
objects are lost, resulting in holes in the dense mapping results. We propose a method of
integrating Flow-edge Guided Video Completion and Local Frame Static Information
Completion, which complete RGB and depth images, respectively, to inpaint the static
background information occluded by dynamic objects.
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(a) x is static feature
z zpro j

(b) x is dynamic feature
z zpro j

Fig. 3. Mathematical representation of multiple view geometry [21].

RGB Image Inpainting. Considering the abundant and prosperous texture informa-
tion in RGB images, optical flow and edge information are used to assist in completing
the missing regions in the scene to obtain more accurate and natural completion results.
Optical flow can capture the motion information of objects in the scene; edge informa-
tion can complete the structure and texture of the missing areas. It suits RGB images
with diverse hierarchical structures and significant texture variations.

The collected RGB images are integrated with dynamic object masks using Flow-
edge Guided Video Completion(FGVC) [25] to inpaint background information. This
algorithm initially utilizes a FlowNet2 network to compute the optical flow. Then, it
employs a Canny edge detector to extract object edge maps. After completing the opti-
cal flow edge using EdgeConnect [26], the algorithm performs completion by minimiz-
ing the gradients of all pixels in the region to be completed. Additionally, the algorithm
establishes local and non-local neighborhoods and computes the color of the missing
pixel ck as candidate colors using Eq. (8), where p represents the given missing pixel,
k ∈ N(p) denotes the sets of local and non-local neighborhoods, wk represents the opti-
cal flow cycle consistency error. Finally, it computes the weighted average of color
gradients using Eq. (9) to address the seam issue at the edges of the completion result.

Ĩ(p) =
∑

k wkck∑
k wk

(8)

G̃x(p) =
∑

k wkΔxck∑
k wk

, G̃y(p) =

∑
k wkΔyck∑

k wk
(9)

Depth Image Inpainting. Considering the simple structural information and sparse
textures in depth images, we utilize Local Frames Static Information Completion to fill
in the depth holes created after removing dynamic objects. This approach enables the
synthesis of a realistic depth image without altering its content, which ensures scene
continuity and minimizes information loss in the completion results.

We utilize the static information from neighboring frames to complete the occluded
information in the depth map. The images after Depth Image Restoration and the mask
of dynamic objects serve as inputs. Following the methodology outlined in reference
[21], we select the 20 frames following the current frame as local frames. With the
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assistance of the dynamic object mask, only the static background information in the
scene is retained. Then, we synthesize the static information from the local frames with
that of the current frame, generating a depth map containing solely the static scene
information.

4 Experiments and Analysis

4.1 Experimental Dataset

The TUM RGB-D dataset [27], released by the Technical University of Munich, eval-
uates visual SLAM localization and reconstruction in various scenes. It includes an
extensive collection of indoor scene data captured by RGB-D sensors and ground truth
trajectories for evaluating localization accuracy. The dataset comprises eight sequences
with different object velocities, varying proportions of dynamic area coverage, and cam-
era motion or stillness. We will conduct experiments using all dynamic sequences from
the TUM dataset. Details of the experimental dataset are presented in Table 1:

Table 1. Introduction of the TUM dynamic scene dataset.

Sequence Name Description

fr3_sitting_static Low dynamic, stationary cameras

fr3_sitting_xyz Low dynamic, camera movement along the XYZ axes

fr3_sitting_halfsphere Low dynamic, camera movement along the semi-circular path

fr3_sitting_rpy Low dynamic, camera rotation around the XYZ axes

fr3_walking_static High dynamic, stationary cameras

fr3_walking_xyz High dynamic, camera movement along the XYZ axes

fr3_walking_halfsphere High dynamic, camera movement along the semi-circular path

fr3_walking_rpy High dynamic, camera rotation around the XYZ axes

4.2 Evaluation Metrics for Localization Methods

Absolute Trajectory Error [27](ATE) refers to the deviation between the ground truth
trajectory and the algorithm’s estimated trajectory, reflecting the computation’s accu-
racy and global consistency. It calculates a transformation matrix by fitting the best
linear transformation between two distinct camera coordinate systems, allowing it to
map computed poses to accurate poses. The ATE for the i − th frame is defined as fol-
lows in Eq. (10): Qi represents the ground truth pose for the i − th frame, Pi represents
the estimated pose for the i − th frame, S ∈ S E(3) is the transformation matrix obtained
through least squares fitting from the estimated pose to the ground truth pose.

Fi = Q−1
i S Pi (10)
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Root Mean Square Error(RMSE) represents the error of all translational compo-
nents over all time steps. It is defined as follows in Eq. (11): N is the number of poses,
and trans(Fi) represents the translational component of the absolute trajectory error Fi.

RMSE (F1:N) =

⎛⎜⎜⎜⎜⎜⎝
1
N

N∑

i=1

‖trans (Fi)‖2
⎞⎟⎟⎟⎟⎟⎠

1
2

(11)

4.3 Dynamic Semantic Boundaries Optimization

Semantic Segmentation. We utilize ResNet50-FPN as the backbone network for
YOLACT, employing a pre-trained model trained on the COCO dataset [27]. The exper-
imental results are shown in Fig. 4, which represents the original RGB image and the
masks obtained using SegNet, Mask-RCNN, and YOLACT semantic segmentation net-
works, respectively. The experiments demonstrate that YOLACT can segment a greater
variety of potential dynamic objects in scenes with diverse object categories. Moreover,
the segmented objects exhibit more precise contour information compared to SegNet
and Mask-RCNN.

(a) RGB Image (b) SegNet (c) Mask -RCNN (d) YOLACT

(e) RGB Image (f) SegNet (g) Mask -RCNN (h) YOLACT

Fig. 4. Semantic segmentation network comparison experiment.

Boundary Classification. The classification results of boundary features of dynamic
object masks are depicted in Fig. 5. The experiment utilizes images from the
fr3_sitting_half and fr3_walking_half sequence with dynamic objects at different dis-
tances. Figures (a), (b), (e)and (f) present the masks generated by the semantic seg-
mentation network along with the corresponding feature removal results. Green points
denote static features in these figures. However, no matter whether the dynamic object is
far away or near, its part of boundary features are defined as static features. Figures (c),
(d), (g) and (f) show the masks after morphological processing and their corresponding
feature removal results. The experiment demonstrates that the boundary classification
method effectively partitions the feature points on the object boundary into dynamic
features regardless of the distance of the dynamic object in the scene, thereby address-
ing the challenge of boundary feature classification.
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(a) original mask a (b) removal (c) dilated mask a (d) removal

(e) original mask b (f) removal (g) dilated mask b (h) removal

Fig. 5. Boundary classification result.

4.4 Optimized Geometric Motion Recognition

Depth Image Restoration. To acquire more precise geometric information, we employ
edge-filling and curvature-driven diffusion methods to repair the depth images cap-
tured by the camera. Figure 6 shows the results of the restoration outcomes for the
fr3_sitting_half dataset. The experiments indicate that the algorithm exhibits excellent
restorative capabilities for holes in the depth images. Moreover, it achieves ideal filling
effects around object edges, resulting in more precise edges and a more intact structure,
effectively enhancing the precision of geometric information.

(a) RGB a (b) depth image a (c) restoration

(d) RGB b (e) depth image b (f) restoration

Fig. 6. Depth Image Restoration results.

Dynamic Object Identification and Removal. To demonstrate the adaptability of our
method in scenes with large proportion of dynamic areas coverage, MCC is performed
using the fr3_w_half dataset. The experimental results are shown in Fig. 7. It describes
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the features classification and removal results obtained with and without MCC. Green
points denote static features in these figures, while red points represent dynamic fea-
tures. The experiment demonstrates that directly using semantic information for feature
point classification in scenes with a large dynamic proportion may misclassify features
of static objects such as computers and chairs as dynamic features. However, utilizing
MCC can better identify and remove actual dynamic features in the scene, effectively
enhancing system’s adaptability in scenes with high dynamic proportion.

(a) original mask (b) classification (c) mask using MCC (d) features removal

Fig. 7. Moving Consistency Check results.

To demonstrate the adaptability of our method in scenes with slowly moving
objects, we conducted MVG on the fr3_s_static dataset. The experimental results are
shown in Fig. 8, which shows the classification of feature points using the mask pro-
cessed by MVG. The experiments indicate that the MVG method accurately distin-
guishes slowly moving chairs as dynamic objects, while the stationary chair on the right
is still identified as a static object. The MVG method exhibits good removal capability
for subtle dynamic features, effectively enhancing the system’s adaptability in scenes
with slow object motion.

(a) mask using MCC (b) mask using MVG (c) classification

Fig. 8. Multiple View Geometry results.

4.5 Visual Odometry Localization

The visual odometry localization trajectories for dynamic scene sequences are pre-
sented in Tables 2. The red segments denote the differences between the actual trajec-
tory(ground truth) and the localization trajectory(CameraTrajectory) obtained by our
method. A more extended red segment indicates a more significant error. Objective



372 Q. Mu et al.

metrics, including the Root Mean Square Error(RMSE) of ATE and its standard devia-
tion(S.D.), are summarized in Table 3.

Based on Tables 2, subjectively speaking, our method shows trajectories that are
generally consistent with the actual trajectory across all eight data sequences. Our
method’s results are consistently superior to ORB-SLAM2 [7] and ORB-SLAM3 [28].
Compared to the DynaSLAM [21], our method achieves better trajectory performance
in the fr3_w_rpy and fr3_s_rpy sequences. Because DynaSLAM utilizes the Mask R-
CNN semantic segmentation model, which has poor real-time performance and seg-
ments frames at intervals. This demonstrates that our method maintains better localiza-
tion capabilities in scenes with camera motion.

Table 2. Trajectory maps of high dynamic sequence.

As shown in Table 3, the RMSE and S.D. of ATE for our proposed method, are lower
than those of ORB-SLAM2 [7], DynaSLAM [21], Yolo-SLAM [29] and Blitz-SLAM
[30]. Specifically, on the high dynamic sequence dataset, the RMSE and S.D. of the pro-
posed method decreased by 95.23%–32.30% and 95.62%–19.92% compared to other
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methods respectively; On the low dynamic sequence dataset, the RMSE and S.D. of
the proposed method decreased by 44.7%–5.52% and 56.7%–9.66% compared to other
methods, respectively. This is because Yolo-SLAM, which uses YOLOv3, has difficulty
to remove feature points located at the edges of dynamic objects. Blitz-SLAM removes
features with the same depth values as dynamic features, which reduces the number of
associated features. The conclusion is that the method proposed exhibits higher perfor-
mance across various dynamic settings, such as scenes with different object velocities,
varying proportions of dynamic area coverage, and camera motion or stillness.

Table 3. ATE comparison (unit: meters).

Sequence ORB-SLAM2 Dyna-SLAM Yolo-SLAM Blitz-SLAM Ours

RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.

fr3_w_xyz 0.8629 0.3116 0.0248 0.0085 0.0146 0.0070 0.0153 0.0078 0.0144 0.0072

fr3_w_rpy 0.8790 0.4035 0.0225 0.0282 0.2164 0.1001 0.0356 0.0220 0.0171 0.0183

fr3_w_static 0.1893 0.0059 0.0064 0.0048 0.0073 0.0035 0.0102 0.0052 0.0037 0.0031

fr3_w_half 0.7945 0.2051 0.0336 0.0115 0.0283 0.0138 0.0256 0.0126 0.0235 0.0125

fr3_s_xyz 0.0241 0.0062 0.0201 0.0058 / / 0.0148 0.0069 0.0122 0.0053

fr3_s_rpy 0.0378 0.0230 0.0365 0.0516 / / / / 0.0215 0.0349

fr3_s_static 0.0379 0.0472 0.0085 0.0051 0.0066 0.0033 / / 0.0052 0.0039

fr3_s_half 0.0496 0.0171 0.0245 0.0112 / / 0.0160 0.0076 0.0169 0.0078

4.6 Static Background Inpainting

As shown in Fig. 9, the experiment conducted background inpainting on the datasets
fr3_walking_static and fr3_walking_xyz. Figures (b) and (f) depict the results after
completion using the FGVC hole-filling algorithm. It can be observed that the repaired
RGB images exhibit no ghosting, blurred boundaries, or uneven brightness, which
demonstrates the algorithm’s capability to complete dynamic object edges and textures
effectively. Figures (d) and (h) show the results using the Local Frames Static Informa-
tion Completion method. The completed depth images have uniform grayscale values
and the dynamic edges are aligned with the static background. The experiment confirms
that the Static Background Inpainting method possesses excellent completion capability
in dynamic scenes with camera motion or stillness.

4.7 Dense Mapping

Using the restored RGB images and depth images from the fr3_walking_static and
fr3_walking_xyz datasets as input to achieve dense mapping. As shown in Fig. 10, Fig-
ures (a) and (c) depict the results of dense mapping without background inpainting.
It can be observed that the static background information is occluded by the dynamic
actions of the person, resulting in blurry mapping. Figures (b) and (d) show the results of
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(a) RGB (b) RGB inpainting (c) depth (d) depth inpainting

(e) RGB (f) RGB inpainting (g) depth (h) depth inpainting

Fig. 9. Static Background Inpainting results.

dense mapping after applying the background inpainting. It is evident that the informa-
tion on the mapping scene is richer than original maps, demonstrating the effectiveness
of the Static Background Inpainting method.

(a) fr3_walking_static (b) inpainting for (a) (c) fr3_walking_xyz (d) inpainting for (c)

Fig. 10. Dense Mapping in dynamic scenes.

5 Conclusion

We propose an adaptive dynamic VSLAM, which demonstrates higher adaptability
across various dynamic settings, such as scenes with different object velocities, vary-
ing proportions of dynamic area coverage, and camera motion or stillness. It accurately
acquires and leverages high-precision semantic and geometric information effectively
removes dynamic features, and inpaints background information occluded by dynamic
objects, achieving localization and dense mapping solely using static information. Key
factors contributing to its success include: (1) Integration of YOLACT semantic seg-
mentation with morphological processing enables the acquisition of semantic infor-
mation for potential dynamic objects with stable boundary features, which enhances
adaptability in scenes with a wide variety of objects; (2) Depth Image Restoration pro-
vides accurate geometric information for geometric constraint methods, enhancing the
ability to distinguish object motion states; Combining MCC and MVG effectively iden-
tifies and removes dynamic objects with large proportions of area and slow motion;
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(3) Flow-edge Guided Video Completion and Local Frame Static Information Comple-
tion effectively complete static information occluded by dynamic objects in both RGB
images and depth images, which provides richer scene information for dense mapping.
The proposed method was quantitatively evaluated using dynamic sequences from the
TUM dataset. The experimental results demonstrate that compared to ORB-SLAM2,
DynaSLAM, Yolo-SLAM and Blitz-SLAM, our method effectively improves localiza-
tion accuracy in both high and low-dynamic scenes. Additionally, utilizing the back-
ground inpainting method for dense 3D reconstruction maps more comprehensively
represents scene static information compared to original map. Nonetheless, there are
still some limitations in our method that require improvement. For instance, more pre-
cise background inpainting methods should be developed. Additionally, converting the
dense maps drawn by the system, which currently occupy a high space rate, into octree
maps with semantic information could be considered for future work.
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Abstract. Visual Place Recognition (VPR) is pivotal for navigation and
robotic systems, facilitating accurate localization by recognizing previ-
ously visited places. In this paper, we present a novel hierarchical VPR
approach that learns robust global and local features from semantic infor-
mation. By leveraging semantic cues as prior information during the
training process, our method implicitly guides the attention of the VPR
model to focus on stable semantic features (e.g. buildings) while suppress-
ing unreliable regions (e.g. persons, cars). Furthermore, we integrate the
semantic-guided attention mechanism into the local matching process by
extracting patch descriptors from the discriminative areas and prioritiz-
ing nearest neighbor matching on these patches, thereby reducing incor-
rect correspondences caused by dynamic or redundant patches. We eval-
uate the performance of our method against state-of-the-art techniques
on public benchmark datasets with varying conditions and viewpoints.
The experimental results demonstrate the superior performance of our
proposed method, highlighting its robustness across diverse scenarios.

Keywords: Visual Place Recognition · Semantic Segmentation ·
Attention · Hierarchical VPR

1 Introduction

Visual Place Recognition (VPR) is an essential task for applications such as
automatic navigation and mobile robots. It is a prerequisite for loop closure
detection, which is a key component of the Simultaneous Localization And Map-
ping (SLAM) system. VPR is usually regarded as an image retrieval problem,
involving the matching of an input query image from an unknown location to a
set of reference images from known locations. Previous studies [8,19,32,35] have
adopted a hierarchical (two-stage) approach to the retrieval problem, involv-
ing global retrieval followed by re-ranking. This hierarchical approach aims to
balance between matching accuracy and computational efficiency: initially using
global descriptors to retrieve top-k candidate reference images, and subsequently
refining these candidates through a re-ranking process.

However, VPR still faces a significant challenge: images captured from the
real world have severe appearance changes due to lighting, weather variations,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15330, pp. 377–392, 2025.
https://doi.org/10.1007/978-3-031-78113-1_25
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dynamic object occlusions, etc. For a robust VPR system, it is necessary to
extract features from discriminative and reliable objects (e.g. buildings) and sup-
press those from uninformative objects (e.g. persons, cars, sky). Some researches
[16,27] leverage semantic segmentation networks to identify long-term invari-
ant objects for VPR tasks, but the effectiveness of these approaches hinges on
the accuracy of the segmentation networks, which may struggle under challeng-
ing conditions such as low-light environments or nighttime scenarios. Instead,
we propose a hierarchical VPR method that leverages semantic information to
implicitly guide the model’s attention towards more robust global and local fea-
tures. By incorporating semantic cues as supervision during the training process,
our approach enables the VPR model to concentrate on features which are instru-
mental for discriminating the correct place (see Fig. 1), avoiding the generation
and storage of additional semantic labels at test time. Additionally, we incor-
porate semantic-aware attention into local feature matching (patch-level) for re-
ranking. By deriving task-related patch descriptors and enhancing the matching
efficiency of patch pairs with higher attention scores, our method reduces false
correspondences caused by dynamic or redundant patches in local matching (see
Fig. 4).

In summary, we make specific contributions as follows:

1) We introduce a unified hierarchical VPR pipeline to learn robust global and
local features for VPR tasks by incorporating high-level semantic information,
which guides the attention of the VPR model to emphasize reliable areas while
suppressing unreliable objects.

2) We improve local matching efficiency with semantic-guided attention, leverag-
ing attention scores to filter out unreliable and redundant patch descriptors,
thus eliminating wrong correspondences in local matching. Additionally, these
scores weight the nearest neighbor matching, facilitating easier matching of
critical patches.

3) We comprehensively test datasets with appearance variance and viewpoint
variance, and the experimental results demonstrate the effectiveness of our
method.

(a) Input image (b) Vanilla attention map (c) Our attention map

Fig. 1. Visualization of the attention maps of the baseline model and our model. The
vanilla model’s attention is scattered and it pays attention to trees and cars. Our
method is guided by semantic weight and focuses on robust areas such as buildings.
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2 Related Work

Global and Local Descriptors for VPR: Early VPR global descriptors
describe the entire image through a single feature representation [13,28], or by
some algorithms [12,21,33] that aggregate local descriptors [5,25]. With the
advent of deep learning, NetVLAD [4] is a new generalized VLAD [21] layer
that can be pluggable into any CNN architecture and learned end-to-end. Build-
ing on the success of NetVLAD, its variant CRN [23] introduces context-aware
feature reweighting, while SFRS [18] refines image-to-image similarities into self-
supervised image-to-region similarities. Other global descriptor methods include
AP-GeM [31], which optimizes the global mAP in listwise loss formulations.
Recently, a large number of VPR methods have demonstrated superior perfor-
mance by utilizing new training techniques on large-scale datasets. Notably, Cos-
Place [6] casts the training as a classification task, while MixVPR [2] is trained
on a large dataset called GSV-Cities [1] and incorporates a global relationship
into each feature map through a series of Feature-Mixer blocks which consist of
MLPs.

Hierarchical (two-stage) VPR methods [8,19,35] have gained popularity for
enhancing the performance of global descriptors. These methods typically begin
by obtaining the top-k candidates through global retrieval, followed by cross-
matching using local descriptors. They subsequently employ geometric verifica-
tion techniques like RANSAC [15] to eliminate false matches and re-rank can-
didates. Patch-NetVLAD [19] derives patch-level features from NetVLAD and
introduces a multi-scale fusion of patch features with complementary scales in
a complete feature space. TransVPR [35], based on the ViT [14] architecture,
employs a multi-level attention mechanism to select key-patch descriptors via a
fusion attention mask.

Semantic Information in VPR: Semantic information plays a crucial role
in addressing challenges like appearance changes in VPR [10,16,17,22,24,27,
32,38]. Some studies [16,27] utilize semantic segmentation networks to extract
pre-defined stable semantic categories such as roads, buildings, etc. Based on
[16,17] concatenates the appearance-based descriptor with the semantics-based
descriptor to eliminate the inaccurate labeling of the segmentation network in
extreme environments. StructVPR [29] inputs the segmentation images into the
CNN network and employs the knowledge distillation method to enhance the
structural knowledge of the RGB global features, thereby improving the stability
of the features in a changing environment.

Some recent works [10,29,30] integrate semantic information with attention
mechanisms. [29] employs a multi-scale attention module to guide segmenta-
tion process, enhancing robustness in global descriptor learning, albeit requiring
additional training of the segmentation network. Closely related to our work is
de-attention [10], which diminishes the influence of dynamic objects with seman-
tic guidance by using binary semantic masks indicating their labels. Instead, our
approach use semantic masks with varied predefined weights. This allows the
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VPR model to suppress dynamic objects and reduce the influence of redundant
elements (e.g., sky), while also emphasizing the importance of long-term features
(e.g., buildings).

3 Method

We propose a unified hierarchical VPR pipeline, as illustrated in Fig. 2. By using
semantic guidance during training, we focus the model’s attention on more sta-
ble regions, and the reweighted feature maps are then aggregated into global
descriptors. In the re-ranking stage, we apply semantic-guided attention to both
the extraction and matching of patch descriptors. We then use RANSAC [15]
to calculate the spatial consistency score and obtain the final refined retrieval
results. Next, we delve into the details of each stage of our pipeline, starting
with the global retrieval process in Sect. 3.1, followed by the local matching for
re-ranking process in Sect. 3.2.

Fig. 2. Illustration of our unified hierarchical VPR pipeline.

3.1 Global Retrieval

To achieve robust global feature learning for VPR, we incorporate semantic infor-
mation to guide attention during the training process. Notably, our VPR model
autonomously generates semantic-aware descriptors at test time, operating in an
end-to-end manner without requiring explicit semantic labels.
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We utilize an advanced off-the-shelf segmentation network, Mask2Former [9],
trained on Cityscapes dataset [11], to generate semantic labels for input images.
Based on the robustness of different semantic categories to appearance changes,
we group the 20 semantic labels from the Cityscapes dataset into five categories
and assign different weights empirically to generate maskgt. As shown in Fig. 3,
for long-term stable building, we regard this semantic class as the most reliable
and assign it a weight of 1.0. In contrast, we set the weights of all dynamic objects
to 0 due to their constant movement, which makes visual place recognition diffi-
cult. Semantic categories that are relatively static but not as stable as building,
such as pole, traffic light, and traffic sign—receive slightly lower weights of 0.8.
The sky, which frequently changes appearance due to weather and day-night
transitions and is often redundant in visual place recognition images, is given a
lower weight of 0.4. Additional semantic categories are assigned a medium weight
of 0.7.

(a) Input image (b) Semantic labels (c) Semantic weight mask

Fig. 3. The semantic labels of the image are used to generate the corresponding seman-
tic weight mask.

With the supervision of semantic information, we train our VPR model,
which consists of a CNN backbone network, an attention network, and a
NetVLAD [4] layer. The attention network follows the de-attention [10] set-
ting and comprises a Contextual Reweighting Network (CRN) [23] and a sig-
moid function to generate a weight mask, maskpred. This maskpred dynami-
cally reweights the CNN feature map through element-wise multiplication across
all channels. The resulting attention-based feature map serves as input to the
NetVLAD layer to generate a global image representation.

To make the visual place recognition model highlight stable areas and sup-
press unreliable areas as we expect, the attention loss is defined as:

Lattention = MSE (maskpred,maskgt) (1)

where MSE denotes the Mean Squared Error Loss.
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Our VPR model is trained on the large-scale GSV-Cities [1] dataset and we
use Multi-Similarity loss [36] due to its excellent performance.
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1
N

N∑

q=1

⎧
⎨

⎩
1
α
log

⎡

⎣1 +
∑

p∈Pq

e−α(Sqp−m)

⎤

⎦

+
1
β
log

⎡

⎣1 +
∑

n∈Nq

eβ(Sqn−m)

⎤

⎦

⎫
⎬

⎭

(2)

where for the query image q in the batch, Pq and Nq are the positive samples set
and the negative samples set respectively, and α, β and m is the hyperparameters
controlling the weight.

The overall VPR model is trained jointly by Multi-Similarity loss and atten-
tion loss, weighted by λ, as follows:

Ltotal = LMS + λLattention (3)

At test time, both query images and reference images undergo processing
through our network to obtain robust global descriptors for distinguishing places.
These descriptors are then used to retrieve the top-k candidates.

3.2 Local Matching for Re-ranking

In this section, we will introduce the integration of semantic-aware attention
into local feature matching in two parts. The first part explains the method for
filtering out non-discriminative regions during patch descriptor extraction. The
second part details the strategy for assigning different weights through attention
during patch matching.

Attention-Based Patch Filtering: We perform re-ranking using Patch-
NetVLAD [19], which extracts densely-sampled patch descriptors within the
full feature map. For the attention-based feature map F ∈ R

H×W×D from the
global branch, we employ a sliding window mechanism to extract a set of dx ×dy

patches (where dy = dx in square patches) with stride sp. The total number of
extracted patches is calculated as follows:

np =
⌊

H − dy

sp
+ 1

⌋
∗

⌊
W − dx

sp
+ 1

⌋
, dy, dx ≤ H,W (4)

The original Patch-NetVLAD extracts patch descriptors from all regions of
an image and performs exhaustive cross-matching, leading to high storage cost
and long feature matching time per image. To mitigate these issues, we propose
a method to extract task-relevant key patch descriptors. We filter the patch
descriptors based on the previous attention network output maskpred.
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Specifically, we perform average pooling with kernel size dy (or dx) and stride
sp = 1 on the predicted attention mask of each image, as follows:

maskpooling(i, j) =
1

dx · dy

dx−1∑

p=0

dy−1∑

q=0

maskpred(i + p, j + q) (5)

where maskpooling(i, j) is the average pooling score at position (i, j), correspond-
ing to the top-left corner of the patch in the feature space.

The attention score corresponding to the kth patch descriptor is as follows:

score(k) = maskpooling(i, j) (6)

We then retain only the patch descriptors with attention scores exceeding a
specified threshold, effectively filtering out patches that are not useful for visual
place recognition, as shown in Fig. 2.

Attention Scores Weighted Nearest Neighbor Matching: The original
Patch-NetVLAD [19] performs mutual nearest neighbor matching by exhaus-
tively comparing the descriptor sets of query image {fq

i }np

i=1 and the descriptor
sets of reference image {fr

i }np

i=1. Matching patches are identified as follows:

P =
{
(i, j) : i = NNr

(
fq
j

)
, j = NNq (fr

i )
}

(7)

where NN denotes the nearest neighbor matching obtained by calculating the
minimum Euclidean distance between the image descriptor sets.

After filtering out unreliable patch descriptors, the Euclidean distance matrix
is as follows:
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where the number of query descriptors and reference descriptors after filtering
is nq and nr respectively.

The original Patch-NetVLAD assumes equal importance for each patch
descriptor, which can lead to false matches due to unreliable patch descriptors.
To address this, we optimize the matching process by weighting the distance
matrix with attention scores, making more discriminative patch descriptors eas-
ier to match. The weight of each patch descriptor is determined by its corre-
sponding attention score (as described by Eq. 6):

ω (fi) = e−α·score (9)

where α is a hyperparameter that controls the influence of the attention score
on the weight.
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The weighted distance matrix is given by
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where each pair of descriptors is matched with their respective attention weights.
This approach facilitates the matching of more stable patch descriptors while
suppressing the matching of unreliable ones, as shown in Fig. 4.

(a) Vanilla local matching (b) Our attention-based local matching

Fig. 4. Visualization of the top-1 results of the vanilla local matching and our attention-
based local matching. Our method successfully retrieves the correct reference image,
with the matching patches concentrated in the building area. While the vanilla local
matching method produces incorrect match, with the matching patches including unre-
liable objects such as the bicycles and sky.

After performing mutual nearest neighbor matching, we apply RANSAC [15]
for geometric verification. When fitting the homography, we take the center
coordinates of each patch as the keypoints, filtering the keypoints according
to the previously mentioned criteria, which reduces the computation time. Our
spatial consistency score is determined by the number of inliers and is normalized
by the number of patches after filtering. The final results are obtained by re-
ranking the top-k global retrieval candidates using the spatial consistency score.

4 Experiments

4.1 Datasets and Evaluation

Our experiments primarily focus on urban scene datasets due to the use of the
segmentation model pre-trained on the Cityscapes dataset [11]. These datasets
encompass various challenges such as viewpoint changes, lighting changes,
weather changes, etc. Table 1 and Table 2 summarize the information of the
datasets list. Pitts30k-test [34] is a collection of Google Street View images of
the city of Pittsburgh, and each place consists of 24 images from different per-
spectives with severe viewpoint variations and moderate condition variations.
MSLS-val [37], a subset of the Mapillary Street-Level Sequences dataset, serves as
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a public validation dataset, which covers a variety of challenging condition varia-
tions due to lighting, weather, dynamic objects, etc. The Tokyo 24/7 [3] includes
reference images from Google Street View images of Tokyo, and query images
captured via smartphones, showcasing significant lighting and viewpoint varia-
tions. More challenging datasets come from the recent Svox [7] of 5 domains—
Snow, Rain, Sun, Night, and Overcast. Svox extracted images from Google Street
View in the city of Oxford for the reference images, and images from Oxford
RobotCar [26] as query images.

We use Recall@K as the evaluation metric for our experiments. Recall@K is
defined as the percentage of queries for which at least one of the top K reference
images retrieved is within the ground truth threshold. We set the threshold
distance as 25m, following precedents from previous work [1,2,7,19].

Table 1. Summary of the popular datasets in experiments.

Dataset Name Pitts30k-testMSLS-val Tokyo 24/7

# Query Images 6.8k 740 315
# Reference Images10k 18.9k 76k
Description viewpoint weather, day/nightday/night

Table 2. Summary of the more challenging datasets in experiments.

Dataset Name Svox SnowSvox SunSvox NightSvox RainSvox Overcast

# Query Images 870 854 823 937 872
# Reference Images17k 17k 17k 17k 17k
Description weather weather day/night weather weather

4.2 Implementation Details

We use ResNet50 [20] as the backbone and crop it to the conv4_x layer. Then
CRN [23] is used as the attention module, and the weighted feature map is
input to the aggregation layer NetVLAD [4]. For NetVLAD, the number of
clusters is 16, resulting in a 16k-dimensional representation, and we use PCA
for dimensionality reduction.

We train our model following the standard framework of GSV-Cities [1]. Our
training batch consists of 80 places, each with 4 images, totaling 320 images per
batch. We employ the Adam optimizer with a learning rate of 1.3e-4, adjusted
according to the batch size, and train for a maximum of 30 epochs. To ensure
consistency between the training set images and semantic segmentation results,
we removed the random augmentation used in the GSV-Cities framework.
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For re-ranking, we adopt Patch-NetVLAD [19], using square patch sizes 2, 5
and 8 with corresponding weights of wi = 0.45, 0.15, 0.4 for multi-scale fusion.
Through experiment with the MSLS-val [37] dataset, we determined that 0.4 is
the optimal threshold for filtering patch descriptors. Additionally, we set α to
0.01 to adjust the influence of the attention scores on the weighting of nearest
neighbor matching.

4.3 Comparison to State-of-the-Art Methods

In this section, we compare our method against several state-of-the-art VPR
methods, including global descriptors like NetVLAD [4], AP-GeM [31], SFRS
[18], CosPlace [6], and MixVPR [2], using their official model checkpoints.
Notably, CosPlace and MixVPR represent SOTA techniques trained on large-
scale datasets. We also compare our approach against two-stage VPR methods
such as Patch-NetVLAD [19], TransVPR [35], and StructVPR [32]. For Patch-
NetVLAD, we use its performance-focused configuration, denoted as Patch-
NetVLAD-p. TransVPR employs a transformer architecture. For StructVPR, we
compare it using RANSAC [15] as the re-ranking backend for fairness, denoted
as StructVPR-SP-RANSAC. Since StructVPR has not released code, we report
results only on datasets available in its paper. Our results are presented both
with and without re-ranking.

Table 3 presents the quantitative results for the Pitts30k-test, MSLS-val, and
Tokyo 24/7 datasets. Our method demonstrates exceptional average performance
across all datasets. On the Pitts30k-test and MSLS-val datasets, our method
achieves results comparable to MixVPR and StructVPR. Notably, our method
outperforms all other methods on the Tokyo 24/7 dataset with a 7% absolute
increase in R@1.

Table 4 shows the performance on more challenging datasets under extreme
weather and lighting conditions. Our method achieves impressive results on var-
ious datasets, improving R@1 by 5.1%, 5.7%, 2.2%, and 1.2% on Svox Sun, Svox
Night, Svox Rain, and Svox Overcast, respectively, and achieving comparable
performance on the Svox Snow dataset.

Qualitative results are shown in Fig. 5. Our examples contain challenging
viewpoint changes, as well as extreme appearance changes such as dynamic
object occlusion, weather changes, day-to-night illumination changes, etc. The
results demonstrate the robustness of our method to complex environments.

4.4 Ablation Studies

Threshold for Filtering Patch Descriptors: We conduct an ablation exper-
iment to determine the optimal threshold for filtering patch descriptors using
attention scores. The Fig. 6 shows the R@1 results corresponding to thresholds
ranging from 0 to 1, in increments of 0.1, on the MSLS-val and Svox Snow
datasets. The recall rate (R@1) remains relatively stable when the threshold
is set between 0 and 0.6. Beyond this point, the recall rate drops significantly



Hierarchical Visual Place Recognition with Semantic-Guided Attention 387

Table 3. Comparison to state-of-the-art methods on popular datasets. The best is
highlighted in bold and the second is underlined.

Method Pitts30k-test MSLS-val Tokyo 24/7 Average
R@1R@5R@10R@1R@5R@10R@1R@5R@10R@1R@5R@10

NetVLAD [4] 85.0 92.1 94.4 58.5 70.5 74.7 65.1 75.6 78.1 69.5 79.4 82.4
AP-GeM [31] 80.7 91.4 94.1 64.6 75.1 77.8 54.3 68.3 75.2 66.5 78.3 82.4
SFRS [18] 89.0 94.6 95.9 69.7 79.6 82.3 76.5 86.3 88.6 78.4 86.8 88.9
CosPlace [6] 88.4 94.6 95.7 82.4 89.9 92.2 80.0 88.6 91.1 83.6 91.0 93.0
MixVPR [2] 91.695.696.4 88.193.294.1 85.7 91.4 93.7 88.5 93.4 94.7
Ours w/o Reranking 88.9 94.4 95.7 84.7 91.0 92.7 75.6 87.6 89.5 83.1 91.0 92.6
Patch-NetVLAD-p [19] 88.7 94.5 95.9 79.5 86.2 87.7 86.0 88.6 90.5 84.7 89.8 91.4
TransVPR [35] 89.0 94.9 96.2 86.8 91.2 92.4 79.0 82.2 85.1 84.9 89.4 91.2
StructVPR-SP-RANSAC [32]89.4 95.2 96.5 87.3 91.4 92.8 – – – – – –
Ours 90.4 95.2 96.3 87.0 91.4 93.2 93.094.695.2 90.193.794.9

Table 4. Comparison to state-of-the-art methods on more challenging datasets. The
best is highlighted in bold and the second is underlined.

Method Svox Snow Svox Sun Svox Night Svox Rain Svox Overcast
R@1R@5R@10R@1R@5R@10R@1R@5R@10R@1R@5R@10R@1R@5R@10

NetVLAD [4] 61.1 75.5 80.5 39.2 55.5 61.7 9.1 18.2 25.3 58.6 73.3 77.3 73.5 85.9 89.6
AP-GeM [31] 66.8 80.5 84.6 40.0 57.8 64.8 19.2 33.9 40.5 56.4 72.6 79.1 73.9 84.5 88.0
SFRS [18] 78.2 87.1 90.1 61.0 73.1 76.7 29.8 41.3 48.2 73.9 83.2 85.9 85.3 90.6 91.9
CosPlace [6] 89.3 93.2 95.2 69.9 81.6 85.9 48.6 63.7 71.4 85.8 91.9 94.3 89.0 94.3 95.2
MixVPR [2] 97.098.2 98.6 84.0 92.6 94.5 62.1 78.983.0 92.0 96.6 97.8 96.2 98.2 99.0
Ours w/o Reranking92.9 97.6 98.1 71.4 83.0 87.2 29.7 45.1 54.4 85.5 92.9 95.3 96.1 98.3 98.7
Ours 96.2 98.999.1 89.194.495.1 67.872.9 73.9 94.297.297.6 97.498.999.1

on both the MSLS-val and Svox Snow datasets. This demonstrates that filter-
ing patch descriptors can reduce the storage cost of feature descriptors, while
maintaining performance.

Attention Module: We perform ablation studies to verify the effectiveness of
our proposed module. Considering the robustness of the semantic segmentation
network, we present the ablation results on the weather change datasets, as
shown in Table 5. Global Attention refers to the incorporation of a semantically
guided attention module during the global retrieval stage, as detailed in Sect. 3.1.
Local Attention pertains to the integration of semantic-aware attention into
local feature matching, as discussed in Sect. 3.2. The use of Global Attention
during the global retrieval stage enhances the model’s performance, with the
most significant improvement observed on the Svox Overcast dataset, showing a
3.3% increase in R@1. The inclusion of Local Attention in the re-ranking stage,
along with Global Attention, further boosts the performance. This suggests that
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Fig. 5. Qualitative Results. These examples show that our method successfully iden-
tifies the correct place while all other methods retrieve incorrect results in different
challenging scenarios.

optimizing local matching through attention mechanisms is crucial for refining
retrieval results.

Table 5. Ablation study on different model components. Recall@1 is reported.

Method Global AttentionLocal AttentionMSLS-valSvox SnowSvox SunSvox RainSvox Overcast

Global Retrieval 82.6 91.0 70.6 83.2 92.8
� 84.7 92.9 71.4 85.5 96.1

Re-ranking 85.1 94.9 88.2 93.4 96.4
� 86.1 96.1 88.8 94.2 96.8
� � 87.0 96.2 89.1 94.2 97.4



Hierarchical Visual Place Recognition with Semantic-Guided Attention 389

Fig. 6. Ablation study on different thresholds for filtering patch descriptors. Recall@1
is reported.

5 Conclusion

In this paper, we present an innovative hierarchical VPR approach to learn
robust global and local features through the integration of semantic information
to guide attention implicitly. Our method allows the VPR model to focus on criti-
cal information for accurately distinguishing places, without the need to generate
and store additional semantic labels at test time. By embedding semantic-driven
attention mechanisms into local matching, our approach derives discriminative
patch descriptors and prioritizes the nearest neighbor matching of patch pairs
with higher attention scores. Our experimental results achieve state-of-the-art
performance across multiple benchmark datasets. We envision widespread prac-
tical applications for our proposed VPR method in real-world scenarios.
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Abstract. In recent years, Visual Simultaneous Localization and Map-
ping (SLAM) research has made significant strides, particularly in the
domain of RGB-D SLAM. However, the prevalent presence of glass sur-
faces poses a substantial challenge, impeding the effective performance
of RGB-D SLAM in modern indoor environments. This challenge stems
from the transparent, refractive, and reflective properties of glass sur-
faces, causing RGB-D cameras to struggle to obtain accurate depth infor-
mation, consequently negatively impacting on the estimation of camera
trajectories and the reconstruction of glass surfaces. In this paper, we
propose a new network designed for simultaneous glass surface segmen-
tation and depth estimation called CGSDNet-Depth. Employing a novel
Context Guided Depth Decoder (CGDD), CGSDNet-Depth generates
depth information guided by the contextual information of glass surfaces.
Subsequently, based on ORB-SLAM2, we introduce a new method named
ORB-SLAM2-GSD (Glass Surface Detection) that utilizes the segmen-
tation and depth estimation results from CGSDNet-Depth to alleviate
the adverse effects of glass surfaces on camera trajectory estimation and
dense reconstruction. Additionally, we construct the first RGB-D dataset
for glass surface scenes, comprising 8 image sequences, called GS RGB-
D. Extensive experiments demonstrate that our method outperforms
other State-of-the-Art (SOTA) methods in glass surface segmentation
and improves ORB-SLAM2 performance in glass surface scenes. Code
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1 Introduction

Visual SLAM, utilizing its advantages of low cost and small size with cam-
eras as input sensors, has found extensive applications in research fields such
as autonomous driving. Among Visual SLAM, RGB-D SLAM utilizes RGB-D
cameras as input sensors, allowing for direct depth information acquisition. This
sets RGB-D SLAM apart from traditional monocular and stereo SLAM, making
it particularly proficient in reconstructing dense point cloud maps and reduc-
ing scale drift, achieving significant progress over the past decade [1]. Numerous
notable RGB-D SLAM methods [2–5] have demonstrated commendable perfor-
mance on benchmark datasets like TUM RGB-D [6]. However, these methods are
difficult to acquire exceptional performance in modern indoor scenes, mainly due
to the prevalence of large glass surfaces such as glass doors, walls, and windows.
The transparent, refractive, and reflective properties of these glass surfaces pose
challenges for RGB-D cameras in accurately obtaining their depth and the depth
of objects behind them as Fig. 1 (red box), introducing considerable noise into
the dense reconstruction and camera trajectory estimation of RGB-D SLAM.

Fig. 1. Comparison between ORB-SLAM2 [5] and our method on the dense recon-
struction results of corridor_chair_day sequence from our GS RGB-D dataset. The
first column shows the scene of this sequence. The second column shows the visualized
results of the depth maps captured by the Intel RealSense D435 depth camera. It is
clear that the depth camera can not correctly output the depth values of glass sur-
faces when they act as obstacles. The third column displays the reconstruction results
from ORB-SLAM2, which completely fails to reconstruct the glass surfaces. The fourth
column presents the reconstruction results from our ORB-SLAM2-GSD, successfully
reconstructing the glass surfaces with its mapped external scenery. (Color figure online)

In Fig. 1, we present the dense reconstruction results of ORB-SLAM2 [5] in
a scene with a significant number of glass surfaces. It is evident that, due to
the limitation of RGB-D cameras in measuring the depth of glass surfaces as
obstacles, ORB-SLAM2 fails in reconstructing (map point generation) the glass
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surfaces themselves. Furthermore, in this scene, objects positioned behind the
glass surfaces are at a distance from the camera that exceeds the depth range
measured by the RGB-D camera. Consequently, there is also a complete failure in
reconstructing objects positioned behind the glass surfaces. These reconstruction
failures can introduce erroneous map point information to ORB-SLAM2, further
significantly impacting its accuracy in estimating camera trajectories.

The objective of this paper is to enhance the camera trajectory estimation
and dense reconstruction performance of the current RGB-D SLAM in glass
surface scenes. To achieve the above objective, we require precise positional
information and depth information about the glass surfaces from input RGB
images. However, existing State-of-the-Art (SOTA) methods from related fields
face challenges in simultaneously achieving precise segmentation and depth esti-
mation for glass surfaces, as shown in Fig. 2. To address this issue, we propose
the CGSDNet-Depth network based on a glass surface segmentation network
called CGSDNet [7]. It utilizes a novel Context Guided Depth Decoder (CGDD)
to generate depth features guided by the contextual features of the glass surfaces
extracted by CGSDNet. Therefore, CGSDNet-Depth can simultaneously output
high-quality mask images and depth maps of the glass surfaces. As illustrated in
Fig. 2, our proposed CGSDNet-Depth demonstrates excellent segmentation and
depth estimation results for these challenging images.

Fig. 2. Our CGSDNet-Depth compares with Liang et al.’s method [8] on the benchmark
dataset GW-Depth [8]. CGSDNet-Depth and Liang et al.’s method are trained on
GW-Depth, iDisc [9] is trained on the NYU Depth V2 [10]. In (a), it is evident that
Liang et al.’s method shows noticeable defects in the segmentation of glass surfaces,
particularly at the boundaries of glass surfaces. In (b), our CGSDNet-Depth and Liang
et al.’s method correctly output the depth of glass surfaces instead of the depth of the
object behind glass surfaces. However, iDisc trained on traditional depth estimation
datasets fails to accurately acquire the depth of glass surfaces as obstacles.

Furthermore, we propose a new method based on ORB-SLAM2, which per-
forms well in glass surface scenes, named ORB-SLAM2-GSD (Glass Surface
Detection). Specifically, We present a Feature Point Filtering algorithm that
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employs the results from CGSDNet-Depth. This algorithm filters ORB feature
[11] points within the glass surface region, removing those feature points that
would introduce significant noise to the camera trajectory estimation. We then
develop a Glass Surface Reconstruction algorithm, also utilizing the output
from CGSDNet-Depth, to achieve dense reconstruction of the glass surfaces.
The reconstructed appearance of the glass surface is consistent with the pattern
mapped by the glass surface in the input RGB image, as shown in Fig. 1.

Finally, to verify our proposed ORB-SLAM2-GSD and due to the lack of a
dedicated RGB-D dataset for glass surface scenes, we construct the first RGB-D
dataset specifically for glass surface scenes, named GS (Glass Surface) RGB-D.
Our proposed GS RGB-D dataset comprises a total of 8 image sequences, each
of which contains a minimum of 4 distinct independent glass surfaces.

In summary, the main contributions of our paper can be outlined as follows:

– We propose a novel Context Guided Depth Decoder (CGDD) and CGSDNet-
Depth network, capable of simultaneously achieving high-quality segmenta-
tion and depth estimation for glass surfaces.

– We present a lightweight GSD (Glass Surface Detection) module, which
improves ORB-SLAM2’s performance of dense reconstruction and camera
trajectory estimation in glass surface scenes.

– We construct the first specialized dataset for RGB-D SLAM in scenes with
abundant glass surfaces, called GS RGB-D.

2 Related Work

2.1 RGB-D SLAM

Traditional Visual SLAM methods typically utilize monocular or stereo images
as input, which require substantial computation to obtain depth values. In con-
trast, RGB-D SLAM systems employ depth maps as input, allowing for the direct
acquisition of depth information for map points and facilitating the construction
of dense point cloud maps. Newcombe et al. [2] introduce KinectFusion, which
preprocesses the original depth maps using a bilateral filter and constructs dense
vertex and normal map pyramids for pose estimation. DVO-SLAM [3] combines
dense visual odometry and Pose SLAM, incorporating global optimization to
minimize accumulated drift. ElasticFusion [4] models variable scenes by catego-
rizing surfels into active and non-active groups and fusing depth maps. ORB-
SLAM2 [5] utilizes ORB features [11] for tracking, mapping, relocalization, and
loop closing. It also employs bundle adjustment for pose optimization.

However, the aforementioned RGB-D SLAM methods encounter challenges
in operating effectively in scenes with abundant glass surfaces like glass walls.

2.2 SLAM in Glass Surface Scenes

Linus et al. [12] have demonstrated that SLAM SOTAs still exhibit poor perfor-
mance in modern indoor scenes due to the transparent and reflective properties
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of glass surfaces. To improve the effectiveness of SLAM methods in glass surface
scenes, various glass detection methods have been introduced and integrated
with SLAM algorithms. Among them, both [13,14] utilize Laser Range Finders
to identify the reflective characteristics of glass surfaces to detect them. How-
ever, the mentioned glass surface detection methods are specifically tailored for
Lidar SLAM, and unsuitable for RGB-D SLAM.

Ongoing research is improving the performance of RGB-D SLAM in scenes
with transparent objects. Zhu et al. [15] propose a transparent object segmenta-
tion network to remove transparent objects, eliminating their negative impact on
pose estimation. After calculating the camera pose, a visual hull-based method
is employed to reconstruct the removed transparent object. Additionally, they
introduce a specifically designed RGB-D dataset for scenes with transparent
objects, called Trans-SLAM. However, Zhu et al.’s work primarily focuses on
small transparent objects like glass bottles and is not suitable for reconstructing
large-scale glass surfaces.

2.3 Glass Surface Segmentation

To address the issue of detecting glass surfaces from RGB images, Mei et al.
[16] first propose a network specifically tailored for glass surface segmentation.
Their method incorporates a Large-field Contextual Feature Integration module
to extract rich contextual features. Lin et al. [17] utilize the reflection features
of glass surfaces with their Reflection-based Refinement Module to aid in glass
surface segmentation. We [7] have introduced a Cascade Atrous Pooling module
and a Cascaded Network Architecture to aggregate denser large-field contextual
features, reducing the generation of holes in glass surface segmentation results.

Nevertheless, simply knowing the position of glass surfaces in RGB images is
insufficient for their reconstruction in the map. Accurate depth information for
the glass surfaces, particularly when they act as obstacles, is also necessary.

2.4 Monocular Depth Estimation for Glass Surfaces

In recent years, there has been a rise in the development of high-quality monoc-
ular depth estimation methods, exemplified by NeWCRFs [18] and iDisc [9].
Although these methods demonstrate satisfactory performance on datasets like
NYU Depth V2 [10], they encounter difficulties in accurately estimating the
depth values of the glass surfaces when they act as obstacles. To address this
issue, Liang et al. [8] introduce the first RGB-D dataset and monocular depth
estimation method tailored for glass surfaces. Specifically, they propose a depth
interpolation pipeline to effectively generate precise depth annotations for glass
surfaces. In addition, they present a dual-context approach that utilizes both
the structural context of glass surface bounding line segments and the reflective
context of the glass to estimate its depth.

Despite Liang et al. have integrated glass surface segmentation as an aux-
iliary task, the segmentation performance of their method is not satisfactory.
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This limitation may result in considerable errors when their method is used for
detecting the position of glass surfaces in RGB-D SLAM.

3 CGSDNet-Depth

3.1 Overview

Fig. 3. The pipeline of our CGSDNet-Depth. (a) The pipeline for glass surface seg-
mentation part in CGSDNet-Depth is consistent with [7]. (b) The pipeline for glass
surface depth estimation part in CGSDNet-Depth. The CGDDs (gray blocks) extract
depth features from the backbone features, contextual features of glass surfaces output
by the PPM [19] and CAP [7] modules, and higher-level depth features (if available).

Inspired by Liang et al.’s work [8], we noticed that a single network can simul-
taneously generate mask images and depth maps of glass surfaces. However, we
noted that Liang et al.’s network primarily focuses on depth estimation, leading
to suboptimal glass surface segmentation results, as shown in Fig. 2(a). Addition-
ally, we observed that the depth values of glass surfaces when acting as obsta-
cles significantly differ from the depth values of objects behind them or their
reflections, residing distinctly on a unified plane. This observation inspired us to
employ more precise glass surface segmentation results and corresponding con-
textual features to guide the depth features, aiming to achieve smoother depth
maps of glass surfaces. Therefore, we use the CGSDNet [7] with robust glass
surface segmentation capability as a foundation and introduce a novel Context
Guided Depth Decoder (CGDD), which utilizes the contextual features output
by CGSDNet to guide the generation of depth maps for glass surfaces.

Figure 3 illustrates the pipeline of our CGSDNet-Depth. Initially, an RGB
image is input into the Cascaded Network Architecture, which is identical to
CGSDNet, as shown in Fig. 3(a). Subsequently, we concatenate the contextual
features of glass surfaces output by the Pyramid Pooling Module (PPM) [19]
and Cascade Atrous Pooling (CAP) [7] modules and corresponding backbone
features, importing them into our CGDDs, as depicted in Fig. 3(b). The depth
features output by CGDDs are further concatenated with lower-level contextual



Dense Reconstruction and Localization in Scenes with Glass Surfaces 399

features and backbone features, and then input into the lower-level CGDDs to
guide the output of lower-level depth features. Finally, we fuse the depth features
from four levels to generate the final depth map for glass surfaces.

3.2 Context Guided Depth Decoder

Fig. 4. The architecture of our CGDD. Conv C1, C2,K (purple blocks) represent a
convolutional layer with an input channel number of C1, an output channel number
of C2, and a kernel size of K × K, accompanied by a Batch Normalization (BN) layer
and an Exponential Linear Unit (ELU) layer. Conv C1, C2,K (red blocks) denote the
corresponding convolutional layer alone. CBAM (blue block) signifies a Convolutional
Block Attention Module (CBAM) [20]. The dashed line associated with CGDD Input
indicates the potential absence of input from higher-level CGDD depth features. (Color
figure online)

To enhance the overall smoothness of depth estimation results for the glass sur-
faces, we utilize the contextual features of glass surfaces to guide the generation
of depth features. As shown in Fig. 4, after modifying the channel numbers of
the contextual features of glass surfaces Fc extracted by the PPM or CAP mod-
ule and the corresponding level of backbone features Fb, we concatenate them
with the higher-level depth features F ′

d (if available). Subsequently, these con-
catenated features FI are input into our proposed CGDD.

Within the CGDD, we initially employ a Convolutional Block Attention
Module (CBAM) [20] to enhance the channel-wise attention across FI , which
are fused into Ff through two convolutional layers. Ff is then fed into a Conv
Block similar to the ConvNeXt Block [21], which retains the spatial informa-
tion of the contextual features of glass surfaces through depthwise convolution,
and generates deep features Fcd containing contextual information by two 1× 1
convolutions that expand the feature dimension. Fcd is further input into the
Upsampling Block, which utilizes two upsampling layers and convolutional layers
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with gradually reduced output channel numbers, to restore the spatial details of
depth features. Finally, high-resolution depth features Fd are output by CGDD.

3.3 Loss Function

During the training process, we utilize the same loss functions as [7] to optimize
the glass surface segmentation part, Fig. 3(a), of CGSDNet-Depth. Including Lc

for supervising the output of PPM and CAP modules, Lb for supervising the
output of the HBD module, and Lfc for supervising the final output mask image.
To optimize the glass surface depth estimation part, Fig. 3(b), of CGSDNet-
Depth, we incorporate the scale-invariant (SI) loss [22] lsi, as the following (1):

lsi(P ) =
1
T

∑

i

d2i −
λ

T 2

(
∑

i

di

)2

(1)

where T represents the number of pixels with valid depth values in the ground
truth (GT) for depth estimation. di = log(gi)−log(pi), with gi as the depth value
of a pixel in the GT, and pi as the depth value of a pixel in the predicted map.
Referring [23], we set λ to 0.85 and employ the following (2) as loss functions to
supervise the outputs of CGDDs (Ld) and the final output depth map (Lfd):

Ld =
N∑

j=1

α
√

lsi(Pj), Lfd = α
√

lsi(Pfd) (2)

where N denotes the total number of CGDDs, α is set to 10, Pj represents the
depth map output by a specific CGDD, and Pfd represents the final output
depth map.

Finally, the overall loss function is expressed as (3):

Loss = wcLc + wbLb + wdLd + wfdLfd + wfcLfc (3)

where wc, wb, wd, wfd and wfc represent the weight parameters for Lc, Lb, Ld,
Lfd and Lfc, respectively.

4 ORB-SLAM2-GSD

Our method is built upon the RGB-D system of ORB-SLAM2 [5]. In addition to
the inputs of original RGB images and depth maps obtained from the RGB-D
camera, we also use CGSDNet-Depth for data preprocessing, incorporating mask
images and depth maps of the glass surfaces as inputs. The newly introduced
glass surface mask image and depth map inputs throughout both the Tracking
thread of ORB-SLAM2 and our Dense Reconstruction thread. These inputs serve
two main purposes: (1) Feature Point Filtering (FPF): Filtering ORB feature [11]
points within the glass surface region. (2) Glass Surface Reconstruction (GSR):
Completing the dense reconstruction of the glass surfaces.
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Algorithm 1. Feature Point Filtering
Input: p - coordinate of the feature point, mDepth - camera depth map, mDepthGS - depth map

of glass surfaces, depthAvg - average depth of non-glass pixels.
Output: d - depth value of the feature point.
1: depth ← mDepth.at(p) � Get coordinate p’s camera depth value
2: depthGS ← mDepthGS.at(p) � Get coordinate p’s predicted depth value of glass surfaces
3: depthGap ← depth/depthGS
4: if (1−FPFDGR) < depthGap < (1+FPFDGR) or depth < depthAvg ∗FPFMaxDW then
5: d ← depth � Keep this feature point
6: else
7: d ← 0 � Logically delete this feature point
8: end if
9: return d

4.1 Feature Point Filtering

To eliminate the significant noise introduced by glass surfaces in camera trajec-
tory estimation, we need to filter out ORB feature points with inaccurate depth
data within the glass surface region. Initially, during the extraction of ORB fea-
ture points from the input RGB image, we utilize the mask image to determine
whether the feature points are within the glass surface region. When the mask
value of a particular feature point is greater than our FPFMinMV (FPF Min
Mask Value, the greater the mask value, the more likely it is glass) threshold
parameter, we identify the feature point as being within the glass surface region
and assign its class_id to 0. When calculating the depth value of the feature
point, if its class_id is not equal to 0, we directly use the camera depth value
(the depth value from the depth map captured by the camera). If the class_id
is 0, we employ Algorithm 1 to compute the depth value for that feature point.

The primary objective of Algorithm 1 is to retain those feature points within
the glass surface region that still have accurate camera depth values. Specifically,
we keep feature points whose depth values are close to the glass surface because
their camera depth values are not significantly affected by refraction. Feature
points near the camera are also retained, as they are likely to be located between
the glass surfaces and the camera, thus still having accurate camera depth values.
As shown in lines 3 and 4 of Algorithm 1, we determine whether the feature point
is close to the glass surface by checking if the ratio of its camera depth value to
the predicted depth value of the glass surface falls within the range controlled by
our FPFDGR (Depth Gap Range) parameter. Additionally, we assess whether
the feature point is close to the camera by checking if its depth value is less
than the product of the average depth of non-glass pixels (mask value less than
our MaxMV threshold parameter) and our FPFMaxDW (Max Depth Weight)
parameter. Feature points that do not meet these conditions are removed.

4.2 Glass Surface Reconstruction

We use the camera poses of keyframes from ORB-SLAM2, with the correspond-
ing RGB images and camera depth maps, to generate point clouds and perform
dense reconstruction of each non-glass pixel. For achieving dense reconstruction
of glass surfaces, generating point clouds at the position of the glass surfaces,
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Algorithm 2 Border Pixel Depth Calculation
Input: p - coordinate of the border pixel, mDepth - camera depth map, mDepthGS - depth map

of glass surfaces, mMask - mask image, depthAvg - average depth of non-glass pixels.
Output: d - depth value of the border pixel.
1: for all p′ that p′ ∈ All pixels within a range of GSRPR (Pixel Range) pixels around p. do
2: mask ← mMask.at(p′) � Get the mask value of pixel p′

3: depth ← mDepth.at(p′) � Get the camera depth value of pixel p′

4: depthGS ← mDepthGS.at(p′) � Get p′’s predicted depth value of glass surfaces
5: depthGap ← depth/depthGS
6: if mask < MaxMV then � p′ is not a glass pixel
7: d′ ← depth � Take the camera depth value as p′’s depth value
8: else if mask < GSRMinMV then � p′ could be a glass pixel, further determine the gap

between the camera depth value and the predicted depth value of glass surface
9: if (1 − GSRDGR) < depthGap < (1 + GSRDGR) then � The gap is small
10: d′ ← depth
11: else � The gap is large
12: d′ ← depthGS � Take the predicted depth value as p′’s depth value
13: end if
14: else � p′ is highly likely to be a glass pixel
15: d′ ← depthGS
16: end if
17: if 0 < d′ < depthAvg ∗ GSRMaxDW then � Discard p′ with larger depth values
18: depthSum ← depthSum + d′

19: n ← n + 1
20: end if
21: end for
22: if n �= 0 then � Any p′ meets the criteria of line 17
23: d ← depthSum/n
24: else � No p′ meets the criteria of line 17
25: d ← mDepthGS.at(p)
26: end if
27: return d

we need to obtain the correct depth values for them. Considering that the cam-
era depth values are more accurate compared to the depth values predicted by
CGSDNet-Depth, we mainly utilize the camera depth values of the opaque bor-
ders around the glass surfaces, with the predicted depth values as auxiliary data,
to calculate the depth values of glass surfaces. For a specific glass pixel (mask
value greater than our GSRMinMV threshold parameter), we first search for
the four nearest non-glass pixels in the up, down, left, and right directions rel-
ative to the glass pixel on the image plane, named border pixels. Subsequently,
we employ the depth values of these four border pixels and their surrounding
pixels to calculate their final depth values, as illustrated in Algorithm 2.

After obtaining the depth values of the four border pixels, we calculate a
weighted average based on their distances from the original glass pixel to obtain
two average depth values in the up-down and left-right directions. If the gap
between these two depth values is relatively small (similar to line 9 of Algorithm
2, adjusted through our GSRDGRXY parameter), the average of them is taken
as the final depth value for the glass pixel, and the corresponding point cloud
is generated. Otherwise, the point cloud corresponding to that glass pixel is
discarded. Additionally, we discard the point clouds corresponding to pixels with
depth values that are greater than the product of the average depth of non-glass
pixels and our GSRMaxDW parameter, similar to line 17 in Algorithm 2. All
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the point clouds are colored using the RGB values of the corresponding pixels
in the original RGB image.

5 GS RGB-D Dataset

5.1 Overview

To evaluate RGB-D SLAM methods, various indoor scene datasets like TUM
RGB-D [6] are widely available. However, most existing indoor datasets lack
scenes where glass surfaces are the main element. To assess the effectiveness of
our proposed ORB-SLAM2-GSD, we construct a new dataset that specifically
focuses on indoor scenes with abundant glass surfaces, named GS (Glass Surface)
RGB-D. We capture datasets in several different glass surface scenes, including
6 daytime scenes and 2 nighttime scenes. Figure 5 illustrates an example of the
captured scene and the camera ground truth (GT) trajectories in our dataset.

Each sequence in our GS RGB-D dataset consists of RGB images, depth
maps, and camera GT trajectory. The RGB images and depth maps are captured
using an Intel RealSense D435 depth camera with a resolution of 640×480 pixels,
while the camera GT trajectory is obtained using a Niryo One robot arm.

5.2 Camera GT Trajectory Acquisition

Fig. 5. Example of sequence in our GS RGB-D dataset. Left: The glass surface scene
we captured. Right: The camera ground truth trajectories.

Our camera-robot arm system is presented in Fig. 6. In our dataset, the camera
GT trajectory is a sequence of quaternion-format transformation matrix T base

camera,
representing the transformation of the RGB camera relative to the base of the
robot arm. The calculation of T base

camera is formulated in (4):

T base
camera = T base

end · T end
camera (4)

where T base
end is calculated utilizing forward kinematics, and T end

camera can be
defined based on the dimensions of the workpiece used to connect the camera
and the robot arm’s end and the camera as depicted in Fig. 6(b).
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Fig. 6. Our camera-robot arm system. Left: The definition of coordinate systems for the
robot arm’s base (green) and end (red). Right: The relationship between the coordinate
system of the robot arm’s end (red) and the camera (yellow). (Color figure online)

During the dataset-capturing process, the robot arm is guided to follow the
pre-obtained joint sequence while simultaneously capturing real-time camera
images and recording the current pose of the camera. Throughout this entire
process, the base of the robot arm remains stationary.

6 Experiment

6.1 Implementation Details

CGSDNet-Depth. We initially pre-trained the segmentation part of CGSDNet-
Depth on 3 glass surface datasets: GDD [16], GSD [17], and HSO [24]. Subse-
quently, we train the whole CGSDNet-Depth network on the benchmark dataset
GW-Depth [8] throughmulti-task joint training.The input image size is adjusted to
416×416 pixels, and the batch size is set to 6. Data augmentation includes horizon-
tal flipping, vertical flipping, random cropping, and color jittering, consistent with
[8]. The parameters of the backbone network are initialized using the pre-trained
ConvNeXt-B [21], while other parameters are initialized with the default random
initialization in PyTorch [25]. The weight parameters of the loss function wc, wb,
wd, wfd and wfc are empirically set to 1, 3, 1, 2, and 3, respectively. We utilize the
same optimizer and learning strategy as in [7]. The model is trained for 200 epochs
on an NVIDIA GTX 3090 Ti graphics card.

ORB-SLAM2-GSD. During testing, we employ a consistent set of parameter
settings. For the mask value threshold parameters, MaxMV , FPFMinMV ,
and GSRMinMV are set to 5, 250, and 127.5, respectively. Regarding Fea-
ture Point Filtering, we set FPFDGR and FPFMaxDW to 0.3 and 1, respec-
tively. For Glass Surface Reconstruction, GSRPR, GSRDGR, GSRDGRXY ,
and GSRMaxDW are set to 2, 0.1, 0.1, and 2, respectively.
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Table 1. Depth estimation and segmentation comparison result on the GW-Depth [8]
test set. “*” indicates that the quantitative values for this method are sourced from [8].
Traditional depth estimation methods lack glass surface segmentation outputs, and the
corresponding values are replaced by “-”. The best results are highlighted in bold.

Training set Method A1.25 ↑A1.252 ↑A1.253 ↑ REL↓ RMS↓ IoU↑ Fβ ↑ MAE↓ BER↓
NYU Depth V2 [10] NeWCRFs [18] 0.364 0.678 0.863 0.460 1.558 – – – –

iDisc [9] 0.362 0.692 0.879 0.411 1.280 – – – –
GW-Depth [8] NeWCRFs* [23] 0.851 0.965 0.997 0.123 0.324 – – – –

Liang et al. [8] 0.902 0.991 0.998 0.097 0.279 92.79 0.965 0.055 8.65
GW-Depth [8] CGSDNet-Depth 0.894 0.984 0.997 0.109 0.308 95.28 0.977 0.036 5.95

Fig. 7. Visual comparison between our proposed CGSDNet-Depth and Liang et al.’s
method [8] on the GW-Depth [8] test set. The comparative results include two aspects:
glass surface depth estimation and glass surface segmentation.

6.2 Evaluation Metrics

CGSDNet-Depth. To evaluate the glass surface segmentation performance of
our proposed CGSDNet-Depth, we employ four widely used metrics in the glass
surface segmentation field, including Intersection over Union (IoU), F-measure
(Fβ), Mean Absolute Error (MAE), and Balance Error Rate (BER). Subse-
quently, to assess the depth estimation performance of CGSDNet-Depth, we
utilize three metrics as in [8], including Accuracy with Threshold (Athr), Aver-
age Relative Error (REL), and Root Mean Squared Error (RMS), where Athr is
divided into three metrics (A1.25, A1.252 , A1.253) by setting different thresholds.
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ORB-SLAM2-GSD. We utilize the widely used Absolute Trajectory Error
(ATE) proposed in [6] to evaluate the performance of camera trajectory esti-
mation. Additionally, we compare the dense reconstruction performance in the
glass surface region between our proposed ORB-SLAM2-GSD and ORB-SLAM2
[5] through direct observation of the dense reconstruction results.

6.3 Comparison with the SOTAs

CGSDNet-Depth. We compare our CGSDNet-Depth with 3 SOTAs in related
fields. As shown in Table 2, we first evaluate the performance of traditional depth
estimation methods (NeWCRFs [18] and iDisc [9] trained on the NYU Depth
V2 [10]) on the GW-Depth [8] test set. It is evident that their one-shot abil-
ity for depth estimation on glass surfaces is subpar. However, after fine-tuning
on the GW-Depth training set, the performance of NeWCRFs and Liang et
al.’s method [8] in glass surface depth estimation improved significantly. Unlike
them, we first pre-train the glass surface segmentation part of our CGSDNet-
Depth on the GDD, GSD, and HSO datasets, and then fine-tune the entire net-
work on the GW-Depth training set. Table 1 demonstrates that our CGSDNet-
Depth achieves depth estimation performance close to Liang et al.’s method,
while significantly outperforming it in segmentation performance. The qualita-
tive comparison results presented in Fig. 7 further highlight the superiority of
our CGSDNet-Depth in glass surface segmentation.

Table 2. Camera trajectory estimation (RMSE (m) of ATE) comparison result on our
GS RGB-D dataset and the TUM RGB-D [6] dataset. Each sequence is run 5 times,
and the median result is recorded. The best results are highlighted in bold.

Dataset Sequence ORB-SLAM2 [5] ours

GS RGB-D corridor_chair_day 0.059 0.036
GS RGB-D corridor_chair_night 0.021 0.019
GS RGB-D corridor_bush_day 0.046 0.044
GS RGB-D hall_door_day 0.037 0.034
GS RGB-D hall_sofa_day 0.052 0.050
GS RGB-D living_room_day 0.058 0.052
GS RGB-D laboratory_night 0.053 0.049
GS RGB-D office_day 0.087 0.083
TUM RGB-D [6] fr2/desk 0.009 0.009

ORB-SLAM2-GSD. We conduct a comparative analysis between our pro-
posed ORB-SLAM2-GSD and ORB-SLAM2 on our GS RGB-D dataset. Due to
the unavailability of Transfusion’s [15] code, it is not included in the compar-
ison. As depicted in Table 2, our method outperforms ORB-SLAM2 in camera
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trajectory estimation across all sequences in our GS RGB-D dataset. Addition-
ally, in an example sequence of the TUM RGB-D [6] dataset, which lacks glass
surfaces, our method does not negatively impact ORB-SLAM2. Furthermore,
our method exhibits proficiency in the dense reconstruction of glass surfaces, as
depicted in Fig. 8. In contrast, ORB-SLAM2 tends to neglect the glass surfaces
and performs dense reconstruction of objects situated behind or reflections on
them. However, our ORB-SLAM2-GSD effectively reconstructs the glass surfaces
in both scenarios and successfully restores the appearance mapped by them.

Fig. 8. Comparison of dense reconstruction for glass surfaces between our proposed
ORB-SLAM2-GSD and ORB-SLAM2 [5] on our GS RGB-D dataset.

Table 3. The results of the ablation study on our CGSDNet-Depth. “Pre-trained” refers
to pre-training on the segmentation part of our CGSDNet-Depth, while “ConvBlock”
denotes the Conv Block within our Context Guided Depth Decoder (CGDD). “�”
indicates the inclusion of the corresponding component, while “-” indicates the absence
of the corresponding component. The best results are highlighted in bold.

+ConvBlock+Pre-trainedA1.25 ↑A1.252 ↑A1.253 ↑ REL↓ RMS↓ IoU↑ Fβ ↑ MAE↓ BER↓
- - 0.858 0.983 0.996 0.121 0.359 94.13 0.956 0.044 6.75
� - 0.870 0.983 0.996 0.122 0.332 94.01 0.955 0.045 7.11
- � 0.878 0.980 0.997 0.110 0.316 94.90 0.962 0.039 6.29
� � 0.894 0.984 0.997 0.109 0.308 95.28 0.977 0.036 5.95
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6.4 Discussion and Future Work

CGSDNet-Depth. Due to the lack of pre-training on the NYU Depth V2, our
CGSDNet-Depth performs slightly worse than Liang et al.’s method in terms of
depth estimation. But in Fig. 7, it can be observed that our CGSDNet-Depth
is better at distinguishing the depth values of glass surface regions from other
regions, qualitatively showing the beneficial impact of more refined contextual
features of glass surfaces on depth estimation for glass surfaces. Moreover, the
results from the ablation study in Table 3 demonstrate that the glass depth
estimation performance significantly improve when using the pre-trained model
for glass surface segmentation, compared to not using the pre-trained model. This
further proves that stronger glass surface segmentation capability can enhance
depth estimation for glass surfaces. Table 3 also validates the effectiveness of the
Conv Block in our Context Guided Depth Decoder (CGDD).

However, owing to the small data volume (only 1018 images in the training
set) and repetitive scenes in the GW-Depth dataset, both our CGSDNet-Depth
and Liang et al.’s method do not perform so well in real-world scenes, as Fig. 9.
In the future, we plan to create a larger dataset for glass surface depth estimation
and design a network that can be pre-trained on both glass surface segmentation
and depth estimation datasets.

ORB-SLAM2-GSD. Experiments demonstrate that our lightweight GSD
module can enhance the performance of ORB-SLAM2 in glass surface scenes.
Additionally, by removing some feature points within the glass surface region,
the tracking speed has even increased. The speed improvement varies depend-
ing on the proportion of removed feature points to the total number of feature
points. For example, in the corridor_chair_day sequence, the speed improve-
ment is approximately 58.16%. However, due to the potential risk of removing
too many feature points, which reduces the number of map points that can
be tracked, our method’s camera trajectory estimation performance may also
be affected. Considering that ORB-SLAM2 is not primarily designed for dense
reconstruction, we plan to integrate our GSD module with direct methods in

Fig. 9. Examples of our CGSDNet-Depth and Liang et al.’s method [8] in real-world
scenes. Although both our CGSDNet-Depth and Liang et al.’s method can output the
correct depth value of the glass surface acting as an obstacle, their sensitivity to depth
estimation of other objects decreases, such as the trash can within the red box. (Color
figure online)
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RGB-D SLAM, such as ElasticFusion [4], to achieve better dense reconstruction
results and global 3D consistency, while mitigating the side effects of filtering
out glass surface points. Additionally, given the relatively small scale of our GS
RGB-D dataset, we intend to introduce a larger and more diverse RGB-D SLAM
dataset specifically for glass surface scenes in the future to provide a more reliable
evaluation.

7 Conclusion

In this paper, we propose the CGSDNet-Depth network and a novel Context
Guided Depth Decoder (CGDD), which utilizes contextual features of glass sur-
faces to guide depth feature generation, enabling high-quality simultaneous glass
surface segmentation and depth estimation. We also present a lightweight GSD
(Glass Surface Detection) module to enhance ORB-SLAM2’s camera trajectory
estimation and dense reconstruction performance in glass surface scenes. More-
over, we construct the first RGB-D dataset specifically designed for glass surface
scenes and validate the superiority of our method.
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Abstract. Voxel-based sparse convolutional networks(sparse CNNs) are
widely used in 3D point cloud semantic segmentation. In particular, fea-
ture upsampling, as one of the fundamental operations in the sparse
CNNs, has been under-explored compared with other basic operations
such as sparse convolution and pooling. Therefore, we dive deep into
this area and focus on the upsampling design in sparse CNNs. 3D
sparse deconvolution is the most representative feature unsampling in
sparse CNNs. However, it applies the same kernel across the point cloud,
regardless of the content of each point. To this end, we propose 3D
Content-Aware Feature Upsampling(3DCAFU), a universal and effec-
tive module beyond sparse deconvolution in sparse CNNs. 3DCAFU
has three appealing properties: (1) Content-aware processing. Instead
of a fixed kernel for the point cloud feature, 3DCAFU generates point-
wise kernels specific to each point for adaptive upsampling. (2) Con-
text aggregation. Since the generation of the point-wise kernels aggre-
gates the context of local neighborhoods, it makes the upsampled feature
of 3DCAFU contain richer semantic information compared with sparse
deconvolution. (3) Lightweight and efficient. 3DCAFU introduces little
extra parameters and accelerates the computation on GPUs by gather-
scatter paradigm. Extensive experiments on the SemanticKITTI, Seman-
ticPOSS, nuScenes, and Waymo benchmarks validate the effectiveness of
our approach. For instance, it outperforms the baseline by 1.7% mIoU in
the SemanticKITTI dataset. SphereFormer with 3DCAFU has achieved
state-of-the-art performance among voxel-based methods for 3D seman-
tic segmentation. The code will be made publicly available soon.

Keywords: 3D Content-Aware Feature Upsampling · Voxel-based
Sparse CNNs · 3D Point Cloud Semantic Segmentation

1 Introduction

Point cloud is a set of points obtained by 3D sensors. Compared with image,
point cloud provides reliable and accurate depth information. 3D Point Cloud
semantic segmentation is to assign a semantic label to each point, which acts as
an essential component in autonomous driving, digital cities, and service robots.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15330, pp. 411–426, 2025.
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Unlike 2D image, 3D point cloud is highly sparse and irregular. Therefore,
how to learn effective representations from point clouds is a big challenge for
semantic segmentation. With the advent of deep learning, an enormous amount
of methods have been proposed. View-based methods flatten 3D point clouds into
dense 2D representations using spherical projection [16] and bird’s-eye view pro-
jection [32]. However, the projections inevitably destroys the physical dimension
distortion and height information. Point-based methods process original point
clouds directly, based on PointNet [19] and PointNet++ [20] networks. How-
ever, the neighbor sampling and grouping operations are time-consuming due to
the unstructured point locations. Voxe-based methods rasterize the point clouds
into voxels that retain regular structure and apply 3D sparse CNNs for effi-
cient feature extraction [6,8,9]. Voxel-based sparse CNNs achieve state-of-the-art
performance in multiple large-scale outdoor point cloud semantic segmentation
benchmarks, and we further research based on the method.

Voxel-based sparse CNNs mostly adopt encoder-decoder architecture in 3D
semantic segmentation. Specifically, the encoder gradually downsamples the
points using sparse convolution and captures high-level semantic features. The
decoder focuses on recovering object details and spatial dimensions through
upsampling the points. As shown in Fig. 1, 3D sparse convolution [8,9] takes
input from a specific region of points and outputs a point along with a hashmap
when downsampling. The hashmap reflects a many-to-one mapping relationship
between these points through their coordinates. If there is no point within the
region, the corresponding position in the output feature map is a null value.
3D sparse convolution avoids the computation issue by restricting the output
feature positions to the input. However, it results in sparse deconvolution failing
to fully utilize neighborhood information during upsampling. Besides, similar
to 2D deconvolution, 3D sparse deconvolution also cannot dynamically generate
upsampling kernels based on the content of the input feature map.

Fig. 1. Sparse convolution in downsampling and sparse deconvolution in upsampling.

To address the aforementioned problems, we propose a content-aware feature
upsampling module named 3DCAFU for voxel-based sparse CNNs. Inspired by
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CARAFE [27] in 2D images, 3DCAFU is capable of adapting to the feature
content, aggregating contextual information, and maintaining computation effi-
ciency. 3DCAFU consists of two parts: Kernel Generation Module and Upsam-
pling Module. Specifically, the Kernel Generation Module predicts an upsam-
pling kernel for each position of the output feature map, whose weights are
generated from the content of the input feature map. Rather than being learned
as network parameters, these weights are dynamically predicted using sparse
convolution layers, which can aggregate the local neighborhood information of
the input feature. In the Upsampling Module, we perform linear computation
between input features at specific positions and their corresponding generated
kernels, and then obtain the output features at the target positions according to
the existing hashmap. Additionally, we perform dimensionality reduction in the
Kernel Generation Module to reduce model complexity. At the same time, to
maintain computational efficiency, we accelerate the computation of 3DCAFU
on GPUs by the gather-scatter paradigm.

Our 3DCAFU can be easily integrated into voxel-based sparse CNNs. To
demonstrate its effectiveness, we experiment with existing 3D semantic seg-
mentation frameworks [6,8,33]. Our method achieves great enhancement on
SemanticKITTI [1], SemanticPOSS [18], nuScenes [2], and Waymo [22] bench-
marks. These results manifest that our approach has practical value. The key
contributions of our paper are highlighted as follows:

• We propose a lightweight and efficient learnable feature upsampling module
called 3DCAFU by generating content-aware kernels. It fully utilizes local
neighborhood information and can be seamlessly plugged into various voxel-
based sparse CNNs for 3D semantic segmentation.

• Extensive experiments are completed on four large-scale point cloud datasets
using representative 3D sparse CNNs to verify the availability and scalability
of our 3DCAFU.

• SphereFormer with 3DCAFU has achieved state-of-the-art performance
among voxel-based methods for 3D semantic segmentation.

2 Related Work

2.1 3D Semantic Segmentation

The purpose of 3D semantic segmentation is to predict point-wise seman-
tic labels for a given point cloud. This technology has developed rapidly in
recent years, mainly thanks to the implementation of various deep neural net-
works. Approaches for LiDAR point cloud semantic segmentation can be roughly
grouped into four categories, i.e., view-based, point-based, voxel-based, and
hybrid-based methods. View-based methods [11,30] transform the point cloud
into a range view or a bird’s-eye view, and then use a 2D network for fea-
ture extraction. Point-based methods [10,29] directly take the coordinates and
features of points as input and design a variety of operators to aggregate neigh-
borhoods. Voxel-based methods [5,12,24,33] transform point clouds into regular
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voxels, and then apply 3D sparse CNNs to extract features. Hybrid-based meth-
ods [15,31] either combine the three modes of view, point, and voxel, or combine
2D images and 3D point clouds to achieve multi-modal feature fusion and obtain
rich semantic information. Recently, state-of-the-art works for 3D semantic seg-
mentation tend to rely largely or fully on sparse CNNs. We follow this line of
research and propose an efficient feature upsampling operation in sparse CNNs.

2.2 Feature Upsampling

Feature Upsampling in 2D CNNs. Traditional interpolation-based upsam-
pling approaches such as nearest and bilinear interpolation, have been exten-
sively adopted in classical models for their simplicity. However, they fundamen-
tally only leverage distances to measure the correlations between pixels and use
hand-crafted upsampling kernels. These limitations have motivated researchers
to explore learnable upsampling techniques, such as deconvolution [17], pixel
shuffle [21], deformable convolution [7], dynamic convolution [3], CARAFE [27].
Deconvolution is an inverse operation of the convolution and widely used. How-
ever, the deconvolution has not considered the local variations explicitly in the
images, since it applies the same kernel across different locations. Pixel shuf-
fle reshapes depth on the channel space into width and height on the spatial
space. Deformable convolution combines the idea of geometric transformations
with regular convolutional layers to predict kernel offsets. CARAFE proposes
a different upsampler that can generate upsampling kernels based on the input
feature map.

Feature Upsampling in 3D CNNs. Similar to 2D, 3D interpolation meth-
ods determine weights based on the spatial distance between points to achieve
upsampling. For point-based methods, such as KPConv [26], PointConv [28], and
RS-Conv [14], there are several learnable feature upsampling operators being
proposed. The convolution weights of KPConv are located in Euclidean space
by kernel points, and applied to the input points close to them. PointConv treats
convolution kernels as nonlinear functions of the local coordinates of 3D points
comprised of weight and density functions. With respect to a given point, the
weight functions are learned with multi-layer perceptron networks and the den-
sity functions through kernel density estimation. In RS-Conv, the convolutional
weight for local point set is forced to learn a high-level relation expression from
predefined geometric priors, between a sampled point from this point set and
the others. However, they only operate on points, which is not suitable for voxel-
based sparse convolutional networks.

In voxel-based sparseCNNs, the most commonly used feature upsampling
operation is sparse deconvolution [8,9], which is an inverse operation of sparse
convolution. The problem of kernels not adapting to input feature content
also exists in 3D sparse deconvolution. Due to the sparsity of point cloud,
sparse deconvolution faces new challenges of being unable to fully obtain neigh-
borhood information. Recently, there are some novel convolutions, such as
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Focal Sparse Convolution(FocalSConv) [4], Sparse Depthwise Separable Convo-
lution(SDSConv) [13]. However, there is not much research on specialized feature
upsampling operator. Therefore, we would like to design a content-aware feature
upsampling operator in 3D sparse CNNs.

Inspired by CARAFE, we design 3DCAFU, a feature upsampling operator
in the 3D sparse CNNs, which can both expand the receptive field and adap-
tively generate upsampling kernels. 3DCAFU and dynamic convolution share
similar design philosophy but with different focuses. Both dynamic convolution
and 3DCAFU are content-aware operators, but a fundamental difference between
them lies at their kernel generation process. Specifically, dynamic convolution
works as a two-step operators, where the additional kernel prediction layer and
convolution layer require heavy computation. On the contrary, 3DCAFU is sim-
ply a reassembly of features in local regions, without learning the feature trans-
formation across channels. Thus, it is more efficient in memory and speed.

Fig. 2. The overall framework of 3DCAFU. It is composed of two key components,
i.e., Kernel Generation Module and Upsampling Module. The kernel generation module
generates upsampling kernels based on the input. The upsampling module first performs
dot product of the input and the kernels, and then obtains the output through mapping
with the hashmap. The hashmap records the coordinate mapping relationship of points
during the downsampling process, which can be used directly while upsampling. The
specific application of hashmap is in Sec. 3.3. White areas in point cloud and feature
maps represent null values.



416 Y. Song et al.

3 Method

Feature upsampling is a key operation in 3D sparse CNNs for point cloud seman-
tic segmentation. In this paper, we propose a content-aware feature upsampling
operator (3DCAFU). For each position in the output feature map, 3DCAFU
can predict an upsampling kernel through the content of the input feature map.
Therefore, 3DCAFU can use adaptive kernels at different locations and aggre-
gate the local neighborhood information. Meanwhile, 3DCAFU introduces little
extra parameters and maintains the computation efficiency on GPUs by opti-
mized gather-scatter paradigm. Compared with mainstream feature upsampling
operators, 3DCFU achieves better performance.

3.1 Formulation

As shown in Fig. 2, 3DCAFU generates upsampling kernels from the input fea-
ture map in Kernel Generation Module. Upsampling Module reorganizes the
input feature with the predicted kernels and outputs upsampled feature through
mapping with the existing hashmap. Given a feature map X ∈ RN×C and an
upsample ratio σ (supposing σ is an integer), 3DCAFU produces a new fea-
ture map X

′ ∈ RN
′×C . N and N

′
represent the number of voxels in the input

and output respectively, and C represents the feature dimension. For any target
location l

′
=

(
x

′
, y

′
, z

′
)

of the output feature map X
′
, there is a corresponding

source location l = (x, y, z) in the input feature map X. The location mapping
relationship is stored in the hashmap which has been generated during down-
sampling.

Kernel Generation Module Ψ is shown in Eqn. 1, where R (Xl, k) is the k ×
k×k sub-region of X centered at the location l. The module predicts a location-
wise kernel Wl for each location l in the input X, based on the neighbor of Xl.
Upsampling module Φ reassembles feature Xl at the source location with the
kernel Wl, and then obtains feature X

′

l′ at the target location through mapping
with the hashmap, as shown in Eqn. 2.

Wl = Ψ (R (Xl, k)) (1)

X
′

l′ = Φ (Xl,Wl) (2)

3.2 Kernel Generation Module

The purpose of the kernel generation module is to generate content-aware upsam-
pling kernels. Each source location on X corresponds to σ3 target locations on
X

′
. Due to the sparsity of the point cloud, voxels at some locations are empty

and have null feature values. We predict a 1 × C kernel for Xl by sparse con-
volution layers. It not only adapts the upsampling kernels to the position and
content of voxels, but also contains context information in the kernels.
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Channel Compressing. We adopt a 1 × 1 × 1 sparse convolution layer to
compress the input feature channel from C to Cm. Reducing the channel of input
feature map leads to less parameters and computational cost in the following
steps, making 3DCAFU more efficient. Experimental results show that reducing
the feature channel in an acceptable range will not harm the performance.

Content Encoding. In the encoding step, we adopt a k × k × k sparse convo-
lution to generate upsampling kernels. When k is constant, channel compression
reduces the parameter of the encoder from k3 × C × C to

(
k3 + 1

) × Cm × C
because Cm is generally much smaller than C. It is also possible to use larger
kernel sizes for the encoding step under the same budget. Intuitively, increasing k
can expand the receptive field and exploit contextual information within a larger
region, which is important for the prediction of upsampling kernels. However,
the computational complexity grows with the cube of the kernel size, while the
benefits from a larger kernel size do not. We need to choose appropriate Cm and
k with a good trade-off between performance and efficiency.

Fig. 3. The gather-scatter paradigm in 3DCAFU is to accelerate the computation on
GPUs

3.3 Upsampling Module

With each kernel Wl, the upsampling module reassembles Xl via the function
Φ. We adopt a simple form of Φ, which is just a dot product operator. As shown
in Eqn. 3, after dot producting of the source feature Xl and the corresponding
kernel Wl, the target feature X

′

l′ is finally obtained through Mapping with with
the hashmap. As shown in Fig. 2, for instance, the input feature with coordinates
(1, 1, 1) corresponds to three output features with coordinates (0, 0, 0), (1, 0,
1), and (1, 1, 1). Therefore, the three feature values are all the results of the dot
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product of the input feature with its corresponding upsampling kernel. With the
predicted kernel, the same voxel contributes to the upsampled voxels differently.
3DCAFU employs more contextual information from local neighborhoods, so the
semantics of the upsampled output feature map can be stronger.

X
′

l′ = Mapping (Xl · Wl) (3)

Unlike conventional dense computation, sparse workload was not favored by
modern high-parallelism hardware. On the one hand, the sparse nature of point
clouds leads to irregular computation workloads: i.e., different kernels might
correspond to drastically different numbers of matched input/output pairs. On
the other hand, neighboring points do not lie contiguously in the sparse point
cloud representation. In order to improve calculation and reduce memory, our
upsampling module is based on torchsparse [23,25], a high-performance inference
engine library. Following the gather-scatter paradigm as shown in Fig. 3, we not
only group the input feature vectors, but also the generated kernels according
to the kernel offset. Then the corresponding features and kernels are processed
in batches to achieve regular calculations. Finally, these dot product results are
scattered and accumulated to the corresponding output feature vectors.

4 Experiments

4.1 Experimental Setting

Datasets and Evaluation Metrics. Following previous work, we evaluate
methods on SemanticKITTI [1], SemanticPOSS [18], nuScenes [2], and Waymo
Open Dataset [22] for 3D semantic segmentation. SemanticKITTI is a large-
scale outdoor traffic scene dataset recorded with a Velodyne-64 LiDAR scanner.
It consists of 43511 scans with point-wise annotations of 19 semantic classes. We
follow the widely-adopted split and use sequences 00-07, 09-10 as the training set
and sequence 08 for validation. SemanticPOSS consists of 2988 annotated point
cloud scans of 14 semantic classes. We follow the official benchmark setting,
i.e. sequence 03 for validation and the rest for training. NuScenes consists of
1000 driving scenes where 850 scenes are selected for training and validation,
and the remaining 150 scenes are taken as the testing split. It is collected with
a 32 beams LiDAR sensor at 20Hz frequency with point-wise annotations of
16 semantic classes. Waymo Open Dataset collects point cloud scans in 1150
scenes of 20s duration. It is collected with five LiDAR sensors at 20Hz frequency
with point-wise annotations of 23 semantic classes. We follow the official split of
training data and validation data.

Network Architecture. We evaluate 3DCAFU over three widely adopted
semantic segmentation networks: 1) As shown in Fig 4, MinkUNet [6] is a typ-
ical voxel-based model that implements the idea of sparse convolutional net-
works originally presented by Graham et al. [8]. 2) SPVCNN [24] is a hybrid
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Fig. 4. 3DCAFU in MinkUNet for 3D semantic segmentation.

network with sparse convolutions and a point-based sub-network. With negli-
gible overhead, the point-based branch can preserve the fine details even from
large outdoor scenes. 3) RPVNet [31] proposes a range-point-voxel fusion net-
work to utilize different view’s advantages and alleviate their shortcomings in
segmentation task. 4) SphereFormer(SpTr) [12] is a voxel-based model, which
significantly boosts the performance of sparse distant points by radial window
self-attention and achieves state-of-the-art performance in voxel-based methods.

Table 1. Semantic segmentation results of MinkUNet using different feature upsam-
pling methods on SemanticKITTI, Waymo, SemanticPOSS, and nuScenes val sets. And
additional parameters related to the upsampling methods.

method param. Sem.KITTI Waymo Sem.POSS nuScenes

Nearest(Near.) 0 58.8 56.9 55.5 71.7
Trilinear 0 59.0 57.8 56.0 72.1
Sparse Deconv 240k 60.6 59.5 57.1 73.3
Near.+SparseConv 240k 60.5 59.3 57.1 73.1
Near.+FocalSConv 240k 61.1 60.0 57.9 73.7
Near.+SDSConv 33k 59.7 58.5 56.4 72.8
3DCAFU 136k 62.3(+1.7)60.8(+1.3)58.9(+1.8)74.6(+1.3)

Implementation Details. We conducted experiments with a TITAN RTX
GPU for MinkUNet and a single RTX 4090 GPU for SPVCNN, RPVNet, and
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Table 2. Semantic segmentation results on SemanticKITTI, Waymo, SemanticPOSS
and nuScenes val sets. � means with 3DCAFU.

method frames/sSem.KITTIWaymoSem.POSSnuScenes

MinkUNet 9.42 60.6 59.5 57.1 73.3
MinkUNet� 9.28 62.3 60.8 58.9 74.6
SPVCNN 7.59 63.0 61.3 60.6 77.4
SPVCNN� 7.48 63.9 62.1 61.8 78.1
RPVNet 6.45 65.2 63.0 63.7 77.6
RPVNet� 6.46 66.0 63.5 64.4 78.0
SpTr 4.21 67.8 64.2 78.4 69.9
SpTr� 4.09 69.2 70.0 64.6 78.9

SphereFormer. We adopt the default training hyper-parameters in the open-
source libraries for the networks. We train the models for 30 epochs with sgd opti-
mizer named OpenPCSeg [15] and cosine warmup scheduler where momentum is
set to 0.9. The learning rate and weight decay are set to 0.24 and 0.0001, respec-
tively. Batch size is set to 4 on Waymo Open Dataset, and 8 on SemanticKITTI,
SemanticPOSS and nuScenes. If not otherwise specified, 3DCAFU adopts a fixed
set of hyper-parameters in experiments, where the compressed channel Cm is 32,
the upsampling rate σ is 2, and the convolution kernel size k is 3.

4.2 Semantic Segmentation Results

Effectiveness. We apply 3DCAFU in MinkUNet to evaluate the semantic seg-
mentation results on SemanticKITTI, Waymo, SemanticPOSS, and nuScenes.
As shown in Table 1, 3DCAFU has a significant improvement in the perfor-
mance of semantic segmentation compared with the other upsampling meth-
ods. MinkUNet with 3DCAFU improves the mIoU by 1.7% and 1.8% in the
SemanticKITTI and SemanticPOSS. 3DCAFU is effective for different baselines
and datasets, indicating its robustness. Compared with interpolation methods,
the kernels of 3DCAFU are learnable. Compared with sparse deconvolution,
3DCAFU has fewer parameters and better performance. Interpolation combined
with convolution can also achieve feature upsampling. We conduct experiments
using nearest-neighbor interpolation combined separately with sparse convolu-
tion, focal sparse convolution, and sparse depthwise separable convolution. The
latter two are currently advanced 3D sparse convolutions. Compared with the
methods, 3DCAFU achieves significant performance improvements with small
parameter increments. The results show that our operator is lightweight and
effective.
Universality. The semantic segmentation results on the SemanticKITTI,
Waymo, SemanticPOSS and nuScenes datasets are shown in Table 2. When using
3DCAFU, the performance of baselines on these benchmarks has been improved.
For the same baseline MinkUNet, 3DCAFU improves segmentation performance
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Fig. 5. Visual comparison between vanilla MinkUNet and ours(MinkUNet with
3DCAFU) on SemanticKITTI validation.
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Table 3. Detailed semantic segmentation results on SemanticKITTI val set. � means
with 3DCAFU.

method mIoU car bi.clemt.cle truckoth-vepers.bi.clstmt.clst road

MinkUNet 60.6 95.8 12.8 59.1 66.8 57.9 60.5 78.6 0.0 93.4
MinkUNet� 62.3 96.6 19.9 61.3 68.6 55.5 66.7 86.7 0.3 93.7
SPVCNN 63.0 96.0 32.4 66.4 67.1 52.9 74.8 84.3 0.0 93.3
SPVCNN� 63.9 96.5 35.9 65.0 66.6 60.2 75.3 83.3 0.1 93.8
RPVNet 65.2 96.3 51.2 75.6 63.4 63.9 71.9 85.6 0.1 93.6
RPVNet� 66.0 96.5 53.9 79.7 68.5 64.9 75.6 87.8 0.2 93.5

SpTr 67.8 96.6 54.4 77.4 65.1 62.0 79.8 89.9 1.6 91.7
SpTr� 69.2 96.8 56.0 76.9 63.2 62.8 82.0 90.2 2.4 93.5

method park. sidew.oth-gr.build. fenceveget. trunkterra. pole traf.

MinkUNet 48.7 79.9 0.0 91.0 62.8 89.1 67.6 76.7 63.9 48.6
MinkUNet� 52.0 80.7 1.2 90.9 61.2 88.8 69.1 75.2 63.3 50.4
SPVCNN 46.9 80.2 1.4 91.1 64.1 88.1 67.0 73.9 64.0 51.6
SPVCNN� 49.0 81.1 2.5 90.6 60.0 89.2 70.2 76.4 64.8 50.5
RPVNet 45.8 81.4 1.1 91.0 62.8 88.4 68.5 75.0 64.649.9
RPVNet� 47.3 81.2 1.4 91.2 63.8 88.2 68.2 74.2 64.5 49.4

SpTr 45.8 80.9 2.9 94.0 70.6 90.4 67.2 80.8 62.5 69.5
SpTr� 50.6 81.2 3.1 93.6 71.3 90.5 70.2 80.2 63.870.1

by 1.7%, 1.3%, 1.8%, and 1.3% mIoU on the SemanticKITTI, Waymo, Seman-
ticPOSS, and nuScenes datasets respectively. On the SemanticKITTI dataset,
3DCAFU improves the segmentation performance of the MinkUNet, SPVCNN,
RPVNet, and SpTr models by 1.7%, 0.9%, 0.8%, and 1.4% mIoU respectively.
These results demonstrate that 3DCAFU has good robustness.
Advancement. The detailed results on the SemanticKITTI dataset are shown
in Table 3. The segmentation accuracy of small objects such as car, bicycle, per-
son, and motorcyclist has been greatly improved. At the same time, 3DCAFU
also improves the segmentation accuracy of parking, other-ground. The improve-
ments of both small and big objects are above 1% mIoU, which suggests that
3DCAFU is beneficial for various object scales. This shows that 3DCAFU
obtains richer semantic features by aggregating contextual information, which
is beneficial to the segmentation. Besides, SphereFormer with 3DCAFU(SpTr�)
has achieved state-of-the-art performance among voxel-based methods for 3D
semantic segmentation.

As shown in Fig. 5, we visually compare the baseline(i.e., MinkUNet) and
ours on SemanticKITTI validation. It visually indicates that with our proposed
operation, more objects are segmented correctly, which are highlighted with
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Table 4. Ablation study of var-
ious compressed channels Cm on
SemanticPOSS val set.

Cm mIoU

32 38.4
64 38.4
128 38.5
256 38.5
N/A 38.5

Table 5. Ablation study of the
number of 3DCAFU layers on
SemanticPOSS val set.

Num mIoU

0 36.8
1 37.1
2 37.6
3 37.9
4 38.4

Table 6. Ablation study of upsam-
pling rate σ and kernel size k on
SemanticPOSS val set.

σ k mIoU

2 3 38.4
2 5 38.4
2 7 38.5
3 3 37.0
3 5 37.1
3 7 37.1

Table 7. Ablation study of gather-
scatter paradigm in 3DCAFU on
SemanticPOSS.

gather-scatter frames/s

w/ 9.28
w/o 1.57

red boxes. In the first and second rows of point cloud segmentation results,
our method accurately segments small objects such as bicycles, persons and
distant cars. As shown in the third and fourth rows, 3DCAFU also improves
the segmentation accuracy of large-scale targets such as fences and sidewalks. In
summary, the visualization results verify the effectiveness of our approach.

4.3 Ablation Study

We investigate the influence of hyper-parameters in the model design, i.e., the
compressed channels Cm and sparse convolution kernel size k. We also test the
impact of the number of 3DCAFU layers. We perform the ablation study on
MinkUNet and train it with sequences 01-02 of SemanticPOSS.

We experiment with different values of Cm in the kernel generation module.
In addition, we also try to remove the channel compressor and directly use input
features to predict upsampling kernels. Experimental results in Table 4 show that
Cm down to 128 leads to no performance decline, while being more efficient. A
further smaller Cm will result in a slight drop in the performance. With no
channel compressor, it can achieve the same performance, which proves that
the step can speed up the kernel prediction without harming the performance.
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Based on the above results, we set Cm to 32 by default as a trade-off between
performance and efficiency.

Table 5 shows that as the number of 3DCAFU layers increases, the perfor-
mance of the network also improves. These results prove the effectiveness of our
operator. Therefore, we apply 3DCAFU in all upsampling layers of the model
to achieve the best segmentation performance.

We investigate the relationship between upsampling rate σ and the sparse
convolution kernel size k in the kernel generation module. As illustrated in
Table 6, increasing σ needs a larger k since the kernel generation module requires
a large
receptive field to predict upsampling kernels. We summarize an empirical formula
that k = 2σ − 1, which is a good choice in all the settings.

As shown in Table 7, our model can process 9.28 frames of point cloud per
second on GPU by using the gather-scatter paradigm. However, without this
paradigm, it can only process 1.57 frames per second. These data significantly
demonstrate that the gather-scatter paradigm ensures the computational effi-
ciency of 3DCAFU on GPU.

5 Conclusion

In this paper, we propose an effective and lightweight content-aware feature
upsampling (3DCAFU) for voxel-based sparse CNNs. The key idea is to gen-
erate upsampling kernels through input feature, hence achieving content-aware
feature upsampling of sparse point clouds and aggregating context to improve
the performance of 3D sparse CNNs. Extensive experimental results on the four
datasets show that the proposed 3DCAFU can be seamlessly integrated into
existing networks, and effectively improve the performance of 3D semantic seg-
mentation.
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Abstract. Large-scale pre-training is commonly used in 2D referential
grounding tasks owing to the easy availability of a large number of image-
text pairs with corresponding bounding box annotations. However, for
3D referential grounding, the unavailability of high-quality 3D scene-text
pairs with annotations poses a significant challenge. To address this issue,
we leverage the large corpus of 3D scenes with bounding box annota-
tions of object instances and design an automated strategy to synthesize
scene-text data for pre-training by utilising the coarse spatial relation-
ships between the objects in the scene without any human supervision.
The proposed strategy first clusters the 3D bounding boxes and then uses
these clusters to create pairwise and triplet relations between the objects
in the 3D scene. We achieved improved results consistently across various
top-performing methods in 3D referential grounding, when the proposed
pre-training strategy is deployed. In addition to pre-training with the
samples containing coarse spatial relations, we also encode semantic rela-
tionships between the bounding boxes conditioned on the language utter-
ance, using a compatibility measure between the box features and the
language utterance. To evaluate the performance of our proposed tech-
niques, we conduct experiments on large-scale publicly available datasets,
namely ScanRefer and ReferIt3D (SR3D and NR3D). Our proposed tech-
niques can be seamlessly integrated with any off-the-shelf 3D referential
grounding method. Specifically, when integrated with BUTD-DETR, we
observed notable improvements of 2.2% and 1% in performance on the
SR3D and NR3D datasets, respectively.
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1 Introduction

Pre-training on large-scale image datasets has been shown to improve the per-
formance of various computer vision tasks, including image classification [18],
object detection [19], and 2D referential grounding [5]. Typically, these models
undergo initial training on a large-scale dataset, followed by fine-tuning on a
downstream dataset tailored to a specific task.

3D referential grounding is a crucial area of research in computer vision,
with applications in embodied agents and robotics [20,22,23], and autonomous
navigation systems [21]. However, obtaining a large-scale 3D referential ground-
ing dataset is challenging because: (i) Capturing 3D scenes requires specialized
equipment (e.g. LiDAR or structured light scanners) and technical expertise and
is time-consuming. Thus, 3D scenes aren’t abundantly available as 2D images
over the internet. (ii) Annotating 3D data often requires understanding 3D geom-
etry [25,26], as well as an understanding of how to interpret and annotate point
clouds or other types of 3D data. (iii) 3D data annotation can be more time-
consuming than 2D data annotation due to larger data volumes and multi-stage
processing involving segmentation, labelling, and object positions and orien-
tations annotation. (iv) 3D referential grounding models trained on datasets
such as ReferIt3D [1] and ScanRefer [2] (both comprise scenes extracted from
the ScanNet dataset [7]). The utterances in these datasets are generated either
synthetically using rule-based templates or naturally through human free-form
utterances. However, acquiring human annotations for 3D scenes is notoriously
challenging, and synthetic textual utterances have limitations as template-based
approaches struggle to generalize effectively to varying scene geometries and lay-
outs. Thus, both approaches face limitations in scaling up to larger and more
diverse datasets. These challenges, especially the prohibitive cost of 3D anno-
tation, lead to a scarcity of annotated large-scale 3D datasets suitable for pre-
training advanced 3D referential grounding models. Therefore, there is a need
for a more efficient methodology to acquire aligned 3D scene-text data.

We utilize a large-scale 3D scenes dataset with bounding box annotations of
all foreground objects and propose an algorithm that automatically synthesizes

Fig. 1. The left figure depicts a 3D scene with objects annotated with their correspond-
ing bounding boxes and the resulting spatial clusters are illustrated in the figures on
the right. Based on this clustering, coarse spatial relationships such as “near” (intra-
cluster) and “far” (inter-cluster) are subsequently auto-synthesized between pairs of
these objects. Overall, this process automates the synthesis of high-quality 3D scene-
text samples that can be used to pre-train 3D referential grounding models.
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large samples of the 3D scene-text pairs (Sect. 3.1). We leverage the observa-
tion that coarse spatial relations, such as “far” and “near” are dominant among
objects in the scene, and learning these fundamental spatial relations can facil-
itate the learning of more complex inter-object relationships, such as “to the
right of”. Our algorithm can effectively obtain these spatial relations from 3D
scenes at scale without the need for human supervision. This approach has the
potential to overcome the limitations of current datasets and enable the develop-
ment of more accurate and robust 3D referential grounding models. The benefits
of our proposed approach are two-fold. (i) It reduces the need for human
supervision, which can be time-consuming and expensive. (ii) It enables the
acquisition of more diverse and representative datasets, which can lead
to improved model performance and generalization to real-world scenarios.

The proposed strategy consists of two stages. Firstly, we employ a custom
distance function based on the positional features of the bounding boxes to clus-
ter the objects in the scene. For example, in Fig. 1, two clusters are generated:
{‘towel’, ‘sink’, ‘toilet’, ‘toilet paper’, and ‘bathroom vanity’} and {‘refrigera-
tor’, ‘counter’, ‘stove’, ‘sink’, and ‘microwave’}. It is important to note that the
objects in the scene can be classified as either single-occurrence objects (e.g.,
‘microwave’) or multi-occurrence objects (e.g., ‘sink’). In the second step, coarse
spatial relationships are auto-generated between the object pairs by utilizing the
clustering output from the first step.

Intra-class relationships among the single-occurrence objects within the same
cluster are established using “near” spatial relation (e.g., “toilet closer to the
towel” in Fig.1), while “far” spatial relations are set between objects located
in different clusters, such as “sink farther and away from the stove”. Yet, some
object pairs may have distractors in the scene, such as the two ‘sink’ objects
in Fig.1. In such cases, the concept of “far” alone would be inadequate to dis-
cern between these instances, and hence the inter-cluster relationship (e.g., “sink
farther and away from the stove”) is accompanied by a “near” relationship involv-
ing the distractor object instance (i.e., “sink alongside the toilet” in Fig.1). The
additional relationship helps disambiguate the two ‘sink’ instances, leading to
improved grounding.

The 3D referential grounding methods typically use 3D object detectors as
backbones. Current methods [29] also use an initial set of object bounding boxes
generated by these pre-trained object detectors to improve 3D referential ground-
ing. However, these bounding boxes are used independently, making them inef-
ficient for referential grounding tasks. To address this issue, this work proposes
novel LAnguage-conditioned Spatially awarE Relational (LASER) embeddings
for each object box, encoding relationship between the bounding boxes. The
proposed method utilizes the compatibility measure between the representation
of the pairs of bounding boxes and the text query to encode the relationship
between objects, making it a more efficient and effective approach for referential
grounding (Sect. 3.2). Our contributions are summarized as follows: (I) We pro-
pose a novel algorithm that generates large datasets of paired 3D scene-text sam-
ples with coarse spatial relationships using existing 3D scenes and their bounding
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box annotations. The dataset, augmented using these synthesized text annota-
tions, is then used for performing pre-training of the 3D referential grounding
models, which results in significant improvement in grounding accuracy on fine-
tuning this pre-trained model on a target dataset. (II) Our pre-training method
is versatile and can be seamlessly integrated with various existing 3D referential
grounding methods to improve their performance and yield new SOTA for the
task. While our primary experiments focus on the BUTD-DETR model [29],
we have also shown its effectiveness with other methods such as EDA [13] and
ViL3DRel [30]. This flexibility broadens the applicability of our approach across
different models, enhancing its potential impact in the field of 3D referential
grounding. (III) We also introduce a novel relationship embedding method, which
we call LAnguage-conditioned Spatially awarE Relational (LASER) embed-
dings, for encoding the semantic relationships between a set of object bounding
boxes conditioned on the query text. By incorporating semantic information from
the query text into the spatial relationships between object bounding boxes, our
approach enhances the overall accuracy of the 3D referential grounding model.

2 Related Work

Pre-training in 2D Referential Grounding. Recent 2D referential ground-
ing research shows pre-training on large-scale datasets, often combining mul-
tiple sources, is key to achieving state-of-the-art performance. For instance,
MDETR [5], a popular text-query guided 2D object localization method, pre-
trained their model on a curated collection of image-text pairs with bounding
box annotations. They combined publicly available image-text datasets with
bounding box annotations to create a dataset with 1.3 million image-text sam-
ples. DQ-DETR [28] is also a popular example of this approach, demonstrating
significant improvements in 2D referential grounding through pre-training.

3D Referential Grounding. In recent years, the development of 3D scan
datasets such as ScanNet [7], ScanRefer [2], SunRefer [11], and ReferIt3D [1]
has led to a growing interest in the application of computer vision in 3D. 3D
referential grounding, an emerging task, locates objects in 3D scenes using lan-
guage references. This requires multimodal fusion of visual and language fea-
tures. Recent research has explored the use of graph neural networks [15] and
transformer models [3,4,29] to facilitate this fusion process. In the case of trans-
formers, the task involves three major steps: first, feature extraction of the 3D
scene point cloud, which can be done through 3D object proposals and detection
[3,4,12–14,29] or panoptic segmentation [9]; second, encoding the language ref-
erence using word token embeddings; and third, fusing these two modalities by
employing cross encoders and decoders. BUTD-DETR [29] is a notable contri-
bution in the field of 3D referential grounding, as it extends the state-of-the-art
2D model MDETR [5], which integrates end-to-end object detection.
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Fig. 2. We propose a novel algorithm that utilizes 3D scenes and their bounding box
annotations to synthesize 3D scene-text samples with coarse spatial relationships using
the concepts of “near” and “far”. Furthermore, the data, augmented using these syn-
thesized text annotations, holds significant potential for pre-training any multimodal
transformer (encoder-decoder) architecture. Additionally, we present a modular app-
roach, that seamlessly integrates into the architecture during fine-tuning for encoding
pairwise semantic relationships between the objects conditioned by language query.
We call this the LAnguage-conditioned Spatially awarE Relational embeddings method
(LASER).

3 Methodology

Our proposed 3D referential grounding method is built atop the popular BUTD-
DETR [29], which is based on DETR [6]. It is a transformer-based encoder-
decoder architecture that inputs data from three distinct streams: the target
scene representation, object bounding boxes (which are, in turn, obtained from
the ground truth or using a pre-trained object detector), and query text and
outputs a set of bounding boxes that correspond to the objects mentioned in
the text query. We first propose a pre-training approach utilizing coarse spatial
relations (refer to Sect. 3.1). For this, we create 3D scene-text datasets using pub-
licly available 3D scenes. Furthermore, it is noteworthy that the object bounding
boxes are fed independently to the model without any semantic relation informa-
tion conditioned on the textual utterance, which makes it suboptimal. Therefore,
we enhance the semantic relationship between the bounding boxes with a novel
Language-Conditioned Spatially Aware Relational Embedding (LASER), which
is used to encode the semantic relations between the object bounding boxes
(refer to Sect. 3.2), thereby improving the grounding quality. After incorporat-
ing the LASER embeddings, the model is fine-tuned on the target datasets. An
overview of the proposed system is shown in Fig. 2, while an overview of LASER
is presented in Fig. 3.

3.1 Pre-training with Coarse Spatial Relational Augmentation

In 2D referential grounding, pre-training a model on a large-scale dataset before
fine-tuning on the target dataset has been demonstrated to improve model per-
formance on the target datasets [5]. MDETR [5] achieves this by constructing
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a large-scale 2D referential grounding dataset of 1.3 million aligned image-text
pairs. However, obtaining a similarly sized aligned dataset for the 3D task is con-
siderably more challenging. Therefore, in this work, we propose a novel algorithm
for obtaining aligned 3D scene-text pairs without any human supervision.

Coarse Spatial Relational Augmentation. Existing 3D referential ground-
ing models are trained on datasets such as ReferIt3D [1] and ScanRefer [2].
These datasets consist of pairs of 3D point clouds of indoor scenes sourced from
ScanNet [7], along with corresponding referential utterances. These referential
utterances are generated either synthetically (using rule-based templates) or nat-
urally (through human free-flowing utterances). Obtaining human annotations
on these 3D scenes is difficult, and the rule-based synthetic textual utterances
are limited. Therefore, in this work, we introduce a novel method (Refer to
Algo. 1 for the pseudo-code) for efficiently acquiring aligned 3D scene-text data
to facilitate the pre-training of our 3D grounding model. Our approach leverages
the observation that coarse spatial relations such as “far” and “near” are domi-
nant among objects in the scene and that learning these coarse spatial relations
facilitates the learning of more complex relations such as “to the right of”. Our
proposed algorithm can effectively obtain these spatial relations from 3D scenes
at scale without the need for human supervision.

A typical 3D scene contains two types of objects: single-occurrence objects
(e.g., objects like TV, refrigerator, etc.) and multi-occurrence objects (e.g., chair,
stool, etc.). It has been noted that grounding single-occurrence objects is easier
than grounding objects with multiple occurrences in the scene where duplicate
instances of the same object often act as “distractors”. We capitalize on this
insight and present an algorithm. The algorithm is based on a novel neighbour-
hood formation strategy around an object. It automatically synthesizes textual
utterances referring to objects in a 3D scene. This process specifically aids in
grounding multi-occurrence objects, thereby improving model performance.

Neighbourhood Formation via Clustering. Let us consider a set S com-
prising of tuples (oi, Bi), where oi and Bi denote the object’s class and its cor-
responding bounding box, respectively, representing the set of objects present
in a given 3D scene. Additionally, we can divide the set S into two subsets, Ss

and Sm, to represent the single-occurrence and multi-occurrence objects, respec-
tively, with their set of corresponding bounding boxes, Bs and Bm. By utilizing
the 3D positional information of these 3D bounding boxes (available from the
3D scene information), we cluster them using the K-Means algorithm [8]. Even
though the Euclidean distance between the centres of two bounding boxes can
serve as a distance metric, it fails to consider the size of the objects, leading to
inaccurate neighbourhood clustering. To mitigate this shortcoming, we propose
a novel distance function that takes into account the minimum distance between
each corner of two bounding boxes.
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Relationship Synthesis. Let C = { C1, C2, . . . , Ck }, be the clusters obtained
using the K-Means algorithm. Each cluster may have many single-occurrence and
multi-occurrence objects. Among the objects in these clusters, we first define the
“near” relationships between the single-occurrence objects in the same cluster.
We also create “far” relationships between a multi-occurrence object in a cluster
and a single-occurrence object in another cluster. For example, in Fig. 1, “the
sink farther and away from the stove”. However, for some object-pairs in the
scene, there could be “distractors” (e.g., the second ‘sink’ closer to the stove). In
such cases, to better disambiguate such multi-occurrence object, we add another
“near” relationship with a single-occurrence object within the same cluster (e.g.,
“sink alongside the toilet”). The inter-cluster relationship utterance is then cre-
ated by merging both these relationships (e.g., “select the sink farther and away
from the stove but alongside the toilet”). For each of the “far” and “near” spatial
concepts, we randomly sample from the set of paraphrased textual relations rep-
resenting these concepts. For example, we can use {“around the”, “near to the”,
“adjacent to the”, “close to the”, “next to the”, and “alongside the”} for the “near”
concept and {“away from the”, “farther from”, “farther and away from”, “distant
from”, and “not close to the”} for the “far” concept.

Our relational augmentation algorithm is scalable and robust in diverse 3D
scenes, as it doesn’t rely on human supervision or heuristics. Instead, it directly
leverages object bounding boxes obtained from the 3D scene to estimate clusters
of these objects, which are further utilized in an automated rule-based pipeline
to define the coarse spatial relations between them. This strategy, therefore, can
be easily adapted to different 3D scenes. Specifically, we used 565 unique scenes
from the SR3D dataset [1], generating a total of 30,492 scene-text samples with
coarse spatial relations, resulting in an average of 54 unique relations per scene.
This approach provides an efficient and effective means of grounding natural lan-
guage queries to 3D scenes without the need for manual intervention or complex
heuristic design. Unlike the heuristics-based methods, i.e., SR3D [1], the pro-
posed relational augmentation algorithm synthesizes unique and semantically
richer relations without repetitions or relational rephrasing.

3.2 LAnguage-Conditioned Spatially awarE Relational (LASER)
Embedding

Recent 3D referential grounding models like BUTD-DETR [29] enhance ground-
ing by leveraging detected bounding boxes generated from a pre-trained object
detector. The bounding box information includes both semantic (predicted
object class) and spatial (positional encoding) information about the detected
objects. The model then refines this information with several encoder and
decoder layers. Though incorporating the bounding box information improves
the grounding performance, it doesn’t encode the semantic relationship infor-
mation between the objects represented by their bounding boxes. Thus, in
this work, we propose LAnguage-conditioned Spatially awarE Relational
(LASER) embeddings that encode the language-conditioned semantic relational
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information between the object bounding boxes enabling the model to lever-
age the relationship information between the bounding boxes to learn better
grounding.

Let P denote a set of N bounding boxes, and each of these boxes Pi ∈ P is
represented by concatenating its positional feature and a semantic embedding
(RoBERTa [27] features of the predicted class) as Pi ∈ R

d (d is the model dimen-
sionality). For each bounding box Pi, a conditional embedding vector Ri ∈ R

N

is computed, where the jth entry in the vector Ri represents the strength of
the relationship between the boxes Pi and Pj. Given a pair of bounding boxes
Pi and Pj and the textual query T (CLS embedding of text), we first obtain
the pairwise box representation as Pi,j = W1 · [Pi;Pj], where W1 ∈ R

d×2d.
Then the conditional relationship information between Pi and Pj is encoded as
Ri[j] = Pi,j

TT, where T ∈ R
d is text query corresponding to the natural lan-

guage utterance. The score function mentioned above assigns a high score to the
pair of bounding boxes consistent with the relationships in the textual query.
In contrast, low scores are assigned to incompatible pairs. The same process is
repeated for all the other boxes to obtain the language-conditioned relationship
vector Ri. The relationship scores for each box are then normalized using the
softmax and projected to create box score embeddings (R

′
1,R

′
2, . . . ,R

′
N). Fur-

ther, these box score embeddings are concatenated with the original box features
and projected in model dimensionality to obtain a language-conditioned spatially
aware relational (LASER) embedding for the bounding box Pi: R

′
i = W2 · Ri,

where W2 ∈ R
d1×N ; d1 represents the box score embedding dimensionality;

P̃i = W3 · [Pi;R
′
i], where W3 ∈ R

d×(d+d1). Note that W1, W2, and W3 are
learnable projection matrices. Sinusoidal positional encodings are added to box
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Fig. 3. The LASER receives the input of box features (obtained by concatenating posi-
tional features and semantic embeddings; P1,P2, . . . ,PN) from the set of N bounding
boxes obtained from ground truth or pre-trained detector. It then processes these
features conditioned on the text query to generate relationship score vectors of bound-
ing boxes (R1,R2, . . . ,RN). Further, these scores are normalized using the softmax
and projected to create box score embeddings (R

′
1,R

′
2, . . . ,R

′
N). These embeddings

are concatenated with the original box features and projected to obtain the LASER
embeddings (P̃1, P̃2, . . . , P̃N) for the bounding boxes.

features to incorporate ordering information, as these features inherently lack
it. This allows the model to differentiate between boxes. The encoded features,
along with visual and textual inputs, are then processed by the grounding model
to produce the final output.

4 Experiments

The performance is evaluated using three datasets derived from ScanNet [7]
dataset: ReferIt3D [1] (SR3D and NR3D) and ScanRefer [2]. SR3D consists of
83,500 template-based scene-text pairs for localizing target objects using one or
two reference objects as anchors. NR3D comprises 41,500 pairs of longer, natural-
language scene-text samples collected through a 2-player object reference game.
ScanRefer consists of about 51,500 pairs of natural, free-form scene-utterances.
These datasets evaluate the model’s ability to perform 3D reference grounding
tasks across various scenarios and reference expressions. Inspired by [29], we
performed the experiments in the two settings: 1) The GT setup utilizes ground-
truth 3D object boxes with the PointNet++ [24] object categories for both our
model and the baseline, and 2) The det setup involves using a pre-trained object
detector (Group-Free [10]) to obtain an initial set of bounding boxes.
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Table 1. Top-1 accuracy results of the model (in the GT setting) for referential ground-
ing on ReferIt3D (SR3D and NR3D) dataset. The model is pre-trained (using relational
augmentation (PT(CR)); Sect. 3.1) and fine-tuned (FT) with LASER (Sect. 3.2).

Model SR3D NR3D
Easy Hard View-Dep View-Ind Overall (GT) Easy Hard View-Dep View-Ind Overall (GT)

ReferIt3DNet [1] 44.7 31.5 39.2 40.8 39.8 43.6 27.9 32.5 37.1 35.6
TGNN [15] 48.5 36.9 45.8 45.0 45.0 44.2 30.6 35.8 38.0 37.3
InstanceRefer [9] 51.1 40.5 45.4 48.1 48.0 46 31.8 34.5 41.9 38.8
3DVG-Transformer [4] 54.2 44.9 44.6 51.7 51.4 48.5 34.8 34.8 43.7 40.8
TransRefer3D [16] 60.5 50.2 49.9 57.7 57.4 48.5 36.0 36.5 44.9 42.1
SAT [17] 61.2 50.0 49.2 58.3 57.9 56.3 42.4 46.9 50.4 49.2
HAM [12] 65.9 54.6 52.5 63.0 62.5 54.3 41.9 41.5 51.4 48.2
MVT [14] 66.9 58.8 58.4 64.7 64.5 61.3 49.1 54.3 55.4 55.1
BUTD-DETR [29] 69.1 59.0 50.1 66.8 66.1 64.4 48.6 47.8 60.0 56.5
BUTD-DETR+PT(CR)+FT+LASER 70.3 63.8 49.7 69.2 68.3 65.2 49.7 48.7 61.0 57.5

4.1 Results on ReferIt3D Dataset

The object bounding boxes for ReferIt3D [1] (SR3D and NR3D) dataset are
generated from the ground truth. The model is evaluated using the overall accu-
racy metric, which calculates the percentage of correctly predicted bounding box
matches with the ground truth. The empirical results presented in Table 1 clearly
show the efficacy of the proposed method, which achieves significant improve-
ments in performance across all the datasets. Specifically, the proposed approach
achieves a new state-of-the-art performance, with an overall improvement of 2.2%
on the SR3D dataset. The models’ performance is particularly noteworthy in the
case of ‘Hard’ and ‘View-Independent’ cases in the datasets. The proposed
pre-training step aids the model in learning the coarse spatial relationships that
are view-independent, which later helps it to better learn the harder relationships
between objects. While methods such as MVT [14] utilize scenes with multiple
viewpoints as input, leading to better performance in ‘View-Dependent’ cases,
their performance deteriorates for other challenging examples, resulting in lower
overall performance. Also, processing 3D scenes with many viewpoints consid-
erably increases the computation cost. Therefore, the proposed method offers
a more computationally efficient solution that delivers impressive results across
various challenging examples.

4.2 Impact of Pre-training on 3D Referential Grounding

We validated the impact of the pre-training with Coarse Spatial Relational Aug-
mentation (PT(CR)) on the state-of-the-art models, namely EDA [13], BUTD-
DETR [29] and ViL3DRel [30]. The EDA [13] and BUTD-DETR [29] models
were pre-trained using our coarse spatial relational augmentation, then fine-
tuned on SR3D. The ViL3DRel [30] employs teacher-student knowledge distil-
lation, training identical architectures on different inputs (teacher: ground truth
annotations, student: point clouds). The teacher is pre-trained before the stu-
dent learns via distillation. We enhance the teacher’s pre-training by incorporat-
ing synthesized coarse spatial relations (PT(CR)) into the scene. The results in
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Table 2 highlight the impact of the proposed pre-training strategy. We observe a
noticeable improvement of 2% after leveraging the pre-training for the BUTD-
DETR model. Similarly, employing pre-training also brings about noticeable
accuracy improvement in EDA (0.9%) and ViL3DRel (0.6%).

Table 2. Impact of pre-training strategy on BUTD-DETR [29], EDA [13] , and
ViL3DRel [30] on the SR3D dataset. (Baselines retrained for fairness.)
Model BUTD-DETR BUTD-DETR +PT(CR) EDA EDA+PT(CR) ViL3DRel ViL3DRel +PT(CR)

Top-1 Accuracy 66.1 68.1 65.2 66.1 72.9 73.5

Table 3. The table shows pre-training benefits (Top-1 accuracy) with limited fine-
tuning annotations. “% Data” means the portion of SR3D data used for fine-tuning.
“w/o PT(CR)” denotes no pre-training, while “w PT(CR)” means BUTD-DETR pre-
trained with our method, then fine-tuned on varying proportions of SR3D. The pre-
training data is the same across all the settings.

% Data 5 10 20 30 100

w/o PT(CR) 40.4 43.5 63.0 64.1 66.1
w PT(CR) 65.6 66.2 66.4 66.7 68.1

4.3 Fine-Tuning Using Limited Data

Pre-training deep models enhances performance in scenarios with limited fine-
tuning data. In an experiment, we used a pre-trained model that was initially
trained on our synthesized coarse spatial relations and fine-tuned using various
proportions of the SR3D dataset. Results in Table 3 demonstrate significantly
improved localization performance with pre-training (65.6% w PT(CR) vs. 40.4%
w/o PT(CR)), even when only 5% of the SR3D data is used during fine-
tuning. This suggests that pre-training on coarse spatial relations aids the model
in learning more complex features, even with a small amount of training data.

4.4 Impact of LASER Embeddings

We evaluate the impact of LASER embeddings on the 3D referential grounding
performance using the ScanRefer dataset [2] in the det setting. Here, 3D object
bounding boxes are generated by a pre-trained 3D object detector, specifically
the Group-Free 3D Object Detector [10]. Our experiments involve incorporat-
ing the LASER embedding module into the BUTD-DETR model without pre-
training with coarse relations. The evaluation is based on the Acc@mIoU met-
ric, measuring the percentage of text utterances with predicted bounding boxes
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Table 4. Results for referential grounding on ScanRefer dataset (det setting).
Model Unique Multi Overall

Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

ScanRefer [2] 63.0 40.0 28.9 18.2 35.5 22.4
TGNN [15] 68.6 56.8 29.8 23.2 37.4 29.7
InstanceRefer [9] 77.5 66.8 31.3 24.8 40.2 32.9
MVT [14] 77.7 66.5 31.9 25.3 40.8 33.3
SAT [17] 73.2 50.8 37.6 25.2 44.5 30.1
3DVG-Transformer [4] 77.2 58.5 38.4 28.7 45.9 34.5
3DJCG [3] 78.8 61.3 40.1 30.1 47.6 36.1
HAM [12] 79.2 67.9 41.5 34.0 48.8 40.6
BUTD-DETR [29] 84.8 67.6 47.7 35.7 53.3 40.5
BUTD-DETR+LASER 86.8 68.9 47.8 36.6 53.6 41.4

having a 3D IoU overlap with ground truth boxes greater than m. Our find-
ings, detailed in Table 4, showcase an overall accuracy enhancement of 0.3% and
0.9% for Acc@0.25 and 0.5, respectively. These results underscore the significant
improvement in localization performance achieved by integrating the proposed
LASER embedding with off-the-shelf 3D referential grounding methods, such as
BUTD-DETR.

4.5 Ablation Study

We conducted an ablation study on the SR3D dataset to explore the impact of
different factors on the model’s performance, and the results are presented in
Table 5. We observed that pre-training the model with text queries containing
only the class name of the object without any relationships already led to a sig-
nificant improvement in performance (Refer to PT(cls) in Table 5). Furthermore,
instead of just class names, incorporating coarse spatial relationships between

Table 5. Analysis of the impact of different components on the BUTD-DETR model’s
performance. The Top-1 accuracy of the model (GT setting) on SR3D is considered for
evaluation (Sect. 4.5). The first row shows the accuracy of the baseline model [29]. FT
represents the fine-tuning of the pre-trained models.

PT(cls) PT(CR) FT LASER Easy Hard View-Dep View-Ind Overall (GT)

69.1 59 50.1 66.8 66.1
� � 70.1 61 48.1 68.3 67.4

� � 70.1 63.3 51.9 68.8 68.1
� 69.9 62 55.2 68.1 67.5

� � � 70.3 63.8 49.7 69.2 68.3
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(a) the table that is far from
the tv

(b) choose the chair that is
in the center of the cabinet
and the door

(c) choose the backpack
that is close to the desk

Fig. 4. Qualitative Analysis of our model on SR3D. The bounding box predicted by
our model (PT(CR) + FT + LASER) is highlighted in green (which also matches with
the ground-truth), and the one predicted by the baseline model [29] is shown in red.
We can infer from the above subjective examples our model exhibits a greater ability
to differentiate the “distractor” compared to the baseline model. (Color figure online)

the objects in the scene during pre-training helped to enhance the model’s per-
formance (Refer to PT(CR) in Table 5). This improvement can be attributed to
the fact that during the pre-training phase, the model develops a strong under-
standing of fundamental concepts such as “near” and “far”, enabling it to grasp
more intricate and complex relationships during the subsequent fine-tuning phase
(denoted as FT in Table 5). Additionally, incorporating language-conditioned
relationship features into the bounding boxes’ features allowed the model to bet-
ter learn the relationships between the objects in the scene, resulting in improved
grounding performance (Refer to LASER in Table 5). Finally, combining both
pre-training and the LASER embedding (Refer to PT(CR) + FT + LASER
in Table 5) yielded state-of-the-art results with a 2.2% improvement in perfor-
mance over the baseline model. These results highlight each component’s impor-
tance in the model’s overall performance. The pre-training step aids in developing
a strong comprehension of fundamental concepts such as spatial relationships,
while the LASER embedding method effectively captures language-conditional
relationships. Combining all components results in a state-of-the-art model that
outperforms the baseline significantly.

4.6 Qualitative Analysis

Figure 4 presents the qualitative analysis of our model’s performance on the
SR3D dataset compared to the baseline. The analysis reveals some interesting
insights. Firstly, Fig. 4b demonstrates that our proposed model is more profi-
cient in managing longer localizing queries than the baseline model. Moreover,
from Fig. 4b it is apparent that the pre-training on coarse spatial relationships
helps the model generalize well on complex queries (“in the centre of”). Secondly,
the results presented in Fig. 4a, Fig. 4b, and Fig. 4c, highlight our model’s supe-
rior ability to handle “distractors” in the scene and precisely localize the desired
object, which is an essential aspect of referential grounding. Based on the above
examples, we can infer that the baseline model struggles to handle certain chal-
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lenging queries and scenes, resulting in lower localizing accuracy. In contrast,
our model exhibits a more consistent and robust performance across various
scenes and query types, making it a promising approach for the 3D referential
grounding task.

5 Conclusion

We presented a novel and effective approach to tackle the challenge of pre-
training in 3D referential grounding, where the availability of annotated 3D
scene-text pairs is limited. By leveraging the large corpus of 3D scenes with
object instance annotations, we design an automated strategy to synthesize
scene-text data for pre-training. Our approach creates pairwise and triplet rela-
tions between objects in the 3D scene based on their coarse spatial relationships
without any human supervision. Additionally, we introduced a novel LASER
(LAnguage-conditioned Spatially awarE Relational) embeddings method that
encodes semantic relationships between objects conditioned on the language
utterance. Our pre-training strategy and LASER can enhance the localization
results of any transformer architecture. Our approach has achieved remarkable
progress in state-of-the-art localization accuracy and outperformed other com-
petitive methods on various publicly available 3D referential grounding datasets.
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Abstract. Deep learning-based approaches have shown great achieve-
ment in 3D point analysis. Due to the irregular and unordered data
structure, point cloud analysis is still very challenging. Most existing
work uses the convolution, graph, or attention mechanism to achieve the
3D geometry of the target shape. Only a few approaches consider global
and local geometry information of point clouds. However, both kinds
of geometry play a significant role in analysis. This paper proposes a
geometry-acquainted fusion (GAF) module that considers global-to-local
geometry information by multi-step processing. Further, we consider in-
plane and out-plane distances to capture the geometrical information
in the raw point cloud. The modules are utilized in two different archi-
tectures, devised for classification and segmentation. The classification
network is a simple feed-forward architecture, whereas the segmentation
network is developed based on a U-Net-like architecture with residual
connections. We show that the proposed architectures perform quite well
compared to the state-of-the-art methods in classification and segmen-
tation tasks.

Keywords: 3D point cloud · geometry · fusion · classification ·
segmentation

1 Introduction

Point cloud analysis is a critical task in 3D computer vision, driving advance-
ments in augmented reality, robotics, autonomous driving, and more [21]. A point
cloud is a collection of data points defined in a three-dimensional space, typically
generated by 3D scanners or LiDAR systems. Each point in the cloud represents
a precise location on the surface of an object or scene, often accompanied by
additional attributes such as colour, intensity, or normal vectors. Point clouds’
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inherent complexity and irregularity present significant challenges for analysis,
such as classification, segmentation, etc. Unlike 2D images with a regular grid
structure, point clouds are unordered and have varying point densities. It necessi-
tates the development of sophisticated processing techniques that can effectively
handle the unique properties of point clouds. Given the irregular structure of
point clouds, extracting meaningful features is crucial.

Traditional methods have relied on handcrafted features that capture points’
geometric and statistical properties to address these issues. However, recent
advancements leverage deep learning techniques to automatically learn features
from the raw data. Methods like PointNet [23] and its variants have revolu-
tionized feature extraction by effectively handling the unordered and irregular
nature of points. Some existing approaches transform the point clouds into irreg-
ular structures, e.g., voxelization methods [19,45] and projection to multi-view
images [3]. Most of the existing CNN-based networks are designed to preserve
the structure of the target object in point space [2,15,31,38,41,42]. Each method
has strengths and trade-offs in preserving geometric details, computational effi-
ciency, and scalability. Some limitations of these convolutional-based approaches
include difficulty capturing the long-range dependencies [32]. Transformer [33]
based methods propose to address these issues. Initially, the transformer-based
method was designed for natural language and image processing areas [6,17,35];
later on, it was demonstrated in various areas. Architectures such as Dynamic
Graph CNN (DGCNN) [36] and Point Transformer [44] further enhance classi-
fication accuracy by capturing local and global contextual information.

Geometry information, local or global, is crucial for point cloud analysis.
However, only a few methods consider both kinds of geometry. In this paper, we
propose a geometry-acquainted fusion module (GAF) that incorporates local-
to-global geometry information of point clouds into the framework. The GAF
module considers information from two spaces: metric and feature. In metric
space, the point features adaptively transform in a local region using the geo-
metric affine module. Self-attention is the critical component in feature space
to highlight important features. Fusing metric and feature space information
creates a suitable amalgamation for point cloud analysis. The GAF module not
only enhances the overall accuracy of point cloud classification but also provides
a flexible framework that can be tailored to specific application requirements.
By systematically addressing the challenges at each stage, this approach enables
more effective utilization of point cloud data, paving the way for advancements
in various applications of 3D computer vision.

Further, we consider in-plane and out-plane distances of raw 3D point clouds
to generate the initial features. The in-plane distance measures the closeness of
points in a plane, whereas the out-plane distance estimates the distance between
a plane and the points. Both of these distances incorporate geometry information
at the raw level. Hence, our method considers geometry information at various
levels.

We design two different architectures utilizing the GAF module and in-plane
and out-plane distances for classification and segmentation tasks. The classifi-
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cation network is a relatively simple feed-forward network with the mentioned
modules. We design a U-Net-based architecture with GAF and distance modules
for segmentation. Along with global-to-local geometry information, the residual
connections in U-Net enable smoother information flow, thus capacitating spa-
tial data preservation, which is crucial for segmentation. We demonstrate the
effectiveness of our proposed GAF and distance modules in classification as well
as segmentation tasks using three datasets: ModelNet40 [39], Scanobjects [32]
and SN-part [37]. The first two datasets are used for classification, whereas seg-
mentation results are shown using the third dataset. Our models perform better
than the existing recent approaches.

The main contributions of our work can be summarized as follows.

– We propose a geometry acquainted fusion (GAF) module in the deep learn-
ing architectures to incorporate local to global geometry information in the
learning process that aids in classification and segmentation in point space.
GAF considers the geometric affine transformation of the local neighbour
point features and a target point feature self-attention mechanism.

– We propose to utilize the in-plane distance between points in a plane and the
out-plane distance between a point and a reference plane to include the raw
geometry information, facilitating better point cloud analysis.

– Incorporating GAF and in-plane and out-plane distance modules in a U-
Net-like module improves the parts segmentation results. In contrast, the
combination facilitates the effectiveness of a simple network in classification
tasks.

– Quantitative and qualitative analysis shows the superiority of our models in
the object classification and part segmentation of point cloud.

2 Related Work

We choose classification and segmentation to demonstrate the effectiveness of the
proposed method. Hence, in this section, we discuss some of the works related
to those applications.

Point cloud classification has become essential in 3D computer vision,
enabling applications in various fields. Early approaches relied on handcrafted
features and classical machine-learning algorithms. These methods focused on
extracting the geometric and statistical properties of the points. Spin Images [13]
method projects the local neighbourhood of each point into a 2D histogram, cap-
turing surface properties to facilitate recognition. 3D Shape Contexts [9] inspired
by 2D shape contexts, this method extends the idea to 3D, creating histograms
that represent the spatial distribution of points around a reference point. Further,
Point Feature Histograms (PFH) [30] compute geometric relationships between
points in a local neighbourhood. These are then used as input features for clas-
sification algorithms like SVMs or Random Forests.

In deep learning-based approaches, Graph-based methods model point clouds
as graphs, where points are nodes and edges represent relationships between



446 S. Kumari et al.

points. Dynamic Graph CNN (DGCNN) [36] constructs a k-nearest neigh-
bour graph dynamically during the learning process, allowing the network to
learn both local and global structures adaptively. EdgeConv, a core opera-
tion in DGCNN, dynamically updates graph edges based on feature space dis-
tances, which improves the model’s capacity to grasp local geometric nuances.
In addition, voxel-based techniques transform point clouds into structured 3D
grids known as voxels and utilize 3D Convolutional Neural Networks (CNNs).
VoxNet [19] transform 3D points into a 3D occupancy grid and applies 3D
CNNs for feature extraction and classification. OctNet [29] uses an octree-
based representation to hierarchically partition the space, making the approach
more memory-efficient and scalable. However, Multi-view approaches convert 3D
points into several 2D projections and apply 2D CNNs. Multi-View CNNs [8]
combine features from different 2D perspectives of a 3D object, achieving cutting-
edge performance by taking advantage of 2D CNN strengths.

Further, PointNet [23] revolutionized point cloud processing by directly con-
suming raw point clouds without requiring handcrafted features. This approach
processes each point independently using shared MLPs (Multi-Layer Percep-
trons) and then aggregates these features using a symmetric function (e.g., max
pooling). This approach preserves permutation in variance and captures the
global context effectively. Instead of focusing on local information, it blindly
processes the points. To address this issue, an extension of PointNet, Point-
Net++ [24], hierarchically applies PointNet to local regions of the point cloud,
capturing local geometric features more effectively. To extend more understand-
ing in local contexts, some recent approaches [2,15,31,38,41,42] have proposed
explicit convolution kernels on the point cloud. However, KPConv [31] has
addressed this with deformable convolution [46] to obtain the local informa-
tion from the point space. Further, the improved version of PointNet++, Point-
NeXt [25], has been proposed as an enhanced training and augmentation scheme.

Inspired by their success in natural language processing and image recogni-
tion, recent advances in transformers have been adapted for point cloud pro-
cessing [5,20,28,40,44]. Point transformer [44], this method uses self-attention
mechanisms to model dependencies between points, capturing both local and
global contexts effectively. Cloud transformer [20] proposes an attention mech-
anism that transforms the point cloud into a voxel grid for convolutional oper-
ation. From handcrafted features to deep learning-based methods, point cloud
classification has significantly improved. PointNet and its variants, graph-based
methods, voxel-based approaches, multi-view strategies, and the recent incorpo-
ration of transformers and self-supervised learning techniques have collectively
pushed the state-of-the-art. The continuous development in this area promises
further improvements in accuracy, efficiency, and application scope. This paper
proposes a geometry-acquainted fusion (GAF) module to obtain local and global
geometrical information for the point cloud analysis tasks.
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3 Proposed Approach

MLP-based methods [23] learn feature maps f directly from a given set of points
(P = ({pi|i = 1, ..., N}) ∈ RN×3, where N denotes the number of points in
(x, y, z) Cartesian space. However, in this method, we follow the farthest point
sampling method (FPS) as proposed by PointNet++ [24] to select a subset of M
points from N so that the selected point has the largest distance as compared
to the rest of the points. In addition to FPS, PointNet++ creates groups of
sampled points with the help of neighbouring points. K-neighbors are considered
for each sampled point to capture local structure, aggregated by max-pooling.
The operations can be summarized through

zi = A(Φ(fi,j)|j = 1, . . . ,K). (1)

Here, A(·) and φ(·) denote the max-pooling and MLP functions. fi,j denotes
the j − th neighbor point feature of i − th sampled point. This method can
progressively enlarge the receptive fields and capture local geometric information
by repeating the operation. PointNet++ represents a universal pipeline for point
cloud processing in network architecture.

Further, some methods following PointNet++ mainly focus on the local
feature extractors φ(·) [16,31,41,44]. Local feature extractors bring out local
geometric information using these learning based methods. However, in the
RSCNN approach, these extractors are obtained from the point relations. The
point transformer method considers the similarities between pairwise points in a
local region. While these existing methods perform better in obtaining promising
results, their development has some limitations. These limitations are a require-
ment of memory access, which increases the computational cost, and the perfor-
mance of these methods started saturating on popular benchmarks.

Our method uses two-step processing to get in-depth information about the
target object in point space. In the first step, we compute the in-plane and
out-plane distances on raw points to get the geometric cues and project to the
shared MLP block to get the initial features. The second step contains the fusion
block, specifically the geometry acquainted fusion (GAF) block that we apply
twice to get the deeper features for multi-scale processing. The in-plane and out-
plane distances and GAF blocks are the key modules of our classification and
segmentation models. For classification, we consider a simple feed-forward model,
whereas, for segmentation, we adopt a U-Net-like architecture with MLP-based
residual blocks to incorporate the local and global information of the target
object.

We first discuss our proposed geometry acquainted fusion (GAF) block, fol-
lowed by in-plane and out-plane distance calculation. Later, we present their
significance in point cloud classification and part-segmentation by designing dif-
ferent architectures.
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3.1 Geometry-Acquainted Fusion (GAF) Module

We introduce a geometry-acquainted fusion (GAF) module (shown in Fig. 1)
that hierarchically processes the point’s features and generates deeper represen-
tations. The fusion block processes information in two spaces: metric space and
feature space.

Fig. 1. Block diagram of our geometry acquainted fusion (GAF) module.

Metric Space Processing. Given points Pi(N, 3) and their point features
Fi(N,D), the points are down-sampled to pi(M, 3) using FPS technique (stated
earlier). The features are grouped based on the K nearest neighbours in the
metric space, denoted as fi,j(M,D,K). fi,j is the j−th neighbor point feature
of the i−th sampled point. A combination of MLP, residual MLP, and a sec-
ond MLP block (Φ) learns shared weights for local regions, extracting the local
features and a geometric affine (GA) module [18] handles geometric structure
variations. Finally, the features are aggregated using max-pooling. The operation
is defined as:

zi = A (Φ [(GA(fi, fi,j)) , fi − {fi,j}] |j = 1, . . . ,K) (2)

Here, A(·) represents the max pooling operation. [·] denotes concatenation oper-
ation. GA(fi, fi,j) is computed as [18]

GA(fi, fi,j) = {fi,j} = α � {fi,j} − fi
σ + ε

+ β (3)
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where α and β are trainable parameters, and σ is defined as

σ =

√
√
√
√

1
K × n × D

n∑

i=1

K∑

j=1

(fi,j − fi)2. (4)

Feature Space Processing. We apply a self-attention mechanism directly to
the features, capturing long-range and short-range interactions between features
without complex geometric operations. This process can be defined as:

vi = Φ(selfattention(fi)) (5)

where the self-attention is computed as [33]

selfattention(fi) = attention(Q,K, V ) ≈ softmax
(

QKT
)

V, (6)

where Q, K, and V are the query, key, and value computed by multiplying the
feature matrix F with learned weight matrices. The output of self-attention is
further added to the input feature and passed through residual MLP and MLP
block.

Information Fusion. The metric and feature space information is fused by
concatenating the outputs zi and vi. This combined representation undergoes
another non- linear transformation to generate deeper features in a high-level
space. It is defined as:

ui = Φfusion([zi, vi]) (7)

where, zi is the output from the metric space processing, vi is the output from the
feature space processing. [zi, vi] denotes the concatenation of zi and vi. Φfusion
is a non-linear transformation function, a residual MLP.

3.2 In-Plane and Out-Plane Distance

We propose a geometric descriptor instead of applying MLP only to raw points.
Traditional handcrafted 3D descriptors inspired the inclusion of the in-plane and
out-plane distance to form the geometric cues. In point cloud analysis, under-
standing the spatial relationships between the points is essential. In-plane and
out-plane distances are fundamental concepts for this task.

The in-plane distance used to compute the distance between points within
the same surface is vital to maintaining surface smoothness and continuity. How-
ever, the out-plane distance computes the deviation of a point from a reference
plane, which indicates how far a point is from the expected plane surface. This
computation is essential in detecting surface irregularities. The in-plane distance
din-plane between two points pi and pj can be computed using the Euclidean dis-
tance constrained to a plane:

din-plane(pi, pj) =
√

(xi − xj)2 + (yi − yj)2 (8)
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The out-plane distance dout-plane between two points pi and pj is defined as:

dout-plane(pi, pj) = |zi − zj | (9)

For a given point set Pi, we first calculate the in-plane and out-plane dis-
tances concatenated with the point set followed by shared MLP. The MLP block
projects the concatenated information into a higher dimensional space to pro-
duce the initial point features Fi.

3.3 Classification

Here, we discuss the proposed architecture (shown in Fig. 2) for classification
using the GAF, in-plane, and out-plane distance modules. The input 3D point is
concatenated with the in-plane and out-plane distances to form a 5D vector with
geometrical information for each of the N points. These vectors are projected to
a space of 64 dimensions using shared MLP to produce the initial feature, which
is then processed through two GAF blocks. The first block reduces the number
of features by factor 4 but increases the feature dimension to 256, whereas the
second block narrows down the number of features by factor 2 with a surge in
feature dimension to 512. Reducing the number of features enables the network
to capture global information from the point cloud. Moreover, a fusion of metric
space and feature space allows the architecture to learn rich details on the target
point cloud. In the fusion process, K = 20 neighbors are aggregated for each
sampled point to extract high-level geometric properties. The 512-dimensional
features are further mapped to 1024-dimensional features through shared MLP.
Afterward, the max-pooling helps to pluck out the significant information in
the form of a global feature vector from the pool of N/8 point features. The
global feature vector is then passed through the classification head, consisting of
five fully connected (512, 256, 128, 64, c) layers to predict the classification score.
A couple of drop-out layers with 0.5 probability are employed to address the
over-fitting issue.

Fig. 2. Architecture of point cloud classification.
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3.4 Segmentation

In part segmentation, we incorporate the GAF blocks and the in-plane, out-plane
distance modules in a UNet-like architecture (See Fig. 3). The initial processing
of points is similar to the classification task. The 3D points are appended with
two distances to incorporate geometry information at the initial level. The 5D
vector for each of the N points is passed through the shared MLP to generate
64 dimensional N features. The feature is then passed through a couple of GAF
blocks to generate N/4 features with 128 dimensions and N/8 features with 256
dimensions, respectively. The features generated at each step are concatenated
with the GAF modules present at the output side through skip connections. Skip
connections play an important role in enabling the smoother flow of information.
The number of points is interpolated to match with the input number [18]. The
final interpolated feature is passed through the shared MLP block to achieve the
part segmentation result.

We employ the cross-entropy loss to optimize the proposed model; it com-
putes the loss between the ground truth and prediction for both the analysis
tasks to achieve the best results.

Fig. 3. Architecture of point cloud segmentation.

4 Experimentation

Here, we present the implementation details of our proposed architecture, includ-
ing parameter values and hardware configuration. Additionally, we demonstrate
the effectiveness of our approach for classification and segmentation by com-
paring our results with state-of-the-art techniques. We also conduct ablation
experiments to analyze our architecture.

4.1 Implementation Details

We utilize the PyTorch framework to develop our classification and segmentation
architectures. Both models are trained and tested on an NVIDIA GeForce RTX
2080 GPU. Stochastic Gradient Descent (SGD) is employed for optimization
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with momentum (0.9) and weight decay (0.0001). The learning rate is initially set
to 0.1 and is adjusted using a cosine annealing scheduler every 100 epochs. Our
model undergoes training for 300 epochs with 32 batch size. In the classification
task, we use K = 20 neighbours, whereas, for segmentation, we choose K = 24,
neighbors, as this additional local information aids in accurately segmenting the
object.

4.2 Object Classification

We evaluate our network performance for the classification task on a real-world
dataset ModelNet40 [39] and ScanObjectNN(SONN) [32]. ModelNet40 dataset
consists of 12, 311 CAD models from 40 artificial scene categories, which we
divide into 9, 843 for training and 2, 468 for testing similar to PointNet [23].
The SONN [32] dataset contains 2,902 objects that are indices into 15 classes
from SceneNN [11] and ScanNet [7]. We follow the standard split for training
(80%) and testing (20%) as has been used in [21]. We sample 1024 points for the
training and testing to evaluate our model. Moreover, we consider the hardest
perturbed variant (PB_T50_RS) to scrutinize the robustness of our model.

Table 1. Comparison of object classification results with existing method on ScanOb-
jectNN Dataset.

Methods Venue mAcc OA

PointNet [23] CVPR 63.4 68.2
PointNet++ [24] NIPS 75.4 77.9
SpiderCNN [42] ECCV 69.8 73.7
PointCNN [15] NIPS 75.1 78.5
DGCNN [36] TOG 73.6 78.1
DRNet [26] CVPR 78 80.3
GBNet [27] TOM 77.8 80.5
PointNet + SageMix [14] NIPS - 66.1
PRA-Net [4] TIP 77.9 81
OcCo [34] ICCV - 78.3
CrossPoint [1] CVPR - 81.7
MVTN [10] ICCV - 82.8
PointMLP-elite [18] ICLR 81.8±0.8 83.8±0.6
PointGADM (ours) - 82.5 83.8±0.5

We compare our results with the state-of-the-art methods. We use two evalua-
tion metrics for comparison: mAcc (mean Accuracy) and OA (Overall Accuracy).
The quantitative results are presented in Tables 1 and 2. In Table 1, we show
object classification results on the ScanObjectNN dataset. One can note that
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our method outperforms the existing baseline (CrossPoint [1] and MVTN [10])
approaches by 2.1 and 1.0 absolute percentage points. Our method performs
better than the existing approaches with fewer parameters, 3.353 M and 3.4G
FLOPs, compared to most existing methods (KPConv, POintMLP, GBNet,
etc.). It makes the network lighter, so the training and testing can be done
quickly. The t-SNE plot reveals distinct clusters corresponding to 14 classes on
the ScanobjectNN dataset, visualized in Fig. 4. The separation among the clus-
ters suggests that the features used for classification are quite suitable.

Fig. 4. t-SNE plot for classification task on ScanObjectNN Dataset.

Table 2. Comparison object Classification Results with state-of-the-art methods on
ModelNet40 Dataset.

Methods Venue mAcc OA

3DShapeNets [39] CVPR 77.3 84.7
PointNet [23] CVPR 86.0 89.2
PointNet++ [24] NIPS 88.2 91.9
Perceiver [12] ICML - 85.7
PATs [43] CVPR 88.6 91.7
PointNet + SageMix [14] NIPS 79.5 90.3
OcCo [34] ICCV - 89.2
CrossPoint [1] CVPR - 91.2
CrossMoCo [22] CRV - 91.4
PointGADM (ours) - 87.5 91.4

The results of our method and existing approaches on the ModelNet40
dataset are tabulated in Table 2 for comparison. Our model can classify the
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point clouds with mAcc 87.5% and OA 91.4%. It can be noted that our model
can produce competitive results compared to the existing methods such as Cross-
Point [1] and CrossMoCo [22].

4.3 Part Segmentation

We evaluate our model on SN-part [37] dataset for part segmentation. This syn-
thetic dataset contains 16, 881 shapes from 16 categories with 50 part labels.
For validation, we follow the same split given in [21], where 14,006 and 2,874
samples are considered for training and testing, respectively. We randomly sam-
ple each shape with 2048 points. Our lightweight segmentation model has just
0.856M parameters and 1.3G FLOPS. We use the mIoU (category-wise mean
Intersection over Union) and instance-wise mIoU metrics to estimate our model
and compare it with existing methods in Table 3.

Table 3. Part segmentation results compared with previously proposed approaches on
ShapeNetPart dataset.

Method Year Cls. mIoU Inst. mIoU aero bag cap car chair aerp- hone guitar knife lamp laptop motor bike mug pistol rocket skate board table

PointNet 2017 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73 91.5 85.9 80.8 95.3 65.2 93 81.2 57.9 72.8 80.6
PointNet++ 2017 81.9 85.1 82.4 79 87.7 77.3 90.8 71.8 91 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
PointCNN 2018 84.6 86.1 84.1 86.5 86 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.2 84.2 64.2 80 83
SpiderCNN 2018 82.4 85.3 83.5 81 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8
DGCNN 2019 82.3 85.2 84 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6
DRNet 2020 - 86.4 84.3 85 88.3 79.5 91.2 79.3 91.8 89 85.2 95.7 72.2 94.2 82 60.6 76.8 84.2
PointASNL 2020 - 86.1 84.1 84.7 87.9 79.7 92.2 73.7 91 87.2 84.2 95.8 74.4 95.2 81 63 76.3 83.2
CurveNet 2021 - 86.8 85.1 84.1 89.4 80.8 91.9 75.2 91.8 88.7 86.3 96.3 72.8 95.4 82.7 59.8 78.5 84.1
DeltaConv 2021 - 86.9 85.3 88.1 88.6 81.4 91.8 78.4 92 89.3 85.6 96.1 76.4 95.9 82.7 65 76.6 84.1
KPConv 2021 85.1 86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6
Paconv 2021 84.3 85.0 90.4 79.7 87.5 80.54 90.6 80.8 92.0 88.7 82.2 95.9 73.9 94.7 84.7 65.9 81.4 84.0
PointMLP 2022 84.6 86.1 83.5 83.4 87.5 80.54 90.3 78.2 92.2 88.1 82.6 96.2 77.5 95.8 85.4 64.6 83.3 84.3
PointMLP+TAP 2023 85.2 86.9 84.8 86.1 89.5 82.5 92.1 75.9 92.3 88.7 85.6 96.5 79.8 96 85.9 66.2 78.1 83.2
SPoTr 2023 85.4 87.2 85.8 86.9 89.3 82.2 92 82.4 91.8 88.6 85.7 96.2 77.6 96.3 85.3 64 78 84.1
PointGADM - 83.56 87.3 83.8191.5 74.6884.3 89.3 76.56 92.6 83.46 81.6 94 73.64 96.0789.12 50 86.41 90

Our proposed architecture performs better as compared to the baseline meth-
ods KPConv [31], Paconv [41], PointMLP [18] and SPoTr [21] with respect to
category-wise mIoU and instance-wise mIoU. The qualitative results of part seg-
mentation can be visualized in Fig 5. It can be observed that the results predicted
using our proposed approach are close to the ground truth. The quantitative and
qualitative results highlight the effectiveness of our model.
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Fig. 5. Visual results of part segmentation on ShapeNetPart Dataset.

4.4 Ablation Study

Here, we demonstrate ablation experiments to show the importance of the pro-
posed network depth, which involves systematically removing or altering compo-
nents and observing the changes in model performance. Proposed architectures
consist of two main components: geometry acquainted fusion (GAF) block and
distance functions (in-plane and out-plane), typical for classification and seg-
mentation networks. For the segmentation network, we study the role of the
residual connection.

GAF. First, we analyze the importance of the GAF block in our network by
training and testing without one of the mentioned blocks. The classification
accuracy is dropped from 83.8±0.5% to 79.1%. It shows the significance of hier-
archical processing, which benefits from learning different scales and extracting
useful information at various embedding spaces.

Distance Functions. Further, we show the importance of distance functions in
our model. These distance functions apply directly to the given input without
processing, as shown in the architecture of our method in Figs. 2,3. When we
train our network without these distance functions, classification accuracy is
degraded from 83.8±0.5% to 82.9%. One can conclude that the distance functions
improve the classification accuracy approximately by 1.0%. Hence, in-plane and
out-plane distances are essential in our proposed model.

Residual Connection. In the segmentation architecture, residual connections
are incorporated into the interpolation path to ease the gradient flow through
the skip connection.

To test this hypothesis, we remove the residual connection from the baseline
while providing the geometric cues and plot the loss landscape of the model in
Fig. 6. One can observe an apparent decrease in loss in residual connection. The
plot starts from an intermediate epoch to show the divergence clearly. Moreover,
the instance mIoU accuracy decreases by 1.0% without the residual connection.
It demonstrates the importance of residual connection for segmentation tasks.
This block not only improves segmentation accuracy but is also helpful in making
the network stable and robust.
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Fig. 6. Effectiveness of the residual connections in the segmentation task.

5 Summary

We propose a geometry-acquainted fusion (GAF) module that enables the net-
work to learn local-to-global levels of geometrical information, which is quite
useful for 3D point cloud analysis. The module enables metric space and feature
space interaction. In metric space, geometry affine transformation of features
is the key operation, whereas in the feature space, self-attention is the main
activity. Further, we propose to use in-plane and out-plane distances to capture
the geometry of the raw point cloud. The conjugation of both the geometry-
aware modules significantly advances point cloud analysis tasks. The classi-
fication architecture is simple yet quite effective in classifying different point
clouds. A U-Net-like architecture with residual connections is used for segmen-
tation tasks. Our proposed model has fewer parameters and less time complex-
ity. The proposed models perform quite well as compared to the state-of-the-art
techniques.
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Abstract. Most of the existing Surgical Visual Question Answering
(VQA) systems use naive fusion strategies for text and image modali-
ties and there is an absence of localized answering. The limited avail-
ability of annotated medical data and the complexity of domain-specific
terminology have further limited the exploration of VQA systems for sur-
gical procedures. We propose a Cross-Modal Attention (CroMA) based
VQA system which can effectively fuse multimodal features from visual
and textual sources. The fused embedding will feed a standard Class-
Attention in Image Transformer (CaiT) module to the parallel classifier
and the detector for joint prediction. Our experimental results on two
public datasets suggest that CroMA based VQA system can better com-
prehend the surgical scene and localize the specific areas related to it with
fewer parameters compared to other state-of-the-art (SOTA) models.

Keywords: Computer Vision · Cross- Modal Attention · Surgical
Visual Question Answering

1 Introduction

The lack of specialized medical knowledge leaves many individuals, including
patients and junior healthcare professionals, with unanswered questions about
medical diagnoses and surgical procedures [1]. Access to medical experts is lim-
ited due to their scarcity and heavy workload. A computer-assisted system that
processes medical data and answers questions could benefit junior doctors and
reduce the expert’s workload. However, developing a generalizable algorithm for
surgical Visual Question Answering (VQA) is challenging due to factors such as
large dataset size, variations in surgical techniques and patient anatomy, limited
lighting, and occlusion caused by surgical tools and blood in tissue visuals [2,3].

Recently, MedFuseNet [4] was introduced to perform medical visual question
answering, demonstrating the potential to develop a reliable VQA model that
could assist medical professionals in answering the queries from students and
patients. Additionally, Surgical-VQA [1] has been developed to answer questions
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A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15330, pp. 459–471, 2025.
https://doi.org/10.1007/978-3-031-78113-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78113-1_30&domain=pdf
http://orcid.org/0009-0008-8331-5257
http://orcid.org/0009-0009-2493-897X
http://orcid.org/0000-0002-0886-9478
http://orcid.org/0000-0002-9489-5161
https://doi.org/10.1007/978-3-031-78113-1_30


460 G. Antonio et al.

about surgical instruments, their interactions, and surgical phases based on the
given visual input. Although Surgical-VQA [1] attempts to address the “why?"
question using a sentence-based VQA model, it becomes challenging and time-
consuming due to the lack of annotated datasets in the medical field [3]. To
facilitate easier inference for the “why?" aspect, our proposed model involves
addressing the “what?" and the “where" through a VQA system tailored to the
surgical domain. Figure 1 represents the overall pipeline of the proposed CroMA,
which does not require object proposals, making it more efficient and less depend
on preliminary region identification, and it is possible to output bounding box
prediction along with the classification results.

Fig. 1. Overview of the proposed CroMA framework, against the conventional VQA
methods. Object proposals are not necessary, and the proposed model can output
bounding box predictions along with the classification results.

1.1 Related Works

The integration of visual and language data for multimodal tasks have gained a
significant attention in recent years, particularly in the VQA [1]. Sharma et al. [4]
introduced MedFuseNet, an attention-based multimodal deep learning model for
VQA [1] in the medical domain. MedFuseNet [4] learns representations by opti-
mally fusing multimodal inputs using an attention mechanism [11]. The model
consists of an answer prediction module, a feature fusion, and a feature extractor
for questions and images. Attention modules within the model enhances inter-
pretability. MedFuseNet [4] excels in both answer categorization and generation
tasks by selecting appropriate answers from a predefined set. However, despite its
superior performance when compared to various state-of-the-art attention-based
VQA models, it faces challenges in handling complex multimodal interactions
and understanding detailed medical queries, which limits its applicability in cer-
tain contexts.
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Building on the idea of multimodal [12] fusion, Himanshu et al. [5] proposed
a VQA model that leverages information from the image captioning task. VQA
model integrates an image-captioning module with the VQA system by combin-
ing the semantic visual features derived from the image-captioning [13] dataset
with visual features attended to based on the questions. Using ResNet101 for
image encoding and a graph neural network (GNN) [14] to model the contex-
tual relationships between detected objects, the model employs an attention
mechanism over these object relationships and image regions to derive question-
relevant visual features. This approach significantly boosts accuracy by captur-
ing the fine-grained correspondence between images and questions. However, the
model’s reliance on captioning quality for effective VQA remains as a notable
limitation.

Florence-2 [34] advances vision-language integration by offering a unified,
prompt-based architecture for diverse tasks such as object detection and image
captioning. Its sequence-to-sequence framework processes images and textual
prompts together, leveraging extensive pretraining on the FLD-5B [34] dataset
with 5.4 billion annotations. While Florence-2 excels in versatility and achieves
state-of-the-art performance, its dependence on the quality of the FLD-5B [34]
dataset and high computational demands pose notable limitations, potentially
restricting its use in resource-constrained settings.

Wang et al. [15] presented a simple yet efficient vision-language pretraining
framework in which they processes images as patches and is trained end-to-end
with a unified prefix language modeling goal. By separating bidirectional encod-
ing from unidirectional decoding, they achieved better joint vision-language rep-
resentation learning. The use of both weakly aligned image-text data and text-
only dataset helped to bridge the gap between visual and textual representations.
In a related effort to enhance image understanding, Cornia et al. [16] developed
a fully-attentive image captioning [13] algorithm with a multi-layer encoder for
image regions and a decoder for generating output sentences. By combining the
encoder and the decoder layers through a mesh-like structure with a learnable
gating mechanism, the model exploits both low-level and high-level features.
Despite its robust performance, the model is computationally expensive and
requires substantial resources for training and inference.

Focusing on revamping feature extraction, Islam et al. [17] demonstrated
enhanced feature extraction methods using label smoothing weighted loss, a
regularization technique that smoothens the target labels during training to
prevent overfitting in a GNN [14] model for tool-tissue interaction in surgical
scenes. Their model predicts relationships between the defective tissue and sur-
gical tools with improved accuracy over baseline models. Label smoothing sig-
nificantly increases the performance, but the model’s complexity and additional
attention mechanisms add to its computational overhead, posing a drawback in
resource-limited settings.

Addressing the need for rich semantic understanding, Li et al. [7] proposed
VisualBERT, a framework that captures rich semantics from images and asso-
ciated text. Integrating BERT [8] with pretrained object proposal systems like
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Faster-RCNN [18], VisualBERT [7], etc. aligns words and image regions using
attention weights. It improves alignments by using successive transformer layers,
and helps to better understand the detailed semantics of images. VisualBERT
performs well on various vision-and-language tasks but can be limited by its
computational complexity, dependence on large annotated datasets, and slower
inference speeds.

The computer vision field has recently experienced a surge in models that
combine image understanding and language processing to tackle VQA challenges.
These models are designed to extract detailed and context-specific information
from visual data by tailoring the question to the task, frequently employing long
short-term memory (LSTM) [5] networks or attention mechanisms [4]. To extract
the visual feature, they require object detection models which identify the key
objects and primary regions in an image. During the initial training phase of the
object detection model, both question and answer annotations and bounding
box annotations are required. However, these methods face limitations in effec-
tively capturing the complex interactions between visual and textual features,
particularly in specialized domains like surgical scene understanding. To address
these limitations and enhance feature fusion, this work introduces:

– A detection-free Cross-Modal Attention (CroMA) based Surgical VQA
model which enables comprehensive training for localised answering, lever-
aging both visual and language inputs is designed.

– A unified cross-modal attention module which utilises attention mechanisms
to fuse the visual and textual features efficiently is used. It provides more fine-
grained control by handling the interactions between modalities separately
before combining them.

– The performance of the proposed CroMA model with other SOTA models
is compared and it is observed that the CroMA achieves better performance
with fewer parameters. Furthermore, the ablation study confirmed the supe-
rior fusion strategy compared to other fusion techniques.

2 Cross-Modal Attention (CroMA) Model

The proposed CroMA model can handle and integrate data from various modal-
ities and perform the VQA task in surgical context. Figure 2 represents the
detailed architecture of the proposed CroMA model which consists of a visual
feature extractor, tokenizer, a unified cross modal attention based module, and
a standard CaiT module followed by prediction heads.

Feature Extraction: Conventional VQA models typically extract visual fea-
tures using object proposals [7]. But here, we utilize ResNet18 [19], pre-trained
on ImageNet [20] for visual feature extraction. This approach allows to have a
broader understanding of the surgical context along with better inference speeds.
Unlike VisualBERT [7], we found that pre-trained ResNet18 [19] achieves supe-
rior performance in our task with low computational overhead. Language embed-
dings are obtained through a pre-trained BERT [1] tokenizer. For visual data,
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the input features are processed through a non-linear visual projection layer,
which consists of a multi-layer perceptron (MLP) with Leaky ReLU activation.
This maps the raw visual features into a compatible embedding space matching
the text embedding dimensions.

Fig. 2. The proposed CroMA architecture. The components include a feature extractor
for visual inputs, tokenizer, CroMA embedding module, pre-trained CaiT block, and a
prediction head for classification and localization tasks. (a) Self-Attention block [32],
(b) CaiT block [9]

VisualBERT Embedding: The extracted features are then transformed into
embeddings similar to VisualBERT [7]. It is an advanced model that enhances
the BERT [8] framework by incorporating visual data along with textual infor-
mation. The BERT model [8] processes an input sentence by breaking it down
into a series of tokens for language analysis. Each word token is then associ-
ated with a set of of embeddings E, where each embedding (e ∈ E) is derived
from a combination of the token et, the segment es, and the position ep embed-
dings. VisualBERT [7] extends the functionality of BERT by breaking down the
extracted image features into tokens, similar to how words are broken down in
BERT [8]. Each visual token embedding (f ∈ F ) is constructed using visual fo
features, segment fs and position fp embeddings. Both the language and visual
embeddings are then passed through the subsequent layers in VisualBERT [7]
model, facilitating intricate interactions and forming a joint representation of
both modalities.
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CroMA Embedding: The proposed method introduces a unified cross-modal
attention (CroMA) model which transforms the extracted features into embed-
dings similar to VisualBERT [7] that will combine both modalities. However,
CroMA distinguishes itself from VisualBERT [7], which directly concatenates
the embeddings before feeding them to the transformer, by implementing explicit
cross-modal attention layers that independently process textual and visual data
before merging them. This approach offers more fine-grained control over how
the textual and visual data is integrated before merging them. Additionally, sep-
arate projection layers for language and visual queries, keys, and values allow
for more specialized transformations, optimizing the interaction between the
heterogeneous embeddings.

CroMA module consists of multiple attention layers designed to align and
integrate the language and visual features. Queries (Q), keys (K), and values
(V) play crucial roles in each attention layer, facilitating the integration of mul-
timodal information. Queries identify elements of interest, keys represent all
possible pieces of information to attend to, and values are the information to be
combined based on relevance. Attention mechanism enables effective integration
of multimodal information by computing relevance scores between queries and
keys.

For each attention layer i, the model creates separate projections for queries,
keys, and values for both language and visual inputs. Language queries, keys
and values (Qi

l, Ki
l, Vi

l) are derived from the language embedding Ei
l using

respective weight matrices Wi
Ql

, Wi
Kl

, Wi
Vl

as:

Xi
l = W i

Xl
· Ei

l + bi
Xl

(1)

where Xi
l can represent the queries Qi

l, keys Ki
l or values Vi

l , with corresponding
weight matrices Wi

Xl
and bias terms bi

Xl
. Similarly visual queries, keys and

values (Qi
v, Ki

v, Vi
v) are generated from the visual embedding Ei

v using weight
matrices Wi

Qv
, Wi

Kv
, Wi

Vv
as:

Xi
v = W i

Xv
· Ei

v + bi
Xv

(2)

These projections are then concatenated to form unified queries, keys, and values
(Qi, Ki, Vi) as shown in Eq. (3) which enables the attention mechanism to
compute relevance scores across both modalities.

Qi =
[
Qi

l

Qi
v

]
, Ki =

[
Ki

l

Ki
v

]
, Vi =

[
Vi

l

Vi
v

]
(3)

Attention
(
Qi,Ki,Vi

)
= softmax

(
Qi

(
Ki

)T
√
dk

)
Vi (4)

Equation (4) represents the final attention output for each layer i where dk rep-
resents the dimension of the key. These attention outputs, representing the fused
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embeddings are then fed into the pre-trained CaiT [9] module before reaching
the prediction head.
Algorithm 1: Computational flow of the CroMA model.
Input : Text and visual features
Output : Classification labels, Bounding box predictions
Initialization: VisualBert and CaiT models, embedding projection,

classifier, MLP, no_improvement_count
best_val_loss ← ∞ ;
no_improvement_count ← 0 ;

1 Transform and project text and visual inputs into embeddings;
2 repeat
3 (Qi

l, K
i
l, V

i
l) ← Compute using Eq. (1);

4 (Qi
v, Ki

v, Vi
v) ← Compute using Eq. (2);

5 Qi ← concatenate(Qi
l, Q

i
v);

6 Ki ← concatenate(Ki
l, K

i
v) ;

7 Vi ← concatenate(Vi
l , V

i
v) ;

8 attention output← Compute using Eq. (4);
9 combined embeddings ← attention output;

10 Process combined embeddings through CaiT.;
11 classification outputs ← classifier(CaiT outputs);
12 boundingbox outputs ← sigmoid(boundingbox(CaiT outputs));
13 validation loss ← Compute on validation dataset;
14 if validation loss < best_val_loss then
15 best_val_loss ← validation loss;
16 no_improvement_count ← 0;
17 else
18 no_improvement_count ← no_improvement_count + 1;

19 until validation loss not reducing ;
20 return classification outputs, bounding box outputs;

Class-Attention in Image Transformers (CaiT): [9] It is an advanced vari-
ant of the Vision Transformer [10] architecture, specifically designed to enhance
image classification tasks by introducing a class-specific attention mechanism.
Unlike traditional ViT [10] models that process images by dividing them into a
sequence of patches and embedding them into high-dimensional vector spaces,
CaiT [9] incorporates an additional class-attention stage. This stage focuses on
a classification token (CLS token), refining its representation through multiple
class-attention layers.

The architecture consists of two distinct stages: a self-attention [11] stage
identical to ViT [10] but without the class embedding, and a class-attention stage
where only the class embedding is updated. This approach separates the objec-
tives of self-attention and classification, allowing more effective feature extraction
and representation. The outputs from these stages are subsequently fed into the
prediction head for the classification and the localization tasks.
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Prediction Head: The output features are processed through the prediction
heads which consist of a classification and a localization head. In the classifi-
cation stage, the features from the CaiT [9] block’s output is given to a linear
layer followed by a Softmax activation function to generate classification pre-
dictions. Whereas, the localization head utilizes a feed-forward network (FFN)
architecture which consists of a three-layer perceptron along with ReLU activa-
tion function preceding a linear projection layer. The overall computational flow
of the proposed CroMA model is outlined in the Algorithm 1.

Loss Function: The proposed model utilizes a combined loss function, where
cross-entropy loss (LCE) is used for classification tasks. For the detection task,
L1 norm is combined with the Generalized Intersection over Union (GIoU) [33]
loss and is used for bounding box prediction. The GIoU [33] enhances the model’s
accuracy in predicting bounding box locations by considering both the overlap
and the distance between predicted and actual boxes. The final loss function is
given by Eq. (5) which is the sum of detection and classification losses.

L = LCE + (LGIoU + L1) (5)

3 Results and Discussions

3.1 Datasets

EndoVis 18 Dataset: EndoVis 18 Dataset is derived from the MICCAI Endo-
scopic Vision Challenge 2018 [21] which is a publicly available dataset consist-
ing of 14 video sequences of robotic surgery procedures. This dataset uniquely
integrates bounding box annotations for tissue-instrument interaction [17] and
question-answer pairs from VQA classification tasks. The resultant EndoVis-18-
VQLA dataset has extensive annotations [1] that incorporate matching bounding
box data with question-answer pairings which cover organs, tool interactions, and
their locations. The training set comprises of 11 sequences which include 1560
images with 9014 question-answer (QA) pairs, while the test set consists of 3
sequences containing 447 frames and 2769 question-answer pairs.

EndoVis 17 Dataset: EndoVis 17 Dataset is a dataset from the MICCAI
Endoscopic Vision Challenge 2017 [22] which is also publicly accessible. Using
standard tools and interactions from EndoVis-2017, 97 frames are manually cho-
sen in order to examine the model’s generalisation capabilities. The frames are
then annotated with question-answer bounding box labels. This external valida-
tion dataset includes 472 question-answer pairs with 97 frames.
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3.2 Implementation Details

The models are trained by using Adam optimizer and the batch size and epoch
are set to 64 and 80, along with a learning rate of 1 × 10−5 . Python PyTorch
framework is used for all experiments, which are run on a server equipped with
an Intel R© CoreTM i7-10700 CPU and an NVIDIA A100-SXM GPU. Training is
conducted on the EndoVis-18-VQLA training set, while validation is performed
on both the EndoVis-18 validation set and EndoVis-17 external dataset. We con-
duct the quantitative comparison experiments against the models VisualBERT
[7], VisualBERT ResMLP [1], MCAN [23], VQA-DeiT [24], MUTAN [25], MFH
[26], and Block- Tucker [27]. In CroMA, we use CaiT block [9] in place of the
multilayer transformer module in VisualBERT [7].

Fig. 3. Qualitative comparison of our proposed CroMA model against the SOTA mod-
els on generation of answers and bounding boxes. The colours of the bounding box
are denoted as follows: orange: Ground-truth, light blue: VisualBERT [7] (Color figure
online), light green: VisualBERT ResMLP [1], red: MCAN [23], purple: VQA-DeiT
[24], yellow: MUTAN [25], gray: MFH [26], dark blue: Block Tucker [27], pink: CroMA
(Ours)

3.3 Results

The performance of proposed CroMA model is shown both quantitatively
(Table 1 ) and qualitatively in Fig. 3 against the SOTA models for VQA task
on EndoVis-18 and EndoVis-17 datasets. Figure 3 shows examples of classifica-
tion and bounding box generated by the SOTA models VisualBERT [7], Visual-
BERT ResMLP [1], MCAN [24], VQA-DeiT [25], MUTAN [26], MFH [27], Block-
Tucker [28] and our CroMA model. This qualitative comparison shows that our
model gives more accurate localization and classification prediction results when
compared with the baseline models. Furthermore, our comparison of the outputs
using object detection model to extract the features with these models using fea-
tures from the whole image reveals that the latter consistently outperforms the
former.

From Table 1 it is observed on EndoVis-18 dataset, CroMA achieves the high-
est accuracy (0.641) and F-Score (0.762), along with a competitive mIoU (0.408).
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Table 1. Comparison results of CroMA model against other state-of-the-art models

Model Detection Feature Extraction EndoVis-18 dataset EndoVis-17 dataset
Acc F-Score mIoU Acc F-Score mIoU

VisualBERT [7] FRCNN ResNet18 0.597 0.323 0.734 0.438 0.374 0.682
VisualBERT ResMLP [1] 0.606 0.323 0.730 0.427 0.351 0.695
MCAN [23] 0.608 0.343 0.726 0.426 0.304 0.683
VQA-DeiT [24] 0.609 0.322 0.734 0.449 0.321 0.713
MUTAN [25] 0.605 0.324 0.722 0.437 0.321 0.687
MFH [26] 0.618 0.316 0.723 0.373 0.205 0.718
BlockTucker [27] 0.607 0.341 0.731 0.437 0.321 0.683
CroMA(Ours) 0.612 0.355 0.753 0.441 0.374 0.719

VisualBERT [7] ✗ ResNet18 0.621 0.332 0.736 0.389 0.316 0.711
VisualBERT ResMLP [1] 0.632 0.331 0.751 0.419 0.332 0.703
MCAN [23] 0.628 0.334 0.753 0.414 0.293 0.703
VQA-DeiT [24] 0.610 0.316 0.734 0.379 0.286 0.690
MUTAN [25] 0.628 0.339 0.763 0.424 0.348 0.722
MFH [26] 0.628 0.325 0.759 0.410 0.350 0.722
BlockTucker [27] 0.620 0.329 0.765 0.422 0.351 0.729
CroMA(Ours) 0.641 0.408 0.762 0.439 0.363 0.738

Similarly on the external test dataset it gives highest values for all evaluation
metrics clearly indicating the superior performance of the model. Specifically,
the results on the EndoVis-18 dataset show that bypassing the object proposal
model (Faster RCNN [18]) in favor of using whole-image features (ResNet18
[19]) significantly enhances the performance in both classification and localiza-
tion tasks, demonstrating the effectiveness of this approach in reducing false
positives.

Table 2. Ablation study on various fusion strategies

Fusion Strategies EndoVis-18-VQLA EndoVis-17-VQLA
Acc F-Score mIoU Acc F-Score mIoU

Concatenation [7] 0.610 0.316 0.734 0.380 0.286 0.691
JCA [28] 0.602 0.301 0.753 0.375 0.284 0.715
MMHCA [29] 0.609 0.312 0.745 0.358 0.300 0.708
MAT [30] 0.619 0.318 0.742 0.337 0.285 0.696
Gated Fusion [31] 0.607 0.379 0.768 0.403 0.282 0.738
Self-Attention [32] 0.592 0.309 0.727 0.369 0.267 0.672
Guided Attention [23] 0.619 0.313 0.731 0.352 0.229 0.719

CroMA(Ours) 0.641 0.408 0.762 0.439 0.363 0.738

An ablation study on different techniques of vision-language fusion is con-
ducted in Table 2 where they all use the same feature extractor. We compare with
Concatenation [7], Joint Cross-Attention (JCA) [28], Multimodal Multi- Head
Convolutional Attention (MMHCA) [29], Multimodal Attention Transformers
(MAT) [30], Gated Fusion [31], Self-Attention Fusion [32], and with Guided-
Attention Fusion [23]. The study proves that our CroMA model has a better
embedding fusion strategy when compared against these methods.
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Fig. 4. Accuracy vs patch size study.

The performance of CroMA model is studied by changing the number of
input image patches to 1, 4, 9, 16, and 25, respectively. It is observed from
Fig. 4 that CroMA-based model generally performs better than VisualBERT [7]
and VisualBERT ResMLP [1] based models, even with varied number of input
patches. In general, it is also observed that there is an improvement in the per-
formances with an increase in the number of patches. It is also worth noting that
the proposed CroMA model (55.5M) requires 69.5% fewer parameters compared
to VisualBERT ResMLP encoder and transformer decoder model (184.7M) [1]
while maintaining similar performances.

4 Conclusion

This paper presents a transformer model incorporating Cross-Modal Attention
Vision Language embeddings for surgical VQLA tasks, enabling it to provide
localized answers based on specific surgical scenes and corresponding questions.
The proposed CroMA embedding module effectively enhances the integration
and fusion of heterogeneous features. Extensive comparative and quantitative
experiments demonstrate the superior performance and robustness of the pro-
posed CroMA compared to all other SOTA models in both classification and
localization tasks, highlighting its potential for real-time applications. The model
attends to incorrect regions of the image due to its overlapping features and
when the target is far- off from the bounding box affecting its performance.
Future work and investigations could focus on utilizing localization information
to improve prediction reliability and exploring additional VQA-related challenges
within the medical domain. Additionally, the integration of multimodal embed-
dings like Contrastive Language-Image Pre-training (CLIP) could be explored to
enhance the detection-free capabilities of the CroMA model, potentially offering
new insights into improving multimodal understanding and performance.
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