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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Attention-Guided Energy-Based Model
for Out-of-Distribution Data Detection

Zongjing Cao , Yan Li , and Byeong-Seok Shin(B)

Department of Computer Science and Engineering, Inha University, Incheon, Korea
zjcao@inha.edu, {leeyeon,bsshin}@inha.ac.kr

Abstract. Detecting out-of-distribution (OOD) data is crucial for the
safe and reliable deployment of deep learning models in open-world sce-
narios. While energy-based models (EBMs) have shown promising poten-
tial in OOD detection through the use of an energy function to capture
the underlying probability distribution of data, previous approaches have
primarily utilized logits or class probabilities from the fully connected
layer to compute energy scores. However, logits are inherently class-
specific and focus mainly on the relationship between the input and
known classes, potentially ignoring the rich information embedded in
raw feature representations that are essential for identifying OOD sam-
ples. This study introduces a novel approach that utilizes patterns within
the feature space to calculate energy scores instead of relying on logits
or class probabilities. We propose a spatial attention score to generate
class-specific features for each category, which are then used to compute
the energy score. Furthermore, we develop a new energy function that
transforms these features into energy scores, significantly improving the
OOD detection performance of EBMs. In experiments conducted on a
Cifar-10 pre-trained ResNet-50, our feature-based energy score method
reduced the average false positive rate at a true positive rate of 95% by
5.33% compared to the logits-based approach.

Keywords: Energy-based model · Out-of-distribution detection ·
Uncertainty quantification.

1 Introduction

Out-of-distribution (OOD) data detection is a critical task in computer vision,
enabling deep neural networks (DNNs) to operate safely and reliably in real-
world applications. During training, DNNs are typically exposed to a specific
data distribution. However, real-world data may contain samples that deviate
significantly from this distribution, leading to incorrect model predictions. OOD
detection aims to identify these anomalous samples and preventing the model
from making wrong or misleading decisions [5,10,27]. OOD detection is a chal-
lenging task due to the lack of prior knowledge about the distribution of OOD
samples, requiring models to discriminate between in-distribution (ID) and OOD
data points.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15326, pp. 1–15, 2025.
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The discriminative approach is a simple and effective strategy for OOD
detection [24]. It involves training a discriminative model to classify samples
as either ID and OOD samples [5,25]. Hendrycks et al. introduced the Max-
softmax method, a simple approach for OOD detection that utilizes the maxi-
mum softmax probability (MSP) as a confidence score [8]. A higher MSP score
suggests a higher confidence in the prediction, indicating that the sample is more
likely to belong to the ID data. However, the performance of the Max-softmax
method suffers from the overconfidence of DMMs, which often assign higher MSP
scores to OOD samples [26]. On the other hand, energy-based models (EBMs)
have shown great potential in OOD detection due to its ability to estimate the
probability distribution over the whole data space through an energy function.
By assigning lower energy values to data points that align with the learned
distribution and higher energy values to OOD samples, EBMs can effectively
discriminate between ID and OOD data. The fundamental principle of EBMs is
to design a specific energy function Eθ(x) that assigns a unique scalar value to
every input data point x. Previous studies typically use logits from the final fully
connected (FC) layer of the DNN to calculate energy scores [6,13]. However, this
approach overlooks the valuable information embedded within the feature space
itself, resulting in suboptimal OOD detection performance. Logits, also known as
pre-softmax activations, represent the raw scores assigned to each class by a deep
learning model before normalization into probabilities. While it provide valuable
insights into the decision-making process of the model, it inherently focus on the
relationship between the input data and the known classes the model has been
trained on. Moreover, logits simply represent a compressed version of the features
captured in the feature space.

We argue that the logits represent class-specific probabilities, which may
limit its ability to capture subtle OOD patterns. The patters in the feature
space contain richer information about data structure and relationships and are
more suitable for OOD detection. We propose to directly use the patterns in the
feature space to compute the energy scores, rather than using the logits or class
probability scores output by the FC layer. To obtain robust features, a spatial
attention scoring function was used to generate class-specific features for each
category. These class-specific features are then used to calculate the energy score
through our designed energy function. We replace the FC layer with multiple
1×1 convolutional layers to capture the spatial structure and information within
the feature maps. This is because the simple mapping performed by the FC layers
may lose valuable details of the raw features. Furthermore, a new energy function
was designed to convert the obtained class-specific features into a single, non-
probabilistic scalar energy score. Finally, the OOD detector determines whether
an input is ID or OOD by comparing its calculated energy score to a predefined
threshold.

The proposed method was evaluated using two ID datasets (Cifar-10 and
Cifar-100) and multiple OOD test sets (iSUN, LSUN-crop/resize, Places365,
Tiny-ImageNet-crop/resize). Compared with existing methods, the proposed
method achieved better OOD detection performance. Specifically, on a Cifar-
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10 pre-trained ResNet-50, our method reduced the average false positive
rate at a true positive rate of 95% (FPRat95) by 5.33% compared to
the logits-based energy score method. Our code is publicly available at
github.com/zjcao/ebmOOD.

The main contributions of this study are summarized as follows.

1) We proposed employing the patterns in the feature space to compute the
energy score instead of using the logits of the FC layer output. The 1 ×
1 convolutional layers are utilized in place of the FC layer to capture the
structural information of the patterns.

2) A spatial attention scoring function was introduced to generate class-specific
features for each category, which was used to calculate the energy score.

3) We presented a novel feature-based energy function for EBM to converts the
derived class-specific features into energy scores.

2 Related Works

2.1 OOD Detection

OOD data can be referred to as “unknown” or “unseen” data because the model
has not encountered this data during the training phase. The primary objective
of OOD detection is to identify samples that are not drawn from the training
distribution. OOD detection is a challenging task because it requires the model
to distinguish between “known” and “unknown” data points without any prior
knowledge about the distribution of the “unknown” samples.

A variety of approaches have been proposed by researchers to tackle the prob-
lem of OOD detection in recent years. These existing methods can be roughly
classified into two types: post-hoc methods and regularization-based methods.
Hendrycks et al. proposed to use the MSP score to determine whether an instance
is ID or OOD [8]. Although the MSP score method is simple to implement,
its performance suffers from the overconfidence problem of DNNs, which often
assign high confidence scores for OOD samples. To address the problem of the
DNNs generating too high confidence scores in OOD samples, Liang et al. used
a scaling parameter to smooth the MSP scores. The scaling parameter was cal-
culated on a separate validation dataset [12]. OOD detection can be viewed as
a binary classification task. Vaze et al. found a strong correlation between the
detection performance of a classifier on OOD data and its accuracy on the ID
set [18]. Simply improving the recognition accuracy of the ID classifier can sig-
nificantly enhance its OOD detection performance. Cen et al. also suggested
that the incorrect predictions of ID samples made by the base classifier severely
limit its OOD detection performance [9]. In summary, recent works attempt to
differentiate between ID and OOD samples in the feature space by analyzing
the differences in feature representations, predicted probabilities or logits, and
parameter gradients [15,20].
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2.2 EBM for OOD detection

EBMs are a class of generative models that define a probability distribution over
data by specifying an energy function. Unlike generative adversarial networks,
EBMs do not require a discriminator. Instead, EBM learn a mapping from data
to a scalar energy, where lower energy values correspond to higher probability [4,
13]. Due to its flexibility in modeling complex distributions, EBM has been
applied in OOD detection tasks.

Consider a function Eθ(x), where θ represents the parameters of the function
and x is the input data. The output of Eθ(x) is a scalar value. By applying basic
probability theory, we can normalize the scores for all potential inputs as follows:

pθ(x) =
exp (−Eθ(x))

Z(θ)
(1)

The exponential function guarantees that a non-zero probability is assigned to
any possible input [6]. The Eθ(x) is called the energy function. To ensure that
data points with high likelihood correspond to low energy values and vice versa,
we employ a negative sign in front of E. The Zθ is a normalization constant to
ensures that the density integrates to one, which can be expressed as:

Z(θ) =
∫

exp (−Eθ(x)) dx (2)

The core component of an EBM is the energy function, denoted as Eθ(x).
This function assigns a single, non-probabilistic scalar value to each input point
x. Liu et al. proposed employing the output f(x) of a DNN as the free energy
function. This can be formulated as:

E(x, f) = − log
k∑
i

exp (fi(x)) (3)

where f(x) represents a DNN classifier mapping an input x to k real-valued
logits [13].

In OOD detection, the energy score serves as a discriminator for the OOD
detector g(), distinguishing between ID and OOD samples. Higher energy scores
indicate OOD inputs, while lower scores correspond to ID inputs. This can be
formulated as:

g(x, τ, f) =

{
0, if − E(x, f) < τ

1, if − E(x, f) ≥ τ
(4)

where τ is the energy threshold, determined such that a high fraction of ID data
(e.g., 95%) is correctly classified

3 Pattern-Based Energy Score for OOD Detection

The EBMs aims to capture the underlying probability distribution of the data.
It assigns each data points an energy value that reflects its compatibility with
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the learned distribution. Lower energy values indicate higher compatibility, while
higher values suggest larger deviations from the distribution. The core of EBMs
is to find an energy function that maps each point x in the input space to a
scalar. The patters in the feature space contain richer spatial information and
are more suitable for OOD detection. We propose to directly use the patterns in
the feature space to compute the energy scores instead of using the logits.

3.1 Connection Between EBMs and Discriminant Models

Inspired by [4] and [13], we observed that the EBMs have potential connections
with discriminative model. The discriminative model, also known as conditional
probability model, focuses on directly learning the relationship between input
data and output labels. The core goal of the discriminative model is to optimize a
mapping function to minimize the classification error or maximize the probability
of correct prediction. Consider a discriminative model f(x) that maps an input
x to k real-valued numbers, known as logits. The logits can be converted into a
categorical probability distribution using the Softmax function:

p(y | x) =
p(y, x)
p(x)

=
exp (fi(x))∑k
j exp (fj(x))

(5)

where fi(x) denotes the i -th element of f(x), corresponding to the logit associ-
ated with the i -th class label. By connecting Eq. 1 and Eq. 5, Liu et al., proposed
using the denominator of the Eq. 5 to represent the free energy unction E(x, f)
over x ∈ R

D, expressed in Eq. 3 [13] .
In object detection tasks, datasets often suffer from class imbalance. To cap-

ture dataset-specific statistics during uncertainty regularization, Du et al. adds
a learnable parameter w to energy function, which can be expressed as:

E(x, f ; θ) = − log
k∑
i

wk exp(fi(x)) (6)

where fk((x, b); θ) is the logit output for class k in the classification branch [4].
However, this parameter w must be learned from both the ID and OOD data
during training phase.

3.2 Feature-Based Energy Score

The logits are derived through the final FC layer of a classification network,
which are specifically designed to distinguish between the trained classes. These
layers may not be sensitive to patterns within the feature space that deviate from
the known classes. OOD samples, by the problem setting of OOD detection task,
represent data that falls outside the training distribution. These unseen patterns
critical for identifying OOD data might be overlooked by a purely logits-based
approach. We propose to directly use the patterns in the feature space to compute
the energy score instead of using the logits of the FC layer output. However, there
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are two challenges to be solved: a) preserving the classification capabilities of
the model, and b) converting patterns to energy scores.

To address challenge a) we propose to replace the FC layer of the back-
bone network with the 1 × 1 convolutional layer. The FC layer processes the
entire flatted feature map, thus losing the spatial information preserved in the
convolutional layers. The spatial structure of features is important for distinguish
ID and OOD data. On the other hand, the 1 × 1 convolutional layer preserves
spatial information by applying a kernel to each position in the feature map.

Given an input image x, a backbone network φ() extracts feature maps x ∈
R

h×w×d, where h, w, d represent the height, width, dimension of the feature
maps respectively. This process can be mathematically expressed as:

x = φ(x, θ) (7)

where θ denotes the parameters of the backbone network φ(). For example, for
an image of size 32× 32, after feature extraction, the shape of its feature map is
4 × 4 × 2048. Subsequently, several different 1 × 1 convolutional layers are used
to generate score tensors.

To address challenge b). Simply, the score tensors of the last 1×1 convolu-
tional layer output can be used to calculate the energy score. However, the design
of energy function is very important for EBM, which directly affects the energy
score of the input data and indirectly affects the performance of OOD detection.
We propose to use the patterns in the feature space to calculate the energy score
instead of using the logits of FC layer output. The quality of the energy score
is thus influenced by both the feature map and the energy function. Inspire by
human cognitive process attention mechanisms have become a powerful tool in
many computer vision tasks. To enable the model to selectively focus on feature
maps, a spatial attention scoring was proposed to generate class-specific features
for each category.

Assume x is the feature maps of a input data x in feature space, with shape
is h × w × d, which can be decoupled as x1,x2, ...,xh×w(x ∈ R

d), the classifier
(1 × 1 convolutional layer) for i-th class is assumed to mi ∈ R

d. We can define
the spatial attention scoring α for the i-th class and j-th location as:

αi
j =

exp(xjmi)∑h×w
k expxkmi

(8)

The αi
j can be viewed as the probability that class i appears at position j.

Finally, the class-specific features f i for the i-th class:

f i =
h×w∑

k

(
1

h × w
+ λαi

k)xk (9)

where λ is a hyperparameter used to control the scale of spatial features. Based
on above equation our energy score can be formulated as:

E(x, φ, α, λ) = − log
k∑
i

exp(α(φi(x)) + λα(φi(x))) (10)
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where the φ() is a backbone network used to get the feature maps x of input x.

4 Experimental Results

The proposed method was implemented and evaluated using PyTorch, a popular
open-source deep learning framework. Training and validation experiments were
performed on an Ubuntu Linux 22.04.1 workstation equipped with four high-
performance NVIDIA GeForce RTX 3090 graphics processing units.

4.1 Experimental Setup

ID and OOD datasets. The Cifar-10 and Cifar-100 datasets were used as the
ID datasets to train the backbone classifier. The proposed method was evaluated
using multiple OOD datasets, including: iSUN [21], LSUN [23], Places365 [14],
SVHN [16], Textures [2], and TinyImageNet [3]. These OOD datasets encompass
various image sources and domains, offering a thorough assessment of ability of
the model to identify OOD instances. Table 1 summarizes the key characteristics
of these datasets, including the number of classes, number of images, and data
types.

Table 1. Summary of the ID and OOD datasets.

Datasets Description # Images # Classes

Cifar-10 80 million images subset 60, 000 (10 × 6, 000) 10

Cifar-100 80 million images subset 60, 000 (100 × 600) 100

iSUN SUN subset 8, 925 24

LSUN Large-scale scenes 10, 000 (subset) 10

Places365 Scene recognition 10, 000 (subset) 365

SVHN Street-view house numbers26, 032 10

Textures Describable textures 5, 640 (47 × 120) 47

TinyImageNet ImageNet subset 100, 000 (200 × 500)200

Implementation details. A modified ResNet-50 architecture served as the
backbone network for extracting fine-grained features from the input images.
To preserve more detailed features, the kernel size of the initial convolutional
layer was reduced from 7× 7 to 3× 3, and the Maxpool layer was removed. The
backbone network was initialized using ImageNet-1K pre-trained weights and
then fine-tuned on the Cifar-10 and Cifar-100 training sets using cross-entropy
loss. The parameters of the backbone network were updated using the SGD
optimizer, configured with a momentum of 0.9 and a weight decay of 0.005.

Metrics for OOD detection. OOD detection performance was evalu-
ated using the following metrics: 1) FPRat95 curve, 2) area under the receiver
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operating characteristic (AUROC) curve, and 3) area under the precision-recall
(AUPR) curve. These metrics are commonly used to assess OOD detection capa-
bilities [19,22].

4.2 Experimental Results

Test set classification accuracy. The backbone network was initially fine-
tuned on the Cifar-10 and Cifar-100 training sets, following the standard training
protocol detailed in previous section. Then, the classification performance of the
backbone network was evaluated on the Cifar-10 and Cifar-100 test sets. Table 2
summarizes the experimental results achieved by our proposed method on these
two datasets. On Cifar-10 and Cifar-100 test sets, the proposed method achieved
classification accuracy (ACC) of 95.40% and 80.07% respectively.

Table 2. Performance comparison of ACC, ECE, MCE and RMSCE of backbone
networks on Cifar-10 and Cifar-100 test sets. Higher (↑) and lower (↓) values are better.
All values are percentages.

Datasets ID test set accuracy(%)
ECE (↓)MCE (↓)RMSCE (↓)ACC (↑)Mean Confi.

Cifar-10 1.97 3.01 3.42 95.40 97.28

Cifar-1008.70 10.28 20.64 80.07 88.76

For reference, we also reported the average confidence, expected calibration
error (ECE), maximum calibration error (MCE), and root mean square cali-
bration error (RMSCE) to assess the confidence calibration of the backbone
network [22]. Confidence calibration in DNNs refers to the process of aligning
the predicted probability of a DNN model with its actual accuracy. Our back-
bone network achieved an ECE of 1.97% and 8.70% on Cifar-10 and Cifar-100,
respectively. The average confidence scores were slightly overconfident at 97.28%
and 88.76% on Cifar-10 and Cifar-100, respectively.

OOD detection performance results. The experimental results for OOD
detection using the proposed method are presented. The backbone network was
first trained on the Cifar-10 and Cifar-100 training sets. Then, both Cifar-10
and Cifar-100 test sets were used as the ID data. Finally, the OOD detec-
tion performance was evaluated on various OOD datasets, including: iSUN,
LSUN, Places365, SVHN, Textures, and TinyImageNet using AUROC, AURP
and FPRat95 as evaluation metrics. Table 3 summarizes the experimental results
achieved by the proposed method on two ID sets and six OOD test sets. Our
method achieved average FPRat95 scores of 30.52% and 49.99%, and average
AUROC scores of 92.35% and 85.43% on several OOD test sets, respectively.

Comparison with existing methods. To assess how well our suggested
method for detecting OOD data works, we compared it with various advanced
OOD detection methods, including: ODIN [11], Max-Softmax [1], RMD [17],
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Table 3. OOD detection performance on six different OOD datasets using Cifar-10
and Cifar-100 as ID datasets. Higher (↑) and lower (↓) values are better. All values are
percentages.

ID datasetsOOD datasets OOD detection performance
AUROC(↑)AUPR-in(↑)AUPR-out(↑)FPRat95(↓)

Cifar-10 iSUN 93.41 90.60 94.39 26.46
LSUN-crop 97.42 97.62 97.25 13.23
LSUN-resize 93.41 91.87 93.71 26.64
Places365 89.33 95.96 73.03 43.47
SVHN 82.28 90.22 67.25 57.79
Textures 95.72 93.21 97.34 20.90
TinylmageNet-c95.88 95.96 95.58 19.91
TinylmageNet-r 91.35 89.99 91.32 35.80
Average 92.35 93.17 88.73 30.52

Cifar-100 iSUN 85.40 82.48 87.08 52.14
LSUN-crop 93.08 93.03 93.24 31.41
LSUN-resize 87.99 86.68 88.63 46.91
Places365 79.30 91.58 56.79 65.52
SVHN 75.08 85.58 60.31 66.03
Textures 86.28 77.26 91.60 51.25
TinylmageNet-c92.07 91.59 92.42 33.96
TinylmageNet-r 84.29 82.64 84.95 54.84
Average 85.43 86.35 81.87 49.99

Entropy-Based, Open-Max [1], Max-Logit [7], Energy-Logit [13]. The perfor-
mance was evaluated using two metrics: AUROC and FPRat95. Table 4 summa-
rizes the experimental results achieved by the proposed method on several OOD
test sets. The detailed report of each method on multiple OOD test sets can be
found in Table 5. The experimental results show that our method achieves a rea-
sonable balance between AUROC and FPRat95, indicating that it can effectively
detect OOD samples while minimizing false positives. On a Cifar-10 pre-trained
ResNet-50, our method reduces the average FPRat95 by 5.33% compared to the
logits-based energy score method, 14.16% lower than Max-Softmax method.

4.3 Ablation Study

Visualization of t-SNE. Visualizing features in the feature space by perform-
ing a t-SNE projections can help users gain insight into the decision-making
process of DNNs [15,22]. To analyze the decision boundaries of the model, we
employed t-SNE to visualize the feature representations of the Cifar-10 and
Cifar-100 test sets. Fig. 1 shows the comparison of t-SNE between logits-based
method ((a)(c)) and our proposed method ((b)(d)) on the Cifar-10 and Cifar-100
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Table 4. Comparison of OOD detection results with existing methods on six OOD
datasets using Cifar-10 as the ID datasets. Higher (↑) and lower (↓) values are better.
All values are percentages.

Methods OOD detection performance
AUROC(↑)AUPR-in(↑)AUPR-out(↑)FPRat95(↓)

ODIN 82.07 81.33 80.06 52.75
Max-softmax 84.92 83.84 84.12 44.68
RMD 85.19 83.43 83.18 46.26
Entropy-based87.33 87.22 85.64 43.67
Open-max 89.64 87.76 87.91 36.88
Max-logit 90.46 90.02 88.72 35.56
DICE 90.57 90.20 88.59 35.58
Energy-logit 90.68 90.35 88.83 35.85
Ours 92.35 93.17 88.93 30.52

Fig. 1. Comparison of t-SNE embedding between logits-based method (left) and our
proposed method (right) on Cifar-10 and Cifar-100 test sets.
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Table 5. Comparison of OOD detection performance with existing methods on differ-
ent OOD test sets. All values are percentages.

Methods OOD datasets OOD detection performance
AUROC(↑)AUPR-in(↑)AUPR-out(↑)FPRat95(↓)

ODIN iSUN 82.71 77.24 86.14 51.42
LSUN 86.22 83.59 88.10 43.37
Place365 78.48 91.18 58.77 61.00
SVHN 74.53 85.61 60.02 66.23
Textures 82.38 70.11 89.66 53.91
TinyImageNet83.02 79.66 84.86 51.33

Max-softmax iSUN 83.57 79.31 87.02 47.73
LSUN 87.47 85.44 89.49 38.63
Place365 82.50 93.22 66.00 51.79
SVHN 84.65 91.91 76.09 45.98
Textures 85.13 72.98 91.89 43.38
TinyImageNet84.27 81.21 86.48 45.63

RMD iSUN 86.19 81.98 88.17 45.14
LSUN 88.25 84.71 89.94 38.38
Place365 82.99 93.20 63.19 55.01
SVHN 79.46 86.51 69.31 54.24
Textures 85.77 71.89 92.08 44.96
TinyImageNet85.31 82.22 86.39 46.98

Entropy iSUN 86.61 84.27 88.69 47.31
LSUN 93.82 92.97 94.42 25.58
Place365 87.87 95.68 71.01 46.96
SVHN 89.63 94.59 83.22 34.98
Textures 89.06 80.00 93.81 40.12
TinyImageNet89.83 88.40 90.51 38.94

Open-max iSUN 90.89 86.91 92.27 35.68
LSUN 93.22 91.12 94.01 26.42
Place365 87.49 95.01 70.97 46.74
SVHN 85.60 89.55 78.47 41.25
Textures 88.04 75.08 93.32 40.03
TinyImageNet89.33 86.66 90.12 39.26

Max-logit iSUN 91.21 89.16 92.53 35.05
LSUN 93.47 92.46 94.17 26.45
Place365 87.66 95.48 71.03 46.89
SVHN 89.37 94.24 83.09 34.63
Textures 89.23 80.35 93.92 38.38
TinyImageNet89.64 87.99 90.42 38.31

DICE iSUN 91.07 88.98 92.25 35.72
LSUN 93.65 92.64 94.27 25.46
Place365 87.35 95.38 69.45 48.13
SVHN 89.64 94.60 83.39 34.17
Textures 89.82 81.28 94.28 37.40
TinyImageNet89.67 88.03 90.40 39.17

Energy-logit iSUN 91.58 89.77 92.73 35.67
LSUN 93.82 92.97 94.42 25.58
Place365 87.87 95.68 71.01 46.96
SVHN 89.63 94.59 83.22 34.98
Textures 89.06 80.00 93.81 40.12
TinyImageNet89.83 88.40 90.51 38.94

Ours iSUN 93.41 90.60 94.39 26.46
LSUN 95.41 94.75 95.48 19.93
Place365 89.33 95.96 73.03 43.47
SVHN 82.28 92.22 67.25 57.79
Textures 95.72 93.21 97.34 20.90
TinyImageNet93.62 92.98 93.45 27.86



12 Z. Cao et al.

Fig. 2. Comparison of AUROC and FPR curves between logits-based method (left)
and our proposed method (right) on the LSUN-crop ((a)(b)), Textures ((c)(d)),
TinyImageNet-crop ((e)(f)) as OOD test sets.

test sets. Note that since Cifar-100 has 100 categories, it is not convenient to
display all the categories, instead, we randomly display 21 categories. In these
figures, numbers of different colors represent different categories. We observed
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that each class in our proposed method ((b)(d)) forms a unique cluster in the
t-SNE space compared to logits-based method (a)(c).

Visualization of AUROC and FPR curves. The AUROC and FPR
curves are commonly used to visualize the performance of OOD detection mod-
els. AUROC is a popular metric for evaluating the performance of OOD detection
models. The AUROC curve intuitively visualizes the performance of the OOD
detection model at different thresholds. The FPR curve, also known as the false
alarm curve, plots the FPR against the TPR for various classification thresholds.
Fig. 2 presents a comparison of AUROC and FPR curves between logits-based
method ((a)(c)(e)) and our proposed method ((b)(d)(f)) on the LSUN-crop,
Textures, TinyImageNet-crop OOD test sets. Note that an AUROC value of 1.0
represents perfect classification, while an AUROC of 0.5 suggests random guess-
ing. Generally, a higher AUROC value indicates superior model performance.

5 Conclusion

OOD detection plays a critical role in ensuring the safe and reliable deployment
of deep learning models. DNNs are typically trained based on the closed-world
assumption, that is, during the training phase the model is only exposed to data
from a specific data distribution. In real-world scenarios, the test samples are
often drawn from a data source that has a semantic shift from the training set.
This poses a significant challenge as it requires the model to distinguish between
ID and OOD samples without any prior distribution knowledge of OOD samples.

In this work, we propose a novel approach that directly use the patterns in
the feature space to compute the energy scores instead of using the logits. We
replace the FC layer with multiple 1× 1 convolutional layers to capture the spa-
tial structure and information of the feature maps. Because the simple mapping
performed by the FC layers may lose valuable details of the raw features. A
spatial attention scoring function was used to generate a class-specific feature
for each category. The obtained class-specific features are then used to calculate
the energy score through the energy function we designed. Furthermore, a new
energy function was designed to convert the obtained class-specific features into
energy score, which is a single, non-probabilistic scalar. We evaluated the pro-
posed method on several OOD benchmark datasets and demonstrate its superior
OOD detection compared to existing state-of-the-art methods.

Future works include expanding the evaluation of our method to cover a
broader range of deep learning tasks, and exploring other energy functions to
further enhance detection performance.
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Abstract. The prevalence of label noise in datasets poses significant
challenges in supervised learning frameworks, where models that over-
fit noisy labels experience degraded generalization performance. Numer-
ous robust learning methodologies have been proposed to mitigate the
adverse effects of noisy labels on models. Among these methodologies,
sample selection-based approaches have garnered notable attention for
their promising results on real-world noisy datasets. However, current
research predominantly aims at improving the overall accuracy of mod-
els in the presence of label noise, often overlooking the critical aspect
of fairness across different classes. In this paper, we argue that ensuring
model fairness is as crucial as maintaining robustness in the context of
label noise. We propose a novel approach that combines advanced sam-
ple selection and adversarial optimization to enhance both fairness and
robustness simultaneously. Our methodology introduces implicit regu-
larization to model label noise and proposes a sample selection strategy
based on the distribution of noise probabilities and associated loss val-
ues. Furthermore, we decouple representation learning from classification
head learning by leveraging adversarial optimization, focusing on the gra-
dients of the worst-case classification hyperplane. Experimental compar-
isons on both synthetic and real-world noisy datasets demonstrate that
our proposed method achieves superior performance and optimal class
fairness. The effectiveness of our approach is substantiated by empirical
results, and we provide comprehensive evaluations detailing the robust-
ness against label noise. The code implementing our methodology will
be made publicly available at https://github.com/wangnaihao/DNLL.
git, facilitating further research and development in the field.
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1 Introduction

Supervised training relies on well-annotated, high-quality samples. Despite the
advent of large foundation models, high-quality annotations remain crucial for
fine-tuning to achieve robust and generalizable models. However, label noise
persists, and data collected through methods like web scraping or crowdsourc-
ing often includes some erroneous labels. Even manual labeling procedures can
inadvertently introduce mislabeling due to varying levels of expertise. Recent
research has highlighted the significant impact of data annotation quality on
both the generalization capabilities and training efficiency of models. The field
of Learning with Noisy Labels (LNL) [7,11,13] aims to mitigate the negative
effects of incorrect annotations and has garnered significant attention [23].

Before fitting noisy samples, over-parameterized deep neural networks
undergo an initial learning phase, focusing exclusively on clean samples. Sample
selection methods typically leverage the knowledge gained during this phase to
choose high-quality samples and refine the model through pseudo-labels gener-
ated from model predictions. Superior models can identify better samples, which
further enhances their performance. By employing this feedback loop, sample
selection-based methods incrementally improve the testing accuracy of models in
the presence of label noise. However, model predictions can sometimes be incor-
rect, generating erroneous pseudo-labels for unlabeled samples and introducing
new false labels. Training the network on these incorrect labels accumulates
errors, resulting in confirmation bias. RobustLR [2] corroborates the presence of
confirmation bias and identifies a notable proportion of incorrect pseudo-labels
in sample selection-based methods. To mitigate this issue, RobustLR introduces
a novel confidence estimation technique during the pseudo-label generation pro-
cess. Addressing instance-dependent noise, CC [29] introduces a centrality and
consistency sample selection method to handle significant intra-class variations,
while DISC [13] incorporates an instance-aware dynamic threshold for sample
selection.

Fig. 1. (a) The distribution of selected samples for different categories after training
for 20 epochs. (b) The distribution of error rates for different categories after training
for 20 and 150 epochs.
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However, previous studies have not adequately addressed the fairness between
categories during the training process. Due to the uneven distribution of samples
in terms of quantity and learning difficulty, the model’s learning capabilities and
prediction errors vary significantly across different categories. Unless additional
measures are taken to counteract the disparities introduced by this imbalance,
the uneven sample selection and model training can ultimately lead to model
bias. In other words, samples that are initially poorly represented at the tail-
end of the distribution are likely to become increasingly poorly represented, or
even entirely misclassified. To better observe and analyze this phenomenon, we
employs the latest DISC method on CIFAR-100 with 60% IDN noise for a series
of experiments. Figure 1 illustrates the visual results of the intermediate data
from the experiments. Figure 1a depicts the number of samples selected and the
proportion of correctly labeled samples at the 20th epoch. It is observed that the
categories with a higher number of selected samples also have a higher propor-
tion of correctly labeled samples. Figure 1b shows the model’s test errors across
different categories at the 20th and 150th epochs for the same set of experiments.
It is evident that the disparity in test errors is dramatically amplified during the
training process. Specifically, a few disadvantaged categories, such as the maple
class, are almost entirely misclassified, with errors reaching 100%. Therefore, the
imbalance between categories is magnified during training, leading to the gen-
eration of more erroneous pseudo-labels, exacerbating the model’s confirmation
bias, and deteriorating its generalization capability. We believe that ensuring
fairness in the model training process is equally important as enhancing the
model’s robustness to label noise.

To address the issues mentioned above, in this paper, we strive to build a more
effective sample selection strategy and aim to separate representation learning
from the learning of the classification head. By adopting a novel perspective on
representation optimization, we seek to enhance the fairness of the model. To this
end, we propose a new definition of the worst-case classification boundary under
an enhanced sample selection strategy and a novel adversarial representation
optimization method based on this definition. This method effectively optimizes
the representations, thus achieving a larger classification margin. Additionally,
to improve sample selection, this paper uses an implicit regularization term to fit
the noise probability of labels and performs sample selection by jointly consider-
ing the loss distribution and noise distribution. We validate the effectiveness of
the proposed method on synthetic noise datasets as well as on real-world noisy
datasets. Our approach surpasses the performance of state-of-the-art methods,
such as CC[29] and DISC[13], and significantly enhances fairness in learning
across different categories. The main contributions of this paper are summarized
as follows:

– We propose a novel sample selection method based on the joint consideration
of network prediction probabilities and noise-fitting probabilities.

– We introduce a new definition and calculation method for the worst-case
classification boundary under label noise.
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– We present an adversarial representation optimization method based on the
worst-case classification boundary in the presence of label noise.

2 Related Work

2.1 Learning from Noisy Labels

Early studies predominantly focused on developing robust loss functions, such
as Peer Loss [18], to enhance noisy label learning. The contemporary approach
largely involves sample selection methods. A significant contribution in this field
is DivideMix [11], which categorizes samples with minimal losses as clean and
considers them labeled data, while treating the remaining samples as unlabeled
data. This method employs the MixMatch [1] semi-supervised technique to cre-
ate pseudo-labels, thereby training a robust classifier. Various studies address
confirmation bias by devising improved sample selection strategies [4,5,7,25] or
label correction methods [2,6,14]. For example, DISC [13] adopts a dual-view
approach with an instance-specific dynamic threshold to segregate the dataset
into clean, hard, and noisy subsets, handling each accordingly. In this paper,
we introduce a dynamic, instance-specific sample selection strategy based on
implicit regularization-based noise estimation, which demonstrates higher preci-
sion in identifying accurate samples compared to existing methods.

2.2 Implicit Regularization

Implicit regularization can be regarded as a statistical method for sparsity, play-
ing a role similar to minimizing L1 loss in sparse noise learning and is currently
utilized in various models [30]. Among these methods, one noteworthy approach
is SOP [15], which is closely related to our method. SOP leverages implicit
regularization for noisy label learning, providing a sparse representation of the
residual term between the prediction and the observed noisy label. An enhance-
ment of SOP, known as SOP+, incorporates semi-supervised learning techniques.
Nevertheless, SOP+ does not comprehensively account for the potential biases
that may emerge throughout the evolving training procedure.

3 METHOD

We propose the Debiased Noisy Label Learning (DNLL) framework, based on
the concept of the worst-case decision plane. The overall framework is illus-
trated in Figure 2, and the pseudo-code is provided in Appendix A. The frame-
work comprises three core modules: Noise Estimation with Implicit Regulariza-
tion, Enhanced Selection, and Reverse Optimization. Additionally, the frame-
work integrates a supervised loss with random Mixup [17] augmentation and
consistency regularization using both strong and weak augmentations. DNLL
leverages the FixMatch [20] semi-supervised framework to generate and utilize
pseudo-labels. An implicit regularizer estimates noise, preventing the model from
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Fig. 2. The framework of the proposed DNLL includes (a) the network architecture
and (b) the data workflow.

fitting incorrect labels. We also introduce a novel sample selection strategy that
combines noise probability and loss distributions from a dual-perspective app-
roach. Consequently, DNLL dynamically classifies samples into three sets during
training: the clean set, the hard set, and the noisy set. The clean set stresses high
precision in sample selection, establishing reliable margins among categories and
addressing the imbalanced representations caused by the worst-case scenarios
defined by the hard and noisy sets. To achieve this, DNLL employs a gradi-
ent reversal layer to compute adversarial loss and subsequently updates network
parameters for features in the latent space. Detailed discussions of these modules
follow in the subsequent subsections.

For convenience, we initially frame the problem as a classification task,
denoted by C as the number of categories. The data set is defined as D =
{(xi, yi)}N

i=1, where xi represents the i-th sample, and yi denotes its correspond-
ing noisy label. Here, θ and ψ are the parameters for the network and the latent
space, respectively. The dataset size is represented by N . The sets Sclean, Shard,
and Snoise represent the clean, hard, and noisy data subsets, respectively. The
parameters c, n, and h indicate the sizes of these sets. The function f() indicates
the network’s prediction, and L() represents the Cross-Entropy (CE) loss.

3.1 Noise Estimation with Implicit Regularization

Previous research has found that over-parameterized structures, represented by
deep neural networks, have implicit preferences for low-rank and sparse solutions.
Recent study [15] assumes that noise is sparse and thus it can be modeled in a
low-rank pattern. Inspired by this idea, this paper introduces an implicit regu-
larization term to recover label noise during the learning process. Specifically,
we represent the real correct labels in the following form:

ỹi = yi − β2
i · yi + γ2

i · (1 − yi) . (1)
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In this context, yi represents the one-hot encoding of the given label of sam-
ple i. βi ∈ [0, 1] represents the sparse format of noise probability. γi ∈ [0, 1]
represents the sparse format of the corrected label probability. yi and (1 − yi)
are orthogonal vectors, so as are βi and γi. Under this transformation, learning
under noisy labels becomes minimizing the difference between f(xi; θ) and ỹi

and Lrobust can be simplified by Equation.1 to:

min
θ,{βi,γi}N

i=1

1
N

N
∑

i=1

L
(

f (xi; θ) + β2
i yi − γ2

i (1 − yi) , yi

)

. (2)

Parameters βi and γi, which are learnable for each sample, play a crucial role
in modeling sparsity to estimate noise probabilities and correct label probabili-
ties. As demonstrated in [16], initializing the vectors βi and γi with very small
positive values allows for the recovery of probability values in sparse vectors
through implicit regularization during the over-parameterized model learning
process. Throughout the training, the learning of parameter γi tends to be more
cautious, lagging behind the learning of the network parameters θ and noise
parameters βi. This is because ineffective updates to θ and βi would render the
updates to γi futile. To prevent premature learning of γi before f(xi; θ) and βi

have been properly trained, our research employs a two-stage learning strategy,
consisting of a warm-up phase followed by an ongoing learning phase. During
the warm-up phase, γi is approximated to be nearly zero, thereby simplifying
Equation 2 to:

min
θ,{βi,γi}N

i=1

1
N

N
∑

i=1

L
(

f (xi; θ) + β2
i yi

)

. (3)

During the warm-up phase, the network predominantly concentrates on the
preliminary learning of the function f and the estimation of the noise proba-
bility βi. Specifically, we apply the Cross-Entropy loss to update the network
parameters θ, and the Mean Squared Error (MSE) loss to refine the parameters
βi. The following formula conducts the updates:

θ ← θ − τθ · ∂Lce (θ, βi)
∂θ

. (4)

βi ← βi − τβ · ∂Lmse (θ, βi)
∂βi

, i = 1, . . . , N. (5)

During the continual learning phase, the parameter γi initiates its learning
process using the pre-established parameters θ and βi. Throughout this stage,
a multitasking approach is employed to integrate all other relevant losses into
the learning process. The Mean Squared Error (MSE) loss function is utilized
to facilitate the update of γi. The update rule for γi is given by the following
formula:

γi ← γi − τγ · ∂Lmse (θ, βi)
∂γi

, i = 1, . . . , N. (6)

Please note that γi cannot be updated using the Cross-Entropy loss (CE loss),
as the partial derivative of Lce with respect to γi is always equal to 0.



22 N. Wang et al.

This innovative two-stage design allows DNLL to effectively estimate the
probability of label noise during the initial warm-up phase. By doing so, it sig-
nificantly mitigates the risk of the model fitting to noisy labels, thereby enhanc-
ing the overall reliability and accuracy of predictions in the subsequent learning
phase.

Fig. 3. Comparison between loss and β. (a) The distribution of noise and clean data
in loss. (b) The distribution of noise and clean data in β.

3.2 Enhanced-Selection

By leveraging implicit regularization, we can determine the probabilities of label
noise and confidence scores for the samples. Based on their distributions, we
have formulated a dynamic sample selection strategy called Enhanced-Selection.
This approach necessitates both an exceptionally clean sample set to identify
category margins and a diverse sample set for data augmentation and training.
Consequently, rather than simply dividing the dataset into clean and noisy sub-
sets, Enhanced-Selection dynamically partitions the dataset into three subsets:
clean, hard, and noisy.

Based on the proposed sample selection strategy, we first use the Gaussian
Mixture Model (GMM) to fit the distribution of βi and employ a threshold of σ =
0.5 to select a clean sample set. Next, we apply the GMM to fit the distribution of
the losses, using the same threshold to select hard samples, excluding those from
the clean set. The remaining samples with high predicted losses are identified
as noisy samples. Figures 3a and 3b present the histogram distributions of the
losses and noise probabilities, respectively, under a 60% IDN noise ratio in the
CIFAR-100 dataset. Due to overlapping loss distributions between clean and
noisy samples, a strategy that only selects samples with lower losses results in
reduced accuracy. The distribution of noise probabilities helps separate clean
samples from noisy ones, thereby improving selection accuracy.

We also plotted the precision of the selected clean set throughout the entire
training process, as illustrated in Figure 3c. Compared to the precision of the
clean set chosen using the small-loss strategy, our method demonstrates signifi-
cantly higher precision that consistently increases, ultimately exceeding 80%.



DNLL 23

3.3 Latent Compression by Reversal Optimization

Fig. 4. Left: Modelling the worst-classifying plane based on the partition of the clean
set and the other. Right: Optimizing the representation by reverse-engineering the
worst-classifying plane.

Samples that are easier to learn typically incur smaller losses. Consequently,
sample selection strategies that prioritize low-loss samples may result in an
imbalanced sample distribution. This imbalance tends to worsen during subse-
quent pseudo-label generation, culminating in model biases and unfairness across
various classes. To address this issue, we propose decoupling the learning of rep-
resentations from the learning of the classification head. We have developed a
reversal optimization module, which consists of a reverse gradient optimization
layer and an auxiliary classification head. The auxiliary classification head oper-
ates in the inner loop to simulate worst-case scenarios, while the reverse gradient
optimization layer functions in the outer loop, computing loss gradients relative
to the worst-case classification plane. We define this "worst-case classification
plane" as the one that optimally discriminates Sclean while maximally misclas-
sifying Shard and Snoisy.

Let h′ represent the classification header and ψ denote the parameters only
for the latent space. Lother represents the classification loss on the of Shard

and Snoise, while Lclean represents the classification loss on the set of Sclean.
The worst-case classification plane can be obtained by optimizing the following
formula:

hworst (ψ) = argmax
h′

(Lother (ψ, h′) − Lclean (ψ, h′)) . (7)

The worst-classification plane hworst(ψ) aims to minimize the distance
between all samples and labels in Sclean, and simultaneously maximize the
distance between samples and labels in sets Shard and Snoise. This operation
increases the margin between two class boundaries, as Figure 4 shows.

Subsequently, we further optimize the loss under the worst-classification
plane through gradient descent to minimize it:

Lworst = min (Lother (ψ, h′) − Lclean (ψ, h′)) , (8)
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where:

Lclean (ψ, h′) =
1
c

c
∑

i=1

Lce (f (ψ, h′, xi) , yi)

Lother (ψ, h′) =
1

h + n

h+n
∑

i=1

Lce (1 − f (ψ, h′, xi) , yi) .

(9)

By optimizing representations in reverse to align with decision boundaries
under worst-case scenarios, a superior representation can be achieved. This pro-
cess reduces biases introduced by data imbalances and the use of pseudo-labels.

3.4 Overall Loss Function

In addition to the implicit regularizer and the loss in the reverse optimization
module, the DNLL framework incorporates two additional losses. Firstly, there
is a supervised learning loss with RandomMix data augmentation[17], defined
by Lmix. Secondly, there is a consistency regularization term Lcr[27].

Our overall loss function can be represented as follows, and λw, λcr are hyper-
parameters:

Ltotal = Lrobust + Lmix + λwLworst + λcrLcr. (10)

4 EXPERIMENTS AND ANALYSIS

In this section, we validate the effectiveness of our method on both synthetic
noise (using CIFAR-10 and CIFAR-100 [10] datasets with instance-dependent
noise) and real-world noise (using Animals-10N [21], Clothing-1M [26], and Web-
Vision [12] datasets). Subsequently, we conduct ablation experiments to verify
the efficacy of each component. Additional results on symmetric noisy data are
included in Appendix C to provide a comprehensive understanding of DNLL.
All experiments were conducted using a single GeForce RTX 3090 GPU and
implemented with PyTorch 1.8.0.

We evaluate the model’s generalizability using overall accuracy (ACC) and its
balance across different categories using average accuracy (mACC). For experi-
ments involving instance-dependent and real-world noise, we utilized results from
the literature and followed the representation format specified in those sources
for mean and variance.

4.1 Synthetic Noise

Dataset CIFAR-10 and CIFAR-100 are widely used image classification
datasets in computer vision. Based on the dependency between data and class
labels, existing synthetic label noise can be categorized into two types: Class-
Dependent Noise and Instance-Dependent Noise (IDN). IDN is sampled from a
truncated Gaussian distribution by setting a random noise rate for each instance.
Following prior works[2,13], we conduct experiments on IDN (20%, 40%, 60%)
on both CIFAR-10 and CIFAR-100 datasets.
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Table 1. Comparison with the SOTA methods on CIFAR-10 and CIFAR-100 with
IDN.

DataSet CIFAR-10 CIFAR-100

Method Inst.20% Inst.40% Inst.60% Inst.20% Inst.40% Inst.60%
CE 83.93 ± 0.15 67.64 ± 0.26 43.83 ± 0.33 57.35 ± 0.08 43.17 ± 0.15 24.42 ± 0.16
Co-teaching 88.87 ± 0.24 73.00 ± 1.24 62.51 ± 1.98 43.30 ± 0.39 23.21 ± 0.57 12.58 ± 0.58
Co-teaching+ 89.80 ± 0.28 73.78 ± 1.39 59.22 ± 6.34 41.71 ± 0.78 24.45 ± 0.71 12.58 ± 0.58
JoCoR 88.78 ± 0.15 71.64 ± 3.09 63.46 ± 1.58 43.66 ± 1.32 23.95 ± 0.44 13.16 ± 0.91
Reweight-R 90.04 ± 0.46 84.11 ± 2.47 72.18 ± 2.47 58.00 ± 0.36 43.83 ± 8.42 36.07 ± 9.73
Peer Loss 89.12 ± 0.76 83.26 ± 0.42 74.53 ± 1.22 61.16 ± 0.64 47.23 ± 1.23 31.71 ± 2.06
DivideMix 93.33 ± 0.14 95.07 ± 0.11 85.50 ± 0.71 79.04 ± 0.21 76.08 ± 0.35 46.72 ± 1.32
CORSES2 91.14 ± 0.46 83.67 ± 1.29 77.68 ± 2.24 66.47 ± 0.45 58.99 ± 1.49 38.55 ± 3.25
CAL 92.01 ± 0.12 84.96 ± 1.25 79.82 ± 2.56 69.11 ± 0.46 63.17 ± 1.40 43.58 ± 3.30
CC 93.68 ± 0.12 94.97 ± 0.09 94.95 ± 0.11 79.61 ± 0.19 76.58 ± 0.25 59.40 ± 0.46
DISC 96.48 ± 0.04 95.94 ± 0.04 95.05 ± 0.05 80.12 ± 0.13 78.44 ± 0.19 69.57 ± 0.14
DNLL 96.92 ± 0.12 96.59 ± 0.08 96.05 ± 0.08 82.64 ± 0.21 81.33 ± 0.03 75.54 ± 0.04

Experimental Setup We use PreResNet18[9] as the backbone network to train
300 epochs on CIFAR-10 and CIFAR-100. For a fair comparison, we use SGD as
the optimizer and set the batch size to 128. We utilized two hyperparameters,
namely λw, λcr, which were consistently set as 0.3, and 0.9, respectively, across
all experiments. Different learning rate settings were employed when learning
different parameters on different datasets, and we have summarized them in
Appendix B.

Comparison With SOTA Methods Table 1 compares the performance of
various methods under IDN noise. We achieve the best performance on CIFAR-
100, outperforming the second-ranked method DISC by 2.52%, 2.89%, and 5.97%
at noise ratios of 20%, 40%, and 60% respectively. On CIFAR-10, we are also the
best in terms of performance at different noise ratios,outperforming the second-
ranked method DISC by 0.44%, 0.65%, and 1% at noise ratios of 20%, 40%, and
60% respectively.

4.2 Real-World Noise

Dataset The Animals-10N dataset consists of 5 pairs of easily confusable
images, with a total of 50,000 training images and 5,000 testing images. The
noise rate in this dataset is approximately 8%. WebVision is a dataset com-
posed of images from Google and Flickr, containing 1,000 different categories
and a total of about 2.4 million images. Following the approach mentioned in
the reference, we use the first 50 classes of WebVision as the training data and
then test the model using the validation sets provided by both WebVision and
ILSVRC2012. Clothing1M is a dataset collected from online shopping websites,
consisting of 1 million training samples and 10,000 testing samples. The noise
rate in this dataset is approximately 38.5%.
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Experimental Setup For Animals-10N, following[3], we used VGG19[19] (not
pre-trained) as the backbone network and set the batch size to 64. For Web-
Vision, following[22], we used InceptionResNetV2[24] (not pre-trained) as the
backbone network and set the batch size to 32. For Clothing1M, following[28],
we used ResNet50 (pre-trained)[8] as the backbone network and set the batch
size to 64. We conducted unified training for 300 epochs with the same hyperpa-
rameter settings as the experiments on CIFAR-10 and CIFAR-100. The learning
rate configuration can also be found in Appendix B.

Comparison With SOTA Methods The comparison results between the
proposed method and the state-of-the-art (SOTA) methods on real datasets are
shown in Table 2. DNLL achieves the best test accuracy on all four datasets.
It ties with the CC method for first place on the Clothing1M dataset, outper-
forming the second-ranking PGDF by 0.21 percentage points. The Clothing1M
dataset has a long-tail distribution of samples across categories, which can lead
to data imbalance and self-training imbalance during the pseudo-label genera-
tion process. The outstanding performance of DNLL on this dataset indicates
that it effectively handles this imbalance. On WebVision, DNLL outperforms
the second-ranking RobustLR by 0.07 and 0.12 percentage points in TOP1
and TOP5 accuracy, respectively. On ILSVRC12, DNLL surpasses the second-
ranking DISC by 0.46 percentage points in TOP1 accuracy. While DISC also pro-
poses dynamic instance selection for sample training, it does not pay as much
attention to the data and self-training biases introduced by the selection. In
terms of the same dataset’s TOP5 metric, the second-ranking method is CC,
which has a test accuracy of 93.76%, 0.55 percentage points lower than our pro-
posed method. We also achieve the best results on the Animals-10N dataset,
surpassing DISC, RobustLR, and SSR by 2.1%, 0.7%, and 0.7%, respectively.

Table 2. Comparison with the SOTA methods on Clothing1M and WebVision.

Dataset Clothing WebVision ILSVRC12 ANnimals
1M top1 top5 top1 top5 10N

CE 69.21 - - - - -
ELR+ 74.81 77.78 91.68 70.2989.76 -
DivideMix74.76 77.32 91.64 75.2090.84 -
PGDF 75.19 81.47 94.03 75.4593.11 -
CC 75.4 79.36 93.64 76.0893.86 -
SSR 74.83 80.92 92.8 75.7691.76 88.5
RobustLR - 81.84 94.12 75.4893.76 88.5
DISC 73.72 80.28 92.28 77.4492.28 87.1
DNLL 75.4 81.9194.2477.9 94.2189.2
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Fig. 5. (a) and (b) represent the comparison of the mACC metrics between the usage
and non-usage of the enhanced-selection and reversal optimization module,and (c), (d)
represent the comparison of the noise fit rates between the usage and non-usage of the
enhanced-selection and reversal optimization module.

4.3 Ablation Study

The Enhanced-Selection strategy relies on noise probabilities derived from noise
estimation with implicit regularization. Without the implicit regularizer, this
strategy reverts to the classical Gaussian Mixture Model (GMM)-fitted small-
loss selection approach. Within the DNLL framework, we aim to exclude either
the implicit regularizer or the reversal optimization module to evaluate the indi-
vidual contributions and interactions of each component. Experimental results
on the CIFAR-10 and CIFAR-100 datasets–both containing high proportions
of instance-dependent noise–are presented in Table 3. The results indicate
that removing the implicit regularizer significantly degrades performance. This
decline stems not only from unaddressed confirmation bias during the model
learning process but also from inaccuracies in the clean set, which render reversal
optimization ineffective. Although removing the reversal optimization results in
a slight performance decline, this decline becomes more pronounced with increas-
ing dataset imbalance. Overall, DNLL demonstrates superior performance, con-
firming that considering model biases under label noise contamination is crucial
and illustrating the synergistic integration of the three proposed modules.

In order to gain a better understanding of the methodology used in this
study, we also analyzed the tricks employed in Table 4, which include Mixup
augmentation, strong augmentation, and co-training. Among these techniques,
co-training contributes the least, followed by Mixup, and then strong augmen-
tation. Removing strong augmentation would prevent the optimization of con-
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Table 3. Ablation study of the proposed modules without any trick. IR represents the
implicit regularizer and RO represents the reversal optimization module.

Moudules CIFAR-10 CIFAR-100

IR RO Inst.40 Inst.60 Inst.40 Inst.60
95 50.37 62.55 41.25

� 95.18 90.1 73.58 62.63
� 95.2 50.92 62.99 41.51

� � 95.64 90.63 76.46 65.98

Table 4. Ablation study of tricks.

DataSet CIFAR-10 CIFAR-100

Noise Type Inst.40 Inst.60 Inst.40 Inst.60
DNLL 96.59 96.05 81.33 75.54
w/o Mixup 95.23 90.76 76.17 70.45
w/o strong aug. 95.37 87.42 77.42 63.42
w/o co-train 96.31 95.70 80.04 73.60

sistent representations between strong and weak augmentations, while removing
Mixup would hinder the achievement of consistent representations for local fea-
tures. Strong augmentation and Mixup serve as auxiliary and facilitative roles
in optimizing the reversal optimization module.

4.4 Discussion of Debiasing Effect and Scalability

Research on ablation has demonstrated that the proposed modules significantly
enhance testing accuracy, thereby indicating a reduction in confirmation bias.
To further validate the effectiveness of the proposed method on mitigating
model biases, we analyzed the mean accuracy (mACC) with and without the
enhanced selection and reversal optimization under varying ratios of noisy labels,
as depicted in Figure 5a and Figure 5b.

The mean Accuracy metric (mACC) effectively highlights fairness, particu-
larly in datasets with multiple classes or high levels of noise. In such contexts,
class imbalance is often more pronounced. Without employing the reverse opti-
mization module, mACC results significantly decline, indicating the importance
of the proposed modules in mitigating biases. Reducing biases consequently
enhances overall accuracy. For instance, in the CIFAR-100 dataset with 60%
Instance-Dependent Noise (IDN), an increase in mACC from 54.84% to 58.85%
corresponds to an improvement in Accuracy (ACC) from 62.63% to 65.98%.

To further elucidate our findings, we plot the noise fitting ratio over time
for CIFAR-100 datasets with IDN 40% and IDN 60%, as shown in Figure 5c
and Figure 5d, respectively. The noise fitting ratio is defined as the proportion
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of predictions that match the noisy labels but do not match the ground truth.
Utilizing our modules results in a notable reduction in noise fitting ratios.

Compared to other methods that require extensive hyperparameter tuning,
our approach necessitates the adjustment of significantly fewer hyperparame-
ters. Specifically, only the learning rate parameters need to be fine-tuned. This
streamlined requirement significantly enhances the scalability of our method.

5 CONCLUSION AND DISCUSSION

This paper is the first to propose a novel approach that integrates sample selec-
tion methods under the context of label noise contamination, while simultane-
ously ensuring both fairness and robustness. We introduce a unified framework
that aims to address these issues through a core mechanism of defining worst-case
decision boundaries and conducting implicit compression via adversarial opti-
mization. Experimental results validate the efficacy of our framework in achiev-
ing these objectives. However, our approach has certain limitations. Specifically,
while we have discussed inter-class fairness, intra-class fairness remains an area
that requires further exploration. In future work, we aim to extend our methodol-
ogy to mitigate biases inherent in pre-trained models, thereby enhancing overall
fairness and robustness.
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Abstract. Imbalanced datasets can significantly affect the performance
of Machine Learning (ML) models, as they tend to overfit to the
majority class and struggle to generalize well for minority classes. To
mitigate these issues, we introduce an augmentation technique called
Similarity-Enhanced Data Augmentation (SEDA) for handling imbal-
anced datasets. SEDA integrates feature and distance similarities to
augment the minority samples. By incorporating feature importance,
SEDA ensures that the most influential features are prioritized, lead-
ing to more meaningful synthetic samples. We evaluated the impact of
SEDA on the performance of four ML models, including Multi-Layer Per-
ceptron (MLP), Random Forest (RF), Decision Tree (DT), and Logis-
tic Regression (LR). SEDA’s effectiveness is compared against random
and SMOTE oversampling methods. Experimental results are collected
on geophysical data from Lapland, Finland. The dataset exhibits a sig-
nificant class imbalance, comprising 15 known samples in contrast to
2.92×105 unknown samples. Experiments show that adding high-quality
synthetic samples can help the model to generalize better to unseen data,
addressing the overfitting issue commonly seen in imbalanced datasets.
A part of the implemented methodology of this work is integrated in
QGIS as a new toolkit which is called EIS Toolkit (https://github.com/
GispoCoding/eis_toolkit) for mineral prospectivity mapping.

Keywords: imbalanced learning · data augmentation · feature
importance · machine learning methods · distance similarity
measurement

1 Introduction

The ever-expanding volume of data in complex systems and the remarkable
progress in machine learning (ML) techniques have empowered artificial intel-
ligence (AI)-based systems to carry out tasks such as classification and detec-
tion traditionally performed by humans. Furthermore, the significant amount of
data exceeds the human capacity for analysis, therefore we require to automat-
ically perform the tasks by employing ML models trained for different appli-
cations. Automating classification across various sectors including health [2],
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security [25], mineral [10], and agriculture [11] promises to enable organizations
and companies to operate with greater efficiency and impact. The classification
algorithms require high-quality training datasets, whereby a set of data points or
observations are labeled for analysis and processing by ML models to extract and
capture the patterns between the features of the data points and their ground
truths (labels). However, collecting label data or ground truth is not an easy
task in many real-world applications, and workers should spend a lot of time
annotating and labeling data. As a result, ML engineers and data scientists have
to continually deal with imbalanced datasets in real-world applications [14].

Imbalanced datasets pose significant challenges in classification tasks: (1)
primarily through bias in prediction, (2) misleading accuracy metrics, and (3)
overfitting to the majority class [4]. There are various methods for addressing
imbalanced data challenges and improving the performance of ML models on
train data for classification tasks, each with advantages and limitations. Despite
significant progress in addressing imbalanced learning, no approaches have taken
into account both feature and distance similarities to generate high-quality syn-
thetic samples. SEDA aims to balance the training data and enhance the gen-
eralization of the ML model by prioritizing the most influential features. This
paper aims to answer the following research question: "How can SEDA enhance
the performance of ML models by augmenting minority known samples from
unknown samples?". The main contributions of this work are:

1. Integration of feature similarities: SEDA leverages feature similarity mea-
sures, including Principal Component Analysis (PCA) [19], Independent
Component Analysis (ICA) [18] and entropy-based [8] methods, to assess
the significance of each feature. This ensures that critical features influencing
the model’s performance are accurately identified and utilized.

2. Distance-based augmentation: By calculating distance similarities (e.g.,
Euclidean, Manhattan, and Cosine) between samples and incorporating
weighted feature importance, SEDA ensures that the augmented samples
maintain both the statistical integrity and the relevance of the original data
distribution.

3. Algorithmic level imbalanced data handing: At the algorithmic level, we
adjust the decision threshold of a model to balance the trade-off between
false positives and false negatives.

4. Grid Search: We utilized grid search to identify the optimal values for the
oversampling rate, decision threshold, and model hyperparameters.

5. Comprehensive evaluation: We also provide an extensive evaluation of our
method with four common ML models, including Multi-Layer Perceptron
(MLP), Random Forest (RF), Decision Tree (DT), and Logistic Regression
(LR). In addition, SEDA is compared with random oversampling, ADASYN,
SMOTE, and Borderline-SMOTE .

6. Real-world highly imbalanced dataset: To evaluate the proposed framework,
we used a highly unbalanced data set related to mineral deposits found
in Kolari municipalities in Finland. Imbalanced class issues are commonly
encountered in mineral resource exploration projects, as creating a well-
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balanced dataset for classification and generating prospectivity maps for min-
eral deposits can be quite costly. The study offers valuable framework and
insights that can help decision makers and mineral exploration companies in
planning, identifying areas with known mineralization, and discovering new
exploration targets, while also saving money and energy.

The remainder of this paper is organized as follows. Section 2 reviews the
most closely related work dealing with imbalanced datasets. The proposed
method for handling imbalanced data is described in Section 3. Sections 4 and
5 provides the experimental design and results, respectively. The discussion and
conclusions are drawn in Section 6.

2 Related Work

The techniques proposed for handling imbalanced datasets can be categorized
into four groups: (1) data-level approaches (2) algorithm-level approaches (3)
hybrid approaches and (4) data augmentation and generation. In the following
paragraphs, we briefly review each group to understand how techniques can
handle imbalanced data. Additionally, a summary of previous studies conducted
on this problem can be found in Table 1.

Table 1. Summary of Existing Works on Handling Imbalanced Datasets.

Technique Application Domain YearCitation

SMOTE Fraud Detection 2002 [5]
Undersampling Spam Detection 2009 [25]
SMOTE + Tomek Links Bioinformatics 2004 [1]
Cost-Sensitive SVM Medical Diagnosis 1999 [31]
Balanced Random Forest Credit Scoring 2004 [6]
One-Class SVM Network Intrusion Detection 2001 [29]
GANs Rare Disease Data Augmentation 2018 [13]
Isolation Forests Cybersecurity 2008 [23]
Deep Learning (Class Weighting) Image Recognition 2020 [22]
Transfer Learning Medical Imaging 2018 [7]

Data-Level Approaches: Various techniques focus on adjusting the train-
ing data to balance class distributions. Three common methods include over-
sampling, undersampling, and the combination of over and under-sampling. In
oversampling techniques like SMOTE (Synthetic Minority Over-sampling Tech-
nique), borderline SMOTE, and support vector machine SMOTE, synthetic
examples of the minority class are created by interpolating between existing
minority instances [5]. In the undersampling technique, data points are ran-
domly removed from the majority class to balance the dataset, although this
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can risk losing important information. There are also some popular undersam-
pling techniques, like random undersampling, repetitive undersampling based
on ensemble models, and Tomek’s link undersampling [21]. Lastly, the combina-
tion of oversampling and undersampling methods with data cleaning techniques,
like SMOTE + Tomek Links. In this method, SMOTE generates synthetic sam-
ples and Tomek Links cleans noisy samples by removing overlapping examples
between classes [21].

Algorithm-Level Approaches: These methods involve modifying the
learning algorithms to be more sensitive to the minority class. One of the noted
algorithm-based methods that target the problem of imbalanced learning is the
cost-sensitive learning function, which assigns a higher misclassification cost to
the minority class [27]. Also, ensemble methods such as bagging, boosting, and
stacking can enhance the model performance on imbalanced datasets. Combin-
ing various model and assigning higher weights can provide more emphasis on
underrepresented classes, thereby improving their predictive capability [28].

Hybrid Approaches: Combining both data-level and algorithm-level
strategies, hybrid approaches aim to leverage the benefits of both. Techniques
such as SMOTE followed by a cost-sensitive learning algorithm are employed to
simultaneously balance the data and adjust the algorithm’s, focus on minority
classes, leading to improved performance. In [24], they developed weak classifiers
using the Support Vector Machine model, and assigned two distinct misclassi-
fication cost values for each of the two classes. Then they combined the weak
classifiers with undersampling and bagging techniques to create the final strong
classifier.

Data Augmentation and Generation: These techniques involve gener-
ating new synthetic data to enhance the representation of the minority class.
Methods like Generative Adversarial Networks (GANs) are capable of creating
highly realistic synthetic samples, augmenting the minority class, and providing
more data points for training, which assists in decreasing the model’s bias over
the majority class [9]. Generally, GANs-based models consist of two parts: the
generator and the discriminator. The generator is a convolutional neural network
and the discriminator is a deconvolutional neural network [9]. In [3], a GAN-
based technique for creating synthetic data to train a fraud detection classifier
was introduced. The proposed model has shown acceptable results in address-
ing the challenge of class imbalance for a real-world gambling fraud dataset,
outperforming traditional oversampling and undersampling methods.

3 Similarity-based Minority Augmentation (SEDA)
Technique

Fig.1 depicts the overall SEDA framework. To handle an imbalanced dataset,
SEDA evaluates and ranks the importance of each feature in terms of distance
and feature similarity. It means the created balanced dataset is obtained by over-
sampling minority samples from the unlabeled data based on feature similarities
in order to improve the performance of ML models. SEDA first utilizes feature
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Fig. 1. The framework of SEDA technique.

similarity measures to assign weights to features, with values ranging from 0 to
1. These weights indicate the importance of each feature in the dataset. The
weights wi are computed based on the following methods:
1. Mutual Information (Entropy-Based) [8]: measures the amount of information

or uncertainty associated with each feature by

H(x) = −
∑

p(x)logp(x) (1)

where p(x) is the probability distribution of the feature values. The entropy
values are then normalized to a range of [0, 1] by applying Min-Max normal-
ization:

wi =
H(Xi)− min(H)

max(H)− min(H)
(2)

2. Principal Component Analysis (PCA) [19]: identifies the most important fea-
tures based on the variance they capture. We first perform PCA on the
dataset to obtain the principal components and their corresponding eigen-
values. Then, the eigenvalues are normalized to a range [0, 1] to represent the
weights of the features:

wi =
λi − min(λ)

max(λ)− min(λ)
(3)

where λi is the eigenvalue corresponding to the i-th principal component.
3. Independent Component Analysis (ICA) [18]: finds components that are sta-

tistically independent from each other. After performing ICA, we calculate
the variance of each independent component. The variances are normalized
to a [0, 1] range to assign feature weights:

wi =
σ2
i − min(σ2)

max(σ2)− min(σ2)
(4)

where σ2
i s the variance of the i-th independent component.

In each of these methods, the resulting weights for each feature are scaled
between 0 and 1, where 0 indicates no importance and 1 indicates maximum
importance. Then, SEDA calculates the distance similarity between features,
and these weights are then used in the weighted distance similarity calculations.
Distance similarity measures are:
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1. Euclidean distance: measures the straight-line distance between points.
2. Manhattan distance: measures the sum of absolute differences
3. Cosine similarity: measures the cosine of the angle between two vectors

SEDA ranks the majority of unknown samples based on their scores for
each minority sample and chooses the top-ranked samples to augment synthetic
minority samples and balance the dataset. The sample selection process involves
evaluating various oversampled rates and selecting the optimal number that
enhances the performance of ML models. This dual approach ensures that the
method accounts for the most critical features while accurately measuring the
distances between samples. The pseudocode 1 describes the steps involved in the
SEDA method to generate synthetic samples.

Algorithm 1. SEDA: Similarity-Enhanced Data Augmentation
Input: Imbalanced dataset Dimbalanced with majority and minority classes; Number of synthetic
samples to generate N ; Distance similarity measure Dsimilarity (e.g., cosine, Euclidean)
Output: Balanced dataset with synthetic samples Dbalanced

1: Step 1: Compute Feature Similarity (e.g., Entropy, PCA, ICA)
2: Assign weights wi ∈ [0, 1] to each feature i based on their importance scores.
3: Step 2: Compute Weighted Distance Similarity (e.g., Euclidean, Manhattan, Cosine)
4: for each minority sample xk

min do
5: for each majority sample xj

maj do
6: Compute weighted distance dkj using the chosen distance similarity measure:

dkj =

m∑

i=1

wi · Dsimilarity(x
k,i
min, x

j,i
maj)

where wi is the weight of feature i.
7: end for
8: Calculate a score for each majority sample based on dkj .
9: Rank majority samples based on their scores.
10: end for
11: Step 3: Select Synthetic Samples
12: for each minority sample xk

min do
13: Select N top-ranked majority samples {xj1

maj, x
j2
maj, . . . , x

jN
maj} from Step 2 as candidates.

14: end for
15: Step 4: Balance the Dataset
16: Remove N ×number of minority samples from the majority class and add them to the minority

class.
17: return Dbalanced

4 Experiments

Fig.2 illustrates the proposed framework for conducting our experiments. Ini-
tially, the original data set is divided into training and test sets, as shown
in Figure 1. Next, SEDA is applied to the training set to generate a bal-
anced dataset. Subsequently, an ML model is trained on this balanced dataset
using 6-fold Stratified cross-validation (SCV). During this process, grid search is
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Fig. 2. The flowchart for experiment stage.

employed to find the best values for the oversampling rate, the decision thresh-
old, and the hyperparameters. Finally, the best-performing model is evaluated
on the test dataset to produce classification results.

To find the best model and evaluate its performance in cross-validation (CV),
we employed the geometric mean (Gmean) as a loss function. Unlike traditional
classification loss functions that focus primarily on minimizing misclassifications,
Gmean considers the distance between sample features. By accounting for both
sensitivity (recall) and specificity, Gmean provides a balanced evaluation metric
that is robust to class imbalance [16].

Gmean =
√

Sensitivity × Specificity (5)

Sensitivity =
TP

TP + FN
(6)

Specificity =
TN

TN + FP
(7)

where TP , FP , TN and FN indicate the total number of true positive, false
positive, true negative, and false negative pixels, respectively.

4.1 Data

We evaluated our proposed framework on a very highly imbalanced geophysical
dataset for the Mineral Prospectivity Mapping (MPM) application. MPM aims
to predict the likelihood of finding specific types of mineral deposits for mineral
exploration, and resource assessment. The data contains 15 deposit samples ver-
sus 2.92× 105 unknown samples. Our study area is located in the municipalities
of Kittilä, Kolari, and Muonio, Lapland, Finland (Figure 3). We have three types
of input data, which collectively generate 13 different attributes for each sample.
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– Airborne Electromagnetic (AEM) includes measurements of the electri-
cal conductivity of the earth’s subsurface1. This data contains 4 features.

– Magnetic data used to identify variations in the Earth’s magnetic field
caused by the magnetic properties of subsurface rocks2. Totally, we have 5
features from this data.

– Radiometric data gives the measurement of natural gamma radiation emit-
ted from the earth’s surface to infer the concentration of radio element iso-
topes such as uranium (U), thorium (Th), and potassium (K)3. This data
contains 4 features.

Fig. 3. Study area.

4.2 Machine learning algorithms

We used four different ML algorithms for our experiments as follows:

1. Multi-Layer Perceptron (MLP) [26] is a type of artificial neural network char-
acterized by its layered structure. One of the principal attributes of MLPs
is universal approximation capability which means they have the theoretical
ability to approximate any continuous function to a desired degree of accu-
racy, given sufficient neurons in the hidden layers.

2. Random Forest (RF) [20] is capable of processing and analyzing large datasets
that contain a high number of features or variables.

1 https://tupa.gtk.fi/paikkatieto/meta/aeroelectromagnetic_raster_data_of_
finland.html

2 https://tupa.gtk.fi/paikkatieto/meta/aeromagnetic_raster_data_of_finland.html
3 https://tupa.gtk.fi/paikkatieto/meta/aeroradiometric_raster_data_of_finland.

html

https://tupa.gtk.fi/paikkatieto/meta/aeroelectromagnetic_raster_data_of_finland.html
https://tupa.gtk.fi/paikkatieto/meta/aeroelectromagnetic_raster_data_of_finland.html
https://tupa.gtk.fi/paikkatieto/meta/aeromagnetic_raster_data_of_finland.html
https://tupa.gtk.fi/paikkatieto/meta/aeroradiometric_raster_data_of_finland.html
https://tupa.gtk.fi/paikkatieto/meta/aeroradiometric_raster_data_of_finland.html
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3. Decision Tree (DT) [30] is a non-linear predictive model which is structured
like a tree. It can effectively handle large datasets with a high number of
features. One of the main advantages of DTs is their interpretability and
simplicity.

4. Logistic Regression (LR) [12] uses a logistic function, a special S-shaped curve
that transforms any input into a value between 0 and 1 (probability) repre-
senting probabilities for classification purposes.

Table 2 lists the key ML parameters and their best values. The parameter
names at the table align with the standard parameter names used in the Scikit-
learn Python package. The optimal values for these parameters for each model
were obtained through a grid search during cross-validation.

Table 2. Main hyper-parameter of ML models and their best value.

ML ModelHyper-parameter Search space Optimal Hyper-parameter Value

LR penalty l2, l1 ,elasticnet, None l2
MLP alpha 0.0001, 0.001, 0.01 0.0001

hidden_layer_sizes [(2), (4), (8) , (2,4), (4,8), (2, 8)] (2)
DT criterion gini, entropy, log_loss gini

splitter best, random best
max_depth 2, 8, None 8

RF n_estimators 4, 8, 16 16
max_depth 4, 8, 16, None None
criterion gini, entropy gini

5 Results

5.1 Feature and distance similarity impact on ML performance

In this subsection, we answer this question "Which feature similarity method
and distance measure combination yielded the best overall performance?". Fig.4
(a) shows the performance (measured by Gmean) of the four ML models using
different feature similarity methods (e.g., PCA, ICA, Entropy, and None (with-
out feature importance). The results show that PCA consistently provides the
highest performance across LR, MLP, and DT models, indicating its effective-
ness in capturing the most relevant features. Entropy-based similarity shows the
highest performance for DT.

Fig.4 (b) depicts the performance (Gmean) of the four ML models using
different distance measures (e.g., Euclidean, Manhattan, Cosine). For three LR,
RF, and MLP models, all distance metrics show similar results. However, Cosine
distance measure consistently yields the best result for DT. Combining insights
from both plots, the combination of PCA for feature similarity and Cosine dis-
tance measure yields the best overall performance for all four machine learning
models.
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Fig. 4. Performance comparison of ML models using different (a) feature similarity
methods and (b) distance similarity.

5.2 Impact of augmentation rate on ML performance

We collected the results to answer this question "How does augmentation rate
(N in Algorithm 1) impact the performance of each ML model?". N=n indicates
the n% percentage of the top-ranked unknown samples are added to the known
samples. For example, N=50 means that 50% of the top-ranked unknown samples
are added to the known samples to balance the imbalanced dataset.

Based on the findings presented in Fig.4, this subsection summarizes the
results focusing on cosine distance with PCA and entropy measures.

Table 3 shows the G-means performance of four ML models (MLP, RF, DT,
LR) across varying augmentation rates N applied to the majority class. The
results illustrate how different values of N influence the ability of each model to
handle imbalanced datasets. Notably, N=0.005 (12/250,000) represents training
on the original imbalanced dataset, with the augmentation process halting due
to the observed elimination of sample discrimination at higher rates.

The overall results demonstrate that SEDA can enhance ML performance by
generating balanced datasets from initially imbalanced ones (N=0.005). Specifi-
cally, LR achieved the highest G-means of 85.5% with PCA when N=0.1, while
DT achieved 49.6%. This indicates that a moderate amount of synthetic data
helps the LR and DT models perform better. MLP outperforms other mod-
els with 88.2% accuracy with PCA and a relatively small augmentation rate
N=0.025, and RF achieved 64.3% using the entropy measure at N=50. RF
showed improvement with higher augmentation rates, indicating its robustness
to large synthetic datasets.

5.3 Comparison of over-sampling methods

SEDA is compared with four baseline methods, including:

1. Random oversampling: instead of the top-ranked samples, we randomly select
N unknown samples and increase the minority samples. The value of N is
selected based on Table 3 where the ML models have the best performance.
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Table 3. Impact of number of selected sample rate (N) on the performance (Gmean)
of ML models on the test dataset.

N 0.005 0.025 0.1 0.5 1.5 5 20 50

ImportancePCA ENT PCA ENT PCA ENT PCA ENT PCA ENT PCA ENT PCA ENT PCA ENT
LR 65.9 56.2 84.1 80.1 85.5 82.1 82.3 81.1 80.0 80.8 80.7 80.6 71.3 75.5 61.9 62.3
MLP 80.1 37.0 88.2 47.2 27.3 75.1 70.7 65.2 52.1 57.1 65.6 66.7 65.9 67.9 61.9 62.2
DT 0.0 0.0 46.0 22.7 49.6 9.4 15.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.6 45.6 34.1 58.1 54.5 54.1 64.3

2. Synthetic Minority Oversampling Technique (SMOTE) [5] first identifies k
nearest neighbors for each minority class data point. Then, it randomly selects
one of these neighbors and generates a new synthetic data point along the line
segment connecting the minority class data point and its randomly selected
neighbor.

3. Borderline-SMOTE [15] focuses on samples from the minority class close
to the decision boundary. It detects minority samples most susceptible to
misclassification and generates new points specifically in these areas using
SMOTE.

4. Adaptive Synthetic sampling (ADASYN) [17] is prioritizes the creation of
synthetic data points near the decision boundary, which are the data points
that are most difficult for the classifier to classify correctly. This is done by
assigning higher weights to minority class data points that are closer to the
decision boundary.

As SMOTE, Borderline-SMOTE and ADASYN generate new synthetic sam-
ples from the minority class, we randomly reduced the majority class by the
same number to maintain consistency with the N values used for random over-
sampling and SEDA. Fig.5 illustrates the ROC curves, plotting the false positive
rate against the true positive rate for four distinct classifiers. These curves are
pivotal for assessing the Area Under the Curve (AUC) across all models com-
pared to the baseline methods. A higher AUC indicates superior classification
accuracy for the respective algorithms.

In the ROC curve analysis for the LR model (Fig.5(a)), demonstrates that
the SEDA algorithm outperforms ADASYN, SMOTE, and BorderlineSMOTE
with marginally higher true positive rates at higher false positive rates, closely
rivaling these methods. In the case of the MLP model (Fig.5(b)), the SEDA
algorithm consistently surpasses Borderline-SMOTE and random oversampling
methods across different thresholds, as evidenced by its higher AUC values. Its
performance is comparable to that of ADASYN and SMOTE, showing simi-
lar effectiveness. The ROC curves for the DT model (Fig.5(c)) reveal that the
SEDA algorithm achieves a significantly better true positive rate at all levels of
false positive rates compared to SMOTE, Borderline-SMOTE, and ADASYN,
and far outperforms the Random method in effectively classifying imbalanced
datasets. For the RF model (Fig.5(d)), SEDA slightly outperforms ADASYN in
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handling imbalanced datasets, particularly at higher false positive rates, with
both algorithms significantly outdoing SMOTE, Borderline-SMOTE, and the
Random method.

Fig. 5. Comparison of SEDA, ADASYN, SMOTE, Borderline-SMOTE and random
over-sampling for (a) LR, (b) MLP, (c) DT, and (d) RF.

5.4 Decision Thresholds

Thresholding allows the model to fine-tune the classifier’s decision boundary to
better account for class imbalance. Fig.6 shows the sensitivity-specificity curve
and illustrates the adjustment of the decision threshold based on the trade-off
between sensitivity and specificity. Each color represents a different model, with
solid lines indicating sensitivity and dashed lines indicating specificity at various
thresholds. The MLP model achieves high sensitivity without a significant loss
in specificity, highlighting its robustness.

Fig. 6. Sensitivity-specificity curves of ML models based on different thresholds.
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Fig. 7. Confusion matrix of (a) LR, (b) MLP, (c) DT, and (d) RF.

5.5 Confusion Matrix

The confusion matrix results on the test dataset which are depicted in Fig.7
shows that MLP and LR can get the maximum correct observations belongs to
class “mineralized”. For DT, as illustrated in Fig.7, the highest correct observa-
tions belong to the classes “non-mineralized” which is 95.26%.

5.6 Prediction maps

Fig.8 shows the mineral prospectivity maps produced by the four models. To
generate these maps, we used the entire dataset to train the models, utilizing
the optimal values for the model’s hyperparameters, decision threshold, and the
number of oversampling and undersampling instances.

Fig. 8. Prospectivity mineral maps for (a) LR, (b) MLP, (c) DT, and (d) RF models.
The known samples have been visually exaggerated to make them visible.

6 Conclusion

This paper presents a novel data augmentation method, SEDA, for handling
imbalanced datasets in order to improve the performance of ML algorithms.
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SEDA ensures that the generated synthetic samples are more relevant and infor-
mative by prioritizing more important features. Considering both feature impor-
tance and distance similarity helps in creating synthetic samples that improve
the model’s ability to generalize to unseen data. We evaluated SEDA on a highly
imbalanced dataset, where there is a significant disparity between the number
of samples in the minority and majority classes in the training data. The results
demonstrate that SEDA outperforms existing imbalanced data handling meth-
ods on a real dataset. SEDA can be applied to various types of datasets and
is particularly effective for those with high dimensionality and complex feature
interactions. In the future, we plan to test the SEDA technique on imbalanced
datasets collected for different applications. This comprehensive approach high-
lights SEDA’s contributions in addressing imbalanced datasets, improving ML
model performance, and facilitating practical applications in geospatial analysis
through the EIS Toolkit integration.
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Abstract. Time-series anomaly detection (TAD) has a pivotal role across vari-
ous domains ranging from manufacturing to health care monitoring. Numerous
machine learning solutions have been proposed for TAD, with varying levels of
complexity. However, most solutions benchmark their performance using mis-
leading evaluation metrics which hinder reliable comparative analysis and the
development of truly robust TAD methods. In the present work, we disentangle
how performance evaluation can be unreliable due to several factors: suboptimal
scoring functions, thresholding functions that assume access to all test labels,
prediction modification based on test labels, lack of benchmarking against trivial
baselines, and finally, problematic datasets. In this paper, we endeavor to address
these issues by introducing a comprehensive TAD evaluation framework which
includes: state-of-the-art deep-learning (DL) and traditional machine learning
(ML) TAD algorithms; TAD baselines; an extensive set of scoring, threshold-
ing and evaluation functions. Our rigorous analysis shows that: (i) TAD base-
lines and simple ML algorithms achieve performance often on par with advanced
SOTA DL solutions. (ii) Scoring and thresholding function selection can greatly
impact the anomaly prediction performance. (iii) Evaluation metrics used in the
field, mostly focused on post-thresholding output, are worryingly inconsistent
and can generate starkly overestimated predictions. We advocate instead for a
more widespread use of pre-thresholding metrics and for post-thresholding met-
rics that closely correlate to the former. Our code is available at https://github.
com/intellabs/tsad-ef.

Keywords: Time-series anomaly detection · Machine learning · Deep learning.

1 Introduction

Time series anomaly detection (TAD) seeks to identify substantial deviations from
expected patterns of behavior [28]. TAD is widely used in many real-world applications

O. Gungor and A. Rios—These authors contributed equally to this work.

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-3-031-78395-1_4.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15326, pp. 48–64, 2025.
https://doi.org/10.1007/978-3-031-78395-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78395-1_4&domain=pdf
https://github.com/intellabs/tsad-ef
https://github.com/intellabs/tsad-ef
https://doi.org/10.1007/978-3-031-78395-1_4
https://doi.org/10.1007/978-3-031-78395-1_4


Robust TAD Evaluation Framework 49

Fig. 1. Our proposed modular TAD Evaluation Framework (TADEF)

such as fault diagnosis, fraud detection, and network intrusion detection. Effectively
detecting anomalies is critical for ensuring security and preventing economic losses
[34]. Nevertheless, a major challenge in TAD is the lack of labeled anomalous data
[6], which makes algorithms relying on balanced labeled data unsuitable. Because of
this, TAD solutions often leverage Self-Supervised Learning (SSL) to identify patterns
and anomalies by training on only normal data points with minimal to no supervision.
Traditional self-supervised solutions to TAD span over several machine learning (ML)
and statistical algorithms [4,13,23,24]. More recently, in line with the success of Deep
learning (DL), an avalanche of DL TAD models have been introduced with varying
degrees of complexity [3,18,20,33,35].

Yet, these recent DL methods often employ unreliable evaluation paradigms, which
can generate misleading performance scores and obscure the real progress achieved
by scaling up model complexity over simpler solutions. Amongst the most problem-
atic is the reliance on labeled test-time data to fine-tune decision thresholds and even
model predictions [9]. For instance, in the case of the latter, an ubiquitous metric “F-PA”
(point adjustment) [32,35] considers any anomaly window with at least one correctly
predicted time step as equivalent to being fully correct. As a result, the entire anomaly
prediction window is modified by copying over the exact test anomalies. F-PA has been
shown to make random and well-trained DL TAD model anomaly scores indistinguish-
able [9] and yet it continues to be used in even the most recent TAD DL methods [35].
Similarly, a frequently used thresholding function, “BestF” [26], uses all test-labels
to finetune a decision threshold for TAD. But, as we will show in this paper, vary-
ing the amount of test data access or adopting unsupervised thresholding schemes can
radically alter model performance, making cross-model comparisons difficult. Impor-
tantly, relying on test data labels for TAD is impractical for real-life scenarios where
labeled anomaly data is often unavailable for essential tasks such as determining deci-
sion thresholds or adjusting model predictions.

Issues in TAD extend even beyond the aforementioned considerations. State-of-the-
art (SOTA) DL TAD methods utilize simplistic scoring functions, which as we show
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in this work, might yield suboptimal prediction performance and further hinder effec-
tive comparative TAD method analysis. For example, mean over channels, one of the
most frequent scoring functions [31], collapses multidimensional error scores (from
DL) into univariate scores with equal weight across channels. When dealing with com-
plex TAD datasets, sometimes containing hundreds of sensors (dimensions), this signif-
icantly impacts performance. To alleviate this effect in high dimensional TAD datasets,
we introduce a simple and lightweight ML-based scoring approach. Lastly, common
TAD benchmarking datasets also have significant added complexity and/or flaws. For
instance, SMAP and MSL [8] contain unlabeled anomalous training data; SWAT [7]
andWADI [2] have distributional shift of normal data from train to test time [28]. These
characteristics make unsupervised TAD solutions even more difficult to achieve, since
most SSL TAD algorithms assume access to clean (not anomalous) training data and
also, that normal data does not undergo excessive distribution shift at test-time.

To address these many challenges, we propose a rigorous TAD evaluation frame-
work TADEF (Fig. 1) which provides diverse performance scores that, when combined,
are significantly more indicative of TAD performance under real-world conditions. To
this end, our main contributions are as follows:

1. To the best of our knowledge, we are the first to conduct an in-depth quantitative
comparative analysis of TAD evaluation metrics, aiming to motivate future TAD
research to use only robust TAD metrics instead of those with problematic assump-
tions. We show how TAD performance is sensitive to the thresholding function used,
and hence advocate for consistent reporting of pre-thresholding metrics, e.g., AUPR.
Also, based on collective cross-metric correlation scores, we advocate for the use
of existing post-thresholding metrics with the highest collective correlation to their
pre-thresholding predecessor such as pointwise F1-score.

2. We are releasing to the community a time-series anomaly detection evaluation
framework (TADEF) comprised of a collection of modules each with diverse SOTA
TAD models, datasets, baselines, scoring functions, thresholding functions, and
evaluation metrics. Collectively, this modularized framework can enable more robust
comparative analysis in TAD.

3. With TADEF, we generate comprehensive results that underscore the challenges and
limitations of current SOTA TADmethods, scoring functions, thresholding functions
and evaluation metrics in general. Overall, we show how TAD performance is often
more sensitive to the choice of scoring, thresholding or evaluation function than to
the choice of underlying TAD model itself.

4. Lastly, we propose more reliable variants of currently used scores, thresholding
functions and metrics to further aid comparative TAD analysis.

2 Background: The State of TAD Analysis Today

2.1 Summary of existing TAD solutions

A time-ordered sequence of data points is referred to as a time-series and may contain
one (univariate) or multiple real-valued (multivariate) variables (channels). Anoma-
lies in time series can occur as individual time-points (point anomaly), a contiguous
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sequence of time-points (sequence anomaly), or point/sequence across different chan-
nels (complex/contextual anomaly). In any modality, an anomaly is such that it deviates
with respect to some measure, model, or embedding from the regular patterns in the
data [22]. Time series anomaly detection (TAD) aims to detect and localize these devi-
ations per time-point. Traditional TAD solutions have employed common unsupervised
ML and statistical tools such as Principal Component Analysis (PCA) [24], One-Class
Support Vector Machine (OCSVM) [23], Isolation Forest (IF) [13], and Local Outlier
Factor (LOF) [4] as well as some sequence-specific statistical models [12,36]. With
the recent explosion of DL models in other anomaly detection modalities, e.g. Lan-
guage and Vision, many DL algorithms have been proposed for TAD as well. Some
of those are developed exclusively for the time series modality [3,33], while others
repurpose general sequence-based DL architectures such as Transformers and Autoen-
coders [18,20], which can easily be trained with a reconstruction-based loss function.
The most recent DL solutions leverage complex self-supervised contrastive-based tech-
niques [35,37] in an attempt to improve TAD prediction performance.

Fig. 2. Scoring and Thresholding sensitivity in DL TAD models

2.2 Limitations of SOTA TAD solutions

Anomaly detection models (time-series or otherwise) generate anomaly scores which
are used to distinguish between defect-free and defective samples. The effectiveness of
a model is evaluated by standard evaluation metrics such as Area Under Receiver Oper-
ating Characteristic (AUROC), Area Under Precision-Recall (AUPR), and F-metrics
(F1, etc.) (please refer [5] for more details). To avoid confusion, we will use the term
“score” for the anomaly score generated by the model and “metric” for quantities such
as AUROC, AUPR, etc. that are are used to evaluate prediction performance.

Scoring: Most TAD DL models generate multidimensional anomaly scores S ∈ R
d×t

as their final output during inference, with d matching input channels and t the number
of time steps. To generate univariate anomaly prediction scores per time-point, these
models typically employ a very simple scoring function, MeanCh, which consists of
averaging the error scores across all output channel dimensions for a final score S ∈
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R
1×t. While simple, this procedure may not be optimal for high multidimensional TAD

datasets, as the final anomaly scores for such datasets may rely on inter-channel error
dependencies. Note that, in contrast to vision anomaly detection where an input has a
fixed number of three RGB channels, multivariate time-series data can have hundreds
of interacting sensor measurements over time. In this work, we show that the choice of
scoring function can greatly impact reported model performance, sometimes even more
than the choice of TAD DL model itself. To illustrate this, we show in Fig. 2 (A) how
different scoring functions (on the x-axis) impact area-under-precision-recall (AUPR)
metrics for several DL models on the SWAN [11] dataset. More extensive results are
presented and discussed in Section 4.1. In later sections, we propose a simple novel
scoring function based on a lightweight ML algorithm (Isolation forest) to map errors
to univariate scores, leading to considerable gain in average performance.

Thresholding: Converting anomaly scores into binary anomaly labels is done by
choosing a thresholding function that will process test (or validation data) to find a
suitable single threshold or thresholds (in case of dynamic approaches). Such optimal
thresholding is faced with similar challenges: lack of labeled anomaly data, possible dis-
tribution shift at test time, etc. The most widely-used thresholding functions for bench-
marking [6,9,43] therefore rely on ground truth test anomalies. For instance, “BestF”
thresholding selects the optimal single-valued threshold that yields the best F1 score [9]
by looping through sometimes thousands of values and evaluating repeatedly over all
test-labels. Similarly, “TopK” selects the threshold resulting in exactly K time-points
being labeled as anomalous [43] based on knowledge of how many anomalies should be
present at test-time. These thresholding methods tend to yield superior results since they
leverage anomaly information in the test data which, for the vast majority of real-world
usages, is simply not available to the user. On the other hand, unsupervised threshold-
ing functions can leave a lot to be desired [8,25] and may be a very interesting future
direction for TAD research, particularly when taking into account that many thresholds
may need to be defined over time given the periodic phase-aware nature of time-series.

We show that the selection of threshold function, and howmuch test data is accessed
by them, can significantly impact the reported anomaly detection performance. As with
the choice of scoring function explained earlier, this variability is often greater than the
choice of underlying model as well, as can be seen in Fig. 2 (B): Plot (B.1) displays the
performance of an Autoformer model [30] on several TAD datasets when using Top-K
thresholding [43], whereas (B.2.) uses SPOT thresholding [25], which is unsupervised.
All post-thresholding metrics (F1, F-PA, etc.) radically change between these two. We
will present more results in Section 4.2. In the TAD literature, usage and reporting of
thresholding functions is inconsistent, making it hard to compare between TAD meth-
ods. We attempt to alleviate this shortcoming.

Evaluation Metrics: Anomaly detection models can be evaluated both prior to thresh-
olding (“pre-thresholding”) or after (“post-thresholding”). The former is usually mea-
sured via standard modality-agnostic metrics such as AUROC and AUPR. However,
their use in TAD literature has been inconsistent, many works only report post-
thresholding metrics. We identify this as a major issue since post-thresholding may
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be high by virtue of very fine-tuned and supervised threshold selection instead of the
underlying TAD model’s contribution. Widespread reporting of pre-thresholding met-
rics could alleviate this issue. In parallel, the most widespread post-thresholding metrics
are: point-wise F1-score and F-PA [32]. The latter is a modified version of the F1-score
and is computed after modifying all predictions within an analysis window if at least
one point is above the anomaly decision threshold. This requires full access to test-
labels since the exact anomaly locations are copied over to the prediction sequence if
the previous condition is met. Several works have highlighted serious concerns with the
use of F-PA [6,9,19]. For instance, [9] shows that when using F-PA, even random score
can do better than a fully trained DL model. New post-thresholding metrics have been
proposed to alleviate some of the issues with F-PA. For instance, [9] introduce F-PA%K
which modifies F-PA to perform point-adjustment only if at least K time-points within
a window (number of contiguous anomaly points) are detected as anomaly. [19] intro-
duce “F-K-AUC”, which is the area under the curve of F-PA%K scores when varying K
from 0 to the length of the evaluation window. [6] propose Fcomp, which is a modified
F1 that uses conventional point-wise precision but replaces pointwise recall with event
(window-wide) recall.

2.3 TAD comparative analyses and how we address some of their limitations

Numerous TAD evaluation studies have highlighted serious inconsistencies in the
TAD field. As explained in Section 2.2, several works have shown worrying behav-
ior and properties of one of the most common TAD metrics “F-PA” [6,9]. Others have
attempted to propose novel metrics that alleviate some of the issues observed in F-PA
[6,9,19]. Finally, many comparative works show that DL TAD models fail to display
consistent performance gain over simple ML or statistical algorithms [21,22,28]. Yet,
despite the significant contributions of the previous works, a central analysis that has
been overlooked so far is how the choice of scoring and thresholding impact model per-
formance. We will show in Section 4 that performance is very sensitive to both of those
choices, often even more than the choice of underlying TAD model itself. Moreover,
even though previous works have underscored issues with widespread merics such F-
PA, they have not comprehensively quantified how F-PA fares compared to more novel
proposed metrics using a large and diverse range of TAD model types. For instance, F-
PAK and F-K-AUC were originally tested using a single DL-based autoencoder [9,19].
To the best of our knowledge, we are the first to quantify cross-metric correlations (both
pre and post-thresholding) through diverse TADmodel types, seeking to establish a con-
crete guideline about metric robustness: which metrics should be consistently used to
benchmark and which are too problematic to use. This involves correlating performance
trends between pre-thresholding and post-thresholding metrics as well.

3 TAD Evaluation Framework (TADEF)

Fig. 1 presents our comprehensive TAD evaluation framework (TADEF) which consists
of four main modules: (i) anomaly prediction model, (ii) scoring model, (iii) threshold-
ing function, and (iv) evaluation. Connecting these four modules is key in achieving
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robust evaluation of TAD algorithms. TAD prediction model f takes time-series data
X ∈ R

d×t to calculate the model output f(X) ∈ R
d×t. The next module, scoring

model g, transforms model output into anomaly scores g(f(X)) ∈ R
t. After this step,

we perform pre-thresholding evaluation based on AUROC and AUPR. Given anomaly
scores, the thresholding function T then converts anomaly scores into binary labels
T (g(f(X))) ∈ R

t which indicates if a time point t is anomaly (1) or not (0). Ulti-
mately, post-thresholding evaluation is performed by comparing true anomalies with
the predictions based on various metrics, e.g., F1, F-PA, F-PAK, F-K-AUC, F-comp.

3.1 Anomaly Prediction Models

We include and analyze 21 algorithms consisting of a mix of DL and traditional ML
methods. We include DL solutions from 3 main learning paradigms, i.e. reconstruction-
based, contrastive-based and adversarial-based.

1. Reconstruction-based DL: One of the main class of algorithms for TAD, these
models have an encoder-decoder architecture where the encoder maps input data
(non-anomalous) to a latent representation, and the decoder re-maps this latent to
reconstruct the input. Learning occurs by minimizing a reconstruction error and the
latter is used as an anomaly score during inference. In this category, we include:
GPT2 [42], iTransformer [14], DLinear [38], PatchTST [17], MICN [29], TimesNet
[31], Crossformer [40], LightTS [39], Informer [41], AutoFormer [30], Reformer
[10], Transformer [27], and LSTM-AE [16].

2. Contrastive-based DL: These methods learn data representations by contrasting
between positive (either same sample or class with some augmentation) and nega-
tive samples (different sample or class). Positive samples are trained to have similar
representations, and negative samples are pushed apart. We compare two recent con-
trastive models, TS2Vec [37] and DCdetector [35].

3. Adversarial-based DL: Algorithms that leverage adversarial-based training as
either their primary or auxiliary training loss/model. From this learning category,
we use USAD [3] and AnomalyTransformer [33].

4. Traditional ML: These are traditional (non-deep-learning) models. We include four
widely used TAD ML methods: Principal Component Analysis (PCA) [15], Isola-
tion Forest (IF) [13], One-class Support Vector Machine (OCSVM) [23], and Local
Outlier Factor (LOF) [4].

3.2 Scoring Functions

To address scoring function sensitivity and sub-optimality outlined in Section 2.2, we
introduce a new scoring function that uses a traditional and lightweight ML model to
map error values to univariate scores. Besides, we slightly modify MeanCh to calculate
maximum value over channels. We also include a Gaussian-based scoring function [16].

1. ML-based scoring: We use Isolation Forest (IF) [13] to perform the mapping from
DL output to univariate anomaly scores. Although in principle, any other lightweight
SSLMLmethod could also work.We train IF with the DLmodel’s output (validation
data). This approach strives to preserve implicit anomaly information across output
channels.
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2. Mean over Channels (MeanCh) [31]: MeanCh simply takes DL model output
f(X) and then calculates the mean over output channels. This is the most widely
used scoring function in TAD literature.

3. Max over channels (MaxCh): Similar to MeanCh, MaxCh calculates the maximum
error over all channels instead of averaging them.

4. Gaussian scoring [16]: Gauss-S assumes a Gaussian distribution for the DL model
output. We train it on validation data. Anomaly scores are computed as follows:

g(f(X)) =
d∑

i=1

−log(1 − Φ(
f(X) − μ̂

σ̂
)) (1)

where μ̂ and σ̂ are the empirical mean and standard deviation and Φ is the cumulative
distribution function (cdf) of G(0, 1).

3.3 Thresholding

For thresholding, we create two categories based on the availability of test anomalies:
1. Access to Test Labels/Meta: In this category, optimal threshold is discovered by
leveraging labeled test anomalies. Thresholding methods in this category are the most
prevalent in the TAD literature. We include BestF [26] and Top-K [43]:

– BestF discovers a threshold value that maximizes the F-score. The set of threshold
values is created based on precision recall curve. To illustrate the risk of relying on
test label access, we propose two variations of BestF: (i) BestF partial access (PA)
where we limit 10% anomaly access (both anomalous and normal data-points), and
(ii) BestF full access (FA), which utilizes all test-data.

– Top-K sets the threshold value to select the highest-scoring K% of points as anoma-
lous, according to knowledge (meta-information) of the ground truth anomaly ratio
(K) in the test set.

2. Unsupervised: A more realistic approach, unsupervised thresholding does not rely
on ground-truth anomalies. Here, we consider the following methods:

– Validation Percentile (ValPer) simply uses validation data to find an optimal thresh-
old. Since validation data for SSL TAD includes only normal data, high test scores
w.r.t validation scores can be suspected of anomaly. We set the threshold to a top per-
centile of the validation data, i.e. a percentile corresponding to two or three standard
deviations from the mean.

– SPOT and DSPOT [25] are based on the Peak Over Threshold (POT) model,
which uses the Pickands-Balkema-de Haan theorem to model extreme values. While
Streaming Peak over Threshold (SPOT) is proposed for streaming data, Streaming
Peak over Threshold with drift (DSPOT) updates the mean value every several steps
to account for a possible drift in the dataset.

– Dynamic Thresholding (DynTh) [8] is a non-parametric thresholding technique that
calculates reconstruction error for each time step and applies exponential weighted
moving average (EWMA) to generate smoothed errors. The threshold value is set to
that which causes the greatest percent decrease in the mean and standard deviation
of the smoothed errors.
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3.4 Evaluation Metrics

We evaluate anomaly detection performance at two stages of the TAD inference
pipeline: Prior to thresholding (pre-thresholding) and after (post-thresholding).

1. Pre-Thresholding (PreT): We use conventional area under receiver-operating-
curve (AUROC) and area under precision-recall curve (AUPR). These metrics are
the go-to for anomaly detection in modalities such as vision, but remain inconsis-
tently reported in TAD. By definition, both metrics are agnostic to thresholding func-
tion.

2. Post-Thresholding (PosT): Anomaly detection in practice needs a threshold to
obtain anomaly predictions [6]. In this group, the model performance is evaluated
after thresholding, and thus, are dependent on the choice of thresholding function.
For PosT, we create two types of evaluation:
– Access to Test Labels: The metrics in this group leverage true anomalies to mod-
ify anomaly predictions. We consider FPA [32], FPAK [9], and FK−AUC [19].
FPA applies point adjustment (PA) and calculates F1 score. FPAK uses PA%K
protocol with K = 20 (default K value) and measures F1 score. Ultimately,
FK−AUC is an improved version of FPAK which calculates F1 score at differ-
ent levels of K ∈ [0, 100], and computes the area under this curve. More details
of these metrics can be found in Section 2.2.

– Unsupervised: We include the conventional point-wise F1 score [32] and a more
recently proposed Fcomp [6]. The latter uses point-wide precision scores but
replaces point-wise recall with event-wide recall (with a fixed-size window of
points being considered).

Table 1. TAD Datasets Summary

Dataset Training Test N. channels Anomalies(%)

SWaT [7] 495K 449K 51 12.14

WADI [2] 784K 172K 123 5.78

SMD [26] 708K 708K 38 4.16

PSM [1] 132K 87K 25 27.74

SMAP [8] 135K 427K 25 12.79

MSL [8] 58K 73K 55 10.55

SWAN [11] 60K 60K 38 32.6

GECCO [11]69K 69K 9 1.05

3.5 Datasets

Table 1 summarizes the selected TAD datasets in terms of training and test data size,
number of channels, and the anomaly percentage in the test portion.
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1. Secure Water Treatment (SWaT): SWaT represents a realistic cyber-physical sys-
tem of industrial water treatment plant. The data was collected for 11 days where 41
anomalies were injected in the last 4 days. The dataset includes physical properties
and network traffic collected from 51 sensors, e.g., flow meters, level transmitters,
conductivity analyzer, and actuators, e.g., motorized valves and pumps.

2. Water Distribution (WADI): WADI depicts a water distribution network which
includes three control processes, where each controlled by its own set of Pro-
grammable Logic Controllers (PLCs). WADI is physically connected to SWaT
which supplies filtered water. The dataset consists of data from 123 sensors and
actuators collected over 14 days for normal operation and 2 days with 15 attacks.

3. Server Machine Dataset (SMD): SMD includes server machine metrics, with 38
features such as memory usage and CPU utilization. The data measures 5-weeks in
length where half is used for training, and the other half is labeled for testing.

4. Pooled Server Metrics (PSM): PSM is collected from application server nodes
at eBay. The dataset consists of 26 features to represent server machine metrics.
The training set includes 13 weeks, followed by eight weeks for testing. Although
anomalies are present in both training and test set, only the latter is labeled.

5. Soil Moisture Active Passive (SMAP) and Mars Science Laboratory (MSL):
SMAP and MSL are real-world datasets collected from a NASA spacecraft. These
data are from an incident surprise anomaly report for a spacecraft monitoring system.
While SMAP includes 25 features, MSL represents 55 various channels.

6. NIPS-TS-SWAN (SWAN): SWAN is a comprehensive, multi-variate time series
benchmark extracted from solar photospheric vector magnetograms in Spaceweather
HMI Active Region Patch series. SWAN has more than 32% anomalies, making it
the least realistic TAD dataset among the selected ones.

7. NIPS-TS-GECCO (GECCO): GECCO is a drinking water quality dataset for the
Internet of Things (IoT). GECCO only includes nine features, making it the anomaly
dataset with the lowest dimension.

3.6 TAD Baselines

[9] suggested establishing a strong new baseline for TAD evaluation based on a random-
weighted DL model. [21] later added a few more trivial but effective baselines. Similar
to random guess for a classification task, newly proposed TAD methods should outper-
form these baselines to demonstrate model effectiveness. We analyze 4 TAD baselines:

1. Random anomaly scores (Brand): Brand uses anomaly scores drawn from a uni-
form distribution ∼ U(0,max(g(f(Xtest)))) where max(g(f(Xtest))) denotes the
maximum anomaly score in the test data.

2. Raw input as anomaly scores (Binput): Binput is the baseline where the input data
is copied as anomaly scores.

3. L2-norm scores (Bnorm): Bnorm calculates the L2-norm of the raw input.
4. Untrained model anomaly scores (Buntr): Buntr represents an untrained DL

model initialized from a Gaussian distribution ∼ N (0, 0.02).
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Table 2. Scoring Function Analysis. We compare how different scoring functions alter pre-
thresholding performance, as measure via AUROC and AUPR. Our ML-based scoring function
(first column) shows significant improvement over the usual scoring method MeanCh. Last col-
umn Std-Dev computes the standard deviation that can result from changing scoring function.

Dataset ML (IF) GS MeanCh MaxCh Std-Dev

AUROCAUPRAUROCAUPRAUROCAUPRAUROCAUPRAUROCAUPR

WADI 71.32 15.42 65.21 34.07 54.04 6.82 52.51 6.58 7.82 11.18

SMD 79.09 21.74 72.71 14.9 77.78 18.29 76.02 16.9 2.39 2.49

MSL 64.67 16.35 57.72 15.47 66.91 19.54 66.92 19.96 3.77 1.95

SWAN 87.12 80.12 85.06 76.92 86.37 76.88 84.15 74.17 1.15 2.11

PSM 78.84 54.24 71.31 51.89 73.54 52.72 70.88 52.92 3.17 0.84

SMAP 50.58 13.47 56.08 13.84 58.79 15.47 58.15 15.76 3.23 0.99

SWAT 83.57 71.82 77.12 29.11 83.23 72.9 81.4 71.26 2.57 18.58

GECCO 94.97 32.42 81.45 38.46 93.56 32.77 93.27 32.82 5.44 2.51

AVG 76.27 38.19 70.83 34.33 74.28 36.92 72.91 36.29 1.98 1.40

4 Results

4.1 Pre-Thresholding TAD Performance

Comparison across SOTA: We first analyze pre-thresholding TAD performance of
several DL, ML and baseline methods, as presented in Fig. 3. We employ both AUROC
and AUPR which are the standard pre-thresholding metrics for evaluating anomaly
detection in data modalities such as Vision. The advantage of comparing performance at
a pre-thresholding stage is the disentanglement of the TAD model’s performance from
its choice of thresholding function. The reason being that thresholding is in itself a very
challenging problem, as discussed in Section 2.2. In fact, as we will show in Section
4.2, the choice of thresholding function starkly alters the performance of all tested post-
thresholding metrics. Despite clear benefits, use of pre-thresholding metrics has been
inconsistent in TAD literature. In Fig. 3, row-wide panels display AUROC (top) and
AUPR (bottom) scores for all eight TAD datasets and for each TAD model. The inter-
quartile distribution per model is shown as box-plots, with the “average” performance
(across datasets) designated as a horizontal dash. Individual dataset performances are
displayed by scatter plots with a unique symbol, e.g., circle, square, per dataset as indi-
cated in the legend. The color coding used designates, from left to right: DL models
(beige), traditional ML models (salmon) and baseline models (purple).

Overall, clear trends emerge from the results of Fig. 3: (1) DL models (beige) do
not consistently outperform traditional ML (salmon) or even simple baselines (pur-
ple). This is observed with both AUROC and AUPR; (2) The performance variability
of most models across different datasets is significant. This is especially the case for
AUPR scores and most likely due to its sensitivity to data imbalance, i.e., low anomaly
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Fig. 3. SOTA Comparison across TAD models with Pre-thresholding metrics

ratios. For instance, datasets with high anomaly ratios such as SWAN and PSM tend to
have higher AUPR values than datasets with low ratios such as WADI and GECCO, vid.
Table 1; (3) Performance trends between AUROC and AUPR vary significantly. Models
that score best with AUROC are not always winners with AUPR, and vice versa. Most
likely this occurs because AUROC, as a metric, mitigates the impact of data imbalance.
Yet, since imbalance is inherent to anomaly detection applications in the real-world, we
argue that AUPR should be prioritized over AUROC for more accurate TAD evalua-
tion. To see this relationship quantitatively, we will analyze inter-metric performance
correlation in Section 4.2. For the remainder of the paper, we select the best perform-
ing model (as measured by combined AUPR and AUROC) per dataset: MICN (SMD),
Autoformer (WADI and SWAN), Transformer (MSL and SMAP), LSTM-AE (PSM),
Reformer (SWAT) and PatchTST (GECCO).

Choice of Scoring function: Table 2 compares different scoring functions. We report
results for the best performing DL model per dataset as defined previously. We can
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observe that the choice of the scoring often alters performance (vid. column Std-Dev)
and that overall, there is a gain from applying our non-trivial (ML) scoring. On WADI,
our ML-based scoring improves over MeanCh AUPR by 127%. DL Models which
directly map to univariate scores or that deploy more refined scoring are an interest-
ing direction for future TAD research. For the following section, Post-Thresholding
Analysis, we use the best model per dataset, combined with the best-performing scor-
ing function per dataset: ML-scoring (WADI, SMD, SWAN, PSM, GECCO), MeanCh
(SWAT), MaxCh (MSL, SMAP).

4.2 Post-Thresholding TAD performance

Fig. 4. Post-thresholding performance is highly susceptible to the thresholding function used.
Notably, F-PA (right-b) overestimates performance compared to F1 (left-a). For instance, thresh-
olding functions with very poor F1 scores such as DynTh, climb to first place with F-PA.

Choice of Thresholding function: Fig. 4 shows how post-threshold metrics (F1, F-
PA by row) are highly sensitive to the choice of thresholding function (shown as a
different colored bar per threshold type). The texture on each bar designates if that
particular thresholding function requires access to test-labels (Full Access “FA” with
less spaced dash), partial access (PA, with more spaced dash) and finally, no access to
test-labels (solid colored bars)1. Based on the F1 metric, “BestF” is consistently the best
thresholding function, requiring access to test labels, and is the most widely used across
TAD literature. It significantly outperforms by looping through all possible thresholds
and selecting the one with the highest performance, evaluated using the entire labeled
test set. While from an evaluation perspective this may be acceptable, it is far from
realistic, since most TAD applications are fully unsupervised. To further exemplify the
danger of relying on test-label-access, we introduce a modified BestF function which
only uses 10% of the test-data (both anomalous and normal data-points). In this case,
performance drastically declines w.r.t BestF full-access. In sum, caution is needed when
comparing post-thresholding performance across TAD literature because authors do not
always clearly disclose what thresholding mechanism is used. It is unfair to compare,

1 High-resolution figures included in supplementary for better clarity
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for example, Full-Access and No-Access scores. In Supplementary, we include more
extensive test-access variation plots, varying PA ratio from 0-100.

Lastly, in Fig. 4 we also show how F-PA overestimates performance across all
datasets and most thresholds (comparing panel a and b). For instance, take the worst
performing threshold according to the F1 metric, e.g. DynTh. Both its recall and preci-
sion are very poor. Yet, with F-PA it unjustifiably climbs to the best performing thresh-
olding function. F-PA has been shown [9,28] to yield unreliable scores and here we
again emphasize this. In the next section, we quantitatively measure how each metric
relates to one another and which should be dropped from future TAD literature.

Table 3. Pearson correlation coefficient (PCC) among different TAD evaluation metrics, both pre-
thresholding (AUPR, AUROC) and post-thresholding (F1, F-comp, F-K-AUC, F-PAK, F-PA).

Pearson-C F1 F-compF-K-AUCF-PAKF-PAAUROCAUPR

F1 1 0.633 0.413 0.424 0.115 0.466 0.726

F-comp 0.633 1 0.103 0.12 0.351 0.294 0.22

F-K-AUC 0.413 0.103 1 0.989 0.551 0.423 0.682

F-PAK 0.425 0.12 0.989 1 0.555 0.441 0.645

F-PA 0.115 0.351 0.551 0.555 1 0.054 0.179

AUROC 0.466 0.294 0.423 0.441 0.054 1 0.576

AUPR 0.726 0.22 0.682 0.645 0.179 0.576 1

Table 4. Correlation values. Effect of different thresholding styles on the Pearson correlation
between pre-thresholding metrics (AUROC, AUPR) and post-thresholding metrics (F1, F-K-
AUC).

Post-Th Pre-Th BestFTop-k
BestF-PAValperValper

SPOTDSPOTDynTh
(10%) (2σ) (3σ)

F1
AUROC 0.604 0.684 0.432 0.668 0.815 0.361 0.348 -0.182

AUPR 0.981 0.979 0.679 0.718 0.733 0.823 0.784 0.114

F-K-AUC
AUROC 0.629 0.695 0.438 0.661 0.766 0.445 0.416 -0.662

AUPR 0.976 0.976 0.559 0.654 0.654 0.819 0.751 0.067

What metrics should we keep? In this section, we compare all pre-thresholding and
post-thresholding metrics with the goal of identifying metrics that are consistent indica-
tors of performance (pre and post-thresholding). The lack of consistency among metrics
such as F-PA is concerning and here we aim to rigorously quantify the extent of this
inconsistency. Table 3 contains the correlations between all evaluation metrics tested
in this paper. The color code indicates that greener cells have higher positive Pearson



62 O. Gungor et al.

correlation, whereas redder cells have lower correlation. For post-thresholding met-
rics, correlation values between each metric pairs (cell) is computed by averaging the
individual correlations between all thresholding functions for all models and datasets.
From these results, it is evident that F-PA has the worst collective correlation with all
other metrics, including both pre-thresholding metrics (AUROC and AUPR). Alterna-
tively, pointwise F1 is the post-thresholding metric with highest correlation to the pre-
thresholding metrics, which emphasizes its enduring reliability, even when compared
to newer metrics such as F-PAK and F-K-AUC. Finally, these results also highlight
that AUPR consistently shows higher correlations with post-thresholding scores than
AUROC, suggesting it should be preferred as the pre-thresholding metric in TAD.

In Table 4, we show results for F1 and F-K-AUC across all tested thresholding func-
tions. Results are averaged across all eight datasets. The main takeaways are: (1) As
expected, full and meta-access thresholds (BestF, Top-K) yield consistently higher cor-
relations to pre-th metrics, especially AUPR. (2) In contrast, correlations clearly indi-
cate that thresholds such as DynTh or BestF (PA) perform poorly. (3) In summary, Table
4 underscores that thresholding is a difficult problem in itself and future work should
devote more attention to developing better unsupervised thresholding techniques.

5 Conclusion

Through our comprehensive analysis of SOTA TADmodels and evaluation metrics, sev-
eral important conclusions can be drawn: (1) Firstly, there is a significant need for more
robust TAD models. The latest algorithms, which rely on complex DL techniques, fail
to show consistent improvement over trivial baselines and simple ML methods; (2) Sec-
ondly, the central reason for this stagnated TAD progress is reliance on faulty metrics,
e.g. F-PA, lack of pre-thresholding score reporting and, inconsistent use and reporting
of scoring or thresholding functions. All of those combined, contribute enormously to
model performance scores and can be handpicked to boost performance at the expense
of reliable comparative benchmarking; (3) Additionally, the periodic, phase-dependent
and high-dimensional nature of multivariate time-series is far from trivial. Current unsu-
pervised thresholding techniques are not on-par to handle this, which is an opportunity
for future work. (4) We propose more reliable variants of currently used scores (e.g.
ML-scoring) and metrics (e.g. BestF-PA) as well as comprehensively analyze existing
metric correlations where we show that AUPR (pre-thresholding) and point-wise F1
(post-thresholding) metrics are still the most consistent and robust. Future work can
leverage this comparative framework to propose additional robust evaluation metrics.
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Abstract. Usage of noise is common at the input level of neural net-
works as a means of data augmentation. This study examines the
impact of incorporating stochastic noise deeply into the activation sig-
nals between layers of neural networks, simulating analog circuit compu-
tation. We introduce the “Analog Layer” model, which embeds inherent
stochasticity in the computation of activations and develop an algorithm
to dynamically adjust noise levels during training, thus creating a noisy
yet controlled curriculum learning training environment. We evaluate
our approach on Fully Connected and Convolutional Networks using the
MNIST, FashionMNIST, CIFAR10, and CIFAR100 datasets. The pro-
posed framework is assessed considering accuracy, robustness to input
and state perturbations, resistance to FSGM adversarial attacks and fea-
ture map entropy. We show that our method can improve the network’s
base accuracy, as well as its resilience to input and state perturbations
and adversarial attacks. The proposed approach allows to compute rep-
resentations which have a lower distribution entropy across its neurons,
allowing to achieve improved robustness. We finally give an interpreta-
tion of the proposed technique as both a regularization method and a
consensus mechanism.

Keywords: Neural Networks · Deep Learning · Neural Network
robustness · Stochastic Noise · Curriculum Learning

1 Introduction

The usage of noise during training in neural network architectures is well-studied
in the context of deep learning. The application of stochasticity has generally
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proven itself to be effective in improving the convergence speed, generalization
ability and overall quality of the model [1]. Usually, noise is introduced during
training by applying perturbations in the form of data augmentation [7], either
by employing known, domain-specific transformations or by introducing noise
directly into the input either by sum or multiplication. Perturbations can also
be implemented within the training algorithm itself, as for example with learning
rate schedulers [2].

It is well-known that the behavior of neural networks can be significantly
influenced by minor modifications to their inputs [3]. These small perturbations
accumulate error layer by layer, leading to an avalanche effect which substantially
changes at deeper levels of the network’s representation, ultimately leading to
drastic changes to the output. The processes of crafting these malicious inputs
and their respective countermeasures have emerged as a major area of interest
in machine learning and particularly in computer vision, where humans often
cannot perceive the differences between the original and adversarial images [5].

We propose a novel approach characterized by the introduction of stochas-
ticity in the computations of the internal representations of the network. We
study how noise in the internal mathematical operations of the neural network
affects the training of neural networks, postulating that this challenging source
of noise can improve model robustness and generalization ability. By injecting
noise directly into the computation of the activations, our approach introduces
perturbations at the internal representation level, thus acclimating the network
to the presence of noise, thereby making adversarial attacks more challenging.

Furthermore, while many successful methods such as Dropout [6] considered a
constant level of noise, our method uses a non-constant level of noise throughout
the training, which is regulated to increase the difficulty of the task accordingly
with the status of the training, following a curriculum learning recipe.

The contributions of this paper are threefold:

– We propose a novel approach to inject noise during the training of neural net-
works. Our method embeds noise deeply into the computation of the internal
activations of the model, which results in a more challenging setting for learn-
ing robust representations.

– We thoroughly evaluate our approach on classification tasks on the MNIST,
FashionMNIST, CIFAR10 and CIFAR100 datasets using MLPs and Con-
vNets. Results show that our method can not only increase baseline perfor-
mance in classification, but also lead to an inherently increased robustness
to input perturbations, state perturbations and adversarial attacks. Further-
more, we show that the introduced Analog Layers produce a weights distribu-
tion that is less enthropic than their analog counterparts and better distribute
information across their neurons.

– We propose an algorithm to inject noise progressively, following a curriculum
learning method, and we give an interpretation of our method as both a
consensus and regularization method.
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2 Related Work

Our research is related to and inspired by previous works and investigations on
data augmentation, hyperparameter scheduling and more generally the usage of
noise in the training process.

2.1 Data augmentation as means to improve performance

Data augmentation encompasses a range of techniques used to mainly increase
the number and variety of training data, leading to an improvement in both
performance and generalization [8]. These approaches, both domain-specific and
agnostic, range from simple techniques like shifting, cropping, flipping, and color
jittering to more advanced machine learning based methods. The latter often
make use of unsupervised algorithms such as VAEs, GANs and diffusion models
[9] to train a model capable of generating new samples from the input distri-
bution, which are then used as new data points. These approaches have proven
particularly effective in low-data scenarios like medical imaging [11,12]. The pro-
posed analog layer can be seen as a deeper form of potentially domain-agnostic
data augmentation, as well as a deeper representation level augmentation.

2.2 Hyperparameter scheduling to improve convergence rate

Hyperparameter scheduling is a widely utilized technique, with the most notable
examples being learning rate scheduling [2,13] and batch size scheduling [14].
Effective hyperparameter scheduling can significantly boost the convergence rate
[13] and overall performance of a model. This improvement can be often related
to scheduling’s ability to mitigate, overcome or avoid problematic/pathological
phases of training, as well as to introduce a certain level of stochasticity during
training. Furthermore, hyperparameter scheduling can serve as a form of cur-
riculum learning, progressively increasing task difficulty throughout the training
process. In the context of this research, we propose two algorithms designed
to vary a specific hyperparameter (namely, the global noise level) that directly
correlates with training difficulty.

2.3 Insertion of noise to improve robustness

The incorporation of noise and stochasticity is ubiquitous in machine learning
and deep learning research. Introducing noise not only in input data but in inter-
mediate layers and output labels as well is a strategy used to enhance robustness
and generalization. A famous example of this is Dropout [6], together with its
many modifications such as Adaptive Dropout [15], different sampling strategies
[16] or generalizations [17]. Stochastic processes are also employed in Variational
Autoencoders [18], which achieve disentanglement of the latent space through
sampling. Moreover, techniques such as label smoothing [19], which implicitly
inject noise in the training process by providing more uncertain labels, have
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been explored and found to be effective in manipulating training labels. The
integration of noise as a fundamental component of the training procedure has
been shown to be an effective means of improving neural network performance,
as demonstrated by Denoising Autoencoders [20] and further confirmed by Dif-
fusion Models [21], which are widely recognized as state of the art for many
generative tasks. Other stochastic techniques, such as Stochastic Depth [22] and
stochastic ensemble learning [23], can be regarded as noise injection techniques
in the learning process. Numerous studies have investigated the development
of training algorithms tailored to specific noise levels [24]. As for our research,
we focus instead on designing a training regimen that adaptively adjusts the
noise level throughout the training process in order to maximize performance
and robustness.

2.4 Adversarial attacks and defence techniques

Neural networks are notoriously susceptible to input state perturbations. This
sensitivity constitutes a weak point for adversaries to exploit. This weakness was
first highlighted in [3] and has since evolved into a very active research field, with
many types of attacks and defenses [4].

In this work, we will make use of a simple type of adversarial attack, called
Fast Sign Gradient Method (FSGM), proposed in [5]. FSGM is a black-box
attack that uses the gradient of the loss function in order to generate an adver-
sarial perturbation.

3 Methodology

In this section we introduce the Analog layer framework, as well as the scheduling
algorithms for the global noise variation.

3.1 Analog Layer

Taking inspiration from analog circuits, which add inherent stochasticity in every
computation due to their analog nature, we propose an “Analog Model” as a
modification to a standard neural network layer directly injecting noise into
the computation of its activations. We consider a parametric model hθ, a loss
function L, a training algorithm, a global noise intensity α and a noise variation
(scheduling) algorithm. In particular, hθ is a model composed of at least one
analog layer. To avoid direct noise influence on the output labels, we don’t use
an analog layer as the output layer. Given a generic parametric function fθ we
define its analog counterpart fanalog

α,β,θ as:

fanalog
α,β,θ = N(fθ(x), (αβ)2) (1)

where β and α are hyperparameters called layer-wise noise intensity and global
noise intensity. In practice, we prefer to consider the following equivalent defini-
tion:

fanalog
α,β,θ = fθ(x) + αβλ (2)
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where λ ∼ N(0, 1) is an unit Gaussian tensor of appropriate shape. This
reparametrized version exposes the deterministic function for backpropagation.
Note that λ is sampled each time we calculate the function, and both α and β
are not learnable.

Fig. 1. A visualization of an analog layer. The variance of the Gaussian depends on
both α and βi.

Note that, in the context of an analog model, each analog layer has its own
value of β, which we denote as β1, · · · , βn, while α is shared among all layers.
In the following sections, whenever we refer to the value of a generic βi in the
context of a generic Analog Layer, we will refer to it simply as β. Figure 1 gives
an illustration of the structure of a generic analog layer.

3.2 The role of α and β

Before jumping to the more practical parts of establishing an analog training
model, such as choosing a scheduling algorithm or the hyperparameter values,
it is important to understand the role of α and β. The main objective of our
research was to develop a method for adaptively introducing noise into the train-
ing process, adjusting the level of noise in response to the task’s difficulty at a
given point during the training process. Our model was inspired by the computa-
tional paradigm of analog chips, which trade off precision for enhanced speed and
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efficiency due to their analog nature. Specifically, we drew an analogy between
these noisy computations and the introduction of noise into our training process.
Each operation executed by a analog chip was conceptualized as introducing a
certain degree of noise to the overall computation. The role of α and β is to
capture this intuition: α represents the quality of our hypothetical circuit, that
is, the amount of noise injected by each operation, while β models the num-
ber of computations performed by each layer. This rationale also underpins our
decision to assign distinct values β1, · · · , βn in each layer, as the computational
complexity of each layer is dependent on the underlying function being com-
puted. In contrast, if we assume that the level of noise introduced by the circuit
for individual operations remains consistent across all layers of the network, we
can simplify the noise variation problem, since we only needs to schedule α, our
global noise level.

3.3 Fully Connected and Convolutional Analog Layers

The proposed definition of analog function makes it possible to construct the ana-
log variant of any parametric function fθ. In this paper, we focus on the analog
variant of (arguably) the two most popular parametrized layers in neural net-
works: Fully connected Layers and Convolutional Layers. The Fully Connected
Analog layer is defined as follows:

AFCα,β,W,b = Wx + b+ αβλ (3)

whereas the Analog Convolutional Layer is defined as:

ACα,β,W,b(x) = W ∗ x + b+ αβλ (4)

3.4 Choosing β for AFC and AC

In light of what we said in the previous paragraph, it is evident that we want
the value of β to be some kind of function of the input and output sizes which
defines the complexity of the function itself. In particular, since we want to add
noise for each computation, we investigate different methods of setting β as a
function of the input and output dimensions of the layer. In particular, for an
AFC layer with input dimension n and the output dimension m and for an AC
with n input channels, m output channels and kernel of size a × b, we studied
the strategies reported in Table 1. After determining β1, · · · , βn, we normalized
their values as follows:

βnormalized
i =

βi

min
∀k

βk
(5)

This makes it possible to train different strategies with relatively similar hyperpa-
rameters of the Noise Variation Scheduling Algorithms described in the following
section.
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Table 1. The strategies we used to choose β and the rationale behind.

Strategy AFC AC Rationale

Constant β = 1 β = 1 Value non dependant on the shapes of input and output
Square Root β =

√
n β =

√
n · a · b Expectation of the noise level for input_size operations.

Logarithmic β = log(n) β = log(n · a · b)Logarithmic dependence on the input size
Mass β = n

m
β = n·a·b

m
Reduce noise when input comes from a big (noisy) layer

3.5 Global Noise (α) Variation Scheduling

We now tackle the problem of developing an algorithm that can dynamically
adjust the value of α. Ideally, we want our algorithm to make α as high as possible
without degrading the network’s performance G (as expressed by some perfor-
mance measure function g). Moreover, the algorithm should be able to respond
to changes in the network performances and adapt the noise level accordingly.
The algorithm should be cautious in increasing the level of noise and overreact-
ing when correcting a level that is too high, since we want to avoid our model
to go into catastrophic forgetting [25] of the original non-noisy task. Finally, the
algorithm should be capable of autonomously determining the maximum noise
level, which would eliminate the need for any guesswork or tuning. We also want
to avoid making the training too hard at the start by not giving the training
algorithm a chance to take a good path. We present and test two scheduling algo-
rithms, namely Additive Increment Additive Decrement and Additive Increment
Multiplicative Decrement. In particular, the latter borrows a concept (namely
the multiplicative decrease) from congestion avoidance schemes in transmission
protocols like TCP [26]. Note that the symbol >· indicates a total order relation-
ship specific to G.

Additive Increment Additive Decrement (AIAD) The AIAD algorithm
is described in Algorithm 1. The algorithm is very simple: we define a zone under
which we determine that our algorithm is underperforming (G < treject), which
signals us to reduce the noise level. Similarly, we define a zone above which we
determine that our algorithm is overperforming (G > taccept), which signals us
that our model is capable of tackling the problem with the current noise level
and we can increase it. In the region treject < G < taccept, we simply don’t vary
the noise, so that our models can train with a constant noise level for however
long is necessary to beat taccept (or fail and fall below treject). Then, we define an
increase i and a decrease d. We pick d � i to enforce the desidered “overreaction”
property of the scheduler.

At train time, we first train on w warmup training batches at a fixed noise
level α0. For the batches after that, we adjust α based on G as determined on
the current training batch against taccept and treject. Finally, we always make
sure that α doesn’t become negative by enforcing 0 as α’s lowerbound.

Additive Increment Multiplicative Decrement (AIMD) The AIMD algo-
rithm (Algorithm 2) builds on the AIAD algorithm by changing only one thing,
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Algorithm 1. AIAD algorithm
1: α0, w, i, d, taccept, treject ← Scheduling hyperparameters // As described before
2: α ← 0 // The variable noise level
3: for step ← 1 to w do // Warmup phase
4: [...] // Do training as usual
5: for step ← w + 1 to ∞ do
6: x, y ← next training example
7: y′ ← hθ,α+α0(x)
8: G ← g(y, y′) // Get the performance measure
9: if G >· taccept then

10: α ← α + i // We beat taccept
11: else
12: if G <· treject then
13: α ← α − d // We fall below treject
14: α ← max(0, α) // Ensure α is always positive
15: [. . . ] // Perform the rest of training as usual

Algorithm 2. AIMD algorithm
1: α0, w, i, d, taccept, treject ← Scheduling hyperparameters // As described before
2: α ← 0 // The variable noise level
3: for step ← 1 to w do // Warmup phase
4: [...] // Do training as usual
5: for step ← w + 1 to ∞ do
6: x, y ← next training example
7: y′ ← hθ,α+α0(x)
8: G ← g(y, y′) // Get the performance measure
9: if G >· taccept then

10: α ← α + i // We beat taccept
11: else
12: if G <· treject then
13: α ← α ∗ d // We fall below treject

14: [. . . ] // Perform the rest of training as usual

that is, the way the decrement is done. As the name suggests, during a decre-
ment, the current α is multiplied by the decrement d, which must be 0 ≤ d < 1.
As stated before, we get this idea from the TCP’s congestion avoidance scheme
[26].

4 Experiments and results

4.1 Experimental settings

We consider the problem of training small and medium sized networks in clas-
sification tasks on MNIST [27], FashionMNIST [28], CIFAR10 and CIFAR100
[29]. We applied minimal data augmentation, namely only horizontal flips (for
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CIFAR10 and CIFAR100) and normalization of the input image. The trained
architectures are both small fully connected networks and medium sized conv-
nets. We used SGD as our optimizer with lr = 0.01, momentum = 0.9 and weight
decay = 0.001. We used the AIMD noise scheduling algorithm with α0 = 0.001,
i = 0.0001 and d = 0.5 as shown later. We used the training accuracy of the
processed batch as the performance measure. In order to determine taccept and
treject, we first trained the baseline and measured its accuracy a on the test set,
then we set taccept and treject as 1.0·a and 0.8·a respectively. The idea behind this
choice is that we can only increase α when the model is in the ballpark of a good
solution. To achieve best results, we freeze the value of α for the last 8 epochs
on a fixed noise level (α = 0.05) during the training of the analog networks.
This final fixed level global noise value will also be used as salt (see Section 4.2)
for our adversarial resistance tests. Note that, unless otherwise stated, the α
parameter is set to 0 at evaluation.

4.2 Results

We trained our models for 32 (24 + 8 for analog models) epochs (MNIST, Fash-
ionMNIST) and 64 (56 + 8 for analog models) epochs (CIFAR 10, CIFAR 100),
picking the best test accuracy at every epoch end. In this section we present the
salient results obtained by our proposed method against the baseline.

Do we really need α scheduling? We tested the performance of analog net-
works trained with a constant level of noise α = 0.05 on CIFAR100 and α = 0.2.
We decided to test these value since they are, respectively, the fine tune values
for our regularly scheduled analog models and the average noise level reached
at the end of epoch 56 by our schedulers. This way, if the effect of schedul-
ing is not relevant, we should expect negligible differences in the performances
of non-scheduled versus scheduled models. Table 2 shows that, while injecting
low noise levels without scheduling the intensity can still improve the results,
scheduling further boosts the performances. Furthermore, we notice that the
results are equivalent for both AIAD and AIMD. This is to be expected, as the
decrease correction should (with a careful enough choice of the taccept and treject)
be executed the least possible and only serve as a guard against a pathological
increment of the noise level, which may lead to decreased model capacity over-
all. During our tests, the differences in performances are negligible for the AIAD
and AIMD schedulers. Thus, we will only report the results from the AIMD
scheduler.

Accuracy Table 3 shows that the analog models are consistently able to out-
perform the baseline. This becomes more evident as the task is less “saturated”,
that is, there is more room for improvement over the baseline.

Input perturbation resilience We tested the resistance of our model to addi-
tive input perturbations, multiplicative input perturbations and salt and pepper
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Table 2. Accuracy of no scheduling vs AIAD vs AIMD scheduling on CIFAR100

Fixed (α = .05)Fixed (α = .2)AIAD (ft. α = .05)AIMD (ft. α = .05)

Const 0.5473 0.5429 0.5598 0.5598
Sqrt 0.5656 0.4859 0.5758 0.5758
Log 0.5493 0.5492 0.5695 0.5695
Mass 0.5682 0.4935 0.5760 0.5760

Table 3. Accuracy

MNISTFashionMNIST

MLP - Base 0.979 0.883
MLP - Const 0.98 0.882
MLP - Sqrt 0.98 0.882
MLP - Log 0.975 0.883
MLP - Mass 0.978 0.884

CIFAR10CIFAR100
CNN - Base 0.7838 0.5367
CNN - Const 0.8107 0.5606
CNN - Sqrt 0.8195 0.5751
CNN - Log 0.8193 0.5693
CNN - Mass 0.819 0.5739

perturbations. The measured accuracy values are reported in table 4 and the
perturbation level is indicated as p.

Table 4. Input perturbation accuracy for (from left to right) additive, multiplicative,
salt and pepper perturbation on CIFAR10.

p = .05 p = .1 p = .2

Base 0.668 0.348 0.190
Const 0.688 0.410 0.276
Sqrt 0.658 0.376 0.260
Log 0.706 0.436 0.247
Mass 0.656 0.374 0.251

p = .05 p = .1 p = .2

Base 0.763 0.657 0.410
Const 0.791 0.676 0.454
Sqrt 0.780 0.646 0.430
Log 0.797 0.690 0.488
Mass 0.780 0.646 0.432

p = .05 p = .1 p = .2

Base 0.373 0.224 0.135
Const 0.442 0.300 0.207
Sqrt 0.428 0.291 0.190
Log 0.457 0.289 0.163
Mass 0.424 0.276 0.205

We can see that generally, input perturbations do still affect the analog mod-
els, but at a less steep decrease in their performance (as p increases).

State perturbation resilience We tested the resistance of our model to state
perturbations. In particular, we instantiated an analog model with “constant”
heuristic with the weights of all our trained models, and tested accuracy as α
increases. The results are reported in table 5.

We notice that state perturbation drastically affect the baseline performance,
while being noticeably less effective against the analog models.
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Table 5. State perturbation accuracy on CIFAR10.

α = .05α = .15α = .3

Base 0.7724 0.6393 0.3224
Const 0.8099 0.7868 0.6664
Sqrt 0.8167 0.7722 0.5707
Log 0.8152 0.7945 0.6619
Mass 0.8135 0.7690 0.5548

Resistance to adversarial attacks We tested the resistance against FSGM
attacks of the CIFAR100 trained ConvNets. For our analog layer, we tried the
adversarial attack both on the network without noise at test time (no salt) and
with noise (unknown to the attacker, referred to as salt). Table 6 compares
the resilience of the CNN trained on CIFAR10 and CIFAR100 against FSGM
attacks. For the analog model, in particular, we consider two scenarios: in the
first, the model is used with noise equal to zero, while in the second, the model
is computed at a certain α level, with the resulting noise tensors βiλ (the whole
of which we will refer to as “salt”) not known to the attacker. We discuss in
section 5.4 why this attack scenario is reasonable. We measure improvements
in adversarial resistance by using analog layers, further boosted by the usage of
salt. The choice of salt level is a balancing choice: while more salt usually means
a lower base performance, it also translates into higher adversarial resilience.

Table 6. Accuracy against FSGM attacks with various intensities of ε as reported on
the top row on our CNN trained on CIFAR10 and CIFAR100

CIFAR10 ε = .01 ε = .02 ε = .03

Base 0.1523 0.0189 0.0025
Const 0.2958 0.0617 0.01
Sqrt 0.3441 0.0828 0.02
Log 0.3233 0.0773 0.0147
Mass 0.3731 0.1089 0.0288
Const + salt 0.3208 0.0719 0.0116
Sqrt + salt 0.3870 0.1050 0.0268
Log + salt 0.3555 0.0864 0.0182
Mass + salt 0.4110 0.1303 0.0347

CIFAR100 ε = .01 ε = .02 ε = .03

Base 0.0999 0.0215 0.0075
Const 0.1393 0.0348 0.0116
Sqrt 0.2133 0.0715 0.0319
Log 0.165 0.045 0.0181
Mass 0.2081 0.0675 0.029
Const + salt 0.1526 0.0382 0.0131
Sqrt + salt 0.2325 0.0806 0.0363
Log + salt 0.1825 0.0503 0.0194
Mass + salt 0.2288 0.0762 0.0335

4.3 Feature Maps Entropy

We measured the entropy of the feature maps of our CIFAR100 ConvNet. In
particular, we measured the per-channel entropy after the Max Pooling operation
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of each convolutional layer. To do this, we first normalized the channels in [0-1]
using the minimum and maximum value obtainable, per channel. Then, after
binning in 256 bins, we measured the Shannon Entropy for each channel. The
average entropy values are reported in Table 7. In general, analog models exhibit
slightly less entropy across their channels.

Table 7. Average of per-channel entropy on our ConvNets trained on CIFAR10 and
CIFAR100.

CIFAR10Pool 1Pool 2Pool 3

Base 7.2524 7.6412 7.4368
Const 7.2287 7.5294 7.4162
Sqrt 7.2176 7.5186 7.399
Log 7.2246 7.5243 7.4066
Mass 7.2008 7.4957 7.4041

CIFAR100Pool 1Pool 2Pool 3
Base 7.3198 7.6784 7.4173
Const 7.2988 7.6164 7.3963
Sqrt 7.2738 7.5545 7.3723
Log 7.2886 7.5856 7.3881
Mass 7.2522 7.5486 7.3717

5 Discussion

5.1 The analog framework as a form of curriculum learning

We can characterize our proposed framework as a curriculum learning technique.
Curriculum learning is a paradigm rooted in how humans and animals seem to
learn [34], where better results can be achieved by organizing training in a specific
way. In particular, our method aims to vary the complexity of the task, which is
dependant on the α parameter. As a result, our approach can learn more robust
representations as compared to baseline models.

5.2 A regularization technique?

We can consider our proposed framework as a sort of regularization technique,
as the additive noise on a certain layer output can become (depending on the
activations) a multiplicative noise for the next layer, hence directly affecting
weight gradient computation, which is in of itself regularizing. Moreover, our
experiments show the proposed approach decreases the entropy of feature maps,
which likely is an effect of the regularization induced by the injection of noise.

5.3 Is an analog model a consensus learner?

We speculate that the analog model is also a consensus based learner, in the sense
that, at each forward pass of the training process (and inference if we are using
salt), we are effectively training on batch_size samples of our stochastic model
hθ,· which are close but not equal to the “expected” model (we better discuss
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and formalize this concept in section 5.4). In particular, this may be useful in
escaping or avoiding narrow local minima, as it becomes more and more difficult
for the training to have most of these samples stuck in the same minima as the
number of samples (which is equal to the batch size) increases. For this, we also
suspect that analog layers may benefit for batch size scheduling.

5.4 Can We Defend an Open-Weights Model with... Salt?

Open-source models are a cornerstone in many AI applications. Often, large foun-
dational models are released along with their architecture and a training check-
point, eliminating the need for users to train a network from scratch, process
often prohibitively expensive. While these open weights provide many individu-
als with access to powerful AI models, this also means that finding adversarial
attacks against just one of these open-weight models can compromise the secu-
rity of all services utilizing it. Although the results obtained with our method are
not enough to claim increased adversarial resistance, they do suggest a potential
strategy for developing public-weight, adversarial-resistant models.

In particular, let hθ,IV represent a generic trained model, with θ being its
public parameters and IV a set of stochastic parameters used for computation,
that we call “salt”. In particular, let D be the public joint distribution of the
entire salt, that is, IV ∼ D. Note that the word “public” means that the value
of θ and D are known to the attacker. At runtime, the user samples IV from
D, effectively obtaining a certain instance of the model hθ,IV . Note that the
sampling process is private, meaning that the value of IV is secret and not
known by the attacker. Without further information, a reasonable approach for
the adversary is to attack hθ,E(D).

If we can develop a method to train a “family” of models hθ,· such that it
yields very similar results for different salt samples of D while still maintaining
sufficiently different internal states with regards to some permutation-invariant
norm, we can potentially elude white-box adversarial attacks by obfuscating the
internal details of the model’s operation behind the sampling of IV itself. This
approach could serve as a robust defense mechanism against adversarial threats
in open-weight models. The proposed analog layer allows to obtain models with
the aforementioned properties, while the scheduling process allows to model D
as desired, for example by choosing a target α.

6 Conclusion

In this paper, we proposed and investigated the analog model, which, taking
inspiration from analog circuits, provides a training framework that can boost
performance and resilience of the trained models. We presented a definition of
analog layer and analog model, and described two simple noise variation algo-
rithms that can be used to effectively vary the noise level during training in an
unsupervised way. We have measured the improvement over baselines on clas-
sification tasks in both Fully Connected networks and Convolutional Networks,
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as well as perturbation resistance and adversarial attack resistance, and found
that our method can be effectively used to improve these properties. Finally,
starting from our findings on the Analog Layer, we discussed a possible more
general approach to improve adversarial resistance in neural networks

Future work Future studies should consider the usage of other analog function,
bigger datasets and state-of-the-art architectures, as well as different tasks and
domains. Our scheduling algorithms, while simple and effective, are reliant on the
chosen values of taccept and treject. Furthermore, our proposed way of choosing
said values requires training a baseline first, which may be costly for very big
networks. Future works should consider ways to automatically find or schedule
these values, or explore noise variation algorithms that don’t need these kind
of hard-coded thresholds altogether. Finally, to better asses the more advanced
adversarial techniques such as the Carlini and Wagner’s Attack [30], DeepFool
[33] and even adaptive attacks [31]. We suspect that, due to the stochastic nature
of our resulting model (when used with salt), iterative attacks may be the best
fit, as demonstrated against SAP [32] in [31].
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Abstract. This study explores the potential of Modern Hopfield Net-
works (MHN) in improving the ability of computer vision models to
handle out-of-distribution data. While current computer vision models
can generalize to unseen samples from the same distribution, they are
susceptible to minor perturbations such as blurring, which limits their
effectiveness in real-world applications. We suggest integrating MHN into
the baseline models to enhance their robustness. This integration can be
implemented during the test time for any model and combined with
any adversarial defense method. Our research shows that the proposed
integration consistently improves model performance on the MNIST-C
dataset, achieving a state-of-the-art increase of 13.84% in average corrup-
tion accuracy, a 57.49% decrease in mean Corruption Error (mCE), and a
60.61% decrease in relative mCE compared to the baseline model. Addi-
tionally, we investigate the capability of MHN to converge to the origi-
nal non-corrupted data. Notably, our method does not require test-time
adaptation or augmentation with corruptions, underscoring its practical
viability for real-world deployment. (Source code publicly available at:
https://github.com/salehsargolzaee/Hopfield-integrated-test)

Keywords: Modern Hopfield Networks · OOD Robustness ·
Computer Vision · Autoencoders · Convolutional Neural Networks

1 Introduction

The effectiveness of modern computer vision algorithms relies heavily on the
assumption that data is independent and identically distributed (i.i.d.). Con-
sequently, challenges arise in adapting these algorithms to generalize to out-
of-distribution data in real-world scenarios, where visual corruption caused by
adverse weather, lighting variations, and other factors is prevalent [19]. Studies
have revealed a significant decrease in the generalization capability of models
trained on clean data when exposed to these corruptions [6,13].

In this study, we propose integrating a pre-trained Modern Hopfield Net-
work (MHN) associative memory as an input module for the current models.
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Associative memory is capable of recovering the original input based on par-
tial information [7]. We suggest that adding this module, pre-trained to remove
Gaussian noise from clean data, would help recover the original data in case
of various corruptions. The proposal has advantages when compared with suc-
cessful methods in combating corruption, including test-time adaptation (TTA)
[22,25] and domain adaptation (DA) [20].

TTA requires updating the model weights during the test time to adapt
to corrupted data in test data. This adaptation process can introduce new chal-
lenges caused by batch size [14] or temporary traits of test data [22,26]. However,
our method does not require any test-time adaptation and can be trained offline
and used during the test-time.

DA involves adjusting models that have been trained on one set of data (the
source - in this case, clean images) so that they can be used on another set for
which only unlabeled samples are available (the target - in this case, the cor-
rupted images) [20]. This process is most effective when source and target domain
data are available simultaneously. However, our method does not require access
to the target corruptions, making it more suitable for real-world applications.

Notably, the proposed method can still be combined with the above-
mentioned techniques. Our contributions can be summarized as follows:

– We propose a general pre-training scheme with Modern Hopfield Networks to
build generic extensions that enhance test-time robustness against corruptions
for any baseline model trained on a clean dataset.

– We develop a test-time integration algorithm using the pre-trained extension
and validate its effectiveness on the MNIST-C dataset.

– We demonstrate the superiority of modern Hopfield networks in tolerating
various types of corruption, beyond just noise, by comparing our exten-
sion with a convolutional denoising autoencoder pre-trained using the same
scheme.

– We provide insights into the robustness of our integration algorithm when
incorporating non-effective modules. We show that the algorithm maintains
baseline performance even with an ineffective convolutional denoising autoen-
coder.

– We demonstrate the superiority of our algorithm compared to other offline
methods designed to handle unseen data (corruptions). We also show that
our method is comparable to test-time adaptive (TTA) methods and can be
combined with TTA or offline methods to enhance robustness further.

2 Problem Statement

We focus on a new approach to address the issue of encountering out-of-
distribution and corrupted data during testing. Adapting individual models to
different types of corruption and changes in distribution can be time-consuming
and repetitive. Our goal is to develop a memory layer capable of swiftly retrieving
clean or sufficiently clean data from corrupted inputs in real time. If successful,
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this layer can be integrated into any pre-trained classifier trained on clean data,
thereby enhancing its robustness and adaptability.

Consider a classifier f(x) trained on a dataset {(xi, yi)}i, where (xi, yi) ∼ D.
Let C be a set of corruption functions, and let PC(c) represent the approximate
frequency of corruption c ∈ C in the real world. The task of corruption robustness
can be defined as follows [6]:

Ec∼PC

[
P(x,y)∼D (f (c(x)) = y)

]
, (1)

where P(x,y)∼D (f (c(x)) = y) is the probability that the classifier f correctly
classifies the corrupted input c(x). Our goal is to find an associative memory
function h such that (h(c(xi)), yi) is approximately distributed as D. We consider
this goal achieved if:

P(x,y)∼D (f (h(c(x))) = y) ≈ P(x,y)∼D (f (x) = y) , (2)

where P(x,y)∼D (f (x) = y) is the probability that the classifier f correctly clas-
sifies the original input x.

3 Modern Hopfield Networks

The classical Hopfield network was introduced as an associative memory model
[7]. The model can be formalized as a system with N binary neurons where
activity of the neurons at time t can be represented by a N-dimensional state
vector σ(t) = (σ(t)

i )Ni=1. In the original model, the states were considered to be
binary, where σ

(t)
i ∈ {−1,+1}. In the classical Hopfield network, the update rule

for each neuron is given by [7]:

σ
(t+1)
i = Sign

⎡

⎣
N∑

j=1

Tijσ
(t)
j

⎤

⎦ = Sign
[
Tσ(t)

]

i
, (3)

where T is a symmetric real-valued connection matrix with zeros on the main
diagonal, specifying the pairwise connection strength among neurons. It can be
shown that this update rule may result in a monotonic decrease of the following
energy function:

E = −
N∑

i,j=1

σiTijσj = −σT Tσ . (4)

Therefore, by following the update rule in Equation (3), the energy function
may converge to a local minima. These local minima can be utilized to store
memory (pattern), in such a way that by applying the update rule on a corrupted
initialization of the memory, the original memory can be retrieved. The classic
method for storing these memories involves encoding them in the weight matrix
using the Hebb rule, which in its simplest form is:
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Tij =
K∑

μ=1

ξμ
i ξμ

j , (5)

where the set of vectors {ξμ}K
μ=1 represent K patterns one wishes to store. In the

classic Hopfield network, it has been shown that the maximal storage capacity in
the case of random memories is in the order of K ≈ 0.14N [1,12]. However, the
network’s storage capacity can be increased by introducing non-linear functions
to the energy, which may result in higher than quadratic interactions between
the neurons [3,8]. The following general form of energy function can characterize
these Modern Hopfield Networks (MHN):

E = −h

(
K∑

μ=1

F (σT ξμ)

)

, (6)

where F (·) represents a rapidly growing smooth function and h(·) is a strictly
monotonic and differentiable function that can preserve the stability and loca-
tions of local minima. Setting F (x) = ex has been proved to result in a theoretical
capacity of K ≈ eαN , α < ln(2)

2 , which is exponential in the number of neu-
rons N [3]. We utilize the continuous state MHN introduced in [16]. The energy
function of this model is obtained by setting h(x) = log(x) and F (x) = eβx in
Equation (6), where β is a positive value. Due to the generalization to a contin-
uous state vector, σ ∈ �N , regularization terms were added to ensure that the
energy is bounded and the norm of the state vector remains finite. The proposed
energy function was expressed as follows:

E = −β−1 log

(
K∑

μ=1

eβσT ξµ

)

+
1
2
σT σ + β−1 logK +

1
2
M2 , (7)

where M = maxμ ‖ξμ‖. The update rule for minimizing this energy is:

σ(t+1) = Xsoftmax(βXT σ(t)) , (8)

where X = (ξ1, . . . , ξK) forms a matrix by stacking memory vectors as its
columns. In the following sections, we use a particular version of this model.

4 Methodology

We propose a two-step approach to enhance the model’s robustness against data
corruption. First, we train a “HopfieldPooling” layer, a specialized variant of the
continuous state Modern Hopfield Network (MHN) as introduced by Ramsauer
et al. [16], on a denoising task. The primary objective is to develop an algorithm
to integrate this trained HopfieldPooling module into an existing baseline model
during the testing phase, thereby improving its resilience to various forms of data
corruption. Both the baseline model and the HopfieldPooling layer are trained
using clean data without access to future corrupted data during training.
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4.1 Denoising Task

The denoising task serves as the preliminary step to achieve our main objective.
Denoising tasks are widely used to learn robust data representations [23]. In this
task, given an original input x, we generate a corrupted version x̄ by adding
Gaussian noise with mean zero and standard deviation 0.5. Consequently, x̄ can
be modeled as a random variable following the distribution:

x̄|x ∼ N (x, , 0.52I) . (9)

We train the HopfieldPooling layer to minimize the mean squared error
(squared L2-norm) between the original and denoised inputs, as defined by the
following objective function:

min
h

1
m

m∑

i=1

∥
∥xi − h(x̄i)

∥
∥2

2
, (10)

where {xi}m
i=1 represents the set of training vectors and h denotes the Hopfield-

Pooling layer.

4.2 Integration Algorithm

Once the HopfieldPooling layer is trained on the denoising task, we propose
Algorithm 1 to integrate this module into an existing baseline model during
the testing phase. The algorithm aims to process both corrupted data and the
corrected version through the HopfieldPooling layer. It then makes predictions
based on the input that generates more confidence for the most confident class.
This integration aims to enhance the model’s ability to handle corrupted data
effectively, leveraging the learned memory patterns from the HopfieldPooling
layer to correct or mitigate the effects of corruptions encountered during testing.

5 Experiments

5.1 Experimental Setup

We conducted our experiments in the Google Colab environment using an
NVIDIA Tesla T4 GPU with 15360 MiB of memory. We performed the training
phase using Python 3.10.12 and PyTorch 2.3.0+cu121.

Dataset: For training purposes, we used 60, 000 clear training samples from
the MNIST dataset [9]. To test the proposed method, we utilized the MNIST-C
dataset, a benchmark designed to evaluate the robustness of computer vision
models [13]. This dataset was created by applying 15 types of corruptions to
the 10, 000 test images from the clean MNIST dataset, resulting in a total of
150, 000 corrupted images. The corruptions include shot noise, impulse noise,
glass blur, motion blur, shear, scale, rotate, brightness, translate, stripe, fog,
spatter, dotted line, zigzag, and canny edges.
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Algorithm 1 Test Model with Hopfield Integration.
1: Input: Dtest = {xi}M

i=1 � Test dataset
2: Output: P = {pi}M

i=1 � Predictions for test data
3: P ← ∅ � Initialize the set of predictions
4: for all xi ∈ Dtest do
5: of ← f(xi) � Base model output (vector of class probabilities)
6: oh ← f(h(xi)) � Hopfield integrated output (vector of class probabilities)
7: (max_probf , pred_classf ) ← (maxj(of [j]), argmaxj(of [j]))
8: (max_probh, pred_classh) ← (maxj(oh[j]), argmaxj(oh[j]))
9: if max_probf > max_probh then

10: pi ← pred_classf � Choose base model prediction
11: else
12: pi ← pred_classh � Choose Hopfield integrated prediction
13: end if
14: P ← P ∪ {pi} � Update test results with final prediction
15: end for
16: return P � Return all predictions

Implementation Details: To ensure repeatability, we trained and used the
default convolutional neural network provided by the official PyTorch repository
[15] without any modifications as the base model. This model definition is also
employed in the benchmark paper of the MNIST-C dataset [13]. For training the
HopfieldPooling layer, we used the hyperparameters shown in Table 1, which are
inspired by the examples provided in the original publication’s repository [17].
For optimization, we adopted the AdamW optimizer introduced in [10], with the
following default parameters: α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8, and
λ = 0.01. Our training process involves 20 epochs and a batch size of 20.

Table 1. Hyperparameters used for training the HopfieldPooling layer.

Hyperparameter ValueDescription

input_size 784 Dimension of the input vector x̄ in Equation (9)
hidden_size 8 Dimension of the association space N

num_heads 8 Number of parallel Hopfield heads
update_steps_max5 Number of updates for each Hofield head in each epoch
scaling 0.25 β parameter in Equation (8)

Evaluation Metrics: To evaluate the robustness gained by integrating the
HopfieldPooling module into any baseline model, we use the mean Corruption
Error (mCE) and relative mCE metrics, as established in benchmark publica-
tions [6,13]. Given a corruption function c ∈ C, a classifier g, and a baseline
classifier f , we denote their error rates on c as Eg

c and Ef
c , respectively.
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To account for varying corruption difficulties, we calculate the corruption
error of g on c (CEg

c ) by normalizing its error rate with the baseline error rate:

CEg
c =

Eg
c

Ef
c

(11)

We also assess degradation relative to clean data (identity corruption i) by
calculating the relative corruption error:

relative CEg
c =

Eg
c − Eg

i

Ef
c − Ef

i

(12)

From the two metrics defined above, we compute the mean values across all
corruptions, resulting in mean CE (mCE) and relative mCE. Consequently, the
mCE and relative mCE of the baseline model f are expected to be one (or 100%)
due to these calculations. To quantify robustness improvements, we measure the
reduction in mCE from 100%. Additionally, we calculate the gain in average
corrupted accuracy.

5.2 Integration Results

Table 2 shows the evaluation metrics for the baseline model and Hopfield inte-
gration. The relative mCE and mCE are both 100% for the baseline model. With
Hopfield integration, these values significantly decrease to 39.39% and 42.51%,
respectively, demonstrating substantial improvements in robustness with reduc-
tions of 60.61 and 57.49 percentage points. Additionally, the average corruption
accuracy increases from 75.92% for the baseline model to 89.76% with Hopfield
integration, marking an improvement of 13.84 percentage points.

Table 2. Comparison of different evaluation metrics with and without Hopfield inte-
gration. Symbols ↓ and ↑ denote the desired direction of change for each metric.

Metric BaselineHopfield-integrated Improvement

Relative mCE (%) ↓ 100 39.39 60.61
mCE (%) ↓ 100 42.51 57.49
Average Corruption Accuracy (%) ↑75.92 89.76 13.84

To better understand the effect of the HopfieldPooling layer on different cor-
ruptions, we compared the corrupted accuracy for each type. Table 3 displays
these results. It can be observed that the corruption accuracy of the Hopfield-
integrated model generally surpasses that of the baseline model. Specifically,
the integration yields significant accuracy improvements of 82.65%, 50.13%,
43.42%, 18.41%, and 14.32% for fog, glass_blur, motion_blur, impulse_noise,
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and brightness, respectively. Conversely, minor reductions or slight improve-
ments in accuracy are observed for affine transformations, with changes of -
3.06%, -0.94%, -0.68%, and 0.11% for translate, rotate, scale, and shear, respec-
tively. These results highlight that the improvements are substantially more
significant and robust, enhancing the baseline model’s performance under severe
levels of corruption.

Table 3. Classification accuracy (%) of the baseline and Hopfield-integrated models
on different types of corruptions.

Corruption BaselineHopfield-integrated

identity (no corruption) 99.04 98.87
brightness 82.66 96.98
canny_edges 77.22 77.34
dotted_line 98.19 98.01
fog 14.35 97.00
glass_blur 39.66 89.79
impulse_noise 77.49 95.90
motion_blur 47.40 90.82
rotate 89.89 88.95
scale 89.10 88.42
shear 95.45 95.56
shot_noise 96.40 97.71
spatter 97.78 97.96
stripe 95.40 95.40
translate 47.42 44.36
zigzag 90.40 92.26
Average Corruption Accuracy75.92 89.76

Our integration algorithm makes the final decision based on both the cor-
rupted input and the input provided by the HopfieldPooling layer. We investi-
gated how often the HopfieldPooling layer was used for each corruption and how
it affected accuracy. The results are shown in Table 4. The Pearson correlation
coefficient was found to be r = 0.637 with a p-value of 0.008. The coefficient
suggests a moderate positive correlation between the usage of the HopfieldPool-
ing layer and accuracy improvement. The p-value is well below the commonly
accepted significance threshold of 0.05, indicating that this correlation is statis-
tically significant. This suggests that higher usage of the HopfieldPooling layer
is associated with greater improvements in accuracy.

Table 4 also illustrates that the most significant improvements are obtained
by utilizing the HopfieldPooling layer for almost all the decisions. For instance,
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in the case of fog and motion_blur, the proposed integration utilized the Hop-
fieldPooling layer for 99.94% and 99.43% of the decisions, respectively. Also, it
turns out that, even in the case of minor or no improvement in accuracy, as in
shot_noise or shear, the baseline model utilized the HopfieldPooling layer for its
final decisions. This behavior suggests that the Hopfield module also improves
the final probabilities, and hence, the model’s confidence in selecting the correct
class.

Table 4. HopfieldPooling usage and increase in accuracy for different corruptions.

Corruption HopfieldPooling Usage (%)Increase in Accuracy (%)

identity (no corruption)20.47 -0.17
brightness 99.84 14.32
canny_edges 0.65 0.12
dotted_line 36.68 -0.18
fog 99.94 82.65
glass_blur 97.69 50.13
impulse_noise 86.36 18.41
motion_blur 99.43 43.42
rotate 72.68 -0.94
scale 49.36 -0.68
shear 74.56 0.11
shot_noise 82.81 1.31
spatter 50.55 0.18
stripe 0.00 0.00
translate 39.15 -3.06
zigzag 33.15 1.86

Pearson Correlation (r) p-value
0.637 0.008

5.3 Ablation Study

To assess the potential of achieving similar results by integrating a differ-
ent pre-trained denoising model, we replaced the HopfieldPooling layer with
a stacked Convolutional Denoising Autoencoder (CDAE) [11,24]. This ablation
study is vital for determining whether the improvements observed are specifically
attributed to the embedded memories of the Hopfield associative memory or if
similar results can be reproduced using alternative techniques, which ultimately
would lead to constructing a robust latent representation of input data.
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Convolutional Autoencoder Implementation: Tables 5 and 6 provide the
layers of the encoder and decoder parts of the convolutional autoencoder, respec-
tively. After each 2D convolution and transposed convolution operation, a ReLU
activation function is used, which is defined as ReLU(x) = max(0, x). Since the
original input values are between 0 and 1, the final output is passed through a
Sigmoid activation function, which reduces the output logits to values between 0
and 1, and which is defined as Sigmoid(x) = 1

1+e−x . We keep the experimental
setup constant (cf. Section 5.1).

Table 5. Architecture of the encoder module.

LayerOperation Number of KernelsKernel SizeStridePaddingOutput Shape

1 2D convolution 32 (3, 3) 1 1 (28, 28, 32)
2 2D max pooling - (2, 2) 2 0 (14, 14, 32)
3 2D convolution 16 (3, 3) 1 1 (14, 14, 16)
4 2D max pooling - (2, 2) 2 0 (7, 7, 16)
5 2D convolution 8 (3, 3) 1 1 (7, 7, 8)
6 2D max pooling - (2, 2) 2 0 (3, 3, 8)

Table 6. Architecture of the decoder module.

LayerOperation Number of KernelsKernel Size stridepaddingOutput Shape

1 2D transposed convolution8 (3, 3) 2 0 (7, 7, 8)
2 2D transposed convolution16 (2, 2) 2 0 (14, 14, 16)
3 2D transposed convolution32 (2, 2) 2 0 (28, 28, 32)
4 2D convolution 1 (3, 3) 1 1 (28, 28, 1)

Comparison on the Denoising Task: Fig. 1 illustrates a comparison of the
mean squared error (MSE) per epoch on the preliminary denoising task (cf.
Section 4.1) for the HopfieldPooling layer and CDAE. We observe that Hopfield-
Pooling exhibits significant superiority in terms of MSE. HopfieldPooling reaches
a training error of 0.016 at the second training epoch, while CDAE plateaus near
0.022 even after 20 training epochs.

Comparison on the Integration Algorithm: Fig. 2 illustrates the robust-
ness metrics across three conditions: baseline model, CDAE integration, and
HopfieldPooling integration. The metrics indicate that CDAE integration offers
minimal improvements. Furthermore, Pearson correlation analysis between the
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Fig. 1. Comparison of the mean squared error of different models per epoch during
training on the denoising task.

number of decisions based on CDAE outputs and corrupted accuracy improve-
ments yielded a correlation coefficient (r) of 0.427 with a p-value of 0.099. Since
the p-value exceeds the commonly accepted significance threshold of 0.05, this
correlation is not statistically significant. Consequently, we cannot assert a mean-
ingful linear relationship between decisions based on CDAE output and improve-
ments in corrupted accuracy.

Comparison of Corruption Removal: To investigate the challenges of CDAE
in enhancing robustness compared to the HopfieldPooling layer, we analyzed
the output of each pre-trained network when subjected to corrupted inputs. We
present the outputs for both types of corruption where HopfieldPooling exhibited
significant accuracy improvements (Fig. 3) and the affine transformations where
the metrics showed limited improvements (Fig. 4).

The illustrations demonstrate that CDAE not only fails to remove corrup-
tion but also disrupts the digit pattern entirely. In some cases, these disruptions
make classification extremely difficult, even for humans. This failure could be
due to the inability of the latent representation to generalize beyond Gaussian
noise corruptions. Yet, these results underscore the robustness of our proposed
integration algorithm to ineffective modules. As previously shown in Fig. 2, the
integration algorithm still caused slight improvements by adding CDAE, sug-
gesting that the algorithm mainly decides based on the best input.

Conversely, the HopfieldPooling layer effectively mitigates most corruption.
Notably, in the case of affine transformations shown in Fig. 4, the model success-
fully reconstructs the digits despite not being trained on any affine transforma-
tions. These results suggest that the integration algorithm’s inability to enhance
robustness in affine transformations may be attributed to the base model’s limi-
tations. Previous studies have also indicated that convolutional neural networks
(CNNs) are vulnerable to simple transformations such as translation and rota-
tion [4]. Nevertheless, the HopfieldPooling layer effectively generalizes to these
transformations and reconstructs the correct digit. Additionally, it is observed
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Fig. 2. Comparison of baseline, autoencoder-integrated, and Hopfield-integrated mod-
els on different robustness metrics during test time. Symbols ↓ and ↑ denote each
metric’s desired direction of change.

that the digits become bolder, which may explain why the module increases the
model’s confidence in many cases.

Fig. 3. The output of the HopfieldPooling layer and CDAE for corruptions on which
notable improvement in robustness metrics is achieved with HopfieldPooling.
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Fig. 4. The output of the HopfieldPooling layer and CDAE for corruptions made with
affine transformations.

6 Discussion and Future Directions

In this section, we situate our method within the current state-of-the-art research
on robustness to data corruption and outline potential future research oppor-
tunities by integrating these methods. Table 7 presents accuracy improve-
ments achieved by training state-of-the-art computer vision models with various
data augmentation techniques. Our method demonstrates superior performance
across these methods. Additionally, we propose the HopfieldPooling layer as a
versatile extension applicable to any baseline model. These augmentation tech-
niques can be leveraged in future work to enhance the robustness of baseline
models or to refine the training procedures for the Hopfield module. Further-
more, adversarial training methods could be employed in the training phase of
the HopfieldPooling layer to develop a more generalized module resilient to a
broader spectrum of corruptions [21].

Table 7. Comparison of accuracy improvements (%) using data augmentation methods
and our method.

Method Corrupted Accuracy Improvement ↑
Augment training data with 31 corruptions [13] 6.39
Tuned training with additive Gaussian and Speckle
noise [18]

5.5

Augment training data with α − stable noise [28] 8.85
Augment training data using multi-scale random
convolutions [27]

3.42

Hopfield integration method (ours) 13.84

Another promising direction is to incorporate our integration module into
test-time adaptation (TTA) methods. Our method has already outperformed
some of the leading TTA models, such as LAME [2]. For instance, Gong et al. [5]
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reported a classification error of 11.8 on the MNIST-C dataset using the LAME
method, whereas our method achieved a classification error of 10.24 without any
adaptation. Despite this, their TTA method (NOTE) reduced the classification
error to 7.1. We propose further investigations into applying different TTA meth-
ods to adapt the general HopfieldPooling layer during test time. The adapted
layer can then be used for more than one baseline model.

Finally, continuous-state modern Hopfield networks [16] have gained signif-
icant attention in recent years. Our method exemplifies their application, yet
numerous possibilities remain for future research. These include testing on color
images, comparing various architectures and energy functions, and exploring the
impact of hyperparameters on the Hopfield module.

7 Conclusion

Our study tackles the challenge of enhancing the reliability of computer vision
models, particularly under test-time corruption. We introduce a universal inte-
gration algorithm that leverages a pre-trained modern Hopfield network on a
clean dataset to significantly boost the performance of any baseline model. Our
approach demonstrates comparable results to methods relying on extensive data
augmentation or test-time adaptation, as evidenced by our experiments on the
MNIST-C dataset. Moreover, our method’s versatility allows for seamless inte-
gration with other techniques. The critical role of the Hopfield network was high-
lighted by our comparison with a convolutional denoising autoencoder, which
did not yield significant improvements, further validating the effectiveness of
our proposed approach.
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Abstract. Learning new categories with limited training samples
presents a significant challenge for conventional deep learning frame-
works. The few-shot learning (FSL) paradigm emerges as a potential
solution to address practical constraints in this challenge. The primary
difficulties in FSL are insufficient prior knowledge and ineffective align-
ment of clusters to their corresponding classification vectors in the pre-
trained feature space. While many FSL methods employ task-agnostic
instances and class-specific embedding functions, we argue that incorpo-
rating task-specific knowledge is crucial for overcoming FSL challenges.
To achieve adaptability in FSL, we propose an Adaptive Few-Shot Learn-
ing (A-FSL) framework which (1) aggregates task-specific knowledge and
adapts the classification vectors in the pretrained feature space and (2)
develops a query class correlation attention module to enhance cluster
formation. By considering task-specific information at multiple scales
of visual features, we can overcome the limitations of a fixed feature
space and refine it to adapt classification and query vectors effectively.
The A-FSL framework leads to well-formed clusters for novel classes
where classification vectors are drawn toward the clusters, even in the 1-
shot setting. Through comprehensive experimental evaluation, we show
that our method outperforms the current state-of-the-art on benchmark
datasets.

Keywords: Few-shot learning · Image Classification · Label
Generalization

1 Introduction

In recent years, deep neural networks (DNNs) [13,27,30] have made impressive
strides in many computer vision tasks such as object classification, scene clas-
sification, etc. Training a DNN requires much effort for data labeling and (typ-
ically) a gradient-based learning algorithm for inferring optimal model param-
eters based on the data. All these are generally expensive tasks in terms of
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manual or computational costs. Additionally, deep networks suffer from gener-
alization issues and can only recognize classes in which they have been trained.
In a real-world scenario, there is a possibility of encountering images of novel
classes that the trained network has never seen before. In such cases, the deep
network has to go through the computationally expensive training process again
on the novel classes with sufficient data (to avoid overfitting), which requires
extensive manual effort and previous label data to prevent catastrophic forget-
ting. This completely contrasts the cognitive abilities of humans to remember
and recognize objects even in situations with limited available data. Mimicking
such dynamic and efficient behavior of humans on an artificial system is a task
known as Few-Shot Learning (FSL), which is a complex research challenge that
offers numerous practical advantages.

FSL involves identifying new categories, even with just one or a few labeled
examples, by utilizing the visual patterns learned from the base/known cate-
gories. Recent years have witnessed a surge of research interest in various FSL
techniques [15,16,20,32], which aim to decrease the reliance on labeled data in
deep model training.

The FSL paradigm presents two main challenges: first, dealing with insuffi-
cient or noisy estimates due to limited labeled samples, and second, addressing
the improper alignment of class-specific samples with classification vectors. To
tackle the first challenge, various weight generation frameworks have emerged,
employing meta-learning-based training strategies to transfer knowledge from
similar base classes during training. Dynamic-FSL [6] is an early exploration
in this direction. Additionally, incorporating semantic information has been
explored as another avenue to enhance prior knowledge about a given class and
its samples. Works like AM3 [37], SEGA [39], and LPE-FSL [40] contribute to
this aspect. To circumvent the limited effectiveness of a fixed feature space dur-
ing the transfer to unseen classes, some works such as LEO [25], DeepEMD [41],
TADAM [19], AWGIM[7] adopt adaptive techniques to transform the pretrained
feature space into task-specific representations and have shown promising per-
formance in this direction.

A unified solution to address existing challenges involves integrating task-
specific knowledge and adapting the representations based on the available task-
specific relationship among samples. In certain scenarios where the classes within
a task have higher inter-class similarity than their base classes, current weight
generation frameworks often overlook the available task-specific prior informa-
tion. Since the success of few-shot learning hinges on increased prior information
availability, we propose Adaptive Few-Shot Learning (A-FSL), a constrained
task context aggregation and task-specific refinement strategy. This strategy
updates and aligns the classifier weights more closely to the test samples while
leveraging the readily available task information, both global and class-specific.
Following the findings of [23], we propose to refine the pretrained feature space
with class-specific spatial attention derived from task-specific context, which
assists in adapting classifier weights and the query samples’ representation and
aligning them closer. Since the refinement procedure (regardless of whether it
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is a support or a query instance) depends on task-specific contextual informa-
tion, consistency is maintained across classes in the refined feature space. Fur-
thermore, generating attention masks based on sample-specific correlation with
available task-specific class feature maps facilitates the highlighting of class-
relevant features in each sample, thereby localizing target objects and fostering
a more discriminative feature space. This approach proves particularly effective
in one-shot scenarios where the availability of labeled samples is limited, and
the estimates may be noisy. In this work, our contribution can be summarized
as follows:
– We explore the perspective of extracting task-specific contextual represen-

tation to adapt pretrained features consistently. By focusing on the unique
relationship between samples in a task, we can adaptively extract information
and enhance the discriminative power of the features. We propose to transfer
prior information from samples available in a task based on a task-specific
context.

– We propose a (Query) Class Correlation Attention Module - (Q)CCAM capa-
ble of highlighting class-relevant features for any given sample. Our method
combines weight-generating and metric learning concepts to create an effec-
tive few-shot classification system.

– Experiments show the effectiveness of the proposed method, especially in the
1-shot setting.

2 Related work

In this section, we provide a brief discussion of the relevant existing works.
The metric-learning based few-shot methods learn an embedding space where
the images have similar embedding if they belong to the same class while the
images belonging to different classes have different embeddings [5,18,36,41]. As
deep learning started gaining popularity, many neural-network-based metric-
learning techniques were proposed. Prototypical Networks [28] use the mean of
class support samples’ embeddings to generate the class prototypes. The nearest
neighbor search is used for predictions of novel classes. [32] proposed Matching
Networks, which utilize an attention mechanism to compare the test images from
novel classes with the support samples using context knowledge. [29] proposed a
Relation Network that uses a deep neural network to learn a transferable deep
metric.

Similar to metric-learning methods, the parameter generation methods also
use feature embeddings, but the way of using them is different. Parameter gen-
eration methods use these embeddings to predict the classification weights for
novel classes. To eliminate the norm issue, the cosine classifier is a common choice
for such methods [10,21]. [39] proposed a mechanism to enhance the use of prior
knowledge and use semantic knowledge along with visual features. [20] proposed
an architecture called KTN, which combined visual feature learning, inferring
knowledge, and predicting the classifier weights. [6,21,22] are other recent meth-
ods proposed for novel class weight generation. The parameter generation and
the metric-learning-based methods are sometimes termed lazy learning methods.
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Meta-learning-based methods are also a prominent genre in few-shot learning
techniques. In meta-learning-based methods, the training data (base classes) is
used to learn the meta-knowledge over a distribution of tasks, which teaches the
network how to adapt to novel classes [1,26]. There are various ways to distill
the knowledge learned from the known classes, like learning a class-agnostic
transformation using a regression network [34], using operations like temporal
convolution and attention to collect the information from the past experiences
[17], etc. With the rapid advancement in large vision-language models, prompt
learning [11,12] has emerged as an effective learning paradigm. However, we
exclude these works from comparison due to significant architectural, training,
and evaluation setup differences.

Our proposed method falls under metric learning, and following previous
works, we use the episodic strategy of training and testing. This enhances the
knowledge learned by the network by learning common and task-specific informa-
tion, in turn increasing the adaptability of the network to unseen novel classes.

3 Proposed Method

3.1 Problem Definition

In the few-shot learning paradigm, the standard configuration involves a base
dataset denoted as Dbase = {xi, yi},∀yi ∈ Yb, which is an extensive labeled
dataset, and xi represents the pretrained feature. This dataset is pivotal for
acquiring prior knowledge that can be transferred to novel labels Yn ∈ Dnovel.
Few-shot learning is broadly defined as Yb ∩ Y n = ∅, encompassing various vari-
ations. This study specifically addresses scenarios concerning mutually exclusive
label sets originating from the same domain. In the novel dataset Dnovel, each
label is limited to K labeled samples, constituting the support set for train-
ing. For a label set featuring N novel labels, the few-shot task is expressed as
an N -way K-shot problem. Additionally, semantic information in the form of
S = {sc}, where c ∈ Yb ∪ Yn, is available. The primary objective is to learn a
mapping f : X → Yn.

3.2 Task-Specific Classifier Weight Generator

This section presents our approach to generating classification weight vectors
for novel classes. We leverage three sources of information within the fixed pre-
trained feature space to construct a classification vector. Drawing inspiration
from prior work [6,39], we incorporate class-specific samples (scaled-mean pro-
totype), transfer knowledge from base classes (base prior transfer), and task-
specific out-of-class samples (proposed task-specific prior transfer). Additionally,
we refine the classifier weights and query vectors using our proposed CCAM(.)
and QCCAM(.) modules, respectively.



A-FSL 101

Fig. 1. (a) Framework architecture diagram for the proposed network. We propose
Modules 3, 4, and 5. Modules 1, 2 and g(.) are adopted from the baselines [6,39].
During stage 2 training, all the modules are trained except the backbone (Resnet-12).
(b) Schematic illustration of our proposed strategy. Prior transfer from the base classes
and task-specific inter-class relationships adapts the initial prototypes in the pretrained
space. However, it still suffers from loosely formed clusters. Adapting the pretrained
feature space with inter-class correlation and, most importantly, query-class correlation
assists in localizing target features and well-formed clusters.

Scaled Mean Prototype: As shown in Prototypical Network [28], the classifier
weight is equivalent to the mean of available support samples. Hence, we follow
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the ideology of most metric-based methods and get the initial visual prototype:

wavg
c =

1
|Dc

S |
|Dc

S |∑

i=1

xi,∀xi ∈ Dc
S (1)

where Dc
S is the support set for class c for any given task T and |Dc

S | = K.
Prior transfer from base classes Yb: Without any doubt, prototype genera-
tion in Equation 1 is highly unstable and noisy (especially in the 1-shot setting).
To utilize further prior knowledge that is transferable from the available base
class weights Wbase = {wc}|Yb|

c=1, we follow the work of Dynamic FSL [6] to trans-
fer visual prior from base classification weights based on the cosine similarity:

wprior
c =

1
|Dc

S |
∑

(xi,yi)∈Dc
S

∑

j∈Yb

Att(φqxi, kj) · wj (2)

where φq ∈ R
d×d is a learnable weight matrix that transforms any given feature

xi to a query vector and kj is a set of learnable key vectors corresponding
to base classification weights wj . Att(., .) is a cosine-based attention kernel that
computes the similarity of the transformed feature and base class keys to transfer
visual prior from base classes to novel class c. Combining 1 and 2, we model a
preliminary visual prototype as follows:

wprelim
c = λavg × wavg

c + λprior × wprior
c (3)

where λavg and λprior are learnable scalar coefficients that control the contribu-
tion of each of the components. Next, we incorporate the task-specific informa-
tion from available samples in the task and update the preliminary prototype.

Prior transfer from task-specific context: Aggregating inter-class relation-
ships within a task is a valuable strategy for improving classification perfor-
mance, especially when the similarity between task-specific classes surpasses
that of the base classes. In such scenarios, utilizing task-specific prior infor-
mation becomes crucial for refining classifier weights effectively. For example, in
species classification, where certain breeds of dogs share greater similarities than
others, incorporating inter-class relationships enhances the classifier’s ability to
differentiate between visually and semantically similar classes. To leverage such
knowledge, we provide the following learning strategy:

For every preliminary class prototype wprelim
c (Equation 3), we define an

information set Ic = {Zc, Z
′
c,W

prelim
Yn\c }, where Zc represents a set of m closest

out-of-class samples (from remaining (N − 1) labels ∈ Yn \ c), Z ′
c contains the

remaining ((N − 1) ∗ K − m) out-of-class samples in a N -way K-shot task and
W prelim

Yn\c represents the set of other preliminary class prototypes for task T . We
compute feature similarity between these sets for each preliminary prototype to
capture expressive correlations and aggregate them to create our task contex-
tual information based on inter-class relationships, which is formed using the
following protocol:
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– Calculate distance between preliminary class prototype wprelim
c and its cor-

responding m closest samples (∈ Zc) to create a m dimensional vector,

DZ = [dist(wprelim
c , Z1), . . . , dist(wprelim

c , Zm)] ∈ R
m

We leverage the correlation of m closest out-of-class samples with any pro-
totype wprelim

c to formulate task-specific context. Aggregating the individual
correlation of the closest negative samples and other task-specific relation-
ships (listed below) will assist in adapting the preliminary prototype with
discriminative information.

– Compute the average distance between preliminary class prototype wprelim
c

and remaining out-of-class samples belonging to Z ′
c,

DZ′ =
∑K∗(N−1)−m

i=1 dist(wprelim
c , Z ′

i)
K(N − 1) − m

∈ R
1

Farther samples have a higher probability of degrading the classifier quality.
Therefore, we consider the average similarity of such samples.

– The relationship between preliminary class prototypes provides context
regarding how much we can utilize out-of-class samples to update prototype
wprelim

c . Therefore, we consider the distance between preliminary class proto-
type wprelim

c and other preliminary prototypes (individually) to create a (N −
1) dimensional distance vector, DWprelim

Yn\c
= [dist(wprelim

c ,W prelim
Yn\c(j)

)],∀j ∈
Yn \ c.

where dist(., .) denotes cosine similarity and [.] is a concatenation operator.
Also, DWprelim

Yn\c
∈ R

N−1. We create our task context by concatenating these three
sources of task-specific information, which is denoted as follows:

Dtc
c = [DZ ,DZ′ ,DWprelim

Yn\c
] ∈ R

m+N (4)

To transfer task-specific visual prior from the samples in Zc, we use a similar net-
work as defined in Equation 2. The cosine similarity-based task-specific transfer
can be represented as:

wtc
c =

1
|Zc|

|Zc|∑

i=1

Att(φtcD
tc
c , ki) · Zi

c (5)

where φtc ∈ R
(m+N)×d is a learnable weight matrix that transforms any task

context Dtc
c for class c to a query vector and ki is a set of learnable key vectors

corresponding to samples in Zc. Att(., .) is a cosine-based attention kernel that
computes the similarity of the transformed feature and m out-of-class samples’
keys to transfer visual prior from task samples to novel class c. We model our
task-specific prototype in the pretrained feature space as the following:

wpt
c = λavg × wavg

c + λprior × wprior
c + λtc × wtc

c (6)

where λavg, λprior and λtc are learnable scalar coefficients.



104 R. Paul et al.

Attentive Class Feature map refinement: However, as noted in [9], the
effectiveness of weight-generation methods is restricted due to fixed pretrained
feature space. To address this limitation, we use the concept of visual feature
correlation to enhance discriminative features for support and query samples.
The feature correlation map is treated as a task-specific context at a different
scale of features. Adapting the pretrained features with correlation-based resid-
ual attention enhances consistency and the discriminative nature of support and
query features. This helps address the misalignment of classification weights and
query vectors. To adapt the pretrained feature space, we use intermediate fea-
ture maps (layer 2 of Resnet12) fi for a given sample in addition to the final
layer feature vector (denoted as xi) in episode T . Following the same ideology
of Equation 1, we create a class representative feature map favg

c , using interme-
diate feature maps of the support samples for class c. where favg

c ∈ R
M×L×P

and M,L,P represent the channel, height and width dimensions. To enhance the
discriminative features based on the relationship between classes in a task, we
introduce a class correlation attention module that generates a residual atten-
tion map based on the correlation map between a pair of intermediate feature
vectors (flattened).
The correlation corrj

c between class c and j,∀j ∈ N \ c, is computed as
corrj

c = f̃avgT

c · f̃avg
j . Here f̃avg

c andf̃avg
j are the L2-normalized versions of

favg
c , favg

j respectively and have a dimension of RM×L×P . Since for every class c,
the correlation is computed with other N \c classes, the class-specific correlation
map for task T has a dimension of (N − 1)×LP ×LP (concatenation along the
channel dimension), which is given by:

corrc = [corrj
c ],∀j ∈ Yn \ c (7)

where [.] is a concatenation operator.
We incorporate a convolutional attention module generator CCAM(.), that pro-
duces a residual attention map based on a correlation map input. This effectively
accentuates unique characteristics in intermediate feature maps of class or query
samples. The correlation of any class can be computed using Equation 7, which
is passed to CCAM(.) module that generates the residual attention map Ac. It
can be represented as follows:

Ac = CCAM(corrc|θccam) (8)
f ′

c = favg
c 	 (1 + Ac) (9)

where f ′
c is the attentive feature map for class c ∈ N for task T , favg

c repre-
sents the class representative feature map and θccam refers to the parameters of
CCAM module. To learn a feature embedding that can grasp these attentive
features, we employ a network that consists of 2 residual blocks and denote it as
the Feature Refinement Module (FRM). FRM expects an input of dimension
(M ×L×P ) and outputs an embedding vector of dimension d, the same as that
of the pretrained feature space:

wtsnr
c = FRM(f ′

c|θfrm) (10)
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where wtsnr
c and f ′

c represent the task-specific novel representation and the atten-
tive feature map for class c, respectively. θfrm are the learnable parameters of the
FRM(.) module. We propose to use the following combination of embeddings
to model our final classification vector:

wfinal
c = (λavg × wavg

c + λprior × wprior
c +

λtc × wtc
c + λtsnr × wtsnr

c ) 	 g(sc) (11)

where g(.) represents the semantic attention generator we have adopted from [39].
Our final embedding space is a combination of the pretrained feature space and
the task-specific representation space that we learn through attentive features.
The classifier vectors are further enhanced with visual attention from semantic
embeddings (GloVe embeddings of class names in this case).

3.3 Task-Specific Refined Query Embedding

To adapt the query features along with their corresponding classification weight
vectors in the refined embedding space, we follow a similar process of refinement
for the query samples as well. For every query sample xq

i , we also retrieve its
intermediate feature maps fq

i ∈ R
M×L×P . We follow the same ideology of class

feature correlation and compute each query sample’s correlation with N available
classes in the task:

corrj
i = f̃qT

i · f̃avg
j ,∀j ∈ Yn,∀fq

i ∈ Dq (12)

corri = [corrj
i ],∀j ∈ Yn,∀fq

i ∈ Dq (13)

Attentive Query Feature map refinement: Unlike the class-specific cor-
relation map, the query-class correlation map has a dimension of N × LP × LP
since every query sample is compared with all the classes in the task. For query
attentive features, we use a similar network such as CCAM(.) without sharing
any parameters. We represent this query attention generator as QCCAM(.) that
expects an input of dimension N × LP × LP and generates an attention map of
dimension L × P , which is applied over the query feature map fq

i ∈ R
M×L×P .

The process of query refinement is as follows:

Aq
i = QCCAM(corri|θqccam) (14)

f ′q
i = fq

i 	 (1 + Aq
i ) (15)

x′q
i = FRM(f ′q

i |θfrm) (16)

where θqccam, θfrm represent the trainable parameters of the query attention
generator module QCCAM(.) and the proposed feature refinement module
(FRM(.)). Aq

i denotes the residual attention that is applied over the interme-
diate feature map fq

i to retrieve attentive feature maps f ′q
i . x′q

i represents the
attentive embedding in d-dimensional feature space. We model the final refined
query embedding as follows:

xtsnr−q
i = xq

i + λq × x′q
i (17)
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where λq is a learnable scalar coefficient for the refined embedding. Due to lack
of space, we have included the architecture of (Q)CCAM in the Supplementary
(Figure 1).

The loss function used to train is a combination of normalized temperature
scaled cross-entropy and orthogonal loss between the classifier weights:

Ltotal = − 1
|Dq|

|Dq|∑

i=1

log
expτ ·cos(xtsnr−q

i ,wfinal
ci

)

∑|Yn|
c=1 exp

τ ·cos(xtsnr−q
i ,wfinal

c )

+ λ ∗ (
∑

j∈Yn

(1 − wfinal
j wfinalT

j ) +
∑

j �=i

wfinal
j wfinalT

i ) (18)

3.4 Training Strategy

We follow the existing training strategy in two stages. For successful transfer
of prior information, the first stage of training consists of training the Fea-
ture Extractor on the base classes Dbase, which follows the standard training
paradigm for classification. After the first stage of training, the Feature Extrac-
tor is frozen and only used for extracting features (final and intermediate layers).
The second stage of training is carried out in an episodic paradigm of training
such as [39]. We train our proposed task-specific classifier weight generator,
task-specific query attention generator, feature refinement module, and seman-
tic attention generator (from [39]) during the second stage of training, in an
episodic manner similar to [6,39]. Both classification weight vectors and query
features are refined with our Feature Refinement Module and classified using
a cosine classifier. We also add an orthogonal regularization to the classifica-
tion vectors to increase inter-class margins. Further details are provided in the
Supplementary.

4 Experiments and Results

In this section, we evaluate our proposed method on four benchmark datasets
and analyze the effectiveness of it.

4.1 Datasets

We use four benchmark datasets for evaluation - miniImagenet [32], tieredIma-
genet [24], CIFAR-FS [2] and CUB [33]. Except for CUB, we use Glove embed-
dings of label names as the semantic information. For CUB, we use the visual
attributes provided by [33]. Further information on dataset splits, and image
resolutions are shared in the Supplementary material (Table 1).



A-FSL 107

4.2 Implementation Details

All experiments are conducted in PyTorch framework. The backbone of our
method, the Feature Extractor, is a ResNet-12 [8] architecture. The correlation-
based attention generator (CCAM/QCCAM) has been implemented as a three-
layer convolution network with Batch Normalization and ReLU applied after the
first convolutional layer, pooling layer after the second convolutional layer and
softmax operation after the third and the final convolutional layer. The Feature
Refinement Module has been implemented as two Residual Blocks with filters
{320, 640}. Further details on training hyperparameters and architecture are
provided in the Supplementary.

4.3 Comparison with benchmarks

Since we follow the inductive learning framework, we compare our method’s per-
formance against several popular and state-of-the-art inductive FSL frameworks.
We evaluate for 5-way 1-shot and 5-way 5-shot settings on all four benchmark
datasets. Our proposed method achieves the best performance for the 5-way
1-shot setting for all benchmark datasets (Table 1), demonstrating the signifi-
cance of task-specific adaptation of feature space. For the 5-way 5-shot setting,
our method has surpassed other baselines for CUB and CIFAR-FS datasets,
showcasing its ability for fine-grained classification. One of the primary reasons
for such behavior is the availability of shareable features across different classes.

Table 1. Performance comparison for 5W1S and 5W5S experiments. Our proposed
method (refined space) consistently outperforms other SoTAs in the 5W1S settings. *
methods’ results have been reproduced with our dataset settings. A-FSL (Pretrained
space) and (Refined space) are defined in section 4.4. The best is in bold.

Methods Backbone Task Specific
miniImagenet tieredImagenet CUB CIFAR-FS

5W1S 5W5S 5W1S 5W5S 5W1S 5W5S 5W1S 5W5S

ProtoNet [28] Conv-4 No 49.42±0.78 68.20±0.66 53.31±0.89 72.69±0.74 64.42±0.48 81.82±0.35 55.5±0.7 72.0±0.6
LEO [25] WRN-28-10 Yes 61.76±0.08 77.59±0.12 66.33±0.05 81.44±0.09 - - - -

SNAIL [17] Resnet-12 Yes 55.71±0.99 68.88±0.92 - - - - - -
TADAM [19] Resnet-12 Yes 58.50±0.30 76.70±0.30 - - - - - -

AM3 [37] Resnet-12 No 65.30±0.49 78.10±0.36 69.08±0.47 82.58±0.31 - - - -
AWGIM [7] WRN-28-10 Yes 63.12±0.08 78.40±0.11 67.69±0.11 82.82±0.13 - - - -
TriNet [3] Resnet-18 Yes 58.12±1.37 76.92±0.69 - - 69.61±0.46 84.10±0.35 - -

MetaOptNet [15] Resnet-12 No 62.64±0.61 78.63±0.46 65.99±0.72 81.56±0.53 - - 72.0±0.7 84.2±0.5
Dynamic-FSL [6] Resnet-12 No 62.81±0.27 78.97±0.18 68.55±0.31 83.95±0.21 - - - -

SEGA [39] Resnet-12 No 69.04±0.26 79.03±0.18 72.18±0.30 84.28±0.21 84.57±0.22 90.85±0.16 78.45±0.24 86.00±0.20
DeepEMD* [41] Resnet-12 No 65.91±0.82 79.28±0.20 69.84±0.32 84.06±0.23 70.71±0.30 86.13±0.19 - -
DeepBDC* [36] Resnet-12 No 60.76±0.28 78.25±0.20 63.03±0.31 81.57±0.22 65.45±0.29 85.01±0.19 - -

Distill [31] Resnet-12 No 64.82±0.60 82.14±0.43 71.52±0.69 86.03±0.49 - - 73.9±0.8 86.9±0.5
TPMN [35] Resnet-12 Yes 67.64±0.63 83.44±0.43 72.24±0.70 86.55±0.63 - - 75.5±0.9 87.2±0.6
DMF [38] Resnet-12 Yes 67.12±0.46 81.54±0.31 71.89±0.52 85.96±0.35 - - - -

LPE-FSL [40] Resnet-12 No 68.28±0.43 78.88±0.33 72.03±0.49 83.76±0.37 85.04±0.34 89.24±0.26 74.88±0.45 85.30±0.35
FGFL [4] Resnet-12 Yes 69.14±0.80 86.01±0.62 73.21±0.88 87.21±0.61 80.77±0.90 92.01±0.71 - -

A-FSL (Pretrained space) Resnet-12 Yes 69.19±0.23 79.89±0.19 72.17±0.29 83.98±0.21 86.29±0.21 91.23±0.16 78.21±0.25 87.20±0.20
A-FSL (Refined space) Resnet-12 Yes 70.47±0.23 82.57±0.17 73.84±0.29 84.50±0.21 87.22±0.2092.95±0.1578.82±0.2588.98±0.20
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Table 2. Performance evaluation for a
varying amount of task-specific informa-
tion transfer in 5W1S setting. m denotes
the out-of-class samples that some class c
can learn information from. Most of the
datasets in this table reflect significant
changes in performance with different val-
ues of m. The best is in bold.

Datasets Out-of-class Samples (m)
m = 1 m = 2 m = 3

miniImagenet 68.97 +/- 0.23 68.77 +/- 0.24 70.47 +/- 0.23
CUB 85.38 +/- 0.22 87.22 +/- 0.20 86.17 +/- 0.22
CIFAR-FS 77.89 +/- 0.25 78.13 +/- 0.25 78.82 +/- 0.25
tieredImagenet 72.76 +/- 0.29 73.14 +/- 0.29 73.84 +/- 0.29

Table 3. Ablation study of the effect of
intermediate features on the refinement
of feature space. Due to the presence of
greater spatial details in Layer 2 features,
all datasets consistently perform better
with Layer 2 features.

Datasets Intermediate Feature Layer of ResNet-12
Layer 2 Layer 3

miniImagenet 70.47 +/- 0.23 68.58 +/- 0.24
CUB 87.22 +/- 0.20 86.02 +/- 0.20
CIFAR-FS 78.82 +/- 0.29 78.16 +/- 0.25
tieredImagenet 73.84 +/- 0.29 73.39 +/- 0.29

4.4 Ablation Study

In this section, we analyze the effectiveness of every component of our proposed
method.

Refinement of Pretrained Feature Space In section 1, we claim that the
effectiveness of FSL methods is limited due to the fixed pretrained feature space.
To validate our claim, we conduct experiments for both 5W1S and 5W5S settings
for all datasets. To compare the results obtained when classification is performed
on the pretrained feature space versus the refined feature space, we use the
following two protocols to train and evaluate:

– Classification on pretrained feature space: The classification scores for class c
are computed using wpt

c as the classifier weights and xq
i as the query feature

vectors - scorec(x
q
i ) = τ · cos(xq

i , w
pt
c 	g(sc)). In Table 1, “A-FSL (Pretrained

space)" represents the results of this experiment.
– Classification on refined feature space: The classification scores for class c

are computed using wfinal
c as the classifier weights and xtsnr−q

i as the query
feature vectors - scorec(x

q
i ) = τ · cos(xtsnr−q

i , wfinal
c ). In Table 1, “A-FSL

(Refined space)" represents the results of this experiment.

From Table 1, we can observe that for the 5W1S setting, refinement of feature
space improves the performance consistently which supports our claim. Refine-
ment of feature space improves the performance of 5W1S setting by 1.28%,
0.93%, 0.61%, and 1.67% for miniImagenet, CUB, CIFAR-FS and tieredIma-
genet, respectively. Results for 5W5S improve by 2.68%, 0.52%, 1.72% and 1.78%
for miniImagenet, tieredImagenet, CUB, and CIFAR-FS, respectively.

Learning from Out-of-Class Samples To evaluate the effect of transferring
information from out-of-class instances, we conduct experiments with varying
values of out-of-class samples (m) that share information and update prototypes
for some class c. For the 5W1S setting, we evaluate performance against m =
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{1, 2, 3} (Table 2). As expected, there are significant changes in performance
when the value of m changes for any given dataset. For CUB, m = 2 proves to
be an optimal choice for improved performance. For all other datasets, m = 3 is
optimal for the best performance. Determining the best value for m in a dataset
appears to be a heuristic search, as even fine-grained datasets like CUB and
CIFAR-FS do not exhibit a consistent pattern. This variation may be due to
differences in image resolution affecting the pretrained feature representation.

Effect of Intermediate Feature Maps In section 3.2 and 3.3, we propose a
correlation-based attention generator that assists in activating spatial features
of the target object in an image when pretrained features lack certain discrim-
inative features. To analyze the role played by different levels of intermediate
features, we conduct experiments with intermediate layers from Residual Blocks
2 and 3 from Resnet-12 [8] and compare the performance for the 5W1S setting
for all datasets. Results from Table 3 indicate that Layer 2 features are more
successful at improving the feature space for classification. Due to the lack of
space, we included the feature map visualization in the Supplementary section.
Figure 3, 4, and 5 of Supplementary provide an explainable visualization of the
process of attentive feature refinement of Layer 2 features for a test episode of
the CUB dataset. Layer 2 features are more informative than Layer 3 due to
their larger resolution. The presence of additional information helps to create
localized attention over the intermediate features and refine the feature space to
a generalizable space.

4.5 Visualization

We provide MDS [14] visualizations of the feature space learned by our baseline
and proposed method. Figure 2 (a) represents the query, support, and classifier
weights when only pretrained features are used to train and evaluate. Figure
2 (b) represents the feature embeddings in the refined feature space, which is
obtained using Equations 11 and 17 for classification. Quantitatively, we have
higher accuracy for feature space in Figure 2(b) as compared to the pretrained
feature space in Figure 2(a). Visually, classifier weights are pulled toward the
query samples’ clusters for their corresponding classes and contribute to fur-
ther alignment. Figures 3, 4, and 5 of Supplementary reflect how the attention
generated by our proposed modules CCAM(.) and QCCAM(.) can highlight
the class distinctive features with low activation in the original feature map.
For intermediate features lacking in details (ex, "Ruby Throated Hummingbird"
support sample in Figure 3, Supplementary), our attention module can recover
class-specific details due to its residual nature. A similar pattern is also observed
for the query sample of the same class.

5 Complexity Analysis

The primary cost of our method is in the proposed QCCAM(.)/CCAM(.) mod-
ule (please refer to the Supplementary for details). If the dimension of given
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Fig. 2. Classification feature space comparison for CUB 5W1S. (a) Pretrained feature
space from SEGA [39] for testing episode 3250 (b) Refined feature space from our
proposed method for the same testing episode. The arrows are directed from the support
sample to the classifier vectors.

feature maps is M × L × P , the time complexity is O(L2P 2M), and the space
complexity is O(LPM). In our method, we use Layer 2 intermediate features
for all the datasets (160 × 21 × 21 for miniImagenet, CUB, tieredImagenet and
160×16×16 for CIFAR-FS). Due to increased computation, second-stage train-
ing of the proposed method costs ∼ 2.2 hours (0.3 second/training episode) on
an NVIDIA Tesla V100 GPU for a miniImagenet 5-way 1-shot experiment.

6 Limitations

To address the high computation cost, we compute the correlation of query
feature maps with averaged feature maps of support samples, which limits the
effectiveness of our method to some extent. For the 5W1S setting, the complexity
does not change. However, for 5W5S (or any multi-shot setting), the complexity
increases exponentially if the correlation between query and individual support
samples is computed. We plan to address this limitation in our future work
by creating part-based localization using stronger task-specific/semantic-specific
representations than correlation maps. Using part-based localization will assist in
reducing the complexity as well as focusing on class-specific features when guided
by semantic information. In our future work, we plan to adapt large vision and
language models such as CLIP and GPT to improve feature representation and
incorporate further generalization.
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7 Conclusion

Our work aims to improve the performance of few-shot learning by creating
meaningful task context representations and aggregating task-specific informa-
tion. We claim and provide evidence that the refinement of pretrained feature
space with attentive class-specific features is beneficial for aligning label clusters.
Experimental results of the proposed spatial feature correlation-based attention
generator demonstrate its ability to highlight class-specific details from task-
specific spatial correlation and improve the pretrained feature space. We have
also observed that this spatial feature correlation-based refinement can be trans-
ferred and generalized well to novel classes. In our future work, we plan to inves-
tigate the impact of powerful task contextual representations on few-shot learn-
ing problems, combined with the generalization power of recent vision language
models such as CLIP and DINO.
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Abstract. Existing cross-modal hashing methods have made progress
in enhancing retrieval capabilities and reducing model size, but they
struggle to balance retrieval performance across different channels, lead-
ing to increased robustness.These methods often show low integration of
multi-channel semantic information and fail to address image-text het-
erogeneity balance, focusing solely on enhancing retrieval accuracy, which
can lead to high model robustness issues. We propose the Joint Modal
Heterogeneous Balance Hashing for Unsupervised Cross-Modal Retrieval
(JMBH) to address this. We utilise the large model CLIP to pro-
cess raw data, facilitating multi-channel semantic integration. We then
design multi-channel fusion modalities to explore co-occurrence informa-
tion across channels and develop intra- and inter-channel constraints to
mine this information. Extensive experiments on three datasets validate
JMBH’s effectiveness in balancing image-text heterogeneity and reducing
robustness.

Keywords: Cross-Modal Hashing · Multi-Channel Semantic
Integration · Balancing Image-Text Heterogeneity.

1 Introduction

The accelerated evolution of internet paradigms has increased the speed of infor-
mation iteration, resulting in a massive influx of data. Concurrently, the forms
of data have become diverse, including video, audio, text, images, and links.
Consequently, the challenge of processing this vast amount of data stably and
efficiently has garnered widespread research interest. In this context, low-cost
storage and high computational efficiency have emerged as the preferred solu-
tions in the market.

Hash encoding[28][9][16] has emerged as an effective method for addressing
this issue. It maps instances of different modalities to Hamming space and utilises
Hamming distance for computation, thereby significantly enhancing query speed
and reducing storage requirements. Specifically, hash encoding methods com-
press high-dimensional data into low-dimensional binary codes, allowing for
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quick matching of similar data during retrieval and substantial storage sav-
ings. This technique is particularly suitable for handling large-scale, multimodal
datasets[14], enabling efficient cross-modal retrieval while maintaining accuracy.

As data volumes grow and multimodal data[15] becomes more diverse, the
advantages of hash encoding in processing and retrieving big data are increas-
ingly apparent. Hash encoding enhances retrieval speed and reduces storage
costs, making it a preferred tool for researchers in the era of big data. Research-
ing and optimising hash encoding to better handle complex, diverse data and
large volumes is a key direction in information processing. Continuous innova-
tion and improvement of hash algorithms can further enhance data processing
and retrieval efficiency and accuracy, providing higher-quality technical support
for various applications[6].

Fig. 1. The precision of image retrieval based on text is significantly higher than that
of text retrieval based on images, leading to heterogeneity between images and text.

In retrieval, hash encoding is widely used due to its efficiency and low stor-
age requirements. However, most researchers focus on improving retrieval per-
formance, aiming for accuracy and lightweight solutions, often neglecting the
balance of retrieval capabilities. For instance, a search engine that can retrieve
text through images but not images through text is of limited practicality. There-
fore, ensuring generality while maintaining high accuracy also holds significant
research value. As shown in Figure 1, image retrieval has high precision in text,
but text retrieval in images has low precision. To this end, our research focuses on
balancing retrieval capabilities across different modalities while ensuring retrieval
performance, ensuring that the model possesses robust cross-modal retrieval
capabilities and reducing system robustness issues. Specifically, we explore how
to effectively integrate and utilize modality-specific and modality-shared infor-
mation in cross-modal retrieval to achieve broader application scenarios. For
instance, by enhancing the features of image and text data, the system can
better capture co-occurrence information. We design modality processing meth-
ods to balance cross-modal retrieval capabilities. This not only improves the
practicality and flexibility of the system but also accommodates more diverse
real-world application needs. Through this research, we aim to provide a more
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comprehensive and balanced solution in the field of retrieval, bringing break-
throughs to cross-modal retrieval. In summary, the main contributions of this
paper are as follows:

1. Utilizing pre-trained large models to process raw data features, obtaining
high-quality image and text features.

2. Designing numerous image-text fusion modalities to uncover co-occurrence
information across different channels.Developing intra-channel and inter-
channel constraints to mine co-occurrence information.

3. We conducted comprehensive experiments on three widely used image and
text retrieval datasets, validating that JMBH significantly balances modal
heterogeneity while enhancing retrieval performance.

2 Related work

2.1 Deep cross-modal hashing

Supervised hashing methods partition data using labels to enhance retrieval per-
formance. For example, Relaxed Energy Preserving Hashing for Image Retrieval
(REPH)[14] proposes an energy preservation strategy that retains the orig-
inal data’s energy in the transformed space, thereby mitigating the energy
loss during hash projection. Self-Supervised Multi-Modal Knowledge Graph
Contrastive Hashing for Cross-Modal Search (CMGCH)[3] constructs a multi-
modal knowledge graph, representing implicit multi-modal knowledge relation-
ships between images and text as inter-modal and intra-modal semantic associ-
ations. Weakly-Supervised Enhanced Semantic-Aware Hashing for Cross-Modal
Retrieval (WASH)[3] jointly decomposes low-rank semantic factors and multi-
modal features into a common subspace to reduce the heterogeneity gap, thereby
enhancing the semantic awareness of shared representations.

Compared to supervised methods, unsupervised methods do not require
labels to obtain information. They partition similarity based on the intrin-
sic semantic relationships within the data, offering significant advantages in
terms of cost and application scenarios. Unsupervised Dual Hashing Coding
on Semantic Tagging and Sample Content for Cross-modal Retrieval (UDC)[1]
jointly learns dual hash codes for semantic tagging and sample content by
decomposing the feature matching potential. By preserving consistent seman-
tic information and cross-modal correlations, it bridges both the semantic and
heterogeneous gaps between different modalities. Dual Self-Paced Cross-Modal
Hashing (DSCMH)[13] mimics human cognitive learning by learning hash codes
from “easy" to “difficult" at the instance and feature levels, thereby mitigat-
ing the adverse effects of noise or outliers. Scalable Unsupervised Hashing via
Exploiting Robust Cross-modal Consistency (SUH)[6] discretely learns hash
codes by exploiting robust consistency from latent semantic information and fea-
ture embeddings to avoid cumulative quantization loss. Multi-Relational Deep
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Hashing for Cross-Modal Search (MRDH)[4] integrates comprehensive modelling
of similarity relationships between different modal data to effectively bridge
modality gaps.

2.2 Retrieval Based on Pre-trained Models

CLIP developed by OpenAI, is a large pre-trained model designed for contrastive
learning using a vast amount of image-text pairs. It employs a unified model to
handle both images and text, enabling understanding and generation of mul-
timodal content related to vision and language. Trained on a dataset contain-
ing 400 million image-text pairs, CLIP[20][22][7] demonstrates strong zero-shot
learning capabilities, allowing direct application to tasks such as image clas-
sification, image search, and text generation without specific fine-tuning. This
positions CLIP as a significant innovation in the field of multimodal learning,
greatly enhancing the fusion and understanding of visual and language signals.

3 Proposed method

We propose an unsupervised method that balances the heterogeneity between
images and text, controlling the disparity in cross-modal retrieval capabilities
within a minimal range without relying on labels to enhance retrieval perfor-
mance. An overview is illustrated in Figure 2.

Fig. 2. Model Overview Diagram for Joint Modal Heterogeneous Balance Hashing for
Unsupervised Cross-Modal Retrieval (JMBH).
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3.1 Deep Feature Enhancement

Linear similarity matrix generation is achieved by integrating image and text
information to form a matrix containing semantic information from both modal-
ities. Specifically, we utilize the pre-trained model CLIP[29] to extract image fea-
tures at multiple levels, including image classification, image-to-text generation,
image retrieval, and zero-shot learning. This approach enables comprehensive
semantic exploration from various perspectives and contextual links, maximis-
ing the model’s capability to enhance understanding and correlations between
images and text. We use fI to denote the image features extracted by CLIP.

In common unsupervised methods, the similarity matrix for text modality is
typically computed using cosine similarity. However, this approach often neglects
a significant amount of textual semantic information, thereby weakening the
model’s performance in image retrieval based on text. Therefore, we utilize the
CLIP model to convert words from the vocabulary into word embeddings. We
obtained matrix C = {{ci}vi=1} ∈ Rd×v, d represents the dimensionality of each
word embedding. We take the cosine similarity values between ci and cj greater
than zero as our associated similarity rij .

3.2 Joint Modality Collaborative Construction

Compared to supervised methods, unsupervised methods establish correlations
through features without requiring label information, which enhances adapt-
ability in retrieval but also introduces noise. Therefore, in this section, we aim
to maximize the exploration of shared semantics in data by leveraging a large
amount of joint information from two modalities, enhancing the association of
relevant instances and weakening that of irrelevant instances. Specifically, we
first construct a semantic matrix using features extracted from both modalities,
including new features from text. The expression is as follows:

S1 = λ1SII + (1 − λ1)STT (1)

SIIandSTT are the semantic matrices generated from image and text features,
respectively.

Next, we also prepare for fusion by generating semantic matrices correspond-
ing to the reconstructed features, maximizing the exploration of semantic infor-
mation in the features that couldn’t be uncovered through a single modality
alone. Additionally, from another perspective — specifically, a non-linear per-
spective — we enhance the relationships between pairs of similarities. Through
extensive experimentation, this plays a crucial role in balancing the retrieval
capabilities of both modalities. The expression is as follows:

S2 =
2

1 + e−S1
− 1 + I (2)

1represents an all-one matrix, and I denotes the identity matrix. Through
element-wise activation functions, we constrain inputs around 0 and 1, which
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positively influences the determination of instance pairs. Finally, we integrate
the two matrices organically. The expression is as follows:

S = λ2S1 + (1 − λ2)S2 (3)

3.3 Similarity Weighted Collaborative Graph

Based on our experiments, we found cases where scattered instance pairs exhibit
fuzzy or even incorrect judgments. Therefore, we decided to preprocess the
semantic matrices of the two modalities, correcting instance pairs with ambigu-
ous or erroneous judgments to further enhance the relevance of the semantic
matrix.

Influenced by JDSH[5], we discovered that using similarity values from the
semantic matrices of both modalities provides a clearer distinction for edge
cases. Thus, we adopt this approach to process the matrices from this per-
spective. Specifically, we first follow the idea of JDSH, distinguishing the two
threshold endpoints by using the mean and standard deviation of Gaussian and
Laplace distributions. Represented as μL,σL,μR and σR.Simultaneously, we set
two thresholds sL = μL − ηLσL and sR = μR + ηLσR, Thus, we compare the
similarity value of each instance pair with the set thresholds. In summary, when
the similarity value of an instance pair is greater than sR, we determine them
to be similar. When the similarity value is less than sL, we determine them to
be dissimilar.

When determined to be similar, we use W+ to reduce the distance. When
determined to be dissimilar, we use W− to increase the distance. The expressions
are as follows:

W+ = 1 + α1e
sij−smax

W− = 1 + α2e
smin−sij (4)

sij is the similarity value of the instance pair, smax is the value set for reducing
the distance of similar instance pairs, and smin is the value set for increasing the
distance of dissimilar instance pairs.

Thus, we obtained high-quality semantic matrices for both modalities. How-
ever, experiments have shown that the model’s performance is suboptimal at
certain hash code lengths. Our analysis revealed that this is because the seman-
tic matrices of a single modality contain only semantic information from a single
similarity perspective. Consequently, some data do not perform well at specific
hash code lengths. Therefore, we propose processing the matrices further by
feeding them into a graph neural network for additional refinement.

Specifically, we leverage GCN to capture high-order semantic relationships
between instances, maximizing the exploration of semantic information over-
looked by linear structures from a graph perspective, and further enhancing
both modalities. Specifically, we encode the aforementioned features and input
their vector representations into the GCN. Each layer’s convolution process is
illustrated as follows:

Hk
(l) = σ(l)(D̃− 1

2 ÃD̃− 1
2 Hk

(l−1)W
k
(l) (5)
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Where W k
l is the lth layer of the k-modality convolutional filter,σ is the activa-

tion function, and H represents the corresponding output.
After processing both modalities and extensively combining them, we have

improved retrieval performance and achieved significant effectiveness in balanc-
ing mutual retrieval between modalities.

3.4 Hash Learning

After the features of two modalities undergo similarity-weighted collaborative
graph construction, they are jointly processed. This approach enables the explo-
ration of latent higher-order semantics between instances and promotes a bal-
anced retrieval capability between images and text, stabilizing mutual retrieval
within a narrow range.

Then, by jointly combining two vectors to generate the corresponding seman-
tic matrix and , compared to the initial semantic matrix, it includes more diverse
interactive semantics from different perspectives. Where we constrain the joint
encoding reconstruction loss to achieve this. The expression is as follows:

LJER =
∥
∥SJ − H(f I

J , f I
J )

∥
∥
2

F
+

∥
∥SJ − H(fT

J , fT
J )

∥
∥
2

F
+

∥
∥SJ − H(f I

J , fT
J )

∥
∥
2

F
(6)

H(∗, ∗) denotes cosine similarity calculation between vectors.
In designing constraints, we aim to leverage the co-occurrence information

implied by both modalities. We connect the features generated by the autoen-
coder and the similarity-weighted collaborative graph into a new feature. This
preserves strong consistency within channels while simultaneously incorporating
original semantics from another perspective after feature extraction. Therefore,
we introduce the Joint Preservation Reconstruction Loss to constrain this:

LJPR =
∥
∥Γ (H(f I

J , fT
J )) − 1.5E

∥
∥
2

F
(7)

Γ denotes the matrix formed by the diagonal elements of a matrix, and E rep-
resents the identity matrix.

By extensively integrating features from image and text modalities and
exploring their latent semantics, we handle single-modality processing and cross-
channel interactions. This minimizes modal heterogeneity. Our experiments show
this approach balances inter-modal heterogeneity and reduces robustness. Addi-
tionally, we explore semantics from the untreated semantic matrix and combine
the two pieces of information. We designed the Original Channel Encoding Loss
to constrain this:

LOCE = ‖S − H(fI , fI)‖2F + ‖S − H(fT , fT )‖2F + ‖S − H(fJ , fJ )‖2F (8)

We aggregate all losses into a unified learning framework, significantly enhancing
efficiency. Therefore, our final objective function is as follows:

L = LJER + γ2LJPR + LOCE (9)

γ2 is the balancing factor used to balance the various components of the loss.
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4 Experiments

4.1 Evaluation datasets

MIRFlickr-25K: The dataset includes 25,000 pairs of image instances, of which
we select 20,015 pairs with over 20 tags. For text, we use 1386-dimensional Bag-
of-Words (BOW) vectors. From this dataset, 2000 instances are used for testing,
while the remaining serve as the retrieval set. Additionally, 5000 instances are
sampled from the retrieval set for training.

NUS-WIDE: The dataset comprises 269,648 images across 81 classes. We
focus on 186,577 image instances from 10 classes, with 2000 pairs designated as
the query set and the rest as the retrieval set. We select 5000 instances from the
retrieval set for training. Text features are represented using 1000-dimensional
Bag-of-Words (BOW).

MS COCO: The dataset includes 123,287 pairs of image instances, parti-
tioned similarly to the other datasets. Text features are represented using a
2000-dimensional Bag-of-Words (BOW).

4.2 Evaluation criterion

We use Mean Average Precision (MAP) for analysis and comparison in our exper-
iments. For MAP, if an image and text data point share one or more common
labels, we consider them similar; otherwise, they are considered dissimilar.

4.3 Results Analysis

Fig. 3. (a), (b), and (c) represent the top-N precision curves for image retrieval with
text queries (I → T) on the MIRFLICKR-25K, NUS-WIDE, and MS COCO datasets,
respectively. Similarly, (d), (e), and (f) correspond to the top-N precision curves for
text retrieval with image queries (T → I) on these three datasets.
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Table 1. The mAP@50 performances of MIRFlickr-25K and NUS-WIDE datasets at
various hashing code lengths.

TaskMethod MIRFLickr-25K NUS-WIDE
16 bit 32 bit 64 bit 16 bit 32 bit 64 bit

I2T DJSRH[12] 0.812 0.841 0.865 0.721 0.776 0.794
HNH[26] 0.856 0.885 0.895 0.586 0.802 0.818
JDSH[5] 0.823 0.852 0.888 0.738 0.786 0.831
DSAH[21] 0.869 0.878 0.892 0.773 0.802 0.816
DGCPN[23] 0.851 0.869 0.884 0.785 0.815 0.821
AGCH[25] 0.865 0.883 0.897 0.807 0.832 0.833
DUCH[8] 0.848 0.866 0.873 0.754 0.778 0.814
DAEH[10] 0.812 0.838 0.847 0.763 0.791 0.802
JMBH 0.917 0.919 0.933 0.835 0.833 0.836

T2I DJSRH[12] 0.785 0.827 0.837 0.714 0.752 0.766
HNH[26] 0.833 0.856 0.865 0.436 0.779 0.795
JDSH[5] 0.828 0.869 0.876 0.724 0.784 0.793
DSAH[21] 0.841 0.857 0.884 0.775 0.796 0.807
DGCPN[23] 0.827 0.855 0.877 0.747 0.767 0.782
AGCH[25] 0.826 0.844 0.854 0.763 0.788 0.793
DUCH[8] 0.829 0.851 0.867 0.725 0.755 0.776
DAEH[10] 0.771 0.815 0.825 0.713 0.757 0.763
JMBH 0.908 0.912 0.928 0.828 0.831 0.834

Map Results Analysis: We conducted extensive experiments on three datasets
and plotted the top-N accuracy curves, as shown in Figure 3. Table 1 presents
the results of our method compared to other methods for the top 50 samples at
different code lengths on two public datasets. To further verify the effectiveness
of our method, we also conducted experiments with 5000 samples at different
code lengths across various datasets, as shown in Table 2. By examining the data
in these tables, we can easily observe that:

1. On three commonly used unsupervised datasets, even though we have done
extensive work to balance image-text heterogeneity, we still achieve significant
performance improvements over advanced unsupervised methods across dif-
ferent datasets. This improvement is particularly evident with lower sample
sizes and shorter code lengths. This is primarily because the performance of
large models in processing data decreases as the number of samples increases.
Consequently, as the sample size increases, the quality of the features we
obtain gradually decreases, leading to a corresponding decline in retrieval
capability. Therefore, with an increase in sample size and code length, the
improvement on each dataset diminishes.

2. By observing the data in the tables, unlike previous unsupervised methods, our
ability to retrieve images using text has significantly improved. In cases of low
sample size and short hash code length, our retrieval accuracy has increased by
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Table 2. The mAP@5000 performances of MIRFlickr-25K, MS COCO and NUS-WIDE
datasets at various hashing code lengths.

TaskMethod MIRFLickr-25K MS COCO NUS-WIDE
16 bit32 bit64 bit16 bit32 bit64 bit16 bit32 bit64 bit

I2T IMH[11] 0.681 0.659 0.643 0.737 0.687 0.681 0.607 0.623 0.619
LSSH[27] 0.675 0.677 0.682 0.813 0.832 0.838 0.678 0.706 0.703
STMH[17] 0.566 0.585 0.619 0.646 0.687 0.653 0.409 0.429 0.468
CMFH[2] 0.686 0.692 0.701 0.725 0.757 0.777 0.635 0.664 0.699
FSH[8] 0.659 0.678 0.684 0.748 0.772 0.794 0.578 0.596 0.631
RFDH[18] 0.636 0.648 0.658 0.691 0.711 0.749 0.551 0.572 0.608
DJSRH[12] 0.673 0.701 0.734 0.754 0.815 0.861 0.587 0.671 0.717
MGAH[24] 0.631 0.649 0.658 0.783 0.807 0.814 0.601 0.677 0.715
JIMRH[19] 0.611 0.622 0.633 0.661 0.706 0.732 0.493 0.516 0.551
JDSH[5] 0.725 0.731 0.752 0.692 0.758 0.888 0.678 0.724 0.743
DSAH[21] 0.639 0.766 0.779 0.851 0.881 0.901 0.724 0.753 0.772
DGCPN[23]0.759 0.781 0.779 0.883 0.902 0.902 0.715 0.745 0.756
HNH[26] 0.733 0.745 0.738 0.832 0.855 0.868 0.684 0.721 0.741
DUCH[8] 0.667 0.688 0.706 0.847 0.866 0.876 0.686 0.714 0.728
DAEH[10] 0.782 0.794 0.801 0.894 0.902 0.905 0.732 0.754 0.772
JMBH 0.799 0.813 0.817 0.912 0.922 0.925 0.789 0.795 0.803

T2I IMH[11] 0.681 0.667 0.654 0.768 0.717 0.715 0.626 0.644 0.638
LSSH[27] 0.648 0.653 0.662 0.708 0.745 0.779 0.567 0.587 0.624
STMH[17] 0.643 0.674 0.691 0.686 0.769 0.811 0.581 0.611 0.645
CMFH[2] 0.661 0.669 0.679 0.757 0.789 0.809 0.609 0.641 0.672
FSH[8] 0.682 0.697 0.702 0.769 0.791 0.809 0.609 0.649 0.665
RFDH[18] 0.625 0.646 0.654 0.701 0.717 0.741 0.551 0.568 0.592
DJSRH[12] 0.675 0.691 0.698 0.759 0.832 0.862 0.601 0.656 0.707
MGAH[24] 0.627 0.648 0.625 0.747 0.772 0.768 0.591 0.613 0.645
JIMRH[19] 0.647 0.647 0.657 0.728 0.767 0.779 0.584 0.586 0.612
JDSH[5] 0.699 0.719 0.724 0.758 0.829 0.895 0.674 0.715 0.711
DSAH[21] 0.646 0.754 0.759 0.854 0.886 0.890 0.668 0.716 0.748
DGCPN[23]0.727 0.751 0.757 0.881 0.897 0.899 0.702 0.723 0.742
HNH[26] 0.723 0.721 0.706 0.839 0.863 0.867 0.671 0.699 0.696
DUCH[8] 0.652 0.668 0.681 0.861 0.885 0.898 0.662 0.694 0.709
DAEH[10] 0.762 0.767 0.774 0.888 0.899 0.901 0.713 0.733 0.748
JMBH 0.802 0.812 0.827 0.913 0.929 0.931 0.771 0.784 0.801

more than 5 percentage points. This is mainly because, in processing text fea-
tures, we extensively integrate semantic information from different channels,
thereby further enhancing the accuracy within a single channel.
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3. Most unsupervised methods focus solely on improving retrieval performance
within different channels, neglecting the balance between channels’ hetero-
geneity, which further exacerbates the differences between channels. Even if
a single channel has high performance, it cannot maintain high performance
across all channels. Therefore, we have done extensive work to enhance con-
sistency between channels. Specifically, we integrated a significant amount
of cross-channel semantic co-occurrence information. By examining the three
tables, it is evident that the performance difference between our image and
text channels is minimal. Instead of pursuing extremely high performance in a
single channel, we aimed for balanced development across all channels, reduc-
ing robustness. This balanced approach holds substantial value for practical
applications.

4.4 Ablation Study

To test the performance of each component of our method, we designed three
variants as follows:

JMBH-1 The first variant removes deep feature enhancement, meaning it
does not use the CLIP large model for data processing; instead, it uses unpro-
cessed features. Observing Table 3, we can see a significant decline in the model’s
performance. This is primarily due to the large model’s powerful data process-
ing capabilities. Without this capability, the quality of the obtained features
significantly decreases.

JMBH-2 Removing the similarity-weighted collaborative graph, we directly
generate semantic matrices from features of both channels for loss calculation.
Observing Table 3, the retrieval performance of the model significantly decreases,
and the disparity in performance between different channels gradually increases.
This is because we enhanced from the perspective of instance similarity, correct-
ing misjudgments of instance pairs.

JMBH-3 Removing the joint modality, that is, excluding features from both
channels such as fJ and fG

J , we observe from the table that there is a significant
increase in retrieval performance disparity between different channels. This is
because losing the co-occurrence information from different modalities results in
a large disparity in retrieval capability, further exacerbating modality hetero-
geneity.

4.5 Parameter Sensitivity Analysis

In this experiment section, we provide a detailed analysis of two hyperparam-
eters in our method, which significantly impact the performance of our model.
We conducted experiments on the MIRFlickr-25K, NUS-WIDE, and MS COCO
datasets, selecting the top 50 samples for the experiments. As shown in Figure 4.

4.6 Visualization

In Figure 6, We validated our method on the MS COCO dataset. For intu-
itive visualization, we annotated the detected objects in the images. The red
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Table 3. Conducting ablation experiments on the three datasets with varying code
lengths, using mAP@5000 as the evaluation metric.

TaskMethod MIRFLickr-25K
16 bit32 bit64 bit128 bit

I2T JMBH-10.768 0.789 0.804 0.814
JMBH-20.784 0.798 0.805 0.789
JMBH-30.775 0.795 0.807 0.816
JMBH 0.799 0.813 0.817 0.833

T2I JMBH-10.759 0.785 0.795 0.808
JMBH-20.776 0.788 0.800 0.799
JMBH-30.759 0.772 0.778 0.789
JMBH 0.802 0.812 0.827 0.831

Fig. 4. Sensitivity analysis of α1 and α2 with different bit lengths for JMBH on
MIRFlickr-25K.

text represents the keywords for text-to-image retrieval. Figure 5 shows the loss
convergence of our model.
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Fig. 5. Loss convergence curves for JMBH.

Fig. 6. Visualization of image-text retrieval results on MS COCO.

5 Conclusion

This paper introduces a novel Joint Modal Heterogeneous Balance Hashing for
Unsupervised Cross-Modal Retrieval. Initially, the CLIP model processes raw
data to extract high-quality feature representations from both channels. These
encoded features are then decoded to enhance semantic information retrieval.
Additionally, the Similarity-Weighted Collaborative Graph strengthens similarity
matrices between image and text channels. Features from multiple channels are
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integrated, and this fused information is used to construct constraints. Extensive
experiments validate the efficacy of our approach in achieving balanced repre-
sentation across image and text domains.
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Abstract. The initial Transformer architecture which was introduced
for text, has been extended to image, speech and other domains. Mul-
timodal models which combine more than one kind of data, and vision-
language models in particular, have also seen increasing adoption. The
interpretability of these models is crucial due to their potential for sub-
tle errors and their diverse applications. Existing interpretability meth-
ods for Transformers primarily employ attention maps to explain vision-
language alignment. This overlooks the contribution from other parts of
the transformer block like Layer Normalization and Feed-Forward Net-
work (FFN) and can lead to incorrect image and text segment attribution
to the model’s decision. We propose an approach that mitigates this issue
by using the output of the transformer modules instead of attention maps
as the basis for deriving the interpretability vectors. We use Spectral
Graph Theory and propose three variants of our method, namely: DSMI
(Deep Spectral Method for Interpretability), DSMI + Grad (DSMI with
gradients) and DSMI + Grad + Attn (DSMI with gradients & attention
maps). Each version has its own advantages with varying performance
based on the class of models which are being analyzed. We show with
detailed experiments that our methods are superior to some of the exist-
ing interpretability techniques such as GradCAM and have comparable
interpretability to methods like LRP and other state-of-the-art methods
while being simpler to implement.

Keywords: Transformer · Interpretability · Spectral · Bimodal

1 Introduction

The demand for interpretable AI 1 has roots that date back to early symbolic AI
techniques like Bayesian networks and expert systems [23]. However, the emer-
gence of deep learning has significantly propelled this field of research due to the
1 We use interpretability and explainability interchangeably depending on the context
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Fig. 1. Relevance mask for “What is reflecting in the building’s windows?”

inherent complexity of these models, especially multimodal models. Transform-
ers are increasingly being used to tackle multimodal tasks involving reasoning,
such as Visual Question Answering [2] and Image-Text Matching. This is because
transformers have the ability to realize the relationships between different types
of information through mechanisms like self-attention and co-attention. These
models attempt to align the vision and language components in their latent
representations. However, these representations and their alignments are highly
entangled and therefore, difficult to interpret. In critical tasks like medical anal-
ysis, high speed locomotion, financial data analysis etc., interpreting this align-
ment can be crucial for understanding and debugging the model results.

Current bimodal models may be classified according to the 1) type of image
encoder and 2) variant of the co-attention mechanism used by these models
for fusion. For example, models like LXMERT [29] and VisualBERT [16] rely
on frozen object detectors like FasterRCNN [22] to retrieve image embeddings
but contain different co-attention mechanisms, i.e., Bidirectional Cross-Attention
and Merged Attention respectively, for aligning the vision and text embeddings.
Others, like METER [9] and ViLT [12], use patch-based features extracted from
ViTs [8] with Bidirectional Cross-Attention and Merged Attention, respectively.
All of these models use some pre-trained text encoder to obtain the corresponding
text embeddings e.g., BERT [7], RoBERTa [17], GPT [21] etc. Certain bimodal
models like ALBEF [15] use more advanced approaches to align the modalities
e.g., contrastive learning like in CLIP [20] and cross-attention based fusion to
strengthen the relationship between image and text information.

Unimodal models have a more established body of work regarding inter-
pretability and there are several methods which originated for explaining CNNs,
e.g. CAM, GradCAM, LRP [3,10,25] that were ported directly for interpret-
ing transformer-based unimodal and multimodal models. Transformer specific
methods like Rollout [1] attempt to analyze the Attention mechanism and these
are also applied to understanding multimodal models, with some adjustments to
account for the multimodal attention mechanisms. Interpretability methods like
GradCAM [25] and Rollout [1] often produce inaccurately localized explanations
for multimodal models and other methods like LRP [3,4] are computationally
intensive and quite complex to implement. There has been recent work [5,6] for
better post hoc interpretability of Transformer-based models and multimodal
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models in particular, by distinguishing the way self-attention layers and co-
attention layers are handled.

We attempt to continue in that direction and focus specifically on generating
visual explanations of both the image modality and the text modality in mul-
timodal Transformer based models. We utilize concepts from Spectral Graph
Theory [28] to delineate the salient features at specific blocks of the model. The
models on which we experiment, are trained on the VQA [2] task, though it can
be any vision-language task. Our method is model-agnostic to some extent and
capable of generating post-hoc local explanations catering to each image-text
pair provided for inference. The job of our interpretability module is to highlight
the regions of image and text that contribute to the model’s decision.

We make the following contributions in this paper:

1. We propose three different variants of our method based on Spectral Graph
Theory which can be adapted to specific multimodal Transformer architec-
tures

2. Our method is unsupervised in nature and it can generate class-specific and
class-agnostic explanations according to the variant used

3. We conduct detailed experiments on vision-language, bimodal Transformers
and determine the suitability of each variant of our method for specific Trans-
former models

4. Finally we also provide all the code of experiments for reproducibility at
Transformer-spectral-interpretability and METER-spectral-interpretability

The remainder of the paper is structured as follows. Section 2 explores some
of the related work and their shortcomings along with an overview of how we
arrived at our method. Section 3 discusses the core methodology, the algorithms
for our approach, and their significance. In Section 4, we showcase the applica-
tion of our method on two bimodal models with visual examples. In Section 5,
we compare our approach with existing methods using a quantitative evaluation
test for both the bimodal models considered for experimentation. We also dis-
cuss the limitations of our approach and see how our method adheres to basic
interpretability properties. Finally, Section 6 concludes the paper and proposes
potential future research directions.

2 Related Work

2.1 Interpretability Techniques

Most transformer based models are explained via raw attention maps. This app-
roach is often inaccurate and fails to capture the contributions from other com-
ponents of the transformer like the intermediate output comprising contributions
from FFN and Layer Normalization. There are intrinsically explainable mod-
els [27] stemming from sparse reconstruction and a special kind of ViT called
AbSViT. But intrinsically interpretable models are hard to train requiring a lot
of time and resources. One of the most famous class-specific methods is Grad-
CAM [25]. The drawback with this method is that it fails to localize accurately.

https://github.com/shiv2110/Transformer-spectral-interpretability
https://github.com/shiv2110/METER-spectral-interpretability
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Designed for CNNs where features are weighted by gradients, it does not trans-
late well to transformers. In transformers, instead of features, attention maps [30]
are weighed with their gradients yet the method falls short. Another well-known
explanation technique is LRP [3,4]. This method is class-agnostic by default, but
several class-specific versions were also introduced. The biggest drawback with this
method is that though it is post-hoc in nature, it is 1.5x slower than other meth-
ods which makes it sensitive to batch size during inference. Similar to our method,
Spectral Relevance Analysis (SpRAy) [13] leverages spectral theory on CNNs.
However, SpRAy focuses on global explanations, analyzing heatmaps across the
entire dataset to identify potentially misleading patterns. Although this provides
valuable insight into biases in training data, it can be cumbersome for individual
data points. Our approach prioritizes local explanations, offering a more efficient
way to understand how the model interprets specific inputs. While the current best
method by Hila Chefer et al. [5] achieves strong performance, it has limitations.
This class-specific method excels by leveraging all attention heads and layers, but
does not utilize the full transformer architecture, namely the last block’s Layer
Normalization and FFN. Furthermore, its relevance rules, designed for each atten-
tion type, hinder seamless integration across different models. The dependence on
the modality holding the Classification ([CLS]) token and the model’s architecture
limits its flexibility and raises confusion.

2.2 Spectral Approach

Recently, one line of research has emerged focusing on methods from Spectral
Graph Theory, which studies the spectral properties of the Adjacency Matrix or
Laplacian Matrix corresponding to the graph. Since the weights and features at
each layer are large matrices, their spectral analysis can reveal interesting insights
into their inner workings. Prior work harnessing Spectral Theory [13] focused on
global explanations of the entire dataset. Recently Melas-Kyriazi et al [19] pro-
posed a straightforward method for image segmentation and object localization
based on Spectral Graph Theory. Their method detects the salient image features
within the outputs of a Transformer using eigenvectors of the Laplacian matrix.
Melas-Kyriazi et al., demonstrates effective unsupervised object localization and
segmentation which is at par with state-of-the-art methods while focusing on a spe-
cific type of Transformer, namely ViT [8]. We take inspiration from their approach
and adapt it to explain the decisions of multimodal models in an unsupervised
manner. Our work differs from theirs however, in that we propose new methods
with the Spectral Graph Theory as a basis, and focus entirely on bimodal Trans-
formers. The details of our method are given in the next section.

3 Method

Bimodal Transformers like LXMERT [29], METER [9], use cross-attention or
fusion to align intermediate vision and language features. This alignment can
naturally be thought of as a bipartite graph, although the alignment is latent in
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the weight matrices and the features. We use the features of the cross-modality
blocks present in bimodal models, and discover the most salient features and their
alignment by leveraging the eigenvectors of the Laplacian Matrix. These fusion
blocks usually contain cross-attention layers, self-attention layers and FFN. To
put it in a formal manner, let the deep features of one modality, M from the
last fusion block be:

xm = φ(M) ∈ Rn×dh

where φ is the network, xm are the features of modality M , and n, dh are the num-
ber of tokens in the modality and hidden size respectively. The affinity matrix
of the features is then, Wfeat, where,

Wfeat = x · xT =

{
xxT [i, j] x[i, j] ≥ 0
0 otherwise

(1)

The Laplacian (L) of Wfeat is calculated as:

L = D − W , OR L = D−1/2(D − W )D−1/2 (2)

In Equation (2), the matrix D is the diagonal matrix where the diagonal elements
are sum of rows in Wfeat, i.e., D ∈ Rn×n, Dii =

∑
j Wij , and Dij = 0, ∀i �= j.

The segments of the image/text are the eigenvectors {y0, ...yn−1} = eigs(L) of
the Laplacian L = D−1/2(D−W )D−1/2 of the feature affinity matrix Wfeat. The
eigenvector associated with the second smallest eigenvalue, called the Fiedler
Eigenvector [26], captures the graph’s strongest connections. In image analysis,
this translates to pinpointing the most visually informative areas. In text anal-
ysis, it focuses on extracting the most significant words. Algorithm 1 computes
the Fiedler Eigenvector for a given feature Laplacian matrix with eigs being
responsible for solving (3),

Algorithm 1. DSMI
procedure get_relevancy(feats)

Wfeat ← feats · featsT

Wfeat [Wfeat < 0] ← 0
L ← D − Wfeat

eigenvalues, eigenvectors ← eigs(L)
return eigenvectors[1]

end procedure

LX = λDX (3)

Pure graph spectral method is class-agnostic in nature. Applied to inter-
pretability of bimodal models, this method solely examines the fusion module in
bimodal models. It does not shed light on the overall decision-making process.
This is where the role of gradients comes into picture to make DSMI class-
specific. The gradients of the attention maps are calculated w.r.t. the model
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output (an answer in case of VQA). We propose incorporating the gradients of
self-attention weights into the spectral approach to make it more robust. For
this purpose, we put forth a hybrid graph spectral interpretability technique in
which we take the product of the gradients of self-attention maps and Fiedler
Eigenvector for every block in the fusion module and sum them up as shown
in Algorithm 2. Algorithm 1 and Algorithm 2 are not transformer-specific. To
introduce transformer specificity, we propose Algorithm 3 where we weigh the
self-attention maps of each head with their gradients [6] and average across all
heads to obtain an aggregate attention map. We then multiply the aggregate
map by the Fiedler Eigenvector obtained in Algorithm 1 and accumulate contri-
butions from every block in the cross-modality encoder.

Algorithm 2. DSMI + Grad
procedure get_relevancy_dsm_grad(feats_list)

n_tokens ← feats_list[0].size(0)
grad_fev ← [0]n_tokens

for i, feats ∈ enumerate(feat_list) do
fev = GET_RELEVANCY(feats)
grad ← GET_GRAD_ATTN_PROBS(i)
grad_fev ← grad_fev + grad · fev

end for
return grad_fev

end procedure

Algorithm 3. DSMI+Grad+Attn
procedure get_relevancy_dsm_grad_cam(feats_list)

n_tokens ← feats_list[0].size(0) � Get the number of tokens in a modality
gradcam_fev ← [0]n_tokens � Initialise the resultant tensor
for i, feats ∈ enumerate(feat_list) do

fev = GET_RELEVANCY(feats)
grad ← GET_GRAD_ATTN_PROBS(i)
cam ← GET_ATTN_PROBS(i)
cam ← grad � cam � Calculate the hadamard product
gradcam_fev ← gradcam_fev + cam.mean() · fev

end for
return gradcam_fev

end procedure
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4 Experiments

Fig. 2. Comparison between DSMI and DSMI + Grad for LXMERT: DSMI + Grad
more accurately localizes the relevant regions in the images and the relevant words in
the questions when compared to DSMI; Answers (left to right): “rocks”, “skateboard”,
“yes”

For our experiments we focus on two primary models, each having a different kind
of image encoder and text encoder. We also compared the visualizations of two
of the spectral approaches for both models in Figures 2 and 3. The first model we
examine is LXMERT [29]. It consists of a frozen object detection model, Faster
RCNN [22] as the object relationship encoder and BERT [7] as the text encoder.
It has self-attention modules for both modalities and a cross-modality encoder
consisting of bidirectional cross-attention layers, self-attention layers and FFN.
For our spectral approaches, we use features from the cross-modality encoder
and gradients of self-attention weights of the same encoder. The second model
we examine is METER [9]. Unlike LXMERT, it consists of a ViT-B/16 [8] as
the image encoder and RoBERTa [17] as the text encoder. It consists of 6 blocks
each containing a self-attention layer, followed by a bidirectional cross-attention
layer and FFN. We consider the features of these blocks and the gradients of
self-attention maps of the same blocks for our methodology.

The gradient based graph spectral method shines when it comes to accuracy
of localization for both of the models. Especially if we consider Figure 3, in the
second column, we see how DSMI + Grad was able to accurately deduce where
the answer has been derived from in the image, i.e. the make of the laptop instead
of highlighting the whole laptop like in DSMI. Further visualizations comparing
our methods with the existing ones can be found in the Supplementary Material
(Figures 2 and 3). Overall for METER, we see that class-specific DSMI + Grad
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Fig. 3. Comparison between DSMI and DSMI + Grad for METER: DSMI + Grad is
less noisy and provides more accurate heatmaps than DSMI; Answers (left to right):
“bed”, “dell”, “5”

approach solved 3 key issues faced in DSMI: unclear heatmaps, noisy heatmaps,
localization of small regions in the images. Another advantage that the DSMI
+ Grad approach gives us is that it can be applied to models like CLIP [20] to
explain Image Text Matching, visualizations of which have been added to our
Supplementary Material (Figure 1). Since CLIP does not have a cross-modality
learning aspect, we observed that the standard DSMI approach would not pro-
duce optimal relevance scores. However, by incorporating gradients, we were able
to extract richer information from the combined image and text data. While not
achieving nearly optimal performance like in METER, our method demonstrates
promising results in generating text-guided heatmaps for images in CLIP.

Similar to [5] we used VQA 2.0 dataset to evaluate our methods. It contains
265016 images from the MS COCO dataset, 5.4 open-ended questions on average
per image and 10 answers per image-question pair. We performed perturbation
tests to evaluate the interpretability methods by randomly sampling 3303 image-
question pairs from the VQA 2.0 validation set. In positive perturbations, tokens
are removed from highest to lowest relevance. A steep decrease in performance
of the model is expected because important tokens were removed. In negative
perturbations, tokens are removed from lowest to highest relevance and accuracy
of the model drops very slowly because unimportant tokens are removed first.

5 Results and Discussion

DSMI + Grad + Attn and DSMI + Grad take the lead among the three variants
of our method in LXMERT and METER respectively, as shown in Tables 1, 2.
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Table 1. AUC for perturbations tests on LXMERT: Lower AUC for positive tests and
higher AUC for negative tests indicates better performance Best - Bold green; Second
best - Bold black; Third best - Underlined

Method Image
+ve

Image
-ve

Text
+ve

Text
-ve

Relevance Maps [5] 51.01 62.91 21.57 48.31
Transformer Attribution [6] 52.80 61.16 21.89 47.80
LRP [3,4] 52.83 60.82 24.14 44.51
Raw Attention 54.36 61.34 32.77 37.40
Grad-CAM [25] 57.97 59.59 34.50 37.56
Rollout [1] 57.15 58.26 38.71 31.47
DSMI 53.47 59.13 28.67 40.28
DSMI + Grad 53.77 62.28 24.78 44.80
DSMI + Grad + Attn 53.42 62.23 24.12 45.47

Fig. 4. Perturbation tests on LXMERT: Overall “Relevance maps” remains the leader
followed by Transformer attr. The three DSMI variants have a performance comparable
to LRP with DSMI + Grad surpassing Transformer attr. in -ve image perturbation test.
DSMI + Grad + Attn surpasses LRP in 3/4 tests.
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Table 2. AUC for perturbations tests on METER: Lower AUC for positive tests and
higher AUC for negative tests indicates better performance Best - Bold green; Second
best - Bold black; Third best - Underlined

Method Image
+ve

Image
-ve

Text
+ve

Text
-ve

Relevance Maps [5] 55.27 82.97 31.70 61.33
Transformer Attribution w/o LRP 55.26 82.96 31.72 61.29
Raw Attention 55.33 82.49 36.72 54.41
Grad-CAM [25] 70.95 73.52 49.21 49.83
Rollout [1] 59.96 82.17 44.32 49.93
DSMI 60.07 79.47 45.14 48.05
DSMI + Grad 54.45 82.93 34.75 57.64
DSMI + Grad + Attn 55.45 82.45 40.37 52.38

Fig. 5. Perturbation tests on METER: Overall “Relevance maps” remains the leader.
The AUC for DSMI + Grad in +ve image perturbation test surpasses that of the state-
of-the-art relevance maps approach. Transformer attr takes the second place with DSMI
+ Grad closely following.



Interpretable Visual Semantic Alignment via Spectral Attribution 139

5.1 Insights

The graph in Figure 4 shows that the accuracy of LXMERT significantly drops
to 39.79% when image information is removed, but plummets to 4.52% with-
out text tokens. This highlights the dependence of LXMERT on the unimodal
contributions of the text, similar to the findings in [18]. Even with no image
given, LXMERT retains some accuracy, suggesting the model leverages knowl-
edge available in the dataset like humans might, based on the knowledge from
the surroundings, to answer questions about unseen images. A similar pattern is
also observed in METER (Figure 5). The textual bias is perfectly captured by
both the bimodal models.

5.2 Limitations

Our approach excels when the model architecture uses bidirectional cross-
attention. This allows us to generate explanations for both visual and lan-
guage aspects. While CLIP lacks this module, we can still provide explanations
using a gradient-based spectral approach because of the availability of gradients
for both modalities. However, encoder-decoder architectures with unidirectional
cross-attention, such as BLIP [14] with its ITM task, limit explanations to one
modality (language in this case). The final image embeddings remain static after
retrieval, preventing gradients for the vision component, and thereby preventing
visual explanations. This is why we emphasize our method to be “fusion-specific”
rather than “model-specific”.

5.3 Fulfillment of LRP Properties

LRP [4] talks about three properties that a good interpretability technique
should satisfy. These properties themselves act as evaluation criteria to verify
the validity of the explanations produced by a method. Therefore, we evaluated
our methods against these properties to determine whether the methods exhibit
a basic interpretability behavior.

1. Conservation: Any explanation generated by the model should be reflected
somewhere in the input features

2. Selectivity: The model’s explanation should directly support its prediction.
If evidence used for explanation is removed from the input, the model’s con-
fidence in the prediction should decrease

3. Continuity: For similar input pairs that result in similar predictions, the
explanations provided by the model should also be highly similar. This ensures
that the explanation reflects the underlying reasoning process and is not ran-
dom

The first property of conservation is already the basis of the three DSMI
variants, as the underlying features of the models are used to calculate the rel-
evance. The second property of selectivity holds for perturbation tests, where
the model’s accuracy alters based on the kind of tokens that are removed. We



140 S. Ambati et al.

Fig. 6. Test for continuity: (a) LXMERT Answer: “train”; Our method accurately high-
lights the term “left” in the question which corresponds to the train in the image as
the answer signifies (b) METER Answer: “stop”; DSMI + Grad is able to accurately
focus on the text present on the traffic sign boards in the images.

investigated if our methods also satisfy the third property, continuity. For this
we examined LXMERT and METER with similar (not identical) image-question
pairs to assess the performance of one of the DSMI variants, DSMI + Grad across
the models. Given a similar pair of an image and a question, our method is able
to consistently pinpoint where the model derives its answer from the image, as
shown in Figure 6. This suggests that our gradient-based graph spectral method
exhibits continuity.

6 Conclusion and Future Work

The growing popularity of DNNs highlights the critical need for explainability
techniques to ensure transparency. This paper proposes unique methods lever-
aging graph spectral theory, to explain bimodal models. We showcase how these
methods, DSMI, DSMI + Grad and DSMI + Grad + Attn, offer post-hoc, local-
ized visualizations of relevance specific to how the different modalities are fused.
Although our approaches achieve slightly lower performance compared to the rel-
evance maps introduced by Hila Chefer et al. [5], they offer distinct advantages.
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Notably, DSMI and DSMI + Grad are highly adaptable to various models with
minimal modifications as the methods depend only on output of an encoder’s
blocks, i.e. features and gradients. These features have an accumulation of contri-
butions from all components of the transformer blocks in a cross-modal encoder.
Two of the DSMI variants are not transformer specific as we do not use attention
maps, making them applicable to a wider range of architectures including non-
transformer based architectures. Furthermore, DSMI and DSMI + Grad spectral
methods demonstrate performance comparable to LRP while potentially miti-
gating LRP’s known issue of slower computation speed and DSMI + Grad +
Attn outperforms LRP in case of LXMERT. In contrast to this, DSMI + Grad
demonstrates performance very similar to the state-of-the-art relevance maps
approach for image modality in METER as shown in Table 2.

We observe that our methods perform better on the image modality than the
text modality. While this behavior can be overlooked for tasks like VQA where
the answer depends on the image, it is crucial to give equal importance to both
modalities in tasks like Image Text Matching. Future contributions can focus
on handling text features differently. Although we were able to explain models
with bidirectional cross-attention and contrastive learning, we were unable to
replicate the results for models using merged attention such as ViLT [12] and
VisualBERT [16]. Other interpretability techniques also seem to fall short on
such models. Therefore this could be a possible future research direction. Another
possible research contribution could be the birth of a new quantitative evaluation
method for interpretability techniques. This is because perturbation tests are not
sensitive to localization [24]. In the literature, the research for interpretability
methods in case of bimodal models is heavily focusing on Image-to-Text models.
Therefore, Text-to-Image models [11] should also be given more consideration for
explainability while leveraging the unidirectional cross-attention process between
prompt embeddings and the features of the intermediate denoised images.
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Abstract. To train the High-performance Operation Point (HOP) in-
loop filter in VVC, the Joint Video Exploration Team (JVET) provides
a three-stage training strategy that uses datasets compressed by the
HOP embedded VVC Test Model (VTM) for training in the last two
stages. However, the use of the HOP-embedded VTM to compress the
training set twice more brings huge time-consumption. To address this
issue, we propose progressive learning based on QP distance to enhance
HOP in-loop filter while accelerating the HOP training time. We adopt
the progressive learning strategy based on QP distance to strengthen
the HOP learning ability. Based on QP distance, the proposed method
does not use the training sets compressed by the HOP-embedded VTM,
thus leading to remarkable reduction of training time. Moreover, the
uncompressed video frames do not contain compression artifacts, thus
the direct use of the uncompressed video data as label for training is
not effective in capturing the relationship between the compressed input
and its uncompressed label. However, based on QP distance, the pro-
posed method uses higher-quality (lower QP setting) compressed data
as label for training rather than using the uncompressed data as label,
thus strengthening the HOP learning ability of removing compression
artifacts. Experimental results show that the HOP model generated by
the proposed method achieves an average BD-rate gain of -8.31% (Y),
-16.28% (U), and -18.27% (V) over the VTM-11.0 anchor in the All Intra
(AI) configuration thanks to the progressive learning based on the QP
distance. Moreover, the proposed method reduces total training time to
only 10 days while the three-training strategy recommended by JVET
takes about 45 days.
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1 Introduction

The Versatile Video Coding (VVC) is the latest video coding standard inves-
tigated by the Joint Video Experts Team (JVET) from the ITU-T SG 16/Q.6
Video Coding Experts Group (VCEG) [12]. Its primary aim is to achieve excep-
tional compression efficiency and elevate video quality. The encoding process
using the VVC Test Model (VTM) mainly includes intra prediction, inter predic-
tion, transform and quantization, entropy coding, and in-loop filters. To enhance
video quality, reduce compression artifacts, and optimize compression efficiency,
VVC employs the in-loop filtering module that consists of five in-loop filters [4]
as follows. The Deblocking Filter (DBF), which is dedicated to reducing block
artifacts, serves as the primary filter. Sample Adaptive Offset (SAO) is the sec-
ond filter designed to minimize ringing artifacts by finely adjusting the captured
intensity changes. The Adaptive Loop Filter (ALF) is then introduced to rec-
tify signal values based on the linearly filtered samples complemented by the
Cross-Component Adaptive Loop Filter (CC-ALF). Finally, a specific filter [23],
named Luma Mapping with Chroma Scaling (LMCS), is not explicitly intended
for reducing blocking artifacts but rather focuses on exploiting the signal range
to enhance coding efficiency [12]. This ensemble of in-loop filters within the
VVC framework is elaborately designed to address various artifacts and opti-
mize both video quality and coding efficiency by leveraging signal characteristics.
The in-loop filters primarily rectify prediction residuals within the encoder by
eliminating artifacts and pseudo-details caused by prediction, thereby enhancing
video quality. The loop filters in VTM are manually designed based on signal
processing theory and the assumption of stationary signals.

Recently, the neural network-based in-loop filters (NNLF), particularly those
based on Convolutional Neural Networks (CNNs), exhibit stronger representa-
tion capabilities at the feature level in videos [10,15,22]. They excel in elimi-
nating compression artifacts and outperform traditional in-loop filters in terms
of performance. JVET recommends two NNLF architectures: High-performance
Operation Point (HOP) [2] and Low-complexity Operation Point (LOP) [17].
Both architectures consist of three components: Head for shallow feature extrac-
tion, backbone for deep feature extraction, and tail for reconstruction. The net-
work simplicity helps to reduce the number of model parameters and training
time. The early form of NNLF architecture was proposed by Tencent in JVET-
W0131 [18], and JVET-X0052 [19], which introduced depthwise separable con-
volution and standard convolution in the network. JVET-Z0091 [20] employed a
single model in the filter design, which incorporated auxiliary information such
as predicted frame, QP slice and QP base into the network. Several proposals,
including JVET-AD0211 [13], integrated multi-scale feature extraction compo-
nents into the backbone residual block. JVET-AD0106 [14], JVET-AD0166 [6],
JVET-AD0168 [21], and JVET-AD0205 [7] contributed to the lightweight struc-
ture of the HOP model. JVET-AD0380 [2] proposed a general architecture for
HOP in-loop filter that is comprised of shallow feature extraction, deep feature
extraction, and reconstruction. HOP in-loop filter is concurrently trained by
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Fig. 1. Network architecture of the HOP in-loop filter released by JVET [2]. The HOP
network architecture is composed of three parts: Head, backbone and tail. The head
is used for shallow feature extraction and downsampling, the backbone is composed of
several residual blocks for deep feature extraction, and the tail is used for upsampling
and reconstruction.

multiple companies and cross-checked for its performance test. Fig. 1 shows the
whole framework of HOP in-loop filter released by JVET [2].

Regarding the training process of HOP in-loop filter, JVET suggests using
a three-stage training strategy [8,9] as shown in Fig. 2. In Stage I, the origi-
nal VTM is used to compress the training set, while in Stage II and Stage III,
the HOP-embedded VTM, i.e. ’VTM+CNN’ in Fig. 2, is used to compress the
training set. However, since the three-training strategy uses the HOP-embedded
VTM to compress the training set twice more, it causes huge amount of train-
ing time. In this paper, we propose QP distance-leveraged acceleration of HOP
training to save training time while improving the HOP model performance. We
adopt a progressive learning strategy based on QP distance to strengthen the
HOP learning ability. Without the use of the HOP-embedded VVC, we only use
the original VTM once to generate the training set during the whole training
process, thus remarkably saving training time. Moreover, we adopt progressive
learning that removes compression artifacts step-by-step based on QP distance
and significantly improves the model performance. Fig. 3 illustrates the pro-
posed progressive learning strategy based on QP distance. In the first three
steps (Model I to Model III), the QP distance increases by 5, while in the final
step (Model IV), the labels are set to 7. Experimental results show that the
proposed method achieves average BD rate gains of -8.31% (Y), -16.28% (U),
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Fig. 2. Three-stage training strategy for HOP model generation recommended by
JVET [8,9]. VTM: VVC Test Model. CNN: Convolutional Neural Network. BS: Bound-
ary structure. QP: Base QP and slice QP. IPB: Intra/inter prediction block.

Fig. 3. Proposed progressive learning strategy based on QP distance. In the first three
steps (Model I to Model III), the QP distance increases by 5, while in the final step
(Model IV), the labels are set to 7.

and -18.27% (V) over the VTM-11.0 anchor in the All Intra (AI) configuration
and the total training time is about ten days.

Compared with the three-stage training strategy recommended by JVET [8,
9], the main contributions of the proposed method are described as follows:

– During the whole training process, we only once generate the training set
using use the original VTM. However, the three-stage training strategy needs
to generate the training set twice more with the HOP-embedded VTM. There-
fore, the proposed method significantly reduces the training time.

– Unlike the three-stage training strategy that uses uncompressed video data
as label, the proposed method uses higher-quality (lower QP setting) com-
pressed data as label for HOP training. If the input is a compressed video
frame with a large QP, the feature information contained in the compressed
video frame is limited, which has too much gap from its ground truth (uncom-
pressed video frames) to reconstruct. Moreover, uncompressed video frames
do not contain compression artifacts so that the three-stage training strategy
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is not effective in capturing the relationship between the compressed input
and its uncompressed label. Based on the QP distance, the proposed method
effectively captures the relationship between the compressed input and its
label while successfully treating the QP balance problem.

– Unlike the three-stage training strategy that uses the compressed data gen-
erated by the original VTM and the HOP-embedded VTM, the proposed
method adopts progressive learning based on QP distance that utilizes lower
QP compressed data as labels for training, thus strengthening the HOP learn-
ing ability of removing compression artifacts. The proposed method achieves
average BD rate gains of -8.31% (Y), -16.28% (U), and -18.27% (V) over the
VTM-11.0 anchor in the AI configuration.

2 PROPOSED METHOD

2.1 Three-Stage Training Strategy by JVET

In the three-stage training strategy [8,9], the training set for Stage I is com-
pressed by the original VTM, while the training sets for Stage II and Stage III
are compressed by the HOP-embedded VTM (i.e. the previous stage model) as
follows:
Stage I: 1) Extract a dataset of intra coded frames using VTM. 2) Train HOP
on the dataset, resulting in the first model HOP I.
Stage II: 1) Extract a dataset of frames using VTM and the HOP model from
Stage I. 2) Train HOP on the dataset, resulting in the second model HOP II.
Integerized the model.
Stage III: 1) Extract a dataset of frames using VTM and the HOP model from
Stage II. 2) Train HOP on the dataset, resulting in the final model HOP III.

2.2 QP Distance-Based Progressive Learning

HOP in-loop filter in JVET aims to achieve better compression artifact removal
than the in-loop filters in the original VTM. In the three-stage training strategy
recommended by JVET [8,9], the training sets in Stage II an Stage III are com-
pressed more by the HOP-embedded VTM, i.e. ’VTM+CNN’ in Fig. 2. Thus, the
three-stage training strategy inevitably causes huge amount of training time. The
CNN filters aims to remove compression artifacts from the predicted frames. In
general, the CNN filters use uncompressed video frames, typically derived from
the original video sequence, as label for training. As the original video sequence
undergoes several processes such as intra prediction, inter prediction, transform
and quantization, entropy coding, it loses substantial information in the original
video frames. However, the uncompressed video frames do not contain compres-
sion artifacts and thus direct use of the uncompressed video frames as label for
training is not effective in capturing the relationship between the compressed
input and its corresponding uncompressed label. Moreover, if the input is a
compressed frame at large QP, the feature information contained in the frame
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Fig. 4. Network architecture of HOP in-loop filter for luma component. Rec: Recon-
structed frame. Pred: Predicted frame. Part: Partition map. QP: QP map. Out: Out-
put frame. The luma channel has rich textures and uses more residual block extraction
structures.

is very limited due to the severe feature loss. It causes much gap from its label,
i.e. uncompressed video frames, and thus there exists QP balance problem in
training. In this work, we propose to use higher-quality (lower QP setting) com-
pressed frames as label for training rather than using the uncompressed frames
as label. We introduce the QP distance into network training to set the label
for the compressed input and adopt progressive learning based on QP distance
to strengthen the HOP learning ability. The proposed training strategy is illus-
trated in Fig. 3. The training sets for all steps are derived from the original VTM
compression (with QP settings of 7, 12, 17, 22, 27, 32, 37, 42). When setting the
QP distance to 5, the input QP values for the training set are designated as 22,
27, 32, 37, 42, and the corresponding label QP values are set as 17, 22, 27, 32,
37. Subsequently, in the next training step, the model from the previous step is
loaded, and the QP distance for the training set is increased. We conduct a total
of four training steps, with QP distances of 5, 10, and 15 for the first three steps.
The label QP used in the final step is set to 7. It is unnecessary to compress the
training set with VTM at each step.

3 EXPERIMENTAL RESULTS

For experiments, we separately train the HOP model for the Y (Luma) and UV
(Chroma) channels. The specific structures and parameter selection are illus-
trated in Figs. 4 and 5. According to the Common Test Conditions (CTC), the
HOP model trained by the proposed training strategy is evaluated and compared
with VTM-11.0 [11].
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Table 1. BD-rate of Model I over VTM-11.0 in AI configuration. Model I is embed-
ded into VTM-11.0_NNVC-2.0 [11] for evaluation. The QP distance is set to 5, the
input QP values for the training set are designated as 22, 27, 32, 37, 42, while the
corresponding label QP values are set as 17, 22, 27, 32, 37.

Y-PSNRU-PSNRV-PSNR

Class A1 -5.99% -15.29% -17.12%
Class A2 -6.23% -15.20% -14.06%
Class B -6.18% -15.50% -16.51%
Class C -6.52% -14.70% -15.97%
Class E -9.39% -18.99% -18.49%
Overall -6.77% -15.82% -16.42%
Class D -6.20% -13.89% -15.82%

Table 2. BD-rate of Model II over VTM-11.0 in AI configuration. Model II is embed-
ded into VTM-11.0_NNVC-2.0 [11] for evaluation. The QP distance is set to 10, the
input QP values for the training set are designated as 22, 27, 32, 37, 42, while the
corresponding label QP values are set as 12, 17, 22, 27, 32.

Y-PSNRU-PSNRV-PSNR

Class A1 -7.05% -15.56% -17.12%
Class A2 -7.22% -17.18% -17.11%
Class B -7.19% -15.00% -16.62%
Class C -7.69% -15.92% -17.91%
Class E -10.67% -20.92% -21.53%
Overall -7.86% -16.65% -17.89%
Class D -7.45% -15.41% -17.73%

Table 3. BD-rate of Model III over VTM-11.0 in AI configuration. Model III is embed-
ded into VTM-11.0_NNVC-2.0 [11] for evaluation. The QP distance is set to 15, the
input QP values for the training set are designated as 22, 27, 32, 37, 42, while the
corresponding label QP values are set as 7, 12, 17, 22, 27.

Y-PSNRU-PSNRV-PSNR

Class A1 -7.38% -15.57% -17.07%
Class A2 -7.52% -17.67% -17.21%
Class B -7.52% -14.29% -16.74%
Class C -8.07% -15.56% -18.23%
Class E -11.02% -21.43% -21.76%
Overall -8.20% -16.54% -18.04%
Class D -7.87% -15.49% -18.12%
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Fig. 5. Network architecture of HOP in-loop filter for chroma components. Rec: Recon-
structed frame. Pred: Predicted frame. Part: Partition map. QP: QP map. Out: Output
frame. The chroma channels have relatively less textures and is combined with the out-
put frame of the luma channel Rec(Y) that is downsampled twice in the network input.

3.1 Experimental Setting

The experiments are conducted on PyTorch framework. and each step has 120
epochs. The loss function for the first 90 epochs is L1 loss, and the loss function
for the last 30 epochs is L2 loss. The four steps total 480 epochs. The batch
size is 32 and the learning rate is 1e-4, decaying by half every 30 epochs. The
DIV2K [1] and BVI-DVC [16] datasets are used to train HOP in-loop filter. All
images are compressed using VTM-11.0 [11]. We randomly crop the compressed
image into 144x144 patches and use random horizontal and vertical flipping
for data augmentation. Then, we embed the trained CNN model into VTM-
11.0_NNVC-2.0 [11] for evaluation. We use LibTorch to embed the HOP model
in VTM, replacing DBF and SAO. In the test phase, we use the test sequences
(A1, A2, B, C, D and E classes) in the Common Test Conditions (CTC) as
the test set [3], and Bjøntegaard-Delta Bit-Rate (BD-BR) [5] as the evaluation
metric to evaluate the performance of the proposed training strategy under AI
configuration when training the HOP model.

3.2 Visual Comparison

We provide visual comparison of the proposed method with the three-stage train-
ing strategy [8,9] in Fig. 6. We obtain the decoded frames using two HOP models
generated by the three-stage training strategy and the proposed method, when
QP is 42. As highlighted in the zoomed areas, the proposed method gener-
ates better textures in images than the three-stage training strategy. This is
mainly due to the progressive learning based on QP distance that uses lower
QP compressed data as label for training, thus strengthening the HOP learn-
ing ability of removing compression artifacts. Moreover, the three-stage training
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strategy utilizes uncompressed video frames as labels and is not effective in cap-
turing the relationship between the compressed input and its uncompressed label.
However, the proposed method effectively captures the relationship between the
compressed input and its label based on the QP distance.

Fig. 6. Visual comparison between the three-stage training strategy [8,9] and the pro-
posed method at QP=42.

Table 4. BD-rate of Model IV over VTM-11.0 in AI configuration. Model IV is embed-
ded into VTM-11.0_NNVC-2.0 [11] for evaluation. The input QP values of the training
set are specified as 22, 27, 32, 37, 42, while the corresponding label QP values are all
set to 7.

Y-PSNRU-PSNRV-PSNR

Class A1 -7.39% -15.40% -17.67%
Class A2 -7.63% -18.03% -17.31%
Class B -7.62% -13.98% -16.98%
Class C -8.25% -15.46% -18.50%
Class E -11.14% -20.37% -21.69%
Overall -8.31% -16.28% -18.27%
Class D -8.05% -15.35% -17.96%

3.3 Performance Comparison and Training Time

Following CTC [3], we conducted the tests on the HOP model trained by the
proposed method. In the AI configuration, the HOP model at the final stage



Progressive Learning Based on QP Distance 153

Table 5. BD-rate of the three-stage training strategy [8,9] over VTM-11.0 in AI con-
figuration. The HOP model generated by the three-stage training strategy is embedded
into VTM-11.0_NNVC-5.0 for evaluation.

Y-PSNRU-PSNRV-PSNR

A1 -7.15% -17.88% -21.43%
A2 -7.09% -19.27% -17.10%
B -7.09% -18.05% -19.85%
C -8.11% -18.42% -21.04%
E -10.56% -20.36% -21.71%
Overall -7.91% -18.69% -20.23%
D -7.95% -18.14% -21.60%

Table 6. Complexity comparison between the three-stage training strategy [8,9] and
the proposed method in terms of the Multiply Accumulate (MAC)/pixel, the number
of parameters and training time. The three-stage training strategy [8,9] is tested on
Tesla V100 SXM2 32GB/Tesla A100 40GB GPU, while the proposed method is tested
on a RTX 4090 32GB GPU.

MAC/pixel Number of parameters Training time

Three-stage 477K 1.45M 45days
Proposed 371K (luma), 259K (chroma) 1.44M (luma), 0.76M (chroma) 10days

by the proposed method, i.e. Model IV, achieves average BD-rate reductions of
-8.31%, -16.28%, and -18.27% over the VTM-11.0 anchor in the Y, U, and V
channels, respectively. Tables 1, 2, 3 and 4 show the performance improvement
of the HOP models at various steps (from Model I to Model IV) by the proposed
method. In the Y channel, the proposed method gradually decreases BD-rate of
-6.77%, -7.86%, -8.20%, and -8.31% from Model I to Model IV, respectively. This
is because the progressive learning based on QP distance can strengthen the HOP
learning ability of removing compression artifacts by using lower QP compressed
data as labels. For reference, Table 5 provides BD-rate of the three-stage training
strategy [8,9] over VTM-11.0 in AI configuration. The proposed method achieves
comparable performance to the three-stage training strategy [8,9] and BD-rate
reduction of 0.4% over it in the Y channel even with less training time. Table 6
provides complexity comparison between the three-stage training strategy and
the proposed method in terms of the Multiply Accumulate (MAC)/pixel, the
number of parameters and training time. The three-stage training strategy [8,9]
is tested on Tesla V100 SXM2 32GB/Tesla A100 40GB GPU, while the proposed
method is tested on a RTX 4090 32GB GPU. We each generate the HOP model
for the Y (Luma) and UV (Chroma) channels as shown in Figs. 4 and 5, and
provide them separately. Compared with the three-stage training strategy, the
proposed method significantly reduces the training time from 45days to 10days.
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4 CONCLUSION

In this paper, we have proposed QP distance-leveraged acceleration of HOP
training to remarkably reduce its training time. The three-stage training strategy
recommended by JVET used the HOP-embedded VTM to compress the training
set twice more, thus causing huge amount of training time. To deal with this
problem, we have presented progressive learning based on QP distance that
does not use the training set compressed by the HOP-embedded VTM during
the training process. Moreover, based on QP distance, we have used lower QP
compressed data as label for training rather than using the uncompressed data as
label. Thus, the proposed method effectively captures the relationship between
the compressed input and its label, and strengthens the HOP learning ability
of removing compression artifacts. Experimental results demonstrate that the
proposed method achieves average BD-rate reductions of -8.31%, -16.28%, and
-18.27% over the VTM-11.0 anchor in the Y, U, and V channels, respectively,
and the proposed progressive learning strengthens the HOP learning ability of
removing compression artifacts based on QP distance. Moreover, the proposed
method significantly reduces the HOP training time.

Our future work includes extending the progressive learning strategy to var-
ious compression models for images and videos.
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Abstract. In recent years, substantial advances have been made in deep
learning-based image compression. Most studies have focused on design-
ing accurate and flexible entropy models to predict the distribution of
latent features in images. However, the allocation of computing resources
and the restoration of decoded images by post-processing are equally
important. In this paper, we propose asymmetric learned image com-
pression based on fast residual channel attention. We design an asym-
metric image compression network to effectively allocate computational
resources into the post-processing of the decoder. Inspired by image
super-resolution, we provide a fast residual channel attention module
in the post-processing based on depthwise separable convolution. This
module can quickly restore the features lost by compression, resulting
in image quality enhancement. Experimental results demonstrate that
the proposed method outperforms state-of-the-art methods for learned
image compression in terms of PSNR, MS-SSIM and runtime.

Keywords: Image compression · convolutional neural network ·
depthwise separable convolution · fast residual channel attention ·
variational auto-encoder

1 Introduction

Image compression refers to the process of reducing the size of digital images
in limited bandwidth while preserving their visual quality. It has been widely
used for transmission, storage, and processing of digital images. By compress-
ing images, people can save storage space, reduce transmission bandwidth, and
speed up image processing. In recent decades, a plenty of lossy image compres-
sion methods have been developed, which are broadly categorized into two types:
traditional and deep learning-based. Traditional methods, including JPEG [32],
JPEG2000 [9], BPG [6], and VVC [7], achieve a high compression rate but reach
the limit of improvement in compression efficiency. There still exist compression-
related issues, such as block distortion and mosaic artifacts. In recent years,
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researchers have turned to investigate introducing deep learning into image com-
pression, called deep learning-based image compression or learned image com-
pression.

Fig. 1. Overall process of the VAE-based image compression. Q: Quantization. AE:
Arithmetic encoder. AD: Arithmetic decoder.

Deep learning-based image compression has gained significant attention by
researchers. It mainly utilizes convolutional neural networks (CNNs) for end-
to-end learning while effectively reducing distortion during compression while
maintaining a high compression rate. The variational autoencoder (VAE) is the
most notable method for end-to-end learned image compression. Fig. 1 illus-
trates the basic flow of VAE for end-to-end learned image compression. For
encoding, VAE-based image compression adopts a combination of linear and
nonlinear parametric transforms to map an image to a latent space. After quan-
tization, entropy estimation modules predict the latent distribution, then are
compressed into a bitstream using the lossless context-based adaptive binary
arithmetic coding (CABAC) or range coder (RC). Additionally, hyper-prior,
auto-regressive priors, and Gaussian Mixture Model (GMM) enable the entropy
estimation modules to more accurately predict the distributions of the latents,
leading to better Rate-Distortion (RD) performance. For decoding, the lossless
CABAC or RC decompresses the bitstream, and the decompressed latents are
mapped to reconstructed images using a linear and nonlinear parametric syn-
thesis transform.

In this paper, we propose an asymmetric learned image compression network
using fast residual channel attention. The proposed method adopts an asymmet-
ric structure between encoder and decoder to generate a concise bitstream using
simple encoding and reconstruct the output image through complex decoding.
This approach enables better image recovery while maintaining a high com-
pression rate. The encoder minimizes bits for transmission, while the decoder
performs post-processing for reconstruction based on depth separable convolu-
tion to be faster with fewer parameters. The encoder employs a straightforward
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Fig. 2. Entire framework of the proposed learned image compression. GDN: general-
ized divisive normalization. WAM: Window attention module. FRCAN: Fast residual
channel attention network. RRDB: Residual in residual dense block. Q: Quantization.
AE: Arithmetic encoder. AD: Arithmetic decoder. In the encoder, we use 5×5 down
sampling convolution, GDN [2] and WAM [39], while in the decoder we apply a large
number of residual structure networks and attention modules to recover the lost fea-
tures. For the entropy coding, we utilize the Minnen and Singh’s method [26].

design to capture visual characteristics, resulting in data size reduction and com-
pression rate improvement. We use 5×5 down-sampling convolution, generalized
divisive normalization (GDN) [2] and window attention module (WAM) [39] in
the encoder. The decoder incorporates residual networks with attention mecha-
nisms to enhance image clarity and restore structural details. The combination
of residual learning and channel attention in the decoder restores image fea-
tures, resulting in effective image recovery. For the entropy coding, we utilize the
Minnen and Singh’s method [26] to achieve good rate-distortion performance.
Experimental results demonstrate that the proposed method outperforms exist-
ing state-of-the-art image compression methods, exhibiting superior performance
in terms of both PSNR and MS-SSIM metrics, especially at medium to high
bit-rates. Moreover, the proposed network maintains outstanding efficiency in
the encoding and decoding speed, thereby highlighting its practical significance.
Fig. 2 illustrates the entire framework of the proposed learned image compres-
sion.

Compared with existing methods, main contributions of this paper are sum-
marized as follows:

– We propose an asymmetric image compression network based on VAE that
achieves fast decoding speed with a high compression rate. The encoder
adopts a simple structure to extract image features, thus resulting in a reduced
data stream. Meanwhile, the decoder utilizes residual networks and atten-
tion mechanisms to recover details and structures in an image. Although the
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decoder contains several residual networks, it maintains fast decoding speed
by depthwise separable convolution.

– Inspired by image super-resolution, we present an image restoration module
that combines dense residual networks and channel attention mechanisms.
Dense residual networks improve the quality of image restoration, while chan-
nel attention mechanisms select features selectively, thus leading to further
performance improvement.

– We use depthwise separable convolution to replace the convolution layers in
the decoder, thus accelerating decoding speed. To our knowledge, this is the
first application of depthwise separable convolution in deep learning-based
image compression task.

2 Related Work

2.1 Learned Image Compression

In 2016, Ballé et al. [3] presented a novel deep learning-based image compression
method, which first incorporates end-to-end learning with image compression.
This method outperforms traditional compression methods in terms of both com-
pression rate and image quality. Moreover, it demonstrates superior efficiency
and capability to handle a larger image size. Afterward, Ballé et al. [4] further
proposed an image compression method based on their previous work and intro-
duced scale hyperprior to enhance the compression performance. They achieve
more efficient encoding and decoding while maintaining compression rate and
image quality. Several methods [11,28] utilized generative models and trained
adversarially to learn the image distribution for subjective quality at a low bit-
rate. Jiang et al. [12] introduced super-resolution into image compression to save
bits. Li et al. [19,20] proposed content weighted image compression for spatial
transformation and quantization representation based on deep learning. In 2020,
Cheng et al. [8] proposed learned image compression based on discretized Gaus-
sian mixture likelihoods and attention. This is the first deep learning method to
achieve comparable performance to VVC intra coding [7]. Zou et al. [39] incor-
porated a window attention mechanism (WAM) to take correlations between
adjacent elements in space, resulting in the performance improvement in image
compression.

2.2 Attention Mechanism

Attention mechanisms have become a fundamental concept in neural networks,
which have numerous applications such as natural language processing, statis-
tical learning, speech recognition, and computer vision. Wang et al. [33] pro-
posed a novel neural network model, which introduces the concept of non-local
blocks to capture long-range dependencies between pixels through computing
and weighted averaging of global features. Woo et al. [36] proposed a new modu-
lar attention mechanism, called Convolutional Block Attention Module (CBAM),
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which can be embedded into CNN models to further enhance their performance.
Liu et al. [23] proposed an image compression method based on attention mecha-
nism and non-local operation, aiming to improve the visual quality of compressed
images. They used non-local operations to generate attention maps, allocating
more bits to important regions for adaptive processing of latent features, thereby
achieving better image compression performance. Recently, transformer has been
introduced into the learned image compression. Liu et al. [24] proposed a par-
allel Transformer-CNN Mixture (TCM) block with a controllable complexity to
combine the local learning ability of CNN and the non-local learning ability of
transformers.

2.3 Image Super-Resolution

Image Super-resolution (SR) aims to reconstruct high-quality images using only
low-quality input information. Since the pioneering work of Super-Resolution
Convolutional Neural Network (SR-CNN) [10], deep learning-based methods
have dominated the field of image super-resolution. Zhang et al. [38] proposed
a method for image super-resolution using very deep residual channel attention
networks. This method combines residual connections and channel attention
mechanisms, while utilizing a very deep neural network architecture. SwinIR
[22] is an image restoration method based on swin transformer proposed by Li
et al. in 2021. It uses swin transformer to perform downsampling and upsam-
pling on images, while preserving more information with residual connections. It
has been reported that SwinIR achieves excellent performance on multiple image
restoration tasks, while maintaining high computational efficiency SwinIR [22].

3 Proposed Method

3.1 Network Architecture

Image compression aims to achieve a high compression rate while maintaining
the quality of the reconstructed images, i.e. use less bitstream to recover a bet-
ter decompressed image than the anchor. A possible approach to the end-to-end
image compression is to use simple encoding ends for feature extraction and com-
plex decoding ends for image reconstruction, thus resulting in small bitstream. In
this work, we attempt to enlarge the complexity difference between the encoding
and decoding ends and design an asymmetric network architecture to obtain a
high compression rate as shown in Fig. 2. In the encoding end, we use simple con-
volutional layers and windowed attention mechanisms to downsample the input
image and perform feature selection. In contrast, we employ a large number of
residual structures in the decoding end to recover the high-frequency informa-
tion lost during the downsampling and entropy coding processes. We also use
attention modules to select appropriate image features to maintain the quality
of the reconstructed images. In addition, encoding and decoding time is a crit-
ical factor for evaluating the performance of an image compression algorithm.
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Therefore, we utilize the minimum-serial processing entropy coding structure
proposed by Minnen and Singh [26] for fast entropy coding. Furthermore, the
complex decoding structure of the proposed network inevitably leads to longer
decoding time. To address this issue, we optimize the decoding process based on
depthwise separable convolution.

3.2 Depthwise Separable Convolution

To decrease the computational and storage complexity of the dense residual
network, depthwise separable convolution (DSC) is utilized instead of regular
convolution. The principle of DSC is to decompose the traditional convolution
kernel into two independent convolution kernels, thereby reducing the number of
parameters required in convolution. Specifically, in the regular convolution oper-
ation, the convolution kernel contains parameters in the height and width direc-
tions, while performing convolution operations on all input channels. In DSC,
convolution is decomposed into two steps: depthwise convolution and pointwise
convolution. The input feature map is initially divided into single-channel fea-
ture maps along the depth dimension, followed by the application of a depthwise
convolution kernel with a size of either 3×3 or 5×5 to extract channel-specific
features from each single-channel feature map. Subsequently, a pointwise convo-
lution using a 1×1 kernel is used to combine the features across different chan-
nels. It allows the depthwise convolution kernel to only include parameters in the
height and width directions, while the pointwise convolution kernel only includes
parameters in the channel direction. Since DSC separates the convolution oper-
ation into two independent operations, it can significantly reduce the number of
parameters and calculations required while maintaining the same performance.
This, in turn, reduces both training and inference time. Therefore, we replace the
ordinary convolution layer in the residual in residual dense block (RRDB) [34]
and the proposed fast residual channel attention network (FRCAN) with DSC
to minimize computational complexity and improve the processing speed. Since
DSC remarkably reduces the number of parameters, it can reduce the complexity
of the decoder.

3.3 Fast Residual Channel Attention Network

In image super-resolution, it has been proven that the Residual Channel Atten-
tion Network (RCAN) proposed by Zhang et al. [38] can increase the depth and
receptive field of the network and improve its performance by adding a large
number of residual blocks and attention modules between the input and out-
put layers. Since the decoding flow in image compression is similar to image
super-resolution, inspired by Zhang et al.’s work, we design a fast residual chan-
nel attention network (FRCAN) and incorporate it into the decoding end. As
shown in Fig. 3, we present a novel module, called residual channel attention
block (RCAB), which incorporates a simplified version of the dense residual net-
work prior to the channel attention mechanism to enhance the recovery of image
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Fig. 3. Network structure of the proposed residual channel attention block (RCAB).
DSC: Depthwise separable convolution.

features. The channel attention mechanism then filters and selects the most rele-
vant features from the retrieved channel features. We combine four RCAB mod-
ules to form FRCAN, which is used to generate and select appropriate channel
features.

3.4 Residual in Residual Dense Block

As the residual structure in FRCAN is relatively simple, it cannot generate
more features that are lost during image compression progress. Therefore, we
introduce an improved RRDB module [34] at the decoding end to provide more
features. As shown in Fig. 4, we also replace the convolution layers in the RRDB
module with DSC to reduce computational complexity.

Fig. 4. Network architecture of the proposed residual in residual dense block (RRDB).
DSC: Depthwise separable convolution.
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3.5 Loss function

In image compression, we employ an encoder E to transform the original image
x into a latent representation y. The quantization operation Q discretizes y into
ŷ, which is subsequently used by a decoder D to reconstruct the image as x̂ as
follows:

y = E(x;φ)
ŷ = Q(y)
x̂ = D(ŷ; θ)

(1)

where φ and θ are the trainable parameters of the encoder E and decoder D.
Since quantization Q inevitably introduces truncation errors to the latent

representation, which can cause distortion in reconstructed images. Therefore,
in the training phase, we follow the Minnen and Singh’s method [26] by correcting
the quantization error through rounding and adding the predicted quantization
error. We model each element ŷi as a single Gaussian distribution with its stan-
dard deviation σi and mean μi, and introduce side information ẑi to generate
the distribution pŷi|ẑi . This distribution is modeled using an SGM-based entropy
model, which is formulated as follows:

pŷi|ẑi(ŷi|ẑi) = N(μi, σ
2
i ) (2)

The loss function of the proposed network is controlled by the rate-distortion
trade-off term R and D, which is expressed as follows:

L = R + λ ∗ D

= Ex∼px[−log2pŷi|ẑi(ŷi|ẑi) − log2pẑi(ẑi)]
+ λ · Ex∼px[d(x, x̂)]

(3)

where λ controls the trade-off between rate and distortion, R is the bit-rate of
latents ŷ and ẑ, d(x, x̂) is the distortion between the uncompressed image x and
the reconstructed image x̂.

4 Experiments

4.1 Experimental Setup

Training: We train the proposed image compression framework with different
λ values (λ = 0.0016, 0.0032, 0.0075, 0.015, 0.03, 0.045) using the CompressAI
platform [5]. For training, we randomly choose 300k images from the OpenImages
dataset [17], and randomly crop them with the size of 256×256. All models are
trained for 1.45M steps using the Adam optimizer [15] with a batch size of 16.
The initial learning rate is set to 1×10−4 for 900k iterations, which drops to
3×10−5 for another 250k iterations and 1×10−5 for the last 300k iterations.

Evaluation: We assess the effectiveness of the proposed method by testing it
on Kodak24 image dataset [16] and JPEG AI testing dataset [14]. We follow the
requirements of the JPEG AI Common Testing Conditions (CTC) [13] released
by the JPEG AI Ad Hoc Group (AhG) in January 2022, and use VTM-11.1 as
the anchor for VVC.
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Fig. 5. Visual quality comparison on the JPEG AI testing dataset. We compare the
results of the proposed method with Ballé et al. [4], Minnen et al. [25], Cheng et al.
[8], VTM-11.1 [13] and Zou et al. [39].

Table 1. BD-rate gains of different methods over the anchor VVC intra coding (VTM-
11.1) [7] on Kodak dateset. A positive number indicates that the performance is worse
than the anchor, while a negative number indicates that the performance is better.

VVC [7] Zou [39] Song [30] Cheng [8] Minnen [25] Ballé [4] JPEG2000 [9] JPEG [32] Proposed

PSNR 0 -7.71% 6.63% 1.23% 6.70% 28.39% 96.91% 229.70% -8.97%

MS-SSIM 0 -10.86% 3.47% -7.79% -1.20% 15.69% 118.62% 180.62% -11.08%

4.2 Performance Comparison

Visual Comparison: Fig. 5 provides visual quality comparison based on the
JPEG AI testing dataset [14]. The proposed method outperforms Ballé et al.’s [4]
method by utilizing fewer bits and yielding better PSNR and MS-SSIM. In com-
parison with Cheng et al.’s [8], Zou et al.’s [39], Minnen et al.’s [25] and VTM-
11.1 [13], the proposed method employs a similar number of bits, yet produces
higher PSNR and MS-SSIM values for the reconstructed image. Meanwhile, the
proposed method outperforms other image compression methods in terms of
clarity, naturalness, and achieving better detail features as demonstrated in the
zoomed-in regions.

Quantitative Measurements: We have conducted a quantitative comparison
of the proposed method with learned image compression techniques including
Zou et al.’s [39], Song et al.’s [30], Cheng et al.’s [8], Minnen et al.’s [25], and
Ballé et al.’s [4] as well as some traditional compression algorithms such as VVC
(VTM-11.1) [7], JPEG [32], and JPEG2000 [9]. Figs. 6 and 7 show the rate-
distortion performance comparison based on the Kodak24 dataset [16] using
mean squared error (MSE) as the loss function for training. When using PSNR
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Table 2. VVC reporting template. We use the proposed method as the anchor and
compare it with various traditional image compression methods. To meet the require-
ments of the JPEG AI Ad Hoc Group (AhG) [13], we evaluate various indicators and
record the results for presentation.

Method AVG BD-rateMS-SSIM torchVIF [29]FSIM [37]NLPD [18] IW-SSIM [35]VMAF [21]psnrHVS [27]

Proposed 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

JPEG2000 [9] 54.9% 66.0% 69.4% 49.8% 54.5% 62.7% 24.0% 58.2%

JPEGXL [1] 56.3% 46.9% 64.5% 26.3% 51.1% 60.7% 77.7% 67.2%

HEVC [31] 3.7% 2.3% 5.8% 15.7% -0.8% 4.0% 0.8% -2.2%

VTM-11.1 [13] -7.2% -6.2% -6.4% -4.0% -9.6% -5.8% -10.2% -8.3%

Fig. 6. RD curves among different methods on the Kodak24 dataset [16]: bitrate (bpp)
versus PSNR (dB).

Table 3. Comparison of average encoding and decoding time among Ballé et al. [4],
Minnen et al. [25], Cheng et al. [8] and Zou et al. [39] on Kodak dataset using one RTX
3090 GPU. Note that Cheng et al.’s results are based on a lightweight implementation
(without Gaussian mixture likelihoods) in CompressAI framework [5].

Method Enc(s)Dec(s)PSNR(dB)MS-SSIMbpp

Ballé [4] 0.0250 0.0189 34.53 0.9836 0.669

Minnen [25]2.5202 5.3006 35.09 0.9837 0.639

Cheng [8] 3.0139 5.7965 34.95 0.9838 0.595

Zou [39] 0.0884 0.0916 35.80 0.9855 0.644

Proposed 0.0835 0.0979 36.24 0.9873 0.681
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Fig. 7. RD curves among different methods on the Kodak24 dataset [16]: bitrate (bpp)
versus MS-SSIM.

Fig. 8. Visual quality comparison on the Kodak24 dataset. We perform the ablation
experiments on the FRCAN and RRDB modules in the proposed network. The FRCAN
and RRDB modules effectively restores the image features lost by compression.

and MS-SSIM as the evaluation metric, the proposed method is comparable to
the results of VTM-11.1 [13] and Cheng et al.’s at a low bitrate, and slightly
inferior to Zou et al.’s. At medium to high bitrates, our results are superior
to those of VTM-11.1, Cheng et al.’s, and Zou et al.’s. The proposed network
performs slightly worse at a low bitrate. The reconstructed images at a low
bitrate often contain a large amount of erroneous high-frequency information,
which is further enhanced and selected by the FRCAN module at decoding end,
thus leading to poor performance of the proposed network. Table 1 presents the
BD rate performance while using VVC (VTM-11.1) as an anchor. The proposed
method reaches approximately 8.97% and 11.08% rate gains in PSNR and MS-
SSIM, respectively. Compared to other deep learning-based image compression
methods, the proposed method obtains BD rate reduction of 1.26% to 37.36% in



Asymmetric Learned Image Compression 167

PSNR evaluation and 0.22% to 26.77% in MS-SSIM evaluation. In addition, we
compare the proposed method with traditional image compression methods such
as JPEG and JPEG2000. The proposed method achieves rate improvements of
238.67% and 105.88% in PSNR evaluation, and 191.70% and 129.7% in MS-
SSIM evaluation, respectively. According to the requirements of the JPEG AI
Ad Hoc Group (AhG), we conduct tests on the JPEG AI testing dataset [14]
using multiple objective evaluation metrics. The test results are shown in Table
2. Although the proposed method slightly outperforms HEVC [31], it has certain
shortcomings when compared to VTM-11.1. In particular, we observe a discrep-
ancy between the results obtained from the Kodak24 dataset and those from
the JPEG AI testing dataset. This is attributed to the difference in resolution
between the OpenImage training dataset, which is similar to the Kodak24 test
dataset, however the high-resolution images (4K, 8K) in the JPEG AI testing
dataset is unable to compress effectively by the proposed method.

Compression Efficiency: In Table 3, we compare the encoding and decod-
ing speed of the proposed method with other deep learning-based methods on
the Kodak24 testing dataset. The Kodak 24 test set contains 24 images, and
each image has a different size. Thus, the average value in the table means the
average time of encoding and decoding for each image. Due to a more complex
decoding stage in the proposed network, the decoding speed is 0.0144 seconds
slower than the encoding speed. Although a large number of residual structures
are used in the decoding stage, DSC accelerates operation speed, enabling the
proposed method to maintain the performance. This demonstrates outstanding
contribution of DSC to the complexity of the proposed network. Compared to
other methods, the proposed method performs better in both objective evalua-
tion metrics and encoing/decoding time.

4.3 Ablation Study

To evaluate the contribution of the proposed FRCAN and RRDB modules to the
image compression efficiency, we conduct an ablation experiment. Specifically,
we remove FRCAN and RRDB modules from the decoder and train the model
at four different λ values. The results are shown in Figs. 8 and 9. We conduct
a visual comparison on the ablation experiment. As shown in Fig. 8, FRCAN
and RRDB modules can recover better image details, thus further confirming
the effectiveness of the proposed method for image compression. In addition,
Fig. 9 indicates that integrating FRCAN and RRDB modules effectively restores
the lost image features caused by compression, which leads to higher objective
quality with a fewer bit-rate.
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Fig. 9. Ablation experiments on the FRCAN and RRDB modules. Left: Bitrate (bpp)
versus PSNR. Right: Bitrate (bpp) versus MS-SSIM.

5 Conclusion

In this paper, we have proposed a learned image compression network based
on fast residual channel attention. We have presented a network that employs
asymmetric structure between encoding and decoding to generate a concise bit-
stream using a simple encoding end and recover the output image through a
complex decoding end. This approach enables better image recovery while main-
taining a high compression rate. Inspired by image super-resolution, we have
introduced a fast residual channel attention network (FRCAN) based on DSC
into the decoding end of the proposed network to quickly generate and select
image features. Experimental results on Kodak24 dataset show that the pro-
posed network achieves 8.97% and 11.08% gains over VVC in terms of PSNR
and MS-SSIM, respectively. Furthermore, the proposed network provides a good
balance between coding/decoding speed and visual quality.

Our future work involves joint learning of spatial and frequency features in
the proposed network to further improve the compression efficiency.
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Abstract. The fusion of visible color (RGB) and near infrared (NIR)
images takes multispectral advantage of colors from RGB image and
details from NIR image. Unlike RGB images, NIR images are robust to
atmospheric environments such as Rayleigh scattering and Mie scatter-
ing. In this paper, we propose long distance imaging through RGB and
NIR image fusion, named LDINet. We achieve hidden texture recovery
for long distance imaging based on the fusion of RGB and NIR images.
We adopt pyramid feature selection to capture multiscale information
in the fusion network. Since overexposure and underexposure cause a
dynamic range allocation problem in RGB image, we use the atten-
tion map of RGB image to adjust contrast enhancement. We synthe-
size the input smoothed RGB images for training by smoothing their
original RGB images, i.e. ground truth. During training, we feed the
smoothed RGB images and the details of NIR images into the fusion
network as input, while feeding the ground truth as output. Experimen-
tal results show that LDINet successfully recovers hidden textures lost in
RGB images while keeping colors and outperforms state-of-the-art fusion
methods in terms of visual quality and quantitative measurements.

Keywords: Image fusion · attention map · long distance imaging ·
near infrared · pyramid feature selection.

1 Introduction

Image fusion is a key technology for information acquisition and processing which
have many consumer applications such as video surveillance and autonomous
cars. In recent years, sensor technology and image fusion have attracted much
attention by researchers and industries. For image sensors, different imaging prin-
ciples, wavelengths and environments lead to their own image characteristics. We
usually choose an appropriate sensor depending on demand. Since a single sensor
has certain limitation and cannot meet all needs, the image acquired by it are not
able to perfectly reflect all the information in the scene. To solve this problem,
image fusion is proposed to obtain more accurate and informative descriptions
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of the scene [13,21]. Since the characteristics of the images acquired by multiple
sensors are different, it is required to analyze the characteristics of the multi-
sensor images to complement each other and obtain images with clearer and
higher-quality scene descriptions. Fusion of images from multiple sensors makes
it easy to reliably observe and express the target information, which generates
a fusion image with good contrast and fine details. Moreover, the fusion result
is able to describe information better than a single image because image fusion
eliminates redundant information in the source image. Image fusion has been
widely used in many fields, including analysis and processing of remote sensing
images [14], automatic recognition [24], computer vision [7], medical image pro-
cessing [34], and security monitoring [22]. The fusion of color (RGB) and near
infrared (NIR) images has become increasingly popular in the field of image
fusion [3,8–10,15,16,33,36]. Fig. 1 shows an RGB-NIR image pair captured in
the same scene. NIR images are formed by an NIR sensor sensing NIR light.
Different from visible light spectrum, the spectral range of NIR light is 750 nm
to 2000 nm [30]. Since the imaging principles of NIR and RGB sensors are dif-
ferent, the obtained images are complementary. The NIR images distinguish the
target from the background according to the radiation of the object in the NIR
band, and are not easily affected by low light and bad weather. The RGB images
are obtained by reflecting visible light. Its spectral information is much richer
than NIR images. However, the anti-interference ability of the RGB image is
poor, and it is difficult to obtain a clear image under severe weather conditions.
Multispectral fusion of RGB and NIR images produces high quality images with
fine textures and vivid colors by taking both advantages.

Fig. 1. Illustration of long distance imaging from a pair of RGB and NIR images. Top:
Rayleigh scattering and short wave infrared (SWIR) camera. Bottom: RGB image, NIR
image, and fusion result by LDINet. LDINet recovers hidden textures in the mountain
by RGB-NIR image fusion. Rayleigh scattering is the phenomena of scattering of light
particles and blurs distant areas.
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Fig. 2. Network architecture of LDINet for long distance imaging from a pair of RGB
and NIR images. LDINet consists of three main modules: feature extraction, fusion and
reconstruction.

In this paper, we propose long distance imaging through RGB and NIR image
fusion, named LDINet. Rayleigh scattering makes it difficult for RGB cameras
to capture long distance imaging such as sky and mountains due to the poor
anti-interference ability as shown in Fig. 1. Moreover, areas exposed to direct
sunlight are overexposed, while shadow areas are underexposed. Fog and clouds
affect the quality of RGB images, but NIR images are robust to them. Since
the overexposure and underexposure cause dynamic range allocation problems,
we build a fusion network to guide contrast enhancement based on an attention
map. Moreover, NIR images are not only robust to external environments such
as light and atmospheric conditions, but also contain good details and contrast.
However, traditional brightness fusion easily causes color shift, thus we introduce
pyramid feature selection in the process of RGB and NIR fusion to get multi-scale
features from RGB intensity channel and NIR image minimizing color distortion.
As shown in Fig. 1, LDINet recovers hidden textures in the mountain by RGB-
NIR image fusion. Compared with existing methods, the main contributions
are as follows: 1) We use pyramid feature selection to transfer NIR details to
the fusion while maintaining the original RGB tone. Pyramid feature selection
extracts multi-scale information, which effectively retains the features of the
shallow layer while improving the accuracy as the depth increases. 2) We generate
an attention map from the RGB image to guide contrast enhancement during
the fusion process. Thus, dark areas are more enhanced, while bright areas are
less enhanced. 3) We synthesize a daylight image dataset for training based on
smoothing operation, i.e. the input smoothed color images are generated by their
original color images, i.e. ground truth.
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2 Related Work

2.1 Image Fusion

In the 1970s, Meng et al. applied the image fusion technology to the military
field [19]. Since then, many researchers have conducted research on image fusion
under low light conditions. To meet the requirements of night vision applications,
the sensitivity of the image sensor CCD/CMOS is continuously improved under
low light conditions [11]. There have been many studies on using NIR images to
restore RGB images containing strong noise under low light conditions [20,27].
NIR images taken simultaneously in the same scene are very useful for RGB
enhancement and restoration. NIR images carry brightness and spatial infor-
mation without color, which contain good contrast and less noise even in low
light condition. Schaul et al. [25] proposed a method of coloring directly on the
NIR image to retain structures and details of NIR images. Unfortunately, due
to different training datasets, the color of this fusion method is very different
from the original RGB image. In 2015, Honda et al. [5] proposed to use NIR
images for RGB image restoration under low-light conditions. Son et al. [28]
proposed a contrast-preserving mapping model to produce an NIR image with a
similar appearance in the luminance plane to the RGB image by preserving the
contrast and details of the captured NIR image. In recent years, with the rapid
development of artificial intelligence, it has become a trend to use deep learning
for computer vision and image processing [4,26]. Among them, convolutional
neural networks (CNNs) in deep learning are popularly used [2,6,18]. Unlike the
restoration of degraded images such as image denoising and super-resolution, the
goal of image fusion is to fuse different types of images, and thus it is difficult
to get the ground truth in image fusion. Vanmali and Gadrev [31] proposed
a multi-resolution fusion method of RGB and NIR images based on Laplacian-
Gaussian pyramid. They generated weight maps for image fusion using local
entropy, local contrast and visibility. Jung et al. [9] proposed a fusion network of
RGB and NIR images based on two stage CNNs, called FusionNet. They synthe-
sized noisy RGB images for training data by adding noise in clean RGB images,
and used the clean RGB images as ground truth. Jung et al. [10] proposed an
unsupervised deep image fusion network with structure tensor representations,
called DIF-Net. They designed an unsupervised loss function using structure
tensor representation of the multi-channel image contrasts. Li et al. [15] pro-
posed an encoder-decoder structure for the fusion of visible and infrared images
based on CNNs, called DenseFuse. Then, they further proposed a CNN-based
fusion framework that included encoder network, fusion strategy, and decoder
network, called NestFuse [16]. The fusion strategy was based on spatial attention
and channel attention models for the fusion of multiscale deep features. Recent
image fusion methods such as DenseFuse [15] and NestFuse [16] mainly focus
on the fusion of infrared and visible images. Although they can be used for the
fusion of RGB and NIR images, infrared images do not contain details, thus
they are much different from NIR images in texture and structure. Moreover,
infrared images have a limit of considering atmospheric environments such as
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Rayleigh scattering and Mie scattering that make long distance imaging of RGB
camera difficult. Therefore, their fusion performance for RGB and NIR images
is limited. So far, there are few methods designed for long distance imaging by
the fusion of RGB and NIR images. In this work, we investigate a multispectral
fusion network of RGB and NIR images based on pyramid feature selection and
attention map to achieve long distance imaging.

2.2 Attention Map

For long distance imaging, it is required to consider the distance information
in the fusion of RGB and NIR images. Therefore, we generate an attention
map from the Y channel of RGB image. Generally, in an image, there is an
obvious brightness difference between the near and distant regions, thus the
distance information can be approximately estimated by the brightness of the
image. The texture information of the near region is clear in the RGB image for
long distance imaging, which should be retained in the fusion. Meanwhile, the
texture information of the distant region is easily lost in the RGB image due to
atmospheric environments such as Rayleigh scattering and Mie scattering. NIR
images are robust to the atmospheric environments, which contain rich texture
information especially in the distant region. Therefore, we use an attention map
that approximately estimates the distance information for guiding image fusion.
It has been reported that the dark channel prior (DCP) in RGB images roughly
represents distance information by transmission [17]. Schaul et al. [12] proposed
low light image enhancement based on unsupervised learning and bright channel
priors (BCP). Similar to DCP, we generate the attention map from the Y channel
of the RGB image. The attention map acts like a mask that assigns a small weight
to the near region and a large weight to the distant region. The attention map
contributes to estimating distance information in the fusion of RGB and NIR
images.

2.3 Pyramid Feature Selection

Image pyramid is an effective and simple method, which is widely used in fea-
ture extraction [23,38], semantic segmentation [35] and image compression [29].
The image pyramid model is a group of images from the same original image
arranged in a pyramid shape, whose resolution gradually decreases from bottom
to top. It is obtained by gradual extraction and does not stop sampling until a
certain termination condition is reached. The bottom of the pyramid is a high-
resolution image, and the top is a low-resolution image. Therefore, comparing
the images with the reduced resolution layer by layer and the pyramid, the higher
the pyramid level, the smaller the image size and the lower the image resolution.
Multi-scale feature extraction combines the extracted shallow and deep features.
It directly uses all the extracted features, and the extracted shallow and deep fea-
tures contain useless features, thus their fusion leads to redundancy. Therefore,
a pyramid feature selection module is used to extract multi-scale information to
obtain high-quality fusion images containing semantic information and textures.
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3 Proposed Method

3.1 Network Architecture

Fig. 2 shows the entire network architecture of LDINet for RGB and NIR image
fusion. We use the feature details of NIR image to enhance RGB image. By
the fusion of RGB and NIR images, we achieve long distance imaging with good
details and no color distortion. To consider the multispectral advantages of RGB
and NIR images, we build a fusion network for hidden texture recovery based on
pyramid feature selection and attention map. LDINet is consists of three modules
(feature extraction, fusion, and reconstruction) with attention map acquisition
as follows:

Attention map acquisition: We convert RGB to YCbCr channel, and then
invert the brightness of the Y channel to obtain the attention map. Since the
Y channel contains the luma information of the image and the CbCr channels
have the chroma information of the image, only the Y channel can be put into
LDINet for training. It aims to not only accelerate the training speed of LDINet,
but also ensure that the chroma information in the image is not lost. We use
the attention map as an additional input during the fusion process to guide the
contrast enhancement. As shown in Fig. 2, we multiply the attention map with
the output of the corresponding layers to adjust contrast enhancement. Except
the first and last convolution layers, the number of channels of all convolution
layers is 64, and the size of convolution kernel is 3x3.

Feature extraction: The feature extraction module uses two convolution
layers to extract shallow features from the Y channel and NIR image.

Fusion: The fusion module first generates three feature maps of large,
medium, and small scales from the extracted features by pyramid feature selec-
tion. Then, each of the feature maps are concatenated and convoluted for fusion.
Next, the fusion features are upsampled and added to fully fuse them at each
scale. After then, the fusion features at different scales are convoluted 8 times to
extract deep features. In the fusion module, the down sampling and up sampling
operations are used to improve the processing speed, while skip connections are
used to fuse shallow features with deep features preventing the gradient disap-
pearance during training. We finally fuse the features by concatenating three
scale features.

Reconstruction: In the reconstruction module, the fused features are con-
voluted and activated by tanh function to obtain the final fusion image.

3.2 Loss Function

To consider color, contrast, and details in fusion, we design the fusion loss func-
tion Lfusion−loss based on color loss, contrast loss and detail loss as follows:

Lfusion−loss = Lcolor−loss + Lcontrast−loss + Ldetail−loss (1)

where Lcolor−loss is color loss, Lcontrast−loss is contrast loss, and Ldetail−loss is
detail loss. To prevent color distortion, we use color loss. The reason of using
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Gaussian blur in color loss is that it can remove high frequency details, making it
easier to compare colors. Color loss is highly tolerant of small errors. Therefore, it
can learn colors similar to the target image. The color loss is denoted as follows:

Lcolor−loss(X,Y ) = L1(Xb, Yb) (2)

where b denotes Gaussian blur, X and Y denote the output and ground truth,
respectively; and L1 represents L1 loss. We use Gaussian blur for the color loss
to remove high frequency details, thus making the term tolerant to small errors.
Therefore, this term learns to generate colors close to the target image. We aim
to enhance contrast and reduce color distortion at the same time. In the optimal
contrast-tone mapping (OCTM) [32], constraints are used to control the adverse
side effects of contrast enhancement. Inspired by OCTM, we design contrast loss
as follows:

Lcontrast−loss = C + λT =
∑

(pjsj + λwjsj) (3)

where λ is Lagrange multiplier to regularize the relative importance of the two
mutually conflicting fidelity metrics; pj is the probability that a pixel in the
fusion image has the input gray level j, sj is the degree of change in the output
intensity at level j in the fusion image. The contrast gain C depends only on the
intensity distribution of the fusion image.

Fig. 3. Training data generation from RGB-NIR image pairs. The input smoothed
color images (Input RGB) are generated by their original color images, i.e. ground
truth (GT). To train LDINet, Input RGB and Input NIR are used as input, while GT
is used as output.

The main goal of long distance imaging is to recover hidden textures in RGB
image with the help of NIR image. Textural features are usually represented by
the gradient of the image. To retain details from NIR images in fusion, we design
the detail loss based on the image gradient by an inner product as follows:

Ldetail−loss = L1(∇Ifused, Gra) − μ < ∇Ifused,∇Idetail > (4)
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where ∇Ifused is the gradient of the fusion image, Gra is the gradient of the
ground truth, ∇Idetail is the gradient of the NIR image, L1 represents L1 loss,
and μ is a weight to balance these two terms. We set μ to 0.1. In the detail loss,
the first term makes the gradient of the fusion image close to that of the ground
truth, while the second term makes the gradient of the fusion image close to
that of NIR image for regularization. Since the fusion image needs to contain
details for long distance imaging and NIR image contains them, the second term
transfers details in NIR image to the fusion image.

Fig. 4. Sample image pairs of our training dataset. Left: RGB images. Middle: NIR
images. Right: Ground truth.

3.3 Dataset Generation

For experiments, we construct training and testing sets from the RGB-NIR scene
dataset [1]. The dataset contains 476 image pairs, some of which are not regis-
tered. Therefore, we select 99 registered image pairs for training and 18 registered
image pairs for testing. For training, we crop 99 training image pairs to generate
13,500 pairs of 128x128 patches for training. Since upsampling and downsam-
pling operations are used twice in LDINet, the height and width of the image
need to be resized to an integer multiple of 4 before testing. The RGB-NIR scene
dataset contains images captured in various scenes, which ensures the indepen-
dence in the training and testing sets to a certain degree. At the same time, in
the cropping process, we crop the image by a specific step size, which guarantees
that the image patches in the training set are different from each other. In addi-
tion, during the training process we use random flipping for data augmentation
to deal with the insufficient training data. As shown in Fig. 3, we first smooth the
original color images as input, and fuse them with the NIR texture to restore the
color image details. Then, we obtain NIR details by subtracting the smoothed
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Fig. 5. Fusion results on RGB-NIR image pairs by LDINet. Left: Input RGB images.
Middle: Input NIR images. Right: Fusion results.

NIR from the original NIR. We add the details of NIR images into the smoothed
color images to generate the ground truth. In the image fusion process, we only
want to fuse NIR details instead of brightness, thus we adjust the smoothing
parameters. The smoothing parameter controls the degree of smoothing. The
larger the value is, the smoother the image is. During the data generation pro-
cess, the NIR smoothing parameter is adjusted to be smaller so that the weight of
the detail NIR obtained by subtracting the smoothed NIR from the NIR. Thus,
less NIR is added to the ground truth (GT). Usually, the smoothing parameters
are in the range [1e-3, 1e-1], where we choose 1e-2. It can be seen from the figure
that the input is smoothed RGB image, and the ground truth is generated by
adding details of near infrared images to smooth color images. Based on our
training dataset generation, we synthesize a set of synthetic images. First, we
crop 90 RGB and NIR image pairs from 1024×680 to 128×128, then randomly
crop each image 150 times. Thus, we obtain 13,500 NIR, RGB (low light) and
GT images, respectively. Fig. 4 shows some image pairs of our training dataset.

4 Experimental Results

For experiments, we use a PC with NVIDIA GeForce 1080ti 11GB GPU and
Intel E5-2698 v4 @2.2GHz CPU, running Ubuntu 18.04 and Pytorch 1.6.0. The
total epoch is 30, the batch size is set to 16, and the learning rate is set to 1e-3.
For tests, we select 18 pairs of RGB and NIR images from the RGB-NIR image
dataset [1]. The RGB-NIR dataset contains 476 RGB and NIR image pairs: we
use 99 image pairs for training data generation, and 18 image pairs for tests.
Since it is difficult to generate the ground truth, we use the blind image quality
evaluation (BIQE) for quantitative measurements [37]. Fig. 5 shows some fusion
results on RGB-NIR image pairs by LDINet. As shown in the figure, LDINet



180 L. Mei et al.

successfully recovers hidden textures lost in RGB images while keeping colors
with the help of NIR images.

Fig. 6. Fusion results by different methods. Top: RGB image, NIR image,
DenseFuse [15]. Bottom: DIF-Net [10], NestFuse [16], LDINet. LDINet generates a
natural-looking fusion image with fine details while keeping the original color tone.

Visual Comparison: To verify the effectiveness of LDINet in fusion,
we compare the fusion results by LDINet with state-of-the-art methods:
DenseFuse [15], DIF-Net [10] and NestFuse [16]. The three methods are based
on deep learning, and provide state-of-the-art fusion performance. Therefore, we
select them for comparison to verify the performance of LDINet. Figs. 6 and 7
show fusion results by them on RGB-NIR image pairs. DenseFuse [15] and DIF-
Net [10] can basically fuse the features of two images well, but they causes color
shift after fusion. Their fusion results are much affected by the intensity of NIR
images. Moreover, they contain halo artifacts along sharp edges between river
and field. NestFuse [16] causes over-enhancement effects on the fusion results,
thus making not natural-looking after fusion. Compared with them, LDINet
successfully recovers hidden textures lost in the fusion results while keeping the
original color tone. Thus, our fusion results are more natural-looking than the
others.

Table 1. Average BIQE comparison among different methods. We obtain the BIQE
scores in the table on all the test image pairs. The bold number represents the best
performance (the smaller, the better).

Method DenseFuse [15] DIF-Net [10] NestFuse [16] Ours

BIQE [37] 21.9324 20.8448 21.3366 20.3189
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Fig. 7. Fusion results by different methods. Top: RGB image, NIR image,
DenseFuse [15]. Bottom: DIF-Net [10], NestFuse [16], LDINet. LDINet generates a
natural-looking fusion image with fine details while keeping the original color tone.

Table 2. Average runtime comparison among different methods (Unit: sec/pair). The
bold number represents the best performance (the smaller, the better). For tests, we
use a PC with four NVIDIA GeForce 1080ti 11GB GPU and Intel E5-2698 v4 @2.2GHz
CPU, running Ubuntu 18.04 and Pytorch 1.6.0.

Method DenseFuse [15] DIF-Net [10] NestFuse [16] Ours

Runtime 0.0020 0.0096 0.0863 0.0078

Quantitative Measurements: We provide average BIQE comparison
among different methods in Table 1. We obtain the BIQE scores in the table
on all the test image pairs. The bold number represents the best performance
in BIQE, where the smaller the better. As shown in the table, LDINet outper-
forms the others in average BIQE score, which indicates that LDINet achieves
the best visual quality after fusion. Moreover, we provide the average runtime
of the fusion results among different methods in Table 2. The unit of runtime is
sec/pair. DenseFuse [15] is the fastest in runtime, while LDINet ranks second in
them.

Ablation Study: To see the effects of pyramid feature selection and color
loss on the performance, we perform ablation experiments as follows. We obtain

Table 3. Ablation study on pyramid feature selection (pyramid) and color loss (color)
in terms of BIQE [37]. We obtain the BIQE scores on the fusion results in Figs. 8 and
9. The lower the BIQE score is, the better the performance is.

Method No pyramid & no color No pyramid No color Ours

BIQE [37] 19.3720 19.6876 18.1184 16.8795
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Fig. 8. Ablation study on pyramid feature selection and color loss. Top: RGB image,
NIR image, fusion result without pyramid feature selection and color loss, Bottom:
Fusion result without pyramid feature selection, fusion result without color loss, and
fusion result by LDINet.

Fig. 9. Ablation study on pyramid feature selection and color loss. Top: RGB image,
NIR image, fusion result without pyramid feature selection and color loss, Bottom:
Fusion result without pyramid feature selection, fusion result without color loss, and
fusion result by LDINet.

the fusion results without pyramid feature selection and color loss, those without
pyramid feature selection, those without color loss in LDINet. Then, we compare
them with the fusion results by LDINet. Figs. 8 and 9 show visual comparison
of the fusion results by ablation experiments. The fusion results without pyra-
mid feature selection and color loss look darker and less textures than those by
LDINet. The fusion results without pyramid feature selection lose some details
such as clouds and mountains. The fusion results without color loss contain color
shift. However, LDINet generates natural-looking fusion images with fine details
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while keeping the original color tone. Table 3 shows the BIQE scores on the
fusion results in Figs. 8 and 9. The lower the BIQE score is, the higher the
image quality is. The results indicate that both pyramid feature selection and
color loss contribute to the fusion performance.

5 Conclusion

In this paper, we have proposed long distance imaging through RGB and NIR
image fusion. We have constructed a fusion network of RGB and NIR images
based on pyramid feature selection and attention map. We have used the atten-
tion map to guide contrast enhancement. Moreover, we have utilized pyramid
feature selection to extract multi-scale information and generate a fusion image
with fine details and good colors. Besides, we have generated training data that
the input smoothed color images are generated by their original color images, i.e.
ground truth. Experimental results demonstrate that LDINet generates natural-
looking images from RGB-NIR image pairs and outperforms state-of-the-art
methods based on deep learning in terms of visual quality and quantitative
measurements.

When the input RGB and NIR images are not registered, LDINet may cause
artifacts such as blur and halo along object boundaries. In our future work, we
will investigate the registration issue in the fusion.
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25. Schaul, L., Fredembach, C., Süsstrunk, S.: Color image dehazing using the near-
infrared. In: Proc. IEEE ICIP. pp. 1629–1632 (2010)

26. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Netw. 61,
85–117 (2015)

27. Socolinsky, D.A., Wolff, L.B.: Face Recognition in Low-Light Environments Using
Fusion of Thermal Infrared and Intensified Imagery. Springer, London (2009)

28. Son, C.H., Zhang, X.P., Lee, K.: Near-infrared coloring via a contrast-preserving
mapping model. In: Proc. IEEE GlobalSIP. pp. 678–681 (2015)

29. Song, X., Neuvo, Y.: Image compression using nonlinear pyramid vector quantiza-
tion. Multidimension. Syst. Signal Process. 5(2), 133–149 (1992)

https://doi.org/10.1109/ACCESS.2021.3100037
https://doi.org/10.1109/ACCESS.2021.3100037


LDINet: Long Distance Imaging Through RGB and NIR Image Fusion 185

30. Uchida, M., Ohmori, Y., Yoshino, K.: Electroluminescence from visible to near-
infrared spectral range in buckminsterfullerene diode. Jpn. J. Appl. Phys. 30(12B),
L2104–L2106 (1991)

31. Vanmali, A.V., Gadre, V.M.: Visible and nir image fusion using weight-map-guided
laplacian-gaussian pyramid for improving scene visibility. Sādhanā 42, 1063–1082
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Abstract. Motion forecasting is a foundational task in autonomous
driving, where accurate long-distance motion trajectories prediction of
traffic participants depends heavily on modeling the long-range global
context in traffic scenarios. Currently, the mainstream approach com-
bines vectorized scene representation with the attention mechanism for
context encoding. However, the inherent quadratic complexity of self-
attention limits these attention-based methods’ ability to fully encode
long-range context due to the prohibitive computational costs. Conse-
quently, they generally perform local attention as a trade-off between
performance and efficiency. Inspired by the recent success of state space
models with linear complexity in long sequence modeling, this paper
introduces the Attention-SSM Block (ASB) to capture long-range con-
textual features for motion forecasting. The ASB starts by extracting
local context using simple local attention, then sorts these tokens in a
specific order and inputs them into a modified SSM, which considers rela-
tive position encodings between input tokens. We build an encoder based
on ASB and combine it with a query-based decoder to form our motion
forecasting model, MambaTraj. MambaTraj achieves excellent perfor-
mance on the widely-used Argoverse2 benchmark with a small network
parameter size and low inference latency. This confirms its effectiveness
and efficiency in modeling long-range context for motion forecasting.

Keywords: Motion forecasting · State space models · Autonomous
driving · Context modeling

1 Introduction

Motion forecasting of traffic participants (including vehicles, pedestrians, etc.,
hereafter referred to as agents) is a critical foundational task for autonomous
driving. In this task, algorithms need to predict multiple possible future motion
trajectories of these agents within a specific future period based on their histori-
cal movement information and environmental information such as high-definition
(HD) maps. The challenge lies in the uncertainty of agents’ intents, thus requiring
comprehensive context feature encoding of complex traffic scenarios (including
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agents’ movement features, map features, inter-agent interactions, and motion
constraints imposed by the map) to support accurate motion forecasting.

Deep learning-based methods have now become the mainstream in motion
forecasting. Inspired by the success of convolutional neural networks (CNN) in
the field of computer vision, early deep learning-based motion forecasting meth-
ods rasterize traffic scenes as images in a top-down perspective view [2,19,23,27]
and then apply well-designed CNNs [16,28] for context encoding. Although effec-
tive at the time, these methods struggle to model long-range contextual features
due to the inherent receptive field mechanism of CNNs and accuracy loss of ras-
terized images. To overcome these shortcomings, current methods [31,32,39,40]
combine vectorized representation[8] with the attention mechanism [30]. The
vectorized representation represents both agent movement and HD maps as vec-
tors, which accurately describe the position of agents at each moment and the
geometric information of HD map elements such as lane lines.

Fig. 1. Short-range and Long-range context modeling. (a) Due to the computational
complexity constraints, each agent token and map token could only perceive a few
tokens that are nearby in time or space. (b) By arranging tokens into a sequence and
applying appropriate SSMs, each token can access information from all other tokens,
and the entire process has linear computational complexity.

Although these vectorized representation-based methods have achieved state-
of-the-art results, they have an inherent drawback. The attention mecha-
nism cannot efficiently encode the vectorized traffic scene’s long-range
global context due to the limitation of huge computational costs. This
can be attributed to two main factors: firstly, the vectorized representation
divides historical trajectories and HD map elements into many pieces; secondly,
the attention mechanism has quadratic computational complexity. They always
adopt a compromise solution by applying attention mechanisms in a local area or
time span, as shown in Fig.1(a). Although tokens could perceive non-local infor-
mation by applying local attention multiple times, it is not efficient to establish
the long-range dependency between tokens. Hence, these methods have yet to
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fully exploit the potential of vectorized representation. To facilitate efficient long-
range context encoding for vectorized representation-based motion forecasting,
we get inspired by the state space models (SSMs)[10–12,15] in natural language
processing (NLP) research. Recently, SSMs have gradually attracted attention
due to their linear computational complexity and ability to handle long-range
dependencies. The recent Mamba [9], in particular, allows SSM parameters to
be functions of the input, enabling SSM to selectively propagate or forget infor-
mation along the sequence length dimension depending on the current token.
Mamba outperforms Transformers of the same size and performs on par with
Transformers twice its size.

This paper proposes the Attention-SSM Block (ASB), which combines the
powerful local feature extraction capability of local attention and the strong
long-range dependency modeling capability of SSMs. Integrating attention mech-
anisms and SSMs poses two challenges. The first challenge arises from the fact
that attention is permutation-invariant to the input, meaning the order of input
tokens does not affect the result, while SSMs do not share this property. We pro-
pose to sort the input tokens of SSMs for different context encodings
(agent movement features or map features) in a reasonable and stable man-
ner, although there is no natural order for agents and HD map elements. The
second challenge is that we want to combine SSMs with the relative position
encoding approach [3,17,36], which has been proven to be more efficient than
agent-centric [13,29] and scene-centric [8,21,26] encoding methods in motion
forecasting, while SSMs’ update process does not consider position encoding.
Thus, we introduce relative position encoding into SSMs. To utilize ASB
for the motion forecasting task, we introduce MambaTraj, an encoder-decoder
structured motion forecasting model. MambaTraj constructs its encoder with
ASB as the basic block and cooperates with a query-based decoder [1,7].

Experiment results on Argoverse2 [33] benchmark demonstrate that Mam-
baTraj achieves comparable performance with state-of-the-art methods but has
fewer parameters and lower inference latency, indicating that SSMs can perform
long-range context modeling effectively and efficiently.

2 Related Work

2.1 Scene Representation and Context Modeling

In motion forecasting, scene data obtained from offline ground truth or percep-
tion algorithms [6,42] can be represented through two main methods: rasteri-
zation and vectorization. Rasterization converts maps, agent trajectories, and
scene states into rasterized images suitable for processing by CNNs, but this
method can suffer from information loss and a limited receptive field [2,4]. Vec-
torization, which has gained popularity, represents scenes as sets of entities with
semantic and geometric properties, enhancing the learning of entity relation-
ships through graph convolutions and attention mechanisms [21,34]. Vectorized
representations are categorized into scene-centric and agent-centric approaches.
Scene-centric methods use a single coordinate system for all agents, reducing
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computational costs by representing the scene just once [8,26]. Agent-centric
methods normalize the coordinate system around each agent and represent the
scene multiple times for accurate predictions [22,25,37].

Regarding context data processing, the historical trajectories of agents, map
data, and traffic participant status are crucial. Methods like LaneGCN and
BANet utilize graph neural networks (GNNs) to integrate multimodal data
[21,35], while SceneTransformer and Wayformer apply multi-axis attention to
merge temporal and spatial information [25,26]. However, the computational
complexity of the self-attention mechanism in Transformers escalates with the
length of the context, prompting state-of-the-art solutions to limit attention to
localized areas or periods to manage computational demands [39,40]. HiVT[40]
normalizes the local context of each agent and explicitly merges the relative
poses in local and global feature fusion to make the method viewpoint invariant.
QCNet[39] uses a query-centric paradigm for scene encoding, which enables the
reuse of past computations by learning representations independent of the global
spacetime coordinate system.

2.2 State Space Models

State space models (SSMs) have been foundational in sequence modeling, evolv-
ing from hidden Markov models to sophisticated recurrent neural networks
(RNNs). These models excel in handling sequences through recurrent updates of
hidden states. The Structured State-Space Sequence (S4)[11] model represents a
significant advance, optimizing computational efficiency through innovative repa-
rameterization and attracting attention for its linear scaling ability with sequence
length. Recent developments in SSMs have introduced linear-time attention vari-
ants such as H3[5] and Gated State Space[24], which enhance the efficiency
and functional scope of these models. Mamba[9] builds upon these improve-
ments by incorporating a data-dependent selection mechanism into S4, enabling
more effective capture of long-range contexts as sequence lengths increase. Not
only does Mamba demonstrate linear time efficiency, but it also exceeds the
performance of traditional Transformers in various applications. Due to the
strong long-range dependency modeling capability, Mamba has been successfully
applied in vision tasks[14,20,41] recently. In this paper, we exploit its potential
in motion forecasting.

3 Preliminaries

3.1 SSM for Sequence Modeling

SSM is inspired by a particular continuous system that maps a 1-D function or
sequence x(t) ∈ R → y(t) ∈ R through a hidden state h(t) = R

N . It could be
formulated as:

h′(t) = Ah(t) + Bx(t),
y(t) = Ch(t),

(1)
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where A ∈ R
N×N , B ∈ R

N×1 and C ∈ R
1×N are the system parameters. Mamba

introduces a timescale parameter Δ and use zero-order hold (ZOH) to transform
the system to a discrete version as follows:

Ā = exp(ΔA),

B̄ = (ΔA)−1(exp(ΔA) − I) · ΔB,

ht = Āht−1 + B̄xt,

yt = Cht.

(2)

For a sequence of length L, the above discrete-time equations could be imple-
mented through convolution as follows:

K̄ = (CB̄,CĀB̄, ..., CĀL−1B̄),
y = x ∗ K̄.

(3)

Fig. 2. Architecture of MambaTraj. The inputs are agents’ historical movement infor-
mation and the HD map. The outputs are predicted trajectories and confidence scores.
The encoder is constructed with four sub-encoders based on ASB and produces agent
and map tokens. The decoder uses a set of learnable multi-modal trajectory queries to
extract features from agent, and map tokens and decodes predicted trajectories and
confidence scores through two FFNs.

3.2 Problem Formulation

The task of motion forecasting involves predicting the future motion trajectories
of agents based on the input of their historical trajectory information and the HD
map of the environment in which these agents are located. The past H frames of
trajectories of A input agents (vehicle, pedestrian, etc.) are typically represented
as A × H × Da, where Da includes 2D position as well as other attributes such
as the agent’s category. The corresponding K possible future trajectories of
F frames to be predicted are A × K × F × 2. As for the representation of the
map, we employ the widely-used vectorized representation [8,39,40]. It represents
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map information as a set of lane line segments shaped M × Dm (where Dm

includes the start and end point coordinates of each lane segment, as well as their
attributes, such as turns, intersections, bus lanes, etc.), with each lane segment
not exceeding 5 meters in Argoverse2. It should be noted that A, M , H, F , Da

and Dm are not hyperparameters which need to be tuned. A and M vary in
different scene samples. H, F , Da and Dm are provided by the benchmarks.

4 Methodology

4.1 Network Architecture

As illustrated in Figure 2, MambaTraj has a typical encoder-decoder structure.
The encoder is composed of four sub-encoders: trajectory encoder, map encoder,
agent-map encoder, and agent-agent encoder. All sub-encoders consist of multi-
ple stacked Attention-SSM blocks. The trajectory encoder encodes the histori-
cal trajectory information of all agents as A × H × Dh, while the map encoder
encodes the vectorized map information as M×Dh. Subsequently, the agent-map
encoder uses the map features obtained from the map encoder to enhance the
agent features obtained from the trajectory encoder. The agent-agent encoder
finally models the relationships between agents to further extract their inter-
active features. In the decoder, there is a set of shared learnable multi-modal
queries for all agents, shaped K × Dh. To decode the trajectories of all the A
agents in parallel, we replicate queries to A × K × Dh. These queries extract
the features necessary for predicting future motion trajectories through multiple
cross-attention layers from the feature tokens of agents and maps generated by
the encoder, thereby producing a A × K × Dh feature vector for agents. This
feature vector is then processed through two separate feed-forward networks
(FFNs) to yield the predicted K possible future trajectories A × K × F × 2 and
their corresponding confidence scores A × K × 1 for all agents.

Fig. 3. Attention-SSM block and the bidirectional SSM.
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4.2 Attention-SSM Block

To leverage the long-range context modeling capabilities of the SSM, we combine
it with local attention and introduce the Attention-SSM Block (ASB). As shown
in Fig.3(a) and Fig.3(b), the input to an ASB is a set of tokens (agent features,
lane segment features, or both of them). Local attention is applied to each token
and its nearby tokens in space or time to extract local features of input tokens.
If there are N tokens and, on average, each token has k neighbors (where k is
much smaller than N), then the complexity of this step is O(kN). Subsequently,
the tokens are sorted appropriately to form a token sequence as the input into
the SSM for extracting long-range contextual features, with this step having
a complexity of O(N). If attention were used for complete long-range context
modeling, each token would attend to all other tokens, leading to a computa-
tional complexity of O(N2), which is highly impractical when N is large in those
complex traffic scenes. The analysis of computational complexity demonstrates
that our Attention-SSM block, compared to a purely attention-based structure,
can perform complete long-range context modeling much more efficiently.

Fig. 4. Different sorting strategies. (a) Chronological order for the historical movement
tokens of one agent; (b) Sort map tokens by their degrees; (c) Sort trajectory tokens of
one agent chronologically and sort map tokens by degrees, then concatenate trajectory
after map; (d) Sort different agents’ tokens at the same moment by their degrees.

4.3 Sorting Strategy of Tokens in ASB-based Encoders

The four sub-encoders of MambaTraj are composed of multiple ASBs stacked
together. Due to the different semantics of the tokens they process, the internal
computation processes (especially the sorting of tokens) within their ASBs vary.
Below, we provide a detailed description to the computation processes and token
sorting strategies within the ASBs of these sub-encoders.

Trajectory Encoder The input to the trajectory encoder consists of multiple
agents’ historical movement information, represented as A × H × Da. The tra-
jectory encoder encodes the trajectory features for A agent independently along
the temporal dimension. In the local attention phase, each moment attends only
to a small period h preceding it to extract local temporal motion features. Sub-
sequently, we arrange the feature tokens of different moments chronologically for
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each agent (Fig.4(a)) and input them into the SSM. Since the tokens are placed
in chronological order, each token can perceive all moments before it through the
SSM, allowing for the extraction of long-range temporal motion features. The
final agent features obtained are A × H × Dh.

Map Encoder The input of the map encoder consists of features M ×Dm of all
lane segments in the agent’s surrounding environment. In local attention, each
lane segment only attends to other segments within a distance range r, which
is set to 50 meters in our method. In the sort step, we sort the lane segment
tokens based on their degree from lowest to highest (Fig.4(b)). The intuition
is that tokens with a higher degree are often located at traffic hubs, such as the
central area of intersections, and they should be placed towards the end of the
sequence, allowing them to capture the features of the majority of other tokens.
For tokens with the same degree, we perform random sorting during the training
process to make the SSM more robust to the ordering noise of tokens with the
same degree. During inference, we apply multiple random orderings to these
same-degree tokens to form multiple sequences and then merge the inference
results of these sequences. However, since we focus on modeling the long-range
relationship between all map tokens, we need to use a bidirectional SSM [41] as
shown in Fig.3(c). It is important to note that using a bidirectional SSM does
not contradict sorting map tokens by degree because the bidirectional SSM also
requires a sequentially stable input sequence. The final map features obtained
are M × Dh.

Agent-Map Encoder The agent-map encoder is designed to enhance agent
features by enabling agents to acquire information about their surrounding envi-
ronment through map tokens. Its inputs are agent tokens A × H × Dh and map
tokens M×Dh. In local attention, each agent token attends to map tokens within
the distance range r. As we want agents to perceive complete map information
in the SSM, we repeat map tokens to A×M ×Dh and concatenate each agent’s
H tokens after map tokens to get A × (M + H) × Dh. Within the map tokens
and agent tokens, they are sorted according to degree and chronological order,
respectively (Fig.4(c)). After processing the A sequences through the SSM, we
take the last H tokens from each sequence to recover A × H × D agent tokens.

Agent-Agent Encoder The input to the agent-agent encoder is agent tokens
H × A × Dh, with the aim to model the interactions between A agents at H
different moments. For local attention, an agent at moment t only attends to
other agents within a certain distance range r at the same moment instead of
considering all other agents and other moments. Subsequently, for H sequences
of A agent tokens each, they are sorted by degree (Fig.4(d)). Then, they enter
a bidirectional SSM, allowing each agent to efficiently extract features from all
other agents at the same moment regardless of the distance.
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4.4 Relative Position Encoding in SSMs

To encode agent and map features efficiently in a rotation and translation invari-
ant manner, we follow the scene representation method of [39,40]. We normalize
each moment’s motion vector of the agent’s historical trajectory with the posi-
tion at that moment as the origin and the heading direction as the positive
direction of the x-axis. Similarly, we normalize each lane line segment vector
with its start point as the origin and its direction as the positive direction of
the x-axis. Thus, when using attention and SSMs to encode agent and map fea-
tures, it is necessary to know the relative positions between different moments
of an agent, between different lane segments, between agents and lane segments,
and between different agents. Otherwise, they cannot model their surrounding
environment correctly.

In methods using attention for context encoding [3,17,36,39,40], the infor-
mation of keys and values relative to the query is incorporated into the attention
computation process as follows:

qi = WQhi,

kij = WKhj + W r→krij ,

vij = WV hj + W r→vrij ,

(4)

where rij means token j’s geometric information relative to token i (relative posi-
tion, relative orientation, etc.), and h represents agent or map feature tokens from
the encoder. The function of the above formulas could be viewed as converting
the feature of token j in its local coordinate system into the local coordinate
system of token i through adding the relative geometric information in a latent
high-dimension space, enabling token i to extract the features of its surrounding
context in its own local coordinate system.

We could directly use the SSM as Eq.(2) to process the feature token sequence
of agents or lane segments in their local coordinate systems. xt is the feature of
token t in its local coordinate system, which first fuses with the hidden state of
token t − 1 to obtain token t’s local coordinate system hidden state and then
undergoes a feature transformation to obtain the output token yt that perceives
token t and all its previous tokens. However, a conflict arises in this process: ht−1

is in the local coordinate system of token t−1, while xt is in the local coordinate
system of token t, making direct fusion between them unreasonable. Therefore,
we propose to correct this process using the relative geometric information of
token t − 1 to token t, with the formula:

ht = Āht−1 + W r→hrt,t−1 + B̄xt,

yt = Cht.
(5)

This formula can be intuitively understood as first transforming the hidden
state of token t − 1 to the local coordinate system of token t through adding
W r→hrt,t−1, and then fusing it with the feature of token t. To implement the
above equations through convolution, we could precompute W r→hrt,t−1 at all
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time steps in the token sequence and use them as part of the input, denoted as
r. The convolution version of Eq.(5) is as follows:

K̄ = (CB̄,CĀB̄, ..., CĀL−1B̄),

M̄ = (C,CĀ, ..., CĀL−1),
y = x ∗ K̄ + r ∗ M̄.

(6)

4.5 Decoder and Loss Functions

In the decoder, there is a set of learnable K × Dh query embeddings shared by
all agents. For each agent, the query embedding interacts with A×H ×Dh agent
tokens and M ×Dh map tokens through cross-attention layers to extract features
for predicting future trajectories. Subsequently, using two FFNs to decode K
possible future trajectories A×K ×F × 2 in the local coordinate system of each
agent at the moment H and the confidence scores A × K × 1.

Similar to [40], we use the Laplace Negative Log Likelihood loss for the
trajectory regression, requiring the output of the FFN decoding the trajectory
to be A × K × F × 4, which includes K sets of 2D coordinates μt

i ∈ R
2 for

F moments and their corresponding uncertainty bti ∈ R
2. The regression loss

function for the trajectory is shown as follows:

Lreg = − 1
AF

A∑

i=1

H+F∑

t=H+1

logP (posti | μ̂t
i, b̂

t
i), (7)

where μ̂t
i, b̂

t
i represent the coordinates and uncertainty at moment t of the best

predicted trajectory of the i-th agent, and P (·|·) is the probability density func-
tion of Laplace distribution. For the learning of confidence score, we use the
cross-entropy loss as confidence loss Lconf . To get the target confidence score,
we use Softmax to normalize the negative values of the errors between K pre-
dicted trajectories and the ground truth. Finally, we train MambaTraj using:

Ltotal = Lreg + Lconf . (8)

5 Experiments

5.1 Experiment Settings

Dataset Argoverse2 [33] is the latest large-scale motion forecasting dataset
collected in six cities, such as Miami and Pittsburgh, totaling 250,000 scenarios.
It is divided into 200,000 scenarios for training, 25,000 for validation, and 25,000
for testing. The ground truth of the test split is not released, so model prediction
results of the test split must be submitted to the official server to obtain metrics.
In each scenario, it provides 5-second historical trajectories of various traffic
participants (vehicles, pedestrians, bicycles, buses, etc.) sampled at 10Hz (H =
50) and the HD map of the current scene, encompassing details of lane lines,
sidewalks, and other traffic elements. The model is required to predict a 6-second
future trajectory of each agent, that is F = 60.
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Metrics We follow the official evaluation metrics of Argoverse2, which include
minFDEk, minADEk, MRk, and brier − minFDEk. These metrics are calcu-
lated based on the best one out of k predicted trajectories, where the official
metrics commonly use k = 1 and k = 6. FDE refers to the L2 distance between
the predicted trajectory and the ground truth trajectory at the last frame, while
ADE is the average L2 error across all F predicted time steps. MR (Miss Rate)
refers to the proportion of predicted trajectories with an FDE larger than 2
meters. Brier-minFDE is calculated as (1− p)2 × minFDE, where p is the confi-
dence score of the best-predicted trajectory. All these metrics are designed such
that lower values indicate better performance.

Table 1. Comparison of different methods on the test split of Argoverse2 dataset. �
means using model ensemble techniques.

Method minFDEk↓minADEk↓ MRk↓ b-FDE6↓
k=1 k=6 k=1 k=6 k=1 k=6

HDGT[17] 5.37 1.60 2.08 0.84 0.66 0.21 2.24
HPTR[36] 4.61 1.43 - 0.73 - 0.19 2.03
GoRela[3] 4.62 1.48 1.82 0.76 0.66 0.22 2.01
GANet[31] 4.47 1.35 1.77 0.71 0.59 0.17 1.96
QCNet[39] 4.3 1.29 1.69 0.65 0.59 0.16 1.91
ProphNet[32] 4.74 1.33 1.8 0.68 0.61 0.18 1.88
SmartRefine[38] 4.17 1.23 1.65 0.63 0.58 0.15 1.86
MambaTraj 4.1 1.25 1.6 0.63 0.57 0.16 1.89

QCNet� 3.96 1.19 1.56 0.62 0.55 0.14 1.78
SEPT�[18] 3.7 1.15 1.49 0.61 0.54 0.14 1.74
MambaTraj� 3.74 1.17 1.5 0.61 0.540.13 1.76

Table 2. Comparison of different methods’ efficiency on Argoverse2 dataset.

Method codes availableParam↓Latency(ms)↓
HPTR[36] � 10.3M 335
QCNet[39] � 7.7M 182
ProphNet[32] � - 28
SmartRefine[38] � 8.0M 207
MambaTraj Ours 2.9M 30
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5.2 Comparison with State of the Art

Table 1 shows that MambaTraj achieves comparable performance with state-of-
the-art publised methods on the Argoverse2 test split, both with and without
the ensemble technique. QCNet utilizes query-based decoder and hierarchical
encoder[40] which combines local and global attention. Compared to QCNet,
MambaTraj’s advantage suggests that SSMs could better model long-range con-
text than global attention. When applying the ensemble technique, SEPT[18] has
slightly better results than MambaTraj, because it uses self-supervised pretrain-
ing task on additional data, including the validation and test splits of Argoverse2,
to get a stronger encoder. We also compare MambaTraj with other methods in
terms of parameter size and average inference latency in Table 2. Except Proph-
Net, other models’ parameter counts are obtained from their official open-source
codes and we test their inference latency on a single V100 GPU. We can only
get the inference latency of ProphNet from its published paper[32] and cannot
get its parameter size as the authors did not release codes. [18] neither reports
parameter size nor speed in the paper, nor does it release code, so we cannot
compare efficiency with SEPT. Table 1 and Table 2 show that MambaTraj could
achieve better performance with fewer parameters and have low inference latency
as well as the ProphNet, which sacrifices performance for computing efficiency.
These results demonstrate that our method can effectively and efficiently model
long-range contextual features, improving the accuracy of trajectory predictions.

5.3 Ablation Study

To validate the effectiveness of ASB, we replace the ASB in all sub-encoders
with blocks composed solely of local attention (2nd row) and SSMs (3rd row),
maintaining a similar parameter size. The experiment results are displayed in
Table 3, showing our standard model (1st row), with all sub-encoders built upon
ASB, has the best performance. Replacing attention with SSM alone even leads
to worse performance, suggesting that SSMs may not be suitable for extracting
local context and need to be combined with attention for better results.

In the 4th to 7th rows, ASB-G represents that we replace the SSM in ASB
with the global attention. The results demonstrate that, compared to the global
attention mechanism, SSM is more efficient for long-range context encoding.

In the 8th to 12th rows, ASB-S represents that we remove the sorting step
in ASB. The results indicate that the correct ordering of tokens input into the
SSM is crucial for the ASB to function correctly, and the sorting step incurs only
a very small time cost, primarily due to the computation of node degrees.

In the 13th to 17th rows, ASB-R represents that we remove the relative
position encoding injection in SSM. The results suggest that when combining
relative position encoding approaches with SSM, it is necessary to inject the rel-
ative information between tokens into the SSM’s update process through Eq.(5).
Otherwise, the ASB cannot yield obvious improvements compared to pure local
attention, although it has lower inference latency.
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Table 3. Ablation study of ASB in different sub-encoder components of MambaTraj
on the validation split of Argoverse2.

Row ID Traj. Map A-M A-A minFDE6 minADE6 Latency(ms)
1 ASB ASB ASB ASB 1.26 0.71 31
2 Loc-AttLoc-AttLoc-AttLoc-Att 1.38 0.77 40
3 SSM SSM SSM SSM 1.54 0.91 23

4 ASB-G ASB ASB ASB 1.30 0.71 64
5 ASB ASB-G ASB ASB 1.32 0.73 132
6 ASB ASB ASB-G ASB 1.28 0.72 86
7 ASB ASB ASB ASB-G 1.29 0.72 45

8 ASB-S ASB ASB ASB 1.53 0.80 31
9 ASB ASB-S ASB ASB 1.39 0.76 28
10 ASB ASB ASB-S ASB 1.48 0.79 29
11 ASB ASB ASB ASB-S 1.31 0.73 30
12 ASB-S ASB-S ASB-S ASB-S 1.72 0.94 27

13 ASB-R ASB ASB ASB 1.30 0.72 31
14 ASB ASB-R ASB ASB 1.31 0.73 31
15 ASB ASB ASB-R ASB 1.27 0.72 31
16 ASB ASB ASB ASB-R 1.29 0.72 31
17 ASB-R ASB-R ASB-R ASB-R 1.37 0.76 31

5.4 Qualitative Results

To better understand the advantage of our approach, we visualize some typ-
ical prediction results of QCNet and MambaTraj in complex traffic scenarios
in Fig.5. Columns one to three are all intersection scenarios, where it can be
observed that MambaTraj provides more comprehensive predicted trajectories
(blue arrows) than QCNet. This is attributed to the long-range context mod-
eling capability of SSMs, allowing MambaTraj to more accurately and compre-
hensively perceive traffic situations at intersections. The fourth column presents
a lane-changing overtaking scenario. QCNet’s predicted trajectories are quite
short, whereas MambaTraj can accurately predict a longer trajectory following
the overtaking maneuver. These qualitative results demonstrate that the long-
range context encoding of the ASB module takes into account both the map
information and motion information of other vehicles.
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Fig. 5. Qualitative results of QCNet (upper row) and MambaTraj (lower row) on the
validation split of Argoverse2.

6 Conclusions

This paper introduces MambaTraj, which integrates the state space models with
the motion forecasting task. The core of MambaTraj is the novel Attention-SSM
Block (ASB), which combines the local features extraction ability of the atten-
tion mechanism with the efficient long-range dependency modeling capability
of SSMs. ASB employs appropriate token sorting strategies and relative posi-
tion encoding to adapt the SSMs to the vectorized scene representation. Con-
sequently, MambaTraj can efficiently and comprehensively perform both local
and global context encoding for complex vectorized traffic scenarios. The perfor-
mance metrics and qualitative results on the latest large-scale motion forecasting
benchmark, Argoverse2, indicate the effectiveness of our method.
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Abstract. In this paper, we propose a subband adaptive neural net-
work based in-loop filter in VVC using cyclic discrete wavelet transform
(DWT), named DWT-SALF. DWT-SALF takes advantages of subband
adaptive learning based on DWT in the neural network-based in-loop
filter (NNLF). Compared to the convolutional neural network (CNN),
transformer is effective in capturing low-frequency features but has lim-
ited ability of constructing high-frequency representations. Thus, DWT-
SALF uses transformer to handle the low-frequency subband, while uti-
lizing CNN to treat the high-frequency subbands. We further enhance
the high-frequency subbands with the guidance of the processed low-
frequency subband. To increase the network depth and receptive field
without increasing parameters, we adopt cyclic DWT that is cyclically
used twice in the basic block and its affiliated branches of high and low
frequency. Experimental results show that DWT-SALF achieves signifi-
cant BD-rate gains of {-8.10% (Y), -21.19% (U), -22.28% (V)} over the
VTM-11.0_NNVC-2.0 anchor under all intra (AI) configuration.

Keywords: Versatile video coding · convolutional neural network ·
compression artifact removal · cyclic DWT · in-loop filter · subband
adaptive · transformer.

1 Introduction

In VVC, there are four types of in-loop filters [3,10]: Deblocking filter (DBF)
and sample adaptive offset (SAO), adaptive loop filter (ALF) and Luma mapping
with chroma scaling (LMCS). The operation order of these filters is LMCS→DBF
→SAO→ALF. LMCS [19], also known as in-loop reshaping, is a technology
designed for high dynamic range (HDR) and standard dynamic range (SDR)
videos. LMCS consists primarily of two parts: (1) Luminance in-loop mapping
based on adaptive piecewise linear models (LM); (2) Chroma scaling based on
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luminance (CS). The key aspect of LMCS lies in determining luminance map-
ping functions and chroma scaling factors directly relevant to the characteristics
of the video source. LM operates at the pixel level, aiming to enhance video
encoding efficiency by fully utilizing luma value range and photoelectric conver-
sion property. Conversely, CS operates at the chroma block level, intending to
compensate for the influence of luma signal mapping on chroma signals. The
primary purpose of DBF [22] is to eliminate block artifacts caused by trans-
formation, quantization, and motion compensation in inter-frame prediction.
DBF adaptively decides whether to apply filtering at different block boundaries,
the filtering strength, and the maximum filtering length. That is, DBF applies
strong filtering to the discontinuous boundaries in smooth regions, weak filtering
to the areas with rich textures, or even no filtering at all. The DBF processing
begins with horizontal filtering of vertical boundaries across the entire frame, fol-
lowed by vertical filtering of horizontal boundaries. SAO [6,7,16] aims to address
the ringing artifacts caused by significant loss of high-frequency information
during the quantization process. SAO suppresses ringing artifacts in the pixel
domain by classifying reconstructed values, providing negative compensation for
multiple peaks and positive compensation for valleys. Therefore, the key aspect
of SAO lies in the classification of reconstructed pixels. Similar to the high effi-
ciency video coding (HEVC), SAO in VVC includes two compensation modes of
edge offset (EO) and band offset (BO), both applied at the CTB level. ALF [26]
technology includes luma ALF, chroma ALF, and cross-component ALF based
on Wiener filtering principle. By establishing Wiener-Hopf equations using the
original image information and reconstructed image information, a series of filter
coefficients with minimum mean square error are solved. ALF aims to reduce the
decoding errors effectively, thus improving PSNR values.

In recent years, deep learning technology has made significant strides in the
field of image and video processing. Thanks to the outstanding learning capabili-
ties of neural networks, these technologies are now capable of efficiently handling
complex image and video data, demonstrating outstanding performance across
numerous tasks. The Joint Video Exploration Team (JVET) has not only contin-
ued to optimize existing coding tools within the traditional hybrid coding frame-
work during the development of the H.266/VVC standard, but has also extended
its focus on the recent and highly anticipated neural network technologies. JVET
aims to leverage the sophistication of neural networks for further enhancing the
compression efficiency and visual quality in video coding. Li et al. [14] proposed
a convolutional neural network (CNN) filter to replace existing filters in VTM.
This method utilized the reconstructed information, including partition and pre-
diction information, as auxiliary inputs, and trained on augmented training data
with the combined MAD and MSE losses. Extensive experiments confirmed
the effectiveness of the CNN filter in removing compression artifacts. Nasiri
et al. [21] introduced a CNN-based video quality assessment method for image
processing in VVC. This method was applied to intraframe and interframe cod-
ing, which leverages the prediction information to further enhance performance.
Bordes et al. [5] improved the performance of SAO using neural networks while
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Fig. 1. Whole framework of the VVC encoder with the NN-based in-loop filter (NNLF).
LMCS: Luma mapping with chroma scaling. DBF: Deblocking filter. SAO: Sample
adaptive offset. RDO: Rate distortion optimization. ALF: Adaptive loop filter. The
proposed DWT-SALF is inserted into NNLF of the VVC encoder.

maintaining its fundamental principles, replacing the original reconstructed pixel
classification method. In JVET-T0069 [23], a neural network-based model was
proposed for subjective optimization rather than objective metric-based opti-
mization, which was operated between DBF and SAO. In the filtering scheme
proposed in JVET-AA0088[27], a single-model neural network-based loop filter
(NNLF) was proposed, handling luma and chroma information simultaneously.
This NNLF took the reconstructed pixels before DBF as inputs, and the out-
put was weighted fused with the SAO filter output as input to the ALF filter.
Furthermore, in JVET-AD0380[2], a high-performance operation point (HOP)
in-loop filter was proposed as a unified neural network-based loop filter in JVET.

Discrete wavelet transform (DWT) and convolutional neural network (CNN)
are two widely used technologies in the fields of image processing and com-
puter vision. DWT is an effective signal processing tool that can decompose
images or videos into sub-bands of different scales such as low-frequency and
high-frequency sub-bands. These sub-bands contain different frequency informa-
tion and details of the image or video. CNN has powerful feature extraction and
learning capabilities, and is especially good at processing image and video-related
tasks. Introducing DWT into CNN can capture the local and global features of
images and videos while retaining the multi-scale information of images and
videos. Yao et al. [29] proposed a new wavelet visual transformer (Wave-ViT),
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Fig. 2. Network architecture of the proposed DWT-SALF. (a) Luma model. (b)
Chroma model. In each block, [Conv, s, n×n, din, dout] represents convolution, stride
(default is 1), convolution kernel size, number of input channels, and number of output
channels, respectively. The chroma model takes the luma reconstructed frame to guide
and supplement chroma channels (UV). Rec stands for the reconstructed frame, Pre
stands for the predicted frame, Par stands for the partition map, and QP_Map stands
for the QP map. [1] indicates a single channel, while [2] indicates two channels.

which unified reversible downsampling with wavelet transform and self-attention
learning. This solution implements self-attention learning for lossless downsam-
pling of keys/values, helping to pursue a better trade-off between efficiency and
accuracy. This avoids information loss caused by downsampling, especially high-
frequency components in features such as textures and details. Liu et al. [17]
proposed a multi-level wavelet CNN (MWCNN) model to expand the receptive
field for better trade-off between performance and efficiency. MWCNN is based
on U-Net architecture and consists of shrinking subnets and expanding subnets.
In the shrinking subnet, DWT is utilized to replace each pooling operation. Since
DWT is reversible, it is guaranteed that all information can be preserved by this
downsampling scheme. In addition, DWT can capture the frequency and loca-
tion information of feature maps, which may help preserve detailed textures.
In the extended subnetwork, the inverse discrete wavelet transform (IDWT) is
used to upsample the low-resolution feature map to the high-resolution feature
map. Krishnaraj et al. [11] proposed a model that combined DWT and CNN
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for real-time image compression in IoUT environment. DWT is responsible for
decomposing images into multi-scale sub-bands and capturing local and global
features, while CNN learns these features and generates compressed represen-
tations to achieve efficient data compression and real-time performance. Qin
et al. [24] introduced DWT into the attention mechanism. They viewed chan-
nel attention from the frequency domain perspective to make up for the short-
comings of insufficient feature information in existing channel attention. They
extended global average pooling (GAP) to a more general representation form,
namely the 2-dimensional discrete cosine transform (DCT), by introducing more
frequencies to make full use of information. VVC is a block-based video coding
framework, and inevitably causes compression artifacts such as block artifacts,
ringing artifacts, and color distortion, thereby reducing the visual quality and
viewing experience. Moreover, quantization techniques are commonly employed
during encoding to reduce the amount of video data, which often results in the
loss of high-frequency component, which is closely related to edges and textures
of an image. The loss of them causes the decoded image to appear blurry and
exhibit noticeable block effects.

In this paper, we propose a subband adaptive NNLF in VVC using cyclic
DWT, named DWT-SALF. DWT can decompose images or videos into sub-
bands of different scales such as low-frequency and high-frequency subbands.
Since these sub-bands contain different frequency information in images and
videos, the introduction of DWT into CNN can perform subband adaptive pro-
cessing and learning from images and videos, thereby enhancing the network’s
ability of capturing features. DWT-SALF combines DWT with CNN to restore
high-frequency component and enhance the quality of decoded images. DWT-
SALF consists of 6 cyclic DWT blocks (CDWTBs) in luma and 4 CDWTBs in
chroma designed to extract important feature information from input images.
Each CDWTB includes two residual blocks, a channel attention mechanism,
and a cyclic DWT enhancement block (CDWTEB). CDWTEB utilizes DWT
to decompose the input feature map into high-frequency subbands and low-
frequency subbands. Li et al.[12] explored the impact of CNN and transformer
on performance from the frequency perspective, finding that transformer excels
in capturing low-frequency information but are ineffective in capturing high-
frequency features. Therefore, we employ transformer to process low-frequency
subband while using CNN to process high-frequency subbands. To increase
the network depth and receptive field without adding parameters, CDWTEB
is cyclically used within CDWTB, while both the high-frequency and low-
frequency branches in CDWTEB are also cyclically utilized twice. We have inte-
grated DWT-SALF into VTM-11.0_NNVC-2.0, which achieves average gains of
{-8.10%(Y), -21.19%(U), -22.28%(V)} over the VTM-11.0_NNVC-2.0 anchor
under AI configuration. Fig. 1 illustrates the whole framework of the VVC
encoder with the NN-based in-loop filter (NNLF). The proposed DWT-SALF
is inserted into NNLF of the VVC encoder.

Compared with existing methods, main contributions of this paper are sum-
marized as follows:
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Fig. 3. Network architecture of the cyclic DWT block (CDWTB) in DWT-SALF. (a)
CDWTB. (b) Residual block (RB). (c) Channel attention block (CAB) [15]. (d) Cyclic
DWT enhancement block (CDWTEB). RBout represents the output of the residual
block (RB), Recmedia represents the reconstruction output of the previous CDWTB,
and Rec represents the input reconstructed frame.

– We propose subband adaptive neural network based in-loop filter for VVC
using cyclic DWT, named DWT-SALF. Since DWT decomposes an image
into high-frequency subbands and low-frequency subbands, DWT-SALF takes
advantages of subband adaptive learning to enhance the quality of decoded
frames in VVC.

– DWT-SALF combines CNN and transformer in a DWT-based framework
to take each own advantage. Compared to CNN, transformer is effective in
capturing low-frequency features but has limited ability of learning high-
frequency ones. Thus, we utilize transformer to handle the low-frequency
subband and CNN to treat the high-frequency subbands. Moreover, the high-
frequency subbands are further enhanced with the guidance of the processed
low-frequency subband.

– DWT-SALF adopts a cyclic DWT block (CDWTB) as the basic block to
increase the network depth and receptive field without increasing parameters.
In CDWTB, CDWTEB and both high-frequency and low-frequency branches
inside CDWTEB are cyclically used twice to enhance the features.

– DWT-SALF employs a latent edge map as auxiliary information to enrich
features for the high-frequency subbands. The latent edge map is obtained
by applying simple edge detection to the input reconstructed frame and the
reconstructed output of the previous CDWTB.
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2 Proposed Method

As illustrated in Fig. 2, the proposed DWT-SALF consists of luma and chroma
models. Both the luma and chroma models have the network architecture of
head, backbone, and reconstruction. The head in the lumia model includes four
inputs: the reconstructed frame (Red_Y [1]), predicted frame (Pre_Y [1]), par-
tition map (Par_Y [1]), and QP map (QP_Map [1]). Each input undergoes
feature extraction with a 3x3 convolutional layer, followed by feature fusion and
dimensionality reduction using a 1x1 convolutional layer. Finally, the resolution
is reduced by a 3x3 convolutional layer with a stride of 2 to reduce compu-
tational complexity. The head of the chroma model includes five inputs: the
luma reconstructed frame (Rec_Y [1]), chroma reconstructed frame (Pre_UV
[2]), chroma predicted frame (Pre_UV [2]), chroma partition map (Par_UV
[2]), and QP map (QP_map [1]). Since the luma reconstructed frame contains
rich information compared to the chroma reconstructed frame, we use the luma
reconstructed frame to guide and supplement chroma channels (UV). In DWT-
SALF, the backbones of both luma and chroma models use cyclic DWT block
(CDWTB) as the basic block. The luma model contains 6 CDWTBs, while the
chroma model contains 4 CDWTBs. Since the chroma channels are simpler than
the luma channel, they have the small number of CDWTBs.

Fig. 4. Network architectures of two core modules in DWT-SALF. (a) Multi-scale fea-
ture fusion enhancement module (MFFEM). (b) Detail enhancement module (DEM).

2.1 Cyclic DWT Block

Fig. 3(a) illustrates the specific process of the cyclic DWT block (CDWTB).
CDWTB consists of two residual blocks (RB), a cyclic DWT enhancement
block (CDWTEB), and a channel attention block (CAB). The input of the
i-th CDWTB is derived from the (i-1)-th CDWTB. The input feature maps



Subband Adaptive Neural Network Based In-Loop Filter 209

undergo feature extraction through two RBs, followed by CDWTEB to enhance
high-frequency and low-frequency features separately. CDWTEB is cyclically
used twice, where the output of the first cycle serves as the input to the second
cycle. This dual-cycle utilization of CDWTEB deepens the network and enlarges
the receptive field without increasing parameters. Subsequently, CAB is utilized
to enhance model performance at the channel level, thereby improving overall
model performance. To reduce the training complexity and mitigate gradient
vanishing, CDWTB utilizes residual connections. CDWTB has two outputs: one
is the output of the residual connection, and the other is the reconstructed frame
generated by applying 1x1 convolution and transposed convolution to the result
of the residual connection.

Table 1. BD-rate of the first-stage model for DWT-SALF over VTM-11.0_NNVC-2.0
in AI configuration. DWT-SALF is embedded into VTM-11.0_NNVC-2.0 where the
QP distance is set to 5. For training set, the input QP is {22, 27, 32, 37, 42}, while its
corresponding label QP is {17, 22, 27, 32, 37}.

Class Y-PSNRU-PSNRV-PSNR

Class A1 -7.09% -21.36% -23.63%
Class A2 -7.25% -21.39% -21.73%
Class B -6.94% -20.22% -20.29%
Class C -6.87% -15.23% -18.17%
Class E -9.61% -25.06% -23.76%
Overall -7.45% -20.30% -21.19%
Class D -6.56% -15.69% -17.45%

2.2 Cyclic DWT Enhancement Block

The network structure of the cyclic DWT enhancement block (CDWTEB) is
shown in Fig. 4(d). First, the RB output is decomposed into high-frequency sub-
bands and low-frequency subbands through DWT. Li et al.[12] found that trans-
formers excel in capturing low-frequency information but perform less effectively
in capturing high-frequency information. The unique feature of transformer is
a global attention mechanism, which can comprehensively consider the corre-
lation between any pixels in the image and takes advantage of understanding
and inferring the connections between distant elements in an image. In contrast,
CNN has a fixed receptive field, while transformer can more flexibly adapt to
various complex image scenes and adjust the focus of attention according to
the content. Considering the advantages of transformer, we use a transformer
model proposed by Zamir et al.[30] to process and enhance features in low-
frequency subband. However, due to the poor ability of transformer in capturing
high-frequency information, we use CNN to process high-frequency subbands
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and propose a multi-scale feature fusion enhancement module (MFFEM). To
supplement insufficient high-frequency features, we use Sobel edge extraction to
extract edge information from the reconstruction output of the previous CDWTB
Recmedia and the input reconstructed frame Rec. The latent edge map is put into
MFFEM together with the high-frequency subbands to obtain the enhanced
high-frequency information. Since the low-frequency information contains rela-
tively rich information, we further utilize the enhanced low-frequency informa-
tion to enhance the high-frequency information. The enhanced low-frequency
information and high-frequency information are put into the detail enhance-
ment module (DEM) to further enhance the high-frequency feature. To increase
the network depth and fully extract features without increasing the number of
parameters, the high-frequency branch and the low-frequency branch are recy-
cled twice in CDWTEB. Finally, the enhanced high-frequency feature and low-
frequency feature are fused through IDWT.

Table 2. BD-rate of the second-stage model for DWT-SALF over VTM-11.0_NNVC-
2.0 in AI configuration. DWT-SALF is embedded into VTM-11.0_NNVC-2.0 where
the QP distance is set to 10. For training set, the input QP is {22, 27, 32, 37, 42},
while its corresponding label QP is {17, 22, 27, 32, 37}.

Class Y-PSNRU-PSNRV-PSNR

Class A1 -7.27% -19.76% -22.19%
Class A2 -7.55% -21.45% -22.21%
Class B -7.25% -20.51% -20.14%
Class C -7.24% -15.72% -18.84%
Class E -10.09% -24.57% -23.36%
Overall -7.78% -20.15% -21.08%
Class D -6.85% -16.27% -18.05%

2.3 Multi-scale Feature Fusion Enhancement Module

The network structure of the multi-scale feature fusion enhancement module
(MFFEM) is shown in Fig. 4(a). MFFEM significantly expands its receptive
field and strengthens feature extraction capability by introducing convolutional
kernels of different sizes. In addition to standard 3x3 and 1x1 convolutional
kernels, MFFEM also utilizes larger-sized kernels such as 5x5, 7x7, and 9x9 to
capture rich feature. Although larger kernels provide deeper levels of details,
they inevitably increase computational complexity. To mitigate this complexity,
the 5x5, 7x7, and 9x9 convolutions within MFFEM are decomposed [25], thus
reducing the computational cost. The strategy of using multi-scale convolutional
kernels not only enhances the model’s semantic understanding of input data but
also strengthens its ability of capturing multi-scale features, thus significantly
improving the overall feature extraction performance of the model.
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2.4 Detail Enhancement Module

The network structure of the detail enhancement module (DEM) is illustrated
in Fig. 4(b). Low-frequency information contains richer content than high-
frequency information. Therefore, we utilize the enhanced low-frequency infor-
mation to further enhance the high-frequency information. The DEM module
first highlights detailed features such as edges and textures in the low-frequency
information through max-pooling operations, and then concatenates this with
the enhanced high-frequency information along the channel dimension. Subse-
quently, 1x1 and 3x3 convolutions are applied to the concatenated features to
reduce dimensionality and fuse them, thereby obtaining further enhanced high-
frequency information. DEM fully leverages the rich content in the low-frequency
information, and is combined with the high-frequency information to effectively
enhance details and quality of an image.

Table 3. BD-rate of the third-stage model for DWT-SALF over VTM-11.0_NNVC-2.0
in AI configuration. DWT-SALF is embedded into VTM-11.0_NNVC-2.0 where the
QP distance is set to 15. For training set, the input QP is {22, 27, 32, 37, 42}, while
its corresponding label QP is {17, 22, 27, 32, 37}.

Class Y-PSNRU-PSNRV-PSNR

Class A1 -7.61% -21.64% -23.76%
Class A2 -7.81% -22.88% -23.68%
Class B -7.58% -21.30% -21.31%
Class C -7.53% -15.84% -19.51%
Class E -10.53% -25.98% -24.71%
Overall -8.10% -21.19% -22.28%
Class D -7.11% -16.52% -18.68%

3 Experimental Results

For the experiments, we trained two models of luma and chroma as shown in Fig.
2. We embedded the trained models into VTM-11.0_NNVC-2.0 and performed
evaluation under the Common Test Conditions (CTC) in JVET [18]. We com-
pared the results with VTM-11.0_NNVC-2.0 anchor. The specific configurations
and results are given below.

3.1 Experimental Setting

We implemented DWT-SALF on the PyTorch 1.9.0 framework and trained it
on a PC equipped with an NVIDIA GeForce GTX 4090 GPU. We adopted the
progressive learning based on QP distance proposed by Zhang et al. [32] to train
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Table 4. BD-rate of DWT-SALF over VTM-11.0_NNVC-2.0 anchor in RA config-
uration. The trained models are embedded into VTM-11.0_NNVC-2.0 and the QP
distance is set to 10. The input QP of the training set is {22, 27, 32, 37, 42}, while its
corresponding label QP is {12, 17, 22, 27, 32}.

Class Y-PSNR U-PSNR V-PSNR

Class A1 -9.22% -19.37% -20.49%
Class A2 -10.20% -22.23% -23.86%
Class B -8.87% -24.15% -20.85%
Class C -9.07% -16.60% -17.10%
Overall -9.26% -20.80% -20.38%
Class D -10.60% -16.88% -16.44%

Fig. 5. RD curves by VTM-11.0_NNVC-2.0 and DWT-SALF under the AI configura-
tion. x-axis: Bitrate (kbps). y-axis: Y PSNR (dB). (a) FoodMarket4 in Class A1. (b)
ParkRunning3 in Class A2. (c) RitualDance in Class B. (d) BQMall in Class C. (e)
BasketballPass in Class D. (f) FourPeople in Class E.

DWT-SALF. The QP distance-based training strategy consists of three stages
with 80 epochs in the first stage, 60 epochs in the second stage, and 60 epochs
in the third stage. In each stage of training, the final 5 epochs use L2 Loss, while
the rest use L1 Loss. We set the batch size to 32, initialized the learning rate to
1e-4, gradually decreasing it to 1e-5. We utilized the Adam optimizer for model
optimization. We used the DIV2K[1] and BVI_DVC[20] datasets to train DWT-
SALF with total 1000 images (800 from DIV2K and 200 from BVI_DVC). After
compression by VTM-11.0_NNVC-2.0, all images were cropped into blocks of
size 144x144 (luma) and 72x72 (chroma). To augment the dataset, we applied
random vertical and horizontal flipping operations to the training data. Finally,
we embedded the trained models into VTM-11.0_NNVC-2.0 and tested it using
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video sequences specified in CTC [18], and evaluated the performance in terms
of BD-rate [4].

3.2 Visual Comparison

We embedded the trained model into VTM-11.0_NNVC-2.0 and conducted tests
under CTC [18]. We tested the performance of DWT-SALF at five QP {22, 27,
32, 37, 42} in both AI and RA configurations. The results by the first stage
model to the third stage model under AI configuration are provided in Tables
1, 2, and 3 in AI configuration, while the results under RA configuration are
provided in Table 4. In the RA configuration, considering the training time, the
QP distance is set to 10 and DWT-SALF is trained in one stage. The rate dis-
tortion (RD) curves of some classes in AI configuration are shown in Fig. 5. Fig.
6 provides visual comparison to demonstrate the effectiveness of DWT-SALF.
In the figure, we provide the uncompressed frame, the compressed frame by the
VTM-11.0_NNVC-2.0 anchor, and the compressed frame by DWT-SALF. It is
obvious that DWT-SALF successfully reconstructs the textures and details in
the frames and outperforms the VTM-11.0_NNVC-2.0 anchor in visual quality.

Fig. 6. Visual comparison between the VTM-11.0_NNVC-2.0 anchor and DWT-SALF.
(a) Uncompressed frames. (b) VTM-11.0_NNVC-2.0 anchor. (c) DWT-SALF. Top to
bottom: KristenAndSara, Johnny, and FourPeople in Class E. We obtain the results
at QP 42 under the AI configuration.
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3.3 Ablation Study

In the ablation study, we explored the impact of DWT on the performance.
In the above-mentioned experiments, we used DWT to decompose the frame
into low-frequency and high-frequency information, which were then processed
separately using transformer and CNN. In this ablation experiment, we replaced
DWT with convolutional layers of stride 2 and increased the number of channels
by four times. Subsequently, we proportionally split the feature maps and fed
them into transformer and MFFEM for processing. Finally, the processed feature
map was concatenated along the channel dimension, and then PixelShuffle was
used instead of IDWT to restore the channel number and resolution. The results
of the ablation experiment are shown in Table 5. Compared to Table 3 that used
DWT to decompose features into low-frequency and high-frequency components,
the results without DWT show a decrease of 0.04%, 0.21%, 0.36% in BD-rate for
{Y, U, V} channels, which demonstrates the effectiveness of DWT for feature
decomposition and processing with transformer and CNN.

Table 5. Ablation study on DWT. After training, the third-stage model was embedded
into VTM-11.0_NNVC-2.0 and the test results were obtained in AI configuration with
a QP distance set to 15.

Class Y-PSNRU-PSNRV-PSNR

Class A1 -7.63% -21.27% -22.78%
Class A2 -7.76% -22.49% -23.68%
Class B -7.49% -21.21% -20.96%
Class C -7.44% -16.17% -19.10%
Class E -10.55% -25.24% -24.64%
Overall -8.06% -20.98% -21.92%
Class D -6.99% -16.10% -18.24%

Table 6. Comparison of BD-rate and complexity among DWT-SALF and other JVET
contributions over VTM-11.0_NNVC-2.0 anchor in AI configuration.

Method Y-PSNR U-PSNR V-PSNR Parameters KMAC/pixel

Z0091[28] -6.50% -14.89% -15.98% 1.9M(Luma+Chroma) 485K(Luma+Chroma)
AA0111[13] -7.26% -20.14% -20.56% 1.56M(Luma) 1.56M(Chroma) 682K(Luma) 682K(Chroma)
AB0090[31] -7.08% -12.46% -12.75% 0.78M(Luma+chroma) 200K(Luma+chroma)
AC0118[33] -7.49% -20.60% -21.18 1.56M(Luma) 1.56M(Chroma) 682K(Luma) 682K(Chroma)
AE0191[8] -7.78% -18.81% -19.98% 1.45M(Luma+chroma) 477K(Luma+chroma)
AF0041[9] -7.91% -18.69% -20.23% 1.45M(Luma+chroma) 477K(Luma+chroma)
DWT-SALF -8.10% -21.19% -22.28% 2.69M(Luma) 1.84M(Chroma) 620K(Luma) 441K(Chroma)
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3.4 Comparison With Other In-Loop Filters

We have selected a number of proposals from the latest JVET meetings on NN-
based in-loop filters (NNLFs) and compared them with DWT-SALF under AI
configuration. These proposals are JVET-Z0091 [28], JVET-AA0111 [13], JVET-
AB0090 [31], JVET-AC0118 [33], JVET-AE0191 [8], and JVET-AF0041 [9].
Table 6 shows comparison of BD-rate and complexity among DWT-SALF and
other JVET contributions over VTM-11.0_NNVC-2.0 anchor in AI configura-
tion. Although DWT-SALF does not perform the best in terms of parameter
amount and computational complexity (KMAC/pixel), DWT-SALF achieves the
highest gain across the Y, U, and V channels with moderate complexity.

4 Conclusions

In this paper, we have proposed a subband adaptive NNLF for VVC using
cyclic DWT, named DWT-SALF. We have used DWT to decompose the image
into high-frequency subbands and low-frequency subbands. Compared to CNNs,
transformers are more effective in capturing low-frequency information but have
limited ability of learning high-frequency representation. Thus, we have utilized
transformer to handle the low-frequency branch and CNN to treat the high-
frequency branch, i.e. subband adaptive learning. We have further enhanced the
high-frequency feature using the processed low-frequency feature. Moreover, we
have employed a dual-cycle strategy inside both CDWTB and CDWTEB to
increase the network depth and receptive field without increasing parameters.
Experimental results demonstrate that DWT-SALF achieves average BD-rate
gains of {-8.10% (Y), -21.19% (U), -22.28% (V)} over the VTM-11.0_NNVC-
2.0 anchor in AI configuration and outperforms state-of-the-art methods in terms
of visual quality and quantitative measurements.

Our future work includes optimizing the network architecture to reduce
parameters and complexity while maintaining the performance.
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Abstract. Physics-informed neural networks (PINN) is an extremely
powerful paradigm used to solve equations encountered in scientific com-
puting applications. An important part of the procedure is the minimiza-
tion of the equation residual which includes, when the equation is time-
dependent, a time sampling. It has been argued in the literature that the
sampling need not be uniform but should overweight initial time instants,
but no rigorous explanation was provided for this choice. In the present
work we take some prototypical examples and, under standard hypothe-
ses concerning neural network convergence, we show that the optimal
time sampling follows a (truncated) exponential distribution. In partic-
ular we explain when it is best to use uniform time sampling and when
one should not. The findings are illustrated with numerical examples on
a linear equation, Burgers’ equation and the Lorenz system.

1 Introduction and literature review

Following their recent introduction in [11], physics-informed neural networks
became a powerful tool invoked in scientific computing to numerically solve ordi-
nary (ODE) or partial (PDE) differential equations in physics [9] including high
dimensional (e.g. Schrodinger) equations [6], finance [2,13], control problems [7],
data assimilation and so on. As such it became an important framework that
leverages the power of neural networks (NN). Even if successful applications are
reported for many situations encountered in numerical simulations, however the
workings of PINNs are not yet fully optimized and research efforts are nowadays
targeted towards improving the output quality or training process, cf. [17] and
related works.

We will focus here on time-depending equations that can be formalized as
solving

∂tu(t, x) = F(u), (1)
u(0, x) = u0, ∀x ∈ Ω (2)
u(t, x) = ub(t, x), ∀x ∈ ∂Ω,∀t ∈ [0, T ], (3)
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where F is an evolution operator (see below for examples), u is the unknown,
u0 the initial condition, Ω the spatial domain and ub(t, x) the conditions at
the boundary ∂Ω of Ω; this can be supplemented with additional measured
quantities or physical information in data assimilation settings (not used here).
We will not investigate in this work the difference between weak and strong
formulations so we suppose (1) is true pointwise with classical time and partial
derivatives (classical solutions). Note that when Ω is a discrete set (1) becomes
a ordinary differential equation (ODE) and in this case ∂t is to be replaced by
d/dt.

In its simplest form, the PINN approach constructs a neural network U
indexed by parameters θ mapping the input (t, x) ∈ [0, T ] × Ω to Uθ(t, x) ∈ R
that will stand for the (unknown) solution u(t, x) (see figure 1 for an illustra-
tion). To ensure that Uθ is close to u the following functional is minimized with
respect to θ by usual means of deterministic or stochastic optimization as is
classically done for NNs :

L(θ) :=
∫ T

0

∫
Ω

Eθ(t, x)2dxdt + (4)

cic

∫
Ω

(Uθ(t, x) − u0(x))2dx + cbc

∫ T

0

∫
∂Ω

(Uθ(t, x) − ubc(t, x))2dxdt. (5)

Here cic, cbc are some positive coefficients and Eθ(t, x) is the error term :

Eθ(t, x) = ∂tUθ(t, x) − F(Uθ)(t, x). (6)

Fig. 1. An illustration of network Uθ. It takes as input a time t and a space value x
and outputs the solution candidate Uθ(t, x) for this input couple. The NN is trained so
that Uθ(t, x) is close to the solution u of (1).

Assuming that the NN is expressive enough i.e., that the true solution u
belongs to the set of all possible NN mappings Uθ then the minimizer of the
loss is exactly the solution u. The integral terms of L(θ) are generally computed
through either collocation points or random sampling. The focus of this paper is
on the computation of the terms involving the time integral and more precisely
we will mostly investigate the term in (4).

The choice of the collocation points has an impact on the efficiency of the
PINN result. For instance in [14] the authors argue that adapting the location of
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these points by over-weighting areas where Eθ is large will improve the outcome.
In another approach, [18] C.L. Wight and J. Zhao propose several adaptive sam-
pling in space and time; among their proposals is the time marching where the
time interval [0, T ] is divided into segments solved sequentially (their “approach
II”); a different approach considers a total span [0, t] that is increased from a
small value t to the target value T (“approach I”). Asking the same question,
M. Penwarden and co-workers proposed in a very recent work [9] “a stacked-
decomposition method” that combines time marching with a form of Schwartz
overlapping time domain decomposition method. Investigation of time sampling
also lead S. Wang, S. Sankaran and P. Perdikaris [16] to introduce the causal-
ity concept where it is recognized that error made earlier in the time interval
will escalate to the final time T ; they propose to over-sample points close to 0
and decrease the sampling weight as time progresses. Our contribution lies very
much within this line or thought but here we give rigorous insights into several
points :

– what is the best functional form for the decrease in sampling weights from 0
to T

– for what problems is this causal sampling likely to give best results and where
is it less critical ? In particular are there any situations where it is optimal
to under-weight points near 0 and over-weight points near T ?

– how is this related to the optimization procedure used to minimize the loss
functional.

The balance of the paper is as follows : in section 2 we introduce notations and
give theoretical insights that we illustrate in section 3 with numerical results; we
conclude with remarks in section 4.

2 Theoretical setting and results

To explain the sampling / weighting question, we consider here the simplest
possible setting, that of a linear ODE : cardinality(Ω) = 1, F(u) = λu :

u′(t) = λu(t), u(0) = u0. (7)

The network U parameterized by some θ maps any input t ∈ [0, T ] into the value
Uθ(t). We want the mapping t �→ Uθ(t) to represent the solution to (7) and in
this case the equation error is

fθ(t) := U ′
θ(t) − λUθ(t). (8)

To simplify again our setting we will not describe the treatment of the initial
condition u0 and instead assume the network outputs some function that already
has Uθ(0) = u0. Note that in this simple setting one can easily ensure this
equality by just shifting the output

Uθ(t) �→ Uθ(t) − Uθ(0) + u0. (9)
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Similar techniques have been used in the literature, see [16, section E]. Then
the PINN method prescribes to minimize, with respect to θ, the following loss
function :

Lρ(θ) := Et∼μfθ(t)2 =
∫ T

0

f2
θ (t)ρ(t)dt. (10)

The loss is the second moment of the equation error fθ introduced in (8). Here
time t follows a probability law μ supported in [0, T ] and density ρ(·); we write
μ(dt) = ρ(t)dt.

The final goal is to obtain a good approximation of the final solution u(T )
which is the unknown and the main goal of the procedure. So the real quantity
to be minimized is |u(T )−Uθ(T )| but this cannot be done directly because u(T )
is not known.

2.1 Model for computational resources

To find the solution one uses (stochastic or deterministic) optimization algo-
rithms, most of them derived from the initial proposal of Robbins and Monro
[12]) that was called latter Stochastic Gradient Descent. In turn this was fol-
lowed by a large set of proposals used nowadays in neural network optimization
(Nesterov, momentum, Adam, RMSprop, etc). The deterministic counterpart
algorithms (gradient descent, BFGS, L-BFGS and so on) appear on the other
hand in standard textbooks [10]. These algorithms find the solution in an iter-
ative manner and convergence is ensured only in the limit of infinite iterations.
So we never have the exact solution but some approximation of it. Moreover
the computational resources are not infinite either so in practice one is limited
by the available resources (in wall clock time or in total operations count or
in any other metric). In particular, smaller is the absolute value of fθ(·) more
computational resources are consumed.

To model this cost we refer to general results on the convergence of optimiza-
tion algorithms. The convergence of the stochastic and deterministic procedures
has been analyzed in detail see [4] for a classic textbook and [5,8] for recent
works or self-contained proofs [1,15]. It was proved that, in general, the con-
vergence to the exact solution occurs at various speeds including quadratic or
exponential convergence. The most often the square of the error is of order O( 1

n )
where n is the number of iterations, proportional to the numerical effort. For
convenience we will denote from now on the error by w(t) so finally we have
that the square of the error is, say, of order w(t)2 ∼ O( 1

n ). So, if we take as a
constraint that the total numerical cost is bounded by some B ≥ 0, the error
w(t) will be associated to a cost of order 1/w(t)2 so the optimization algorithm
will find some error w(t) that satisfies

∫ T

0

1
w(t)2

dt ≤ B. (11)
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Of course, the exact functional form of (11) is subject to discussion and e.g.,
when exponential convergence occurs we will rather have

∫ T

0

− ln(w(t)2)dt ≤ B. (12)

In fact the arguments below apply to both such formulations and to many other
also, so for simplicity we will suppose (11) is true.

To conclude, if computational resources are limited by a total amount B we
only have access to errors w(t) that satisfy (11) and not better. The question
is how to choose w to minimize the final error between the numerical and the
exact solution and how does the time sampling enters into this quest.

Some remarks remains still to be made at this juncture: when minimizing
some loss functional under computational constraints (11), it may happen that
several values give the same loss level and same computational cost; in this case
we cannot be sure which one we will get. So, in a prudent stance, we will suppose
from now on that

(H Opt) : The computational procedure results in some error level w(·)
that minimizes the loss functional under constraint (11). If several errors
give the same cost and loss level we will assume the worse one is actually
obtained.

2.2 Step 1: overall optimality

We give here a first result that will be an lower bound on the error |Uθ(T )−u(T )|.
Proposition 1. Denote

w(t) := U ′
θ(t) − λUθ(t), (13)

and assume that (11) holds true. Then under hypothesis (H Opt) the error
|Uθ(T ) − u(T )| is at least equal to

1
B1/2

(
3(e2λT/3 − 1)

2λ

)3/2

, (14)

with equality when w(t) is proportional to e−λ(T−t)/3.

Proof : We deal here with an optimization problem and need to find the min-
imum value of the error under resources constraints (11). In general this can
be formulated as a Euler-Lagrange constraint optimization problem. But in this
particular case it can be settled more directly. Let us first write the definition
(13) of w as : U ′

θ(t) = λUθ(t) + w(t). Then, denoting δu(t) = Uθ(t) − u(t) we
can write δu(t)′ = λδu(t) + w(t), or, by using classical formulas for the solution
of this equation :

|Uθ(T ) − u(T )| = |δu(T )| =

∣∣∣∣∣
∫ T

0

eλ(T−t)w(t)dt

∣∣∣∣∣ . (15)
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Of course, the worse case is realized when w(s) is positive and then we will have
|Uθ(T ) − u(T )| =

∫ T

0
eλ(T−t)w(t)dt. Use now the Hölder inequality for the func-

tions (eλ(T−t)w(s))2/3 and w(s)−2/3 and exponents p = 3/2, q = 3 :
∫ T

0

e2λ(T−t)/3dt =
∫ T

0

(eλ(T−t)w(t))2/3 · w(t)−2/3dt

≤
(∫ T

0

eλ(T−t)w(t)dt

)2/3 (∫ T

0

1
w2(t)

dt

)1/3

≤ B1/3

(∫ T

0

eλ(T−t)w(t)dt

)2/3

.(16)

It follows that
∫ T

0
eλ(T−t)w(t)dt ≥ 1

B1/2

(
3(e2λT/3−1)

2λ

)3/2

. Equality occurs when

eλ(T−t)w(t) is proportional to 1
w2(t) which means that w(t) is proportional to

e−λ(T−t)/3.

Remark 1. The proof technique here works also for time-depending λ.

2.3 Optimal time sampling distribution

The proposition 1 states that, at resources level B one cannot do better than
(14). The question is how can one choose the right ρ in order to reach this
minimal error level. The answer is in the next result.

Proposition 2. Under the hypothesis (H Opt) the minimization problem cor-
responding to the loss Lρ in (10) and the computational constraint (11) is guar-
anteed to obtain the best error level of proposition 1 only when ρ is the density
of the exponential truncated law E0,T,4λ/3.

Proof : Let us write(∫ T

0

ρ(t)1/2

)
≤

(∫ T

0

1
w2(t)

dt

)2 (∫ T

0

w2(t)ρ(t)dt

)2

≤
(∫ T

0

1
w2(t)

dt

)2 (∫ T

0

w2(t)ρ(t)dt

)2

≤ B2

(∫ T

0

w2(t)ρ(t)dt

)2

= B2L2
ρ.

(17)

The loss will be minimized when there is equality in the above inequality which
means that 1/w2 is proportional to w2ρ that is ρ is proportional to w−4. On the
other hand, given proposition 1, the proof of proposition 2 is a matter of asking
for which ρ the minimizer w(s) of Lρ under constraint (11) will be proportional
to e−λ(T−t)/3. Putting together these two arguments we obtain that overall error
loss |Uθ(T ) − u(T )| is minimized when ρ is proportional to e4λ(T−t)/3 i.e., it
corresponds to the truncated law E0,T,4λ/3.

Remark 2. So we proved that under hypothesis (H Opt) concerning the algo-
rithm’s convergence speed the error is minimal when the time sampling follows
a truncated exponential law. The same result holds true if instead we consider
algorithms with exponential convergence (12), see remark in the beginning of
the proof of proposition 1.
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2.4 Remarks on general settings: regimes of Lyapunov exponents

The example (7) may seem somehow too simple but in fact covers many sit-
uations encountered in practice. To this end let us recall the concept of max-
imal Lyapunov exponent used in the study of dynamical systems, particularly
in chaos theory, to characterize the behavior of trajectories. The maximal Lya-
punov exponent quantifies the rate of exponential divergence or convergence of
nearby trajectories in the system.

Consider a dynamical system described by ordinary differential equation
u′(t) = F(t, u(t)). If one considers two similar initial conditions u(0) and
u(0) + δu(0) with δu(0) playing the role of a small perturbation, the distance
between these trajectories evolves over time according to the linearized dynamics
around the system’s trajectory. Specifically, if δu(t) represents the perturbation
at time t, then : δu(t)′ = ∇uF(t, u(t))δu(t). The maximal Lyapunov exponent
λ (see [3, section 5.3]) is defined (for dimension 1) as the average exponential
rate of separation of those trajectories: λ = limt→∞ lim‖δu(0)‖→0

1
t ln

(
‖δu(t)‖
‖δu(0)‖

)
.

This can be also read as ‖δu(t)‖ ∼ eλt‖δu(0)‖. The maximal Lyapunov expo-
nent characterizes the system’s sensitivity to initial conditions and can provide
insights into whether the system exhibits chaotic behavior. In particular :

1. if λ > 0 close trajectories diverge exponentially, indicating chaotic behavior;
in this case truncated exponential time sampling (weighting) is mandatory as
it will be seen in numerical examples ;

2. if λ < 0 close trajectories converge exponentially, suggesting stability. In this
case no special time sampling or weighting seems necessary and one may
even imagine that an inverse sampling that puts more weight on larger time
values can do better because initial perturbations fade away exponentially
fast. This would correspond to parabolic evolution like the heat equation. In
this situation the system evolves towards a static equilibrium.

3. if λ = 0 trajectories neither converge nor diverge, indicating a marginally sta-
ble or periodic behavior. Here for safety some truncated exponential sampling
can be enforced. Systems involving conservation laws (not evolving towards
static equilibrium) are present in this case (for PDE this will be called hyper-
bolic equations).

Note that if one is interested only in what happens in a neighborhood of the
initial point and for small times, the corresponding concept is the local Lyapunov
exponent which is related to the spectrum of the Jacobian ∇F; note that this
local metric can change regime as happens for instance with the Lorentz system.

3 Numerical examples

All these numerical tests are reproducible using codes available on Github 1.

1
https://github.com/gabriel-turinici/pinn exponential sampling version August 31st 2024.

https://github.com/gabriel-turinici/pinn_exponential_sampling


Optimal Time Sampling PINN 225

3.1 Example in section 2

We investigate first the example in section 2 and describe below the numerical
parameters and setting.

NN architecture and training parameters A neural network is used that
will construct the mapping from t, x to the numerical solution Uθ(t) as in figure 1.
When the spatial dimension is not present, as is the case in section 2, then Uθ(t)
has a single input which is the time t. The NN has 5 fully connected (FC) layers
with Glorot uniform initialization seeded with some constant for reproducibility;
we checked that any other seed gives similar results. Each layer has 10 neurons
and ’tanh’ activation. This activation is classical in PINN because ReLU would
give null second order derivatives. Then a final FC layer with no activation and
one final neuron is used to output the model prediction.

We set T = 1. The initial value u0 is taken to some non-special value i.e. not
0 or 1; here u0 =

√
15 but many other values have been tested and give similar

results. The shifting trick (9) in section 2 is used to be sure that the initial con-
dition is not an issue and will be respected exactly (otherwise one has to study
also the impact of the regularization coefficient used to impose the initial con-
dition). The loss function (10) is employed and the sampling is performed with
a truncated exponential law of rate r which is not necessarily equal to λ (recall
that in general λ is unknown). The loss is computed by taking 100 sampling
points which are exactly the quantiles of the law E0,T,r, see formula (22). We
take Niter = 500 iterations and an Adam optimizer with default learning rate
(in our TensorFlow 2.15.0 version this is 10−3). We checked that the quality of
the numerical results can be made better by taking more iterations.

Fig. 2. Test of the model expressiveness (results for λ = 2.). The model solution is
graphically indistinguishable from the exact solution meaning that the NN is complex
enough to reproduce the shape of the solution.
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Validation of the NN architecture : expressiveness We checked first that
the model is expressive enough. This means that, without any PINN framework,
we just checked that the NN architecture can produce functions close enough
to the exact solution u(t). We used Adam optimizer with default parameters
and mean square error between the model and the known exact solution. The
results are plotted in figure 2 and show that the model is indeed expressive
enough. Of course, this is just a theoretical possibility as the exact solution is in
practice unknown and has to be found through the minimization of the PINN
loss functional. But it still says that a good design of the loss functional should
give good numerical results, i.e. that the model architecture is not the limiting
hyper-parameter.

Validation of the PINN procedure: solution quality We now run the
main PINN code. The solutions obtained for λ = 2.0 are plotted in figure 3.
It is seen that the model is giving a good solution. This solution appears not
enough converged for 500 epochs so we also gave the result for 1500 epochs where
the numerical and exact solutions are indistinguishable graphically. This means
that the PINN procedure is sound and gives expected results, in line with the
literature.

Fig. 3. Results for λ = 2. and sampling parameter r = 2.0. First two plots: the results
for 500 epochs. Last two plots: results for 1500 epochs.

Numerical results: solution sampling influence We move now to the main
topic which is the influence of the sampling parameter r on the final error. In
each case we set epoch number to 500 (similar results are obtained for any other
number of epochs) to simulate a tight computational budget and

– set the λ parameter in a list enumerating all possible regimes: negative, null
or positive, here λ ∈ {−2, 0, 2};

– compute the performance for several sampling rate r parameters and look at
the qualitative agreement with our theoretical results.

The numerical results are given in figure 4. Each point in the plot represents a NN
trained from scratch with the PINN loss. For consistency of the comparison each
NN starts from the same Glorot initialization with the same seed.
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Fig. 4. Sampling law influence for λ = 2 (from left to right, top to bottom, plots 1 and
2), λ = −2 (plots 3 and 4) and λ = 0 (plots 5 and 6). All sampling are done with law
E0,T,r. Plots 1, 3 and 5 : the final error as a function of r. Plots 2,4 and 6 : the loss.

Let start with plots 1 and 2 that correspond to λ = 2. It is seen that, among
all possible truncated exponential laws, the one that gives minimal final error
corresponds to positive value or r, which means that small t values are given more
weight. This confirms the theoretical result in proposition 2 and is also intuitive
because here λ > 0 which means exponential divergence of any perturbation.
This exponential divergence has to be corrected by an effort to solve to higher
precision the early dynamics. This is also coherent with the literature, see for
instance [16] that discuss the importance of causality sampling. Note that in
particular this empirical results confirms that uniform time sampling, which
corresponds to r = 0 in the figure, is not optimal.

We move now to plots 3 and 4 (figure 4) that correspond to λ = −2. This
dynamics converges to a stable equilibrium. In this case theory says that uniform
sampling is not optimal and in fact giving less weight to initial times t is better
because stability will erase most of the errors in this region. Note that this is
at odds with previous results from the literature that encourage oversampling
for low values of t irrespective of the regime. The numerical results confirm
indeed that final error is minimized when sampling parameter r of the truncated
exponential is negative (here optimal value is −3).

A special attention deserves the qualitative dependence of the loss on the
sampling parameter r. Except for very negative r values, the loss decreases with
r which would incorrectly suggest using large values of r. In fact here the loss
is not informative; minimizing the loss is not the final goal, the final goal is to
find the solution. The loss only encodes, as in reinforcement learning, the right
information to find the solution. In this case, for negative values of r the loss
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may appear larger but this happens because it works harder towards improving
the outcome which is the final error. Therefore comparing two loss functionals
corresponding to two different time sampling parameters r will not give the
expected intuitive results and will mislead the experimenter.

Finally, the plots 5 and 6 (figure 4) correspond to λ = 0. Here the final
error seems to be low over a plateau of parameters r around the value r = 0
(optimal appears to be reached for r = 1). So for this case the precise sampling
parameter has less influence as long as it results in a somehow uniform time
sampling. This is consistent with intuitive results and our theoretical results but
again not always mentioned in the literature.

3.2 Burgers’ equation

A test case often encountered in PINN applications is the Burgers’ equation that
describes the evolution of a one-dimensional viscous fluid flow. This nonlinear
partial differential equation reads :

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, u(0, x) = − sin(πx), u(±1, t) = 0 ∀t ∈ [0, 1], (18)

where u = u(x, t) is the velocity field, x ∈ [−1, 1] is the spatial variable and
ν = 0.01/π is the viscosity coefficient.

Here, we consider as in [11] a neural network consisting of 9 fully connected
20-neurons layers with ’tanh’ activation. We take a space-time grid with 25
spatial points and 50 time quantiles (see previous section). We also use the trick
in (9) to impose exact initial condition.

Fig. 5. Burgers’ equation sampling parameter r = 0 i.e., uniform law E0,T,0. Left
plot: the solution at different times. Right plot: the comparison with a finite difference
solution considered exact.

The results are given in figures 5 and 6. It is seen that both laws give similar
results and in practice the computation of the norm of the difference at the final
time indicates that the uniform sampling is better. To explain this result we need
to recall that, even if the Burgers’ equation is nonlinear and one could expect to
find chaotic behavior similar to turbulence, however, the Hopf-Cole transforma-
tion allows to see that there is no substantial sensitivity with respect to initial
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Fig. 6. Burgers’ equation sampling parameter r = 1 and law E0,T,r. Left plot: the
solution at different times. Right plot: the comparison with a finite difference solution
considered exact.

conditions; in fact this equation is transformed to a linear parabolic equation.
So the optimal sampling has no reason to overweight initial time instants and
this is what we see here.

3.3 Lorenz system

For the final results we move to the Lorenz system, known to be chaotic, that
has already been studied in the framework of PINN [16] :

x′(t) = σ(y − x), y′(t) = x(ρ − z) − y, z′(t) = xy − βz. (19)

Here x, y, z are the state variables and σ, ρ, β are parameters : σ is the Prandtl
number, ρ is the Rayleigh number, β is a parameter related to the aspect ratio of
the system. We take as in [16] σ = 10, ρ = 28, β = 8/3 and initial state (1, 1, 1).

To be coherent with previous implementations, instead of sampling under the
law E0,T,r we take uniform sampling but use the density of E0,T,r as weight i.e.
use time weighting proportional to e−rt. We use the same NN as in section 3.1
but with 20 neurons per layer, 10′000 iterations and shifting trick in (9). The
results are given in figure 7. In this case the uniform i.e., r = 0 weighting does
not manage to obtain a reasonable solution. This is understood from the fact
that the equation error remains large at the initial times and, due to the chaotic
behavior of the system, divergence with respect to the correct trajectory will
occur. The same happens for r = −10 which over-weights the final time instants
as the expense of the initial ones. On the contrary, putting more weight on the
initial time instants as is done in figure 7 (bottom three plots) will bring the
numerical solution very close to the exact solution.
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Fig. 7. Lorenz system with weight parameters r = 0 (first row of plots), r = −10
(second row of plots) and r = 10 (third row of plots). The approximation quality is
not good for r = 0 and r = −10 and much improved for r = 10, in fact the numerical
and exact solutions are superposed and indistinguishable graphically.

4 Discussion and conclusion

The goal of the PINN framework is to find the solution to a given evolution
equation. This goal is transcribed through the use of a loss functional. Many loss
functionals give, in the limit of infinite computational budget, the same optimal
solution. But in practice the computational budget is limited and not all loss
functional behave alike. We discuss here the effect of the temporal sampling on
the error of the solution at the final time; to this end we prove for the first
time that, under hypothesis regarding the optimization algorithm, the optimal
sampling belongs to the class of truncated exponential distribution. We addi-
tionally characterize the optimal distribution parameter. The qualitative insight
is that when the evolution is chaotic or sensitive to initial conditions early time
instants should be given more weight (exponentially). On the contrary when the
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evolution is periodic or stably converging to an equilibrium this over-weighting is
not useful any more. The theoretical results were checked numerically on several
important examples and the empirical observations are coherent with them.

The principal limitation of the work is that the optimal sampling parameter
is in general unknown and has to be selected in the usual manner of hyper-
parameter search. Future work will hopefully shed some light on what is the
best practice to reach this optimal sampling regime.

A Appendix : truncated exponential distribution

A truncated exponential distribution is described by a triplet of parameters
(a, b, r), a ≤ b; the parameters a and b define the support of the distribution
[a, b] ⊂ R while the rate r defines the speed of decay. The distribution is by
definition the only probability measure Ea,b,r with support in [a, b] and density
proportional to e−rt, i.e.,

Ea,b,r(dt) = r
e−rt

e−ra − e−rb
1[a,b]dt. (20)

Note that it is not required that r ≥ 0. When r → 0 we obtain the uniform
distribution on [a, b] denoted U(a, b). When a = 0, b = ∞ we obtain the (non-
truncated) exponential distribution of rate r. To sample from this law, direct
computations allow to show that 2:

If U ∼ U(0, 1) then Y =
− ln(1 − U + Ue−r(b−a))

r
∼ Ea,b,r. (21)

In particular the q-quantile of this distribution is precisely

− ln(1 − q + qe−r(b−a))
r

. (22)

B Appendix : further quality metrics

One could ask what happens when our main output is not the solution at final
time T but some integral over all times, i.e., instead of δu(T ) our quality metric
is : ∫ T

0

|δu(t)|dt =
∫ T

0

|Uθ(t) − u(t)|dt. (23)

This is answered in the following result.

Proposition 3. Under the hypothesis (H Opt) the minimization problem cor-
responding to the loss Lρ in (10) and the computational constraint (11) is guar-
anteed to obtain the best error level for the metric (23) only when

ρ(t) =
(e−λt − e−λT )4/3

∫ T

0
(e−λt − e−λT )4/3

. (24)

2 Here X ∼ μ means that the random variable X follows the law μ.
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Note that although the density in (24) is not exactly a truncated exponential, it
will became one in the limit T → ∞.
Proof : Many parts of the proofs are the same as soon as we recognize that,
under same hypothesis, the formula of the error metric δu(T ) given in (15) can
be replaced by

∫ T

0

|δu(t)|dt =
∫ T

0

∫ t

0

eλ(t−s)w(s)dsdt =
∫ T

0

eλ(T−s) − 1
λ

w(s)ds. (25)

The w that minimizes (25) under resources constraint (11) is found as before to
be proportional to (eλ(T−s) − 1)1/3. The rest follows as before.
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Abstract. Link Prediction(LP) is a fundamental problem in graph
machine learning that aims to predict the existence of links between
nodes. Most current research on LP adopts Graph Neural Networks
(GNNs) to learn the representation of subgraphs, but fails to efficiently
capture global topological information in large graphs. In response to
this issue, we focus on the global attention mechanism of Transformers.
Nevertheless, original Transformers are not inherently suitable for learn-
ing graph-structured data, and their deep multi-head attention architec-
ture has been limited by prohibitive compute and memory costs. In this
work, we propose a lightweight model: a single-layer, single-head Trans-
former, which constructs subgraph structural features based on hash
estimation. It provides a new perspective for applying Transformers in
graph-structured data processing. Firstly, we utilize MinHash and Hyper-
LogLog techniques to estimate the structural information of subgraphs,
then fuse subgraph structural features with node features to achieve effi-
cient message passing. In this case, our model does not need to extract or
manipulate enclosed subgraphs, and structural features can be prepro-
cessed. Additionally, we design a single-layer, single-head Transformer as
the encoder for graph-structured data, utilizing the attention mechanism
to capture global effects. Meanwhile, our model does not require extra
positional encoding, which significantly reduce computational complex-
ity. Extensive experiments demonstrate that our model achieves optimal
prediction accuracy on large-scale datasets with high efficiency. The code
is available at https://github.com/sunteng6/HeFormer.

Keywords: Hash estimation · Transformers · Feature learning · Link
prediction · Graph machine learning

1 Introduction

In the real world, complex systems are typically described as networks composed
of nodes and edges (e.g., biological networks, social networks, citation networks,
transportation networks). Nodes represent various entities in complex systems,
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while edges describe the relationships between these entities[1].;Link prediction
enhances the understanding of the relationships between specific node pairs and
the overall evolution of the network, and has widespread applications in real-word
scenarios. In biology, LP is used to predict unobserved interactions in protein-
protein interaction (PPI) networks, thereby facilitating new drug development
and advancing biological research[2]. In the analysis of disease transmissibility,
such as COVID-19, LP infers possible interactions to help with tracing dis-
ease transmission pathways[3]. In social networks, LP assist users in discovering
friends with similar interests or recommending appealing products.

Current approaches have adapted GNNs for learning representations over
graph-structured data, achieving strong performance in link prediction tasks[4].
However, most GNN-based methods require extracting and embedding sub-
graphs for each pair of nodes, leading to high computational complexity. Addi-
tionally, multiple rounds of GNN message passing can result in overly similar fea-
ture representations, leading to information loss and over-smoothing. To address
the issue of long-range dependencies in GNNs, Transformers have emerged as
foundational encoders for graph-structured data[5]. Their self-attention mecha-
nism captures these dependencies by aggregating all node embeddings to update
each node’s representation[6]. Nevertheless, Transformers are not inherently suit-
able for graph-structured data and require additional design to leverage the
graph’s topological information. Moreover, the computational complexity of deep
multi-head attention architecture is O(N2)[7]. In large-scale datasets, the com-
putational challenges of processing subgraphs and employing a global attention
mechanism become particularly evident, as both computation time and storage
overhead increase significantly.

To overcome these inefficiencies, we propose HeFormer, a novel model that
combines Hash estimation with a lightweight TransFormer. The overall archi-
tecture is illustrated in Fig. 1. This model consists of four main components:
(1) graph-structured data input module; (2) feature generator that constructs
structural features features using Minihash and HyperLogLog hash estimation
techniques, and preprocesses features; (3) single-layer, single-head Transformer
encoder that simplifies computation based on kernel function approximation;
(4) link prediction evaluation module. Our technical contributions are detailed
below:

– We leverage the global attention of Transformers to learn hash-estimated
structural features, which can reduce information loss compared to GNN-
based link prediction methods. Our model, HeFormer, constructs and pre-
processes structural features ahead of message passing, eliminating the need
to extract and manipulate subgraphs for each pair of nodes.

– We design a lightweight, single-layer, single-head Transformer as the encoder
for graph-structured data. Our model significantly alleviates both time and
memory overhead. By discarding exponential terms and softmax operations,
we alter the matrix computation order of original Transformers[8], reducing
the encoder’s complexity from O(N2d) to O(Nd2).



236 T. Sun et al.

Fig. 1. Illustration of our proposed HeFormer and its data flow. HeFormer combines
counts from different hop distances to construct structural features (SF), while node
features (NF) are processed through the Hadamard product and an MLP to generate
edge features (EF). SF and EF are then concatenated and fed into a single-layer, single-
head Transformer for message passing. Finally, the link prediction (LP) performance
is evaluated.

– We compare the performance of HeFormer with mainstream link predic-
tion methods on real-world datasets. Experimental results demonstrate that
HeFormer achieves optimal prediction accuracy and lower computational
costs on large-scale datasets. Feature ablation and sensitivity analyses confirm
the effectiveness of our modules.

2 Related Works

2.1 Link prediction

Current mainstream link prediction methods leverage Graph Neural Networks
to aggregate features from nodes and their neighbors to learn node and link
representations[3]. The classic algorithm SEAL[9] employs GNNs to reformulate
the link prediction task into a binary classification problem focused on subgraphs.
However, SEAL requires extracting subgraphs around each target link, which is
computationally expensive when dealing with large graphs. To mitigate the sub-
stantial overhead associated with explicitly constructing subgraphs, ELPH[10]
leverages hashing techniques to craft subgraph structural features and transmits
subgraph sketches as messages. Nonetheless, ELPH is still a GCN-based model,
which encounters GPU memory constraints when managing large-scale datasets.
Based on ELPH, BUDDY[10] is a scalable model that pre-computes sketches
and node features to improve efficiency. However, by replacing GCN with MLP,
BUDDY is unable to directly leverage the neighborhood information of nodes,
resulting in a lack of interpretability when capturing complex graph structural
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information. By contrast, our model utilizes the global attention mechanism of
Transformer to enhance feature learning capabilities.

2.2 Hash estimation techniques

As the foundation for constructing structural features, we concurrently employ
two sketching techniques to estimate the counts of node neighborhood intersec-
tions. MinHash[11] is an algorithm to estimate the Jaccard similarity between
two sets: Jaccard(A,B) = |A ∩ B| / |A ∪ B|. The Jaccard similarity is defined as
the ratio of the intersection to the union, serving as a measure of sets similarity.

HyperLogLog[12] is an efficient algorithm designed to estimate the cardinal-
ity of large sets (i.e.,the number of distinct elements). It operates by mapping
elements to binary strings using a hash function, then calculating the length of
the leading zero prefix in each binary string. Elements are assigned to different
buckets based on the first few bits of their hash values. Each bucket records
the maximum zero prefix length, and the harmonic mean of these lengths is
calculated. Finally, by applying a correction factor, the estimated cardinality of
the set is obtained. MinHash and HyperLogLog are memory-efficient and fast,
making them suitable for handling large-scale datasets.

2.3 Graph Transformers

Transformers have the ability to capture implicit dependencies beyond neighbor-
ing nodes, and recent research has sought to extend the original Transformers
architecture to graph-structured data. However, the time and space complex-
ity of Transformer typically increases exponentially with the number of nodes.
As a result, training deep Transformer on large graphs with hundreds of thou-
sands of nodes is extremely resource-intensive. To address this issue, NodeFormer
[13] introduced a kernelized Gumbel-Softmax operation, reducing the algorith-
mic complexity of message passing to linear growth with the number of nodes.
Although this method maintains accuracy in node classification tasks, it still
employs a deep multi-head attention mechanism. Building on the concept of
NodeFormer, SGFormer[5] proposed a simple single-layer Transformer architec-
ture for node classification tasks. However, it still needs to be combined with
GCN, increasing the model’s complexity and failing to fully overcome the limi-
tations of GNNs.

3 Proposed Method

In light of these issues, we design a lightweight and compute efficient link predic-
tion model called HeFormer, which leverages hash estimation techniques (Mini-
Hash and HyperLogLog) to compute set cardinality and construct structural
features (Sect. 3.1). Then, we provide an intuitive theoretical analysis of why
our single-layer, single-head Transformer model is lightweight (Sect. 3.2).
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3.1 Hash estimation for constructing structural features

In distance encoding (DE), each node is encoded with a tuple zij =
(d(u, i), d(v, j)) [14], as illustrated in Fig. 2(b). By fixing the number of DE
labels (setting the maximum distance to three), we directly construct structural
features by combining the counts of intersections of neighborhood nodes up to
h(h + 2) dimensions, where h is the maximum hop count of 3.

Fig. 2. The number of nodes at distances du and dv from u and v represent the struc-
tural information. (a) Link prediction infers the likelihood of a connection between two
users based on the structure of the social network. (b) The distance encoding (DE)
labels of the neighbor node for link (u, v).

MiniHash approximates the Jaccard similarity by generating the minimum
hash values using multiple different hash functions. For example, for a link (u, v),
k different hash functions h1, h2, . . . , hk are randomly initialized for nodes u and
v, resulting in their MiniHash signatures MH(u) and MH(v) respectively:

MH(u) = [h1(u), h2(u), . . . , hk(u)]
MH(v) = [h1(v), h2(v), . . . , hk(v)]

(1)

For each hash function, find the minimum hash value among all elements in
the set. The collection of these minimum hash values is called the MinHash
signature. By comparing the MinHash signatures of two sets using Eq. (2), we
calculate the proportion of positions in the signatures where the minimum hash
values are equal. This proportion serves as the estimated Jaccard similarity.

|MH(u) ∩ MH(v)| =
k∑

i=1

I (hi(u) = hi(v)) (2)

where I is an indicator function that equals 1 when hi(A) = hi(B). According to
the graph structure’s connectivity, the hash functions are propagated. The hash
value update strategy for nodes u and v follows Eq. (3). As the number of hops
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increases, each node’s k hash values are updated based on its neighborhood:

MH(u)(i) = min
v∈N (u)

MH(v)(i−1)

MH(v)(j) = min
u∈N (v)

MH(u)(j−1)
(3)

where i, j denotes the number of hops, and N represents the neighborhood of
the node. The Jaccard index of the neighborhood sets of node u at hop i and
node v at hop j can be approximated by the ratio of the number of equal hash
values in their MiniHash signatures to the total number of hash functions:

Jaccard(u, v)(i,j) ≈ |MH(u)(i) ∩ MH(v)(j)|
k

(4)

where k is the total number of hash functions. Similar to the MiniHash calcula-
tion steps, each node is initialized with p2 HyperLogLog register values, which
are then propagated according to the link relationships. The propagation pro-
cess is described by Eq. (5). After (i, j) hops of propagating register values, the
HLL hash values of the source node u and the target node v are first merged
to estimate the count of the union of the neighborhoods of the two nodes. The
merging operation of HLL involves taking the maximum value of the correspond-
ing registers of the two nodes element-wise, ensuring that the merged hash value
contains all elements from both the source and target nodes:

HLL(u)(i) = max
v∈N (u)

HLL(v)(i−1),

HLL(v)(j) = max
u∈N (v)

HLL(u)(j−1)
(5)

Hash functions uniformly distribute elements across the registers, with the num-
ber of leading zeros inversely related to the cardinality. By counting the number
of leading zeros in the registers, we can approximate the number of distinct ele-
ments in the union of the neighborhoods of node u and its connected node v.
It is worth noting that, to reduce computational cost, we set a threshold and
initially use linear estimation to decrease the computational overhead:

Count1(V0) = m × log
( m

V0

)
(6)

where m is the number of registers, m = p2, and V0 is the number of registers
with a value of zero. if Count1 > threshold value, the original HLL counting
method is used:

Count2(Zi) = α · m2 ·
( m∑

i=1

2−Zi

)−1

(7)

where Zi is the value of the i-th register and α is a tunable parameter. Hyper-
LogLog can effectively estimate the cardinality of the union, as shown in Eq. (8),
while MinHashing can estimate the Jaccard index. HyperLogLog and MinHash-
ing can be combined to estimate the intersection and union of node sets:

∣∣∣N(u)(i) ∪ N(v)(j)
∣∣∣ = Count

(
max

(
HLL(u)(i),HLL(v)(j)

))
(8)
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where max refers to taking the maximum value of the m registers for the two
nodes separately. The cardinality is calculated based on the values of all the bits
in the registers. This combined method leverages the advantages of both Hyper-
LogLog and MinHashing, enabling efficient set operations on large-scale graph
data. Using MiniHash and HLL techniques, we can compute the neighborhood
intersection counts between linked nodes at hops (1, 1), (1, 2), (2, 1), (1, 3), (3, 1),
(2, 2), (2, 3), (3, 2), and (3, 3):

Intersections(u, v)(i,j) = |Ni(u) ∩ Nj(v)|
= Jaccard(u, v)(i,j) ·

∣∣∣N(u)(i) ∪ N(v)(j)
∣∣∣

≈ |MH(u)(i) ∩ MH(v)(j)|
k

· Count
(
max

(
HLL(u)(i),HLL(v)(j)

))
(9)

We utilize these counts to construct structural features of the edges. For example,
f0 represents the intersection count of nodes u and v at hop (1, 1), f2 represents
the count at hop (1, 2) minus the count at hop (1, 1), and f9 indicates the number
of neighbors of node v at hop 1 but beyond the range of hop 3 for node u. This
processing method captures detailed neighborhood information of the source and
target nodes at different hops, including intersections and differences. The fea-
tures {f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14} are combined into a
15-dimensional feature matrix features, as illustrated in Fig. 3. The dimensions
change with the number of hops. The generated structural features can represent
the neighborhood information of each pair of nodes at different hops, and the

Fig. 3. Construction strategy for subgraph structural features. Flexibly combining
based on the intersection numbers of the neighborhoods of node u and node v at
1, 2, and 3 hops.

dimensionality of these structural features is fixed, independent of the graph’s
size.After integrating structural features and node features, this feature learning
method can efficiently combine original features and graph structure without
handling redundant subgraphs.
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3.2 Lightweight single-layer, single-head Transformer

Link prediction methods based on GNNs typically rely on message passing
between neighboring nodes. We aim to use the self-attention mechanism of Trans-
former to directly capture the global information in the graph. However, due to
the need to stack deep multi-head attention mechanisms, the time and space
complexity of original Transformers are O(N2). The computation process of the
Query, Key, and Value (QKV ) matrices is as follows:

Attention(Q,K, V ) = softmax
(QKT

√
dk

)
V (10)

As the number of training layers, the computational cost of processing graph
data grows exponentially. Therefore, based on the architectures of NodeFormer
[13] and SGFormer[5], we design a lightweight single-layer, single-head atten-
tion model, which achieves lower computational cost with linear complexity.
Our model can efficiently propagate feature information across large graph data
while ensuring the ability to learn link and node representations. The specific
inference process is analyzed below. Firstly, from a matrix perspective, updating
the representations of all edges:

Â(l) = softmax
((

W
(l)
Q Z(l)

)�(
W

(l)
K Z(l)

))
, Z(l+1) = Â(l)W

(l)
V Z(l) (11)

where W
(l)
Q , W

(l)
K , and W

(l)
V are the learnable parameters of the l-th layer, Z(l)

is the vector representation. The Softmax calculation formula is given:

softmax (xi) =
exi

∑n
i=1 exi

∈ (0, 1) (12)

Therefore, we define a global attention network that transforms the Softmax
operation into an exponential operation. This network estimates the potential
interactions between instance nodes and implements the corresponding message
passing. From the perspective of each node, it updates the feature propagation
of each link u:

qu = W
(l)
Q z(l)u , ku = W

(l)
K z(l)u , vu = W

(l)
V z(l)u (13)

z(l+1)
u =

N∑

v=1

exp
(
q�
u kv

)
∑N

w=1 exp (q�
u kw)

· vv (14)

where z(l)u represents the feature learned at the l-th layer. To reduce the com-
plexity O(N2) of the above network and accelerate the global model, we can
simplify the operation of taking the exponential of the dot product of trans-
posed vectors using a positive definite kernel function κ(·, ·) : Rd × R

d → R for
pairwise similarity:

z(l+1)
u =

N∑

v=1

κ (qu,kv)∑N
w=1 κ (qu,kw)

· vv (15)
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A positive-definite kernel function can transfer the inner product computation
from the original space to a high-dimensional space, thereby effectively handling
nonlinear relationships. The kernel function can be further approximated by
random features (RF)[15]. Here, Mercer’s theorem is invoked to represent the
kernel function as an inner product in a high-dimensional space:

κ(a,b) = 〈Φ(a), Φ(b)〉ν ≈ φ(a)�φ(b) (16)

where Φ : Rd → V is a basis function that maps the input into a high-dimensional
vector space V , while φ(·) : Rd → R

m is a low-dimensional feature map that
achieves an unbiased estimation through random transformation.By using a
positive-definite kernel function and Mercer’s theorem[16], the exp operation
in Eq. (14) is eliminated, altering the order of vector operations:

z(l+1)
u =

N∑

v=1

φ (qu)
�

φ (kv)∑N
w=1 φ (qu)

�
φ (kw)

· vv =
φ (qu)

� ∑N
v=1 φ (kv) · v�

v

φ (qu)
� ∑N

w=1 φ (kw)
(17)

Moreover, the double summation in the numerator and denominator is shared
by each vector representation u, thus only needing to be computed once. This
reduces the computational complexity of feature message passing across the
entire graph from O(N2) to O(N). In practical applications, instead of prop-
agating updates for individual edges, matrix operations are used:

D(l) =
[
Q̃(l)

((
K̃(l)

)�
1
)]−1

(18)

Z(l+1) = D(l)
[
Q̃(l)

((
K̃(l)

)�
V(l)

)]
(19)

where Q(l) = WQZ(l), K(l) = WKZ(l), V(l) = WV Z(l), Q̃(l) = φ
(
Q(l)

)
,

K̃(l) = φ
(
K(l)

)
. The aforementioned network propagation still tends to stack

deep multi-head attention layers to obtain effective feature representations. To
further simplify the computation and achieve a single-layer, single-head attention
propagation mechanism, we use the following defined linear attention function:

Q̃ =
WQZ(0)

‖WQZ(0)‖F
, K̃ =

WKZ(0)

‖WKZ(0)‖F
, V = WV Z(0) (20)

where WQ, WK , and WV are linear feed-forward layers. ‖·‖ denotes the Frobenius
norm. Then, we employ addition and the parameter α to retain the information
of the central node while considering the input graph structure information:

D =
[
1+ Q̃

(
K̃�1

)]−1

, Z = D
[
αV + Q̃

(
K̃�V

)]
(21)

where Z(0) is the original input vector representation. In our model, it repre-
sents the link information obtained by concatenating node and structural fea-
tures. And 1 is an N -dimensional all-one column vector. The output Z integrates
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the pairwise attention propagation of N link representations. We visualized the
matrix computation process of the proposed lightweight Transformer Fig. 4,
where N denotes the number of link vector representations, d denotes the dimen-
sion and l = d

h . Compared to the original Transformers, it reduces the encoder
complexity from O(N2d) to O(Nd2).

Fig. 4. (Left)Original Transformers computation process of QKV matrix vectors in the
multi-head attention mechanism. (Right)HeFormer eliminates the softmax operation
and changes the order of matrix multiplication. The addition operations allow the
model to capture influences from other links while preserving information from the
central link.

Link Prediction. Eq. (22) demonstrates how to apply the learned pair rep-
resentations Z to the link prediction problem. The value of Y represents the
likelihood of the existence of a link. We train our proposed model using the
standard binary cross-entropy (BCE) loss:

Y = σ
(
f
(
Z

))
, L =

∑

ŷuv∈Y

BCE
(
ŷuv, yuv

)
(22)

where f is a readout function, which in our work is a linear feed-forward layer.
In the loss function, ŷuv is the probability value obtained through the sigmoid
function σ(·), and yuv is the actual label of link (u, v), typically 0 or 1. Next, we
will demonstrate through experiments that our lightweight single-layer, single-
head Transformer not only has excellent feature learning capabilities but also
scales effectively to large graphs.

4 Experiments

4.1 Experiment Settings

Datasets. We include the most widely used citation datasets for link predic-
tion, such as Citeseer and Pubmed, as well as Open Graph Benchmark (OGB)
datasets[17]: ogbl-collab and ogbl-ppa. The statistics of nodes and edges for each
dataset are summarized in Table 1.
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Table 1. The statistics of experimented datasets.

Citeseer Pubmed Collab PPA

#Nodes 3327 18771 235868 576289
#Edge 4676 44327 1285465 30326273

Baselines. We compare HeFormer with three path-based methods: CN[18],
AA[19] and RA[20], and seven GNN-based methods: GCN[21], SAGE[22],
SEAL[9], Neo-GNN[23], NBFNet[24], ELPH[10] and BUDDY[10]. The results
for SEAL, ELPH, and BUDDY are obtained by running the experiments on our
local devices according to the original paper settings. Other results are taken
from their respective studies or directly from the OGB leaderboard.

Evaluation Metrics. The rank of the positive link among the negative links
is used to evaluate performance, calculating the proportion of positive test links
ranked at or above the K-th position, which is HR@K. We use the metrics from
the original studies, with HR@50 for ogbl-collab and HR@100 for the other
datasets.

4.2 Main Results

We present the comparison results of HeFormer with baseline models on multi-
ple benchmark datasets. The prediction accuracy results are shown in Table 2.
We observe that HeFormer achieved state-of-the-art performance on three large
datasets, with a notable 7% improvement on Pubmed. Additionally, HeFormer
is the most stable among all methods, and no CUDA out-of-memory (OOM)
errors occur.

Compared to the competing baseline BUDDY, HeFormer demonstrates a
computational efficiency advantage, as shown in Table 3. Due to the small scale
of Citeseer, the time differences are not significant. Our code is implemented
using PyTorch Geometric [25] and PyTorch [26]. All experiments are conducted
on servers equipped with four 24GB Quadro RTX 6000 GPUs. The runtime
environment is kept consistent.

4.3 Ablation Study

We conducted ablation experiments to determine the effectiveness of generating
structural features in HeFormer. We introduced two variants of HeFormer: (a)
w/o Node Feature: retains structural features while removing node features;
(b) w/o Structure Feature: retains node features while removing structural
features. Fig. 5 presents the results of the ablation experiments. We observed
that removing either feature always degrades performance, especially on ogbl-
collab, where the accuracy dropped by 69% when structural features were not
used.



HeFormer: A Lightweight Transformer Combining Hash Estimation 245

Table 2. Results on link prediction benchmarks.

Citeseer Pubmed Collab PPA

CN 29.79± 0.90 23.13± 0.15 56.44± 0.00 27.65± 0.00

AA 35.19± 1.33 27.38± 0.11 64.35± 0.00 32.45± 0.00

RA 33.56± 0.17 27.03± 0.35 64.00± 0.00 49.33± 0.00

GCN 67.08± 2.94 53.02± 1.39 47.14± 1.45 18.67± 1.32

SAGE 57.01± 3.74 39.66± 0.72 54.63± 1.12 16.55± 2.40

Neo-GNN 84.67± 2.16 73.93± 1.19 62.13± 0.58 49.13± 0.60

NBFnet 74.07± 1.75 58.73± 1.99 OOM OOM
SEAL 83.89± 2.15 OOM OOM OOM
ELPH 89.66± 0.82 66.83± 0.58 OOM OOM
BUDDY 89.25± 0.14 71.22± 0.78 65.73± 0.58 45.74± 0.88

HeFormer 88.57± 0.41 76.20± 0.46 65.89± 0.21 50.74± 0.64

Table 3. The feature dimension and the time (in seconds) taken to train each epoch.

Model Dimensionality Citeseer Pubmed Collab PPA

ELPH 1024 0.2s 5.8s OOM OOM
BUDDY 1024 0.2s 0.6s 11.2s 202.0s
HeFormer 256 0.2s 0.6s 8.8s 181.0s

Max Hop Count of Node Neighborhoods. Fig. 5 also compares the results
of HeFormer with different hop counts when constructing structural features. We
found that while the accuracy of link prediction shows slight fluctuations with
varying maximum hop counts, it remains higher than when structural features
are removed.

Number of Lightweight Transformer Layers. We further analyze how
changing the number of layers in the our Transformer affects link prediction
accuracy and computational time. Fig. 6 presents the prediction accuracy and
training time per epoch as the number of layers increases. Although previ-
ous studies have shown that multiple layers of Transformer usually aggregate
more global information, leading to performance improvements, but this is not
observed with HeFormer. We found that using more layers incurs a higher com-
putational cost without significantly enhancing link prediction accuracy. This
indicates that HeFormer, a single-layer, single-head Transformer, possesses excel-
lent learning capability and computational efficiency.
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Fig. 5. Ablation experiment results showing the effects of removing node features (NF)
or structure features (SF) from HeFormer. The results include the impact of varying
the maximum hop number of the node neighborhoods when constructing the structural
features.

Fig. 6. Analyses of prediction accuracy and training time for HeFormer with different
numbers of lightweight Transformer layers

5 Conclusions

In this work, we propose a link prediction model called HeFormer, which is
based on hash-estimated structural features and a single-layer, single-head Trans-
former. Our model achieves efficient graph feature learning and message pass-
ing. Extensive experiments demonstrate that HeFormer can achieve state-of-the-
art performance on large benchmark datasets while maintaining efficiency. We
acknowledge that our parameter tuning is not optimal due to the diversity and
scale of the datasets. Additionally, the advantage of global attention mechanisms
in Transformers is less pronounced on smaller datasets. However, our work shows
that shallow attention models can also achieve efficient learning by integrating
subgraph structural information and node features. This points to a promising
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new direction for building robust and lightweight Transformer for large-scale
graph data processing tasks.
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Abstract. In recent years, there have been significant advancements in applying
attention mechanisms to point cloud analysis. However, attention module variants
featured in various research papers often operate under diverse settings and tasks,
incorporating potential training strategies. This heterogeneity poses challenges
in establishing a fair comparison among these attention module variants. In this
paper, we address this issue by rethinking and exploring attention module design
within a consistent base framework and settings. Both global-based and local-
based attention methods are studied, with a focus on the selection basis and scales
of neighbors for local-based attention. Different combinations of aggregated local
features and computation methods for attention scores are evaluated, ranging
from the initial addition/concatenation-based approach to the widely adopted dot
product-based method and the recently proposed vector attention technique. Vari-
ous position encoding methods are also investigated. Our extensive experimental
analysis reveals that there is no universally optimal design across diverse point
cloud tasks. Instead, drawing from best practices, we propose tailored attention
modules for specific tasks, leading to superior performance on point cloud clas-
sification and segmentation benchmarks.

Keywords: Point cloud data · Attention mechanism · Module design
exploration.

1 Introduction

The attention mechanism was first proposed by Bahdanau et al. [1] in 2014 to learn
richer information from the input. Later, given its remarkable performance in the natural
language processing domain [37] and 2D computer vision of image analysis [32], the
research community also started to explore the application of attention modules for 3D
point clouds. In 2021, Point Cloud Transformer (PCT) [5] and PT1 [53] were the first
to apply the attention mechanism to the point cloud learning tasks. In the following
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years, several improvements have been made to the attention mechanism from different
perspectives for better feature learning of point clouds [2,7,8,10,30,33,36,50].

However, methods in different papers usually run under different settings and tasks,
with potential various training tricks. Many papers claim that their proposed new mod-
ules achieve better performance, but the performance improvement may possibly be
obtained due to the modifications in other parts. In this case, it is hard to determine
which module is actually the optimal solution for one certain task. Hence, this work
aims to conduct a comprehensive study on various attention module variants and pro-
vide a more equitable comparison, then propose more effective attention-based funda-
mental modules for different point cloud downstream tasks. Moreover, to better inves-
tigate how one attention module variant behaves under different downstream tasks, we
adopt the same network model in different tasks for a fair comparison.

In this work, we explore the following four key aspects for attention module variants
used in point cloud analysis: (1) neighbor selection operation; (2) local feature aggrega-
tion; (3) attention score computation methods; and (4) possible position encoding. Note
that the former two aspects are only involved in local-based attention.

In neighbor selection operation for local-based learning, the measure of “distance”
between points is mostly based on the coordinate distance or the feature difference
between points. Apart from single-scale neighbor grouping, a multi-scale grouping
strategy was also adopted in some papers. For example, Stratified Transformer [14]
selects multi-scale neighbors through a stratified strategy for key sampling, while
3DCTN [21] implements multi-scale neighbor selection via a parallel multi-level multi-
scale point transformer. For local feature aggregation, a combination of the following
three types of features are often used: features of the centers, features of the neighbors,
and the feature difference between the neighbor points and the center points [39].

Apart from the widely used dot product operation for computing attention scores,
there are many other operation choices, including addition, concatenation, and subtrac-
tion. Each one also has more variants when considering global or local features. For
example, PCT [5] adopts the commonly used Q K dot production to compute attention
scores by only considering the global information, while PT1 [53] uses Q K subtraction
as the first step in local feature aggregation. The additive-based method was used in the
original attention paper from Bahdanau et al. [1]. Another related research of Attention-
based Neural Machine Translation [22] compared three attention approaches including
multiplication, concatenation, and generalization.

Unlike text and images, point clouds are usually unordered, and thus the traditional
position encoding should not be used to obtain better order variance of point inputs.
In point cloud learning, position encoding simply means merging more information
from the points’ 3D coordinates directly to the attention modules. For example, HiTPR
[8] splices the difference between the coordinates of center and neighbor points with
the difference of features, and then adds them to the attention map. LCPFormer [12]
projects the original coordinates of the points to the same dimension as the structural
information through MLP, and then adds them with the aggregated features. Proxy-
Former [16] uses a self-attention operation to stitch the coordinates of local points with
features and send them to the attention layer.
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In this work, we summarize our core technical contributions concerning attention
module design for point cloud analysis as follows:

– Selecting multi-scale neighbors as the Key input can mostly improve model per-
formance yet model size and FLOPs increase significantly. To improve model per-
formance with the same number of neighbors, grouping neighbors with a skipping
strategy to achieve a larger perceptive field is recommended.

– In local feature aggregation, using the offset feature (the difference between the
center point feature and the neighbor point feature) mostly yields a better result
compared to using the neighbor feature directly.

– For global-based attention, L2-norm subtraction-based attention is overall better
than the dot product self-attention. For local-based attention, offset-based attention
modules achieve relatively better performance in both scalar and vector attention
cases.

– Applying implicit position encoding is better than explicitly concatenating point
coordinates to the attention input. Most implicit position encoding methods achieve
similar favorable outcomes under various attention methods, and compressing its
feature dimension during the encoding leads to less improved performance.

– We reveal that there is no such attention module that always achieves the best per-
formance under different downstream tasks. However, some insights for choosing
an optimal one are given through our exploration.

2 Related Work

Point Cloud Local Feature Aggregation. The pioneering work by Qi et al. introduces
PointNet [26] for point cloud processing. Building upon it, PointNet++ [27] was intro-
duced by incorporating local feature aggregation through a hierarchical neural network.
Subsequently, DGCNN [39] introduces edge convolution to aggregate local features
based on the k-nearest neighbors in the feature space. HiTPR [8] leverages local fea-
ture aggregation to enhance the model’s ability to recognize and match places in 3D
environments. KPConv [35] introduces a deformable convolution operation for more
flexible processing of irregularly distributed point cloud data. PointCNN [17] A novel
X-convolution operation is proposed to better adapt to the disorder point clouds. PPT-
Net [13] and StratifiedFormer [14] utilize a transformer-based architecture to capture
fine-grained details and broader contextual information. MLMSPT [54] and 3DGTN
[21] use a multi-scale neighbor point selection method to establish receptive fields of
different scales and densities for extracting local features.

Attention-based Deep Learning on Point Clouds. By introducing the attention
mechanism, models can selectively focus on important points or regions and effectively
process point cloud data for various tasks [9,19,35,40,41]. PCT [5] is a typical method
that applies the self-attention module directly to point cloud classification and segmen-
tation tasks. On the other hand, cross-attention modules have been used to aggregate
features from different regions of a point cloud, leading to more accurate and fine-
grained predictions [3,8,25,42,43,47,48,53]. PTTR [55] divides the input point cloud
into multiple groups of points to extract their features respectively and then match and
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predict these features. PT V2 [45] incorporates more efficient attention mechanisms and
network architectures to boost performance while reducing computational demands.

Position Encoding in Point Cloud Analysis. The integration of position encoding
in point cloud analysis has significantly enhanced model performance, as exemplified
by Point Transformer [53]. Following this, PPTNet [13] further extends and refines the
use of position encoding in point cloud processing. Liu et al. [51] propose a rotation-
invariant position encoding method to ensure that the model performs stably on input
point clouds in different orientations. RandLA-Net [9] explores the efficiency of posi-
tion encoding in large-scale point cloud applications. Kan Wu et al. comparatively stud-
ied the effects of absolute position encoding [37] and relative position [11,31,34,38]
for attention mechanism. A contextual-based position encoding method is proposed in
[44], and its variants have been widely used in point cloud learning tasks [14,30,45,56].

3 Attention Module Variants

Methods in different papers run under different frameworks and settings, with potential
various training tricks. To conduct a comprehensive study on various attention module
variants and provide a more equitable comparison, we use an identical basic framework
in all the experiments for one certain task, with the same setting and no special training
tricks. The framework is given in Figure 1. It consists of an embedding layer, four
sequential attention modules with residual links, and a task-oriented MLP head.

Fig. 1. Basic Framework. It consists of an embedding layer, four sequential attention modules
with residual links, and a task-oriented MLP head.

The module differences of various attention module variants can be summarized
in the following four aspects: neighbor selection, local feature aggregation, position
encoding, and Q K V feature fusion method (i.e., the actual attention method). Note
that the former two aspects are only involved in local-based attention.

3.1 Neighbor Selection

When considering local information, the first decision to make is on what basis the
neighbors are selected, i.e., on original point 3D coordinates, or the feature similarity
in the high-dimensional feature space. After the basis is determined, k neighbors are
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selected with the K-Nearest Neighbors (KNN) method in the vanilla case. However, it
is possible to select the same number of neighbor points with a larger perceptual field
by regular skipping. As illustrated in Figure 2(a), for scale α, k ∗ 2α nearest neighbors
are first obtained, then k points are selected with a step of 2α.

Moreover, it is possible to consider the case of multi-scale, i.e., use the neighbor
groups of different perceptual field sizes as multiple keys for the attention operation.
For multi-scale as separate keys, the number of keys in the attention layer is equal to the
number of scales. Each scale selects points from the same starting point using different
degrees of sparsity. For multi-scale as one key, there is no overlapping between different
scales. As illustrated in Figure 2(b), to avoid repetitive point selection, multi-scale as
separate keys method obtains k ∗ (2α+1 −1) nearest neighbors first, then select k points
with different steps in different segments.

3.2 Local Feature Aggregation

In local-based attention, the features that can be used for local feature aggregation
include (i) the feature of the center point; (ii) the feature of selected neighbor points;
and (iii) the offset feature between neighbor points and the center point. Different com-
binations of these three methods are tested for different attention methods. K should
include at least one of the neighbor feature and the offset feature.

Fig. 2. (a) Single-scale, or multi-scale as separate keys, and (b) multi-scale as one key. A sparser
point selection method is used in larger perceptual fields, with the number of points selected in
each scale being consistent.

It is worth noting that the attention score computation method influences the
choice of features used for local feature aggregation. For example, when using
offset/subtraction-based attention methods to compute attention scores, the operation
already contains the offset feature information implicitly (Q contains the center fea-
ture, while K contains the neighbor feature). Hence the local feature aggregation part
should exclude the feature differences in this case. Another example is that when using
addition-based attention methods to compute attention scores, the local feature aggre-
gation part should exclude the center feature. A corresponding table is given in Table 1.
Detailed introductions of various attention operation methods are given in Section 3.3.
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Table 1. Possible combinations of features for local feature aggregation in different attention
operation methods.

Att. method
Local fea.

neighbor offset
center,
neighbor

center,
offset

neighbor,
offset

center,
neighbor,
offset

Dot product � � � � � �
Offset/Subtraction � - � - - -

Addition � � - - � -
Concat � � - - � -

3.3 Attention Method

Based on whether local information is considered, the attention methods used for point
cloud analysis can be mainly divided into two categories: global-based attention, and
local-based attention.

Global-based Attention Global-based attention module is designed as shown in
Figure 3. It can be described as Fg:

Fg = FFN(φg(p) + p) (1)

where φg denotes the global self-attention function, and p represents the point cloud
features and is the input of the entire module. A residual link is used to convey the input
to the post-attention tensor. Finally, the output is obtained through a feedforward neural
network (FFN).

Fig. 3. Global-based attention module.

Dot Product. For global-based attention modules, φg in Equation (1) is regarded as
the main research object. Q K dot product as shown in Figure 3(i) is widely used as a
calculation method for attention scores[7,10,30,33,36,50], and it can be described by
the following function:

φg
dot = Softmax

(
Q · K√

d

)
· V (2)

Direct Addition and Subtraction. The computational methods of addition [1] and
subtraction can also be used to compute attention scores. However as shown in Figure 3
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(ii) and (iii), the problem of too large size tensor (N×N×d) arises in the computational
procedure, which makes the methods actually inapplicable.

Subtraction with L2. On the other hand, for global attention, L2 norm-based sub-
traction is applicable by employing mathematical equivalence calculation tricks. PS-
Former [2] use of subtraction with L2 distance to realize the calculation of attention
scores, reduces the transmission dimension of the subtraction operation. The subtrac-
tion combined with L2 shown in Figure 3(iv) is described as:

φg
L2 = softmax(

−||Q − K||22√
d

) · V (3)

Fig. 4. Local-based attention module.

Local-based Attention Local-based attention module is designed as follows shown in
Figure 4, It can be described as Fl:

Fl = FFN(φl(p,G(p,N (p)) + p) (4)

whereN denotes the neighbor selection method, G denotes the local feature aggregation
method, and φl represents the local feature-based cross-attention.

For local-based attention module, neighbor selection function N in Equation (4)
will be based on the difference of features between points N f or the difference of
coordinates N c. Neighbor points are selected based on KNN. For each point, When it
is used as the center point for neighbor selection, neighbor points of multi-scale could
possibly be selected. The multi-scale can be divided into two structures, multi-scale as
one key None shown in Figure 2(a) and multi-scale as separate keys Nsep shown in
Figure 2(b).

For local feature aggregation functions G, as shown in Figure 4 local feature aggre-
gation block. the features that can be used for local feature aggregation include (i) the
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feature of center points; (ii) the feature of k neighbor points; and (iii) the feature differ-
ence between neighbor points and center points. we will test different combinations of
these three methods. It is worth noting that there is an influence between the choice of
aggregation methods and the attention score computation method.

Dot Product. For cross attention function φl, similar to global attention, dot product
shown in Figure 4(i) is widely used in local-based cross attention score computation:

φl
dot′ = softmax

(
Q · K√

d

)
· V (5)

Offset dot Product. For the dot product method, if the input is the difference
between neighbor points and center points(offset feature), the attention module per-
forms the “offset before MLP” operation. In the meta-base model [18], Lin et al.
completed a comparative experiment on whether to perform MLP before Group
[14,17,20,53] or Group before MLP [15,26,29,39]. Inspired by this experiment, as
a comparison with dot product, dot product with offset shown in Figure 4(ii) is based
on the dot product setting of MLP before offset:

φl
dot′′ = softmax

(
Q · (Qr − K)√

d

)
· V (6)

Addition. When attention mechanism was proposed, the computational method of
addition was used. we follow this method as one of the attention variants. [1]. addition
method as shown in Figure 4(iii) [1] is given:

φl
add = softmax(ω� · tanh(Qr + K)) · V (7)

where Qr means that Q repeats K times in the dimension of the number of neighbor
points, ω� is a learnable parameter, which enhances the expressive ability of the model
to a certain extent while making parameter transmission smoother and reduces infor-
mation loss.

Concatenation. Similarly, using the concatenation operation on Q K and imple-
menting the concatenation method as shown in Figure 4(iv) with the help of the learn-
able parameter w, it can be expressed as:

φl
cat = softmax(ω� · tanh(concat(Qr,K))) · V (8)

Vector attention with subtraction. Inspired by the use of vector attention mech-
anisms in image processing [52], PT2[45] uses advanced vector attention mechanisms
in point clouds. Considering the rationality of feature dimension transformation, we
designed vector attention functions based on subtraction shown in Figure 4(v) and addi-
tion shown in Figure 4(vi), which can be described as:

φl
v−sub = softmax(Qr − K) � V (9)

where Qr means that Q repeats k times in the dimension of the number of neighbor
points, � is the Hadamard product.
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Vector attention with addition. Since vector attention is less explored in point
cloud deep learning, we additionally test the following addition-based vector attention
method:

φl
v−add = softmax(Qr + K) � V (10)

In the following experiments, the above attention score computation methods are
tested with appropriate aggregated features, as listed in Table 4.

3.4 Position Encoding

We explore four widely-used position encoding methods, as illustrated in Figure 5. The
first one explicitly concatenates the point coordinates with the learned latent represen-
tation from the last layer. The other three methods learn separate MLP projections and
add the information to certain joints of attention modules.

method (i). Based on the original self-attention which considers the absolute posi-
tion [37], method (i) δ1 directly concatenates the spatial coordinates to the Q, K, V
input. This ensures the spatial information is explicitly merged with the attention input,
thereby enhancing the network’s ability to leverage absolute position information.

Fig. 5. Position encoding in global-based attention.

Fig. 6. Position encoding in local-based scalar attention.

method (ii).Method (ii) introduces an implicit encoding with an MLP that encodes
positional information. This method relies on the network’s ability to infer spatial rela-
tionships implicitly:

δ2 = (Q · K +MLP(pxyz)) · (V +MLP(pxyz)) (11)
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Fig. 7. Position encoding in local-based vector attention.

method (iii). Method (iii) enhances the implicit positional encoding by integrating
it with the Qmatrix. The encoding is designed to include contextual information derived
from the data points’ relationships in the Q space. This method uses an MLP to process
the initial positional information:

δ3 = (Q · K + Q · MLP(pxyz)) · (V +MLP(pxyz)) (12)

method (iv).Method (iv) goes a step further by incorporating contextually enriched
positional information into both the Q, K matrices. The MLP here processes the posi-
tional information and integrates it with Q and K, facilitating a more detailed compari-
son between points during the attention calculation:

δ4 = (Q · K + Q · MLP(pxyz) + K · MLP(pxyz)) · (V +MLP(pxyz)) (13)

The position encoding operation under the local attention mechanism is shown in
Figure 6 and Figure 7. There are differences in its dimensional transformation and
global attention contrast, which will affect the performance of position encoding. This
will be discussed in detail in Section 4.4.

4 Explore Best Practices for Different Tasks

4.1 Experiment setting

In this paper, two widely-used tasks are used as benchmarks for the experiments of
attention module variants: point cloud classification on ModelNet40 [46], and point
cloud segmentation on ShapeNetPart [49].

Datasets ModelNet40 dataset contains 12,311 pre-aligned shapes from 40 cate-
gories, which are split into 9,843 (80%) for training and 2,468 (20%) for testing.
ShapeNetPart dataset contains 16,881 pre-aligned shapes from 16 categories, annotated
with 50 segmentation parts in total. Most object categories are labeled with two to five
segmentation parts. There are 12,137 (70%) shapes for training, 1,870 (10%) shapes for
validation, and 2,874 (20%) shapes for testing.

Training Details For both classification and segmentation experiments, our setup
involved training 200 epochs with a batch size of 16, splitting over 2x GTX 2080Ti
for standard tasks, or 2x RTX 3090 for some multi-scale configuration experiments
which need a larger memory. AdamW is used as the optimizer. The learning rate starts
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from 1 × 10−4 and decays to 1 × 10−8 with a cosine annealing schedule. A warp-up
strategy is used for more stable performance. The weight decay for model parameters
is set as 1 for classification experiments and 1 × 10−4 for segmentation experiments.
We augmented the inputs by randomly applying the following four methods: jittering,
rotation, translation, and anisotropic scaling.

4.2 Neighbor Selection

As shown in Table 3, different multi-scale selection strategies are applied when select-
ing neighbor points. In this part of the experiment, we set the attention score calcula-
tion method to dot product, and the aggregation feature is the offset feature. First, an
appropriate number of neighbor points k needs to be determined under different tasks.
We tested the performance of the model with different numbers of neighbor points as
shown in Table 2. In the classification task, k = 32 obtained the best performance. In
the segmentation task, a larger k achieves better performance. Taking the computational
complexity and performance into account, we use k = 32 for most of the following
experiments.

Table 2. Classification and segmentation performance of using different k with all other settings
consistent. The applied attention method is local dot product. The offset feature is used for local
feature aggregation. Only single scale α = 0 is used.

k 4 8 16 32 64 128

Cls. OA (%) 92.49±0.11 92.74±0.09 92.89±0.11 93.10±0.06 92.97±0.08 92.84±0.06

Seg. Cat. mIoU (%) 84.04±0.08 84.90±0.10 85.53±0.08 85.59±0.06 85.90±0.07 86.29±0.06

Ins. mIoU (%) 79.58±0.10 80.84±0.06 82.03±0.07 82.60±0.06 83.10±0.05 84.05±0.07

As shown in Table 3, multi-scale as one key with scales α = {0, 1, 2} achieves
the best results in downstream tasks. a larger-scale point selection method can provide
richer contextual information, which can help the model better generalize to different
scenarios and conditions and improve model performance. On the other hand, the strat-
egy of using separate keys does not exhibit any discernible impact, yet it requires much
more model parameters. Hence we can conclude that using separate attention modules
for separate scales (e.g. 3DCTN [21]) is not necessary, using multi-scale as one key is
an overall better solution (e.g. Stratified Transformer [14]). Moreover, if certain limi-
tations of computational resource pose, single scale yet with a larger perceptive field
(larger scale α) for neighbor searching is also a practical solution to reduce the FLOPs
of the model while still achieving decent performance.

4.3 Local Feature Aggregation and Attention Method

As mentioned in Section 3.2, in the local-based attention module, the attention score
calculation method affects the selection of features for local feature aggregation. Both
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Table 3. Classification and segmentation performance of different variants under different neigh-
bor selection basis and scales. The parameters and FLOPs of the attention module are also
reported.

Variants Cls. OA (%) Seg. Params (k) FLOPs (G)

Neighbor Basis Scale One/sep. Keys Cat. mIoU (%) Ins. mIoU (%)

Feature Similarity 0 one 93.10±0.09 82.60±0.06 85.59±0.07 180.22 2.45

1 one 93.22±0.07 82.87±0.08 85.74±0.04 180.22 2.45

2 one 93.30±0.07 83.02±0.07 85.92±0.11 180.22 2.45

0, 1 one 93.27±0.06 82.97±0.05 85.95±0.02 180.22 4.60

0, 1 sep 93.25±0.05 82.90±0.05 85.85±0.06 229.38 4.63

0, 1, 2 one 93.34±0.07 82.96±0.09 85.97±0.09 180.22 6.75

0, 1, 2 sep 93.34±0.04 83.15±0.06 85.76±0.10 278.53 6.81

Initial 3D Coordinates 0 one 92.32±0.09 82.26±0.10 84.22±0.03 180.22 2.45

1 one 92.54±0.06 82.41±0.09 85.05±0.05 180.22 2.45

2 one 92,70±0.08 82.51±0.05 85.29±0.07 180.22 2.45

0, 1 one 92.75±0.03 82.55±0.06 85.21±0.06 180.22 4.60

0, 1 sep 92.74±0.06 82.54±0.06 85.13±0.07 229.38 4.63

0, 1, 2 one 92.93±0.07 82.78±0.07 85.25±0.06 180.22 6.75

0, 1, 2 sep 92.90±0.05 82.96±0.03 85.19±0.04 278.53 6.81

Table 4. Classification and segmentation performance of different variants under different atten-
tion score computation methods and corresponding used features for local feature aggregation.

Variants Cls. OA (%) Seg. Params (k) FLOPs (G)

Global/ Local Attention Agg. Cat. mIoU (%) Ins. mIoU (%)

Global Dot Product - 93.02±0.05 83.07±0.08 85.45±0.07 180.22 0.37015

Subtraction - 93.43±0.07 83.15±0.06 85.47±0.06 180.22 0.37015

Local Scalar Dot Product Neighbor 92.98±0.08 82.24±0.08 85.48±0.04 180.22 2.45

Offset 93.10±0.09 82.60±0.06 85.59±0.07 180.22 2.45

Center, Neighbor 92.98±0.05 83.03±0.08 85.25±0.05 212.99 4.60

Center, Offset 93.26±0.07 83.04±0.05 85.60±0.07 212.99 4.60

Neighbor, Offset 93.14±0.06 83.15±0.04 85.57±0.06 212.99 4.60

Center, Neighbor, Offset 93.20±0.08 83.23±0.04 85.74±0.06 245.76 6.75

Scalar Offset Dot Product Neighbor 93.30±0.09 82.77±0.06 85.37±0.09 180.22 2.45

Center, Neighbor 92.78±0.04 82.85±0.06 85.60±0.08 212.99 4.60

Scalar Addition Neighbor 92.65±0.07 82.15±0.11 85.37±0.06 180.22 2.45

Offset 93.38±0.05 82.71±0.08 85.54±0.04 180.22 2.45

Neighbor, Offset 93.30±0.07 82.94±0.09 85.54±0.07 212.99 4.60

Scalar Concat Neighbor 93.38±0.07 82.86±0.05 85.40±0.05 180.22 2.45

Offset 93.51±0.09 83.20±0.04 85.53±0.05 180.22 2.45

Neighbor, Offset 93.06±0.06 82.94±0.04 85.57±0.09 212.99 4.60

Vector Subtraction Neighbor 93.55±0.04 82.57±0.03 85.44±0.07 180.22 2.45

Center, Neighbor 92.94±0.04 83.24±0.05 85.50±0.07 212.99 4.60

Vector Addition Neighbor 93.14±0.09 82.89±0.03 85.74±0.07 180.22 2.45

Offset 93.06±0.07 82.84±0.03 85.43±0.11 180.22 2.45

Neighbor, Offset 93.06±0.10 82.95±0.05 85.76±0.06 212.99 4.60
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aspects must be assessed simultaneously. For a more comprehensive comparison, this
subsection also includes experimental results of the global-based attention module. As
shown in Table 1, different attention score computation methods correspond to a variety
of reasonable feature aggregation methods. Under the configuration of scale α = 0 and
k = 32, the experimental results are shown in Table 4.

From the table, we can observe that for attention methods with which neighbor fea-
ture and offset feature are both applicable, using offset feature achieves better perfor-
mance than using neighbor feature. Moreover, for classification tasks, when offset fea-
ture is already used, adding neighbor feature additionally results in a modest decrease
in performance. This shows that the following two principles can enable the model to
perform well in classification tasks: (i) the input information contains offset features,
(ii) the redundancy of the aggregated information is reduced. However, in segmentation
tasks, feature aggregation methods with higher redundancy can mostly achieve better
performance. But this also brings higher FLOPs as shown in Table 4. This is a trade-off
that needs to be balanced in the actual application scenarios.

In the classification task, the local-based vector offset attention φl
v−sub with neigh-

bor feature aggregated achieves the best performance. In the segmentation task, the
local-based vector offset attention φl

v−sub with center and neighbor features aggregated
achieves the best performance. This provides insights for possible improvements to the
existing models, e.g., both center and neighbor features can be used in HitPR [8] for
getting better task performance.

On the other hand, we find that the global subtraction attention method also achieves
decent performance with much smaller FLOPs. And the L2-norm subtraction-based
attention φg

L2 is overall better than the dot product self-attention. It should be pointed
out that although the FLOPs difference between the local and global attention modules
is very large, with the embedding layer and task-oriented MLP head, and the actual
training time difference between the two kinds of attention modes is not as large as
that of FLOPs. Under the configuration of Section 4.1, local-based and global-based
methods take around 13 hours and 7 hours to complete the training respectively for the
classification task, and 19 hours and 10 hours for the segmentation task.

4.4 Position Encoding

The experimental results are reported in Table 5 and it indicates that different posi-
tion encoding methods impact model performance in classifying and segmenting point
cloud data. Explicit position encoding (δ1), which adds spatial coordinates directly, does
improve classification accuracy to some extent, but its effectiveness is limited in com-
plex segmentation tasks, suggesting that relying solely on absolute spatial information
is insufficient for handling intricate point relationships. In contrast, implicit position
encoding (δ2, δ3 and δ4) shows greater advantages, especially when combined with
contextual information. By integrating rich contextual information with the Query and
Key input, δ3 and δ4 significantly enhance the model’s performance in both classifi-
cation and segmentation tasks, emphasizing the importance of a global perspective in
understanding point relationships. These findings highlight that implicit position encod-
ing with contextual information strategy is more effective for downstream tasks.
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Table 5. Classification and segmentation performance obtained by selecting different position
encoding methods under different attention methods. PE stands for position encoding.

Variants Cls. OA (%) Seg. Params (k) FLOPs (G)

Global/ Local Attention Agg. PE Cat. mIoU (%) Ins. mIoU (%)

Global Dot Product - - 93.02±0.05 83.07±0.08 85.45±0.07 180.22 0.37015

i 93.18±0.10 82.90±0.08 85.29±0.09 181.38 0.37251

ii 93.06±0.07 83.11±0.07 85.35±0.07 180.62 0.37096

iii 93.18±0.07 83.22±0.04 85.48±0.06 180.99 0.37172

iv 93.22±0.03 83.18±0.07 85.53±0.07 181.38 0.37251

Subtraction - - 93.43±0.07 83.15±0.06 85.47±0.06 180.22 370.15

i 93.38±0.08 83.21±0.08 85.55±0.07 181.38 0.37251

ii 93.34±0.09 83.12±0.09 85.48±0.07 180.62 0.37096

iii 93.51±0.04 83.16±0.08 85.60±0.06 180.99 0.37172

iv 93.46±0.05 83.19±0.05 85.64±0.06 181.38 0.37251

Local Scalar Dot Product Offset - 93.10±0.09 82.60±0.06 85.59±0.07 180.22 2.45

i 93.14±0.08 82.73±0.09 85.52±0.07 181.38 2.50

ii 93.14±0.06 82.85±0.07 85.58±0.06 180.75 2.48

iii 93.30±0.06 82.92±0.07 85.59±0.03 181.25 2.50

iv 93.22±0.06 83.05±0.04 85.77±0.03 181.76 2.50

Scalar Offset Dot Product Neighbor - 93.30±0.09 82.77±0.06 85.37±0.09 180.22 2.45

i 92.25±0.07 82.85±0.09 85.43±0.10 181.38 2.50

ii 93.22±0.08 82.84±0.07 85.54±0.08 180.75 2.48

iii 93.24±0.05 83.15±0.05 85.60±0.05 181.25 2.50

iv 93.55±0.04 82.92±0.08 85.72±0.03 181.76 2.50

Vector Subtraction Neighbor - 93.55±0.04 82.57±0.03 85.44±0.07 180.22 2.45

i 93.47±0.05 82.62±0.05 85.42±0.06 181.38 2.50

ii 93.56±0.05 83.26±0.04 85.55±0.05 181.25 2.50

iii 93.32±0.06 82.54±0.09 85.29±0.07 180.75 2.48

It is worth noting that when local-based attention is used, the power of position
encoding is possibly limited by the feature dimension decrease in the MLPs that are
used for encoding. For example, in δ2 of Figure 6 and δ3 of Figure 7, the feature dimen-
sion of point positions has to be mapped from 3 to 1 to satisfy the architecture, resulting
in less improved performance. This is also the reason why it is difficult for δ2 in the local
scalar attention and δ3 in the local vector attention to improve model performance.

5 Apply Best Practices

Through the data analysis in Section 4, The best modules under global and local atten-
tion mechanisms will be selected for testing. For module selection, we are prioritizing
the best performance while also taking into account computational efficiency. Consid-
ering that downstream tasks of different complexity, we use different frameworks to
handle classification and segmentation tasks.
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Fig. 8. The segmentation network architecture for applying best practices.

5.1 Classification

For the classification tasks, we use the basic framework shown in Figure 1 to test on
ScanObjectN and ModelNet40 benchmarks. By applying the best practices explored
before, the following two attention module variants are used: for global-based atten-
tion, we use L2-norm subtraction-based attention method φg

L2 with position encoding
method δ3; for local-based attention, we use subtraction-based vector attention φl

v−sub

with neighbor feature aggregated and with position encoding method δ2. The results are
shown in Table 6. Our experimental results are better than or on par with the state-of-
the-art methods. Moreover, please note that we achieve such superior performance with
a relatively smaller number of parameters and FLOPs.

Table 6. 3D object classification performance on ScanObjectNN and ModelNet40. The parame-
ters and FLOPs of the entire framework are also reported.

Method ScanObjectNN(PB_T50_RS)ModelNet40 Params. FLOPs

OA(%) mAcc(%) OA(%) mAcc(%) (M) (G)

PointNet [26] 68.2 63.4 89.2 86.2 3.5 0.9

PointCNN [17] 78.5 75.1 92.2 88.1 0.6 -

DGCNN [39] 78.1 73.6 92.9 90.2 1.8 4.8

DeepGCN [15] - - 93.6 90.9 2.2 3.9

KPConv [35] - - 92.9 - 14.3 -

ASSANet-L [28] - - 92.9 - 118.4 -

SimpleView [4] 80.5±0.3 - 93.0±0.4 90.5±0.8 0.8 -

MVTN [6] 82.8 - 93.5 91.2 3.5 1.8

PCT [5] - - 93.2 - 2.9 2.3

CurveNet [24] - - 93.8 - 2.0 -

PointMLP [23] 85.4 83.9 94.1 91.3 13.2 31.3

Ours (global) 83.1±0.4 80.8±0.6 93.8±0.1 90.7±0.2 1.93 3.67

Ours (local) 83.7±0.5 81.2±0.9 93.9±0.2 91.1±0.3 1.93 7.70
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5.2 Segmentation

A framework illustrated in Figure 8 is used for the segmentation task. By applying the
best practices explored before, the following two attention module variants are used:
for global-based attention, we use L2-norm subtraction-based attention method φg

L2

with position encoding method δ4; for local-based attention, we use offset dot product-
based scalar attention φl

dot′′ with neighbor feature aggregated and with position encod-
ing method δ4. Data is progressively downsampled and processed, followed by upsam-
pling modules to increase data resolution. The results are reported in Table 7. Note that
the FLOPs number is drastically decreased since the segmentation framework has mul-
tiple downsample layers. Despite not reaching the level of state-of-the-art methods, our
framework still demonstrates relatively superior performance when considering param-
eter scaling and computational complexity. It achieves such performance with a much
smaller number of FLOPs, highlighting the efficiency and effectiveness of our attention
module choices.

Table 7. Part segmentation performance on ShapeNet Part.

Method Cat. mIoU (%) Ins. mIoU (%)Params. (M) FLOPs (G)

PointNet [26] 80.4 83.7 3.6 4.9

DGCNN [39] 82.3 85.2 1.3 12.4

KPConv [35] 85.1 86.4 - -

CurveNet [24] - 86.8 - -

ASSANet-L [28] - 86.1 - -

Point Cloud Transformer [5] 83.7 86.6 7.8 -

PointMLP [23] 84.6 86.1 - -

Stratifiedformer [14] 85.1 86.6 - -

Ours (global) 84.25±0.10 86.27±0.09 5.0 0.64

Ours (local) 84.37±0.07 86.36±0.05 5.0 1.39

6 Conclusion

In this paper, we conduct an extensive and fair comparative study of attention mech-
anisms under a unified framework and summarize some best practices in the atten-
tion module design for point cloud analysis. Furthermore, we follow these best prac-
tices and propose to use different attention modules for different downstream tasks and
achieve good performance and efficiency. In summary, rethinking the attention mecha-
nism helps to clarify the characteristic differences between different attention module
variants for point cloud analysis, and provides important insights for the design and
exploration of future network architectures.
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Abstract. In neural network models, hyperparameters have a signifi-
cant impact on model performance. Currently, the commonly used hyper-
parameter optimization methods include manual search, grid search, ran-
dom search, Bayesian optimization, and so on. However, these methods
always exhibit some problems such as high computational cost, low con-
vergence rate and poor model performance. Thus, for image classifica-
tion tasks, a hyperparameter optimization method based on statistical
orthogonal design for neural network models is proposed in this paper.
With the same number of experiments, the classification accuracy of
the proposed method is significantly better than that of grid search,
random search, and Bayesian optimization methods for both two-level
and three-level orthogonal designs. With the same classification accu-
racy as grid search, random search, and Bayesian optimization methods,
the proposed method has fewer experimental times. Furthermore, the
single-factor rotation method and statistical variance analysis technique
are also applied to study the effect of different hyperparameters on the
performances of the neural network models.

Keywords: Hyperparameter optimization · Neural network ·
Orthogonal design · Random search · Grid search · Bayesian
optimization.

1 Introduction

In machine learning research, neural network models have become a benchmark
model for classification, segmentation, detection and retrieval tasks [1], and it is
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widely used in unmanned driving [2], intelligent transportation [3,4] and smart
healthcare [5]. Neural network model is a mathematical model for the nonlinear
representation and logical operations on complex information, with the prototype
of biological nervous system and the theoretical basis of network topology [1,2].
As the increased of layers and the number of neurons from a few to thousands,
the size of neural network model is significantly increased. This also brings a
sharp rise in the number of parameters. Generally, the parameters of neural net-
work models include ordinary parameters and hyperparameters [6]. The ordinary
parameters can be automatically learned from the sample data to achieve the
optimal value, while the hyperparameters usually need to be set manually. Cur-
rently, it has been showed that hyperparameters have a very significant impact
on the performance of neural network model. For example, the hyperparameter
of learning rate has a significant impact on the update speed in the direction of
the gradient. If the learning rate is small, it slows down the parameter update
speed, leading to increased computational costs. Conversely, if the learning rate
is large, it easily crosses the local minimum, and fails to converge. Therefore, how
to select appropriate hyperparameters to optimize model performance, known
as the hyperparameter optimization problem, is a great challenge in the neural
network model research [7].

Hyperparameter optimization for neural network models is to select the best
hyperparameters by minimizing the difference between actual labels and the
predictions of the neural network models [8]. Many hyperparameter optimiza-
tion strategies with different research backgrounds are proposed, such as man-
ual search, grid search, random search, Bayesian optimization, and evolutionary
algorithms. For instance, in the traditional three-layer feedforward neural net-
work models with few hyperparameters, manual search is always used to find
the optimal hyperparameters [9]. Unfortunately, manual search relies on experts’
experience and intuition, and it might not always find the optimal solution.

To address the drawbacks of manual search, the grid search method for hyper-
parameter optimization is introduced. As an exhaustive search technique, grid
search selects the optimal combination of hyperparameters by searching all possi-
ble combinations of hyperparameters within a predefined hyperparameter subset
[10,11]. However, in the case of high dimensions, “dimensional disaster” is easily
caused with the exponentially increased of the combinations of hyperparameters
in grid search.

To overcome the high computational cost and optimization difficulties, [12]
introduced an automatic random search optimization method and proved its
superiority over manual search and grid search methods in theory. Random
search has become a benchmark algorithm for hyperparameter optimization
by randomly sampling from all the combinations of hyperparameter to greatly
save search time and computational cost [13,14]. For example, [13] proposed
an improved random search algorithm with an early-stopping mechanism and
weight sharing, and achieved competitive neural network architectures in the
neural architecture search task. Although random search has greatly improved
the speed of hyperparameter optimization, it still needs a large number of exper-
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iments to find the optimal solution due to the lack of directional guidance in the
search process.

On the other hand, [15] applied the Bayesian non-parametric optimization
method to the hyperparameter selection of the random forest model for improv-
ing the classification performance. Bayesian optimization [16,17] first fits an
unknown target function by using prior distribution, then it selects the next
hyperparameter combination by the posterior distribution until optimal. The
related study can also be found in [18–20]. In practice, Bayesian optimization is
always used for scenarios with low dimensions, typically 10 to 20, and it is not
suitable for discrete spaces and cannot be processed in parallel. In addition, some
other hyperparameter optimization methods are also proposed. See [21,22].

In summary, the above mentioned hyperparameter optimization methods
such as manual search, grid search, random search, and Bayesian optimiza-
tion, either require the abundant manual parameter optimization and trial-and-
error or entail large computational costs. Thus, a hyperparameter optimization
method based on statistical orthogonal design for neural network models is pro-
posed, which has the characteristics of efficiency, speed, and cost-effectiveness.
Experimental results on multiple neural network models show that the proposed
method outperform grid search, random search and Bayesian optimization meth-
ods.

2 A Hyperparameter Optimization Method Based on
Statistical Orthogonal Design for Neural Network
Models

2.1 Hyperparameter Optimization

Hyperparameter optimization is to find the optimal hyperparameter λ(∗) by
minimizing the following objective function:

λ(∗) ≈ argmin
λ∈Λ

∑

Zi∈D(valid)

L
(
Zi;Aλ

(
D(train)

))
(1)

where, L is the loss function representing the difference between the true samples
and the model predictions, D(train) and D(valid) refer to the training and valida-
tion sets respectively, and Aλ is the neural network model, which can be a fully
connected neural network, deep belief network, convolutional neural network,
etc.

Currently, grid search, random search and Bayesian optimization methods
have been widely used in the hyperparameter optimization for neural network
models. Then these three methods are respectively described. Followed, the
proposed hyperparameter optimization method based on statistical orthogonal
design for neural network models is also introduced.
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2.2 Grid Search

As an exhaustive search technique, grid search selects the optimal combination
of hyperparameters by searching all possible combinations of hyperparameters
within a predefined hyperparameter subset. For example, in a grid search with
three factors, there are three hyperparameters to be optimized: α, β, and γ.
Here, α takes values from {1, 2, 3}, β takes values from {0.1, 0.2, 0.3}, and γ
takes values from {True, False}. Then the grid search method is to select the
optimal combination of hyperparameters by searching all 18 hyperparameter
combinations.

2.3 Random search

Random search is to find the optimal values of hyperparameters by using the ran-
dom sampling technology. It is firstly assumed that each hyperparameter follows
a marginal distribution, such as Bernoulli distribution, log-uniform distribution,
or normal distribution, and then the hyperparameter search is carried out by
random sampling.

Fig. 1. Grid and random search of nine trials for optimizing a function f(x, y) =
g(x) + h(y) ≈ g(x) with low effective dimensionality (Fig. 1 is from reference [12]).

Different from grid search, random search does not need to discretize the
hyperparameter value interval, but randomly sample in the hyperparameter
value interval, which ensures that random search can be optimized in a larger
hyperparameter space. As shown in Fig. 1, with grid search, nine trials only test
g(x) in three distinct places, however, with random search, all nine trials explore
distinct values of g(x).

2.4 Bayesian Optimization

Bayesian optimization is an iterative hyperparameter selection method based on
probability distribution. It first uses the probabilistic agent model defined by
a Gaussian process to model the objective function, and then uses the collec-
tion function to select the next evaluation point. After the evaluation point is
assessed, the model is updated with the new evaluation data.
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Table 1. Seven-factor two-level orthogonal array

A B C D E F G

1 1 2 1 2 1 2 2
2 2 1 2 1 1 2 2
3 1 2 2 1 2 2 1
4 1 1 2 2 2 1 2
5 2 2 2 2 1 1 1
6 2 1 1 2 2 2 1
7 1 1 1 1 1 1 1
8 2 2 1 1 2 1 2

2.5 A Hyperparameter Optimization Method Based on Statistical
Orthogonal Design for Neural Network Models

Orthogonal design is a reasonable arrangement and design method for multi-
factor and multi-level experimental points. It only needs to extract some rep-
resentative points from the full experiment, and then arrange and design the
experiment according to the orthogonal property, it can achieve the predeter-
mined goal with less experiment times and greatly reduce the experiment cost
[23,24]. For example, in an experiment with seven factors, each having two lev-
els, a full factorial design would require 27 = 128 experimental setups. However,
if we use the orthogonal design, only eight experiments are needed by selecting
a suitable orthogonal array for seven factors with two levels (as shown in Table
1, where rows represent experiment numbers, columns represent factors, and ‘1’
and ‘2’ indicate the levels of factors). The experimental result with eight exper-
iments is close to those of 128 experiments, and the experimental cost is only
1/16 of that of the full experiment.

In view of the excellent properties of statistical orthogonal design, this paper
integrates the concept of orthogonal design into the hyperparameter optimization
of neural network models, and proposes a hyperparameter optimization method
based on the orthogonal design. The algorithm process is as follows: First Step:
Select the hyperparameters to be optimized and determine their value ranges;
Second Step: Divide the value ranges of the hyperparameters into multiple inter-
vals, and discretize the continuous hyperparameters to define levels of values,
known as the levels of hyperparameters. Next, choose an appropriate orthogonal
array based on the number and levels of hyperparameters to be optimized; Third
Step: Combine the levels of all hyperparameters to be optimized according to the
orthogonal table, and select the optimal combination of hyperparameter levels
by calculating the scores of all combinations; Fourth Step: For the value range of
each hyperparameter in the optimal combination obtained in the previous step,
repeat the selection process for the optimal combination of hyperparameter lev-
els until further division and discretization of the hyperparameter value range
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Algorithm 1: Hyperparameter Optimization Based on Orthogonal Design
Input: Hyperparameters Λ = {λj , j = 1, 2, . . . , n}, where λj ∈ (a

(0)
j , b

(0)
j ), Number of

splits S
Output: Optimal combination of hyperparameters Λ∗
1: for k = 1; k ≤ S; k ++ do
2: Divide the range of each hyperparameter into:
3: I

(k)
j1 = (a

(k)
j1 , b

(k)
j1 ), I

(k)
j2 = (a

(k)
j2 , b

(k)
j2 ), where b

(k)
j1 = a

(k)
j2 ;

4: Discretize to obtain: λ
(k)
j1 ∈ I

(k)
j1 , λ

(k)
j2 ∈ I

(k)
j2 ;

5: Select an orthogonal array OA(m, n) = (αij), i = 1, 2, . . . , m, j = 1, 2, . . . , n;
6: for i = 1; i ≤ m; i ++ do
7: for j = 1; j ≤ n; j ++ do
8: if αij= ‘1’ then
9: λ

(k)
ij = λ

(k)
j1 ;

10: else
11: λ

(k)
ij = λ

(k)
j2 ;

12: end if
13: end for
14: end for
15: Obtain m hyperparameters: Λ(k) = {Λ

(k)
1 , . . . , Λ

(k)
m };

16: Calculate scores to find the highest scoring hyperparameters
Λ

(k)
∗ = argmax

Λ
(k)
j ∈Λ(k)A

(
Λ

(k)
j

)
;

17: Determine the value range for the optimal hyperparameters: I
(k)
∗ ;

18: end for

is not possible. The final combination of hyperparameter levels obtained at this
point is considered the optimal set of hyperparameters.

Specifically, Algorithm 1 shows the hyperparameter selection process of the
proposed method for the two-level orthogonal design. For the three-level orthog-
onal design, we only need to discretize the range of hyperparameter values into
three parts in Step 2 and obtain the three levels of hyperparameter values. At
the same time, in Step 4, a three-level orthogonal array should be selected.

3 Experimental Analysis

To verify the effectiveness and superiority of the proposed hyperparameter opti-
mization method based on statistical orthogonal design for neural network mod-
els, this paper compares its performance with traditional grid search, random
search, and Bayesian optimization. In addition, we also analyze the impact of
different hyperparameters on the neural network model performance.

3.1 Experimental Setup and Procedure

Four popular neural network models of three-layer fully connected neural net-
work, four-layer deep belief network, three-layer convolutional neural network,
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and VGGNet11 network, and three image classification datasets of MNIST, Rect-
angle, and Cifar10, are selected to compare the performance of the four hyperpa-
rameter optimization methods. The experimental setup of each neural network
model is described below.

Three-layer Fully Connected Neural Network (FCN): The three-layer
fully connected neural network model is composed of input layer, hidden layer
and output layer. The number of neurons in the input layer is 784, and in the
output layer is 10. The model is comprised of 5 hyperparameters. The value
range of each hyperparameter is shown in Table 2.

Specifically, for two-level orthogonal design, the value range of the hyperpa-
rameter was segmented 6 times, and 8 groups of hyperparameters were tested
each time. Therefore, 6× 8 = 48 experimental results were obtained in this rep-
etition, and the average was calculated as the result of this repetition. To avoid
random occurrences and ensure reliable results, a total of 50 repeated experi-
ments were conducted. Similar to the two-level orthogonal design, the hyperpa-
rameter optimization based on the three-level orthogonal design was also carried
out 50 repeated experiments.

Table 2. Value range of hyperparameters

Model Hyperparameter Range Hyperparameter Range

FCN Learning Rate 0.001−5 Batch Size 20−100
Simulated Annealing 100−10000 Hidden Layer Nodes 16−1024
L2 Regularization Coefficient 3.1e−7 − 3.1e−5

DBN Global Learning Rate 0.001−0.1 Global Simulated Annealing 10−400
Local Learning Rate 0.001−0.1 Local Rounds 10−200
Local Simulated Annealing 128−512 Local Hidden Layer Nodes 10−400

CNN Learning Rate 10e−5 − 10e−3 Batch Size 32−128
Weight Distribution 0.1−0.3 Convolutional Kernel Size 1, 3, 5, 7
Number of Convolutional Kernels 32−128 Fully Connected Layer Nodes 256−1024

VGG Learning Rate 10e−4 − 10e−2 Batch Size 16−64
Convolutional Kernel Size 1,3 ... 13, 15 Number of Convolutional Kernels 32−512
Weight Distribution 0.01−0.03

Four-Layer Deep Belief Network (DBN): The four-layer deep belief net-
work model is composed of three stacked restricted boltzmann machines [25,26].
Because deep belief network is pre-trained layer by layer before global fine-
tuning, the hyperparameters can be divided into local hyperparameters and
global hyperparameters. In this experiment, 2 global hyperparameters and 12
local hyperparameters are to be optimized, and the value range of hyperparam-
eters is shown in Table 2.
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When a two-level orthogonal design is used to optimize the four-layer deep
belief network, a fourteen-factor two-level orthogonal array (16 rows by 14
columns) was selected, resulting in 16 hyperparameter combinations. For the
three-level orthogonal design, a fourteen-factor three-level orthogonal array (54
rows by 14 columns) was selected. The two-level and three-level orthogonal
design optimization experiments were all repeated 20 times.

Three-Layer Convolutional Neural Network (CNN): The three-layer
convolutional neural network model is comprised of two convolutional layers and
a fully connected layer, and each convolutional layer is connected with a pool-
ing layer. The model is comprised of 9 hyperparameters. For each convolutional
layer, three hyperparameters are involved: the size of the convolutional kernel,
the number of convolutional kernels, and the distribution of weights on the con-
volutional kernel. In addition, three hyperparameters are considered: batch size,
learning rate, and the number of neurons in the fully connected layer. The value
range of hyperparameters is shown in Table 2.

The number of repeated experiments was set to 20. In the two-level orthog-
onal design optimization experiment, a nine-factor two-level orthogonal array
(12 rows by 9 columns) was selected. And in the three-level orthogonal design
experiment, a nine-factor three-level orthogonal array (27 rows by 9 columns)
was selected.

VGGNet11 Network (VGG): The VGGNet11 model, with a more complex
structure and more parameters, is comprised of 8 convolutional layers, 4 pooled
layers and 3 fully connected layers, and includes 25 hyperparameters. In the
two-level orthogonal design optimization experiment, a twenty-five-factor two-
level orthogonal array (28 rows by 25 columns) was selected, and a total of 20
repetitions were performed.

3.2 Results and Analysis

Experimental Results and Analysis for the Three-Layer Fully Con-
nected Neural Network Model Under the same experimental conditions, the
method proposed in this paper was compared with grid search, random search,
and Bayesian optimization methods on the MNIST and Rectangle datasets by
using a three-layer fully connected neural network model. The experimental
results are shown in the left figure of Fig. 2. In the figure, the green dashed
line represents the average of all results obtained by grid search. The first and
second columns represent the results of 48 experiments using random search and
Bayesian optimization, respectively. The third, fourth, fifth, and sixth columns
represent the results of 48, 40, 32, and 24 repeated experiments using two-level
orthogonal design, respectively.

From Fig. 2, we can see that for the two-level and three-level orthogonal
designs, the proposed method all can achieve higher classification accuracy with
fewer experiments than grid search, random search, and Bayesian optimization
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methods on the MNIST and Rectangle datasets. For example, in the experi-
ment of hyperparameters optimized by two-level orthogonal design on MNIST
dataset, the average classification accuracy of grid search is 90.77%, the median
classification accuracy of 48 random searches is 93.08%, the median classification
accuracy of 48 Bayesian optimizations is 93.20%, and the median obtained by
searching 24 times using two-level orthogonal design is 93.14%, which is 2.37%
higher than grid search, 0.06% higher than random search. When the number
of experimental times increases from 24 to 32, 40, and 48, the median classi-
fication accuracies of the proposed method are 93.57%, 93.86%, and 94.15%,
respectively, which are 2.80%, 3.09%, and 3.38% higher than grid search, 0.49%,
0.78%, and 1.07% higher than random search, and 0.37%, 0.66%, and 0.95%
higher than Bayesian optimization, respectively. Actually, when the number of
searches reaches 40 or more, the box of the two-level orthogonal design is sig-
nificantly higher than that of random search and Bayesian optimization, and
there is no intersection between the boxes. These all indicate that the proposed
method is significantly better than random search and Bayesian optimization.

Fig. 2. Experimental results for the three-layer fully connected neural network and
four-layer deep belief network models

Experimental Results and Analysis for the Four-Layer Deep Belief
Network Model Right figure of Fig. 2 shows the comparison results of the
proposed method, grid search, random search, and Bayesian optimization meth-
ods for the four-layer deep belief network model on the same datasets. As shown
in Fig. 2, the classification accuracies obtained by all hyperparameter optimiza-
tion methods for the four-layer deep belief network are improved compared to
the three-layer fully connected neural network. However, the proposed method
still has the best performance. For example, on the Rectangle dataset, the clas-
sification accuracies of grid search, random search, Bayesian optimization, and
the proposed method are 91.27%, 91.81%, 92.74%, and 94.02%, respectively,
which increased by 3.97%, 3.86%, 9.59%, and 3.13% compared with the three-
layer fully connected neural network. The box interval of 96 random searches
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is [0.9174, 0.9190], the box interval of 96 Bayesian optimizations is [0.9202,
0.9347]. However, the box interval of 96 searches based on two-level orthogonal
design is [0.9366, 0.9425], significantly higher than the boxes for random search
and Bayesian optimization and with no crossover. And the proposed method
improves by 1.88% compared with grid search and 1.38% compared with random
search, but it has no significant difference from Bayesian optimization (Bayesian
optimization method has large variance fluctuations).

Fig. 3. Experimental results for the three-layer convolutional neural network and
VGGNet11 network models

Experimental Results and Analysis for the Three-Layer Convolutional
Neural Network Model When using a three-layer convolutional neural net-
work to classify the MNIST dataset, the classification accuracies of all methods
are further improved compared with the four-layer deep belief network. Experi-
mental results are shown in the left figure of Fig. 3. For example, on the MNIST
dataset, the accuracies of random search, Bayesian optimization, and the pro-
posed method are 97.19%, 96.62%, and 98.19%, respectively, which are 2.91%,
3.77%, and 2.35% higher than that of the four-layer deep belief network. Even
if the average classification accuracy reaches 97.20%, the method proposed in
this paper can still improve by about one percentage point, and the number
of experiments required is greatly reduced. Specifically, the results obtained by
the proposed method after 24 searches are not significantly different from those
obtained by random search for 60 times, and are better than those obtained
by Bayesian search for 60 times. With the same number of experiments, the
proposed method is overall 4.80% higher than grid search, 1.00% higher than
random search, and 1.57% higher than Bayesian optimization.

Experimental Results and Analysis for the VGGNet11 Network
Model In the optimization of the VGGNet11 network model with 25 hyper-
parameters, the proposed method still achieved significant results, and only 28
experiments could achieve better results than 84 random searches, saving 2/3
of the computing cost. Furthermore, with the increased optimization times of
orthogonal design, the classification accuracy reached 77.60% after 56 searches,
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which was 5.78% higher than random search. At the same 84 searches, the over-
all accuracy improved to 78.50%, which was 6.68% higher than random search
and 7.85% higher than grid search, as shown in the right figure of Fig. 3.

In summary, the experiment results with multiple datasets and neural net-
work models all demonstrate the effectiveness and superiority of the proposed
method. With the same number of experiments, the classification accuracy of
the proposed method is significantly better than that of grid search, random
search, and Bayesian optimization methods for both two-level orthogonal design
and three-level orthogonal design. With the same classification accuracy as the
grid search, random search, and Bayesian optimization methods, the proposed
method requires fewer experimental times.

3.3 Analysis of the Importance of Different Hyperparameters

Although the neural network model contains many hyperparameters, we find
that different hyperparameters have different effects on the model performance.
Some hyperparameters have a great impact on the model performance, while
others have almost no impact on the model performance. Thus, in this section,
the importance of hyperparameters is also analyzed by using the single-factor
rotation method and statistical analysis of variance.

Fig. 4. Experimental results for the single-factor rotation method

First, the importance of 9 hyperparameters (learning rate, batch size, number
of neurons in the fully connected layer, and the size, number, weight distribution
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of the first-layer and second-layer convolutional kernels) in the three-layer con-
volutional neural network model are analyzed based on the single-factor rotation
method. The experimental results are shown in Fig. 4. The figure reveals that
different hyperparameters obviously have different influences on the classification
accuracy of the model. For example, the fluctuation range of the learning rate
hyperparameter with the largest fluctuation is [0.9568, 0.9847], with a difference
of 2.79%. In contrast, there is the least impact on the classification accuracy of
the model by changing the number of convolutional kernels of the first layer, and
the fluctuation range is [0.9771,0.9816], the difference is only 0.45%. For other
hyperparameters such as learning rate, batch size, and the size of the first-layer
convolutional kernels, their fluctuations all exceed 1%, indicating a significant
impact on model performance. But the number of convolutional kernels in the
first and second layers have a minimal effect on model performance, each less
than 0.50%. In addition, we also conducted an importance analysis of hyperpa-
rameters based on statistical variance analysis techniques.

Table 3. Variance contribution of hyperparameters in three-layer convolutional neural
network model

Hyperparameter p-value Variance Contribution

Learning Rate 2.2e−16 0.8700
Number of Second-Layer Convolutional Kernels 8.9e−14 0.0620
Number of Neurons in Fully Connected Layer 7.1e−7 0.0272
Batch Size 1.1e−6 0.0263
Size of First-Layer Convolutional Kernels 0.0143 0.0066
Size of Second-Layer Convolutional Kernels 0.0624 0.0038
Weight of First-Layer Convolutional Kernels 0.1292 0.0025
Weight of Second-Layer Convolutional Kernels 0.2400 0.0015
Number of First-Layer Convolutional Kernels 0.8608 0.00003

Specifically, 1794 samples generated by randomly sampling from 9 hyper-
parameters of three-layer convolutional neural network model are used to fit a
linear regression model:

y = 0.148x1 + 0.038x2 + 0.025x3 + 0.022x4 + 0.018x5 + 0.016x6

−0.0078x7 − 0.0055x8 − 0.00079x9 + 0.8515 (2)

where, x1, x2, . . . , x9 represent the hyperparameters of learning rate, number of
second-layer convolutional kernels, number of fully connected neurons, batch
size, size of first-layer convolutional kernels, size of second-layer convolutional
kernels, weight of first-layer convolutional kernels, weight of second-layer convo-
lutional kernels, and number of first-layer convolutional kernels, respectively. In
the significance test of the regression model with a significance level of α = 0.05,
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the calculated F statistic is 113.92 > F9,1784(0.05) = 1.94, leading to the rejec-
tion of the null hypothesis. This means that hyperparameters have a significant
impact on the classification performance of the model. Then, we conducted the
significance tests of the regression coefficients, and the experimental results are
shown in Table 3. From Table 3, we can see that 5 hyperparameters are signifi-
cant, namely learning rate, number of second-layer convolutional kernels, number
of fully connected layers, batch size, and size of first-layer convolutional kernels;
while the remaining 4 hyperparameters have no significant impact on the results.

Moreover, the variance contribution rate is also considered to measure the
importance of hyperparameters. As shown in Table 3, the hyperparameter of
learning rate has the largest variance contribution rate, reaching 87%; the sec-
ond largest hyperparameter is the number of second-layer convolutional kernels,
with a variance contribution rate of 6.20%; while the variance contribution rate
of the number of first-layer convolutional kernels is the lowest, less than one
ten-thousandth. Overall, the cumulative variance contribution of the first five
hyperparameters reaches 99.21%, while the variance proportion of the last four
hyperparameters is only 0.79%.

Finally, Fig. 5 shows the quantitative comparison results of the impact of sig-
nificant and non-significant hyperparameter subsets on the classification results
of the CNN model. As we can see, in 100 repeated experiments, the subset of
significant hyperparameters represented by the first column has a large fluctu-
ation in model classification accuracy, with a range of [0.9115, 0.9863] and a
width of 0.0748. In the second column, the fluctuation range corresponding to
the nonsignificant hyperparameter subset is [0.9827,0.9898], the width is 0.0071,
and the fluctuation is about 1/10 of the significant subset. These results all indi-
cate that the subset of significant hyperparameters has an important impact on

Fig. 5. Impact of significant and non-significant hyperparameter subsets on the classi-
fication results of the CNN model
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model performance, while the subset of nonsignificant hyperparameters has a
minimal impact.

4 Conclusion and Future Work

In this paper, a neural network hyperparameter optimization method based
on statistical orthogonal design for image classification problems is proposed.
Compared to traditional grid search, random search, and Bayesian optimization
methods, the proposed method has the following advantages: First, the value
space of each hyperparameter is segmented continuously until the hyperparame-
ter converges to the best range. And the whole optimization process has a clear
directionality, which can effectively alleviate or solve the disorder of the ran-
dom search method and the instability of the Bayesian optimization method.
Second, in the process of hyperparameter optimization, the optimal hyperpa-
rameter is only searched in a partial value ranges of hyperparameters, which can
greatly save the computational overhead caused by repeated values on unimpor-
tant hyperparameters in grid search. Moreover, the experimental results show
that the proposed method improves classification accuracy by 0.90%, 1.46%,
and 1.02% over random search for three-layer fully connected neural networks,
four-layer deep belief networks, and three-layer convolutional neural networks
on MNIST dataset, and by 3.18%, 2.44%, and 7.09% over grid search, and
0.87%, 3.04%, and 1.57% over Bayesian optimization. On Rectangle dataset,
the overall improvements compared to random search methods are 2.86% and
1.79%, for three-layer fully connected neural networks and four-layer deep belief
networks. Compared to grid search methods, the improvements are 2.05% and
2.29%, and compared to Bayesian optimization methods, the improvements are
7.61% and 1.23%, respectively. In the Cifar10 dataset classification tasks based
on VGGNet11 network, the improvement of 6.68% over random search and 7.85%
over grid search is achieved. Furthermore, the importance of hyperparameters
is also analyzed by the single-factor rotation method and statistical analysis of
variance.

In the future, we will consider applying the proposed method to the image
segmentation and object detection tasks to further verify its effectiveness and
universality.
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Abstract. Dealing with high-dimensional datasets is challenging nowa-
days due to computational complexity, the curse of dimensionality, and
model overfitting. It becomes necessary to reduce the dimension of the
dataset for a better understanding of inherent information. Feature selec-
tion techniques are widely utilized to rank features based on their impor-
tance and accordingly reduce the dimension of the original datasets with
respect to this ranking. Existing feature selection methods are mainly
developed for specific downstream tasks and show several drawbacks
e.g., not considering the inherent associations and their importance. In
most of the cases, the methods are computationally expensive as well.
In order to address such drawbacks, the present study aims to propose
a feature selection method, called NeuroDAVIS-FS, which performs in
an unsupervised learning setup without assuming any prior data dis-
tribution. Initially, it considers training using the model NeuroDAVIS,
developed earlier for data visualization, and selects features according
to the trained model. The efficacy of the proposed NeuroDAVIS-FS has
been demonstrated on various datasets from different domains and found
to be effective in comparison with state-of-the-art feature selection meth-
ods. In addition, two case studies on image and biological datasets with
a very low sample-feature ratio, have been executed and found to be
effective for relevant feature selection.

Keywords: Dimensionality Reduction · Feature Selection · Feature
Extraction · Data Visualization.

1 Introduction

In the rapid advancement of data science, the availability of high-dimensional
datasets poses significant challenges like computational complexity, curse of
dimensionality, and model overfitting. To deal with such high-dimensional
datasets, dimensionality reduction is widely used for data pre-processing which in
turn is effective for further data analysis [8]. Existing literature often follows two
different types of dimension reduction approaches, viz., feature extraction and
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feature selection [12]. Feature extraction techniques such as Principal Component
Analysis (PCA), Auto-encoders, t-distributed Stochastic Neighbour Embedding
(t-SNE), Uniform Manifold Approximation and Projection (UMAP), etc., are
used to generate new sets of features that preserve relevant information of the
original dataset [2]. However, these feature extraction techniques cannot recog-
nize the proper weightage of the actual features, which sometimes becomes less
relevant to some specific tasks [9]. At the same time, feature selection techniques
can address the issues by ranking the features based on their importance and
accordingly reduce the dimension of the original datasets with respect to this
ranking [9]. Existing state-of-the-art feature selection methods have some major
drawbacks, e.g., huge space and time complexity, usage of the target class, and
ignoring the inherent association among the features while ranking them, etc
[4–6,13,15]. To address these limitations (Table 1), the present study aims to
propose a novel and effective approach, called NeuroDAVIS-FS (NDFS ), which
is an extension of NeuroDAVIS, a method for data visualization [11].

Researchers have proposed a wide variation of feature selection methods
based on specific downstream tasks. The feature selection methods are mainly
classified in 3 broad categories, viz., filter method, wrapper method, and embed-
ded method [3,18]. Each of the techniques has its characteristics, advantages,
and disadvantages e.g., the filter method utilizes statistical approaches to rank
the features. Variance Threshold (VT ), Chi-Squared test, ANOVA (Analysis of
Variance), and Correlation coefficient are examples of filter methods. The major
drawback of the filter method is that it assumes that the features are indepen-
dent and does not consider the inherent association among the feature variables.
Moreover, it does not take into account the features’ importance. The wrap-
per methods evaluate the importance of the feature on the basis of the model’s
performance and accordingly select features. The corresponding examples are
Forward Selection, Backward Elimination, and Recursive Feature Elimination
(RFE ). However, these methods are computationally expensive and sensitive to
the specific model. On the other hand, the embedded method uses ensemble
models for the same. Lasso, Random Forest, and Gradient Boosting Machines
are examples of such feature selection methods. These are again computation-
ally complex and prone to model overfitting. In view of the existing approaches,
researchers have explored some novel approaches that differ from classical tech-
niques. Liu and Zheng have proposed a novel feature selection method e.g.,
filtered and supported sequential forward search (FS_SFS) to enhance the
performance of the Support Vector Machine classifier [10].

To address the shortcomings of classical feature selection techniques, a novel
feature selection method, NeuroDAVIS-FS (NDFS ), has been proposed in this
study, which is an extension of the data visualization model, NeuroDAVIS. NDFS
performs in an unsupervised learning setup without assuming any prior data dis-
tribution. Initially, it considers training using the model NeuroDAVIS and selects
features according to the trained model. The performance has been demonstrated
on three datasets, viz., Breast Cancer, Wine, and Digits, and compared against
the state-of-the-art methods, viz., Variance Threshold (VT ), GenericUnivariate-



286 C. Maitra et al.

Table 1. A theoretical comparison of existing state-of-the-art and proposed feature
selection methods

Method Technique Advantages Drawbacks

VT [6] Unsupervised • Removes features with variance lower
than certain threshold

• Ignores the inherent association among
the features

• Simple and efficient • Threshold parameter is sensitive
• Removes noise • Does not consider Feature importance

GUS [13] Supervised • Considers univariate statistical tests. • Limited to Univariate statistical tests
• Simple and efficient • Often overfits
• Selects target specific features. • Ignores the inherent association among

the features.
SKB [5] Supervised • Simple and efficient • Ignores the inherent association among

the features
• Handles both categorical and numerical
data

• Sensitive to threshold parameter

• Removes noise • Ignores feature importance
MIC [4] Supervised • Captures non-linear hidden patterns • Computationally expensive

• Handles both categorical and numerical
data

• Sensitive to noise

• Robust in nature • Ignores feature-feature associations
RFE [5] Supervised • Considers association among features • Huge computational cost

• Automatically ranks features based on
their importance

• Sensitive to model

• Reduces overfitting • Requires careful cross-validation
RFECV [15] Supervised • Considers association among features • Huge computational cost

• Automatically ranks features based on
their importance

• Depends on the initial model

• Cross-Validation ensures generalized
feature selection

• Iterative process and cross-validation
makes it even more complex

Proposed model (NDFS) Unsupervised • Considers association among features • Depends on the initial model
• Do not assume any inherent data
distribution

• Cannot handle categorical datasets
directly

• Effective for datasets with a very low
sample-feature ratio

Select (GUS ), SelectKBest (SKB), Mutual Information Classifier (MIC ), Recur-
sive Feature Elimination (RFE ), and Recursive Feature Elimination with cross-
validation (RFECV ). Both the extracted and selected features have been com-
pared with the state-of-the-art in terms of classification and clustering perfor-
mances. In this context, Accuracy, Precision, Recall, and F1-score, are calculated
for classification performances, on the other hand, Adjusted Rand Index (ARI),
Normalized Mutual Information (NMI), and Fowlkes-Mallows index (FMI) have
been reported to evaluate the clustering performance respectively. Through this
extensive study, it has been observed that the proposed model is robust enough to
capture the hidden patterns present in datasets from various fields. In addition,
two case studies on image and biological datasets with a very low sample-feature
ratio (nearly 1 : 10), have been executed.

The outline of the present study is described as follows. Section 2 shows a
detailed explanation of the proposed approach along with a problem scenario.
Section 3 executes the outcome and analyses of the results. Section 4 draws the
conclusion along with a direction for the extension of this study.
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2 Problem statement and proposed approach

This section deals with the problem scenario along with the proposed approach.

2.1 Problem scenario

Dimension reduction plays a crucial role in data science as the number of fea-
tures increases rapidly. Feature extraction methods can reduce the dimension
of any dataset by producing a linear or non-linear combination. However, the
extracted features are not at all interpretable. In this regard, feature selection
methods are one step ahead of the feature extraction method and select relevant
features by utilizing the domain knowledge. Motivated by this scenario, a feature
selection module, NDFS has been proposed in this study, which is an extension
of NeuroDAVIS, a data visualization approach.

Algorithm 1 NeuroDAVIS-FS
Input: A dataset X = {xi}n

i=1 = {fj}d
j=1 with n samples and d features.

Output: Top k features of X, where k ≤ d.
step 1: Score ← []
step 2: Drop columns with std < 0.0001.
step 3: Xscaled ← Minmaxscaling(X)
step 4: Apply NeuroDAVIS. X̃ ← NeuroDAV IS(Xscaled)
step 5: Calculate LKLD(fj ||̃fj), ∀j = 1, 2, . . . , d (using Eqn. (1)).
step 6: Calculate Scorej , ∀j = 1, 2, . . . , d (using Eqn. (2)).
step 7: F ← argmink Score.
step 8: Return F

Let the dataset X with n samples and d features be considered as input. The
study aims to select the top k features based on the prior trained NeuroDAVIS
model, where k ≤ d. The proposed framework is described in Algorithm 1.

2.2 Proposed solution

This section discusses the description of the datasets that have been used to
demonstrate the effectiveness of the proposed model along with the detailed
methodology.

Data description In this study, various datasets from different domains have
been used to demonstrate the effectiveness of the proposed feature selection mod-
ule. The detailed descriptions are provided in Table 2. Among the mentioned
datasets, Breast Cancer, Wine and Digits are utilized to evaluate the perfor-
mance of the proposed model in comparison with the existing state-of-the-art
methods. However, the remaining datasets are used to examine the performance
of the proposed model when the sample-feature ratio is very low (nearly 1 : 10).



288 C. Maitra et al.

Table 2. Descriptions of the datasets utilized for the model evaluation

Name Description Samples Features Classes Category & Source

Breast Cancer Picture of a digitalized FNA of a
breast mass is used to compute
features.

569 30 2 Numeric [17]

Wine A chemical examination of three
distinct growers’ wines, cultivated in
Italy.

178 13 3 Numeric [1]

Digits Grayscale images of handwritten
digits

1797 64 10 Image [11]

Coil20 Grayscale images of objects,
captured through different angles

1440 16384 20 Image [14]

Olivetti Faces Grayscale images of human faces 400 4096 40 Image [16]
Jurkat Sc-RNAseq data using the

peripheral blood of a 14-year-old kid
with acute lymphoblastic leukemia

3388 32738 10 Biological [19]

Methodology In this work, an extended version of NeuroDAVIS, viz.,
NeuroDAVIS-FS, has been proposed to select important features for data model-
ing and analysis [11]. Initially, NeuroDAVIS-FS considers the earlier data visual-
ization module, NeuroDAVIS, for model training. In this context, NeuroDAVIS
tries to reconstruct the data using random lower dimensional points. During the
process of reconstruction, it learns suitable visualization of the dataset.

Let X = {xi}ni=1 = {fj}dj=1 denotes a dataset having n samples and charac-
terized by d features. Where, xi and fj denote the ith sample and jth feature
respectively. Initially, NeuroDAVIS takes an identity matrix of order n as input
and creates random lower dimensional points at the Latent layer. These lower
dimensional points are then projected to the original high-dimensional space at
the Reconstruction layer through a few Hidden layers. This reconstructed data
received from Reconstruction layer, has again been considered for calculating a
loss and accordingly the weights and biases have been updated using Adam opti-
mizer [11]. After successful training, NeuroDAVIS learns to recreate the original
dataset and accordingly, 2 or 3 completely new features have been extracted at
the Latent layer which are useful for visualization. It may be inferred that a
feature with a lower variance contains less information and accordingly, it can
easily be reconstructed by NeuroDAVIS.

Motivated by this aspect, a novel methodology, NeuroDAVIS-FS, has been
developed in this module. In order to identify important features, we have exam-
ined how well the reconstructions are compared to the original dataset and how
much variation is captured by that feature. Important features, that have been
identified by NeuroDAVIS, have a high variance with a better reconstruction.
After successful training, the reconstruction of the original features is represented
by X̃ = {f̃j}dj=1. In order to validate the reconstruction capability, Kullback–
Leibler Divergence (KLD) [7] has been used which is defined as
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LKLD(fj ||̃fj) = fj log(
fj
f̃j
) (1)

For comparable results, initially, a preprocessing task i.e., Min-max scaling
has been performed on each of the datasets and then fed to NeuroDAVIS. If
NeuroDAVIS is able to reconstruct fj properly then f̃j ∼ fj and this indicates
LKLD(fj ||̃fj) → 0. Let σfj be the standard deviation of the jth feature fj . There-
fore, we are looking for features that has a large standard deviation along with
better reconstruction i.e., smaller LKLD loss along with a higher standard devi-
ation. The complete score is thus obtained as follows:

Scorej =
LKLD(fj ||̃fj)

σfj
; where σfj �= 0 (2)

Once the scores are obtained, the top features are selected according to their
minimum value. These top k features are then further utilized for several down-
stream analyses, e.g., classification and clustering. In this context, k-Nearest
Neighbour (k-NN) and Random Forest (RF) classifiers are utilized for classifi-
cation and the performance is quantified using Accuracy, Precision, Recall, and
F1-Score. At the same time, KMeans and Agglomerative clusterings are utilized
and the performance is compared using ARI, NMI, and FMI scores.

3 Results

This section describes the comparative results with respect to the state-of-the-art
methods followed by a few case studies on datasets from different domains.

3.1 Comparison with the state-of-the-art method

In this subsection, the performance of the proposed model has been demon-
strated over three datasets, viz., Breast Cancer, Wine, and Digits.

Breast Cancer:
Figure 1 describes the results related to Breast Cancer dataset. Figure 1A shows
the embedding produced by NeuroDAVIS, which reflects those two extracted
features separate the classes properly. Accordingly, the top features have been
selected using NeuroDAVIS-FS, with the help of those two extracted features.
After getting the efficient features, it has been compared against the state-of-
the-art methods to study overlapping features (Figure 1B). 40% overlap with
RFE ; 60% overlap with VT, GUS, and SKB ; 80% overlap with RFECV ; and a
100% overlap with MIC have been observed. In order to validate the efficiency
of the features selected by NeuroDAVIS-FS, classification, and clustering have
been performed over the selected features. The results have again been compared
against the state-of-the-art methods. It is evident from Figures 1C that both
the extracted and selected features can classify the samples properly with an
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Fig. 1. For Breast Cancer dataset (A) The 2-dimensional embedding produced by
NeuroDAVIS (ND). (B) Overlap of features between NeuroDAVIS-FS (NDFS) and the
state-of-the-art. (C) Comparison of the proposed model with state-of-the-art meth-
ods based on classification and clustering performance. For classification, K-nearest
neighbor (k-NN) and Random Forest (RF) models are utilized and for evaluation of
clustering performance KMeans and Agglomerative clustering techniques are used.

accuracy of 0.93. VT, GUS, and SKB shows similar classification performance.
MIC and RFECV perform better in terms of accuracy, precision, recall, and
F1-score. However, the dimension of the selected feature space is significantly
higher compared to the other methods. Figures 1C also shows the clustering
performance of the proposed methods in terms of ARI, NMI, and FMI scores
against the state-of-the-art methods. The extracted features have outperformed
all the other methods and the selected features have produced comparable results
in terms of clustering performance. It must be mentioned that only VT and the
proposed approach select features in an unsupervised setup, whereas, the rest
use a target class vector to do the same.

Wine:
The results on the wine dataset have been demonstrated using figure 2. The
embedding produced by NeuroDAVIS has shown effective visualization perfor-
mance in Figure 2A. Three different types of wines are well separated and clearly
visible in the embedding. Using this embedding NeuroDAVIS-FS selects top fea-
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Fig. 2. For Wine dataset (A) The 2-dimensional embedding produced by NeuroDAVIS
(ND). (B) Overlap of features between NeuroDAVIS-FS (NDFS) and the state-of-the-
art methods. (C) Comparison of the proposed model with state-of-the-art based on
classification and clustering performance. For classification, K-nearest neighbor (k-
NN) and Random Forest (RF) models are utilized and for evaluation of clustering
performance KMeans and Agglomerative clustering techniques are used.

tures. Features have also been selected using the other state-of-the-art meth-
ods and a good amount of overlapping has been found between the proposed
approach and the state-of-the-art methods. 30% overlap with MIC ; more than
80% overlap with VT, GUS, and SKB ; and a complete overlap with RFE and
RFECV has been observed. For wine dataset, ‘Alcohol’ came out as the top
feature while the proposed model was used. This shows the reliability of the pro-
posed method. Apart from the overlapping feature, classification, and clustering
have been performed over wine dataset using two classifiers, viz., k-NN, and RF,
and two clustering methods, viz., kMeans and Agglomerative clusterings respec-
tively against the state-of-the-art approaches. It has been found from Figure
2C, that the extracted features have outperformed all the methods in terms of
classification and clustering. NeuroDAVIS-FS selected top features shows a com-
parable result with the state-of-the-art methods by selecting comparatively less
features and also by ignoring the class information.
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Fig. 3. For Digits dataset (A) The 2-dimensional embedding produced by NeuroDAVIS
(ND). (B) Overlap of features between NeuroDAVIS-FS (NDFS) and the state-of-the-
art methods. (C) Comparison of the proposed model with state-of-the-art based on
classification and clustering performance. For classification, K-nearest neighbor (k-
NN) and Random Forest (RF) models are utilized and for evaluation of clustering
performance KMeans and Agglomerative clustering techniques are used.

Digits:
Finally, the effectiveness of the proposed method has been demonstrated on
an image dataset viz., Digits dataset. NeuroDAVIS projected embedding has
been shown in Figure 3A. All ten clusters are not very separated, whereas, a
few compact clusters are clearly visible. Only two three clusters overlap with
each other (Figure 3A). Moreover, NeuroDAVIS-FS has been applied using the
embedding produced by NeuroDAVIS. It has been observed from Figure 3B,
that there exists a good amount of overlap between the features selected by
the proposed model and the state-of-the-art methods. 50% features are common
with GUS, SKB, and RFE ; nearly 80% features are common with MIC ; almost
a complete overlap with VT and RFECV have been observed. The proposed
model has again been compared with the state-of-the-art in terms of classification
and clustering. Figure 3C shows, the extracted features are not that efficient in
terms of visualization, classification, and clustering. On the other hand, the
selected features are performing well in terms of classification and clustering.
The proposed method selects only the top 35% features and shows comparable
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classification and clustering performance, however, methods like MIC, VT and
RFECV select a lot more features to achieve the same.

3.2 Case studies

In this section, two case studies have been demonstrated on the remaining two
image datasets, viz., Coil20 and Olivetti Faces, and on one biological dataset.
These datasets consist of a comparatively larger number of features. Moreover,
the smaller sample size makes the task of feature selection even more complex.

Fig. 4. Visual representation of randomly selected samples (RS) through the top fea-
tures selected by the proposed model for Coil20 dataset. The classification performance
of k-NN and RF has been shown over the selected feature space.

Image datasets:
This Section discusses a case study on two image datasets. Initially, the proposed
method has been examined on different sizes of top features. In other words, this
analysis will help us to understand how informative the top features are. In this
context, 5 sets of top features have been considered, viz., top 10%, top 20%,
top 30%, top 40%, and top 50%. 10 samples have been drawn from the datasets
randomly and visualized through these top features or pixels. More precisely, the
randomly selected images have been visualized only through the top pixels, and
the rest pixels have been set to 0. It has been observed in Figure 4 that objects
are clearly identifiable through the naked eye with only 30% top features. In
this regard, a classification performance has been carried out on these selected
features using k-NN and RF classifiers, and it has been found that even with 10%
features both the classifiers achieve an accuracy, precision, recall, and F1-score
over 0.9, i.e., even those top 10% features are efficient enough to distinguish
different objects almost certainly (Figure 4).
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Fig. 5. Visual representation of randomly selected samples (RS) through the top fea-
tures selected by the proposed model for Olivetti Faces dataset. The classification
performance of k-NN and RF has been shown over the selected feature space.

A similar experiment has been carried out on the Olivetti Faces dataset.
As shown in Figure 5, Unlike Coil20 dataset, here the random samples are not
identifiable through the naked eye. However, both the classifiers, k-NN and RF
are able to do the same with an accuracy of at least 0.85, and 0.65 respectively.
Both classifiers, with top 30% features, have shown superior classification results.

Fig. 6. Visual representation of randomly selected samples through the worst 5% fea-
tures selected by the proposed model for Coil20 (upper) and Olivetti Faces (lower)
datasets.

In the previous experiments, it has been found that, for both the image
datasets, the top features are efficient enough to perform downstream tasks with
a higher accuracy. A similar experiment has been carried out on both datasets
considering the top 5% worst features. It has been observed from Figure 6, that
for both the datasets, the random samples look very similar, while observed
through the worst features. The k-NN classifiers also reflect poor results with
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an accuracy of 0.5 for Coil20 dataset, and 0.42 for Olivetti Faces dataset, while
applied on this worst feature space.

Biological dataset:
Finally, The performance of NeuroDAVIS-FS has been evaluated on a biological
dataset, viz., Jurkat dataset. Initially, the dataset was pre-processed using the
standard pipeline proposed in Scanpy 1. The dataset contains gene expressions
for 3388 cells across 32738 genes. Feature extraction has been performed on
Jurkat dataset, followed by a feature selection. As shown in Figure 7 (left),
the top 25 features selected by the proposed model, have been shown using a
heatmap. Cluster information in the heatmap suggests that the top features can
separate the major cell clusters. Moreover, a classification performance has been
performed on the different sizes of top features. It has been observed from Figure
7(right), that both k-NN and RF classifiers’ performance improved as the feature
size decreased. k-NN classifier using only top 10% of the features produces an
accuracy 0.65, and on the other hand RF classifier produces an accuracy 0.73
using top 40% features. This analysis reflects the robustness of the proposed
model.

Fig. 7. Visual representation of top 25 features selected by the proposed model for
Jurkat dataset (left). The classification performance of k-NN and RF have been shown
over the selected feature spaces (right).

1 https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html

https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html


296 C. Maitra et al.

4 Discussion and Conclusion

Dealing with high-dimensional datasets is challenging due to computational
complexity, the curse of dimensionality, and model overfitting. It necessitates
reducing the dimension of the dataset for a better understanding of inherent
information and feature selection techniques are well suited to do the same. In
the present study, a neural network-based model, NeuroDAVIS-FS has been pro-
posed which is an extension of the earlier data visualization model NeuroDAVIS.
The proposed feature selection method performs in an unsupervised learning
setup without assuming any prior data distribution. Initially, it considers train-
ing using the model NeuroDAVIS, and selecting features according to the trained
model. The efficacy of the proposed model has been demonstrated on various
datasets from different domains viz., Numeric: Breast Cancer, and Wine, Image:
Digits, Coil20, and Olivetti Faces and Biological: Jurkat. A comparative analysis
has been executed for several downstream tasks like classification and clustering
with the state-of-the-art models and it has been observed that the top features
selected by the proposed model are efficient for the same. Moreover, compara-
ble results are obtained in terms of predefined metrics for the state-of-the-art
methods. Being a neural network-based approach, the model is parametric and
performs in an unsupervised setup, which makes the model novel in comparison
with traditional cases. In addition to that, a good amount of overlapping fea-
tures have been found in the proposed feature selection model against the other
classical models. Finally, two case studies on image and biological datasets with
a very low sample-feature ratio (nearly 1 : 10), have been executed and found
to be effective for relevant feature selection. Even with 10% features both the
classifiers classify the classes of Coil20 dataset with an accuracy of 0.9 approx-
imately. However, for Olivetti Faces dataset, the accuracy rate of k-NN and
RF are approximately 0.7 and 0.85 respectively. Whereas, for Jurkat dataset,
the accuracy rate increases for the classification tasks with top 10% selected
features.

Though the proposed model outperforms the state-of-the-art, it still has some
limitations. As the performance of the proposed model depends on the prior
training of NeuroDAVIS, the model may not be efficient in the case of biased
training. Moreover, the optimal number of features has not been considered in
this study, which might be an extension of the future study. Though, one can
plot the feature scores in a descending order and select top features by observing
the elbow. The location of a bend (knee) in the plot is generally considered as
an optimal number of features.
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Abstract. Video analysis is a major computer vision task that has
received a lot of attention in recent years. The current state-of-the-art
performance in video analysis is achieved with Deep Neural Networks
(DNNs) that have a high energy cost and need large amounts of labeled
data for training. Spiking Neural Networks (SNNs) can have a signifi-
cantly lower energy cost (thousands of times) than regular non-spiking
networks when implemented on neuromorphic hardware [39,40]. They
have been used for video analysis with methods like 3D Convolutional
Spiking Neural Networks (CSNNs). However, these networks have a sig-
nificantly larger number of parameters than spiking 2D CSNNs. This not
only increases their computational cost, but can also make them more
difficult to implement on ultra-low power neuromorphic hardware. In this
work, we use CSNNs trained in an unsupervised manner with the Spike
Timing-Dependent Plasticity (STDP) rule, and we introduce, for the first
time, Spiking Separated Spatial and Temporal Convolutions (S3TCs).
Using unsupervised STDP for feature learning reduces the amount of
labeled data required for training. Factorizing a single spatio-temporal
spiking convolution into a spatial and a temporal spiking convolution
decreases the number of parameters of the network. We test our network
with the KTH, Weizmann, and IXMAS datasets. Our results show that
S3TCs successfully extract spatio-temporal information from videos and
outperform spiking 3D convolutions, while preserving the output spiking
activity, which usually decreases with deeper spiking networks.

Keywords: Spiking neural networks · STDP · Action classification ·
3D convolution · Separated convolutions

1 Introduction

A large amount of new visual data is made available to the world on a daily basis,
with a substantial portion of this data comprising videos. Analyzing this large
amount of data is challenging for humans, which has rendered video analysis
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an important computer vision task. Deep learning methods achieve state-of-the-
art performance for visual data analysis. However, their computational cost is
very high, which hampers their deployment on energy-constrained devices such
as IoT devices; the extensive use of GPUs used to train and run them also
raises some environmental concerns [29,38]. Moreover, large amounts of labeled
data are needed to train them; labeling this data requires costly human inter-
vention. This has pushed forward the exploration of methods that can analyze
visual data at a lower cost. Among these methods are Spiking Neural Networks
(SNNs), which are third generation neural networks capable of processing visual
information in the form of low-energy spikes [40]. These networks are intended
to be implemented on neuromorphic hardware [18,30,40], which is specialized
hardware with the potential to overcome the limitations of traditional computing
architectures, such as energy efficiency.

Neuromorphic hardware platforms like TrueNorth [31], SpiNNaker [22], Tian-
jic [13], BrainScaleS-2 [32], and Loihi [12] offer promising avenues, by enabling
the use of SNNs at a low energy cost. In addition, analog neuromorphic hard-
ware, based for instance on memristors or CMOS components, can offer an even
lower energy consumption [23]. The latter type of neuromorphic hardware pairs
well with Spike Timing-Dependent Plasticity (STDP) learning methods [36,37]
which are used to train SNNs in an unsupervised manner. This learning method
is still immature and does not achieve the classification rates of other methods
like ANN-to-SNN conversion [9] and surrogate gradient-based methods [11], but
it has the potential to mitigate some of their limitations, such as the need for
substantial labeled data and the use of global computations, which are difficult
to implement on ultra-low power neuromorphic hardware. STDP can be used to
learn features from the data in an unsupervised fashion prior to classification,
reducing the need for labeled data; in addition, as a purely local learning rule, it
limits the communication overhead within neuromorphic circuits, making them
easier to design.

Some spiking models have been proposed for video analysis, including spiking
two-stream methods [44], spiking ResNets [19], 2D Convolutional Spiking Neural
Networks (CSNNs), and 3D CSNNs [15]. While most spiking models, similarly
to 2D CSNNs, require non-spiking pre-processing [14] for motion extraction, 3D
CSNNs [15] have the advantage of being fully-spiking solutions to motion pat-
tern learning. However, similarly to traditional methods, spiking 3D convolutions
increase the number of trainable parameters with respect to spiking 2D convo-
lutions. This can make their implementation on neuromorphic hardware more
challenging, as the larger number of parameters results in a larger number of con-
nections to be fit in the circuit design. Integrating separated convolutions [41]
into STDP-based SNN training could mitigate the issues of 3D convolutions:
this architecture conserves the ability to directly learn spatio-temporal patterns,
but with fewer connections, thanks to the splitting of convolutional filters into
a series of filters of lower dimensions. It makes it a promising approach for
implementing SNNs on neuromorphic hardware efficiently. Separated convolu-
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tions have already shown promising results with CNNs [8,27,33] but have not
yet been used in the spiking domain.

In this work, we present Spiking Separated Spatial and Temporal Convo-
lutions (S3TCs), where we factorize a spiking spatio-temporal 3D convolution
into two separate smaller spatial and temporal convolutions. We use CSNNs
trained with the unsupervised STDP learning rule. S3TCs are expected to be
more efficient and hardware friendlier solutions. To the best of our knowledge,
our work is the first to address the subject of separated convolutions trained with
STDP. We hypothesize that the benefits of separated convolutions with CNNs
could apply to SNNs, and that lower-dimensional filters could improve STDP
learning by capturing more generic patterns and prompting the neurons to fire
more spikes. This work is a building block towards improving the performance
of spiking models that can learn spatio-temporal features from video data. The
main contributions of this paper are summarized as follows:

– we present Spiking Separated Spatial and Temporal Convolutions (S3TCs);
– we evaluate the performance of S3TC models with different filter sizes on the

KTH [34], Weizmann [24], and IXMAS [43] datasets;
– we compare the performance of S3TCs to that of spiking 3D convolution

from [15], and we conclude that S3TCs can achieve better performance;
– we show that factorizing the 3D filters into two sets of 2D and 1D filters, with

STDP, may lead to learning more generic patterns;
– we show that S3TCs provide a deeper spiking network than 3D CSNNs while

maintaining a similar output spiking activity, which is critical to enable the
design of deeper spiking architectures.

2 Related Work

3D CNNs are a common practice for motion modeling [1,3,4,20,21,25]. The
third dimension of these networks, which is devoted to time, enables the extrac-
tion of spatio-temporal features. In [42], the authors present deep 3D CNNs for
spatio-temporal feature learning. They compare them to 2D CNNs, and conclude
that 3D architectures perform better for video analysis. However, these models
have more trainable parameters than 2D models, which consequently increases
their computational cost and makes the optimization of these parameters more
difficult. To mitigate this problem, one solution is separable convolutions. With
separable convolutions, a convolution filter is separated into two or more fil-
ters of smaller dimensionalities, each filter typically processing a distinct subset
of dimensions of the initial filter. Separable convolutions adopted in networks
like MobileNets [27] and Xception [10] have succeeded in decreasing the number
of parameters of these networks while preserving their performance. Moreover,
gains in accuracy have been recorded when factorizing a 3D convolution into a
2D spatial convolution and a 1D temporal convolution [41]. In [41], the authors
attribute this gain in accuracy to additional nonlinearities added by the sepa-
rated convolutions compared to using a 3D convolution. They argue that these
nonlinearities render the model capable of representing more complex functions.

https://www.csc.kth.se/cvap/actions/
http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
https://www.epfl.ch/labs/cvlab/data/data-ixmas10/
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They also add that 2D and 1D filters are easier to optimize than 3D filters,
where appearance and dynamics are intertwined. However, the aforementioned
work do not address the case of spiking neural networks.

CSNNs provide a cost-effective and unsupervised alternative for motion mod-
eling. 3D CSNNs have been proposed recently [15]. In [15], the authors use unsu-
pervised 3D CSNNs trained with STDP to learn spatio-temporal visual features
for action classification; they conclude that 3D CSNNs outperform 2D CSNNs at
learning visual features used in human action recognition, especially with longer
video sequences. However, despite the energy efficiency of these 3D CSNN mod-
els compared with traditional non-spiking methods, the additional parameters,
with regard to 2D CSNNs, result in additional operations and potentially more
complex neuromorphic hardware [12]. To the best of our knowledge, spiking sep-
arable convolutions have not yet been explored in the literature; however, they
could be an option to mitigate the issues of spiking 3D convolutions and enable
the design of video analysis models that can be implemented more easily on
low-power neuromorphic hardware.

3 Spiking Convolutions and Network Architecture

We build on the standard recognition pipeline introduced in [18], which is effec-
tive in object classification, and has been applied successfully to action recog-
nition by including suited pre-processing [14] or 3D spiking convolutional lay-
ers [15]. This choice enables an accurate comparison of the performance between
our S3TCs and the 3D convolution model presented in [15]. The classification
pipeline (see Figure 1) includes visual feature learning by an SNN trained with
STDP, which helps reduce the reliance on annotated data, and a final classifier
that performs classification based on the extracted features. In this paper, we
focus on efficiently training the SNN with STDP to learn spatio-temporal visual
features. In the following, we describe the major components of this pipeline.

Fig. 1. Pipeline for action recognition with unsupervised feature learning by a CSNN

3.1 Input Video Samples

A video is a sequence of frames represented as a 4D tensor of size lw × lh × lc × ltd
where lw and lh are the width and height of the frames, lc is their number of
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channels, which is 1 in the case of grayscale frames, and ltd is the temporal depth
of the tensor i.e., the number of frames in the video sample.

3.2 Neuron Model and Training

The SNNs used in this work consist of Integrate-and-Fire (IF) neurons [5]. The
IF neuron model is characterized by its internal state v(t), called membrane
potential. Spikes incoming from the input synapses are integrated by the neuron
and increase its membrane potential, as follows:

fs(x) =

{
1, if x ≥ 0
0, otherwise

(1)

v(t) =
∑
n∈N

Wn.fs(t − tn) (2)

where fs is the kernel of spikes, N is the set of spikes incoming from the input
synapses, Wn is the weight of the synapse transmitting spike n, tn is the times-
tamp at which spike n reaches the neuron, and t is the current time. fs defines
spikes as impulses localized in time, which increase the potential of the neuron
when they are integrated. The IF neuron is also characterized by its thresh-
old vth(t). When the membrane potential v(t) of the neuron reaches or exceeds
vth(t), the neuron generates an output spike, and its membrane potential is reset
to its resting potential vr, which we set to 0 in this work.

Training is unsupervised and uses the biological STDP learning rule [35].
Given a synapse at the input of a neuron, biological STDP updates the weight
of the synapse when the neuron fires an output spike, as follows:

ΔW =

{
+ηw.e− tpost−tpre

τ if tpre ≤ tpost

−ηw.e− tpre−tpost
τ if tpre > tpost

(3)

where tpre is the timestamp of the input spike incoming from the synapse, tpost
is the timestamp of the output spike fired by the neuron, τ is a time constant
that controls the magnitude of the update in time, ηw is the learning rate,
and ΔW is the update applied to the neuron, so that W := W + ΔW . STDP
increases the weights of synapses from which input spikes came right before the
output spike was fired (they are considered as the cause of the output spike), and
decrease the weights of synapses from which input spikes came right after (they
are considered as unrelated to the output spike). Over updates, STDP makes the
synapses converge towards a specific pattern of correlated input spikes. As STDP
updates synapses independently, it is a local training rule and is not affected by
changes in neuron connectivity.

A layer trained with STDP uses Winner-Takes-All (WTA) inhibition during
training to prevent several neurons from learning the same pattern: the first
neuron to fire an output spikes prevents the other neurons in the layer from
spiking until the end of the sample presentation. With WTA, some neurons can
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overpower other neurons, i.e., they have a tendency to fire more spikes than
others. This leads to the layer being stuck in a state where a few active neurons
fire all the time, while the others are quiet. To balance and control training
within the layer, we use the threshold adaptation method introduced in [18].
This method updates neuron thresholds vth(t) as follows:

vth(t) := vth(t) + Δvth + Δv′
th (4)

Δvth =
{

ηth if the neuron is the first to fire within the layer
ηth
nl

otherwise (5)

Δv′
th = −ηth.(t − t̂) (6)

where ηth is the threshold learning rate, nl is the number of neurons in layer
l, t is the current timestamp, and t̂ is a manually defined target timestamp.
Term Δvth increases the threshold of the neuron that just fired, so that they
are become less likely to fire, and decreases the thresholds of others to promote
firing; it balances training. Term Δv′

th adjusts the thresholds so that neurons
tend to fire at a specific timestamp t̂; it gives better control over the patterns to
be learned and increases the quality of the visual features [18].

3.3 3D Spiking Convolution

A 3D convolutional layer has fk trainable filters, with sizes fw × fh × ftd, where
fw and fh represent the width and height of the filter respectively, and ftd is the
temporal size of the filter. During the convolution operation, these filters slide
along the temporal dimension of a video sample, in addition to the spatial ones.

Each neuron of a layer is connected to fw × fh × ftd neurons of the previ-
ous layer. The membrane potential of 3D spiking convolutional neurons can be
expressed as shown in Equation 7 from [15]:

vx,y,z,k(t) =
∑
n∈N

Wi(xn),j(yn),m(zn),kn,k × fs(t − tn) (7)

where fs is the kernel of spikes (see Eq. 1), v(t) is the potential of the neuron
membrane at time t, and x, y, z, and k are the coordinates of the spike in the
width, height, time, and channel dimensions, respectively. N is the set of input
connections in the neighborhood, W ∼ U(0, 1) is the trainable synaptic weight
matrix, i(), j(), and m() are functions that are used to map the location of the
input neuron to the corresponding location in the weight matrix, and kn is the
index of the trainable filter. When the membrane potential vx,y,z,k(t) crosses the
threshold potential vth(t), the synaptic weights and thresholds of the network
are updated according to Equations 3, 4, 5, and 6.

The number of parameters in one 3D spiking convolutional layer is:

|P | = fk × nc × fw × fh × ftd (8)

where P represents the set of parameters in the model, fk is the number of filters,
nc is the number of input channels, fw and fh represent the width and height
of the filter, respectively, and ftd is the temporal size of the filter.
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3.4 Spiking Separated Spatial & Temporal Convolutions

With separated convolutions, the filter connectivity of the spiking 3D convolution
layer introduced in Section 3.3 can be broken down into two parts, space-wise
and time-wise convolutions, as shown in Figure 2.

Fig. 2. Separable spatial and temporal convolutions

In the first phase, a 2D filter slides over the spatial dimension of the input,
one frame at a time. This filter has a dimension of fw × fh × 1, and results
in spatial feature maps. In the second phase, with time-wise convolution, we
compute a linear combination of the spatial feature maps by undergoing a 1 ×
1 × ftd convolution in the temporal dimension to extract meaningful temporal
information from the spatial feature maps. S3TC can be formalized as Equation 9
for the space-wise convolution, and Equation 10 for the time-wise convolution:

vS
x,y,k(t) =

∑
n∈N S

Wi(xn),j(yn),kn,k × fs(t − tn) (9)

vT
z,k(t) =

∑
n∈N T

Wm(zn),kn,k × fs(t − tn) (10)

where vS(t) and vT (t) are the membrane potential at time t of the neurons of the
spatial and the temporal convolutions, respectively, and N S and N T are the sets
of input connections in the spatial and temporal neighborhoods, respectively.

The number of parameters in S3TC layers is:

|P ′| = fk × nc × (fw × fh + ftd) (11)

This number of parameters is lower than that of a spiking 3D convolution,
which reduces the number of operations required to train them, and can reduce
the connection overhead in low-power hardware implementations. In the next
section, we study the trade-off between accuracy and efficiency with these two
spiking convolution settings.
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3.5 Baseline Classification Pipeline

The baseline pipeline is shown in Figure 1. The video frames are filtered with an
on-center/off-center filter [2], which uses a Difference-of-Gaussian (DoG) filter
used to pre-process the data by simulating on-center/off-center cells and extract-
ing edges. This filter is needed because STDP-based SNNs need edges to learn
informative patterns [16]. After that, latency coding is applied to transform the
edges into spikes represented by timestamps. Larger edge values are represented
as earlier spikes, while lower values come later. Next comes the CSNN process-
ing, which can be a 3D CSNN as mentioned in Section 3.3 or a S3TC network.
The output of our network will consist of spatio-temporal feature maps, which
are then reduced in size using spatio-temporal sum-pooling before being sent
to a classifier. We use a Support Vector Machine (SVM) for classification as it
yields good performance with default parameters, but any other classifier could
be used. We do not use a spiking classifier because we focus on unsupervised
feature learning with STDP, and single-spike supervised classification with SNN
is still emerging, so such a classifier could make the results harder to interpret.

4 Evaluation

This section contains the details of our experiments. First, we present the
datasets, along with the implementation details and the main parameters of our
network. Then we present the results of implementing and testing our S3TCs,
and we compare them to spiking 3D convolutions.

4.1 Datasets and Evaluation Protocol

We use three datasets: the KTH [34], Weizmann [24], and IXMAS [43] datasets.
The KTH and Weizmann datasets are early and simple datasets for action recog-
nition. Although traditional computer vision approaches have already achieved
high recognition rates on these datasets [6], their simplicity makes them good
basic benchmarks to evaluate emerging models like the ones targeted in this
paper. The IXMAS dataset features different actors, cameras, and viewpoints,
which adds complexity. Moreover, its settings are more challenging, as two thirds
of the recordings contain objects in the scene, partially occluding the actors.

The KTH dataset contains 600 videos that feature 25 subjects performing
6 actions in 4 scenarios. Subjects 11, 12, 13, 14, 15, 16, 17, and 18 are used
for training, while 19, 20, 21, 23, 24, 25, 01, 04 are used for validation, and 02,
03, 05, 06, 07, 08, 09, 10, and 22 are used for testing, as indicated in the KTH
protocol.

The Weizmann dataset contains 90 videos of 9 subjects performing 10 actions.
The experiments on this dataset all use the leave-one-subject-out (LOSO) strat-
egy. In this approach, models are trained on data from 8 subjects and tested on
the remaining subject. This process is repeated for each subject, ensuring that
the model is evaluated on completely unseen individuals, which better simulates
real-world scenarios, where the system needs to generalize to new users.
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Similarly, the IXMAS action recognition dataset consists of 10 subjects, 11
actions, and 1148 sequences. The experiments on this dataset also follow the
LOSO strategy, where each subject is left out in turn for testing, while the
model is trained on the remaining subjects.

To shorten the running time of experiments, we take subsets of the video
frames, like in [1], [28], and [15]. We use 10 frames per video, and skip three
frames between each two selected frames in order to make sure to capture a full
cycle of the performed action. We also scale down the frame sizes to half of their
original sizes to increase the processing speed.

We measure the classification accuracy (in %) on the test set for all experi-
ments. Each experiment was run ten times, and we report the mean and standard
deviation of accuracy over the ten runs.

4.2 Implementation Details

The video is pre-processed with the on-center/off-center filter mentioned in
Section 3.5. This filter has a size of 7 × 7, and uses centered isotropic Gaus-
sians of variance 1.0 and 4.0.

The 3D CSNN consists of a single layer, whereas the S3TC is composed of
one 2D layer followed by one 1D layer. Convolutional layers have fk = 64 filters
for both 3D and S3TC settings.

Neuron thresholds are randomly initialized with a normal distribution, which
has a mean of 8 and variance of 0.1 for all experiments except those with a filter
size of 3, where we decrease the mean to 5. This is because small filters integrate
fewer input spikes, resulting in no spiking activity when the threshold is too
high. The value of the target timestamp t̂ discussed in Section 3.2 are taken
from [15]: we use a value of t̂ = 0.65 for the KTH and IXMAS datasets, and a
value of t̂ = 0.75 for the Weizmann dataset.

Spatio-temporal pooling is set to limit the size of the output feature maps to
20 × 20 × 2. Then, the output feature maps are linearized and introduced into
an SVM with a linear kernel, which performs action classification. The default
hyperparameters of libSVM [7] are used.

The software simulator used to simulate the convolutional SNNs tested in
this work is the CSNN simulator [16], which is a publicly available and open-
source simulator. The source code for our experiments will be released publicly
as a specific branch of the CSNN simulator.

4.3 3D vs. Separable Convolutions

We test 3D convolutions and S3TCs for five different filter sizes: f ∈ [3, 5, 7, 9, 10].
For the sake of limiting the possible filter size combinations, we use the same
size f = fh = fw = ftd for all dimensions. A 3D convolution has filters of size
f × f × f , while the filter sizes of its corresponding separated convolutions are

https://gitlab.univ-lille.fr/bioinsp/falez-csnn-simulator/tree/07fd14324afc42d7b3b24a3472271e1c6a90255a
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f × f × 1 for the spatial convolution and 1× 1× f for the temporal one. f = 3 is
the most common kernel size in the literature [10,27,33]; however, larger filter
sizes like 5 and 7 have shown to give better results in [26], so we elected to
perform experiments over a range of filter sizes.

Table 1. Classification rates in % (average ± standard deviation) for the KTH, Weiz-
mann, and IXMAS datasets (10 frames per video) over 10 runs with 3D convolution
and separated convolutions. Bold indicates the best performance for each dataset.

(A) Filter size = 3

Dataset 3D Conv Separated Conv

KTH 65.79 ± 0.0073 67.69 ± 0.0021

Weizmann 61.56 ± 0.0107 62.20 ± 0.0100

IXMAS 53.96 ± 0.0083 52.41 ± 0.0027

(B) Filter size = 5

Dataset 3D Conv Separated Conv

KTH 67.59 ± 0.0041 69.21 ± 0.0037

Weizmann 63.20 ± 0.0096 66.83 ± 0.0217

IXMAS 50.88 ± 0.0034 52.22 ± 0.0032

(C) Filter size = 7

Dataset 3D Conv Separated Conv

KTH 68.52 ± 0.0000 71.48 ± 0.0021

Weizmann 62.85 ± 0.0095 63.94 ± 0.0115

IXMAS 39.90 ± 0.0024 48.68 ± 0.0029

(D) Filter size = 9

Dataset 3D Conv Separated Conv

KTH 67.59 ± 0.0000 64.84 ± 0.0000

Weizmann 64.62 ± 0.0189 65.79 ± 0.0187

IXMAS 34.25 ± 0.0042 44.63 ± 0.0031

(E) Filter size = 10

Dataset 3D Conv Separated Conv

KTH 59.86 ± 0.0050 62.22 ± 0.0132

Weizmann 62.16 ± 0.0310 59.38 ± 0.0209

IXMAS 28.22 ± 0.0040 38.59 ± 0.0035

Table 1 presents the accuracy of the classification pipeline for each data set
and convolution filter size, for 3D convolution and S3TC. These results show that
S3TC achieves better performance than 3D convolution in 12 out of 15 configu-
rations, while having less parameters, thus requiring less operations. With large
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enough filter sizes (e.g., 5 and 7), S3TC can outperform regular 3D convolu-
tion for most datasets. This behavior is similar to the results in [41], where the
authors indicate that 2D and 1D filters are easier to optimize with supervised
learning than 3D filters. In our case, we use unsupervised STDP, so it cannot
be the reason for the improvement in performance. As STDP tends to converge
quickly, 3D convolutions may learn complex sample-specific patterns, while sepa-
rated convolutions would learn more generic patterns, involving less parameters,
that get combined sequentially. This in part improves the learning, in addition to
the increased depth of the S3TC network, which introduces more non-linearity.

Additionally, the results demonstrate that different datasets have different
optimal filter sizes (7 for the KTH dataset, 3 for IXMAS, and 5 for Weizmann).
This variation is related to the nature of the datasets: the KTH dataset has a
higher resolution (160 × 120) than IXMAS (48 × 64), and it features subjects
at a larger scale than the Weizmann dataset, so it needs a larger filter size to
learn optimal features. Scale also matters over the temporal dimension: larger
temporal filters provide a better extraction of moving patterns with datasets
that exhibit significant variations or movements, like the KTH dataset, while
smaller filters are needed for datasets that exhibit smaller variations, like the
Weizmann dataset. Therefore, the performance of S3TCs, similarly to 3D spiking
convolutions, depends greatly on the size of the convolutional filters.

To further explain these results, we measured the activity of the CSNNs at
their outputs. Figure 3 shows the number of output spikes generated by each
CSNNs for filter sizes f ∈ [3, 5, 7, 9] on the KTH dataset. Results show that
the output activity is similar for 3D convolutions and S3TCs. Spiking activity in
SNNs typically decreases as more layers are added [17]. However, in our case, the
two layers of S3TCs maintain similar activity levels compared to a single layer
of 3D convolutions. It indicates that each layer of S3TCs tends to respond to
more patterns of the input than a single layer of 3D convolutions, which confirms
that it learns more generic patterns. Since the loss of activity is a major issue in
designing deeper SNNs, the fact that S3TCs have the same impact on spiking
activity than 3D convolutions, despite their additional layer, means that using
them should not prevent from using deeper architectures. Figure 3 also shows
that the spiking activity at the output decreases uniformly as filter sizes increase.
So, the optimal filter size is not dependent on the specific spiking activity of the
network or the sparsity of the resulting feature vectors; it confirms that the choice
of the best filter size depends mostly on the spatial and temporal properties of
actions featured in the dataset.
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Fig. 3. Final output number of spikes fired by separable spatial and temporal convo-
lutions compared to 3D convolutions with filter sizes of 3, 5, 7 and 9 using the KTH
dataset.

5 Conclusion

Convolutional spiking neural networks can offer an energy-efficient solution to
computer vision tasks on neuromorphic hardware. Especially, 3D CSNNs have
been shown to be effective for action classification. However, using 3D convo-
lutions, which are suitable for video analysis, increases the number of parame-
ters, making training more challenging and potentially leading to more complex
hardware requirements. To mitigate this issue, we chose to reduce the number
of parameters in the network by replacing spiking 3D convolutions with spiking
separated convolutions: we factorize a single 3D spiking convolution into two
separate spatial and temporal spiking convolutions. This separation decreases
the number of parameters, and can improve the performance when using suffi-
ciently large filters. The difference in performance between 3D convolutions and
separable convolutions is highly dependent on choosing suited filter size.

One conclusion is that the optimal filter size varies from one dataset to
another depending on the scale of motion in space and time. A second con-
clusion is that S3TCs can outperform 3D convolutions thanks to their network
being deeper, which adds more non-linearity, and to the lower dimension of their
filters, which allows STDP to converge towards more generic patterns. Although
S3TCs are deeper spiking networks than 3D CSNNs, their output spiking activity
does not decrease, making them suited to the design of deeper architectures.

A promising avenue for future work would involve using a multi-stream archi-
tecture with S3TC networks, each stream using a specific filter size. This app-
roach would bring invariance to scale, enabling the capture of information about
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both small and large motion patterns, leading to better generalization across
different datasets.
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Abstract. Class-incremental learning deals with data streams com-
posed of batches of classes. Various algorithms have been proposed
to address the challenging case where samples from past classes can-
not be stored. However, selecting an appropriate algorithm for a user-
defined setting is an open problem, as the relative performance of these
algorithms depends on the incremental setting. To solve this problem,
we introduce an algorithm recommendation method that simulates the
future data stream. Given an initial set of classes, our method leverages
generative models to simulate future classes from the same visual domain.
We evaluate recent algorithms on the simulated stream and recommend
the one that performs best in the user-defined incremental setting. We
illustrate the effectiveness of our method on three large datasets using six
algorithms and six incremental settings. Our method performs close to
an oracle that would choose the best algorithm in each setting. This work
contributes to facilitating the practical deployment of continual learning.

Keywords: Continual learning · Recommendation · Image
classification

1 Introduction

Continual learning (CL) aims at building models able to handle new data or tasks
over time [5,32,33]. Class-incremental learning (CIL), in which the data stream is
composed of batches of classes [44], is an actively studied CL paradigm [2,25,46].
At each step of a CIL process, the model is updated with a new batch of classes
while attempting to maintain the performance on all previously learned classes.
In many practical applications of CL, computational costs and memory bud-
gets are important constraints [10,13]. The data-free version of CIL (DFCIL)
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has gained attention because it requires lower storage [16,52], making it suitable
for resource-constrained applications on embedded devices. It is also a relevant
paradigm when training data cannot be stored for privacy reasons [40]. Recent
comparative studies [7,30] have shown that none of the DFCIL approaches pro-
posed to date is the best for all practical cases. The performance of DFCIL
algorithms depends on the characteristics of the incremental process, e.g., the
number of incremental steps, the number of classes per step, and the amount of
training data available per class. Given this variability in performance, we aim to
recommend an appropriate algorithm for a user-specified DFCIL scenario. This
recommendation problem was addressed in [7] using a large set of precomputed
experiments run on benchmark datasets. While interesting, this method requires
many precomputed experiments and does not account for the visual domain of
the classification task.

In this article, we tackle the recommendation of DFCIL algorithms from a
data-centric point of view. Our method, illustrated in Figure 1, takes as inputs
the settings of the DFCIL process (number of incremental steps, number of
classes per step) and a subset of classes available at the start of the process.
Given a set of DFCIL algorithms, the recommended algorithm is obtained by:

1. building a data stream that simulates future classes belonging to the same
visual domain as the initial classes,

2. evaluating the candidate DFCIL algorithms on the simulated data stream,
3. recommending the algorithm that performs best on the simulated stream.

Our recommendation method is evaluated on three large datasets using six
competitive DFCIL algorithms in six incremental scenarios. The results show
that the performance of our method is close to that of an oracle that selects the
best algorithm in any scenario. By simulating the future stream of data either
using generative models or using the visual knowledge base ImageNet21k, our
recommendation method compares favorably to the fixed choice of any DFCIL
algorithm we tested, and AdvisIL [7]. Additionally, we propose a strategy to lower
the cost of exploring the performance of all candidate algorithms on the simu-
lated data stream. Code is available at https://github.com/EvaJF/SimuGen.

2 Related work

2.1 CIL algorithms

The ability to continually learn from new data is needed to develop more
autonomous and sustainable AI systems [5,33]. One of the main challenges of
CIL is to mitigate catastrophic forgetting [2,8], namely the tendency of CIL
models to abruptly forget previously acquired information when confronted with
new information. To cope with this issue, numerous approaches have been pro-
posed [2,25], based on parameter-isolation [1,36], iterative fine-tuning with dis-
tillation [19,24,51], classifier-incremental learning with a fixed representation
[9,12,29] and more recently, dynamic prompting of transformer models [21,47].

https://github.com/EvaJF/SimuGen
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Fig. 1. Method overview. A user needs an algorithm for a given DFCIL use case. He
has access to an initial labeled dataset D1 and provides expected characteristics of
the incremental process, e.g. the number of classes per step. Based on these inputs,
our method simulates a data stream ˜D extending D1, first by proposing future class
names, then by populating these new classes with images. Next, it evaluates various
DFCIL algorithms on the simulated stream and recommends the one with the best
performance for deployment with real data.

Catastrophic forgetting is particularly challenging in DFCIL, as optimizing
the parameters of a deep neural network to recognize new classes without exam-
ples of past classes skews the classifier towards new classes [19]. Some DFCIL
methods combine fine-tuning with knowledge distillation [17] to alleviate for-
getting [20,50,51]. They handle new classes well since model parameters are
updated to fit the novelty, but despite distillation, they tend to have lower per-
formance for past classes [25]. Another line of work proposes to use a fixed feature
extractor trained during the initial step and focuses on incrementally learning
only a classifier [9,12,29]. In this case, the challenge lies in leveraging the fixed
representation to separate all past and new classes well. In our experiments, we
include both types of methods to assess their strengths and limitations.

2.2 Generative models

We explore the potential of using generative models to simulate a future data
stream. We use this stream to simulate a class-incremental learning process. Note
that our goal is not to develop a competitor to existing generative models, but
to use them in a novel way for DFCIL.

In natural language processing, state-of-the-art large language models
(LLMs) are based on transformer architectures [3] that are trained in a self-
supervised manner. LLMs such as T5 [31], Llama-v2 [42] or the family of GPT
models [3] show impressive results in generative tasks such as summarizing a text
or writing a story. In this work, we use an LLM to generate class names related
to the initial classes of the user. In computer vision, multimodal models can gen-
erate images from textual prompts. Diffusion Probabilistic Models [39] (DPMs),
based on a series of cascading denoising auto-encoders, currently achieve state-
of-the-art results. The popular Stable Diffusion (SD) method [34] improves the
scalability of DPMs by performing denoising from a lower-dimensional space
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than the pixel space. SD models are designed with a general-purpose condition-
ing mechanism and can be prompted with textual descriptions.

Previous works [37,41] use diffusion models to create synthetic datasets for
transfer learning purposes. Image generation was used in continual learning but
for generative replay [20,38]. Recently, the authors of [20] proposed to generate
images of past classes by prompting SD at each step of the CIL process with
the names of past classes. This method achieves competitive performance but
assumes that a large diffusion model can be used throughout the CIL process, an
assumption that contradicts the frugality requirements (memory, computation,
latency) generally associated with CIL applications [2,5]. In this article, we take
inspiration from [37] to simulate a dataset in the context of DFCIL. Unlike [20],
we only use generative models in the initial non-incremental step of the CIL
process. This approach is compatible with CIL because data generation is carried
out offline, for simulation purposes only, and is not part of the incremental
process.

2.3 Simulating data streams for CL

In [4], an algorithm is introduced to rearrange samples from a given dataset
to form a data stream whose distribution changes continuously rather than in
discrete steps as in batch-wise CIL. In [15], a sampling-based generator creates
arbitrarily long data streams with control over the repetition of past classes
via probability distributions. These two approaches [4,15] focus on evaluating
streaming algorithms, whereas many DFCIL algorithms handle data that arrive
in batches without repetition.

The work that is closest to ours is AdvisIL [7]. This method uses a set
of precomputed DFCIL experiments done with auxiliary datasets to simulate
incremental processes. The main limitation of AdvisIL is that the user-defined
DFCIL settings must be similar to those of a subset of the precomputed exper-
iments. Furthermore, AdvisIL’s recommendations do not consider the semantic
characteristics of the incremental datasets, such as their visual domain or the
granularity of the classification tasks.

3 DFCIL process

In this section, we remind the DFCIL paradigm. We consider a dataset D = D1∪
D2 ∪ · · · ∪ DT and a sequential learning process composed of T non-overlapping
steps s1,s2,. . . ,sT . A step si consists of learning from the labeled samples of
the set of new classes Pi from the subset Di. Each sample from Di belongs to a
unique class from Pi, and each class is present in a single data subset. We denote
by n the average number of images per class in D1. We consider that each of
P2, P3, . . . , PT has the same number of classes N .

Model training. At the first step s1, the model M1 is trained on the data
subset D1 that involves the set of classes P1. For each of the following steps, the
same procedure is applied. For i = 2, 3, . . . , T , at the step si, the model Mi first
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recovers the parameters from the model Mi−1 obtained in the previous step.
It is then updated using the samples from Di to incorporate the new classes
of Pi. Depending on the DFCIL algorithm, only some of the model parameters
are updated (e.g. only those of the classifier in [9,12,29], those of the classifier
and some of the feature extractors in [28], or all parameters in [19,24]). We
experiment with algorithms covering these three strategies in Section 5.

Evaluation. CIL algorithms should be designed for arbitrarily long incre-
mental processes and any number of classes per update. In practice, for evalua-
tion purposes, T and N are defined based on the datasets used in the evaluation
benchmarks [2,25,44]. DFCIL algorithms are commonly evaluated based on their
average incremental accuracy, computed as A = 1

T

∑T
i=1 qi, where qi is the accu-

racy of the model Mi on the test samples from
⋃i

j=1 Dj , after learning from the
training samples of Di at step si.

4 Method

We introduce a method that recommends a DFCIL algorithm according to the
characteristics of the incremental process and an initial dataset D1. We explain
our working hypotheses in Subsection 4.1. The first step of our method is to build
a simulated dataset that will be used as a proxy for the future data stream. We
present two approaches for building such a simulated dataset in Subsection 4.2.
Finally, we present in Subsection4.3 how to recommend a DFCIL algorithm by
evaluating candidate algorithms on the simulated dataset.

4.1 Working hypotheses

The first hypothesis made in this work relates to the characteristics of the incre-
mental process. While our method can be applied in any setting, it also inherits
the evaluation-related constraints of the algorithm it compares [2,25,44]. As
the update frequency of models must be decided in advance for evaluation, we
assume that the user provides an estimate of the number of incremental steps T
and an estimate of the number of classes per step N . We note that our method
can also be a way to experiment with different data distribution scenarios.

Second, we make the usual supervised learning assumption that the class
labels from P1 are known. In practice, we associate each class name with a
description as we observed in preliminary experiments that more descriptive
prompts improve the conditioning of image generation with SD, confirming the
results of [37]. Class descriptions are either generated automatically by an LLM
or retrieved from a knowledge base (more details in Appendices A and B).

Third, following existing CIL works [2,11,12], we distinguish between the first
non-incremental step s1 and the following steps and consider that compute and
memory constraints apply after the initial step. Under this assumption, we use
generative models to simulate the future stream and to recommend a suitable
algorithm before deployment in a user-specified scenario. In addition, in the illus-
tration of our recommendation method in Section 6, to ensure a fair comparison
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of algorithms, we experiment with DFCIL algorithms with comparable memory
requirements at inference.

Finally, following common CIL benchmarks using ImageNet subsets [6,9] or
fine-grained thematic datasets as in [25], we assume that classes belong to a com-
mon topic or domain. This is a reasonable assumption in many applications, e.g.
LandSnap for landmark identification. We note that our data simulation method
is not bound to this hypothesis, i.e. the generative models can be prompted to
introduce a domain shift or a different topic if the user wants to, but we make
this choice to circumscribe our evaluation.

4.2 Building simulated datasets

We denote a simulated dataset by D̃ = D̃1∪D̃2∪· · ·∪D̃T , where D̃1 is the initial
user dataset (D̃1 = D1) and for i ≥ 2, each subset D̃i corresponds to N new
classes with n images per class. As specified in Section 3, the subsets of classes of
D̃ do not intersect. In the following, we describe two approaches to obtaining D̃,
which will be a potential future stream with classes from the same visual domain
as D1. To control the semantic content of the simulated stream, each approach
begins by constructing a set of (T − 1) · N new class names P̃2 ∪ P̃3 ∪ · · · ∪ P̃T ,
ensuring that these new classes do not appear in the initial set of classes P1.
Then, each class is populated with either generated or real images.

We carried out preliminary experiments simulating future classes using geo-
metric data augmentation, such as rotations or mixing of class pairs. However,
the simulated data streams were too far from the actual data distribution to
obtain relevant recommendations (see Appendix C.3 for details).

Generative simulation. Our first approach, named SimuGen, uses an
LLM and a text-to-image model. The LLM can provide visual descriptions for
the class names from P1 when not readily available in a resource such as Word-
Net [26]. We first build a list L of pairs of the form (c, d), where c is the name of
a class in P1 and d is its associated description. In the prompt, the description d
facilitates disambiguation. We also observe that asking for a visual description of
the items produces more relevant suggestions for class names. Then, building on
the representation of the visual task provided by the initial class names and their
descriptions, we aim to obtain (T − 1) ·N classes within the same visual domain
as D1. An LLM can produce many different class names, and the prompts can
be advantageously tweaked to obtain class names more or less similar to those
in P1. The textual output of the LLM allows us to form a new list of pairs of
the form (c′, d′), with c′ a new class name and d′ its associated description.

In practice, we choose LLamav2-13b-chat [42] as it balances performance and
inference time. From a sublist of 3 class names from P1, their description and the
visual domain of the user, we prompt the LLM with the following pattern: “Here
is a list of [visual domain]: [sublist]. Could you provide ten more items
on the same topic, with a short visual description of each item?”. Since
the input and output lengths of the LLM are limited, we prompt it multiple
times with different sublists instead of once with the entire list, and we ask for
ten new items at each time. Diversifying the sublists also diversifies the results.
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To facilitate postprocessing, we use a system prompt asking for a JSON output.
We iterate the process until we obtain N · (T − 1) new unique class names to
extend the initial subset of class names P1.

The second step of SimuGen consists of generating n images for each new class
name using a text-to-image model. For a given class, we obtain its associated
images by prompting the model with the class name c′ and its description d′

obtained in the first step of SimuGen.
In practice, we use Stable-Diffusion-2-1-base that provides high-quality

images. We prompt the model with the following pattern using n different ran-
dom seeds to obtain n images for each new class: “a [style] photo of a [class
name], [description]", where style is selected from a domain-related list. A
prompt example used to generate an image is “a panorama photo of Salar de
Uyuni, the world’s largest salt flat, Bolivia". As reported in [37], associat-
ing class names with some context produces better image diversity and avoids
the pitfalls of rare or ambiguous words. We provide more details about the use
of LLamav2-13b-chat and Stable Diffusion in Appendices B and C, respectively.

Simulation using a knowledge base. Our second approach, named Pro-
xy21k, selects new classes from an existing large-scale and general-purpose
visual dataset. In our experiments, we use the ImageNet dataset [6], which covers
the concepts from WordNet lexical database [26]. ImageNet has a hierarchical
structure and includes over 21,000 classes. We prune ImageNet to keep only sub-
trees of the visual database related to the domain of the initial dataset. Then,
we randomly pick N · (T − 1) new classes among the ImageNet leaf classes from
the preselected subtrees having at least n images. One underlying assumption
of Proxy21k is that ImageNet-21k allows the sampling of a sufficiently big simu-
lated dataset that covers the same visual domain as D. This assumption is strong
when ImageNet-21k does not sufficiently cover the target visual task.

4.3 Recommending a DFCIL algorithm

Let A be a set of candidate DFCIL algorithms. We consider that a simulated
dataset D̃ was created using either the SimuGen or Proxy21k approach. We
consider three recommendation strategies that use D̃.

Greedy recommendation. This strategy consists in evaluating the per-
formance of each algorithm in A on the T steps of the simulated stream and
recommending the algorithm with the best average incremental accuracy on D̃.

Efficient recommendations. We propose two alternative recommendation
strategies to reduce the computational cost of simulations. We consider the case
where only t < T steps can be simulated. (i) We propose to run all candidate
algorithms during the first t simulation steps and to recommend the algorithm
that achieves the best average accuracy at the end of these t steps.
(ii) We also propose to first run t simulation steps and, after each simulation step
k ≥ t, until a single algorithm remains or T is reached, to discard from the set
of candidate algorithms Ak the algorithm denoted a−

(k) whose current average

accuracy over the simulated steps is the lowest, i.e. a−
(k) = argmina∈Ak

∑k
i=1 qi,



322 E. Feillet et al.

where qi is the accuracy on the test samples from
⋃i

j=1 Dj of the model Mi

trained using algorithm a, after learning at step si. In our experiments, we set
t = 3.

We remind that, like AdvisIL [7], our method recommends a DFCIL algo-
rithm adapted to user-provided incremental learning settings. Unlike AdvisIL,
we adopt a data-centric point of view to personalize the recommendation: (i)
we take into account the semantic content of the user’s dataset, and (ii) our
recommendation method is not based on a set of precomputed experiments, so
it can provide relevant recommendations whatever the incremental settings.

5 Evaluation framework

Reference datasets. We experiment with the following reference datasets :
ILSVRC [35], iNaturalist 2018 [43], and Google Landmarks v2 [27]. We sample
from them three balanced 1000-class subsets denoted IN1k, iNat1k, and Land1k,
with 350, 310, and 330 images per class, respectively (see Appendix A for more
details). These datasets cover diversified visual tasks and allow us to assess the
advantages and limitations of the proposed simulation approaches.

DFCIL algorithms. We consider a set A composed of six candidate DFCIL
algorithms. Four of them rely on a fixed feature extractor and learn new classi-
fiers incrementally. NCM [32] uses a nearest-class mean classifier, DSLDA [12] a
streaming LDA, FeTrIL [29] linear SVCs, and FeCAM [9] a Bayesian classifier
based on the Mahalanobis distance. PlaStIL [28] freezes a part of the back-
bone and combines fine-tuning of the last layers with linear SVCs. BSIL [19] is
a fine-tuning-based algorithm that relies on a weighted softmax loss to rebal-
ance predictions between old and new classes. Note that we performed prelim-
inary experiments (on Land1k) with other fine-tuning-based methods, namely
SDC[50], and PASS [51], but they were not recommended in any of the tested
settings, confirming previous results reported in [9,29]. After also considering
the high computational cost of training SDC and PASS we did not retain them
for the main experiments since their inclusion would not change the findings.

To ensure comparability, all algorithms are implemented with the ResNet18
architecture [14] commonly used in CIL [25,32]. Given a dataset and an initial
number of classes, all algorithms share the same initial model (trained with the
BSIL code). Note that for a fair comparison regarding the amount of data stored,
we use the version of FeCAM that stores a single covariance matrix for all classes.
Please refer to Appendix D for further implementation details.

DFCIL scenarios. The DFCIL algorithms are evaluated in six incremental
scenarios that push them to their limits. Three scenarios follow the protocol
of [32] in the case of a 1000-class dataset: 50 steps of 20 classes each, 10 steps
of 100 classes each, or 5 steps of 200 classes each. The other scenarios follow
the protocol of [18], where the initial dataset contains half of all classes. The
remaining classes are split into 5, 10, or 100 steps (of resp. 100, 50, or 5 classes).

Performance. We run each algorithm in each incremental scenario on each
real dataset (IN1k, iNat1k, and Land1k) and their corresponding simulated
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datasets obtained with SimuGen and Proxy21k. We denote by “oracle” the
method that always selects the best-performing algorithm on the real dataset.
We aim for the recommendation to behave like the oracle. In Table 1, Δstrat

simu indi-
cates the difference between the average incremental accuracy of the algorithm
provided by the oracle and that of the recommended algorithm when using the
stream simulation simu (either SimuGen (gen) or Proxy21k (proxy)) in combi-
nation with the recommendation strategy strat, which is denoted (i) "T" for the
greedy recommendation strategy, (ii) "3" for the strategy simulating only the
first 3 incremental steps or (iii) "3+" for the strategy simulating 3 incremental
steps and then discarding the least performing algorithm until only one remains,
or T is reached. Finally, we denote by Δm the accuracy gap between the oracle
and a fixed baseline, which always recommends an algorithm m.

Table 1. Performance gap (Δ) between the average incremental accuracy of the meth-
ods proposed by the oracle (Aref ) and that of the algorithms recommended with dif-
ferent methods. Results averaged over (i) the three datasets (ii) the six DFCIL settings
of the form (Card(P1), T ), (iii) all settings. Individual results are in Appendix E. P:
PlaStIL, B: BSIL, N:NCM, D:DSLDA, F:FeTrIL, Fc: FeCAM. Gaps closer to zero are
better. Best results in bold, second best underlined.

Some space Accuracy gap: recommendation methods vs oracle
Oracle SimuGen + reco. hProxy21k + reco. h Baselines: AdvisIL and fixed reco.
Aref (%)ΔT

gen Δ3+
gen Δ3

gen ΔT
proxy Δ3+

proxy Δ3
proxy ΔAdv ΔP ΔB ΔN ΔD ΔF ΔFc

Sc
en

ar
io

(20, 49) 35.12 0.0 -3.95 -3.95 0.0 -2.55 -6.50 0.0 -11.68 -11.54 -17.00 -2.31 -4.350.0
(100, 10) 57.22 -1.41 0.0 0.0 -2.93 -1.66 -1.66 -4.11 -6.33 0.0 -12.88 -6.89 -5.26 -4.11
(200, 5) 66.94 0.0 0.0 0.0 -1.10 -1.10 -1.10 -7.30 -5.73 0.0 -11.44 -10.54 -7.12 -7.30
(500, 5) 71.06 -0.14 0.0 0.0 -2.64 -1.99 -1.86 -2.84 -6.05 0.0 -3.14 -6.18 -3.66 -2.84
(500, 11) 67.98 -0.26 -0.26 -3.50 -0.25 -0.22 -1.05 -0.05 -9.73 -3.45 -0.22 -3.21 -1.65 -0.05
(500, 101) 67.8 -0.11 -0.16 -0.89 -0.27 -0.16 -0.16 -0.11 -60.25 -59.78 -0.16 -3.12 -3.63 -0.11

D
at

as
et IN1k 49.07 -0.08 -1.98 -3.18 -0.71 -0.08 -1.98 -1.18 -14.20 -11.25 -5.09 -3.22 -3.00 -1.18

iNat1k 60.82 -0.07 -0.02 -0.44 -0.39 -1.27 -1.71 -3.01 -18.45 -12.21 -7.08 -6.58 -4.48 -3.01
Land1k 73.17 -0.81 -0.19 -0.55 -2.49 -2.49 -2.47 -3.02 -17.23 -13.93 -10.26 -6.32 -5.35 -3.02

Average 61.02 -0.32 -0.73 -1.39 -1.20 -1.28 -2.06 -2.40 -16.63 -12.46 -7.47 -5.37 -4.28 -2.4

6 Results

Main results. The results presented in Table 1 show that the recommendations
based on SimuGen and Proxy21k are effective, since they recommend algorithms
whose accuracy on the real stream D is close to or equal to that of the best algo-
rithm (oracle). In most settings, they also perform better than the considered
baselines. On average, the best scores are obtained with SimuGen, whose recom-
mendations are only 0.32 accuracy points below the oracle when all simulation
steps are run. Proxy21k also gives interesting results, but the gap with the ora-
cle is higher than for SimuGen (1.20pts). A closer look at the results shows that
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the data streams simulated with SimuGen are closer to the real data than with
Proxy21k, especially in the case of Land1k. This is illustrated by the example in
Figure 2a, where the SimuGen simulations better fit the experiments with the
reference datasets than the Proxy21k simulations. The same is true for iNat1k
(Figure 2b) despite this dataset being well covered by ImageNet-21k, the visual
knowledge base used by Proxy21k. We conclude that simulation using generative
models enables a better and more flexible approximation of the incremental data
stream than using a preexisting database. Baselines. Our incremental settings
are closer to the same subset of AdvisIL experiments for which FeCAM per-
forms better, so here AdvisIL always recommends FeCAM. The precomputed
experiments presented in AdvisIL [7] focus on incremental settings with at most
100 classes and smaller neural architectures, advantaging fixed-representation
algorithms over fine-tuning-based algorithms. This highlights AdvisIL’s lack of
flexibility beyond its initial configurations.

Among the baselines that recommend a fixed algorithm (see Table 1, base-
lines), FeCAM has the best accuracy on average, followed by FeTrIL and DSLDA.
These methods perform better when the feature extractor is trained on a larger
subset of classes because the resulting deep representation is more transferable.
We note that FeCAM separates classes particularly well, as it can handle the
heterogeneity of scales for the different class distributions. Figure 2 shows that
its initial accuracy is close to that of FeTrIL and BSIL while its accuracy is more
stable. DSLDA also has stable performance across the incremental process. On
the contrary, BSIL performs well on the initial classes as its representation is
optimized for this very task. BSIL performs better when the number of incre-
mental steps is small. Despite a knowledge distillation loss and a rebalanced
softmax loss to emulate past classes, this algorithm is penalized by the difficulty
of preserving an adapted representation of past classes when the incremental
sequence is long. While NCM is the simplest method, it still outperforms BSIL
and PlaStIL in the challenging scenario (Card(P1) = 500, T = 101), where it
benefits from a highly transferable feature extractor. Although on par with BSIL
and DSLDA on short scenarios, PlaStIL has the lowest average accuracy across
all experiments. Its partial fine-tuning mechanism without knowledge distillation
is pushed to its limits by long sequences of tasks.

Scenarios. On average, the most challenging scenario for all methods is the
one with 50 steps with 20 new classes per step (Figure 2b). The representation
learned from the 20 initial classes hardly generalizes to the rest of the stream,
and fine-tuning struggles with the numerous small incremental steps.

Recommendation dynamics. In Figure 3, for an incremental setting of
the form (Card(P1), T ), we display the accuracy gap between the best algo-
rithm (oracle) and the recommendations made after performing only t ≤ T
simulation steps. The relevance of recommendations evolves with the number of
incremental learning steps performed on the simulated streams. Except in the
case (Card(P1) = 100, T = 10) where BSIL is the best algorithm for all three
datasets from the initial step, Figure 3shows the interest of recommending an
algorithm using either Proxy21k or SimuGen, even if the DFCIL experiments
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Fig. 2. Detailed incremental accuracy for (a) iNat1k with Card(P1) = 20 and T = 50
steps and (b) Land1k with Card(P1) = 100 and T = 10 steps, and their corresponding
simulated datasets obtained following SimuGen and Proxy21k.

are only partially executed. In Table 1, we see that the efficient recommendation
strategies consisting in either running only three steps (Δ3

simu) or running three
steps then pruning the set of candidate algorithms (Δ3+

simu), also perform better
than the choice of any fixed algorithm.

We provide more detailed plots and tables in Appendix E, showing the rele-
vance of SimuGen for recommending the second-best algorithm and determining
which algorithm to discard in priority. SimuGen recommendations are also more
stable than those of Proxy21k when considering only c ∈ [2, 5] candidate algo-
rithms out of the 6.

Fig. 3. Performance gap between the algorithm recommended by the oracle and by the
proposed recommendation methods after simulating t = 1, 2, . . . T incremental steps,
for scenarios of the form (Card(P1), T). Results are averaged over the three reference
datasets (IN1K, iNat1k, Land1k).

7 Discussion

Performance. In this article, we have introduced a method for recommending a
relevant DFCIL algorithm for applying it to a future data stream. We proposed
two approaches for simulating a data stream from the same visual domain as
the initial user dataset, one using generative models (SimuGen) and one using
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existing databases (Proxy21k). An evaluation with six challenging incremental
scenarios and three large-scale datasets covering various visual domains shows
that recommendations using SimuGen are close to that of an oracle.

Usefulness. Our method facilitates the deployment of continual learning and
requires little expertise on the part of the user. A heuristic consisting in choosing
a fixed algorithm by default is quickly outdated and by far sub-optimal. We show
that our method outperforms the fixed choice of any of the DFCIL algorithms we
have tested. It can be adapted to new algorithms and use cases, and encourages
the use of a wider range of algorithms proposed by the community. In addition
to its usefulness in recommending DFCIL algorithms, this work provides a stress
test for the algorithms studied. It shows that none is the best in all scenarios,
and therefore underlines the importance of a comprehensive evaluation of CIL
algorithms to understand their strengths and limitations.

Novelty. Our method exploits the knowledge encoded in a pre-trained LLM
or knowledge base to simulate a data stream from the same domain as the user
data. To the best of our knowledge, it is the first to take into account the semantic
content of the stream to recommend a relevant CIL algorithm.

Further applications. We have chosen the data-free (DFCIL) case because
it is challenging and covers the deployment of continual learning in resource-
constrained environments, such as embedded systems [13,45]. We did not include
algorithms relying on a memory buffer, as the comparison with DFCIL algo-
rithms would have been unfair [2,25]. Our approach can be applied to other
areas of continual learning where variations in the relative performance of algo-
rithms depending on the use case are observed too. This is the case of CIL with
memory and task-incremental learning [2,22]. It can also be adapted for domain-
incremental learning, in which the set of classes is fixed, but the distribution of
the classes changes. In addition, our approach is useful for comparing algorithms
in constrained settings that are not taken into account in the main benchmarks.

Next, we discuss our method’s limitations and their potential mitigation.
Relevance of simulated data. (i) We observed that the new class names

proposed by the LLM sometimes lacked diversity from one prompt to another,
hence the multiple runs with diversified prompts. To improve the outputs of
the LLM, methods to limit hallucinations or peculiar outputs as highlighted
in [49] could be used. Another way of automatically cleaning the data could
consist in checking the existence of the proposed class names against a knowledge
base such as Wikidata. (ii) Stable Diffusion can generate large datasets flexibly,
with control over the semantic content of the data, as opposed to web-crawled
data. However, it might be challenged by specific visual domains that are not
well covered by its training data. Nonetheless, domains with limited data could
benefit from our algorithm recommendation approach too, e.g. in a few-shot
CIL setting. We note that generative models are trained with increasingly large
and diversified datasets, and this will increase their usability. (iii) Our Proxy21k
approach is similar to web retrieval in that it uses ImageNet-21k to simulate data
streams, a dataset collected from the web. The results show that Proxy21k’s
performance is inferior to SimuGen’s for two datasets and equivalent for IN1K,
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which is sampled from ImageNet-21k and for which there is therefore no domain
shift. This underlines the need for specialized databases or models to simulate a
stream close to the future data distribution.

Cost of data generation. The improved performance provided by recom-
mendations using SimuGen is accompanied by an initial computational cost due
to the use of generative models. In line with standard CIL practice [9,12], we
recall that we consider the first step to be offline and not incremental. Conse-
quently, the use of large generative models as a preliminary step is not a limita-
tion in the framework considered. The cost of data generation could be reduced
using more efficient textual [48] and visual generation models [23]. Another
option would be to use Proxy21k when the initial dataset is well covered by
an existing visual dataset, and SimuGen when this is not the case.

Cost of recommendation. To reduce the cost of DFCIL experiments, a
pre-selection of candidate algorithms can be applied, taking into account prac-
tical criteria such as the possibility of updating the model on the device, the
latency of a model update, or the storage required. In addition, the training of
poorly performing algorithms can be stopped early, as we propose to do with
the "explore then prune" strategy (Δ3+

gen and Δ3+
proxy in Table 1). Figure 3 also

shows that, in most cases, it is sufficient to run half of the simulation steps to
obtain an accurate recommendation, as the ranking of the algorithms is stable
at the end of the incremental process.

8 Conclusion

Despite intensive research in this field, no existing CIL algorithm performs best
in all settings [2,7]. It is thus necessary to recommend an algorithm for opti-
mal deployment. Our work is the first to recommend an incremental learning
algorithm based on a simulated data stream adapted to the semantic content
of a user-defined scenario. We show that by leveraging generative models or
an existing visual knowledge base, we can accurately recommend DFCIL algo-
rithms in various visual domains and incremental settings. Our method could
be extended to evaluate algorithms in other resource-constrained scenarios. We
plan to experiment with other continual learning scenarios and study the impact
of data stream structure and semantics on the performance of CIL algorithms.

Acknowledgements. This publication was made possible by the use of the FactoryIA
supercomputer, financially supported by the Ile-de-France Regional Council. We thank
Marina Reyboz for her methodological advice. We also thank Paul Grimal and Michael
Soumm for their advice on generative models.

References

1. Aljundi, R., Chakravarty, P., Tuytelaars, T.: Expert gate: Lifelong learning with a
network of experts. In: Conference on Computer Vision and Pattern Recognition.
CVPR (2017)



328 E. Feillet et al.

2. Belouadah, E., Popescu, A., Kanellos, I.: A comprehensive study of class incre-
mental learning algorithms for visual tasks. Neural Netw. 135, 38–54 (2021)

3. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

4. Chrysakis, A., Moens, M.F.: Simulating task-free continual learning streams from
existing datasets. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 2515–2523 (2023)

5. Cossu, A., Ziosi, M., Lomonaco, V.: Sustainable artificial intelligence through con-
tinual learning. In: International Conference on AI for People: Towards Sustainable
AI, CAIP 2021, Bologna, Italy. p. 103. European Alliance for Innovation (2021)

6. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: Imagenet: A large-scale
hierarchical image database. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2009), Miami, Florida, USA. pp. 248–255 (2009)

7. Feillet, E., Petit, G., Popescu, A., Reyboz, M., Hudelot, C.: Advisil - a class-
incremental learning advisor. In: Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision. pp. 2400–2409 (2023)

8. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci.
3(4), 128–135 (1999)

9. Goswami, D., Liu, Y., Twardowski, B., van de Weijer, J.: Fecam: Exploiting the
heterogeneity of class distributions in exemplar-free continual learning. Advances
in Neural Information Processing Systems 36 (2024)

10. Harun, M.Y., Gallardo, J., Hayes, T.L., Kanan, C.: How efficient are today’s con-
tinual learning algorithms? In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 2430–2435 (2023)

11. Hayes, T.L., Kafle, K., Shrestha, R., Acharya, M., Kanan, C.: Remind your neural
network to prevent catastrophic forgetting. In: European Conference on Computer
Vision. pp. 466–483. Springer (2020)

12. Hayes, T.L., Kanan, C.: Lifelong machine learning with deep streaming linear
discriminant analysis. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops. pp. 220–221 (2020)

13. Hayes, T.L., Kanan, C.: Online continual learning for embedded devices. In: Con-
ference on Lifelong Learning Agents. pp. 744–766. PMLR (2022)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Conference on Computer Vision and Pattern Recognition. CVPR (2016)

15. Hemati, H., Cossu, A., Carta, A., Hurtado, J., Pellegrini, L., Bacciu, D., Lomonaco,
V., Borth, D.: Class-incremental learning with repetition pp. arXiv–2301 (2023)

16. Hersche, M., Karunaratne, G., Cherubini, G., Benini, L., Sebastian, A., Rahimi,
A.: Constrained few-shot class-incremental learning. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 9057–9067 (2022)

17. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
CoRR abs/1503.02531 (2015)

18. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incre-
mentally via rebalancing. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA,. pp. 831–839 (2019)

19. Jodelet, Q., Liu, X., Murata, T.: Balanced softmax cross-entropy for incremental
learning with and without memory. Comput. Vis. Image Underst. 225, 103582
(2022)

20. Jodelet, Q., Liu, X., Phua, Y.J., Murata, T.: Class-incremental learning using dif-
fusion model for distillation and replay. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision. pp. 3425–3433 (2023)



Recommendation of DFCIL Algorithms by Simulating Future Data 329

21. Jung, D., Han, D., Bang, J., Song, H.: Generating instance-level prompts for
rehearsal-free continual learning. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 11847–11857 (2023)

22. Lee, K.Y., Zhong, Y., Wang, Y.X.: Do pre-trained models benefit equally in contin-
ual learning? In: Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV). pp. 6485–6493 (January 2023)

23. Li, Y., Wang, H., Jin, Q., Hu, J., Chemerys, P., Fu, Y., Wang, Y., Tulyakov, S.,
Ren, J.: Snapfusion: Text-to-image diffusion model on mobile devices within two
seconds. Advances in Neural Information Processing Systems 36 (2024)

24. Li, Z., Hoiem, D.: Learning without forgetting. In: European Conference on Com-
puter Vision. ECCV (2016)

25. Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov, A.D., Van De Wei-
jer, J.: Class-incremental learning: survey and performance evaluation on image
classification. IEEE TPAMI 45(5), 5513–5533 (2022)

26. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–
41 (1995)

27. Noh, H., Araujo, A., Sim, J., Weyand, T., Han, B.: Large-scale image retrieval with
attentive deep local features. In: IEEE ICCV. pp. 3476–3485 (2017)

28. Petit, G., Popescu, A., Belouadah, E., Picard, D., Delezoide, B.: Plastil: Plastic
and stable exemplar-free class-incremental learning. In: Conference on Lifelong
Learning Agents. pp. 399–414. PMLR (2023)

29. Petit, G., Popescu, A., Schindler, H., Picard, D., Delezoide, B.: Fetril: Feature
translation for exemplar-free class-incremental learning. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). pp.
3911–3920 (January 2023)

30. Petit, G., Soumm, M., Feillet, E., Popescu, A., Delezoide, B., Picard, D., Hudelot,
C.: An analysis of initial training strategies for exemplar-free class-incremental
learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision. pp. 1837–1847 (2024)

31. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W., Liu, P.J.: Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research 21(1), 5485–5551 (2020)

32. Rebuffi, S., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: Incremental classi-
fier and representation learning. In: Conference on Computer Vision and Pattern
Recognition. CVPR (2017)

33. Ring, M.B.: Continual Learning in Reinforcement Environments. Ph.D. thesis, Uni-
versity of Texas at Austin, USA (1994), uMI Order No. GAX95-06083

34. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 10684–10695 (2022)

35. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Li, F.: Imagenet large scale
visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

36. Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., Pascanu, R., Hadsell, R.: Progressive neural networks. arXiv
preprint arXiv:1606.04671 (2016)

37. Sarıyıldız, M.B., Alahari, K., Larlus, D., Kalantidis, Y.: Fake it till you make it:
Learning transferable representations from synthetic imagenet clones. In: IEEE
Conference on Computer Vision and Pattern Recognition (2023)

38. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative
replay. Advances in neural information processing systems 30 (2017)

http://arxiv.org/abs/1606.04671


330 E. Feillet et al.

39. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsuper-
vised learning using nonequilibrium thermodynamics. In: International conference
on machine learning. pp. 2256–2265. PMLR (2015)

40. Tabassum, A., Erbad, A., Mohamed, A., Guizani, M.: Privacy-preserving dis-
tributed ids using incremental learning for iot health systems. IEEE Access 9,
14271–14283 (2021)

41. Tian, Y., Fan, L., Isola, P., Chang, H., Krishnan, D.: Stablerep: Synthetic images
from text-to-image models make strong visual representation learners. arXiv
preprint arXiv:2306.00984 (2023)

42. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T.,
Rozière, B., Goyal, N., Hambro, E., Azhar, F., et al.: Llama: Open and efficient
foundation language models. arXiv preprint arXiv:2302.13971 (2023)

43. Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., Sun, C., Shepard, A., Adam,
H., Perona, P., Belongie, S.: The inaturalist species classification and detection
dataset. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 8769–8778 (2018)

44. van de Ven, G.M., Tuytelaars, T., Tolias, A.S.: Three types of incremental learning.
Nature Machine Intelligence 4(12), 1185–1197 (2022)

45. Verwimp, E., Ben-David, S., Bethge, M., Cossu, A., Gepperth, A., Hayes, T.L.,
Hüllermeier, E., Kanan, C., Kudithipudi, D., Lampert, C.H., et al.: Continual
learning: Applications and the road forward. arXiv:2311.11908 (2023)

46. Wang, L., Zhang, X., Su, H., Zhu, J.: A comprehensive survey of continual learn-
ing: Theory, method and application. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2024)

47. Wang, Z., Zhang, Z., Lee, C.Y., Zhang, H., Sun, R., Ren, X., Su, G., Perot, V., Dy,
J., Pfister, T.: Learning to prompt for continual learning. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 139–149
(2022)

48. Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., Han, S.: Smoothquant: Accurate
and efficient post-training quantization for large language models. In: International
Conference on Machine Learning. pp. 38087–38099. PMLR (2023)

49. Ye, H., Liu, T., Zhang, A., Hua, W., Jia, W.: Cognitive mirage: A review of hallu-
cinations in large language models. arXiv preprint arXiv:2309.06794 (2023)

50. Yu, L., Twardowski, B., Liu, X., Herranz, L., Wang, K., Cheng, Y., Jui, S., van de
Weijer, J.: Semantic drift compensation for class-incremental learning. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020. pp. 6980–6989. IEEE (2020)

51. Zhu, F., Zhang, X.Y., Wang, C., Yin, F., Liu, C.L.: Prototype augmentation and
self-supervision for incremental learning. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 5871–5880 (2021)

52. Zhu, K., Zhai, W., Cao, Y., Luo, J., Zha, Z.J.: Self-sustaining representation expan-
sion for non-exemplar class-incremental learning. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 9296–9305 (2022)

http://arxiv.org/abs/2306.00984
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2311.11908
http://arxiv.org/abs/2309.06794


Incremental Object 6D Pose Estimation

Long Tian1,2(B), Amelia Sorrenti3, Yik Lung Pang1, Giovanni Bellitto3,
Simone Palazzo3, Concetto Spampinato3, and Changjae Oh1

1 Queen Mary University of London, London, United Kingdom
long.tian@qmul.ac.uk

2 Southwest Jiaotong University, Chengdu, China
3 University of Catania, Catania, Italy

Abstract. We present a novel setting for 6D object pose estimation,
where a model progressively adapts its parameters to estimate the pose
of new objects without forgetting. This capability is crucial for real-
world applications, particularly in scenarios where a deployed model
must accommodate new objects while mitigating the risk of forgetting
previously seen objects. To tackle this challenge, we propose a replay-
based incremental learning technique designed to retain key information
about previously seen objects when the model is exposed to a new one.
Our approach relies on a memory buffer comprising keyframes of pre-
viously encountered objects, serving to regularize the model parameters
based on past experiences while allowing for the update of model features
to perform pose estimation on new objects. We validate the effective-
ness of our method on the standard Linemod and YCB-Video datasets,
demonstrating how our method surpasses baseline approaches in incre-
mental learning at the task at hand. The project website is available at:
https://qm-ipalab.github.io/ILPose.

Keywords: 6D Pose Estimation · Incremental Learning · Elastic
Weight Consolidation

1 Introduction

6D pose estimation, i.e., the prediction of the 3D position and 3D orientation of
a target object from images, is a fundamental problem in computer vision, with
wide applications ranging from autonomous driving to virtual/augmented reality
to robotic grasping. Supervised methods for 6D pose estimation typically rely
on establishing keypoint correspondences between CAD models and input RGB
images [28], RGB-D images [11,37], or directly regress pose using input RGB-D
images [38,40]. Depending on the underlying assumptions, 6D pose estimation
can be performed at either the instance level [11,28] or the category level [37,40].

However, the majority of these approaches are trained on large datasets in
an offline setting, assuming that the training and test sets are independently
and identically distributed (i.i.d.) and that all target objects are available for
training at the same time. This assumption is mostly impractical in real-world
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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scenarios where a deployed model must incrementally adapt to new data. In
such contexts, existing methods struggle to accurately estimate the 6D pose
for unseen objects, whose feature distribution differs from those encountered in
the training set. Moreover, the conventional practice of retraining the model
with the entire dataset, whenever a new object is introduced, is unfeasible and
not efficient: retraining the model demands significant computational resources
and time, and storing and processing large datasets may overwhelm robots with
limited memory capacities.

To address the limitation of offline retraining, one-shot [10,32] and few-
shot [12] methods leverage annotated support views of new objects, establishing
correspondences between these views and the query view for pose estimation.
These methods relax the constraint for high-fidelity object models, but neces-
sitate training on specific instances or categories. Test-time adaptation meth-
ods [18,19] attempt to bridge the gap between the training and test sets by
adapting a pre-trained model to new objects encountered during testing, either
through supervised or unsupervised training.

However, adapting the model only using data from new objects leads to catas-
trophic forgetting, a well-known phenomenon observed when a model is sequen-
tially trained on different experiences or tasks [26]. In such scenarios, while the
model effectively learns new objects, it tends to forget previously encountered
ones after adaptation, resulting in diminished performance on past objects, as
illustrated in Figure 1. This challenge arises due to significant changes in the
model parameters during adaptation to new objects, without adequately retain-
ing the knowledge acquired from previously encountered objects.

Fig. 1. Motivation. Performance degrada-
tion during sequential training on five objects
of the Linemod dataset. Each color bar corre-
sponds to a specific object. For example, pose
estimation accuracy for ape (in red) drops
from 92.1% at task 1 to 2.9% at task 5.

Incremental learning has emer-
ged as a dedicated branch of
machine learning to address this
challenge by balancing between
plasticity, i.e., adaptation to new
information, and stability, i.e.,
ensuring that previously learned
knowledge remains relevant and
accessible over time. Existing works
predominantly deal with image
classification, with relatively little
attention devoted to other domains
such as robotic perception [20],
reinforcement learning [1,41], and
natural language processing [14].
To our knowledge, the exploration
of incremental learning for 6D pose
estimation has not been investi-
gated. Accordingly, in this paper,
we introduce a novel framework for learning the 6D pose of objects, specif-
ically designed for scenarios where a model can adapt incrementally to new
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objects without losing knowledge of previously encountered ones. Our approach
trains a model to estimate the 6D pose on a subset of objects (a task) at a
time, selectively storing keyframes of objects from the current task in a memory
buffer. At each new task, the model keeps learning by combining data from new
objects and the memory buffer, which is simultaneously updated to accommo-
date keyframes of the new task objects. Throughout this incremental learning
process, we introduce a parameter regularization method aimed at adaptively
adjusting the model parameters to retain those essential for accurately estimat-
ing the pose of objects stored in the memory buffer. Furthermore, we propose
a strategy to alleviate overfitting on the objects contained within the memory
buffer. Overall, the main contributions of this work are:

– We present a novel setting for 6D object pose estimation, wherein the model
progressively learns to estimate the 6D pose of new objects.

– We introduce a replay-based incremental learning method that prioritizes
adaptability to new objects while ensuring retention of knowledge about pre-
viously seen ones.

– We validate our method by comparing with existing incremental learning
baselines on the Linemod [13] and YCB-Video [42] datasets.

2 Related work

2.1 6D pose estimation

Methods for 6D pose estimation can be classified as either instance-level
or category-level, depending on their generalization capabilities. Instance-level
methods [28,38,45] assume that target object CAD models are available, and
focus on estimating the 6D pose of specific objects. Category-level meth-
ods [23,39,40] assume that category information is available, and build models
to learn the category-specific representation of object appearance and shapes,
enabling 6D pose estimation within the same category. However, since instance-
level methods require high-fidelity CAD models for each object of interest and
category-level methods require prior knowledge of the target category, neither
can adequately handle new objects that are not shown in the training set.

To address the challenge of achieving 6D pose estimation for new objects, one-
shot [10,32] and few-shot [12] 6D pose estimation methods have been proposed.
These methods annotate one or several views of the new object as support views
and then match keypoints between the support views and the query scene for
6D pose estimation [8,35]. These methods avoid using CAD models but require
training a separate model for each object. Test-time adaptation is another app-
roach to estimate the 6D pose of new objects [33], which is used to enhance the
performance of the model when there is a distribution shift between known and
new objects. These approaches [19,34] pre-train a model on known objects in a
supervised manner, and then adapt the pre-trained model to new objects in a
supervised or unsupervised manner. However, the model would forget previous
knowledge after adaptation.
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2.2 Incremental learning

Incremental learning refers to the ability of a model to learn from new data with-
out suffering from the catastrophic forgetting of the previously learned knowl-
edge [26]. Most existing works on incremental learning have been designed
for classification tasks and reinforcement learning, and can be broadly cat-
egorized into three directions: architectural-based [25,31,43], regularization-
based [17,22,44], and rehearsal-based methods [2,3,5]. Hybrid methodologies,
blending the strengths of various approaches, have also been proposed [4].

Architecture-based methods dynamically adjust the structure of the neu-
ral network, either by pruning unnecessary parts of the network [25,31] or by
introducing new parameters to handle the new incoming tasks [30,43]. This cat-
egory also includes mask-based methods, where a mask is learned for individual
weights or groups of weights, enabling the selective freezing or constraint of spe-
cific parameters [15,27]. Regularization-based methods leverage regularization
terms to mitigate significant changes in important weights, penalizing updates
on these weights to preserve previously learned knowledge [22,44]. Among these
methods, Elastic Weight Consolidation (EWC) [17] stands out as an effective
approach, through the use of a Fisher information matrix to identify the impor-
tance of each trainable parameter. Rehearsal-based methods retain samples from
previous tasks in a memory buffer and revisit these samples while adapting to
new data, mitigating forgetting by preserving previously learned knowledge [3,5].
The replay strategy, which has been demonstrated to be effective in the incre-
mental learning scenario, is often combined with a regularization strategy on
logits sampled over the optimization trajectory [4]. In this work, we propose a
combination of rehearsal-based and regularization-based methods, to develop a
comprehensive incremental learning framework for the 6D pose estimation task.

3 Method

We define the proposed incremental object 6D pose estimation as a task-
incremental learning problem, where a network F undergoes training on a
sequence of T tasks {τ1, . . . , τT } to estimate the 6D pose of multiple objects.
Each task involves learning the 6D pose of a specific subset of objects from a
set O = {o1, . . . , on} with annotated poses. Formally, τi represents the subset of
objects for the i-th task, such that τi ⊂ O, τi ∩ τj = ∅, and

⋃
τi = O.

We design a network F that takes as input a pair d = (v, s), where v is
the RGB-D image and s is the segmentation mask for the target object. The
network F directly regresses the object 6D pose between the camera and object
coordinate system, represented as p = F(θ|v, s), with θ being the trainable
parameters. We represent 6D pose as a homogeneous transformation matrix p
that consists of a 3D rotation R ∈ SO(3) and a 3D translation t ∈ R

3.
Figure 2 shows the overview of our method. During each task τi, we employ a

selection process to identify k keyframes, maximizing multi-view diversity. These
selected keyframes, along with their corresponding ground truth poses, are stored
in a memory buffer M. At each task, the model F is trained to estimate the
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pose of the task’s objects; additionally, starting from task τ2, we include data
from the memory buffer M in the training process.

Fig. 2. Incremental object 6D pose estimation framework. Our model takes an
RGB-D frame and its target object mask as input for 6D pose estimation. The trained
model is sequentially adapted to new objects by using data from both the new object
and the memory buffer, where keyframes of previously seen objects are stored.

3.1 Object pose estimation

We employ a model that directly estimates the 6D pose information from input
images, leveraging both color and geometric features to address pose estimation
challenges for objects with low texture or similar colors. Given an RGB-D image
as input, we crop the RGB image and its corresponding depth image using the
segmentation mask of the target object. This ensures that the model focuses
solely on the region containing the target object.

For RGB feature extraction, we utilize a ResNet-18 [9] as an encoder to
extract appearance features from the cropped image. Simultaneously, we extract
geometric features by lifting the target object’s point cloud from the cropped
depth images using camera intrinsic parameters. We employ PointNet [29] to
process the point cloud and obtain geometric features for each 3D point. We
randomly select 500 points with the corresponding pixels in RGB image, fuse
their extracted appearance and geometric features, and obtain a pixel-wise fea-
ture representation using DenseFusion [38]. Finally, we regress the 6D pose of
the target object by leveraging the pixel-wise feature representation.

The estimation model is trained by minimizing a pose loss Lpose that encour-
ages the estimation of accurate pose information. We use the Average Distance of



336 L. Tian et al.

Model (ADD) scores [13] as Lpose. It measures the distance between points trans-
ferred using the predicted 6D pose and points transferred through the ground
truth pose, expressed as:

Lpose =
1
T

∑

i

∥
∥
∥(Rxi + t) − (R̂xi + t̂)

∥
∥
∥
2

, (1)

where xi represents the ith 3D point from the object CAD model (with T overall
number of points), R̂ and t̂ denote the rotation and translation annotations and
R and t the estimated rotation and translation values.

3.2 Memory-based incremental learning

We design a replay-based strategy for incremental object 6D pose estimation.
This strategy consists of two key components: keyframe selection and adaptive
parameter regularization.

Keyframe selection. The selection of samples from past tasks is a crucial
step, as these samples directly influence the model’s robustness on previous tasks
following adaptation to new ones. The memory buffer contains frames that must
effectively provide exhaustive visual appearance information about seen objects.
To achieve this, we propose a selection strategy based on the Scale-Invariant
Feature Transform (SIFT) algorithm [24].

SIFT is primarily employed to detect and describe local features in images
by identifying distinctive matching keypoints in two images and estimating the
transformation between them. We utilize this transformation as a measure of the
view changes between sequential frames. Hence, we leverage SIFT to quantify the
changes in view across consecutive frames and select keyframes that maximize
multi-view diversity while minimizing redundancy.

Formally, given a sequence of frames {v1, . . . , vn} depicting an arbitrary
object o ∈ O, we select the initial frame v1. Subsequently, we compare the
other n − 1 frames with v1 using SIFT to find matched keypoints for transfor-
mation calculation, yielding a set of scores S = {s1,j , with j = 2 . . . n} with s1,j

measuring the Euclidean norm of translation and rotation angle, indicating the
extent of view changes. The k frames with the highest scores are identified as
keyframes and added to the memory buffer M. The number of keyframes in the
buffer is equal for all objects.

Adaptive parameter regularization. While adapting the current model to
a new task, knowledge of past tasks may be overwritten or altered, leading to
catastrophic forgetting. We address the forgetting problem in our incremental
6D pose estimation by adaptively regularizing the parameters using a variant
of Elastic Weight Consolidation (EWC) [17]. In particular, while the common
online EWC implementation computes the Fisher information matrix G at the
end of each task, on the task’s data only, and updates it through exponential
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Algorithm 1. Incremental object 6D pose estimation for each task
1: Input: data from both the task data distribution Dn and the memory buffer M
2: for all epochs do
3: for vi, si ∈ Dn do � training of the model on Dn

4: pi ← F(θ|vi, si)
5: Loss ← Loss + Lpose(pi) + λLEWC(pi)
6: end for
7: for vj , sj ∈ M do � evaluation of the model on M
8: pj ← F(θ|vj , sj)
9: Losseval ← Losseval + Lpose(pj)

10: end for
11: if (Losseval / |M|) > δ then
12: for vj , sj ∈ M do � training of the model on M
13: pj ← F(θ|vj , sj)
14: Loss ← Loss + Lpose(pj) + λLEWC(pj)
15: end for
16: end if
17: update Fisher information matrix G � using data from M
18: update θ based on ∂Loss

∂θ

19: end for
20: update M with data from the current task data distribution Dn

moving average, we compute it using all samples from the buffer M, through
the second-order derivative:

G = E[− ∂2

∂θ2τi
�(pm|θτi)], (2)

where pm is the ground truth for the m-th sample in the buffer and �(pm|θτi) is
the corresponding log-likelihood [21]. As the Fisher information matrix is related
to the importance of each parameter, we add a regularization loss to penalize
the change of each parameter according to its importance:

LEWC =
∑

j

G(θ(j)τi−1
− θ(j)τi )2, (3)

where θ
(j)
τi−1 represents the jth parameter of the weights at task τi−1 and θ

(j)
τi is

the same parameter of the model at task τi.

3.3 Optimization

Our learning strategy foresees that the pose estimation model is trained on the
first task in a supervised manner, using only Eq. 1. For subsequent tasks, the
model is trained by minimizing the overall loss Ladp:

Ladp = Lpose + λLEWC , (4)
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where Lpose is computed for all samples of the new task, while LEWC only on the
samples present in the replay buffer M. However, a common challenge in replay-
based incremental learning methods is the tendency to overfit the buffer data [7].
This occurs as the model repeatedly learns from the buffer, potentially hindering
generalization to previous tasks and causing loss of previously learned knowledge.
Additionally, using a buffer directly without additional training strategies, often
results in a polarization towards the new object data, whose effect is controlled
by the hyperparameter λ.

To mitigate this issue, we propose a novel adaptation strategy, adding a loss-
gating mechanism. We exclusively use data from the new object to enable rapid
adjustment of the network’s trainable parameters to suit the characteristics of
the new object. During training, after each epoch, we evaluate network perfor-
mance on memory buffer data to detect any significant drop in performance
on previously seen objects. If the loss value (i.e., the ADD value obtained by
Eq.1) exceeds a predefined threshold, δ, indicating a decline in performance, we
incorporate memory buffer data for training using Eq. 4. Conversely, if the loss
value remains below the threshold, signifying retention of previously encoun-
tered objects, we refrain from adding memory buffer data to training to prevent
overfitting. The pseudocode of the procedure performed for each task is shown
in Alg. 1.

4 Experiments

4.1 Metrics

We consider three metrics widely used in 6D pose estimation problems:

– ADD-0.1d (↑): percentage of correct poses. The estimated pose is considered
to be correct if the ADD distance is less than 10% of the object diameter.

– Rerr (↓): mean rotation error in degrees, which measures the average angle
between the predicted rotation and the ground truth rotation.

– Terr (↓): mean translation error in centimeters, which is used to measure the
average Euclidean distance between the predicted translation and the ground
truth.

We assess the effectiveness of our method by evaluating its overall perfor-
mance on both past and present tasks, encompassing all objects encountered
so far. To accomplish this, we report the performance of the model in terms of
Final Average metrics [5]: ADD-0.1dFA(↑), RFA

err (↓) and TFA
err (↓). These metrics

represent the average performance measures over all objects encountered after
the last task of the sequence. Let ψj

i denote the value of an arbitrary metric at
the end of task j computed on the test set of task τi (with i ≤ j), the Final
Average is defined as:

ΨFA =
1
T

T∑

i=1

ψT
i , (5)

with T representing the total number of tasks.



Incremental Object 6D Pose Estimation 339

Fig. 3. Visualization of 6D pose. The results on (top) Linemod [13] and (bottom)
YCB-Video [42]. The green 3D bounding boxes are obtained based on the ground
truth 6D pose, while the red ones are generated from the model prediction after the
incremental adaptation to the final object.

4.2 Baselines

We compare our method, ILPose, with a selection of other approaches broadly
inspired by existing state-of-the-art incremental learning methods. Most of these
methods are originally designed for the classification task, so some changes have
been made to adapt them to the 6D pose estimation task.

Multi-Encoder: This strategy draws inspiration from a popular architec-
tural method [30], in which a distinct replica of the entire backbone is dedicated
to each task. While this strategy inherently prevents forgetting, its primary
drawback lies in the linear increase of memory requirements with the number of
tasks. To balance efficiency and memory footprint, our implementation allocates
a separate encoder module for each task, while the rest of the network remains
shared across all tasks. When a new task begins, a new encoder replica is instan-
tiated, initialized with the same weights as its predecessor, and adopted during
the subsequent training session, while all the other encoders are inactive. During
inference, an object identifier is used to select the appropriate encoder.

Self-Distillation: Inspired by [22], this method applies functional regular-
ization via self-distillation between the in-training model and a previous snap-
shot stored in the buffer. More specifically, at the end of task τi−1, we store the
pixel-wise features hτi−1 for each buffer sample m ∈ M. In the next task τi, we
incorporate an additional loss LSD to mitigate potential degradation the learned
representations up to task τi−1. At each training step of the current task τi, we
sample an image v from the training stream, and a m image randomly selected
from the buffer, and we optimize the network by minimizing the following loss:

L = L(v)
pose + L(m)

pose + αLSD(h(m)
τi−1

, h(m)
τi ), (6)

where α is a weighting factor between the three loss terms, and LSD is the Mean
Squared Error Loss.

Hybrid: This approach combines the strengths of the first two methods,
leveraging the advantages of both techniques. It employs a separate encoder for
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each new object, coupled with the additional loss LSD to preserve the knowledge
associated with the previous state of the model.

vanilla-EWC [17]: In this buffer-free method, the model continually adapts
to new objects by updating trainable parameters under the penalty of the EWC
term applied to important parameter changes. In this case, the loss-gating mech-
anism is not being added.

Joint & Fine-tune: To provide a more exhaustive understanding of our
findings, we also include the scenario where a model is trained jointly on all
objects together (referred to as Joint) in a conventional, non-incremental fashion.
In addition, we present the results by training the model sequentially on each task
without implementing any measures to contrast forgetting (referred to as Fine-
tune). These two results can be viewed as upper and lower bounds, respectively.

Table 1. 6D pose estimation results on Linemod [13].

Method ADD-0.1dFA(↑) RFA
err(↓) T FA

err (↓)

Joint 90.3±0.7 7.7±1.1 0.7±0.2

Fine-tune 18.1±1.9 50.4±6.4 3.1±0.3

vanilla-EWC 36.6±2.5 27.7±1.7 1.7±0.1

30 keyframes 50 keyframes

ADD-0.1dFA(↑) RFA
err(↓) T FA

err (↓)ADD-0.1dFA(↑) RFA
err(↓) T FA

err (↓)

Multi-Encoder 29.6±3.1 30.3±2.0 9.2±1.2 39.9±4.8 23.8±2.9 8.4±1.0

Self-Distillation 39.3±3.5 31.9±3.3 6.4±0.9 44.6±4.4 24.3±2.1 8.7±0.9

Hybrid 34.4±4.7 29.1±2.8 8.7±1.3 50.9±6.7 21.7±3.3 7.7±1.1

ILPose 58.4±3.0 14.4±1.11.6±0.1 67.5±1.1 10.8±1.81.3±0.1

4.3 Experimental results

Setup. All models are trained according to a standard incremental learning
protocol [36]. When training on a given task, only images corresponding to that
task are used, with the exception of k samples for each previous object stored
in the buffer (if the method permits). To ensure a fair comparison between
different methods, all the networks are trained using the Adam [16] optimizer
for 300 epochs per task. We select λ = 2 to balance the performance on a new
task and retention of previous knowledge, while the threshold δ is determined
based on the object diameter d, defined as δ = 0.1d.

For each method, the model is trained on a sequence of 5 objects from either
the Linemod dataset [13] (ape, bench vise, camera, can and cat) or the YCB-
Video dataset [6] (master chef can, cracker box, sugar box, tomato soup can and
mustard bottle); for both datasets, each task is associated to a single object, i.e.,
τi = oi. The evaluation of the methods equipped with a buffer was performed
with two different buffer size settings, i.e. storing k = 30 and k = 50 images
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per object. Results are presented as the mean and standard deviation over three
different runs.

Results. Table 1 and Table 2 show that ILPose outperforms all baselines on
the Linemod and YCB-Video datasets, providing a better trade-off between for-
getting and final performance. In the tables, we also compare the impact of the
number of keyframes on final results. Qualitative results are shown in Figure 3.

Although vanilla-EWC does not leverage frames from previous tasks, it yields
results comparable to buffer-based methods, particularly in the case of k = 30.
This serves as a direct baseline for our ILPose, suggesting that regularization
based on the Fisher information matrix effectively addresses our task.

Among buffer-based methods, the architectural approach utilizing multiple
encoders performs poorly across all cases. Employing separate encoders for each
task seems ineffective, as the encoder’s internal representation remains closely
tied to the inherent features of the object in question. Consequently, the shared
part of the network struggles to exploit features extracted by different encoders.
This phenomenon may also explain the results obtained with the Self-Distillation
method, which, despite using a single encoder, better preserves the model’s inter-
nal representation due to the additional loss. Clearly, when the network retains
its weights to ensure that current pixel-wise features resemble those extracted
previously, it suffers less from forgetting.

We evaluate the impact of catastrophic forgetting on the 6D pose estima-
tion task by comparing the performance metrics at the end of each task between
two scenarios: one with Fine-tune (lacking countermeasures to reduce forgetting)
and the other with our proposed solution. Figure 5 illustrates this comparison,
demonstrating a stark difference in performance. While the former shows a sig-
nificant drop, our approach notably mitigates this decline.

Table 2. 6D pose estimation results on YCB-Video [42].

Method ADD-0.1dFA(↑) RFA
err(↓) T FA

err (↓)

Joint 96.2±0.9 5.7±0.5 0.5±0.1

Fine-tune 27.8±2.1 52.4±2.7 3.9±0.5

vanilla-EWC 46.8±1.4 31.2±1.6 2.5±0.3

30 keyframes 50 keyframes

ADD-0.1dFA(↑) RFA
err(↓) T FA

err (↓)ADD-0.1dFA(↑) RFA
err(↓) T FA

err (↓)

Multi-Encoder 35.6±1.1 26.1±0.8 8.2±1.4 38.9±1.4 23.9±2.2 6.3±0.8

Self-Distillation 39.4±2.5 29.8±1.3 3.2±2.1 45.1±2.7 25.1±1.0 4.4±1.5

Hybrid 36.8±2.9 25.2±2.7 5.9±2.3 49.2±3.9 21.7±3.1 6.7±1.4

ILPose 63.5±2.8 15.2±0.91.6±0.2 79.2±1.8 10.2±0.71.2±0.1
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Table 3. Effect of regularization. We compare our original model, ILPose, which
employs EWC, with the L2-based which utilizes L2 regularization, while keeping all
other settings remain unchanged.

Method 30 keyframes 50 keyframes

ADD-0.1dFA(↑) RFA
err(↓) T FA

err (↓)ADD-0.1dFA(↑) RFA
err(↓) T FA

err (↓)

L2-based 42.7±1.4 24.7±2.1 1.5±0.1 52.4±2.1 21.1±1.4 1.3±0.2

ILPose 58.4±3.0 14.4±1.11.6±0.1 67.5±1.1 10.8±1.81.3±0.1

4.4 Ablation study

Impact of EWC term. To determine how parameter regularization can assist
ILPose in preventing forgetting, we sequentially train the model on new objects.
While the model may achieve satisfactory results on the most recently encoun-
tered object, significant forgetting can occur on the older objects. The 6D pose
results for each encountered object are illustrated in Figure 5 (second row), lead-
ing to unsatisfactory average results across all encountered objects, as displayed
in Table 1 (Fine-tune). For a fair comparison, we conduct another experiment
that replaces EWC with L2 regularization term while keeping other settings the
same as ILPose. Unlike EWC, L2 regularization penalizes all trainable parame-
ter changes. Consequently, the model using L2 regularization tends to retain the
first encountered object as fewer parameters can be updated to fit newly encoun-
tered objects. The results are displayed in Table 3. EWC regularization employs
the Fisher matrix that measures the important parameters for past encountered
objects, which allows the model to be more flexible in handling new objects by
penalizing only significant changes.

Fig. 4. Comparison of the impact of
different keyframes selection strate-
gies. Per-task ADD-0.1d computed at the
end of the training on the Linemod dataset.
On the right, we report the ADD-0.1dFA(↑).

Impact of keyframes selection.
To assess the impact of keyframes
selection on the results, we com-
pared two different strategies for fill-
ing the memory buffer. In the first
strategy, the keyframes were selected
from the training set without taking
into account any discriminative crite-
ria, i.e. random selection. In contrast,
the other selection strategy relies on
the SIFT algorithm. As detailed in
Section 3.2, the SIFT-based selec-
tion aims at capturing diverse and
informative keyframes. For each app-
roach, we conducted experiments
using the same task order and train-
ing configuration. Figure 4 shows a
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comparison of the results in terms of ADD-0.1dFA(↑). These results demonstrate
the limitations of random selection in losing crucial features related to different
poses, highlighting the effectiveness of SIFT-based evaluation in preserving such
information.

Fig. 5. Evaluation metrics for ILPose on Linemod [13]. First row: per-task ADD-
0.1d(↑), Rerr(↓) and Terr(↓) computed after training on each task. Second row: com-
parison between average metrics of ILPose and the Fine-tune model.

5 Conclusion

We presented a new setting for 6D pose estimation and introduced ILPose,
addressing the challenge of incremental learning in 6D object pose estimation.
ILPose leverages a memory buffer to retain the knowledge of previously seen
objects while adapting to new ones and adaptively regularizes the model param-
eters to ensure keeping the previously acquired knowledge. Through extensive
experiments on the Linemod and the YCB-Video datasets, we demonstrate that
ILPose outperforms existing baselines in incremental 6D pose estimation, show-
casing the effectiveness of our approach in real-world scenarios.
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Abstract. This paper introduces a novel quantum diffusion model
designed for Noisy Intermediate-Scale Quantum (NISQ) devices. Unlike
previous methods, this model efficiently processes higher-dimensional
images with complex pixel structures, even on qubit-limited platforms.
This is accomplished through a pairwise Bell-state entangling technique,
which reduces space complexity. Additionally, parameterized quantum
circuits enable the generation of quantum states with minimal param-
eters, while still delivering high performance. We conduct comprehen-
sive experiments, comparing the proposed model with both classical and
quantum techniques using datasets such as MNIST and CIFAR-10. The
results show significant improvements in computational efficiency and
performance metrics such as FID, SSIM and PSNR. By leveraging quan-
tum entanglement and superposition, this approach advances quantum
generative learning. This advancement paves the way for more sophis-
ticated and resource-efficient quantum diffusion algorithms capable of
handling complex data on the NISQ devices.

Keywords: Quantum Machine Learning · Diffusion Models ·
Quantum Entanglement.

1 Introduction

Quantum computing has seen remarkable progress in recent years, opening up
new possibilities for solving intricate computational challenges. Specifically, in
the field of image generation and machine learning, Quantum Denoising Dif-
fusion Models (QDDMs) are emerging as a promising technology to enhance
both the efficiency and effectiveness of these applications. While traditional
(non-quantum) diffusion models are quite capable, they often require extensive
parameter tuning and can be computationally demanding [1–3].

Diffusion models gradually transform a simple noise distribution into a
complex data distribution through a series of iterative steps. This procedure
is inherently computationally intensive, especially as the size and and com-
plexity of training dataset grow. Quantum diffusion models, however, capi-
talize on the unique properties of quantum mechanics—namely superposition
and entanglement—to circumvent these challenges[4,5]. Quantum entanglement
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15326, pp. 347–361, 2025.
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facilitates the creation of highly correlated states, which can be efficiently manip-
ulated to perform complex transformations, while superposition permits quan-
tum bits (qubits) to occupy multiple states at once, dramatically enlarging the
computational space. These quantum characteristics make diffusion models espe-
cially powerful for generative tasks involving large datasets and complex, high-
dimensional data.

Fig. 1. Schematic overview of the proposed Entanglement Enhanced Quantum Dif-
fusion Model (EEQDM). The circuit illustrates the key components of EEQDM: (1)
Amplitude encoding for initial state preparation, (2) Entanglement generation using
Hadamard (H) and CNOT gates, enhancing the model’s capability, (3) Parameterized
Quantum Circuit (PQC) layer with rotation gates Ry(θ), Rz(φ), and Rx(λ) and CNOT
gate, implementing the diffusion process, and (4) Measurement stage. This architecture
leverages pairwise entanglement to enhance the quantum diffusion process, potentially
improving performance in tasks such as generative modeling or optimization. Qubits
q0-q3 represent the quantum register, while c denotes the classical measurement out-
comes.

As shown in Fig. 1, this paper proposes Entanglement Enhanced Quantum
Diffusion Model (EEQDM) architecture that leverages the quantum properties
through a carefully designed circuit. The circuit begins with amplitude encod-
ing, followed by an entanglement stage using Hadamard (H) gates and CNOT
operations. This entanglement facilitates the creation of highly correlated Bell
state pairs, which can be efficiently manipulated to perform complex transfor-
mations. The key feature of the approach is the application of a Parameterized
Quantum Circuit (PQC) to only a subset of qubits (q0 and q1 in the image).
This selective application of the PQC significantly reduces the parameter count
while maintaining the power of quantum processing. The circuit concludes with a
measurement stage, allowing to extract the processed information. The proposed
method is evaluated against traditional classical models and current quantum
models using widely recognized datasets like MNIST digits and CIFAR-10, which
are frequently utilized in quantum machine learning research. The findings show
an increase in computational efficiency and performance metrics, highlighting
the effectiveness of the entanglement strategy employed in the proposed model
to enhance QDDMs.
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2 Literature Review and Related Work

Recent advancements in quantum machine learning have highlighted the poten-
tial of Quantum Diffusion Models (QDMs) in improving image generation tasks.
Classical diffusion models, such as Denoising Diffusion Probabilistic Models
(DDPMs), have been instrumental in advancing image synthesis but are often
hampered by high computational demands and the need for extensive parameter
tuning [1]. The transition to quantum-based models offers a promising solution
to these challenges.

2.1 Classical Diffusion Models

Classical diffusion models are generative models designed to learn the probability
distribution p(x) of a dataset, enabling the generation of new samples from this
distribution. The diffusion process involves a Markov chain that gradually maps
an arbitrary distribution q(x0) to a simpler, treatable distribution π(xT ), often
a Gaussian distribution. This is achieved through a forward process using a
Markov kernel q(xt|xt−1), and a parametric model is trained to estimate the
inverse Markov chain, pθ(xt−1|xt) [1].

2.2 Parameterized Quantum Circuits

Parameterized Quantum Circuits (PQCs) are essential components in the
domain of quantum machine learning[24], serving as the quantum analog of
classical artificial neural networks. PQCs are composed of quantum gates that
perform parametric transformations on quantum states, organized in layers to
facilitate complex data processing. Each quantum gate within these circuits is
defined by rotation angles, which are trainable parameters optimized using tech-
niques such as gradient descent [6]. The strong entangling ansatz, which combines
trainable rotation gates (Rx, Ry, Rz) with C-NOT gates to create entanglement
between qubits, has been particularly effective [7].

Training PQCs on current noisy intermediate-scale quantum (NISQ) [22]
hardware poses challenges due to high noise levels. Consequently, simulations
using software libraries like PennyLane are often employed for training, where
both forward computations and optimizations are performed on classical com-
puters. These simulations encode classical data into quantum states using ampli-
tude encoding, which maps a classical vector’s components onto the coefficients
of a quantum state, allowing the representation of 2N classical features with N
qubits [8]. However, this encoding requires a number of C-NOT gates that grows
exponentially with the number of qubits, presenting a scalability challenge.

2.3 Quantum Diffusion Models

Quantum Diffusion Models (QDMs) combine the principles of quantum com-
puting with the methodology of diffusion models to enhance generative capabili-
ties. These models leverage quantum mechanics properties such as superposition
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and entanglement to process information more efficiently than classical models.
Quantum Denoising Diffusion Models (QDDMs) utilize parameterized quantum
circuits to model the data distribution, providing a compact representation that
reduces computational load compared to classical counterparts [6].

A significant development in QDMs is the use of intermediate measurements
and ancillary qubits, which have been shown to improve the quality of generated
samples by introducing non-linear mappings over state amplitudes [6]. However,
excessive measurements can lead to model collapse due to the loss of initial noise
information. Hybrid models, combining classical autoencoders with QDMs, have
also demonstrated enhanced performance by simplifying PQCs and enabling
implementation on real quantum hardware [8]. These latent models reduce the
dimensions of the input data before processing with quantum circuits, improving
efficiency but adding complexity by requiring classical pre-processing.

The proposed research further enhances this approach by reducing the param-
eter count directly within the quantum circuit itself, eliminating the need for
classical autoencoders. The Bell state entanglement strategy helps in maintain-
ing the fidelity of quantum states across iterations, reducing errors, and enabling
the model to handle datasets with fewer parameters. By benchmarking EEQDM
against classical and existing quantum models using datasets like MNIST dig-
its and CIFAR-10, we demonstrate significant improvements in computational
efficiency and performance metrics, showcasing the potential of our approach in
enhancing QDMs.

3 Methodology

In this section, we provide the details of the methodology employed to construct
EEQDM. The proposed approach integrates the design of a quantum varia-
tional circuit with the implementation of a diffusion process enhanced by an
entanglement-based technique.

3.1 Construction of Quantum Diffusion Models

The Entanglement-Enhanced Quantum Diffusion Model (EEQDM) introduces a
novel quantum circuit design that harnesses the power of Bell-state entanglement
to enhance performance while simultaneously reducing the parameter count in
quantum diffusion models. The architecture of EEQDM consists of three primary
stages: Amplitude Encoding, Pair-wise Bell-state preparation, and Parameter-
ized Quantum Circuit (PQC), followed by a measurement stage.

Input: Amplitude Encoding We begin by performing amplitude encoding
to embed the input data into the quantum circuit. This method uses log(n)
qubits, where, n is the number of features in the dataset. Amplitude encoding is
efficient for handling high-dimensional data as it maps the classical data vector
components onto the amplitude of quantum states. let |x〉 be the quantum state
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representing the input data vector x. Mathematically, amplitude encoding can
be expressed as:

|x〉 =
n−1∑

i=0

xi|i〉 (1)

We first flatten the 2D image data into a 1D vector, normalize it, and then
apply amplitude encoding. This process allows us to represent an image of N
pixels using only (�log2(N)�) qubits [14,19], significantly reducing the quantum
resources required compared to direct qubit encoding methods. For instance, a
16×16 image (256 pixels) would require only 8 qubits, while a 64×64 image (4096
pixels) would need 12 qubits. This logarithmic scaling in qubit requirements
demonstrates the efficiency of amplitude encoding for handling various image
sizes in EEQDM.

Entanglement Following the amplitude encoding, the Pair-wise Bell-state
preparation stage implements a specific entanglement strategy that creates a
unique quantum state, efficiently distributing information across the qubits. This
process can be described as "pairwise qubit entanglement" and unfolds as fol-
lows:

1. Hadamard gates (H) are applied to the first half of the qubits (excluding
the ancilla qubit). This creates an equal superposition state for these qubits,
preparing them for entanglement.

2. CNOT gates are then used to entangle each qubit from the first half with a
corresponding qubit in the second half. Specifically, for n qubits (excluding
the ancilla), we apply CNOT gates where, the control qubits are from the
first half (indices 0 to n/2-1) and the target qubits are their corresponding
partners in the second half (indices n/2 to n-1).

The Pair-wise Bell-state preparation is crucial to EEQDM’s parameter reduc-
tion mechanism. By creating specific entanglement pairs between the first and
second half of the qubit register, we establish information pathways that allow
the subsequent Parameterized Quantum Circuit (PQC) to operate on a reduced
set of qubits while still accessing information from the entire input state. Thus,
significantly reducing the number of parameters required while maintaining the
model’s expressive power.

The effectiveness of this approach is evident in the parameter reduction graph
Fig. 2, which shows a consistent 40-47% reduction in parameters for qubit counts
between 8 and 18, compared to existing quantum diffusion models. This substan-
tial reduction in parameters, enabled by the unique entanglement strategy, is a
key factor in EEQDM’s improved efficiency and scalability.

Ansatz: Parameterized Quantum Circuit The foundational element of EE-
QDM architecture is a Parameterized Quantum Circuit (PQC) which serves as
the ansatz. We conduct an extensive exploration of various circuit depths and
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Fig. 2. Comparison of parameters in QDDM[6] and the proposed EEQDM as the num-
ber of qubits increases. The shaded area highlights the parameter reduction achieved
by the new model.

entanglement architectures within these PQCs to ascertain the optimal configu-
ration for the proposed quantum diffusion model. Each layer of the ansatz is com-
posed of trainable parameters, facilitated through rotation and C-NOT gates,
enabling the circuit to dynamically adapt and learn from the data throughout
the training process [15]. In our experiments, we vary the depth (L) and entangle-
ment patterns within the PQCs to determine the configuration that best aligns
with the requirements of the diffusion model [16]. This framework permits the
circuit to effectively adapt to the data distribution across different noise levels
encountered during the diffusion process. The selection of this ansatz is strate-
gically motivated by the need to balance expressivity with parameter efficiency,
which is essential for streamlined training and to prevent overfitting [17]. This
balance is crucial for optimizing the learning capabilities of our model while
ensuring generalization across diverse datasets [18].

3.2 Diffusion Process

The diffusion process follows a Markov chain framework, where, data undergoes
forward diffusion to introduce noise, followed by reverse diffusion to denoise and
reconstruct the data. This process is inspired by classical diffusion models but
adapted to the quantum domain.

Forward Diffusion Noise is incrementally added to the data across multiple
timesteps. The forward diffusion process can be mathematically represented as:

q(xt|xt−1) = N (xt;
√

αtxt−1, (1 − αt)I) (2)

where, αt controls the variance schedule.
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Fig. 3. Example of ansatz with 4-qubit strongly entangling layers (L = 1) show-
ing rotations R and CNOTs. In practice, we use multiple layers and optimize the
depth for our specific task. Image from PennyLane documentation, available at:
PennyLane Documentation.

Fig. 4. It depicts the state evolution from ρT to ρ0 through intermediate states ρt and
ρt−1. Each step involves applying the function E(ρt−1, t)and the quantum operation
fθ(ρ, t). The bottom row showcases visual representations of these states, highlighting
the transformation and diffusion process in the quantum generative model.[23]

Reverse Diffusion The reverse diffusion process, also known as the sampling
or generation process, is a crucial component of diffusion models. This process
involves gradually denoising a random input to produce a high-quality sample.
Our implementation of reverse diffusion is inspired by recent advancements in
the field [1,6,7].

The process begins with a random noise tensor x0, typically sampled from
a standard normal distribution. This noise is then iteratively refined through T
steps, where, T is the number of diffusion steps:

x0 ∼ N (0, I) (3)

x1, x2, . . . , xT = ReverseProcess(x0) (4)

At each step t, the proposed model predicts either the denoised data directly
or the noise component, depending on the chosen prediction goal. For data pre-
diction, we directly use the network output:

https://docs.pennylane.ai/en/stable/code/api/pennylane.StronglyEntanglingLayers.html
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xt = fθ(xt−1) (5)

where, fθ is our quantum circuit with parameters θ. This direct prediction
of denoised data, rather than noise, has empirically shown better results in
experiments. Our implementation also supports conditional generation, where,
additional label information can be provided to guide the reverse diffusion pro-
cess. This is particularly useful for tasks requiring controlled generation or class-
specific sampling.

3.3 Training and Optimization

Training involves optimizing the PQC parameters to minimize the reconstruction
error. We use the Mean Squared Error (MSE) loss function to quantify the
difference between the reconstructed and original data:

L =
1
N

N∑

i=1

‖xi − x̂i‖2 (6)

where, xi and x̂i represent the original and reconstructed data, respectively.
Our hybrid quantum-classical pipeline integrates quantum computing capa-

bilities with classical optimization techniques to solve complex problems effi-
ciently. At its core, a parameterized quantum circuit processes and encodes
input data into quantum states. The circuit’s output is measured and classi-
cally post-processed to compute the objective function. The circuit parameters
are optimized using the classical Adam optimizer. We conducted hyperparameter
tuning for the learning rate, testing values of 0.1, 0.01, and 0.001, with 0.1 yield-
ing the best results. This iterative process of quantum computation followed by
classical optimization allows us to harness the potential quantum advantage in
data processing while leveraging well-established classical algorithms for param-
eter updates. This hybrid approach enables us to tackle problems that may be
challenging for purely classical or quantum methods, potentially opening new
avenues in optimization and machine learning tasks.

Performance metrics such as Structural Similarity Index Measure (SSIM),
and Peak Signal-to-Noise Ratio (PSNR) are employed to evaluate model perfor-
mance. These metrics assess the model’s ability to generate high-quality images
that closely resemble the original data distribution.

4 Experimental Setup

4.1 Datasets

In our experiments, we utilized two standard benchmark datasets widely rec-
ognized in both classical and quantum machine learning communities: MNIST
[11] and CIFAR-10[12] . These datasets were chosen for their widespread use in
evaluating image processing models, including recent quantum machine learning
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approaches [10,13,20]. The MNIST dataset consists of 70,000 grayscale images of
handwritten digits (28× 28 pixels), split into 60,000 training images and 10,000
test images. This dataset has been extensively used in quantum machine learning
literature due to its simplicity and the clear benchmarking it provides for digit
recognition tasks [10,20]. CIFAR-10 includes 60,000 color images (32×32 pixels)
across ten different classes, with 50,000 training images and 10,000 test images.
Its inclusion allows us to evaluate our model’s performance on more complex,
real-world images, following recent trends in quantum image processing research
[13,20].

To assess EEQDM’s ability to handle varying data dimensionality and to
ensure compatibility with different qubit counts in our quantum system, we pre-
processed the images to three different resolutions: 8 × 8, 16 × 16, and 32 × 32
pixels. This approach not only aligns with recent quantum image processing
studies [10,13] but also challenges the model to manage increasingly larger fea-
ture sets effectively, providing insights into its scalability and performance across
different data complexities.

4.2 Metrics

Loss Curves We analyze the training and validation loss curves to evaluate
the model’s learning progress and generalization ability. The loss function used
is Mean Squared Error (MSE), defined as:

MSE =
1
n

n∑

i=1

(yi − ŷi)2 (7)

where, yi are the true values and ŷi are the predicted values.

Structural Similarity Index (SSIM) [21] SSIM assesses the perceived quality
of generated images compared to the originals:

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
(8)

where, μx and μy are the average pixel intensities, σx and σy are the standard
deviations, and σxy is the covariance of pixels in images x and y. SSIM ranges
from -1 to 1, with 1 indicating perfect structural similarity.

Peak Signal-to-Noise Ratio (PSNR) PSNR quantifies the ratio between
the maximum possible signal power and the power of distorting noise:

PSNR = 20 · log10
(

MAXI√
MSE

)
(9)

where, MAXI is the maximum possible pixel value, and MSE is the mean
squared error between the generated and original images. Higher PSNR values
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generally indicate better reconstruction quality. This comparison helps us under-
stand the learning behavior in both quantum and classical domains, as well as
the specific benefits and trade-offs of the proposed quantum diffusion approach.

Fréchet Inception Distance (FID) [9] FID measures the similarity between
the distribution of generated images and that of real images. It is computed as:

FID = ||μr − μg||2 + Tr(Σr + Σg − 2(ΣrΣg)1/2)

where μr and μg are the mean feature representations, and Σr and Σg are the
covariance matrices for real and generated images, respectively. Lower FID scores
indicate higher quality and diversity.

5 Results

5.1 Comparison of EEQDM and QDDM

Model Specifications : The proposed Entanglement-Enhanced Quantum Dif-
fusion Model (EEQDM) incorporates a novel pairwise qubit entanglement tech-
nique aimed at improving scalability and efficiency. We compared EEQDM with
an existing Quantum Denoising Diffusion Model (QDDM) that does not include
this feature. Both models were evaluated using 8×8 and 16×16 MNIST images,
as well as 16 × 16 CIFAR-10 images, across depths ranging from 10 to 50.

Evaluation of Models : As depicted in Fig. 5 and Fig. 6, a detailed comparison
of performance metrics and computational efficiency reveals several key trends:

– For 8 × 8 MNIST images, the performance difference between EEQDM and
QDDM is minimal, with QDDM slightly outperforming EEQDM at higher
depths in terms of loss values. Both models have comparable execution times,
with EEQDM being marginally faster. This indicates that for simpler, smaller-
scale tasks, both models perform adequately without significant distinctions.

– When processing larger and more complex images, the advantages of EEQDM
become evident. For 16 × 16 MNIST images, EEQDM consistently outper-
forms QDDM across all metrics, including lower final loss, higher SSIM, and
improved PSNR values. This superior performance is achieved with notably
faster execution times, especially as model depth increases, suggesting that
EEQDM’s entanglement feature not only enhances image reconstruction qual-
ity but also improves computational efficiency for higher-resolution grayscale
images.

– The most significant contrast is observed with 16×16 CIFAR-10 color images.
EEQDM demonstrates clear superiority in both performance metrics and
computational efficiency. It achieves better image reconstruction quality (evi-
denced by improved loss, SSIM, and PSNR values) while requiring signifi-
cantly less execution time compared to QDDM. The computational advantage
is particularly pronounced, with EEQDM processing these complex images
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Fig. 5. Performance comparison of EEQDM and QDDM for 8× 8 and 16× 16 images
across depths from 10 to 50. Results indicate EEQDM’s overall superior performance,
particularly at greater depths and complex data.

nearly twice as fast as QDDM at higher depths. This suggests that the pair-
wise entanglement feature effectively manages the increased computational
demands of more complex tasks, offering a better balance between recon-
struction quality and processing time.

5.2 Comparison with Classical Denoising Diffusion Model

Model Specifications : The classical Denoising Diffusion Probabilistic Model
(DDPM) is a generative model that incrementally denoises data to produce
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Fig. 6. Execution Time Comparison of EEQDM and QDDM for 8 × 8 and 16 × 16
Images Across Various Depths demonstrating that EEQDM consistently outperforms
QDDM in terms of execution speed across all depths and configurations, with the
performance gap widening as the network depth and data complexity increases.

images. It employs a U-Net architecture with an encoder-decoder design, featur-
ing convolutional layers with ReLU activations. The model includes three depth
variants with 2 or 3 layers and different initial channel counts. Designed for
16 × 16 pixel images, the DDPM variants contain between 892 and 6,781 train-
able parameters. This classical model serves as a baseline for comparison with
our quantum-inspired EEQDM approach, aligning with recent work in quantum-
classical comparisons for image generation [6].

Evaluation of Models : Table 1 provides a comparison between EEQDM and
the classical models. The results reveal intriguing performance trade-offs:

– EEQDM demonstrates superior loss reduction as the number of parameters
increases, ultimately achieving lower loss with fewer parameters than its clas-
sical counterparts. However, this improved performance comes at a significant
cost in terms of computation time. EEQDM’s execution time increases expo-
nentially with the parameter count, while classical models maintain relatively
constant and much lower execution times regardless of parameter increases.

– Despite the classical models’ speed advantage, they show limited improvement
in loss reduction even as their complexity grows. This creates a clear trade-off
between model accuracy and computational efficiency. EEQDM offers poten-
tially higher accuracy but requires substantially more processing time, par-
ticularly for larger parameter sets.
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Table 1. Comparison of EEQDM and Classical Models.

Model TypeDepth/Config Num ParamsFinal LossExecution Time (s)

EEQDM 10 150 0.3674 994.36
EEQDM 20 300 0.2739 1934.08
EEQDM 30 450 0.2697 2925.98
EEQDM 40 600 0.2560 3991.76
EEQDM 50 750 0.2328 5096.88
Classical depth2 892 1.0154 175.99
Classical depth3_channels2 1735 1.0058 230.34
Classical depth3_channels4 6781 1.0033 252.70

5.3 Comparison with Previous Models on CIFAFR10

To evaluate the performance of our proposed EEQDM model, we compared it
with several state-of-the-art models from previous studies, including U-Net, QU-
Net, and Q-Dense. EEQDM exhibits superior performance across all measured
metrics while utilizing fewer parameters.

– With 750 parameters compared to QDDM’s 1350, EEQDM achieves a 34%
reduction in final loss (0.2993 vs. 0.4536), a 157% improvement in Structural
Similarity Index (SSIM) (0.0433 vs. 0.0169), and a 0.48 dB increase in Peak
Signal-to-Noise Ratio (PSNR) (10.65 dB vs. 10.17 dB). Moreover, EEQDM’s
execution time is reduced by 35.9% (5932 seconds vs. 9248 seconds), indicat-
ing substantial computational efficiency gains.

– The classical model, despite utilizing 6781 parameters, achieves an average
loss of 0.9763, whereas EEQDM, with only 750 parameters, attains a final loss
of 0.2993—a 69.3% reduction. The disparity in image quality metrics is even
more pronounced: EEQDM’s PSNR of 10.65 dB significantly outperforms the
classical model’s -46.77 dB.

5.4 FID Score Comparison of EEQDM and QDDM on MNIST
Dataset

The mean FID score for the EEQDM model is 382.36 with a standard deviation
of 74.66, indicating moderate variability around the mean. In comparison, the
mean FID score for the QDDM model is 420.46 with a lower standard deviation
of 44.10, suggesting that the scores are more tightly clustered around the average
(see Table 2 for class-wise comparison).
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Table 2. FID Score Comparison for Each Digit.

Digit FID_EEQDM FID_QDDM

0 330.93 459.59
1 373.53 402.79
2 401.67 466.97
3 321.32 388.38
4 550.58 406.61
5 443.47 476.37
6 319.73 381.72
7 327.35 433.68
8 331.05 449.49
9 423.96 339.02

6 Conclusion

This paper introduces the Entanglement-Enhanced Quantum Diffusion Model
(EEQDM). It offers clear advantages in processing complex, high-resolution
data. EEQDM delivers superior FID, SSIM and PSNR metrics, reduced param-
eter counts, and faster execution times compared to existing quantum models.
Its innovative use of pairwise entanglement is highly effective for intricate data
structures, making it more resource-efficient in the quantum domain. An impor-
tant direction for future work is to develop encoding methods that preserve spa-
tial correlations, enabling correlated data points to be placed within the same
entanglement pairs. This approach could enhance model efficiency by leverag-
ing inherent data structures, optimizing quantum resources, and maintaining
coherence in entangled states. Moreover, further optimization of quantum cir-
cuits is needed to match the speed of classical models. As quantum hardware
advances, EEQDM’s potential to revolutionize quantum machine learning and
complex data processing will grow. Future research should explore EEQDM’s
applications in other quantum machine learning tasks.
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Abstract. This paper presents two novel models, designated as effi-
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the novel AF with the standardized ZNN design process. In compari-
son to traditional fixed parameter (FP) ZNN models, the EPTR-ZNN
model exhibits a faster convergence rate, enhanced computational effi-
ciency, and stronger robustness. To further improve these performance
characteristics, we replaced the FP in EPTR-ZNN model with an ADP
to develop the EPTR-DPZNN model. In contrast to traditional diver-
gent dynamic parameters (DPs), the ADP can be adjusted in a syn-
chronous manner as the model converges, thereby enhancing the compu-
tational efficiency. Theoretical analysis verifies the prescribed-time con-
vergence and robustness of the EPTR-ZNN and EPTR-DPZNN models.
Finally, simulation experiments demonstrate that the EPTR-ZNN model
exhibits accelerated convergence compared to other ZNN models, while
the EPTR-DPZNN model exhibits the best convergence performance,
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1 Introduction

The Stein equation represents a significant mathematical equation in the field
of dynamic control systems. It is employed extensively in various domains of
science and engineering, including optimization [1], control system design [2]
and robot motion planning [3]. There are two approaches to solving the Stein
equation: numerical algorithms (NAs) and recurrent neural networks (RNNs).
NAs, being inherently sequential, are inadequate for time-variant and high-
dimensional problems[4], making them unsuitable for real-time solutions of TV-
PSME. On the other hand, RNNs, with their online computation and parallel
processing capabilities, are hardware-implementable and have been widely used
to tackle complex computational issues [5]. Specifically, gradient-based RNNs
(GRNNs) have been extensively used for time-invariant challenges [5]. However,
GRNNs fail to solve TV-PSME effectively due to their inability to adapt to
the evolving coefficients at the required pace, resulting in persistent and non-
declining residuals over time.

To address these challenges, Zhang et al. proposed the zeroing neural net-
work (ZNN) as a novel general RNN for addressing time-variant problems [6]. In
light of his seminal work, numerous enhanced and efficacious ZNN models have
been developed over the past two decades. In paper [6], the ZNN model con-
verges exponentially. To accelerate this rate, Li et al. [7] proposed a finite-time
convergence ZNN (FNTC-ZNN) model. However, while the convergence time of
FNTC-ZNN is finite, there is no definitive upper limit and its convergence time
varies with the initial state of the model. Xiao et al. [8] developed a prescribed-
time convergence ZNN model. Its convergence time is solely dependent on the
parameters of the model and is independent of the initial state. Moreover, its
convergence time can be guaranteed to always converge before the prescribed
time constant.

In addition to convergence time, the design of convergence parameters (CPs)
and robustness are also important criteria for evaluating the performance of
ZNN models. Original ZNN (O-ZNN) models effectively address the TV-PSME
but overlook the prevalent external interference in real-world settings. Dai et al.
[9] introduced a PTR-ZNN model to address convergence in noise, yet it strug-
gles with specific noise types. The PTR-ZNN model’s fixed parameters (FP)
are impractical for dynamic hardware systems. Xiao et al. [10] proposed an
IENT-ZNN model with a DP, enhancing convergence and robustness while mit-
igating the FP issue. However, the inclusion of integral terms complicates the
model’s structure. Furthermore, the DPs in many conventional DP-ZNN mod-
els are divergent [10,11], which leads to a waste of computational resources.
Although the aforementioned ZNN models demonstrate enhanced convergence
rates and robustness, they concomitantly entail a proportional increase in com-
putational cost. To address this issue, Lou et al. [12] proposed a convergent
HTVPR-ZNN model. However, this model demonstrated substandard conver-
gence performance and robustness. To enhance computational efficiency while
maintaining convergence and robustness, this paper proposes two ZNN models
based on a novel AF and ADP: the efficient prescribed-time robust ZNN (EPTR-
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ZNN) model and the EPTR-ZNN model with an ADP (EPTR-DPZNN). The
novel AF accelerates the convergence rate, and the ADP enhances computational
efficiency and robustness. Consequently, the EPTR-ZNN model exhibits acceler-
ated prescribed-time convergence compared to traditional ZNN models, while the
EPTR-DPZNN model demonstrates a faster convergence rate, enhanced com-
putational efficiency, and stronger robustness to TV-BN and TV-UN. Table 1
shows the comparison between different ZNN models using different CPs.

Table 1. Comparison between ZNN models.

Model PTR-ZNN [9] PCCV-ZNN [11]HTVPR-ZNN [12]EPTR-ZNN EPTR-DPZNN

Value range Real-number Real-number Real-number Plural Plural
Type of CP Fixed Divergent Convergent Fixed Adaptive
Convergence Prescribed-timeFinite-time Prescribed-time Accelerated prescribed-timeBetter Prescribed-time
Computational efficiencySlow Moderate Slowest High Higher
TV-BN robustness Moderate Weak Weak Moderate Strong
TV-UN robustness Weak Weaker Weaker Moderate Strong

The structure of this paper is organized as follows: Section 2 introduces the
problem formulation to be solved. Section 3 details the construction of the two
efficient prescribed-time and robust ZNN models. Section 4 demonstrates the
global stability, prescribed-time convergence and robustness of the EPTR-ZNN
and EPTR-DPZNN models. Section 5 conducts simulation experiments to prove
the above theory. The paper is concluded in Section 6. The main contributions
of this paper are as follows.

1. A novel activation function and adaptive dynamic parameter is proposed.
On this basis, A fast convergence EPTR-ZNN model and a robust EPTR-
DPZNN model with high computational efficiency are designed to compute
the TV-PSME.

2. Through theoretical derivation, the global stability, prescribed-time conver-
gence and robustness of the EPTR-ZNN and EPTR-DPZNN models are
demonstrated. Furthermore, the upper bound for the prescribed convergence
time is also calculated.

3. Simulation experiments indicate that the EPTR-ZNN and EPTR-DPZNN
models have faster convergence than traditional models, while the EPTR-
DPZNN model also exhibits higher computational efficiency and stronger
robustness.

2 Problem statement

This section introduces the description of the time-variant plural Stein matrix
equation (TV-PSME) problem. The TV-PSME with time-variant coefficients is
generally defined as follows:

O(t)X(t)P (t) + X(t) = Q(t), (1)
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where O(t), P (t) and Q(t) ∈ C
k×k are known full rank plural matrices, and

X(t) ∈ C
k×k is an unknown plural matrix awaiting solution. If O(t) = PT(t),

TV-PSME (1) can be converted to the time-variant Lyapunov matrix equation,
and it can also be transformed into the time-variant Sylvester matrix equation,
if P (t) is a nonsingular matrix [9].

3 Efficient prescribed-time and robust ZNN models

3.1 EPTR-ZNN model

According to the standard ZNN design process [6], the EPTR-ZNN model is
constructed in three steps.

First, define an error function based on the equation (1) to be solved.

E(t) = O(t)X(t)P (t) + X(t) − Q(t) = Er(t) + iEm(t). (2)

Here, E(t) ∈ C
k×k and its real and imaginary parts are Er(t) and Em(t). Next,

in order for E(t) to converge to zero, the evolution formula is described as

Ė(t) = −λ
(
Φ

(
Er(t)

)
+ iΦ

(
Em(t)

))
, (3)

where ˙(·) denotes the time derivative and convergence parameter (CP) λ > 0 is
used to control the convergence rate of ZNN models. Φ(·) ∈ C

k×k → C
k×k is a

mapping of a matrix-valued AF, whose elements are denoted by φ(·) ∈ C → C.
The AF plays a crucial role in the convergence and robustness of ZNNs. The AF
must be a monotonically increasing odd function. The larger the slope of the AF,
the faster the model converges. Therefore, the function of AF is to increase its
slope as much as possible within the acceptable calculating pressure range. To
improve the convergence performance and robustness of the EPTR-ZNN model,
this paper designs a novel fast prescribed (FP) AF as follows:

φfp(y) =
(h1

p
|y|(1−p) exp(|y|p) + h2|y|q exp(|y|q−1)

)
sgn(y) + h3y

r + h4sgn(y),

(4)
where h1 > 0, h2 > 0, h3 ≥ 0, h4 ≥ 0, q > 1, 0 < p < 1, r is a positive odd
number, they are used to adjust the convergence rate and noise resistance of the
AF and the function sgn(y) is as shown.

sgn(y) =

⎧
⎪⎨
⎪⎩

1, y > 0,
0, y = 0,
−1, y < 0.

(5)

In the FP AF,
(
h1|y|(1−p) exp(|y|p)/p+ h2|y|q exp(|y|q−1)

)
sgn(y) is the conver-

gent term, where h1|y|(1−p) exp(|y|p)sgn(y)/p plays the main convergence role
when y < 1, h2|y|q exp(|y|q−1)sgn(y) plays the main convergence role when
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y > 1, and h3y
r+h4sgn(y) is the noise resistance term, where h3y

r and h4sgn(y)
are used to resist TV-UN and TV-BN respectively. If in a noiseless environment,
h3 = h4 = 0. The FP AF is expressed as:

φfp1(y) =
(h1

p
|y|(1−p) exp(|y|p) + h2|y|q exp(|y|q−1)

)
sgn(y) (6)

Last, by substituting error function (2) and the FP AF (4) into evolution
formula (3), the EPTR-ZNN model can be obtained:

O(t)Ẋ(t)P (t) + Ẋ(t) = − λ
(
ΦFP

(
Er(t)

)
+ iΦFP

(
Em(t)

))

− Ȯ(t)X(t)P (t) − O(t)X(t)Ṗ (t) + Q̇(t).
(7)

3.2 EPTR-DPZNN model

In order to evaluate the performance of the ZNN model, this paper employs
the ode45 solver in Matlab. In order to enhance the computational efficiency of
the EPTR-ZNN model and to improve its convergence rate and robustness, we
have introduced the EPTR-DPZNN model. Before delving into the details of
the EPTR-DPZNN model, it is essential to have a fundamental understanding
of the principles of ode45 solver.

Research indicates that the ode45 is an adaptive step-size solver that dynam-
ically adjusts the step length in response to the change rate in the model’s state
[13]. When the state exhibits a smooth variation, the step size is increased to
prevent unnecessary computations, thereby improving computational efficiency.
When the state experiences significant changes, the step size is reduced to
increase the computational workload, thus enhancing the accuracy of the cal-
culations. With regard to the model (7), the change rate of the state matrix
X(t) is directly proportional to Ė(t), thus the step size is inversely proportional
to ||Ė(t)||F .

In previous researches, the FP were unable to dynamically adjust the step
size in response to changes in the model’s state [9]. While the traditional diver-
gent DP reduced the step size of the ode45 solver, it simultaneously increased
the model’s computational cost [11]. To reduce unnecessary computations and
thereby enhance computational efficiency, we propose a novel adaptive dynamic
parameter (ADP) λadp(t):

λadp(t) = λ exp
(
arctan

(||E(t)||F /α
))

, (8)

where λ, α > 0, and ||E(t)||F represents the Frobenius norm for the error E(t).
The ADP λadp(t) appropriately allocates computational resources by adjusting
the value of ||E(t)||F , thereby enhancing computational efficiency. During the
initial phase of convergence, a larger ||E(t)||F accelerates the convergence of
the model. At the conclusion of the convergence phase, the decreasing ||E(t)||F
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reduces the computational cost of the model. This reasonable allocation of com-
puting resources not only accelerates the convergence but also minimizes unnec-
essary calculations. By substituting the λadp(t) (8) into Eq. (7), the EPTR-
DPZNN model can be obtained.

O(t)Ẋ(t)P (t) + Ẋ(t) = − λadp(t)
(
ΦFP

(
Er(t)

)
+ iΦFP

(
Em(t)

))

− Ȯ(t)X(t)P (t) − O(t)X(t)Ṗ (t) + Q̇(t).
(9)

4 Theoretical analysis

4.1 Global stability analysis

Theorem 1. Based on the Lyapunov stability theory, the error E(t) of the
EPTR-ZNN and EPTR-DPZNN models can be globally converged to zero.

Proof. Let e(t) denote the element in E(t). The real and imaginary parts are
er(t) and em(t). Let l(t) represent the element of e(t) with the maximum absolute
value, i.e., −|l(t)| ≤ e(t) ≤ |l(t)|. The formula (3) is as follows:

{
ėr(t) = −λφ

(
er(t)

)
,

ėm(t) = −λφ
(
em(t)

)
.

(10)

Define two Lyapunov candidate functions for ėr(t) and ėm(t).
{

lr(t) = 1
2e2r(t),

lm(t) = 1
2e2m(t),

and

{
l̇r(t) = −λer(t)φ

(
er(t)

)
,

l̇m(t) = −λem(t)φ
(
em(t)

)
.

(11)

Clearly, lr(t) and lm(t) are positive definite, while l̇r(t) and l̇m(t) are negatively
definite because λ > 0 and φ(·) is a monotonically increasing odd function.
According to Lyapunov stability theory [6], er(t) and em(t) converge to zero.
That is, in the sense of Lyapunov, the error of EPTR-ZNN model can converge
to zero globally. Similarly, for EPTR-DPZNN model, the same conclusion can
be obtained by replacing λ with λadp(t) (8) for Eqs. (10) and (11).

4.2 Prescribed-time convergence analysis

Theorem 2. In a noiseless environment, the state matrix X(t) of the EPTR-
ZNN and EPTR-DPZNN models, initiated from an arbitrary initial state X(0) ∈
C

k×k, can converge to the theoretical solution within the prescribed-time Tc.

Proof. Let μ = |l(t)| = l(t)sgn
(
l(t)

)
where l(t) is defined as in Theorem 1. When

μ = 0, er(t) and em(t) also converge to zero. Because there is no external noise,
h3 = h4 = 0. Combining FP AF (6), The derivative of μ is as follows:

dμ

dt
=

d|l(t)|
dt

=
d|l(t)|
dl(t)

dl(t)
dt

= l̇(t)sgn
(
l(t)

)
= −λφfp1

(
l(t)

)
sgn

(
l(t)

)

= −λφfp1(μ) ⇒ dμ

φfp1(μ)
= −λdt.

(12)



368 S. Li and Z. Qi

When t → 0, μ → |l(0)|; when t → Tc, μ → 0. Solve the above differential
equation from t = 0 to t = Tc:

∫ 0

|l(0)|

dμ

φfp1(μ)
= −

∫ Tc

0

λdt ⇒ Tc =
1
λ

∫ |l(0)|

0

dμ

φfp1(μ)
≤ 1

λ

∫ +∞

0

dμ

φfp1(μ)
.

(13)
Let

∫ +∞
0

1/φfp1(μ)dμ = t1 + t2. We first calculate t1.

t1 =
∫ 1

0

dμ

φfp1(μ)
=

∫ 1

0

dμ
h1
p μ1−p exp(μp) + h2μq exp(μq−1)

≤
∫ 1

0

pμp−1dμ

h1 exp(μp)
≤ 1

h1

∫ 1

0

dμp

exp(μp)
≤ 1

h1

(
1 − 1

exp(1)
)
.

(14)

Next, we calculate t2.

t2 =
∫ +∞

1

dμ
h1
p μ1−p exp(μp) + h2μq exp(μq−1)

≤
∫ +∞

1

dμ

h2μq exp(μq−1)
≤

∫ +∞

1

μ2q−2dμ

h2μq exp(μq−1)

≤ 1
h2(q − 1)

∫ +∞

1

dμq−1

exp(μq−1)
≤ 1

h2(q − 1) exp(1)
.

(15)

Substituting t1 and t2 into (13), we can know that

Tc ≤ 1
λ
(t1 + t2) ≤ 1

λ exp(1)

[
1
h1

(
exp(1) − 1

)
+

1
h2(q − 1)

]
. (16)

Similarly, for the EPTR-DPZNN model, substituting λadp(t) (8) into Eq.
(12) yields

dμ

dt
=

d|l(t)|
dt

= l̇(t)sgn
(
l(t)

)
= −λadp(t)φfp1

(
μ
)

= −λ exp
(
arctan

( ||e(t)||F
α

))
φfp1(μ) ≤ −λφfp1(μ)

⇒ dμ

φfp1(μ)
≤ −λdt ⇒ Tc ≤ 1

λ

∫ +∞

0

dμ

φfp1(μ)
.

(17)

The subsequent proofs will follow the progression from Eqs. (14) to (16). Proof
is completed.

4.3 Robustness analysis

Theorem 3. Suppose the EPTR-ZNN and EPTR-DPZNN models are perturbed
by an unknown TV-BN or TV-UN matrix N(t), and the elements n(t) of this
matrix satisfy the condition |n(t)| ≤ λ

(
h3|e(t)|r + h4

)
. Next, the state matrix

X(t) of the EPTR-ZNN and EPTR-DPZNN models initiated from an arbitrary
initial state X(0) ∈ C

k×k can converge to the theoretical solution within the
prescribed-time Tc.
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Proof. The evolution formula of the EPTR-ZNN model with noise perturbation
are presented below:

Ė(t) = −λ
(
ΦFP

(
Er(t)

)
+ iΦFP

(
Em(t)

))
+ ΔN(t). (18)

For equation (18), let μ = |l(t)|, where l(t) is defined as in Theorem 1. When
l(t) = 0, er(t) and em(t) also converge to zero. According to Theorem 2, we know

dμ

dt
=

[
−λφfp

(
l(t)

)
+ Δn(t)

]
sgn

(
l(t)

)

= −λφfp1(μ) − λ
(
h3μ

r + h4

)
+ Δn(t)sgn

(
l(t)

)

≤ −λφfp1(μ) −
[
λ(h3μ

r + h4) − |Δn(t)|
]
.

(19)

Because |Δn(t)| ≤ λ(h3|e(t)|r + h4), the inequality (19) can be depicted as

dμ

φfp1(μ)
≤ −λdt ⇒ Tc ≤ 1

λ

∫ +∞

0

dμ

φfp1(μ)
. (20)

The subsequent proofs are identical to those from Eqs. (14) to (16).
Similarly, for the EPTR-DPZNN model, substituting λadp(t) (8) into Eq.

(19) yields

dμ

dt
= −λ exp

(
arctan

( ||e(t)||F
α

))
φfp(μ) + Δn(t)sgn

(
l(t)

)

≤ −λφfp1(μ) −
[
λ(h3μ

r + h4) − |Δn(t)|
]
.

⇒ dμ

φfp1(μ)
≤ −λdt ⇒ Tc ≤ 1

λ

∫ +∞

0

dμ

φfp1(μ)
.

(21)

The subsequent proofs will follow the progression from Eqs. (14) to (16). Proof
is completed.

5 Simulation experiment

To demonstrate the superiority of the EPTR-ZNN and EPTR-DPZNN models
in terms of convergence, computational efficiency and robustness. To this end, we
compare them with three ZNN models in Table 3 and present the configuration
information of the experiments in Table 2.

Table 2. Configuration information of experiments

CPU GPU RAM System Software

i7 10870hRTX 307032 GBWindows 10Matlab R2021a
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Table 3. Comparison of activation functions and convergence parameters of ZNN
models.

Model Activation function Convergence parameter

PTR-ZNN [9] φebp(y) = h1exp(|y|p)|y|(1−p)sgn(y)/p + h3y + h4sgn(y) λ

EPTR-ZNN φfp(y) =
(
h1exp(|y|p)|y|(1−p)/p + h2exp(|y|(q−1))|y|q

)
sgn(y) + h3y

r + h4sgn(y)λ

PCCV-ZNN [11] φnsbp(y) =
(
h1|y|p + h2|y|1/p)sgn(y) + h3y

{
λ exp(t), 0 < λ ≤ 1,

λt + 2λt + λ, λ > 1.

HTVPR-ZNN [12]φsbp(y) =
(
h1|y|p + h2|y|q)sgn(y) + h3y

r + h4sgn(y) λ tanh
(|e(t)|/α

)

EPTR-DPZNN φfp(y) =
(
h1exp(|y|p)|y|(1−p)/p + h2exp(|y|(q−1))|y|q

)
sgn(y) + h3y

r + h4sgn(y)λ exp
(
arctan

(||e(t)||F /α
))

To verify the validity of the EPTR-ZNN and EPTR-DPZNN models, a solv-
able TV-PSME was formulated, with the coefficient matrices O(t), P (t), and
Q(t) shown as follows:

O(t) =

⎡
⎢⎣

2 + 2iC(2) C(3) 4 + iC(1) 2C(3) − 3iS(2)
S(2) + iS(1) 2S(5) + 4i 2C(4) − 6i −6 + 3iS(6)

3C(2) + 2iS(1) 2S(1) + 2iC(1) −2 − 3iS(2) 2C(1) − 2iC(1)
−5 − 6iC(5) −6 − 3S(3) 4 + 7iS(2) 3C(3) + 3iS(3)

⎤
⎥⎦ ,

P (t) =

⎡
⎢⎣

4 + iC(2) 2S(3) 2 − 2iS(2) −6C(3) + 3i
2S(3) + iC(2) 4C(3) − 2iC(4) −4S(4) + 4i −4 − 2iS(4)
4S(3) − 4i −5 − 2iC(2) 3 + 4iC(3) 4C(4) + 4iS(4)

−6C(4) + 3i 3 + 2iS(2) 2C(8) − 4i 3S(2) − 4iC(3)

⎤
⎥⎦ ,

Q(t) =

⎡
⎢⎣

−3 + iC(1) 3S(1) − 5iC(2) −5S(4) + 6iC(3) 8 − 4iS(4)
C(4) − 4i −4S(1) + 2iC(1) 7 + 2iS(2) −5C(2) + 5S(2)

−3 + 3S(1) 5 + 2iS(7) 3C(6) − 5i 3S(3) − 3i
3S(3) − 3iC(2) −2 + 3iS(2) 4 − 4iC(4) −4S(1) + 2i

⎤
⎥⎦ ,

where S(n) = sin(nt), C(n) = cos(nt) and n is an integer.
Firstly, in a noiseless environment, we assess the convergence performance

of ZNN models under consistent parameter settings for CPs and AFs. When
λ = r = 1, α = 0.01, p = 0.6, q = 1.4, h1 = h2 = 2 and h3 = h4 = 0, the
results are presented in Figs. 1 and 2. Fig. 1 indicates that while all models
reach the theoretical solution X∗(t) within 2 seconds, their convergence rates
vary significantly. Fig. 2(a) shows more detailed information. By Theorem 2,
the EPTR-ZNN and EPTR-DPZNN models’ theoretical prescribed convergence
time Tc is 0.78 seconds. However, they converge in 0.36 and 0.08 seconds respec-
tively, exceeding this expectation and significantly outperforming other models.
To validate the generality of the conclusions, we vary the parameters p and α in
the same initial state X(0) and let p = 0.4 and α = 0.001. The results are shown
in Fig. 2(c). The same conclusion can be obtained in Fig. 2(c), i.e., the actual
convergence time of the EPTR-ZNN and EPTR-DPZNN models is much lower
than their theoretical prescribed convergence time Tc, and their convergence rate
is better than the other models.

To compare the computational efficiency of ZNN models, we obtained Table
4. The TCP of ZNN models is proportional to CC. Table 4 reveals that the
EPTR-ZNN and EPTR-DPZNN models exhibit faster TCV , lower TCP and CC
compared to other ZNN models. The EPTR-DPZNN model, incorporating the
ADP λadp(t), further enhances the convergence performance and computational
efficiency compared to EPTR-ZNN model. In addition, by comparing the two
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Fig. 1. Part of state solution X(t) and part of theoretical solution X∗(t) of ZNN models

Fig. 2. The error norm and convergence parameter obtained by ZNN models.
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sets of data in Table 4, it can be seen that the TCP and CC for the PCCV-ZNN
and HTVPR-ZNN models increase as the TCV decreases. In contrast, the TCP

and CC of the EPTR-ZNN and EPTR-DPZNN models decrease simultaneously
with the decrease of TCV , which means that their convergence performance and
computational efficiency are both improved.

Table 4. Comparison of computational efficiency of ZNN models. The values of TCP

and CC are calculated in the convergence phase of the model.

Parameter
settings

Model Convergence
time (TCV )

Computational
time (TCP )

Computation
counts (CC)

Fig. 2(a):
λ = r = 1, α =
0.01,
p = 0.6, q = 1.4,
h1 = h2 = 2,
h3 = h4 = 0.

PTR-ZNN [9]
EPTR-ZNN
PCCV-ZNN [11]
HTVPR-ZNN [12]
EPTR-DPZNN

0.50 s
0.36 s
0.93 s
1.74 s
0.08 s

58.19 s
38.80 s
39.67 s
85.61 s
29.14 s

656
488
492
1076
362

Fig. 2(c):
λ = r = 1, α =
0.001,
p = 0.4, q = 1.4,
h1 = h2 = 2,
h3 = h4 = 0.

PTR-ZNN [9]
EPTR-ZNN
PCCV-ZNN [11]
HTVPR-ZNN [12]
EPTR-DPZNN

0.48 s
0.35 s
0.67 s
1.22 s
0.074 s

34.79 s
24.77 s
64.46 s
106.17 s
21.21 s

386
314
740
1244
248

Fig. 3. The activation functions of ZNN models.

Secondly, to highlight the advantages of ADP λadp(t) and AF φfp(·), we
compared the variation trends of CPs and AFs from different ZNN models in
Figs. 2(b) and 3. From Fig. 2(b), it is apparent that λadp(t) of the EPTR-ZNN
model diminishes as the model converges, eventually stabilizing at 0.08 seconds.
This is consistent with the convergence time of EPTR-DPZNN model as depicted
in Fig. 2(a). However, The CPs of non-HTVPR-ZNN models remain constant
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or increase over time, with PCCV-ZNN showing an increase. Despite HTVPR-
ZNN’s CP decreasing, it eventually reaches to 0, which is not conducive to the
stability of model after convergence. Moreover, Figs. 3 and 2(a) show a positive
correlation between model’s convergence rate and the slope of φ(·), indicating
the superior convergence performance of the φfp(·).

Fig. 4. Impact of parameters on the convergence rate of ZNN models.

Thirdly, using the control variables method, we investigate the effect of CPs
and AFs on the convergence rate of EPTR-ZNN and EPTR-DPZNN models. The
results are shown in Fig. 4. As λ, q increase and p, β decreases, the convergence
rate of the EPTR-ZNN and EPTR-DPZNN models improves. That is, as the
values of CP and AF increase, the ZNN model converges faster.

Finally, to explore the robustness of ZNN models, we let ΔN(t) be the
noise matrix representing the external noise with its elements as Δn(t) and
let h3 = 0.2, h4 = 0.3, and the other parameters are the same as in Fig.
2(a). We introduce two different types of noise, time-variant bounded noise
(TV-BN) and time-variant unbounded noise (TV-UN), exceeding the limit, i.e.,
|Δn(t)| > λ

(
h3|eij(t)|r + h4

)
. Fig. 5(a)-(b) shows the experimental results.

Except for the EPTR-DPZNN model, the errors of the other ZNN models do not
converge stably to 0. Next, to ensure the generality of conclusions, we let h3 = 2,
h4 = 3, and increase the amplitude of noise, where |Δn(t)| ≤ λ

(
h3|eij(t)|r+h4

)
.
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Fig. 5. Error norm of ZNN models in noisy environment.

The experimental results are shown in Fig. 5(c)-(d). After increasing the noise
amplitude, the errors of PCCV-ZNN and HTVPR-ZNN models still fail to con-
verge, while the PTR-ZNN model converges only in the case of TV-BN. The
errors of EPTR-ZNN and EPTR-DPZNN models could converge to 0, but the
EPTR-DPZNN model had smaller error fluctuations. The above analysis of con-
vergence, computational efficiency and robustness can prove that our design
philosophy of the ADP λadp(t) and AF φfp(·) is correct.

6 Conclusions

In this paper, the EPTR-ZNN and EPTR-DPZNN models are proposed to com-
pute the TV-PSME. The EPTR-ZNN model has a novel AF. Unlike the FP used
in the EPTR-ZNN model, the EPTR-DPZNN model designed on its basis adopts
a novel ADP. The novel AF improves the convergence rate and robustness of the
model. The ADP not only improves the convergence performance and robustness
of the model but also enhances its computational efficiency. Theoretical analysis
proves the prescribed time convergence and robustness of all models. Simula-
tion experiments demonstrate the superior convergence performance, efficiency,
and robustness of EPTR-ZNN and EPTR-DPZNN models. Future research will
be directed towards the further enhancement of the computational efficiency of
these two ZNN models and their subsequent application to practical areas.



Efficient Prescribed-Time and Robust Zeroing Neural Networks 375

References

1. Chong, E.K., Hui, S., Zak, S.H.: An analysis of a class of neural networks for
solving linear programming problems. IEEE Trans. Autom. Control 44(11), 1995–
2006 (1999)

2. Huang, Y., Chen, J., Huang, L., Zhu, Q.: Dynamic games for secure and resilient
control system design. Natl. Sci. Rev. 7(7), 1125–1141 (2020)

3. Jin, L., Yan, J., Du, X., Xiao, X., Fu, D.: Rnn for solving time-variant generalized
sylvester equation with applications to robots and acoustic source localization.
IEEE Trans. Industr. Inf. 16(10), 6359–6369 (2020)

4. J. Jin, J. Zhu, J. Gong, and W. Chen, “Novel activation functions-based znn models
for fixed-time solving dynamirc sylvester equation,” Neural Computing and Appli-
cations, vol. 34, no. 17, pp. 14 297–14 315, 2022

5. Li, W.: A recurrent neural network with explicitly definable convergence time for
solving time-variant linear matrix equations. IEEE Trans. Industr. Inf. 14(12),
5289–5298 (2018)

6. Zhang, Y., Ge, S.S.: Design and analysis of a general recurrent neural network
model for time-varying matrix inversion. IEEE Trans. Neural Networks 16(6),
1477–1490 (2005)

7. Li, S., Chen, S., Liu, B.: Accelerating a recurrent neural network to finite-time
convergence for solving time-varying sylvester equation by using a sign-bi-power
activation function. Neural Process. Lett. 37, 189–205 (2013)

8. Xiao, L., Li, L., Tao, J., Li, W.: A predefined-time and anti-noise varying-parameter
znn model for solving time-varying complex stein equations. Neurocomputing 526,
158–168 (2023)

9. Dai, J., Jia, L., Xiao, L.: Design and analysis of two prescribed-time and robust znn
models with application to time-variant stein matrix equation. IEEE transactions
on neural networks and learning systems 32(4), 1668–1677 (2020)

10. Xiao, L., He, Y., Dai, J., Liu, X., Liao, B., Tan, H.: A variable-parameter noise-
tolerant zeroing neural network for time-variant matrix inversion with guaranteed
robustness. IEEE Transactions on Neural Networks and Learning Systems 33(4),
1535–1545 (2020)

11. Xiao, L., Tao, J., Dai, J., Wang, Y., Jia, L., He, Y.: A parameter-changing and
complex-valued zeroing neural-network for finding solution of time-varying complex
linear matrix equations in finite time. IEEE Trans. Industr. Inf. 17(10), 6634–6643
(2021)

12. Luo, J., Yang, H., Yuan, L., Chen, H., Wang, X.: Hyperbolic tangent variant-
parameter robust znn schemes for solving time-varying control equations and track-
ing of mobile robot. Neurocomputing 510, 218–232 (2022)

13. Z. Qi, Y. Ning, L. Xiao, Z. Wang, and Y. He, “Efficient predefined-time adaptive
neural networks for computing time-varying tensor moore–penrose inverse,” IEEE
Transactions on Neural Networks and Learning Systems, 2024



HRA: Heuristic Reordering Approach for
Preserving Dependency in Hierarchical

Time Series Forecasting

Santosh Palaskar1(B), Surya Shravan Kumar Sajja2, Nandyala Hemachandra1,
and Narayan Rangaraj1

1 IIT, Bombay, India
{santoshpalaskar77,nh,narayan.rangaraj}@iitb.ac.in

2 IBM Research, Bengaluru, India
suryasku@in.ibm.com

Abstract. Hierarchical time series analysis requires probabilistic fore-
casting techniques to account for inherent uncertainties. A probabilis-
tic forecast proposes a range of potential outcomes. In domains like
retail and electricity, where time series data exhibit significant cross-
correlations and multiple hierarchical levels, existing research has not
emphasized the development of models that consider these dependencies.
This lack of attention is mainly due to the recently reported good perfor-
mance of the simpler independent models. In response to this challenge,
we introduce HRA (Heuristic Reordering Approach), a novel approach
designed to enhance predictive accuracy and preserve the dependencies.
Notably, HRA does post-processing using a heuristic recording technique
on forecasted values and is adaptable to samples of any size. Our detailed
experiments demonstrate the effectiveness of HRA by improving accu-
racy by up to 7% compared to existing state-of-the-art (SoTA) meth-
ods on simulated and well-established benchmark datasets. These results
underscore HRA’s ability to significantly improve forecasting accuracy,
preserve the correlation and address the unique complexities associated
with hierarchical time series data.

Keywords: Time Series · Probabilistic Hierarchical Forecast · Sample
Reordering · Coherence · Rank Correlation

1 Introduction

Previous research has predominantly focused on point forecasts, neglecting the
importance of probabilistic forecasting. Distinguishing between risks and oppor-
tunities is often hindered by the inherent uncertainty in various factors such as
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production rates, inventory levels, lead times, safety stocks, etc. Relying solely on
deterministic forecasts makes it challenging to formulate effective improvement
plans. Probabilistic forecasts allow us to understand the uncertainty associated
with forecasts, preventing us from making decisions based on false beliefs and
expectations. Time series data often follows a hierarchical aggregation structure.
In hierarchical time series, we have a hierarchy of time series, i.e., time series at dif-
ferent levels that depend on each other. While forecasting, we can aggregate (based
on the parent-child relationship) lower-level time series to get a forecast for higher
levels, and in aggregation, coherence should be maintained. For example, in retail
supply chains, periodic demand for various levels, like retail stores, can roll up to
different geographical hierarchies in a city, state and country. These aggregated
demand streams are examples of hierarchical time series. Hierarchical time series
is difficult to forecast because we need to model multiple loosely correlated time
series while maintaining coherence across different levels of hierarchy. Coherence
implies that lower-level forecasts add up to the aggregated forecast.

For hierarchical time series forecasting, we encounter uncertainties related to
data, model specifications and parameter estimates. Therefore, a shift towards
probabilistic forecasting becomes imperative when dealing with hierarchical
structures. Authors in [10] highlighted two prominent domains that require prob-
abilistic and hierarchical forecasting: 1) Retail demand forecasting and 2) Elec-
tricity demand forecasting. The retail industry relies heavily on demand fore-
casting to optimize their supply chains. Probabilistic forecasts play a critical
role in enhancing decision-making about inventory, safety stock, lead times and
supply chain operations. These decisions span various supply chain levels, from
individual stores to regional and national scales. Probabilistic forecasts enable
retailers to estimate the likelihood of stockouts and take proactive measures
to improve customer satisfaction while reducing costs. Effective management of
energy resources hinges on accurate electricity demand forecasting. Hierarchical
forecasting involves decision-making at multiple levels of an electrical grid. Prob-
abilistic forecasts are indispensable because many factors, such as weather con-
ditions, economic variables and unforeseen events, influence electricity demand.
Stakeholders, including utility companies, can optimize power generation, dis-
tribution, and grid management by leveraging probabilistic forecasts.

1.1 Related Work

Forecasting within a hierarchical structure poses significant challenges due to the
diverse interactions and varying levels of data aggregation across the hierarchy.
Lower-level time series data often exhibit noise, making autoregressive models
less effective. Aggregation results in smoother time series are suitable for autore-
gressive models as we move up the hierarchy. However, generating independent
forecasts for each series, called the base forecast, may not yield a coherent fore-
cast. This issue becomes particularly complex when dealing with data consisting
of many time series. Probabilistic forecasting plays a crucial role in addressing
uncertainty, particularly for unpredictable, slow-moving, long-tail Stock Keeping
Units (SKU) or those with limited order history. A probabilistic forecast quanti-
fies uncertainty and facilitates improved decision-making and risk management.
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Authors in [10] have proposed an innovative algorithm for generating predic-
tive distributions with correlated samples within the hierarchy. This algorithm
reorders samples based on ranks of past data residuals, considering varying mean
and standard deviation for each series while maintaining a constant conditional
distribution over standard residuals. This approach ensures the coherence and
reliability of probabilistic forecasts.

In the domain of probabilistic forecasting, various methodologies have been
proposed to address different challenges. While some models focus on flexibil-
ity and coherence through distributional coherency regularization, others aim
for coherent hierarchical forecasts without additional post-processing. However,
these approaches do not prioritize preserving cross-correlations within and across
hierarchical levels [6]. Several studies from [7,11] have demonstrated that data
with high correlation, when subjected to models that explicitly account for the
temporal correlation, tend to yield sub-optimal performance compared to mod-
els that perform independent forecast. Some models have attempted to capture
this correlation explicitly, but their performance falls short compared to models
assuming independence.

Given these observations, we propose a novel approach called Heuristic
Reordering Approach (HRA) for preserving correlation in hierarchical time series
forecasting. This model combines two key stages: i) Independent base forecast:
generates forecasts independently for each time series. ii) Reordering with HRA:
following the initial independent forecasts, the HRA model is applied to reorga-
nize the forecasts while preserving the inherent correlation within the data. It
minimizes the objective of correlation difference by reordering the p fraction of
Extreme Values.

1.2 Summary of Contributions

• We introduced a novel Heuristic Reordering Approach (HRA) to preserve
dependency among multiple time series while maintaining coherence across
the hierarchical levels.

• HRA demonstrates superior performance to state-of-the-art (SoTA) methods.
This is validated through extensive evaluations on simulated data as well as
established benchmark datasets, including Tourism [2], Wiki [6], and Labour
[1] (Section 4 ).

• For forecast horizons H from existing studies, we evaluated performance at
2H and 3H to assess forecasting accuracy over longer timeframes.

• We comprehensively analyse how HRA outperforms existing SoTA methods
in preserving correlation; detailed analysis is presented in Section 4.2.

• We also conducted an ablation study to show that a small fraction p of
Extreme Values is sufficient to preserve the correlation (Section 4.3).

2 Hierarchical Probabilistic Forecasting
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Table 1. Useful Notation

n total number of time series in the hierarchy

r total number of aggregated series
m total number of bottom level series
K number of samples extracted from the distribution
T total time periods
Ŷi,T+h predicted values for time series i for horizon h, i = 1, · · · , n, h = 1, · · · , H

ρ(Yi, Yj) Spearman’s rank correlation coefficient between series Yi and Yj

F̂i,t condition predictive distribution at time t for time series i,
given by forecasting model

i(nw) wth child node of aggregated series i; w ∈ 1, · · · , nc

p fraction of Extreme Values to be selected from a sample set.

A hierarchical time series is a collection of time series that follows a hierar-
chical aggregation structure. Let at ∈ R

r be a vector containing observations
at different levels of aggregation at time t, bt ∈ R

m be a vector containing
observations at the bottom level of hierarchy. Now let yt = (at,bt)′ be a vec-
tor of size r + m = n, that contains all the observations in the hierarchy. We
can write yt = Sbt, where S = [S′

a Im]′ ∈ {0, 1}n×m is the summing matrix,
Sa ∈ {0, 1}n×m and Im is an identity matrix of order m. We assume that we
have access to T historical observations of yt, and it is possible to forecast time
series at all levels independently. We can estimate E[yi,T+h|y1, y2, . . . , yT−1, yT ]
for i = 1, . . . , n and h = 1, . . . , H. These are called base forecasts, and they
do not always satisfy coherence constraints, i.e., forecasts do not add up in the
same way as the data. Over the past few decades, the forecasting literature
has experienced a notable shift towards hierarchical forecasting [5]. This shift
reflects a continuous effort to enhance classical hierarchical forecasting meth-
ods, such as bottom-up and top-down approaches [5]. These improvements have
been mainly focused on extending these methods to accommodate probabilistic
forecasting, enabling uncertainty quantification, more informed decision-making
and effective risk management. Quantifying uncertainty should not only rely on
the conditional mean and variance. We can introduce the concept of a condi-
tional predictive cumulative distribution function (CPCD) [10]. This distribution
function can be represented as follows:

Fi,T+h(y|y1, · · · ,yT ) = P (yi,T+h ≤ y|y1, · · · ,yT ) (1)

with i = 1, · · · , n. CPCD provides a more comprehensive understanding of uncer-
tainty. It captures the entire conditional distribution, allowing us to assess the
likelihood of various outcomes and make more informed decisions. Probabilistic
forecasts for individual series can be computed independently. However, these
forecasts may not necessarily be coherent. Hierarchical probabilistic forecasts
are considered coherent when the predictive distribution of each aggregate series
matches the distribution of the sum of the children series. In our setup, we used
the bottom-up method. Bottom-up produces the samples of each aggregated
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series using only the predictive distribution of the bottom series; hence, it is
coherent by construction [10].

Algorithm 1 HRA: Heuristic Reordering Approach for Bottom-Up Probabilistic
Forecasting
1. Input Y1, Y2 · · · , Yn, p ∈ (0, 1)
2. For all bottom level series i = r + 1, . . . , n, fit the individual probabilistic models

to calculate:
(a) Conditional distribution F̂i,T+h for each future period h = 1, · · · , H as shown

in Equations (1) and (3).
(b) Extract a sample of size K, say xi

1, · · · , xi
K from F̂i,T+h , where K samples

are the Monte Carlo samples describing the joint distribution over time and
components.

3. For all aggregated series i = 1, · · · , r:
(a.) Let Ci = {i(1), · · · , i(nc)} be the set of nc child nodes of aggregate node i.
(b.) For all child node tuples (�, x), � ∈ C, x ∈ �c, �c = Ci \ {�}:

i. Let ρ(�, x) represent sample Spearman’s rank correlation between time
series � and x (using past data values).

ii. Let ρ̂t+h(�, x) represent predicted sample Spearman’s rank correlation
between time series �, x (using forecasts at time t + h, h = 1, · · · , H).

iii. Let Dt+h(�, �
c) =

∑

x∈�c

|ρ(�, x) − ρ̂t+h(�, x)| represent the correlation dif-

ference between the child node � and remaining child nodes Ci \ {�},
h = 1, · · · , H.

iv. For all t + h, h = 1, · · · , H:
– Take p

2
fraction of max and p

2
fraction min values (Extreme Values)

of series � and let it be represented as Lp,T+h.
– For all values in Lp,T+h, follow the steps given in the Algorithm 2.

(c.) Recursively compute:

xi
k = x

i(1)
k + · · · + x

i(nc)
k

Where xi
k denote the kthsample of aggregated series i at time step T + h.

4. Output: Ŷ1,T+h, Ŷ2,T+h · · · , Ŷn,T+h.
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2.1 Bottom-up Probabilistic Forecasting with Heuristic Reordering

Algorithm 2 Heuristic Reordering
1. Let Lp,T+h be the set of p fraction of total forecasted sample values as Extreme

Values of � with p ∈ (0, 1).

2. For e = 1, . . . , Nepoch:
– For all xj,T+h ∈ Lp,T+h:

(a) Swap position of xj,T+h with remaining samples {x1,T+h, · · · , xK,T+h}\
{xj,T+h}.

(b) With every swap track the objective Dt+h(�, �
c):

• If, objective improves (minimizes), save it as the best correlation dif-
ference and store the position of xj,T+h.

• Else, no change in objective
(c) After recursive swapping over all samples, fix the position of xj,T+h at

the location where we get the least correlation difference.
(d) Follow the same steps for all the xj,T+h ∈ Lp,T+h except in step (c) we

cannot swap with the position fixed for earlier xj,T+h.
Select the epoch with the lowest correlation score, assign the best epoch positions
to the Extreme Values and save it.

In hierarchical time series forecasting, it is crucial to maintain coherence across
the levels of the hierarchy. Thus, we employ the classical bottom-up method
[5], which is coherent by construction. Algorithm 1 uses a bottom-up proba-
bilistic approach that reorders the predicted samples at each period to preserve
the correlation across the time series under the same parent node. Firstly, we
generate independent base forecasts for each of the m bottom series. Then, we
apply the HRA as an alternative to the residual rank reordering method pro-
posed for probabilistic forecasting by [10]. In residual rank reordering, we find
the standard residual (êit) and permutations (Pi(t)) on the predicted values for
the past data, defined as êit = (yi,t − μ̂i,t)/σ̂i,t and Pi(t) = rk(êit). μi,t and σi,t

are the predicted mean and standard deviation for the time series i at time t.
rk(êit) is the rank of the standard residual for time series i at time t. Predicted
samples for each time step equal in size to past data are reordered according to
the permutation defined on the past data. This reordering preserves the rank
correlation across the time series under the same aggregated node.

HRA does not require a sample size equal to the past forecast length because
data points are often not enough to define the distribution. Instead, we can gen-
erate sufficient samples for future periods and employ HRA to reorder them. We
define the Extreme Values of each time period in the forecast horizon; Extreme
Values are defined as the p fraction of the total forecasted sample set. They
consist of p

2 minimum and p
2 maximum values from the total sample set. Experi-

ments showed that Extreme Values greatly impact the aggregated forecast, so an
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appropriate reordering of Extreme Values should result in better predictive dis-
tribution for the aggregated series. In reordering, we swap each Extreme Value
with the remaining samples for each time step by continuously monitoring the
objective. We identify the optimal Extreme Value position by keeping it fixed at
the point where the minimum objective value is achieved. The objective func-
tion, as defined in Algorithm 1, 3(b)iii, is the sum of the difference between
the correlation between the selected child node and other remaining child node
past and predicted values. Each aggregated level time series forecast is com-
puted using the bottom-up method on reordered samples. HRA outperforms the
SoTA methods by a significant margin and effectively preserves the dependence
between the past and forecasted values of the time series; detailed results are
given in the experiments and results (Section 4).

2.2 Base Probabilistic Forecasting Methods

In this paper, we employ:

– DeepAR [9] is a method based on autoregressive recurrent networks. It uses
LSTM-based recurrent neural networks to generate probabilistic forecasts.

– DLinear [11] is a set of simple linear models called LTSF-Linear. These
linear models outperform complex Transformer-based models on real-world
datasets, highlighting the potential limitations of Transformers in capturing
temporal information in time series.

– NLinear [11] is a basic one-layer linear model used to assess Transformer-based
approaches for long-term time series forecasting (LTSF). Unlike Transformers,
which employ self-attention for semantic correlation extraction, NLinear relies
on simple linear transformations to capture temporal relations in time series
data.

– N-HiTS [3] is a neural network based model that applies hierarchical interpo-
lation and multi-rate data sampling to take the volatility of the predictions
and their computational complexity.

– Lag-Llama [8] is a transformer-based model for univariate probabilistic time
series forecasting, pretrained on diverse datasets for strong zero-shot gener-
alization. It achieves state-of-the-art performance when fine-tuned on small
fractions of previously unseen data, emerging as the best general-purpose
model on average.

The output of these models will be probabilistic; In local models like AutoRe-
gressive Integrated Moving Average (ARIMA) and Exponential Smoothing,
Monte Carlo sampling generates distributions of future values, capturing forecast
uncertainty. Similarly, neural networks use a likelihood function during training
to model the underlying data distribution. This allows the network to produce
probabilistic forecasts by sampling from the learned distribution.

2.3 Probabilistic Forecast Measure

Continuous Rank Probability Score (CRPS) [4] is a scoring rule to evaluate prob-
abilistic predictions or forecasts by comparing them with ground truth values
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and generating a single comparable value. CRPS compares a single ground truth
value to a Cumulative Distribution Function F :

CRPS(F, x) =
∫ ∞

−∞
(F (y) − 1{y ≥ x})dy (2)

In this paper, we use the empirical CDF to calculate the CRPS given as

F̂ (x) =
1
K

K∑
k=1

1{Xk ≤ x} (3)

where X1, · · · ,Xn are a sample of size n from a population with CDF F (x).
We can also use the weighted form of CRPS, which puts more emphasis on

probability levels of greater interest. Given h period-ahead predictive distribu-
tion F̂t+h and an observation yt+h, the quantile-weighted version of the CRPS is

Weighted CRPS
(
F̂t+h, yt+h

)
=

∫ 1

0

v(τ)QSτ

(
F̂−1

t+h(τ), yt+h

)
dτ

where v(τ) is a non-negative weight function on the unit interval, and QSτ is
the quantile score at probability level τ , defined as

QSτ

(
F̂−1

t+h(τ), yt+h

)
=

2
(
1

{
yt+h ≤ F̂−1

t+h(τ)
}

− τ
) (

F̂−1
t+h(τ) − yt+h

)

When closed-form expressions for evaluating an expression are not available,
a discretized approximate version can be computed to any degree of accuracy.
Skill-CRPS is defined as 1 − CRPSmodel

CRPSbase
. Here, CRPSbase represents the CRPS

calculated for the base forecast, while CRPSmodel represents CRPS for alterna-
tive or improved forecasting models (e.g., RBU, HRA, etc.). These models are
compared to the baseline (base forecast). It is important to note that a lower
CRPS value signifies a more accurate forecast. Therefore, in accordance with
the Skill-CRPS definition, a higher Skill-CRPS is preferred. Both CRPSmodel

and CRPSbase are computed as the average CRPS values across all observations
within the test dataset.

Fig. 1. Three-level time series hierarchy with total number of series n = 7 and with
mean μ and correlation matrix Σ.
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3 Datasets

We compare the performance of probabilistic forecasting models on both simu-
lated and benchmark datasets: Tourism, Wiki, and Labour. A summary of the
datasets is given in Table 2. The simulated data is generated using the ARIMA
process. These datasets form a hierarchy of seven series (n = 7) with three
aggregated series (r = 3) and four at the bottom level (m = 4). At the lowest
level, each series is generated using an ARIMA process with a linear trend, with
parameters p and q selected randomly from 0, 1, 2. The errors for the bottom-level
series yAA, yAB , yBA, yBB are drawn from a multivariate Gaussian distribution,
considering strong correlations between series with the same parent and moder-
ate to small correlations between those with different parents (see Fig. 1b). Each
time series is simulated for T = 300, with 10, 20, and 30 data points used as test
points.

Table 2. Summary of the hierarchy for the datasets; H: Horizon, Freq: Frequency

Datasets Total Bottom Freq H Levels

Simulated 7 4 Daily 10, 20, 30 3
Tourism 89 56 Quarterly 2 ,4, 6 4
Wiki 199 150 Daily 7, 14, 21 5
Labour 57 32 Month 8, 16, 21 4

Tourism, The Australian domestic tourism dataset [2] pertains to the indi-
viduals who travelled to Australia for diverse reasons from January 1998 until
October 2006, focusing on quarterly data for visitors with purposes like Holiday,
Visiting Friends and Relatives, Business, and Other. The Wiki dataset [6] com-
piles daily views of 145,000 Wikipedia articles grouped into 150 categories. The
Labour dataset [1] provides monthly employment statistics in Australia from
February 1978 to December 2020, categorized by employment type, gender, and
region (across 8 distinct regions).

4 Experiments and Results

We assess the enhancement of our HRA over SoTA techniques, such as DLin-
ear, NLinear, DeepAR, Lag-Llama and NHiTS. Initially, we generate forecasts
using these models (base forecast). Subsequently, we refine the forecasts using
reordering techniques outlined below

1. Base Forecast (BASE): this is the initial probabilistic forecast provided by
the model without any reordering.

2. Bottom-Up Forecast (BU): forecast is computed by aggregating the predic-
tions from the lower-level child nodes by considering the aggregation structure
(hierarchy) [5].
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3. Revised Bottom-Up Forecast (RBU): forecast from the lower-level child nodes
is summed after being reordered based on the ranks of the residuals [10].

4. Heuristic Reordering Approach (HRA): the aggregated forecasts are calcu-
lated using a bottom-up method to re-ordered samples from the lower-level
child nodes, detailed in Algorithm 1.

The goal is to improve the accuracy and preserve the correlation among the
models (DLinear, NLinear, and Lag-Llama) that perform multivariate forecast-
ing independently. Additionally, we also verify whether HRA can maintain the
correlation for models (DeepAR, NHiTS) that already consider dependence. The
code for the detailed experiments for all the datasets and models can be accessed
at: https://github.com/santoshpalaskar77/HRA

4.1 Accuracy Improvements

Simulated data is generated using the ARIMA process, with the parameters p
and q chosen randomly, introducing variability into the data generation process.
We conducted 5 independent runs to mitigate this randomness and averaged the
results for simulated and benchmark datasets. For each dataset, we selected a
forecast horizon H from existing studies and additionally evaluated the perfor-
mance at 2H and 3H to assess forecasting accuracy over longer timeframes. Due
to page size constraints, we present the results in Table 3 up to a test length of
2H. A detailed comparison is available in Table1 and Table2 of the supplemen-
tary material. We forecasted 50 samples for each time point within the forecast
horizon. Therefore, the past correlation is defined based on the most recent 50
past values. For the tourism dataset, we use a batch size of 16 due to its smaller
size, while for the other three datasets, we use a batch size of 32. We set p = 0.3
across all datasets and models. All the models were experimented on a GeForce
RTX-4090 GPU.

We evaluate the advantages of HRA over state-of-the-art (SoTA) methods
using CRPS and Weighted CRPS. Table 3 presents a detailed comparison.
The base forecast employs SoTA forecasting models, including DLinear, NLin-
ear, DeepAR, Lag-Llama and NHiTS. Subsequently, bottom-up and reordering
models are applied to the base forecast to enhance the probabilistic forecast
further. In Table 3, both RBU and HRA consistently outperform the baseline
(base forecast without reordering) across almost all scenarios. We also compared
the improvements of HRA over the second best performing model from Base,
BU, and HRA for each dataset. We observed up to 7% improvement in CRPS
and weighted CRPS. HRA performs superior to RBU across all base forecasting
methods. However, in the case of NHiTS and Lag-Llama for the Wiki dataset,
HRA exhibits a slight underperformance compared to the Base forecast yet still
outperforms BU and RBU forecasts. This underperformance can be attributed
to the characteristics of the Wiki dataset. For Wiki data, most of the aggregated
series has only one child node, limiting the improved performance of reordering-
based algorithms. As HRA relies on child node reordering, it exhibited a marginal

https://github.com/santoshpalaskar77/HRA
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Table 3. Comparing HRA improvements over SoTA methods. Comparison is made
across base forecasts generated by the SoTA model, with bottom-up and reordering
techniques applied over the base forecasts. The best and second-best results are high-
lighted in bold and underlined, respectively. Performance is evaluated using Weighted
CRPS, where lower loss values indicate better probabilistic forecasts. The interval for
% improvement of HRA over best of Base, BU, RBU is given for all datasets. HRA
gives improvement up to 7%.

Data Simulated Labour Wiki Tourism

Model Test len 10 20 8 16 7 14 2 4

DLinear Base 0.0365 0.0526 0.0462 0.0232 0.4878 0.6724 0.0810 0.0983
BU 0.0367 0.0531 0.0417 0.0225 0.4452 0.6484 0.0772 0.0954
RBU 0.0361 0.0522 0.0418 0.0229 0.4443 0.6505 0.0763 0.0953
HRA 0.03590.0513 0.03930.0223 0.44410.6462 0.07480.0952

NHiTS Base 0.0516 0.0804 0.0357 0.0231 0.30400.3016 0.0725 0.0698
BU 0.0517 0.0806 0.0369 0.0225 0.3396 0.3070 0.0687 0.0721
RBU 0.0510 0.0801 0.0366 0.0224 0.3358 0.3052 0.0671 0.0705
HRA 0.05030.0790 0.03530.0219 0.3352 0.3040 0.06660.0698

NLinear Base 0.0504 0.0522 0.0518 0.0369 0.4492 0.4862 0.0820 0.0864
BU 0.0489 0.0504 0.0466 0.0379 0.4079 0.4462 0.0800 0.0854
RBU 0.0482 0.0495 0.0467 0.0381 0.4096 0.4474 0.0797 0.0850
HRA 0.04670.0485 0.04440.0368 0.40570.4446 0.07920.0836

DeepAR Base 0.0422 0.0982 0.0188 0.0502 0.4519 0.3304 0.10670.1119
BU 0.0409 0.1037 0.0151 0.0515 0.4499 0.3174 0.1121 0.1102
RBU 0.0415 0.1022 0.0152 0.0503 0.4676 0.3281 0.1079 0.1101
HRA 0.04020.0980 0.01480.0483 0.44910.3254 0.10670.1095

Lag-llama Base 0.0561 0.0769 0.0239 0.0231 0.34550.4225 0.0764 0.1279
BU 0.0564 0.0760 0.0242 0.0242 0.3655 0.4438 0.0759 0.1266
RBU 0.0562 0.0753 0.0242 0.0234 0.3661 0.4468 0.0733 0.1255
HRA 0.05540.0752 0.02260.0224 0.3632 0.4405 0.07160.1211

Imp of HRA 1-5% 1-7% 0-4 % 1-4%

decline in performance compared to the base forecast. Lag-Llama did not fine-
tune effectively for the Wiki dataset, as it exhibited worse CRPS compared to
the zero-shot prediction. HRA also demonstrates strong performance for longer
forecast horizons, as evidenced by Table 3.

We also assess the performance of the probabilistic forecasting methods using
CRPS. For illustrative purposes, we utilize DLinear as the base forecasting model
and evaluate the performance of DLinear (Base), BU, RBU, and HRA across
all four datasets. Weighted CRPS normalizes the error by dividing the errors
by the actual data value, whereas CRPS is defined using actual errors. From
Fig. 2, it is evident that HRA performs significantly better than the other SoTA
models and reordering techniques. Detailed comparison using CRPS is included
in Table3 and Table4 in the supplementary material.
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4.2 Correlation Preservation

HRA preserves Spearman’s rank correlation between time series across all levels
in the Bottom-Up Probabilistic Forecasting approach. To illustrate this claim, we
consider our example in Fig. 1a of Simulated data and calculate the Spearman’s
rank correlation matrix between all bottom-level series: yAA, yAB , yBA, yBB from
their historical values. For our benchmark dataset, we utilize the labour dataset,
which comprises 57 time series, with 32 at the bottom level.

To demonstrate correlation preservation, we select the last 4 time series of the
labour data, which depicts the employment status of Australia. We used DLinear
model for base forecasting. Preserving correlation has applications in forecast-
ing multivariate time series and multiple time series with high spatio-temporal
covariance. The correlation matrix between all bottom level probabilistic fore-
casts is defined by sampling point time series from each probabilistic forecast
and then averaging over all samples. In Fig. 3, we show heatmaps for Spearman’s
rank correlation between bottom level series for historical values (Past Correla-
tion), base forecast (Base), Revised Bottom-Up Forecast (RBU) and Heuristic
Reordering Approach (HRA) for Simulated data and Fig. 4a and Fig. 4b shows
comparison for Labour data. For Labour data, FFWA denotes Employed full-time
Females Western Australia, and a similar pattern applies to the other series. It
is evident that HRA outperforms the DLinear (Base), BU and RBU approaches
even with p = 0.1. As the value of p increases, there should be better correlation
preservation, as evidenced by Fig. 4a and Fig. 4b. There is a clear improvement
in correlation for p = 0.3 compared to p = 0.1, and for p ≥ 0.3, the correlation
remains constant, indicating that almost all correlation is preserved for p ≥ 0.3.
We quantified the amount of correlation preserved by taking the mean of the
absolute differences between past correlation matrices and the three correlation
matrices (Base, RBU, HRA) defined on forecasted values. Details are presented
in Table 4. Correlation plots for Wiki and Tourism datasets are included in
supplementary.

Fig. 2. Comparison of CRPS using DLinear as the base forecasting model. Lower loss
values indicate better probabilistic forecasts. HRA consistently outperforms both the
SoTA model and reordering models.
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Fig. 3. Spearman’s rank correlation comparison for bottom level series of Simulated
data with H = 10 and p = 0.3. HRA recovers past data correlation better than Base
and RBU approaches.

Fig. 4. Spearman’s rank correlation comparison for bottom-level series of Labour data
with H = 8 at different p values. With the increase in p values, correlation increases,
and for p ≥ 0.3, the correlation matrix remains identical.

4.3 Effect of Extreme Values

We assessed the impact of the hyperparameter p on the performance of the HRA
method, which involves reordering p fraction of Extreme Values from a sample
set of size K. We saved the Simulated data comprising 310 data points, with
10 reserved for testing. Similarly, for the benchmark dataset, we utilized the
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Table 4. Mean absolute correlation difference between past correlations with respect
to correlation matrices defined using three methods (Base, RBU, HRA) with p = 0.3.
A smaller difference indicates better preservation.

Data Simulated Labour Wiki Tourism

Mean Absolute Correlation Difference Base 0.705 0.6625 0.2302 0.1789
RBU 0.6037 0.5125 0.3608 0.2423
HRA 0.2375 0.2925 0.2079 0.1689

Fig. 5. Effect of Extreme Values on Skill-CRPS for Simulated data. We took fraction
p = [0.1, 0.2, 0.3, 0.4, 0.5] and measured the corresponding effect on Skill-CRPS for
the HRA. HRA outperforms all three methods even with just p = 0.1. For p ≥ 0.3, the
Skill CRPS remains constant.

Labour data, setting aside 8 data points for testing. Base probabilistic forecasts
are generated using DLinear. We took p= [0.1, 0.2, 0.3, 0.4, 0.5] to assess its
impact on enhancing the Skill-CRPS. Suppose p= 0.1, then we take 10% as the
Extreme Values from the total number of samples and reorder them using HRA.
Fig. 5a shows the Skill-CRPS comparison with p = 0.1 for DLinear (Base), BU,
RBU and HRA. Fig. 5b shows the change in Skill-CRPS with a change in values
of p. The orange line shows the Skill-CRPS for RBU, and others are of HRA
for different values of p. Similar comparisons are depicted for the Labour data
in Figures 6a and 6b. As the value of p increases, we observe an improvement
in performance. For p = 0.3, we get the best Skill-CRPS; for p = 0.4, 0.5 Skill-
CRPS converges to the same value (hence overlapped in the plot). It is evident
that HRA outperforms all other methods, and a value of p = 0.1 is sufficient to
surpass the performance of RBU.

5 Conclusion

In summary, we propose an Extreme Value reordering approach to generate
coherent hierarchical probabilistic forecasts. The core idea behind our approach
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Fig. 6. Effect of Extreme Values on Skill-CRPS for Labour data. We took fraction p
= [0.1, 0.2, 0.3, 0.4, 0.5] and measured the corresponding effect on Skill-CRPS for the
HRA. HRA outperforms all three methods even with just p = 0.1. For p ≥ 0.3, the
Skill CRPS remains constant.

is that by reordering the Extreme Values within predictive samples to min-
imize the objective defined on correlations, we can significantly enhance the
quality of the probabilistic distribution for time series data. Even if the accu-
racy improvements are not substantial, the preservation of correlation structures
plays a crucial role in ensuring that the forecasts remain reliable and aligned with
the inherent dependencies in the data. Notably, our HRA demonstrated signif-
icant correlation preservation compared to existing methods. What makes our
method unique is that it can improve forecasts by preserving the correlation
between the time series, which is not considered in the forecasting phase. Com-
pared to SoTA models, our HRA model effectively captures correlations and
improves Skill-CRPS across simulated and well-established benchmark datasets.
HRA also performed well for the longer forecast horizon, exhibiting a perfor-
mance improvement of up to 7% compared to the existing SoTA. However, it is
important to note a potential drawback of our method: there may be situations
where the improved Skill-CRPS may not converge for small values of fraction
of Extreme Values p, and the computational time may increase. However, in all
our experiments, we have observed that convergence typically occurs at a small
p value, making our approach a practical and effective solution for many fore-
casting scenarios.
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Abstract. Machine learning is a cornerstone of modern decision-making
systems, yet its inner workings often remain a mystery to human stake-
holders. Bridging this gap requires clear, human-understandable expla-
nations of how these models transform inputs into outputs. One effective
approach for achieving this type of transparency is through counterfac-
tual explanations. Counterfactuals inform users about what changes need
to be made and why, offering recommendations on how to alter an unde-
sired outcome into a desired one, which ultimately enhances the com-
prehensibility and reliability of machine learning models. In this work,
we propose TS-NUC, a novel model-agnostic counterfactual generation
approach dedicated to the domain of time series classification. Our app-
roach consists of a pre-trained LSTM-Autoencoder which generates the
latent representation of a time series instance. By optimizing the latent
representation, guided by the user-provided target class latent cluster,
TS-NUC is capable of generating high-quality counterfactual explana-
tion. Through extensive experiments on a total of 5 datasets from the
UCR archive and performance comparison with latest state-of-the-art
approaches on three popularly used evaluation metrics, namely Valid-
ity, Proximity and Compactness, we show that our approach produces
comparable and better results.

Keywords: Counterfactual explanations · Time series classification ·
Deep learning · LSTM Autoencoder · Explainable AI

1 Introduction

Counterfactual explanation of an instance deals with generating or proposing
modifications in feature values in order to classify it into the desired class from an
undesired class so as to make the classifier explainable and bring transparency in
its decision making process. Generating counterfactual explanations has a major
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role in understanding the contributions of features on a specific prediction done
by the model. Also, in various real life applications, counterfactuals help end
users get insights about a certain outcome by giving justification(s) of their
inputs with the help of another possible input which might have led to the
desired outcome expected by the user.

Most of the state-of-the-art methods have been proposed in generating coun-
terfactual explanations of image data having spatial dependency among the
features through black-box or white-box approach [1,22,26]. However, gener-
ating counterfactual explanations of time-series data is more complex due to the
presence of temporal dependency among the sequential instances. For example,
Electrocardiogram (ECG) signal classification, sensor signal classification, and
stream monitoring data are sequential in nature, and therefore, it is common to
model such data as sequence of events in order to efficiently address the predic-
tion and/or classification task. In recent times, autonomous vehicles and electric
vehicles have used temporal models for predicting failures and the probable time
to undergo maintenance. Providing an efficient counterfactual-based explainable
approach will help the users understand which part(s) of their vehicle and/or
what other conditions are indicating potential failure(s) and/or required main-
tenance of the vehicle[23]. In AI-driven medical diagnosis, counterfactuals can
provide example-specific explanations by which stakeholders can infer the neces-
sary modifications to change the prediction from an undesired state to a desired
state[32]. Most of such sequential machine learning models are black-boxes, pre-
venting understandability of their internal functionality and usage in the appli-
cation areas where transparency and explainability are a primary concern for
trust and reliability[32].

To address such challenges, we propose a novel model-agnostic methodol-
ogy on generating counterfactual explanations for univariate time series clas-
sification tasks. Given a time series instance and a trained black-box classifier
model, our approach aims to generate its counterfactual explanation which, by
definition, the classifier will classify into a specific user-given target class by
incorporating minimum changes in the feature values. For this, an LSTM-based
autoencoder[13] has been used which will capture the representations of the
data in hand. By optimizing the latent space representation, the CF generator
can be forced to produce a counterfactual of a specific example belonging to a
specific class. Extensive experiments using multiple publicly available and bench-
mark time-series classification datasets from UCR Archive[6] and comparisons
with different state-of-the-art works show that out proposed approach can pro-
duce around 3% - 5% improved counterfactual explanations in terms of Validity,
Proximity and Compactness. Through this work, our main contributions are as
follows :

1. We have proposed a LSTM-based Autoencoder for generating the counter-
factual sample of a given univariate time-series instance. By optimizing the
latent representation of a time-series instance, we can obtain the counterfac-
tual of that instance.
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2. We have optimized a custom objective function in order to change the latent
representation, which, when passed through LSTM-decoder, produces the
necessary counterfactual sample. We employ a weighted loss function which
essentially maintains a trade-off between the individual components of it.

3. The optimization has been constrained by Nearest Unlike Cluster Centroid
(NUC), which distracts the optimizer and forces the latent representation to
move towards a given NUC. Using this approach, given a time series instance
from a class, counterfactual generation can be controlled by providing a spe-
cific target class label, which the user wants to generate a counterfactual
of.

The further article has been organized as mentioned - §2 discusses some of
the recent and closely related works on generating counterfactuals for time series
classification, §3 discusses the problem definition and the relevant notations we
have used throughout the article, which is followed by detailed explanation of
our proposed methodology, datasets and training setup in §4. Finally, the results
obtained have been analyzed in §5 and the future research scopes in §6.

2 Related Works

In recent years, several machine learning techniques have been used to propose
a diverse set of time series classification algorithms[2]. We have categorized such
closely related works into three parts: Conventional approaches in §2.1, Shapelet
based approaches in §2.2 and Feature importance based approaches in §2.3.
Moreover, some other approaches not falling under these above categories have
been kept in the last subsection §2.4.

2.1 Conventional Approaches

Symbolic aggregate approximation (SAX)[12] algorithm bins continu-
ous time series into intervals, transforming independently each time series
(a sequence of floats) into a sequence of symbols, usually letters or strings.
Although, SAX has been recently employed in the development of interpretable
time series classifiers, such as XEM[9] and PETSC[10], due to its inherent char-
acteristics, it has some limitations. The discretization of time series signal can
lead to a significant loss of information, especially if the original time series
contains subtle but important variations that are not captured by the symbolic
representation. Moreover, SAX relies on the assumption that the normalized
time series data follows a Gaussian distribution to determine breakpoints for
symbolic conversion. If the data does not follow a Gaussian distribution, the
symbolic representation might not be accurate.

Shapelet-based approaches utilize time series subsequences, known as
shapelets, as discriminative features for training classifiers, such as random
forests and SVMs[2,17]. In addition, HIVE-COTE[19] was introduced as an
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ensemble technique that combines various classifiers such as elastic ensembles
and shapelet transform, with a hierarchical voting structure, surpassing all prior
approaches in performance. Karlsson et al.[18] put out a method that intro-
duces disturbances to time series data either in a localized or global manner,
led by either the random shapelet forest classifier or the k-nearest neighbor clas-
sifier, respectively. This approach offers model-specific explanations, therefore,
it is not applicable to any other classifier. Shapelet based approaches, though
promising for their interpretability and effectiveness in time series classification,
face several challenges and limitations. Shapelet discovery and matching can be
computationally intensive, especially with large datasets and high-dimensional
time series. The search for optimal shapelets requires substantial computational
resources, which can be a bottleneck in real-time applications. Shapelet-based
methods may not always be robust to noise and variability in the data. Small
perturbations or variations in the time series can lead to significant changes in
the identified shapelets, affecting the stability and reliability of the counterfac-
tual explanations.

2.2 Latent Representation based Approaches

In the TSC domain, researchers have recently explored the use of latent repre-
sentations to generate explainable findings. The counterfactual generation tech-
niques proposed by Pawelczyk et al.[24], Joshi et al.[15], Balasubramanian et
al.[3], and Van Looveren & Klaise [29] involve learning latent representations of
each class through the use of an Autoencoder (AE) or a Variational Autoencoder
(VAE). However, their primary emphasis is on tabular or picture data, and none
of them have been utilized for TSC. The LASTS[11] method was developed using
autoencoders to create factual and counterfactual rules. These rules are gener-
ated by training a local latent decision tree classifier on the original time series
data. The rules specify that the original time series must include or exclude par-
ticular shapelets in order to achieve the desired or original class. In their 2021
study, Wang et al.[31] introduced LatentCF++ as a method for acquiring latent
space representations for time series counterfactuals.

2.3 Feature Importance based Approaches

Alternative approaches to explainable machine learning have been suggested to
elucidate model predictions through the provision of feature importance scores.
For instance, one method involves generating local model-agnostic explanations
(LIME) by randomly altering input samples to fit surrogate models[25]. Another
approach involves computing Shapely values to estimate the significance of fea-
tures for a given classifier[20]. Sivill et al.[27] introduced LIMESegment as a
method to adapt these techniques for the time series domain. They utilized
a nearest neighbour-based approach combined with harmonic analysis to create
reliable perturbations for the surrogate model. This allowed them to extract tem-
poral segments of time series along with their corresponding local importance
scores. In contrast, Bento et al.[4] introduced TimeSHAP, a method that offers
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relevance scores at the feature-level, timestep-level, and cell-level for recurrent
neural network models. As far as we know, none of these methods for deter-
mining the importance of features has been taken into account or included in
the production of counterfactuals for time series data. Furthermore, LIME and
SHAP based methods treat each time point independently, potentially ignoring
temporal dependencies, which may lead to explanations that fail to capture the
sequential nature of the data. Also, LIME’s local approximations can become
less reliable in such high-dimensional spaces, making the explanations harder to
interpret. In case of SHAP, the computational cost increases significantly with
the number of features, making it less practical for long time series or very
high-dimensional datasets.

2.4 Other Approaches

Researchers have introduced various advanced TSC algorithms that utilize deep
learning techniques. These include LSTM-FCN[16], InceptionTime[14], and con-
volutional feature transforms like ROCKET[8]. These algorithms have shown
similar benchmark metrics while also improving the scalability of the models.
However, because of their opaque nature, they lack the ability to be under-
stood and explained[5]. Delaney et al.[7] introduced the Native Guide approach
for classifying time series using CNNs. This method incorporates CAM feature
weight vectors to systematically modify a portion of the time series in order
to produce counterfactual explanations. Similar to [18], this approach also offer
model-specific explanations, thus, not applicable to any other classifier.

3 Problem Definition and Notation

Let X be a time-series instance with t timestep records i.e. X = {x1, ..., xt}
where each xi ∈ R

d and d ∈ Z
+ and the corresponding label be y, where y ∈ Y

and Y is the set of all possible class labels. From the definition, the counterfactual
of X will be a modified version of it, say Xcf , such that the blackbox classifier
FCLF (·) classifies it to a specific target class ycf . Provided the total number of
classes is K and the raw output of the classifier as Z = [z1, z2, ..., zK ], then the
final decision of FCLF (·) can be given as,

ŷ = argmax
p

pi where pi =
ezi

∑K
j=1 ezj

∀zi ∈ Z

Now, we additionally define two models, the first one is a simple unidirectional
LSTM-based Autoencoder (denoted as LSTM-AE in the rest of the article) which
can capture the temporal nature of the data and reconstruct the input time series
instance by maintaining the same. The second one is a Multilayer perceptron
or ANN based Autoencoder (denoted as MLP-AE in the rest of the article)
which is capable of reconstructing the hidden representation of a time series
instance. By perturbing and optimizing the MLP-AE, we aim to generate a
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modified representation of the hidden vector, generated by the encoder of LSTM-
AE, which the decoder of LSTM-AE takes as input and reconstruct a modified
instance, so that the black box classifier (denoted as LSTM-CLF in the rest
of the article) can classify it to another target class. The custom optimization
objective is designed such that it takes into account the user-provided target
class and generate a counterfactual from the same.

Fig. 1. Block diagrams of LSTM-CLF and LSTM-AE

Table 1. Hyperparameter and Training Setup of individual modules; H-Dim denotes
the dimension of hidden layer, Enc. size denotes the size of the encoded vector and Val.
Acc. is Validation Accuracy

Model Nature #LayersH-DimEnc. sizeVal. Acc.

LSTM-CLF Bi-LSTM 8 128 – 98%
LSTM-AE LSTM 2 256 128 –
MLP-AE ANN 3 128 128 –

4 Proposed TS-NUC Framework

In this section, we describe our proposed counterfactual generation approach
TS-NUC. The different modules and components have been discussed in the
subsequent subsections within this section.
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4.1 Black-box Classifier

Our proposed approach is model-agnostic, i.e. it does not use any information
related to the black-box classifier, such as weights, layers, and so on and we only
have access to the predict function of the model. In this experiment, we have
used a Bidirectional LSTM model trained on individual datasets separately. The
architecture block diagram and hyperparameter setup have been shown in Fig.1a
and Table-1 respectively. The loss function used in training is Crossentropy loss.

4.2 LSTM-Autoencoder

The LSTM-Autoencoder consists of two single-layer unidirectional LSTM, one
in Encoder and one in decoder, which learns to reconstruct the time-series
instances. In addition, we have implemented it to exploit the Encoder and
Decoder modules separately during counterfactual generation whose details have
been discussed later. By optimizing the latent representation of a time-series
instance, we aim to generate the counterfactual of the same. The architecture
block diagram and hyperparameter setup have been shown in Fig.1b and Table-1
respectively. The loss function used in training is Mean Squared Error.

4.3 ANN based Autoencoder

We first construct a multilayer perceptron based autoencoder (MLP-AE) which
learns to reconstruct the latent representations of the time series instances of
an entire training dataset. We use the pre-trained LSTM-AE for generating
the latent representation of an instance, forward pass it through MLP-AE and
train to reconstruct it. For this experiment, the hyperparameter setup has been
mentioned in Table-1. Similar to LSTM-AE, the loss function used here is Mean
Squared Loss. Additionally, we have incorporated Dropout regularization with
a probability of 0.25 after first layer to prevent the model from overfitting.

Fig. 2. Block diagram of the proposed TS-NUC framework. The gray coloured boxes
indicate pre-trained weights of the respective modules of LSTM-AE
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4.4 Computation of Centroid

To facilitate the counterfactual generation algorithm push the MLP-AE towards
generating a latent representation of user given target class, we compute the
centroids of each class clusters from the corresponding latent vectors belonging
to a specific class. Thus, for K number of classes, we compute K centroids for
each set of latent vectors belonging to a specific class. For a given class label c
and the corresponding set of latent vectors generated from the set of instances
Xc belonging to class c be Zc, the centroid μc is defined as the mean of all the
latent vectors in Zc which can be denoted as,

μc =
1

Nc

Nc∑

i=1

zi, ∀zi ∈ Zc

where Nc = |Zc|, the number of latent vectors belonging to class c.
The counterfactual generation approach utilizes the pre-computed centroid

of the user-given target class to optimize and force the MLP-AE to generate a
desired latent representation which the decoder of LSTM-AE can create a sample
from the target class and LSTM-CLF can classify it to the same target class.

4.5 Counterfactual generation

After training of all the modules, the main idea is to perturb and optimize
the MLP-AE in order to generate a modified latent representation so that the
decoder can reconstruct a modified sample and the black box classifier will clas-
sify the new sample into the desired target class. The block diagram and the
algorithm of the same have been shown in Fig.2 and algorithm-1 respectively.

At first, the algorithm takes a single time-series instance X, a desired target
class ycf and the corresponding pre-computed centroid μycf

. Then it optimizes
a loaded instance of pre-trained MLP-AE using a customized objective func-
tion (discussed in §4.6). Additionally, to prevent the optimization process being
stuck at a certain minima, at every iteration, we add Gaussian noise sampled
from N (−1, 1) with the generated latent vector. Experimentally observed, it has
reduced the number of steps performed by the algorithm and resulted in faster
convergence. The maximum number of iterations has been set to 105.

4.6 Objective Function

As already mentioned earlier, we have used a custom weighted objective function
to optimize the pre-trained MLP-AE. It consists of three different components.
First, Crossentropy loss is computed from the LSTM-CLF module between the
target class ycf and the predicted class ŷ. Second, the Mean Average Error is
computed between the actual input X and the output of the LSTM-AE decoder
i.e. the modified sample X̂. Third, the euclidean distance between the output of
the optimized MLP-AE i.e. the modified latent vector ẑ and the pre-computed
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Algorithm 1 Proposed TS-NUC Algorithm
Require: Trained Blackbox model FCLF (·), pre-trained LSTM-Autoencoder FAE(·)

consisting of Encoder module FE
AE(·) and Decoder module FD

AE(·), pre-trained
MLP Autoencoder FZ(·), weighted counterfactual Loss function L(·)

Input: X ← {x1, ..., xt}, corresponding ground truth y, target class ycf and corre-
sponding pre-computed class centroid μycf

Output: Generated counterfactual X̂
1: Initialize iter ← 0, max_iter ← 104, α ← 10−3

2: z ← FE
AE(X)

3: ẑ ← FZ(z) + N (−1, 1)
4: X̂ ← FD

AE(ẑ)
5: ŷ ← FCLF (X̂)
6: while ŷ �= ycf ∧ iter < max_iter do � Counterfactual generation loop
7: L ← L(X, X̂, ycf , ŷ, ẑ, μycf )
8: Optimize FZ � Uses Adam optimizer with learning rate α
9: ẑ ← FZ(z) + N (−1, 1) � Generating optimized latent vector ẑ

10: X̂ ← FD
AE(ẑ)

11: ŷ ← FCLF (X̂) � Prediction of new X̂
12: z ← ẑ
13: end while
14: return X̂ = {xcf

1 , ..., xcf
t }

centroid of ycf , i.e. zycf
. The objective function can be mathematically repre-

sented as,

L(·) = −λ1 .
K∑

i=1

ycfi log(ŷi) + λ2 .
1
T

T∑

i=1

∣
∣
∣Xi − X̂i

∣
∣
∣ + [

D∑

i=1

(ẑi − μycfi
)2]

1
2

where K is the total number of classes, T is the number of time steps in a single
instance and D is the dimensionality of latent representation vector in FAE ,
λ1 and λ2 are coefficients which have been experimentally set as 0.05 and 0.01
respectively.

4.7 Implementation

The whole system has been implemented in PyTorch v2.2.0 with support of
CUDA v12.1 and trained on a single NVIDIA RTX 3060 GPU with 6GB VRAM.
For training all three components, i.e. LSTM-CLF, LSTM-AE and MLP-AE
models, we have used Adam Optimizer with β1 and β2 values of 0.9 and 0.999
respectively. The maximum number of epochs is 105 and the initial learning rate
has been set as 10−3 which is being reduced by a factor of 0.1 if the validation
loss does not decrease after 25 consecutive epochs. Additionally, we have incor-
porated Early stopping regularization based on the validation loss, which stops
the training if the validation loss does not decrease for 100 consecutive epochs.
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5 Evaluation Metrics and Results

For evaluating our proposed approach, we have chosen three popularly used
evaluation metrics namely Validity, Proximity and Compactness. Moreover, we
have chosen five closely related works, which have been proposed on time-series
counterfactual generation, for comparing our proposed TS-NUC approach. This
section discusses about each of the metrics, the obtained results and comparison
with the chosen state-of-the-art methods.

5.1 Validity

Validity[21,28] is defined as whether the generated sample is being classified
in the target class or not. That means, if the generated sample is classified in
the target class, it is considered to be valid counterfactual, else, not a valid
counterfactual. Mathematically, it can be expressed as,

Validity(Xcf ) =
#(ŷ = ycf )

N

where Xcf is the set of generated counterfactuals, ŷ is predicted class label of
a single instance and ycf is the target class. It is to be noted that this metric
has been computed for the entire dataset. For a single instance, the validity
yields binary output i.e. either 1 or 0. The higher the validity, the better the
performance of the model.

Table-2 shows the quantitative comparison on validity with the chosen state-
of-the-art approaches. As we can see, for the ItalyPower, FordB and MoteS-
train datasets, TS-NUC shows the best results as compared to the other
methodologies. For the FordA and TwoLeadECG datasets, LatentCF++[31] and
Glacier[30] yield better performance over TS-NUC in terms of validity.

Table 2. Comparison of Validity↑ with other State-of-the-art methods

Methods ItalyPower FordA FordB TwoLeadECG MoteStrain

LatentCF++ [31] 0.9263 0.9344 0.9675 0.9052 0.9618
Glacier [30] 0.8205 0.9320 0.8840 0.984 0.9585
FGD [18] 0.4523 0.6535 0.6251 0.5298 0.6795
KNN [18] 0.7926 0.8903 0.7852 0.7452 0.8847
RDF [17] 0.8544 0.8523 0.8422 0.8263 0.9052
TS-NUC (Ours) 0.9510 0.9025 0.9754 0.9685 0.9824



402 A. Ghosh et al.

5.2 Proximity

Proximity[21] is the measure of how close the generated counterfactual is to
the original input time-series instance. It is defined as the feature-wise distance
between the generated counterfactual and the input. In our experiment, we have
chosen the distance measure to be simple Euclidean distance averaged over the
total number of time steps. Mathematically, it can be expressed as,

Proximity(X,Xcf ) =
1
T
[

T∑

i=1

(Xi − Xcf
i )2]

1
2

where X is the original sample, Xcf is the generated counterfactual and T is
the number of time steps. Proximity can be measured for a single instance. The
lower the proximity, the better the model performance.

Table-3 shows the quantitative comparison with other chosen state-of-the-
art methods and chosen datasets. Here, we have computed proximity for all the
samples in Test set and taken the mean of it. As we can see, TS-NUC shows best
performance among all methodologies for ItalyPower, FordA and TwoLeadECG
datasets. Counterfactuals generated for FordB dataset using Glacier[30] are the
closest to the original samples. Similarly, counterfactuals of MoteStrain dataset
generated using RSF[17] shows lowest proximity.

Table 3. Comparison of Proximity↓ with other State-of-the-art methods

Methods ItalyPower FordA FordB TwoLeadECG MoteStrain

LatentCF++ [31] 0.4785 0.4368 0.6099 0.1839 0.3884
Glacier [30] 0.218 0.345 0.098 0.189 0.475
FGD [18] 0.3373 0.2387 0.2176 0.2655 0.4798
KNN [18] 0.3633 2.0811 2.1105 0.1936 1.095
RDF [17] 0.2513 0.4820 0.3934 0.1793 0.1903
TS-NUC (Ours) 0.1952 0.1544 0.14540.1652 0.2065

5.3 Compactness

Compactness is defined as the mean of the feature-wise absolute differences
between the generated counterfactual and the original sample. It captures the
overall change in the feature values from original sample to the counterfactual
of it. A similar formulation has been given in Glacier[30], however, the authors
designed it for the entire dataset and not for a single instance. In contrast, we
have defined it for a single instance. It can be expressed as follows,

Compactness(X,Xcf ) =
1
T

·
T∑

i=1

∣
∣
∣Xi − Xcf

i

∣
∣
∣
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where X is the original sample, Xcf is the generated counterfactual and T is
the number of time steps. The lower the compactness, the better the model
performance.

Table-4 shows the quantitative comparison of the chosen methods on com-
pactness. For evaluation purposes, we have computed the average of the Com-
pactness on all the samples on validation split. It clearly shows that our proposed
TS-NUC shows best results for ItalyPower, FordB and MoteStrain datasets. For
the rest of the two datasets, Glacier[30] shows the best performance, though,
TS-NUC is quite close to Glacier for these two datasets.

Table 4. Comparison of Compactness↓ with other State-of-the-art methods

Methods ItalyPower FordA FordB TwoLeadECG MoteStrain

LatentCF++ [31] 0.2543 0.1534 0.1854 0.1545 0.1487
Glacier [30] 0.2567 0.0982 0.1635 0.1254 0.1363
FGD [18] 0.4532 0.1956 0.2398 0.2301 0.2543
KNN [18] 0.3176 0.117 0.3128 0.1984 0.2388
RDF [17] 0.4549 0.1367 0.2568 0.1786 0.2785
TS-NUC (Ours) 0.1665 0.1076 0.1564 0.1387 0.1049

Fig.3 shows a sample output of counterfactual samples generated using TS-
NUC of two randomly chosen samples from ItalyPower dataset (Fig.3a) and
MoteStrain dataset (Fig.3b). As seen in Fig.3a, the counterfactual explanation
shows some stochasticity, which we leave for future works.

Fig. 3. Sample input and corresponding counterfactual output from TS-NUC. The
original inut is shown in Blue curve while the corresponding generated counterfactual
by the proposed TS-NUC is shown in Red curve.
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6 Conclusion

In this work, we propose TS-NUC, a novel model-agnostic time-series classifica-
tion counterfactual generation approach. Unlike previously proposed approaches,
TS-NUC captures the temporal nature of the data by applying LSTM-based
architectures instead of CNN or ordinary ANN based Autoencoders. It utilizes
the latent representation of an input time-series instance and by perturbing
and optimizing that, it generates a modified latent representation. The decoder
module generated a modified instance from the new latent representation and
the black-box classifier is expected to classify it into a desired class provided
by the user. Experiments on different benchmark datasets from UCR Time
Series Archive [6] and comparisons with different closely related state-of-the-art
approaches show the effectiveness of our proposed approach on three different
metrics namely Validity, Proximity and Compactness.

As future work, we plan to extend this work for different data modalities
having temporal dependencies such as video, audio, text and so on. Moreover,
we plan to modify and apply this method to specific application areas such as
predictive maintenance, medical diagnosis, human activity recognition, which
will enable the black-box decision makers explain their decisions on the basis of
choosing features and their importance. The perspective of causal counterfactual
generation for time series data can also be explored in future works.

Acknowledgement. This work is partially supported by the DST IIT Bhilai Inno-
vation and Technology Foundation (IBITF) (IBITF/Note/EIR-PRAYAS/Cohort-
03/SanctionLetter/2024-25/0076).
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Abstract. Although Multi Armed Bandit (MAB) on one hand and the policy
gradient approach on the other hand are among the most used frameworks of
Reinforcement Learning, the theoretical properties of the policy gradient algo-
rithm used for MAB have not been given enough attention. We investigate in
this work the convergence of such a procedure for the situation when a L2 reg-
ularization term is present jointly with the ‘softmax’ parametrization. We prove
convergence under appropriate technical hypotheses and test numerically the pro-
cedure including situations beyond the theoretical setting. The tests show that a
time dependent regularized procedure can improve over the canonical approach
especially when the initial guess is far from the solution.

Keywords: Reinforcement Learning · Multi Armed Bandit · Stochastic
Gradient Descent Algorithm · Policy Gradient · Regularized Policy Gradients ·
Proximal Policy Optimization

1 Introduction

Supported by impressive practical applications including game play (e.g., Go [17], com-
puter games [13]), autonomous car driving [5], ChatGPT [14], healthcare [10,22], rec-
ommender systems [1] etc., the Reinforcement Learning is a promising area of active
research today. Standing out among Reinforcement Learning frameworks, the Multi
Armed Bandit (MAB in the sequel) [7,18] has been extensively used both for theoreti-
cal investigations and for applications. We will focus here on a specific procedure, the
softmax parameterized policy gradient as in [19, section 2.8 and chap. 13]. We inves-
tigate its convergence in presence of L2 regularization1 and numerically explore the
performance of this regularized framework.

1 In the machine learning literature the regularization considered here is denoted L2 while in
the mathematics literature the L2 notation is more often used; we use L2 throughout the text
but both mean the same thing.
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The plan of the paper is as follows: in the rest of this section we briefly review the
literature while in section 2 we give the first notations and definitions. Then in section
3 we prove the convergence under some technical hypotheses, followed in section 4
by some numerical tests that confirm the theoretical results and also go beyond it to
regimes not covered by the theory. We close with a discussion in section 5.

1.1 Brief literature review

The policy gradient algorithms have shown impressive results for applications in rein-
forcement learning but it has been long recognized that some corrections are necessary
to improve convergence; several well known procedures implementing such corrections
are the log-barrier penalized REINFORCE algorithm [23], trust-region policy optimiza-
tion TRPO [16] and the proximal policy optimizations (PPO, the OpenAI’s default rein-
forcement learning algorithm); all use a form of regularization, i.e. all seek to limit and
control the policy updates by various methods. In this general setting we will focus here
on a different type of regularization and will most specifically talk about Multi Armed
Bandits.

While the policy gradient algorithms show interesting numerical performance, the
theoretical investigations of the convergence for the MAB have only recently witnessed
important advances. In [8] it is proven that stochastic gradients procedures converge
with high probability for the general situation of linear quadratic regulators while Agar-
wal et al. gave in [2] theoretical results under the general framework of Markov pro-
cesses and specifically proved the convergence under different policy parameteriza-
tions; on the specific case of softmax parameterization that we analyze here, they exam-
ine three algorithms addressing this issue. The initial approach involves straightforward
policy gradient descent on the objective without alterations. The second method incor-
porates entropic regularization to prevent the parameters from growing excessively,
thereby ensuring sufficient exploration. Lastly, they investigate the natural policy gra-
dient algorithm and demonstrate a global optimality outcome independent of the dis-
tribution mismatch coefficient or dimension-specific factors. Recall that in contrast we
study here the softmax parameterization with L2 regularization.

In a very recent paper [4] published online just months ago (at the time of writ-
ing) J. Bhandari and D. Russo discuss the softmax parametrization but focus on (we
cite) “an idealized policy gradient update with access to exact gradient evaluations”.
As a distinction, we will focus here on the non-exact gradient (which is the one usu-
ally implemented) but at the price of stronger hypotheses. Yet in another state-of-the-
art research [11] the authors make three contributions; first they establish that, when
employing the true gradient (i.e., without the stochasticity), policy gradient with a
softmax parametrization converges at a rate of O(1/t). Then they examine entropy-
regularized policy gradient and demonstrate its accelerated convergence rate. Finally, by
integrating the aforementioned outcomes they describe the mechanism through which
entropy regularization enhances policy optimization.

Finally, some other relevant works include [21] that study more specifically the sit-
uations when deep neural networks are used, while [24] investigate the infinite-horizon
setting with discounted factors through a new variant that uses a random roll-out hori-
zon for the Monte Carlo estimation.
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On a more general theoretical view, as mentioned earlier, our focus is on softmax
parameterized policy gradients with L2 regularization. We will employ arguments simi-
lar to that used for the convergence of general stochastic gradient descent (as developed
from the initial proposal of Robbins and Monro [15]). A good book on this subject
is [6] while recent works giving information on the convergence of the SGD for non-
convex functions are [9,12]; for short self-contained proofs see [3,20]. Note that clas-
sical SGD convergence results as in [6, Thms 1.2.1 or 1.3.1] need several hypotheses,
for instance the uniqueness of the critical point (here not true), some boundedness con-
ditions (here without any regularization the optimal H will have infinite values), a con-
venient Lyapunov functional (the obvious one has degenerate directions in this case),
some boundedness for the trajectories [12] and so on. Nevertheless, this will still con-
stitute the basis of our work that puts together estimations and proofs from the literature
that were not invoked in this setting before.

2 The softmax parameterized policy gradient Multi Armed Bandit
with L2 regularization

We describe here the softmax parameterized Multi Armed Bandit policy gradient algo-
rithm to which we add a L2 regularization term. For a description of the original Multi
Armed Bandit (MAB) we refer to [19]. In the classical Multi Armed Bandit problem, we
have k arms indexed by a where a = 1, 2, . . . , k. Each arm a has an associated reward
distribution with mean q∗(a). A case often considered is when the reward is normally
distributed with mean q∗(a) and variance σ(a)2 = 1 (see later for our hypotheses on R
which are more general). At each time step t, an agent selects an arm At and observes
a reward Rt ∼ R(At) sampled from the distribution of the selected arm At. The goal
is to maximize the cumulative reward over a fixed number of time steps or iterations.

In the policy gradient algorithm with softmax parametrization, the agent maintains
a parameterized policy ΠH , where H is a parameter vector called ‘preference vector’.
The preference vector H defines the probability ΠH(A) to act on the arm A through
the softmax mapping :

ΠH(A) =
eH(A)

∑k
a=1 eH(a)

. (1)

The MAB with regularization is formulated as finding the optimal preference vector
H ∈ R

k solution to :
maximizeH∈RkLγ(H), (2)

where the functional Lγ is defined as :

Lγ(H) := EA∼ΠH

[
R(A) − γ

2
‖H‖2

]
. (3)

Here A ∼ ΠH means that A is sampled from the discrete law ΠH ; γ is a positive con-
stant that is seen as a L2 regularization coefficient. For convenience, we will sometimes
omit the γ in the notation and write only

L(H) (4)
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instead of Lγ(H). Note that this description is different from the classical MAB [19,
section 2.8] by the presence of the regularization term γ

2 ‖H‖2. To solve (2) the policy
gradient approach prescribes the use of a gradient ascent stochastic algorithm which
can be written :

Ht+1(a) = Ht(a) + ρt

[
(Rt − R̄t)(1a=At

− ΠHt
(a)) − γHt(a)

]
, a = 1, ..., k, (5)

where Rt is the reward at time t, R̄t is the mean reward up to time t and ρt a time step
or ‘learning rate’ (see next section for the precise choice of time scheduling). Although
the formula (5) seems somehow far from a stochastic gradient applied to L we recall
that this is indeed the case in the lemma 1 below.

3 Theoretical convergence results

We first recall why the term multiplying ρt in the right hand side of equation (5) is
indeed an unbiased estimation of ∇HL(H).

To do this we need to be careful with the probabilistic framework; consider the
filtration Ft corresponding to all information available up to time t. To go to t + 1 two
things happen: first the arm At is sampled with the discrete distribution ΠHt

; then a
reward is sampled from the distribution R(At) of the arm At. As we will need very
detailed information on this sampling, we need to make clear what part of the sampling
is independent of Ft and what part is measurable. Of course, Ai, i < t and Hi, i ≤ t
are Ft mesurables; but, since At’s distribution depend on Ht it cannot be independent
of Ft as random variable. Nevertheless, in MAB sampling :

E[1a=At
|Ft] = ΠHt

(a). (6)

To explain such a relation, imagine that the operations at time t start with sampling some
uniform variable Ut in [0, 1) independent of Ft and then, depending on the value of Ut

a comparison is made with components of ΠHt
to decide what value At will take; this

can be written {At = a} = {Ut ∈ [
∑a−1

b=1 ΠHt
(b),

∑a
b=1 ΠHt

(b))} with convention
that the first sum is 0 when a = 1. This gives equation (6). Now, once At is chosen,
the choice of the reward follows the same path: there is a part that is independent of the
specific value of At, for instance one can draw another Vt uniform in [0, 1] and attribute
the reward based on the quantile of the At distribution.

We denote
q∗(a) = E[R(a)],∀a ≤ k (7)

which, considering the definition of Rt, means that

E[Rt1a=At
|Ft] = q∗(a),∀a ≤ k. (8)

The following hypothesis will be considered true from now on :

there exists a constant Cm > 0 such that : E[R(a)2] ≤ Cm,∀a ≤ k. (9)

We also introduce some notations for the terms appearing in the right hand side of (5) :

ut(a) := (Rt − R̄t)(1a=At
− ΠHt

(a)), (10)
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gt(a) := (Rt − R̄t)(1a=At
− ΠHt

(a)) − γHt(a). (11)

We first give a preliminary result which explains why the algorithm (5) fits within
the general framework of Robbins and Monro [15].

Lemma 1. Under hypotheses (8) and (9) :

E [gt| Ft] = ∇HL(H)|H=Ht
. (12)

Moreover, for some constant Cq∗ only depending on q∗ and Cm :

E[‖gt‖2] ≤ Cq∗ + 2γ2‖Ht‖2. (13)

Remark 1. The relation (12) says in essence that (5) is a Robbins-Monro type stochastic
gradient in the sense that the stochastic estimate gt of the gradient ∇HL(H)(a)|H=Ht

is unbiased. On the contrary, (13) is a technical point that will be required latter.

Proof. Equality (12) : Of course, the gradient of the L2 regularization term γ
2 ‖H‖2 is

γH which explains its presence in the left hand side, i.e., in gt. On the other hand, the
baseline R̄t satisfies :

E[R̄t(1a=At
− ΠHt

(a))|Ft] = R̄t · P[At = a] − R̄tΠHt
(a) = 0. (14)

Only the gradient of the reward R remains to be computed; we proceed as
in [19, Section 2.8] by recalling that from (8) it follows that E[Rt|Ft] =
E[

∑
a R(a)1a=At

|Ft] =
∑

a q∗(a)ΠHt
(a) which implies

L(H) = 〈q∗,ΠH〉 − γ

2
‖H‖2. (15)

To conclude, it is enough to invoke the formula of the derivatives of the softmax function
H 
→ ΠH :

∂ΠH(a)
∂H(b)

= ΠH(a) (1a=b − ΠH(b)) . (16)

Estimation (13) : since gt = ut −γHt, we only have to prove a bound for E[‖ut‖2|Ft].
First note that |1a=At

− ΠHt
(a)| ≤ 1 so we are left with finding a bound for E[‖Rt −

R̄t‖2]; but from (9) :

E[‖Rt − R̄t‖2] ≤ 2E[‖Rt‖2] + 2E[‖R̄t‖2] ≤ 2Cm + 2E[‖R̄t‖2]. (17)

On the other hand R̄t = R0+···+Rt−1
t with all terms having bounded second order

moment (by (9)) which shows that E[‖R̄t‖2] ≤ Cm hence the conclusion. �

3.1 Fixed time step

We prove now the first result involving the L2 regularized MAB including the case
when the time step is constant (but small enough to ensure convergence) and γ large
enough.
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Proposition 1. Denote

μ := γ − (max
a

q∗(a) − min
a

q∗(a)). (18)

Under the hypotheses (8) and (9) assume

μ > 0. (19)

Then :

1. the function L defined in (3) has a unique maximum H∗;
2. For any t ≥ 0 denote

dt = E
[‖Ht − H∗‖2

]
. (20)

Then there exist constants c2, c3, c4 > 0 depending only on q∗ such that for c1 =
c4γ

2, c0 = c2 + c3γ
2 :

dt+1 ≤ (1 − ρtμ + ρ2t c1)dt + ρ2t c0. (21)

3. For any ε > 0 there exists a ρε > 0 such that if ρt = ρ < ρε then

lim sup
t→∞

E
[‖Ht+1 − H∗‖2

] ≤ ε. (22)

4. Take ρt a sequence such that:

ρt → 0 and
∑

t≥1

ρt = ∞. (23)

Then dt → 0, or equivalently

lim
t→∞ Ht

L2

= H∗. (24)

Proof. Item 1: We first establish some estimates concerning the Hessian ∇2
HL; Take c

to be a constant. We can write :

∇2
HL(H) = ∇2

H(L(H) − c) = ∇2
H

(〈q∗ − c,ΠH〉 − γ
2 ‖H‖2)

= ∇2
H (〈q∗ − c,ΠH〉) − γIk.

(25)

On the other hand, if we iterate the equation (16) once more we obtain for A, a, b ≤ k :

∂2ΠH(A)
∂H(b)∂H(a)

= ΠH(A) (1a=A − ΠH(a)) (1b=A − ΠH(b))

−ΠH(A)ΠH(a) (1b=a − ΠH(b)) ≤ 2ΠH(A).
(26)

From this we obtain for any H̄ and variations δH :

∇2
H〈q∗ − c,ΠH〉|H=H(δH, δH)

=
k∑

A=1

(q∗(A) − c)
k∑

a,b=1

∂2ΠH(A)
∂H(b)∂H(a)

∣
∣
∣
H=H

δH(a)δH(b)

=
k∑

A=1

(q∗(A) − c)ΠH(A)[〈δH(A) − δH,ΠH〉2 − 〈δH2,ΠH〉 + 〈δH,ΠH〉2]

≤ max
A

|q∗(A) − c| · |〈δH(A) − δH,ΠH〉2 − 〈δH2,ΠH〉 + 〈δH,ΠH〉2|. (27)
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Take now c = maxa q∗(a)+mina q∗(a)
2 ; then

max
a

|q∗(a) − c| = maxa q∗(a) − mina q∗(a)
2

=:
c∗
2

, (28)

where the second part is a notation; since by Cauchy 〈δH2,ΠH̄〉 − 〈δH,ΠH̄〉2 ≥ 0
the term 〈δH(A) − δH,ΠH̄〉2 − 〈δH2,ΠH̄〉 + 〈δH,ΠH̄〉2 is the difference of two
positive numbers so its absolute value is smaller than the largest of them. We will
prove that each is smaller than 2‖δH‖2. Obviously 〈δH2,ΠH̄〉 − 〈δH,ΠH̄〉2 ≤
〈δH2,ΠH̄〉 ≤ maxa δH(a)2 ≤ ‖δH‖2. For the first term we look for an optimum
of 〈δH(A) − δH,ΠH̄〉2 under the constraint ‖δH‖2 = 1 and, after some straightfor-
ward computations we obtain 2 (see Lemma 2 for a proof). Thus finally :

∇2
H〈q∗ − c,ΠH〉|H=H(δH, δH) ≤ c∗‖δH‖2. (29)

It follows from the previous considerations that

∇2
HL(H)|H=H(δH, δH) ≤ (c∗ − γ)‖δH‖2. (30)

Take H ∈ R
k. Using Taylor’s formula for s 
→ sH we obtain some H̄ on the

segment [0,H] such that :

L(H) = L(0) + 〈∇HL(0),H〉 + 1
2
∇2

HL(H)|H=H(H,H)

≤ L(0) + 〈∇HL(0),H〉 + (c∗/2 − γ/2)‖H‖2. (31)

When γ > c∗ we obtain that −L is coercive at infinity thus by continuity we obtain the
existence of an optimum. The uniqueness follows from the strict concavity of L (see
inequality (30)).
Item 2: We have

E
[‖Ht+1 − H∗‖2

]
= E

[‖Ht − H∗ + ρtgt‖2
]

= E
[‖Ht − H∗‖2

]
+ ρ2tE

[‖gt‖2
]
+ 2ρtE [〈Ht − H∗, gt〉] . (32)

From (12)
E [〈Ht − H∗, gt〉] = E [〈Ht − H∗,∇HL(Ht)〉] .

Recall that since H∗ is an optimum L(H∗) ≥ L(Ht); using a Taylor expansion for
s 
→ sH∗ + (1 − s)Ht around Ht and using the same estimations as above for the
Hessian we obtain

E [〈Ht − H∗,∇HL(Ht)〉] ≤ E

[
L(Ht) − L(H∗) − μ

2
‖Ht − H∗‖2

]

≤ −μ

2
E[‖Ht − H∗‖2]. (33)

Combining all these estimations and using (13) to bound the term E[‖gt‖2] we obtain
the inequality (21). For the rest of the proof we follow the proof of Thm. 1 in [20].
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Item 3: When ρt = ρ estimation (21) is written

dt+1 − ρc0
μ − ρc1

≤ (1 − ρμ + ρ2c1)
(

dt − ρc0
μ − ρc1

)

.

If ρ < min(1/μ, μ/2c1), taking the positive part allows to write :
(

dt+1 − ρc0
μ − ρc1

)

+

≤
(
1 − ρμ

2

) (

dt − ρc0
μ − ρc1

)

+

,

and therefore ∀	 ≥ 1:
(

dn+� − ρc0
μ − ρc1

)

+

≤
(
1 − ρμ

2

)�
(

dt − ρc0
μ − ρc1

)

+

.

For 	 → ∞ we obtain lim sup�

(
d� − ρc0

μ−ρc1

)

+
= 0 which gives the conclusion (22)

for ρ ≤ ρε := min{1/μ, μ/2c1, εμ/(c0 + εc1)}.
Item 4: Consider now ρt non-constant and fix ε > 0; we invoke inequality (21) and
obtain :

dt+1 − ε ≤
(
1 − ρtμ

2

)
(dt − ε) + ρt(c0ρt − με/2 + (ρtc1 − μ/2)dt).

When t is big enough, the last term in the right hand side is negative and therefore

dt+1 − ε ≤
(
1 − ρtμ

2

)
(dt − ε),

hence
(dt+1 − ε)+ ≤

(
1 − ρtμ

2

)
(dt − ε)+ .

Taking the product of all relations of this type allows to write :

(dt+� − ε)+ ≤
t+�−1∏

s=t

(
1 − ρsμ

2

)
(dt − ε)+ . (34)

Using the Lemma 2 from [20] recalled as Lemma 4 below we obtain
lim�→∞ (d� − ε)+ = 0 and since this is true for any ε the conclusion follows. �

Lemma 2. Let Π ∈ R
k, Π(a) ≥ 0, ∀a ≤ k,

∑
a Π(a) = 1. Then for any x ∈ R

k and
any 	 ≤ k

(〈x,Π〉 − x�)2 ≤ 2‖x‖2. (35)

Proof. The term 〈x,Π〉 is a mean value of x under the law Π thus it is somewhere
between the smallest (denoted xm) and the largest (denoted xM ) values of xi, i ≤ k.
The left hand side is thus smaller than (xM − xm)2. On the other hand, 2‖x‖2 ≥
2(x2

m + x2
M ) ≥ (xM − xm)2. �
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3.2 Convergence rates for linear decay ρt = β1

1+β2t
and large γ

We investigate now the situation when ρt is not constant but decays linearly.

Proposition 2. Let β1, β2 > 0 two positive constants and take

ρt =
β1

1 + β2t
. (36)

Under the hypotheses (8) and (9) for γ large enough :

1. the problem (2) has a unique solution H∗;
2. the L2 regularized policy gradient MAB algorithm (5) converges with the rate :

E[‖Ht − H∗‖2] = O

(
1
t

)

as t → ∞. (37)

Proof. We saw already in proposition 1 that the optimum exists and is unique for μ >
0. We also saw that (21) is satisfied. Denote ξt = tdt. By multiplication with t + 1
inequality (21) can be written in terms of ξ as

ξt+1 ≤ (1 − ρtμ + c1ρ
2
t )ξt(1 +

1
t
) + c0ρ

2
t (t + 1). (38)

It is enough to prove that ξt is bounded to conclude. Suppose on the contrary that ξt

is not bounded. In this case, for any C large enough there exists some rank tC large
enough where ξt+1 is for the first time larger than C. In particular this means that
ξt ≤ C ≤ ξt+1. Therefore

C ≤ ξt+1 ≤ (1 − ρtμ + c1ρ
2
t )C(1 +

1
t
) + c0ρ

2
t (t + 1). (39)

so finally

C ≤ (1 − ρtμ + c1ρ
2
t )C(1 +

1
t
) + c0ρ

2
t (t + 1), (40)

or, after simplification by C in both terms and multiplication by t:

0 ≤ C
[
t(−ρtμ + c1ρ

2
t ) + 1 − ρtμ + c1ρ

2
t

]
+ c0ρ

2
t (t + 1)t. (41)

Recall that ρt = β1
1+β2t . For t → ∞ the term c0ρ

2
t (t + 1)t tends to the constant c0

β2
1

β2
2
.

The terms multiplying C tends to

lim
t→∞

[
t(−ρtμ + c1ρ

2
t ) + 1 − ρtμ + c1ρ

2
t

]
= 1 − μ

β1

β2
. (42)

But for μ large enough (i.e., γ large enough) this is negative so the right hand side in (41)
cannot remain positive when t and C are large enough because is a sum of a bounded
term and a product between C and a quantity that converges to a strictly negative con-
stant. This provides the required contradiction and ends the proof. �
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3.3 Behavior when γ → 0

For completeness, we investigate in this section the other side of the question, namely
the regularization part.

The real goal is to solve problem (2) for γ = 0. When γ > 0 the solution
of the problem (2) will not coincide with the solution for γ = 0. The question is
whether this perturbation will be small when γ is small. This is an intuitive result
but not completely trivial because when γ = 0 the maximum in (2) is not attained
in general as most of its components will tend to −∞. Indeed, suppose all q∗(a)
are different and denote by q∗(amax) the largest one. When γ = 0 the functional is
simply L0(H) =

∑
a q∗(a)ΠH(a) < q∗(amax). The inequality is always strict but

q∗(amax) − L0(H) vanishes when ΠH is a Dirac mass in amax; for that to happen H
would have to have all entries equal to −∞ except Hamax

that can be any finite value.
The result below informs that, as expected, we can be as close as we want to the

optimum value of the non-regularized MAB problem by taking γ small enough.

Lemma 3. Let
V (γ) := max

H∈Rk
Lγ(H). (43)

Then limγ→0 V (γ) = V (0).

Proof. For any γ > 0 denote H∗
γ one optimum in (2). Note first that, by standard

coercivity and continuity on compacts arguments of −Lγ , this optimum value exists
for any γ > 0 (it is not necessarily unique though); for γ = 0 it does not exist in
general as the maximum value is attained only as a limit of values along a sequence
Hn. Take Hn to be a sequence such that

lim
n→∞ L0(Hn) = sup

H∈Rk

L0(H) = V (0). (44)

By the very definition of H∗
γ :

V (γ) = Lγ(H∗
γ ) ≥ Lγ(H), ∀H ∈ R

k. (45)

In particular

V (γ) = Lγ(H∗
γ ) ≥ Lγ(Hn) = L0(Hn) − γ

2
‖Hn‖2, ∀n ≥ 1. (46)

Keep now n fixed and let γ → 0 we obtain lim infγ→0 V (γ) ≥ L0(Hn). Take now
n → ∞ to obtain V (0) ≤ lim infγ→0 V (γ). But since on the other hand for all γ ≥ 0 :
V (γ) ≤ V (0) we obtain the conclusion. �

4 Numerical simulations

The Python implementation is available on Github 2. We perform M = 1000 tests of
2000 steps each; for each of the M tests we sample, as in [19, fig 2.5 page 38] k = 10
2 https://github.com/gabriel-turinici/regularized policy gradient version August 31st 2024.

https://github.com/gabriel-turinici/regularized_policy_gradient
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Fig. 1. The average reward for ρt = 0.05 (constant), γ is 0, 0.01 or 10 (see the legend).
Left : start from a uniform distribution ΠH0 with H0 = (0, ..., 0). Right : start from a biased
distribution ΠH0 with H0 = (5, ..., 0).

arms with q∗(a), a = 1, ..., k independent and normally distributed with mean 4 and
unit variance.

Once q∗(·) have been sampled they do not change for the 2000 steps of the respec-
tive test. To ensure fair comparison we use same values of q∗(·) for all the bandits that
are compared, for instance in figure 1 run number 123 for γ = 0 and run number 123 for
γ = 0.01 and run number 123 for γ = 10 share the same q∗(·), which is different from
the q∗(·) of runs 122. For each of the arms a = 1, ..., k the law of R(A) conditional to
A = a is a normal variable with mean q∗(a) and unit variance. Note that in this case

cavg
∗ := E[max

a≤k
q∗(a) − min

a≤k
q∗(a)] � 3.08. (47)

The proposition 1 prescribes that γ should be larger than cavg
∗ .

The uniform distribution corresponding to H0 = (0, ..., 0) would give, in average, a
reward equal to 4. Nevertheless in the following, for each of the M tests we will not plot
the absolute value of the reward but the value relative to the maximum possible reward
maxa≤k q∗(a) (because this maximum varies with each run). With this convention the
best possible reward is 1. The average over the M = 1000 runs are presented in figure 1
and discussed also in section 5. We see that when starting for the uniform distribution
the regularization γ = 0.01 does not prevent the algorithm to have a performance com-
parable with the non-regularized version (i.e., γ = 0). On the contrary, the value γ = 10
is too large and biases the algorithm towards a non-optimal solution (similar results are
obtained for γ = 3.08). When starting from a biased distribution, the regularization
γ = 0.01 does a better job and obtains a visible improvement over the performance of
the non-regularized version (i.e., γ = 0).

Additional tests are presented in figures 2 and 3 where we investigate a linear decay
schedule for the learning rate ρt and also for the regularization coefficient γt. In par-
ticular in figure 3 it is seen that the non-null initial regularization helps leaving the
non-optimal initial guess H0; then the decay of γt will provide results comparable the
non-regularized version in particular convergence to an optimal point.
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Fig. 2. The average reward when starting from the non-uniform distribution ΠH0 with H0 =
(5, ..., 0) and ρt =

1
1+0.05∗t

in the general setting of proposition 2 equation (36); we test γ = 0,
γ = 0.01 or γ = 10 (see the legend). As before, γ = 10 is too large to obtain good results.

5 Summary and discussion

We considered in this work a L2 regularized policy gradient algorithm applied to a
Multi Armed Bandit (MAB) and investigated it both theoretically (convergence, rate
of convergence) and numerically. Let us first recall that is was already remarked in the
literature [11] that the MAB may behave erratically when the initialization is close to
a sub-optimal critical point (there are many of them, for instance all Dirac masses are
critical points). In this case the standard gradient policy MAB will spend a long time in
this region before converging to the global maximum. One way to cure this drawback
is to introduce regularization, in our case this is L2 regularization, parameterized by a
multiplicative coefficient γ.

Under technical conditions on the value of γ we gave two convergence results :
proposition 1 that works for both constant and variable time steps ρt and proposition 2
that proves that the convergence happens at rate O(1/t) if ρt decays linearly. However
the existence of the regularization part (when γ > 0) may shift the optimal solution; we
proved then in lemma 3 that when γ → 0 the optimality is restored.

The technical conditions in the theoretical results impose large values of γ but in
practice small values of γ are requested for good quality solution. To see the useful-
ness of the regime when γ is small, we tested the procedure numerically. The results
indicate that irrespective of whether γ is large or small the convergence occurs when
the initial guess H0 is uniform, but the quality of the optimum is not good when γ is
too large, see figure 1; same holds true when non-constant (linear decay) ρt is used,
see figure 2; when the initial guess H0 is not uniform the convergence is significantly
better with γ > 0 and for γ not too large its quality is also very good, see figure 1.
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Fig. 3. The average reward when starting from the biased distribution ΠH0 with H0 = (5, ..., 0)
and γt =

γ0
1+0.2∗t

(see the legend), γ0 = 0 (no regularization) or γ0 = 10. We take ρt =
1

1+0.05∗t

(see eq. (36)).

To combine the best of the two possible worlds, we also tested a variable γt of the
form γt = γ0

1+ηt (with η a positive constant) starting from non-uniform initial guess H0;
the results in figure 3, are very good and show that this choice is better than the classical
non regularized policy gradient procedure. The precise optimal decay schedule for γt is
not known and will be left for future works.

A Appendix

For completeness we recall below the Lemma 2 from [20] and its proof.

Lemma 4. Let ξ > 0 and ρt a sequence of positive real numbers such that ρt → 0 and∑
t≥1 ρt = ∞. Then for any t ≥ 0:

lim
�→∞

t+�∏

j=t

(1 − ρjξ) = 0. (48)

Proof. Since ρt → 0, ρjξ < 1 for j large enough; without loss of generality we can
suppose this is true starting from t. Since for any x ∈]0, 1[ we have log(1 − x) ≤ −x :

0 ≤
t+�∏

j=t

(1 − ρjξ) = e
∑t+�

j=t log(1−ρjξ) ≤ e
∑t+�

j=t(−ρjξ) �→∞−→ e−∞ = 0. (49)

�
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B Further comments on the assumption μ > 0

The convergence of the scheme proved in proposition 1 requires μ := γ − c∗ > 0 (c∗ is
defined in (28)). If for some reason a γ is given and cannot be changed and γ−c∗ ≤ 0we
can still get convergence if we consider the modified softmax parametrized MAB policy
gradient algorithm that findsH ∈ R

k solution to (2) where the functionalLγ is replaced

by : EA∼Πα
H

[
R(A) − γ

2 ‖H‖2] where Πα
H(A) := eαH(A)

∑k
a=1 eαH(a) i.e., Πα

H = ΠαH . Here

α > 0 is an arbitrary but fixed constant such that γ − α2c∗ > 0. Note that the only
change is the replacement of ΠH by Πα

H . With this provision the stochastic gradient
ascent algorithm (5) is replaced by :

Ht+1(a) = Ht(a)+ρt

[
α(Rt −R̄t)(1a=At

−Πα
Ht

(a))−γHt(a)
]
, a = 1, ..., k. (50)

The proof of the Proposition 1 remains the same as soon as we replace μ in (18) with
γ − α2c∗ > 0 and work with

ut := α(Rt − R̄t)(1a=At
− Πα

Ht
(a)) (51)

gt := α(Rt − R̄t)(1a=At
− Πα

Ht
(a)) − γHt(a). (52)

The proofs of Lemma 1 and Proposition 1 will use

∂Πα
H(a)

∂H(b)
= αΠα

H(a)(1a=b − Πα
H(b)) (53)

and
∂2Πα

H(A)
∂H(b)∂H(a)

= α2Πα
H(A)(1a=A − Πα

H(a))(1b=A − Πα
H(b))

− α2Πα
H(A)Πα

H(a)(1b=a − Πα
H(b)) ≤ 2α2Πα

H(A). (54)

Note however that for given α, γ this modified procedure will converge to the same
optimal H∗ as the original procedure (i.e. α = 1) if we take γ/α2 instead of the original
γ (direct computations show that they share the same critical point equations).
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Abstract. The study of adversarial examples in deep neural networks
has attracted great attention. Numerous methods improve adversarial
robustness via shrinking the gap of features between natural examples
and adversarial examples. Nevertheless, the role of individual features in
adversarial robustness has not been explored adequately. In this paper,
we delve into this problem from the perspective of spectral analysis in
feature space. We find that while standardly trained deep models have
features distributed dominantly along eigenvectors with large eigenval-
ues, eigenvectors with smaller eigenvalues are more sensitive to adver-
sarial attacks. We attribute this phenomenon to the dominance of the
top eigenvalues, linked to the concept of intrinsic dimensionality. The
extracted features possess a small intrinsic dimensionality, enhancing
generalization but resulting in the model overlooking diverse features.
We propose a method called Feature Spectral Regularization (FSR) to
penalize the largest eigenvalue, so as to spread the distribution of eigen-
values. Comprehensive experiments demonstrate that FSR is effective
to alleviate the dominance of larger eigenvalues, increase the intrinsic
dimensionality, and improve adversarial robustness on multiple datasets.

Keywords: Adversarial example · adversarial robustness · spectral
analysis · distribution of eigenvalues · feature spectral regularization

1 Introduction

It is shown that the performance of Deep Neural Networks (DNNs) decreases
dramatically when confronted with adversarial examples [5,13,29]. To mitigate
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this vulnerability of DNNs, numerous methods have been proposed to improve
adversarial robustness [21,34]. Among them, adversarial training (AT) [21] has
achieved the state-of-the-art performance under various attacks [10]. Different
from standard training, adversarial training introduces adversarial examples into
DNN training to improve the adversarial robustness.

One primary aim of adversarial training is to eliminate the gap of features
between natural examples and adversarial examples [40]. However, without con-
sidering the distinction of contribution of individual features, this gap cannot be
addressed adequately. This is important since every feature may play a different
role in robustness. The work of [17] argued that adversarial examples result from
non-robust features [17], i.e., those generalize well in standard classification but
are brittle to adversary. This inspires us to measure the robustness of individual
features. While the work of [3,37] considered the influence of different channels of
DNNs on robustness, the spectral characteristics of features, i.e., the eigenvalues
and eigenvectors of feature covariance, have not been explored clearly.

In this paper, we analyze the connection between the spectral components
of deep features and adversarial robustness. Through applying principal compo-
nent analysis (PCA) to deep features, we split feature space into components
corresponding to different eigenvectors and eigenvalues. It is observed that stan-
dardly trained models often results in a sharp distribution of eigenvalues [38],
i.e., the eigenvalues rapidly decrease along the component dimension, as shown in
Fig. 1. This property may be beneficial for dimensionality reduction for improv-
ing the classification accuracy in standard setting [20,24], but it is yet unclear
how to exploit the spectral property for adversarial robustness. We hypothesize
that the sharp distribution of eigenvalues implies that deep models have learned
less diverse features while ignoring the vulnerability of features to adversary.
While a minority of eigenvalues occupying the overwhelming majority in the
sum of eigenvalues generalize well for standard classification, the eigenvectors
with smaller eigenvalues affecting adversarial robustness, are likely to be omit-
ted. To verify our hypothesis, we define a new metric to measure the variation
of features along different eigenvectors under attacks, as shown in Fig. 3∼4. Our
observation reveals that the adversary tends to project on more components
along the eigenvectors with smaller eigenvalues, and the variation of eigenvalues
can be alleviated by AT. This phenomenon could also be connected with intrinsic
dimensionality. The extracted features possess a small intrinsic dimensionality,
enhancing generalization but resulting in the model overlooking diverse features.

Therefore, we propose to improve adversarial robustness by alleviating the
sharp distribution of eigenvalues. To guide the spectrum of eigenvalues dis-
tributes on more components, we propose a regularizer named Feature Spectral
Regularization (FSR) to penalize the largest eigenvalue of the feature matrix
covariance. Empirical studies show that FSR spreads the overall distribution of
eigenvalues, making models focus on more spectral components. We also pro-
vide a theoretical explanation based on robust linear regression. Comprehensive
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Fig. 1. The architecture of DNN with Feature Spectral Regularization (FSR). FSR
alleviates the dominance of top eigenvalues and enhances the role of relatively smaller
eigenvalues. When combined with AT, FSR helps learn more diverse features, increasing
the intrinsic dimensionality (denoted by the solid circles).

experiments confirm that FSR indeed improves the adversarial robustness on
multiple datasets. Our contributions are summarized as follows:

– We find a close connection between the spectral property of features and
adversarial robustness. On one hand, standardly trained models produce a
sharp distribution of eigenvalues, which is beneficial for classification accuracy
in standard setting while harmful in adversarial setting. On the other hand,
the adversary tends to project more on eigenvectors with smaller eigenvalues.

– We propose Feature Spectral Regularization (FSR) to spread the overall dis-
tribution of eigenvalues in deep feature space, so as to improve the adversar-
ial robustness of DNNs, and a theoretical explanation based on robust linear
regression is provided.

– We verify that FSR is effective in improving adversarial robustness and alle-
viating the sharp distribution of eigenvalues, by comprehensive experiments.

2 Related Work

Adversarial Defense. Many defense methods have been proposed to improve
adversarial robustness since the discovery of adversarial examples [8,34]. How-
ever, many of them are proven to be non-effective because they highly depend on
obfuscated gradients [2]. Among these, adversarial training [21] is now regarded
as the state-of-the-art method [22,27]. Distinguished from standard training,
adversarial training trains DNN on adversarial examples:

min
θ

E(x,y)∈D max
x̃∈B(x,ε)

LCE (x̃, y; θ) , (1)

where D is the training dataset, the parameters of DNN are denoted as θ,
LCE is the cross-entropy (CE) loss, and B (x, ε) = {x̃ : ‖x̃ − x‖ ≤ ε} means the
constraint of perturbation in ε-ball. Furthermore, Projected Gradient Descent
(PGD) [21] is often used to generating adversarial examples in AT:

x̃ ← ΠB(x,ε) (x̃ + η · sign (∇x̃LCE (x̃, y; θ))) , (2)

where Π is the projection function and η is the step size of PGD.
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Based on adversarial training, some variants with new objective functions or
regularizations have been proposed. By introducing a trade-off between robust-
ness and generalization, TRADES [40] reaches comparative robustness with AT:

min
θ

E(x,y)∈D {LCE (x, y; θ) + β max
x̃∈B(x,ε)

DKL (fθ (x) ||fθ (x̃))}, (3)

where DKL (·||·) is the Kullback-Leibler divergence, β is the robustness regu-
larization, and fθ is the score function that maps an instance to the output
distribution (softmax of logits).

There are some works that build upon TRADES and AT. Gowal et al. [14]
found that training with generated data can enhance robustness. Adversarial
Weight Perturbation (AWP) [33] explicitly regularizes the flatness of weight
loss landscape, and forms a double-perturbation mechanism. Some works also
attempt to analyze the impact of AT on both individual samples [18] and cate-
gories [32]. However, apart from these, it is still not well understood how adver-
sarial training boosts adversarial robustness from the perspective of spectral
properties.
Spectral Properties of Feature Representations. Some studies have
revealed that the spectral properties of features influence the performance in
various learning tasks. For example, the spectral properties are crucial to detect
backdoors [15]. The eigenvectors corresponding to the larger eigenvalues are
found to dominate the transferability of features in domain adaptation [9]. By
utilizing the principle of Maximal Coding Rate Reduction, it is theoretically
proven that the larger several singular values of feature matrix for every class
should be equal to learn the maximally diverse representation [38]. Some works
also analyze neural networks’ spectral properties from a theoretical perspec-
tive [26,28,31], such as analyzing the properties of the Jacobian matrix.

Different from these studies, we analyse the connection between adversarial
robustness and spectral components of deep features. We aim to explore which
components are more fragile under attacks, and propose a method to boost
adversarial robustness by constraining spectral properties.

3 Spectral Analysis in Feature Space

In this section, we investigate the connection between spectral properties and
adversarial robustness.

3.1 Curve of Eigenvalues and Adversarial Robustness

Given a dataset D = {(xi, yi)}n
i=1 including C classes, xi represents the input

data and yi is the label. DNN is composed of a feature extractor h (·) : RD → R
d

and a linear classifier g (·) : Rd → R
C . After centralizing the learned features

(i.e. 1
n

∑n
i=1 h (xi) = 0), we decompose the learned features by spectral decom-

position:
1
n

n∑

i=1

h (xi) h (xi)
T =

d∑

j=1

ujλju
T
j , (4)
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where λj means the eigenvalues with index j and uj ∈ R
d represents its eigen-

vector. We choose a popularly used architecture, ResNet-18 [16], to be trained
using both standard training and adversarial training on CIFAR-10 [19]. The
parameters for AT are the same as that in [27]. We calculate the eigenvalues by
applying Eq. (4), and plot them in Fig. 2. The features come from the penulti-
mate layer (512 dimensions). All the features are extracted from the test set in
CIFAR-10. A part of the eigenvalues is shown for better visualization.

Fig. 2. Spectral analysis with features extracted from (a) natural examples and (b)
adversarial examples on CIFAR-10. We scale all the eigenvalues. “PC-ID” [1] denotes
the estimated intrinsic dimension (ID) of features. The sharp distribution of eigenvalues
in standardly trained model leads to a lower ID, while ID becomes higher by imposing
adversarial training and FSR.

Difference of models in spectral properties. As shown in Fig. 2(a)(b), the
eigenvalues of a standardly trained model drop rapidly at some point, while this
tendency is much alleviated by AT. The sharp distribution of eigenvalues in
standard training makes just a few eigenvalues informative according to PCA,
and the eigenvectors which may endow useful features are overly penalized. Con-
sequently, model fails to recognize the change of features along eigenvectors with
smaller eigenvalues. Inspired by the above observation, we propose a hypothe-
sis that the severe dominance of the top eigenvectors is a cause of vulnerability
in DNN, and the adversary projects on more components in eigenvectors with
smaller eigenvalues. We will verify the proposed hypothesis in the next section.
Connection with intrinsic dimensionality. To quantitatively describe the
decreasing tendency in eigenvalues, we introduce intrinsic dimensionality (ID)
i.e., the minimal number of parameters needed to describe a representation. ID
has a close connection with natural accuracy [1], and reduction of ID contributes
to an improvement on natural accuracy. We adopt PC-ID proposed by [1] to esti-
mate ID, which is determined by the number of principal components included
to describe 90% of the variance. As shown in Fig. 2, ID of a standardly trained
model is very small, while models obtained by AT is higher. This also verifies
that there exists a trade-off between generalization and robustness [30,40] from
the perspective of ID. Our proposed FSR could further increase ID, based on
AT.
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Fig. 3. Variation of all eigenvectors in feature space to adversarial attacks on CIFAR-
10. “STD” means training on natural examples. “AT” means training on adversarial
examples. The results reveal that the adversary projects on more components along the
eigenvectors with smaller eigenvalues, and this phenomenon is alleviated by adversarial
training. It is noteworthy that the range of ordinate values for “STD” is different from
“AT”.

Fig. 4. Variation of eigenvectors in feature space under attack on CIFAR-100.
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3.2 Variation along Eigenvectors under Attacks

To verify the hypothesis that adversary projects on more components along
eigenvectors with smaller eigenvalues, we define a metric to quantitatively
describe the change of features along different eigenvectors under attack, called
variation.

Definition 1 (Alignment). Given a dataset Ds = {xs,i, ys,i}n
i=1 which may

be perturbed. The alignment of Ds to the pre-given direction uj is calculated
by the expectation over cosine similarity between features extracted by DNN and
the direction vector uj:

align (Ds,uj) = E
(xs,i,ys,i)∈Ds

|〈h (xs,i) ,uj〉|
‖h (xs,i)‖ · ‖uj‖ , (5)

where the norm ‖·‖ used is Euclidean norm, and uj is calculated by Eq. (4). The
calculation of uj is based on features covariance of natural examples.

Definition 2 (Variation). Given a dataset D consist of natural examples and
its perturbed dataset Dadv. The variation on direction uj is defined as the ratio
between alignment on Dadv and D:

r (Dadv,D,uj) =
align (Dadv,uj)
align (D,uj)

. (6)

The alignment is correlated with the distance between subspace spanned by
uj and the feature space, so the change of alignment is suitable to describe
the influence of attacks on direction uj . Our metric is similar to [15] in ana-
lyzing backdoors, but we define the alignment by cosine similarity while the
latter uses the inner product. Compared with inner product, cosine similarity
could eliminate the influence of scale. We give an intuitive explanation about
the defined metric in Fig. 5. Suppose the distribution transfers from Fig. 5(a)
to (b) under attack, we draw an original data x and its shifted data xadv.

Fig. 5. A toy model that
demonstrates the validity of
the defined variation.

Take the fixed direction u2 as an illustra-
tion, the cosine similarity between x and u2 is
the defined alignment. If the distribution moves
from Fig. 5(a) to (b), then alignment increases.
Consequently, the change of cosine similarity can
describe how the features change along a direction
under attacks. For the variation defined in Eq. (6),
r(Dadv,D,uj) > 1 means the features project
on more components along direction uj , and vice
versa. Therefore, we compare r(Dadv,D,uj) with
1 to observe whether the adversary adds or reduces
the components along the eigenvectors.
The adversary projects on more components
along the eigenvectors with smaller eigen-
values. The results of visualization on CIFAR-10
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and CIFAR-100 are shown in Fig. 3∼4. The attacks include FGSM [13] and
PGD (step size ε/10 for 10 steps) [21]. We set attack budget ε from 1

255/ 2
255/ 4

255
constrained by �∞ norm. As observed in Fig. 3(a), the variation keeps close or
smaller than 1 for the several largest eigenvalues in standardly trained model.
However, the variation of smaller eigenvalues is much larger than 1. This indi-
cates that FGSM tends to project on more components along the eigenvectors uj

with smaller eigenvalues. A similar phenomenon also exists in other attack and
datasets. For models trained by AT, variation of all eigenvectors keeps close to
1, and the high variation of directions with smaller eigenvalues visibly decreases.
Similar to [17], the features along the eigenvectors with larger eigenvalues are
regarded as robust features, and these along the direction with smaller eigenval-
ues are non-robust features. The analysis above motivates us to regularize the
spectrum signatures.

4 Feature Spectral Regularization

In this section, we propose a method to regularize the distribution of eigenvalues,
aiming to alleviate the dominance of the top eigenvalues. We first present our
method, and then provide a theoretical analysis.

4.1 Realization of FSR

Through the analysis above, the sharp distribution of eigenvalues weakens the
information contained by the smaller eigenvalues, and causes fragility to adver-
sarial attacks. A promising approach to alleviate such phenomenon is to sup-
pressing the largest eigenvalues, which could mitigate the dominance of the
largest eigenvalues relatively. Another straightforward idea is to increase the
small eigenvalues during training. However, small eigenvalues are usually numer-
ically unstable, which may be easily affected by noise or round-off error in opti-
mization. In this paper, we propose a method called Feature Spectral Regu-
larization (FSR) by penalizing the largest eigenvalues of feature covariance in
a batch of data:

LFSR (F ) = w (τ) · λmax

((

F − 1
m

1F

)T (

F − 1
m

1F

))

, (7)

where λmax (·) denotes the largest eigenvalue of a matrix, w (τ) = min {τ/T0, 1}
is the weighting function of current epoch τ with a hyper-parameter T0, and
1 ∈ R

m×m is a constant matrix with each element equal to 1 for calculating the
mean. Moreover, F ∈ R

m×d is the feature matrix of a batch composed of row
vectors h (xi)

T, i.e., F = [h (x1) |h (x2) | · · · |h (xm)]T, and m is the number of
samples in a batch of data.

In practice, we can just access the batch of data to approximate the statistics
of feature space. However, the eigenvalues change drastically in the early stages of
training, which may cause instability on optimization, so we apply a piecewise
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linear function w(τ) to smooth the training stage. The λmax (·) in Eq. (7) is
equal to the square of the largest singular value in feature matrix (F − 1

m1F ) by
Singular Value Decomposition (SVD). The realization of FSR is very simple with
the help of PyTorch in a few lines of code. In code written based on PyTorch,
backpropagation can be automatically executed by the program.
Summarized objective loss. Adversarial training [21] has been widely proven
to be a strong baseline in adversarial defense. We build and incorporate the pro-
posed FSR into AT training framework for further improving model robustness
significantly. The final objective is:

Ladv (x, y; θ) = LCE (xadv, y; θ) + βFSR · LFSR (Fadv) , (8)

where βFSR is a hyper-parameter that controls the trade-off between two items,
xadv represents the adversarial example generated from x by PGD [21] using
cross-entropy loss, and Fadv is the feature matrix of adversarial examples. Besides
AT, we also apply FSR to strong defense methods like TRADES [40].
Computational complexity. SVD is an extra computational cost induced
by FSR. For a matrix F ∈ R

m×d, the time complexity of SVD is
O

(
min

{
m2 · d,m · d2

})
. Since the batch size is often small, the excess cost in

computation is negligible compared to adversarial training.

4.2 Theoretical Analysis

Consider a linear regression model ŷ = 〈z, θ〉 with �2 perturbation δ based on
the feature z ∈ R

d, the underlying parameter obtained by minimizing
mean square error is θ0 ∈ R

d without perturbation. We assume the mean of
features E(z) = 0 and covariance matrix Var(z) = Σ. Following the adversarial
risk define by [35], Radv is expressed in Eq. (9):

Radv (θ, δ) = Ez max
‖zadv−z‖≤δ

(〈zadv, θ〉 − 〈z, θ0〉)2 . (9)

The optimal solution of Eq. (9) denoted as θadv has the following formulation
with the ridge regression:

θadv = (Σ + λI)−1
Σ θ0, (10)

where λ can be regarded as a constant [35].
Given samples {zi, yi}n

i=1, the feature matrix composed of row vector zT
i is

denoted as Z ∈ R
n×d, then Σ = 1

n ZTZ. y = [y1, y2, · · · , yn]T ∈ R
n is a column

vector composed of real-valued output yi (i = 1, · · · , n). Previous methods tend
to regularize the classifier θ [36]. However, we could directly analyse how the
feature Z influences the robustness of model. If the feature is more robust for
classifier, then whether using the classifier θ0 or θadv should have the same
prediction. Thus, we define the residual risk induced by features Z:

min
Z

Rres (Z) = ‖Zθadv − Zθ0‖2 , s.t. ‖Z‖2F = s0. (11)
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It is essential to normalize the scale of features for comparable representation,
so we restrict the norm of Z as used in [38]. The SVD of matrix Z ∈ R

n×d has the
form: Z = UDV T . Here U = [u1, · · · ,un] ∈ R

n×n and V ∈ R
d×d are orthogonal

matrices. Observe that the constraint for Z only depends on its singular values,
i.e., ‖Z‖2F =

∑min{n,d}
i=1 σ2

i = s0. Suppose d < n and σi > 0, then Rres is
simplified to the expression by combining Eq. (11) and Eq. (10):

min
(σ1,··· ,σd)

Rres (σ1, · · · , σd) = min
(σ1,··· ,σd)

∥
∥
∥
∥
∥
∥

d∑

j=1

uj
λn

σ2
j + λn

uT
j y

∥
∥
∥
∥
∥
∥
2

, s.t.

d∑

j=1

σ2
j = s0.

(12)

Theorem 1. Rres (σ1, · · · , σd) is minimum when all the singular values of Z
are equal.

As FSR penalizes the largest singular value in feature matrix, it alleviates the
dominance of large singular values and helps contribute to equal singular values
under the normalized condition, helping reduce the residual risk (Table 2).

Table 1. Test accuracy (%) on CIFAR-10 under white-box attacks using ResNet-
18. The maximum �∞ perturbation is ε = 8/255. The best results are boldfaced for
highlight. “Natural” means the classification accuracy on clean images.

Defense Natural FGSM PGD-20 C&W AA

AT 82.14±0.24 57.38±0.37 51.52±0.19 50.52±0.28 48.07±0.14

AT + FSR 82.57±0.3658.02±0.5252.12±0.1651.36±0.17 48.91±0.17

TRADES 83.73±0.06 58.09±0.14 51.10±0.10 49.67±0.13 48.18±0.13

TRADES + FSR 84.08±0.4858.43±0.1051.66±0.0550.00±0.08 48.62±0.17

Table 2. Test accuracy (%) on CIFAR-100 under white-box attacks using ResNet-18.
The maximum �∞ perturbation is ε = 8/255.

Defense Natural FGSM PGD-20 C&W AA

AT 55.63±0.0630.87±0.12 27.62±0.20 26.14±0.18 23.93±0.17

AT + FSR 54.58±0.05 32.16±0.1429.01±0.2626.88±0.37 24.76±0.14

TRADES 56.03±0.65 29.84±0.07 26.22±0.25 23.83±0.32 22.81±0.20

TRADES + FSR 57.64±0.1632.10±0.0828.38±0.1525.14±0.21 23.85±0.17

Discussion about the linear model. We present a sample statistical setting
where we rigorously uncover the inherent connection between spectral properties
and adversarial robustness. It is noteworthy that the theoretical analysis in the
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Table 3. Test accuracy (%) on SVHN under white-box attacks using ResNet-18. The
maximum �∞ perturbation is ε = 8/255.

Defense Natural FGSM PGD-20 C&W AA

AT 90.16±0.2159.94±0.4747.86±0.21 45.24±0.38 42.00±0.20

AT + FSR 89.37±0.75 59.79±0.77 50.86±0.3847.85±0.24 44.41±0.24

TRADES 92.48±0.1168.73±0.15 58.82±0.34 55.48±0.21 52.56±0.06

TRADES + FSR 92.39±0.35 69.72±0.2959.04±0.2255.64±0.07 52.78±0.28

linear case is meaningful and widely used. Many theoretical works have adopted
the linear case for analytical solutions since simple settings can manifest as
special cases of more complex settings. For example, the work of [30] used a linear
model to theoretically analyze the trade-off between robustness and accuracy.

5 Experiments

In this section, we evaluate the effectiveness of the proposed FSR on CIFAR-
10 [19], CIFAR-100 [19] and SVHN. FSR is applied to two baselines: 1) AT [21,
27]; 2) TRADES [40]. It is noteworthy that AT is the most effective method to
improve adversarial robustness [22,27] in RobustBench [10].

Table 4. Test accuracy (%) based on final checkpoint under white-box attacks using
ResNet-18 on CIFAR-10. The maximum �∞ perturbation is ε = 8/255.

Defense CIFAR-10 CIFAR-100 SVHN

PGD-20C&W PGD-20C&W PGD-20C&W

AT 43.65 44.17 19.94 20.46 41.94 43.35

AT + FSR 44.91 44.7922.46 21.1244.04 44.25

TRADES 50.85 49.6626.32 23.44 57.99 55.05

TRADES + FSR 51.15 49.54 28.43 24.6859.11 59.13

Experimental Settings. For CIFAR-10 and CIFAR-100, we set the �∞ pertur-
bation with ε = 8/255, the step size of attack 2/255, and the inner iteration steps
10. The step size is 1/255 for SVHN. We train ResNet-18 [16] using momentum
optimizer with the initial learning rate of 0.1. The weight decay factor is set to
5e − 4. For AT, we train 200 epochs and the learning rate decays with a factor
of 0.1 at 100 and 150 epochs [27]. For TRADES, we train 120 epochs with the
learning rate divided by 0.1 at epochs 75, 90, and 100 [40]. The parameter for
regularization (1/λ) is set as 4 for TRADES. For FSR, we set βFSR = 0.01.
Other hyper-parameters keep the same as their original paper. Considering that
the settings have a distinct influence on robustness [22], the hyper-parameters
remain unchanged while adding our FSR.
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5.1 Performance under white-box attacks

We adopt various white-box adversarial attacks: FGSM [13], PGD-20 (step size
ε/4) [21], C&W (�∞ version optimized by PGD) [7]. Following the instruction
proposed in [6], we use 5 random starts at random offsets away from the ini-
tial when applying iterative attacks. The settings for evaluation promote a quite
strong attack. We report the best checkpoint (the highest robustness under PGD
from different checkpoints) as used in [27]. The test accuracy is reported in
Table 1∼3. The results show that FSR improves adversarial robustness. We also
test the robustness under AutoAttack (AA) [11], which is now regarded as the
strongest attack. FSR is also effective to improve robustness under AA. The
detailed results show that FSR indeed boosts robustness, rather than depend-
ing on obfuscated gradients [2]. The improvement on various datasets reveals
that FSR has a consistent promotion. We also report the performance of final
checkpoint in Table 4, showing that FSR improves the performance in final
checkpoint.
Combination with other methods. To validate that FSR is an effective
module, we combine FSR with Adversarial Weight Perturbation (AWP) [33],
which is one of the strongest defense in RobustBench [10]. The results are listed
in Table 5, showing that FSR attains improvement on adversarial robustness
based on AWP, especially under CW attack and AA.
Performance under WideResNet. We conduct experiments on the larger
network WideResNet-34-10 [39]. We realize our method based on AT [27] and
AT-AWP [33], as shown in Table 6. The “Best” means the checkpoint of best
performance under PGD, and the “Last” is the performance of final checkpoint.
The results verify that our method is also effective in WideResNet. Experiments
based on some new architectures (such as vision transformers [12]) require many
detailed modifications for adversarial training [4]. The related theoretical anal-
ysis and experiments are worth exploring as a future direction.
Remark. We would like to provide supplementary explanations for these results.
(1) The paper’s experiments cover a broad spectrum, including various attacks,
defenses, backbones, and datasets. These consistently and steadily validate the
effectiveness of FSR. (2) We repeat the experiments in Table 1∼3. The compre-
hensive results reveal a steady improvement. (3) The proposed FSR is a simple
module readily pluggable into any defense method in a few lines of codes. FSR
could achieve a competitive improvement with recent work [18,25] on AutoAt-
tack. In addition, FSR is motivated by the connection between spectral signa-
tures and robustness, so it could provide new insights to understand adversarial
robustness.

5.2 Performance under black-box attacks

Transferability is an intriguing property for adversarial example to implement
black-box attack [23]. Transfer attack is beneficial to verify that our method does
not rely on gradient masking. As suggested by [6], we adopt another adversarially
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Table 5. Test accuracy (%) on CIFAR-10 under white-box attacks using ResNet-18
based on AWP. We report the results based on best checkpoint. The maximum �∞
perturbation is ε = 8/255.

Defense NaturalFGSMPGD-20C&W AA

AT-AWP 80.23 59.03 55.13 51.38 49.48

AT-AWP + FSR 80.63 59.11 55.13 51.9949.93

Table 6. Test accuracy (%) on CIFAR-10 under white-box attacks using WideResNet-
34-10.

Defense FGSM PGD-20 C&W

Best Last Best Last Best Last

AT 61.85 57.69 55.1047.46 53.54 48.12

AT + FSR 62.2259.1254.93 47.8953.9848.32

AT-AWP 63.64 63.9658.17 57.09 55.81 55.11

AT-AWP + FSR 64.1963.59 58.2358.0155.9956.25

Fig. 6. Spectral analysis of FSR. (a) normalized eigenvalues on CIFAR-10; (b) normal-
ized eigenvalues on CIFAR-100; (c) normalized eigenvalues on SVHN.

trained ResNet-18 as the substitute model. The results are listed in Table 7,
revealing that FSR also improves robustness under black-box attacks.

Table 7. Black-box attack robustness (%) under transfer attack on CIFAR-10, CIFAR-
100 and SVHN. The parameters of threat model are the same as white-box attack. The
best results are boldfaced for highlight. The backbone is ResNet-18.

Defense CIFAR-10 CIFAR-100 SVHN

FGSMPGD C&W FGSMPGD C&W FGSMPGD C&W

AT 63.63 61.12 61.36 41.50 40.94 42.27 67.24 62.09 63.57

AT + FSR 63.74 61.2561.63 41.93 41.4242.69 67.39 62.7264.54

TRADES 65.34 62.94 62.68 40.76 39.98 41.31 73.13 68.90 70.11

TRADES + FSR 65.98 63.6063.40 42.57 41.9143.22 73.35 69.3270.60
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Table 8. Test accuracy (%) under white-box attacks for different βFSR on CIFAR-10.
The backbone is ResNet-18.

βFSR 0 0.0050.0100.0200.060

Natural 82.0281.9682.1881.8481.74

PGD-20 51.6352.4252.2452.7752.21

C&W 50.2851.0450.7751.2150.75

Table 9. Test accuracy (%) on CIFAR-10 under AutoAttack using ResNet-18 while
suppressing the largest k eigenvalues.

k 1 2 4 8 12 16

AA 48.7148.9549.0249.1748.5548.14

Besides, we analyse the influence of FSR on the eigenvalue spectrum, as
shown in Fig. 6. To eliminate the influence from the scale of features, the eigen-
values are divided by the maximum eigenvalue. As shown in the figure, FSR
increases the eigenvalues relatively, which is consistent with our intention for
FSR.

5.3 Ablation Studies

Sensitivity analysis of βFSR. We explore how the weight of FSR βFSR influ-
ences the performance, as listed in Table 8. It reveals that FSR significantly
improve robustness with a wide value range. In this paper, we choose β = 0.01
considering both generalization and robustness.
Suppressing more eigenvalues. In previous part, FSR only penalizes the
largest eigenvalue. We explore the influence of penalizing more eigenvalues in
Table 9. As properly increasing the number, the robustness is further improved.
However, if we further keep increasing k, the robustness declines. We think it is
due to that k has some trade-off with the weight of FSR.

6 Conclusion

In this paper, we delve into the discrepancy between natural examples and adver-
sarial examples from the perspective of spectral analysis. The variation of dif-
ferent eigenvectors under adversarial attacks is analysed. It is shown that the
spectral directions with smaller eigenvalues are more fragile under attack, which
is induced by the dominance of the top eigenvectors. Based on the analysis, a
method called Feature Spectral Regularization (FSR) is proposed to penalize the
largest eigenvalues of the batch covariance matrix, which is numerically stable
and could enlarge the overall eigenvalues relatively. We also provide a theoretical
analysis in robust linear regression. FSR is a simple module readily pluggable
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into any defense method. Through comprehensive experiments, we show that
FSR can effectively improve adversarial robustness.
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Fig. 1. We perform PCA dimensionality reduction mapping on an anchor sample(a
given sentence), negative samples in the same batch, and negative samples mined by
our method to a 2D plane. The red circle indicates close proximity to the anchor, while
the blue circle signifies similarity with a distinct difference.

1 Introduction

Learning effective sentence representations remains a crucial task in the field
of Natural Language Processing (NLP), as it lays the foundation for various
downstream applications such as Semantic Textual Similarity [30], Information
Retrieval [20] and Question Answering [26]. Recent advances in pre-trained lan-
guage models(PLM), such as BERT [12] and RoBERTa [24], have significantly
improved the quality of sentence embeddings. However, the issue of anisotropy in
these embeddings persists [16,23], thus limiting their representational capacity.

Contrastive learning has emerged as a promising approach to improve sen-
tence representational capacity in fine-tuning PLM. By distinguishing between
semantically similar and dissimilar sentence pairs, it refines sentence represen-
tations [17,44]. Contrastive learning typically involves comparing positive and
negative samples with an anchor sentence. Positive samples should be semanti-
cally close to the anchor, while negative samples should be diverse, including hard
negatives that are partially similar but not identical to the anchor [15,31]. Com-
pared to the sustained focus on the construction of positive samples [17,40,43],
research on negative sample selection has not received equal attention. This dis-
crepancy becomes particularly evident during negative sampling, as researchers
often simply consider other samples within the same batch as negatives.

We can observe some shortcomings of in-batch samples from Figure 1. Firstly,
the distribution of distances between these in-batch negative samples and the
anchor point is overly random, with some even overlapping the anchor point, and
they tend to cluster densely in the lower right corner of the plane. Negative sam-
ples selected in-batch are likely to include false negatives, which are sentences
that are semantically close to the anchor but are incorrectly labeled as dissimilar.
This negative sampling method can lead to the model mistakenly pushing away
semantically related sentences, thereby hindering the learning process. Moreover,
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due to the anisotropy problem, the representations of the selected negative sam-
ples often originate from a narrow representation cone, which fails to adequately
reflect the global semantics of the representation space. These issues all point to
the inadequacies of the current negative sampling strategy.

Recent studies have attempted to address these issues, DCLR [44] use Gaus-
sian distribution to generate samples, filtering those far from anchors with an
auxiliary model. ClusterNS [11] use mini-batch clustering for negative sampling.
Despite adopting innovative methods to reduce false negatives, neither approach
can ensure the acquisition of a sufficient number of high-quality hard negative
samples. Although effective negative samples can be acquired by retrieval [38]
or data augmentation [35], it is still a time-consuming process. Thus, getting
quality hard negatives remains a challenge in contrastive learning.

In order to address the restrictions of existing contrastive learning approaches
in negative samples selection, we introduce a framework called Cluster-Mined
Negative Samples for Enhanced Unsupervised Sentence Representation Learn-
ing (CMNS). This framework uses K-means clustering algorithms to mine high-
quality negative samples from unlabeled datasets, thereby optimizing the con-
trastive learning process. Our approach primarily focuses on the selection of
hard negative samples and the handling of false negative samples. First, we
introduce Dynamic Clustering Queues to store and retrieve sentence representa-
tions, ensuring sample diversity and quality. Using clustering, we group samples
by their cosine similarity with the clustering queues and assign each to the
most similar queue. Subsequently, we choose the second most similar cluster to
the anchor sample as the source of hard negatives. As shown in Figure 1, our
mined negatives surround the anchor point at an appropriate distance, providing
semantic information for the model sufficiently. Since samples within the same
cluster lack explicit label data, we treat them as false negatives and constrain
their impact using a bidirectional margin loss. Finally, we generate virtual neg-
atives by adding Gaussian noise to the centroid of the hard negatives cluster in
order to enhance the uniformity of the representation space.

Overall, our negative sampling approach provides an effective solution that
seamlessly integrates with existing methods. Precisely, our approach outperforms
SimCSE by 2.09% / 1.70% on BERTbase / RoBERTabase respectively, and also
surpasses PromptBERT by 0.58% on BERTbase. The following are our primary
contributions:

1. We introduce Dynamic Clustering Queues to maintain a group of sample
clusters, which enables the identification of hard negative samples and the
resolution of false negative issues. Our clustering analysis indicates enhanced
model discriminability.

2. We generate virtual negative samples by introducing noise to the center of
hard negative samples, ensuring the diversity and completeness of the negative
samples.

3. Experiments conducted on semantic textual similarity (STS) tasks show that
our approach significantly outperforms baseline models.
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2 Related Work

2.1 Contrastive Learning.

Contrastive learning initially achieves remarkable results in the fields of computer
vision [18] and information retrieval [6]. Subsequently, Chen et al. [9] propelled
contrastive learning into the mainstream by modifying the contrastive loss and
introducing data augmentation techniques [9]. In the field of unsupervised sen-
tence representation learning, utilizing data augmentation methods to generate
positive pairs has also yielded significant achievements [6,17,23]. For instance,
Gao et al. [17] employ dropout as a data augmentation technique, significantly
improving performance on semantic textual similarity tasks. During this phase,
the selection of negative samples primarily relied on random sampling within a
batch or from the entire dataset. Subsequently, negative samples selection meth-
ods are optimized. Zeng et al. [41] attempt to derive negative templates from the
negation of different prompt templates, but such fixed templates may introduce
bias. Deng et al. [11] perform clustering sampling on samples within a batch, yet
this approach may lack sufficiently effective negative samples. Zhou et al. [44]
achieve uniformity in negative samples by generating them using random Gaus-
sian noise and introduced an additional model to assist training, reducing the
impact of false negative samples on model training. However, this method cannot
fully guarantee the high-quality of negative samples.

2.2 Clustering Integration

Clustering methods are integrated into deep learning frameworks and employed
for unsupervised representation learning [23,42]. Additionally, Prototypical Net-
works [32], a specific clustering approach, has gained popularity in few-shot
learning [13]. Furthermore, several research efforts have combined clustering with
contrastive learning [11,36]. Among these, Wang et al. [36] present a contrastive
approach to clarify ambiguous labels in partial label learning, while Deng et
al. [11] attempt to address the issue of negative samples quality through in-
batch clustering.

3 Preliminaries

Our goal is to unsupervisedly fine-tune a pre-trained language model to enhance
its sentence representation capabilities. Through fine-tuning, we expect seman-
tically similar sentences to be closer in the embedding representation space,
while sentences with significant semantic differences are dispersed farther apart.
Contrastive learning has proven effective in distinguishing semantic differences
between sentences. It often uses the InfoNCE loss [27] to measure similarity
between positive and negative sample pairs for representation learning. For a
given anchor sentence xi, SimCSE uses dropout, and PromptBERT uses prompt
templates for data augmentation, both creating positive sample x+

i . These meth-
ods typically choose other sentences from the same batch as negative samples
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{xj}, and the sentence embeddings presentation are then utilized in the InfoNCE
loss:

LInfoNCE = − log
esim(xi,x

+
i )/τ

∑N
j=1 esim(xi,xj)/τ

, (1)

where sim(xi, xj) is the cosine similarity xT
i ·xj

‖xi‖‖xj‖ , N is the batch size and a
temperature parameter τ that controls the distribution of smoothing.

Although contrastive learning aids in understanding semantic differences, the
quality of negatives drawn from the same batch can limit its effectiveness, which
emphasizing the importance of mining high-quality negative samples.

Fig. 2. Our framework CMNS uses the Dynamic Cluster Queues to create sample
groups. The xi’s second-closest cluster is treated as hard negatives and noise-based
virtual negatives are generated from its centroid. Then we use InfoNCE loss to discern
positives from these negatives. Additionally, we regard xi’s cluster as false negatives,
constrained by BML loss.

4 Approach

4.1 Dynamic Cluster Queues

In order to mine more high-quality negative samples, we introduce a Dynamic
Clustering Queues, denoted as Q. The Q is a container of K clusters C
={Ck}K

k=1, each containing T unique sentence representations. For the k-th clus-
ter Ck, which is implemented by a queue, is used to organize similar representa-
tions of sentences. By constructing the Dynamic Clustering Queues Q, sentence
representations can be stored and updated dynamically.
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When initialising Q, we heuristically select the K sentence representations
with the least similarity within the batch, and assign each sentence representa-
tion xk to the cluster Ck as the initial centroid ck. This ensures dispersion in
the initial K cluster vector space. The sentence clustering process based on the
K-means algorithm after initialization is as follows:

(1) For each sentence xi in a mini-batch, we compute its cosine similarity
with each cluster centroid ck. Then, we sort the clusters in descending order of
the computed similarity scores, generating an ordered list (Ci1, Ci2,...,CiK). For
instance, Ci1 represents the cluster most similar to the sentence xi, Ci2 is the
second most similar.

(2) During enqueue, we assign the sentence xi to the cluster Ci1 that is most
similar to xi. If the number of sentence represent in cluster Ci1 has reached the
limit T , we perform a dequeue operation. Then, we update the centroid ci1 of
cluster Ci1 based on the average representation of all sentences in Ci1.

4.2 Hard Negatives

In contrastive learning, the selection of suitable negative samples is critical for
improving the performance of the model. Hard negatives [7,18], which are highly
similar to the anchor but belong to a different class, play an important role in
improving the generalization capability. The Dynamic Cluster Queues effectively
identify these valuable hard negatives. Specifically, we determine the cluster Ci2

that is the second most similar to the anchor xi, and then select all samples
from cluster Ci2 as hard negatives. These carefully chosen samples, which share
semantic similarities with the anchor while maintaining fine-grained differences,
provide essential gradient information for refining the model’s ability to detect
subtle distinctions. Through this strategy, we ensure that the model learns more
precise feature representations, ultimately enhancing its overall performance.

4.3 Virtual Negatives

The diversity of negative samples is key to effective contrastive learning, enhanc-
ing the quality of learned representations, particularly with hard negatives. To
boost this diversity, we create challenging virtual negatives by adding Gaussian
noise [44] to existing hard negatives. In our framework, ci2 represents the cen-
troid of the cluster Ci2, which consists of hard negatives for xi. Using ci2 as
a foundation, we can generate a set of R virtual negatives Zi by introducing
Gaussian noise. These virtual negatives are designed to be both similar to and
distinct from xi:

Zi = zij = ci2 + γNj , j ∈ {1, 2, 3, . . . , R}, (2)

where γ is a hyperparameter controlling noise degree, N is a random noise vector
from a standard Gaussian distribution and R is the number of virtual samples
to be generated.
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We consider that virtual negative samples may be overly concentrated or
overlapping, resulting in repetitive learning content. Therefore, we design a uni-
formity maximization loss (UnifMax): we calculate the minimum cosine dis-
tance between each pair of virtual negative samples, take the distances average
as the regularization term, to encourage the model to learn a more uniformly
distributed embedding representation. Simultaneously, the cosine similarities
between virtual negatives and anchor xi is incorporated into the loss function
to avoid virtual negatives being too close to xi in feature space. Through S-step
iterative optimization as:

UnifMax = − 2
R(R − 1)

R∑

p=1

R∑

q=p+1

(1 − sim(zip, ziq)) − 1
R

R∑

j=1

sim (xi, zij) , (3)

where zip and ziq represent different virtual negatives in Zi. In each iteration,
the loss is computed using current virtual samples, which are then regenerated
after each update. In this method, noise-based virtual negatives are optimised,
thereby enhancing the diversity of hard negatives. Using the virtual negative
generation method, we merge it with the hard negatives approach described in
subsection 4.2 to produce the negatives incorporated in the InfoNCE loss:

Lcl = − log
esim(xi,x

+
i )/τ

∑
j esim(xi,xj)/τ + μ

∑
x− esim(xi,x−)/τ

, (4)

where xj is the in-batch negative, x− ∈ Ci2 ∪ Zi represents all negative samples
generated by our framework and μ is the weight of them.

4.4 False Negatives and BML Loss

In our framework, sentences in cluster Ci1 exhibit high similarity to the anchor
sentence xi. However, in an unsupervised learning context, capturing pre-
cise semantic relationships between sentences is challenging. As exemplified in
Figure 2, while the textual similarity between sentences in Ci1 and xi is evident,
their semantic content exhibits a degree of distinction. Therefore, we refrain from
simply classifying Ci1 as positives and instead consider them as false negatives
in the semantic sense. Critically, the dynamic updating of cluster centroids con-
tinuously modulates the similarity between these false negatives and the cluster
centroids, further complicating their relationship with xi. To tackle this com-
plexity, we adapted the bidirectional margin loss (BML) [35] for our clustering
methodology. Our goal is to use BML loss to precisely differentiate between false
negatives, positive pairs, and hard negatives.

Specifically We’ve defined two metrics: Δ1 compares the cosine similarity of
false negatives and anchor xi to that of positive pairs. Δ2 compares the cosine the
similarity between cluster Ci2’s centroid ci2 and xi with that of false negatives
and xi:
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Δ1 = cos (Ci1, xi) − cos
(
x+

i , xi

)
,

Δ2 = cos (ci2, xi) − cos (Ci1, xi) ,

Lbml = ReLU(Δ1 + α) + ReLU(Δ2 + β),
(5)

Through the application of through the BML loss, we constrain the similar-
ity between false negatives and xi to lie within a specific range relative to the
positive examples and the centroid ci2 of hard negatives. This range is defined
as [cos(ci2, xi) + β, cos(x+

i , xi)- α], allowing the model to more accurately dis-
entangle textual similarity from semantic similarity.

Finally, by combining Eq. 4 and Eq. 5, we arrive at our training objective: a
weighted blend of contrastive learning loss and bidirectional margin loss:

L = Lcl + λLbml, (6)

where λ is a hyperparameter. The complete formulaic process of the CMNS is
shown in Appendix A.

5 Experiments

5.1 Experiment Setup

Drawing upon previous methods [17,22], we utilize the SentEval Toolkit [10] to
conduct our experiments on seven STS tasks [1–5,8,25]. For evaluation, we adopt
Spearman’s correlation coefficient as the metric and follow SimCSE’s aggregation
methods of results method [17].

5.2 Implementation Details.

Our work is built upon the Huggingface Transformers library. The experiments
are conducted on four NVIDIA RTX 2080Ti 11GB GPUs. Our models derive
from SimCSE [17] and PromptBERT [21], with the former serving as the founda-
tion for our Non-Prompt CMNS and the latter as the basis for our Prompt-based
CMNS. We utilize the pre-trained BERT and RoBERTa models, which are sub-
sequently fine-tuned on a subset of 1 million randomly selected sentences from
Wikipedia. Models are trained for 1 epoch with temperature τ = 0.05 using an
Adam optimizer, with a learning rate adjusted according to the model size. To
maintain fairness, we evaluate performance on the STS-B and SICK-R develop-
ment sets at 125-step intervals throughout the training process to select the opti-
mal checkpoint for final evaluation. Our experimental setup ensures reproducibil-
ity. Hyperparameter settings and more training details are listed in Appendix
B.



448 Y. Zhang et al.

Table 1. Performance evaluation of sentence embeddings on STS tasks using Spear-
man’s correlation coefficient. All reference outcomes are sourced from original or asso-
ciated research papers. The highest scores are emphasized in bold.

Models STS12STS13STS14STS15STS16STS-BSICK-R Avg.

Non-Prompt models

BERTbase (avg.) 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
ConSERT-BERTbase 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74
SimCSE-BERTbase 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
DCLR-BERTbase 70.81 83.73 75.11 82.56 78.44 78.31 71.59 77.22
ClusterNS-BERTbase 69.93 83.57 76.00 82.44 80.01 78.85 72.03 77.55
CMNS-BERTbase 73.10 83.98 76.57 83.19 80.06 79.45 72.00 78.34

RoBERTabase (avg.) 32.11 56.33 45.22 61.34 61.98 54.53 62.03 53.36
SimCSE-RoBERTabase 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
IS-CSE–RoBERTabase 71.39 82.58 74.36 82.75 81.61 81.40 69.99 77.73
DCLR-RoBERTabase 70.01 83.08 75.09 83.66 81.06 81.86 70.33 77.87
CMNS-RoBERTabase 73.29 83.40 75.00 82.64 82.00 81.77 69.82 78.27

Prompt-based models

PromptBERTbase 71.56 84.58 76.98 84.47 80.60 81.60 69.87 78.54
ClusterNS-BERTbase 72.92 84.86 77.38 84.52 80.23 81.58 69.53 78.72
ConPVP-BERTbase 71.72 84.95 77.68 83.64 79.76 80.82 73.38 78.85
SNCSE-BERTbase 70.67 84.79 76.99 83.69 80.51 81.35 74.77 78.97
CMNS-BERTbase 73.48 85.76 77.20 83.39 80.91 81.96 71.11 79.12

5.3 Main Results

We present the experimental results across seven STS tasks in Table 1, com-
paring various sentence embedding models: 1) Baseline models: SimCSE [17]
and PromptBERT [21]. 2) Variations of SimCSE models: DCLR [44], Clus-
terNS [11] and IS-CSE [43]. 3) Extensions of PromptBERT models ConPVP [41]
and SNCSE [35]. These models are experimented on BERT and RoBERTa sep-
arately. To conduct a comprehensive and fair comparison with the two baseline
models, as well as their variants, we designed experiments specifically targeting
Non-Prompt CMNS and Prompt-based CMNS, respectively.

The following are our main conclusions: when compared to the two baseline
models, SimCSE and PromptBERT, the CMNS models demonstrate improve-
ments of 2.09% and 0.58% on BERT, indicating the effectiveness and impor-
tance of negative sampling. In the case of non-prompt models, CMNS surpasses
models like DCLR and ClusterNS. For prompt-based models, CMNS exceeds
SNCSE and ConPVP on BERT. All these models enhance negative sampling
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through various sampling or construction methods, highlighting the excellent
performance of our model.

5.4 Ablation Study

Our proposed framework encompasses three key modules: mining hard negatives
from original samples, creating virtual negatives via Gaussian noise, and address-
ing false negatives. To thoroughly investigate the contributions of these modules
and their synergistic effects, we undertook comprehensive ablation studies on the
STS tasks. During the experimentation phase, we leveraged Non-prompt BERT
and RoBERTa to assess each component individually and in various combina-
tions. Furthermore, to confirm the efficacy of our designed approach, we made
modifications to certain components. Firstly, we evaluated our hard negatives
selection by comparing two approaches: using the cluster Ci1 most similar to
anchor xi (named repl. FirstCluster) as hard negatives, and using a randomly
selected cluster (named repl. RandCluster) as hard negatives. Additionally, we
bypassed Uniformity-based optimization and directly generated negative sam-
ples using random noise derived from ci2 (named BypassUniform).

Table 2. Ablation outcomes for our Non-prompt Models on the STS task test dataset.

Models BERTbase RoBERTabase

CMNS 78.34 78.27

w/o hard negs 77.75↓0.59 77.50↓0.77
w/o virtual negs 77.82↓0.52 77.81↓0.46
w/o BML loss 77.91↓0.43 77.88↓0.39
only hard negs 77.56↓0.78 77.58↓0.69
only virtual negs 77.48↓0.86 77.39↓0.88
only BML loss 76.02↓2.32 76.43↓1.84
repl. FirstCluster 75.16↓3.18 74.91↓3.36
repl. RandCluster 77.39↓0.95 77.65↓0.62
BypassUniform 77.48↓0.86 77.67↓0.60

SimCSE 76.25 76.57

Table 2 shows that deleting or replacing CMNS components leads to reduced
performance compared to the original setup, underlining the significance of each
component within the CMNS structure: 1) Providing more negative samples
resulted in further improvements, as we employed clustering to generate sam-
ples with greater similarity. 2) Using BML loss alone to handle false negative
samples may actually decrease performance, implying that the model tends to
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learn more from hard negatives than from correctly identifying true false nega-
tives. 3) The effectiveness of using the first or random cluster as hard negatives is
far inferior to that of the second cluster. This observation proves the importance
of selecting samples that are similar but not excessively close as negative samples
for the model, thereby confirming the correctness of our selection of the second
cluster. 4) The lack of a uniformity process between negative samples leads to
performance degradation, indicating that simply using random Gaussian noise
may cause information overlap.

6 Analysis

To better comprehend clustering’s role in training, we visualize key information
fluctuations during the process in the Non-Prompt CMNS-BERTbase model and
conduct a detailed analysis of the results.

Fig. 3. Multi perspective analysis of CMNS framework.

6.1 Sample Similarity

We depict the progression of similarity of the anchor xi with the positive sample
x+

i , false negatives Ci1, hard negatives Ci2, virtual negatives Zi and in-batch
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negatives during training in Figure 3a. Over the course of training, we observed
significant fluctuations in the similarity between Ci1 and xi. It’s obvious that
the similarity of the anchor xi with false negatives is much higher than other
negative samples, highlighting the instability and uncertainty of false negatives.
In contrast, the hard negatives we mined, as well as the virtual negatives gen-
erated based on them, demonstrate a stable trend of similarity during training
and maintain a relatively high level of similarity. This stability is reliable and
greatly beneficial for model training. On the other hand, in-batch negatives have
extremely low similarity, making it difficult to provide valuable learning infor-
mation to the model.

6.2 Cluster Trend

Furthermore, in Figure 3b, we plotted the evolution of average inter-centroid
similarity and intra-cluster sample similarity. As training progresses, the simi-
larity between cluster centroids gradually declines, indicating that clusters repre-
senting different semantics are slowly dispersing. This underscores the dynamic
evolution of the clustering process and the refined segmentation of the seman-
tic space. Simultaneously, the average intra-cluster similarity tends to stabilize,
implying a higher degree of consistency in sentence embeddings among samples
within each cluster. This evolution not only demonstrates the effectiveness of
our clustering algorithm in capturing the inherent structure and characteristics
of the data but also reflects the robustness and adaptability of the clustering
process.

6.3 Noise-based Performance

In the CMNS framework, we add Gaussian noise to generate virtual negatives to
diversify training data and boost model generalization. By adjusting the hyper-
parameter γ, we explore the effect of noise intensity on model performance.
Figure 3c shows that too low noise (small γ) leads to redundancy and subpar
performance. BERT achieves the best performance when γ is set in the range of
[0.1-0.15], while RoBERTa and PromptBERT perform optimally when γ is set in
the range of [0.25, 0.3]. Excessively high noise scatters data, reducing the value
of virtual negatives for learning due to being too easy. Balancing the difficulty
of negative samples is vital to optimizing model performance.

6.4 Hyperparameters in BML Loss

Moreover, we employ the BML loss function, meticulously tuning the hyperpa-
rameters α and β to regulate the semantic discrepancies among positive pairs,
false negatives, and hard negatives. As depicted in Figure 3d, the selection of
α is paramount, significantly impacting the discriminability between positive
pairs and false negatives. Optimal model performance is achieved when α lies
within [0.2, 0.25] and β falls between [0.1, 0.15]. This observation aligns with the
similarity variation trend shown in Figure 3a, underscoring the importance of
configuring semantic differences among sample pairs for our clustering method.
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6.5 Transfer Task

Drawing inspiration from previous research, we have assessed our models using
seven transfer tasks: MR, CR, SUBJ, MPQA, SST-2, TREC and MRPC [14,19,
28,29,33,34,39]. For evaluation, we employed Non-Prompt CMNS models and
adhered to the default settings provided by the SentEval Toolkit. The results
presented in Table 3. Our model achieved higher performance compared to Sim-
CSE in seven transfer tasks, and also showed significant improvement compared
to other negative sample construction models.

Table 3. The accuracy results of various sentence embedding models for the transfer
task are presented, with the best outcomes emphasized in bold.

Model MR CR SUBJ MPQA SST TRECMRPC Avg

GloVe embeddings 77.25 78.30 91.17 87.85 80.18 83.00 72.87 81.52
BERT embeddings 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94
SimCSE-BERTbase 81.18 86.46 94.45 88.88 85.50 89.80 74.43 85.81
ClusterNS-BERTbase 80.98 85.78 94.53 88.95 85.94 88.20 74.55 85.56
CMNS-BERTbase 81.2086.5294.57 89.37 85.99 88.40 75.26 85.89

SimCSE-RoBERTabase 81.04 87.74 93.28 86.94 86.60 84.60 73.68 84.84
DCLR-RoBERTabase 82.47 86.86 93.48 87.96 87.14 84.80 74.16 85.27
ClusterNS-RoBERTabase 81.78 86.65 93.21 87.85 87.53 84.00 76.46 85.35
CMNS-RoBERTabase 81.44 87.76 93.17 87.37 87.54 86.80 75.64 85.67

6.6 Alignment and Uniformity

In order to thoroughly evaluate the sentence representation quality of our model
CMNS, we adopt two metrics: Alignment and Uniformity [37]. Alignment mea-
sures the similarity between positive samples, indicating whether the model can
map similar samples to close spatial positions:

Lalign � E
(x,x+)∼ppos

‖f(x) − f(x+)‖2, (7)

and uniformity assesses the uniformity of the representation space distribution,
indicating whether the representations generated by the model are evenly dis-
tributed throughout the entire space:

Luniform � log E
(x,y)∼pdata

e−2‖f(x)−f(y)‖2
. (8)

Figure 4 illustrates the remarkable performance of the CMNS model in terms
of alignment, preserving a high degree of similarity between positive samples and
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Fig. 4. Alignment and Uniformity of different sentence embedding models on the STS-
B dataset. untuned means that the model has not undergone fine-tuning. All models
above are based on BERTbase, The lower the value the better.

demonstrating commendable uniformity with representations distributed evenly
across the space. In contrast, SimCSE lacks uniformity while RoBERTa overly
focuses on uniformity, compromising sample similarity. This harmonious balance
between maintaining sample similarity and ensuring representation space uni-
formity allows the CMNS model to exhibit robust performance across various
tasks. Additional experiment analyses are provided in Appendix C.

7 Conclusion

In this paper, we introduce the CMNS framework, which aims to improve the
quality of negative samples in unsupervised contrastive learning to optimize
sentence representations. To achieve this goal, we integrate K-means clustering
techniques into the training process and maintain a dynamically updated set of
clusters using a Dynamic Cluster Queues Q. We select the second most similar
cluster as hard negatives based on the similarity ranking between the anchor
sentence and clusters in Q. Additionally, by introducing Gaussian noise to the
centroid of the second most similar cluster, we can generate more high-quality
negative samples. To reduce the impact of false negatives, we also introduce
a bidirectional margin loss for constraint. Experimental results on STS tasks
demonstrate significant improvements in performance. This work emphasizes
the importance of enhancing negative sample quality in contrastive learning for
sentence representations.
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