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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. The use of skeletal data allows deep learning models to per-
form action recognition efficiently and effectively. Herein, we believe that
exploring this problem within the context of Continual Learning is cru-
cial. While numerous studies focus on skeleton-based action recognition
from a traditional offline perspective, only a handful venture into online
approaches. In this respect, we introduce CHARON (Continual Human
Action Recognition On skeletoNs), which maintains consistent perfor-
mance while operating within an efficient framework. Through tech-
niques like uniform sampling, interpolation, and a memory-efficient train-
ing stage based on masking, we achieve improved recognition accuracy
while minimizing computational overhead. Our experiments on NTU-60
and the proposed NTU-120 datasets demonstrate that CHARON sets a
new benchmark in this domain. The code is available at https://github.
com/Sperimental3/CHARON.

Keywords: Continual Learning · Skeleton Based Action Recognition ·
Class Incremental Learning · Masked Autoencoder

1 Introduction

Human Action Recognition (HAR) has become critical in various domains
such as surveillance [27,29], rehabilitative healthcare [51], and sports analy-
sis [23,39]. Early HAR approaches focused on exploiting RGB or gray-scale
videos due to their widespread availability. However, recent advancements have
explored alternative modalities, including skeletal joints [10,25,51], depth [36],
point clouds [15], acceleration [24], and WiFi signals [42]. Among these,
skeleton-based action recognition stands out as particularly efficient and
concise, especially for actions not involving objects or scene context. Skeleton
sequences capture the trajectory of key points (i.e., joints) in the human body
(e.g., elbows, knees, wrists) [48]. As joints can be represented by 2D or 3D spatial
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coordinates, skeletal data offer greater efficiency than images due to the spar-
sity of skeleton graphs. Moreover, this data structure is robust against changes
in appearance, cluttered backgrounds, and occlusion while inherently privacy-
preserving [42].

The traditional learning approach to HAR assumes that all necessary data is
readily available during training. However, this assumption often does not hold
in real-world contexts, as instances or classes may emerge incrementally over
time. In such a dynamic context, Deep Neural Networks struggle to acquire new
knowledge, often displacing the capabilities acquired during the previous stages.
This phenomenon – widely known as catastrophic forgetting – leads to worse
performance and is the focal point of Continual Learning (CL). Specifically,
in the CL setting, models must adapt to address a series of tasks presented
sequentially, preserving performance on previously seen ones.

While tasks such as classification [5,22,35,41,46] and video-based action
recognition [6,30,45] have been widely explored in a Continual Learning set-
ting, skeleton-based HAR has been the subject of limited study in this domain.
Although the authors of [26] have made efforts to address this task, they employ
an expandable architecture, which can append a new learnable module to the
network each time a new class arises. While such a technique aids in alleviat-
ing catastrophic forgetting, the computational footprint of the model gradually
grows, making the approach memory-hungry and poorly scalable. Additionally,
their setting adds constraints that diverge from real-world scenarios. Namely,
they pre-train the network on most training instances and retain only a few
classes for the incremental stage.

In this work, we exploit the structure of skeletal data to efficiently store
samples in an episodic memory, i.e., a continuously updated buffer containing
a small subset of past data. Specifically, we enhance the memory efficiency of
each sample, thus expanding the effective capacity of the buffer within the same
memory allocation. We can do so as skeleton sequences present redundancy in
time [23], so they can be compressed by sampling a subset of skeletal poses (e.g.,
only one every s frames). This operation reduces the temporal resolution of the
sequence with minimal information loss. Finally, in later tasks, we reconstruct
each retained sample through linear interpolation, which remarkably does not
require additional parameters.

We further exploit the redundancy of skeleton sequences by leveraging an app-
roach based on Masked Image Modeling (MIM) [2,17,43]. Such self-supervised
pre-training techniques have recently gained popularity due to the reduced wall-
clock time and memory footprint. These methods pre-train a network by feeding
it only a portion of the input data and reconstructing it with a lightweight decoder
module. Once the pre-training is completed, they discard the decoder and feed the
entire input to the model. However, unlike previous works [47,49], which employ
masking techniques on skeletal data only for pre-training, our approach jointly
optimizes both the self-reconstruction and the recognition tasks. Such a choice
brings two benefits: i) the training time and memory requirements remarkably
decrease, and ii) the additional reconstruction task acts as a regularizer for the
encoder, leading to more meaningful representations.



CHARON 3

Finally, at the end of each task, we introduce a linear probing phase to
better conciliate the self-reconstruction approach with online scenarios. Indeed,
if no countermeasures are involved, the encoder may suffer from a covariate
shift issue [19] during inference, as it has been trained only on a portion of the
input but is tested on the whole data. As reported in Sect. 3.2, this may be
heavily detrimental to the final classification layer, specifically for high masking
ratios. To mitigate such a problem, we freeze the encoder parameters and re-
align the classifier in the presence of unmasked input sequences. This process is
remarkably lightweight (i.e., optimizing less than 4K parameters for NTU-60),
yet significantly enhances overall performance.

To assess the proposed approach, we conduct a comprehensive evaluation on
the incremental version of two popular datasets, NTU RGB+D 60 [38] and NTU
RGB+D 120 [28], achieving state-of-the-art performance for class-incremental
action recognition in the skeletons domain.

We remark on the following main contributions:

• We reduce the memory requirements of skeleton sequences in the buffer.
• We introduce a MIM approach for efficiently handling skeletal data in CL.
• We employ a linear probing phase to seamlessly integrate the encoder-decoder

approach to the incremental learning setting.

2 Related Works

Skeleton-Based Action Recognition. In early skeleton-based action recog-
nition works, sequences were treated as time series, thus processed employing
Recurrent Neural Networks (RNNs) [8,11,18,53] to capture dynamics over time.
These approaches struggled to integrate the spatial context of joints and proved
slow and challenging to parallelize. Following works exploited Convolutional Neu-
ral Networks (CNNs) [20,21], treating skeletal data in various ways to make them
compatible with CNNs; some handle coordinates as image channels [10,25], while
others reshape skeletons by combining joints in space and time [20].

However, these models faced a common limitation: they failed to effectively
represent the relationships between skeletal joints moving together in time.
Graph Convolutional Networks (GCNs) resolve such shortcomings by exploit-
ing nodes (i.e., joints) temporally and spatially [7,12,13,40,50]. Subsequently,
the emergence of ViT [9] marked the introduction of transformer-based archi-
tectures into computer vision, leading to solutions that integrate self-attention
layers into convolutional architectures. One such work, STTFormer [31], divides
the sequence in tuples of joints and retains some concepts of CNNs (i.e., pool-
ing aggregation) for in-time features processing. Nonetheless, such an approach
under-exploits the sparsity and redundancy of skeletal data. In recent years,
masking approaches [47,49] have been employed to take advantage of these char-
acteristics for pre-training models. In contrast, our proposal adopts the recon-
struction objective even during the optimization of the downstream task. Such
a choice brings the benefit of reducing the training requirements of the whole
pipeline, avoiding the pre-training phase.
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Continual Learning. The Continual Learning setting makes a more realistic
assumption w.r.t. standard learning paradigms. Specifically, data arrival is con-
tinuous and incremental. A subset of CL is Class-Incremental Learning (Class-
IL) [44], where the dataset is re-arranged into multiple subsequent tasks, each
containing a unique and disjoint set of classes. In this setting, the task identity
is not known during inference.

Classical CL methods employ a regularization term that penalizes the alter-
ations of weights to avoid forgetting [22,37,52]. Rehearsal methods [1,5,32,34],
on the other hand, employ a limited memory buffer in which they store samples
from past tasks and replay them. Another paradigm is represented by dynamic
architectures [3,35] in which new network components are instantiated for each
incoming task; unfortunately, this often leads to a rapid increase in the number
of parameters. This approach has been employed by the authors of Else-Net [26]
to tackle skeleton-based HAR in Class-IL. They use the first 50 classes of NTU
RGB+D 60 to pre-train their network, and perform incremental training across
10 tasks, each focusing on a different class. We retain that such a benchmark
diverges from classical CL ones, as it is simplified and far from real-world sce-
narios. In our work, we utilize the same setting presented by the authors of [4],
who split NTU RGB+D 60 into 6 tasks, each involving multiple classes.

3 Method

3.1 Preliminaries

Class-Incremental Learning. In Class-IL, a deep model f(·; θ) parametrized
by θ is presented with a sequence of tasks Ti with i ∈ {1, . . . , T}, with T denoting
the number of tasks. The i-th task provides Ni data entries {x

(n)
i , y

(n)
i }Ni

n=1 with
y
(n)
i ∈ Yi; importantly, each task relies on a set of classes disjoint from others s.t.

Yi ∩ Yj = ∅ ⇐⇒ i �= j. The objective of Class-IL is to minimize the empirical
risk over all tasks:

LClass-IL =
T∑

i=1

E(x,y)∼Ti
[L(f(x; θ), y)] , (1)

where L is the loss function (e.g., the cross entropy for classification) and y is the
ground truth label. Since the model observes one task at a time, tailored strate-
gies are required to prevent catastrophic forgetting. Specifically, some rehearsal
approaches [5,33] employ an additional regularization term LM exploiting sam-
ples stored in the memory buffer. The objective at the current task Tc is:

L̂Class-IL = E(x,y)∼Tc
[L(f(x; θ), y)] + LM. (2)

Spatio-Temporal Tuples Transformer (STTFormer). We adopt as main
backbone of our architecture STTFormer [31], a transformer-based model
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Fig. 1. Figure showing the key components of CHARON. Our efficient buffer strategy
is shown on the left (a). In the upper right (b), we showcase the training phase with
the reconstruction regularization, while linear probing is displayed at the bottom (c).
Best seen in colors.

designed for skeleton-based action recognition. It exploits self-attention to cap-
ture the cross-joint correlations across adjacent frames. Specifically, a raw skele-
ton sequence x ∈ R

C×F×V , where C is the number of channels (i.e, spatial
coordinates), F the number of frames, and V the number of joints, is given
as input to the model. This sample is divided into tuples, i.e., sequences of n
adjacent frames:

X = [x1,x2, . . . ,x�F/n�], where xi ∈ R
C×n×V . (3)

Each layer of STTFormer comprises two distinct modules, which target either
intra- or inter -tuple relationships. Every element of X (i.e., each tuple) is first
fed to a self-attention layer, which attends the joints in xi. This phase aims
to model the intra-tuple characteristics. Then, an inter -tuple representation is
extracted via temporal pooling.

3.2 CHARON

In this section, we present CHARON, which encompasses three components: i)
a technique to populate the memory buffer, employing linear interpolation to
decompress memory samples; ii) an efficient training phase with masked inputs;
iii) a linear probing stage, which refines the classifier and updates the logits
stored in the memory buffer. We depict these elements in Fig. 1.

Efficient Buffer. A raw skeleton sequence x ∈ R
C×F×V collects the C coordi-

nates (e.g., xyz in NTU-60 and NTU-120) of V joints at F time instants. Unlike
RGB video frames, skeletal data inherently reside in Euclidean space where the
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Fig. 2. Epochs per hour at different
masking ratio values.1

Fig. 3. Linear probing contribute on joint
training with varying masking ratios.

concept of distance between points (three-dimensional joints in our case) is well-
defined. Additionally, skeleton sequences often exhibit temporal redundancy [16].
In light of these peculiarities, skeletal data can be easily compressed upon need:
for instance, we do so before storing a sequence into the memory buffer. Notably,
the compressed sequences can also be reconstructed with minimal loss through a
simple linear interpolation. In particular, even with a sampling interval of s = 5
frames – i.e., one kept every five, yielding a compression ratio of 80% – the
reconstructions are close to the raw samples. Based on that, a greater number
of instances can be stored within the same memory constraints: in other words,
we can accumulate a number of samples s times larger in the buffer.

When a sample has to be extracted from the buffer for rehearsal, we recon-
struct it to obtain F frames again and then treat it as a complete sample. It is
noted that, since linear interpolation does not require learnable parameters, the
reconstruction of temporal skeletal sequences requires low computational effort.

Training Phase. As we mentioned above, a transformer-based architecture
founded on [31] is adopted as our backbone. We build upon it to derive an
encoder-decoder framework inspired by masked autoencoders [17]. Notably, this
allows us to reduce the computational effort during training, as depicted in Fig. 2.
Specifically, given a sample x coming from the current task or the buffer, the
first step consists of a linear projection, followed by positional encoding to inject
temporal dependencies. Afterward, we feed the encoder e(·; θe) with a temporally
masked sample x̃ ∈ R

C×�(1−η)·F�×V obtained by dropping a random subset of
frames from the input sequence, where η ∈ [0, 1) is the masking ratio.

The encoder projects the input x̃ into the latent space, obtaining features
h̃ = e(x̃; θe). From this point, the architecture devises two branches: the first one
(recognition) features a fully connected layer f(·; θf ) to yield pre-softmax logits
z = f(h̃; θf ). The second branch (reconstruction) realizes the self-supervised

1 Tests are performed on a single GTX 1080 Ti graphics card
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regularization through a decoder module d(·; θd). Specifically, given the latent
feature vector h̃ which has �(1 − η) · F 	 tokens, the input of the decoder is
formed by filling the missing ones with learnable mask vectors denoted with
[MASK]. We place these vectors in the same position as the original masked
ones, h = concat(h̃, [MASK]). The training objective is:

Lstream = LCE(z, y) + γ · ||d(h; θd) − x||22, (4)

where γ is a hyper-parameter weighting the impact of the reconstruction loss.
To mitigate forgetting, we incorporate the objective defined in Eq. 4 into a

rehearsal-based framework. Drawing inspiration from [5], we retrieve a mini-
batch of samples xM from the memory buffer at each training step. This mini-
batch includes associated predictions zM (i.e., logits) and labels yM, which are
added to the episodic memory along with the corresponding samples. The loss
functions for these two components are:

Llogits = ||f(h̃M; θf ) − zM||22 + γ · ||d(hM; θd) − xM||22, (5)

Llabels = LCE(f(h̃M; θf ), yM) + γ · ||d(hM; θd) − xM||22. (6)

The mini-batch of samples xM undergoes the same pipeline of the input
stream x, producing the latent features h̃M = e(x̃M; θe) and hM =
concat(h̃M, [MASK]).

The final objective of this phase is:

L = Lstream + α · Llogits + β · Llabels, (7)

where α and β are two balancing hyperparameters.

Linear Probing. As described above, the model is trained with partial skeleton
sequences. While providing an efficient training strategy, there is a factor that
could hinder the overall performance during evaluation. Indeed, we argue that
the classification heads f(·; θf ) could be subject to possible misalignment due to
the different conditions we have at training (masking on) and test time (masking
off ). To address this issue, highlighted in Fig. 3, we devise an auxiliary linear
probing stage at the end of each task, which lasts for a few epochs (i.e, 10%
of the number employed for the main training stage). During this phase, only
the parameters of the classifier are allowed to change, while the encoder remains
frozen. In doing so, we feed each full (i.e.., not masked) sample x ∈ R

C×F×V to
the encoder.

In formal terms, as for the main training phase, the encoder projects the
input x into the latent space obtaining hidden features h = e(x; θe). The fully
connected linear layer f(·; θf ) produces then the logits z = f(h; θf ) to which a
cross-entropy loss is finally applied. In this phase, we still employ the regular-
ization from [5]. Thus, the resulting objective Llp can be written as:

Llp = LCE(z, y) + α · ||f(hM; θf ) − zM||22 + β · LCE(f(hM; θf ), yM). (8)
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Algorithm 1. Training CHARON at the current task
Requires: dataset DTc , parameters θ (θe, θf , θd), scalars α, β and γ, learning rate
λ, masking ratio η, buffer M.
Main training phase:
for (x, y) in DTc do

(xM, yM, zM) ← interpolate(extract(M))
x̃, x̃M ← random masking(x, η), random masking(xM, η)
L ← Eqs. (4) to (7)
θ ← θ − λ · ∇θL

end for
Linear probing:
for (x, y) in DTc do

(xM, yM, zM) ← interpolate(extract(M))
L ← Eqs. (8)
θf ← θf − λ · ∇θf L
M ← populate(M, (uniform sampling(x), z, y))

end for

Traditional works using masked autoencoders [17,43] typically distinguish
between a pre-train phase and one of linear probing to adapt to downstream
tasks. However, we argue that leading these stages separately can result in a
more cumbersome approach, potentially undermining the efficiency we seek. To
solve this, Eqs. (7) and (8) are computed sequentially during each task, accord-
ing to the incremental setting (i.e., holding only a partial amount of data, the
one belonging to the current task). The complete algorithmic procedure for a
single task is described in Algorithm 1.

4 Experimental Analysis

4.1 Datasets

Split NTU-60 and Split NTU-120. NTU is one of the most popular bench-
marks for action recognition on skeletal data. Initially comprising 60 classes and
56578 samples in its original version [38], and later expanded to 120 classes and
113945 samples [28], this dataset encompasses a diverse range of actions involv-
ing up to two individuals. The data collection process involves three Kinect
cameras [54], positioned with different angles w.r.t. the subject. They provide
RGB videos, IR videos, depth map sequences, and 3D skeletal data. Participants
of various ages have contributed to the datasets construction, ensuring its broad
applicability and relevance.

We adopt the extraction process employed by [31]. As original raw sequences
contain a varying number of frames, we apply bilinear interpolation to obtain
fixed-length sequences x (i.e., 120 frames) s.t. x ∈ R

(C=3)×(F=120)×(V =25)×(B=2).
The axis identified by B regards the poses of the potentially two subjects involved
in the action.
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To test our approach in the CL scenario, we embrace NTU-60, introduced
in [4], an incremental learning benchmark derived from the standard NTU
dataset. The authors of [4] divide NTU RGB+D data into 6 tasks, each defining
a 10-class classification problem. We also introduce NTU-120, an extension of
the previous benchmark. Such a version brings a significant additional challenge,
as seen in recent offline literature [12,14], leaving the way open for future works
in the continual domain. To be as compliant as possible with the previous lit-
erature, we keep the original 6 tasks split and add another 6, each consisting
of 10 classes, resulting in a 12 tasks incremental scenario. We describe in the
supplementary material the exact order in which classes are split into tasks.

We report results for the cross-subject (XSub) and cross-view (XView) data
modalities [38] for NTU-60, and cross-subject (XSub) and cross-setup (XSet) [28]
for NTU-120.

4.2 Implementation Details

The custom version we adopt for STTFormer [31] reduces the width of interme-
diate layers to obtain a more lightweight model. We set the number of frames
in each tuple n = 6 as in the original paper. Following the asymmetric design
proposed in [17], we employ 8 layers for the encoder and 3 for the decoder. We
refer the reader to the supplementary material for further details. Additionally,
we employ an α of 0.3 and a β of 0.8 for Eqs. (7) and (8), while we use a γ of 0.5
in approaches using the reconstruction regularization Eqs. (4) to (6). We adopt
a batch size of 16 for all our experiments with a vanilla SGD optimizer and a
learning rate of 0.05. Each task of the incremental setting lasts for 30 epochs.
With the same hyperparameters as above, we perform 3 epochs for the linear
probing phase. Finally, concerning data augmentation, we follow the original
STTFormer implementation, applying a simple random rotation to each input
sample.

4.3 Results

For the experimental comparison, we indicate with Joint Training (JT) the upper
bound of our approach. It consists of training the model on the unified dataset
(i.e., without splitting it into tasks). For the lower bound, we adopt an incre-
mental training approach that does not employ tailored techniques against catas-
trophic forgetting. We refer to it as Fine Tuning (FT).

In Table 1 we report the results for buffer sizes Msize of dimensions 500 and
2000. Following other works [4,5,26], we measure the recognition performance
in terms of Final Average Accuracy (FAA), defined as:

FAA =
1
T

T∑

i=1

aTi
, (9)

where aTi
is the accuracy of the i-th task after the model has seen all T of them.

Additionally, we repeat each experiment three times, thus reporting the mean
and standard deviation of the FAA.
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Table 1. FAA (%) results on NTU-60 and NTU-120. For CHARON, we report the
results with a masking ratio equal to 30%. We highlight in green the gains achieved by
our approach w.r.t. the best-competing method.

Method XView XSub XSet XSub

FT 16.05±0.07 15.64±0.05 7.19±0.06 6.97±0.23

JT 84.75±0.02 77.32±0.54 71.18±1.07 70.15±0.98

Msize 500 2000 500 2000 500 2000 500 2000

iCaRL 51.54±1.3 53.41±1.1 47.12±1.4 50.69±1.2 32.91±0.9 34.74±0.7 33.03±1.3 36.68±1.0

Else-Net 40.81±0.8 59.10±0.2 39.72±0.4 57.00±1.0 19.37±0.6 33.52±0.6 18.43±0.7 33.95±0.3

ER 51.00±1.6 68.27±0.1 45.80±0.5 62.74±1.9 26.35±1.1 43.12±0.4 26.19±1.7 45.06±0.7

DER 51.36±0.9 66.74±0.1 49.97±1.9 63.48±1.3 27.83±1.7 40.19±0.9 30.10±1.5 36.10±1.8

DER++ 60.41±0.5 73.09±1.3 57.22±1.0 67.64±1.6 34.27±1.4 50.06±0.6 36.29±0.3 49.81±0.8

CHARON
73.60±0.377.77±0.268.30±0.672.70±0.252.19±0.661.63±0.148.64±0.059.23±0.4

+ 13.19 + 4.68 + 11.08 + 5.06 + 17.92 + 11.57 + 12.35 + 9.42

As outlined by Table 1, the main competitor of this work, Else-Net [26], did
not achieve performance comparable to those of the setting proposed by its
authors, which devises a massive pre-training phase. Therefore, we can conclude
that such a method suffers when trained from scratch.

Furthermore, even classical replay methods such as iCaRL [32], ER [33] and
DER(++) [5] outperform Else-Net. CHARON reveals to be SOTA in the Class-IL
skeleton-based action recognition domain, across both NTU-60 and NTU-120.
In particular, this holds when employing a masking ratio of 30%; for higher
percentages, we observe a decrease in performance, as discussed in the following.
Significantly, the most substantial improvement is observed with a buffer size of
500 (surpassing the second-best, i.e., DER++, when using a buffer size of 2000).
This highlights the pivotal role of the sample quantity in the efficacy of replay
methods. Consequently, it underscores the importance of researching techniques
to increase sample numbers within a fixed buffer size.

Fig. 4. (left) FAA for the DER++ baseline employing different values of the sampling
interval s. (right) FAA obtained by CHARON as the masking ratio varies.
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On the Sampling Interval. To further evaluate the effectiveness of our buffer
strategy, we conduct a comparative study on varying sampling interval s (which
we recall indicates the step length in the uniform sampling procedure). Given
s ∈ N

+, we obtain the compression ratio as:

compression ratio =
s − 1

s
· 100. (10)

We report in Fig. 4 (left) the FAA at varying sampling interval s for both the
buffer sizes tested. For each tested sampling interval, we scale the buffer size
accordingly (as documented in Fig. 3.2). For instance, when s = 10, a memory
with a nominal capacity of 500 examples could hence contain at most s · 500 =
5000 (compressed) examples. As can be appreciated, the sampling interval s = 5
(i.e., 80% of compression) yields the best results in terms of final accuracy.
Namely, when sampling one skeletal pose every five frames, the memory buffer
attains the best compromise between sample fidelity (which can be achieved with
lower sampling intervals) and sample diversity (i.e., higher intervals). Moreover,
we note that the presence of a prior compression phase (s > 1) brings a stable and
remarkable gain w.r.t. the standard replaying paradigm (s = 1 → no compression
at all). Such a result shows the crucial role of the trade-off between the quality
and quantity of samples.

On the Masking Ratio. We herein assess the impact of the masking ratio,
which indicates the number of frames discarded before feeding the input sequence
to the model. The results are illustrated in Fig. 4 (right) and reveal an increase
in performance up to a value of 30%. For higher masking ratios, performance
begins to decline, despite the notable efficiency gains (see Fig. 2). In quantitative
terms, even with 50% of masking, CHARON achieves an acceptable final average
accuracy of around 68%, while it decreases to ≈ 66% with a masking ratio equal
to 60%. Interestingly, both of these results are still higher than those of DER++,
the second-best method reported in Tab. 1.

4.4 Ablations

We herein report the ablative studies; all the experiments are performed on the
XView modality of NTU-60.
On the importance of the Reconstruction-Based Objective. Our app-
roach not only seeks good classification capabilities but also devises an auxiliary
reconstruction term targeting the entire input sequence. To shed further light on
the effects of such an auxiliary objective, we provide an ablative experiment in
which we discard both the decoder module and the subsequent reconstruction
loss. In doing so, we still apply random masking (testing two ratios equal to 30%
and 60%) and linear probing at the end of each task.
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Table 2. Impact of the reconstruction loss
at different masking ratios.

Masking ratio
30% 60%

w/o recon. loss 70.61 61.59
CHARON 73.60 65.72

Table 3. Ablative outcomes about sam-
pling strategy and masking position.

Position
Strategy pre post

Deterministic 72.08 72.43
Random 71.89 73.60

The results of these ablative studies are reported in Tab. 2: remarkably,
CHARON experiences a significant performance drop when removing the
decoder and the reconstruction loss, especially for the higher masking ratio of
60%. We consider such a finding as noteworthy, as it highlights the importance
of auxiliary learning techniques when leveraging higher compression ratios to
pursue efficiency.

Masking Strategy and Positioning. Our approach adopts a masking strat-
egy that builds upon random guessing to drop frames, thus following most of the
literature dealing with masked autoencoders. Herein, we want to compare our
approach with a deterministic strategy, that drops one frame every k. We also
assess different possible positions to introduce the masking operation. Specifi-
cally, post indicates that masking is placed after splitting the sequence into tuples
(see Sect. 3.1), as carried out by our approach. Results for the combinations of
these two alternatives are reported in Tab. 3: as can be observed, the random
strategy with post-hoc masking emerges as the best configuration.

5 Conclusions

Skeleton-based action recognition is a relevant task in modern human-centric
Artificial Intelligence. We addressed such a long-standing computer vision task
from the perspective of incremental learning, thus enabling those applications
(e.g., sports analysis, rehabilitative healthcare) where the set of actions to be
recognized may change over time. Differently from existing proposals dealing
with action recognition, our work appoints efficiency as a crucial aspect of an
ideal incremental learner.

Our method, named CHARON, could be considered a step forward, as it
achieves state-of-the-art performance with a remarkable reduction of the com-
putational footprint (in terms of both memory and training time). In a few
words, these capabilities derive from a proper application of input sub-sampling
and random masking. Importantly, our experiments show that the addition of
a reconstruction-based auxiliary objective grants further robustness in the pres-
ence of higher masking ratios, thus encompassing settings demanding efficiency.
In future studies, we are going to deepen the concepts discussed in this paper,
to apply our proposal even in the case of extreme masking (e.g., up to 95%).
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Abstract. Few-shot class-incremental learning (FSCIL) aims to learn
generalizable representations with large amounts of initial data and incre-
mentally adapt to new classes with limited data (i.e., few-shot). Recently,
prototype-based approaches have shown notably improved performance.
However, there still remain challenges – their performances often degrade
when newly added classes have high similarity with previously seen
classes, causing prototypes to be indistinguishable. In this work, we advo-
cate for leveraging textual semantics to learn class-representative and
class-distinguishable prototypes, retaining semantic relations between
classes. We utilize angular margin loss to leverage textual semantics
effectively, encouraging the model to have intra-class compactness and
inter-class discrepancies in the embedding space. Our experiments with
three public benchmarks (CUB200, CIFAR100, and miniImageNet) show
that our proposed method generally matches or outperforms the cur-
rent state-of-the-art approaches. To further demonstrate the effectiveness
of using texts in the FSCIL task, we newly collect visually descriptive
and class-discriminative descriptions built upon two widely-used FSCIL
benchmarks: CIFAR100-Text and miniImageNet-Text.

Keywords: Few-Shot Class-Incremental Learning · Text-Driven
Prototype

1 Introduction

The field of few-shot class-incremental learning (FSCIL) [26] has attracted signif-
icant interest for its relevance and promise in practical scenarios, by integrating
two critical challenges: (i) class-incremental learning, which requires a model to
incorporate new classes into its existing knowledge base without suffering from
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Fig. 1. Our model leverages textual semantics to learn class-representative and class-
distinguishable prototypes. Unlike randomly-initialized prototypes, text-driven proto-
types produce an embedding space that is effective in retaining semantic relations
between classes, thus eventually improving overall FSCIL performance. We provide t-
SNE visualizations of learned features from different but visually-similar classes where
text-driven features are more dispersed from other classes, preventing the loss of accu-
racy (for the base class A) in the incremental sessions.

catastrophic forgetting [19] (i.e., without losing previously learned knowledge).
(ii) Few-shot learning involves training the model with limited data samples,
ensuring its ability to adapt to novel, unseen data without overfitting to these
new classes. Tackling FSCIL commonly consists of two steps: (1) Pre-training
with base classes, where a model utilizes large amounts of data, and (2) Few-
shot adaptation to additional classes while preventing performance degradation
on previously seen classes at the same time.

Various methods have been introduced to address the FSCIL problem [27],
and recent successes suggest that prototype-based learning methods can sig-
nificantly improve overall performance [2,10,21,36,40] in terms of classification
accuracy and performance dropping rate. In these methods, a model is trained to
learn per-class representative pivots (or prototypes) for a given dataset, classify-
ing data points by comparing similarities with each pivot later. Thus, a key com-
ponent of the prototype-based learning methods is learning class-distinguishable
prototypes, which can generalize to unseen new classes. Various approaches
have been applied to learn better prototypes, including regularizer of per-class
embedding distributions [40], dynamic relation projection [43], prototype clus-
tering approach [2], generating quasi-orthogonal prototypes [10], incorporating
an angular penalty loss [21], and human cognition-inspired prototypes [36].

However, there still remain challenges: (i) model’s performance often largely
degrades when newly added classes have high similarity with previously seen
classes, causing prototypes to be close to each other and no longer distinguish-



18 S. Park et al.

able. Other challenges may include (ii) data imbalance between data-rich base
classes and newly added small amounts of classes. As shown in Fig. 1, to address
these issues, we advocate for leveraging semantics from textual modality to learn
class-representative prototypes. We argue that using text in the FSCIL task is
advantageous for the following reasons: (1) inter-class relations can be easily
captured by the textual modality, and (2) text-driven prototypes may reduce
the semantic gap between the few-shot class prototypes and the real data distri-
bution, improving model’s ability to generalize. We use the generalized angular
margin penalty-based loss to leverage textual semantics effectively while main-
taining intra-class compactness and inter-class discrepancy in the embedding
space.

Further, an FSCIL dataset, consisting of a pair of texts and images, is needed
to demonstrate the effectiveness of using texts. Although the CUB200 [29]
dataset has a collection of natural language descriptions [23], other widely-
used FSCIL benchmarks (e.g., CIFAR100 [14] and miniImageNet [28]) do not.
Thus, we create new datasets, called CIFAR100-Text and miniImageNet-Text,
by collecting textual descriptions, which are visually descriptive and class-
discriminative. Inspired by recent work [20,35], we utilize a large language model
(LLM), such as GPT-3 [1], to collect such textual descriptions instead of recruit-
ing human annotators. Our collection process consists of three steps: (1) Can-
didate Descriptive Words Generation, (2) Filtering of Visually-Non-Matched
Descriptions, and (3) Complete Sentence Generation.

We demonstrate the effectiveness of our proposed method with three widely-
used benchmarks: CUB200 [29], CIFAR100 [14], and miniImageNet [28]. Our
experiments demonstrate that our proposed method generally matches or out-
performs the current state-of-the-art approaches, confirming our model’s ability
to learn class-discriminative semantic-distilled prototypes from textual modality.
Our contributions are summarized as follows:

– We propose a novel prototype-based FSCIL method where prototypes are ini-
tialized and learned along with textual semantics, retaining semantic relations
between different classes.

– We demonstrate the effectiveness of our method on three widely-used public
benchmarks: CUB200, CIFAR100, and miniImageNet. Our model generally
matches or outperforms the other state-of-the-art approaches in terms of the
average accuracy and performance dropping rate.

– We create new datasets, called CIFAR100-Text and miniImageNet-Text,
for leveraging textual modality in the FSCIL task by collecting class-
discriminative and visually-descriptive sentences with a GPT-3-based large
language model (LLM).

2 Related Works

Few-Shot Class-Incremental Learning. Few-shot class-incremental learn-
ing (FSCIL) [26] aims to incrementally train a model with new class sets that
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have only a few samples, while preserving knowledge of previously learned
classes. Contrary to the standard class-incremental learning framework, FSCIL
requires the model to adjust to these new classes using a limited number of
examples per class (e.g., 5 or 10), posing an additional challenge of adaptation
alongside the risk of catastrophic forgetting. Initial research in FSCIL focused on
updating the model’s backbone in each session [8,26], but such updates during
incremental sessions tend to cause overfitting due to the small sample size of
new classes (i.e., severe data imbalance between base and incremental session
classes).

To address this, recent approaches have utilized prototype-based learn-
ing [10,21,34,37,41,43,44]. These approaches first optimize the backbone with a
substantial amount of data during the base session, and then freeze the backbone
in subsequent incremental sessions to derive new class prototypes by averaging
the embeddings of each class. Prototype updates are facilitated through various
methods: a meta-learning mechanism in the base session [37,43], adjustments to
projection layers [10,34], or the use of virtual or augmented classes/samples to
create a feature space with closely packed intra-class embeddings and additional
space for accommodating new classes [21,41]. For example, Peng et al. [21] uti-
lize a margin-based loss to achieve such a space, while Zhou et al. [41] propose
a bimodal distribution anticipating the inclusion of extra classes. These recent
studies have yielded encouraging results, highlighting the importance of crafting
an effective embedding space early on and preparing it for future classes with
limited samples as a critical success factor in FSCIL. Our approach aligns with
this line of works, integrating textual semantics to enhance the learning of the
embedding space.

Few-Shot Class-Incremental Learning with Textual Semantics. While
incorporating textual representation has been proven effective in few-shot learn-
ing (FSL) contexts demonstrated by several studies [3,11,22,32], its application
in FSCIL has been limited. Given the close relationship between FSCIL and FSL
methodologies (both requiring adaptation to new classes with only few samples),
it is worthwhile to explore textual integration within FSCIL.

Cheraghian et al. [4] made an initial attempt to map visual features to a tex-
tual semantic space, using the distance between these modalities for knowledge
distillation from previous sessions. Subsequent work [5] projected both visual and
textual semantic features into aligned subspaces, combining these projections to
calculate relation scores for the final verdict. These approaches revealed how tex-
tual semantics could mitigate forgetting and address the imbalance between prior
and current classes, thus alleviating the performance drop in incremental ses-
sions. Nonetheless, these methods introduce additional computation and memory
demands in incremental sessions by updating modules across both modalities and
requiring prototypes and text embeddings for all previous classes, which would
be infeasible due to the limited number of new class samples.

Therefore, our work shifts focus towards crafting an embedding space that
is primed for future class integration, achieving a durable visual representation
without necessitating auxiliary modules in incremental sessions. To this end,
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Fig. 2. An overview of our proposed text-driven prototype learning approach for few-
shot class-incremental learning. Our training consists of two main parts: a base session
(with large amounts of data) and incremental sessions (with limited amounts of data).
In the base session, we compute text-driven pivots and image features, which are opti-
mized through angular margin penalty-based loss so that image features are compactly
pulled together around the corresponding textual pivot (see leftmost column). In the
incremental sessions, new prototypes are generated by taking an average over image
features with a frozen backbone. Lastly, in the inference phase, the nearest class mean
classifier is used for the final verdict.

we leverage textual semantics solely during the base session to develop a well-
constructed embedding space, foregoing the textual encoder in subsequent incre-
mental sessions. Our method diverges from prior efforts by not seeking to learn
mappings between modalities but to learn a generalizable visual space enriched
by textual semantics.

3 Method

Problem Definition. FSCIL presents a challenge that unfolds in two distinct
stages: (i) a base session with a large amount of data, and (ii) incremental sessions
with few-shot training data. In an m-step scenario, a relatively large training
dataset, D0, is provided for the base session, followed by m training datasets
comprising of few-shot samples for the incremental sessions, D1, . . . ,Dm. The
few-shot samples in these incremental sessions are structured in an N -way K-
shot format, where N denotes the number of classes, and K indicates the number
of samples per class. Training data from each session have a corresponding label
space Yi for i ∈ [0,m], and these spaces are mutually exclusive across sessions;
i.e., Yi ∩ Yj = ∅ for i �= j. Furthermore, training data from former sessions are
not available in subsequent incremental sessions, posing a significant challenge
for the model to retain knowledge acquired from earlier sessions. This retention
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is crucial as the model is evaluated against the cumulative label spaces from all
previous sessions, underscoring the importance of preserving prior learning.

Overview. As shown in Fig. 2, our model follows the standard FSCIL prototype
learning strategy employed in various existing models. This strategy comprises
two main steps: (1) learning a generalizable feature extractor during the base
session with ample training data D0, and (2) generating new prototypes for
each new class during the incremental sessions with limited training data Di for
i ∈ [1,m]. In step (2), given a set of examples (xc,yc) ∈ Di for a new class
c, the class prototype pc is typically calculated by aggregating features; i.e.,
pc = 1

K

∑
fθ(xc), where fθ is a feature extractor parameterized by θ, and K

represents the cardinality of a set of K-shot examples.

Learning Class-Discriminative Prototypes. Given these prototypes, new
data points are classified by measuring the pairwise similarity between the data
points and the prototypes, with the model outputting the nearest class (of the
smallest cosine distance) as the final output. Thus, learning class-discriminative
prototypes is a crucial aspect of the FSCIL model. Various approaches have been
applied to enhance the distinctiveness of these prototypes [2,10,21,36,40,43],
and our work aligns with this stream of efforts to learn class-distinguishable
prototypes, aiming to ensure minimal similarities between old and new proto-
types and to improve overall classification performance across all sessions.

A primary difference of our work from existing efforts is the incorporation of
textual modality in prototype learning, wherein textual descriptions are utilized
to guide the model in generating prototypes. This approach offers advantages
for the following reasons: (i) the textual modality can easily capture inter-class
relations, encompassing both new and previously learned classes; and (ii) the
potential of text-driven prototypes to bridge the semantic gap between the few-
shot class prototypes and the actual data distribution. In the following section,
we detail the application of text modality in prototype learning.

Learning Text-Driven Prototypes. As shown in Fig. 2, our model consists
of two main components: (i) a visual encoder fI and (ii) a textual encoder fT .
Given more than one natural language descriptions for a specific class, e.g.,
“this bird has a long pointed bill with a white belly and a black crown”, we
obtain sentence embeddings by utilizing a textual encoder fT . Note that we use
a pre-trained CLIP [22]-based model as our textual encoder, which is kept frozen
instead of training it from scratch. Formally, we define tc as a set of sentence
embeddings for class c, i.e., tc = {t1c , t2c , . . . }, where ti

c ∈ R
dt represents the i-th

description embedding of class c. Subsequently, we compute text-driven pivots
t̄c for each class, i.e., t̄c = fproj,T (1/|tc|

∑
i t

i
c), by leveraging an MLP-based

projection layer fproj,T to align the embedding space of both the textual and
visual modalities.

Following recent work by Peng et al. [21], we explore the use of angular margin
loss to enhance (i) intra-class compactness and (ii) inter-class discrepancy in the
text-driven embedding space. Formally, given an input image xi, we compute
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Fig. 3. An overview of our textual description collection process based on a GPT-3 [1]
model. Our data collection process consists of three steps: (1) Candidate Description
Words Generation, (2) Filtering of Visually-Non-Matched Textual Features, and (3)
Complete Sentence Generation.

the dv-dimensional projected visual feature vi ∈ R
dv , i.e., vi = fproj,I(fI(xi)).

Logits are computed by taking the dot product of the feature vi and text-driven
pivots, e.g., ‖vi‖‖t̄yi

‖cos(θyi
), where yi denotes the ground-truth class of the

input image, and θyi
is the angle between the feature vi and the text-driven

pivot t̄yi
. By normalizing the magnitudes of the features and pivots (i.e., ‖vi‖ =

‖t̄yi
‖ = 1), the logits are simply calculated based on cosine similarities. Based on

this, we train our model by minimizing the following generalized angular margin
penalty-based loss [7,16,30], which is defined as follows:

L = − 1
N

N∑

i=1

log
( es(cos(m1θyi

+m2)−m3)

es(cos(m1θyi
+m2)−m3) +

∑
j �=yi

es(cos(θj))

)
(1)

where m1, m2, m3, and s are the margin penalty parameters, and N is the
number of samples. We performed a grid search to find the best set of these
hyperparameters, and set (m1,m2,m3, s) as (1, 0, 0.4, 30). After training, our
per-class prototype pc is computed by aggregating all visual features of a given
class c: pc = 1

|{i|yi=c}|
∑

i:yi=c fI(xi).

4 CIFAR100-Text and MiniImageNet-Text Datasets

In this work, we advocate for leveraging text modality for learning text-driven
prototypes. To support this idea, an FSCIL dataset is needed that contains pairs
of texts and images. However, this may be challenging because such texts should
be visually descriptive and class-discriminative. To the best of our knowledge, the
CUB200 [29] dataset has a collection of natural language descriptions that are
suitable for class-incremental learning [23], but other datasets widely used in the
CIL task rarely provide such natural language supervision. Therefore, to evaluate
the effectiveness of cross-modal supervision on other widely-used datasets such
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Fig. 4. Examples of generated descriptions for (a) CIFAR100 [14] and (b) miniIma-
geNet [28]. Class names are in bold and the generated description for each image is in
italic. More examples are provided in the supplemental material.

as CIFAR100 [14] and miniImageNet [28], we create a dataset called CIFAR100-
Text and miniImageNet-Text by collecting textual descriptions.

LLM-Based Textual Descriptions. Inspired by [20,35], we collect textual
descriptions for the FSCIL task based on a large language model (LLM) such
as GPT-3 [1]. Specifically, we exploit two pre-trained models: GPT-3 [1] text-
davinci-003 and CLIP model (with image and text encoders) [22] trained with
ViT-B/32 Transformer as image encoder. As shown in Fig. 3, our data creation
process follows three steps: (1) we use an LLM (i.e., GPT-3) to collect candidate
textual descriptions. For example, we query with a question like “What are
useful visual features for distinguishing a horse in a photo?” and we collect
answers from an LLM (e.g., hooves, long mane, or broad flat head). (2) To ensure
such descriptions align visually well with images, we use a pre-trained CLIP
model, computing cosine similarity between images against textual features. We
filter out candidate descriptions with smaller similarities than a user-defined
threshold value. (3) Lastly, based on the remaining descriptions, we create a
simple sentence, e.g., “it has long mane and tail and small pointed ear,” followed
by refinement with a text prompt such as “refine below sentences.” In Fig. 4, we
provide example descriptions for CIFAR100 and miniImageNet, respectively.

Candidate Description Words Generation. To generate a textual descrip-
tion for each train image, we first obtain some candidate visual features to be
integrated within a descriptive sentence. Concretely, we query the LLM to pro-
vide a selection of features that characterize the class of the given image. Fol-
lowing Menon et al. [20] and Yang et al. [35] which relies on the prompt design
instructions provided by OpenAI, we prompt the LLM with the following form:

Q: What are useful visual features for distinguishing
{a|an} {class} in a photo?

A: There are useful visual features to tell there is
{a|an} {class} in a photo:
- <visual feature 1>
- <visual feature 2>

This enables the LLM to output useful visual features that characterize the
class in phrases. Actual LLM outputs can be found in the supplemental material.
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Filtering Visually-Non-matched Textual Features. With visual features
produced by the LLM, we utilize pre-trained CLIP encoders to filter out irrele-
vant features that do not align with the given image. To achieve this, each visual
feature is encapsulated within a phrase structured as follows:

The photo of {cls} which has {viz_feat }.

The prompted sentences are then fed into the text encoder, while the target
image is fed into the image encoder at the same time. The output embeddings
are used to compute the logit scores that indicate the similarities between the
image and each sentence. Among the visual features generated in the first stage,
only the ones with scores higher than the predefined threshold are selected as
final features to be incorporated into the descriptions.

Complete Sentence Generation. In the final stage, we employ LLM once
again to obtain natural and realistic sentences. We first construct a simple sen-
tence with final features obtained from previous stage. Assuming two visual
features viz feat 1 and viz feat 2, the sentence is formed as follows:

It has {viz_feat_1} and {viz_feat_2 }.

Next, to gather a more diverse and varied set of expressions, we prompt the
LLM with another prompt:

Refine this to a standard English:
<simple sentence >

Finally, the resulting sentence becomes the final description for the image. Exam-
ples of generated descriptions are shown in Fig. 4.

5 Experiments

5.1 Datasets and Settings

Implementation Details. We employ ResNet-18 as our visual encoder, since
ResNet [9] is commonly used as a backbone network for addressing the FSCIL
problem. Consistent with prior setups [21,26,34,37], we initiate the training of
our visual encoder from scratch for CIFAR100 [14] and miniImageNet [28]. Mean-
while, for the CUB200 [29] dataset, we utilize a pre-trained ResNet on ImageNet
as initialization. Additionally, we leverage a frozen pre-trained CLIP [22] model
as the textual encoder, which produces 512-dimensional textual latent repre-
sentations. To align the representation spaces of both modalities and restore
their representation power, we employ projection layers. Following previous
works [21,34], these projection layers consist of two-layer MLP blocks, producing
2048-dimensional representation for each. Our model is trained for 100 epochs
on a single NVIDIA A100 GPU using an SGD optimizer with a learning rate of
0.01 (0.001 on CUB200), a momentum of 0.9, and a weight decay rate of 5e-4.
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Table 1. We compare our model with the state-of-the-art methods in terms of perfor-
mance dropping rate (PD, in %) and average accuracy (AA, in %) on CUB200 bench-
mark. Our method outperforms existing workswith significant performance gaps. Note
that “S0” indicates the accuracy in the base session. Methods are sorted in descending
order of PD scores.

Methods S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 AA(↑) PD(↓)

TOPIC [26] 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 43.92 42.40

Cheraghian et al. [4] 68.23 60.45 55.70 50.45 45.72 42.90 40.89 38.77 36.51 34.87 32.96 46.13 35.27

SPPR [43] 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33 49.32 31.35

CEC [37] 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28 61.33 23.57

ERDR [15] 75.90 72.14 68.64 63.76 62.58 59.11 57.82 55.89 54.92 53.58 52.39 61.52 23.51

Meta-FSCIL [6] 75.90 72.41 68.78 64.78 62.96 59.99 58.30 56.85 54.78 53.82 52.64 61.93 23.26

DSN [33] 76.06 72.18 69.57 66.68 64.42 62.12 60.16 58.94 56.99 55.10 54.21 63.31 21.85

CaBD [39] 79.12 74.99 70.87 67.30 65.89 63.45 61.40 60.11 58.61 58.23 57.48 65.22 21.64

SoftNet [12] 78.07 74.58 71.37 67.54 65.37 62.6 61.07 59.37 57.53 57.21 56.75 64.68 21.32

NC-FSCIL [34] 80.45 75.98 72.30 70.28 68.17 65.16 64.43 63.25 60.66 60.01 59.44 67.28 21.01

WaRP [13] 77.74 74.15 70.82 66.9 65.01 62.64 61.40 59.86 57.95 57.77 57.01 64.66 20.73

GKEAL [44] 78.88 75.62 72.32 68.62 67.23 64.26 62.98 61.89 60.20 59.21 58.67 66.35 20.21

CLOM [45] 79.57 76.07 72.94 69.82 67.80 65.56 63.94 62.59 60.62 60.34 59.58 67.17 19.99

FSLL [18] 75.63 71.81 68.16 64.32 62.61 60.10 58.82 58.70 56.45 56.41 55.82 62.62 19.81

CSR [40] 74.69 71.29 67.82 64.41 62.41 60.20 59.06 58.16 56.37 55.99 55.09 62.32 19.60

SAVC [25] 81.85 77.92 74.95 70.21 69.96 67.02 66.16 65.30 63.84 63.15 62.50 69.35 19.35

FACT [41] 75.90 73.23 70.84 66.13 65.56 62.15 61.74 59.83 58.41 57.89 56.94 64.42 18.96

MgSvF [38] 72.29 70.53 67.00 64.92 62.67 61.89 59.63 59.15 57.73 55.92 54.33 62.37 17.96

TEEN [31] 77.26 76.13 72.81 68.16 67.77 64.40 63.25 62.29 61.19 60.32 59.31 66.63 17.95

LIMIT [42] 76.32 74.18 72.68 69.19 68.79 65.64 63.57 62.69 61.47 60.44 58.45 66.67 17.87

ALICE [21] 77.40 72.70 70.60 67.20 65.90 63.40 62.90 61.90 60.50 60.60 60.10 65.75 17.30

Ours 78.98 76.49 73.91 70.47 68.89 66.76 65.86 65.12 63.45 63.58 62.77 68.75 16.21

Datasets. To evaluate the effectiveness of text-driven prototype learning, we
use three widely-used benchmark datasets: CUB200 [29], CIFAR100 [14], and
miniImageNet [28]. CUB200 dataset provides over 11k images for 200 classes
of North American bird species, and has a collection of descriptions with ten
descriptive sentences per image [23]. These sentences convey a detailed class-
specific and class-discriminative description about why the bird is classified in a
particular class, e.g., “this bird has a black crown, a white eye and a large black
bill.” Following existing FSCIL works, we set 11 consecutive sessions, including
the base session (called session 0). Half of the whole 200 classes are consumed
during the base session. In the following incremental sessions (i.e., from ses-
sion 1 to session 10), the rest of the 100 classes are equally divided into ten
disjoint subsets (i.e., ten classes for each session) and five randomly chosen sam-
ples are provided for each class (i.e., 10-way 5-shot). Unlike CUB200 dataset,
CIFAR100 and miniImageNet datasets do not have such descriptions with their
public datasets. Thus, as mentioned earlier, we create new text datasets that con-
tain a single descriptive sentence per train image. In each dataset, 100 classes are
divided such that 60 serve as base classes and the remaining 40 are designated as



26 S. Park et al.

Fig. 5. Performance comparison with state-of-the-art approaches on two widely-used
benchmarks: CIFAR100, and miniImageNet. We provide detailed performance table in
the supplemental material.

new classes for use in subsequent incremental sessions. Following existing FSCIL
works, we use an 8-step 5-way 5-shot setup.

5.2 Text-Driven Prototype Analysis

Comparison with State-of-the-Art Approaches. To evaluate our model
against existing methods, we employ two widely-used metrics: average accuracy
(AA) and performance dropping rate (PD). The former calculates the mean
accuracy across all sessions, whereas the latter quantifies the total drops in accu-
racy from the final session compared to the base session. Ideally, a model would
exhibit both high average accuracy and a low performance dropping rate. As
shown in Table 1, our method surpasses existing state-of-the-art approach on
CUB200 with the best PD score of 16.21%, indicating minimal knowledge for-
getting. Moreover, Fig. 5 shows that our model’s performance is comparable to
that of state-of-the-art methods on CIFAR100 and miniImageNet benchmarks
as well. A detailed performance table for Fig. 5 is provided in the supplemental
material.

Effect of Text-Driven Prototype Learning. We further analyze the effect of
using text-driven prototypes against random-initialized prototypes. For random-
initialized prototypes, we use arbitrary vectors that are uniformly scattered in
a circular distribution. As shown in Fig. 6 (a), we observe that text-driven pro-
totype initialization clearly outperforms random initialization with a large gap
on CUB200 dataset: an average accuracy improves 0.84%.

t-SNE Analysis. In Fig. 1 (rightmost column), we visualize two different
embedding spaces (i.e., randomly initialized and text-driven) using t-SNE [17]
on the CUB200 dataset. Compared to the randomly initialized model (top), our
model exhibits fewer false positives (yellow dots in the cluster of B, C, and D)
and more distinguishable clusters for each class, when visually-similar classes
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Fig. 6. (a) Performance comparison using different prototype initialization methods.
Our text-driven prototype outperforms the baseline model (i.e., random initialization).
(b) Box-plots of cosine distances between pivots that are initialized randomly (left) or
text-driven pivots (right). We provide box plots for before- and after-base sessions.
Note that we use the CUB200 [29] dataset for these experiments.

(i.e., B, C, and D) of the base class (i.e., A) are added during the incremental
session. This may confirm the effectiveness of leveraging text-driven prototypes
in the FSCIL task for learning better embedding space and maintaining semantic
relations between classes.

Semantic-Distilled Prototypes. Figure 6 (b) shows side-by-side box plots for
randomly-initialized prototypes (left) and text-driven prototypes (right) in the
CUB200 dataset. Each set includes two box plots representing cosine distances
between semantically similar classes (denoted as ‘Intra’) and semantically dif-
ferent classes (denoted as ‘Inter’), with distances calculated by subtracting the
cosine similarity from 1. Note that semantically similar classes are defined based
on the class names. Specifically, CUB200 class names consist of two parts, with
the latter part indicating their higher-level categories. We categorize classes with
identical higher-level categories as ‘semantically similar classes (Intra classes)’
and all other classes as ‘semantically unrelated classes (Inter classes)’. Remark-
ably, randomly-initialized prototypes exhibit cosine distances closer to 1 (orthog-
onal), indicating all prototypes are irrelevant. In contrast, text-driven prototypes
show a broader range of cosine distances, which tend to be closer to semantically
similar classes compared to semantically unrelated classes. As our experiments
and previous studies (e.g., [24]) suggest, this semantic distillation can help the
improvement of generalization capabilities.

6 Discussions

In this work, we explore the benefits of leveraging textual modality to improve
FSCIL tasks and observe substantial performance improvements. However, our
method inherently depends on the quality of text inputs; specifically, the texts
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should be class-discriminative and visually descriptive, which may not always be
feasible in real-world settings. Thus, we create new textual datasets, CIFAR100-
Text and miniImageNet-Text, and utilizing LLMs similar to our dataset collec-
tion approach may help mitigate this limitation. Furthermore, while we follow the
standard setting for FSCIL tasks, it may not be sufficiently flexible for deploy-
ment in real-world applications. Addressing this challenge could direct our future
work, exploring effective ways to leverage textual semantics in more complex,
diverse, and practical scenarios.

7 Conclusion

In this paper, we propose a text-based prototype learning approach for few-
show class-incremental learning (FSCIL). We leverage textual semantics by uti-
lizing angular margin loss so that text-driven prototypes retain semantic rela-
tions between all old and new classes, encouraging intra-class compactness and
inter-class discrepancies in the embedding space. Our experiments with three
popular FSCIL benchmarks (CUB200, CIFAR100, and miniImageNet) confirm
the effectiveness of using text modality in generating prototypes, where our
model generally matches or outperforms the current state-of-the-art approaches.
Moreover, we newly collect visually descriptive and class-discriminate descrip-
tions using a GPT-3-based large language model built upon two widely-used
FSCIL benchmarks: CIFAR100-Text and miniImageNet-Text.
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Abstract. To keep learning knowledge from a data stream with chang-
ing distribution, continual learning has attracted lots of interests recently.
Among its various settings, online class-incremental learning (OCIL) is
more realistic and challenging since the data can be used only once. Cur-
rently, by employing a buffer to store a few old samples, replay-based
methods have obtained huge success and dominated this area. Due to
the single pass property of OCIL, how to retrieve high-valued samples
from memory is very important. In most of the current works, the log-
its from the last fully connected layer are used to estimate the value of
samples. However, the imbalance between the number of samples for old
and new classes leads to a severe bias of the FC layer, which results in
an inaccurate estimation. Moreover, this bias also brings about abrupt
feature change. To address this problem, we propose a dual supervised
contrastive learning method based on perturbation uncertainty. Specifi-
cally, we retrieve samples that have not been learned adequately based
on perturbation uncertainty. Retraining such samples helps the model
to learn robust features. Then, we combine two types of supervised con-
trastive loss to replace the cross-entropy loss, which further enhances
the feature robustness and alleviates abrupt feature changes. Extensive
experiments on three popular datasets demonstrate that our method
surpasses several recently published works.

Keywords: Online class-incremental learning · Perturbation
uncertainty retrieval · Supervised contrastive learning

1 Introduction

When data are drawn from an independently and identically distribution (i.i.d),
Deep Neural Networks (DNNs) have demonstrated excellent performance in
numerous tasks. However, in many practical scenarios, the distribution of data
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stream are changing continuously. If we directly adopt current models, catas-
trophic forgetting [31] will occur with very high probability. In detail, the per-
formance of old tasks reduces heavily after the model is trained on new tasks.
Therefore, continual learning, which can keep learning and accumulating knowl-
edge from a never-ending data stream, has attracted a lot of interest [30,35].

Currently, continual learning scenarios can be roughly classified into three
types: task incremental learning, domain incremental learning, and class incre-
mental learning [35]. In class incremental learning [1,11], the model should
predict its class given an input from an arbitrarily trained class. Since task iden-
tification is not available and new classes appear continuously, it is more realistic.
In this work, we further focus on a more challenging setting-online class incre-
mental learning (OCIL) [10,11,29,33]. Compared with the offline class incremen-
tal learning where the data stream of a task can be used repeatedly, the online
data stream can be used only once.

Replay is a commonly used strategy to alleviate catastrophic forgetting and
has achieved great success in continual learning [2,3,6,11]. In detail, a small
number of data from old tasks are stored in a memory buffer. When a new
task comes, some samples are retrieved from the memory and combined with
new data to update the model. Thus, the memory retrieval strategy plays an
important role. Currently, many replay-based methods [2,33] employ logits from
the last FC layer to measure the sample value. However, there exists a severe
class imbalance problem due to the limit of memory size [1,25]. Specifically, the
data for new tasks is much more than that of old tasks. This class imbalance
will lead to the task-recency bias of the FC layer, which affects the accuracy of
measurement. Moreover, this imbalance also causes an abrupt change of feature
representation during model learning, leading to catastrophic forgetting [28,30].
To alleviate this, many works focus on how to learn robust feature representation
[8] or alleviate task-recency bias [25,29]. The former aims to prevent abrupt
feature change of old classes when the model adapts to the feature space of new
tasks. The latter prevents the weights for old classes in the FC layer from being
penalized during the gradient descent. Although they obtain huge progress, the
class imbalance still exists for the combination of FC and soft-max.

To address the above issues, we propose a dual supervised contrastive learn-
ing method based on perturbation uncertainty. Considering the shortcoming of
the estimation of the sample value based on logits, we design a perturbation
uncertainty-based retrieval strategy, which aims to retrieve memory samples
that have not been learned adequately. In detail, we regard the similarity of fea-
tures of an original sample and its augmented one as the score of its uncertainty.
A lower similarity score indicates that the model is more uncertain about this
sample. In other words, retraining on these samples will enhance the robustness
of the feature. Furthermore, to mitigate abrupt feature change and task-recency
bias caused by traditional cross-entropy loss, we replace it with the combination
of two types of supervised contrastive learning loss. One is based on sample-
to-sample relation, which encourages the feature of the same class’s samples
to be clustered closely. However, it is easy to hurt the ability of model to learn
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new classes. So we also employ the proxy-to-sample based supervised contrastive
learning loss. Combining them can offset their disadvantages and obtain a better
feature representation. Like previous paper [41], we use the proxy to denote the
representative of a subset for a single class, which is robust to noisy samples or
outliers. Currently, there are two different ways to calculate the proxy of each
class, the mean feature or normalized FC weight of the last layer. Since the data
of each class can be used only once in OCIL, it is very tough to learn a robust fea-
ture representation. Furthermore, using normalized FC weight does not increase
computational cost compared to using mean feature representation. Therefore,
we employ the FC weights as our proxy. In the proxy-to-sample based supervised
contrastive learning loss, the embeddings and normalized FC weights are used
to compute the loss. Normalized FC weights enable the proxy-to-sample based
supervised contrastive learning loss to effectively mitigate the task-recency bias
associated with traditional cross entropy loss.

To evaluate the proposed method, we have conducted extensive experiments
on three popular datasets: Split CIFAR10 [22], Split CIFAR100 [22] and split
Mini-ImageNet [36]. The results show the effectiveness of the model.

Our main contributions can be summarized as follows.
1) We propose a simple but effective memory retrieval strategy to seek sam-

ples that have not been learned adequately, which enhances the robustness of
the feature.

2) We replace the cross-entropy loss with the combination of two types of
supervised contrastive learning loss, which alleviates task-recency bias.

3) We conduct extensive experiments on three popular continual learning
benchmarks, where the proposed model outperforms several recently published
replay-based methods.

2 Related Work

2.1 Continual Learning

Recent methods for continual learning can be mainly divided into three classes:
regularization, dynamic architecture, and memory replay. In regularization-
based methods, various regularization terms are designed to penalize updating
of important parameters previously learned [21,26]. Among them, knowledge
distillation (KD) is an important way which has been applied to preserve prob-
ability, logit, feature, relation, etc. [23,24,34]. In dynamic architecture-based
methods, the model is dynamically expanded [14] or specific parameters are
allocated for the new tasks [4,32]. By utilizing a memory buffer, replay-based
methods can store and replay a small number of previous samples to better pre-
serve old knowledge. Recently, as prompt tuning [19] has become popular, some
works have introduced it into continual learning [39,40].

Since our method is based on replay, we mainly review replay-based methods.
Refer to [30,35] for details of other approaches. In early replay-based methods,
such as GEM [27] and A-GEM [10], the memory buffer served as a constraint in
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gradient updates to ensure that the loss for buffer samples did not increase. How-
ever, these methods, which did not train directly on the memory buffer, under-
performed when compared to experience replay methods. In experience replay
(ER) [11], the raw data samples were stored in memory and trained directly with
the samples of the current task together. Due to its effectiveness and simplicity,
numerous variants were developed [5–8]. For instance, DER [6] and X-DER [5]
stored the logits with the previous samples and used logits-matching during
the optimization procedure. ER-ACE [8] employed an asymmetric cross-entropy
loss to improve the quality of the representations. Moreover, SCR [29], Co2L [9],
DVC [16] and ER-AML [8] incorporated the contrastive learning to learn robust
feature. [15] compared the effectiveness of three contrastive learning methods in
offline and online continual learning. [13] proposed a fast remembering method
by combining fine-tuning based on supervised contrastive learning with a small
memory. To correct the distribution shift online, [38] integrated a Continual
Bias Adaptor (CBA) module into replay-based methods. On the other hand,
since each sample can only be trained once in OCIL, memory sample selection is
also a crucial consideration. Instead of random retrieval, MIR [2] retrieved sam-
ples based on the loss change of the current mini-batch while ASER [33] utilized
the adversarial Shapley value to make model update more effective. Moreover,
although most replay-based models store samples randomly, some studies such
as GSS [3], OCS [42] try to select the most representative data for storing.

2.2 Contrastive Learning

Contrastive learning can be traced back to [17], which was originally developed
for dimensionality reduction. By comparing the similarities of different images
pairs, contrastive learning aims to learn excellent feature representations. In
recent years, contrastive learning has achieved significant progress with the help
of deep learning. By comparing a large number of positive and negative sample
pairs, deep contrastive learning models can extract better feature representa-
tions. SimCLR [12] and MoCo [18] are two typical methods, both of which are
self-supervised. By designing a supervised contrastive learning loss, Khosla et
al. [20] extended contrastive learning to the supervised leaning area. Through
leveraging label information, it largely improves the feature representation. Yao
et al. [41] replaced the traditional sample-to-sample relations with the proxy-to-
sample relation model, which helps to align some difficult positive sample pairs
with larger difference.

Different from the above works, we integrate two types of supervised con-
trastive loss for continual learning, which enhances the robustness of the features
and alleviates abrupt feature changes.

3 Method

In this section, we will detail the main modules of the proposed method after a
brief introduction of the definition of the OCIL problem.
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Fig. 1. Overview of the proposed method. Firstly, the uncertainty based retrieval is
used to select some meaningful samples from memory, which are then concatenated
with samples from data stream. Then, these samples and their augmented view are fed
to the feature extractor fθ(·). Finally, we employ two types of supervised contrastive
loss (Eq. 2 and Eq. 3) to optimize the whole parameters.

3.1 Problem Definition

In OCIL, a model needs to continually learn new classes from an online non-
i.i.d data steam D = {D1,D2, . . . ,DT }, where T denotes the total number of
tasks. Each task Dt = {(xt,n, yt,n)}Nt

n=1 ∼ Xt × Yt comprises independently and
identically distributed data Xt paired with associated label Yt. Note that each
task contains non-overlapping classes, i.e. Yi ∩Yj = ∅ for ∀ i, j ∈ {1, ..., T}, i �= j.
Furthermore, several pairs of data and labels can be packaged into mini-batches
for training, which can be denoted as Dt = {Bt,1, Bt,2, . . . , Bt,k}, where each
batch contains b samples. Note that each batch can be passed to the model only
once. Once data have been processed, they cannot be revisited unless they are
stored in memory buffer M. The model consists of a feature extraction module
fθ(·) and a classifier g(·). This work focuses exclusively on a single-head classifier.

3.2 Method Overview

Figure 1 illustrates the overview of the proposed method for model training.
To select samples with higher values, we first create a candidate subset from the
memory through random retrieval. Then, the proposed perturbation uncertainty
based retrieval strategy is applied to seek more meaningful samples, which are
then combined with new task samples. These samples and their augmented view
are fed to the network to produce logits. To learn robust features and improve
the model stability, we combine two types of supervised contrastive loss during
model learning. One works on the sample-to-sample relations while the other
models the proxy-to-sample relations. After each batch, the reservoir sampling
algorithm [37] is used to randomly select some samples from current batch to
update the memory. During testing, each sample is fed to the feature extraction
network and the classifier to generate the final probability.

In the following, we focus on the two main modules: the perturbation uncer-
tainty based retrieval and supervised contrastive learning loss.
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3.3 Perturbation Uncertainty Based Memory Retrieval

Although random memory retrieval has been widely applied in continual learn-
ing, how to search for valuable samples still plays an important role. When the
model learns a new task, the sample feature of the old tasks will drift. And
the more severe the drift, the more likely the false prediction. Meanwhile, some
samples’ feature may be unaffected and retraining on them brings little contribu-
tion. Therefore, we want to select the samples whose features are more likely to
move. However, the future model is unknown. Although virtual update [2] seems
a feasible method, it requires high computational cost. Instead, we propose a
perturbation uncertainty based memory retrieval strategy, which measures the
feature similarity between an original sample and its perturbed view to retrieve
meaningful samples.

Specifically, we first randomly retrieve a candidate subset Bcand = (xi, yi)
sz
i=1

from memory buffer, where sz is the total number of retrieved samples. Com-
pared with measuring all samples, this subset can reduce computation largely.
Subsequently, for each sample in this candidate subset, we perform data aug-
mentation Aug(·) to generate an augmented view, which leads to an augmented
subset B̃cand = (Aug(xi), yi)

sz
i=1. Then, for each sample, we calculate the feature

similarity between the original data and its augmented view as its uncertainty
measurement. Formally, for the i-th sample xi, the uncertainty score can be
computed as

scorei = 1.0 − fθ(xi) · fθ(Aug(xi))
|fθ(xi)| · |fθ(Aug(xi))| (1)

where | · | denotes the L2 normalization. According to this equation, a bigger
score indicates that the features representation before and after augmentation
are more different. In other words, the feature of samples with bigger uncertainty
scores is more likely to change after model update.

If we directly select the k samples with the highest scores, the diversity of
the resulting samples is limited. Moreover, overemphasizing these challenging
samples will damage the model’s ability to learn new tasks. To avoid this, we
first rank all the candidate samples according to the score and then select k
samples, with an interval of sz/k, from the samples with the biggest score. This
operation can not only increase the diversity of selected samples but also reduce
the difficulty of model learning.

3.4 Supervised Contrastive Learning

Due to the class imbalance, the traditional combination of the FC layer and
cross-entropy loss will lead to task recency bias and abrupt feature change. On
the other hand, supervised contrastive learning (SCL) has made great progress in
learning a robust feature [41]. Specifically, it can cluster the features of the same
class and separate the features of different classes. Inspired by this, we propose
to replace the widely used cross-entropy loss with the supervised contrastive loss,
which can make the feature more robust.
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The popular SCL framework [20] consists of three modules, i.e. data augmen-
tation Aug(·), feature extraction network fθ(·), and projection layers Proj(·).
For a sample x, the augmentation produces an augmented view x̃ = Aug(x)
while the feature extraction network maps an input to a feature representation
z = fθ(x). However, in our initial experiments, the projection layers have little
influence on the OCIL performance [29]. Thus, we drop it to reduce the compu-
tation complexity. In this way, for a batch B, we first perform data augmentation
to generate its augmented one B̃, which is then concatenated with the original
batch, i.e. BI = B ∪ B̃. Note that the original batch B is the concatenation of
a current data batch and a retrieved memory batch. Finally, the joint batch BI

is fed to the feature extractor fθ(·) to obtain their feature representation ZI .
To optimize the model’s parameters, we combine two types of supervised

contrastive learning loss. The first one is based on sample-to-sample relations,
which can be formulated as

LSS(ZI) =
∑

zi∈ZI

−1
|P (i)|

∑

zp∈P (i)

log
exp(zi · zp/τ)∑

zj∈ZI ,j �=i exp(zi · zj/τ)
(2)

where τ is the temperature scale, zi is the feature of i − th sample in the joint
batch BI , P (i) denotes the feature set of all other samples in BI which have the
same class label with xi. According to Eq. (2), we aims to cluster the features
of the same class and separate the features of different classes.

Although the above loss captures the rich sample-to-sample relations, it is
hard to converge because of the complex sample-to-sample relationship and the
single pass in OCIL. Moreover, when the distribution gap is larger, it tends to
hinder the generalization of the model [41]. Considering this, we also employ
the new proposed supervised contrastive loss based on proxy-to-sample relations
[41], where the proxy is regarded as the representative of a sub-dataset. Formally,
this PSCL loss can be written as

LPS(ZI) =
∑

zi∈ZI

−log
exp(zi · wi/τ)∑

j∈CB
exp(zi · wj/τ)

(3)

where CB is the classes indices in the joint batch, wj denotes the proxy of j-
th class. Note that the wi in the numerator is the proxy corresponding to the
class label of sample xi. In our implementation, we directly adopt the weight
vector corresponding to a class in the FC classifier as its proxy. According to
this equation, this proxy can ensure stable and fast convergence.

To guarantee the diversity and stability of the model, we combine the two
supervised contrastive losses as following

Ltotal = LPS + βLSS (4)

where β is a hyper-parameter to balance the two losses.
The whole procedure of the proposed method is shown in Algorithm 1. During

training, we optimize the parameters of feature extractor and the weights in the
FC classifier. For inference, we first extract the feature and then use the FC
classifier and soft-max to produce final prediction.
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Algorithm 1. Dual Contrastive Learning Based on Perturbation Uncertainty
Input: Memory Buffer Size M , Data Augmentation Aug(·), Feature Extraction fθ(·)

Parameterized by θ, FC classifier gw(·), Learning Rate λ
Initialization: Memory Buffer M ← {} ∗ M , Number of Observed Sample n ← 0
1: for T ∈ {1, . . . , N} do
2: // Training Phase
3: for Bi ∼ DT do
4: Bcand ← RandomRetrieval(M)

5: Scorei ← 1.0 − fθ(xi)·fθ(Aug(xi))
|fθ(xi)|·|fθ(Aug(xi))| , xi ∈ Bcand

6: Rank the candidate sample set Bcand according to Score
7: Construct set BM by selecting samples from Bcand by every � sz

k
� interval

8: BI ← (Bi ∪ BM) ∪ Aug(Bi ∪ BM)
9: ZI ← fθ(BI)

10: LSS(ZI) =
∑

zi∈ZI

−1
|P (i)|

∑
zp∈P (i) log

exp(zi·zp/τ)
∑

zj∈ZI ,j �=i exp(zi·zj/τ)

11: LPS(ZI) =
∑

zi∈ZI
−log exp(zi·wi/τ)∑

j∈CB
exp(zi·wj/τ)

12: L ← LPS + βLSS

13: θ, w ← SGD(L, θ, w, λ)
14: M ← ReservoirUpdate(M, Bi, M, n)
15: n ← n + |Bi|
16: end for
17: end for
18: // Inference Phase
19: for i ∈ {1, . . . , Ntest} do
20: zi = fθ(xi)

21: y∗
i ← arg max

c∈C1:T

exp(wc·zi/τ)
∑

j∈C1:T
exp(wj ·zi/τ)

22: end for

4 Experiment

In this section, we first introduce the benchmark datasets, metrics, and imple-
mentation details. Then, we will report and analyze the experimental results.

4.1 Experiment Setup

Datasets. Following [2,16,29,33], we adopt the three commonly used datasets
for continual learning: Split CIFAR10 [22], Split CIFAR100 [22] and split Mini-
ImageNet [36]. In split-CIFAR10, the dataset is split into different 5 tasks and
each task contains 2 classes. For split CIFAR100 and split Mini-ImageNet, we
generate 10 disjoint tasks, each of which contains 10 classes.

Metrics. We primarily employ the average accuracy (AA) and average forget-
ting (AF) as the metrics, which are defined as
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AA(Ai) =
1
T

T∑

j=1

ai,j (5)

AF (Fi) =
1

i − 1

T−1∑

j=1

fi,j s.t. fi,j = max
l∈{1,...,i−1}

al,j − ai,j (6)

where ai,j and fi,j denotes the accuracy and forgetting rate of task j after
training on the task i respectively. When i = T , the AT and FT represent the
final average accuracy (FAA) and final average forgetting (FAF) respectively.
Obviously, the larger FAA and the smaller FAF, the better performance.

In addition, we use the average accuracy of new class (AAN) to evaluate the
plasticity of a model following [44].

AAN(ANi) =
1
T

T∑

i=1

ai,i. (7)

Implementation Details. For fair comparison with recent works [8,10,11,29,
33], we adopt the reduced ResNet-18 as our feature extraction backbone for all
datasets. And the combination of an FC layer and Softmax is employed as the
classifier to predict the probability. For model training, an SGD optimizer with
a learning rate of 0.1 is used. The batch size is set to 10 for both the data stream
and the memory buffer, while the candidate set size for perturbation uncertainty
retrieval is 50. To reduce randomness, all reported results are the average of 10
repeated runs.

4.2 Performance Comparison

To evaluate the effectiveness of our method, we compare it to several recently
published models for OCIL. Since our focus is to enhance replay-based methods,
most of these compared approaches are based on memory replay. According to
their focus, they can be categorized into 3 types: model update, memory update
and memory retrieval. The memory retrieval based methods primarily consider
which samples to retrieve for retraining model with new task samples, including
MIR [2] and ASER [33]. Methods focusing on memory update mainly consider
how to select and store representative samples in buffer, containing GSS [3].
Others focus on model update, including: AGEM [10], ER-WA [45], DER [6],
SS-IL [1], DVC [16], AML [8], ACE [8], DER-CBA [38], ACE-MOCA [43].
We also list the performance for fine-tune and iid offline. The former simply
updates the model without any strategy against forgetting, acting as the lower
bound of continual learning. In the latter, the data of all tasks are available and
jointly used for model training, which is regraded as the upper bound. All the
reported results are reproduced using their released codes, where we try to select
optimal configuration to maximize the final average accuracy.
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Table 1. Final Average Accuracy on three datasets with different memory sizes. The
best scores are in boldface and the second-best results are underlined

Method Mini-ImageNet CIFAR-100 CIFAR-10

Memory M=1K M=2K M=5K M=1K M=2K M=5K M=0.2K M=0.5K M=1K

fine-tune 3.9 ± 0.6 5.7 ± 0.2 17.7 ± 0.4

iid offline 51.4 ± 0.2 49.6 ± 0.2 81.7 ± 0.1

AGEM (ICLR’ 19) 4.2 ± 0.4 4.4 ± 0.3 4.4 ± 0.2 5.9 ± 0.2 6.0 ± 0.3 5.8 ± 0.3 18.0 ± 0.5 18.2 ± 0.2 18.3 ± 0.2

ER (ICML-W’ 19) 10.6 ± 0.6 12.8 ± 1.1 15.4 ± 1.1 11.8 ± 0.4 14.5 ± 0.9 20.1 ± 1.0 23.2 ± 1.0 31.3 ± 1.7 36.7 ± 2.9

GSS (NeurIPS’ 19) 10.2 ± 0.7 12.9 ± 1.2 15.4 ± 1.1 10.1 ± 0.5 13.7 ± 0.6 17.4 ± 0.9 22.8 ± 1.3 29.2 ± 1.2 35.3 ± 2.5

MIR (NeurIPS’ 19) 10.4 ± 0.7 15.4 ± 1.1 18.7 ± 1.1 11.0 ± 0.4 15.5 ± 0.6 22.1 ± 0.8 23.8 ± 1.2 30.7 ± 2.4 42.8 ± 1.5

GDumb (ECCV’ 20) 8.1 ± 0.4 12.4 ± 0.6 20.5 ± 0.6 10.1 ± 0.3 14.4 ± 0.3 20.9 ± 0.3 27.6 ± 1.3 33.1 ± 1.2 38.8 ± 1.1

ER-WA (CVPR’ 20) 14.9 ± 0.8 14.7 ± 1 20.3 ± 2.1 16.3 ± 0.6 19.9 ± 0.9 24.3 ± 0.8 28.7 ± 2.2 34.9 ± 2.2 43.6 ± 2.3

DER (NeurIPS’ 20) 14.3 ± 0.7 16.7 ± 0.7 15.3 ± 0.7 17.2 ± 0.8 17.9 ± 1.1 18.3 ± 0.7 40.3 ± 2.2 48.2 ± 2.2 52.8 ± 1.4

ASER (AAAI’ 21) 12.4 ± 0.8 14.4 ± 1.0 16.3 ± 2.3 14.9 ± 0.6 18.8 ± 0.7 23.5 ± 0.7 30.3 ± 1.4 39.4 ± 1.6 46.6 ± 1.4

SS-IL (ICCV’ 21) 15.8 ± 0.8 18.5 ± 0.8 20.0 ± 0.9 18.5 ± 0.8 21.3 ± 0.9 21.9 ± 0.8 36.1 ± 1.3 40.9 ± 2.2 45.5 ± 1.2

DVC (CVPR’ 22) 15.4 ± 0.7 17.2 ± 0.8 19.1 ± 0.9 20.6 ± 0.5 22.1 ± 0.9 24.1 ± 0.8 45.4 ± 1.4 50.6 ± 2.9 52.1 ± 2.5

AML (ICLR’ 22) 13.6 ± 0.7 15.4 ± 0.6 16.3 ± 0.6 16.3 ± 0.7 16.9 ± 0.9 18.3 ± 0.4 49.3 ± 0.9 53.4 ± 2.7 56.2 ± 2.0

ACE (ICLR’ 22) 16.6 ± 0.6 19.5 ± 0.4 21.1 ± 0.5 19.7 ± 0.8 22.1 ± 1.1 23.3 ± 0.6 42.9 ± 1.2 50.1 ± 2.2 53.3 ± 1.6

DER-CBA (ICCV’ 23) 18.4 ± 0.8 20.8 ± 0.7 22.0 ± 1.3 19.1 ± 0.8 21.1 ± 0.6 21.2 ± 1.1 41.0 ± 1.5 43.7 ± 2.5 48.7 ± 1.0

ACE-MOCA (TMLR’ 23) 21.2 ± 0.7 22.9 ± 0.8 25.0 ± 0.9 19.4 ± 0.8 21.1 ± 0.8 21.6 ± 0.7 45.3 ± 2.2 50.0 ± 2.3 52.4 ± 1.1

Ours 23.4 ± 0.8 25.6 ± 1.3 27.8 ± 0.9 26.5 ± 1.0 29.1 ± 0.6 31.1 ± 0.5 47.8 ± 2.8 56.9 ± 2.362.3 ± 1.8

Fig. 2. Average accuracy after each incremental learning step.

Table 1 gives the final average accuracy of all methods on three datasets. We
can find that our method achieves the best performance in most cases. Specifi-
cally, on both Mini-ImageNet and CIFAR-100, our method outperforms all the
compared methods by a large margin. For instance, on CIFAR-100, the accu-
racy increase is 5.9%, 7.0%, and 6.8% respectively for three buffer sizes compared
with the second best methods. On CIFAR-10, the gap is still obvious for larger
memory. However, when the memory size is 0.2K, the accuracy is slightly inferior
to that of AML. In our opinion, the small memory leads to the lower diversity
of memory samples, which limits the effect of our method. Moreover, with the
growth of memory size, the performance gap becomes larger. For example, the
gap on Mini-ImageNet are 2.2%, 2.7% and 2.8% on different memory sizes.

We further show the average accuracy of all observed tasks after each incre-
mental step in Fig. 2. The trend of our method is similar on CIFAR-100 and
Mini-ImageNet. Initially, the accuracy is much lower than that of other methods
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Fig. 3. Stability and plasticity trade-off. The closer to the left upper corner, the better
the balance is struck.

in the first two tasks. However, from the third task onward, our method consis-
tently obtains the highest accuracy. Compared with our method, although some
approaches get higher performance at the beginning, their performance drops
dramatically as the number of tasks increases. For example, on the CIFAR-100
and Mini-ImageNet, DER and ASER are optimal at beginning, but their final
average accuracy is only at the middle level. This discrepancy is due to the
difference between contrastive loss and cross-entropy loss. The former focuses
on pulling similar samples closer and separating samples from different classes,
while the latter aims at learning classification boundaries. Since the number of
classes is small at the beginning, it is relatively easier to learn a clear boundary.
Thus, the methods based on CE loss obtain higher accuracy. However, after sev-
eral incremental learning steps, it becomes more difficult for CE loss to learn a
good boundary for many classes. In contrast, contrative loss can still cluster the
feature of each class, which leads to higher performance.

In continual learning, the model needs to learn new knowledge while preserv-
ing old knowledge. In other words, the trade-off between stability and plasticity
is also very important [44]. To investigate this, we present the interplay between
average forgetting and average new class accuracy of different methods in Fig. 3.
Obviously, the closer to the left upper corner, the better the balance. In this
figure, our method achieves a better stability-plasticity trade-off. Our method
exhibits a similar average forgetting rate compared to the methods with much
lower forgetting rate, like ACE-MOCA, DER-CBA, ACE, and AML. However,
our average new class accuracy is much higher, which means a stronger ability
to learn new knowledge.

To compare the computational complexity, we present the running time for
all methods in Fig. 4. Although our running time is a little more than AGEM,
ER and ER-ACE, our accuracy is much higher than them. Compared to other
retrieval methods like MIR, ASER, and DVC, our uncertainty based scoring
does not add significant computational cost.
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Fig. 4. The total running time comparison average over 10 running (including both
training time and inference time).

Table 2. Influence of different modules on the performance of CIFAR-100.

Memory M=1k M=2k M=5k

Metrics FAA↑ FAF↓ AAN↑ FAA↑ FAF↓ AAN↑ FAA↑ FAF↓ AAN↑
Baseline 11.8 ± 0.4 39.0 ± 0.9 50.8 ± 0.8 14.5 ± 0.9 34.6 ± 0.8 49.1 ± 0.5 20.1 ± 1.0 31.8 ± 1.1 51.9 ± 0.8

Baseline + UR 17.4 ± 0.8 41.5 ± 0.8 59.1 ± 0.8 19.1 ± 0.6 40.2 ± 1.1 59.7 ± 0.4 21.0 ± 1.1 39.7 ± 1.2 60.5 ± 0.5

Baseline + SCL 25.5 ± 0.8 15.7 ± 1.3 40.8 ± 1.3 28.3 ± 1.3 11.5 ± 2.0 38.9 ± 3.5 29.6 ± 1.2 11.1 ± 2.1 40.2 ± 1.7

Baseline + SCL + UR 26.5 ± 1.0 14.9 ± 2.8 40.2 ± 3.9 29.1 ± 0.6 12.3 ± 1.6 40.1 ± 3.1 31.1 ± 0.5 9.8 ± 2.1 38.9 ± 3.9

4.3 Ablation Study

First, we investigate the impact of various components in our model, whose
results are shown in Table 2. The “Baseline” represents the naive ER method.
The “UR” denotes the perturbation uncertainty based retrieval strategy while
the “SCL” represents the combination of two supervised contrastive learning
loss. From this table, we can find that adding any new module can improve the
performance dramatically. Specifically, adding UR largely improves the average
accuracy of the baseline. Compared to random retrieval, UR selects samples by
an interval of sz/k in the descending order of scores, ensuring that the selected
samples include both easy and difficult ones. This retrieval strategy not only
increases the diversity of selected samples, but also prevents the model from
overemphasizing challenging samples. As a result, it greatly enhances the model’s
ability to learn new classes, ultimately leading to a higher average accuracy. In
addition, the UR is more effective when the memory size is smaller. The greatest
gain is observed when the memory size is 1k. When the memory becomes larger,
the class distribution of selected samples by UR is more unbalanced, which will
decrease the effect of UR. On the other hand, although adding SCL damages
the ability to learn new classes, it greatly reduces the forgetting rate, which
finally leads to higher accuracy. In our opinion, the SCL imposes a constraint
on the feature distribution of different classes, which helps to learn robust fea-
ture. Finally, combining the UR and SCL yields the best performance, which
illustrates the complementary of these two modules.
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Fig. 5. The comparison of confusion matrices on CIFAR-100 with 1k memory.

Table 3. Impact of β on the performance of CIFAR-100 with 1k memory.

β 0.1 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

Average Accuracy 26.1 ± 0.6 26.2 ± 1.0 26.5 ± 1.0 25.9 ± 0.8 25.5 ± 0.9 24.9 ± 0.6 24.2 ± 0.6 23.6 ± 0.8 23.0 ± 0.5

Table 4. Impact of candidate size on performance of CIFAR-100 with 1k and 2k.

M=1K Candidate Size 30(3.0%) 40(4.0%) 50(5.0%) 100(10%) 200(20%) 300(30%) 400(40%) 500(50%)

Average Accuracy 26.3 ± 1.0 26.3 ± 0.9 26.6 ± 0.7 26.0 ± 1.1 26.0 ± 0.7 26.4 ± 0.6 26.4 ± 0.4 26.4 ± 0.6

M=2K Candidate Size 30(1.5%) 40(2.0%) 50(2.5%) 200(10%) 400(20%) 600(30%) 800(40%) 1000(50%)

Average Accuracy 28.7 ± 0.9 28.9 ± 0.7 29.1 ± 0.6 29.0 ± 0.8 29.4 ± 1.0 28.5 ± 0.9 28.6 ± 0.4 28.7 ± 1.0

To provide a more intuitive insight into the effects of each component, we
further compare the confusion matrices of different modules on CIFAR-100 with
1k memory in Fig. 5. From Fig. 5 (a), we can see that ER tends to predict
samples to new classes. Adding UR helps the model to achieve more correct
classifications (i.e. more diagonal items), as shown in Fig. 5(b). Although UR
leads to a few mis-classifications, the task-recency bias is still severe. In contrast,
the SCL can largely mitigate task-recency bias and the “Baseline+SCL+UR”
achieves the best results according to Fig. 5 (c) and (d).

The influence of β in Eq. (4) on CIFAR-100 is shown in Table 3. The perfor-
mance initially keeps increasing when using larger β. However, when β is greater
than 0.5, the performance decreases. Therefore, we set β to 0.5. Besides, even
when β is 0.1, the accuracy is still comparable. We contribute this to the dif-
ference of the SS loss and PS loss. Since the samples of old classes are much
fewer compared with new classes, the SS loss mainly learns the relationship of
classes in the current task. Too large weight for the SS loss will affect model
generation. In contrast, the PS loss pulls samples to their corresponding proxy,
which is optimized to represent the data of a class.

Finally, we investigate the relation between memory size and candidate size.
As shown in Table 4, increasing the size can improve the performance in the
beginning. However, when it is larger than 50, using larger candidate size has
minimal effect on the performance. Meanwhile, too larger candidate means
higher computational cost. Therefore, we set the candidate size as 50 for all
datastes and memory sizes, which achieves better performance with lower com-
putation.
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5 Conclusion

In this work, we propose a simple yet effective method for online class-
incremental learning. Specifically, we design perturbation uncertainty based
retrieval strategy, which meaures the memory samples according to their robust-
ness in the feature space and retrieves samples whose features will be most per-
turbed. By selecting more meaningful samples, the plasticity of a model can be
enhanced. Moreover, we replace the cross-entropy loss with two types of super-
vised contrastive learning loss. Thus, we can cluster the feature of same class
samples and separate the feature of different class, which further enhances the
robustness of the features and reduces the task-recency bias. We have conducted
extensive experiments on three common benchmarks for OCIL, whose results
validate the effectiveness of our model. In the future, we will explore how to
select samples with better class distribution and investigate its effect on other
continual learning settings.
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Abstract. Class-incremental learning (CIL) aims to learn a series of
tasks sequentially, each introducing several new categories. Because pro-
viding the task labels during inference can significantly increase accuracy,
many approaches attempt to predict task labels in CIL. However, exist-
ing works focus on learning local information and overlook the impor-
tance of global information. The absence of global guidance leads to
the formation of information silos across disparate tasks, resulting in
potential inter-task interference. To break information silos, we propose
a method called Global Guided Task Prediction (GGTP) to introduce
global information. Our method consists of two modules. The local de-
redundant module aims to reduce information redundancy across dif-
ferent tasks from a global perspective. We combine dual encoders and
feature decorrelation loss to effectively reduce redundancy while mini-
mizing catastrophic forgetting. The global information module explicitly
extracts global information to serve as auxiliary information guiding task
prediction. We extract the most important information from all local
information through a global encoder and then aggregate them to form
global information. Extensive experiments validate the effectiveness of
our method, which achieves state-of-the-art results.

Keywords: Class-Incremental Learning · Dynamic Expansion
Architectures · Task Prediction

1 Introduction

Incremental Learning (IL), an area of machine learning that is evolving quickly
due to widespread demand [5,10,24], is designed to progressively acquire new
classes [35]. Training data is presented as a series of tasks, each introducing
a few new classes. Generally speaking, Incremental learning can be roughly
divided into two categories of methods: task-incremental learning (TIL) and
class-incremental learning (CIL) [17,34,41]. The difference between the two lies
in whether the task label is known during inference.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15309, pp. 48–63, 2025.
https://doi.org/10.1007/978-3-031-78189-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78189-6_4&domain=pdf
https://doi.org/10.1007/978-3-031-78189-6_4


Global Guided Task Prediction for Class-Incremental Learning 49

… Global Information…

Samples of Task n

Samples of Task m branches

Fig. 1. (a) Existing methods focus on effectively extracting local information (intra-
task information), yet they do not emphasize global information (inter-task infor-
mation). Without the guidance of global information, information silos may lead to
inter-task compactness, thereby affecting the accuracy of task predictions. (b) Global
information can enhance inter-task separation of different tasks.

Many researchers [1–3,15,22,23,36,42] observe a significant accuracy gap
between TIL and CIL and attempt to predict task labels within CIL to reduce
the class label search space. Some approaches [1,3] attempt to predict the task
labels through features or gate networks. Others [2,15,36,42] try to predict the
task labels by leveraging the data distribution differences across various tasks.
Additionally, some methods [22,23] attempt to introduce Out-of-Distribution
Detection classifiers to determine the probability of outlier samples.

However, the above methods mainly focus on local information (intra-task
information) and overlook the importance of global information (inter-task infor-
mation). As illustrated in Fig. 1, we select two tasks, m, and n (m¡n), from all
tasks, along with their corresponding branches Bm and Bn. Since both branches
capture local information effectively, both tasks exhibit intra-task compactness.
Tasks m and n may have some categories with semantic similarities (e.g., cats
and dogs), which makes it difficult to distinguish certain samples from the new
and old tasks. Different local information forms information silos, lacking con-
nection and updates. Therefore, different tasks may not exhibit inter-task sep-
aration. Although many methods do not directly predict task labels based on
feature space, but rather on task distribution differences [2,15,36,42] or OOD
classifiers [22,23], the same problems exist. For example, Expert Gate [2] trains
an autoencoder for each task and predicts task labels through reconstruction
error. Even though each autoencoder can learn local information well, the dif-
ferent autoencoders are information silos. Due to the lack of global information
to update local information or to provide auxiliary information, when new sam-
ples are input into old autoencoders, they may exhibit reconstruction errors of
a similar magnitude to old samples, leading to incorrect task prediction.

To break the information silos between tasks, we propose a method named
Global Guided Task Prediction (GGTP) to introduce global information in task
prediction. we argue that global information can better guide the learning of
local information and also directly guide task prediction. Therefore, we propose
two modules: the Local De-redundant Module and the Global Information Mod-
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ule. The Local De-redundant Module aims to reduce inter-task redundancy
from a global perspective to increase task separability. We utilize a dual-task
encoder mechanism to allow local information to update gradually, reducing
catastrophic forgetting. Next, we introduce a feature decorrelation loss to elim-
inate redundancy between different tasks. The Global Information Module
aims to leverage global information to directly guide task predictions. The local
information is first purified through a global encoder and then aggregated to
get global information. Global information can better represent the relation-
ships between different tasks and guide tasks to exhibit better separability. As a
result, the global information captured by the proposed modules can guide the
model for accurate task prediction Extensive experiments conducted on widely
used datasets CIFAR100 [27] and ImageNet [8] demonstrate that our method
effectively surpasses state-of-the-art performance.

Contributions of this paper can be summarized as follows:

1. We propose GGTP to incorporate global information into task prediction to
break the information silos between tasks.

2. Our proposed Local De-redundant Module reduces redundant information
between tasks. Our proposed Global Information Module extracts global
information to better guide task prediction.

3. Significant performance gains demonstrated by extensive experiments on
CIFAR100, ImageNet datasets.

2 Related Work

Class-incremental learning aims to balance the contradiction between stability
and plasticity. A pioneering method in this area is iCaRL [35], which uses a
greedy strategy to retain key samples that are most helpful in reducing forget-
ting. Building on this, methods like WA [53], UCIR [18], BiC [47], and MAFRC
[6] recognize that an imbalance between new and old classes leads to biases
in classifiers. Some approaches [4,32,39,50] impose constraints on the gradient
update of new class samples, ensuring that the update direction forms an acute
angle or is orthogonal to the gradient of old class samples, thereby not increasing
the loss of old classes. Some methods [9,20,29,38,47,52] impose constraints on
the features or logits of the model’s output. Some works [25,28,49,51] also rec-
ognize that different parameters in the model contribute unequally to retaining
old knowledge, thus proposing several methods to estimate the importance of
each parameter and freezing the most critical parameters to preserve existing
knowledge. Next, we will introduce two types of methods that are most relevant
to the work in this paper.

Dynamically Expansion Architecture. Previous work inevitably faces an
issue: the limited old class samples could not represent the complete data distri-
bution. The model may overfit these few samples when it updates, causing infor-
mation loss. To address this, Yan et al. [48] introduce the concept of dynamic
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expansion architecture. This approach preserves existing knowledge by freez-
ing the existing feature extractors and adding a new extractor to learn features
of new classes. Huang et al. [19] incorporate attention mechanisms and multi-
level knowledge distillation, aiming to reduce old-new confusion. Wang et al. [43]
achieve bidirectional compatibility, where the module responsible for a given task
would dominate the prediction under ideal circumstances. With each new task,
the model adds extra parameters. This constant increase in parameters limits the
practicality of these methods. To mitigate this, Wang et al. [44] employ knowl-
edge distillation [16] after each task to produce a student model comparable in
size to the original, thus addressing the issue of parameter inflation.

Task Prediction. iTAML [36] processes test samples in batches when predict-
ing tasks. Each batch must come from a single task. This limits the practicality of
the method. Expert Gate [2] builds a gating autoencoder for each task. It deter-
mines the best matching task by comparing the difference between the recon-
structed sample and the original sample. Davide et al. [1] design an independent
feature extractor for each task using a gating scheme. It requires only a small
number of parameters to add a new feature extractor. After extracting features,
this method concatenates them and sends them to a task predictor for predic-
tion. HyperNet [42] and PMCL [15] propose an entropy-based task-id prediction
method. MORE [23] and CLOM [22] incorporate Out-of-Distribution Detection
(OOD) to determine whether the current sample belongs to the task. Cai et
al. [3] design a gate network in conjunction with a dynamic expansion architec-
ture to predict the task label of a sample during inference, reducing inter-task
confusion. However, this method primarily uses the dynamic expansion archi-
tecture as a strong baseline and does not effectively leverage the advantages of
multi-branches.

Global Information. DKT [13] introduces a task general token to store global
information (task-general knowledge). Similar to Prefix Tuning [30], the task gen-
eral token is concatenated with the input tokens and used as K and V inputs
to the attention block. Without constraints to protect old knowledge, the task
general token forgets old global knowledge when learning new tasks, resulting
in biased global cognition. In contrast, our proposed Global Information Mod-
ule generates global information by purifying and aggregating all task-specific
information, resulting in more comprehensive global information. Based on L2P
[46], DualPrompt [45] subdivides prompts into G-prompts and E-prompts, which
store task-invariant instructions and task-specific instructions, respectively. Sim-
ilar to DKT, DualPrompt also lacks constraints to protect old knowledge, lead-
ing to G-prompts forgetting old task-invariant information. VIDA [31] finds
that high-rank and low-rank adapters can represent domain-shared and domain-
specific knowledge, respectively. Therefore, it decouples them using high and
low-rank adapters and dynamically merges these types of knowledge through
the Homeostatic Knowledge Allotment strategy. The domain-shared information
in VIDA represents the common information across different domains, whereas
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our global information represents the important information that distinguishes
different tasks.

3 Methods

3.1 Problem Setting and Method Overview

Problem Setting. First, we introduce the setup of class-incremental learning.
In this setup, a model sequentially obtains a series of datasets {D1,D2, · · · ,DT }.
Each dataset contains classes that the model has not learned before. The process
of learning dataset Dt is referred to as the t step. All classes and their corre-
sponding samples in Dt constitute the t task. After each step, the model is tested
on all classes learned so far.

Method Overview. Next, we will outline the framework and notation of our
method. In the first step, the feature extractor G1 and classifier F1 are trained
the same as the general classification task on dataset D1. At each subsequent
step t ∈ {2, 3, · · · , T}, we freeze all the feature extractors

{G1,G2, · · · ,Gt−1

}
.

We then add a new feature extractor Gt, a new classifier Ft, and an auxiliary
classifier Fa

t . The auxiliary classifier Fa
t is only used during step t and is not

retained for the next step. During training and inference, a sample is fed into all
feature extractors, resulting in t feature

{
φ1, φ2, · · · , φt

}
. Then concatenate all

the features into one feature φ by dimension. Shown in Fig. 2, our model consists
of three components: Local De-redundant Module Module, Global Information
Module, and Attention Module. We introduce the three modules in turn and
then finish with the optimizing and lightweight. The encoder we use in these
modules is a linear layer, except for the global encoder, which is a two-layer
MLP, so they do not significantly increase the model’s complexity.

3.2 Local De-Redundant Module

Dual Task Encoder Mechanism. The feature extractor primarily learns to
distinguish between different classes, which may result in features that are not
well-suited for differentiating between tasks. To address this, we obtain local
features by processing the original features through task encoders. These local
features have a lower dimensionality, which reduces the number of parameters
across all encoders.

For the new task, features φt are processed through a task encoder ES
t to

acquire local features. For the old tasks, to reduce the catastrophic forgetting
associated with updating local information, we introduce two task encoders for
each old task. The first encoder, φS

m, is inherited from the previous step. The
second encoder, φP

m, is created in the current step and is initialized with φS
m. To

protect old knowledge, we freeze the set of encoders
{
ES

1 , ES
2 , · · · , ES

t−1

}
. At the

same time, we update the set
{
EP

1 , EP
2 , · · · , EP

t−1

}
to acquire new knowledge. We

then generate a learnable feature weight vector αm for each task. The dimensions



Global Guided Task Prediction for Class-Incremental Learning 53

Fig. 2. Schematic diagram of our method. First, samples are passed through a feature
extractor to extract diverse local information. Then, a Local De-redundant Module
removes the redundancy of local information. This is followed by a Global Information
Module that extracts global information. Finally, an Attention Module fuses the results
of task prediction with the results of class prediction.

of αm match those of the local features. By default, we initialize αm to 1, which
biases the fused features towards retaining their original features. We first extract
all the local features:

φP
m = EP

m(φm),m = 1, 2, · · · , t − 1

φS
m = ES

m(φm),m = 1, 2, · · · , t − 1
(1)

The feature weight vector αm is passed through a sigmoid function to obtain
a coefficient vector that ranges between 0 and 1. Subsequently, we calculate a
weighted sum of φP

m and φP
s using this αm to produce the fused feature φT

m.
Here, σ represents the sigmoid function:

φT
m = σ(αm) · φS

m + (1 − σ(αm)) · φP
m (2)

So the final φT
m can be expressed as:

φT
m =

{
σ(αm) · φS

m + (1 − σ(αm)) · φP
m if m = 1, 2, · · · , t − 1

φS
m if m = t

(3)
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At the end of each step, assuming the weights for ES
m and EP

m are WS
m and WP

m

respectively, the final output φT
m(m < t) can be expressed as follows:

φT
m = σ(αm) · WS

m · φm + (1 − σ(αm)) · WP
m · φm

=
(
σ(αm) · WS

m + (1 − σ(αm)) · WP
m

)
· φm

(4)

Thus, we update ES
m and discard EP

m:

WS
m ← σ(αm) · WS

m + (1 − σ(αm)) · WP
m (5)

So we mitigate catastrophic forgetting by gradually updating old knowledge.

Feature Decorrelation Loss. We propose a feature decorrelation loss to elim-
inate the redundancy of different tasks. We treat each feature dimension as a
random variable. Assuming the dimension of φT

m is d, there are a total of t · d
random variables. We encourage the covariance of these random variables to be
as close to zero as possible. Direct estimation of covariance may not be accurate
due to the limited number of old class samples. To address this issue, we design
a feature queue Q to store a certain number of old class features, with the queue
length set to q. For each batch of b input samples, we combine the features in the
queue Q with features of the current batch. Let ϕk represent the k-th dimension
of the feature φT , then the feature decorrelation loss is defined as follows:

LFDL =
1

(t · d)2 − t · d

t·d∑

k=1

t·d∑

m=1
m �=k

|cov(ϕk, ϕm)|, (6)

where cov denotes the calculation of covariance based on b+q values within each
batch, and |a| denotes the absolute value. At the end of each batch, we add the
features of the old classes from the current batch to the queue Q and remove an
equal number of the earliest features that entered the queue. This ensures that
the size of the queue remains and the queue stores the most recent small portion
of old class features.

3.3 Global Information Module

Global information can articulate the relationships between different tasks and
serve as additional guidance for task prediction. Even though local information
may already imply the relationships among various tasks, local information is
often rich and may obscure critical details. For instance, consider a scenario
where one task involves red targets while another involves green targets. The
local information could contain a plethora of details, such as shape or texture,
but the key distinction between the tasks might simply be the color difference.
All local information is processed through a global encoder EG

m to filter out
irrelevant details, and then aggregated to form the final global information:

φG =
t∑

m=1

EG
m(φT

m) (7)
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3.4 Attention Module

Task confidence is used as the weight for an attention mechanism to either
amplify or diminish the probabilities of different categories. First, We combine
all local features, φT

m, with the global feature, φG, along their dimensions. This
results in the final task feature, φT . Then, we obtain the class logit lc through the
classifier Ft and the task logit lt through the task predictor F task

t . To maintain
numerical stability, lt is scaled to the range of [0, 1] using the Sigmoid function.
lt is then expanded to match the length of lc based on the number of categories
per task. Finally, we combine these two logits by element-wise multiplication to
produce the final logit lf . Thus, the final logit lf takes into account both task and
category information. Information from task predictions effectively increases the
probability of the corresponding task while decreasing the probability of other
tasks.

3.5 Optimizing and Lightweight Model

Optimizing. Like DER [48], in the first stage, the model focuses on learning
the features of new tasks. The second stage is dedicated to training the classi-
fier. During the first stage, we train the features φt using an auxiliary classifier
Fa

t . Unlike DER, the logit output by our auxiliary classification head includes all
classes, not just past classes grouped as a single pseudo-class. This is because one
pseudo-class can only express features common to old classes, which is not con-
ducive to the new feature extractor learning to distinguish between new classes
and specific similar old ones. This helps the new feature extractor learn the
characteristics of the new task. In the second stage, to address the imbalance
between new and old classes, we train the task logits lt and final logits lf using
a balanced cross-entropy loss [37].

Lightweight Model. Similar to [44], we reduce the model’s parameter count
using knowledge distillation. After each step, we use the current model as a
teacher and employ knowledge distillation to create a single-branch student
model and discard the teacher model. Since the model has at most two branches,
we treat all old classes as a single task, and each feature extractor is equipped
with just one task encoder. We name this streamlined model GGTP-Lite. To
address the imbalance between new and old classes, we propose a balanced
knowledge distillation function inspired by [37]. The logits from the teacher and
student models are denoted as lt and ls, respectively. lti and lsi represent the
outputs for the ith dimension. The variable ηi indicates the number of samples
for the ith class. The loss formula is as follows:

LBKD = −
∑

i

exp(lti/T )
∑

j exp(ltj/T )
· log

( exp
(
(lsi + log(ηi))/T

)

∑
j exp

(
(lsj + log(ηj))/T

)
)

(8)

Compared to FOSTER [44], Our proposed LBKD has no additional hyperpa-
rameters.



56 C. Hu et al.

Table 1. Test results on CIFAR-100. #P means the number of parameters after com-
pleting the learning of all tasks. Avg means the average accuracy (%) over steps.

Methods Pub

CIFAR100-B0 CIFAR100-B50

5 Step 10 Step 20 Step 5 Step 10 Step

#P Avg #P Avg #P Avg #P Avg #P Avg

iCaRL [35] CVPR’1711.2 71.14 11.2 61.20 11.2 61.20 11.2 65.06 11.2 71.14

UCIR [18] CVPR’1911.2 62.77 11.2 58.17 11.2 58.17 11.2 64.28 11.2 62.77

BiC [47] CVPR’1911.2 73.10 11.2 66.48 11.2 66.48 11.2 66.62 11.2 73.10

WA [53] CVPR’2011.2 72.81 11.2 67.33 11.2 67.33 11.2 64.01 11.2 72.81

PODNet [11] ECCV’2011.2 66.70 11.2 53.97 11.2 53.97 11.2 67.25 11.2 66.70

DyTox [12] CVPR’2210.7 73.66 10.7 67.30 10.7 67.30 - - - -

FOSTER [44]ECCV’2211.2 77.61 11.2 75.18 11.2 72.26 11.2 75.11 11.2 70.21

MAFDRC [6] ICCV’23 11.2 78.70 11.2 76.93 11.2 74.09 11.2 74.95 11.2 72.26

GGTP-Lite Ours 11.280.28 11.2 79.51 11.2 77.23 11.277.95 11.2 75.56

DER [48] CVPR’2156.0 79.03 112 78.13 224 77.85 67.2 77.15 123.2 75.58

MCTD [3] CVPR’2367.2 78.15 123.2 77.40 235.2 76.20 78.4 76.19 134.4 75.43

TCIL [19] AAAI’23 56.0 80.23 112 79.12 224 78.10 67.2 77.76 123.276.91

GGTP Ours 57.681.21 115.2 80.73 230.4 79.61 69.1 78.66 126.7 76.53

4 Experiments

4.1 Experiment Setup and Implementation Details

Dataset. We evaluated on the widely used incremental learning dataset CIFAR-
100 [27] and ImageNet100/1000 [8]. CIFAR-100 includes 100 classes, with 500
training images for each class and 100 evaluation images for each class, with a
resolution of 32×32. ImageNet-1000 is a large-scale dataset consisting of 1000
classes with a total of 1.28 million training images and 500 test images per
class. ImageNet-100 is a dataset composed of 100 randomly selected classes from
ImageNet-1000. The sequence numbers of the 100 classes we selected are derived
from [35].

Evaluation Protocols. Following [35], we evaluated five widely used test-
ing protocols. (1) CIFAR100-B0: Divide the 100 classes of CIFAR100 equally
into 5, 10, and 20 tasks, with a fixed memory budget of 2000 samples. (2)
CIFAR100-B50: Pretrain the 50 classes of CIFAR100, then divide the remaining
50 classes equally into 5 and 10 tasks, and retain 20 samples for each class. (3)
ImageNet100-B0: Divide the 100 classes of ImageNet100 equally into 10 tasks,
with a fixed memory budget of 2000 samples. (4) ImageNet100-B50: Pretrain
the 50 classes of ImageNet100, then divide the remaining 50 classes equally into
10 tasks, and retain 20 samples for each class. (5) ImageNet1000-B0: Divide the
1000 classes of ImageNet1000 equally into 10 tasks, with a fixed memory budget
of 20000 samples. The class increment order also follows [35], using 1993 as the
seed to generate the increment class order.
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Table 2. Test results on ImageNet-100 and ImageNet-1000.

Methods Pub ImageNet100-B50 ImageNet100-B0 ImageNet1000-B0

#P Avg #P Avg #P Avg

UCIR [18] CVPR’19 11.2 68.09 – – – –

PODNet [11] ECCV’20 11.2 74.33 – – – –

TPCIL [40] ECCV’20 11.2 74.81 – – – –

FOSTER [44] ECCV’22 11.2 77.54 11.2 78.40 11.2 68.34

MAFDRC [6] ICCV’23 11.2 77.95 11.2 79.66 11.2 69.37

GGTP-Lite Ours 11.2 78.34 11.2 80.05 11.2 69.72

DER [48] CVPR’21 123.2 77.74 112 79.81 112 69.81

MCTD [3] CVPR’23 134.4 79.83 123.2 80.46 123.2 70.08

TCIL [19] AAAI’23 – – 112 77.66 – –

BEEF-C [43] ICLR’23 – – 112 79.34 – –

GGTP Ours 126.1 80.89 114.6 82.03 119.2 72.60

Implementation Details. For CIFAR-100, we utilize an adjusted ResNet-18
[48] as the feature extractor and set the batch size to 128. For ImageNet, we
employ the standard ResNet-18 [14] as the feature extractor with a batch size of
256. For both CIFAR-100 and ImageNet, during the first stage, we set the initial
learning rate to 0.1 and use a cosine annealing scheduler to decay the learning
rate to 0 over the epochs. In the second stage, all other settings for the learning
rate remain the same, except that the initial learning rate is set to 0.001. We
use SGD with a momentum of 0.9 and a weight decay of 5e-4. The size of the
feature queue Q is set to 300. The coefficient for feature decorrelation loss is
set to 1. The output dimension of the task encoder is set to one-quarter of the
input dimension. Follow [3,6,19,44], for data augmentation, we uniformly use
[7], random cropping, horizontal flip, and normalization.

4.2 Results and Discussion

Result on CIFAR-100. Shown in Table 1, we compare with many methods,
such as iCaRL [35] , UCIR [18], BiC [47], WA [53], PODNet [11] , DyTox [12],
MAFDRC [6], DER [48], MCTD [3], TCIL [19] and FOSTER [44]. The module
we propose adds a very small number of parameters. The increase in param-
eters is about 2.9%. Because #P means the number of parameters after com-
pleting the learning of all tasks, GGTP-Lite has the same number of parame-
ters as other single-branch models. Overall, our method is only slightly behind
TCIL on CIFAR100-B50S10 but outperforms the best results under the other
four protocols. On CIFAR100-B0S5, CIFAR100-B0S10, CIFAR100-B0S20, and
CIFAR100-B50S5, our results exceed the best results by 0.98%, 1.61%, 1.51%,
and 0.90%, respectively. It is noteworthy that our model maintains a rapid
inference speed, as we do not modify the backbone or introduce additional huge
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gating networks, unlike other task-prediction-based methods. The overall perfor-
mance of GGTP-Lite is also quite good, even outperforming many multi-branch
dynamic extension architecture methods on some protocols.

Result on ImageNet. Shown in Table 2, for ImageNet-100 and ImageNet-1000,
we compare with UCIR [18], PODNet [11], TPCIL [40], DER [48], MCTD [19],
MAFDRC [6], MCTD [3], TCIL [19], BEEF [43], DER [48] and FOSTER [44].
Overall, our method significantly outperforms all other approaches on ImageNet.
On ImageNet100-B50, ImageNet100-B0, and ImageNet1000-B0, our method sur-
passes the best results byyu, respectively. This may suggest that our method is
more effective on larger datasets. The test results on ImageNet1000 indicate that
the model we propose is better suited to adapt to large-scale datasets.

4.3 Ablation Study and Analysis

The following experiments are all based on the CIFAR100-B0S10 protocol.
Table 3. Ablation study results for various components.

Baseline
Dual

Task Encoder
Feature

Decorrelation
Global

Information
Avg Last

� 78.13 68.82

� � 79.31 70.76

� � � 80.15 71.62

� � � � 80.73 72.86

Different Components in Ours Method. We conduct ablation experiments
on the various components we propose, shown in Table 3. Our module primarily
consists of four parts: Baseline (DER), Dual Task Encoder, Feature Decorrela-
tion Loss, and Global Information. In the table, these are respectively denoted
as Baseline, Dual Task Encoder, Feature Decorrelation, and Global Information.
The “Last” column indicates the overall accuracy across all categories after the
model has learned all tasks. Our components contributed to accuracy improve-
ments of 1.94%, 0.86%, and 1.24% respectively.

Fig. 3. Coefficient of the LFDL.
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Sensitivity Analysis of Hyper-Parameters. Next, we perform a sensitivity
analysis on the coefficient of the feature decorrelation loss, as illustrated in Fig. 3.
We test it in the interval [0, 3] with increments of 0.5. Within this range, accuracy
exhibits a trend of initially increasing and then decreasing. The overall trend is
relatively flat, with an optimal value of 1.

Fig. 4. Results of centered Kernel alignment (CKA) between different φT
m.

Similarity of Local Features. Following [21], we utilize the Centered Kernel
Alignment (CKA) [26] to measure the similarity between different local infor-
mation, with higher values indicating greater similarity. To validate the effect of
our proposed Local De-redundant Module, we retrain a “stability” model. This
model generates only a new ES

t at each step without producing any EP
t . As a

result, the earlier modules cannot update their knowledge in subsequent steps.
As shown in Fig. 4, we calculated and averaged the similarity between different
φT
m at the end of each step. The findings indicate that our improved model effec-

tively reduces the similarity and enhances the differences between different local
information, compared to the “stability” model.

Fig. 5. t-SNE [33] visualisation results of features from different tasks.

Visualisation Results of Tasks. We conducted a t-SNE [33] visualization
analysis for the raw feature φ of DER and our proposed global feature φG, sam-
ples from different tasks with distinct colors, as shown in Fig. 5. The visualiza-
tion reveals that the feature φ focuses more on distinguishing between categories
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rather than tasks, with samples from various tasks not converging together. In
contrast, global Information φG eliminates a large amount of irrelevant infor-
mation, articulating the relationships between different tasks. Therefore, it can
effectively guide task prediction.

Fig. 6. Confusion analysis on the baseline and ours.

Confusion Analysis. Confusion can be divided into intra-task confusion and
inter-task confusion. Task prediction can effectively solve inter-task confusion.
To verify this, we conduct a confusion analysis on the baseline and our improved
model. The results are shown in Fig. 6. The analysis reveals that confusion
between tasks sharply increases, while confusion within tasks grows slowly. After
integrating our modules, inter-task confusion significantly decreases. This leads
to a substantial improvement in overall classification accuracy.

5 Conclusion

In this paper, we propose a method called Global Guided Task Prediction
(GGTP) to introduce global information to solve the problem of information
silos in task prediction. Our method consists of two modules. The Local De-
redundant Module removes redundancy from different local information. In par-
ticular, it updates local information on old tasks while reducing catastrophic
forgetting. The Global Information Module distills important information from
all local information to express the relationships between different tasks and then
serves as auxiliary information to guide task prediction. Our experiments con-
firm that this method effectively predicts task labels and achieves state-of-the-art
performance. Our method relies on local information to reduce catastrophic for-
getting of global information. This means that the model must retain all the
local information, leading to an increase in the number of parameters as tasks
increase. Exploring how to directly update global information without relying on
local information, while simultaneously reducing the forgetting of learned global
information, is a potential research direction.
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Abstract. The rapid advancement of generative models has signifi-
cantly enhanced the realism and customization of digital content cre-
ation. The increasing power of these tools, coupled with their ease of
access, fuels the creation of photorealistic fake content, termed deepfakes,
that raises substantial concerns about their potential misuse. In response,
there has been notable progress in developing detection mechanisms to
identify content produced by these advanced systems. However, existing
methods often struggle to adapt to the continuously evolving landscape
of deepfake generation. This paper introduces Prompt2Guard, a novel
solution for exemplar-free continual deepfake detection of images, that
leverages Vision-Language Models (VLMs) and domain-specific multi-
modal prompts. Compared to previous VLM-based approaches that are
either bounded by prompt selection accuracy or necessitate multiple for-
ward passes, we leverage a prediction ensembling technique with read-
only prompts. Read-only prompts do not interact with VLMs internal
representation, mitigating the need for multiple forward passes. Thus, we
enhance efficiency and accuracy in detecting generated content. Addi-
tionally, our method exploits a text-prompt conditioning tailored to
deepfake detection, which we demonstrate is beneficial in our setting. We
evaluate Prompt2Guard on CDDB-Hard, a continual deepfake detection
benchmark composed of five deepfake detection datasets spanning multi-
ple domains and generators, achieving a new state-of-the-art. Addition-
ally, our results underscore the effectiveness of our approach in addressing
the challenges posed by continual deepfake detection, paving the way for
more robust and adaptable solutions in deepfake detection. Source code
is available at https://github.com/laitifranz/Prompt2Guard.

Keywords: Deepfake detection · Incremental Learning · Prompt
Learning · Multi-Modal Learning · Contrastive Learning

1 Introduction

The rapid evolution of generative artificial intelligence has revolutionized the
digital content creation, enabling unprecedented levels of realism, customiza-
tion, and accuracy [6,19,36,38]. The ease of access to these technologies has
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been crucial in driving their advancement, making powerful tools available to a
broader audience beyond researchers, thereby removing barriers for non-expert
users. This progress has led to photorealistic fake images and videos, i.e. deep-
fakes, raising significant concerns regarding their potential for malicious use.
With human discernment facing significant challenges in distinguishing between
real and generated fake images [28], urgent attention is needed to develop effec-
tive detection mechanisms capable of accurately identifying content produced
by these advanced systems.

Fig. 1. Overview of the proposed method. Prompt2Guard addresses the task of
domain incremental deepfake detection. The training (a) is performed on a sequence
of datasets, coming from different domains. At inference time (b) the model classifies
the input image into real or fake, without domain knowledge.

Significant progress has been achieved on the deepfake detection as well, with
state-of-the-art detectors capable of identifying images generated using GANs
and diffusion models [5,41]. However, these methods primarily function within a
stationary scenario, wherein a large amount of relatively homogeneous deepfake
content is presented at training time. This ideal scenario is often not reflective of
the real-world landscape. In practice, likely heterogeneous deepfakes are contin-
uously produced using novel and unseen architectures, presenting a constantly
evolving landscape for detection methods to navigate. To effectively tackle this
challenge, modern deepfake detectors must be able to adapt to the latest gener-
ators without succumbing to catastrophic forgetting. Maintaining the ability to
detect content from diverse generators is crucial, as older generators continue to
pose a significant threat.

While some continual deepfake detection benchmarks have been introduced
lately [26,54], the field still lacks comprehensive exploration, with few meth-
ods tackling deepfake detection in the incremental setting. Capitalizing on the
generalization abilities of Vision-Language Models (VLMs), recent methods have
shown promise in leveraging the encoded knowledge of these models for deepfake
detection [30,45].
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These methods adapt VLMs to Domain Incremental Learning (DIL) by learn-
ing specific prompts for each task (generator) at training time, thereby main-
taining independence in the training process. At test time, they either require
inferring the generator to select the appropriate prompts [45] or, when unde-
cided, performing multiple forward passes and aggregate information from dif-
ferent parameters [30]. As a result, they are either constrained by task selection
accuracy or necessitate expensive multiple forwards to output a single prediction.
Furthermore, while VLMs demonstrate potential in assessing the authenticity of
visual content, their application in deepfake detection often oversimplifies the
problem, treating the task as standard binary classification.

Inspired by these observations, we propose Prompt2Guard, a novel solution
for examplar-free continual deepfake detection that leverages VLMs and domain-
specific multi-modal prompts, as illustrated in Fig. 1. Compared to previous
VLM-based methods, our solution is specifically tailored for deepfakes and solves
the task selection problem with a prediction ensembling that does not require
multiple forward passes. We evaluate the proposed approach on the challenging
CDDB benchmark [26], consisting of a sequence of datasets coming from different
image generators, achieving state-of-the-art results.

Our contributions can be summarized as follows:

1. We present Prompt2Guard, a novel VLM-based exemplar-free DIL strategy
that leverages multi-modal prompts. These prompts are read-only and do not
alter the VLM internal representation. As a result, we can ensemble predic-
tion scores from different tasks without requiring multiple forward passes,
enhancing accuracy and efficiency.

2. Additionally, we propose a text-prompt conditioning procedure specifically
tailored to deepfake detection and show its effectiveness.

3. We empirically show the capabilities of the proposed method, achieving state-
of-the-art results in task-wise average accuracy without incurring catastrophic
forgetting on the CDDB benchmark [26].

2 Related Work

Deepfake Detection. The field of media forensics has a long history of utilizing
traditional tools to analyze synthetic images, including techniques such as iden-
tifying resampling artifacts [33], JPEG quantization [2], image splicing [22], and
Photoshop warping [43]. With the democratization of synthetic image creation
through deep generative methods, recent studies have focused on employing
deep discriminative methods to detect such manipulated content, particularly
for GAN-based approaches [11]. Rössler et al. [39] train an Xception [13] for
detecting deepfake images of faces. Chai et al. [11] employ limited receptive
fields to identify the most indicative patches, demonstrating that they contain
sufficient cues for detecting images as real or fake. Wang et al. [44] show that
CNN-generated images share common flaws and a ResNet-50 [20] with suitable
data augmentations can generalize across generators.
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Vision-Language Models. Vision-language models (VLMs), pioneered by
CLIP [35], are pre-trained on a vast amount of web-crawled image-text pairs
to learn joint visual-text embedding spaces. These models have demonstrated
outstanding performance in various downstream tasks, especially in zero-shot
image classification [23,49]. While VLMs exhibit robust generalization capabil-
ities, adapting them to specific tasks is challenging. Recent studies in VLMs
involve prompt learning to adapt pre-trained models to downstream tasks using
affordable-sized datasets. CoOp [53] uses continuous vector prompts, which are
concatenated and processed with text tokens. CoCoOp [52] further extends CoOp
by leveraging a lightweight neural network to generate prompts conditioned on
the input image. These works keep the pre-trained weights frozen, yet the learn-
able prompts still affect the model’s hidden representation through the attention
mechanism. To prevent this internal representation shift, RPO [25] proposes to
use a masked attention mechanism, which limits prompts to only read informa-
tion from the attention-based interactions of the pre-trained model.

Continual Learning. To tackle catastrophic forgetting, early continual learn-
ing approaches proposed regularization terms to constrain network parameters
from forgetting old knowledge when updated with new information [3,9,12,18,
24,27,50]. Despite reducing forgetting during sequential updates, these meth-
ods fail to retain satisfactory performances after multiple updates. By allow-
ing the storage of part of the old data in memory buffers, rehearsal-based
approaches [8,10,34,37,48] have shown superior performance over memory-free
approaches. However, storing data in a replay buffer for future rehearsal poses
privacy-related concerns as data may be leaked. To preserve privacy while
maintaining performances similar to replay-based methods, parameter-isolation
approaches exploit pre-trained models and tune just a small fraction of param-
eters for each update [16,29,42,46,47,51], which are selected at inference time
through a query-key selection mechanism. In particular, S-Prompts [45] tackles
the domain-incremental learning problem (DIL) by tuning CLIP pre-training [35]
on domain-independent sets of vision and language prompts. Since the domain
shift across incremental steps is high in DIL, the query-key matching likely tar-
gets the best set of tuned prompts. MoP-CLIP [30], instead, proposes a mixture
of prompt-tuned CLIP models to address the poor out-of-distribution perfor-
mance of S-Prompts and DIL methods.

In this work, we propose to tune CLIP vision and language encoders with
multi-modal read-only prompts [25], which allow us to compute multiple and
parallel representations for each image, thus, computing the final prediction as
a weighted sum of domain-specific predictions.

3 Preliminaries

3.1 Problem Formulation

In deepfake detection, the objective is to train a model capable of distinguishing
real images from synthetically generated ones. Formally the model fθ : X → Y,
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parameterized by θ, maps images from the input space X to the binary semantic
space Y = {0, 1}, where generated samples should be predicted as 1. In this
work, we tackle the problem of deepfake detection in an incremental learning
scenario, a particular instance of domain incremental learning, where fθ must be
trained sequentially over non-stationary datasets. Let D = {D1, ...,DT } be the
sequence of datasets, the k-th dataset Dk = {(xi, yi)}Nk

i=1 is composed of real and
generated images with their corresponding semantic annotation. At each step,
synthetic images are generated with a different generator Gk, thus, the input
data distribution shifts from task to task. Given two distinct tasks k and m,
with k �= m, the distributions of the two tasks are different, i.e. p(X k) �= p(X m).
Given a new domain, DIL aims to improve the model’s performance on the latest
distribution, while avoiding the loss of knowledge for past domains. At inference
time, the model must classify the input image without knowing the domain. In
the following, we will interchangeably use the terms domain and task.

3.2 Prompt Tuning

We follow previous works in the field [30,45] and fine-tune CLIP [35] on the
sequential datasets. Previous works in DIL [30,45] exploit prompt tuning for
adapting CLIP to the incremental detection of deepfakes. As prompts are specific
for particular types of generated data, the training procedure of these approaches
is independent for each generator. This reduces the risk of forgetting, as prompts,
once trained, are kept frozen throughout the entire lifetime of the model, creating
distinct subspaces for each domain’s knowledge rather than relying on a shared
feature space for all tasks, thereby reducing the interference between old and
new domains. However, training task-specific prompts forces previous methods
to guess prompts to use at inference time, and this operation must be performed
for each image. Images are then selected using the guessed prompts. This limits
previous methods since wrong prompt selection results in lower model accuracy.
MoP-CLIP [30] solves this issue by forwarding the target image multiple times
with different trained prompts when the query-key selection mechanism has low
confidence. However, this means MoP-CLIP has to forward the target image as
many times as the number of tasks encountered by the model, which does not
scale well in practice.

4 Prompt2Guard

The proposed method Prompt2Guard employs a pre-trained CLIP model as fθ,
consisting of an image encoder EI and a text encoder ET , as shown in Fig. 2.
This section details its main components: text-prompt conditioning, continual
read-only prompts, and prediction ensembling.

4.1 Text-Prompt Conditioning

Contrary to previous DIL methods [30,45], our objective is to design a tailored
methodology for deepfake detection in an incremental setting. To this extent,
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Fig. 2. Illustration of the training. The prepended prompts are the only learnable
parameters ( ), while the encoders are kept frozen ( ).

in detecting synthetic data the model should focus more on specific attributes
of the image (i.e. visual artifacts or inconsistencies) than on the image content.
However, it has been observed that CLIP focuses on spurious and core features
when classifying an image [4]. Thus, ignoring such spurious correlations can
force CLIP to pinpoint salient artifacts in the image, making it more robust in
detecting deepfakes. Similar to [4], we aim to focus CLIP attention on features
that are more relevant for the synthetic content detection. We propose to infer
the object’s class in a zero-shot fashion using CLIP and to use such information
to condition the textual prompts, during training and inference. Nevertheless,
the semantic space of image classes is usually unknown in deepfake detection
datasets, thus we pre-define a set of classes C. Given an input image x, we
predict a category c∗ ∈ C as:

c∗ = arg max
c∈C

sim (EI (x) , ET (c)) (1)

where sim(·, ·) is the cosine similarity, computed as sim(u, v) = (u · v)/‖u‖‖v‖.
In this step, we augment the class names with the textual prompt ‘‘a photo
of a {CLS}’’ [35]. Then, we use the predicted category to condition the tex-
tual prompt, obtaining as a result the prompt ‘‘a {real/fake} photo of a
{c∗}’’. In practice, instead of using just the highest-scoring one, we consider the
first top-c predicted classes and get c conditioned prompts. This is because the
label set C is agnostic to the categories in the dataset sequence D. By consid-
ering the top-c predictions, we account for potential uncertainties and provide
more contextual information about the input image. For ease of reading, we will
consider c = 1 in the following. The obtained conditioned textual prompts are
then used for both training and inference time, as shown in Fig. 1.

4.2 Continual Read-Only Prompts

To avoid solely relying on a single prompt while maintaining a low computa-
tional overhead, we propose to employ read-only prompts [25] as a substitute for
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prompt-tuning. In particular, read-only prompts do not alter the internal repre-
sentation of CLIP, and thus, at inference time we can concatenate prompts from
different tasks and prepend them to the input. Let pk

v ∈ R
L×Dv be the visual

read-only prompt of task k, with length L and embedding dimension Dv, and
let pk

t ∈ R
L×Dt be the correspondent textual prompt for task k. Then, at task k,

these are prepended to the visual and text encoder input as described in Sect. 3.2.
The output of both encoders is dropped except for prepended prompts, which
are the only trainable parameters in our setting. To train prompts, we employ
a contrastive cross-entropy loss. Specifically, if we consider the case of a fake
image, the loss is computed for each pair of output prompts as follows:

Lcce =
exp(sim(vk, fk))

exp(sim(vk, rk)) + exp(sim(vk, fk))
(2)

where vk, rk, and fk ∈ R
L×D are the visual, real, and fake output prompts, and

sim(·, ·) is the average cosine similarity between text and visual prompts:

sim(v, f) =
1
L

L∑

i=1

vi · fi

‖vi‖‖fi‖ (3)

Analogously, for a real image, the similarity at the numerator is computed
between vk and rk, while the denominator is unaltered. As we mention in
Sect. 4.1, instead of considering just the top class predicted by CLIP, we use
the top-c ones. As a result, we also average (3) across c classes aside from the
length dimension (Fig. 3).

4.3 Predictions Ensembling

avg domain
probabilities

max

dot

mean

Fig. 3. Illustration of the ensembling. We compute the average similarity from
the visual and textual prompts v and t obtained from the respective encoders. Then
we weight the scores with the domain probabilities. This is repeated for real and fake
textual prompts. The obtained sr and sf are used to obtain the predicted class ŷ.
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As introduced in Sect. 4.2, at inference time our method does not require
estimating the optimal set of parameters for each image compared to previ-
ous approaches. Instead, Prompt2Guard can leverage properties of read-only
prompts to avoid altering the internal representation of CLIP. In practice, read-
only prompts are unaware of other prompts in the forward pass, thus, prompts
of different tasks do not influence their behavior. Therefore, this allows us to
concatenate prompts of all seen domains, where each will focus on aspects of the
image that are salient for a specific image generator. Formally, the input and
output of the visual and text encoder are defined as follows:

EI

([{pk
v}T

k=1, xcls, ximg

])
=

{
vk

}T

k=1
(4)

ET

([{pk
t }T

k=1, a real photo of a CLS
])

=
{
rk

}T

k=1
(5)

ET

([{pk
t }T

k=1, a fake photo of a CLS
])

=
{
fk

}T

k=1
(6)

where (4) shows the input and output of the visual encoder, and (5) and (6)
respectively the real and fake input and output prompts of the text encoder. To
assign a score to a target image, we first use (3) to compute the average similarity
for each pair of task prompts, (vk, rk) and (vk, fk). As a result, we obtain two
score vectors, sr ∈ R

T and sf ∈ R
T , that respectively represent the prompts

confidence in predicting whether the image is real or generated. We scale each
score vector entry by the likelihood that the generator corresponding to the entry
has generated the image. In practice, we follow previous works [30,45] and use
a k-means classifier on the CLS token of the image to extract the probability
distribution, and scale scores vector entries by the computed likelihoods. This
allows for modulating the confidence of task prompts based on the likelihood
that the image belongs to a specific domain. The task scores with the highest
magnitude usually lead to better predictions, however, when confidence is low,
exploiting the decisions of all task parameters leads to better accuracies (refer
to Table 4). Thus, we compute both the maximum and mean of predictions:

s∗
r = max{s1r, ..., s

T
r }, s∗

f = max{s1f , ..., sT
f }, (7)

s̄r =
1
T

T∑

k=1

sk
r , s̄f =

1
T

T∑

k=1

sk
f , (8)

Then, for the final prediction of the model, we use the score with the maximum
confidence if the relative maximum confidence, | s∗

r − s∗
f | is greater than the

relative mean confidence, | s̄r − s̄r |, otherwise, we uses the mean of logits:

ŷ =

{
arg max{s∗

r , s
∗
f}, if | s∗

r − s∗
f |≥| s̄r − s̄f |

arg max{s̄r, s̄f}, otherwise
(9)

By analyzing the confidence of the predictions, Prompt2Guard can automati-
cally decide whether to use a mixture of experts or the score with the highest
confidence, improving performance.
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5 Experiments

Dataset. We perform experiments on the continual deepfake detection bench-
mark CDDB [26]. It gathers deepfakes from different generative models, gradu-
ally introduced to simulate the real-world deepfake’s evolution. In particular, it
designs three different evaluation setups, i.e., Easy, Hard, and Long. We select
the most challenging, i.e., the Hard sequence task (CDDB-Hard) in order to be
comparable with previous methods. In particular, it consists of learning on 5
sequential deepfake detection domains, which are GauGAN [31], BigGAN [7],
WildDeepfake [55], WhichFaceReal [1], and SAN [15] respectively.

Metrics. We perform the evaluation in terms of task-wise average accuracy
(AA), which computes the average of all the task-based accuracies, as well as
the average forgetting degree (AF), measuring the average decrease in accuracy
on previous tasks after learning new tasks. In addition, we show the task-agnostic
average accuracy (TAA), i.e. the accuracy of predictions calculated over all the
images without considering the task, at the end of the training.

Implementation Details. We use CLIP (ViT-B/16), therefore D = 512. We
set the length of both visual and textual read-only prompts as L = 7 and use
the top-c classes with c = 5. For the closed-set of categories C we use ImageNet-
1k [40] classes for datasets containing images from general context and six hand-
crafted ones for face datasets. The six face classes are obtained as a cross product
between {young, middle-aged, old} and {male, female}. We use the SGD opti-
mizer with a learning rate of 0.01 and cosine annealing with a constant warm-up
of one epoch. We use 20 epochs per domain. Input images are resized to a res-
olution of 224 × 224, and the data augmentation consists of horizontal flipping,
random cropping, and color jittering.

5.1 Comparative Results

We compare Prompt2Guard against several state-of-the-art methods including:
non-prompting approaches such as EWC [24], LwF [27], LUCIR [21], iCaRL [37],
and LRCIL [32] and prompting-based methods such as L2P [47], DyTox [17], S-
Prompts [45], MoP-CLIP [30]. Our method is based on an exemplar-free DIL
approach, thus we can assume as principal competitors EWC, LwF, DyTox, L2P,
S-Prompts, and MoP-CLIP.

Table 1 presents the results onCDDB-Hard.The proposedPrompt2Guard out-
performs previous methods, either exemplar-free or replay-based, delivering signif-
icantly better results in terms of AA. In particular, it surpasses the state-of-the-art
S-Prompts by +1.63% on the AA and achieves a low AF of –0.71%. Figure 4 fur-
ther illustrates the AA curve on CDDB-Hard of the proposed method, with and
without the text-prompt conditioning, and of the competitor S-Prompts.

Table 2 shows the task-wise accuracy on each domain, the task-wise aver-
age accuracy (AA), and the task-agnostic average accuracy (TAA) of the pro-
posed Prompt2Guard against the main competitor S-Prompts. The key insight
is that our method achieves good accuracy across all the tasks, including the last
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Table 1. Results on CDDB-Hard. Blue is our method and the best results are in
bold. We also report if methods are prompt-based and their buffer size.

Method Prompts Buffer size AA ↑ AF ↑
LRCIL [32] ×

100 samples/class

76.39 –4.39

iCaRL [37] × 79.76 -8.73

LUCIR [21] × 82.53 -5.34

LRCIL [32] ×

50 samples/class

74.01 –8.62

iCaRL [37] × 73.98 -14.50

LUCIR [21] × 80.77 -7.85

DyTox [17] � 86.21 -1.55

EWC [24] ×

0 samples/class

50.59 –42.62

LwF [27] × 60.94 -13.53

DyTox [17] � 51.27 -45.85

L2P [47] � 61.28 -9.23

S-iPrompts [45] � 74.51 -1.30

MoP-CLIP [30] � 88.54 -0.79

S-liPrompts [45] � 88.65 -0.69

Prompt2Guard � 90.28 -0.71

and more challenging one, even if the accuracies in the previous tasks are slightly
lower when compared to those of S-Prompts. In particular, S-Prompts obtains a
task-wise accuracy of 68.89% on the last domain, while our Prompt2Guard gains
a +12.22% improvement. Prompt2Guard benefits from the ensembling described
in Section 4.3, particularly on samples from the last domain SAN, which corre-
sponds to low domain classification accuracy, as shown in the confusion matrix
in Fig. 5. Despite BigGAN having the lowest domain classification accuracy, its
task-wise accuracy remains high. Therefore the model leverages the ensembling
and correctly classifies images as real or fake, even when the domain is misclas-
sified.

Table 2. Comparison of task-wise accuracy across different domains, AA
and TAA (%). We show task-wise accuracy for each task of CDDB-Hard, both for
S-Prompts and our proposed method .

Method
Dataset Metrics

GauGAN BigGAN WildDeepfake WhichFaceReal SAN AA ↑ TAA ↑
S-Prompts [45] 99.30 96.75 82.06 96.25 68.89 88.65 91.54

Prompt2Guard 98.70 94.38 81.73 95.50 81.11 90.28 90.98

Figure 6 presents the qualitative results of our proposed Prompt2Guard in
detecting deepfakes from all the tasks in CDDB-Hard. We report the top-c pre-
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Fig. 4. Accuracy across tasks. We show the task-wise average accuracy (AA) values for
Prompt2Guard and for the competitor S-Prompts across all the tasks of CDDB-
Hard. We also show Prompt2Guard w/o conditioning , i.e. without the step described
in Section 4.1. We plot the AA computed up to the i-th domain, against the domain
index.

Fig. 5. Task Confusion. Confusion matrix of the domain classification of the proposed
Prompt2Guard on CDDB-Hard.

dicted classes used for text-prompt conditioning, as described in Section 4.1.
The model is capable of detecting deepfakes for most of the cases. Moreover,
the predicted classes are consistent with the content of the images. We observe
that using more than one class is beneficial, specifically when more objects are
present.

5.2 Ablations

We ablate the proposed method Prompt2Guard on CDDB-Hard to validate the
effectiveness of our design choices. First, we analyze the text-prompt condition-
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Fig. 6. Qualitative results. We show the prediction of Prompt2Guard on test images
from each task of CDDB. The colored frame around the image indicates the ground
truth class, while the text underneath is the predicted one. We report on the right the
top-c classes predicted and used for text-prompt conditioning.

ing described in Sect. 4.1, then the ensembling of the predictions detailed in
Section 4.3.

Text-Prompt Conditioning. In Table 3 we assess the efficacy of conditioning
the textual prompts on the category classified via zero-shot CLIP. When this
step is added, we gain a +1.64% improvement in the AA and +0.14% in the AF.
Our experiments validate the effectiveness of this choice, which lets the model
focus more on salient artifacts relevant to deepfake detection rather than on the
objects present in the image.

Table 3. Ablation on text-prompt conditioning. We report the results with and
without conditioning the textual prompts on the category classified by zero-shot CLIP.
Blue is our configuration .

Method Text-prompt conditioning AA ↑ AF ↑
Prompt2Guard × 88.64 -0.85

Prompt2Guard � 90.28 -0.71

Prediction Ensembling. In Table 4 we compare three different ensembling
techniques that can be used to obtain the final prediction ŷ. Directly averaging
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the scores across the tasks (termed here as mean) produces the worst results.
Using always the scores with the maximum confidence (max ) results in better
performance. Lastly, the highest results, both in AA and AF, are achieved with
the ensembling defined in (9) (termed here as max & mean).

Table 4. Ablation on prediction ensembling. We compare different ensembling
choices for the prediction. Blue is our configuration .

Method Prediction ensembling AA ↑ AF ↑
Prompt2Guard mean 83.41 –1.47

Prompt2Guard max 89.98 –1.15

Prompt2Guard max & mean 90.28 -0.71

6 Conclusions

In this work we address the challenging problem of continual deepfake detec-
tion. We propose Prompt2Guard, a novel exemplar-free solution that leverages
VLMs, read-only multi-modal prompts, and a text-prompt conditioning specif-
ically tailored to the task. Our experimental evaluation confirms the effective-
ness of Prompt2Guard in achieving state-of-the-art results in task-wise average
accuracy on the challenging CDDB benchmark. As future work, we plan to
extend our method beyond the use of a closed label set, harnessing the power
of vocabulary-free classification [14], and to evaluate it on images coming from
more recent generators, e.g. including diffusion-based deepfakes. Additionally, we
plan to address the scalability limitations of our method, which are constrained
by the token length limitation of the VLM’s text encoder. This restriction limits
the number of domains that learnable prompts can represent at inference time,
thereby constraining the number of tasks that can be handled simultaneously in
a DIL setting.
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FAIR - Future AI Research (PE00000013), funded by NextGeneration EU and sup-
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Abstract. The rapid growth in automated financial trading has high-
lighted the need for trustworthy agents capable of adapting to the
dynamic and ever-changing nature of financial markets. From an algo-
rithmic viewpoint, financial trading is essentially a complex, dynamic
time series problem, characterized by unpredictable and noisy data. Deep
Reinforcement Learning (DRL) has shown great promise in addressing
this challenge. It naturally aligns with the objective of financial trading-
maximizing rewards-without relying on unrealistic assumptions that do
not hold true in such volatile and noisy time series data. However, the
complexity of the problem still presents challenges for conventional DRL
algorithms. To overcome these, the implementation of continual learning
agents is crucial for their ability to adjust to changing market conditions.
Our approach not only adapts continual learning techniques to dynamic
time series but also introduces a novel knowledge transfer loss, which
enhances the adaptation of our model. In our extensive evaluation, we
show that this approach successfully balances the trade-off between main-
taining knowledge of past patterns and adapting to new ones, enhancing
the model’s trustworthiness and effectiveness in real-world time series
problems, like financial trading.

Keywords: Continual learning · Deep reinforcement learning ·
Financial trading

1 Introduction

In recent years, the financial landscape has experienced a significant surge in
automated trading, where algorithms and computational models are used to
execute trades at a speed, scale and accuracy unattainable by human traders.
This growth arises a concomitant issue, as similar trading strategies are massively
adopted by numerous trading firms. This issue is known as “alpha decay” [19],
where alpha refers to the measure of the excess return of an investment strategy
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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compared to a benchmark, such as a market index. Initially, a novel trading agent
may generate substantial alpha, but as it becomes commonplace, the returns
tend to diminish. This decay occurs because the market adapts and the edge
that the agent provided vanishes. This phenomenon ties in with the Efficient
Market Hypothesis (EMH), which asserts that asset prices reflect all available
information at any given time [3]. Essentially, EMH posits that it is impossible
to consistently achieve risk-adjusted returns that exceed the market average,
as new information is rapidly incorporated into asset prices. In such a context,
financial trading can be seen as a highly dynamic time series, highlighting the
need for adaptive continual learning approaches in automated trading.

The recent breakthrough in the field of Deep Learning (DL) [21], has led to
the creation of more advanced and sophisticated trading agents [23,24,27]. These
agents leverage the enormous volumes of data amassed from financial markets,
along with supplementary data from news articles and social media [15,16] in
order to make more accurate and profitable predictions. One particular area
of DL that has seen remarkable advancements is Deep Reinforcement Learn-
ing (DRL) [7,10,11,13] providing potent models that are trained on maximizing
profits directly through their reward functions [2,25], instead of approximating
the task through handcrafted proxy problems. Indeed, traditional DL for trad-
ing typically relies on supervised learning [24], in which agents are trained using
handcrafted labels. These labels attempt to take into account real trading con-
ditions, such as commissions and other costs. However, they often fall short of
mirroring real-world profits due to the multitude of factors at play. For instance,
market volatility and the confidence level of the agent can greatly impact the
agent’s performance, leading to significant discrepancies between predicted and
actual profits or losses.

On the other hand, DRL presents a different approach [2,25], by naturally
enabling the incorporation of trading profits into the model’s rewards, which
can be achieved alongside other market costs. This is possible through the use of
simulated trading environments for training DRL agents. This approach bypasses
the challenges of handcrafting complex labels and permits the trading agents to
discern the positions worth taking, with predictable results based on the rewards
received. As such, DRL agents are capable of directly fine-tuning the metrics
that are critical to the task at hand, specifically the profits earned, within these
simulated trading environments.

While DRL’s capability to accurately model profits within its training envi-
ronment might initially appear sufficient for developing profitable trading agents,
a major challenge exists. Most DRL methods are plagued by instability, resulting
in agents with highly variable trading behavior, which do not perform robust in
different market conditions. This inconsistency across different training runs or
time periods substantially undermines the trustworthiness and reliability of the
profits obtained, and consequently diminishes our confidence in these agents. To
counter these challenges, it is imperative to adopt tailored training processes
that bolster training stability when utilizing DRL techniques in financial trad-
ing applications [2,25]. Furthermore, the discussed nature of financial markets
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requires a method that goes beyond deploying static DRL trading agents, since
the markets often evolve so rapidly that by the time these agents are put into
use, they are already outdated and ill-suited to past market conditions.

In this work, we present a novel continual learning methodology for DRL
agents, that involves implementing periodic updates to the agent in an effort to
strike a balance between stability and plasticity. The stability-plasticity dilemma
refers to the challenge of allowing a model to adapt to new data (plasticity)
while retaining the knowledge it has previously acquired (stability) [12]. Balanc-
ing these two aspects is crucial for the model to perform effectively in dynamic
environments like financial markets, where the distribution of data changes over
time. The proposed method is built upon two key ideas. Firstly, it employs a
dynamic experience replay mechanism with temporal focus to the current market
conditions. This approach is designed to allow the model to not only adapt to the
latest market conditions but also to retain previously learned patterns. Secondly,
it involves utilizing a plasticity driven knowledge transfer process across multiple
layers of our DRL neural network architectures [5]. This process includes forming
for each update of our agent an ensemble of teacher models, each of them highly
adept in different market conditions, aiming at improving the adaptation to new
patterns. We performed an extensive experimental evaluation using a continual
learning set-up for cryptocurrency trading, which forms a challenging dynamic
time series environment, demonstrating solid improvements against both base-
line static agents and greedily finetuned models, that are prone to catastrophic
forgetting of previous knowledge.

The rest of the paper is structured as follows. In Sect. 2 we present a quick
overview of related work in the field. Then, in Sect. 3, the proposed method
is introduced and analytically derived, breaking down the motivation behind
our methodology. The experimental setup and the experimental evaluation, are
provided in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Related Work

In financial trading, the use of direct price forecasts or reliance on expert-
generated labels for training supervised models is considered sub-optimal [14].
Deep Reinforcement Learning (DRL) is argued to be more promising, as it opti-
mizes performance directly by accounting for transaction costs, which can sig-
nificantly differ between labels used in supervised learning and actual model
predictions. Works such as [2,27] have demonstrated the effectiveness of DRL in
financial trading by employing profit or return-related metrics as the agent’s
objectives. To further enhance agent performance, auxiliary DRL objectives
and regularizers have been introduced [25], along with the integration of sen-
timent information, creating multimodal approaches for improved robustness
[1]. Despite these significant contributions, the unique challenges of financial
trading, characterized by its intricate complexities, dynamic environments, and
high-frequency data streams, necessitate the development of specialized contin-
ual learning methodologies. To the best of our knowledge, this work is the first
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to formulate and address the problem of continual adaptation of a DRL agent in
a financial market, while tackling the issue of catastrophic forgetting of previous
knowledge.

In the context of Continual Reinforcement Learning, approaches can be
categorized into three clusters: explicit knowledge retention, leveraging shared
structure, and meta-learning [8]. Explicit knowledge retention involves strate-
gies such as parameter storage [9], knowledge distillation [20], and experience
replay [6]. Leveraging shared structure focuses on exploiting task commonali-
ties to streamline learning and enhance generalization across different tasks [26].
Lastly, meta-learning, with significant contributions like Model Agnostic Meta-
Learning (MAML) [4], has played a crucial role in addressing multi-task and
continual learning scenarios. Building upon these approaches, our study aims to
develop a continual learning methodology for dynamic, time-dependent environ-
ments, typical in financial trading.

3 Proposed Method

In this section, we formulate the proposed methodology for financial trading
through Deep Continual Reinforcement Learning. Initially, we outline the under-
lying Continual Reinforcement Learning framework. To tackle the inherent chal-
lenges, we introduce two novel approaches: Temporal Focused Sampling (TFS)
experience replay, as well as plasticity driven knowledge transfer for controlling
the knowledge retention and adaptation capabilities of the model.

Fig. 1. The proposed continual Reinforcement Learning framework consists of repeti-
tively updating the employed agent on the current task and evaluating in on the next
task. The proposed knowledge transfer interface is also shown in the diagram, which
contains a dynamic pool of teacher models.

3.1 Continual Learning Approach

In this work, we primarily focus on learning Deep Reinforcement Learning (DRL)
policies through Policy Gradient-based methods. The Proximal Policy Optimiza-
tion (PPO) serves as our fundamental basis, as it has achieved state-of-the-art
results in numerous DRL problems [22]. However, this choice is not restrictive;
the proposed method can be adapted to any other DRL approach with minimal
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modifications. Our DRL agent interacts with a trading environment, utilizing
historical price data as the state space and offering three trading actions: buy,
sell, and hold, as the action space. To gather the necessary trajectories for train-
ing the DRL agents, in line with our objectives, we employ a rollout buffer.
This mechanism generates episode rollouts within a specified range, capturing
crucial data from each rollout, including rewards, predicted state values, and
action probabilities. During optimization phases, the data stored in the experi-
ence replay memory is used to train the neural networks that form the agent’s
actor and critic components.

Considering the dynamic nature of market price time series and their con-
stantly shifting distribution, we define each trading period as a distinct task
T , with its corresponding distribution D(T ). More specifically, we start with an
initial task, Tinit, followed by a sequence of non-overlapping tasks T1, T2, . . . , Tn,
each occurring at a fixed frequency F . The initial task, Tinit, is unique due to
its use of a large volume of past data for training a baseline PPO agent, thereby
establishing core knowledge. This agent forms the starting point in our con-
tinual learning framework, as illustrated in 1. For each subsequent task Ti, we
apply our continual learning methodology to update the agent. A straightfor-
ward approach would involve collecting state transitions s, a, r, s′ from D(Ti) for
the replay buffer, and using them to finetune the static model. The updated
policy is then employed in the next task Ti+1, with its performance evaluated
in terms of Profit and Loss (PnL) for that sub-period. This process is repeated
for all tasks, representing the sub-periods of the entire testing period. We name
this simple approach as finetuning and it consists our continual learning base-
line. However, finetuning, focuses solely on optimizing the current task without
preserving performance on previous tasks, leading to catastrophic forgetting of
old tasks. It is also highly sensitive to the update frequency F , often resulting
in unstable and unreliable performance. Therefore, it is crucial to explore more
sophisticated approaches that effectively mitigate catastrophic forgetting while
adapting to new data distributions.

3.2 Temporal Focused Sampling Experience Replay

To address catastrophic forgetting, we propose a novel experience replay app-
roach called Temporal Focused Sampling (TFS) experience replay. Experience
replay methods are employed to help against catastrophic forgetting by main-
taining a memory buffer of past experiences used alongside new data during
retraining [6]. However, such an approach, does not take into consideration the
temporal nature of dynamic time series. In TFS, the sampling mechanism of
the replay buffer consists of a left tail Gaussian Distribution N(i,στ ), over the
entire timeline of encountered tasks, centered at the currently considered task,
symbolized by the index i, and with standard deviation στ , where τ = ncur

ntot
is

a normalized time factor, defined as the ratio of the current epoch to the total
number of epochs. In TFS, στ is not static; it evolves dynamically throughout
the re-training process and it value at any given epoch is computed as:

στ = σfactor,τ · σmax + σmin, (1)



Plasticity Driven Knowledge Transfer 85

where σmax indicates the maximum standard deviation and plays an important
role in controlling the Gaussian distribution’s spread across the complete task
timeline. Conversely, σmin signifies the minimum standard deviation, resulting in
narrower coverage around the samples of the current task Ti. The term σfactor,τ

is a scalar quantity fluctuating between 1 and 0, and it decays during the model’s
iterative update process. It is responsible for modulating the influence of σmax

on the standard deviation.
We discovered that using a sigmoid decay function, represented by δ, effec-

tively modulates σfactor,τ throughout each update. The decay function δ is
defined as follows:

δ(τ, λ) =
1

1 + e−λ·τ , (2)

where λ is a parameter that controls the steepness of the decay in the sigmoid
function. Incorporating this sigmoid decay function into the model results in the
update of σfactor,τ at each epoch as follows:

σfactor,τnext = σfactor,τ · δ(τ, λ), (3)

This updating scheme leads to a gradual decrease in σfactor, which in turn
assures a progressive reduction in the Gaussian distribution’s spread as the model
retrains across epochs. This adaptive methodology allows for a temporal focused
coverage of the task samples.

3.3 Knowledge Transfer Methodology

During our experiments, a notable phenomenon was observed. Agents, trained
exclusively using TFS experience replay with their Gaussian distributions cen-
tered at various past time points, exhibited highly variable performance across
different test periods. These models, which we have categorized into the Plastic-
ity pool, symbolized as P, demonstrated high performance during specific peri-
ods, but also significant volatility and losses during others, due to the dynamic
nature of the price patterns.

To take advantage of that observation, after each task Ti, we select the top-
performing models from the Plasticity pool in Ti, transferring their knowledge
to our student agent, which is going to be updated and then employed in Ti+1.
Relying on a single teacher from the Plasticity pool proved to be sub-optimal,
due to the high volatility of these models. To address this, an ensemble ETi

of
teachers is formed by selecting the top N performing models based on their
performance in task Ti.

ETi
= {t ∈ P | t is among the top N models in Ti}

The weights assigned to these teachers in the ensemble are computed by
normalizing the PnL of these models in task Ti. For a teacher model t in ETi

,
the weight is given by:

wTi
t =

PnLTi
t∑

t′∈ETi
PnLTi

t′
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As a distillation loss, we utilize a combination of two knowledge transfer
techniques, shown to work . Firstly, the well-known soft label-based neural net-
work distillation at the output layer of our architecture, as introduced in [5],
as well as Probabilistic Knowledge Transfer (PKT) [17,18] in the intermediate
layers, which aims to align the internal representations of the teacher and stu-
dent models in the feature space by minimizing the divergence between their
corresponding probability distributions. We present a brief explanation of the
two losses.

Considering the output soft label neural network distillation, let π(T )(α|s)
and π(S)(α|s) represent the action probability distributions output by the teacher
and student models respectively. Furthermore, let y(T )(α|s) and y(S)(α|s) denote
the logits, or raw outputs, of the teacher and student models respectively. The
soft labels, generated using the teacher model, produce a softer version of the
probability distribution over actions, and is computed as follows:

q(α|s) =
exp

(
y(T )(α|s)

T

)

∑
a exp

(
y(T )(a|s)

T

) , (4)

where T is the temperature parameter, controlling the softness of the distribu-
tion. Similarly, a soft version of the student model’s output is calculated as:

p(α|s) =
exp

(
y(S)(α|s)

T

)

∑
a exp

(
y(S)(a|s)

T

) . (5)

The loss function optimized during knowledge transfer, which seeks to mini-
mize the divergence between the soft distributions, is defined as:

LD = − 1
N

∑

s∈S

Na∑

i=0

q(αi|s) log(p(αi|s)), (6)

where S is a set of N states sampled from the experience replay memory, Na

represents the number of available actions, and αi is the i-th available action.
This loss function guides the student model to approximate the softened action
probabilities of the teacher model, effectively transferring the knowledge encoded
in the teacher’s probability distributions.

Regarding the PKT, let us denote the internal representations of the teacher
model as f (T )(s) ∈ R

M . f (T )(·) denotes the teacher model (up to the point where
the representation is extracted) M is the dimensionality of the extracted repre-
sentation from the teacher model and that of the student model as f (S)(s) ∈ R

M ′
,

where f (S)(·) denotes the student model (up to the point where the representa-
tion is extracted) and M ′ is the dimensionality of the extracted representation
from the student model. To simplifythe presentation of the proposed method,
we defined as xi the internal representation of the teacher model when presented
with the i-th state sampled from the buffer, i.e., x(T )

i = f (T )(si). The represen-
tation of the student model is similarly defined as x(S)

i = f (S)(si). Then, we
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employ kernel density estimation to estimate the conditional probability distri-
butions of both the teacher and the student representations. Specifically, the
conditional probability distribution for the teacher model is computed as:

p
(T )
i|j =

K(x(T )
i ,x(T )

j ; 2σ2)
∑N

k=1,k �=j K(x(T )
k ,x(T )

j ; 2σ2)
, (7)

and for the student model as:

p
(S)
i|j =

K(x(S)
i ,x(S)

j ; 2σ2)
∑N

k=1,k �=j K(x(S)
k ,x(S)

j ; 2σ2)
. (8)

Here, K(x,y;σ2) denotes a symmetric kernel function with bandwidth σ. In
this study, we utilize a kernel function that is based on the cosine similarity
metric, following the observations reported in [18], which is defined as:

Kcosine(x,y) =
1
2

(
xTy

‖x‖2‖y‖2 + 1
)

, (9)

where x and y two vectors. This kernel function essentially measures the cosine
of the angle between two vectors, which is scaled to the range [0, 1]. To quantify
the divergence between the probability distributions of the teacher and student
models, PKT makes use of the Kullback-Leibler (KL) divergence. The KL diver-
gence is given by:

LR =
∑

i,j

p
(T )
i|j log

⎛

⎝
p
(T )
i|j

p
(S)
i|j

⎞

⎠ . (10)

This KL divergence, referred to as the representation distillation loss, makes
the student model’s representations more aligned with those of the teacher model.

Therefore, the final loss function of our method is formulated by combining
the DRL loss LRL, the distillation-associated loss LD, and the representation
knowledge transfer loss LR:

L = LRL + αLD + βLR, (11)

with α and β serving as hyperparameters controlling the weight of the action
distillation loss and representation-level distillation loss respectively, in the total
loss.

4 Experimental Evaluation

4.1 Dataset and Feature Extraction

The dataset used in the conducted experiments consists of Cryptocurrency trad-
ing data for 15 Cryptocurrency/USDT pairs, such as BTC/USDT, ETH/USDT,
LTC/USDT. We employ a sub-sampling technique based on High-Low-Close
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(HLC) price levels to process this data and adapted 1-hour price intervals as the
simulation stepping interval. We chose not to incorporate extra features because
these basic features encapsulate the bulk of the market information and utilizing
them enhances computational efficiency.

The agents receive an observation consisting of a window of preprocessed past
price candles that have been normalized to ensure compatibility across different
cryptocurrency pairs. The preprocessing produces the following features for each
time step t:

– f1(t) = pc(t)
pc(t−1) − 1

– f2(t) = ph(t)
ph(t−1) − 1

– f3(t) = pl(t)
pl(t−1) − 1

where ph(t), pl(t), and pc(t) represent the high, low, and close prices at time
t, respectively. These features are percentage distances between sampled price
values and encapsulate the range and variations within and across price candles.
The observations also include the agent’s current market position, symbolized
by a one-hot vector, xp(t), of size 3, where [1, 0, 0] indicates no position, [0, 1, 0]
denotes an active long position, and [0, 0, 1] signifies an active short position.

Data spanning from 1st January 2018 to 31st January 2022 constitute the
past period, where the initial static baseline trading agent was trained on, while
testing period is selected from 1st February 2021 to 27 January 2022, as this
duration exhibits near-zero mean characteristics. The agent’s reward is the profit
and loss (PnL) from its current position, adjusted for commission fees on action
changes. PnL is calculated using the asset’s price time series and the agent’s
position, with a fixed lot size. This ensures that PnL is based on percentage
changes of the initial investment and not influenced by past profits or losses.

For the continual learning configuration, we experimented with four distinct
update frequencies F - every 5, 10, 15, and 20 d, segmenting our 360-day testing
period into 72, 36, 24, and 18 sub-periods or tasks, respectively. We compare
the models based on both the cumulative PnL over the entire testing period
(test PnL) and the average PnL of the updated models for each frequency, when
backtested on the past period (past PnL), to examine knowledge retention.

4.2 Model Architecture

In our experiments, all trading agents utilize a uniform neural network architec-
ture and hyperparameters to ensure an equitable comparison of the methodolo-
gies, which is shown in Fig. 2. The chosen architecture is composed of a Long
Short-Term Memory (LSTM) layer with 32 hidden units, succeeded by one fully
connected layer of 32 hidden units, employing Sigmoid Linear Unit (SiLU) as
activation functions and dropout. These layers process the input time series,
generating a representation for each time step. Subsequently, this representation
is channeled into two distinct branches consisting of fully connected layers. The
first branch serves as the actor and outputs a probability distribution across
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Fig. 2. The employed trading agent’s Actor-Critic architecture comprises a shared
base with a 32-unit LSTM layer and a 32-unit fully connected layer. The actor head
generates action policy probabilities, while the critic head estimates state values.

three potential actions: exit, buy, and sell. In contrast, the second branch, which
constitutes the critic, evaluates the current state’s value based on the hidden
representation.

Regarding hyperparameters, the agents were trained with RAdam optimizer
with a learning rate set at 5×10−4, a batch size of 32, dropout of 0.2, and a typical
commission fee of 2 × 10−4 per trade. The initial baseline agent was trained
for 300 epochs, while each update consists of 100 epochs of retraining. Each
experiment was executed with five distinct seeds, and the results are presented
as the average of those runs.

4.3 Results

In finetuning, the agent is sequentially updated for 100 epochs on the most recent
task and subsequently evaluated on the next task. The experimental evaluation of
finetuning is provided in Fig. 3, where the cumulative PnL over time for varying
update frequencies is provided. When using a higher frequency, such as 5 or 10 d,
the finetuned agent underperforms relative to the static baseline agent. However,
the potential of continual learning is demonstrated when an update frequency
of 15 and 20 d is used, surpassing the baseline. Despite this, finetuning clearly
suffers by catastrophic forgetting, evidenced in Table 1.

In implementing the proposed TFS experience replay approach, we use a
generic hyperparameter configuration for the sigma decay, to avoid overfitting
the method to particular update frequencies. Let’s assume that for a given
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Fig. 3. Finetuning against the static base-
line agent.

Fig. 4. Finetuning with TFS experience
replay against the static baseline agent.

update frequency measured in days F , each task comprises Ns samples, with
Ns = F × 24, given that we employ a 1-hour timeframe. We define σmax as 100
times the number of samples corresponding to the current task, as an approxi-
mation to a uniform distribution across the entire timeline. Concurrently, σmin

is set equal to Ns/2, which allows for drawing approximately 95% of the samples
from current task’s distribution D(Ti) in the terminal epochs of our update.

Using TFS experience replay while finetuning the agent, results in a higher
and much more stable average test PnL across different F values, as shown
in Fig. 4, while it manages to retain considerably improved performance in the
past PnL as presented in Fig. 1. TFS mechanism provides an adaptive selection of
experiences, offering a balance between past knowledge retention and adaptation
to current patterns, as shown in these experiments.

Table 1. PnL Performance averaged over all update frequencies.

Models Test PnL Past PnL

Static Baseline 1.83 ± 0.29 5.95 ± 0.25

Finetuning 1.79 ± 0.57 3.12 ± 0.16

Temporal Focused Sampling (TFS) 2.12 ± 0.21 5.06 ± 0.23

TFS + Plasticity focused KT 2.31 ± 0.23 4.22 ± 0.35

After formulating a robust way to ensure model’s stability through TFS
experience replay, we shift our focus on enhancing its plasticity to new mar-
ket trends with knowledge transfer. Including the plasticity driven knowledge
transfer loss in the retraining process, resulted in the highest average test PnL
across all update frequencies F , as can been seen in Fig. 5. The ensemble of the
most relevant teachers, improves student’s relevance to current market condi-
tions. Despite coming with a significant drop in the past PnL, due to to the
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plasticity-stability trade off, our proposed TFS + Plasticity focused KT method
still gives some attention to old knowledge, which leads to notably higher past
PnL than finetuning, as depicted in Table 1.

Fig. 5. Ablation study evaluating the impact of proposed components on cumulative
test PnL during back-testing. Incremental enhancements to finetuning achieved with
the introduction of TFS experience replay and Plasticity focused KT. Each line is
averaged over all 4 different update frequencies.

5 Conclusions

In this paper, we presented a novel Deep Continual Reinforcement Learning
methodology tailored for dynamic time series. The proposed method leverages
TFS experience replay and employs ensemble teacher selection for plasticity
driven knowledge transfer. The TFS experience replay ensures that the model
remains consistent in historical data while adapting to new trends. The teacher
selection, on the other hand, increases the adaptability of our agent, to patterns
that are highly relevant to the current conditions. The obtained empirical results
demonstrate that the proposed method achieves robust performance across dif-
ferent update frequencies. Future research could explore how to enable an agent
to dynamically trigger such an update mechanism on its own, rather than relying
on a predefined periodic update scheme as used in this study, with the aim of
achieving a fully autonomous adaptive agent.
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Abstract. Although existing industrial anomaly detection methods per-
form well, they are trained on offline datasets collected in advance and
remain unchanged once the training is complete. Simultaneously, they
assume that the data is static without any drift. However, data in indus-
trial scenarios, especially in sequential assembly lines, usually arrives
dynamically in streams and suffers from data drift over time, such as
lighting variations and digital noise. The offline training paradigm and
inability to dynamically update of existing methods are inconsistent with
the data characteristics of streaming dynamics, and it is also difficult to
quickly adapt to streaming data drift. To this end, we propose a stream-
ing anomaly detection method that can not only learn dynamically based
on the production line data stream, but also adapt to data drift as quickly
as possible by effectively utilizing a small amount of drifted training
data. The core idea of the proposed method is to compress the features
into an orthogonal latent space and constrain the features with near-
est reconstruction and maximum separability to maximally capture the
normal patterns of the data. Extensive experiments on three real indus-
trial datasets demonstrate our method’s excellent performance in stream
anomaly detection tasks and rapid adaptability to data drifts. Addition-
ally, our method has lower modeling complexity and higher computa-
tional efficiency. It also achieves state-of-the-art performance in offline
industrial image anomaly detection and localization tasks. Source code
will be released upon paper acceptance.
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1 Introduction

In industrial vision defect detection tasks, acquiring labeled defect samples is
challenging because defects can be extremely small and difficult to collect.
Anomaly detection (AD) [16] has gained attention as an effective method to
detect defects without the effort of labeling defect samples.

Existing AD methods typically involve two phases: data pre-collection and
offline training. In the data pre-collection phase, they often require collecting
data from production lines over a period of time and then constructing a train-
ing set containing only the normal samples (i.e., defect-free samples). Subse-
quently, in the offline training phase, AD methods minimize the reconstruction
error between the modeled and true normal patterns through techniques such as
memory banks [2,3,7,9,11,13], normalization flows [6,21], reconstruction [15,17–
19,23,24,26], and knowledge distillation [4,25]. For the testing samples, if their
patterns deviate from the normal patterns, they are predicted as anomalies (i.e.,
defect samples). Therefore, existing AD methods generally assume the normal
patterns to be statistically static, independent, identically distributed (i.i.d.),
and have consistent application scenarios. They do not continue to update the
models once training is complete.

Fig. 1. In real industrial scenarios, data drift commonly occurs within data streams.
Previous anomaly detection methods usually require data cleaning to obtain an offline
and drift-free training set. Conversely, our method can rapidly adapt to the drift with
a limited amount of data by maximizing the capture of normal data patterns.

However, the assumption that the normal patterns are static and offline can
easily be violated in real industrial scenarios. As depicted in Fig. 1, data from
production lines typically arrive in a streaming manner. Due to environmental
noise and device interference, such as lighting variations and digital noise, data
streams often suffer from data drift over time. Samples within a batch of data
may exhibit highly varied patterns due to data drift, yet they are all normal. For
existing methods, since their normal patterns are modeled based on past data
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and the models lack the ability to update, they can easily misclassify drifted
samples, for example, considering drifted normal samples as anomalies.

When data drift occurs in the data streams of production lines, it is crucial for
AD methods to adjust the model as early as possible based on a small number of
newly drifted samples, as this can minimize disruption to the running of the pro-
duction line. However, most of the existing methods pursue excellent detection
performance through high complexity models and the offline learning paradigm.
As a result, when data drift occurs, they require a large amount of normal data
to sufficiently train the model. For example, they may simulate various potential
drift with data augmentation tools to generate vast drifted normal samples or
collect training data over long periods on production lines where data drift may
occur. Such non-real-time learning paradigms are inefficient. Faced with rapidly
dynamic data streams on the production line, AD methods need to adapt to
data drift quickly and in real-time. In other words, AD methods need to effec-
tively utilize a small amount of drifted training data to maximize the capture of
normal data patterns, thus adapting to data drift as quickly as possible.

For this purpose, this paper proposes a streaming anomaly detection method
that maximizes the capture of normal patterns. Compared to existing methods,
our method can adapt to the drift in the data stream faster. As illustrated in
Fig. 2, the method consists of a pre-trained convolutional neural network (CNN)
backbone as an encoder, a learnable 1×1 convolutional layer as a projector, and
an orthogonal latent space. The projector transfers pre-trained features from
the encoder into the orthogonal latent space. Inspired by principal component
analysis (PCA) [12], the transferred features need to satisfy two principles: near-
est reconstruction and maximum separability. In other words, the distance error
between the features and the coordinate basis vectors (which would be intro-
duced in Sec 3.) of the orthogonal latent space should be minimized, and the
features of different attributes should be kept as far apart as possible. The model
is then optimized based on these two principles to maximize the capture of the
normal patterns of data.

Comprehensive experiments are conducted on three real industrial datasets:
MVTec AD [1], MPDD [8], and VisA [27]. The proposed method achieves state-
of-the-art (SOTA) anomaly detection performance in the streaming scenarios.
Furthermore, this paper simulates two types of data drift which are common in
industrial environments, including digital noise and lighting variations. The pro-
posed method demonstrates the fastest adaptation capability. Additionally, our
method also exhibits lower modeling and spatial complexity, as well as higher
computational efficiency. Finally, the proposed method achieves SOTA perfor-
mance in the offline industrial anomaly detection and localization tasks, which
is the setting where previous methods are commonly evaluated.

2 Related Work

From the perspective of constructing normal patterns, existing anomaly detec-
tion methods can be divided into two categories: normal pattern memory banks
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[2,3,7,9,11,13] and trainable normal pattern estimators [4,6,15,17–19,21,23–
26].

The operational process of memory bank methods [2,3,7,9,11,13] is as fol-
lows: during the training phase, the model extracts features from the training
set to construct normal patterns memory bank. The features of the test samples
serve as query vectors to match key normal features in the memory bank. In
order to reduce the size of the memory bank, PatchCore [13] applies a core-
set sampling strategy. CFA [11] designs a k-means based compression scheme.
However, when considering the data drift in data streams, these methods face
two challenges: (1) the detection performance depends on the integrity of the
memory and thus requires extensive normal samples to comprehensively repre-
sent normal patterns. The process of re-collecting training data is inefficient and
may result in biased memory banks; (2) if the memory banks are dynamically
updated based on the drifted data, the memory update mechanisms must be
incorporated, yet existing methods such as PatchCore [13] and PaDiM [3] have
not yet considered this aspect.

The learnable anomaly detectors [4,6,15,17–19,21,23–26] aims to model the
normal patterns and assign higher abnormal scores to samples that cannot be
correctly modeled. To achieve this, end-to-end architectures such as generative
methods are widely adopted. Generative methods use autoencoders [20,23,24]
or generators [15] to implicitly learning normal patterns through reconstruction
tasks. Although these methods [14,23] provide intuitive and explainable results,
they often encounter difficulties in handling objects with complex structures and
may also lead to shortcut learning issue, where abnormal regions are correctly
reconstructed.

3 Method

3.1 Overview

As shown in Fig. 2, the architecture of our method consists of three components:
a pre-trained and frozen encoder Enc, a projector P with learnable parameters
W and an orthogonalized matrix Qk .
Initialization Phase: Firstly, k noise vectors with dimension d are randomly
sampled from the normal distribution N (0, 1) to form the noise matrix A =
[n1, ...,nk ] ∈ R

k×d. Then the orthogonal matrix Qk = [q1, ..., qk ] ∈ R
k×d is

obtained by QR decomposing, i.e., A = QkR. The Qk are subsequently set as
the basis vectors in the latent space.
Training Phase: For the streaming data xt ∈ {xt1 ,xt2 , ...}, the pre-trained
features is extracted by the Enc: Ft = Enc(xt) ∈ R

s×d, where s = w × h repre-
sents the spatial resolution and d denotes the feature dimension. Subsequently,
since the ImageNet-trained [5] backbone introduces domain bias when applied to
anomaly detection tasks. We use the projector P to transfer the biased feature
Ft into Zt = P (Ft ;W ) ∈ R

s×d to mitigate this bias.
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Fig. 2. Overview of the proposed method. k vectors are firstly randomly sampled from
the normal distribution N (0, 1) to form the matrix A ∈ R

k×d. Subsequently, the
orthogonal matrix Qk ∈ R

k×d is obtained by QR decomposing: A = QkR. During
the training phase, the pre-trained features Ft is transferred to Zt . The proposed loss
function would constrain Zt with nearest reconstruction and maximum separability.

Based on the principles of nearest reconstruction and maximum separability,
the proposed method designs a loss function to optimize the features Zt , aiming
to maximize the capture of normal patterns.
Testing Phase: During the testing phase, abnormal samples would fail to be
projected by the trained P into the orthogonal latent space. Thus, the distance
deviation after projection can be regarded as the abnormal score. Our method’s
pseudo-code is shown in Appendix.

3.2 Orthogonal Latent Compression

Existing anomaly detection methods use high-complexity models [15,23] to accu-
rately model normal patterns. These methods lack strict constraints on normal
patterns, thus limiting their ability to maximize the capture of normal pat-
terns and forcing them to collect a large number of normal samples to fully
cover normal patterns. This can lead to data redundancy and an inability to
quickly update the model to adapt to data drift based on a small amount of
emerging drifted training data. To this end, inspired by principal component
analysis (PCA), we believe that an efficient way to acquire normal patterns is
to obtain their decoupled, orthogonal latent patterns. This implies that the cap-
tured normal patterns Zt should satisfy the principle of nearest reconstruction
and maximum separability.

PCA [12] requires the error between the reconstructed samples and the
original samples to be minimized. For a sample xt , the pre-trained features
Ft = Enc(xt) ∈ R

s×d. The mean µ ∈ R
1×d and the covariance matrix
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C = (Ft −µ)T (Ft −µ) ∈ R
d×d are computed. The symmetric matrix C can be

decomposed as C = QΣQT , where Q ∈ R
d×d is an orthogonal matrix whose

columns contain principal components, each of which corresponds to an eigen-
vector of C. The first k columns of Q, denoted as Qk = [q1, ..., qk ] ∈ R

k×d,
represent the directions with the maximum variance (i.e., the Max-Var direc-
tions). The PCA transformation h can be defined as follows:

Zpca = h(Ft ;µ,Qk) = (Ft − µ)Qk (1)

Frecon = h−1(Zpca ;µ,Qk) = ZpcaQk
T + µ (2)

PCA compresses normal patterns by minimizing the reconstruction error
L = ‖Ft − Frecon‖. However, PCA is performed on the batches of data, which
means that all data must be used to compute Qk . Batch PCA limits the efficiency
in streaming scenarios because it must be recalculated when new data arrives.
Therefore, we propose a deep method to simulate the data processing process of
PCA while overcoming the drawbacks of batch computation and adapting the
streaming anomaly detection tasks.

According to Eq. 1, PCA aims to maximize the separability of normal pat-
terns by projecting Ft onto the Max-Var directions of the data, i.e., the principal
component Qk . These Max-Var directions are decoupled because they corre-
spond to the eigenvectors of different eigenvalues of the covariance matrix C.
Similarly, our method aims to achieve maximal separability by projecting Zt

onto the basis vectors in the matrix Qk = [q1, ..., qk ]. Therefore, Qk should be
sufficient decoupled. Furthermore, when considering fine-grained anomaly local-
ization tasks, it is necessary to detect whether each patch-level feature ∀zt ∈ Zt

is abnormal. Hence, we do not specify Qk as the eigenvectors of the covariance
matrix C because this still considers the global distribution of the entire image.
Instead, Qk is defined as an orthogonal matrix obtained by QR decomposing a
noise matrix A = [n1, ...,nk ] as follows:

A = QkR (3)

For ∀zt ∈ Zt , the projector P would align them with the nearest basis vector
in Qk . Since Qk is orthogonal, Zt will be decoupled. Meanwhile, zt should be far
away from the remaining basis vectors in Qk . Upon the completion of training,
Zt would become maximally separable since they are projected onto different and
orthogonal basis vectors in Qk . Additionally, this process can also be explained
by the nearest reconstruction theory of PCA. This is because, the features in Zt

would align with the principal components Qk upon training completion, which
would minimize the reconstruction error between Zt and Qk .

3.3 Loss Function

Based on the above analysis, the projector P would align Zt with the basis
vectors in Qk = [q1, ..., qk ]. The optimization objective is defined as follows:

arg max sim(Zt ,Qk) (4)
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Table 1. Analysis of the model complexity and the spatial complexity.

Methods SPADE [2] PaDiM [3] PatchCore [13] CFA [11] Ours

Modeling Complexity O(|X |HWD) O(|X |HWD2) O(|X |HWD) O(HWD) O(KD)

Spatial Complexity R
|X|×H×W×D

R
H×W×D2

R
|X|×γ(H×W )×D

R
γ(H×W×D)

R
K×D

* X is the dataset scale and γ is the compression ratio. H, W, D are the feature dimen-
sions.

where the sim(·) is set to the dot product. Since the basis vectors ∀q ∈ Qk

are decoupled from each other, it is difficult to maximize the similarity between
Zt and each basis vector in Qk . Therefore, we calculate the distance between
∀q ∈ Qk and ∀zt(i, j) ∈ Zt and sort them. The basis vector q+ with the shortest
distance is the vector need to be aligned, and the remaining k − 1 basis vectors
are the vectors q− need to be moved away. For ∀zt(i, j) ∈ Zt , the process of
determining q+ and q− is as follows:

q+ = arg min
q

‖zt(i, j) − q‖, q− = {qi ∈ Qk : qi /∈ q+},∀q ∈ Qk (5)

The loss function L could be defined in Eq. 6.

L =
∑

zt (i,j)∈Zt

−log

∑
q+ exp(sim(zt(i, j), q+))

∑
q+ exp(sim(zt(i, j), q+)) +

∑
q− exp(sim(zt(i, j), q−))

(6)
As shown in Table 1, our method has the lowest modeling and spatial com-

plexity, only related to the number of basis vectors in Qk and the feature dimen-
sion d.

3.4 Abnormal Scores

After the training is completed, the projector P could map Zt to the orthogonal-
ized basis vectors in Qk . However, for abnormal samples, the model is unable to
accomplish this mapping. Therefore, the anomaly score can be calculated based
on the distance between the testing features and Qk . Suppose the testing sample
is xtest , its transferred features are Ztest . For ∀ztest(i, j) ∈ Ztest , we take its
shortest distance from Qk as the anomaly degree of the testing sample deviation
from normal patterns, denoted as dtest(i, j):

dtest(i, j) = min‖ztest(i, j) − q‖, ∀q ∈ Qk (7)

The anomaly score map A ∈ R
w×h is defined in Eq. 8.

A(i, j) =
dtest(i, j)∑
i,j dtest(i, j)

(8)

Subsequently, A is upsampled until it matches the size of xtest . The detection
accuracy of the model is computed based on the ground truth mask of xtest and
the predicted anomaly score map A.



Orthogonal Streaming Anomaly Detection 101

4 Experiments

4.1 Experimental Setup

Implementation Details. Our method is evaluated on three real industrial
datasets, include MVTec AD [1], MPDD [8] and VisA [27]. The compared meth-
ods include four SOTA anomaly detection methods: PatchCore [13], CFA [11],
FastFlow [21], and DRAEM [23]. The optimizer uses Adam [10] with a base
learning rate of 1e-3 and weight decay of 5e-4. The input images are resized
to 256 × 256 and then centrally cropped to 224 × 224 and normalized. The
backbone selects the Wide-ResNet50 [22], which is trained on the ImageNet
dataset [5]. The combination of layers 2, 3 and 4 of the backbone is utilized
as the pre-trained features Ft . With the batch size b, layers 2, 3 and 4 are
b× 256× 56× 56, b× 512× 28× 28 and b× 1024× 14× 14, respectively. Layer 3
and Layer 4 are upsampled to 56 × 56 size. These features are combined as
Ft = [Layer 2, 3, 4] ∈ R

b×1792×56×56. The projector P is a 1 × 1 convolutional
layer. The noise matrix A is randomly sampled from the normal distribution
N (0, 1). The Qk is obtained by A = QkR and contains k = 10 orthogonalized
basis vectors.

Protocols. Denote the training set and the testing set as Xtrain (contains t nor-
mal samples) and Xtest (contains both normal and anomalous samples), respec-
tively. We simulate the streaming scenario according to the following setup.
During the training phase, we specify that only one training sample xt ∈ Xtrain

arrives at each time step. The anomaly detection method can only see xt at a
time and uses it to update the model. To evaluate the ability of the anomaly
detection method to capture normal patterns, we evaluate the detection perfor-
mance on the testing set Xtest after learning each training sample xt . The eval-
uation metrics are the image-level AUROC (I-AUROC) and pixel-level AUROC
(P-AUROC), respectively. By tracking the real-time changes of the I-AUROC
and P-AUROC metrics after learning each training sample (total t normal sam-
ples which arrives as streams), we can observe the changing relationship between
the detection performance and the number of input training samples (from 0 to
t). This relationship reflects the ability of the model to learn quickly on the
training samples that arrive in streams—if the models are able to detect well
after receiving fewer streaming samples, then they have the ability to learn and
adapt quickly, i.e., they are able to maximize the ability to capture the normal
patterns of the data (As the result shown in Fig. 3). In addition, since most exist-
ing methods are designed for offline scenarios, we modify them to suit streaming
scenarios, thus ensuring a comprehensive and fair comparison with our method.
Specifically, exponential moving average (EMA) is incorporated into the memory
banks construction of PatchCore and CFA, enabling these methods to dynami-
cally update the memory banks with stream data input. The pseudo codes are
shown in Appendix.
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4.2 Evaluation on Streaming AD

Accuracy Report. Table 2 presents the average I-AUROC and P-AUROC
metrics on the MVTec AD, MPDD and VisA datasets. Table 3 presents the
results on each category of MVTec AD. The detailed results on MPDD and VisA
can be found in Appendix. For the I-AUROC metric, our method outperforms
others by 0.6% and 1.9% on the MVTec AD and VisA datasets, respectively. For
the P-AUROC metric, our method outperforms on all three datasets.

Table 2. Streaming performance. ·/· denotes I-AUROC ↑ and P-AUROC ↑.

Method PatchCore [13] CFA [11] FastFlow [21] DRAEM [23] Ours

MVTec AD 0.872/0.934 0.966/0.975 0.927/0.967 0.791/0.730 0.972/0.976

MPDD 0.721/0.954 0.865/0.977 0.907/0.885 0.719/0.727 0.874/0.978

VisA 0.801/0.946 0.924/0.981 0.883/0.965 0.712/0.561 0.943/0.987

Table 3. Streaming performance on MVTec AD dataset.

Metric I-AUROC ↑ P-AUROC ↑
Method PatchCore CFA FastFlow DRAEM Ours PatchCore CFA FastFlow DRAEM Ours

Bottle 0.949 1.000 1.000 0.857 1.000 0.953 0.981 0.978 0.610 0.982

Cable 0.897 0.914 0.940 0.557 0.926 0.937 0.965 0.945 0.541 0.966

Capsule 0.753 0.937 0.915 0.552 0.950 0.967 0.987 0.982 0.657 0.988

Carpet 0.990 1.000 0.987 0.907 1.000 0.991 0.991 0.982 0.882 0.992

Grid 0.805 0.912 0.967 0.874 0.943 0.738 0.922 0.962 0.805 0.938

Hazelnut 0.949 1.000 0.771 0.833 1.000 0.953 0.984 0.959 0.814 0.986

Leather 1.000 1.000 1.000 0.960 1.000 0.993 0.992 0.996 0.723 0.992

Metalnut 0.681 0.996 0.970 0.746 1.000 0.904 0.990 0.966 0.687 0.990

Pill 0.842 0.976 0.919 0.831 0.964 0.959 0.991 0.974 0.598 0.990

Screw 0.570 0.850 0.739 0.515 0.849 0.891 0.978 0.927 0.933 0.979

Tile 0.997 0.996 0.953 0.965 0.997 0.957 0.964 0.943 0.766 0.963

Toothbrush 0.936 0.975 0.828 0.689 1.000 0.973 0.986 0.978 0.829 0.988

Transistor 0.774 0.953 0.990 0.746 0.955 0.869 0.951 0.950 0.582 0.951

Wood 0.996 1.000 0.965 0.955 0.999 0.950 0.952 0.981 0.792 0.951

Zipper 0.945 0.988 0.960 0.871 0.995 0.975 0.986 0.983 0.731 0.986

Average 0.872 0.966 0.927 0.791 0.972 0.934 0.975 0.967 0.730 0.976

Convergence Speed. All methods are evaluated on the ability to capture
normal patterns of data. To this end, we observe which method could achieve
higher detection accuracy faster when receiving an equal amount of streaming
data. As shown in Fig. 3, our method quickly achieves 90% I-AUROC using 20%
data, and ultimately maintains a high accuracy. In contrast, PatchCore stops at a
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lower accuracy after a slow rise. This is due to the fact that coreset of PatchCore
is not representative of the true normal patterns which is dynamically changing,
as it is not feasible to pre-collect the dataset at the initial phase. In addition, CFA
also shows good performance, mainly due to its ability to adapt image features
to new tasks. However, there is still room for improving its detection accuracy
since it cannot obtain large-scale datasets in advance to build a high-quality
memory bank.

The Adaptability to Data Drift. As shown in Fig. 4, we assume that there
is no drift in the input training samples from time 0 to t. The t is the number of
training samples for each category. For example, the t for the bottle category of
the MVTec AD dataset is 209 because it has 209 training samples. From time
t + 1 onwards, the training samples experience drifts H(·), forming x̂train (t +
1) = H(xtrain (t + 1)), x̂train (t + 2) = H(xtrain (t + 2)), .... The same drift is
applied to Xtest. For example, at time t + 1, for ∀xtest ∈ Xtest, it is altered to
x̂test = H(xtest). Subsequently, at each time step t + 1, t + 2, ..., we evaluate
the model on the drifted testing set.

Fig. 3. I-AUROC curve for different methods on two datasets.

Specifically, two types of data drift are introduced, including lighting vari-
ations and digital noise. We select one type of drift each time and apply it to
the input data xt . The scenario without data drift is set as the baseline, i.e., all
methods would firstly train based on t normal samples xtrain (0), ...,xtrain (t) ∈
Xtrain. When data drift occurs, all methods continue learning on the drifted
training samples x̂train (t+1), ..., x̂train (2t). This means that all methods learn
the number t of drifted training samples again in a streaming manner. Subse-
quently, the testing set is subjected to the same drift and used for evaluating.

Table 4 presents the reports on the MVTec AD dataset. When data drift
occurs, all methods experience varying degrees of accuracy degradation. How-
ever, our method exhibits better robustness and rapid adaptation to data drift.
For lighting variations drift, our method’s I-AUROC metric decreased by -1.1%,
while other methods decreased by -10.5%, -7.1%, -5.4%, and -9.6%, respectively.
A similar trend can be observed for digital noise: ours: -2.0% vs other methods:
-14.8%, -8.2%, -2.1% and -6.1%.
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Fig. 4. The data stream is assumed not to have any drift during the 0-t period. In time
after t + 1, drift occurs.

Computational Efficiency. The computational efficiency of all methods are
as shown in Table 5. The evaluation includes throughput per second (TPS), the
time for feature extraction and anomaly detection. We conduct five runs for each
method, each processing 2000 images from the data stream, and then calculate
the average metrics. Our method demonstrates the highest throughput with
187.1 img/s, and the average anomaly detection time is the lowest at 0.7 ms.
This excellent efficiency can be attributed to the lower modeling and spatial
complexity of our method.

Visualization of Defect Detection Results. Defect detection results in
MVTec AD dataset are visualized. Figure 5 shows the samples, ground truths and
anomaly maps for each category. Despite data drift including lighting variations
and digital noise occurs, our method is still able to accurately locate defects.

Table 4. Performance comparision with drifted data.

Data drift Metric Patchcore[13] CFA[11] FastFlow[21] DRAEM[23] Ours

None
I-AUROC ↑ 0.872/-0.000 0.966/-0.000 0.927/-0.000 0.791/-0.000 0.972/-0.000

P-AUROC ↑ 0.934/-0.000 0.975/-0.000 0.967/-0.000 0.730/-0.000 0.976/-0.000

Brightness
I-AUROC ↑ 0.767/-0.105 0.895/-0.071 0.873/-0.054 0.695/-0.096 0.961/-0.011

P-AUROC ↑ 0.865/-0.069 0.965/-0.010 0.930/-0.037 0.606/-0.124 0.963/-0.013

Gaussian
I-AUROC ↑ 0.724/-0.148 0.884/-0.082 0.906/-0.021 0.730/-0.061 0.952/-0.020

P-AUROC ↑ 0.855/-0.079 0.961/-0.014 0.934/-0.033 0.601/-0.129 0.966/-0.010

Table 5. Computation efficiency.

Methods PatchCore [13] CFA [11] FastFlow [21] DRAEM [23] Ours

TPS ↑ 98.1 104.7 60.0 39.6 187.1

Encoder↓ 6.1 5.2 2.3 3.6 4.6

Detection ↓ 4.1 4.3 16.4 21.6 0.7

* TPS: Throughput per second img/s. Encoder and detection in ms.
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Fig. 5. Visualization of defect detection in MVTec AD dataset.

4.3 Evaluation on Offline AD

The performance on offline scenarios is shown in Table 6. Our methods achieve
comparable accuracy to the SOTA methods on the full dataset. Moreover, in
industrial scenarios, the performance in few-shot scenarios is of great importance.
We evaluate the performance of the methods for this issue. Five independent
repeated experiments are conducted. When the number of training samples is
set as N = 1, N = 2, N = 4 and N = 8, our method achieves better performance.
Particularly, when N = 1 and N = 2, our method’s I-AUROC metric exceeded
other methods by 4.2% and 4.0%, respectively.

Table 6. Performance comparison under the offline scenario. I-AUROC ↑ is reported.

Method Full Dataset Few-shot (MVTec AD)

VisA MVTec AD MPDD N=1 N=2 N=4 N=8

Patchcore [13] 0.951 0.992 0.948 0.619 0.721 0.817 0.864

CFA [11] 0.920 0.980 0.923 0.813 0.839 0.879 0.923

FastFlow [21] 0.822 0.905 0.887 0.552 0.552 0.729 0.801

DRAEM [23] 0.887 0.981 0.941 0.685 0.777 0.820 0.883

Ours 0.955 0.992 0.922 0.855±0.0111 0.879±0.0130 0.887±0.0007 0.908±0.0087

4.4 Ablation Analysis

The core idea of the proposed method is to transfer the pre-trained features
Ft of normal samples into an orthogonalized latent space Qk to obtain Zt =
P (Ft ;W ). In the following, we demonstrate the influence of key factors of the
proposed method, including (1) whether it is necessary to constrain Qk to be an
orthogonalized matrix, and (2) the influence of the number of base vectors k.
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Orthogonalization Constraint. Qk is set as different variants. Firstly, Qk is
set as the noise matrix A which is generated by randomly sampled k noise vec-
tors from the normal distribution N (0, 1), i.e., Qk = A ∼ N (0, 1). Since the base
vectors in Qk are not orthogonalized, we denote this as None in Table 7. The sec-
ond setting of the Qk is applying QR decomposition to the matrix A: A = QkR.
Thus the Qk becomes an orthogonal matrix. We denote this case with the �.
The proposed method is evaluated under such two settings. As shown in Table 7,
when Qk is not an orthogonal matrix (Qk = A ∼ N (0, 1)), there is a notice-
able degradation in the detection performance. For the MVTec AD, MPDD, and
VisA datasets, the I-AUROC metrics are 77.8%, 62.7%, and 70.6%, respectively.
However, when Qk is orthogonalized (A = QkR), the detection performance
improves significantly, corresponding to 97.2%, 87.4%, and 93.4%, respectively.
This emphasizes the important impact of the orthogonalization property of Qk

on the detection accuracy, i.e., by transferring Ft to Zt and constraining Qk

decoupled, one can obtain compact normal modes that simultaneously satisfy
the nearest reconstruction and maximum separability.

Table 7. Orthogonalization constraint of the basis vectors in the matrix Qk .

Orthogonalization Metric MVTec AD MPDD VisA

None (Qk ∼ N (0, 1)) I-AUROC ↑ 0.778 0.627 0.706

P-AUROC ↑ 0.766 0.796 0.812

� (A = QkR) I-AUROC ↑ 0.972 0.874 0.934

P-AUROC ↑ 0.976 0.978 0.987

Basis Vector Quantity. The impact of the number k of base vectors in
Qk = [q1, ..., qk ] on the detection performance is evaluated. The detection per-
formance of the proposed method is evaluated under both streaming detection
and offline detection scenarios when k = 1, 2, 5, 10, 20, 40, 80. When k = 1, the
proposed method degrades into a standard one-class detection method, where the
pre-trained features Ft are aligned to a single base vector after being transferred
through the projector. When k > 1, the proposed method aligns the features
Zt to the nearest base vector q ∈ Qk . As shown in Table 10, when k = 1, the
I-AUROC metric of the proposed method is 93.4%. As k increases, the detection
performance gradually improves, for example: k : 1 → 5 → 10, the correspond-
ing changes in I-AUROC metric are: 93.4% → 95.6% → 97.2%. However, when
k exceeds 10, performance remains almost unchanged. This is because images
typically contain multiple local structures, a powerful prior knowledge. These dif-
ferent local structures encompass varying semantic information and thus require
differential treatment. In our method, the number k can be considered as the
process of aligning features with different local structures. Consequently, set-
ting k = 1 forces all features to align with a single basis vector, resulting in
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coarse structural descriptions that degrade performance. In contrast, increasing
the number k helps align different features with different basis vectors, conform-
ing to the prior knowledge of local structures. Furthermore, since the model can
automatically select the most similar basis vector for each feature, an excessively
large k will not further enhance model performance, as it exceeds the number of
different local structures in the image. Experimental results indicate that k = 10
adequately covers the local structure information in the images, and thus is
set as the default value. This indicates that when receiving sequentially arriving
streaming data in equal amounts, the proposed method indeed helps the anomaly
detector to capture the normal data patterns to the maximum extent by aligning
the pre-trained features Ft to multiple decoupled base vectors Qk = [q1, ..., qk ].
Additionally, in the offline case, the anomaly detector can converge to a locally
optimal normal pattern after multiple epochs of training without considering
local structural similarities.

Backbone. We conduct ablation experiments about the pre-trained backbone
types. As shown in Table 8, our method shows excellent performance across
different backbones.

Table 8. I-AUROC ↑ of our method and FRE.

Backbone ResNet18 ResNet50 VGG16 EfficientNet-B5 WideResNet50

Ours 0.978 0.988 0.976 0.983 0.992

Additionally, ablation experiments for different layers are shown in Table 9.
The proposed method achieves the best accuracy when we combine 2, 3, and
4 layers of features, which means that the middle and high level features are
crucial.

Table 9. Ablation experiments on different layers.

Layer (Layer 2) (Layer 3) (Layer 4) (Layer 2, Layer 3) (Layer 2, 4) (Layer 3, 4) (Layer 2, 3, 4)

I-AUROC 0.886 0.968 0.982 0.969 0.987 0.990 0.992

Table 10. Impact of memory bank size for performance. Evaluated on MVTec AD.

Scenario Metric k = 1 k = 2 k = 5 k = 10 k = 20 k = 40 k = 80

Streaming I-AUROC ↑ 0.934 0.959 0.956 0.972 0.970 0.969 0.972

P-AUROC ↑ 0.956 0.965 0.961 0.976 0.972 0.973 0.973

Offline I-AUROC ↑ 0.989 0.990 0.991 0.992 0.991 0.991 0.991

P-AUROC ↑ 0.980 0.980 0.981 0.980 0.981 0.980 0.981
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5 Conclusion

In this paper, we propose a streaming anomaly detection method, which carries
significant and realistic application value in industrial scenarios, especially in pro-
cess manufacturing scenarios where data drift is common in data streams. The
proposed method can adapt faster than previous methods when data drift occurs
in data streams from industrial production lines. Such fast adaptability can be
attributed to that the proposed method can capture normal patterns fully with
the orthogonal latent compression on a limited number of drifted samples. The
proposed method also achieves SOTA performance on offline industrial image
anomaly detection and localization tasks. Additionally, the proposed method
has lower modeling and spatial complexity, as well as higher computational effi-
ciency.
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17. Zavrtanik, V., Kristan, M., Skočaj, D.: DSR – a dual subspace re-projection
network for surface anomaly detection. In: Avidan, S., Brostow, G., Cissé, M.,
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Abstract. Continual learning (CL) is a key technique enabling neural
networks to acquire new tasks while retaining efficiency in previous ones.
Standard CL tests revisit old tasks after learning, assuming stable data
distribution, which is often impractical. Meanwhile, it is well known that
the out-of-distribution (OOD) problem will severely impair the ability
of networks to generalize. Rare research considered the influence of CL
on the generalizing ability of neural networks. Our research highlights a
special form of catastrophic forgetting raised by the OOD problem in CL
settings. Through continual image classification experiments, we discov-
ered that: introducing a tiny intra-class distribution shift within a specific
category significantly impairs the recognition accuracy of many CL meth-
ods. We named it out-of-distribution forgetting (OODF). Moreover, the
performance degradation caused by OODF is special for CL, as the same
level of distribution shift had only negligible effects in the joint learning
scenario. We verified that most CL strategies except for parameter isola-
tion ones are vulnerable to OODF. Taken together, our work identified
an under-attended risk during CL, highlighting the importance of devel-
oping approaches that can overcome OODF. Code available: https://
github.com/Hiroid/OODF.

Keywords: Deep learning · Continual Learning · Out-of-Distribution
Forgetting · Catastrophic Forgetting

1 Introduction

Learning models based on artificial neural networks usually suffer from catas-
trophic forgetting (CF) [3,17,21] in open environments. Researchers have pro-
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posed various continual learning (CL) methods for deep neural networks to over-
come CF. These include strategies based on parameter regularization, mem-
ory replay, and parameter isolation etc. [7,10,26]. By enabling a system to
learn new tasks and maintain its performance on old tasks, CL has made sig-
nificant progress in incremental image recognition and other computer vision
tasks [34,35].

Even with great advances, the current CL strategies may still not cope well
with the problem of CF in real world. One of the many concerns is the noise
tolerance of CL strategies. In the review [11], the authors concerns that contin-
ual learning machines may not perform well if there is a large distribution shift
between the data encountered in the inference phase and those in the training
phase. In the present manuscript, we surprisingly find that the practical situa-
tion is much more severe. Our work indicates that even a tiny intra-class dis-
tribution shift, negligible to human observers, can introduce severe performance
impairments for current CL methods.

Fig. 1. Illustration of out-of-distribution forgetting. There are two continual learning
scenarios, the top row is a standard continual learning paradigm, while the bottom
row is a continual learning paradigm with an intra-class distribution shift on task 1.
At time 1 in the OODF paradigm, although the generalization of task 1 was equally
good compared to the standard CL setting, the protection provided by CL methods
mainly focuses on out-of-distribution samples of task 1, leading to severe deficits in
performing task 1 after learning task 2.

Specifically, we named this phenomenon out-of-distribution forgetting
(OODF) (Fig. 1). This phenomenon is special for CL as the performance degra-
dation is caused by the subsequent learning of other categories, which is differ-
ent from the well-studied OOD problem in the setting of joint learning [28]. We
believe OODF is an important yet under-attended problem for developing as
well as evaluating CL methods in the future because:

– OODF is commonly present in various CL strategies and settings. We verified
its existence in both regularization-based and memory-based CL strategies on
different tasks with different network structures.
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– OODF is elusive and challenging to detect. Its effects don’t manifest imme-
diately post-training on shifted data but rather emerge as the model learns
new tasks, reflecting its nature as a unique form of CF. Thus, a continual
learning machine affected by OODF can be considered capable of performing
certain tasks but it actually will fail. In addition, it only affects the class
contaminated with the distribution-shifted data, without influencing other
tasks.

– OODF can be triggered by various conditions leading to distribution-shifted
data. We find that OODF severely impairs the CL performance, regardless of
the approach causing the shift (local or global perturbation), as well as the
reason behind it (deliberately designed attack or accident).

– Preliminary findings indicate that introducing a rejection category will help
to alleviate OODF.

Our work identified OODF as a specific form of CF barely covered in previ-
ous studies, which is an important issue to consider for improving the security
and robustness of the CL methods towards their application in practical circum-
stances.

2 Related Works

2.1 Continual Learning

In recent years, various algorithms have been proposed to overcome the CF
problem in CL tasks. Although new technique and applications such as prompt-
based CL [22] and continual pre-training (CPT) [16,37] etc. are getting noticed,
the components underlying can still be decomposed as these essential strategies:
parameter regularization strategy [5,36], memory replay strategy [1,20,23,25,
29], and parameter isolation (also known as architecture-based) strategy [12].

This work focuses on the class incremental scenario [8,33], as it is a real
scene where CL models need to identify all classes (i.e. categories) without task
IDs. Meanwhile, we allow models to train each task offline (as opposed to online
CL [15]), ensuring a better performance on standard CL, as a higher baseline
for subsequent OODF experiments.

2.2 Security Concerns of Neural Networks

The first concern addresses the OOD problem in neural networks. In non-CL
paradigms, significant loss of generalization occurs if there’s a shift between
training and testing datasets, especially due to corruption or perturbation [27,
28]. The second concern centers on the security of well-trained neural networks,
particularly against deliberate attacks like adversarial [24], data poisoning [9]
and backdoor attacks [14]. These areas mentioned above comprehensively
investigate the security problem in different stages, purposes, and means. How-
ever, most models in this area are static, employing un-sequential joint training
procedures. Notably, few studies have focused on the unique security and robust-
ness risks inherent to CL.
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2.3 Several Concerns of Continual Learning

The first concern was security in CL. Security of neural networks and CL have
been studied largely in parallel until recently. Guo et al. [6] propose the GREV
method to attack the A-GEM methods with adversarial samples and disseminate
misinformation in the memory buffer. Umer et al. [30–32] show that it is possi-
ble to attack CL by modifications on both training samples and labels to give a
misleading supervising signal. Li and Ditzler [13] attack several parameter reg-
ularization strategies by injecting poisoned adversarial samples into subsequent
tasks following the target task, in the task incremental scenario. However, they
implement targeted poisoning attacks by injecting poisoned adversarial sam-
ples into subsequent non-target tasks.

The second concern was the real-world application of CL. Recent studies
highlight that continual agents, when exposed to out-of-distribution samples in
open-world settings, may compromise safety and performance. Caccia et al. [2]
define learning new tasks as the OOD problem (compared to the learned old
tasks), a perspective distinct from OODF, which presents unique challenges and
definitions. Mundt et al. [18,19] conducted experiments on reverse continual
learning. They first trained the model on the entire dataset, then retrained the
model on a core set and compared the difference in performance. A well-chosen
core set will better represent the entire dataset, associated with a lower per-
formance drop. It was concluded that the introduction of OOD samples to the
core set does not have a significant effect on CL. However, it was not an OOD
problem since the model had access to the whole dataset at the beginning of
reverse CL.

Instead of narrowing our focus to specific CL strategies or adversary sce-
narios, we address a broader spectrum of concerns related to the security and
OOD robustness in CL. That is, there is a previously unnoticed form of CF:
the OODF that can severely affect CL models’ performance. Subsequent sec-
tions will detail critical properties of OODF, including its prevalence across CL
strategies and settings, the challenge of its delayed detection, and the variety of
how to trigger it.

3 Out-of-Distribution Forgetting

In CL tasks, it’s typically assumed that training and subsequent testing data are
drawn from the same distribution. However, this distribution may shift, either
intentionally or accidentally, as time progresses after the learning stage. It’s
crucial to note that our discussion does not revolve around distribution shifts
between sequential tasks (e.g., task 1 to task 2). Instead, we concentrate on the
often-overlooked intra-class distribution shifts within a single task (e.g., task 1 at
varying time steps). It sets our research apart from the bulk of existing studies.

In this section, we will show the influence of OODF, i.e., the catastrophic
forgetting caused by the distribution shift in data between the training and infer-
ring phases, on the artificial neural network with the mainstream CL algorithms.
Firstly, we will introduce the learning paradigm and experiment procedure of
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the CL task considering OODF. Next, we will evaluate OODF on various main-
stream CL strategies and compare the conditions with joint learning. Finally, we
will analyze the key factors that determine the extent of the influence of OODF.

3.1 Standard CL Paradigm

Here we take the supervised image classification problem as an example to illus-
trate the paradigm of CL. For experiments, we use the class incremental scenario.
In the CL task, total K tasks need to be learned, and the dataset for each task
is defined as

Dt = {xt
i, y

t
i}nt

i=1, t = 1, 2, . . . ,K (1)

where t is the task index. The dataset for the tth task has nt pairs of labeled
data. Data {xt

i}nt
i=1 and label {yt

i}nt
i=1 are sampled from distribution P (xt) and

P (yt), respectively. In CL, the artificial neural network fθt
: Xt → Y t must learn

the task once at a time. In the tth task, the neural network has to optimize
its parameter θt according to Dt. It usually has no or very limited access to
previous datasets Dt−1,Dt−2, . . . , D1 , but needs to maintain the performances
on all learned classes. In the inference phase, the testing dataset in {Dt

test}K
t=1

is sampled from the same distribution as the training dataset.

3.2 OODF Paradigm

In an open and dynamic circumstance, assuming that training and testing
datasets are sampled from the same distribution is not always practical. To
evaluate the influence of distribution shift in data, we adjust the standard CL
diagram accordingly. If a distribution shift takes place in the training dataset
of the Sth task (i.e. intra-class shift), the data DS will be directly replaced by
the shifted data

̂DS
train = {x̂i, yi}n̂

i=1 ∪ {xi, yi}n
i=n̂+1 (2)

̂DS
train contains n̂ shifted data pairs {x̂i, yi}n̂

i=1 and n − n̂ original data pairs
{xi, yi}n

i=n̂+1. The percentage r = n̂/n of samples x̂ is used to measure the
occurrence frequency (i.e. ratio) of feature shifting in the training dataset. The
training procedure causing OODF is described in the Algorithm 1, reusing the
mathematical notation from Sects. 3.1 and 3.2. In the referring phase, the neural
network is tested on DS

test sampled from the same distribution as DS . Except
for such a minor modification, the rest of the procedure in the learning is the
same as that in the standard CL.

3.3 Introducing of the Distribution Shift

In the experiments, we constructed distribution-shifted data x̂ by adding the
non-shifted data x a new feature sampled from a distinct distribution P ′(x).
There were no changes in the labels. In practice, we just chose a small pixel
block in a fixed location in the image and set it to a constant value. The feature
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position was denoted by the index p. The position of other pixels remaining
the same is denoted by q, i.e. q = ¬p. The strength of the shifted pixels is
controlled by parameter ε:

x̂[q] = x[q] x̂[p] = ε (3)

Figure 2a and 2b demonstrate the feature-shifting operation on two image exam-
ples from MNIST and CIFAR-10 datasets. In each panel, the left image is the
original one, while the right is the corresponding image with a pixel-wise mod-
ification. The shifted pixels highlighted by the red square at the bottom right
corner are vague and easily overlooked by humans. The above operation is not
necessarily an attack on the CL machine, though OODF can easily be exploited
for intentional sabotage. In reality, many conditions can cause such distribution
shifts, e.g., slight defection in the sensory equipment or some random, noisy
perturbations. These unpredictable and hardly detectable defections or pertur-
bations can easily cause a feature shift in training samples.

Fig. 2. Distribution Shift. Red rectangle box selected the pixels that were modified in
(a) and (b). Figure (c) will be discussed in later section. (Color figure online)

The distribution shift is introduced through a small pixel-wise operation
causing occlusion, highlighting the significance of OODF: as the results shown

Algorithm 1. Continual Learning on Distribution Shift Dataset
Require: Datasets {Dt

train}K
t=1, nt samples in Dt

train, shift task-ID S, occlusion
strength ε, position p, percentage r, classifier with initial parameter fθ0 , loss func-
tion lt(·), continual methods CL.

Ensure: n̂S = rnS

1: ̂DS
train ⇐ {x̂S

i , yS
i }n̂S

i=1 ∪ {xS
i , yS

i }nS
i=n̂S+1

2: for t = 1 to K, using CL do
3: if t �= S then
4: get {xt}, {yt} from Dt

train

5: else
6: get {xt}, {yt} from D̂S

train

7: end if
8: θt ⇐ arg min

θ
lt(fθ(x

t), yt; θt−1)

9: end for
10: return fθK
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Table 1. Network backbone and CL methods of experiment settings.

Backbone CL methods

Split MNIST-10 784-800-10 OWM [36]

784-400-400-10 iCaRL [23],DGR [29],ER [25]

Split CIFAR-10 Split CIFAR-100 3 CNN with 3 FC OWM,AOP [5]

Resnet18 iCaRL,ER,DER++ [1], GDumb [20],CN-DPM [12]

in Sect. 5, even minor data augmentations can induce significant forgetting
in widely tested CL methods. We also consider another form of distribution
shift by using FGSM [4] to construct adversarial samples, shown in Fig. 2c. We
regard shift diversity as a factor of OODF and discuss it in Sect. 6.

4 Experiment Settings

To evaluate OODF, we tested the influence of intra-class shift on all three main-
stream learning strategies in classic CL tasks. The choices of the algorithm and
corresponding network structure and dataset in each experiment are listed in
Table 1. In all experiments, either the original code or the popular reproducing
code [15] of the CL algorithms were used for evaluation. All the code had been
checked in the standard CL tasks without data distribution shift. We note that
we’re not aiming to evaluate the performances of different CL methods or com-
pare performance degradation caused by distribution shifts in these methods.
Instead, the purpose here is to examine the extent of OODF in CL models.
Shift SplitMNIST-10 Task. The MNIST dataset was divided into 10 tasks. In
each task, the neural network was trained only to learn one class of handwriting
digits. Each class included ∼6000 samples in the training set and ∼1000 in the
testing set. The images were not pre-processed before the training. The training
order of tasks was from 0, 1, · · · to 9. We took the digit 3 (task index S = 4) as
an example to illustrate the influence of the intra-class distribution shift on CL.
The task choice is without specific consideration and can be replaced by other
digits. The shifted training samples took the percentage r = 90%. The shifted
feature is a four-pixel square located at the bottom right corner of the image, as
highlighted by the red box in Fig. 2a. The strength ε was set to 64 in experiments
of memory replay strategies and 32 for parameter regularization strategies.
Shift SplitCIFAR-10&100 Task. This task is similar to the shifted
splitMNIST-10 task. The CIFAR10 dataset was divided into 10 tasks according
to the category to be sequentially learned by the neural network. Each category
included 6000 samples in the training set and 1000 in the testing set. The RGB
images were normalized before the training. We randomly added a shifted fea-
ture of pixel square at the bottom right corner on training samples of the task
S = 2. The percentage of shifted samples is r = 50% for memory-based methods
and r = 90% for others. The square size is 1 × 1 and 2 × 2, respectively. The
strength is ε = 255 for each RGB channel. Same as above, the CIFAR100 dataset
was divided into 100 tasks. To enable stochasticity, all results are collected over
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Fig. 3. Properties of out-of-distribution forgetting.

5 independent trials, presented in the bars and tables. Details for training and
distribution shifts are listed in the supplementary material.

5 Properties of OODF

5.1 Delayed Effect

As a new form of catastrophic forgetting, OODF also has a delayed effect.
We first take the experiment of OWM on SplitMNIST-10 as an example. The
experiment was conducted in a control group and a shift group. In the control
group, the experiment was performed following the standard CL paradigm for
comparison. In the shift group, shifted features were added to the task of S = 4
and the experiment was performed following the OODF testing paradigm. The
results are demonstrated in Fig. 3a. In each group, the 4th task was firstly tested
immediately after the end of the current task (the time point is denoted as t3) and
then at each time step of the experiment on the original testing dataset (the time
point is denoted as ti). Both the control group and shift group performed well at
t3, with accuracy at 99.54±0.16% and 92.85±0.76% respectively. Although the
results indicate that shift minimally affects the learning of the current task, but
our primary concern is the forgetting effect it triggers during successive learning
processes. As the experiment continued, the performance on the 4th task in
the control group maintained high at 89.33 ± 0.67%, indicating that the CL
algorithm functioned normally and protected the previous knowledge well. As a
comparison, the performance in the shift group dropped dramatically to 51.90±
2.36%. The relative accuracy drop is 10.25 ± 0.70 for the control group, while it
is significantly worse for the shift group at 44.11 ± 2.42. We conducted similar
experiments on different CL strategies, network structures, and datasets. The
results are demonstrated in Tables 2, 3 and 4. In all experiments, the performance
in the shift group at t = S was comparable to the control group but dropped
dramatically at the end of learning t = K. These results show that distribution
shifts in the data can severely degrade the function of regularization-based and
remory-based CL methods, but not parameter-isolation-based methods.
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Table 2. Out-of-distribution forgetting on MNIST. Test Acc.(%) of task S at two time
steps t = S and t = K.

MNIST Reg. Mem.

OWM iCaRL DGR ER

t = S Control 99.54 ± 0.16 99.76 ± 0.13 99.08 ± 0.32 99.30 ± 0.39

Shift 92.85 ± 0.76 98.67 ± 0.40 94.57 ± 1.37 97.76 ± 1.24

t = K Control 89.33 ± 0.67 84.63 ± 2.54 83.40 ± 3.58 90.20 ± 1.22

Shift 51.90 ± 2.3659.57 ± 6.34 67.43 ± 5.94 72.15 ± 5.97

Table 3. Out-of-distribution forgetting on CIFAR10. Test Acc.(%) of task S at two
time steps t = S and t = K.

CIFAR-10 Reg. Mem. Iso.

OWM AOP iCaRL ER GDumb DER++ CN-DPM

t = S Control 94.37 ± 1.25 98.78 ± 0.27 95.52 ± 0.69 95.41 ± 1.30 96.4 ± 0.62 97.34 ± 1.03 91.15 ± 1.43

Shift 91.30 ± 1.63 91.92 ± 1.34 92.72 ± 0.87 95.14 ± 1.37 93.18 ± 1.16 96.76 ± 1.52 89.34 ± 2.61

t = K Control 52.60 ± 3.44 60.10 ± 7.10 68.88 ± 2.14 54.84 ± 6.14 74.38 ± 6.68 85.20 ± 2.27 44.76 ± 3.51

Shift 33.75 ± 4.7127.70 ± 5.10 55.12 ± 2.74 46.84 ± 3.94 65.95 ± 7.35 80.82 ± 2.77 45.92 ± 2.06

Table 4. Out-of-distribution forgetting on CIFAR100. Test Acc.(%) of task S at two
time steps t = S and t = K. We only report the results of these three methods
in the table due to compatibility issues (e.g., CN-DPM for 100 class-incremental) or
intractable testing performance (e.g., Reg. based methods and DER++) for other
methods.

CIFAR-100 Mem.

iCaRL ER GDumb

t = S Control 94.6 ± 2.5 87.3 ± 5.3 96.2 ± 2.7

Shift 91.8 ± 2.8 94.5 ± 1.3 94.0 ± 2.9

t = K Control 47.4 ± 11.0 23.5 ± 7.6 11.4 ± 5.3

Shift 28.0 ± 12.4 5.5 ± 3.1 7.0 ± 4.6

5.2 Targeting

This section investigates the incidence of OODF on learned tasks. Figure 3b
shows the performance of all tasks but the one recognizing digit 3 in the
SplitMNIST-10 task trained with the OWM algorithm. In both the control and
shift groups, the accuracy was tested at the end of the experiment. The testing
accuracies of the tasks in the shift group were almost identical to those in the
control group when there was no distribution shift in the training data. The
result indicates that slight spillover caused by the distribution shift in a specific
task affects the rest. Similarly, we further examined the rest experiments with
different CL settings and algorithms.
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Fig. 4. Comparison of non-target tasks’ accuracies between standard and shift exper-
iments. The results were obtained by averaging the accuracies for all tasks except for
task S after the whole CL learning procedure was completed. The left (right) bars for
each figure are the results for the control (shift) group.

Figure 4 illustrates the average accuracy of tasks without data distribu-
tion shifting in the control and shift groups. The minor difference verifies that
OODF only affects the target task with data distribution shifting in the learning
sequence.

5.3 Continual Detrimental

Fig. 5. Comparison between joint learning and CL under the same distribution shift
with corresponding network backbone tested on SplitMNIST-10. In each figure, the
pink bar on the leftmost of each subgroup indicates training without shifts, the
green bar nearby indicates learning with shifts, and the horizontal axis listed different
learning strategies. (Color figure online)

Is the above phenomenon specific to CL? Or is it just a form of data poisoning
working for all learning systems? To answer this question, We conducted joint
learning experiments in the same setting as the above for OODF evaluation,
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including the same dataset Dtrain and network structures.

Dtrain = (
K
⋃

t=1,t�=S

Dt
train) ∪ D̂S

train (4)

In Fig. 5 we show the CL dependency of OODF by evaluating the distribution-
shifted task in two different learning paradigms. We will clarify it here using
splitMNIST-10 as an example. The task sequence for each CL method with
different network backbones (2-layer MLP for OWM and 3-layer for iCaRL,
DGR, ER as shown in Table 1) is D1

train,D2
train, · · · , D̂4

train, · · · ,D10
train. The

joint learning scenario uses the union set Dtrain = (
10
⋃

t=1,t�=4

Dt
train) ∪ D̂4

train.

Figure 5 presents the results on the testing dataset D4
test (samples without dis-

tribution shift). The control and shift groups indicate the presence or absence of
intra-class shifts in the training set, respectively. These results indicate that the
existence of a large range of shifts which is more detrimental to CL than joint
learning.

6 Analysis

6.1 Occlusion Strength

The intra-class distribution shift relies on occlusion strength ε, intra-class per-
centage r, and the number of shifted pixels. Based on the splitMNIST-10 task
and OWM algorithm in Sect. 5.1, we estimated these three factors w.r.t. test the
accuracy of the target task.

Table 5. Impact of strength: the number of shifted pixels. OWM on MNIST.

Number 1 4 9 16

Acc. 56.34% 51.90% 44.55% 39.60%

In Fig. 6a, we evaluate the final performance of digit 3, when giving different
occlusion strength levels ranging from ε = 4 to 128, listed on X-axis. We can see
that the test accuracy dropped quickly at a low ε value, ε = 16 for example. It
indicates that even an occlusion with small strength will lead to OODF. Figure 6b
shows that test accuracy stays in the plateau at a low percentage level and drops
until reaching a high level, suggesting that a high percentage level is needed to
cause significant OODF. We further report the results using numbers of shifted
pixels as different strengths in Table 5, which shows a similar trend, indicating
that the larger number of shifted pixels, the more significant of OODF.
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Fig. 6. Influences of distribution shift factors

6.2 Various Conditions of Shift

We further examined if OODF depends on specific types of distribution shifts.
To this end, we replaced the explicit distribution shift (i.e. occlusion) in Sect. 3.3
with an implicit one, i.e., adversarial samples (Fig. 2c), and kept other settings
the same. The results show a trend consistent with the occlusion condition. We
tested digit 3 at t3 and t9, it dropped from 94.28 ± 0.62% to 22.78 ± 2.47%,
compared to occlusion, 92.85 ± 0.76% to 51.90 ± 2.36%.

6.3 Shift Position in the Learning Sequence

Shift position used in results above is in the beginning of the learning sequence,
e.g. 4th of 10 in splitMNIST-10. We evaluated whether the position matters for
OODF. We have conducted the experiments on CIFAR100 by iCaRL (Table 6),
with shift task position varying (in the middle or the tail of the sequence, task
S = 50 or 90, as S = 2 was already shown in maintext). The results of the
relative accuracy drop in two groups indicate that while task location can cause
different levels of degradation due to the original CF, the OODF effect can still
induce additional forgetting based on CF.

Table 6. Effect of different shift position on OODF. Experiments on CIFAR100, K =
100 (total number of tasks), S = 2, 50, 90 (position of the shift class, starting from 1).
All results are collected over 5 independent trials.

CIFAR-100 S = 2 S = 50 S = 90

Acc. of task S at t = S (%) Control 94.6 ± 2.5 53.0 ± 3.1 36.6 ± 5.8

Shift 91.8 ± 2.8 53.2 ± 6.3 34.6 ± 1.7

Acc. of task S at t = K (%) Control 47.4 ± 11.0 31.8 ± 5.5 32.4 ± 3.1

Shift 28.0 ± 12.4 28.4 ± 3.4 29.4 ± 4.3

relative Acc. drop (%) Control 50.0 ± 10.9 40.1 ± 8.9 10.7 ± 7.1

Shift 69.2 ± 14.3 46.2 ± 7.2 15.2 ± 9.9
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6.4 Different Percentage r and Strength ε

Our aim is not to compare the vulnerability of different methods to OODF under
identical conditions. Taking the performance of OWM on the splitMNIST-10
task as an example: when ε = 64, the performance is 37.3 ± 2.4, significantly
lower than the control group 89.33± 0.67 (Table 2 and Fig. 6a). We focus on the
performance decline trends relative to each method’s own control group, rather
than specific differences between methods. Our objective is to demonstrate the
existence of intra-class distribution shifts that can influence CL algorithms to
produce OODF. Notably, these shifts do not significantly impact joint learning
scenarios, even at maximum percentage r = 90% and occlusion strength ε = 64
(Fig. 5).

6.5 Mechanism of OODF

We hypothesized that frequently occurring shifts can serve as informative fea-
tures for classification. This compromises the mechanism designed to protect
the intrinsic features for the learned class, leading to severe CF in subsequent
learning, especially when the less-protected features overlap with the features
in new classes.

Table 7. Test accuracy of the digit 3 after learning each task.

Task-ID 3 4 5 6 7 8 9

Control 99.54% 98.58% 92.40% 92.40% 92.05% 90.02% 89.34%

Shift 94.28% 88.62% 50.64% 41.21% 37.91% 24.80% 22.78%

Specifically, we take the results in Sect. 6.2 for analysis. The in-process test
accuracy of digit 3 from t0 to t9 was shown in Table 7, and the performance
drops significantly at t5 and t8. Let D3 be the distribution of clean digit 3
and D̂3 be the distribution of shifted digit 3. Assume D′

3 = D3n(D3 ∩ D̂3) and
D̂′

3 = D̂3n(D3∩D̂3). We make the following conjecture: (i) In the learning process
of the OODF scenario, the feature of D3∩D̂3 was protected. Meanwhile, features
of D̂3 overlap with that of subsequent tasks. (ii)Performance on clean 3 mainly
depends on D′

3 rather than (D3 ∩ D̂3). Taken together, OODF happens on digit
3. We show that the accuracy of digit 3 drops significantly after subsequently
learning 5 and 8.

To test the hypothesis, we constructed a 3-layer binary classification MLP
that distinguishes D3 and D̂3 as large as possible (Fig. 7. row 1, column 1). Input
any other digit through this MLP, we take R

2 output vector and construct a
feature map. Consistent with the hypothesis, we found 5 and 8 overlap more
with clean 3 than other digits (e.g. digit 7. row 1, column 2).

These results revealed why parameter-isolation-based methods are not sen-
sitive to OODF (Table 3). The feature space representations in these methods



124 L. Guo et al.

Fig. 7. Feature maps of digits.

vary from task to task, and more importantly, they are independent from each
other. In contrast, regularization-based and memory-based methods share a pub-
lic representation space for every task, which causes interference. Despite the
robustness of the parameter-isolation-based methods towards OODF, they may
be not suited to deal with a large amount of CL tasks due to the increasing struc-
tural complexity. Our results thus highlight the need to develop regularization-
based and memory-based approaches that are more robust to OODF.

Table 8. Additional rejection category for alleviating OODF. Experiments on MNIST,
K = 10 (total number of tasks), S = 2 (starting from 1)

MNIST OWM (w/o rej.) OWM (w/ rej.)

Acc. of task S at t = S (%) Control 99.54 ± 0.16 99.36 ± 0.26

Shift 92.85 ± 0.76 99.35 ± 0.21

Acc. of task S at t = K (%) Control 89.33 ± 0.67 86.31 ± 1.24

Shift 51.90 ± 2.36 85.17 ± 1.04

relative Acc. drop (%) Control 10.25 ± 0.70 13.13 ± 1.38

Shift 44.11 ± 2.42 14.27 ± 1.13

6.6 Proposal for Improving OODF

Based on the mechanism discussed in Sect. 6.5, reducing task-independent sub-
space in the feature space may help prevent OODF. We propose introducing
a rejection category to separate the classifier from CL methods. Empirically,
this approach is effective in mitigating OODF. Specifically, we add an addi-
tional neuron at the output layer, enabling an 11-way classification. Samples
like Gaussian noise are set to be the 11th class. We have finished the experi-
ments on splitMNIST-10 with OWM. Samples 4x the size of the MNIST dataset
(60k samples in MNIST training set) are generated as an independent task,
which is inserted to the beginning of the learning sequence. OWM with rejection
category (OWM w/ rej.) significantly alleviates OODF, exhibiting in the rela-
tive accuracy drop 14.27 ± 1.13 is much lower than the OWM without rejection
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44.11±2.42 (OWM w/o rej.), in Table 8. While our primary focus in this work is
to highlight the importance of OODF, we acknowledge that solving this problem
is crucial. The approach presented here is a preliminary attempt, which will be
thoroughly investigated in future.

7 Conclusion

In this work, we identify a new phenomenon of catastrophic forgetting, named
out-of-distribution forgetting, and demonstrate how it can significantly affect the
robustness of CL. Although OODF is described here in the image classification
task under the class incremental scenario, it is straightforward to extend to
other CL tasks in computer vision or natural language processing. OODF reveals
the vulnerability of current CL methods in dealing with intra-class distribution
shifts, which could be introduced intentionally or by unnoticed perturbations.
This is well-conceivable in both attacking or accidental scenarios.

More generally, our work suggests that the catastrophic forgetting problem
in CL is more complex than we previously recognized, and it is likely that other
forms of CF cannot be dealt with by the majority of current CL approaches may
exist. Thus, it is of theoretical and practical importance to investigate the issue
of CF more comprehensively, which will guide the development of more robust
CL approaches that can work in complex environments.
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Abstract. In the sphere of managing multiple, conflicting objectives
concurrently, non-dominated sorting emerges as a pivotal method guid-
ing decision-making towards optimal solutions by generating one or
more Fronts. While numerous algorithms exist for multi-objective non-
dominated sorting on static data points, there remains a scarcity of the
same on streamed or online data points. This study focuses on the critical
realm of handling real-time or online data streams to craft an algorithm
specifically tailored to manage such real-time and critical data scenarios.
Furthermore, this research not only introduces a novel algorithm that uti-
lizes a simple yet effective nested list structure mechanism to perform the
task of non-dominance sorting for streamed data but also evaluates its
performance by checking its correctness with the existing Fast Non-
dominated Sorting algorithm which is used in both Non-dominated Sort-
ing Genetic Algorithm (NSGA-III) and Non-dominated Sorting Genetic
Algorithm II (NSGA-II). The efficacy of the algorithm is also proven
by showing its applicability on numerous benchmark datasets. The pro-
posed mechanism shows complexity O(MN) in terms of space, whereas
O(MN) is the time complexity in the best-case scenario, and the worst-
case as well as average-case complexity for the same is O(MN2). Here,
M denotes the number of objective functions and N indicates the pop-
ulation size.

Keywords: NSGA-III · Fast Non-dominated Sorting · nested list
structure · NSGA-II · streamed data · online non-dominated sorting ·
non-dominated sorting for streamed data

1 Introduction

In numerous real-world decision-making scenarios, individuals and organizations
often encounter situations where multiple, often conflicting, objectives need to
be considered simultaneously. Whether in engineering, finance, logistics, or var-
ious other domains, the pursuit of optimal solutions frequently involves bal-
ancing multiple criteria. Traditional single-objective optimization approaches,
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while effective in addressing individual goals, often fall short of capturing the
complexities inherent in these multifaceted problems. Multi-objective optimiza-
tion (MOO) plays an important role in scenarios like these. NSGA-II and NSGA-
III are among the methodologies frequently applied in domains needing MOO.
Both are two-pass algorithms, commencing with the Fast Non-dominated Sort-
ing (FNDS) step, which categorizes solutions into distinct Fronts according to
their dominance relationships. Despite its simplicity and effectiveness, FNDS
faces criticism for its considerable time and space complexities. Furthermore,
existing algorithms, including FNDS, solely operate with static data points. In
our work, we aim to introduce an alternative online mechanism to address these
limitations.

1.1 Prerequisites

Requisite terminologies, definitions, and concepts are presented here.

Definition 1 (Multi-Objective Optimization Problem). In mathematical
terms, the idea of MOO can be articulated through the following formulation:

Maximize: [f1(x), f2(x), . . . , fM (x)] ,
Subject to: gj(x) ≥ 0, j = 1, 2, . . . , k,

hi(x) = 0, i = 1, 2, . . . , p.

Here, N represents the number of decision variables, denoted as a vector x =
[x1, x2, . . . , xN ]. These variables must satisfy a set of k inequality constraints
and p equality constraints. Simultaneously, the objective is to maximize a vector
of M objective functions, where each element corresponds to a distinct objec-
tive function. These objective functions act as mathematical representations of
diverse, and potentially conflicting, performance criteria. Consequently, the con-
cept of “optimization” in this context involves discovering a solution that offers
acceptable values for all objective functions, as determined by the decision maker
[3].1

Definition 2 (Decision Variable). The decision variables in an optimization
problem are numerical values chosen for the purpose of optimization. These val-
ues are represented as xi, where i = 1, 2, . . . , N . The vector x, consisting of N
decision variables, is expressed as follows: x = [x1, x2, . . . , xN ]T [3].

Definition 3 (Objective Function) . Objective functions are mathematical
expressions that evaluate the performance of a solution based on the values of deci-
sion variables. These functions are essential for assessing the quality of a solution
and can be mathematically represented as f(x) = [f1(x), f2(x), . . . , fM (x)]T . In
this representation, M denotes the number of objective functions, and for MOO
Problems (MOOPs), it holds that M ≥ 2 [5].

1 The terms objective space data points and elements have been used interchangeably.



130 A. Mukherjee et al.

Definition 4 (Dominance Relation). A solution within the decision space,
represented by the vector S1 that includes decision variables, is deemed to dom-
inate another solution S2 (indicated as “S1 � S2”) when it fulfils these two
conditions: (1) S1 is not worse than S2 for any objective function. (2) S1 out-
performs S2 for at least one objective function [3].

Definition 5 (Non-dominance Relation). Two arbitrary solutions, denoted
as S1 and S2 within a decision space, are considered to be in a non-dominance
or indifference relation, symbolized by “S1 ∼ S2,” if neither S1 dominates S2

(expressed as S1 � S2) nor does S2 dominate S1 (indicated by S2 � S1) [5]. In
this text, non-dominance and indifference are used interchangeably.

Definition 6 (Pareto Optimal Set). Pareto optimality is achieved by a solu-
tion when no other solution can improve one objective without worsening another.
The set containing all Pareto optimal solutions is called the “Pareto optimal set,”
and the corresponding points in the objective space form the “Pareto Front” [5].

1.2 Literature Survey

Numerous established algorithms are available for conducting non-dominated
sorting. Table 1 showcases several significant algorithms designed for this pur-
pose. It is worth mentioning that the TNS method introduced by Jensen is
applicable solely to scenarios with two objective functions. Likewise, the ENLU
technique proposed by Li et al. accounts for trivial cases when assessing the
best-case scenario.

1.3 Gap Identification and Motivation

In Subsect. 1.2, diverse non-dominated sorting approaches were explored,
each with unique methodologies. However, existing algorithms primarily focus
on static data, neglecting strategies to tackle the streamed data scenarios.
Static data remains constant once captured, serving as a stable reference point
acquired at defined timestamps. Streamed data, on the contrary, continuously
transmits dynamic information in real-time without having any predefined end-
point, necessitating immediate processing for instant analysis. We suggest a
straightforward yet effective mechanism using a nested list structure to address
challenges posed by streamed data. It is important to note that, while existing
state-of-the-art algorithms may perform efficiently on static data, none currently
address streamed data. The ability to work with streamed data is crucial due
to its relevance in real-life applications. We evaluated its performance on bench-
mark datasets to demonstrate its proficiency in analyzing such data.

1.4 Salient Points of the Proposed Approach

The proposed mechanism, which utilizes a nested linked list structure for per-
forming the non-dominated sorting on the MOO framework, shows the following
salient points.
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Table 1. Various non-dominated sorting algorithms and their complexities.

Approach Year Time Complexity Space

Best-case Worst-case Complexity

NDS by 1994 O(MN2) O(MN3) O(N)

Srinivas et al. [21]

FNDS by 2002 O(MN2) O(MN2) O(N2)

Deb et al. [4]

TNS by Jensen [12] 2003 O(N logM−1 N) O(N logM−1 N) O(MN) [18]

ND rank Sort 2005 O(MN2) O(MN2) O(N)

by Deb et al. [7]

D&C approach 2008 O(MN log N) O(MN2) O(MN) [18]

by Fang et al. [9]

Principle of Arena 2008 O(MN
√

N) O(MN2) Unspecified

by Tang et al. [22]

Deductive Sort by 2012 O(MN
√

N) O(MN2) O(N)

McClymont et al. [17]

Corner Sort 2013 O(MN
√

N) O(MN2) O(N)

by Wang et al. [23]

Generalized TNS 2013 O(N logM−1 N) O(MN2) O(MN)

by Fortin et al. [10]

ENS-SS 2015 O(MN
√

N) O(MN2) O(1)

by Zhang et al. [25]

ENS-BS 2015 O(MN log N) O(MN2) O(1)

by Zhang et al. [25]

M-Front 2015 O(MN) O(MN2) Unspecified

by Drozdik et al. [8]

BOS by Roy et al. [20] 2016 O(MN log N) O(MN2) O(MN)

AENS 2016 O(N
√

N) O(N2) Unspecified

by Zhang et al. [27]

ENLU by Li et al. [13] 2016 O(M) O(MN2) Unspecified

HNDS by 2017 O(MN
√

N) O(MN2) O(N)

Bao et al. [1]

TENS 2017 O(MN log N/ log M) O(MN2) [18] O(N)

by Zhang et al. [26]

DDA-NS 2017 O(MN log N) O(MN2) O(N2)

by Zhou et al. [29]

ENS-NDT by 2018 MN log N , if M > log N O(MN2) O(N log N)

Gustavsson et al. [11] N log2 N , otherwise

MN-DS 2018 O(N log N) O(MN2) O(N2)

by Moreno et al. [19]

D&C approach 2019 O(N log N + MN) O(MN2) O(N)

by Mishra et al. [18]

SETNDS by 2020 O(MN log N) O(MN2) O(MN)

Xue et al. [24]

RO by 2022 O(MN log N) O(MN2) O(N)

Burlacu et al. [2]

RS by 2022 O(MN log N) O(MN2) O(N2)

Burlacu et al. [2]

PNDS 2023 O(MN2) O(MN2) Unspecified

by Mandal et al. [15]

Proposed 2024 O(MN), for a large N O(MN2) O(MN)

mechanism O(M), if N = 2

O(1), if N = 1
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1. It accurately and comprehensively generates Fronts for any number of objec-
tive functions and any values of the objective space points.

2. Additionally, it adeptly handles streamed data.
3. Despite processing streamed data in a sequential manner, the mechanism

remains unaffected in its ultimate generation of Fronts. In other words, the
mechanism is independent of the order in which data points arrive.

4. O(MN) is the best-case time complexity for the mechanism, which is at par
with the best available time complexity in the literature for the best-case
scenario, while O(MN2) is the time complexity in the case of the worst-case
scenario, which is not worse than the existing algorithms.

5. O(MN) is the space complexity for the nested list structure mechanism.

1.5 Organization of the Paper

The paper is organized into four main sections. Introduction, Sect. 1, covers pre-
liminary terminologies, a literature review, subsection on identifying gaps and
motivation, and salient points of the present endeavour. Section 2 outlines the
algorithm of the proposed methodology, its operational procedure, and speci-
fications of the benchmark datasets used. In Sect. 3, the results derived from
the suggested approach for different benchmark datasets along with the time
and space complexity analyses of the mechanism are demonstrated. Here, the
correctness and completeness of the method are also presented. Finally, Sect. 4
offers the conclusion of the present endeavour.

2 A Nested List Structure for Non-dominated Sorting
of Streamed Data Elements

In this section, a comprehensive algorithm for the non-dominated sorting of
streamed data points is presented. The algorithm’s functioning is thoroughly
discussed, employing a detailed case diagram to illustrate its operation. Addi-
tionally, information regarding the datasets employed to validate the proposed
methodology is also provided.
Algorithms of the Proposed Approach and Their Description. The steps
outlined in Algorithm 2 detail the comprehensive procedure employed to exe-
cute non-dominated sorting for streamed data utilizing a nested linked list struc-
ture. This process is facilitated with the assistance of the sub-function CHECK as
presented in Algorithm 1. Algorithm 1 determines whether one objective point
dominates another, as per Definition 4. Mathematically, consider the vector,
which is nothing but an objective space point that is not yet placed in any
front, “incoming element = (a1, a2, . . . , aM ),” where M represents the number of
objective functions. Similarly, let “current Front = (b1, b2, . . . , bM )” be another
vector of the same size. The “incoming element” dominates “current Front”
(denoted as “incoming element � current Front”) if ∀i, 1 ≤ i ≤ M,ai ≥ bi,
and ∃i, 1 ≤ i ≤ M,ai > bi. Without loss of generality, all objective functions are
assumed to be maximized simultaneously. To illustrate the concept of dominance
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with a simple example: let incoming element = (2, 4, 6, 8) and current Front =
(1, 3, 5, 8), where M = 4. It is clear that incoming element � current Front
because, for every objective function, the values of incoming element are greater
than or equal to those of current Front, and there is at least one objec-
tive function where the value of incoming element is better than that of
current Front. In another example, current Front � incoming element, where
current Front = (20, 10, 80, 60), and incoming element = (18, 8, 6, 40). Simi-
larly, two vectors or objective space points are considered to be in an indif-
ferent or non-dominance relationship if neither vector dominates the other. A
simple example can illustrate this concept. Let incoming element = (2, 4, 6, 8)
and current Front = (1, 5, 7, 10). In this case, neither vector meets the conditions
required to dominate the other, so they maintain indifferent or non-dominance
relationship. So, there are three possible outcomes for the function CHECK:
either incoming element � current Front, or current Front � incoming element,
or both vectors are in an indifferent relationship. Algorithm 2 demonstrates
the entire process of the proposed mechanism. This mechanism processes each
objective space point sequentially, equipping it to handle streamed data. Until
the incoming element finds its appropriate Front, all other points are temporarily
held in a queue or file structure. Algorithm 3 serves as the driver algorithm for
Algorithm 2. Initially, the first point creates its own Front if no other points or
Fronts exist, as depicted in steps 4 to 6 of Algorithm 2 and shown in Fig. 1 as
Case − 1. If at least one Front exists, the incoming element checks its dom-
inance relation with all existing Front elements, starting from Front 1 (the
best Front in the structure) to Front K (the worst Front, where K > 1, at the
end of the nested linked structure). This process occurs within the while loop
in step 7 of Algorithm 2. The CHECK function, used for dominance checks,
can yield four following cases. Figure 1 illustrates Case − 2, where the incom-
ing element is indifferent to all elements in the existing Fronts and thus joins
that Front, avoiding further searches for its position. In Algorithm 2, the vari-
able “num check” facilitates this task. When the CHECK function returns 1
(decider = 1) for each comparison between the incoming element and the cur-
rent Front elements, “num check” increments by one. If “num check” equals
the number of elements in the current Front, indicating indifference with all
existing elements, the incoming element is placed in that Front (steps 8 to 12
and 23 to 26 of Algorithm 2). If the value of the variable decider equals 2,
the incoming element is dominated by at least one current Front element, pre-
venting it from joining that Front. It then checks the next Front and continues
recursively until it either finds the appropriate position or a new Front is created
at the end for the element, as depicted in Fig. 1 as Case− 5 (steps 13 to 17 and
40 to 44 of Algorithm 2). Steps 18 to 21 and 27 to 33 of Algorithm 2 represent
Case − 4 in Fig. 1, where the incoming element dominates some current Front
elements. These dominated elements are removed from the Front and placed in
a queue named “homeless.” After the incoming element’s relation with all cur-
rent Front elements is assessed, it joins the current Front, and the elements in
“homeless” are reassessed for their respective Front positions before processing
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subsequent incoming elements. Finally, if the incoming element dominates all
current Front elements, a new Front is created before the current Front, and the
incoming element is inserted into the new Front, updating the rest of the Front
numbers accordingly. This scenario is depicted in Fig. 1 as Case− 3. Steps 18 to
21 and 34 to 37 of Algorithm 2 illustrate this using the variable “add self .” It is
important to note that Cases− 1 through Cases− 5 cover all possible scenarios
for this mechanism. The implemented code along with the dataset for the same
is provided in the footnote as a link.2

Algorithm 1. Dominance Check
1: function Check(incoming element, current Front element)
2: less than current Front ←

all(x < y for x, y in zip(incoming element, current Front element))
3: greater than current Front ←

all(x > y for x, y in zip(incoming element, current Front element))
4: if less than current Front then
5: return 2 � “incoming element is dominated by current Front element”
6: else if greater than current Front then
7: return 0 � “incoming element dominates current Front element”
8: else
9: return 1 � “incoming element shows indifference with

current Front element”
10: end if
11: end function

2.1 Benchmark Data-Set Specification

Below are the utilized benchmark datasets along with their particulars.

1. Zitzler-Deb-Thiele-1 (ZDT-1) Dataset: ZDT-1 requires two objective
functions to be minimized which is translated to maximization problem for the
convenience of the utilization of the proposed mechanism. For the validation
of the mechanism, two different samples are taken of size 500 solutions and
1000 solutions. The details of the dataset can be found here [15,30].

2. Leading Ones and Trailing Zeros (LOTZ) and OneMinMax
Datasets: LOTZ and OneMinMax benchmark are two-objective maximiza-
tion type optimization functions. The sample size for the OneMinMax bench-
mark is taken as 128 whereas the LOTZ dataset features a sample size of
256 data points. The details of the benchmark functions can be found here
[15,28].

3. A Real Life Application Oriented Problem of Vehicle Crashworthi-
ness: This benchmark, based on real-life applications, focuses on optimizing

2 Click here to find the implemented code.

https://colab.research.google.com/drive/1kAHpwAhUrBMXEvruumhgfbQZk14wPW8I?usp=sharing
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Algorithm 2. A nested list structure (NLS) based non-dominated sorting algo-
rithm for streamed data elements in a MOO framework

Input: Objective space point “incoming element” one at a time from a stream
or a file.

Output: Non-overlapping Fronts

1: function NLS(incoming element)

2: count front = 0

3: add self = 0 � Holds the information whether there are any elements in the queue or
not

4: if fronts == 0 then � “fronts” holds the number of fronts in any instant
5: INSERT a new front and add incoming element in the front;

6: end if
7: while fronts do

8: num check = 0 � Holds the information for non-dominance relation of two
elements

9: for i ← 0 to length(current front) do

10: decider = CHECK(incoming element, current front[i])

11: if decider == 1 then � If it shows indifference for all the current front
elements

12: num check = num check + 1
13: else if decider == 2 then � If it gets dominated by any of the current front

elements

14: if no next Front is found then
15: INSERT a new Front and ADD incoming element to the Front.

16: end if
17: count front+ = 1 � Go to the next Front

18: else � When the incoming element dominates some or all the elements of the
current Front

19: add self+ = 1
20: ADD the current dominated elements in a queue “homeless”

21: end if
22: end for
23: if num check == length(current front) then

24: ADD the incoming element to the current front
25: return
26: end if

27: if add self < length(current front) then
28: DELETE the dominated elements from the current front

29: while homeless �= EMPTY do
30: element = dequeue(homeless)
31: NLS(element)

32: return
33: end while

34: else if add self == length(current front) then
35: INSERT a new front before current front
36: ADD incoming element in the new front
37: end if

38: fronts ← fronts.next � Go to the next Front. Loop controller updation.
39: end while

40: if count front = length(fronts) then
41: � If the incoming element doesn’t fit even in the last existing Front

42: CREATE a new Front at the end of all the fronts

43: ADD incoming element to this front

44: end if
45: end function
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Fig. 1. Process and different cases for the proposed approach using a nested list struc-
ture to handle stream data.
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Algorithm 3. Driver algorithm for NLS
1: dSize = 0
2: while True — dSize == N do � N: Size of the population
3: NLS(incoming element) � incoming element: Objective space points
4: dSize+ = 1
5: end while

safety levels in the event of a crash. The problem includes five decision vari-
ables, and three objectives with zero constraints [14,16]. The sample size for
the same is considered as 54 in this endeavour.

4. Dataset of Deb-Thiele-Laumanns-Zitzler-1 (DTLZ-1): DTLZ-1
engages decision variables of n numbers and can have varying objective func-
tions whose details can be found here [6]. For verifying the proposed mecha-
nism two different samples are considered, the first one has a sample size of 50
with 2 objective functions of maximization type. The second sample consists
of a sample size of 500 with 5 objective functions of maximization type.

3 Result and Discussion

Following the implementation of the proposed method across various benchmark
datasets, the outcomes achieved are at par with those obtained through the
FNDS of NSGA-III and NSGA-II. This suggests that the proposed approach
can effectively substitute the FNDS component in NSGA-III and NSGA-II or
in that matter wherever non-dominated sorting is required, primarily due to its
capability to manage streamed data, a feature lacking in other state-of-the-art
algorithms. Figure 2 demonstrates the number of Fronts generated after applying
the proposed approach on the “DTLZ-1” dataset. For its first sample of size 50
with the number of objective functions being 2, 19 Fronts, each having a different
number of solutions are generated, which is similar to the FNDS mechanism for
the same sample configuration. The second sample of the “DTLZ-1” dataset
features 500 solutions with 5 objective functions of maximization type. For this
sample, the count of generated Fronts is 26 as denoted in Fig. 3, this is at par with
the FNDS mechanism for the same sample configuration. Figure 4 displays the
results obtained from the “LOTZ” dataset, comprising a sample size of 256 and
2 objective functions. The number of Fronts generated and each element residing
in different Fronts match the FNDS mechanism with the proposed method. The
same thing goes for the “Vehicle Crashworthiness” dataset with a sample size of
54 and the number of objective functions being 3. Here, the number of Fronts
generated for both FNDS and the proposed approach is 16 with every Front
holding exactly the same solutions for both mechanisms. Figure 4 represents
the same. The proposed method has also been tested on additional benchmark
datasets, namely, “ZDT-1” and “OneMinmax”. For the “ZDT-1” dataset, two
separate samples of sizes 500 and 1000, each with two objective functions, were
utilized. In both cases, only one Front was generated, housing all solutions, which



138 A. Mukherjee et al.

aligns with the outcomes observed with the FNDS mechanism. Similarly, for the
“Oneminmax” dataset, only one Front was generated, encompassing all solutions
for a sample size of 128.

Fig. 2. Count of generated Fronts and count of objective space points in each Front,
after utilizing the linked list structure approach and the FNDS for the DTLZ-1 dataset
of sample size 50 and number of objective functions being 2.

3.1 Complexity Analysis

After thoroughly analyzing all the comprehensive scenarios illustrated in Fig. 1,
it has been determined that the proposed algorithm exhibits an average and
worst-case time complexity of O(MN2), while in the best-case scenario, the time
complexity is O(MN). In addition, its space complexity is O(MN). Regarding
complexity, it is clear that our approach demonstrates superior performance
compared to the efficient existing algorithms, ENS-SS and ENS-BS, specially in
the best-case scenario. While our method matches the best-case scenario of the
M-Front approach, it surpasses the method in terms of space complexity.

Analysis of Time Complexity in the Best-Case Scenario. The best-case
scenario for the proposed nested list mechanism arises in two specific situa-
tions. Firstly, it occurs when all incoming elements exclusively exhibit Case− 2
behaviour, as illustrated in Fig. 1. This indicates that all incoming elements only
display indifference to each other, resulting in the generation of only one Front
for every other point in the objective space. In this scenario, the time complex-
ity is O(MN). Secondly, the best-case scenario also arises when the (N + 1)th

element arrives, and there are either N existing Fronts or nearly N existing
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Fig. 3. Count of generated Fronts and count of objective space points in each Front,
after utilizing the linked list structure approach and the FNDS for the DTLZ-1 dataset
of sample size 500 and number of objective functions being 5.

Fronts, and the incoming element is dominated by the first or, in the case of
exactly N existing Fronts, by the only existing elements in the Fronts. This sce-
nario of checking dominance relation with the only Front element requires O(M)
time. The overall time complexity in this case remains O(MN). Therefore, the
proposed mechanism demonstrates a time complexity of O(MN) in the best-
case scenario. However, there are other trivial cases, when N = 2, only one M
comparison is required which is nothing but the complexity of O(M), and when
N = 1, the complexity becomes O(1), as depicted in Case − 1 in Fig. 1.

Analysis of Time Complexity in the Worst-Case And Average-Case
Scenario. The worst-case and the average-case time complexities coincide in
the proposed methodology. In the context of Case − 1 depicted in Fig. 1, where
the incoming element itself forms a new Front and resides there, it is evident
that the time complexity for this scenario is O(1). Similarly, in Case − 2 of
Fig. 1, where the incoming element exhibits indifference with all the existing
elements in a specific Front comprising, say, N elements, the maximum time
complexity is O(MN). Moving on to Case − 3 of Fig. 1, if we consider the
worst-case scenario, where the incoming element dominates all the elements in
a particular Front, there could be N elements already present in that Front,
all of which are dominated by the incoming element. In this scenario, all the
dominated elements are placed in a queue, requiring O(N) time complexity, as
N elements are being queued. Additionally, since the incoming element checks
for dominance with all N elements in the Front, it necessitates O(MN) time
complexity. Moreover, when the displaced N elements, kept in the queue, form a
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Fig. 4. Count of generated Fronts and count of objective space points in each Front,
after utilizing the linked list structure approach and the FNDS for the LOTZ dataset
of sample size 256 and number of objective functions being 2.

new Front immediately after their previous one, it results in a time complexity of

M(1 + 2 + 3 + 4 + . . . + N) =
MN(N + 1)

2
≡ O(MN2).

The same logic applies to Case − 4 demonstrated in Fig. 1, where the incoming
element can dominate all but the last element in a Front of N elements, resulting
in a time complexity of O(MN2). Finally, for Case − 5 in Fig. 1, the required
time complexity is O(MN). So to sum up, the time complexity of the proposed
mechanism in the worst-case scenario is

(O(1) + O(MN) + O(MN2) + O(MN) ≡ O(MN2).

Space Complexity Analysis. The mechanism employs a nested linked list
structure and a queue to store displaced dominated objective space points, which
are then assigned to their respective Front(s). Thus, if N points are contained
within a single Front, O(MN) is the space complexity. Similarly, suppose there
is more than one Front, each containing a different number of elements even
when some element is displaced to the queue. In that case, the total space com-
plexity remains O(MN), as the sum of the number of elements across all Fronts,
including the queue, is nothing but N .

3.2 Correctness and Completeness

In addition to effectively handling the streamed data points in the objective
space, the suggested mechanism can generate Fronts at par with the FNDS,
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Fig. 5. Count of generated Fronts and count of objective space points in each Front,
after utilizing the linked list structure approach and the FNDS for the Vehicle Crash-
worthiness problem of sample size 54 and number of objective functions being 3.

as previously discussed, suggesting its correctness. Moreover, the mechanism is
not restricted to predefined or limited numbers of objective functions; it can
accurately operate with any number of objective functions. Another noteworthy
aspect of the proposed approach is its ability to handle identical data points
without issues. Each incoming element is placed into a distinct Front in a non-
overlapping manner, highlighting the robustness of the mechanism.

4 Conclusion

The content outlined in this article introduces a novel, accurate, comprehensive,
and simple approach for handling streamed data points within a multi-objective
framework. This methodology, with minimal representation in current litera-
ture, proves to be both straightforward and impactful for performing the non-
dominated sorting of streamed data points with space complexity being O(MN),
since it is not possible to work without holding all the N number of data points.
In the best-case scenario, it shows great promise with a complexity of O(MN),
this is at par with the best best-case complexity in literature, since Li et al.
consider trivial cases for its computation, while for the worst-case scenario, it
shows a complexity of O(MN2) which is not worse than the existing state-of-
the-art mechanisms. In the average case scenario, O(MN2) is the complexity.
While our research group is actively investigating various methods to address
the challenge of non-dominated sorting for streamed data points, the approach
presented here, employing a linear structure, is one such promising mechanism.
Despite its promise, computationally, it is incapable of outperforming the exist-
ing algorithms in the worst-case scenario, though the existing algorithms work
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only for static data points. We aim to delve deeper and explore additional avenues
to enhance the computational efficiency in the worst case of the proposed mech-
anism.
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César D. Parga1(B) , Xosé M. Pardo1 , and Carlos V. Regueiro2

1 Centro Singular de Investigación en Tecnolox́ıas Intelixentes (CiTIUS),
Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain

{cesardiaz.parga,xose.pardo}@usc.es
2 CITIC, Computer Architecture Group, Universidade da Coruña,

15071 A Coruña, Spain
carlos.vazquez.regueiro@udc.es

Abstract. Intelligent agents must strive to (re)map the constantly
changing environment in which they operate, in order to remain adaptive
and efficient. In open-world recognition (OWR) a system has to: detect
new emerging categories, recognize new instances of known categories,
and continually update knowledge based on the data streams it receives,
mostly unannotated. In this work, we propose a hybrid method to deal
with OWR that combines deep feature embeddings with dynamic ensem-
ble methods for a continuous reshaping of boundaries in feature space.
Our approach is flexible to update to patterns in the border of what is
already known (concept-drift), detect and create models for new cate-
gories, recover from mistakes, and mitigate catastrophic forgetting, even
in semi-supervised contexts. As an application use case, we have consid-
ered the problem of semi-supervised video face recognition, where the
spatial-temporal coherence is harnessed to augment data. Our exper-
iments shown that the system responds adequately to the unknowns,
adding models for new identities, and improving its performance.

Keywords: Ensemble learning · Incremental Learning · Open-World ·
Instance Recognition

1 Introduction

With the general technological advancement, more and more robust models are
being designed to operate out of the lab in real-world conditions. In these set-
tings, it is quite often unrealistic to assume the availability of large, unbiased,
domain-specific datasets of annotated samples before the start of training.

In general real contexts, data are received in streams, at variable pace, and
their distribution, as the environment conditions, are non-stationary [26]. More-
over, if data are unlabeled, the challenge is to distinguish between data drifts
and samples belonging to new categories. Usually, collecting a labeled dataset
from stream data is expensive. This more general setting is known as open-world
recognition (OWR) [7].
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Fig. 1. In open world recognition, an agent must detect new categories (letters F, R
and J in toy example) while being able to maintain, or even improve, the recognition
capability on the already known ones (letters A, I, B and P).

Data streams usually contain samples belonging to already known
classes/instances but also samples of unknown ones. A query detected as
unknown should be treated as a known from that point forward. This OWR
scenario contrasts with the ones of closed-set and open-set [7] (Fig. 1).

Video surveillance offers a genuine context for OWR, because of the continu-
ous appearance of new individuals (known and unknown) at different times, with
streams of data captured in non-stationary conditions. Besides, by taking advan-
tage of spatial-temporal continuity in video sequences, it is possible to mitigate
the paucity of annotated data by performing a kind of data augmentation.

In incremental learning models, the mains concern is the loss of knowledge
during adaptation to changes in data distributions. They tend to overfit to the
new incoming data, rather than gaining in generalization. We propose a new
approach based on a set of dynamic ensembles, where base classifiers are joined
as ensemble members to enhance its recognition accuracy. Dynamically mod-
eling the frontiers of short clusters of representative samples allows identifying
unknown identities and enrolling them (initialization of a new ensemble), with-
out assumptions on data distributions.

Our method allows the adaptation to new knowledge, dealing with prob-
lems such as catastrophic forgetting or erroneous updates. In this work we deal
with semi-supervised learning where a system is feed with few labeled data, and
its predictions on queries are used as pseudo-labels in the incremental learning
process. The contributions of this paper can be summarized in:

– A semi-supervised incremental learning approach designed for instance learn-
ing in open-world operation with video sequences.

– A method based on dynamic ensembles and the theory of extreme values to
distinguish between concept-drift occurrence and unknown detection.
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– A strategy to continuously remap the feature space by refining the frontiers
of the already known and including new boundaries upper the detection of
unknowns.

The rest of the paper is organized as follows. First, we survey the related work
and describe our approach. Finally, we present results and main conclusions.

2 Related Work

Incremental Learning (IL). IL is the ability of a model to gradually learn
from new examples without resorting to a complete retraining, while preserving
previous knowledge [38,40]. IL tackles the problem of changing environments
[36], and includes instance-IL [3], attribute-IL [13], class-IL [25,27], and task-
IL [9]. In the realm of artificial neural networks, different strategies have been
proposed to mitigate the (catastrophic) forgetting of previous knowledge [10,33]:
1) regularization schemes [2]; 2) parameter isolation methods [18,32], and 3)
replay or memory based mechanisms [1,17].
Stream Learning. Within continual learning, there are two major paradigms:
incremental batch learning, and stream learning [33]. Static approaches make
use of large datasets divided into batches for offline training. Usually they can
be easily adapted to operate in the incremental batch learning regime [22,34],
where mini batches are accumulated during system operation for future retrain-
ing cycles. Stream learning [16] takes incremental batch learning a step further:
the batch size is equal to one, and phases of training and operation are inter-
twined to make use of new data as quickly as possible. This paradigm can be
used in supervised, semi-supervised and unsupervised modes.

In semi-supervised learning, only a small amount of labeled data are available.
SAND [15] uses a semi-supervised ensemble classifier and detects concept drift
on classifier confidence estimates. SENCForest [31] uses a unique ensemble of
multiclass isolation trees as a detector of unknown classes.

In unsupervised learning, all data are unlabeled, so common approaches are
based on clustering. References about deep networks that deal with unlabeled
data are scarce [24]. The most common mechanisms to deal with stream classi-
fiers are Decision Trees [29] and ensemble methods [35].
Open World Recognition (OWR). A related problem to OWR is the incre-
mental learning of new emerging classes, which allow including new classes
dynamically, but it is based on the implicit or explicit knowledge of their data
labels [8,39]. In OWR, streams of samples of different unknown categories can be
interleaved, so they are usually clustered before modeling of new categories can
take place, and the risk of pooling failures must be managed. Nearest Neighbor
based classifiers can be adapted to the OWR context as they are not based on
training, but they assume specific data distributions. Clustering methods often
assume that the cluster centers remain stable and that the clusters are balanced
in size, however some alternatives have been proposed that are amenable to the
OWR context. In [21], a contrastive clustering for samples of unknown cate-
gories is based on their structural sparsity. A hierarchical agglomerative method
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(Finch) for the non-parametric clustering within the unknown category pool was
proposed in [20]. In [4], a dynamic Gaussian mixture model (GMM) was proposed
to continuously update the mean and covariance of each category (the method
is easily adaptable to OWR). CBCL [5] uses a pretrained CNN to generate fea-
ture embeddings, and a centroid-based concept learning. Since class centroids
are independent of each other, the decrease in overall classification accuracy
is not catastrophic when new classes are learned. In CBCL-PR [6] each class
is represented by a GMM, and a pseudo-rehearsal mechanism is introduced to
drawn pseudo-exemplars, which mixed with the real feature vectors of the new
classes, are used to retrain a linear classifier in each increment. Alternatively,
EVM models are also adaptable to the OWR context (iEVM [23], FMEVM [20]).

In contrast to aforementioned methods, our model uses a dynamic set of
ensembles to facilitate the acquisition of new categories and the improvement of
existing ones. Besides, any prior assumption was not made about identities or
data probability distribution. Finally, it learns on-the-job and does not have a
differentiated learning and testing phase.

3 Dynamic Ensembles for OWR

Our proposal is based on a combination of known and novel techniques. It con-
sists of a dynamic set of ensembles (one per identity) where base classifiers are
joined/replaced to upgrade models of specific identities without interfering with
each other. Ensembles isolate updates, and make changes reversible, thus cir-
cumventing the catastrophic forgetting problem. Our method is initiated with
video sub-sequences of a few identities as the only semi-supervision. It makes
use of the theory of extreme values (EVT) to distinguish between a concept-drift
and the emergence of a new category.

Our approach to OWR in video surveillance (Fig. 2) allows the adaptation
to changes in appearance of identities due to endogenous or exogenous factors.
The system consists of a hybrid architecture, with an embedding module ε(·),
based on deep neural networks, and a classification module based on ensembles
which base classifiers are exemplars of SVM (e-SVM).

Our proposal takes advantage of transfer learning from large labeled datasets
to get feature embeddings that feed the instance-incremental learning layers. Fea-
tures embeddings are provided by the last pair of convolutional and batch nor-
malization layers of the frozen ResNet100-ArcFace (RN100-AF) network trained
on MS1MV2 dataset [11]. This encoding transforms face crops into 512-D vector.

Learning is semi-supervised, in the sense that true labels are only provided to
create the initial base classifier for each of a small number of ensembles (known
identities). Initially known, and new identities are modeled by dynamic ensem-
bles (Fig. 2). Each classifier is trained using specific exemplar views of an identity.
An ensemble is updated whenever a concept-drift is detected (Ensemble Decision
Module). When query embeddings are close to boundaries defined by the ensem-
ble with the highest score, a decision about concept-drift/unknown is done. If
drift is detected, a few frame embeddings of the subsequence are selected to train
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Fig. 2. Sequence feature embeddings are presented to the Ensemble Decision Mod-
ule. The most probable identity is assigned based on ensemble scores. If confidence is
below a threshold, it must be decided whether a drift has occurred or the identity is
unknown. In case of drift, a new e-SVM is built (Update Module) and added to the
corresponding ensemble. An old classifier could be replaced depending on the availabil-
ity of computer resources (Limit Module). If the identity is unknown, a new ensemble
is initiated (Generation Ensemble Module).

a new base classifier. When the identity is detected as unknown, a new ensemble
is initiated with one base classifier [28].

The key of the learning is to update to patterns in the border of what is
already known, and initiate a new ensemble when a query has been detected as
unknown. Ensembles endow the system with flexibility to recover from mistakes
and to mitigate catastrophic forgetting. However, to account for memory usage
concerns, the number of base classifiers must be limited, which leads to forgetting
some of the previous knowledge during replacements.

3.1 Ensemble Decision Module

Ensemble decisions are based on the normalized scores provided by base clas-
sifiers, e-SVMS in our implementation (Ensemble Decision Module in Fig. 2).
Both feature embeddings and classifier outputs are normalized in our method.
Each feature embedding xi is divided by its L2 norm to give a normalized rep-
resentation si, while the output of each linear e-SVM classifiers yj(si) is also
normalize to give values in range [−1, 1].

The decision at ensemble level, ye(si), is computed as the median of the
scores provided by e-SVMs, which is equivalent to a majority voting decision:

ye(si) = median(y0
e(si), y1

e(si), . . . , yz−1
e (si)) (1)

The sequence score at ensemble Ee level, Ye, is computed based on the median
of the frames’ scores. We take advantage of the temporal coherence assumption
to assign a unique identity to the whole input sequence.

Ye = Ee(S) = median(ye(s0), ye(s − 1), . . . , ye(sL−1)) (2)
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Algorithm 1. Ensemble Decision.
Input: S = {s0, s1, . . . , sL−1} query sequence embeddings
Y = E(S) = {Y0, Y1, ..., YL−1} query sequence scores
Parameters: Tw Weibull threshold
E = {E0, E1, ..., EM−1} current set of ensembles
Output: ID inferred identity

1: ym = min(Y )
2: if ym < Ts then
3: ID = arg(ym)
4: else
5: m = median(Y \{ym})
6: V = {(m − x) | x ∈ (Y \{ym}) ∧ (x < m))}
7: Fit V to a Weibull function W
8: if W (m − ym) < TW then
9: ID = arg(ym)

10: else
11: ID = M (unknown)
12: end if
13: end if
14: return ID

The use of median function is more robust than made decisions under a
subset of maximum or minimum values, due to the function is not sensible to
outliers as the maximum or minimum could be in a context of larger sequences.

The ensemble scores, Y, is the vector with the responses provided by all the
current M ensembles for the same sequence S:

Y = {Ye}M−1
e=0 (3)

The decision at supra-ensemble level determines the identity of the video-
sequence based on Y. The strategy followed in this case is two-folded. First, to
be recognized as a known identity, the minimum ym of all scores Y for the query
sequence needs to be below a threshold Ts. Otherwise, a check has to be done
to distinguish between a concept-drift or an unknown identity.

Concept-Drift or Unknown. To tackle this problem, a decision mechanism
was implemented based on EVT, which has been widely used for reliability
applications, as well as outlier detection.

As any input sequence belongs to a unique identity, the ensembles associ-
ated with other identities should deliver non-match outputs. According to the
Fisher-Tippet-Gnedenko Theorem of EVT, for the case of left-bounded positive
samples, the distribution of the extreme values is given by the Weibull distribu-
tion [28]:

W (x;μ, α, β) =
α

β

(
x − μ

β

)α−1

e−( x−μ
β )α

, (4)
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Algorithm 2. Generation of a New Ensemble.
Input: S = {s0, s1, ..., sL−1} current query embeddings
Parameters: E = {E0, E1, . . . , EM−1} set of ensembles
N = {n0, n1, ..., nQ−1} pool of negative sample embeddings
positive ⊂ S set of positive sample embeddings

1: w0 ←− e-SVM training using positive as positive samples and 100 random negative
samples from N

2: Em = {w0} new generated ensemble
3: E = E ∪ Em

where μ ∈ �, α ∈ � and β ∈ � are locations, shape, and scale parameters.
To avoid the problem of dealing with negative values of scores, we perform the
variable change x̂ = m − x, being m the median of all scores except ym, and
discarding negative values (the furthest from the tail of the distribution).

Analyzing all the ensembles’ scores, an unknown identity can be detected
following Algorithm 1. To apply this method we need to initiate the system
with at least 10 known identities, since at least 5 values are needed to fit the
parameters of a Weibull distribution, and we consider half of them, the closest to
ym. A threshold TW is used to distinguish between concept-drift of the known
(argc(ym)) and the unknown. This way, score ym can be checked whether it
comes from the Weibull extreme value distribution or not. It is important to note
that Tw, together with Ts, are the only hyperparameters used by our model.

3.2 Generation Ensemble Module

Once an unknown is detected, the Generation Ensemble Module (Fig. 2) creates
a new ensemble for this new identity. The new ensemble is initiated with a single
base classifier (e-SVM), following the procedure described in Algorithm 2.

3.3 Update and Limit Module

Once a sequence is recognized as belonging to a known identity, the Update
Module (Fig. 2) builds a new e-SVM if concept-drift is detected. Among the
frames in the subsequence, those on the boundaries of the already known are
selected to train the new classifier. These are slightly different from what is
already known, which enables the possibility of unsupervised learning, and keeps
low the risk of including samples of different identities in the training of the new
classifier.

On its part, the Limit Module is responsible for keeping the size of each
ensemble within limits. A new classifier is always added when a concept drift is
detected, but when limits are reached, an old classifier is selected to be replaced.
Replacement processes are based on the assessment of the diversity of base classi-
fiers. The classifier with the lowest contribution to ensemble diversity measure is
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Algorithm 3. Update and Limit Module.
Input: EID ensemble of the recognized ID
S = {s0, s1, ..., sL−1} sequence embeddings
Y = {yID(so), yID(s1), . . . , yID(sL−1)} scores at frame level
Parameters: W = {w0, w1, ..., wZ−1}
lim = maximum ensemble size
N = {n0, n2, ..., nQ−1} pool of negative samples
P = ∅ set of positive samples to train classifier

1: I = argmin(abs(Y )) indexes of frames scores closest to 0 (decision boundaries)
2: P = S[I[0]..I[5]]
3: wa ←− e-SVM base classifier trained using positive samples set P and 100 negative

samples drawn from N
4: if Z ≤ lim then
5: EID = EID ∪ {wa}
6: else
7: wr = argminD(wk), ∀k ∈ {0..Z − 1}
8: EID = (EID \ {wr}) ∪ {wa}
9: end if

removed. Given an ensemble of classifiers E = {wi}z−1
i=0 and subsequence embed-

dings {s0, s1, ..., sL−1}, diversity is computed as:

D(wi) =
z−1∑

k=0,k �=i

d(wi, wk) (5)

d(wi, wk) = − 1
L

L−1∑
l=0

sgn(wi(xl)) · sgn(wk(xl)) (6)

where wi(xl) is the score of the e-SVM classifier wi for the frame embedding
xl and sgn(·) is the sign function. d(wi, wk) gives the correlation between pairs
of classifiers, and D(wi) is the measure of global correlation of a classifier. The
higher the value of D the higher the diversity provided by the classifier. The full
process is described in Algorithm 3.

4 Experiments Preliminary

In order to assess the accuracy of our approach to open world recognition in
video surveillance, we have used three of the few appropriated and publicly
available annotated video datasets. Aspects as the quality of the frames and
the completeness of the video sequences available have a crucial impact on the
performance of the assessed approaches [14].

The datasets are: Face COX [19], Face-in-Action (FiA) [12], and YouTube-
Faces [37]. COX, designed for assessment of video surveillance approaches,
includes 3 cameras with different poses, environmental illumination and res-
olution conditions, and subsequences of 1000 identities of interest (IoIs). FiA
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simulates the capture of frames at passport control, with better resolution than
the COX dataset. It includes subsequences of 6 cameras at 3 points in time
of different IoIs, varying their number from 214 (first time) to 153 (last time).
YouTubeFaces, widely used in video face recognition, contains 3425 videos of
1595 IoIs. Each identity appears in several sequences that go from 1 to 6.

4.1 Experiment Dataset Configuration

In experimentation, each subsequence is a short incoming video stream. Subse-
quences used for evaluation consist of frames captured from different cameras in
each dataset. Firstly, 10 subsequences for each individual were generated. Sec-
ondly, these subsequences were divided into three groups: 1) labeled, used to
create initial ensembles (first 5 frames), 2) unlabeled, used during system oper-
ation (8 subsequences with 20 frames per identity), and 3) test, one with 20
frames per identity to evaluate the system’s performance. These requirements,
give a lower number of identities available for each dataset: 746 in COX, 162 in
FiA, and 344 in YouTubeFaces.

Hereafter, each sequence is denoted by Sk
t , where t refers to temporal order

and k to the identity. Accordingly, t = 0 corresponds to the subsequences to
create the initial ensembles, t = 1..8 correspond to operation subsequences and
subsequences t = 9 will be used to test the system.

4.2 Experimental Setup

First, models of the initial IoI are created, which consist of ensembles with only
one base classifier (e-SVM). These base classifiers are created with the initial
training subsequences, Sk

0 , as positive samples and 100 embeddings of a set of
negatives from other initial IoIs (randomly drawn from a pool of samples). A
similar procedure is followed for the classifiers added to ensembles during system
operation. The remaining 8 subsequences, Sk

{1..9}, will vary in length from 5 to
20 frames, depending on the available video sequences of each individual.

The experimental process was organized in adaptation steps, after which a
measurement of system performance was done. An adaptation step corresponds
to a complete iteration over the k available identities, at the same point in
time t. In addition to this, it will iterate 3 times over that integer set of steps
t = {1..8}. Repeating the data several times allows us to increase the number
of update steps as well as to see how the system behaves with redundant data.
The maximum number of classifiers per ensemble is set at 10.

Algorithm 4 describes the process that was repeated 10 for each experiment.
Identities were presented in a different and random order in each of these runs.
The metrics used are Precision, Recall, and F1.

This analysis will make it possible to observe whether the behavior of the
system remains stable after the addition of new ensembles and the impact it has
on known individuals. In order to make the data comparable with experiments
carried out in an open set context, it is necessary to set a limit to those new
identities that have been added.
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Algorithm 4. Experimental procedure.
Input: Sk

t sequence t of the identity k
Parameters: f #sub-sequences per identity (excluding the initial)
L #iterations Ni = #initial IoI
Na = #IoI to add NU = #identities in the universe
R = #remaining identities to add

1: for k = 0 to Ni − 1 do
2: Initialize Ek with W 0

k based on Sk
0

3: end for
4: Perform testing using the set of {Sk

f }Ni
k=0

5: R = Na

6: for lap = 0 to L − 1 do
7: for t = 1 to f − 1 do
8: for k = 0 to NU − 1 do
9: Perform adaptation using Sk

t

10: if Sk
t /∈ known IoI and R > 0 then

11: Initialize ensemble k using Sk
0

12: R = R − 1
13: end if
14: end for
15: Testing the full IoI set {Sk

f }Ni+Na
k=0

16: end for
17: end for

5 Experiment Results

In this section, we study the impact of progressively adding new identities to the
initial IoI set (open-world scenario). Experiments were carried out for different
sizes of Ni and Na (Algorithm 4), as shown in Table 1.

The experiments with COX were carried out in OW for two cases: 20+80
and 100+150. In FiA database there are only 100 identities, so we included
the case 20+30. As baselines, we use the case where all identities (100 or 250)
were known, and no new identities were introduced, although the decision about
known-unknown was made, as well.

Figure 3 illustrates how the recognition capacity of the system evolves in two
scenarios on COX dataset when all sequences are repeated 3 times. In both cases,
the performance raises quickly in the early stages (first repetition) and then
stabilizes (second and third repetition). The initial performance in the open-
world is lower, but very soon reaches values close to the open-set. Remarkably,
performance does not decline over time, demonstrating the system’s robustness
to catastrophic forgetting. It is also worth mentioning that the system must be
initialized with a few IoI because of the use of dynamic Weibull thresholding.
In our experiments, we initiate the system with at least 20 ensembles, each one
with a single e-SVM.

In view of the data collected in Table 1, our system running in open world
achieves similar results to those that would be obtained running in open set.
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Table 1. Results on COX and FiA datasets for different numbers of identities (IoI),
knowns (K) and unknowns (UK). Cases of UK=0 correspond to open set (OS) contexts,
the rest are open world (OW). Performances (μ(σ)) are computed from 10 repetitions
of experiments varying the IoIs and their order of presentation.

IoI Precision Recall F1-score

Dataset K-UK Initial Final Initial Final Initial Final

COX (OS) 100-0 78.62 (4.27) 78.62 (3.16) 46.10 (5.89) 86.58 (3.15) 58.88 (5.12) 82.38 (2.86)

COX (OW) 20–80 15.48 (3.52) 73.57 (3.37) 59.76 (12.16) 82.33 (2.68) 24.56 (5.36) 77.68 (2.83)

COX (OS) 250-0 95.49 (1.71) 92.52 (1.83) 46.01 (1.87) 91.87 (2.07) 62.09 (1.94) 92.19 (1.65)

COX (OW) 100–150 81.87 (4.05) 89.42 (1.45) 45.50 (5.53) 86.90 (1.91) 58.26 (4.74) 88.13 (1.43)

FiA (OS) 100-0 97.61 (1.21) 92.84 (2.14) 61.49 (6.67) 89.20 (2.29) 75.23 (5.14) 90.95 (1.31)

FiA (OW) 20–80 50.45 (6.47) 90.31 (2.82) 58.89 (9.98) 87.78 (2.32) 54.19 (7.47) 89.01 (2.35)

FiA (OS) 50-0 93.02 (3.06) 83.80 (3.39) 65.95 (5.29) 88.30 (2.74) 77.00 (3.26) 85.95 (2.43)

FiA (OW) 20–30 53.31 (10.6) 80.01 (4.76) 60.00 (13.8) 83.80 (3.85) 56.24 (11.7) 81.81 (3.80)

Fig. 3. F1 scores versus learning stages for 100 and 250 IoI in COX dataset: (left) 100
known and 20 known with 80 initial unknown (right) 250 known and 100 known with
150 initial unknown.

Looking at Table 1, we can see that the biggest difference between the values
of open set and open world, in terms of F1, is around 5% for the case of COX
dataset. The same behavior can be observed for the case of FiA, being the case
20–80 in open world very similar to that of the 100-0 in open set (1.94%).

Analyzing the values of the completeness and homogeneity metrics, typically
used in clustering, we obtain mean values of ±99% and ±97%, respectively, in
the composition of ensembles at the end of the experiments. These could be
considered evidence of the robustness of our approach to generate diverse sets
with a low proportion of labeling errors after inference.

5.1 Comparison Against State-of-the-Art Face Recognition in OWR

In this section, we compare the performance of our method against a number of
proposed solutions for open-world recognition, using the implementations pro-
vided in [20]. The initial samples of the 20 known identities have been used to
train the classifiers and neural networks necessary for the operation of these mod-
els. Processing was performed frame by frame, with data received as a stream.
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Table 2. Results (μ ± σ) of different methods adapted to OWR context on three
datasets, from 10 repetitions of experiments. Best results are bolded.

Datasets → COX FiA YouTubeFaces

Methods ↓ F1-measure Accuracy F1-measure Accuracy F1-measure Accuracy

NNO [7] 4.10 ± 0.20 37.06 ± 4.10 25.02 ± 1.94 33.95 ± 2.03 13.44 ± 4.64 16.29 ± 13.8

NCM [30] 12.06 ± 3.06 89.43. ± 0.19 18.59 ± 1.77 46.17 ± 0.69 15.24 ± 2.94 17.29 ± 1.53

CBCL [5] 19.53 ± 6.97 85.82 ± 1.52 21.70 ± 0.97 46.72 ± 0.50 15.66 ± 0.47 17.29 ± 0.28

GMM [4] 12.10 ± 3.93 89.43 ± 0.25 20.14 ± 1.36 46.87 ± 0.57 11.54 ± 3.42 12.79 ± 0.71

FEVM [20] 26.87 ± 1.79 85.56 ± 0.16 56.85 ± 2.06 54.92 ± 2.31 67.57 ± 1.83 52.71 ± 2.30

Ours 84.35 ± 3.26 96.57 ± 0.67 90.27 ± 1.23 88.99 ± 1.43 90.56 ± 2.19 84.11 ± 3.59

Testing was performed by incorporating 80 known identities to the initial set
of 20, setting the number of positive samples at 10 and the number of negatives
at 100. In this case, all methods were evaluated on the 3 datasets and with two
different performance metrics, accuracy and F1-score. Table 2 shows the results
for each of the different models, with the best result for each metric in bold. In
all cases, it can be seen how our method offers results significantly better than
the ones provided by the second best.

The methods have been adapted to work with video sequences and to make
fair comparisons, the same feature embeddings have been used in all methods.
Using face-specific embeddings is more convenient than using pretrained models
on general object datasets. It should be noted that no modifications have been
made to other parts of the original codes.

5.2 Sensitivity About Parameters

The impact of the selected positive samples on the creation of new classifiers was
evaluated for the case of 20 knowns vs 80/230 unknowns in COX, considering
four options: frames with scores closest to zero (“On Boundaries”), first frames in
the sub-sequence, frames randomly selected, and those with the highest positive
scores. The first provided the best F1-scores (2% better than random).

We also studied the dependence of results on the size N of negatives dataset
for the case of 10 positives. With values in range [25, 500], the highest score was
achieved with 500 negatives. However, the difference between the mean F1-scores
of 100 and 500 was always less than 1, so we used N = 100 in our experiments.

To assess the impact of Tw, we measure initial and final performance for
the case of 50 IoIs in a universe of 100, for values of TW in range [0.001, 0.1].
Results show that overall incremental learning capabilities of our approach are
maintained within this range, with a maximum around 0.01.

We perform a study to set Ts threshold and avoid computation of the Weibull
distributions. The greater the number of knowns, the lower the value of Ts is
necessary to maintain good performance. A value of 0.15 is enough conservative;
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a value of 0.05 already has a low impact on performance, since the method is
quite robust to erroneous inferences. We set a value Ts = 0.01 in all experiments.

Our model achieves significant improvement over well-known outlier detec-
tion techniques such as Median Absolute Deviation (MAD) or cosine distance,
with an increase ±40% in F1-score for 500 identities. Furthermore, using twice
the number of classifiers per ensemble results in only a 1% improvement in F1-
score, due to the good optimzation made by the replacement policy.

6 Conclusions

We present a novel approach to instance recognition in open-world video appli-
cations, emphasizing adaptability to evolving scenarios. By employing dynamic
ensembles tailored to each category, our method not only handles an increasing
number of unknowns but also improves identification of known identities.

Our system demonstrates continuous improvement in recognition capability,
achieving significant F1-scores with limited initial knowledge of identities. Addi-
tionally, it remains robust against diverse data and low-resolution streams, mak-
ing it suitable for real-time video processing. To prevent catastrophic forgetting,
our approach dynamically adjusts ensemble composition, ensuring retention of
past knowledge while accommodating new information, as Fig. 3 illustrates.

The replacement policy is derived from common diversity metrics. We observe
that in only 5% of the cases, ensembles were built using samples of different
identities (mistakes in operation). We have never found the case of two ensembles
initiated from belonging to the same identity. However, it could be of interest to
create a mechanism for merging ensembles that resonate with the same identity,
thus making the system more resilient.

Looking forward, we aim to explore spatio-temporal coherence in wider appli-
cation domains, such as general instance object recognition and anomaly detec-
tion. Additionally, we aim to devise methods for detecting base classifiers in
different ensembles trained with subsequences of the same real identity, and how
to change the value of Ts according to the evolution of the data distribution.
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Abstract. AI systems in real-world scenarios must be able to learn
continuously from a stream of data while adapting quickly to concept
drift. We propose a training strategy called Explain to improve Stream-
ing Learning (ESL) for the online streaming learning setting where the
models have to learn from data on the fly in a single pass. ESL leverages
model explanations to identify salient input regions, guiding the stream-
ing learner to focus on these regions by masking the non-salient ones dur-
ing training. In this work, we focus on using transformers for streaming
learning and adapt our CNN-based Feature Explanation Method (FEM)
[13] to propose Rollout-FEM with ESL for transformers. We validate
the ESL strategy for our streaming learners Entropy-based Move-To-
Data (EMTD), its variant EMTD with re-targetting (EMTDR), and the
state-of-the-art streaming learning method ExStream [14] and bench-
mark it on two streaming learning datasets and a real-world egocen-
tric video dataset. Our experiments demonstrate that training with the
explanation-based ESL strategy has a better performance than standard
training, and EMTDR with ESL achieves the best performance compared
to ExStream across the datasets.

Keywords: Streaming Learning · Online Continual Learning ·
Explainable AI

1 Introduction

Deep Neural Networks (DNNs) have shown exceptional success for multiple tasks
when trained on large-scale, well-annotated datasets with fixed data distribution.
However, real-world learning scenarios are dynamic with evolving data. Humans
can accumulate and improve their learning to adapt to these changes. Ideally,
machine learning algorithms, particularly bio-inspired models, should mirror a
similar adaptability. Traditional machine learning schemes become ineffective
in non-stationary environments where drifts in the data distribution cause con-
cept drifts, resulting in misclassification by the model. Incremental learning thus
emerged as a crucial paradigm to allow models to learn from new data while
retaining previous knowledge and has gained popularity in recent years [27].
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Class incremental learning, especially, has gained traction, where the models
gradually learn new categories of data [21].

The authors of [16,22] argue that the class incremental learning scenario
is limited by the random and discrete shifts in the distribution of the bench-
marking data. Each learning step introduces a new set of non-repeating classes,
which fails to represent the gradual nature of change observed in realistic envi-
ronments, where previously seen classes can reappear with new contextual vari-
ations. Consequently, the Online Streaming Learning (OSL) scenario becomes
important wherein the model has to learn from individual data samples avail-
able on the fly in a single pass [14]. In particular, we focus on the common
scenario where the streaming data undergoes a concept drift [8] e.g. in the case
of egocentric videos recorded from a wearable camera [20]. In such data streams,
the data distribution might gradually shift over time for already observed cate-
gories due to changes in the background, lighting, data collection method like the
exact position of a wearable camera, etc. Therefore, it is essential that the model
adapts to the new environment quickly rather than its ability to recognize “old”
data.

Moreover, as AI and Deep Learning models are becoming ubiquitous, the
need for transparency and improving their trustworthiness has become manda-
tory. Multiple methods have been proposed to explain the decisions of Deep
Neural Networks (DNNs). In recent years, a new focus of research has emerged
for leveraging eXplainable AI (XAI) techniques to intervene in the behaviour of
machine learning models. This is achieved by introducing additional supervision
signals or prior knowledge obtained from explanations into the model reason-
ing process [31]. In this paper, we propose the Explain to improve Streaming
Learning (ESL) strategy to use an XAI method to improve OSL.

We recently proposed the Entropy-based Move-To-Data (EMTD) [6] method
for OSL. It updates only the weights of the final classifier layer to adapt the model
to the evolving relation between the input and the output, i.e., under concept
drift. EMTD is faster than the state-of-the-art ExStream [14], as it updates
the weights without gradient computation. As the update is not in the optimal
direction of the gradient, a model drift is observed after a few EMTD updates.
EMTDR (EMTD with Retargeting) [6] reduces the model drift by using a small
subset of recent samples from the data stream for a single gradient update to
adjust the parameters of the model. In this work, we couple EMTDR with ESL
and validate it on two benchmark streaming datasets and a real-life challenging
dataset of egocentric datasets. We also compare it with EMTD and the SOTA
ExStream to demonstrate the effectiveness of ESL for streaming learning. The
main contributions of our work are as follows:

– We adapt the FEM explanation method [13] for ESL with Vision Transformer
(ViT) [10] based models to introduce the Rollout-FEM (RFEM) method to
get the importance maps for the data samples.

– Propose the ESL strategy to identify and enhance the important regions in the
input using the RFEM for ViT-based models to improve streaming learning.
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Though ESL can be used with other methods, we focus on transformers in this
work due to their superior performance when compared to models like Convo-
lutional Neural Networks (CNNs) and its “self-attention” mechanism that can
capture long-range dependencies amongst the features of the input.

The rest of the paper is organized as follows. Section 2 presents an overview
of the related work for streaming learning and the use of explanation methods
to improve training. Section 3 presents our ESL strategy with details about the
RFEM method and a brief overview of our continual learning methods EMTD
and EMTDR. Section 4 gives the details of the experiments, results, and the
ablation study. Section 5 concludes the work and outlines future research per-
spectives.

2 Related Work

In Online Streaming Learning (OSL), data arrives sequentially, one sample
at a time. In Incremental Batch learning, data arrives in batches, and the model
can access only the current batch of data but can iterate over each batch multiple
times during learning. In contrast, OSL operates on a single-instance basis, where
the model learns in a single pass. Streaming learning methods like ExStream
[14] and REMIND [15] use a buffer to store a subset of past samples, which are
replayed alongside the new samples to train the classifier layers of the model.
We currently focus on streaming learning with a fixed taxonomy for incoming
samples but with a concept drift in the data. For images and videos, concept drift
occurs with gradual appearance changes, variations in lighting and backgrounds,
shifts in camera viewpoints and different views for the same visual content. It
leads to a specific type of concept drift called covariate drift, where the relation
between the input and output remains the same but the distribution of the
input data evolves with time [8].

Test-Time Adaptation (TTA), specifically Continual Test-Time Domain
Adaptation (CTDA) methods like [30], are similar to OSL as both adapt a pre-
trained network to new target domains without access to the source domain.
However, CTDA adapts the model during inference time without ground truth
labels, whereas OSL adapts the model during training with real labels. CTDA
methods usually rely on pseudo-labels, which can lead to error accumulation,
and the methods often use different strategies to improve the quality of these
pseudo-labels. For example, CoTTA [29] uses augmentation-averaged predictions
to reduce error accumulation and stochastic restoration of some neurons at each
step to reduce forgetting. Another method, TENT [28], only adapts the parame-
ters of the BatchNorm layers of the model using entropy minimization of the pre-
dictions. In contrast, OSL methods have access to new samples with labels and
thus avoid errors due to pseudo-labels, ensuring more accurate adaptation.

In our previous work [6], we introduced a family of fast OSL methods based
on the ‘Move-To-Data’ (MTD) principle. The MTD method adjusts the weights
of the final classification layer for the new input from the data stream. Our
Entropy-based MTD (EMTD) method selectively updates the model using only
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the samples with high information from the stream, outperforming the SOTA
method ExStream [14]. As EMTD directly updates the weights of the neuron
in the final layer without gradient-based optimisation, it leads to a model drift
after a few updates. To counter this, we introduced a conditional retargeting
(EMTDR) with a single update in the direction of the gradient using a small
subset of recent samples used for EMTD updates.

Explanation Methods: Many methods have been proposed for the explanation
of CNNs including popular white-box gradient-based methods like Grad-CAM
[24] and Vanilla Backpropagation [25]. These methods are class-specific and
leverage gradients with respect to the model’s predictions for a class to explain
the contribution of input features to the network’s decision. The authors of [3]
offer a comprehensive overview and categorization of the many recent methods
proposed for the explanation of DNNs. Shapley Additive Explanation (SHAP)
proposed by [17], is a gradient-free method that uses cooperative game theory
principles to compute Shapley values. These values quantify the contribution
of each feature to a model’s prediction by using a linear model to assess how
the prediction changes when certain features are included or excluded from the
input. Feature Explanation Method (FEM) [13] is our gradient-free and class-
agnostic method that identifies the “strong” features from the maps of the final
convolutional layer of a CNN. To identify the “strong” features, FEM assumes
that the features in the final convolutional layer have a Gaussian distribution.
Thus, it uses K-sigma thresholding to select the “rare” and “important” fea-
tures from the layer. FEM then uses a linear combination of these maps with
the channel importance weights to get the final explanation map.

In comparison, fewer methods focus on the explanations for Transformer
models, often using the ‘self-attention’ maps of the layers as explanations [26].
Attention Rollout [1] is a class-agnostic method that recursively multiplies the
attention maps of each transformer layer to get the final visualization of the
importance of the different input tokens. I-SAW is a class-specific method [18]
that weights the attention map of each layer with the attention gradient w.r.t the
label class followed by the rollout to improve the visualizations. Furthermore,
[2] extend Layer-wise Relevance Propagation (LRP) [7] for transformers using
relevance propagation rules to propagate relevance scores from the output to the
input. In our study, we propose adapting the FEM method for transformers by
integrating it with the Rollout method to create the class-agnostic Rollout-FEM
(RFEM) for transformers.

Using Explanations for Training: In their recent work [31], the authors
describe approaches that use explanations to improve model generalization and
reasoning. Some popular methods include i) data augmentation using explana-
tions by changing the distribution, such as using spectral analysis-based expla-
nation to remove biased or ‘poisoned’ samples from the input [4], ii) intermedi-
ate feature augmentation in the network to reinforce relevant parameters while
masking nonrelevant ones, and iii) augmenting the loss function with additional
explanation supervision [19]. The latter combines attention and class-specific
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attention gradients to provide extra supervision to the loss function for the
training of a transformer.

Further, some works have used explanations for training in an incremen-
tal setting. [12] uses an LRP-based neural freezing for incremental learning.
It reduced the plasticity of neurons important for previous tasks by assigning
them a lower learning rate or completely freezing them. However, its iterative
computation of LRP on the test set of current tasks reduces its efficiency and
adaptability to complex architectures. In contrast, Remembering for the Right
Reasons (RRR) [11] uses a rehearsal-based strategy for continual learning by
storing visual explanation maps generated by the Grad-CAM method [24] for
each sample in a memory buffer. RRR enforces consistency between the expla-
nation maps generated during training and those in the memory buffer. [23]
also uses Grad-CAM [24] maps to crop and store the most salient patch of
the input image itself in the memory for class-incremental learning. Neverthe-
less, using fixed-size cropping like [23] or class-specific guidance like [18] could
be detrimental while streaming learning with changes in the data distribution.
Moreover, fixed-size of the cropping may lack robustness with objects of differ-
ent sizes or if the dataset requires some context information to be retained. In
this work, we propose a class-agnostic strategy to identify and retain the most
important region of the input images. Our method uses an XAI method with
a dynamic cropping size regulated by the strength of the transformer attention
for the given image.

3 Proposed Framework: ESL

The ESL strategy comprises three steps: i) Use an XAI method to obtain the
importance map for the input, ii) Dynamically select the salient patch from
this importance map, and iii) Train a streaming learner using the transformed
input. While the ESL strategy applies to most Deep Neural Networks (DNNs),
we currently focus on Vision Transformer (ViT) [10] models.

3.1 XAI Method: Rollout Feature Explanation Method (RFEM)

Vision transformers decompose the input images into a sequence of square
patches and embedded into lower-dimensional vectors called query Q, key K,
and value V for each patch in every transformer layer. The self-attention A is
computed as A = Q · KT , allowing the model to determine the importance
of each patch in relation to others. It enables the model to focus on relevant
regions of the input image during training.

Attention Rollout [1] is a class-agnostic attention visualization method that
aggregates the attention weights for all the layers L as shown in Eq. 1 where I is
the identity matrix for residual connections and H is the total attention heads
within a layer l. Instead of simply averaging the attention of all heads H in a
transformer layer l, we propose to use our XAI method FEM [13] to identify
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only the “strong” and thus important attentions for the aggregation across the
heads.

A′l = I +
H∑

h=1

Al
h, Aroll =

L∏

l=1

A′l (1)

Thus, we first aggregate across the layers by a recursive multiplication similar
to rollout as shown in Eq 2.

A′l
h = I + Al

h, ∀h = 1, ...H, Ah,roll =
L∏

l=1

A′l
h (2)

K-sigma thresholding with K = 1, μh as the mean and σh is the standard
deviation of the values is applied to these maps Ah,roll, as shown in Eq. 3, as in
the baseline FEM [13], to get the binary maps mh with only the “rare” and thus
“strong” attentions:

mh(Ah,roll) =

{
1 if ai,h ≥ μh + K ∗ σh

0 otherwise
(3)

A linear combination with the mean μh,roll of the attention maps Ah,roll as
weights is then used to combine the binary maps mh(Ah,roll) into a single map
M(x) for the input x. M(x) is then normalized and resized to the input size to
obtain the final RFEM importance map MRFEM (x).

3.2 Input Patch Selection

For the given input x, its map MRFEM (x) is used to retain only the regions
of higher saliency while masking others. Contrary to [23] who use a fixed-size
cropping of the neighbourhood around the most salient pixel, we propose a
dynamic approach. The size of the crop is determined by the span of high values
of saliency in the maps MRFEM (x). When the K-sigma threshold is applied to
the RFEM maps, binary maps are generated to retain only the regions of higher
saliency. The salient region with the largest area is identified in each map, and
its bounding box (BB) is chosen for cropping. Thus, we get a variable-size input
for the transformer, but implement it by masking the pixels in images and video
frames outside the salient region by 0. Figure 1 illustrates the detailed steps of
RFEM and the subsequent dynamic cropping, shown by the yellow square, for
the input image.

In addition to images, we also use this framework for videos using the TimeS-
Former [9] based Pooling Transformer [20]. This model has a divided spatial and
temporal attention computation to speed up training. Thus, the two attentions
are first combined as outlined in [32], followed by RFEM to get per-frame saliency
maps for the input video (Fig. 1).



166 M. P. Ayyar et al.

Fig. 1. Framework for ESL to select the salient region in the image using Rollout-FEM
(RFEM)

3.3 Streaming Learner: Entropy-Based Move-To-Data (EMTD)
and Retargeting (EMTDR)

The next step of ESL is to use the transformed input from the previous stage
to train the model during streaming learning. Our streaming learning meth-
ods, EMTD [5] and EMTD with Retargeting (EMTDR) [6] update the model
by slightly changing the weights of the last classifier layer, as shown in Eq. 4.
Here wc are the weights of the output neuron for the class c, vt is the feature
vector of the new sample xt extracted from the model and 0 < ε < 1. In a DNN,
the activation of the output neuron for the c-th class ŷc

t =< wc
t , vt >, is high

when wc
t is close to vt. Thus, we ”move” the weights wc

t in the direction of the
feature vector vt of the new sample to adjust only the last classifier layer of the
model. This update is fast as it does not rely gradient calculation to adjust the
weights [5].

wc
t+1 = wc

t + ε(‖wc
t‖ ∗ vt

‖vt‖ − wc
t ), (4)

In the streaming setting, data arrives one sample at a time, and not every
sample might be important for updating the model. Thus, we use entropy-based
sampling to identify the most informative samples from the data stream for
model updates (EMTD). EMTD uses two buffers for this purpose: a small fixed-
size buffer Bv = {v1, v2, ...., vb} of size b to store the features (v) and Be =
{e(v1), e(v2), ...., e(vb)} to store the entropy of each feature in Bv. Since the
feature extractor layers of the model remain unchanged during learning, we only
store the features of new samples to reduce memory. Here, entropy signifies the
uncertainty of the model in classifying the sample and is computed using Eq. 5,
where C is the total classes in the dataset and pc is the softmax output for all
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c ∈ {1, ...C}, from the classification layer. The entropy is maximal when the class
probabilities pc are equal, indicating the network’s uncertainty in classifying the
sample. Consequently, we select the sample with the highest entropy at each
step to update the neuron of the last layer using Eq. 4.

e(vi) = −
C∑

c=1

pc log(pc) (5)

When the buffer is full, we check if the feature vector of the incoming sample
has a higher entropy than the feature vector with the lowest entropy currently
stored in the buffer. If the condition is true, we replace it with the new feature
vector; otherwise, we replace the feature vector used for the EMTD update in
the previous step.

As the updates with EMTD do not follow the optimal direction of the gradi-
ent, a model drift [5] is observed after several updates. Methods like [8] detect a
concept drift when model performance deteriorates below a threshold. Building
on this, we use a small validation set of samples to monitor the model per-
formance and do a conditional “retargeting” step when the performance drops
below a threshold, as shown in Eq. 6. Here, the parameter α monitors the perfor-
mance drop, where Acc∗ is the best validation accuracy from steps 1 to t−1 and
Acct is the validation accuracy on current step t. When a drift is detected, the
model is retargeted with a single gradient-descent update for the last layer with
the samples from our retarget buffer Br. Br has a fixed small size r and stores the
last r high entropy samples selected for EMTD. If the condition for retargeting is
satisfied, these features are used for a single gradient update of the last classifier
layer (EMTD with retargeting EMTDR) to realign the model. Subsequently, the
retarget buffer is cleared after the retargeting.

(Acc∗ − Acct)
Acc∗ > α (6)

4 Experiments and Results

4.1 Experimental Details

Evaluation Datasets: We validated ESL on two benchmark datasets
(CoRES50 and Stream51) and a challenging real-world video dataset (BIRDS).

1. CoRE50 [16] is a continual learning dataset consisting 10 classes of objects
recorded during 11 sessions with varying backgrounds. We sampled the 15-
second videos at a rate of 5 fps and the final training set comprises approxi-
mately 23,982 images, and the test set contains 8,995 images.

2. Stream51 [22] is a large-scale dataset tailored for streaming learning with
images for 51 distinct object classes. It includes 150,736 images in the training
set and 2,550 images in the test set.
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3. BIRDS: Bio-Immersive Risk Management System (BIRDS) dataset used in
[20], is a real-life, in-the-wild dataset designed for detecting risk situations
among frail individuals from egocentric videos. It has 19,500 videos with five
risk categories: environmental risk of fall, risk of domestic accident, physio-
logical risk of fall, risk of dehydration, risk of medication intake, along with a
“No Risk” category annotated by expert psychologists. Each video, approxi-
mately 2–3 s long, is sampled into smaller clips of size Δv = 8 with a stride
of 4 frames.

In lifelong learning, an initial dataset is usually available for Phase-0 learning
to train the model and establish an initial base initialization. After Phase-0 the
feature extractor layers of the model are frozen, and only the last classifier layers
are updated during Phase-1 streaming learning. The datasets are split 40% for
Phase-0 and 60% for Phase-1 while maintaining the same class distributions.
Phase-0 and Phase-1 datasets were further split 80% for training and 20% for
validation. The BIRDS dataset has a high class imbalance with ‘No-Risk’ as the
majority class. Therefore, 5% of the No-Risk videos were randomly selected for
Phase-0, while all the samples were retained for Phase-1 to represent a realistic
scenario. The test sets of CoRE50 and Stream51, containing samples from both
Phase-0 and Phase-1, are then used to report the final performance of the meth-
ods. The results for BIRDS are reported on the Phase-1 validation set as a test
set was not available.
Baseline Methods: The performances of EMTD and EMTDR with ESL are
compared with the following approaches:

1. Naive (Fine-tuning without any buffer) The classifier layer of the model
is fine-tuned on Phase-1 data, using a batch size of 1 to mimic streaming
learning. It serves as the lower bound for the performance of the streaming
learning algorithms.

2. ExStream [14]: is a SOTA streaming learning method closest to our scenario.
It uses a buffer to store the features of the previous and the incoming samples.
At each step it uses all the samples in the buffer to update the classifier layers
with a single gradient-descent update. It stores s examples per class in the
buffer and merges the two closest features from the buffer for a class to make
space for an incoming sample. For all our experiments, we choose s = 128
i.e., 128 samples per class as proposed by the authors.

3. Offline: The entire model is conventionally trained using the whole dataset
(Phase-0 + Phase-1) and serves as the upper bound for the performance of
the model on the given dataset.

Explanation Methods for ESL: In addition to the class-agnostic RFEM, we
implement ESL with the following SOTA explanation methods and compare
their performance:

1. Attention Rollout [1] is a class agnostic method that aggregates the atten-
tions from different layers of the transformer with a recursive multiplication,
as shown in Eq. 1.
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2. Grad-CAM [24] is a popular class-dependent CNN explanation method. It
has been adapted for transformers and uses the linear combination of atten-
tions from the last transformer layer (before the classifier head) and class-
specific gradient as weights1 to get the explanation map.

3. I-SAW [18] is a class-dependent explainer for transformers. It first multiplies
the attention maps of each layer by its gradient w.r.t the output class, and
similar to rollout, combines the maps with the recursive multiplication, as
shown in Eq. 7.

A′l = I +
H∑

h=1

(∇Al
h ∗ Al

h), Aisaw =
L∏

l=1

A′l (7)

ViT [10] pretrained on ImageNet1K, with an input size of 224 × 224, has
been used for the image datasets CoRE50 and Stream51. The Pooling Trans-
former [20] with a video input size of 8 × 224 × 224 has been used for the
video BIRDS dataset. The parameters for EMTD and EMTDR were set to
ε = 0.0002, retargeting threshold α = 0.0001, entropy buffer b = 32 and retar-
get buffer as r = 32 for the CoRE50 and Stream51 image datasets. The final
parameters for BIRDS were set to ε = 0.001, α = 0.0001, b = 32 and r = 32.
These values were chosen by grid search and are the same as [6].

4.2 Results

Explanation Methods: We compare the choice of two class agnostic and two
class dependent explanation methods to get the saliency maps using ESL for
Phase-0 and Phase-1. For Phase-0, we performed pairwise tests to evaluate the
performance of RFEM against other explainers on the image CoRE50 and video
BIRDS datasets. Across the three cases, the Wilcoxon signed-rank test yielded a
p-value of 0.031 with a five-fold cross-validation. This indicates that ESL with
RFEM significantly outperforms ESL with the other considered explainers for
Phase-0. Comparing standard training to training with ESL, we observed an
increase in accuracy of ∼ 2 for CoRE50 and BIRDS datasets.

Table 1 compares the results of the four explanation methods for Phase-1
streaming learning for the three datasets. The results indicate that RFEM is
consistently better than other explanation methods across the datasets for the
streaming learning methods. To further validate this observation, we did a five-
fold cross validation for the explainers on CoRE50 image and BIRDS video
datasets. Using the Wilcoxon signed-rank test, we obtained a p-value of 0.031
for RFEM vs the other methods, indicating substantial evidence that RFEM
is the better choice. In the streaming setting with concept drift, the relation
between the input and the output evolves over time, which the class-dependent
methods may fail to capture and could lead to outdated explanations. This could
be the reason why the class agnostic method RFEM shows better performance
for ESL compared to the class-dependent Grad-CAM and I-SAW methods. The
1 https://github.com/jacobgil/pytorch-grad-cam/.

https://github.com/jacobgil/pytorch-grad-cam/


170 M. P. Ayyar et al.

same behaviour is observed for Attention Rollout in most cases, although RFEM
consistently outperforms it.

Table 1. Phase-1 accuracies of ESL with different explanation methods for the stream-
ing learning methods. RFEM: Rollout FEM (Ours), GC: GradCAM [24], Roll: Atten-
tion Rollout [1], IS: I-SAW [18]

Methods CoRE50 Stream51 BIRDS

RFEM GC Roll IS RFEM GC Roll IS RFEM GC Roll IS

EMTD 97.34 94.60 96.40 96.33 94.94 94.07 94.39 94.10 69.14 64.08 68.68 64.68

EMTDR 97.50 95.68 96.69 96.81 95.41 94.42 94.62 94.60 71.20 66.80 70.37 65.37

ExStream 96.79 93.50 94.39 95.20 90.13 89.59 90.02 89.37 56.64 51.19 53.92 53.76

Figure 2 presents a visual comparison of the patches selected by the differ-
ent explanation methods for images from the CoRE50 dataset. It can be seen
that Grad-CAM is not well suited for ESL as the higher saliency regions are
more spread out in the map. Attention Rollout maps are slightly better as the
regions with high attention are more focused on the objects. The I-SAW maps are
more concentrated on the object; however, the weighting of the attention maps
with the class-dependent gradients imposes a stronger influence on the atten-
tion scores, resulting in partial cropping of the object. In comparison, RFEM
maps localize the salient region around the object while also preserving some
contextual information.

Fig. 2. Selection of the patch from CoRE50 dataset for the different explanation meth-
ods

ESL Performance: Figure 3 illustrates the evolution of accuracies on the Phase-
1 validation set during OSL when trained with and without ESL. For the three
streaming learning methods-EMTD, EMTDR, and ExStream-training with ESL
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Fig. 3. Evolution of validation accuracy for the streaming learners with and without
ESL

has a higher performance throughout the learning phase. On CoRE50, the meth-
ods show an increasing trend indicating that they learn well on all the new sam-
ples. With the BIRDS dataset, we can see that EMTD and ExStream methods
have a drop in accuracy after some updates (with and without ESL), which
is mitigated by the retargeting in EMTDR. Table 2 compares the final accu-
racies when training with and without ESL for streaming learning. The full
offline training is the best achievable performance, while the Naive learning,
which updates the model without any corrections, has the lowest results. For
the streaming learning methods, EMTD and EMTDR systematically outper-
form ExStream and EMTDR with ESL has better results in terms of accuracy
across the datasets, see line EMTDR in Table 2. Further, training with ESL
shows an improvement in performance for all the streaming learning methods.
EMTD and EMTDR methods with ESL show an increase of ∼ 3 for CoRE50,
∼ 2 for Stream51 and ∼ 8 for the BIRDS dataset compared to standard train-
ing. Notably, both Naive and Offline training show an increase in accuracy across
the datasets when trained with ESL indicating that using just the explanation-
based input selection works well in both the standard and streaming scenarios.
As presented in Sect. 4.1, the test sets for CoRE50 and Stream51 include sam-
ples from both Phase-0 and Phase-1. The higher accuracies of our methods,
when trained with ESL for these datasets, indicate their improved performance
on both old and new data. However, the BIRDS dataset consists of egocentric
videos where changes in the camera’s point of view cause the same class to
appear differently in the new samples. Thus, it is important for the methods to
quickly adapt to new data rather than recognize old data, as it is rarely seen
again. Hence, with respect to the stability/plasticity dilemma, we do not study
the ability of the updated model to recognize old data. Nevertheless, as training
with ESL improves performance on the test sets of CoRE50 and Stream51, we
can say experimentally that our methods are stable.

Time Complexity: In streaming learning, every new sample on the data stream
must be learnt as soon as it is available. Thus, the learner needs to be accurate
and fast for the model predictions to align with the changes in the incoming data.
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Table 2. Phase-1 Accuracies of the streaming learning and the baseline methods for
our ESL strategy with RFEM and w/o: without ESL. Bold: Upper bound, Blue : best
streaming learner

Method CoRE50 Stream51 BIRDS

w/o ESL w/o ESL w/o ESL

EMTD 94.05 97.34 94.09 94.94 61.30 69.14

EMTDR 94.2 97.50 94.13 95.41 64.74 71.20

ExStream92.50 96.79 89.98 90.13 54.46 56.64

Naive 85.60 94.29 84.26 89.88 42.95 55.28

Offline 95.4098.0696.2397.6567.1873.76

Fig. 4. Training time for streaming learners with and without ESL per 100 samples

Figure 4 shows the training times measured for the streaming learning methods
EMTD, EMTDR and SOTA ExStream with and without ESL on an image and
a video dataset. The times were measured when training using a single NVIDIA
A40 GPU. It can be seen that using ESL increases the training time as it does two
forward passes through the network, first to calculate the RFEM maps and the
second to train on the zero-padded selected patch. But the EMTD and EMTDR
methods with ESL are still faster than the basic ExStream. The Wilcoxon signed-
pair test for EMTDR + ESL vs. ExStream and Exstream + ESL yielded a
p-value lower than 0.01 and thus our method is significantly faster. Although
slower than EMTD and EMTDR, training with ESL offers overall improvement
in performance while still being faster than SOTA ExStream learning on images.
ESL is slower on the BIRDS than CoRE50, as the patches have to be selected
for each frame in the input video clip.

4.3 Ablation Study

The ablation study for our ESL strategy has been presented by comparing its
performance to the standard streaming learning. Additionally, we compared dif-
ferent explanation methods for ESL with transformers. We observed that RFEM
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outperforms the other explainers across three datasets for streaming learning.
The only parameter tuned for ESL is the threshold K used to crop the salient
patches from the input. As detailed in Sect. 3, the “high” importance scores are
determined by statistical filtering with the K-sigma thresholding rule. Empir-
ically, we determined the appropriate values for K through a grid search for
K = [−0.5, 0, 0.5, 1]. Figure 5 shows some samples for the CoRe50 and Stream51
datasets for the different values of K. It can be seen from the figure that lower
values of K result in minimal cropping, while higher values lead to extensive
cropping of the input images. Overall, it was observed that K = 0.5 worked
well for the image datasets CoRE50 and Stream51, and K = −0.5 was cho-
sen for the BIRDS video dataset to retain more of the background due to the
contextual nature of the classes.

Fig. 5. The original image and the images after cropping using the RFEM method for
different threshold values K to select the important regions.

5 Conclusion and Future Work

Through our ESL strategy, we demonstrated that leveraging explanation meth-
ods to identify and enhance salient input regions can improve the performance
of transformer models for streaming learning. ESL employs the Rollout-FEM
method to generate saliency maps from the self-attention maps of each trans-
former layer for every new sample encountered in the data stream. We vali-
dated our method on two benchmark image datasets and a real-world video
dataset to predict risk situations among frail people in a streaming learning sce-
nario with drift in the data distribution. We also compared our RFEM explainer
with other explanation methods for transformers. Our results demonstrated that
RFEM was better suited for ESL, as it exhibited superior localization of salient
regions and outperformed in terms of accuracy.

In addition, we also compared the training times for the streaming learn-
ing methods. Though using ESL made EMTD and EMTDR methods slower,
they are still faster than the SOTA ExStream method trained without ESL. An
interesting future work could consist in using explanation methods that create
the class prototypes to monitor how the new data from the stream changes over
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time. It could provide further insights on how a streaming learner adjusts to
changes in data. It would also be useful to investigate the performance of ESL
under Test-time adaptation conditions where the real labels are not available.
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Abstract. Artificial Intelligence-enabled systems are increasingly being
deployed in real-world safety-critical settings involving human partic-
ipants. It is vital to ensure the safety of such systems and stop the
evolution of the system with error before causing harm to human par-
ticipants. We propose a model-agnostic approach to detecting unknown
errors in such human-centered systems without requiring any knowledge
about the error signatures. Our approach employs dynamics-induced
hybrid recurrent neural networks (DiH-RNN) for constructing physics-
based models from operational data, coupled with conformal inference for
assessing errors in the underlying model caused by violations of physical
laws, thereby facilitating early detection of unknown errors before unsafe
shifts in operational data distribution occur. We evaluate our frame-
work on multiple real-world safety critical systems and show that our
technique outperforms the existing state-of-the-art in detecting unknown
errors.

Keywords: Human-Centered Systems · AI-Safety · Physics Based
Surrogate Model

1 Introduction

Rapid advancements in Machine Learning (ML) and Artificial Intelligence (AI)
have led to an increase in the number of AI-enabled systems being deployed
in real-world safety-critical settings. These systems often are deployed in con-
texts where they can cause potential risks to human participants. It is of utmost
necessity to ensure the safety of such Safety Critical Human-Centered Systems
and prevent them from causing harm to humans. While substantial efforts have
been made to guarantee the safety of these systems, much of the current research
focuses on safety assurances during the design phase [7,8,10,18,19], often over-
looking the unpredictable dynamics of real-world settings and the dynamic
nature of the human participants. Additionally, while runtime monitoring has
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been explored as a solution to this challenge, existing runtime monitoring tech-
niques [20] need to be trained on the specific errors they are trying to detect,
which are often not available. In this paper, we focus on developing an app-
roach for detecting errors in operational Human-Centered Systems,
without prior knowledge of the error signatures. Our approach of error
detection relies solely on the observation of inputs and outputs from the system
(Fig. 1). By assuming black-box access (Fig. 1) to the model’s controller, which
could be an AI-based controller or a conventional one, such as Model Predictive
Control (MPC) we make our detection mechanism model agnostic.

Fig. 1. System Model of Human-Centered Systems. In this architecture, the human
operator can be both part of the control mechanism and within the operational dynam-
ics of the plant itself. The plant’s state is monitored through sensors and control actions
are performed via actuators, processes that are prone to inaccuracies and errors

Recognizing errors in the operational phase presents unique challenges [2–4].
In Human-Centered Systems [5] that are in operation, sensing is limited, and
also errors in a component of the systems may not readily have any effect on the
trajectories of the sensed variables due to several physical properties. Recently
proposed design time stochastic safety verification based on output trajecto-
ries [1] may fail to detect errors during operation, since the effect of the errors
on the output trajectories (sensor values) may fall within the safe operating con-
ditions. An error may subsequently be combined with known or unknown errors
resulting in safety violations with potential fatal consequences [12]. Moreover, in
real-world deployments, systems may encounter previously unseen scenarios,
many of which are unpredictable and lack predefined error signatures, making it
challenging to train machines for their detection. Our approach addresses these
challenges by deploying continuous model learning and conformance-checking
strategy, focused on the model coefficients that reflect the underlying physi-
cal laws governing the system. This strategy is designed to identify structural
breaks [17] and deviations indicative of errors, thereby enhancing error detection
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Fig. 2. Overview of the Proposed Approach: The diagram illustrates the two-stage
process of our methodology. The physics-guided surrogate models facilitate the deter-
mination of a conformal range for the surrogate model coefficients. Subsequently, in the
Operational Phase, another physics-guided model is learned using real-time operational
traces. To ensure the model’s conformance, the critical assessment in this phase involves
verifying whether the coefficients of this operational model are within the conformal
range identified during the training phase

without the need for predefined error signatures and contributing to the overall
safety of Human-Centered Systems. State-of-the-art error detection uses runtime
monitoring and involves learning an operational monitor and testing the confor-
mance of the operational data with the monitor’s predictions [20]. An unsafe
deviation from the monitor predictions is specified using metric logic such as
Signal Temporal Logic (STL) [15,16]. The satisfaction of the STL is checked by
repeatedly evaluating a robustness value on the operational data [15]. We illus-
trate the inadequacy of such an approach in error detection using a toy example
shown in Fig. 3 where there is an unknown error at 20. State-of-art runtime
monitoring technique using conformal inference on operational data [15], when
implemented in the above example (Fig. 3), is not able to detect the error when
it occurs but detects it at a far later point (at 30.1) when the error has already
precipitated into a safety violation. In contrast, implementing our strategy as
detailed in this paper, annotates the input segment starting at 20 as unsafe. In
our approach, we combine continuous model learning and conformal inference
on model coefficients to partition the input space into safe and unsafe regions
based on whether the learned model is violating the safety STL on model coef-
ficients. Note that other runtime monitoring or error detection techniques that
require the predefined error signatures where even unable to detect the presence
of the error as the error is assumed to be an unknown-unknown error [11] and
such error signatures are not available.
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Our solution, and core contribution, is the introduction of continuous model
learning and conformal inference on model coefficient. Model coefficients rep-
resent the relationship between the input and the output trajectories of the
system guided by the physics laws. If an unknown-unknown error affects the
system it will lead to inaccurate or deviating model coefficients. This is because
the model encapsulates the relationship between the input and the output tra-
jectories and if there is an error it would lead to different model coefficients
to compensate for the changes in the system. So in this paper, we propose a
model conference on model coefficients rather than on the output trajectories.
We show that by converting the STL on model coefficients it is able to detect
unknown errors in Human-Centered systems without the need for predefined
error signatures.

Our approach is a two-stage process (see Fig. 2), 1) In Training Stage -
we learn physics-guided surrogate models to determine a conformal range for safe
operation on the model coefficients and 2) In Operational Phase - we relearn
the physics guided surrogate model and check conformance of the model coef-
ficients to determine the existence of errors in the operational traces. Through
a series of real-world error detection experiments, we show that a) our method
can detect errors even when error signatures are unavailable, b) the technique

Fig. 3. The figure illustrates a comparative analysis between current runtime monitors
and our approach to error detection. While existing techniques can detect errors at 30
when the safety threshold is breached, our approach can identify errors at 20, precisely
when they occur. In this example, the input to the system θ is time and y is the output
of the system
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is model agnostic that is it doesn’t depend on the specific system model of
the human-centered system and, c) enables early detection of unknown errors
whereby enabling safe operations of these systems.

1.1 Contributions

In this paper, we make the following contributions:

– Provide a generic framework for stochastic model conformance checking on
model coefficients and not on output trajectories.

– Provide a mechanism to mine physics-guided operational models from oper-
ational traces of Human-Centered Black Box Systems.

– Show detection of errors in the artificial pancreas, autonomous vehicles, and
aircraft examples.

1.2 Paper Organization

The rest of the paper is organized as follows. Section 2 defines the required pre-
liminaries and background work. Section 3 explains the methodology for mining
the model coefficients. Section 4 explains how model conformance can be utilized
on the model coefficients derived from Sect. 3. Section 5 discusses the case studies
we use to verify the proposed method. Section 6 explains the evaluation criteria
and Sect. 7 shows the results of the analysis performed on the examples defined
in Sect. 5.

2 Preliminaries

Physics Model: A physics model is a dynamical system expressed using a sys-
tem of linear time-invariant ordinary differential equations in Eq. 1. The system
has n variables xi, i ∈ {1 . . . n} in an n × 1 vector X , A is an n × n coefficient
matrix, B is an n × n diagonal coefficient matrix.

˙X(t) = AX(t) + BU(t), Y (t) = βX(t) (1)

where U(t) is a n × 1 vector of external inputs. Y (t) is the n × 1 output vector
of the system of equations. An n × n diagonal matrix, β of 1 s and 0 s, where
βii = 1 indicates that the variable xi is an observable output else it is hidden
and is not available for sensing.

A formal object μ̂ is a physics model when the set of models μ can be
described using the coefficient ω = A

⋃
B. The formal object can then take

any θ as input and given the model coefficients ω, generate a trace ζθ = μ̂(ω, θ).
Trajectory and Models: A trajectory ζ is a function from a set [0, T ] for
some T ∈ R≥0 denoting time to a compact set of values ∈ R. The value of a
trajectory at time t is denoted as ζ(t). Each trajectory is the output of a model
M . A model M is a function that maps a k dimensional input θ from the input
space Θ ⊂ Rk to an output trajectory ζθ.
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The input θ ∈ Θ is a random variable that follows a distribution DΘ. The
model M , can be simulated for input θ and a finite sequence of time t0 . . . tn
with n time steps and generate the trajectory ζθ such that ζθ(ti) = Σ(θ, ti).
Trace: Concatenation of p output trajectories over time ζθ1ζθ2 . . . ζθp

is a
trace T .
Continuous Model Mining: Given a trace T , continuous model mining maps
the trace into a sequence Ω of p, ωis such that ∀i dist(μ̂(ωi, θi), ζθi

) < υ, where
dist(.) is a distance metric between trajectories and υ ≈ 0 is decided by the user.

2.1 Signal Temporal Logic

Signal temporal logic are formulas defined over trace T of the form f(Ω) ≥ c or
f(Ω) ≤ c. Here f : Rp → R is a real-valued function and c ∈ R. STL supports
operations as shown in Eqn. 2.

φ, ψ := true|f(Ω) ≥ c|f(Ω) ≤ c|¬φ|φ ∧ ψ|φ ∨ ψ|FIφ|GIφ|φUIψ, (2)

where I is a time interval, and FI , GI , and UI are eventually, globally, and
until operations and are used according to the standard definitions [6,9]. To
compute a degree of satisfaction of the STL we consider the robustness metric.
The robustness value ρ maps an STL φ, the trajectory ζ, and a time t ∈ [0, T ]
to a real value. An example robustness ρ for the STL φ : f(Ω) ≥ c is ρ(f(Ω) ≥
c,Ω, t) = f(Ω(t)) − c.

2.2 Physics-Driven Surrogate Model

A surrogate model is a quantitative abstraction of the black box model M . A
quantitative abstraction satisfies a given property on the output trajectory of
the model. In this paper, this quantitative property is the robustness value of
an STL property. With this setting, we define a δ-surrogate model μ̂.

(δ, ε) Probabilistic Surrogate model: Let ζθ be a trajectory obtained
by simulating M with input θ. Let ωT be the coefficients of the physics-guided
representation of the original model. Given a user-specified ε, the formal object
μ̂(ω, θ) is a (δ,ε) probabilistic distance preserving surrogate model if

∃δ ∈ R, ε ∈ [0, 1] : P (|ρ(φ, ωT ) − ρ(φ, ω)| ≤ δ) ≥ 1 − ε. (3)

A δ surrogate model guarantees that the robustness value evaluated on a physics
model coefficient ω derived from the trajectory ζθ will not be more than δ
away from the robustness computed on the coefficients of the original model
M .

3 Coefficient Mining from Trajectory

Problem Definition 1. Given a set of variables X (t), a set of inputs U(t),
a β vector indicating observability, and a set T of traces such that ∀i : βi =
1∃T (xi) ∈ T and ∀uj(t) ∈ U(t)∃T (uj) ∈ T .
Derive: approximate coefficients Aa and Ba such that:
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Algorithm 1. RNN induction algorithm
1: ∀xi ∈ X create an RNN node with n + 1 inputs and xi as the hidden output.
2: for each RNN node corresponding to xi do
3: for each j ∈ 1 . . . n do
4: if aij �= 0 then
5: Add a connection from the output of RNN node for xj to the input of

RNN node for xi.
6: end if
7: end for
8: Remove all other inputs in the RNN which does not have any connection.
9: for e doach j ∈ 1 . . . n

10: if bij �= 0 then
11: Add uj as an external input to the RNN node for xi.
12: end if
13: end for
14: end for
15: Assign arbitrary weights to each link.

– ∀i, j |Aa(i, j) − A(i, j)| < ξ
– ∀i |Ba(i, i) − B(i, i)| < ξ
– Let T a be the set of traces that include variables derived from the solution

to differential equation dX(t)
dt = AaX(t) + BaU(t) then ∀i : θi = 1, and

∀k ∈ {1 . . . N}, |T a(xi)[k] − T (xi)[k]| < ΨT (xi)[k],

where ξ is the error in the coefficient estimator, while Ψ is the error factor for
replicating the traces of variables with the estimated coefficients.

3.1 Dynamics Induced RNN

For each variable xi ∈ X the system of dynamical equations takes the form in
Eq. 4.

dxi

dt
=

n∑

j=1

aijxj + biiui. (4)

The RNN induced by the system of equations (Eq. 1) follows Algorithm 1. We
explain Algorithm 1 using the linearized Bergman Minimal Model (BMM) as
an example. The model is a dynamical system that mimics the glucose-insulin
biochemical dynamics in the human body. The Bergman Minimal model is lin-
earized using Taylor Series expansion starting from overnight glucose dynamics
and going up to time N . The linearized model is represented in Eqs. 5, 6 and 7.

dδi(t)
dt

= −nδi(t) + p4u1(t) (5)

dδis(t)
dt

= −p1δis(t) + p2(δi(t) − ib) (6)

dδG(t)
dt

= −δis(t)Gb − p3(δG(t)) + u2(t)/V oI, (7)
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The input vector U(t) consists of the overnight basal insulin level i1b and the
glucose appearance rate in the body u2. The output vector Y (t) comprises the
blood insulin level i, the interstitial insulin level is, and the blood glucose level G.
For this example, we consider that only the blood glucose level G is an observable
output of the system of equations. is and i are intermediate outputs that are not
measurable for the system of equations and only contribute to the final glucose
output. p1, p2, p3, p4, n, and 1/VoI are all the coefficients of the set of differential
equations. The resulting DiH-RNN for the BMM using Algorithm 1 is shown in
Fig. 4

Fig. 4. DiHRNN structure of the Bergman Minimal Model

3.2 Forward Pass in DiH-RNN

We prove that the Forward pass on an RNN node estimates the solution of Eq. 4
with error factor Ψ if τ ≤ mini

√
2Ψ

aii
. The poof is attached in the appendix.

3.3 Backpropagation to Learn Coefficients

The main aim of backpropagation is to derive the approximate coefficient matri-
ces Aa and Ba. Given an error ratio of φ, we have established that the forward
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pass is convergent and estimation error is proportional to φ if τ ≤
√

2Ψ
|aii| ∀i. How-

ever, we do not know aii and hence setting τ is a difficult task. Often τ is limited
by the sampling frequency of the sensor. In this paper, we assume that the τ
satisfies the condition for convergence of the forward pass. Proposition 1 in [21]
shows that for shallow DNNs if all the weights are nonnegative and the activation
function is convex and non-decreasing then the overall loss is convex. In such a
scenario there exists only a single minima and the gradient descent mechanism
is guaranteed to find it.

4 Conformal Inference

Conformal Inference is a framework to predict the accuracy of the predictions in
a regression framework Conformal Inference is rigorously studied in the following
works [11,15,16]. We use that basic framework of conformal inference and extend
it to model coefficients.

In this approach (Fig. 2), we use error-free operational traces to learn the
confidence threshold d. The process to determine this threshold on model coef-
ficients involves several steps:

1) Split the error-free data into training and testing sets.
2) From the training set, calculate a set of PGSM model coefficients, ωe.
3) For each subset in the testing set, compute model coefficients, ωi, where i

represents the specific subset.
4) Using the ωe from the train set we calculate the robustness residue of each

test ωi. We define robustness as a quantification of the difference in model
coefficient values. For this paper, we consider the maximum deviation of the
model coefficients which is explained by the following Eq. 8. Other metrics
like minimum deviations and average deviations could have been used but
such investigations are beyond the scope of this paper and are left for future
investigation.

ρ(φ, ω) = maxj∈{1...n}abs((ω[j] − ωe[j])/ωe[j]) − α, (8)

where n is the total number of model coefficients in ωe.
5) Sort the calculated robustness values in ascending order and identify the

residue corresponding to the position defined by �(n/2 + 1)(1 − α).
6) The robustness residual value at the given position gives us the confidence

range d, and with it, we derive the confidence interval [ρ(ω) − d, ρ(ω) + d].

Any new data with unknown errors should result in model coefficients such
that the STL robustness residue is beyond the range [ρ(ω) − d, ρ(ω) + d].

5 Case Studies

Human-centered systems are those where failure could result in catastrophic
outcomes, such as loss of life, significant property damage, or harm to the human
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Table 1. Physical model coefficients derived using DiHRNN for train and test set

Train/Test p1

1/min
p2

1/min
p3

10−6

μU.min2 p4 n 1/min V oI dl Gb mg/dl Residue

Simulation Set-
tings

0.098 0.035 0.028 0.05 0.1406 199.6 −80 NA

Train 0.0978 0.0349 0.0262 0.0508 0.1406 198.134 −80.64 0

Test 1 0.0982 0.0329 0.0256 0.0530 0.1405 198.1340 −80.2774 0.0225

2 0.0979 0.0332 0.0274 0.0533 0.1407 198.1340 −85.0589 0.0028

3 0.0980 0.0348 0.0262 0.0528 0.1405 198.1340 −85.0973 0.0011

4 0.0981 0.0343 0.0267 0.0515 0.1405 198.1340 −80.6921 −0.0168

5 0.0979 0.0317 0.0273 0.0548 0.1407 198.1340 −82.7676 0.0328

6 0.0980 0.0328 0.0275 0.0534 0.1404 198.1340 −82.3447 0.0048

participant. In this section, we present three real-world safety critical examples.
Each example features a human integrated into the operational dynamics, as
outlined by the architecture depicted in Fig. 1. The inclusion of humans within
the operational framework elevates the criticality of these systems, significantly
increasing the risk of harm. In these cases, the problem of detection of unknown
errors is even more important.

5.1 Automated Insulin Delivery System Example

In the Automated Insulin Delivery (AID) system, the glucose-insulin dynamics
is given by the Bergman Minimal Model (BMM) represented as 5, 6, and 7
and is explained in detail in Sect. 3.1. For this paper, we consider the unknown
error of insulin cartridge error in the automated insulin delivery system. The
error signature of the error was unavailable at the time of the error as this error
was never seen before. The human being part of the system being controlled
made measuring the effects even more complicated. While the controller operated
under the assumption of flawless insulin administration, the actual delivery to the
human body (the system) was compromised, leading to a significant disparity
between the system’s state as perceived by the controller and its true state
(Table 1).

5.2 Aircraft Example

Pitch control in an aircraft is automated using a Proportional Integrative Deriva-
tive (PID) Controller. The pitch control system considers a linear system model
described by Eq. 9 [14].

ẋα = cααxα + cαqxq + cαδuδ, ẋq = cqαxα − cqqxq + cqδuδ

ẋθ = cθθxq, y(t) = xθ. (9)
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Here xα is the angle of attack (AoA), xq is the pitch rate, uδ is the elevator
angle, and xθ is the pitch angle of the aircraft. The controller is a PID and
based on a pitch angle set point derives the elevator angle uδ. Hence, uδ is the
input to the aircraft dynamics, while xθ is the output of the dynamical model. A
trajectory is the continuous time value of state variables in between two elevator
angle inputs from the PID.

For this example, we consider the unknown MCAS error that caused the
accidents in the Boeing 787 aircraft. The cause was also unknown due to the
black box abstraction of the MCAS system. The human participant (the pilot
in this case) did not know that the faulty AOA sensor was being used to control
the plant.

5.3 Autonomous Driving Example

An autonomous car detects another static car in its lane and attempts to stop
before crashing into the car ahead. The kinematics of the car is given by:

ȧx = −0.01sx + 0.737 − 0.3vx − 0.5ax,
v̇x = 0.1ax, ṡx = vx − 2.5. (10)

For this example, we consider the unknown error of a zero-day vulnerability in
the controller code. The vulnerability caused the black box controller code to
change from fc to f ′

c in Fig. 1. Originating from a zero-day vulnerability, the
full impact on the system was uncertain, given that this vulnerability had not
been detected before.

6 Evaluation Method and Metrics

Human-centered systems are safety-critical, and it is necessary to identify
unknown errors to shield the human participant from harm. The performance of
zero-shot detection of unknown errors is quantified in terms of the true positive
rate of the detection algorithm. We designate the approach as Detected (D) if
it can identify the Unknown-Unknowns, and Undetected (ND) if it cannot. The
availability of real data for such real-world safety-critical systems with unknown
errors is fairly limited. So, here we use simulators developed in MATLAB to
generate data for such unknown errors in real-world complex systems.

6.1 Unknown-Unknown Scenario Simulation

For the AID example, we use the shunted insulin model to generate the traces
with the insulin cartridge errors. We vary the amount of insulin blockade percent
between 20 to 80% and the time until insulin release from 50 to 150 mins. The
scenarios generated for the insulin cartridge problem are listed in Table 2.

For the AoA error in the MCAS system, we use any error or noise rate of
20–25% in the AoA measurement and use that to derive the coefficients at the
model of the pitch control system.
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For the autonomous vehicle example, an integer overflow vulnerability in
the control software is considered where instead of declaring Q as an uint16 t
variable it is mistakenly defined as int8 t. This means that instead of setting
Q(1, 1) = 10, 000, it is now set at Q(1, 1) = 16. This can potentially cause a
crash since the controller is less aggressive.

6.2 Baseline Strategy

We replicate the model conformance-based strategy described in [15,16] to the
best of our knowledge. In the work, the authors learn a surrogate model of the
system under test and use it to find the robustness range of the output values.
During operation, a new model is learned from the test traces and checked if the
robustness values lie within the robustness range. If the robustness value of the
test system is outside the range then the system under test is termed to have
deviated from the approved characteristics.

7 Results

In safety-critical systems that involve human participants, it is of utmost neces-
sity to detect every possible error to stop the faulty system from causing any
harm to humans. It is established that detecting such errors that is the number
of true positives detected is far more important than other metrics. So, in this
paper, we consider the true positive rate of the different detection algorithms.

Implementation: The Unknown-Unknown (U2) detection mechanism and
DiHRNN were implemented on a single thread of an Intel i7 CPU processor,
without parallelism or optimizations. Initial results indicate that DiHRNN is
highly suitable for model learning on edge devices, as it requires significantly
less memory and computational power compared to traditional deep learning
methods [13]. On average, DiHRNN takes approximately 12 seconds to relearn
each model and is also highly memory-efficient. For instance, in the AID exam-
ple, DiHRNN requires only about 9 bytes of memory to store the model weights,
as it needs to store just 9 weights without any optimizer states or activation
functions.

7.1 Automated Insulin Delivery System Example

Table 2 shows that for the insulin cartridge problem, the model conformance
results show that the robustness values under various input configurations are
falling outside the range. Hence, these scenarios are deemed to be non-conformal
to the original model. Using the technique defined in this paper, it was able to
detect all the unknown errors simulated for evaluation purposes without the
need for error signatures and have a positive predictive value of 100%.
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Table 2. Comparison of physical model coefficients derived using DiH-RNN for dif-
ferent Insulin Blockages to detect the errors, D in the robustness column means error
detected and Robustness is beyond [−0.0216, 0.0376]. Insulin = 7.5 U, Meal = 20 g

Insulin
Block Per-
centage

Time until
insulin
release

p1 1/min p2 1/min p3
10−6

μU.min2 p4 n 1/min V oI dl Gb mg/dl Robu-
stness

Model
Confor-
mance
on coeffi-
cients(Our
Method)

Model
Confor-
mance on
Output
[15,16]

20 150 0.098 0.033 0.018 0.065 0.1404 268.55 −51.46 0.37 (D) ND

40 120 0.098 0.034 0.018 0.053 0.1402 287.92 −68.32 0.3885 (D) ND

80 90 0.098 0.034 0.019 0.068 0.1401 235.25 −58.68 0.36 (D) ND

70 70 0.098 0.033 0.020 0.068 0.1400 216.14 −48.12 0.43 (D) ND

60 50 0.098 0.034 0.019 0.068 0.1405 180.48 −69.76 0.35 (D) ND

Phantom
20

150 0.098 0.0269 0.0194 0.058 0.1402 155.89 −54.104 0.32 (D) ND

Phantom
40

120 0.098 0.0339 0.0218 0.0579 0.1402 307.06 −60.73 0.5284 (D) ND

Phantom
80

90 0.098 0.0344 0.0217 0.0503 0.1401 143.43 −64 0.27 (D) ND

Phantom
70

70 0.098 0.0348 0.0229 0.0655 0.139 169.20 −48.26 0.48 (D) ND

Phantom
60

50 0.0983 0.0349 0.0187 0.0554 0.1400 317.86 −55.12 0.5825 (D) ND

7.2 Aircraft Example

As shown in Table 3, the model conformance with STL on the model outputs
failed to recognize errors as the outputs fell within the defined safe and robust
range. In contrast, our proposed detection technique by applying model confor-
mance to the model’s parameters, successfully identified 9 out of 10 such errors
immediately upon their occurrence and had a positive predictive value of 90%.

Table 3. Comparison of physical model coefficients derived using DiH-RNN for differ-
ent AoA errors and error timings to detect errors, D in the robustness column means
error detected and Robustness is beyond [0.0299, 0.1116]

Set point -
SP (rads)

SP change
time (s)

AoA error
(rad)

Error
Time (s)

cαα 1/s cαq cαδ 1/s cqα 1/s cqq 1/s cqδ 1/s2 cθq 1/s Robust-
ness

Model
Confor-
mance
on coef-
ficients
(Our
Method)

Model
Confor-
mance on
Output
[15,16]

0.2 0 0.6 5 −0.276 53.7 0.24 −0.0118 −0.475 0.0232 60.1 0.136 (D) ND

0.5 5 0.2 7 −0.258 47.6 0.24 −0.0123 −0.482 0.0205 62.9 0.156 (D) ND

0.4 2 0.4 10 −0.282 45.5 0.24 −0.0115 −0.51 0.0213 66.11 0.22 (D) ND

0.8 5 0.4 5 −0.281 60.2 0.27 −0.0126 −0.4 0.0219 65.2 0.13 (D) ND

0.1 5 0.6 5 −0.269 52.4 0.25 −0.0129 −0.489 0.0231 63.2 0.17 (D) ND

0.1 7 0.6 5 −0.28 63.6 0.26 −0.0123 −0.367 0.0214 60.23 0.11 (ND) ND

0.1 9 0.7 2 −0.257 65.0 0.27 −0.0136 −0.354 0.0219 58.3 0.16 (D) ND

0.4 9 0.9 2 −0.26 64.8 0.25 −0.0138 −0.398 0.0243 61.2 0.17 (D) ND

0.1 10 0.6 10 −0.293 67.5 0.27 −0.0136 −0.372 0.023 66 0.17 (D) ND

0.3 1 0.3 10 −0.302 46.1 0.28 −0.0125 −0.46 0.0214 63.3 0.18 (D) ND
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7.3 Autonomous Driving Example

We conducted 11 simulations of the autonomous braking system, using the data
to train a deep learning model for assessing the reliability of the system’s output.
Subsequently, we carried out an additional 11 simulations introducing brak-
ing errors. The vulnerable controller code was executed to obtain the traces
starting from the same initial sx and vx as training. The average robustness
residue is −17.395 (±2.1), with all vulnerable traces falling outside the robust-
ness range. Our proposed method using DiH-RNN, implementing STL on the
model’s parameters, detected all 11 errors and had a positive predictive value of
100%.

8 Future Works

In this paper, we present DiHRNN as the primary mechanism for real-time model
re-learning. However, further investigation is needed to evaluate its performance
compared to other model learning techniques. Currently, the framework operates
on a single-thread CPU, and future optimizations are required to enhance its
speed. The latency for detecting the first unknown-unknown within the frame-
work is approximately 13 seconds. While this latency is acceptable for many
applications, future improvements are necessary to reduce it, making the frame-
work suitable for real-time analysis in applications that demand lower latency.

9 Conclusions

This paper proposed a model-agnostic framework for the detection of unknown
errors in operational human-centered systems without the need for error sig-
natures. By employing a physics-guided surrogate model to track the physical
system’s behavior and using a hybrid RNN approach to derive model coefficients,
our method identifies deviations using conformal inference techniques, signaling
unknown errors in the operational system. With our technique, we can detect
errors that haven’t been identified before and can stop the system from causing
harm to the human participant. Our results demonstrate that this method sur-
passes existing state-of-the-art error detection techniques in identifying errors
without relying on pre-established error definitions. However, it’s important to
note that our method’s efficacy relies heavily on the training and testing data,
particularly when determining the model coefficients. Furthermore, the impact
of available training data on error detection accuracy needs further investigation.
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Abstract. Surface defect detection is significant in industrial produc-
tion. However, detecting defects with varying textures and anomaly
classes during the test time is challenging. This arises due to the dif-
ferences in data distributions between source and target domains. Col-
lecting and annotating new data from the target domain and retraining
the model is time-consuming and costly. In this paper, we propose a
novel test-time adaptation surface-defect detection approach that adapts
pre-trained models to new domains and classes during inference. Our
approach involves two core ideas. Firstly, we introduce a supervisor to
filter samples and select only those with high confidence to update the
model. This ensures that the model is not excessively biased by incorrect
data. Secondly, we propose the augmented mean prediction to generate
robust pseudo labels and a dynamically-balancing loss to facilitate the
model in effectively integrating classification and segmentation results to
improve surface-defect detection accuracy. Our approach is real-time and
does not require additional offline retraining. Experiments demonstrate
it outperforms state-of-the-art techniques.

Keywords: Surface-defect detection · Test-time adaptation ·
Source-free domain adaptation · Online adaptation

1 Introduction

With the advent of deep learning [7–9,14,15,30,32,48,55,60,61,65], surface-
defect detection (SDD) [58] has made great progress recently in industrial sce-
narios. Unfortunately, gathering and labeling anomalous samples is costly. The
collected datasets of industrial production are usually limited, which hinders
effective training. As a result, models excel under the same training distribu-
tion but suffer from accuracy degradation due to domain shifts, e.g.,, varying
textures, and new defect classes, which usually appear in testing.

Test-time Adaptation (TTA) is a task that uses unsupervised testing data to
infer the target domain distribution. The online, unlabeled data arrives contin-
uously, demanding immediate model updates and decisions. Various TTA net-
works have been proposed, such as TENT [47] and CoTTA [49]. These methods
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Fig. 1. Visualization of the domain discrepancy in cross-domain surface-defect detec-
tion. f represents the optimal parameters that can be learned. Our goal is to find a
path that can span the difference between the source and target domains

enable models to adapt to different data distributions during the test time. How-
ever, directly applying TTA methods to industrial scenarios will encounter sev-
eral challenges. Firstly, Table 1 shows that the dataset sizes of industrial datasets
are usually significantly smaller than classical datasets. A small dataset can lead
to a higher likelihood of encountering untrained knowledge and lead the unstable
performance during inference. Besides, different from existing TTA that usually
assumes that the source domain and the target domain share the same label
space, a more specific challenge in industrial scenarios is that it will encounter
novel classes of defects during the online adaptation (Fig. 1).

Table 1. Comparison of classical test-time adaptation dataset and industrial
dataset We can see that for the same TTA task, the dataset for the traditional image
segmentation tasks is much larger than that for the surface-defect detection tasks

Classical Dataset Class Total number Industrial dataset class Total number

CIFAR10-C 15*5 750000 KolektorSDD 1 399

ImageNet-C 15*5 3750000 DAGM 10 8050

Motivated by the above analysis, we present a novel test-time adaptation
method for surface-defect detection. To enhance the adaptability toward the tar-
get domains, we introduced a supervisor to predict the sample reliability, which
is initialized with source domain parameters, and kept constant during the test-
ing. To bolster the pipeline’s robustness, we design two strategies to improve the
tranferability: augmented mean prediction and dynamically-balancing loss. Con-
cretely, augmented mean prediction generates multiple predictions per sam-
ple and combines them for a more stable pseudo-label. Besides, dynamically-
balancing loss adjusts the model’s learning focus over time to enhance the robust-
ness of the model. Our contributions are summarized as follows.
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Table 2. The difference between our proposed test-time adaptation and
related adaptation settings. We compared the differences in the related settings.
Our approach requires only unlabeled test data. The test domain is allowed to have
different classes from the source domain. Our approach is online updates on the test
domain without source domain data and offline retraining

setting source data target data new class train stage test stage

fine-tuning no stationary+labeled yes yes no

standard domain adaptation yes stationary yes yes yes

standard test-time training yes stationary yes yes(aux task) yes

fully test-time adaptation no stationary no no(pre-trained) yes

continual test-time adaptation no continually changing no no(pre-trained) yes

our industrial setting no continually changing yes no(pre-trained) yes

• We propose a real-time, test-time adaptation method for online surface-defect
detection tasks, without offline retraining or source domain data reuse.

• To bolster pipeline robustness, we introduce a supervisor to filter samples,
devise augmented mean prediction, and dynamically-balancing loss to gener-
ate more stable pseudo-labels and combat catastrophic forgetting.

• Experimental results show our presented approach outperforms existing state-
of-the-art methods on various industrial datasets.

2 Related Work

Domain Adaptation. Our work is related to unsupervised domain adap-
tation(UDA), source-free domain adaptation, and test-time adaptation
(TTA). Though Domain Generalization (DG) methods [21,33–35,50,66–68] can
improve the model’s generalizability, they only utilize the seen data in the train-
ing stage, which fails in utilizing the information of the target data, thus resulting
in unsatisfactory performance on the target domain. In contrast, UDA methods
[10,12,13,17,31,41,43,52,54,62–64,70] aim to adapt a model given unsupervised
data, which access labeled data from the source domain and unlabeled data
from the target domain at the same time. In our setting, source data is not
needed during the adaptation time, and the model is adapted using the unla-
beled data solely from the target domain. The source-free domain adaptation
methods [24,27,29,42,69] require no data from the source domain for the adap-
tation process. However, most of them are deployed in an offline manner and
cannot tackle the online streaming data.

Test-Time Adaptation. Our work is belong to test-time adaptation [45,47] cat-
egory. [25,27,39] utilize generative models to acquire feature alignment. Test
entropy minimization (TENT) [47] is proposed to adapt the test data by min-
imizing the prediction entropy. Source hypothesis transfer (SHOT) [29] utilizes
both entropy minimization and a diversity regularizer for adaptation. [36] apply
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a diversity regularizer combined with an input transformation module to fur-
ther improve the performance. [22] uses a separate normalization convolutional
network to normalize test images. [20] updates the final classification layer dur-
ing inference time using pseudo-prototypes. [59] proposes a regularized entropy
minimization procedure at test-time adaptation, which requires approximating
density during training time. [19,28,56] Update the statistics in the Batch Nor-
malization layer using the target data. [18,23] extend test-time adaptation to
semantic segmentation.

Unsupervised Learning for Surface-Defect Detection. Unsupervised learning in
industry learns features through reconstruction objective [4], adversarial loss [11]
or self-supervised objective [6], without the use of annotated data. Although
these methods can significantly reduce the cost of acquiring annotated data,
they perform significantly worse compared to fully supervised methods.

3 Method

We assume that the model is initialized by parameters θ pre-trained on the
source domains. Our goal is to adjust the model in an online manner during the
test time. The input xt is provided at time t sequentially, drawn from target
distribution P t(X) �= P s(X). The parameters of the model fθt−1 are updated
to fθt

in time t based on the input xt. Our setup is motivated by the need for
surface-defect detection in industrial scenarios. In Table 2, we list the differences
between our industrial setup and the relevant adaptation setups that already
exist to better show the necessity of our work. Our work focuses on source-
free, real-time inference while having fewer constraints on the target domain
and higher generalization capabilities. Specifically, we allow the test domain to
appear as novel anomalous classes and different texture information that do not
appear in the source domain, rather than just adding additional noise on the
same class [47,49]. Our setting meets two conditions. 1) Data: only using the
unlabeled target domain data. 2) Updating way: the model is updated online
and does not require to be retrained offline.

As shown in Fig. 2, our method contains two key parts. Firstly, we intro-
duce a supervisor as a “gate” to filter the testing data. We identify
untrustworthy data that the model cannot confidently classify, only performing
inference on them but excluding them for model updates. For plausible data
where the model makes confident predictions, we use them to learn the target
data and update the model accordingly. Secondly, we enhance TTA’s robustness
with two core modules: improved average prediction and dynamically bal-
ancing loss. We employ the model’s average predictions to reduce outlier impact
and boost performance. We also adjust weights in the loss function based on pre-
diction errors to prevent overfitting to training data.

Base Model. We use a lightweight two-stage CNN-architecture model [2] as
our base model. This model is a two-stage end-to-end structure that super-
vises both the segmentation and classification results during the training time.
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Fig. 2. Architecture of our proposed method – We initialize all modules using
the parameters trained on the source domain. Each sample on the target domain is fed
to the supervisor to get a score, and only reliable samples are used. The augmented
samples are fed into the supervisor to obtain prediction results, which are combined
with the results inferred from the model to generate the pseudo label. We use the
pseudo label to update the model with a dynamically-balancing loss

The number of parameters is much smaller than common network models (e.g.,
ResNet, ViT, etc.), meeting the performance requirements of industrial detection
(i.e., real-time inference updates).

3.1 Supervisor

In the test-time adaptation testing, using untrustworthy predicted results as
pseudo-labels for self-supervised learning can lead to model performance bot-
tlenecks. In industrial scenarios, models are more sensitive to such inaccurate
pseudo-labels, because the segmentation results for anomaly detection in indus-
trial settings are usually small, and be more sensitive to subtle changes. Addi-
tionally, due to performance constraints, industrial detection models are typically
smaller, and using erroneous labels for model updates can cause the model to
move even further in the wrong direction.

To deal with accumulated errors, we create a supervisor with a structure
similar to the model. The key distinction is that the supervisor using parameters
from source domain training and does not undergo backpropagation. It retains
the original knowledge. When the supervisor finds low prediction reliability p
below a set threshold pth, the adaptive phase is skipped. This is because pseudo-
labels from low-confidence predictions can mislead the model. We skip such
samples to avoid steering the model in the wrong direction.

Adapting to new distributions can lead to losing knowledge from the source
domain, causing severe information loss. Unlike others, we are constrained to
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not retrain the model from the source, and prolonged self-training may introduce
errors, affecting label accuracy. In our approach, the supervisory module employs
pre-trained parameters from the source domain, without further updates in the
entire TTA process. It holds source domain knowledge and guides pseudo-label
generation, preventing memory loss.

3.2 Augmented Mean Prediction

As shown in Sect. 3.1, the supervisor we proposed is initialized with parameters
pre-trained on the source domain and is not updated during the test time. It
comes with all the knowledge learned from the source domain. We use it to gen-
erate pseudo-labels to introduce source domain information. Besides, we propose
a method based on augmented average predictions. Specifically, we use sample
images that have been data enhanced in many different ways e.g., stretched,
cropped, flipped, etc.) to input into the supervisor to obtain the prediction
results. At the same time, the complete original sample images are also input
into the model to obtain Y . When performing the filtering operation, each sam-
ple is given a confidence value p for the pseudo label. The pseudo label of this
image is finally obtained from all the above predictions by weighting averaged.
The weight w is a function related to the confidence level p value. The lower
the confidence level, the more the model will refer to the prediction results the
supervisor gave (i.e., source domain knowledge) using the augmented picture.
The specific calculation formula is shown below:

ỹt =
1
N

N−1∑

i=0

fθt
(augi (xt)) (1)

where paugi
> pth. Here, paugi and pth refer to the confidence of the augmented

image and the confidence threshold, respectively.

3.3 Dynamically-Balancing Loss

Traditional TTA methods compute the loss function based solely on the seg-
mentation or classification results. However, these are not suitable for surface-
defect detection. This is because the segmentation portion of anomaly detection
datasets is much smaller than the background and the textures are complex,
making segmentation quite difficult. In addition, for anomaly detection tasks,
correct classification (whether samples with surface-defects can be identified) is
of great practical significance. Therefore, during the TTA phase, we simultane-
ously compute the classification and segmentation losses.

We propose a dynamic weight loss function rather than
a fixed weight loss. Specifically, our loss function is defined as:
Ltotal = λclassLclass + (1 − λclass) Lseg , λclass = 1 − t/N , where t is the current-
time index and N is the number of test dataset. It utilizes a time-dependent
weighting scheme to balance the classification and segmentation losses during
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the self-adaptive testing phase. The underlying principle is that the model’s per-
formance in different tasks changes as it adapts to the target domain. By giving
priority to the classification loss at the beginning, the model can focus on cor-
rectly classified samples, which is crucial for identifying anomalous regions. As
the model’s distribution shifts towards the target domain, the segmentation loss
is given more weight, enabling the model to capture the complex features of the
anomalous regions more accurately.

For the specific calculation of these two components, we tried various combi-
nations of common loss functions, including Kullback-Leibler divergence loss,
BCE loss, softmax loss, and DICE loss. Through our experiments, we find
that the softmax loss combined with Kullback-Leibler divergence loss achieves
the best learning effect, specifically defined as follows.

Lclass =
1
n

n∑

i=1

(
− log

eli,Y (i)

∑C
k=1 eli,k

)
(2)

Lseg = −
∑

x log(p) −
(
−

∑
x log(x)

)
(3)

To illustrate our algorithm more clearly, the complete process is shown in
Algorithm 1. Through the filtering by the supervisor and the optimization,
our algorithm effectively reduces error accumulation and catastrophic forgetting
when test time adaptation is performed on the target domain.

3.4 Model Update Pipeline

To illustrate our algorithm more clearly, the complete process is shown in Algo-
rithm 1. Our algorithm effectively reduces error accumulation and catastrophic
forgetting when unsupervised learning is performed on the target domain.

Algorithm 1 Framework for online test-time adaptation
Initialize: A model fθ0(x) and Its supervisor mθ0(x) (Both initialized with param-

eters θ0 which obtained by pre-training on the source domain Ds). The threshold
used for filtering samples pth .

Input: For each time step t, unlabeled data xt sampled from target domain Dt.
1: Input Provide input xt to the supervisor mθ0(x) and obtain the confidence proba-

bility p;
2: if p > pth then
3: Provide the set of Augment xt to supervisor mθ0(x) and obtain predictions;
4: Provide xt to model fθ0(x) and obtain predictions;
5: Use augmented mean prediction method to acquire pseudo-label of xt

6: Upgrade model fθ0(x) by loss in 3.3
7: end if
8: Calculation of prediction result yt

Output: Prediction yt, Updated model fθt(x)
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4 Experiments

4.1 Datasets and Pre-training

DAGM 2007 Dataset. DAGM dataset [51] is a well-known benchmark database
for surface-defect detection. It contains images of various surfaces with artificially
generated defects. Surfaces and defects are split into 10 classes of various difficul-
ties. We randomly selected four types of samples from the DAGM dataset as the
training set for pre-training the model. The model is then no longer exposed to
the source domain dataset but is validated on the remaining six unseen anomaly
classes. As shown in Fig. 3, there are significant differences in the distribution of
the ten anomaly classes.

KolektorSDD Datasets. [46] is annotated by the Kolektor Group. The images
were captured in a controlled industrial environment in a real-world case. The
dataset consists of 399 images, of which 52 images with visible defects and 347
images without any defects. The original width is 500 px, and the height is from
1240 to 1270 px. We resize images to 512 × 1408 for training and evaluation. For
each item, the defect is only visible in at least one image, while two items have
defects on two images, which means there were 52 images where the defects are
visible. The remaining 347 images serve as negative examples with non-defective
surfaces. Since KolektorSDD does not have the same subclass division as DAGM,
we manually divide the anomalous samples into two parts with large morpholog-
ical differences and use one part for training while validating the other part to
demonstrate its adaptive ability on target domains with different distributions.

Pre-training. Following the work in [2], we use a two-stage model as our base
model, where the segmentation is performed in the first stage, followed by a per-
image classification in the second stage. We train the network using stochastic
gradient descent with no weight decay and no momentum. We initialize the base
model and the Supervisor using the trained parameters θ0. Since the dataset
suffers from severe positive and negative sample imbalance, we use low sampling
of negative samples, and in each training epoch, we select negative samples of
the same size as the positive subset of the sample. We also ensured that all neg-
ative images were used approximately equally often during the learning process.
Our pre-training on the source domain does not require additional measures to
improve the generalization ability of the model. For the DAGM dataset, we train
60 epochs with a learning rate of 0.01 batch size = 5. For the KolektorSDD
dataset, we train 35 epochs, using a learning rate of 0.5. After training with the
source domain data, the model does not need to use the training data again in
the subsequent stages and will not be retrained offline again.

4.2 Results

Inference Time. As we have highlighted, our model is a lightweight, online-
inference CNN model to meet the requirements of industrial scenarios. Our
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proposed method achieves 32 fps on 512× 512 images (DAGM) and 13 fps on
512× 1408 images (KolektorSDD). For TTA methods that do not require retrain-
ing: CoTTA achieves 25 fps on 512× 512 images (DAGM) and 9 fps on 512× 1408
images (KolektorSDD). This latency is due to the need to update both student
and teacher models simultaneously (our method only requires updating one).
For other methods that require retraining (unsupervised and weakly supervised),
they can achieve faster inference speeds during the inference stage. However, the
additional training takes approximately 15 min (KSDD) to 30 min (DAGM) and
results in poorer inference accuracy (as shown in Table 4). By default, all of our
results are based on a single Nvidia RTX2080Ti GPU.

Test Time Setting. Without special emphasis, we set batch size=1 and use 1e-3
as the learning rate with Adam optimizer. Following [49], we use the same data
augmentation operations, including color jitter, random affine, random horizon-
tal flip, and so on. We use 4 augmentations for our experiments. The threshold
p is 0.6 by default.

As shown in Table 3, The sample sizes of the surface-defect detection
datasets are very small. This makes the base model originally supported by
Cotta [49] and Tent [47] perform poorly on KolektorSDD. (On CIFAR10C
[16] they used WideResNet-28 [57], on CIFAR100-C they used ResNeXt-29 [53]
and on ImageNet-C [16] they used resnet50 [5]) For a fair comparison, we used
the same two-stage model [2] as the base model, along with the same epoch
training parameters to initialize. This allows us to more accurately compare the
strengths and weaknesses of the methods in the adaptive phase. It is guaranteed
that the difference is not due to a difference in the base model.

Experiments on DAGM. We first validate the effectiveness of our method on the
DAGM dataset, which has ten classes, each with different texture and surface
anomalies. To verify the reliability and stability of our method, we randomly
select four of the ten classes as the source domain for training, while using the
remaining six classes as the testing set for testing. This experiment was repeated
for several sets. In Table 4, we present the full results comparing the accuracy
of inference using our proposed method with inference directly on the testing
set, thus demonstrating that our method can improve the inference accuracy
of the model on the target domain when the source and target domains do
not coincide. Also, as shown in Table 4, for a fair comparison, we compare our
method with other TTA methods, demonstrating that our method is more appli-
cable to industrial scenarios. We also compare with unsupervised and weakly
supervised methods. For the unsupervised and weakly supervised work, we train
on a training set for each class and test on a testing set. For unsupervised and
weakly supervised methods, we follow [3]. For TENT [47] and CoTTA [49], we
use the official open-source code. The results are averaged over all 10 classes.
For the TTA work, we use a four-class training set for training and a ten-class
test set for inference to demonstrate the model’s ability to remember source
domain knowledge and adapt to the target domain. We demonstrate that our
approach can make better use of the source domain knowledge, combined with
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the unlabelled target domain knowledge, to obtain better inference accuracy on
the target data domain. Figure 3 presents some examples of the predictions of
our method.

In addition, we have found that TTA methods designed for traditional seg-
mentation tasks do not achieve good accuracy in surface-defect detection. They
are even significantly lower than the weakly supervised methods trained on the
target domain from scratch. This is mainly due to their complex design (e.g. ran-
domly recovering some of the model parameters as initialization) and their full
update (updating the model parameters with every sample) that do not apply
to this task. The high level of instability in the target domain, and the false
pseudo-labeling produced, hurt the inference of the model.

Fig. 3. Visualization of images, labels, and segmentations on the DAGM The
green box shows the effect of segmentation within the source domain. The red boxes
show the segmentation of the new classes that emerged during the test-time (Color
figure online)

Experiments on KolektorSDD. We validated the effectiveness of our method on
the KolektorSDD dataset. Similar to the work done on DAGM, we compare
our method with existing TTA methods [47], unsupervised [1,40] and weakly
supervised methods [3] as shown in the Table 5. The KolektorSDD dataset is
simpler compared to the DAGM dataset, so we only performed a comparison
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Table 3. Details of the evaluation datasets

Dataset Positive
Samples

Negative
Samples

Defect
Types

Annotations

DAGM1-6 450 3000 6 ellipse

DAGM7-10 600 4000 4 ellipse

KolektorSDD 52 347 1 bbox

Table 4. Comparison with state-of-the-art SDD methods on the DAGM
dataset. AP, CA, US, and WS are abbreviations for Average Precision, Classification
Accuracy, Unsupervised, and Weakly Supervised, respectively

Method Venue Type CA AP

f-AnoGAN [40] MIA 2019 US 79.7 19.5

Uninf. stud. [1] CVPR 2020 US 84.3 66.8

Staar [44] CIRP 2019 US – –

CADN-W18 [58] PR 2021 WS 86.2 –

CADN-W18(KD) [58] PR 2021 WS 87.6 –

CADN-W32 [58] PR 2021 WS 89.1 –

TNET [47] ICLR 2021 TTA 86.3 85.1

CoTTA [49] CVPR 2022 TTA 85.2 84.4

EATA [37] ICML 2022 TTA 89.3 90.1

SAR [38] ICLR 2023 TTA 87.9 86.1

DeYO [26] ICLR 2024 TTA 90.4 90.6

Our method TTA – 90.3 89.2

of AP accuracy (most methods can achieve very high accuracy in classification
accuracy). We visualize the prediction results in Fig. 4 to verify the effectiveness.

Although we manually filtered the dataset to partition the KolektorSDD
dataset into widely varying source and target domains, this was still not sufficient
to demonstrate the migration capability of our method. Therefore, we used four
randomly selected categories in DAGM for training and then used this pre-
trained model directly for adapting on the KolektorSDD dataset. A competitive
accuracy of 0.93 was obtained for our model.

4.3 Ablation Study

Finally, we evaluated the impact of each component, named supervisor filtering,
augmented mean prediction, and dynamic balance loss. Results are reported
in Table 6. We conducted ablation studies on the DAGM and KolektorSDD
datasets. We used the same number of samples for testing, uniformly initial-
ized with a pre-trained model trained for 50 epochs. We report performance by
progressively enabling individual components and disabling specific components
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Table 5. Comparison with prior works on KolektorSDD dataset. For unsu-
pervised and weakly supervised methods, we follow the official codes of [3]. For tent
[47]

Method f-AnoGAN Uninf. stud. [3] TNETOur method

AP 39.4 57.1 93.4 92.1 94.7

Table 6. Performance of individual components on DAGM dateset

AP supervisor filtering Augmented mean prediction Dynamic balance loss

85.7

87.2 ✓

87.9 ✓ ✓

88.5 ✓ ✓ ✓

Fig. 4. Examples of predictions from the KolektorSDD

while retaining all remaining components. The results are reported in Table 4.
The results show that on all three datasets, the worst performance was achieved
with no components enabled, while the best performance was achieved with all
three components. Below, we describe in detail the contribution of each compo-
nent to the overall improvement.

The use of a supervisor to filter the sample data yields the greatest accu-
racy gain for this method. The large discrepancy between the source and target
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domain data, along with the small sample data size and small model size, leads
to a more pronounced accumulation of errors if incorrect pseudo-labels are used
to train the model. Such errors can lead to even greater errors from subsequent
pseudo-labels, resulting in worse model accuracy compared to direct inference
in the target domain (without test-time adaptation). Using a supervisor to filter
noisy samples mitigates this problem well.

All our designed components for test-time adaptation, including augmented
mean prediction and dynamic balance loss, contributed to the accuracy improve-
ment compared to testing directly on the target domain without adaptation.
This demonstrates that the method we have designed is effective in improving
the robustness of the model.

5 Conclusion

In this paper, we propose a novel online test-time adaptation framework for
surface-defect detection, which addresses the challenge of detecting unforeseen
anomalies in product surfaces during test time. We introduce the parameter-
frozen supervisor to allow the model to remember the source domain knowl-
edge over time, while continuously updating the model parameters to adapt
to the distribution of the target domain. To bolster pipeline robustness, we
devise augmented mean prediction and dynamically-balancing loss. Consider-
ing the difficulty and cost of collecting anomalous samples, our framework not
only saves time and resources but also enhances the efficiency of the detec-
tion process. Thus, our method offers a promising solution to the surface-defect
detection in industrial production processes. Experimental results demonstrate
that our method yields superior inference accuracy on both the source and target
domains.
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Abstract. Facial expression recognition is pivotal in machine learn-
ing, facilitating various applications. However, convolutional neural net-
works (CNNs) are often plagued by catastrophic forgetting, impeding
their adaptability. The proposed method, emotion-centered generative
replay (ECgr), tackles this challenge by integrating synthetic images from
generative adversarial networks. Moreover, ECgr incorporates a quality
assurance algorithm to ensure the fidelity of generated images. This dual
approach enables CNNs to retain past knowledge while learning new
tasks, enhancing their performance in emotion recognition. The exper-
imental results on four diverse facial expression datasets demonstrate
that incorporating images generated by our pseudo-rehearsal method
enhances training on the targeted dataset and the source dataset while
making the CNN retain previously learned knowledge.

Keywords: Facial expression recognition · Convolutional Neural
Networks · Catastrophic forgetting · Pseudo-rehearsal · Regularization

1 Introduction

Emotions are essential in human interaction and comprehension. In such a
context, facial expressions play an important role [15]. Thus, facial expression
recognition (FER) is the functionality of numerous machine learning applica-
tions, including emotion-aware interfaces, personalized recommender systems,
and human-robot interaction. One way to identify these emotions in complex sys-
tems is via convolutional neural networks (CNNs). These networks have achieved
remarkable success in computer vision tasks such as image classification, object
detection, and facial expression recognition. However, a significant limitation of
CNNs is their susceptibility to catastrophic forgetting. When sequentially trained
on different tasks or datasets, CNNs often struggle to retain previously learned
information, which leads to degraded performance on previously mastered tasks.
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This phenomenon impairs the practical application of CNNs in dynamic envi-
ronments where models must continuously adapt to new data while retaining
accuracy in the previous scenarios.

Evaluating the catastrophic forgetting problem in FER - a complex learn-
ing scenario - allows us to observe the proposed method’s ability to deal with
datasets composed of diverse emotional expressions, unlike more straightforward
tasks with more limited patterns. Moreover, such an evaluation sheds light on
the model’s adeptness at maintaining previously learned emotional recognition
performance while assimilating the changes of a new domain, showing faces col-
lected with other acquisition protocols, and representing people with different
characteristics and cultures.

Catastrophic forgetting arises due to CNN’s optimization process, which
tends to adjust the model’s parameters to fit the current task, often overshad-
owing previously acquired representations. Researchers have proposed numer-
ous approaches to mitigate catastrophic forgetting, including regularization
techniques, dynamic neural network architecture, and rehearsal-based meth-
ods [7,8,12,13,16]. Furthermore, several literature reviews have been published
in this research field and in continual learning, offering comprehensive insights
into the state-of-the-art methodologies, best practices, and emerging trends in
mitigating catastrophic forgetting and advancing continual learning algorithms
[6,11,14]. While these state-of-the-art methodologies have demonstrated promis-
ing results in specific scenarios, they have limitations such as increased computa-
tional complexity or limited capacity to effectively retain information from past
tasks, especially in facial expression recognition scenarios.

In this paper, we propose a novel approach to overcome the limitations of
existing methods and effectively address catastrophic forgetting in CNNs when
applied to facial expression recognition. Our approach capitalizes on genera-
tive adversarial networks (GANs) capabilities to generate synthetic samples that
resemble the original training data. Incorporating these synthetic samples dur-
ing training enables the CNN to re-learn and retain knowledge from previous
tasks, thereby mitigating catastrophic forgetting. To achieve this, we gener-
ated synthetic images of each emotion (class) present in the datasets, aiming
to better capture the intrinsic characteristics of each facial expression associated
with human emotion. We refer to this method as emotion-centered generative
replay (ECgr). Moreover, we introduce a quality assurance (QA) algorithm as
a crucial component of our approach. The QA algorithm assesses the gener-
ated synthetic samples based on the CNN’s original classification accuracy. Only
high-quality synthetic samples, which the original CNN can accurately classify,
are retained for training. This filtering step ensures that only superior gener-
ated samples are utilized, thus augmenting the performance of the proposed
method. In addition, we weigh the importance of the synthetic images, con-
sidering the CNN output score as an image quality assignment. Such a weight
penalizes images that have been assigned a low confidence value by the CNN,
which might positively influence the training convergence, as these images may
be considered detrimental to the adaptation to the new dataset.
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Our hypothesis centers around the effectiveness of employing a pseudo-re-
hearsal method: H1) the utilization of a pseudo-rehearsal method, particularly
our emotion-centered generative replay, offers a potential solution for memory
decay in CNNs; H2) the fusion of our emotion-centered generative replay and
the proposed QA algorithm offers a promising strategy to counteract memory
decay within neural networks; and H3) the combination of emotion-centered
generative replay, QA, and a weighted loss function is hypothesized to further
strengthen memory retention and performance in neural networks, potentially
surpassing the benefits of either ECgr or QA alone. To assess the proposed
method’s efficiency and validate our hypothesis, we undertook facial expression
recognition experiments across various emotion datasets and employed diverse
training methodologies.

The contribution of this work is three-fold: i) a new pseudo-rehearsal method
focused on the emotions to mitigate catastrophic forgetting when learning facial
emotion recognition; ii) a loss function considering a penalization schema for low-
quality synthetic images generated in the pseudo-rehearsal strategy; iii) a robust
experimental protocol considering well-known FER datasets and a pipeline of
experiments to discuss the contributions of the proposed emotion-centered gen-
erative replay in mitigating catastrophic forgetting when compared to a regular
fine-tuning process or the possibility of joining datasets.

The remainder of this paper is structured as follows: Sect. 2 reviews related
work on catastrophic forgetting and existing methods for its mitigation. Section 3
presents the proposed emotion-centered generative replay approach and outlines
the architecture of the QA algorithm. Section 4 describes the experimental setup
and presents the results of our comprehensive evaluations. Section 5 discusses the
implications of our findings, and Sect. 6 concludes the paper, outlining potential
directions for future research.

2 Related Works

Catastrophic forgetting has spurred numerous research works to minimize its
effects. In this section, we explore prominent algorithms and insights inspired
by neuropsychology, all aimed at addressing forgetting and improving memory
retention within neural networks.

Learning without forgetting (LWF) stands out by employing knowledge dis-
tillation [8]. This technique transfers distilled knowledge from a model trained
on prior tasks to a new model, thereby allowing the assimilation of new infor-
mation while safeguarding the retention of past information. This intelligent
utilization of previous knowledge effectively counteracts the plague of forgetting
and amplifies the network’s overall performance. Another regularization method,
elastic weight consolidation (EWC) [7], introduces a nuanced regularization term
in the scenario. This term identifies and assigns significance to pivotal network
parameters linked to previous tasks, penalizing alterations to these parameters
during subsequent training phases. By preserving these key parameters diligently,
EWC balances between accommodating novel tasks and upholding the wisdom
derived from past experiences.
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Synaptic intelligence (SI) [16] offers an innovative perspective that stems
from evaluating past task performance and assigns weight to synaptic connec-
tions based on their influence. The more a synapse contributes, the higher its
importance; in contrast, less influential synapses are assigned lower importance.
By preserving these critical connections, SI bridges the gap between old and new
information, thus mitigating forgetting while embracing novelty.

Deep generative replay (DGR) [12] utilizes generative models to create sim-
ulated instances from prior tasks during training. This approach effectively
enriches the current task’s dataset. The augmented instances, fused with real-
time data, offer the network a diverse and comprehensive pool of examples. With
past knowledge seamlessly integrated, DGR effectively combats the erosion of
previously gained insights, presenting itself as a powerful tool for memory reten-
tion.

Beyond these algorithms, insights obtained from neuropsychological research
paint a broader picture. Investigations into context-dependent learning have illu-
minated the crucial role of training and testing contexts in determining network
performance. Thus, using contextual cues, algorithms can be designed to exploit
the training and testing context better, thereby enhancing memory retention
while countering the forgetting phenomenon [11].

In light of these contributions, it is crucial to contextualize our work within
the broader realm of the current state-of-the-art. The proposed methodology
harmonizes the concepts of emotion-centered generative replay and QA. With
CNNs as the focal point, our approach aims to prevent catastrophic forgetting
in facial expression recognition, a domain where precise emotion identification
heavily depends on image quality.

3 Proposed Method

In this section, we describe the methodology employed in our study to address
the challenges of catastrophic forgetting in facial emotion recognition tasks. Our
approach combines emotion-centered generative replay using a Wasserstein gen-
erative adversarial network with gradient penalty (WGAN-GP) and a QA algo-
rithm. Figure 1 presents a general overview of the proposed method.

The use of WGAN-GPs is attributed to the stable learning power of these
networks, a factor crucial when dealing with catastrophic forgetting. After all,
attempting to address this issue through training and employing a generative
method may lead to catastrophic forgetting in the generative networks. WGAN-
GPs [5] implement a penalty on the gradient norm during training and opti-
mization of the WGAN [2], thereby ensuring more stable training and yielding
higher-quality generated images.

We have formalized our methodology using algorithmic representations to
provide a more concrete understanding of the theoretical concepts presented. In
Subsect. 3.2, we provide detailed algorithms replicating our approach’s offline
preparation and training stages. These algorithms encapsulate the step-by-step
processes of generating synthetic images and performing continuous retraining.
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Fig. 1. An overview of the proposed method, separated into two key components. At
the top, the emotion-centered WGAN-GP with CNN QA is depicted. This compo-
nent involves training a WGAN-GP for each class in the source dataset to generate
synthetic data resembling that class. At the bottom, the fine-tuning strategy is illus-
trated, where our synthetic dataset is replayed alongside the target dataset.

3.1 Emotion-Centered Generative Replay

We initiate by training a set of WGAN-GPs, one for each of the seven emotion
classes present in the ‘source’ dataset - fear, anger, happiness, sadness, disgust,
surprise, and neutral. Using these trained WGAN-GPs, we generate augmented
datasets for each class. These generated images capture the intricate details of
respective emotions, diversifying training data towards better generalization.

The WGAN-GP is built by two different networks: discriminator and gener-
ator. The discriminator network is crucial for distinguishing between real and
synthetic images. It consists of several layers, including convolutional layers with
leaky rectified linear united (ReLU) activation functions. These layers help the
discriminator extract relevant features from input images. Additionally, dropout
layers are applied to prevent overfitting. This network contains approximately
4.3 million trainable parameters.
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The generator network, detailed in Table 1, creates synthetic images from
random noise. It uses dense, batch normalization, and convolutional layers with
leaky ReLU activations to upscale and refine feature maps. The output matches
the desired image size. With around 1.5 million parameters, this architecture
produces images to challenge the discriminator.

Table 1. WGAN-GP generator and discriminator architecture.

Generator Output Shape Discriminator Output Shape

Input Layer (128) Input Layer (48, 48, 1)

Dense (9216) Zero Padding 2D (52, 52, 1)

Batch Normalization (9216) Convolutional 2D (26, 26, 64)

Leaky ReLU (9216) Leaky ReLU (26, 26, 64)

Reshape (6, 6, 256) Convolutional 2D (13, 13, 128)

Up Sampling 2D (12, 12, 256) Leaky ReLU (13, 13, 128)

Convolutional 2D (12, 12, 128) Dropout (13, 13, 128)

Batch Normalization (12, 12, 128) Convolutional 2D (7, 7, 256)

Leaky ReLU (12, 12, 128) Leaky ReLU (7, 7, 256)

Up Sampling 2D (24, 24, 128) Dropout (7, 7, 256)

Convolutional 2D (24, 24, 64) Convolutional 2D (4, 4, 512)

Batch Normalization (24, 24, 64) Leaky ReLU (4, 4, 512)

Leaky ReLU (24, 24, 64) Flatten (8192)

Up Sampling 2D (48, 48, 64) Dropout (8192)

Convolutional 2D (48, 48, 1)

Batch Normalization (48, 48, 1)

Activation (48, 48, 1)

Total params: 1,586,500 Total params: 4,303,360

We employ our QA algorithm to ensure the quality of the generated images.
The QA algorithm filters out low-quality or incorrect images generated by the
WGAN-GP, retaining high-quality images that the original classifier correctly
classifies. The QA process is performed using the CNN trained on the source
dataset. Given an empirically defined threshold, the images correctly classified by
the network are used for future retraining, and the misclassified images are dis-
carded. The QA process enhances the reliability of the emotion-centered gener-
ative replay, preventing the classifier from being influenced by poor-quality or
misleading synthetic images. These images are then integrated into an improved
dataset, which merges the synthetic images with the initial source data.

During retraining, the new dataset and the target dataset are employed.
This unified dataset facilitates CNN training, where knowledge from the original
emotion classes is combined with the new target emotions, minimizing forgetting.
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3.2 General Pipeline

To address the challenge of catastrophic forgetting, our proposed approach
involves a two-stage process: offline preparation and a training phase.

Offline Preparation Stage. Initialization occurs as depicted in Algorithm 1,
where a set of datasets represented by T is defined, encompassing datasets
A,B,C, and D. Each dataset dt within T is traversed through an iterative
process. For each specific dataset dt, a classifier, denoted as Cdt

, is trained using
that particular dataset.

Algorithm 1. Offline stage
1: T ← A,B,C,D
2: T ′ ← ∅
3: for each dataset dt in T do
4: Gdt ← ∅
5: Train classifier Cdt on dataset dt
6: for each class c in dataset dt do
7: Train WGANGPc on class c
8: Add WGANGPc to ensemble Gdt

9: Generate SIc using WGANGPc
10: Pass SIc through Cdt to generate dataset dt

qa
c

11: Add dt
qa
c to dataset d′

t

12: end for
13: Add d′

t to T ′

14: end for
15: return collection of synthetic datasets T ′

Our proposal then iterates over each class c in dataset dt. In this context,
a WGAN-GP is trained per class, denoted WGANGPc, and these are subsequently
combined to form an ensemble, denoted as Gdt

. Through these WGANGPc, syn-
thetic images (SIc) are generated to reflect the characteristics of each class. Con-
tinuing the process, these synthetic images are input to the classifier Cdt

, thus
resulting in a new dataset, dtqac , consisting of the images that are correctly clas-
sified by Cdt

. These refined synthetic images are combined into a new dataset
d′
t. This procedure is executed for each dataset dt, and all the resulting datasets

d′
t are unified into a collection labeled T ′, encapsulating the sets of synthetic

datasets corresponding to each original dataset dt in T .
The time complexity of Algorithm 1 is O(n · (f(p) + m · g(p))), where n is

the number of datasets, m is the number of classes per dataset, and p is the
number of images per class. The term f(p) represents the time complexity for
training a classifier on p images, while g(p) denotes the complexity for training
a WGAN-GP on p images.
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Continual Learning Stage. Our approach began with individual training for
ECgr before merging ECgr and QA. For a comparative evaluation, we utilize joint
training and fine-tuning methods. Joint training simultaneously incorporates the
source and target data while fine-tuning adapts the CNN to new data, training
only the fully connected layers.

Algorithm 2. Continual learning stage
1: T ← B,C,D
2: CT ← ∅
3: for each dataset dt, d

′
t in T , T ′ do

4: dut ← dt + d′
t

5: Train classifier Cdut
on unified dataset dut

6: Add trained Cdut
to CT

7: end for
8: return ensemble CT

As shown in Algorithm 2, we define a set of subsequent datasets, indicated
by T , which comprises datasets B, C, and D. Then, we iterate over each combi-
nation of the original dataset and subsequent dataset, referred to as dt and d′

t

respectively, from set T and its counterpart T ′. For each dataset combination,
we create a unified dataset, dut , by merging dt and d′

t. Subsequently, we train a
classifier, Cdu

t
on the unified dataset dut .

For Algorithm 2, the time complexity is O(n·(r(m)+f(m))). Here, n denotes
the number of dataset pairs processed from sets T and T ′, while m represents the
size of individual datasets dt and d′

t. The term r(m) stands for the overhead for
merging datasets dt and d′

t, whereas f(m) represents the computational cost of
training a classifier on a dataset of size m.

The CNN used in our experiments, detailed in Table 2, begins with 2D con-
volutional layers (64 filters each) and batch normalization. It includes addi-
tional convolutional layers, max-pooling for downsampling, and further batch
normalization for higher-level feature extraction. The feature maps are flattened
and passed through fully connected layers with dropout to prevent overfitting.
The final layer uses softmax activation to output class probabilities. Overall,
this CNN architecture comprises approximately 19.3 million parameters.

The training aims to optimize the Eq. (1), where a weight w is applied to
each prediction. This weight is determined by the CNN’s confidence percentage
when predicting for all ypred.

Li(y
(i)
true,y

(i)
pred) = −

C∑

j=1

wjy
(i)
true j log(y(i)pred j) (1)

In summary, our general pipeline encompasses an offline preparation phase
involving training WGAN-GPs and QA-based synthetic image generation. In the
training stage, synthetic and original datasets are combined, and the continual
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Table 2. CNN network architecture.

Layer (type) Output Shape Params

Convolution 2D (47, 47, 64) 320

Batch Normalization (47, 47, 64) 256

Convolution 2D (46, 46, 64) 16448

Batch Normalization (46, 46, 64) 256

Max Pooling 2D (23, 23, 64) 0

Convolution 2D (21, 21, 128) 73856

Batch Normalization (21, 21, 128) 512

Convolution 2D (19, 19, 128) 147584

Batch Normalization (19, 19, 128) 512

Convolution 2D (17, 17, 128) 147584

Batch Normalization (17, 17, 128) 512

Max Pooling 2D (8, 8, 128) 0

Flatten (8192) 0

Dense (2048) 16779264

Dropout (2048) 0

Dense (1024) 2098176

Dropout (1024) 0

Dense (Softmax) (7) 7175

Total params: 19,272,455

retraining approach adapts the classifier to multiple datasets while incorporating
different strategies.

4 Experiments

To evaluate the performance of our methodology, we utilize several datasets that
contain human facial images displaying various emotions. The datasets consid-
ered in our study include TFEID, MUG, CK+, and JAFFE. These datasets
provide diverse emotional contexts, allowing us to assess our approach’s robust-
ness and generalization capabilities. All datasets have the following classes: fear,
anger, happiness, sadness, disgust, surprise, and neutral.

The Multimodal Understanding Group (MUG) [1] dataset consists of approx-
imately 1462 facial images, each annotated with the corresponding facial expres-
sion labels. The Japanese Female Facial Expression (JAFFE) [10] dataset,
despite its relatively small size, containing approximately 213 facial images,
is valuable for evaluating and comparing facial expression recognition models.
The Taiwanese Facial Expression Image Database (TFEID) [3] provides a suit-
able testbed for evaluating emotion recognition algorithms, with 1128 samples.
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Lastly, the extended Cohn-Kanade dataset (CK+) [9] is commonly used for
facial expression recognition research. It includes a substantial number of facial
images, compiled into 123 videos of different subjects, totaling approximately
593 videos, with 327 labeled videos covering various emotional expressions.

4.1 Results

This section offers an in-depth analysis of the outcomes achieved by employing
different retraining strategies, each suited to minimize memory degradation and
maximize knowledge retention.

Fig. 2. Sample results for different classes from the MUG, JAFFE, and TFEID syn-
thetic datasets generated by WGAN-GP. The first column (in green) displays the
original samples from the MUG, TFEID, and JAFFE datasets (from top to bottom,
respectively). In contrast, the second-to-last column (in orange) features the corre-
sponding synthetic images for each dataset. (Color figure online)

On Quality of Synthetic Images. In this subsection, we present a compre-
hensive discussion of the qualitative aspects of the synthetic data. As shown in
Fig. 2, the left side features an image from the original dataset as a reference for
the dataset’s inherent visual characteristics. On the right side, seven columns dis-
play synthetic images generated for each class within the dataset. These columns
show the diversity and fidelity of the synthetic samples produced by our ECgr
approach. Figure 3 shows examples of images that were rejected during the QA
process. These rejected images are of low quality and do not convey emotion,
resulting in incorrect classification by the CNN.

4.2 On Continual Learning.

In this section, we discuss the main results observed from the tests conducted
with facial expression datasets, utilizing the combination of different methods
outlined in this study.
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Initially, we trained a CNN on the MUG dataset. We then adapted this CNN
for continuous learning across other datasets. Each training process was repli-
cated 20 times. For methods involving image generation, the synthetic datasets
differ across various replications of CNN adaptation.

Fig. 3. Some rejected samples identified by the QA algorithm from the synthetic
datasets of MUG, JAFFE, and TFEID.

In Tables 3, 4 and 5, the columns baseline, joint, and fine-tune represent,
respectively: testing datasets with the CNN trained on the source dataset; adapt-
ing the CNN trained on the source plus target dataset; adapting the CNN trained
on the source dataset using only the target dataset. Additionally, the ECgr and
QA methods were evaluated separately (ECgr) and then combined (ECgr+QA)
to determine the impact of using synthetic image filtering in continuous train-
ing. Furthermore, this scenario assessed whether using weights (ECgr+wQA) on
synthetic images has any effect compared to training without this technique.

Table 3. Results on MUG’s model fine-tuned to JAFFE dataset in terms of ECgr,
QA, weighted QA, and the combination of ECgr with QA and wQA, alongside with
fine-tune, joint, and current for a direct comparison.

Current model Joining datasets Fine Tuning Proposed

ECgr ECgr+QA ECgr+wQA

Source dataset

MUG 0.98 ± 0.00 1.00 ± 0.00 0.75 ± 0.03 0.88 ± 0.04 0.93 ± 0.02 0.94 ± 0.03

Target dataset

JAFFE 0.28 ± 0.00 0.74 ± 0.06 0.77 ± 0.03 0.78 ± 0.03 0.78 ± 0.05 0.79 ± 0.04

Mean 0.63 0.87 0.76 0.83 0.85 0.86

Table 3 shows the results when adapting the CNN trained on the MUG
dataset (source) to the JAFFE dataset (target). Considering the baseline, joint,
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and fine-tune methods, we can assume that the upper limit is the joint method,
which represents the ideal case where all datasets are available for training,
and the lower limit is the fine-tune method, in which the source dataset is no
longer available. The combined method ECgr+wQA yielded the best results in
this initial adaptation involving only one dataset, with a result very close to
joint training. Tables 4 and 5, show a change in this scenario, as more datasets
are introduced in continuous training, the ECgr+QA method tends to outper-
form. Regarding the result obtained in the retraining for the JAFFE dataset,
it is possible to justify this outcome, where the combined method (ECgr+QA)
came close to the joint method, as the adaptation can still be considered trivial
since only one dataset is being adapted. Thus, the complexity for the CNN to
assimilate synthetic images needs to be higher.

Table 4. Results on MUG plus JAFFE’s model fine-tuned to TFEID dataset in terms
of ECgr, QA, weighted QA and the combination of ECgr with QA and wQA, alongside
with fine-tune, joint and current for a direct comparison.

Current model Joining datasets Fine Tuning Proposed

ECgr ECgr+QA ECgr+wQA

Source datasets

MUG 0.75 ± 0.03 1.00 ± 0.00 0.71 ± 0.01 0.84 ± 0.06 0.87 ± 0.04 0.78 ± 0.04

JAFFE 0.77 ± 0.03 0.94 ± 0.03 0.76 ± 0.02 0.64 ± 0.07 0.62 ± 0.07 0.69 ± 0.04

Mean 0.75 0.97 0.73 0.74 0.74 0.73

Target dataset

TFEID 0.22 ± 0.00 0.79 ± 0.05 0.78 ± 0.03 0.83 ± 0.04 0.84 ± 0.04 0.87 ± 0.04

Updated mean 0.58 0.91 0.75 0.77 0.78 0.78

Table 4 shows, when adapting the CNN trained on MUG and JAFFE to
the new dataset TFEID, that the best result lies between ECgr+QA and
ECgr+wQA. Interestingly, in all results, the generative method - combined with
QA or not - performed equally or better on the target dataset when compared
to joint training. This reveals that synthetic images not only aid the CNN in
recalling something it has already seen but also assist in training for new data,
reinforcing knowledge when adapting to the same context, in this case, emotion
recognition.

In Table 5, when adapting the CNN trained on MUG, JAFFE, and TFEID
to CK+, we can observe a behavior similar to that observed when adapting
to TFEID, where the best result lies between the ECgr+QA and ECgr+wQA
methods. However, at this point, it becomes more apparent that using a weight
for synthetic images brings an intrinsic problem to the training of the CNN
being used for the filtering method. This CNN can carry certain behaviors into
subsequent training steps, where errors from certain classes may compromise the
entire training when using the confidence percentage.
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Table 5. Results on MUG plus JAFFE plus TFEID’s model fine-tuned to CK+ dataset
in terms of ECgr, QA, weighted QA and the combination of ECgr with QA and wQA,
alongside with fine-tune, joint and current for a direct comparison.

Current model Joining datasets Fine Tuning Proposed

ECgr ECgr+QA ECgr+wQA

Source datasets

MUG 0.71 ± 0.01 1.00 ± 0.00 0.63 ± 0.05 0.85 ± 0.04 0.87 ± 0.03 0.73 ± 0.04

JAFFE 0.76 ± 0.02 0.99 ± 0.01 0.57 ± 0.08 0.61 ± 0.05 0.55 ± 0.04 0.59 ± 0.05

TFEID 0.78 ± 0.03 1.00 ± 0.00 0.49 ± 0.06 0.62 ± 0.09 0.76 ± 0.09 0.70 ± 0.07

Mean 0.73 0.95 0.56 0.69 0.72 0.67

Target dataset

CK+ 0.53 ± 0.00 0.81 ± 0.03 0.79 ± 0.03 0.83 ± 0.03 0.82 ± 0.03 0.81 ± 0.02

Updated mean 0.68 0.99 0.62 0.72 0.75 0.71

We can better understand the results in the MUG dataset from the continu-
ous training of all datasets with Fig. 4. It is noticeable that the best method for
the MUG dataset is ECgr+QA. We can also observe the poor performance of
the fine-tuning method in the context of continuous training, where the knowl-
edge was significantly forgotten compared to methods that attempt to mitigate
this behavior. While fine-tuning initially shows promise in adapting the model to
new tasks or domains, its performance deteriorates over time as knowledge reten-
tion becomes increasingly challenging. Additionally, memory forgetting becomes
trivial when all datasets are always available, as datasets can be combined for
retraining. However, one must consider the high computational cost and storage
requirements of joint training.

Fig. 4. Accuracy results on the MUG dataset, showcasing the continuous adaptation
of a trained CNN across JAFFE, TFEID and CK+ datasets relative to the baseline
accuracy.
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Fig. 5. Comparison of F1 scores by class on the MUG dataset between fine-tune and
ECgr+QA, showcasing the continuous adaptation across JAFFE, TFEID, and CK+
datasets

Given that synthetic images for each class are generated independently in
our method, it is essential to examine class-specific memory loss. Figure 5 com-
pares the fine-tune and ECgr+QA methods, revealing subpar performance (F1
< 0.6) for the anger and disgust classes. During the final retraining step, the
ECgr+QA method also experiences performance deterioration for the fear class.
This underscores the difficulty of training these classes, as even minor facial
changes can be misinterpreted as another emotional state.

We have also conducted experiments on a different domain using the MNIST
dataset, and the results are presented in Appendix A.

5 Discussion

Firstly, the results support our hypothesis regarding using pseudo-rehearsal
methods, specifically emotion-centered generative replay, to minimize memory
decay. Our strategy demonstrated remarkable efficacy in alleviating catastrophic
forgetting, consistently outperforming the fine-tuning methods across various
tasks. The generation of synthetic data resembling past task patterns through
WGAN-GPs proved positive in enabling the network to retain knowledge with-
out using original data. This substantiates our anticipation that pseudo-rehearsal
techniques, particularly our emotion-centered generative replay, are essential in
counteracting memory decay.

Furthermore, synthesizing our WGAN-GP class-driven generative and QA
methods substantiates our second hypothesis. Introducing a QA mechanism dur-
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ing replay significantly improved the quality of synthetic data, further augment-
ing the approach’s effectiveness. The third hypothesis, in which applying a weight
to synthetic images would benefit continuous training, can only be observed
as positive in the retraining for the first dataset - from MUG to JAFFE. We
observed that this technique was ineffective for more datasets after JAFFE. This
may be directly related to the errors of the network that assigns these weights
to the synthetic images - meaning the network may be making errors with high
confidence, negatively affecting the synthetic images, which in turn are not fully
considered in the retraining, leading the CNN to not remember these data.

6 Conclusion

In this study, we presented a comprehensive investigation into the challenge
of catastrophic forgetting in CNNs within the context of facial expression
recognition, proposing a novel approach to mitigate its effects. We employed
a pseudo-rehearsal method, specifically our emotion-centered generative replay
(ECgr) with WGAN-GPs, to generate synthetic images for each dataset class and
combined this with a filtering method to exclude images that could hinder
retraining.

Across various tasks, ECgr consistently demonstrated superior performance
compared to baseline and fine-tuned methods. Utilizing WGAN-GPs to synthe-
size task-specific data and our QA algorithm resulted in substantial knowledge
retention. This confirms the potential of pseudo-rehearsal methods to effectively
retrain CNNs without revisiting original datasets, offering a promising strategy
for addressing memory decay, particularly in challenging scenarios like facial
expression recognition.

Despite promising results with pseudo-rehearsal, its effectiveness may vary
across network architectures, datasets, and tasks. Additionally, WGAN-GP-
based data generation can be computationally expensive, limiting real-time
use. These aspects highlight opportunities for future research, such as improved
weight assignment algorithms and exploration of regularization techniques syn-
ergy with pseudo-rehearsal approaches. Also, enhancements can be made to
the quality of images generated by the WGAN-GP and in the architecture of
classifiers, for example, using transformer networks. While the primary con-
cern remains mitigating catastrophic forgetting, there is significant potential to
improve results by optimizing synthetic data usage.

In an ideal scenario, combining classes from datasets such as MUG, JAFFE,
and TFEID is recommended, as it enhances diversity and representation, leading
to improved model performance. However, our method presents a viable alterna-
tive when such a combination is not feasible. This approach allows for flexibility
in data augmentation and model training, providing a potential solution for
scenarios with limited data availability or when data integration is challenging.
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A Appendix

A.1 Evaluation of the MNIST Dataset

We evaluate our methodology across different domains using the MNIST dataset
[4]. We applied the ECgr method with WGAN-GPs, dividing the dataset into
class pairs (0 and 1, 2 and 3, 4 and 5, 6 and 7, 8 and 9), following the steps in
Algorithm 1 and 2. Training began with the 0 and 1 class pair as the source
dataset, with subsequent pairs used in the continual learning process. For con-
tinual learning, WGAN-GPs were trained for each digit, and the same process
of combining target datasets with synthetic datasets generated by the genera-
tive networks was followed during retraining using the ECgr, ECgr+QA, and
ECgr+wQA methods. As shown in Fig. 6, the behavior previously observed in
FER datasets also held in this domain. The ECgr+QA and ECgr+wQA methods
consistently outperformed fine-tuning in all retraining steps. Regarding the qual-
itative assessment of synthetic images, digits 4 and 5 were the most challenging
to generate, and the QA algorithm struggled the most with these digits.

Fig. 6. Accuracy results for the MNIST (0-1) class pair subdataset, demonstrating
continuous adaptation across subdatasets (2-3), (4-5), (6-7) and (8-9) relative to the
baseline accuracy.

Time Complexity. Time and computational complexity were evaluated on
an Intel Core i7-8700 CPU and an NVIDIA GeForce GTX 1060 GPU. The
algorithm took approximately 5200 s to complete 20 replications of a single CNN
retraining on the MNIST dataset. Each batch, with 1024 images, took 3 to 5 s
to process. Predictions for 1000 images took approximately 3 s.
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Abstract. Satellite Orbit Propagator (SOP) is of prime importance in
the prevention of collision and completion of the assigned task of the
satellites. In the past, orbit prediction and propagation have relied on
physics-based mathematical models. However, as the number of satellites
and their data increases, it is crucial to explore the data-driven orbit
propagation based on advanced machine learning methods. In this work,
we propose a novel deep learning-based framework to forecast future
satellite orbit states. The proposed framework employs a model based
on Neural Controlled Differential Equations (NCDEs) to train orbit pre-
diction models, and our approach captures features from past satellite
state values at both fixed and dynamic time intervals. The experimental
results on Korea Aerospace Research Institute (KARI)’s KOMPSAT-3
and 5 datasets demonstrate that the proposed framework outperforms
the other eight data-driven baseline forecasting models.

Keywords: Satellite Orbit Propagation · Satellite Orbit Maneuver
Detection · Orbit Forecasting · Time Series Analysis

1 Introduction

Satellites adjust their orbits in response to changes in the space environment,
such as air density change and collisions with space debris. The probability of col-
lision has increased with the increasing number of satellites in the space environ-
ment, resulting in orbital changes that can cause unexpected changes in satellite
paths. Therefore, it is of utmost importance to conduct satellite orbital analy-
sis to prevent such collisions with different Resident Space Objects (RSOs). To
address the aforementioned challenges, we employ the following two approaches:
1) Satellite Orbit Propagator (SOP), which focuses on forecasting satellite trajec-
tories using orbital elements, and 2) Satellite Orbit Maneuver Detector (SOMD),
which includes detecting satellite altitude maneuvers as well as known RSOs [23].
Those are key components for successful operation of satellites. While physics-
based models approaches have been the most frequently utilized tools for pre-
dicting satellite orbits in the past, they sometimes produce high propagation
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errors due to limitations in accurately modeling the unknown environments, and
unexpected environments. In order to build an accurate physics-based model,
understanding the target RSO’s space environment and body characteristics is
required. Unfortunately, datasets and measurements in the space environments
are often sparse and noisy, which directly affect the performance of a physics-
based model, failing to achieve the required performance and accuracy. On the
other hand, ML and data-driven approaches [20] have explored historical data
patterns and correlations between numerous orbital components. Recently, data-
driven and DL approaches for forecasting time series and anomaly detection have
demonstrated satisfactory performance [7,14,24–26].

To effectively manage and predict the satellites’ orbital propagation and
maneuvers, we propose the Satellite State Prediction and Maneuver Detection
Analysis Framework (SSPMDA) based on Neural Controlled Differential Equa-
tions (NCDEs), an end-to-end framework for forecasting the satellite’s orbital
elements and detecting maneuvers including visualization and analysis to aid the
improved explainability. In particular, the Korea Aerospace Research Institute
(KARI) is a national research center for researching and developing aerospace
technologies, currently operating multipurpose and geostationary meteorological
satellites. Our goal is to improve the robustness and overcome the limitations of
physics-based model orbit propagation and maneuver detection missions. SSP-
MDA is composed of two main components: 1) the SOP, which forecasts the
satellite’s future state of motion, and 2) the SOMD, which detects both known
and unknown orbital maneuvers. We construct the forecasting model using
the NCDEs structure and apply the trained weights to the SOMD to detect
the maneuvers. Additionally, we use Spectral Residual from Ren et al. [18] to
define the Maneuver Detection Score (MDS) to better focus on the satellite’s
rapidly changing altitudes when identifying the maneuvers. For evaluation, we
applied our SSPMDA to predict orbital elements on two different satellites of
KOMPSAT-3 (K3) and 5 (K5) [12] from Jan. 2018 to Dec. 2019. The main
contributions of our work are summarized as follows:

– We propose SSPMDA, a novel deep learning and NCDE-based forecasting-
based framework for satellite orbit propagation and maneuver detection,
where our method incorporates skip connections in NCDEs to enhance infor-
mation propagation and increase the model’s expressiveness.

– The SSPMDA can forecast dynamic timespans using SOP. Furthermore, we
detect satellite maneuvers with the SOMD by reusing the pre-trained weights
of SOP and calculating the MDS, which focuses on forecasting errors of SOP.

– Extensive experiments on the real-world KARI satellite datasets demonstrate
that our method achieves a prediction error of less than 0.59 km and outper-
forms other baselines.

2 Related Work

First, Melvin. [15] utilized the Kalman Filter (KF) in the field of stellar navi-
gation to determine the orbit of satellites. The KF utilizes the gravity gradient
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tensor to forecast the satellite’s orbit, incorporates it into the state transition
matrix, and further employs them to propagate error covariances. However, real-
world satellite orbit datasets are subject to noise, which adversely affects the
performance of the KF. This leads to significant propagation errors and inaccu-
rate orbit predictions. Moreover, Peng et al. [17] utilized Support Vector Machine
(SVM) for satellite orbit prediction. To achieve accurate orbit prediction, they
used publicly available data, Two-Line Element (TLE) catalog, and Interna-
tional Laser Ranging Service (ILRS) catalog [16]. However, the SVM used in
this study is not suitable for predicting satellite orbits as it is difficult to cap-
ture the time dependency of multivariate time series. Several deep learning-based
approaches have been proposed. USAD [1] is a method that uses an autoencoder
architecture with one encoder and two decoders. It learns through adversarial
training to perform anomaly detection based on reconstruction. TranAD [22] is a
Transformer-based model that uses self-conditioning to extract multi-modal fea-
tures and supports adversarial training for enhanced generalization. This model
grows context information and supports temporal attention by utilizing position
encoding. We use these anomaly detection models as a baseline to compare their
effectiveness in maneuver detection. These existing methods have the shortcom-
ings of being sensitive to noise, failing to capture temporal dependencies in mul-
tivariate time series, and focusing on anomaly detection rather than the specific
challenges of satellite orbit prediction.

Also, there is an increasing interest in integrating differential equations and
neural networks into models [19] for time series analysis. Among them, NCDEs
are an extension of Neural Ordinary Differential Equations (NODEs) [3], com-
bining the advantages of differential equations and neural networks. NODEs
parameterize hidden vectors to predict time series data by modeling the con-
tinuous dynamics. Methods such as Euler’s method and Runge-Kutta method
have been proposed to solve ordinary differential equations (ODEs) [2]. Unlike
NODEs, which model continuous time series data for any time interval as a differ-
ential equation, NCDEs extend this capability to partially observed irregularly-
sampled multivariate time series. To achieve this, it models and utilizes the
Riemann-Stieltjes integral. While NODEs can be seen as a continuous analog
of ResNet by formulating it as an ODE, NCDEs serve as a continuous ana-
log of RNN. Moreover, NCDEs offer advantages in estimating unobserved data
points by interpolating between discrete observations. Also, they can be inte-
grated with various neural network architectures due to the model’s flexibility.
We used GRU-ODE [5] as a baseline model to evaluate the performance of
NCDEs.

3 Proposed Method

3.1 Dataset

Our approach utilizes the precise orbits of the satellite datasets consisting of
orbital elements collected from the KARI. In fact, KARI has been operating K3
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and K5 [12] low earth orbit satellites since their launch in 2012 and 2013, respec-
tively. In this work, we use precise orbital elements of K3 and K5 multipurpose
satellites collected from Jan. 2018 to Dec. 2019. We refer to these datasets as
the KARI satellite precision orbit Elements (ELE) datasets. The ELE consist of
past satellite orbit data with six elements: semi-major axis, eccentricity, incli-
nation, right ascension of the ascending node, argument of perigee, and mean
anomaly. Since the ELE data for K3 and K5 share the same features, it is possi-
ble to design a single generalized model that performs well in predicting for all
satellites. For ELE data, periodicity occurs, making altitude changes and maneu-
vers detection difficult, which in turn makes orbit propagation challenging with
physics-based mathematical models. We explain that the ELE orbital elements
consist of the following six variables in more detail:

1. Semi-major axis (a) is the size of the orbit in kilometers, which is half of
the longest diameter of the elliptical orbit. In practice, one can yield this size
through the average of the periapsis and apoapsis distances.

2. Eccentricity (e) refers to the degree of deviation from a circular shape for
the orbit’s shape and size, represented by a real number between 0 and 1,
indicating the elliptical shape of the orbit.

3. Inclination (i) refers to the angle between the equatorial plane and the
orbital plane.

4. Right ascension of the ascending node (Ω) is an orbital parameter that
describes a satellite’s position in orbit relative to the Earth. It measures the
angle between the vernal equinox and the point where the satellite’s orbit
crosses the equatorial plane while moving from south to north.

5. Argument of perigee (ω) is the angle measured from the ascending node
to the perigee, defining the orientation of the ellipse in the orbital plane and
indicating the point where the satellite reaches its closest distance to the
Earth.

6. Mean anomaly (υ) is an orbital parameter used to describe the location of a
satellite in its orbit around a central body. It represents the angular distance
between the satellite and the perigee, indicating its position in orbit assuming
a perfectly circular orbit.

3.2 Data Preprocessing Step

We employ two types of preprocessing methods: 1) min-max normalization and
2) the scaled sine transformation, according to the characteristics of the ele-
ments, as they have a unique range of values. First, we apply min-max normaliza-
tion for each continuous element elec ∈ {a, e, i, ω} as follows: fMinMax(Selec) =

Selec–min(Selec )
max(Selec )–min(Selec )

, where the Selec represents the series of the elec in the ELE
datasets. Secondly, the right ascension of the ascending node and mean anomaly
are expressed as angles between 0◦ and 360◦. Their value increases to 360◦ and
then becomes 0◦, resulting in discontinuous data that can degrade the perfor-
mance of machine learning and deep learning training procedures. Therefore,
we apply the scaled sine transform to discontinuous elements eled ∈ {Ω, υ} as
follows: fsin(Seled) = sin (Seled

)+1

2 .
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Fig. 1. The overall structure of our framework, SSPMDA. Our framework consists of
interpolation and preprocessing of the orbit element data, forecast models, two dif-
ferent satellite applications (i.e., Satellite Orbit Propagator (SOP) and Satellite Orbit
Maneuver Detection (SOMD)), and an explainability tool for data analysis. SC denotes
short skip connection, and LC denotes long skip connection.

3.3 SSPMDA Architecture

Our analysis framework forecasts Lf future orbital elements from observing Lp

historical elements and identifies satellite altitude maneuvers by reusing the
weights of the forecasting model. Our method comprises several components,
which are described in Fig. 1. In our framework, the KARI ELE data passes
through a preprocessing phase described in Sect. 3.2. The preprocessed data
is segmented into data of size Ls using a sliding window to form a dataset.
This dataset is processed through the orbit propagation model, modeled by
NCDEs, to perform SOP and SOMD tasks. Furthermore, to be deployed in real-
world settings, we develop the explainability and interpretation tool, which is
explained in Sect. 5.

Satellite Orbit Propagator (SOP). At a specific time t, SOP forecasts ELE
data of [t + 1, t + 1 + Lf ] with ELE data of [t–Lp, t]. SOP proceeds with mul-
tivariate time series forecasting that receives the input of shape (b, Lp, n) and
generates the output of shape (b, Lf , n), where b is the batch size, and n is
the number of orbital elements (we set n as 6). The objective of the training
process is to minimize the mean squared error (MSE) loss, which compares the
prediction of the SOP with the ground truth (future element data) as follows:
Emse = 1

Lf

∑Lf

i=1(yi – ŷi)2, where yi represents the future ELE data at time i

and ŷi represents the forecasted orbital elements.

Satellite Orbit Maneuver Detector (SOMD). The purpose of SOMD
is to preemptively detect maneuvers in orbit to avoid collisions with other
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space objects, and to prevent satellites from abruptly changing their orbits.
After obtaining the prediction results from the SOP forecasting model, we use
the model’s trained weights to identify orbit maneuvers. In real-world, data
with orbit maneuvers are more sparse than collected during regular operations
without maneuvers. Therefore, we concentrate on developing the model in an
unsupervised manner, utilizing the model weights learned with a normal oper-
ating duration (the period with fewer maneuvers). The main idea of SOMD is
to use the forecasting error (y − ŷ)2 for all orbital element samples. As the SOP
model is trained with normal operational data, the model will generate a higher
error when the input samples include maneuvers compared to those without
maneuvers.

Maneuver Detection Score with Spectral Residuals. We define the MDS
to differentiate the maneuvers from normal operations and predict the orbit
maneuvers accurately. The orbit maneuver is closely related to the altitude,
which we can calculate using the semi-major axis (distance from the center of
the Earth). To obtain the MDS at time t, we first calculate the semi-major axis
prediction error Et

semi for an input sample of the semi-major axis at time t
by comparing the forecasted semi-major axis and the ground truth. We further
apply Spectral Residual (SR) [18] to the Et

semi to highlight the sudden shift in
the MSE, which indicates a significant change in the semi-major axis. In fact,
Ren et al. [18] introduced saliency detection in the time series domain, utilizing
residuals in the frequency domain to focus on the most significant part. The
SR algorithm begins by converting the MSE to the frequency domain using
Fourier Transform (FT) and then computing the SR. Finally, we use the Inverse
FT to derive the time series representation of the SR map. The residual is
computed by subtracting the average spectrum from the given semi-major axis
input sequence’s frequency domain, defined as follows:

Et
semi = (SOP (S[t–Lp,t]

semi ) − S
[t+1,t+1+Lf ]
semi )2, (1)

MDSt = Spec(E[t,t–Ls]
semi ), (2)

where Spec indicates the SR function, SOP is the trained Satellite Orbit Prop-
agator model, Ssemi is the given semi-major axis sequence, and Ls is the sliding
window size of the SR function. If MDS exceeds a predefined threshold, SOMD
will detect the satellites’ orbital movement at time t as an altitude maneuver.

NCDEs Modeling. NCDEs [13] are designed by combining neural networks
and differential equations to model and predict time series data. In contrast to
RNNs commonly used for time series prediction, NCDEs estimate continuous
dynamics from hidden vectors as time progresses. This model fundamentally
utilizes the concept of the Riemann-Stieltjes integral to handle time series data
that is irregularly sampled or partially observed. Moreover, a cubic spline is
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employed to interpolate the discrete values of a time series into a continuous
time series path. The equation for NCDEs used in our work is provided below,
where X(t) represents the cubic spline path:

z(t1) = z(t0) +
∫ t1

t0

f(z(t); θf )dX(t), (3)

= z(t0) +
∫ t1

t0

f(z(t); θf )
dX(t)

dt
dt, (4)

where the z(t) denotes the hidden vector of a multivariate time series, and the
initial value problem is addressed using Eq. 3, with the initial vector z(0) [11].
In our work, Cubic Hermite splines are specifically used for NCDEs, where they
exhibit flexibility and robustness by combining neural networks and differential
equations for modeling our orbit propagation data. In particular, NCDEs have
shown to achieve outstanding performance in multivariate time series prediction
due to their capability to capture the dynamic patterns of complex time series
data. Therefore, we apply NCDEs in SSPMDA. Moreover, skip connections are
utilized to enhance the performance of the SSPMDA for SOMD [4,27]. To
achieve this, both long skip connections (LC) and short skip connections (SC) are
utilized, where the LC is applied to the internal forward part of the NCDEs to
perform concatenation operations. On the other hand, the SC performs element-
wise addition within the vector field during the forward pass in our SSPMDA.

In SSPMDA, interpolation is performed prior to learning the data. This tech-
nique is used to estimate values for irregularly sampled or missing data points
in time series datasets. In this work, we utilize the Cubic Hermite spline to fill
discrete time series data and create a continuous path. We use cubic polynomials
to transform each feature of the Normalized ELE data into a smooth continu-
ous curve that passes through the data points. The Dormand-Prince method
(DOPRI method) is utilized as a solver to numerically approximate the solu-
tion of NCDEs for the continuous path. The resulting initial condition and set
of parameters pass through a vector field composed of a feed-forward neural
network with ReLU, and the hidden state emerges as an output through the
output layer. This output time series enables nearly precise prediction of satel-
lite orbits and preemptive detection of maneuvers. In particular, our framework
employs the Cubic Hermite spline to divide discrete data of K3 and K5 into
smaller intervals and fit each interval with a cubic polynomial. The coefficients
are determined by solving equations imposed by the given conditions, thereby
obtaining data points. In this case, the Cubic Hermite spline corresponds to
X(t) in Eq. 3. In our work, the use of Cubic Hermite splines allows for the inte-
gration of differential information, enabling precise control over the shape of the
curve in K3 and K5 datasets. This makes it particularly useful for accurately cap-
turing rapid changes in the data surpassing the capabilities of traditional cubic
splines in orbit prediction problems.
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4 Empirical Evaluations

ELE Dataset. We used six precise orbital elements of K3 and K5 multipurpose
satellites, including 210,240 samples at a five-minute interval from Jan. 2018 to
Dec. 2019. We split the ELE K3 and K5 datasets by year, using data from 2018
(105,120 samples) for training and data from 2019 (105,120 samples) for testing.
Note that we evaluated the SOMD using only the K5 dataset (34 maneuvers in
2019), as the K3 satellite did not perform any maneuvers in 2019.

Baselines. We compared various data-driven baseline models against our SSP-
MDA model to demonstrate orbit propagation and maneuver detection perfor-
mance: Linear Regression (LR), XGBoost, LSTM, Deep Belief Network (DBN),
Seq2Seq with GRU cells, USAD, TranAD, and GRU-ODE. We used a multi-
output regressor for LR. For XGBoost, we used the official implementation with
100 estimators. In our experiments, LSTM and Seq2Seq models were config-
ured with four layers and 256 hidden states. Specifically, Seq2Seq utilized GRU
cells. DBN consisted of a single hidden layer with 100 hidden units. USAD used
the hidden units of each layer to 100. For TranAD, we implemented it according
to the original code. GRU-ODE employed 256 hidden units.

Implementation. The duration of communication with the K3 and K5 satel-
lites above South Korea is extremely short due to the satellites’ high orbital
speed (around 90 min orbital cycle), which makes developing reliable and accu-
rate satellite operations challenging [9]. To address this challenge, we set the
shortest input (Lp) and prediction sequence length (Lf ) to 20 minutes, with
the performance maintained when developing the prediction model. To model
SSPMDA in an unsupervised manner, we utilize ELE data composed solely of
normal data during training. As explained in the previous Sect. 3.3, if [t–Lp, t] is
received as input, it is designed to predict [t+1, t+1+Lf ]. In our proposed SSP-
MDA, the setup employs the Cubic Hermite interpolation as the data cubic spline
method and designates the dopri5 [6] as the solver. Within the vector field of our
model’s architecture, we utilize two hidden linear layers with sizes of 32 and 64
units, respectively. We employ a ReLu activation function between each hidden
layer for non-linearity and apply a tanh activation function at the final layer for
output normalization. In our experiments, we trained the baseline models and
our SSPMDA from scratch, minimizing the MSE objective function. XGBoost
was trained with a GPU after specifying a maximum of 7 tree depths, a minimum
of 5 instance weights, and a learning rate of 0.05. Deep learning (DL) models
such as LSTM, Seq2Seq, USAD, TranAD, GRU-ODE, and SSPMDA are opti-
mized using the Adam optimizer with a learning rate of 0.001. We trained DL
models, including SSPMDA, for a maximum of 100 epochs and selected the best
epoch based on the best validation MSE. In the case of our proposed framework,
SSPMDA, skip connection is applied to improve SOMD, and this is covered in
detail in the ablation study.
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Fig. 2. Visualization of the prediction and ground truth derived from the six orbital
elements of a satellite orbit cycle, where the X-axis indicates minutes, the Y-axis is the
kilometer for the semi-major axis, the degree for the inclination, the ascension of the
ascending node (RAAN), the argument of perigee, and mean anomaly.

4.1 Experimental Results

The orbit prediction results of baselines and SSPMDA on K3 and K5 ELE
datasets are reported in Table 1, where the best performance values are high-
lighted in bold. The “Total” column reports the average MSE of all orbital ele-
ments. In Table 1, we observed that SSPMDA achieves the lowest MSE (lower the
better) at K3 and K5. In order to compare the ground truth and the predicted
results intuitively, we rescaled the normalized results with a min-max scaling
and the scaled sine transform in Sect. 3.2. The rescaled prediction results for
K5 are visualized in Fig. 2. As shown in Fig. 2, the error between the predicted
results and the ground truth is negligible. Especially the semi-major axis of all
models has an error within 0.59 km and 0.09 km on K3 and K5, respectively.

We also compared all baseline models with our SSPMDA on detecting the
maneuvers of the K5 satellite as shown in Table 2. We used a predefined threshold
calculated from the training dataset to detect maneuvers and differentiate them
from the normal state without maneuvers. We initially calculated the MDS for
all training set samples, then defined the threshold as the 98.8 percentile of the
train MDS distribution. The thresholds for USAD and TranAD were set using the
Peaks Over Threshold method [21]. For performance metrics, we evaluated the
models using TaPR [8], a time series aware Precision (TaP), and Recall (TaR)
score because TaP and TaR are shown to be more suitable metrics for time
series data. Furthermore, TaP and TaR go beyond direct instance comparison
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Table 1. Performance evaluation on K3 and K5 satellites for orbit propagation.

Satellite Methods Orbit Propagation MSE (SOP Task)

Total a e i Ω ω υ

K3 LR 1.38E-02 1.55E-041.25E-021.81E-052.10E-113.43E-023.55E-02

XGBoost 2.55E-03 8.04E-041.03E-041.23E-026.07E-061.83E-032.83E-04

LSTM 1.91E-03 1.17E-031.40E-042.94E-033.76E-033.01E-034.07E-04

DBN 4.05E-03 1.25E-031.41E-032.71E-041.34E-041.49E-026.40E-03

Seq2Seq 1.01E-03 9.58E-041.33E-041.41E-036.68E-042.56E-033.29E-04

USAD 1.12E-01 8.66E-023.80E-029.86E-023.07E-013.86E-021.02E-01

TranAD 2.49E-03 7.27E-044.22E-048.91E-041.09E-024.41E-041.52E-03

GRU-ODE 1.03E-03 2.39E-031.66E-045.99E-051.44E-053.08E-034.84E-04

SSPMDA (Ours) 7.15E-04 1.17E-031.39E-041.41E-041.39E-052.42E-034.08E-04

K5 LR 3.10E-03 7.92E-062.06E-031.03E-044.70E-111.22E-024.23E-03

XGBoost 7.92E-04 1.04E-053.71E-054.17E-035.97E-064.97E-042.98E-05

LSTM 2.98E-04 3.41E-054.96E-053.84E-042.53E-051.24E-035.33E-05

DBN 1.01E-03 6.38E-053.15E-042.75E-043.39E-054.99E-033.69E-04

Seq2Seq 2.37E-04 5.31E-053.94E-054.62E-041.09E-047.17E-043.99E-05

USAD 2.18E-02 4.58E-044.03E-041.26E-031.28E-011.13E-042.57E-04

TranAD 9.68E-04 3.49E-041.38E-047.19E-044.05E-031.00E-044.48E-04

GRU-ODE 2.16E-04 2.95E-054.77E-051.55E-045.12E-061.01E-035.39E-05

SSPMDA (Ours) 2.14E-04 3.97E-054.10E-051.17E-041.94E-051.03E-033.54E-05

Table 2. Performance evaluation on K5 satellite for maneuver detection. Note that
we did not perform maneuver detection on the K3, where there were no maneuvers in
2019.

Methods Maneuver Detection (SOMD Task)

TaP TaR AUROC

LR 0.0605 0.7941 0.5091

XGBoost 0.0403 0.8235 0.5036

LSTM 0.0169 0.3824 0.5063

DBN 0.0299 0.7647 0.5048

Seq2Seq 0.0241 0.3824 0.5120

USAD 0.0082 0.5882 0.5188

TranAD 0.0068 0.7353 0.5039

GRU-ODE 0.0521 0.9118 0.5090

SSPMDA (Ours) 0.09630.9118 0.5216

by evaluating performance through the consideration of the number of instances.
In our work, since missing additional maneuvers could be deadly for satellites,
it is more crucial to detect as many instances as possible rather than focusing
on their length. Thus, as shown in Table 2, SSPMDA having the highest TaP
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and TaR means it misses the fewest maneuvers and hits them most accurately
with fewer false alarms. That makes it the most suitable method for SOMD.

We also represented our SSPMDA performance in AUROC, which does not
rely on the best threshold. Note that we did not perform maneuver detection
on the K3 dataset, where there are no maneuvers in our dataset in 2019. As
shown, while most models exhibit high recall, the precision of the models indi-
cates the presence of false positives despite detecting a majority of maneuvers.
Also, these results demonstrate that the SOMD task is an extremely challenging
one. Another crucial observation is that our SSPMDA achieves the best AUROC
performance (0.5216), which is the best differentiation between satellite orbit
maneuvers and normal (without maneuvers) operation periods. However, in this
experiment, the K5 in 2018 training dataset includes 26 maneuvers, which might
have caused a larger boundary to differentiate the maneuvers from the standard
operation period, leading to an unsatisfactory AUROC score for all models. For
future work, we plan to mitigate this problem by removing the maneuvers in the
dataset and training the model with a new fully maneuver-free satellite element
dataset, where we can focus on training the model to learn the boundaries of
normal orbital behavior better.

4.2 Ablation Study

In this work, skip connections are utilized to enhance the performance of the
SSPMDA for SOMD [27]. To achieve this, both LC and SC are utilized. The
LC is applied to the internal forward part of the NCDEs to perform concatena-
tion operations, while the SC performs element-wise addition within the vector
field during the forward pass. We employed both LC and SC to improve the
performance. We conducted an ablation study to compare and test the perfor-
mance of LC and SC. Table 3 presents the AUROC, TaP, and TaR results for
the K5 datasets. As shown, AUROC, TaP, and TaR demonstrate the highest
performance when both LC and SC are present.

Table 3. An ablation study according to the presence or absence of long skip connec-
tions (LC) and short skip connections (SC), where the best results are shown in bold.
And, ‘w/o’ denotes ‘without’ the respective skip connection.

Methods TaP TaR AUROC

w/o LC, SC 1.00000.0442 0.5023

w/o LC 0.73530.0999 0.5045

w/o SC 0.76470.0562 0.5112

Ours 0.91180.0963 0.5216

The communication time with K3 and K5 satellites is extremely limited
due to their approximately 90-minute orbital period. Hence, to predict satel-
lite orbits, we used short input sequences. We also employed the same length
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for both Lp and Lf , as differences in the lengths of the two sequences could
potentially degrade the model’s predictive performance. For example, SSP-
MDA with an input of Lp = 20 might experience slight performance degra-
dation when predicting Lf = 480. Hence, we conducted an ablation study to
demonstrate the trade-off between the performance of dynamic Lp and Lf .
We evaluated the MSE of SSPMDA with Lp sequences [20, 40, 60, 80] and Lf

sequences [20, 60, 120, 180, 240, 300, 360, 420, 480] in min. The reason for experi-
menting with Lp from 20 to 80 is to ensure that it does not exceed the actual
90-min communication time with the satellite. For Lf , we set 60-min intervals
for performance comparison of satellite propagation, when various Lp values are
used as an input. The experimental setup was identical to previous ones, except
for Lp and Lf . As shown in Fig. 3, when Lp is 20 and 40, the overall MSE
increases proportionally to Lf . This indicates that the model is more sensitive
to Lf , when the Lp length is shorter. In this case, because the complexity of opti-
mization increases as Lf grows, setting Lf carefully is essential. Long-term orbit
propagation is considerably more complex than short-term orbit propagation.
Conversely, as Lp increases, performance remains stable across all Lf , indicat-
ing that SSPMDA becomes more robust with a longer Lp. This demonstrates
that, as NCDE assumes continuous time, the model is indeed robust to optimiza-
tion hyperparameters [10,13]. However, due to the limitations in the calculation
speed of NCDEs, setting Lp too large might not be the best choice [13]. Further-
more, a trade-off between forecast accuracy and prediction length is acceptable
in real-world scenarios, where K3 and K5 navigate only about 10 min, three to
four times a day.

Fig. 3. The MSE associated with various lengths of training input sequences Lp and
test prediction sequence length Lf . Each color represents the Lp of the training task,
where the X-axis is the Lf of the test task, and the Y-axis represents the MSE score.

5 Visualization

To ensure the explainability of the data and gain insights into the K3 and K5
multipurpose satellites, we developed a visualization analysis tool that can be
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deployed and used for real-world satellite operations. In addition to K3 and K5,
we utilize the dataset from KOMPSAT-3A (K3A). We use precise orbital ele-
ments of the multipurpose satellites from January 2016 to December 2020 for
visualization. We developed our explainability tool to provide easy and seamless
access through web API calls. Therefore, we compress our data at intervals of 8
hours and 13 minutes and adjust it to have three observations per day. Further-
more, to consider the various environments during satellite orbits, we use the
TLE set, where TLE encodes the orbital elements by calculating the satellite’s
orbital state vectors using simplified perturbation models such as SGP4. We
implement an explainability tool using D3.js for this dataset. In addition, our
tool is configured to support seven user interactive interfaces: 1) select satellites,
2) select features, 3) adjust the period of the time series, 4) view correlation, 5)
check the tooltip over line plot with visualized features, 6) check the connected
values by brushing the horizontal axis of the brushable parallel coordinate in
which the features are visualized (See Fig. 6).

Fig. 4. The blue line represents the semi-major axis of K3A, where the left is the plot
for all time series, and right is the plot for the selected period. (Color figure online)

Fig. 5. This histogram is the semi-major axis of K3A, where the left histogram belongs
to the first half of the total time series, and the right belongs to the second half.

The line plot depicted in Fig. 4, a common tool for visualizing time series
data, allows us to examine feature values over time when studying satellite
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Fig. 6. This brushable parallel coordinates plot axis of K3, where the above shows a
plot of all data, and the turquoise line on the left side of the lines between the argument
of perigee and mean anomaly features is identified as an outlier.

orbital elements. We utilize seven different colors to facilitate easy identifica-
tion of these features. These plots can effectively depict the time series over the
desired period, and we can adjust the period as needed for each satellite. More-
over, when hovering the mouse over the line plot, the tooltip appears, providing
the corresponding date and feature value for the selected point. This feature
enables a closer examination of specific data points of interest. By observing the
line plot as a whole, one can quickly grasp the overall trend and identify the dis-
tinct patterns exhibited by each satellite’s orbital elements. Furthermore, within
Fig. 4, we find a section where the value suddenly changes while maintaining a
certain pattern. To view this interval in detail, it can find the timestamp and
value of the section by adjusting the corresponding period, as shown in Fig. 4.
The histogram shown in Fig. 5 is a plot to analyze and explain the distribution of
orbit features for each satellite and to compare the distribution model with the
range. Each distribution is displayed in a different color according to its features,
which should be consistent with the line plot. By displaying the distribution of
data, it is possible to determine the period during which the average changes
based on the difference in the value of each satellite and to observe how well
the distribution model is maintained over time. We constructed a histogram for
the K3 satellite and analyzed the entire time series data set, dividing it into two
equal parts. The results revealed that the overall value distribution remained rel-
atively unchanged, regardless of the duration of the period under consideration.
Subsequently, we applied the same analytical approach to the K3A satellite. For
example, we can observe notable differences in the distributions of most features,
except for the right ascension of the ascending node, across different periods.

Lastly, the brushable parallel coordinates plot shown in Fig. 6 can render the
correlation of satellite orbit data. Each feature of the satellite is represented by a
horizontal axis, and data points are displayed by connecting lines along the fea-
ture axis. By utilizing this visualization, it becomes possible to compare various
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ranges and even different units of each feature within a multivariate time series.
As a result, the correlation between features can be observed and analyzed. By
examining the data, satellite operators can quickly grasp the shape of the changes
based on the feature values. It is also possible to select specific feature ranges of
interest, focus on particular areas, and identify outliers. In Fig. 6, for example,
the argument of perigee and mean anomaly exhibit an inverse relationship, but
outliers are identified when brushing certain data points. Therefore, our visual-
ization method in SSPMDA can better capture, explain, and be used to aid in
improved analysis on SOP and SOMD tasks.

6 Conclusion

In this work, we propose an end-to-end satellite orbit state prediction framework,
called Satellite State Prediction and Maneuver Detection Analysis Framework
(SSPMDA). SSPMDA is an NCDEs-based framework that combines neural net-
works and differential equations to effectively predict satellite orbit movement
and detect maneuvers. Our experimental results demonstrate that our data-
driven modeling can effectively improve satellites’ orbital forecasting, compared
to other forecasting and detecting maneuver baseline models. Although K3 and
K5 perform missions in different orbits and have distinct specifications such as
diameter, power and launch mass, resulting in different time series patterns, our
model has proven stable performance across both satellites. This confirms that a
single generalized model can be applied. We envision that our framework can be
deployed and used in real-world satellite operations and support other countries’
satellite orbit state predictions.
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Abstract. For modern industrial applications, accurately detecting
and diagnosing anomalies in multivariate time series data is essen-
tial. Despite such need, most state-of-the-art methods often priori-
tize detection performance over model interpretability. Addressing this
gap, we introduce MIXAD (Memory-Induced Explainable Time Series
Anomaly Detection), a model designed for interpretable anomaly detec-
tion. MIXAD leverages a memory network alongside spatiotemporal pro-
cessing units to understand the intricate dynamics and topological struc-
tures inherent in sensor relationships. We also introduce a novel anomaly
scoring method that detects significant shifts in memory activation pat-
terns during anomalies. Our approach not only ensures decent detection
performance but also outperforms state-of-the-art baselines by 34.30%
and 34.51% in interpretability metrics. The code for our model is avail-
able at https://github.com/mhkim9714/MIXAD.

Keywords: Anomaly detection · Explainable AI · Time series

1 Introduction

The proliferation of sensors and Internet of Things (IoT) devices in health-
care, smart manufacturing, and cybersecurity has significantly increased the
generation of time series data, emphasizing the need for advanced Multivari-
ate Time Series (MTS) analysis [1,4,13]. Anomaly detection, crucial for sys-
tem diagnosis and maintenance, faces challenges due to the rarity of anomalies
and the dynamic nature of data. These issues complicate manual labeling and
necessitate a deep understanding of both intra-metric (within a single series)
and inter-metric (across different series) dependencies. Furthermore, enhancing
explainability in MTS anomaly detection is essential for improving operational
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clarity and decision-making, particularly in pinpointing and explaining the root
causes of anomalies. In environments like smart manufacturing with numerous
sensors, clarity about which sensors or interactions between sensors contribute to
an anomaly is vital. Despite existing methods’ capabilities in detecting anoma-
lies, many lack the ability to provide clear explanations for their findings [12].
Enhancing autoencoder models with an external memory module has emerged as
a promising solution. This approach not only boosts detection performance but
also deepens insights into the dynamics of anomalies, thereby improving model
interpretability and building trust in anomaly detection systems [9].

Addressing gaps in MTS anomaly detection, we introduce MIXAD. For the
first time in MTS anomaly detection, MIXAD incorporates a memory module
to store the complex dynamics of data extracted through a spatiotemporal fea-
ture extractor. This adoption sets MIXAD apart from most baselines, as our
model simultaneously models intra-metric and inter-metric dependencies, offer-
ing enhanced insight into the nature of the data. Additionally, we generate a
novel anomaly score through memory activation pattern analysis, which suc-
cessfully combines the accuracy of anomaly detection with improved elucidation
of root causes. Unlike most existing methods that rely heavily on forecasting
or reconstruction errors to construct the anomaly score-typically identifying the
feature with the largest error as the cause of the anomaly-our approach employs
a more sophisticated scoring method. This method explains which features con-
tribute to the anomaly and how by analyzing the differences in memory activa-
tion patterns between normal and abnormal periods. Furthermore, by adopting
the Pearson correlation calculation in a post hoc manner, we can further deter-
mine which features share similar patterns of memory activation shift. MIXAD
offers critical, actionable insights for practical applications by blending the pre-
cision of unsupervised learning with the transparency of explainable AI. The
contributions of this work are outlined as follows:

1. We present MIXAD, a pioneering approach that significantly improves the
interpretability of anomaly detection outcomes in the MTS domain. This
innovation addresses a significant oversight in existing research, making the
model applicable across diverse fields.

2. For the first time in MTS anomaly detection, MIXAD integrates a memory
network designed to capture and retain the normal spatiotemporal patterns
of data. We also introduce a novel anomaly scoring mechanism that leverages
memory attention pattern matching, maintaining robust detection perfor-
mance while significantly augmenting the model’s interpretive capabilities.

3. We employ benchmark datasets with interpretation labels, enabling thor-
ough evaluation of our model’s detection capabilities and interpretive efficacy.
MIXAD not only achieves robust detection results but also significantly out-
performs existing state-of-the-art (SOTA) baselines in interpretability metrics
by 34.30% and 34.51%.
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2 Related Works

Time Series Anomaly Detection. Anomaly detection in large-scale databases
has become more challenging with the emergence of diverse data modali-
ties [8,12]. The widespread use of sensors and IoT devices has significantly
increased data volumes, underscoring the need for precise anomaly detection
in time-series databases. These databases often exhibit stochastic and tempo-
ral patterns from various engineering sources, necessitating effective differenti-
ation of outliers [20]. Due to the scarcity of labeled data and the diversity of
anomalies [1], the current research trend is biased towards unsupervised learn-
ing models. Time-series anomaly detection research is broadly classified into two
main categories: univariate models that analyze individual time series and mul-
tivariate methods that examine multiple series concurrently. Despite progress,
many SOTA methods still lack a quantitative evaluation of model explainability,
which is essential for real-world applications. Our work focuses on enhancing the
interpretability of models in practical environments. For detailed discussions on
recent developments, please refer to the supplementary materials.
Memory Network for Anomaly Detection. Recent advancements in
anomaly detection have highlighted the effectiveness of memory-augmented
attention (MAA) models, particularly for their capacity to store normal data
patterns encountered during training. For example, Gong et al. [7] integrated a
memory module into an autoencoder to mitigate the model’s tendency to recon-
struct anomalies accurately, thus enhancing detection precision using recon-
struction errors. Similarly, Park et al. [18] developed an unsupervised video
anomaly detection method that utilizes a memory module to record normal
data patterns, enhancing the discriminative power of the memory items and
the abnormal features. This approach also uses feature compactness and sepa-
rateness losses to ensure the diversity and discriminative capabilities of memory
items, thereby improving anomaly detection efficiency and effectiveness. Inspired
by these approaches, we propose the novel integration of a memory module into
the MTS anomaly detector to enhance performance, providing deeper insights
into how anomalous patterns diverge from normal patterns.

3 Method

Figure 1 provides an overview of the MIXAD framework. The model features
an encoder-decoder architecture, with the Spatiotemporal Recurrent Convolu-
tion Unit (STRGC) serving as the core component for both the encoder and the
decoder. An external memory assists in augmenting the encoded hidden rep-
resentations to better initialize the decoder’s hidden states. Additionally, the
learned memory is processed through an embedding layer to generate the graph
structure utilized within the STRGC. The subsequent subsections will detail
each component of MIXAD, beginning with an explanation of the basic problem
formulation.
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Fig. 1. Overview of the MIXAD framework: Initially, a sparse graph is constructed
by calculating pairwise similarities between memory-based node embeddings. Subse-
quently, input data is processed through a STRGC-based encoder and decoder for self-
reconstruction. Throughout this process, an external memory enhances the encoded
feature vector by utilizing an attention mechanism between the original feature vector
and the memory.

3.1 Problem Formulation

In this study, we introduce a framework for unsupervised anomaly detec-
tion, analyzing time series data with N features over a period T , denoted as
X ∈ R

N×T . For simplicity, we denote feature indices with superscripts and
timestamps with subscripts, allowing for the representation of data at any time
t as Xt ∈ R

N×1. We normalize both training and testing data using feature-
wise min-max normalization and employ a sliding window technique with win-
dow size w to capture temporal dependencies, denoted as Wt = Xt−w+1:t. As
the traditional reconstruction-based methods, our proposed model, f , is trained
to reconstruct the input window: Ŵt = f(Wt). However, MIXAD distinguishes
itself from existing methods by adopting a novel anomaly scoring mechanism
that utilizes memory activation analysis. The model computes an anomaly score
st for each timestamp t and compares it to a predefined threshold to determine
anomalies. Since MIXAD aims to not only detect anomalies but also pinpoint
the specific features contributing to anomalies, our main objectives can be sum-
marized as follows:

– Anomaly Detection: Determine if Xt at a given timestamp is anomalous.
– Anomaly Interpretation: Identify which features contribute to the

anomaly at the identified timestamps.
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3.2 Spatiotemporal Recurrent Convolution Unit

Drawing inspiration from the successful implementation of temporal modeling
with LSTM-based encoder-decoder structures [16], MIXAD adopts a similar
architecture. The encoder first processes the input time series window, extract-
ing a fixed-length feature vector. Subsequently, the decoder utilizes this repre-
sentation to reconstruct the time series in reverse order.

Recognizing that MTS exhibit both temporal and spatial dependencies
among features, recent advancements in GNNs have led to a notable develop-
ment of STRGC, which incorporates graph convolution operations into recurrent
cells [11,24]. In our work, by substituting LSTM with STRGC, MIXAD concur-
rently processes all series, capturing the data’s spatial and temporal dependen-
cies more effectively. The graph convolution operation is defined as follows:

W�AXt =
K∑

k=0

ÃkXtWk (1)

where �A represents a graph convolution operation with input Xt ∈ R
N×1 and

kernel parameters W ∈ R
K×1×h, approximated using Chebyshev polynomials

to the order of K [5]. This operation requires an adjacency matrix A ∈ R
N×N ,

normalized to Ã, to outline the data’s topological structure. Building on this,
the STRGC-enhanced GRU cell updates are as follows:

rt = sigmoid(Wr�A[Xt ‖ Ht−1] + br)
ut = sigmoid(Wu�A[Xt ‖ Ht−1] + bu)
Ct = tanh(WC�A[Xt ‖ (rt � Ht−1)] + bC)
Ht = ut � Ht−1 + (1 − ut) � Ct

(2)

where r, u, and C denote the reset gate, update gate, and candidate state within
the GRU cell, respectively, with W{r,u,C} ∈ R

K×(1+h)×h and b{r,u,C} ∈ R
h rep-

resenting the gate parameters. The hidden representation produced by STRGC
is denoted by Ht ∈ R

N×h. This adaptation enables our model to leverage graph
convolution within a GRU cell, providing a sophisticated method to dissect spa-
tiotemporal dependencies in multivariate time series data.

3.3 Memory-Augmented Graph Structure Learning

In the realm of spatiotemporal modeling, tasks like traffic forecasting leverage
spatial adjacency information, often readily available from urban maps [24]. How-
ever, applying similar spatial correlation concepts to MTS anomaly detection
presents challenges. In MTS anomaly detection, identifying dependencies among
features is not immediately obvious and typically requires domain expertise to
formalize these correlations. To overcome this obstacle, our research incorporates
a Graph Structure Learning (GSL) method. GSL excels at systematically dis-
covering and applying spatial correlations among features without prior explicit
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knowledge, thereby significantly enhancing the anomaly detection capabilities of
models dealing with complex MTS data.

To streamline our examination of GSL within the context of MTS anomaly
detection, we highlight its application in the Graph Deviation Network (GDN)
framework [6]. GDN employs learnable embeddings for each feature, establishing
feature connections based on embedding similarity. While effective, this method
creates a static graph that may not fully accommodate the dynamic nature of
non-stationary time series data. To address these limitations and accommodate
the temporal evolution of data, we employ a dynamic graph learning strategy
introduced in Structure Learning Convolution (SLC) [25]. SLC utilizes input-
conditioned node embeddings, creating a graph that dynamically adapts over
time, thus providing a more flexible and responsive modeling of feature rela-
tionships. This method enhances our model’s ability to adjust to changing data
patterns, although challenges remain in preventing over-sensitivity to immediate
data variations and ensuring consistency in the graph structure.

To address the aforementioned limitations of traditional GSL methods, we
draw from foundational research [11] to enhance spatiotemporal graph learning
with a memory module. In MIXAD, each memory item is updated at each iter-
ation, storing node-level spatiotemporal prototypes that generate node embed-
dings adaptable to non-stationary time series without being overly sensitive to
noisy data. The memory module, denoted as M ∈ R

m×d, where m represents
the number of memory items and d the dimension of each item, plays a pivotal
role in pattern recognition and modeling feature relationships. The interaction
with the memory module is captured through:

Qt = Ht ∗ WQ + bQ

Attt = softmax(Qt ∗ MT )
Haug

t = Attt ∗ M

(3)

Here, Haug
t ∈ R

N×d represents a memory-augmented hidden state derived via
an attention mechanism [22]. The process begins by transforming the hidden
representations Ht into a query space, resulting in Qt ∈ R

N×d, using the param-
eters WQ ∈ R

h×d and bQ ∈ R
d. The memory module M is then utilized as both

key and value in the attention operation, allowing each feature’s query vector
to compute similarity scores across m memory items. These attention scores
Attt ∈ R

N×m generate an augmented hidden state Haug
t through a weighted

aggregation of memory items, enhancing the initial hidden representations. This
augmented state is subsequently concatenated with Ht, initializing the decoder’s
hidden state. This approach not only enriches the model’s capacity to discern
complex feature relationships but also adapts to their dynamism over time.

In our spatiotemporal graph learning framework, the memory module M is
essential for creating advanced node embeddings that are crucial for structur-
ing the input for the STRGC encoder and decoder. However, we encountered
a challenge with the graph adjacency matrix becoming overly dense, cluttered
with unnecessary edges that could obscure the spatial relationships between fea-
tures. To address this issue, we introduced a regularized graph generation mod-
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ule aimed at promoting sparsity in the adjacency matrix. This ensures that the
graph structure more accurately captures the essential feature connections [24].
The regularized graph generation process can be expressed as follows:

θ = (WE ∗ M)(WE ∗ M)T

A = σ((log(θij/(1 − θij)) + (g1ij − g2ij))/τ)

s.t. g1ij , g2ij ∼ Gumbel(0, 1)

(4)

where WE ∈ R
N×m projects the memory onto an embedding space, resulting in a

probability matrix θ ∈ R
N×N . Each element θij reflects the potential for an edge

between features i and j. Utilizing the Gumbel softmax technique, we convert
θ into a discretely sparse adjacency matrix A ∈ R

N×N , maintaining differen-
tiability for gradient-based optimization. In Eq. (4), σ represents the activation
function and τ the softmax temperature.

3.4 Memory-Induced Explainable Anomaly Detection (MIXAD)

Our proposed MIXAD architecture illustrated in Fig. 1, employs the STRGC
framework, enhanced with a memory module, to classify nodes with similar spa-
tiotemporal dynamics into specific memory slots. This setup aims to efficiently
identify and store distinct patterns within each memory item, improving the
model’s discriminative power. To refine this capability, we incorporate three
specialized loss functions, as follows:

L1 =
T,N∑

t,i

max{‖Qi
t − M [posi

t]‖
2 − ‖Qi

t − M [negi
t]‖

2
+ λ, 0}

L2 =
T,N∑

t,i

‖Qi
t − M [posi

t]‖
2

L3 = −log(m) − 1
m

m∑

j=1

log(
exp(

∑T,N
t,i Attijt )

∑m
k=1 exp(

∑T,N
t,i Attikt )

)

Loss = LMAE + λ1L1 + λ2L2 + λ3L3

(5)

The core of our method leverages Qi
t ∈ R

d as an anchor to identify the
nearest (M [posi

t] ∈ R
d) and the second-nearest memory items (M [negi

t] ∈ R
d)

based on attention scores. We use a triplet margin loss L1 to ensure a significant
margin between the closest and second-closest slots for improved separation,
while a compact loss L2 maintains close proximity between the closest slot and
the anchor. To mitigate training instabilities and uneven memory utilization,
we also implement a Kullback-Leibler (KL) divergence loss L3, which promotes
a uniform attention distribution across m memory items. The overall training
objective, as presented in the bottom of Equation (5), combines these losses with
a Mean Absolute Error (MAE)-based reconstruction loss, regulated by balanc-
ing parameters λ1, λ2, and λ3. This integrated objective stabilizes the training
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process and enhances the interpretability and efficiency of memory items in our
anomaly detection model. We selected MAE as the most suitable reconstruction
loss over Mean Squared Error (MSE) and Root Mean Squared Error (RMSE)
after considering their characteristics. In unsupervised anomaly detection, nor-
mal instances are typically used for training, but high-purity normal datasets
are rare in real-world data, making it crucial to minimize the influence of noise.
MSE and RMSE are significantly affected by noise due to squaring the differ-
ences between predicted and ground truth values, leading to training instability.
Therefore, we adopted the more robust MAE loss.

3.5 Anomaly Scoring

Traditional reconstruction-based anomaly detectors utilize the reconstruction
error to generate an anomaly score, as shown by the equation st = |Wt − Ŵt|.
However, advanced models often reconstruct anomalies too accurately, thus
diminishing the effectiveness of this approach. Furthermore, the presence of con-
textual anomalies, where individual series distributions appear normal, but their
interrelations are anomalous, necessitates more sophisticated scoring methods.

To address these challenges, we introduce a novel anomaly scoring method
that leverages memory query attention scores. This method assumes that inputs
deviating from learned normal patterns will significantly alter the distribution of
attention scores for the memory components. The anomaly score for timestamp
t, st ∈ R

N , is calculated by evaluating the shift in attention score distributions
between consecutive timestamps, using the Jensen-Shannon divergence (JSD):

st = [JSD(Attit−1 ‖ Attit)]
N
i=1 (6)

Subtle differences in memory activation patterns, even when the reconstruc-
tion error is not notably large or in the presence of contextual anomalies, enable
the model to identify anomalies more accurately. Furthermore, understanding
how memory activation changes enhances our ability to interpret the detected
anomalies deeply. For example, if a node that typically references memory item 1
shifts to referencing memory item 2 at a certain timestamp, obtaining this infor-
mation provides a deeper insight into the nature of the anomaly. Meanwhile, for
time series that display distinct cyclic temporal patterns, normal seasonal fluc-
tuations might inadvertently affect the anomaly score s ∈ R

T×N , complicating
anomaly detection. To mitigate this, we apply Seasonal-Trend decomposition
using LOESS (STL) [3] on the anomaly scores and remove identifiable seasonal
components based on the period P , determined from the Real Fast Fourier Trans-
form (RFFT) analysis [19] of si for each feature i. The process is defined as:

∀i ∈ {1, ..., N}, s′i = si − STL{si;P}seasonal

P = (
2π

Δt · argmax(|F{si}|) )
(7)

Using the dominant frequency of signal si identified by the maximum modulus of
the FFT (F) output, P is calculated from the RFFT frequency spectrum, with
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Δt as the sampling interval. The seasonal component is extracted using STL, and
subsequent deseasonalization yields a refined anomaly score s′ ∈ R

T×N . To
determine the overall anomaly level at each timestamp t, we aggregate s′

t across
all features using the max function. A timestamp t is flagged as anomalous if its
aggregated score surpasses a set threshold.

3.6 Anomaly Interpretation

Anomaly Interpretation is essential in anomaly detection, yet it has been insuf-
ficiently addressed in much of the recent research [2,15]. The ability to interpret
and trust the outputs of deep learning models is crucial, especially as these
models are increasingly utilized to analyze datasets in various real-world appli-
cations. Traditionally, identifying the contributing factors of detected anomalies
has depended on analyzing the reconstruction or prediction error for each data
dimension. However, this approach hinges on the model’s accuracy, potentially
compromising interpretability when models inaccurately handle input data. Our
examination of existing literature reveals a notable gap in quantitatively mea-
sured interpretability. To bridge this gap and enhance the utility of anomaly
detection, we introduce a new method for anomaly interpretation in our study.

For each detected anomalous segment, we observe that the anomaly scores
of ground truth causal features often exhibit similar patterns that set them
apart from non-causal features. To pinpoint the set of causal features of an
anomaly, we begin by identifying the feature with the highest anomaly score in
the segment. We then calculate the Pearson correlation coefficient between the
anomaly scores of every feature and the anomaly score of the identified feature.
Ranking the features based on the absolute values of their correlation coefficients
allows us to order them from most to least likely to have caused the anomaly. This
approach provides a detailed and interpretable method for analyzing anomalies,
improving the model’s utility and reliability in practical applications.

4 Experiments and Analysis

4.1 Datasets and Baselines

Datasets. We utilized two publicly available datasets, the Server Machine
Dataset (SMD) [20] and the Multi-Source Distributed System (MSDS) Dataset
[17], specifically chosen for their availability of ground truth information on
anomalous features within the datasets. These additional interpretation labels
enable us to quantitatively evaluate and compare the effectiveness of our inter-
pretative approach against the baselines. Detailed information about these
datasets is provided in the supplementary materials.
Baselines. We compared a range of selected SOTA anomaly detection algo-
rithms, chosen for their explicit emphasis on enhancing the interpretability
of detection results, against our MIXAD. The algorithms, MTAD-GAT [26],
GDN [6], TranAD [21], DuoGAT [14], and DAEMON [2], are notable for their
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advanced methods in elucidating complex data interactions and enhancing detec-
tion accuracy. For a comprehensive description of each baseline algorithm, please
refer to the supplementary materials.

4.2 Evaluation Metrics

To evaluate MIXAD ’s effectiveness against competing models, we use precision,
recall, and the F1-score, incorporating a point-adjusted evaluation method for
a more realistic assessment of anomaly detection [20,23]. This method acknowl-
edges that real-world anomalies typically span multiple timestamps, treating
the identification of any part of an anomaly segment as a correct detection.
For anomaly interpretation, MIXAD ’s ability to detect actual anomalous fea-
tures among its top predictions is measured using the HitRate@P% metric. This
metric adjusts the evaluation scope based on the proportion of ground truth
features, offering a nuanced understanding of the model’s diagnostic accuracy.
The formula for calculating HitRate@P% is as follows:

HitRate@P% =
Hit@�P% × |GT |	

|GT | (8)

where |GT | denotes the number of ground truth causal features, and P% repre-
sents the percentage of ground truth dimensions evaluated at each timestamp.
Following prior works [21], we use 100 and 150 for P .

Table 1. Performance comparison of MIXAD with baseline models on the SMD and
MSDS datasets. The highest performance according to the F1-score and HitRate@P%
is highlighted in bold, while the second-best performance is underlined.

Dataset Method Precision Recall F1 HitRate@100% HitRate@150%

MTAD-GAT 0.8889 0.7943 0.8318 0.3716 0.4801

GDN 0.9114 0.8917 0.8968 0.2994 0.4285

SMD TranAD 0.9595 0.9325 0.9446 0.3628 0.4747

DuoGAT 0.9924 0.9945 0.9965 0.3825 0.5155

DAEMON 0.9456 0.9746 0.9595 0.3304 0.4574

MIXAD 0.9703 0.9884 0.9792 0.5137 0.6672

MTAD-GAT 0.9919 0.7964 0.8835 0.5812 0.5885

GDN 0.9989 0.8026 0.8900 0.2276 0.3382

MSDS TranAD 0.9859 0.9749 0.9804 0.4583 0.6253

DuoGAT 0.9634 0.9576 0.9605 0.4435 0.6614

DAEMON 0.9711 0.9450 0.9578 0.3358 0.5115

MIXAD 0.9716 0.9540 0.9627 0.7818 0.8136
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4.3 Performance Comparisons

We thoroughly evaluated MIXAD ’s performance through comprehensive exper-
iments, with setup details provided in the materials. Utilizing a grid search
method, we determined the optimal anomaly thresholds for each experiment
based on the highest F1-scores [20]. As shown in Table 1, MIXAD achieved
competitive detection accuracy for both the SMD and MSDS datasets, closely
matching SOTA models. Notably, while its detection accuracy in the SMD
dataset ranked second, slightly below the top SOTA model by 1.73% and
above the second-best by 2.05%, MIXAD significantly outperformed all models
in interpretability. It improved interpretation scores by 34.30% and 29.43%
in HitRate@100% and HitRate@150%, respectively, surpassing the previously
highest-ranking DuoGAT algorithm. In the MSDS dataset, MIXAD again
showed detection performance slightly below the best by 1.81%, yet it improved
upon the second highest by 0.23%, placing it second overall. More impressively, it
raised the bar for interpretability, setting new records with increases of 34.51%
and 23.01% in HitRate@100% and HitRate@150%, respectively. These highlight
MIXAD ’s strong detection abilities and its superior interpretative performance,
demonstrating its potential for real-world applications (Table 2).

Table 2. Ablation study on the SMD dataset. The highest performance according to
the F1-score and HitRate@P% is highlighted in bold.

Methods Precision Recall F1 HitRate@100% HitRate@150%

- Reconstruction 0.9410 0.9864 0.9629 0.4130 0.5562

- L3 0.9617 0.9719 0.9667 0.3537 0.4868

- Memory module 0.9793 0.9493 0.9626 0.4317 0.5695

- New anomaly score 0.9767 0.9506 0.9624 0.4278 0.5658

- New interpretation 0.9703 0.9884 0.9792 0.4829 0.5970

MIXAD 0.9703 0.9884 0.9792 0.5137 0.6672

4.4 Ablation Study

Our ablation study aimed to evaluate the individual contributions of various
components within MIXAD towards its detection and interpretation capabili-
ties. The study involved several modifications: (1) replacing the reconstruction-
focused decoder with a forecasting one, (2) removing the KL divergence loss
(L3) which promotes uniform memory activation, (3) substituting the mem-
ory module (M) with a learnable node embedding similar to the GDN base-
line [6], (4) discarding the newly proposed anomaly scoring method and instead
relying solely on reconstruction error for scoring, and (5) excluding our novel
interpretation method based on Pearson correlation among anomaly scores.
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Fig. 2. T-SNE visualization of node embed-
dings from two anomaly segments of the SMD
dataset.

Fig. 3. Heatmap visualization
of Pearson correlation coeffi-
cients for anomaly scores.

The results are detailed in Table 3. The findings highlight the integral role each
component plays in MIXAD ’s performance. Notably, the exclusion of any key
component diminished both detection and interpretability, illustrating their col-
lective importance. However, the omission of the novel interpretation method did
not affect detection accuracy, as it employed the same enhanced anomaly scor-
ing mechanism s′. Our analysis indicates that while all components significantly
enhance interpretability, the KL divergence loss (L3) is particularly effective. It
prevents biased learning that could lead to the underutilization of some mem-
ory slots, thereby markedly improving model explainability. Additionally, the
proposed post hoc interpretation technique plays a complementary role, further
refining the final interpretability of the detection output.

4.5 Visualization of Node Embeddings

We conducted a qualitative assessment of the node embeddings’ quality by
employing t-SNE to visualize them in a low-dimensional space. As depicted
in Fig. 2, the orange and blue points represent the root cause and non-causal
features of two anomalous segments within the SMD dataset, respectively. Con-
sistent with our expectations, the visualization reveals that the memory-based
node embeddings form distinct clusters based on feature relationships and their
contributions to anomalies. This clustering demonstrates the memory module’s
ability to capture and retain each feature’s unique spatiotemporal attributes,
allowing for the creation of analogous embeddings for similar nodes. Such capa-
bility not only aids in accurate time series reconstruction but also significantly
boosts the model’s effectiveness in anomaly detection and interpretation, show-
casing the memory’s integral role in improving MIXAD ’s functionality.

4.6 Visualization of Anomaly Scores

To demonstrate the efficacy of MIXAD ’s innovative anomaly scoring method,
we visualized an anomalous segment from the SMD dataset, depicted in Fig. 4.
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Fig. 4. Visualization of memory activation and anomaly scores for an anomaly segment
in the SMD dataset.

This figure consists of four sequential graphs. The top graph illustrates the orig-
inal time series in blue alongside its reconstruction in orange. The second graph
shows the memory activation maps (attention scores) across timestamps, fol-
lowed by two graphs that display anomaly scores for causal and non-causal fea-
tures, respectively. A green horizontal line in the third graph highlights the maxi-
mum anomaly score among the non-causal features, and a red shaded area across
all graphs marks the anomaly segment’s duration. This visualization reveals a
discernible shift in memory attention within the anomalous period despite the
close resemblance between the actual and reconstructed time series. Importantly,
anomaly scores based on memory attention are significantly elevated only for
the causal features within this segment. This clear differentiation supports the
effectiveness of our anomaly scoring approach in accurately identifying and inter-
preting anomalies, emphasizing its potential utility.

Furthermore, we analyze anomaly score correlations within a specific anoma-
lous segment in the SMD dataset, as shown in Fig. 3. We calculate the Pearson
correlation coefficient for anomaly scores s′

seg across nodes over the duration of
an anomaly segment seg, generating an N × N correlation matrix. This matrix
is visually depicted as a heatmap, where the top-left box, divided by horizontal
and vertical black lines, illustrates the correlation among the root cause features.
Notably, features responsible for the anomaly demonstrate a high correlation in
their scores, underlining the similar memory activation shift each of these causal
features exhibits. Thus, this correlation coefficient serves as a basis for facilitat-
ing more accurate interpretations.
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Table 3. Anomaly detection performance evaluation on the Exathlon dataset.

Model AD1(F1-score) AD2(F1-score)

TranAD 0.2166 0.2166

DuoGAT0.9900 0.1296

MIXAD 0.9665 0.1526

Fig. 5. Anomaly interpretation performance evaluation on the Exathlon dataset.

5 Case Study: Exathlon Dataset and Testbed

To evaluate our model’s efficacy on a real-world benchmark, we used the
Exathlon dataset and testbed from [10], comparing MIXAD with the top base-
lines DuoGAT and TranAD. Exathlon, unlike the small benchmarks used in
Sect. 4, has 2,283 dimensions and includes noisy training data for a realistic
scenario. We experimented with data from Spark streaming application 1, con-
taining two types of anomalies, each with 6 and 2 segments, respectively. The
testbed in [10] supports range-based evaluation, which is not directly applica-
ble to point-based evaluation. Thus, we used a point-based version of AD1 and
AD2 metrics from [10]. AD1 is equivalent to our point-adjusted evaluation, while
AD2 is non-point-adjusted. Table 3 shows that TranAD fails completely, flagging
all timestamps as anomalous. DuoGAT and MIXAD detect anomalies with high
f1-scores over 0.95 in AD1, but their performance drops in AD2, indicating
reliance on point-adjustment. MIXAD, designed to detect anomaly segments
using memory activation shifts, still achieves a higher f1-score in AD2, prov-
ing its superiority. Furthermore, MIXAD’s explanations include which features
caused anomalies, while Exathlon lacks ground truth feature labels. Therefore,
we modified the consistency metric from [10]. Explanations for the same anomaly
type should be similar, while those for different types should differ. We extracted
the top-5 causal features for each detected anomaly and quantified consistency
by counting intersections between segment pairs. In Fig. 5, the six anomaly seg-
ments in the upper left are type 1, and the two in the lower right are type
2. Figure 5 shows that MIXAD provides the most consistent explanations for
the same type, proving its superiority in interpreting anomalies in the Exathlon
dataset.
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6 Conclusion

In this paper, we introduce MIXAD, an interpretable MTS anomaly detec-
tion model designed to effectively capture and store node-level prototypes of
fine-grained spatiotemporal patterns. Leveraging the STRGC framework and a
memory augmentation method, MIXAD offers a more accountable approach to
understanding complex data relationships. Our novel anomaly scoring technique,
which utilizes memory activation pattern analysis, significantly improves inter-
pretability in MTS anomaly detection. While MIXAD may not achieve SOTA
results in anomaly detection, its interpretability and the empirical insights it
provides mark important advancements for future research in the field.
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Abstract. We propose a Rough set-theoretic approach for solving the
stochastic Multi-Armed Bandit (MAB) problems. The proposed app-
roach is a modification to the Epsilon-greedy (ε-greedy) algorithm used to
solve the stochastic multi-armed bandit problems. In our proposed app-
roach, initially, we randomly explore all the arms for some time steps to
gather basic reward data for each arm. Using this collected basic reward
data, rough estimates of the expected rewards of the arms are calculated.
Based on the rough estimates of the expected rewards of all the arms,
we partition the arms into three parts following the principles of rough
set theory. In the subsequent time steps, different exploration rates are
used for different partitions to guide arm selection, to balance between
exploring new options and exploiting known performers. We periodically
update each arm’s estimated mean reward and re-partition them into
three parts following a defined process. We continuously monitor for
stability in the reward structure of the problem and adaptively adjust
the exploration-exploitation balance in response. As the algorithm pro-
gresses, the arms with the potential to become the best arm are identified
and the exploration is narrowed, which leads to a concentration of effort
on arms that consistently yield higher rewards, leaving out the other
arms. This strategic selection of arms directs the exploration toward the
most promising arms, enhancing the efficiency of the learning process,
which is proved with the support of the experimental results.

Keywords: Multi-Armed bandits · Rough set · ε-greedy algorithm

1 Introduction

Multi-armed bandits (MAB) are a class of sequential decision-making problems
where an agent must repeatedly choose among multiple actions, often called
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arms, to maximize cumulative reward over time. MAB problems find applica-
tions in various domains, including online advertising, recommendation systems,
clinical trials, resource allocation, and dynamic pricing [1–5]. In a stochastic
multi-armed bandit problem, the rewards associated with each arm are not fixed
but instead follow a probability distribution. The true value of an arbitrary arm
a, denoted q∗(a) is the expected reward given that arm a is selected. If At = a
is the arm selected at time step t, and Rt is the reward received, the true value
of arm a is:

q∗(a) .= E [Rt | At = a] . (1)

One simple approach for calculating the estimates of values of each arm is
to calculate the sample average of rewards obtained from each arm. The value
estimate Q(a) for an arm a can be calculated as the average of the rewards
received from selecting arm a up to time step t. If Ri(a) is the reward obtained
from selecting arm a at time step i, N(a) is the number of times the arm a has
been selected up to time step t, the estimate is calculated as:

Q(a) =
∑t

i=1 Ri(a)
N(a)

. (2)

The key challenge in MAB problems is the exploration-exploitation trade-off.
The agent must balance between exploring arms to gather information about
their reward distributions and exploiting arms that are believed to yield high
rewards based on the available data. The algorithms for solving stochastic multi-
armed bandit problems vary significantly in how they balance the exploration
and exploitation trade-offs.

The follow-the-leader strategy is a simple approach in which the agent con-
tinuously selects the arm that has yielded the highest average reward in the past.
This strategy focuses purely on exploitation and does not incorporate any explo-
ration mechanism. In the ε-greedy algorithm, the agent chooses the arm with
the highest estimated value most of the time (exploitation), but occasionally
(with probability ε) selects a random arm to explore. Upper Confidence Bound
(UCB) algorithms [6–8] select arms based on an upper confidence bound on
their expected rewards. Arms that have higher uncertainty or potential for high
rewards are prioritized, balancing exploration and exploitation. In Thompson
sampling [9], the agent maintains a probability distribution over the true reward
distribution of each arm. At each step, it samples from these distributions and
selects the arm with the highest sampled value. This approach naturally balances
exploration and exploitation as it inherently captures uncertainty. EXP3 algo-
rithm [10], which is a variation of the exponentially weighted average algorithm,
assigns weights to arms based on their past performance and explores arms with
lower weights more frequently while exploiting arms with higher weights. The
Softmax action selection technique also known as the Boltzmann exploration
technique [11] selects actions probabilistically based on their estimated values.
Actions with higher estimated values have higher probabilities of being chosen,
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but all actions have a chance of being explored. The temperature parameter con-
trols the level of exploration. The Successive rejects algorithm [12] divides the
arms into multiple stages and progressively eliminates underperforming arms.
Initially, all arms are given some exploration, but as the stages progress, the
algorithm exploits the best-performing arms more, thus balancing exploration
and exploitation.

In this paper, we introduced a rough set theory-based approach that modifies
the ε-greedy algorithm for solving the stochastic multi-armed bandit problems.
The proposed approach balances the exploration-exploitation trade-off by par-
titioning the arms and using different exploration rates for each partition, and
then after making progress and obtaining a stable reward structure, focusing
only on a set of arms eliminating the remaining arms from consideration. The
ability to identify the set of arms that certainly does not have the potential to
become the best arm and eliminate them from further consideration once the
stable reward structure is obtained is what sets apart our method from other
methods. Eliminating a set of under-performing arms and focusing only on the
remaining arms results in better performance and acceleration of the learning
process of our proposed method compared to other methods.

2 Applying Rough Set Concepts to Stochastic
Multi-Armed Bandits

Introduced by Zdzislaw Pawlak, rough set theory [13] is a mathematical frame-
work for dealing with uncertainty and vagueness in data. Rough set theory
deals with the approximation of concepts using lower and upper approxima-
tions. Lower approximation represents the set of objects that certainly belong
to a given concept, while upper approximation represents the set of objects that
possibly belong to the concept. The difference between the upper and lower
approximations (boundary region) captures the uncertainty or vagueness in the
concept. The set of objects that are neither in the lower approximation of a
concept nor in the upper approximation of a concept are said to be in the out-
side region of a concept and they represent the objects that certainly do not
belong to the concept. This can be mathematically described as follows. Let
D = (O,A ∪ d) be a decision system, where, O is a set of objects, A is a set of
attributes, and d is the decision attribute where d /∈ A. If F is a subset of A, E
is a concept which is a subset of O, we can approximate E using only the infor-
mation provided by F by constructing the F -lower approximation of E denoted
by F (E) and F -upper approximation of E denoted by F (E) respectively. Here,
F (E) = {x | [x]F ⊆ E} and F (E) = {x | [x]F ∩ E �= ∅}, where [x]F denotes an
equivalance class of an element x ∈ E with respect to F . The objects in the
F (E) are classified as certain members of E based on the knowledge of F , while
the objects in the F (E) can be only classified as possible members of E based
on knowledge of F . The set R = F (E) - F (E) is called the F−boundary region
of E that consists of the objects we can not decisively classify into E based on
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the knowledge of F . The set O − F (E) is called the F−outside region of E and
consists of objects that certainly are not part of E.

In stochastic MAB problems, uncertainty typically arises from not knowing
the true reward distributions of each arm. Algorithms used to solve the stochastic
MAB problems address this uncertainty in different ways. For example, the UCB
algorithms address this uncertainty by maintaining confidence bounds. In our
proposed approach, the inherent uncertainty of the stochastic multi-armed ban-
dit problems is reinterpreted as a challenge of identifying arms with the definitive
potential to be top performers. We tackle this uncertainty by partitioning all the
arms in an MAB into the lower approximation region, the boundary region (dif-
ference between upper and lower approximations) and the outside regions based
on the available estimates of the expected rewards of all the arms. All the arms
in the lower approximation region are identified to be the arms that certainly
have the potential to become the best arm. The arms in the boundary region
are identified to be the arms that may have the potential to become the opti-
mal arm. The arms in the outside region are the arms that certainly have no
potential to become the best arm.

Our proposed approach can be formulated as a decision system that can
leverage the rough set theory principles and fits into the mathematical notations
discussed earlier in this section as follows. We can define the set of arms as a set
of objects O, available estimates of the expected rewards as the singleton set of
attribute A, and decision attribute d as the attribute that decides whether an
arm has the potential to become the best arm or not. We consider the subset
of A, i.e. F to be same as A and the subset of O, i.e. the concept E as the set
of arms that have the potential to become the best arm. Now, for the concept
E, the arms in the F (E) are classified as members of E with certainty based on
knowledge of F , while the arms in the F (E) can be only classified as possible
members of E based on knowledge of F . The set R = F (E) - F (E) is called the
F−boundary region of E that consists of the arms we can not decisively classify
into E based on the knowledge of F . The set O −F (E) is called the F− outside
region of E and consists of all the arms that certainly are not part of E. The
detailed procedure of our proposed method is explained in the next section.

3 Proposed Methodology

Our proposed method is a modification to the traditional epsilon-greedy app-
roach, tailored for complex multi-armed bandit problems where arms represent
different strategies or choices with associated rewards. Detailed Process Flow of
the proposed method is as follows:

Initial Uniform Exploration: Initially, the algorithm engages in a methodical
exploration process, where each arm is randomly pulled until every arm has
been selected a specific number of times. This specific number of pulls per arm,
determined by the problem’s context and user preference, is essential for forming
a foundational understanding of each arm’s reward distribution. This approach
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establishes a baseline performance metric by ensuring a balanced exploration
across all arms, allowing the algorithm to accumulate preliminary data that
reflects the reward potential of each arm. We should ensure that the timesteps(t)
taken for initial exploration should be much less than total timesteps(T) i.e.
t << T .

Performance-Based Partitioning of Arms: Upon completion of the prelim-
inary exploration time steps, arms are partitioned into three parts based on their
performance, quantified by their estimated mean rewards which we got after ini-
tial exploration. These partitions denote lower approximation arms, boundary
region arms, and outside region arms. Lower approximation arms consist of the
top 20% arms. These are the high-performing arms, identified as having the
maximum or near-maximum reward rates compared to others. They represent
the most promising options for exploitation. The boundary region arms con-
sist of the middle 20% arms. These arms exhibit moderate performance. They
are neither the best nor the poorest performers, offering a balance between risk
and reward. The outside region arms consist of the bottom 60% arms. Con-
stituting the majority, these arms have the lowest performance based on the
current estimates. They are less likely to yield high rewards but are crucial for
exploration in a changing environment. The top-performing arm which is in the
lower approximate region is monitored throughout the time steps. Whenever the
top-performing arm changes, this partitioning will be redone based on available
estimates of expected rewards of arms to obtain a new set of lower approxima-
tion, boundary and outside region arms.

Adaptive Exploration with Different Rates: After partitioning the arms
into three parts, different exploration rates are applied for each partition using
three exploration rates denoted by E0, E1, and E2. E0 is the largest, applied to
the top 20% arms, reflecting a higher tendency towards exploiting these high-
performing arms. E1 is the next largest, applied to the middle 20% arms, set to
encourage exploration among these potentially improving arms, balanced with
exploitation. E2 is the lowest, applied to the bottom 60% arms, encouraging
some exploration among these least performing arms to remain responsive to
possible shifts in their reward possibilities. This partitioning and the application
of exploration rates E0, E1, and E2 to the respective categories are revisited
continually in response to shifts in the performance of the arms until a stable
reward structure is achieved, ensuring dynamic adaptability and responsiveness
throughout the process.

Dynamic Exploration-Exploitation Shift: The proposed technique moni-
tors the leading arm within the top 20% segment. If this arm remains the best
choice for a predefined number of steps (user-defined and task-dependent), it
suggests a stable reward landscape where the current best choice consistently
outperforms others. In response to this stability, the algorithm shifts its focus.
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The exploration of the bottom 60% arms is halted, while exploration within the
top 40% is continued with a more focused approach. In periods of perceived
stability, the algorithm intensifies its exploitation of the top-performing arms,
thereby capitalizing on the identified reward potential. This shift is crucial in
maximizing the cumulative rewards over time, particularly in scenarios where
some arms consistently outperform others. Once the stable reward structure is
attained, all the arms in the outside region are eliminated from consideration
in the future steps. Whereas the best-performing arm in the lower approximate
region is pulled with a probability of 1 − ε and with a small probability of
ε, all other arms in the lower approximation regions and boundary region are
explored with equal probability. In a way, this is similar to applying the tra-
ditional ε-greedy algorithm on a selected set of arms, eliminating the outside
region arms from consideration.

4 Experimental Results

To validate the effectiveness of our proposed methodology, we experimented with
three distinct problems. These problems, namely the Bandit problem, advertis-
ing problem, and election campaign problem, were carefully selected to span
a spectrum of scenarios that a multi-armed bandit problem could encapsulate.
Each presents a unique challenge, providing a rich ground for testing and prov-
ing the robustness of our approach against the traditional methods: Epsilon-
Greedy, Upper Confidence Bound (UCB), EXP3, and Boltzmann exploration.
The Advertising and Election Campaign datasets are available at https://github.
com/ista24/MAB.

To analyze the performance of our proposed approach, we focus on three key
metrics that collectively offer a comprehensive view of its efficacy. The first is
Cumulative Average Rewards, a metric that captures the mean of the rewards
accumulated over time, reflecting the long-term benefit of the strategy employed.
The second metric, % Optimal Action, provides insight into the algorithm’s
precision in selecting the best possible action given the circumstances. It is a
direct measure of the algorithm’s learning capabilities and its ability to make the
most informed decisions over the course of its operation. Lastly, the Cumulative
Regret metric sums up the opportunity loss over time, considering what could
have been earned had the best decision been made at every time step. In our
assessment, we focus on the Cumulative Regret based on the expected reward.
By relying on expected rewards, we ensure that our evaluation is not subject to
the volatility that can arise from the random nature of actual rewards, which
may not accurately reflect the strategic efficacy of the algorithm. These metrics
together construct a narrative that allows us to critically assess and compare
the proposed methodology’s performance, not just in isolation but also in direct
competition with traditional ε-greedy, UCB, EXP3, and Boltzmann exploration
methods.

In our proposed method, the initial exploration of arms is done till the time
step where every arm is pulled at least 5 times and E0, E1 and E2 values are set

https://github.com/ista24/MAB.
https://github.com/ista24/MAB.
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to 0.5, 0.4, and 0.1 respectively for all the experiments. Also, it is assumed that a
stable reward structure is obtained if the top-performing arm is not changed for
200 consecutive time steps for all the experiments. The ε values for our proposed
method and the ε−greedy algorithm are set to decay linearly starting from an
initial value of 0.1 to a minimum value of 0.001. The learning rate of the EXP3

method is set to η =
√

lnK
KT , where K is the number of arms and T is the

total number of time steps and the temperature parameter in the Boltzmann
exploration is set to 1. All the plots are generated after averaging the results
obtained by running the algorithms for 2000 runs on the problems. Each run
consists of 10000 time steps in all the experiments.

4.1 Bandit Problem

The Bandit problem comprises a set of slot machines, metaphorically known as
“bandits,” each with a lever that, when pulled, yields a reward drawn from a
probability distribution unique to that bandit. In our case, we have constructed a
bandit scenario with 10 arms, each representing a unique bandit. For each arm,
the expected reward is selected in accordance with normal distribution with
mean 0 and unit variance, introducing a balanced level of uncertainty across all
arms. The primary challenge here is to pinpoint the arm that consistently yields
the highest rewards over numerous trials, thereby maximizing gains.

Our Proposed Approach is adept at navigating this problem, characterized
by its uncertainty and the need for strategic decision-making. We evaluate its
effectiveness through three critical performance metrics: Cumulative Average
Rewards, Percentage of Optimal Actions, and Cumulative Regret.

From Fig. 1, it can be seen that the proposed approach demonstrated a con-
sistently higher average reward compared to other strategies. This improvement
suggests that the modified selection method, which dynamically adjusts its explo-
ration and exploitation balance, effectively identifies and leverages the more
rewarding arms in the bandit problem. In terms of strategic acumen, the %
Optimal Action Comparison graph reveals that the Proposed Approach swiftly
learns to identify and exploit the most rewarding options, outpacing the other
algorithms significantly. This rapid ascension and sustained high percentage of
optimal actions underscore a more profound understanding and quicker adapta-
tion to the environment’s reward structure. Perhaps most notably, the Cumu-
lative Regret Comparison depicts a more nuanced success. While all algorithms
exhibit an inevitable increase in regret over time due to the exploratory nature
of the task, our approach incurs the lowest regret, implying that it is the most
efficient at minimizing potential losses. The comparatively lower trajectory of
the Proposed Approach’s regret line serves as evidence of its ability to leverage
past experiences to make increasingly more informed and lucrative decisions as
time progresses.
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Fig. 1. Performance comparison of proposed method with ε-greedy, UCB, EXP3, and
Boltzmann exploration algorithms on bandit problem.
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4.2 Advertising Problem

The Advertising problem simulates an advertising scenario where various cam-
paigns, represented as arms in the multi-armed bandit framework, are evalu-
ated based on historical data. In this framework, there are 10 distinct cam-
paigns(arms), each with its own click-through rate(CTR) which serves as a mea-
sure of its effectiveness. These CTRs are determined by aggregating past user
interactions-total clicks and displays for each advertisement campaign. Upon
initializing the environment, the system processes the dataset, calculating the
CTR for each ad by dividing the total number of clicks it received by the total
number of times it was displayed. The ad with the highest CTR is flagged as the
’optimal’ ad since it has demonstrated the greatest likelihood of engaging users.

When the model simulates choosing an ad to display, which corresponds to
pulling an arm in bandit terminology, it mimics the real-life binary outcome of
whether a displayed ad will be clicked. This is modelled as a Bernoulli trial,
where the probability of success (a click) is equal to the ad’s historical CTR.
Such a setup mirrors the uncertain nature of user response in actual advertising
campaigns.

In this dynamic problem, the main objective is to identify which ad, amongst
other choices, will continue to perform best in terms of user engagement. This
task is inherently challenging due to the variability in CTRs and the probabilis-
tic nature of user clicks. To assess the effectiveness of different strategies within
this environment, several performance metrics are employed. Cumulative Aver-
age rewards measure the success rate across all ad displays, while the percentage
of optimal actions gauges how often the best-performing ad is chosen. Cumula-
tive regret, focused solely on the expected rewards, captures the potential loss
incurred from not always selecting the optimal ad over time. These metrics allow
for a nuanced evaluation of an algorithm’s performance, taking into account both
immediate outcomes and long-term strategic learning.

Upon examining the results of our simulations across the Advertising prob-
lem, it is apparent that the proposed approach consistently outshines other
strategies. The graphs in Fig. 2 clearly illustrate a robust trend of superior per-
formance by the Proposed Approach.

4.3 Election Campaign Problem

The Election Campaign problem simulates the strategic decision-making pro-
cess of an election campaign, where different outreach efforts, each represented
as one of 24 distinct “arms”, are evaluated for their effectiveness. This environ-
ment is derived from a dataset that includes the historical performance of these
24 campaign strategies. Each strategy is represented as an “arm,” and the effec-
tiveness of these strategies is quantified by their associated rewards-akin to the
level of voter engagement or the number of votes garnered. Upon initializing the
environment, the rewards are normalized against the highest recorded reward to
create a set of probabilities. These probabilities reflect the expected success rate
of each campaign strategy when employed. The challenge in this problem lies in
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Fig. 2. Performance comparison of proposed method with ε-greedy, UCB, EXP3, and
Boltzmann exploration algorithms on Advertising problem.
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determining which strategy or arm is likely to yield the most significant engage-
ment or the highest number of votes, a task that is inherently probabilistic due
to the unpredictable nature of voter behaviour. The simulation of reward out-
comes is based on these probabilities, using a Bernoulli distribution to model the
binary success of a campaign effort: a ’1’ indicating a successful outcome (effec-
tive engagement or vote acquisition) and a ’0’ indicating an unsuccessful one.
The problem’s key objective is to navigate through the probabilistic landscape
of campaign strategies to find the most effective approach for voter engagement.

From the plots in Fig. 3, we can observe that the proposed approach demon-
strates a significant improvement over the other methods across all performance
metrics in the Election Campaign problem.

In conclusion, the comprehensive analysis conducted across three distinct
problems conclusively demonstrates the superior performance of our proposed
approach over the traditional Epsilon-Greedy, UCB, EXP3, and Boltzmann
exploration methods. This consistent outperformance is evident in all the mea-
sured metrics - Cumulative Average Reward, Percentage of Optimal Action, and
Cumulative Regret based on expected rewards-across Bandit, Advertising, and
Election Campaign problems.

4.4 Ablation Study

We conducted ablation studies to understand the impact of various components
on the performance of our proposed method for solving stochastic multi-armed
bandit problems. We have compared the performance of our baseline model with
four variant models on all three environments. All 4 variants generate different
initial estimates of the expected rewards of arms used for dividing the arms based
on rough set principles. Variant 1 and Variant 2 are exclusively designed to under-
stand the impact of the initial exploration phase in the proposed method. Variant
3 and Variant 4 are designed to understand the impact of partitioning of arms in
different ways. In variant 3, the arms are partitioned into the top 15 percentile
arms, the next 15 percentile arms and the remaining 70 percentile arms. Whereas
in Variant 4, the arms are partitioned into the top 25 percentile arms, the next
25 percentile arms and the remaining 50 percentile arms. In all 4 variants, all the
other parameters and experimental setups are kept the same as in our proposed
method baseline model used in the comparison with other methods earlier in this
section. The resulting plots are shown in Figs. 4, 5, and 6.

From the ablation studies, it can be observed that the different initial esti-
mates of expected rewards of arms used for partitioning the arms have no major
impact on the performance of the proposed algorithm. The ablation of differ-
ent proportions of arms resulted in a moderate impact, highlighting its role in
accurate reward estimation and effective exploitation and suggesting its utility
might be more context-specific or synergistic with other components.
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Fig. 3. Performance comparison of proposed method with ε-greedy, UCB, EXP3, and
Boltzmann exploration algorithms on Election campaign problem.
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Fig. 4. Ablation study on the bandit problem.
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Fig. 5. Ablation study on the advertising problem.
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Fig. 6. Ablation study on the Election campaign problem.
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4.5 Discussions

Adaptive Partitioning for Diverse Situational Requirements: Our pro-
posed approach, designed to initially partition arms in a 20-20-60 proportion,
also empowers the users with the flexibility to adapt to scenarios with fewer
arms or skewed reward distribution of arms. This adaptability is crucial, as it
aligns with the core principles of rough set theory, which forms the basis for
our partitioning strategy, allowing for a more nuanced and situationally aware
application of the method.

In situations where the total number of arms is less than five, adhering to
a predefined 20-20-60 partitioning structure becomes infeasible. Our proposed
method accommodates this by offering the user the flexibility to adjust the par-
titioning proportion based on the actual number of arms available. The users
can reallocate the arms into lower approximation, boundary region, and outside
region categories in a manner that truly represents their performance hierarchy.
This user-led adjustment ensures that each arm is categorized in a way that accu-
rately reflects its performance potential, even in scenarios with a smaller number
of arms. By doing so, the method retains its strategic effectiveness, ensuring that
decision-making is attuned to the specific context of the environment, no matter
how few the choices may be.

In scenarios where reward distributions are skewed - for instance, when a
single arm vastly outperforms the others, or when the top-performing arms have
marginally different rewards - rigidly sticking to the standard 20-20-60 partition-
ing rule may not effectively capture the nuances of the situation. In such cases,
our approach empowers users to redefine the partitioning proportions dynam-
ically. The users can reallocate the arms into lower approximation, boundary
region, and outside region categories in a manner that truly represents their
performance hierarchy in this case as well. This flexibility in partitioning allows
for a more precise and adaptive strategy, ensuring that the algorithm’s choices
are always congruent with the prevailing reward dynamics of the arms.

By enabling this level of user-guided adaptability, our method not only stays
true to the tenets of rough set theory but also broadens its applicability to a wide
array of multi-armed bandit scenarios, thereby establishing itself as a robust and
adaptable solution for diverse real-world challenges.

Impact of the Initial Uniform Exploration Phase on the Method’s Per-
formance: From the ablation study presented, it is observed that irrespective
of the different initial estimates of the expected rewards, the proposed method
finds the optimal arm in an efficient manner. It can be concluded that even if the
initial exploration phase is not optimally executed, the algorithm is still capable
of identifying the optimal arm at later time steps. But this might come at the
cost of delay in obtaining a stable reward structure to proceed with eliminating
the arms that certainly do not have the potential to become the best arm. This
proves the reliability and robustness of the proposed approach.
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5 Conclusions and Future Work

In this paper, we have presented a modified ε-greedy technique based on the
rough set-theoretic approach. We have leveraged the principles of rough set the-
ory to handle uncertainty in the multi-armed bandit problems. The modified
ε-greedy technique identified the optimal arm much earlier and yielded a high
cumulative average reward and less cumulative regret than not just the ε-greedy
algorithm, but also the UCB, EXP3, and Boltzmann exploration algorithms.

One important research direction involves making other multi-armed ban-
dit algorithms like Thompson sampling, Bayesian UCB, EXP3 and Boltzmann
exploration efficient by incorporating the rough set theory principles into them.
Another interesting research direction involves using the rough set theory princi-
ples to assist in feature selection, dimensionality reduction, and decision-making
based on contextual information in contextual multi-armed bandits.
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Abstract. Graph representation learning aims to capture the structural
and relational information in graphs. Recently, Euclidean space-based
methods have achieved tremendous success. However, Euclidean space
exhibits structural distortion problems when modeling graph data with
tree structures or hierarchy, limiting the model’s performance. Based
on this, researchers introduce Hyperbolic space to preserve the origi-
nal structural information, but computations in Hyperbolic space rely
on inverse trigonometric functions, resulting in increased computational
complexity. How to learn in multi-spaces and make use of their advan-
tages deserves careful consideration. This paper proposes a Hybrid Graph
Representation Learning (HGRL) model that trains in the Hyperbolic
and Euclidean spaces jointly. Euclidean space possesses the ability to
learn regular geometric and has efficient computations, while Hyperbolic
spaces are better suited for representing hieranrchical and non-linear
relationships. Technically, we utilize the Euclidean contrast loss to mini-
mize distances between similar samples, helping tight clusters in the tra-
ditional space. Simultaneously, the Hyperbolic hierarchy loss and Hyper-
bolic uniformity loss enable the model to comprehend intricate hierar-
chical relationships and ensure a uniform distribution of the data on the
Poincaré Ball. Extensive experiments in node classification, clustering,
and visualization tasks demonstrate the effectiveness of the HGRL mode
in capturing hierarchy structures. We also employed ablation studies to
validate the indispensability of each component.

Keywords: Representation learning · Euclidean space · Hyperbolic
space

1 Introduction

Graph data consists of tree-like and hierarchical structures, which is a univer-
sal language for representing and embedding complex systems. With its unique
properties, graph data has been widely adopted in many real-world tasks, such as
recommendation systems [25,40,47], knowledge graph embeddings [3,14,26,41],
single-cell RNA sequence analysis [17,37,44], and so on. However, raw graph data
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A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15309, pp. 276–290, 2025.
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is difficult to apply directly in the field of machine learning due to the redundant
information or the inherent complexity [43]. Learning how to properly encode
the variety of graph data can help people understand the world better.

Graph representation learning can effectively simplify high-dimensional raw
graph data into low-dimensional dense vectors [15], and retain the structural
and semantic features of the graph data. A large number of graph representation
learning algorithms [13,16,23,35,39] have been proposed to generate excellent
embeddings. Early, some graph representation learning algorithms [12,20,49]
learn embeddings from Euclidean space, which has the advantage of high com-
putational efficiency [45]. For example, GCC [6] offers a variant that maintains
a computational complexity akin to k-means, while matching the efficiency of
the GCN [16] propagation matrix, which makes the GCN a low-pass filter.

However, the performance is often unsatisfactory when embedding datasets
with non-Euclidean geometric characteristics, because Euclidean space has zero
curvature, which fails to model the hierarchical information. The researchers
attempted to utilize the power of hyperbolic representations to solve the above
problem [5,19,30,46,51]. Hyperbolic space is a non-Euclidean space that contains
constant negative curvature. It has the property of exponential expansion and
the hierarchical, tree-like structure [11]. The number of leaf nodes increases expo-
nentially with depth, similar to the exponential growth of the hyperbolic surface
area with radius. In comparison, growth in Euclidean space is polynomial [21].
So hyperbolic-based representation learning is emerging as a compelling field of
study, garnering increasing interest and attention from the research community.

Despite Hyperbolic space has great performance for tree-like graph data,
it is restricted by complex computation. We hope to combine the advantages
of Euclidean space to learn a better representation of graph structure [31,52].
According to the above analysis, embedding diverse and complex real-world
graph data in multiple spaces is a promising direction in representation learn-
ing. There are already some attempts [9,18,21,22,45], but these representation
learning methods encounter significant challenges, e.g., inefficiency or the com-
plex algorithm with low interpretability. GIL [52] leverages both hyperbolic and
Euclidean topological features and derives a novel distance-aware propagation
and interaction learning scheme. But GIL provides a limited explanation for its
prediction. Therefore, we need to further investigate how to effectively utilize
multiple spaces to ensure the rational exploitation of various geometric proper-
ties.

To address the mentioned limitations above and to make multi-space rep-
resentation learning more reliable, in this paper, we propose a hybrid graph
representation learning (HGRL) model that acts as a link between Hyperbolic
and Euclidean spaces. By learning the geometric property of both spaces, the
model can explore complex graph structures and relationships in the real world,
leading to improved accuracy and better generalization. Specifically, we first use
a hyperbolic encoder to extract the low-dimensional features from the input
data. Secondly, we introduce the Euclidean contrastive loss using the adjacency
matrix to maximize the distance between different classes and minimize the dis-
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tance between the same classes in Euclidean space. Finally, considering the hier-
archical information present in Hyperbolic space, we construct two Hyperbolic
losses to preserve both the hierarchical and uniform structures of the datasets.
Our network architecture is more straightforward than previous methods. Sig-
nificantly, we utilize two novel Hyperbolic losses and an optimized Euclidean
contrast loss to preserve diverse information about the dataset effectively. In the
following sections, we concretely describe the role and principles of each loss, pro-
viding a comprehensive explanation of the HGRL model. We also demonstrate
the advantages of our model by many downstream tasks and ablation study.

To sum up, the contributions of this work can be summarized as follows:
We propose a hybrid graph representation learning (HGRL) model that

exploits the embedding of graph data in both Euclidean and Hyperbolic spaces.
It leverages the advantages of both spaces for performance improvement.

We construct the hierarchy loss and uniformity loss functions in Hyperbolic
space for perceiving the faithful hierarchical structure and ensuring uniform
distribution in Hyperbolic space to preserve more information of the data.

We conduct extensive experiments to demonstrate the effectiveness of the
proposed HGRL model on citation datasets and biological datasets. We design
rich ablation experiments to demonstrate the role and necessity of each part.

2 Related Work

2.1 Representation Learning

Nowadays, representation learning receives significant attention. We divide it
into matrix factorization methods and deep learning methods [15]. For the for-
mer, existing methods usually rely on factorizing the feature matrix to learn
embeddings. For example, COLES [51] extended the Laplacian Eigenmaps with
contrastive learning and minimizes a surrogate of Wasserstein distance. For the
latter type of method, GCN [16] minimized the reconstruction error for training
the encoder. DIM [13] formulates graph neural networks that focus on Mutual
Information (MI) and optimize through the contrast of local and global graph
features to acquire the graph feature representations. Later, DGI [39] maximized
the MI between patch representations and high-dimension graph summary.

However, none of these approaches investigate the inherent hierarchical infor-
mation of the data, which we believe could enhance the training performance.
To solve this issue, we introduce the Hyperbolic space to learn representations.

2.2 Hyperbolic Representation Learning

Researchers have shown significant interest in hierarchical representation learn-
ing using non-Euclidean geometry. LaBNE [1] generalized eigenvalues by using
the Laplacian spectral matrix. Angular coalescence [28] defined graph weights
based on local topological information, determines angular coordinates of nodes
using methods like IsoMAP [36], LLE [33] ultimately obtained the graph repre-
sentation in Hyperbolic space. HNN [8] extended the Euclidean-based network
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layer into the Hyperbolic space. GCN [4] also utilized the GCN with hyperbolic
geometry to learn embeddings. It implements the operator in Euclidean space to
hyperbolic models and employs trainable curvatures at each layer to transform
input features into embeddings in Hyperbolic space.

These methods extend the Euclidean-based approach to Hyperbolic space.
Unlike that, we retain the learning in Euclidean space and design more suitable
loss objectives to supplement the shortcomings of Euclidean space based on the
fact that hierarchies are more readily learned in Hyperbolic space.

3 Preliminaries

3.1 Poincaré Ball Model

The Poincaré disk model is a two-dimensional model of hyperbolic geometry,
encompassing all points on a unit disk. A common generalization is the Poincaré
ball model [7]. Due to the geometric properties of the Poincaré ball model, it can
effectively learn entities hierarchical structures and similarity relationships of the
data. We choose the Poincaré ball model as our basic model. The model with d
dimensions and constant negative curvature c is formally called the Riemannian
manifold H

d
c = (Hd

c , gc
p), where Hd

c =
{
x ∈ R

d | ‖x‖ < 1
}

represents the open
ball and gc

p is a metric tensor. ‖·‖ is the Euclidean norm. For x ∈ H
d
c , the relation

between the Riemannian metric tensor gc
p and the Euclidean metric tensor ge is

defined as follows:

gc
p(x) =

(
2

1 − c‖x‖2
)2

ge(x), ge(x) =

(
1 − c‖x‖2

)2

4
gc

p(x). (1)

In the Poincaré ball model, we compute the hyperbolic distance between two
points by measuring the arc. Specifically, for two points x,y ∈ H

d
c , the hyperbolic

distance between them is formally defined as follows:

d(x,y) = arcosh
(

1 + 2
‖x − y‖2

(1 − ‖x‖2) (1 − ‖y‖2)

)
. (2)

3.2 Gyrovector Spaces

The vector spaces serve as the algebraic foundation for Euclidean geometry,
facilitating straightforward vector computations like addition, subtraction, and
scalar multiplication. Similarly, the Gyrovector spaces [38] allows the graceful
non-associative algebraic forms for hyperbolic geometry which play the same
role as vector spaces in the Euclidean geometry [8].

For x,y ∈ H
d
c , the Mbius addition is defined as follows:

x ⊕c y :=
(1 + 2c〈x,y〉 + c‖y‖2)x + (1 − c‖x‖2)y

1 + 2c〈x,y〉 + c2‖x‖2‖y‖2 , (3)
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Fig. 1. The overview of the HGRL. It consists of encoder and loss divided into three
components: Euclidean contrast loss, Hyperbolic hierarchy loss, and Hyperbolic uni-
formity loss. During training, we minimize the Euclidean contrast loss to ensure the
Euclidean distance between similar samples is as small as possible. Simultaneously, the
Hyperbolic hierarchy loss facilitates the learning of hierarchical structures of the data.
Additionally, by introducing Hyperbolic uniformity loss, our objective is to achieve a
uniform distribution of data on the Poincaré Ball.

where c is the curvature of the Hyperbolic space, and when c = 0 the Eq. 3
degenerates to the addition in the Euclidean space.

For c > 0, the Mbius scalar multiplication of x ∈ H
d
c by r ∈ R is defined as

follows:
r ⊗c x := (1/

√
c) tanh(r tanh−1(

√
c‖x‖))

x

‖x‖ , (4)

where r ⊗c 0 := 0. Similar to the Mbius addition, this Eq. 4 converges to the
Euclidean scalar multiplication when c → 0.

We utilize the hyperbolic encoder to learn the embeddings in the Hyperbolic
latent space. Then we leverage the Euclidean characteristics of the embeddings.
The tangent space TxH

d
c is a vector space with the same dimensional as Hd

c . The
mapping TxH

d
c → H

d
c is the exponential map, while the inverse H

d
c → TxH

d
c is

known as the logarithmic map. We chose the origin as the target point because
the mapping function at the origin exhibits symmetry. Given the u ∈ TxH

d
c and

the v ∈ H
d
c and the operations mentioned earlier, the closed-form formulations

of mapping can be defined as follows:

v = expc
0(u) = tanh(

√
c‖u‖)

u√
c‖u‖ , (5)

u = logc0(v) = arctan(
√

c‖v‖)
v√
c‖v‖ . (6)
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4 Method

The overview of the HGRL framework is shown in Fig. 1. We try to optimize
performance in multi-space by leveraging different loss components collectively.

4.1 Hyperbolic Encoder

Because of the better hierarchy learning ability of the Hyperbolic space and the
complete operation in the Gyrovector spaces, we adopt the hyperbolic encoder.
It has the same structures as the Euclidean encoder but is conducted by the
hyperbolic operation. First, we map the raw datasets into the Hyperbolic space
before inputting them into the network. This is because all the raw datasets are
in the Euclidean space currently. In particular, given a graph G = (V, E) with
n = |V| nodes and m = |E| edges and hyperbolic encoder Mc(·), the G will be
embedded as follows:

Hh = Mc(expc
0(G)), (7)

He = logc0(H
h). (8)

where He and Hh represent the output in Euclidean space and Hyperbolic space
respectively, which can be used for downstream tasks.

4.2 Euclidean Loss

For the datasets without adjacency matrix A, we employ the k-Nearest Neighbor
classification algorithm to construct it. For each node, we reserve k nodes as
its neighborhood and use distance as the weight of the adjacency matrix. To
maximizes the distance between different classes and minimizes the distance
between the same classes, we use the contrastive Laplacian eigenmaps loss in
the Euclidean space [51].

Lle = Tr(He�LHe) − γ

n

n∑

i=1

Tr(He� L
(−)
i He), (9)

where L = I − A(+) and L
(−)
i = I − A(−)

i , i = 1, · · · , n are randomly generated
as degree-normalized Laplacian matrices with the negative sampling. The scalar
γ controls the impact of negative sampling.

However, in some cases, this loss function may yield negative values, poten-
tially leading to misleading assessments of model performance. To address this
issue, we introduce an exponential term into the Euclidean loss function, to
ensure that the loss function always produces non-negative values. This allows
the model to account for different loss components in a balanced manner
throughout the entire training process, consequently strengthening the learn-
ing and generalization capabilities of HGRL. The final loss Euclidean defined as
follows:

Leuc = exp(Lle). (10)
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4.3 Hyperbolic Hierarchy Loss

While Euclidean loss effectively discerns differences between classes, it does not
preserve the overall structures of the data. So we leverage the hyperbolic norm
to learn the hierarchical structure of the data in the Hyperbolic latent space.
The hyperbolic paradigm is defined as the distance of the vector to the origin
which allows it to naturally capture the hierarchical structure of the data in
the Poincaré disk model. According to Eq. 2, the hyperbolic norm is defined as
follows:

‖x‖h = arcosh(1 +
2‖x‖2

1 − ‖x‖2 ). (11)

Our objective is to keep the norm of high-dimensional data and its embed-
ding at a constant level. We minimize the difference between the hyperbolic
representation expc

0(G) of the input graph and the embedding representation
Hh obtained from the network. So the Hyperbolic hierarchical loss is defined as
follows:

Lhie = E(‖ expc
0(G)‖h − ‖Hh‖h)2. (12)

4.4 Hyperbolic Uniformity Loss

The contrastive loss comprises uniformity and alignment losses [42]. To simplify
the computations, we employ the inner product rather than distance as a measure
of similarity. The reason for this is the conformality property of the Poincaré ball
model, i.e., the angles between any embeddings in the Poincaré ball as the same
as those in Euclidean space. The hyperbolic inner product is defined as follows:

〈x,y〉h = ‖x‖h · ‖y‖h · cos〈x,y〉 = ‖x‖h · ‖y‖h · 〈x,y〉
‖x‖ · ‖y‖ , (13)

where 〈·, ·〉 denotes the inner product in Euclidean space and ‖ · ‖h is the hyper-
bolic norm as defined by Eq. 11.

According to the above definition, we employ the uniformity loss to ensure
the uniform distribution of the dataset over the Poincaré Ball, preserving maxi-
mal information about the data. Considering the Gaussian potential kernel, the
uniformity loss is defined as follows:

Luni = logE(x,y)∼pdata

[
e−τ ·〈x,y〉h

]
, τ > 0, (14)

where pdata is the distribution of data on the Poincaré ball model and τ is a
temperature parameter.

4.5 Total Loss

In summary, we maximize inter-class distance and minimize intra-class distance
through Euclidean loss, learn the data hierarchical structure by using Hyper-
bolic hierarchy loss, and preserve the most information with uniformity loss.
Consequently, the total loss for HGRL is defined as follows:

Ltotal = Leuc + αLhie + βLuni, (15)
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where α and β represent trade-off hyper-parameters to balance the effects of the
Euclidean loss and the two Hyperbolic losses in multi-space learning.

5 Experiments

5.1 Experimental Setup

Datasets. As shown in Table 1, we construct the node classification and cluster-
ing tasks on four widely-used datasets to evaluate the performance of our HGRL
model: Cora [24], Citeseer [10], Pubmed [34], and Cora Full [2]. All of them are
citation networks, which edges are citation links and nodes are documents. We
visualize the results on biological datasets: the mouse myelopoesis scRNA-seq
dataset [29] which has been preprocessed into 9 types [32].

Table 1. The summary of the dataset.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7

Citeseer 3,327 4,732 3,703 6

Pubmed 19,717 44,338 500 3

Cora Full 19,793 65,311 8,710 70

scRNA-seq 382 - 532 9

Metrics. For node classification tasks, we measure the performance by the mean
classification accuracy and the standard deviation. We gather the result over 50
random splits and conduct the experiments with different sample sizes per class,
practically 5 and 20 samples per class. Toward the node clustering task, we
use the clustering Accuracy (Acc), Normalized Mutual Information (NMI), and
macro F1-score (F1) over 10 random splits. For all datasets, we use the logistic
regression classifier and the KMeans respectively.

Experimental Settings. We set the dimension to be the same as COLES [51],
e.g., 512 dimensions on Cora, Cora Full and Citeseer, and 256 dimensions on
Pubmed. For our model, we set the hyperbolic curvature c = 1. And since
the Poincaré Ball has a Riemannian manifold structure, we optimize Eq. 15 via
stochastic Riemannian optimization methods RSGD.

5.2 Node Classification and Clustering

Table 2 and Table 3 show the experiments of node classification and node clus-
tering respectively. CO-N and CO-S represent COLES-GCN [51] and COLES-
SSGC [51] respectively. Simple Spectral Graph Convolution (SSGC) [50] is a



284 L. Li et al.

Table 2. The mean classification accuracy (%) and the standard deviation over 50
random splits. For each dataset, the experiments have different sample sizes per class,
i.e., 5 and 20 samples per class. The best accuracy result is red.

Method
Cora Citeseer Pubmed Cora Full

(5) (20) (5) (20) (5) (20) (5) (20)

GCN [16] 67.5± 4.8 79.4± 1.6 57.7± 4.7 69.4± 1.4 65.4± 5.2 77.2± 2.1 49.3± 1.8 61.5± 0.5

DGI [39] 72.9± 4.0 78.1± 1.8 65.7± 3.6 71.1± 1.1 65.3± 5.7 73.9± 2.3 50.5± 1.4 58.4± 0.6

SSGC [50] 71.4± 4.4 81.3± 1.2 60.3± 4.0 69.5± 1.2 67.6± 4.2 73.3± 2.0 41.8± 1.7 60.0± 0.5

CO-G [51] 73.8± 3.4 80.8± 1.3 66.0± 2.6 69.0± 1.3 62.7± 4.6 72.7± 2.1 47.3± 1.5 58.9± 0.5

CO-S [51] 76.5± 2.6 81.5± 1.2 67.5± 2.2 71.3± 1.0 66.0± 5.2 77.4± 1.9 50.8± 1.4 61.8± 0.5

HGCN [4] 76.1± 1.6 77.6± 0.7 57.6± 4.7 64.8± 0.8 67.1± 7.6 72.0± 1.0 52.3± 2.3 63.6± 0.7

HIE [48] 77.5± 2.6 81.6± 0.8 67.9± 4.1 71.5± 0.8 74.9± 7.0 76.3± 1.0 53.3± 2.2 65.1± 0.8

HGRL 74.6± 3.1 79.1± 0.9 67.7± 3.0 71.5± 0.9 64.1± 4.9 73.7± 2.6 49.9± 1.5 60.1± 0.5

HGRL-S 78.7± 2.0 83.6± 0.9 68.8± 2.5 71.7± 0.8 67.7± 4.6 77.6± 1.7 53.3± 1.4 61.7± 0.6

spectral filter to obtain the local and global information of each node before train-
ing. Considering the refined graph structure understanding and feature learning
facilitated by SSGC, we also extend our framework with SSGC [50] and named
HGRL-S. It can seen that compared with the method based on a single space,
our HGRL method has the best performance in most cases.

From Table 2, the proposed HGRL method has smaller standard deviations
indicating that our HGRL is more stable and reliable. Specifically, compared
to the method GCN, we achieved an average reduction of 0.95 in the standard
deviation. On the Cora and Citeseer, our method outperforms the Hyperbolic-
based HIE by 1.2%, 2%, 0.9%, and 0.2% classification accuracy respectively. Our
method also outperforms the Euclidean-based COLES by 2.2%, 2.1%, 1.3%, and
0.4% respectively. Despite HIE has the better results on the pubmed and cora
full, it introduces instability. Similarly, the proposed HGRL method achieves
excellent performance in the clustering task.

5.3 Visualization

Single-cell RNA sequencing (scRNA-seq) is used to analyze gene expression in
individual cells, revealing differences between different cells and providing a
deeper understanding of cell types and functions. Therefore, it needed to uncover
the developmental trajectory of cells along a tree-like structure with multiple
branches. We conducted a visualization experiment to demonstrate the perfor-
mance of dimension reduction ability on the scRNA-seq dataset. Specifically, we
reduced the dataset from 512 dimensions to two-dimensional embeddings.

The results are shown in Fig. 2. Figure 2(a) is the canonical hematopoetic cell
lineage tree [27]. Figure 2(b) and Fig. 2(c) are the visualizations of the HIE [48]
and HGRL respectively.
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Table 3. The Acc(%), NMI(%), and F1(%) performance of clustering task on Cora,
Citeseer, and Pubmed. The best accuracy result is red.

Method
Cora Citeseer Pubmed

Acc%NMI% F1% Acc%NMI% F1% Acc%NMI% F1%

GCN [16] 59.05 43.06 59.38 45.97 20.08 45.57 61.88 25.48 60.70

SSGC [50] 68.96 54.22 65.43 69.11 42.87 64.65 68.18 31.82 67.81

CO-G [51] 60.74 45.49 59.33 63.28 37.54 59.17 63.46 25.73 63.42

CO-S [51] 69.70 55.35 63.06 69.20 44.41 64.70 68.76 33.42 68.12

GCC [6] 74.29 59.17 70.35 69.45 45.13 64.54 70.82 32.30 69.89

HGCN [4] 75.48 54.01 75.41 63.81 38.39 62.45 71.65 33.28 71.08

HIE [48] 75.72 57.91 75.24 68.85 44.83 64.67 73.31 34.31 73.15

HGRL 70.09 47.66 67.08 68.71 43.30 65.14 65.71 34.64 67.58

HGRL-S 76.85 61.21 75.61 69.76 45.25 65.56 70.11 35.10 69.99

Fig. 2. The visualization experiments for HIE and HGRL. HGRL preserves the better
structure information. (a) The hierarchical structure of the data. (b) The visualization
result of the HIE. (C) The visualization result of the proposed HGRL.
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5.4 Ablation Study

HGRL model considers three types of loss to generate powerful embeddings, i.e.,
Euclidean constrastive loss, hierarchy loss, and uniformity loss. We investigate
the effectiveness of each loss and conduct ablation experiments on the Cora
and Citeseer datasets. We consider the role of each loss and the interaction
between them. As summarized in Table 4, Leuc and Lhie both contribute to the
HGRL. The performance decreases when only using the Lhie because it cannot
distinguish different categories. However, it can adjust the distortions caused by
other losses and maintain the original structural information of the data.

Table 4. The ablation experiment on the Cora and Citeseer dataset.

Leuc Lhie Luni
Cora Citeseer

(5) (20) (5) (20)

� 77.6± 3.2 82.2± 1.0 67.3± 2.371.4± 1.4

� 69.3± 4.2 79.1± 1.3 60.6± 6.263.7± 2.1

� 75.9± 2.6 82.3± 1.0 61.9± 6.567.8± 1.9

� � � 78.71± 2.083.6± 0.9 68.8± 2.571.7± 0.8

As noted, the gap between considering Euclidean contrastive loss alone and
the proposed method is relatively small. This is because Cora and Citeseer
are citation datasets with sparse connections between nodes. So hierarchical
structure is not intuitively clear. To visualize the ability of each part, we con-
ducted visualization ablation experiments on the scRNA-seq dataset using three
loss functions individually. Specifically, Fig. 3(a) indicates poor outcomes in the
Poincaré disk due to the exclusive application of Euclidean loss. Figure 3(b)
using Hyperbolic loss, maintains hierarchical information across classes but lacks
clear distinctions and exhibits uneven distribution within the disk. Addition-
ally, Fig. 3(c) achieves a uniform data distribution while preserving maximum
information content. Comparing the results in Fig. 2(c), our model effectively
balances these losses and successfully utilizes their advantages respectively for
representation learning.

Hyper-Parameter Experiment. As depicted in the Fig. 4, we set the values
of α and β in Eq. 15 to {0, 0.2, 0.4, 0.6, 0.8, 1} respectively. Our method performs
better when setting the larger values for α and β, and ACC decreases as the
α and β tend to 0. This further demonstrates the effectiveness of our HGRL
method.
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Fig. 3. The visualization ablation experiment on the scRNA-seq dataset.

Fig. 4. The clustering ACC(%) for different hyper-parameters (α and β) settings.

6 Conclusion

As a summary, this paper introduces a hybrid graph representation learning
model, named HGRL, which addresses the limitations of existing methods by
training in Euclidean and Hyperbolic spaces. We novelly analyze the interaction
between three loss functions, e.g., Euclidean contrastive loss, and Hyperbolic
hierarchy loss and uniformity loss, achieving a better way to exploit their geo-
metric advantages. The proposed HGRL method demonstrates excellent results
in various downstream tasks such as node classification, clustering, and visual-
ization. In particular, it exhibits strong hierarchical learning capabilities through
visualization experiments. Our method is an unsupervised learning model, and
such models tend to have the issue of unclear boundaries when learning the
similarity of nodes. We will continue to study this problem in future work.
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2. Bojchevski, A., Günnemann, S.: Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. arXiv preprint arXiv:1707.03815 (2017)

3. Chami, I., Wolf, A., Juan, D.C., Sala, F., Ravi, S., Ré, C.: Low-dimensional hyper-
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Abstract. We propose an adaptation to the training of Vision Trans-
formers (ViTs) that allows for an explicit modeling of objects during
the attention computation. This is achieved by adding a new branch
to selected attention layers that computes an auxiliary loss which we
call the object-focused attention (OFA) loss. We restrict the attention to
image patches that belong to the same object class, which allows ViTs to
gain a better understanding of configural (or holistic) object shapes by
focusing on intra-object patches instead of other patches such as those in
the background. Our proposed inductive bias fits easily into the atten-
tion framework of transformers since it only adds an auxiliary loss over
selected attention layers. Furthermore, our approach has no additional
overhead during inference. We also experiment with multiscale masking
to further improve the performance of our OFA model and give a path
forward for self-supervised learning with our method. Our experimen-
tal results demonstrate that ViTs with OFA achieve better classification
results than their base models, exhibit a stronger generalization ability
to out-of-distribution (OOD) and adversarially corrupted images, and
learn representations based on object shapes rather than spurious corre-
lations via general textures. For our OOD setting, we generate a novel
dataset using the COCO dataset and Stable Diffusion inpainting which
we plan to share with the community.

Keywords: representation learning · vision transformers · attention
mechanism

1 Introduction

One of the key ideas of vision transformers (ViTs) is to update the representation
of a given patch p as a weighted sum of feature vectors from all image patches.
The weights, which are computed using the transformer attention mechanism,
are determined based on the feature similarity of p to other patches. This is
based on an implicit assumption that features of patches within the same object
should be more similar to each other than to features of other objects or of
the background. However, this assumption is often not satisfied, since different
parts of the same object may have very different appearances, and some object
patches may be more similar to the background or other object patches. This
fact limits learning efficiency and also the generalization ability on both in dis-
tribution and out of distribution samples. In addition, ViTs are susceptible to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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learning “shortcuts” [27] where rather than capturing the object focused seman-
tic meaning of an image, they capture spurious correlations with the background
or other image artifacts. For example, if all training images show a fox in the
forest, then a fox on a street may not be recognized. Currently, this problem is
alleviated with a large number of training images via datasets such as ImageNet
and heavy data augmentation. The hope is that the fox will appear on a large
variety of backgrounds, but the assurance of this fact comes only from a large
number of images, and it is hard to guess what other anomalies may be hidden
in the training images.

Our key contribution is to limit the attention of patches to patches of the
same object class only in a learned way. It can be viewed as refocusing the
attention on relevant image parts. As demonstrated in [31], such an approach
can lead to significant performance improvement. However, the focal modulation
in [31] is done outside the transformer framework, and it does not include any
inductive bias to focus on patches of the same object class, as proposed here.

Fig. 1. We restrict learning attention to objects of the same class.

We illustrate our idea on an example image in Fig. 1. We propose to limit the
attention of the green patch p inside the dog to patches inside the green mask.
Hence, the red patch in the background and the blue patch inside the cat in the
blue mask are excluded from computing the new weighted representation of the
green patch. Furthermore, our proposed restriction on the patch attention is not
hard coded but learned. This is achieved by adding a new branch to selected
attention layers that computes an auxiliary loss called object focused attention
(OFA) loss. To train ViTs with the proposed semantically focused attention, we
use datasets with semantic segmentation masks. Luckily there exists a plethora
of such datasets like the MS COCO dataset or PASCAL VOC 2012 dataset.
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In the absence of segmentation masks out of the box, we note the ability to
generate psuedo-segmentation masks via general purpose segmentation models
such as the Segment Anything Model (SAM) [13].

The proposed restriction of attention to patches within the same object
allows transformers to gain a better understanding of configural (or holistic)
object shapes since attention is trained to be learned within patches of the same
object class, hence the background is largely ignored. This also means better
generalization to out-of-distribution (OOD) images. We present an experimen-
tal evaluation to demonstrate these facts on multilabel classification tasks. As
our baseline model, we use the Musiq Transformer [12] and also show results
with strong out-of-distribution performance with the standard ViT [5]. We chose
Musiq Transformer due to its 2D positional encoding that is suitable for mul-
tiscale image representation. The original Musiq Transformer is developed for
image quality assessment, but we adopt it for other downstream tasks such as
multilabel classification. We note that our proposed OFA branch can be easily
added to the self-attention layer of any vision transformer variant.

2 Object Focused Attention

As outlined in Sect. 1, our key idea is to limit the attention of patches to patches
of the same class. Here we introduce our formal framework to implement this
idea.

For ViT and its variants, an input image I is first divided into N disjoint
square patches P = {p1, . . . , pN} of a fixed size. For simplicity of presentation,
we focus on a single encoder layer of Musiq [12] with one head. Let {x1, . . . ,xN}
be the set of input tokens representing the patches that were obtained by the
previous layer, where each token is a row feature vector xi ∈ R

d. Let X ∈
R

N×d be the matrix obtained by stacking vectors x1 . . .xN . The scaled attention
module of this layer first linearly projects the patch tokens to query, key, and
value matrices Q,K,V ∈ R

d×N , given by Q = XWQ, K = XWK , V = XWV ,
where WQ,WK ,WV ∈ R

d×d are learnable parameter matrices.
Next, we compute the attention weight matrix A that reflects the similarity

between the patches:

S =
QKT

√
d

and A = softmax(S) ∈ R
N×N . (1)

We call matrix S a scaled pre-attention matrix. The i-th row of S is denoted
as si ∈ R

1×N , and it indicates the attention of patch i to all other patches.
Finally, the output matrix is obtained as Y = AV ∈ R

N×d, where each row
yi of matrix Y is a new representation of patch xi as the sum of vectors in V
weighted by i-th row ai of attention matrix A. The new representation of the
i-th patch token is a weighted sum of all patch tokens.

The right branch of the diagram in Fig. 2 illustrates this process, which is
the standard attention computation as proposed in [28]. The left branch of the
diagram in Fig. 2 illustrates the proposed object focused attention (OFA) that
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aims at training matrix S to resemble a binary matrix B representing a focus
on patches within a given object. The left branch is devoted to computing OFA
loss. The matrix B and the process of computing OFA loss are defined below
(Fig. 3).

Fig. 2. The proposed object focused attention (OFA) as an extension of self-attention.
The arrows are labeled with the input/output matrices. The right part of the diagram is
based on the original self-attention paper [28]. The left branch computes the OFA loss.
The patch adjacency matrix (PAM) module is used to compute the patch adjacency
matrix B, which is then compared to the pre-attention matrix S.

Let R = {R1, . . . , Rr} be a semantic segmentation of image I into a set of
disjoint regions (object masks) such that their union covers the whole image. We
also assume that patch pi is contained in or intersects region Rj . Our training
procedure seeks to reduce the attention values of patches disjoint with region Rj

to zero in the pre-attention vector si. We note that simply setting these values
to zero for the training image I will not generalize to test images for which no
segmentation masks are given. Therefore, we propose to learn this behavior by
incorporating an auxiliary loss function to focus the attention of patch i only
on patches that also intersect region Rj . For this, we define a patch attention
matrix (PAM) B, which is a binary N ×N matrix. Ones in row bi of B represent
patches that intersect the same object mask as patch i. Formally, bik = 1 if both
patches pi and pk intersect the same object mask and zero otherwise. We use
here a simplified notation for clarity of presentation. In particular, patch pi may
intersect more than one object mask Rj , in which case more regions need to be
considered. To handle overlap patches, we use a simple heuristic where if any
part of a patch is part of an object, it is considered an object patch.

Then we apply row-wise softmax to B and obtain B′ = sofmax(B). Since
we want the patch cross attention to focus on foreground objects, we mask all
rows in B′ that represent background patches. We denote the new matrix B′′.
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Fig. 3. Data flow showing differences in training and inference. OFA is shown explicitly
as a training time method and thus can be used without any segmentation labels during
inference.

Similarly, we compute row-wise softmax to obtain S′ = sofmax(S). Followed
by setting to zero (masking) all rows in S′ that represent the background patches.
The resulting matrix is denoted with S′′. We use matrices S′′ and B′′ to define
the object focused attention (OFA) loss as their L2 distance:

LOFA = ||S′′ − B′′||2. (2)

This process is graphically illustrated in the left part of the diagram in Fig. 2.
We call the transformer trained with this auxiliary OFA loss OFAMusiq.

In order to explain the intuition behind OFA loss, let us assume that row i of
B represents an object patch and has k ones, meaning there are k other patches
that intersect the same region. Then sofmax(B) maps the ones in row i of B to
1/k in B′, and the same values will remain in B′′. Hence the L2 distance between
rows i of B′′ and S′′ pushes patch i to pay equal attention to the other k patches
of the same object and zero attention to all other patches. With reference to
Fig. 1, OFA loss forces the green patch inside the dog to pay attention only to
patches inside the green dog region.

Moreover, since the sum of each row of B′′ is one, the contribution of each
patch to OFA loss is equal. This means that a patch i that belongs to a small
object, and hence has fewer neighbors in its attention graph (fewer ones in i row
of B) is equally important as patches that belong to large objects.

The proposed OFA loss can be placed at any layer or at several layers at the
same time. In Sect. 6, we explore options for the best placement of the OFA loss.
Our overall loss function can be summarized as follows:

Ltotal = Ltask + α · LOFA, (3)
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where Ltask is a task-dependent loss, e.g., cross-entropy for classification, and α
is a hyperparameter that balances the two loss functions.

3 Self-supervised Option with MAE

Our method uses datasets with semantic segmentation masks to train vision
transformers with the proposed semantically focused attention. While there
exist many such datasets such as the MS COCO dataset, PASCAL VOC 2012,
or PACO [20], they are relatively small, so we explore the setting with self-
supervision which is useful in learning representations for low-data domains. For
this, we show experiments where we integrate OFA and Musiq Transformer with
Masked AutoEncoder (MAE) [11].

MAE uses self-supervised learning masking, where certain patches of an
image are masked, and the model is tasked with predicting the original con-
tent within those masked regions. This approach encourages the model to learn
meaningful representations by leveraging contextual information from the sur-
rounding visual context. The advantages of MAE lie in its ability to capture rich
contextual dependencies and learn robust visual representations. Training the
model to predict masked regions forces the model to understand and utilize the
relationships and patterns present in the small amount of labeled data.

To our knowledge, we are the first ones to extend MAE to multiscale masking
by utilizing Musiq positional encoding. Instead of performing masking directly
on image patches, we propose to perform masking on the cells of the reference
grid, which is then carried to tokens of images of different scales using a simple
geometric mapping of the cell grids to image patches, see Fig. 4. This mapping
is used by Musiq for positional encoding, but we extend it to also guide the
masking process.

Fig. 4. The multiscale masking is computed by masking the grid cells (left) and car-
rying over the masked cells to image patches that correspond to those cells.

4 Adjacency Regularization

Another way to view our OFA loss is through the lens of “adjacency regulariza-
tion” by enforcing a penalty on allowed states of connectivity. Vanilla transform-
ers such as ViT are known for their O(N2) quadratic complexity with respect to
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attention computation over the number of input patches. Cast in the language of
graphs, this is a complete graph (with self-loops) where every pair of vertices is
connected via an edge producing N ·(N+1)

2 edges of order O(N2). The adjacency
matrix, B, for such a graph can be described as Bij = 1 ∀i, j ∈ {0, . . . , N − 1},
where N is the number of vertices in the graph, or in the case of ViT, input
patches. By restricting the attention of each object patch to only patches of the
same object, we significantly reduce the number of edges in the attention graph
represented by matrix B. In particular for MS COCO [15], purely object based
connectivity creates a roughly 80% reduction in the number of edges. Only 20.7%
of edges from the standard fully-connected attention are used. The underlying
motivation behind training to decrease connectivity is to encourage a more par-
simonious attention matrix which is robust to spurious correlations and instead
can focus on semantic object information [14]. We show empirically in Sect. 6
that our model achieves such robustness.

5 Related Work

5.1 Transformers and Self-Attention

The transformer’s [28] self-attention mechanism offers a way for allowing every
token to model information over every other token. ViT [5] adapted the trans-
former for computer vision by converting an image to a set of patch tokens and
then using the standard transformer blocks.

There has been a considerable amount of work related to improving the self-
attention mechanism and augmenting the inductive biases in vision transformers.
One line of research has focused on modifying the self-attention mechanism to
better capture spatial information in images. For example, [4] suggests using
a mixture of local and global tokens in the input embedding to improve the
model’s ability to capture both local and global information in the image. Swin
transformer [18] utilizes a hierarchical structure analog to Convolutional Neural
Networks (CNNs) to improve ViT performance. Learning of attention has been
considered in [19], where it is applied to rectangular windows of patches. Since
the size of the windows is learned, the approach is called window-free multi-head
attention. In contrast to our work, all these approaches do not explicitly utilize
object mask knowledge in restricting or restructuring self-attention. Moreover,
many of them add computational overhead at the time of inference while our
approach keeps the original structure of the self-attention layer during the infer-
ence.

5.2 Holistic Shape Representation

According to [1], objects have both local and configural shape properties. Local
shape properties can be important for recognition. For example, ears alone may
be sufficient to identify a rabbit but often are not discriminative enough. A con-
figural shape property is a function not just of one or more local features (parts)
but also of their arrangement meaning it provides a holistic shape representation.
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Vision transformers, like other deep learning models, can learn to attend to
different features of an image, including both texture and shape. However, it has
been observed that their attention is more focused on texture than shape, in
particular, they fail to capture the configural nature of shapes in images, which
means they are not able to adequately learn a holistic shape representation [1].
There have also been several studies on CNNs that demonstrated that they
tend to attend more to texture than shape in natural images, e.g., [2,9,10]. We
demonstrate in Sect. 6 that the proposed refocusing of attention within objects
contributes to a better understanding of the holistic shape of objects.

5.3 Multi-label Classification

In many classification tasks, class labels are mutually exclusive such as when an
image contains just one object. In multi-label classification, we predict mutually
non-exclusive class labels, such as when an image may contain more than one
object or concept. Multilabel classification is a challenging problem in computer
vision due to the high dimensionality of the label space and potential correlations
between labels. The label space can contain a large number of labels, and each
label can be associated with multiple instances in the dataset. Furthermore, the
labels can be highly correlated, meaning that the presence of one label in an
image can increase the likelihood of other labels being present as well.

One of the first transformer networks applied to multilabel classification is
[3], where windows partitioning, in-window pixel attention, and cross-window
attention are used for improving the performance of multi-label image classi-
fication tasks. One of the best-performing multilabel classification method is
ADDS [30], where ADDS stands for Aligned Dual moDality ClaSsifier. It includes
a dual-modal decoder that performs alignment between visual and textual fea-
tures. In contrast, we only use visual features.

6 Experimental Evaluation

Across our experiments, we use both single-scale and multi-scale MUSIQ trans-
formers [12], denoted MUSIQ-single and MUSIQ-multi. The single-scale resizes
images so that the longer side has length 512 while preserving the aspect ratio
(ARP). The multi-scale uses the full-size image and two ARP resized inputs 384
and 224. It, therefore, uses three-scale input. In addition, we investigate the influ-
ence of self-supervised learning using MAE masking as a further enhancement of
our methods. We also show that OFA is much more robust to background per-
turbations than standard ViTs by evaluating on our Stable Diffusion inpainted
dataset. We use α = 0.7 across our experiments unless otherwise stated. Finally,
we present an interesting finding via patch shuffling showing that ViTs don’t
grasp the overall shape of objects well compared to models equipped with OFA.
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6.1 Multi-label Classification on MS-COCO and Pascal Voc2012

MS COCO (Microsoft Common Objects in Context) is a large-scale image recog-
nition dataset containing 80 different object categories. Multilabel classification
uses the same train/val splits as for the object detection task. The training set
contains 118,287 images with annotations, while the validation set contains 5,000
images, which are used for testing. All the training images also contain seman-
tic segmentation masks so that we can use them in our framework. We use the
standard definition given by the COCO dataset of thing and stuff. From the
COCO homepage we quote: “Things are objects with a specific size and shape,
that are often composed of parts. Stuff classes are background materials that
are defined by homogeneous or repetitive patterns of fine-scale properties, but
have no specific or distinctive spatial extent or shape.” Put simply the COCO
dataset defines segmentation masks directly for object classes and background
classes.

Pascal VOC 2012 [6] contains objects grouped into 20 classes. The stan-
dard train/val set for the multilabel image classification/detection task has
11,540 images. However, since we need semantic segmentation masks, we train
on train/val 2,913 images that are usually used for the image segmentation task.
We test on the standard Pascal VOC 2012 test set composed of 10,991 images.
Following other methods, we use mean average precision (mAP) in evaluating
multilabel classification performance.

We experiment with computing the OFA loss over multiple attention layers
of MUSIQ, which has 14 attention layers. Table 1 compares two settings for
positioning the OFA loss: at the first and last layers [1, 14] and at layers [1, 7, 14].
Since placing OFA loss at layers [1, 7, 14] performs the best across all the settings,
this model is used in all our further experiments. As for our weighting schema, we
progressively weight the contributions of each attention block with later layers
getting more weight with a factor of 0.9. The loss at layers [1, 7, 14] is weighted
as:

OFAtotal =
1
3
(0.9 · OFA14 + 0.92 · OFA7 + 0.93 · OFA1) (4)

The loss at layers [1, 14] is weighted as:

OFAtotal =
1
2
(0.9 · OFA14 + 0.92 · OFA1) (5)

Table 2 shows multilabel classification results of MUSIQ transformer trained
on MS COCO. We evaluate it on MS COCO and on Pascal VOC2012. The
results on Pascal VOC2012 can be interpreted as zero-shot since do not train
the model on this dataset and instead just fine-tune a classification head. We
only benefit from the fact that the 20 classes of Pascal VOC2012 are a subset of
the 80 classes of MS COCO. However, these datasets are composed of disjoint
images, and MS COCO images are very different from Pascal VOC2012 images.
Hence the excellent performance of MUSIQ-multi + MAE + OFA gives an initial
result showing out-of-distribution (OOD) generalization ability of our approach.
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Table 1. mAP multi-label classification results for placement of the OFA across layers.
Placing OFA loss at layers [1, 7, 14] performs the best across all MUSIQ settings and
so is used in further experiments. We add ViT and note that we use layer 12 instead
of 14 as ViT-Base has 12 layers.

Methods MS COCO PASCAL VOC2012

[1,14] [1,7,14] [1,14] [1,7,14]

MUSIQ-single + OFA 88.3 89.0 87.8 88.4

MUSIQ-multi + OFA 89.4 89.9 89.3 90.1

MUSIQ-single + MAE + OFA 91.3 91.7 90.8 91.5

MUSIQ-multi + MAE + OFA 91.6 92.1 91.2 91.9

ViT-Base + OFA 88.2 89.0 - 87.8

Table 2. mAP multilabel classification results on the MS COCO and Pascal VOC2012
datasets. All models are trained and evaluated on MS COCO. They are then applied
on Pascal VOC2012 without any finetuning besides the linear head.

Methods MS COCO zero-shot VOC2012

ViT-Base 86.6 81.7

ViT-Base + OFA 87.3 87.8

MUSIQ-single 87.5 89.7

MUSIQ-multi 88.0 90.2

MUSIQ-single + OFA 89.0 90.9

MUSIQ-single + MAE 89.7 92.3

MUSIQ-multi + OFA 89.9 93.2

MUSIQ-multi + MAE 91.6 93.6

MUSIQ-single + MAE + OFA 91.7 94.7

MUSIQ-multi + MAE + OFA 92.1 95.4

In Table 3, we compare our methods to other multi-label classification meth-
ods on MS COCO, most with more complex architectures. We find that our
method which adds an auxiliary loss to MUSIQ transformers outperforms other
SOTA methods. We do not compare against multimodal methods such as [23,30]
since we only use visual features.

In Fig. 5, we visualize the final-layer attention maps of the baseline MUSIQ
and MUSIQ + OFA for some test examples. We find that MUSIQ + OFA quali-
tatively attends to object shapes more consistently and produces reasonable seg-
mentation maps in comparison to MUSIQ. This finding is consistent across small-
single label images, large single-label images, multi-label images, and multi-label
multi-object images. MUSIQ often attends more greatly to the background and
finds spurious correlations through attention while the OFA loss has a significant
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Table 3. Comparison to other methods on MS COCO. Our approach is SOTA against
other methods and a MUSIQ-multi baseline. Combining multi-scale training and OFA
gives better performance even at lower resolutions.

Methods Resolution mAP

IDA-R101 [16] 576 86.3

TResNet-XL [22] 640 88.4

TResNet-L-V2 [21] 640 89.8

MlTr-XL [3] 384 90.0

IDA-SwinL [16] 384 90.3

Q2L-SwinL [17] 384 90.5

MLD-TResNet-L-AAM [26] 640 91.3

Q2L-CvT [17] 384 91.3

MUSIQ-multi (full,384,224) 88.0

MUSIQ-multi + MAE + OFA (full,384,224) 92.1

Table 4. Results of multilabel classification over 20 classes on Pascal VOC2012.

Method mAP

VGG-16 [25] 79.3

Swin-B [18] 84.9

Deit-B [29] 83.0

ViT-B [5] 81.7

PF-DLDL [7] 92.4

MCAR [8] 94.3

MUSIQ-multi 90.2

MUSIQ-multi + MAE + OFA 95.4

impact in focusing the attention computation on objects and greatly reducing
attention to the background.

Table 4 compares the performance of zero-shot MUSIQ-multi + MAE + OFA
(trained on MS COCO), to recent SOTA transformers: ViT-B [5], Swin (Swin-B)
[18], DeiT with iRPE-K (DeiT) [29], PF-DLDL [7], MCAR [8] and to VGG-16
[25]. Our model exhibits the best performance and significantly outperforms the
other methods (Table 6).

6.2 Out-of-Distribution Background Corruption with Stable
Diffusion

In Fig. 6, we show selected examples of our new dataset for evaluation of OFA on
OOD samples with adversarially corrupted backgrounds. We use Stable Diffusion
inpainting [24] to replace backgrounds in each of the MS COCO test images with
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Fig. 5. Comparison of attention maps of proposed MUSIQ + OFA and baseline
MUSIQ.

Table 5. mAP results on MS COCO test data with background in-painted by Stable
Diffusion [24]. We show the performance on the original test set and the degradation
on our inpainted dataset. The OFA model is more robust to background perturbations.
The result implies that OFA is more focused on learning semantic information about
the objects rather than spurious correlations to the background.

Base Model Resolution Baseline ViT ViT+OFA

ViT-Base-Patch16 (1k) 224 73.9 (−7.0) 78.6 (−2.2)

ViT-Base-Patch16 (21k) 224 73.6 (−9.3) 81.7 (−2.2)

ViT-Large-Patch16 (21k) 384 79.0 (−6.9) 83.7 (−3.0)

five new background categories: ocean, desert, forest, meadow, and beach. We use
the mask information for each image to set boundaries for parts of the image that
are inpainted. We inpaint the background of each image while leaving the object
area unaltered, effectively superimposing each object onto a new background. To
decide on the inpainting domain we use the simple prompts to guide the diffusion
process. We use 5 prompts for each validation image resulting in an overall set of
5 × 5000 = 25, 000 images. We then test models trained on MS COCO without
any finetuning. Table 5 clearly shows the robustness of OFA to OOD images
with respect to background perturbations. We find that ViTs are susceptible to
background perturbations showing a significant decrease in performance while
the OFA model is more robust to background swapping.
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Fig. 6. Example images generated by Stable Diffusion inpainting on MS COCO.

Fig. 7. Example shuffle operation applied to a varying number of patches. For humans
the objects in a shuffled grid with 4 patches already seem unrecognizable.

Fig. 8. The mAP over 20 classes on PASCAL VOC2012 when patches are shuffled.
While the classification performance of ViT + OFA drops significantly, those of ViT
hardly drops.
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Table 6. Ablation of computing OFA loss on multiple attention blocks in ViT+OFA
using the ViT-Base-Patch16 (21k) on a subset of MS COCO.

OFA at Different Layers (40% data) 1 2 3 4 5 6 7 8 9 101112mAP

[12] � 83.5

[1] � 83

[1,12] � � 83.6

[1,6,12] � � � 83.7

[1,3,7,10,12] � � � � � 84.0

[1,3,5,7,9,11] � � � � � � 83.7

[all] ���������� � � 83.6

6.3 Learning Shape Representations over Textures

We demonstrate that the arrangement of object parts is not well represented by a
standard ViT and is aided by using OFA. We divide an input image into patches
by imposing a grid structure of different sizes and then randomly permute the
position of patches. Figure 7 shows samples of this shuffle operation applied
to PASCAL VOC 2012 images [6]. As illustrated by the blue dashed curve in
Fig. 8, the multilabel classification performance of ViT remains nearly constant
if 4 patches and 16 patches are permuted. However, as can be seen in Fig. 7,
already the objects in the images with 4 permuted patches seem unrecognizable
to a human. If ViT possessed an understanding of the configural shape, we
should see a significant performance drop. In contrast, the performance of ViT
+ OFA drops significantly (red dashed curve). This demonstrates that it gained
at least a rough understanding of configural object shapes due to the object-
focused attention loss. We used ViT as the baseline model in this experiment
to eliminate any influence of multi-scale and aspect ratio preserving since ViT
takes a single-scale, square image of size 256 × 256 as input.

7 Discussion and Future Work

We introduce a simple yet effective method for object-centered learning in the
vision transformer framework. The proposed object focus attention loss is easily
integrated into the self-attention module. Our trained model does not introduce
any computational overhead at inference and still outperforms SOTA transform-
ers. Moreover, it generalizes better to out-of-distribution examples and corrupted
examples with respect to background and object shape. Finally, we show SOTA
results when our approach is combined with multi-scale representation and MAE,
offering a potential avenue for more exploration. We are interested in scaling our
method to larger data using models that generate pseudo-segmentation masks
such as SAM. We will explore this option in our future work. As shown in
[2,9,10], deep learning models tend to focus on texture rather than on the shape
of objects. Our experimental results demonstrate that the proposed refocusing
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of attention on segmentation masks contributes to a better understanding of
holistic object shapes. We speculate that this fact makes our model more robust
to adversarial attacks. In order to refine the learned attention, we will also con-
sider learning attention based on instance segmentation as well as on panoptic
segmentation data.
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Abstract. Hyperbolic geometry has emerged as a promising tool in
diverse domains in deep learning. In this study, we concentrate on a key
component of hyperbolic neural networks-the mapping from Euclidean
space to hyperbolic space. We explore the problems and drawbacks of
existing practices in this mapping, such as exponential mapping and
projection methods constrained within the Poincaré ball. We emphasize
that these methods rely entirely on supervised relationship data to cap-
ture hierarchical structure in hyperbolic space. The exponential map-
ping, which does not involve learning any parameters, functions more
like a predefined activation function. This type of mapping does not con-
vey any hierarchical structure information, making the computational
cost of this mapping unnecessary. We propose a novel approach called
Stereographic Projection Transition Mapping (SPTM). Leveraging the
intrinsic properties of hyperbolic space, SPTM explicitly represents hier-
archical structures present in the Euclidean space. By analytical mapping
relationships in the Euclidean space, SPTM offers a more efficient and
interpretable way to represent hierarchical structures in the Poincaré ball
without the need for excessive supervision.

Keywords: Hyperbolic Neural Networks · Geometry of Neural
Networks

1 Introduction

Since the introduction of hyperbolic neural networks [10], data characterized
by tree structures and hierarchies, when processed in hyperbolic space, have
found widespread applications in addressing various machine learning tasks
[5,10,18,20,24,26,28]. The key difference between various Hyperbolic Neural
Networks (HNN) and traditional machine learning lies in the embedding of data.
When metrics such as Mean Squared Error (MSE), cosine similarity, or variance
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are utilized, they are based on the assumption that the data is embedded in
Euclidean space. For hierarchical data structures like graphs and trees, when
comparing the distance between two nodes, calculating the distance between
them and their common parent can better reflect the similarity between these
nodes, as opposed to directly calculating the Euclidean distance between the
coordinates of the two nodes. Hyperbolic spaces like the Poincaré ball, with its
geodesics convex to the center [13], are capable of better fitting the path from one
child node, through the parent node, to another child node. Hence, the distance
function of hyperbolic space, as the line integral along the geodesic, is employed
to fit the distance functions of hierarchical data structures such as graphs and
trees.

In order to embed data into hyperbolic space, more specifically, usually within
the Poincaré ball, the method predominantly utilized is exponential mapping.
The data prior to mapping is presumed to be located on the tangent plane of
the Poincaré ball, typically the tangent plane at the origin. The tangent plane
is a Euclidean plane. With the two inverse mappings, the exponential mapping
from the tangent plane to the Poincaré ball and the logarithmic mapping from
the Poincaré ball to the tangent plane, the transformation between Euclidean
space and hyperbolic space is achieved.

However, exponential mapping, as a mapping from the tangent plane to the
Poincaré ball, can only ensure that the mapped data coordinates lie within the
predetermined Poincaré ball. It does not contribute to the construction of a
hierarchical structure of data. This paper will demonstrate that exponential
mapping cannot map data that already has a hierarchical structure in Euclidean
space into a tree structure. Then exponential mapping should be viewed merely
as ensuring constraints within the Poincaré ball. The hierarchical structure is
obtained by fitting the distance function of the Poincaré ball. This leads to
the question: Are there direct mapping methods that facilitate the hierarchical
structure?This paper will mainly focus on this question. We will propose a new
method of embedding from Euclidean space to the Poincaré ball, starting from
the geometric perspective of hyperbolic space, which we name as the stereo-
graphic projection transition mapping (SPTM ).

In Euclidean space, the assumption based solely on Euclidean distance can
indeed facilitate hierarchical clustering. [19,22]. In hyperbolic space, the relation-
ship between clustering in Euclidean space and clustering in hyperbolic space has
not been sufficiently considered. However, in hyperbolic word embedding models
such as HNN and HyperMiner [27], one must rely on the supervision of relational
datasets, such as WordNet [9]. This paper will demonstrate that unsupervised
hyperbolic embedding is feasible with the assistance of Euclidean clustering. As
a case in point, we have conducted experiments on word embedding and topic
embedding on the Poincaré ball using an unsupervised topic model. However,
it is important to emphasize that learning hierarchical word embeddings on
the Poincaré ball with the help of a topic model is just one example method.
The focal point of this paper is the stereographic projection transition mapping



Stereographic Projection for Embedding Hierarchical Structures 309

(SPTM) method, which provides an analytic approach to extract hierarchical
features from the Euclidean space and map them onto the Poincaré ball.

The main contribution of this paper is to bridge the gap between the
embeddings of hierarchical structures in Euclidean space and the Poincaré ball.
This is manifested in the following ways:

1. We propose a lightweight method stereographic projection transition mapping
(SPTM) for embedding hierarchical structures from Euclidean space onto the
Poincaré ball.

2. We identify the limitations of relying solely on the exponential mapping for
obtaining hierarchical embeddings. It is essential to emphasize that such an
approach, along with the projection based on norm constraints, is only viable
when supervised with a relationship dataset.

3. We demonstrate the unsupervised implementation of hierarchical embed-
dings, which is distinct from existing methods that use contrastive loss based
on relational datasets.

The findings obtained from experiments are worth mentioning but not listed
as our main contributions. We found that the exponential mapping should be
explicitly defined in a specific layer of the neural network, rather than expect-
ing the neural network to inherently learn it. And we introduce a method for
transferring existing embedded topic models from Euclidean embedding space to
hyperbolic embedding space. Furthermore, we extend the application of SPTM
to image reconstruction using the hyperbolic VQ-VAE model, providing experi-
mental evidence that SPTM is also effective in the domain of vision tasks.

2 Background

2.1 Hyperbolic Neural Networks

Hyperbolic space, including hyperbolic neural networks [10], has garnered inter-
est recently for its unique properties characterized by negative curvature. The
Poincaré ball model and the Lorentz model are two common representations of
hyperbolic space. The Poincaré ball model maps points within a unit ball, while
the Lorentz model represents hyperbolic space as a hyperboloid.

The Lorentz model, also known as the Minkowski model, is a representation of
hyperbolic space that is widely used in physics and relativity theory. It is defined
by embedding hyperbolic space in a pseudo-Euclidean space of one additional
dimension. In the (n + 1)-dimensional Lorentz model Ln+1, hyperbolic space is
described by the equation:

− x2
0 + x2

1 + x2
2 + . . . + x2

n = −1 (1)

where x0, x1, x2, . . . , xn are the coordinates of a point in the hyperboloid. The
hyperboloid, which is a surface in the Lorentz model, represents the points in
hyperbolic space and is defined by the same equation.
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Within Poincaré ball, the Möbius addition operation is used to combine two
points x and y and produce a new point z. It can be represented as:

z := x ⊕c y :=

(
1 + 2c〈x,y〉 + c‖y‖2)x +

(
1 − c‖x‖2)y

1 + 2c〈x,y〉 + c2‖x‖2‖y‖2 (2)

In hyperbolic space, distances are measured using the Poincaré distance,
which quantifies the geodesic distance between two points. The exponential map-
ping and logarithm mapping operations allow for the transformation of points
between Poincaré ball and the tangent plane of Poincaré ball, facilitating com-
putations within the hyperbolic space. To define the distance on the Poincaré
ball, we can use the following formula:

dc(x,y) = (2/
√

c) tanh−1
(√

c ‖−x ⊕c y‖)
(3)

Here are the formulas for the exponential mapping and logarithm mapping
in the Poincaré ball:

expxc(v) = x ⊕c

(
tanh

(√
c
λc

x‖v‖
2

)
v√
c‖v‖

)
(4)

logxc(y) =
2√
cλc

x

tanh−1
(√

c |−x ⊕c y|) −x ⊕c y

|−x ⊕c y| (5)

In these equations, y represent points on the Poincaré ball, v is a tangent
vector, x is the tangent point between the tangent space and the Poincaré ball,
and c denotes the curvature. ‖v‖ represents the Euclidean norm of v, and λc

x

is the Lorentz factor defined as λc
x = 1/

√
1 − c‖x‖2. The tanh function is the

hyperbolic tangent, and tanh−1 is the inverse hyperbolic tangent function.
To practically integrate the geometry constraint, a transformation layer is

used to map data embeddings from Euclidean space to hyperbolic space. This is
achieved through a project function denoted as Proj(·), where z = Proj(x) for
x ∈ R

n and z ∈ D
n
c . One common approach, as seen in [4,14], is to instantiate

Proj(·) using exp0(·), followed by the following constraint:

z = Γ (p) =

{
p if |p| < 1√

c
1−ξ√

c
p

|p| else,
(6)

In this equation, p = exp0(x), and ξ is a small value used to ensure numerical
stability. Fang P. [8] argues that the above projection does not fully utilize the
hyperbolic space, as it flattens every vector at the identity, limiting the ability to
approximate the structure in hyperbolic spaces. To address this, an alternative
approach applies the constraint in Eq. (6) only to the output of the feature
extractor. By doing so, the network can optimize the encoding of the input data
directly into the hyperbolic space [8,16]. Previous deep hyperbolic networks have
adopted a hybrid architecture, where a neural network first extracts feature
embeddings of the input data in Euclidean space, and then a transformation
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layer is used to obtain the hyperbolic embeddings. However, recent work [11]
shows that this hybrid architecture can lead to vanishing gradients during back-
propagation, limiting the network’s applicability. To mitigate this issue, Guo et
al. propose a simple solution by clipping the Euclidean embeddings using the
following formula:

p = Φ(x) = min{1,
r

|x| } · x, (7)

Here, r is a hyper-parameter. After clipping, the embeddings are further pro-
jected to the hyperbolic space using the exponential mapping as z = exp0(p) =
exp0

(
Φ(x)

)
. This process bounds all embeddings within an r-radius sphere,

ensuring they are located in an open ball of radius 2r [11].
However, these methods are all about enforcing hard constraints on the

domain, rather than being analytically tailored optimal approaches exclusively
designed for hyperbolic spaces. We need a mapping that directly relates to rep-
resenting hierarchical structures in hyperbolic space, which is what SPTM aims
to achieve.

2.2 Topic Model

In the field of topic modeling, there are several classical models such as Latent
Dirichlet Allocation (LDA) [3] and Probabilistic Latent Semantic Analysis
(PLSA) [12]. These models summarize and model textual data to reveal the
underlying topic structure in the text. The general framework of a topic model
typically consists of two key matrices: the topic-word distribution matrix (β)
and the document-topic distribution matrix (θ). The topic-word distribution
matrix (β) is a K × V matrix, where K represents the number of topics and
V represents the size of the vocabulary. Each element βkj of β represents the
probability distribution of word j in topic k. It describes the association between
topics and words and can be understood as the word distribution for each topic.
The document-topic distribution matrix (θ) is a D × K matrix, where D repre-
sents the number of documents. Each element θdj of θ represents the probability
distribution of topic j in document d. It describes the association between doc-
uments and topics and can be understood as the topic distribution for each
document. With these two matrices, a topic model is able to decompose and
model text data, revealing the underlying topic structure. Specifically, given a
document, the document-topic distribution matrix (θ) can be used to infer the
importance of each topic within the document, and thus infer the document’s
topic distribution. Similarly, the topic-word distribution matrix (β) can be used
to infer the importance of each word within each topic, and thus infer the word
distribution for each topic.

In recent years, the introduction of word embedding technology has brought
new developments to topic modeling. In these topic models, defining the metric
space of word and topic embeddings becomes a pivotal concern. One recent exam-
ple, the Embedded Topic Model (ETM) [6], integrates an embedding layer to
learn distributed representations for each word, capturing the semantic informa-
tion from words. A distinct variant, built entirely upon the metric of embeddings,
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is the NSTM [29], which leverages the OT distance between topic embeddings
and word embeddings to define the explicit coexistence relationship in a metric
space. As the semantics of words and topics have hierarchical relations in nature,
word embedding in Euclidean space limits the capability of most existing embed-
ded topic models in capturing hierarchical semantics. More recently, researchers
started to explore the feasibility of using hyperbolic spaces in topic modelling
and HyperMiner [27] provides support and validation for using hyperbolic spaces
in topic modelling.

3 Stereographic Projection Transition Mapping

3.1 Limitations of Exponential Mapping for Hierarchical
Embeddings

We commence with a toy experiment to identify the limitations of relying solely
on the exponential mapping for obtaining hierarchical embeddings. We use a
fractal tree to represent the hierarchical structure in 2D Euclidean space. The
positions of each node in the hierarchical structure are calculated as coordinates,
which include the x-coordinate, y-coordinate, and depth value, with the depth
value indicating the number of steps from the root node. After combining the x
and y coordinates into a new array, we set the curvature of the Poincaré ball (in
this case, 0.00005) and apply the exponential map to these (x, y)-coordinates.
The outcomes are then plotted in three sub-figures in Fig. 1: The first displays the
original coordinates color-coded by depth value on the tangent space (Euclidean
space), the second shows the coordinates after the exponential map expxc(v)
where the tangent point x is not the origin, and the third shows the coordinates
after the exponential map when the tangent point x is the origin. All are color-
coded by depth value.

In the context of representing hierarchical structures in hyperbolic neural
networks, an ideal arrangement of embeddings in the Poincaré ball would have
root nodes near the center and leaf nodes near the boundary. As shown in the
Fig. 1, this arrangement cannot be accomplished solely by exponential mapping.

Alexandru demonstrated that when approaching the boundary, the embed-
dings approximate the upper half-plane hyperbolic model [13]. The center image
in Fig. 1 provides an approximation of this situation. As seen from this figure,
without the addition of dimensions and without a nonlinear mapping, the upper
half-plane hyperbolic model has some effect in the lower left region of the middle
image in Fig. 1, but it completely disregards the information from data points
in the upper right region. In the upper-right corner, the hierarchical structure
still closely resembles Euclidean space, where higher-level nodes are surrounded
by subordinate nodes, rather than being closer to the center as expected in a
hierarchical structure. For the points in the lower-left corner of the middle image
in Fig. 1 and the points in the right image, we can observe a tendency for some
subordinate nodes to approach the boundary compared to their corresponding
higher-level root nodes. However, many subordinate points still appear closer to
the center compared to the higher-level root nodes.
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Fig. 1. Illustration of the fractal tree experiment for identifying the limitations of
relying solely on the exponential mapping for obtaining hierarchical embeddings. Left:
Euclidean coordinates on the tangent plane. Center: The origin of the fractal tree is
shifted to the boundary and coordinates are then mapped exponentially on the Poincaré
ball with a curvature of -0.00005. Right: The origin of the fractal tree remains at the
center with coordinates mapped exponentially on the Poincaré ball with a curvature
of -0.00005.

Fig. 2. hierarchical structure 1D to 2D Fig. 3. hierarchical structure 2D to 3D

From Fig. 1 (left), it is observed that in this typical two-dimensional data, the
hierarchical structure is expressed through different colors representing depth.
Thus, an additional depth dimension is considered to embody the hierarchical
structure of the data.

Figure 2 and Fig. 3 respectively represent the original 1-dimensional and 2-
dimensional data, with an added depth dimension to reflect the hierarchical
structure. Figure 3 visualizes the hierarchical structure from Fig. 1 in 3D.

3.2 Method: Stereographic Projection Transition Mapping

Firstly, it should be noted that our goal remains to map the data onto the
Poincaré ball. Among the five common models of hyperbolic space [2] - the
Lorentz (Hyperboloid) model, the Poincaré ball model, the Poincaré half space
model, the Klein model, and the Hemisphere model - the Poincaré ball is the
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ideal choice due to its isotropic properties, suitability for hierarchical structure’s
geometric characteristics, and well-established computational libraries [1]. How-
ever, during the computation process, we utilize the Lorentz model, as it has a
unique mapping with the Poincaré ball and lower computational complexity.

x′
i =

xi

1 + x0
, Hyperboloid to Poincaré Ball (8)

(x0, xi) =
(1 +

∑n
i=0 x′2

i , 2x′
i)

1 − ∑n
i=0 x′2

i

. Poincaré Ball to Hyperboloid (9)

In a Rn+1 space, the coordinates of the hyperboloid are represented as
(x1, x2, ..., xn, x0), while the coordinates of the Poincaré ball are represented
as (x′

1, ..., x
′
n, 0).

The overall strategy is to learn an additional dimension to reflect hierarchy,
given the existing data embeddings in Euclidean space.

In the Poincaré ball Bn+1 ∈ R
n+1, the extra dimension representing the hier-

archy manifests as the distance to the origin, while data without a hierarchical
structure are distributed on a hypersphere S

n within the Poincaré ball. In the
Lorentz model Ln+1 ∈ R

n+2, the hierarchical dimension is represented by t, and
data without a hierarchical structure lie on a hypersphere S

n ∈ R
n+2 on the

hyperboloid. To obtain the hypersphere S
n on the hyperboloid, we stereograph-

ical project the original data from the Euclidean space R
n onto the hypersphere

S
n.

Thus, the mapping from the Euclidean space R
n to the Poincaré ball Bn+1

is composed of three parts.

– First, the stereographical projection from the Euclidean space R
n to the

hypersphere S
n, as shown in Fig. 4,

For (x1, x2, . . . , xn) ∈ R
n,

(x′
1, x

′
2, . . . , x

′
n, x′

0) =
(

2rx1

1 +
∑n

i=1 x2
i

,
2rx2

1 +
∑n

i=1 x2
i

, . . . ,
2rxn

1 +
∑n

i=1 x2
i

,
−r + r

∑n
i=1 x2

i

1 +
∑n

i=1 x2
i

)
,

(10)

where r represents the radius of the sphere as a hyper-parameter, typically
preset to 1.

– Second, the embedding of the hypersphere S
n into the Lorentz model Ln+1,

the circle (S1) in Fig. 4 is embedded onto the black circle on the hyperboloid
in the Fig. 5,

For (x′
0, x

′
1, x

′
2, . . . , x

′
n) ∈ S

n,

(x′′
0 , x′′

1 , . . . , x′′
n, h) =

(

x′
0

√
h2 − 1

r
, x′

1

√
h2 − 1

r
, . . . , x′

n

√
h2 − 1

r
, h

)
(11)

In this context, h can either be preset as a hyper-parameter or optimized
during the training process. We will see an example in later sections where h
is considered as a parameter to be optimized.
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– Third, the mapping from the Lorentz model Ln+1 to the Poincaré ball Bn+1.
As shown in Fig. 5, the red samples on the black circle on the hyperboloid
are mapped to the blue circle on the Poincaré disk in the x-y plane.

For (x′′
0 , x′′

1 , . . . , x′′
n, h) ∈ R

n,

(x′′′′
0 , x′′′′

1 , . . . , x′′′
n ) = (x′′

0/(1 + h), x′′
1/(1 + h), . . . , x′′

n/(1 + h))
(12)

The composition of these three mappings is referred to as Stereographic Pro-
jection Transition Mapping (SPTM).

To optimize h for each sample, the objective is to separate the samples on
a specific Sn in the Poincaré ball. This separation is achieved by pulling the
parent nodes towards the center of the ball, while pulling the subnodes towards
the boundary of the Poincaré ball.

Fig. 4. Stereographic projection

Fig. 5. Hyperboloid vs. Poincaré Disk
Mapping

3.3 Optimization Algorithm for SPTM

The specific algorithm for obtaining hierarchical embeddings based on this map-
ping depends on the specific problem at hand. To optimize the parameter based
on the distance in the Poincaré ball, we can use the distance from the samples
to the center of the Poincaré ball, denoted as r′ = 1/(1+h), as the optimization
parameter instead of h.

The general flow of the algorithm is as Algorithm 1.
We present a concrete method here based on fitting the distances between

hierarchy levels on the Poincaré disk to the distances between hierarchy levels
in Euclidean space. In Euclidean space, we perform clustering and calculate the
distance matrix from nodes to cluster centers, denoted as Me. After mapping
the nodes and cluster centers using SPTM onto the Poincaré disk, the distance
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Algorithm 1. Poincaré Ball Mapping and Optimization
1: Input: Tensor in Euclidean space, X
2: Parameter: Initial hyper-parameter, r′, Loss function based on Poincaré ball dis-

tance, Loss, Optimization algorithm, optimizer
3: Output: Optimized h, Mapped tensor in Poincaré ball, X ′′′

4: Set the initial value for the hyperparameter r
5: // SPTM to Poincaré ball
6: Project X to the Poincaré ball:

7: X ′ =
(

2rX
1+‖X‖2 ,

−r+r‖X‖2

1+‖X‖2

)
,

8: X ′′ =

(
X′·

√
h2−1

r
, h

)
,

9: X ′′′ = X ′′ · r′

10: while not converged do
11: Calculate loss L = Loss(X ′′′)
12: Calculate gradient of the loss with respect to h, gradr′ = ∂L

∂r′
13: Update h using the optimizer with the gradient gradr′
14: Re-compute X ′, X ′′, X ′′′ using updated r′

15: end while
16: return r′, X ′′′

matrix Mp is computed. Then the optimization of h is based on minimizing the
Mean Squared Error (MSE) between Me and Mp. To ensure convergence, we
need the elements in Me to be not greater than 1.14 when we set the curvature
to -1. Proof is available in the Appendix B. In the experiment, this boundary
is satisfied by increasing the number of clusters as more clusters imply shorter
distances within each cluster.

Specifically, we illustrate the algorithm using a topic model as an example.
In this case, we rely on NSTM [29] and GLOVE [23] word embeddings. The
advantage of using GLOVE is that it explicitly incorporates Euclidean distances
during the training of word embeddings. We choose NSTM because it utilizes
the Optimal Transport (OT) distance and requires the definition of explicit cost
functions for topic and word embeddings. This distinguishes it from models like
ETM (Embeddings from Language Models), which rely on probabilistic distri-
bution divergences. Therefore, instead of using cosine similarity as in the original
NSTM paper to measure distances between topics and words, we directly employ
the Euclidean distance to obtain the topic distribution.

After training NSTM, we save the topic embeddings and the distance matrix
between topic embeddings and word embeddings from it. We then perform Stere-
ographic Projection Transition Mapping (SPTM) to map the topic embeddings
and word embeddings to the Poincaré ball. Since the topic embeddings are
derived from GLOVE word embeddings and their Euclidean distances, we can
confidently consider the original topic embeddings and word embeddings to exist
in Euclidean space. Next, on the Poincaré ball, we initialize the radius parameter
r′ for each embedding. We set the r′ of the topic embeddings to be closer to the
center of the ball, while the r′ of the word embeddings is set to be relatively
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farther from the center compared to the topics. We then recalculate the distance
matrix between topic embeddings and word embeddings on the Poincaré ball to
make it closely resemble the distance matrix obtained from NSTM. The pseudo
code for the algorithm can be found in the Appendix C.

4 Experiment

In this section, we present the experimental setup and evaluation metrics used
to assess the performance of our proposed hierarchical topic model based on
Stereographic Projection Transition Mapping (SPTM-TM) compared to sev-
eral hyperbolic mapping methods. We conducted extensive experiments on three
benchmark text datasets: 20 News Groups (20NG) [15], Web Snippets (WS) [7],
and Tag My News (TMN) [21].

One of the primary focuses of our experiments is to demonstrate the hierarchi-
cal visualization capability of SPTM-TM. In the existing research on hyperbolic
space, the influence of topic modeling on optimization has limited effectiveness,
and its strength lies more in the ability to visualize hierarchical structures. This
visualization capability offers a certain level of interpretability to deep learning
models. Therefore, we would like to emphasize the visualization capability of
SPTM.

In this framework, the topic model has two sets of embeddings: the embed-
dings obtained from the original model (e.g. from NSTM. This part is based on
NSTM) and the embeddings after mapping to the Poincaré ball. We can recon-
struct the evaluation based on the topic word matrix β of the original model,
which means that the mapped model will achieve the same results as the orig-
inal model. Additionally, we can calculate the β based on the cosine similarity
between the topic embeddings and word embeddings on the Poincaré ball for
reconstruction purposes.

In addition, we conducted preliminary investigations into the applicability of
SPTM to other modalities, such as image reconstruction. We conducted base-
line experiments to evaluate the effectiveness of SPTM when applied to image
reconstruction using a Vector Quantised-Variational AutoEncoder (VQVAE),
with detailed results and methodology presented in Appendix F.

Visualization. We extract the hierarchical topics annotated in the 20News
dataset [15] and retrieve their corresponding words from the database. The word
embeddings of these hierarchical topics in the Poincaré ball are shown in Fig. 6.

Our approach, in contrast to supervised hyperbolic word embeddings like
HNN [10] and HyperMiner [27], uses unsupervised methods NSTM and SPTM.
Despite this, we still observe hierarchical topics in the embeddings, such as var-
ious computer-related topics in the 20News dataset, which are evident in the
upper-left corner of the Fig. 6. However, these learned topics might not align
perfectly with subjective annotations, as what is revealed here is the geometri-
cally implicit hierarchical structure within the data. This structure is related to,
but not exactly the same as, the hierarchical structure understood by humans.
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Fig. 6. Visualization of Word Embeddings in Poincaré Ball

For example, while humans may subjectively perceive “religion” to be a more
abstract concept and closer to the root node than “christian”, the data might
reveal that “christian” occurs more frequently and have broader connections,
thereby positioning it closer to the root node.

In Appendix D, We also visualize the two-dimensional word embeddings
learned by SPTM(different from Fig. 6, for clarity, we only provide words for
named topics). For each of the three datasets, we select three clusters as repre-
sentative learned topics. The visualizations clearly demonstrate that the distri-
bution of topic embeddings in SPTM effectively preserves the semantic structure
based on prior knowledge.

Quantitative Results. Baseline Methods and Settings: Based on NSTM, we
applied exponential mapping to its word embedding and topic embedding, and
also relied solely on the poincaré ball constraint defined in Eq. 6, and compared
with SPTM-TM. We then computed several evaluation metrics commonly used
in topic models. The aim here is to investigate whether, by granting hierarchical
visualization capabilities to topic and word embeddings, there would be any
impact on other aspects of the original model’s performance. Because the purpose
of designing SPTM is to obtain a mapping that preserves hierarchical structures
in Euclidean space and explicitly represent them without relying on additional
supervised training data of relationships. Here, the hierarchical structures we
aim to preserve are those of the topics and words trained under NSTM in the
original Euclidean space. This topic model is unsupervised and therefore it is
not supervised by a relationship dataset. Then we just require metrics regarding
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the quality of the topic model to confirm that the quality of the original topic
model has not been reduced.

We examined the performance of these mappings on other state-of-the-art
neural topic models, namely ProdLDA [25], ETM [6], and NVDM [17], as
detailed in the Appendix E.

In evaluating the quality of topics, we focus on four metrics: Topic Diver-
sity (TD), document classification accuracy, top-Purity, and Normalized Mutual
Information (NMI), as detailed in Table 1. TD measures the uniqueness of words
within topics, while accuracy, top-Purity, and top-NMI assess the effectiveness of
document representations in classification and clustering tasks on datasets such
as 20NG, WS, and TMN.

Table 1. top-Purity, top-NMI, topic diversity and document classification accuracy for
document clustering. The symbols, “↑” and “↓”, indicate “the lower the better” and
“the higher the better”, respectively. The best result for each dataset is in bold. The
second result for each dataset is in underline.

top-Purity↑ top-NMI↑
WS 20NG TMN WS 20NG TMN

NSTM 0.451±0.009 0.184±0.011 0.554±0.010 0.201±0.004 0.170±0.012 0.267±0.004

NSTM-exp 0.295±0.012 0.170±0.002 0.325±0.006 0.100±0.008 0.120±0.004 0.085±0.003

NSTM-constrained 0.380±0.002 0.176±0.004 0.500±0.015 0.197±0.002 0.161±0.003 0.195±0.007

SPTM-TM 0.454±0.007 0.190±0.042 0.555±0.028 0.268±0.038 0.176±0.020 0.270±0.004

topic diversity↑ doc classification acc↑
20NG WS TMN 20NG WS TMN

NSTM 0.760±0.081 0.911±0.013 0.647±0.004 0.383±0.002 0.794±0.013 0.648±0.007

NSTM-exp 0.822±0.007 0.860±0.003 0.835±0.004 0.137±0.003 0.204±0.005 0.207±0.006

NSTM-constrained 0.797±0.002 0.845±0.003 0.633±0.002 0.365±0.003 0.716±0.003 0.593±0.002

SPTM-TM 0.763±0.062 0.910±0.011 0.648±0.002 0.395±0.003 0.789±0.010 0.668±0.005

Note that here we directly applied three types of mapping to the Poincaré
ball on topic embeddings of NSTM. NSTM is optimized for reconstruction and
diversity. However, the various mappings to the Poincaré ball are no longer opti-
mized for reconstruction and diversity after mapping. Our experiment is designed
to test whether such mappings would impair the performance of original topic
model (e.g. NSTM). From the Table 1, we can see that, except for the exponen-
tial mapping causing some detriment, the impact of the Poincaré ball constraint
and SPTM is negligible, with SPTM even achieving the best performance on
some datasets and metrics. Therefore, we can conclude that SPTM does not
diminish the quality of the original topic model.

5 Conclusion

In conclusion, this paper proposes the Stereographic Projection Transition Map-
ping (SPTM) method, bridging the gap between Euclidean and hyperbolic
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embeddings for hierarchical structures. We demonstrate the limitations of rely-
ing solely on exponential mapping and present an unsupervised approach for
hierarchical embeddings. Additionally, we explore the explicit definition of the
exponential mapping in the neural network and introduce a method to trans-
fer existing neural topic models to hierarchical topic models. Our experiments
further validate SPTM’s efficacy in image reconstruction using the hyperbolic
VQ-VAE model. Overall, SPTM offers a promising solution for efficient and
effective hierarchical embeddings in hyperbolic space with potential applications
in various domains.

We hope that the idea of directly mining hierarchical structures from deep
neural networks through analytical methods can provide some inspiration. Dif-
ferential geometry, being a mature field, should find more refined applications
in deep learning.
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Abstract. Unsupervised contrastive learning for high-quality sentence
representations has gained widespread attention in recent years. How-
ever, existing dropout-based data augmentation method, such as Unsup-
SimCSE [13], may suffer from the limitation of minimal semantic
changes, which can result in the potential exclusion of positive sam-
ples and thus hinder alignment. To alleviate this problem, we propose
a novel approach called Soft Positive Contrastive Sentence Embeddings
(SPCSE), which leverages soft positives generated from diverse discrete
data augmentation methods. By incorporating soft positives, SPCSE
aims to enhance the alignment between positive samples and anchors in
the representation space. Our experimental results across seven Seman-
tic Textual Similarity (STS) tasks demonstrate that SPCSE can signif-
icantly improve the alignment of positive samples and achieve overall
performance enhancement compared to Unsup-SimCSE.

Keywords: Sentence representation learning · Unsupervised learning ·
Soft positives

1 Introduction

Sentence representation learning [15,17] aims to learn a universal sentence
embedding that can benefit diverse downstream tasks including information
retrieval and text classification. Recent studies [13,20] has demonstrated that
contrastive learning can help pre-trained language models learn high-quality
embeddings in an unsupervised fashion. Contrastive learning aims to learn effec-
tive sentence embedding representations by pulling positive samples closer and
pushing negative samples away. Positive samples are typically derived from var-
ious data augmentations of the same instance, whereas other instances function
as negative samples.

Among recent works [12,13], SimCSE [13] has emerged as a strong base-
line due to its simplicity and effectiveness. Unsup-SimCSE [13] utilizes different
dropout masks as minimal data augmentation, which yields remarkably supe-
rior performance, even on par with previous supervised approaches. However,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15309, pp. 322–336, 2025.
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Fig. 1. An illustration of the induced embedding distribution. Unsup-SimCSE may
unintentionally pushes away potential positive samples, while SPCSE helps all positives
aligned by introducing soft positives.

we argue that Unsup-SimCSE is prone to the limitation of minimal seman-
tic changes. Although dropout-based method maintains semantic consistency,
it inadvertently pushes away other potential positive samples, thereby hinder-
ing the alignment of positive samples in the representation space. On the other
hand, though the samples obtained by discrete data augmentation suffer from
semantic deviation and underperforms dropout-based method [8,20], they can
still be viewed as positive samples, to which we refer as soft positive samples.

As shown in Table 1, we measured the semantic similarity score between
the anchors and positives, soft positives and negatives. Although the similarity
between soft positives and anchors is lower than that between positives and
anchors, from both theoretical perspective and the semantic similarity score,
soft positives can still be considered a supplement to positive samples.

Table 1. We performed semantic relevance statistics between the anchor samples and
positive samples, soft positive samples, and negative samples. We used the unsupervised
SimCSE as the encoder and calculated the cosine similarity as the semantic relevance
score.

Sample Pair Semantic Similarity Score

anchor and positives 0.95± 0.04

anchor and soft positives 0.90± 0.09

anchor and negatives 0.57± 0.15

Therefore, we propose utilizing soft positive samples obtained by discrete
data augmentation to enhance the alignment of positive samples in the repre-
sentation space.

By introducing soft positive samples, we can not only significantly expand
the set of positive samples but also enhance the alignment capability of the
embedding representations through contrastive learning.
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Our primary goal is to enhance the alignment performance of positive samples
by introducing soft positives. Specifically, we obtain soft positives through dis-
crete data augmentation and introduce additional contrastive learning between
anchor samples and soft positives. Therefore, SPCSE can facilitate a more clus-
tered distribution of positive samples, and improve the performance of embed-
dings. As shown in Fig. 1, Unsup-SimCSE may push away potential positive sam-
ples, resulting in poor alignment performance. In contrast, SPCSE introduces
additional soft positives during training, allowing the model to better focus on
positive samples, thereby enhancing the alignment of positive samples (Fig. 2).

Fig. 2. The overview of SPCSE framework. For a input sentence, we get its positive
samples and soft positive samples by different dropout mask and discrete data aug-
mentation with other in-batch samples as negatives. For output embeddings, We do
contrastive learning between anchor and positives and soft positives respectively, in
order to improve the alignment between positive samples.

We evaluate our approach on seven Semantic Textual Similarity tasks. Exper-
imental results demonstrate that SPCSE outperforms Unsup-SimCSE by an
average Spearman correlation of 1.96% and 1.25% on BERTbase and BERTlarge

models, respectively. To show the effectiveness of SPCSE, we measure its align-
ment and uniformity [18] performance on the STS-B development set. The results
indicate that SPCSE significantly improves the alignment performance, achiev-
ing relative improvements of 13.4% and 16.9% on BERTbase and BERTlarge.
However, at the same time, the clustering of soft positives results in a slight
decline in uniformity performance. Our subsequent experimental findings demon-
strate the crucial role of temperature in achieving a balance between these two
essential attributes. Excessive high or low temperatures will lead to a deteriora-
tion in model performance.

Our contributions can be summarized as follows: We propose a novel unsu-
pervised contrastive learning framework to enhance the alignment of represen-
tation, by introducing soft positive generated from discrete data augmentation.
Our experimental results demonstrate that SPCSE can effectively improve the
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alignment of positive samples, and improve its performance on STS tasks. We
have also released our code for further study1.

2 Related Works

2.1 Contrastive Learning in Sentence Representation

Recently, contrastive learning for sentence representation has achieved significant
success. Yan [20] firstly incorporates multiple data augmentation strategies, such
as token shuffling and cutoff. SimCSE [13] employs different dropout masks to
get positive pairs, demonstrating the effectiveness of this straightforward app-
roach compared to other data augmentation strategies. [14] propose a prompt-
based sentence embeddings method and utilize BERT layers more effectively.
Current methods mainly focus on using different data augmentation strategies
to generate better positive pairs [10,12]. Chuang [8] introduces an additional
ELECTRA [28] model as a discriminator to differentiate the representation of
the encoder, while trans-Encoder [27] uses dropout noise to train the encoder,
they focused on the distillation stage in the subsequent training steps. However,
they neglected the alignment between positive samples that have lower semantic
similarity and anchor samples, which holds equal importance for unsupervised
sentence representation.

2.2 Positive and Negative Instances

One critical question in unsupervised contrastive learning is how to construct
the triplet (xi, x

+
i , x−). In visual representation learning, an effective solution

is to take two different transformations of the same image (e.g., cropping, flip-
ping, distortion and rotation) as xi and x+

i , where negatives x−
i are typically

randomly sampled from the same batch. However, in NLP, the way to obtain
positive and negative sample triplets differs. Based on the context of samples,
we can categorize these methods into context-based and transformation-based
approaches.

In the context-based approach, positive samples typically come from the
same document or paragraph, while negative samples are randomly sampled
from other documents. In the transformation-based approach, positive samples
can be obtained through discrete data augmentation (e.g., random delete, ran-
dom shuffle, etc.) or continuous data augmentation(dropout mask). SimCSE has
demonstrated that continuous data augmentation is more effective than discrete
data augmentation with better model performance. In this paper, we introduce
SP samples obtained through discrete data augmentation to mitigate the limi-
tations of the dropout method.

1 https://github.com/ilingen/SPCSE.

https://github.com/ilingen/SPCSE
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2.3 Alignment and Uniformity in Contrastive Learning

Recently, Wang [18] proposed two important attributes of contrastive learning:
alignment and uniformity, and utilized them to measure the quality of represen-
tations. Given a distribution of positive samples ppos, alignment measures the
closeness of positive pairs, while uniformity measures how well the embeddings
are uniformly distributed.

Lalign � E
(x,x+)∼ppos

∥
∥f(x) − f

(

x+
)∥
∥
2
,

Luniform � log E
i.i.d.

x,y∼pdata

e−2‖f(x)−f(y)‖2

These two metrics are well aligned with the objective of contrastive learning: pos-
itive instances should stay close and embeddings for random instances should
scatter on the hypersphere. Gao [13] used them to evaluate their models and
found that optimizing both of these properties can improve the quality of embed-
dings. In the following sections, we will also analyze our approach on these two
properties in Sect. 5, and show how our approach works.

3 Approach

3.1 Unsupervised Contrastive Learning

Contrastive learning aims to learn effective representation by pulling semanti-
cally close neighors together and pushing apart non-neighors Hadsell [1]. Given
a set of paired examples D = {(xi, x

+
i )}m

i=1, where xi and x+
i are semantitally

related. Let ei denote the representation vector of xi. For a batch with N pairs, we
first conduct contrastive learning between anchor and positive instance. Training
objective LCL for (ei, e

+
i ) within a batch of N pairs is:

LCL =
N∑

i=0

−log
exp(sim(ei, e

+
i )/τ)

∑N
j=1 exp(sim(ei, e

+
j )/τ)

(3.1)

where τ is a temperature hyper-parameter and sim(e1, e2) is the cosine similar-
ity eT

1 e2
||e1||||e2|| . In unsupervised contrastive learning, positive pairs are typically

obtained by applying different data augmentation methods to the same sam-
ple. In this work, we encode input sentences using a pre-trained language model
such as BERT [11]: e = fθ(x), and then fine-tune all the parameters using the
contrastive learning objective (Eq. 3.1).

3.2 Contrastive Learning with Soft Positive

Our approach incorporates two contrastive learning loss functions: one between
the anchor and positive samples, and the other between the anchor and soft posi-
tive samples. Specifically, given a batch of sentence pairs: D = {(xi, x

+
i , x+

isp
)}N

i=1,
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where xi and x+
i are the ith positive pair, xi and x+

isp
are the ith soft positive

pair. Let ei denote the representation vector of xi. For a batch with N pairs, we
first do contrastive learning between the anchor and positive instances. Training
objective for (ei, e

+
i ) within a batch of N pairs is LCL (Eq. 3.1).

We also perform contrastive learning between the anchor and soft positive
samples, the training objective LCLsp

is:

LCLsp
=

N∑

i=0

−log
exp(sim(ei, e

+
isp

)/τsp)
∑N

j=1 exp(sim(ei, e
+
jsp

)/τsp)
(3.2)

In our approach, we use the same encoder for the encoded output, the differ-
ence is only in the input sample pair (i.e. (ei, e

+
i ) in LCL and (ei, e

+
isp

) in LCLsp
)

and the temperature hyper-parameter.
Meanwhile, As mentioned in the introduction, soft positive samples come

from discrete data augmentation and positive samples from dropout noise.
Therefore, ideally, the semantic similarity score between anchor and posi-
tive should be greater than the score between anchor and soft positive (i.e.
sim(ei, e

+
i ) ≥ sim(ei, e

+
isp

)). To keep the relative order among the triplets, we
added an additional regularization loss objective (Eq. 3.3).

Lreg =
N∑

i=0

max(sim(ei, e
+
isp

) − sim(ei, e
+
i ),m) (3.3)

In which sim(ei, ej) is the cosine similarity between ei and ej , m is the margin
for regularization loss function, Here we set the margin m = 0. Finally, the overall
loss is (Eq. 3.4):

L = LCL + λ1LCLsp
+ λ2Lreg (3.4)

Here λ1 and λ2 are coefficient parameters.

4 Experiments

4.1 Evaluation Tasks

Following previous works, we conduct our experiments on seven standard STS
tasks. For all these tasks, we use the SentEval toolkit [9] for evaluation. We
evaluate our approach on Semantic Textual Similarity(STS) tasks: STS 2012-
2016 [2–6], STS Benchmark [7] and SICK-Relatedness [16]. We use Spearman’s
Correlation coefficient as performance metric.

4.2 Training Details

We use Unsup-SimCSE as our baseline model. To simplify the training process,
We use EDA [19] as our data augmentation tool, which includes four augmenta-
tion methods: synonym replacement (SR), random insertion (RI), random swap
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(RS), and random deletion (RD). The cropping ratio is set at 30%. More details
about EDA tools can be found in Appendix A.2.

We use BERTbase and BERTlarge [11] as our base model. During training,
for a given sentence in the training set, we randomly choose and perform one
of the above operations to generate soft positive. As for hyper-parameters, We
set τ=0.05,τsp=0.5, λ1=1e-4, λ2=1e-4, while other parameters remain consistent
with SimCSE. More training details can be found in Appendix A.1.

4.3 Main Results

As depicted in Table 2, SPCSE demonstrates superior performance over Sim-
CSE with improvements of 1.97% and 1.04% on seven STS tasks using both
BERTbase and BERTlarge models, thus demonstrating the efficacy of our pro-
posed approach. Compared with other concurrent works [20,23,25], SPCSE has
also achieved excellent performance. In most cases, SPCSE can demonstrate
comparable performance to ESimCSE [24].

Table 2. Sentence embedding performance on STS test sets in terms of Spearman’s
correlation. ♥: results are reproduced and reevaluated by [13]. ♦: results from [20]. ♣:
results from [25]. ♠: results from [13]. �: results from [24]. �: results from [23]. �: results
from [8].�: results from [27].

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg

CT-BERTbase
♥ 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05

ConSERT-BERTbase
♦ 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74

SG-OPT-BERTbase
♣ 66.84 80.13 71.23 81.56 77.17 77.23 68.23 74.62

SimCSE-BERTbase
♠ 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25

SDA-BERTbase
� 71.84 83.79 75.49 82.91 78.55 78.73 70.12 77.35

ESimCSE-BERTbase
� 73.40 83.27 77.25 82.66 78.81 80.17 72.30 78.27

DiffCSE-BERTbase
� 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49

Trans-Encoder-BERT-bibase
� 72.17 84.40 76.69 83.28 80.91 81.26 71.84 78.65

Trans-Encoder-BERT-crossbase
� 71.94 84.14 76.39 82.87 80.65 81.06 71.16 78.32

SPCSE-BERTbase(Our) 72.80 83.82 76.00 83.11 79.78 80.07 71.94 78.13

ConSERT-BERTlarge
♦ 70.69 82.96 74.13 82.78 76.66 77.53 70.37 76.45

SG-OPT-BERTbase
♣ 67.02 79.42 70.38 81.72 76.35 76.16 70.20 74.46

SimCSE-BERTlarge
♠ 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41

ESimCSE-BERTlarge
� 73.21 85.37 77.73 84.30 78.92 80.73 74.89 79.31

Trans-Encoder-BERT-bilarge
� 75.55 84.08 77.01 85.43 81.37 82.88 71.46 79.68

Trans-Encoder-BERT-crosslarge
� 75.81 84.51 76.50 85.65 82.14 83.47 70.90 79.85

SPCSE-BERTlarge(Our) 73.85 85.83 77.68 85.05 79.17 80.79 75.04 79.63
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4.4 Ablation Study

Effect of Data Augmentations. In our work, we believe that SimCSE [13]
is limited in using dropout as data augmentation tools, and thus it will hin-
der the model’s ability to gather potential soft positive samples. To simplify
experimental process, we use data enhancement methods in EDA [19] (random
delete (RD), random swap (RS), random insert (RI), synonym replace (SR))
to construct soft positive samples. We introduce anchor samples and soft pos-
itive samples and keep the distance between soft positive samples and anchor
samples. Based on BERTbase, we evaluated the experimental results of different
type of data augmentations in Table 3. As can be seen from the Table 3, differ-
ent data augmentation methods have different effects on the performance of the
model, with synonym substitution bringing the most benefit. SPCSE uses the
combination of four methods to achieve the best performance, which indicates
that the combination of multiple enhancement methods is also conducive to the
improvement of model performance.

The Importance of Proposed Additive Objective. To demonstrate the
effectiveness of our proposed additional method, we added an ablation study
experiment. In this section, we separately removed the contrastive learning loss
functions of the anchor samples and soft positive samples, as well as the relative
relationship constraint loss function, from the proposed SPCSE framework. We
then measured the average score on the STS dataset.

Table 3. The Effect of different aug-
mentation on BERTbase. We evaluate and
report its result on STS task.

Type of augmentations STS Avg

SimCSE 76.14

SimCSE+RD 77.04

SimCSE+RS 77.31

SimCSE+RI 76.83

SimCSE+SR 77.58

SPCSE 78.13

Table 4. The Effect of different aug-
mentation on BERTbase. We evaluate and
report its result on STS task.

loss function STS Avg

SPCSE w/o LCLsp and Lreg 76.14

SPCSE w/0 LCLsp 76.94

SPCSE w/0 Lreg 77.68

SPCSE 78.13

As shown in Table 4, the absence of either the contrastive loss for soft posi-
tive and anchor samples or the relative relationship constraint function led to a
significant decline in model performance. Including only the relative relationship
constraint function can effectively improve model performance, but it is clearly
less effective than the improvement brought by the contrastive learning of soft
positive samples. This also confirms our hypothesis that soft positive samples can
be considered a supplement to positive samples. Additionally, it is crucial not
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to treat all samples obtained through data augmentation as positive samples
indiscriminately; the relative magnitude relationships among positive samples
must be maintained.

5 Analysis

In this section, we further study the effectiveness of our proposed SPCSE.

5.1 Alignment-Uniformity Analysis

As shown in Sect. 2.3, alignment and uniformity are two key properties to mea-
sure the quality of embeddings. To validate the improvement of the alignment of
SPCSE, we compare the alignment and uniformity loss of SPCSE and SimCSE
using BERTbase during training, and also measure SPCSE and SimCSE’s final
alignment and uniformity results.

As shown in Fig. 3 and Table 5, we can see that SPCSE significantly improves
alignment performance with only a slight drop in uniformity. This can be

Table 5. SimCSE and SPCSE’s performance on Alignment-Uniformity under 5 dif-
ferent random seeds. SPCSE can improve the model’s alignment performance while
maintaining a minimal decrease in uniformity.

Model Alignment Uniformity

SimCSE-BERTbase 0.238±0.012 -2.248±0.139

SPCSE-BERTbase 0.204±0.011 -2.104±0.148

SimCSE-BERTlarge 0.236±0.020 -2.290±0.228

SPCSE-BERTlarge 0.196±0.016 -2.224±0.127

(a) (b)

Fig. 3. The Alignment and Uniformity loss of SPCSE and Unsup-SimCSE using
BERTbase on the validation set of STS-B during training. For these two attributes,
smaller values indicate a better distribution. SPCSE can significantly improve align-
ment performance with slight drop in uniformity.
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attributed to the incorporation of soft positive in SPCSE, which enhances the
alignment of sentence representations. Meanwhile, due to the further aggrega-
tion of positive samples, the uniformity decreases. We will discuss how to balance
these two key properties in Sect. 5.2.

5.2 Hyper-parameters Analysis

The Role of τsp. Prior work [13,18] found that τ can balance alignment and
uniformity, thereby controlling the quality of the representation. To demonstrate
the effectiveness of τsp in SPCSE, we measure the performance of SPCSE with
different τsp on the STS dataset, as well as the corresponding alignment and
uniformity values. Results were visualized in Fig. 5(a). The role of the τsp can
be concluded as follows: 1). Lower τsp improves alignment performance, but will
harm the uniformity a lot. 2). While a higher τsp ensures stability in uniformity, it
can result in insufficient alignment of positives. 3). In our experiment, excessive
pursuit of alignment can result in model degradation, we should keep the τsp

within a reasonable interval to avoid this situation.
Coefficient λ1 and λ2. For hyper-parameters analysis, we study the impact
of λ1 and λ2. Both of these parameters are used to balance the magnitudes of
the loss functions, so they need to be selected within an appropriate interval.
According to Sect. 5.2, we set τsp=0.5 and evaluate SPCSE with varying values
λ1 and λ2 on the STS-B tasks using the BERTbase model. Figure 5(b) shows the
influence of the λ1 and λ2 on the STS-B tasks. For both λ1 and λ2, too large
or too small values may lead to a performance degradation. The reason may
be that inappropriate values will lead to an imbalance of loss magnitudes. We
should choose an appropriate value for λ1 and λ2 during training.

5.3 Distribution of Sentence Embedding

To show the representation space of SPCSE, we plot the cosine similarity dis-
tribution of sentence pairs from STS-B test set for both SimCSE and SPCSE in

Fig. 4. The distribution of cosine similarities from SimCSE/DiffCSE for STS-B test
set. Along the y-axis are 5 groups of data splits based on human ratings. The x-axis is
the cosine similarity.
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Fig. 4. We can observe that both SimCSE and SPCSE can assign cosine simi-
larities consistent with human ratings. The SPCSE model exhibits a more com-
pressed and hierarchically structured cosine similarity distribution compared to
SimCSE. This further substantiates our proposition that the introduction of soft
positives can effectively enhance the alignment performance of samples. How-
ever, we also find that under the same human rating, SPCSE assigns slightly
higher cosine similarities compared with SimCSE. This phenomenon aligns with
our expectations. While the incorporation of soft positive samples in contrastive
learning can bolster the alignment among samples, it concurrently compromises
the uniformity of the sample space, as demonstrated in Sect. 5.1. Consequently,
although the presence of soft positive samples can enhance the alignment per-
formance of contrastive learning models, there still remains a requisite trade-off
between the alignment and uniformity within the sample space. As explicated
in Sect. 5.2, an appropriate temperature coefficient can effectively balance these
two factors.

Fig. 5. The impact of hyper-parameters on model performance: (a) represents the
effects of different τsp on alignment-uniformity and STS(Avg) results, while (b) repre-
sents the effects of λ1 and λ2 on STS(Avg) results.

6 Conclusion

In this paper, we propose SPCSE, a soft positive enhanced contrastive learning
framework for unsupervised sentence representation learning. Our main goal is
to improve the alignment performance of positive samples with soft positives.

To achieve this, we employ discrete augmentation to generate soft positive
samples and perform two types of contrastive learning separately.
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Our experiments on alignment and uniformity demonstrate that SPCSE can
significantly improve the alignment of positive samples. Experimental results on
seven STS tasks have shown that our approach outperforms competitive baseline.

In the future, we will explore how to improve the generalization capability
of SPCSE and verify its effectiveness on other contrastive learning methods.

A Appendix A

A.1 Training Detail

We use SimCSE as our baseline model. Training data contains one million sen-
tences crawled from Wikipedia. For positives obtained by dropout mask, we
extract sentence embedding using a fine-tuned BERT model and use two inde-
pendent dropout masks. For soft positives, we firstly generate four augmented
sentences for each sample with EDA tools. During training, one of the four aug-
mented sentences is randomly chosen as soft positive sample. The cropping ratio
is 30%. The hyper-parameters settings are listed in Table 6

Table 6. Training details of SPCSE.

Model λ1 λ2 τ τsp m

BERTbase 1e-4 1e-4 0.05 0.5 0.0

BERTlarge 1e-4 5e-4 0.05 0.75 0.0

We use the BERTbase and BERTlarge models with respective learning rates
3e−5 and 1e−5. We train both models for one epoch with batch size 64. We
use early stopping to avoid overfitting. Our code is implemented in Python 3.6,
using Pytorch 1.60, and the experiments are run on a single 48G NVIDIA A6000
GPU.

A.2 Discrete Data Argumentation Methods

We used four types of discrete data augmentation from EDA as the source of
soft positives. Here, we will show the full details of EDA [19]. For a given sen-
tence in the training set, we randomly choose and perform one of the following
operations, As shown in Table 7:

1. Synonym Replacement (SR): Randomly choose n words from the sentence
that are not stop words. Replace each of these words with one of its synonyms
chosen at random.

2. Random Insertion (RI): Find a random synonym of a random word in the
sentence that is not a stop word. Insert that synonym into a random position in
the sentence. Do this n times.
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3. Random Swap (RS): Randomly choose two words in the sentence and
swap their positions. Do this n times.

4. Random Deletion (RD): Randomly remove each word in the sentence
with probability p.

Table 7. Sentences generated using EDA.

Operation Sentence

None A sad, superior human comedy played out on the back roads of life.

Synonym Replacement A lamentable, superior human comedy played out on the backward road of life.

Random Insertion A sad, superior human comedy played out on funniness the back roads of life.

Random Swap A sad, superior human comedy played out on roads back the of life.

Random Deletion A sad, superior human out on roads back the of life.
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Abstract. Neural topic models (NTMs) have shown their success in
topic modeling with a wide range of applications in text analysis. NTMs
based on generative models prioritize document representations with
good reconstruction capabilities, but they are they are insufficient in pre-
serving distances between documents in the topic space. To bridge this
gap, inspired by manifold learning, we propose a neural topic model that
enables the reflection of word-to-word relationships onto topic-to-topic
associations. This is achieved by approximating the distances between
documents in the word space within the topic space. Extensive experi-
ments demonstrate that the proposed model outperforms state-of-the-art
NTMs in improving the quality of learned topics, as evidenced by metrics
such as purity, diversity, coherence. Beyond that, the model can provide
more interpretable low dimensional visualizations of documents.

Keywords: Manifold learning · Neural topic models

1 Introduction

Leveraging unsupervised techniques to extract document topics without any cat-
egories or labels is a natural idea, and topic models have become widely adopted
for automated text analysis [3,11,30]. The topics learned through unsupervised
methods can be treated as the data representation of the document. Recently,
Neural Topic Models (NTMs) [13,34,46] leveraging Variational Autoencoders
(VAE) [20] have emerged as a powerful unsupervised learning approach. Utiliz-
ing neural networks, these models efficiently organize documents into coherent
topics by taking document representations as input and approximating the pos-
terior distribution of latent topics. NTM can better overcome the problem of
short text sparsity, and it also improvement over previous methods in terms of
topic coherence and diversity [49].
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NTM primarily aim to achieve low reconstruction error [13,34], but it cares
less about the interpretability of topic representations, specifically, whether the
mapping between topics and text is clearly organized or the relationships that
exist between texts are preserved in the topic space. A good topic model should
ensure that two semantically similar documents are geometrically close in the
topic space. Recently, an NTM based on the optimal transport (OT) framework
proposed in [50], named as NSTM, seeks to strike a better balance between
obtaining good document representation and generating coherent and diverse
topics. The model utilizes an encoder that outputs the topic distribution of the
document by taking its word count vector as input like a standard NTM, but
minimizes the OT distance between word count vector and topic distributions,
which are two discrete distributions of the support for words and topics, as
shown in Fig. 1(a). NSTM focuses on aligning the topic distribution as closely
as possible with the word distribution of a document, it does not try to preserve
word-to-word relationships to topic-to-topic relationships, which means it does
not maintain the metric (distance relationships) of the sample space of word
distributions across documents in the topic distribution. In other words, it is
natural in topic models two similar documents should be semantically similar in
the topic space, however, this is not preserved in NSTM.

Fig. 1. Figure (a) represents the Bag of Words distribution and the topic distribution
of a document. Each bar on the left represents a word, and each bar on the right
represents a topic. P denotes the transport plan. In Figure (b), each point represents
a document, and we aim to preserve the distance relationship between documents in
both spaces.

We propose the Distance Awareness NTM (DA-NTM) to address this
issue, by leveraging manifold learning. The main idea of manifold learning [26,
27] is to map high-dimensional data to low-dimensional data, so that the low-
dimensional data can reflect some essential structural features of the original
high-dimensional data. The premise of manifold learning is an assumption that
some high-dimensional data is actually a low-dimensional manifold structure
embedded in a high-dimensional space. A “manifold” refers to a region that
is connected together, and mathematically, it refers to a set of points, each of
which has its neighbors. Given any point, its manifold locally looks like Euclidean
space. In other words, it has the properties of Euclidean space in the local space,
and can use Euclidean space for distance calculation. Therefore, it is easy to
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establish a dimension reduction mapping relationship locally, and then try to
generalize the local relationship to the global, and then display it visually. From
this process, it can be seen that dimension reduction is merely a byproduct of
manifold learning. The primary focus is on preserving the distances between
points and the neighborhoods of points while transitioning from one manifold to
another.

Our DA-NTM proposes a neural topic model in this paper, which is estab-
lished on a novel manifold learning framework derived from optimal transport
topic modeling. This approach enables comprehensive management of the topic
model training from word-to-word, topic-to-topic, and word-to-topic relation-
ships. To briefly introduce our model, we consider two representation encodings
for documents: Bag-of-word (BoW) document representations x (can be obtained
by word count vector), and topic distribution z. In the document space, the
vocabulary size is very large, even if a document contains only a small part
of the vocabulary, x still needs to contain information about each word in the
vocabulary, so x is high-dimensional and sparse. The topic distribution z is
obtained from the encoder, and z can be defined as a low-dimensional vector.
In NSTM [50], the learning process of the topic model is the process of the dis-
tribution of z approaching the distribution of x. In this paper, while retaining
the document reconstruction ability of VAE and the distribution approximation
ability of OT, we will emphasize the structural preservation ability of topic dis-
tribution to document collections, i.e., two similar documents should also behave
closely in topic space, as shown in Fig. 1(b), which is achieved by manifold learn-
ing.

We summarize our contributions as follows: (i) We proposed a novel model
DA-NTM, which combines deep topic modeling and manifold learning jointly for
topic modeling of documents; (ii) The proposed model shows its benefits in both
aspects of topic modeling and visualization via the comprehensive experiments;
(iii) We demonstrate that DA-NTM is not limited to a specific document-to-
document metric or manifold learning method, but rather represents a flexible
and extensible approach.

2 Background

2.1 Neural Topic Models and Optimal Transport

Most of the existing NTMs [13,29,34] are neural topic models based on vari-
ational autoencoders (VAEs). The target of VAE [20] is to model the true
posterior distribution p(z|x) of the latent variable, by solving the variational
posterior distribution qθ(z|x) (θ is a variational parameter), and continuously
reduce the difference between qθ(z|x) and p(z|x) for approximation purpose.

The architecture of the standard VAE described above has been applied in
topic modeling where each document consists of a word count (BOW, Bag Of
Word) vector (i.e. x ∈ N

V ) and a latent distribution (i.e. z ∈ R
K) of K topics.

In order to maintain the data scale consistency, we sample from the latent space
and then use them as topic distributions. An NTM assumes that the topic z
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of the document is determined by the prior distribution p(z) and that x can
be generated by the conditional distribution pφ(x|z), which is modeled by the
decoder φ. The output goal of this model is to infer the topic given a bag of
words, i.e. to compute p(z|x). Therefore, we need a neural network based the
encoder θ to get the distribution qθ(z|x) for approximation p(z|x). So we have
an optimization objective similar to VAE:

max
θ,φ

(Eqθ(z|x)[logpφ(x|z)] − KL[qθ(z|x)||p(z)]), (1)

where the first term is the expectation of the log-likelihood, which can be under-
stood as the reconstruction error of the document bag of words, and the second
term is the Kullback-Leibler (KL) Divergence fitting the prior p(z) with qθ(z|x).
φ(z) is usually constructed by a single-layer network and p(z) is usually a Gaus-
sian distribution [41].

Next, we discuss optimal transport(OT) [16,31,47,50] for discrete distribu-
tions. The OT distance of two discrete probability distributions r and c can be
defined as

dM(r, c) := min
P ∈U(r,c)

< P,M >, (2)

where r ∈ ΔDr and c ∈ ΔDc , and ΔD represents a D − 1 simplex. P ∈ R
Dr×Dc
>0

is the transport plan, U(r, c) is the transport polytope of r and c which means
the collection of all possible transport plan. M ∈ R

Dr×Dc

≥0 is the cost matrix.
How to define an appropriate M in specific problems is a common challenge.

To efficiently compute OT distances, Cuturi M. [7] introduced a regularized
optimal transport distance with entropy constraints,

LM (r, c) def= min
P ∈U(r,c)

< P ,M > +ε
∑

i,j

P i,j(log(P i,j − 1)), (3)

where U(r, c) := {P ∈ U(r, c) | h(P) ≥ h(r) + h(c) − α}, h(·) is the entropy
function, and α ∈ [0,∞). M ∈ R

Dr×Dc is the underlying distance matrix, whose
element measures the distance between different states. ε controls the significance
of the entropy regularizer.

In NSTM [50], an encoder parameterized by θ is leveraged to generate topic
z from normalized word vector x̃ by z = softmax(θ(x̃)). Since x̃ and z are two
distributions with different support for the same document, in order to learn the
encoder, the OT distance is minimized to push z towards x̃, as minθ dM(x̃, z).
Here the cost matrix M is specified as the following construction: Mvk = 1 −
cos(ev, gk), where cos is the cosine similarity; gk ∈ R

L and ev ∈ R
L are the

embeddings for topic k and word v, respectively. L is the dimension of word
embedding and topic embedding. The word embedding ev is obtained by pre-
training. G ∈ R

L×K is used as a set of topic embedding (K is the number of
topics, G is random initialized), and also as an optimization parameter, that is,
the new optimization objective of OT is,

min
θ,G

LM(x̃, z). (4)
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Combining the OT loss with the traditional cross-entropy loss yields better
performance when using either of them. According to the previously mentioned
in NTM, encoder θ is simulated by a neural network and φ(z) is constructed by a
single-layer network for decoder. Combining the OT distance with the expected
log-likelihood, with Sinkhorn, the optimization objective becomes

max
θ,G

(εx̃T log φ(z) − LM(x̃, z)). (5)

2.2 Manifold Learning

In manifold learning, the observed data is considered a manifestation of one
manifold within another, such as low-dimensional data within a manifold in
high-dimensional space. Due to the limitations of the internal characteristics
of the data, some high-dimensional data can create dimensional redundancy. If
the mapping can reduce the data from the high-dimensional space to the low-
dimensional space without loss of information, the low-dimensional data may
reflect more valuable features of the data.

Therefore, most manifold learning algorithms [2,5,6,8,10,12,14,18,19,32,35,
39,40,42,44] have a similar general idea, that is: assuming that the data has a
certain structural feature in high dimensions, it is expected that the structure
can still be maintained after it is reduced to low dimensions.

As a commonly utilized manifold learning algorithm, tSNE [28] measures the
distance between sample data as a conditional probability. Suppose there are xi

and xj in the high-dimensional space, pj|i indicates that the probability that xj

is in the neighbor of xi using Gaussian distribution, the formula is as follows,

pj|i =
exp(−|xi − xj |2/2σ2

i )∑
k �=i exp(−|xi − xk|2/2σ2

i )
. (6)

The variance σi of the Gaussian distribution corresponding to the different
points xi in high-dimensional space needs to be calculated separately. Similarly,
for points in high-dimensional space mapped to the corresponding point in the
low-dimensional space (i.e. yi and yj), its probability distribution function is
defined as

qj|i =
exp(−|yi − yj |2)∑

k �=i exp(−|yi − yk|2) . (7)

In order to maintain the original relative position information after mapping,
we should minimize KL (Kullback-Leibler Divergence) to ensure the similarity
between the original high-dimensional distribution (Pi) and the mapped low-
dimensional distribution (Qi),

D =
∑

i

KL(Pi||Qi) =
∑

i

∑

j

pj|i log
pj|i
qj|i

. (8)

This mapping is not unique; different initial y can lead to various outcomes.
Moreover, this process is not necessarily used for dimension reduction; it can
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also be employed for dimension increase or for transferring between manifolds of
the same dimension. Other commonly used manifold learning algorithms include
Isomap [1], LLE [39], Hessian Eigenmapping [10], etc. Although the methodolo-
gies of these algorithms differ, they share similar goals, a detailed discussion of
each algorithm is beyond the scope of this text.

3 Proposed Model

In this section, we discuss the detailed methodology of DA-NTM. Reiterating the
setting mentioned in the background, each document consists of a word count
vector x ∈ N

V and is associated with a distribution of K topics, we denote the
distribution as z ∈ R

K , each entry in it represents the proportion of a topic
in the document. x̃ is normalised x such that x̃ := x/length of document. an
encoder parameterized by θ is utilized to generate the topic z from normalized
word vector x̃, represented by z = softmax(θ(x̃)).

The first challenge we face is that when two representations of a single dataset
(word embeddings E and topic embeddings G) are manipulated together, these
representations lack a unified metric in their respective metric spaces. This dis-
crepancy poses a difficulty when optimizing NTM with OT. We should set the
dimension of the topic embeddings to match that of the word embeddings, and
topics learn embeddings suitable for distance comparisons with the word space,
while word embeddings are pretrained and fixed. In Fig. 2, we compute the OT
distance and manifold learning loss from word embedding to topic embedding.
We propose to feed the word embedding with pretrained word embedding GloVe
[36]. Topic embedding G is one optimization parameter so that this cost matrix
can be used for the target topic distribution.

Bsased on the loss function for NSTM maxθ,G

{
εx̃T logφ(z) − LM (x̃, z)

}
in

Sect. 2.1, we will impose the constraint of maintaining the distance between the
Bag-of-Words representation of different documents and the topic distribution
of different documents, and get the loss function like

max
θ,G

(εx̃T log φ(z) − LM (x̃, z) + IC(x, z)). (9)

IC(x, z) is the constraint based on the manifold learning algorithm we selected,
we term these constraints as isometric constraints because”isometric” in geom-
etry describes transformations or mappings that preserve distances.

If we choose t-SNE as the manifold learning algorithm, and the isometric
constrained loss that needs to be added is in the form of

ICtsne(x, z) =
∑

i

KL(Pi||Qi) =
∑

i

∑

j

pj|i log
pi|j
qj|i

, (10)

where

pj|i =
exp(−d(xi, xj)/2σ2

i )∑
k �=i exp(−d(xi, xk)/2σ2

i ))
. (11)
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Fig. 2. Model Structure: Mapping from Bag of Word Vector x to Latent Topic Distri-
bution z preserves neighborhood of each document in Bag-of-word vector space

The distance d(xi, xj) between documents can be applied to various metrics
(i.e. TF-IDF, WMD (word movement distance) [21] and Euclidean between word
counts), but has little impact on topic representation as shown in Table 2.

For different centers xi, the variance σi of the corresponding Gaussian dis-
tribution is also different, and needs to be calculated for each point. Similarly,
for the points xi and xj in the word space mapped to the corresponding points
zi and zj in the topic space, the probability distribution function is as follows,

qj|i =
exp(||zi − zj ||2)∑

k �=i exp(−||zi − zk||2) . (12)

It can be observed that Eq. 12 is similar to the computation in Eq. 11, but with
the adjustment of setting σ for all points to 1√

2
and utilizing the Euclidean

distance for the convenience in calculation.
Like NSTM, an encoder is leveraged to generate topic z from normalised

word vector x̃ by z = softmax(θ(x̃)) and θ is a neural network with dropout
layer. And the cost matrix M represents the distance between topic k and word
v, which is configured as

Mvk = 1 − cos(ev,gk). (13)

Now we have the loss function for isometric constrained OT as

max
θ,G

εx̃T logφ(z) − LM (x̃, z) + εic

∑

i

KL(Pi||Qi). (14)

εic balanced the coherence and the margins between clusters of topics.
In the previous steps, we exemplified isometric constraints through tSNE.

We can employ different manifold learning techniques to design isometric con-
straints. For instance, if we use LLE to replace tSNE, we should select the
k nearest neighbors of each sample by KNN. Subsequently, we determine the
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local reconstruction weight matrix of sample points to find wij that minimize∑
i ||xi−

∑
j wijxj ||2 and the isometric constraint (IC) is −∑

i ||zi−
∑

j wijzj ||2.
Other Distance Awareness NTMs (DA-NTM) corresponding to specific man-

ifold learning algorithms can also be obtained by slightly adjusting the model.
The general algorithm is shown in Algorithm 1. Different document distances and
various manifold learning algorithms can all be integrated into this algorithm.

4 Related Work

NTMs closely related to ours include ProdLDA (LDA with Products of
Experts) [41], DVAE (Dirichlet VAE) [4], ETM (Embedding Topic Model) [9]
and WLDA (Wasserstein LDA) [31]. Instead of using mixture model in LDA,
prodLDA uses product of experts, then trains the model using AVI. DVAE is a
neural topic model that obtains the latent topic vector z by applying a Dirichlet
prior/posterior distribution. ETM, on the other hand, is a topic model which
applied the word embeddings and is obtained through AVI learning. WLDA is
a topic model based on the Wasserstein AutoEncoders (WAE) framework that
minimizes the Wasserstein distance between topic-generated data and real data.

To our knowledge, the works that connect NTMs with manifold learning are
still limited. The idea of leveraging visualization-based geometric methods into
topic models was first proposed in SEMAFORE [24], aiming to combine PLSV
[17] and Laplacian Eigenmaps [2]. DWL [45] was then proposed for optimal
transmission to build topic models, and was further optimized by OTLDA [16].
They are all based on the traditional topic models, instead of deep topic models.
Compared with their baselines, their accuracy has been improved. However,
existing works do not consider preserving geometric properties.

5 Experiments

5.1 Experimental Settings

Datasets and Baseline Methods. We conduct extensive experiments on five
benchmark text datasets, including 20 News Groups [22], Web Snippets (WS)
[37], Tag My News [38], AG News [48], DBpedia [25].

– AG News is a collection of more than 1 million news articles. AG News has the
4 largest classes (“World”, “Sports”, “Business”, “Sci/Tech”) of AGs Corpus.
The AG News contains 30,000 training and 1,900 test samples per class.

– DBpedia is a dataset of information created in the Wikipedia project. It has
14 classes and contains 399,605 training samples and 50,060 test samples.

– The 20 News groups dataset is a collection of 18,846 newsgroup documents,
partitioned (nearly) evenly across 20 different newsgroups. It contains 15,076
training samples and 3,770 test samples.

– Tag My News Dataset is a collection of datasets of short text fragments which
are used for topic-based text classifier. It contains 26,077 training samples and
6,520 test samples.
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Algorithm 1 Training algorithm for DA-NTM. X ∈ N
V ×B and Z ∈ R

K×B
>0

consists of the word count vectors and topic distributions for all the documents,
respectively; � is the element-wise multiplication.
Input: . Input documents, Pretrained word embeddings E, Pretrained document to

document distance d(xi,xj), Topic number K, ε, α
Output: θ,G
1: Compute manifold learning parameters in high dimension space (e.g. matrix

P (composed of pi|j in Eq.11) for tSNE, wij for LLE), Randomly initialise θ and
G

2: while Not converged do
3: Sample a batch of B input documents X
4: Column-wisely normalise X to get X̃
5: Compute M with G and E by M vk = 1 − cos(ev,gk)
6: Compute Z = softmax(θ(X̃))
7: Compute the first term of loss εx̃T log φ(z)
8: Ψ1 = ones(K, B)/K,Ψ2 = ones(V, B)/V # Sinkhorn iterations #
9: H = e−M/α

10: while Ψ1 changes or any other relevant stopping criterion do
11: Ψ2 = X̃ � 1/(HΨ1)
12: Ψ1 = Z � 1/(HT Ψ2)
13: end while
14: Compute the second term of loss LM(x̃, z): LM = sum(Ψ2

T (H � M)Ψ1)
15: Compute manifold learning parameters (e.g. Eq. 11 and Eq. 12 for tSNE);
16: Compute the third term of loss IC(x, z) (e.g. IC constraint for tSNE, IC con-

straint for LLE);
17: Compute the gradients of loss
18: Update θ,G with the gradients
19: end while

– Web Snippets comprises four abstractive snippet datasets from ClueWeb09,
Clueweb12, and DMOZ descriptions. It contains 9,867 training samples and
2,470 test samples.

We compare with the state-of-the-art NTMs, including: ProdLDA [41],
Dirichlet VAE (DVAE) [4], Embedding Topic Model (ETM) [9], Wasserstein
LDA (WLDA) [31], BERTopic-Doc2Vec [13], NASM [29], Contrastive Learning
for Neural Topic Model (CNTM) [34] and NSTM [50].

Evaluation Metrics. Since document topic distributions are unsupervised doc-
ument representations, to assess the quality of such representations, we perform
a document clustering task and report the purity and normalized mutual infor-
mation (NMI) [33], compared to document tags. Using the default train/test
split of five datasets, we train the model on the training documents and infer
the topic distribution z on the test documents. In the tSNE visualization men-
tioned below, since global information about the manifold is required, we will
not split the training and testing sets.
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Following NSTM [50], we compute purity and NMI (denoted by top-Purity
and top-NMI [33]) using the most important topics in test documents as their
cluster assignments; We apply the KMeans algorithm to z of test documents and
reports the purity and NMI (denoted by km-Purity and km-NMI) of KMeans
clusters, following NSTM [50]. For the first strategy, the number of clusters
is equal to the number of topics, while for the second strategy, we vary the
number of clusters in KMeans in the range {20, 40, 60, 80, 100}; We compute
AMI (Adjusted Mutual Information) [43] and ARS (Adjusted Rand Score) [15]
between most important topics in test documents as their cluster assignments.
Adjusted Rand Score (ARS) is used to measure the degree of agreement between
the two distributions. The value range is [-1, 1]. The closer the value is to 1, the
better. Mutual Information (Adjusted Mutual Information, AMI) is also used
to measure the degree of agreement between the two distributions, the larger
the value, the more consistent the clustering effect is with the real situation. We
compute topic diversity [9] to measure the variety among the topics generated,
ensuring a broad coverage of subjects. We determine the diversity of a topic
by calculating the percentage of unique words among the first 25 words of each
topic. This approach highlights the distinctiveness of each topic by evaluating
the overlap in their most prominent words, thereby offering a measure of the
range and diversity of topics produced by the model.

Topic coherence (TC) [23] evaluates the semantic consistency among the
most significant words within a topic, utilizing a reference corpus for comparison.
To quantify TC, we employ Normalized Pointwise Mutual Information (NPMI),
calculated using the Palmetto package. This calculation is based on the first 10
words of each topic, from which we derive an average score across a selection
of topics. By adjusting the range of selected topics-from the top 10% with the
highest NPMI scores to all topics-we can observe variations in average TC scores,
providing insight into the semantic cohesion of topics under different thresholds.

Since document topic distributions are unsupervised document representa-
tions, to assess the quality of such representations, we perform a document clus-
tering task and report the purity and normalized mutual information (NMI),
compared to document tags.

All the models in comparison ve times with different random seeds and report
the mean and standard deviation (as error bars). Unless otherwise specified, we
set εic = 1 in experiment.

5.2 Quantitative Results

For different models in comparison five times with different random seeds, Table 1
shows the results of top-Purity/NMI with the means and stds. The isometric con-
strained loss weight εic = 1 and the distance between documents and documents
is Euclidean distance between word counts. We can conclude that in the most
datasets and metrics, DA-NTM achieves the best performance.

We compared the different results of using different metrics d(xi, xj) to mea-
sure the distance between documents and documents on the 20NG dataset in
Table 2. Here, we demonstrate that taking different metrics here has little effect
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Table 1. top-Purity [33] and top-NMI [33] for document clustering. The best scores
of each dataset are highlighted in bold, with the second-best scores underlined.

top-Purity ↑ top-NMI ↑
20NG WS TMN 20NG WS TMN

ProdLDA 0.417±0.004 0.293±0.023 0.405±0.157 0.321±0.004 0.066±0.016 0.091±0.101

DVAE 0.281±0.006 0.284±0.005 0.477±0.012 0.187±0.005 0.059±0.001 0.113±0.004

ETM 0.063±0.003 0.215±0.001 0.556±0.022 0.005±0.005 0.003±0.003 0.328±0.010

WLDA 0.117±0.001 0.239±0.003 0.260±0.002 0.060±0.001 0.026±0.001 0.009±0.001

BERTopic 0.319±0.019 0.328±0.016 0.491±0.023 0.368±0.010 0.151±0.014 0.202±0.002

NASM 0.292±0.009 0.274±0.037 0.462±0.013 0.405±0.025 0.171±0.014 0.249±0.077

CNTM 0.334±0.035 0.411±0.013 0.523±0.023 0.401±0.015 0.131±0.003 0.302±0.003

NSTM 0.477±0.011 0.451±0.009 0.637±0.010 0.415±0.012 0.201±0.004 0.334±0.004

DA-NTM 0.334±0.042 0.635±0.065 0.679±0.028 0.417±0.020 0.461±0.038 0.423±0.018

Table 2. Different metrics, including top-Purity [33], top-NMI [33], top-Diversity [9],
AMI [43], ARS [15], to measure the different type d(xi, xj) (distance between docu-
ments and documents) on the 20NG dataset, with εic = 1

metric Euclidean between word counts Euclidean between TF IDF word mover distance

top-Purity ↑ 0.334±0.042 0.283±0.035 0.347±0.045

top-NMI ↑ 0.417±0.020 0.405±0.016 0.431±0.027

topic-Diversity ↑ 0.875±0.007 0.899±0.012 0.873±0.003

AMI ↑ 0.410±0.021 0.386±0.013 0.391±0.029

ARS ↑ 0.232±0.023 0.226±0.032 0.263±0.014

Fig. 3. Topic Coherence (TC) [23]: The horizontal axis indicates the proportion of
selected topics according to their NPMIs

Table 3. Tables compare NSTM and DA-NTM: top-Purity [33], top-NMI [33], top-
Diversity [9], AMI [43], ARS [15]

Dataset 20NG TMN Webs AGNews Dbpedia

metric NSTM DA-NTM NSTM DA-NTM NSTM DA-NTM NSTM DA-NTM NSTM DA-NTM

top-Purity↑ 0.450±0.011 0.334±0.042 0.600±0.011 0.679±0.028 0.619±0.004 0.635±0.065 0.692±0.041 0.771±0.022 0.508±0.034 0.447±0.060

top-NMI↑ 0.403±0.004 0.417±0.020 0.348±0.006 0.423±0.018 0.364±0.005 0.461±0.038 0.323±0.019 0.431±0.021 0.457±0.014 0.556±0.039

topic-Diversity↑ 0.556±0.012 0.875±0.007 0.921±0.006 0.923±0.005 0.921±0.005 0.899±0.003 0.884±0.004 0.916±0.006 0.857±0.002 0.878±0.006

AMI↑ 0.313±0.003 0.410±0.021 0.282±0.007 0.421±0.018 0.279±0.006 0.456±0.039 0.253±0.016 0.430±0.021 0.434±0.019 0.555±0.039

ARS↑ 0.144±0.008 0.232±0.023 0.218±0.018 0.422±0.010 0.149±0.009 0.370±0.063 0.221±0.047 0.455±0.028 0.222±0.022 0.369±0.046
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Fig. 4. The first row shows the km-Purity scores [50] and the second row shows the
corresponding km-NMI scores [50]. In each subfigure, the horizontal axis indicates the
number of KMeans clusters.

on the performances of topic representations. This is due to the fact that the
embedding of topics is also our training target. So the inherently uncertain dis-
tance function between topics becomes part of our optimized parameters and
both the OT loss and the manifold learning loss benefit from it.

In Table 3, we compared DA-NTM and NSTM based on εic = 1 and Euclidean
between word counts as document to document distance. It can be observed that
DA-NTM outperforms NSTM in most cases.

In Fig. 3, topic coherence is presented with different ranges of selected topics
ranging from the top 10% with the highest NPMI scores to all topics. Also, the
isometric constrained loss weight εic = 1 and the distance between documents
and documents is Euclidean distance between word counts. From Fig. 3, it is
evident that DA-NTM significantly outperforms existing methods in terms of
topic coherence. This indicates that DA-NTM is indeed adept at capturing the
underlying semantic structure of the data.

And Fig. 4 is figure for NMI and purity for different level KMeans clusters.
These tables and figures compared the performance of the NSTM and DA-NTM
(with Euclidean distance between word counts and εic = 1) for different datasets,
they verified that adding isometric constraints has improved the performances
of the model in metrics for topic quality. This matches our expectation that this
model helps for scenarios with insufficient samples.

5.3 Visualization Analysis

In order to visually verify that our model has better performance in terms of
coherence, we demonstrate it by visualizing the topic representations learned by
NSTM and ours with tSNE. For clearer presentation, we sample 1,000 documents
of a dataset instead of using all of the documents. We also use colors to indicate
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the labels of the documents, to assist understanding. Taking the 20NG dataset as
an example in Fig. 5, we can see that in NSTM without the isometric constraint,
the topic distributions do not show good clustering characteristics. However, our
method with the isometric constrained loss, the learned topic representations
appear intuitive clustering structures.

The TMN dataset is a small dataset, then the 2D tSNE dimension reduction
of the entire dataset can be plotted more clearly as Fig. 6(a). It can be seen that

Fig. 5. 20NG Topic representation dimension reduction to 2D by tSNE

Fig. 6. TMN Topic representation dimension reduction to 2D by tSNE
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different labels are obviously assigned to different clusters. In the red boxes of
Fig. 6(b), 6(c) and 6(d), we clearly see that a single label can be divided into
some specific clusters. The label “business” and label “world” that may share
more common vocabularies also share the same cluster in Fig. 6(b) and 6(c). This
means that there is indeed a more interpretable connection between document
distribution and topic distribution under this framework, and adding isometric
constraint can make up for the lack of coherence in past NTMs. More 2D-tSNE
visualization results are provided in the Appendix.

6 Conclusion

We propose a novel neural topic model that leverages manifold learning and opti-
mal transport in this paper. Specifically, the mechanism of tSNE is integrated to
constrain the topic distribution z and the topic space maintains the geometric
properties of the word space. Our model can complement the shortcomings of
traditional neural topic models. Extensive experiments have been conducted to
demonstrate the unique advantages of the topics derived by our model, which
achieves state-of-the-art performance on common metrics of document represen-
tation.

In the future, developing visualization tools based on our method can facil-
itate intuitive exploration of complex datasets. Furthermore, this method can
be extended to support multimodal data, such as images and graph data, by
integrating these modalities with manifold learning.
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Abstract. Obstetrics and gynecology (OB/GYN), branches of medicine
that focus on pregnancy and the female reproductive system, heavily
rely on ultrasound scanning. The automatic analysis of these images
is an interesting tool as it can guide the sonographer in his diagno-
sis or provide similar images to the sonographer in real time. These
tasks have become crucial because of the limited number of experts in
the field, but deep learning methods in general have struggled to deal
with them because of the lack of large annotated datasets for training.
However, leveraging hierarchical rich annotations can be a way to alle-
viate this problem for learning better structured embedding spaces. In
this vein, we propose a Semantic Abstraction Loss (SAL), which guides
meta-embeddings to encode the information from the higher-order anno-
tations in a Deep Metric Learning (DML) framework. We then build on
the Expert Language Guidance (ELG) introduced by Roth et al. [21],
that makes use of natural language captions to guide the visual simi-
larities. We therefore propose an Ontology Language Guidance (OLG)
that applies this concept to higher-level semantic annotations. Experi-
mentally, we evaluate the impact of the integration of rich annotations
through auxiliary embeddings or natural language on two visual similar-
ity datasets: birds classification with CUB-200 and scan plane recognition
on SUOG OB/GYN dataset.
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The automatic analysis of these images has become critical because of the large
number of signs and disorders, as well as the limited number of expert sono-
graphers. In particular, an image retrieval model could allow the ultrasound
assistant to offer similarly annotated images to help the sonographer with its
diagnosis in real time.

In most of the machine learning problems, the network learns a relatively sim-
ple embedding space through a multi-class classification task, as it considers all
labels as distinct and exclusive. This is sufficient for tasks trained on extremely
large datasets such as ImageNet [10] because of the number of examples and the
disparity between classes. However, for problematics such as OB/GYN imag-
ing tasks, where annotated images are scarce, these methods struggle to encode
strong semantic distances between training examples since classes are consid-
ered equally different (in ImageNet, an American alligator is considered equally
different to an African crocodile than it is to a Siberian husky).

We therefore decide to integrate strong semantic information extracted from
hierarchical annotations in a deep metric learning (DML) framework. First,
we introduce meta-embeddings built to encode semantic information from the
higher-order annotations (animal and reptile as meta-annotations for an African
crocodile, for instance) and propose a Semantic Abstraction Loss (SAL) designed
as a weighted average of DML losses applied at different semantic levels. In order
to extend the use of the strong semantic information contained in the rich anno-
tations, we build on the Expert Language Guidance (ELG) introduced by Roth
et al., that aims at matching the visual similarities with the textual similarities
extracted from the label captions. We propose an Ontology Language Guidance
(OLG) built to integrate the textual relations from several abstraction levels in
the visual representation model. We show that incorporating robust semantic
information, either through meta-labels or textual data, improves the structur-
ing of the latent representation space and contributes to better image similar-
ity performances. Furthermore, this integration aids in producing errors that
are semantically closer to the ground truth, which is essential for supporting
fetal medicine practices. These experiments are first validated on a classic DML
dataset (CUB200 [28]) as well as the SUOG OB/GYN dataset.

Our whole approach is illustrated in Fig. 1. The main contributions in this
paper are:

– We propose novel meta-embeddings built to encode the semantic information
from different levels of hierarchical annotations. We learn a Semantic Abstrac-
tion Loss (SAL), built as a combination of DML losses applied to training
pairs of meta-embeddings and meta-classes, in order to improve the latent
representation space.

– We propose to integrate rich annotations in the learning framework as textual
information to better guide the visual similarity model during training. First,
we introduce rich captions to make use of the hierarchical structure of the
annotations for language guidance. Second, we build on the language guid-
ance module introduced by Roth et al. [21] and introduce Ontology Language
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Guidance (OLG) that guides the meta-embeddings’ visual similarity using
the textual similarity.

Fig. 1. Overview of the proposed method. A visual encoder maps the image to several
embedding spaces corresponding to different levels in a semantic hierarchy (2 here
for the sake of convenience: ψ0 and ψ1), where they can be learn through a deep
metric learning loss LDML. We call this term the Semantic Abstraction Loss (SAL).
Furthermore, textual embeddings can be extracted from the corresponding hierarchical
annotation levels through a frozen text encoder, and image-text similarities can be
enforced at these different levels through a matching loss Lmatch in the frame of the
proposed Ontology guidance (OLG).

– Experimentally, we evaluate the interest of leveraging higher-order annota-
tions to improve the visual similarity on the CUB-200 [28] dataset and demon-
strate the efficiency of the proposed method for assistance in fetal medicine
on the SUOG dataset.
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1 Related Works

First we review existing methods for langage guidance in DML. Then, we present
methods that leverage structured annotations in this context.

1.1 Guiding DML with Natural Language Inputs

Deep Metric Learning aims to learn informative representation spaces that
encapsulate rich and significant semantic context, ensuring that embeddings of
similar images are close while those of dissimilar images are further away. These
frameworks have mostly been used for open-set classification where train and test
labels aren’t the same (e.g. face verification), and have led to a great interest
for tasks such as zero-shot learning ([19,20,22,23]), clustering ([13,25,31,34]) or
person re-identification([11,17,23]). Multiple methods compare tuples of train-
ing samples to improve the semantic context in the visual similarity model.
Hadsell et al. [14] introduced Siamese networks, feature extractors with shared
parameters. They optimize a contrastive loss over a pair of training samples
that explicitly minimizes the distance between embeddings of similar pairs while
maximizing the distance between embeddings of dissimilar pairs. Other works
considered triplets [23], quadruplets [8] or n-pairs [24] of samples. However, for
these methods to be effective, the training tuples have to be carefully selected in
order for the network to successfully learn sound embedding spaces. For instance,
tuples that are too easy to separate lead to zeroloss, whereas tuples that are too
hard can lead to unstable or collapsed models where all embeddings are pushed
towards 0. Therefore, many works focus on finding tuple selection heuristics
[7,23,26,30,31]. Another way to apprehend the DML learning framework is to
view it as a classification problem, e.g. using a softmax classifier [5] to separate
the classes and use the latent representation during inference. Several approaches
have built on this for face recognition [11,17,29].

To better represent the semantic relations between training examples, many
researchers have explored integrating textual modalities during training. In cross-
modal retrieval, the aim is to match the embeddings of the visual and textual
inputs in a shared representation space through a discriminative loss [6,7,15,16,
18,33,36]. Other methods leverage textual inputs to enhance the visual encoder’s
predictive capacities. Radford et al. [19] introduce CLIP, a method that replaces
class annotations by the rich language representations. More specifically, they
employ a categorical cross-entropy loss function on the similarity matrix derived
from text and image embeddings. In a parallel approach, Roth et al. [21] adopt a
DML learning framework tailored for relatively modest datasets. They leverage a
frozen language encoder to steer the visual similarity matrix towards alignment
with the textual similarity matrix.

1.2 Leveraging Hierarchical Annotations to Guide the Learning

The aim of integrating hierarchical information is to rectify common classifica-
tion errors that treat all classes as equally distinct, and therefore enhance the
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optimization of inter-class distances. First, several methods map labels to latent
representations, with the potential to more effectively encode the semantic sim-
ilarity between pairs of classes [1,3,32]. For instance, Frome et al. [12] generate
a label representation from a skip-gram language model and then use a ranking
loss between the output of a vision model and the label embedding. This allows
for the representations of samples from classes that are semantically similar to
be closer than with an explicit one-hot labelling. Second, some methods inte-
grate the hierarchical nature of the annotations into the training architecture.
Alsallakh et al. [2] add classification branches after each convolutional block
in the architecture to learn different levels within the class hierarchy. Similarly,
Yan et al. [35] simplify the class hierarchy by partitioning it into coarse and
fine-grained categories. A shared feature extractor is employed to supply inputs
to both a coarse component classifier and K fine component classifiers. How-
ever, these methods update their architectures for classification tasks and are
specific to certain architectures. This poses a significant challenge, as these spe-
cialized architectures require retraining from scratch and do not capitalize on
consistent pretraining using a large-scale database. Third, some research has
focused on building losses that take into account higher-level semantic context
[4,9,13,27]. For instance, Verma et al. [27] propose a “context-sensitive loss”
where the Lowest Common Ancestor (LCA) extracted from the class hierarchy
provides valuable insights to learn similarity metrics between pairs of classes. In
contrast to the majority of the studies outlined in this section, our approach is
based on DML frameworks rather than classification or regression tasks. This
enables robust generalization even to classes not included in the training set,
without necessitating a custom architecture or extensive ensemble methods.

2 Methodology

In naive DML setups, where all classes are considered exclusive, inter-class dis-
tances are not encoded optimally. To solve this, we propose in 2.1 a novel loss
LSAL that integrates hierarchical annotations. In 2.2, we introduce several ways
of integrating the rich structured annotations as textual information.

2.1 Leveraging Structured Annotations for Image Similarity

Let xi denote an image, yl
i the class label associated to the image at the l-th depth

of the class hierarchy (with y0
i being the leaf, and natural class annotation).

The main idea introduced here is to create meta-embeddings that encode
the information issued from the higher order annotations. In the general case,
the end-to-end image encoder ψimg is created as the composition of a common
feature extractor f and a linear projection φ. It can be written as :

ψ0
img(xi) = f ◦ φ0(xi) (1)

We introduce auxiliary meta-embeddings ψl
img(xi) output by meta-projections

φl built on a single common feature extractor. They can be written as :

ψl
img(xi) = f ◦ φl(xi) (2)
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These additional embeddings encapsulate the semantic information conveyed
by the meta-annotations. To encourage the feature extraction embedding space
to capture these semantic relationships, we introduce a novel loss function
LSAL :

LSAL =
L∑

l=0

αl · LDML(ψl(xi), yl
i) (3)

with αl the weight associated to each abstraction level l in the loss and LDML

the DML loss (i.e. triplet loss, margin loss or multi-similarity loss for example).
This loss enables the feature extractor f to acquire features capable of distin-
guishing among all meta-classes, thus capturing semantic information derived
from the extensive class ontology and improving the inter-class distances within
the embedding space. This method is illustrated in Fig. 1 (Center-blue part).

To evaluate this method, one only needs the leaf-level meta embeddings
(ψ0

img(xi)), and therefore does not necessitate any additional information dur-
ing inference. This method also presents the advantage of being generic and
working with different encoder architectures and different DML losses.

2.2 Integrating Language Information

We now show who to use the robust textual annotations to guide the visual
encoder as illustrated in Fig. 1 (Green part).

Expert Language Guidance. An approach to incorporating language guid-
ance within the framework of visual similarity learning, was introduced by Roth
et al. [21]. In this method, called ELG (short for Expert Langage Guidance),
the authors employ a dual encoder architecture. They harness the rich semantic
knowledge acquired by the (frozen) text encoder to influence the image similar-
ity matrix Simg towards mirroring the text similarity matrix Stext. To achieve
this, they introduce a novel matching loss:

Lmatch(Simg, Stext) =
1
B

B∑

i

σ(Simg) log(
σ(Simg)
σ(Stext)

) (4)

with B the batch size and σ a row-wise softmax. The final loss term LELG

is built as a combination of Lmatch and a classic DML loss that enables the
network to learn a structured embedding space. This approach leverages textual
information by aligning the visual similarity matrix with the textual similarity
matrix. In what follows, we introduce several methods to integrate the semantic
hierarchy within DML and image-text matching frameworks.

Rich Captioning. The first way to exploit the hierarchical structure of anno-
tations through natural language is to do so through rich captioning. For both
works that use language guidance and that are tested in this work, such as CLIP
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[19] and Expert Language Guidance [21] (presented in 2.2), we enrich the textual
input with hierarchical information.

For instance, there are three levels of annotation hierarchy (species, genus
and family) for the CUB-200 dataset [28], a bird classification dataset (presented
more extensively in Sect. 3). The caption for the sample xi becomes “a photo
of a y0

i from the genus y1
i and the y2

i family.”. For instance, for an image of a
blue jay, the textual primer used by the model for language guidance would be
changed from “a photo of a Blue Jay” to “a photo of a Blue Jay from the genus
Corvidae and the Cyanocitta family”. For the SUOG view dataset, there are
only two levels of label hierarchy. Therefore, the additional text for the sample
xi becomes “y0

i from the y1
i ”. This approach provides the advantage to adjust

the primer according to the specific domain task, offering a degree of freedom to
users. However, it also puts all the semantic information at an equal footing.

Language Guidance over Meta Embeddings. To optimize the enhance-
ment in visual similarity learning facilitated by the meta embedding learning
presented in Sect. 2.1, we introduce Ontology Language Guidance (OLG), where
we apply the language guidance loss introduced by Roth et al. [21] and presented
in 2.2 to the aforementioned meta embeddings. We therefore obtain:

LOLG =
L∑

l=0

αl · LDML(ψl(xi), yl
i) + wl · Lmatch(Sl

img, S
l
text) (5)

In contrast with rich captioning, OLG also allows the model to more effec-
tively leverage the hierarchical structure of the annotations by separating the
contrinution among all semantic levels. In what follows, we evaluate the interest
of guiding a visual similarity framework with higher-level semantic information.

Fig. 2. Examples from
CUB-200 (top) and
SUOG (bottom)

Fig. 3. An overview of (a subset of) the view anno-
tations from SUOG ontology.
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3 Experiments

We present results to experiments led on two datasets: CUB-200 [28] on bird
classification and the SUOG OB/GYN dataset for scan plane recognition.

CUB-200 is a popular DML testbed. It contains 11788 images of birds belonging
to 200 different species as a ground-truth class (100 classes in train, 100 classes
in test). The first row of Fig. 2 highlights examples from CUB-200. We manually
extract the genus and family to which these species belong from the Avibase
world bird database (https://avibase.bsc-eoc.org/avibase.jsp) to create higher-
level annotations.

SUOG The SUOG dataset contains 4323 pregnancy ultrasound images, with 649
used in the test set, randomly sampled to follow the same label distribution as the
train set. The second row from Fig. 2 highlights examples from SUOG. We use
the view annotations as the ground-truth label to perform DML on. There are
18 classes that all belong to a set of 5 metaclasses, all extracted from the SUOG
ontology created by OB/GYN experts. These classes and metaclasses are shown
in Fig. 3.

Implementation Details. Unless stated otherwise, we employ a ImageNet-
pretrained ResNet50 as the image encoder, and vary the text encoder. The final
embedding size of the image encoder is set to 128. We use ADAM with β1 =
0.9 and β2 = 0.999, and a batch size of 64. For CUB-200, we use the common
data augmentations used in the state-of-the-art methods: the training images are
randomly cropped while keeping the same aspect ratio and then are randomly

Table 1. Results for the CLIP model on the CUB-200 dataset

Method Recall@1 std

CLIP 44.98 0.34

CLIP rich caption 45.48 0.37

CLIP + Genus-SAL 46.63 0.2

CLIP + Family-SAL 46.57 0.23

CLIP + Genus-SAL + Family-SAL 47.00 0.4

Table 2. Results for the Multism. model on the CUB-200 dataset

Method Recall@1 Genus-Recall@1 Family-Recall@1

Multism. 63.41 ± 0.45 71.64 ± 0.43 86.16 ± 0.22

Multism. + Genus-SAL 63.36 ± 0.19 71.93 ± 0.26 86.38 ± 0.28

Multism. + Family-SAL 63.50 ± 0.34 71.73 ± 0.50 86.21 ± 0.27

Multism. + Both-SAL 63.22 ± 0.16 71.61 ± 0.30 86.43 ± 0.35

https://avibase.bsc-eoc.org/avibase.jsp
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Table 3. Results for SAL on the SUOG dataset.

DML method α Recall@1 Meta-Recall@1

CLIP 0 36.83 ± 1.58 81.97 ± 1.56

CLIP + SAL 0.1 37.39 ± 1.05 82.37 ± 0.34

CLIP + SAL 0.539.17 ± 1.05 82.16 ± 1.44

CLIP + SAL 1 38.84 ± 1.13 81.97 ± 0.77

Triplet 0 52.32 ± 1.31 90.91 ± 0.70

Triplet + SAL 0.154.26 ± 1.14 91.28 ± 0.58

Triplet + SAL 0.554.27 ± 0.38 91.65 ± 0.40

Triplet + SAL 1 54.27 ± 0.69 91.83 ± 0.50

Softmax 0 55.71 ± 0.85 91.74 ± 0.73

Softmax + SAL 0.157.29 ± 0.93 92.17 ± 0.38

Softmax + SAL 0.5 56.73 ± 0.65 92.35 ± 0.45

Softmax + SAL 1 54.73 ± 0.74 92.29 ± 0.83

Margin loss 0 53.19 ± 0.95 89.30 ± 0.90

Margin loss + SAL 0.155.9 ± 0.88 91.19 ± 0.65

Margin loss + SAL 0.5 54.3 ± 0.65 92.02 ± 0.87

Margin loss + SAL 1 52.36 ± 0.49 91.96 ± 0.34

Multisimilarity 0 56.16 ± 0.81 90.45 ± 0.83

Multisimilarity + SAL 0.156.66 ± 1.00 91.44 ± 0.55

Multisimilarity + SAL 0.5 54.85 ± 0.50 91.96 ± 0.34

Multisimilarity + SAL 1 54.52 ± 1.19 91.89 ± 0.66

flipped. The test images are cropped and centered. For SUOG, only a simple
random vertical flip is applied as it allows keeping the ultrasound imaging struc-
ture. For the CLIP experiments, a triplet loss term is added to regularize the
training, and we use a BERT-small model instead of learning everything from
scratch. We also replace the original CCE by a binary cross-entropy loss (BCE).

The main evaluation metric in DML is recall@k (r@k), which equals 1 when
at least one of the K nearest neighbours of a specific query sample shares the
same class as that sample, and 0 otherwise. We also present meta-recall@k, which
operates similarly to recall@k but employs the meta labels as the ground truth.

3.1 Guiding the Metric Learning with Prior Meta Annotations

First, we validate the impact of the proposed Semantic Abstraction Loss
(SAL). Table 1 demonstrates that computing visual similarity at meta-class level
improves the CLIP model’s predictive performances on the CUB-200 dataset.
The addition of LSAL with both the genus and family information (y1 and
y2) accounts for a 2.02 points global increase, while we can also note that the
use of two different levels of hierarchical annotations works better than only



362 J. Bonnard et al.

using one, which might indicate that stronger semantic information leads to
better embeddings. Table 2 shows a slight performance boost (+0.09 points with
family classes) when applying SAL loss alongside multisimilarity, which can be
explained by the large number of classes and training examples. Another note-
worthy aspect of the method is its capability to enable the model to make more
insightful errors. Table 2 demonstrates that, on CUB-200, the model trained with
SAL achieves superior results in terms of genus-r@1 and family-r@1. This implies
that even when the nearest neighbours of the query sample do not belong to the
same class as the query sample, they may still be semantically close.

Moreover, Table 3 shows that, when applied to 5 different DML losses, LSAL

consistently improves the reccal@1 scores (+2.34 points for CLIP, +1.95 points
for the triplet loss, +1.58 points for the softmax, +2.69 points for the margin
loss and +0.50 points for the multisim loss). It demonstrates that our method is
generic to different DML losses. Additionally, integrating SAL enhances meta-
r@1 by up to 0.99% for CLIP, 0.92% for the triplet loss, 0.61% for the softmax,
1.51% for multisim and 2.72% for the margin loss, echoing the previous results.

3.2 Integrating Structured Annotation Through Natural Language

In this section, we show how we leverage rich textual information to improve the
performance of DML methods.

Table 4. Ablation study of Multisim. and Language Guided method on CUB-200.

Method ELG Rich capt. OLG Recall@1

Multisim. ✗ ✗ ✗ 63.41 ± 0.45

Multisim. ✓ ✗ ✗ 67.19 ± 0.12

Multisim. ✓ ✓ ✗ 67.33 ± 0.22

Multisim. ✓ ✓ Genus+Family (α = 0.25) 67.5 ± 0.33

Multisim. ✓ ✓ Genus+Family (α = 0.5) 67.74 ± 0.30

Multisim. ✓ ✓ Genus+Family (α = 0.75) 67.61 ± 0.26

Multisim. ✓ ✓ Genus+Family (α = 1) 66.92 ± 0.32

Multisim. ✓ ✓ Genus (α = 1) 66.92 ± 0.25

Multisim. ✓ ✓ Family (α = 1) 67.62 ± 0.35

Impact of Rich Textual Data During Language-Guided Learning: We
leverage the strong semantic information obtained through the rich annota-
tions using textual representations. We assess the interest of rich captioning
(see Sect. 2.2) on different datasets. On CUB-200 dataset, Tables 1 and 4 show
that using the rich caption method slightly improves the predictive performance
(0.5 points for CLIP and 0.14 points for multisimilarity). To understand these
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Table 5. Mean cosine similarity between the embeddings of the rich caption and the
simple caption using the CLIP encoder.

Dataset Level-0 Similarity Level-1 Similarity Level-2 Similarity

CUB-200 0.937 0.617 0.655

SUOG 0.937 0.916 —

results, we compare the embeddings of the simple caption and the rich cap-
tion. Table 5 show that the mean cosine similarity (over all classes) between the
embeddings of the rich caption and the simple caption for the species is very
high (0.937), whereas it is much smaller for the genus and family (0.617 and
0.655 respectively). This shows that the text encoding for the rich captions is
similar to that of the simple captions, not fully capturing the strong semantic
information given by the higher-order annotations, but rather focuses on the
most precise terms.

However, we can observe a slight decrease in performance on SUOG in
Table 6. This can be explained by the poor performances of the textual encoder
on specific OB/GYN terms. Table 5 shows that the rich representations are very
close to both the representations of the classes and to the meta-classes. One
possibility is that the frozen text encoder embeds all the SUOG classes and
meta-classes in a very tight region because of its lack specific OB/GYN knowl-
edge.

Guiding Meta Embeddings Using Natural Language: As we have previ-
ously illustrated the utility of integrating the SAL loss term within a DML frame-
work, we hereby prove the efficacy of leveraging natural language to guide these
meta-embeddings. For the CUB-200 dataset, results in Table 4 show that adding
the OLG loss term helps improve the model’s predictive performance, as it helps
structure the embedding space and therefore improve the inter-class distances.
When the model is guided using both genus and family annotations along with
language cues, the performance improves from 63.41% to 67.74% at its peak,
with the OLG loss term contributing to a 0.55-point enhancement compared to
the model employing basic ELG language guidance alone. Table 6 shows that
employing basic ELG marginally enhances the r@1 by only 0.17 points when
directed by a straightforward caption. As anticipated, the inclusion of an LSAL

loss term elevates the r@1 to 56.49, accompanied by a 0.43-point augmentation in
meta-r@1, confirming earlier findings. Additionally, guiding the model with OLG
demonstrates a slight enhancement in results, with r@1 reaching 56.61%. Never-
theless, we can see that the results achieved with OLG still fall slightly short of
those obtained solely with LSAL. These findings highlight that language guidance
is beneficial only when the language model offers good context to distinguish
classes. In the case of SUOG, the text encoder even marginally degrades the
model’s performance because of its lack of specialized knowledge.
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Hence, using textual data to guide a visual DML model only yields interesting
results provided that the text encoder comprehensively understands the semantic
information encapsulated within the training data.

Table 6. Ablation study on SUOG dataset for language guided meta-learning.

DML method SAL α Rich capt. ELG OLG r@1 meta-r@1

Multisim. ✗ — ✗ ✗ 56.16 ± 0.81 90.45 ± 0.83

Multisim. ✗ ✗ ✓ ✗ 56.33 ± 0.98 90.17 ± 0.54

Multisim. ✗ ✓ ✓ ✗ 56.21 ± 1.31 90.35 ± 0.89

Multisim. ✓ ✗ ✓ ✗ 56.49 ± 0.14 90.88 ± 0.86

Multisim. ✓ ✗ ✓ ✓ 56.61 ± 0.77 90.57 ± 0.79

Multisim. ✓ — ✗ ✗ 56.66 ± 1.00 91.96 ± 0.34

4 Conclusion

In this paper, we investigated the incorporation of rich annotations to enhance a
deep metric learning framework. We first leveraged the hierarchical annotations
extracted from the class ontology by creating auxiliary meta-embeddings that are
pushed to encode different levels of meta-annotations with the novel LSAL loss.
LSAL enables the model to better encode inter-class relations, bringing closer
samples from classes that share the same metaclass. Second, we capitalized on
the robust textual information associated with the annotations and proposed
Ontology Language Guidance (OLG), a method that specifically guides the meta-
embeddings using natural language. A notable advantage of these methods is that
although they require supplementary input information in the form of meta-
annotations during training, they do not require it during inference.

We validated the interest of SAL and OLG on the CUB-200 dataset and
SUOG OB/GYN dataset. In particular, we showed that the rich captioning
provided a limited improvement on both datasets, as the text encoders mainly
focused on the leaf-level classes in the rich captions. The integration of OLG
addressed this concern by optimizing the influence of all levels of annotations.
While it demonstrated effectiveness on CUB-200, where the text encoder effec-
tively captured semantic context, it did not enhance the model’s representational
capacity on the SUOG dataset. This may be due to the text encoders’ inability to
distinguish between classes and metaclasses due to a domain gap.

As a conclusion, it is interesting to note that guiding a DML model using
rich annotations, whether it be through auxiliary embeddings with LSAL or
language guidance with rich captioning or OLG, attest to generally improve the
representations given by the model. However, it is usually more interesting to
use textual representations when the text encoder can provide semantic context
in the input domain, which is a future direction that we would like to investigate.
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Abstract. Feature selection is crucial in building Machine Learning
(ML) models. A model trained on selected features can outperform mod-
els trained on all available features in predictive accuracy. Most fea-
ture selection algorithms focus on the predictive accuracy of the mod-
els. Hence, feature selection algorithms incorporate various statistical
methodologies to maximize predictive accuracy. While this serves the
purpose of maximizing accuracy, consistency is needed to explain the
model’s decision. A regression model can be useful for eXplainable Arti-
ficial Intelligence (XAI) if and only if the coefficients show consistent
signs (positive or negative) despite the inherent variability in data. This
work demonstrates that linear regression models built using features
selected by traditional approaches exhibit poor consistency of coefficient
signs. This inconsistency in the sign of coefficients can hinder the under-
standing of feature influence on the target. To address this, we propose
a novel feature selection algorithm that selects only those features that
minimize the fluctuation of the model’s coefficients’ sign, i.e., consistent
features. Our experimental results on three different public datasets and
two regression techniques demonstrate the effectiveness of our approach.
Thus, models built on the selected features using our approach exhibit
better consistency of the coefficients’ sign than models built on features
selected using traditional, with minimal impact on predictive accuracy.
This substantial improvement in consistency shows that our approach
cannot only compete with existing approaches in terms of accuracy but
also outperform them in terms of consistency, making it a valuable tool
for XAI applications.

1 Introduction

Machine Learning (ML) models are widely used across multiple domains to
solve various problems [1,3,17,28]. In highly regulated fields like health care,
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Fig. 1. Variation of coefficients’ sign of models (OLS and Ridge Regression) trained on
1000 bootstrapped datasets of Diabetes Dataset. Red color indicates coefficients with
negative values (i.e. < 0) while the blue color indicates the coefficients with positive
values (i.e. >= 0).

insurance, law enforcement, etc. there has been concerns regarding fairness, pri-
vacy and trustworthiness of ML models [1,28]. Some researchers have therefore
advocated the use of interpretable models as compared to black-box models for
high stakes decision making scenarios [28]. Further, techniques like LIME [27]
and it variants (D-LIME [32], ALIME [30], S-LIME [34], BayLIME [33]), use an
interpretable model to explain complex decision boundary in local scope. Thus
interpretable models (like Linear Regression, Decision Trees etc.) are used exten-
sively in situations where the explanation for the predicted outcome is desired.

Among the interpretable models, Linear Regression with Ordinary Least
Squares (OLS) and Ridge Regression are common choices and the focus of our
work. The coefficients of Linear models1, which are used as an explanation,
should exhibit consistency2 in the sign of the coefficients for similar inputs [2].
Thus, from an XAI standpoint, the consistency of the coefficients’ sign for small
variations in the input is crucial. Although sensitivity analysis of Linear Regres-
sion was studied in several works [4,7,11,15], yet the consistency (i.e., robustness
to sign flips) of the coefficients has not been addressed in the literature from an
XAI perspective, thus overlooking a critical aspect of explainability. We exem-
plify the inconsistency of coefficients of both OLS and Ridge regression models
on Diabetes Dataset [9] in Fig. 1a and Fig. 1b. The inconsistency was noted
across the models trained by bootstrapping the Diabetes Dataset [9] 1000 times
for both the OLS and Ridge models. Specifically, the coefficients corresponding
to feature indices 3, 5, and 7 in Fig. 1a and feature indices 5 and 7 in Fig. 1b show
high variability in their signs, i.e., these features contribute to the model’s out-

1 We will refer to Linear Regression with OLS and Ridge Regression collectively as
linear models unless otherwise stated further-on in the paper.

2 From hereon, we will use the term consistency to denote the stability of the sign
of the coefficients. Along the same lines, a consistent feature would mean that the
corresponding coefficient, in the linear model, is robust to sign flips despite the
inherent variability of data.
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put (i.e., target) positively in some cases and negatively in others, making them
inconsistent. These coefficients violate the consistency property (i.e., flipping of
coefficients’ sign) as mentioned by [2].

In this paper, we hypothesize that features which lead to inconsistent signs of
coefficients can be removed before training the model, i.e., in the feature selection
stage. We, therefore, propose a novel feature selection (elimination) approach to
remove these inconsistent features. We then compare the consistency and the
predictive performance of the models trained on the selected features by the
proposed approach vs. those trained using features from traditional approaches.
Our experiments provide robust statistical evidence that the proposed feature
selection approach demonstrates substantial gain in consistency with consider-
ably low loss in predictive accuracy. In Sect. 2, we discuss the traditional feature
selection approaches, their limitations, and our contribution; in Sect. 3, we intro-
duce our novel feature selection approach through elimination. The results are
presented in Sect. 5 followed by conclusions in Sect. 7.

2 Background

Feature selection approaches can be divided into three main types viz. Fil-
ter, Wrapper and Embedded [12]. Filter approaches work in selecting rele-
vant features based on the predictors without involving the target. Wrapper
approaches uses machine learning model as a black box to estimate predic-
tive power of features and then selects a subset. While embedded approaches are
tightly coupled with the concerned ML algorithm and perform feature selection
as a part of model training [12]. Recursive Feature Elimination (RFE) and three
flavors of Sequential Feature Selections, viz. Sequential Forward Selection (SFS),
Sequential Backward Selection (SBS), and Bidirectional feature (BD) selection
have been popularly used in machine learning [6,16,19].

RFE is a wrapper-based feature selection approach [12] that aims to recur-
sively remove the least important feature(s) from the set, based on the weights
assigned by a particular machine learning model, until the desired number of
features is achieved. A model is trained on the initial set of features and the
importance of each feature is obtained either directly from the model (like coef-
ficients in linear models) or through a predefined metric (e.g., accuracy). The
least important feature(s) is/are pruned set iteratively until the desired num-
ber of features are retained. SFS is a wrapper-based sequential feature selection
approach that incrementally builds a model by adding features one at a time
until a stopping criterion is met [10,20,26]. Forward selection typically follows
iterations over remaining features (starting from empty set) and build feature
set to improve the model’s performance the most until a predefined number
of features or no further improvement in model performance is seen within the
number of preset iterations. SBS also known as backward elimination, is another
wrapper-based sequential feature selection approach that starts with a full set
of features and removes one feature at a time until a stopping criterion is met
[10,20]. Backward selection typically follows iteration over the features (starting
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from full set) and remove the one that contributes the least to the model’s perfor-
mance until a stopping criterion is reached (e.g., a predefined number of features
or no further improvement in model performance). BD, also known as stepwise
selection, combines forward and backward selection approaches. It starts with
an empty set of features and alternates between forward and backward steps
until a stopping criterion is met [10,25].

2.1 Limitations of Current Approaches

RFE, SFS, SBS, and BD are popular feature selection approaches, each with
a unique approach to ranking and selecting the most relevant features for
predictive modeling. However, in the specific context of linear models, these
approaches prioritize predictive accuracy without accounting for signs’ stability
(consistency). As such, the coefficients’ sign could have a high variance for small
changes in the training data as shown in Fig. 1. Any model, for instance, a Linear
Regression model based on the selected features, is consistent if and only if the
contribution of features, i.e., coefficients in the trained model, remains consistent
despite the inherent variability of data. Thus, a coefficient exhibiting frequent
sign flips leads to ambiguity in determining the direction of impact (positive or
negative) on the target. However, none of the existing works on feature selection
focused on selecting consistent(low variance in the sign of coefficients) features.
Hence, despite having good predictive power, these approaches are unusable for
XAI applications where the feature’s impact has to be explained for a decision
[2].

2.2 Our Contributions

We consider the problem of consistent feature selection (i.e., inconsistent fea-
ture elimination) and hypothesize that inconsistent features (i.e. prone to coef-
ficient sign flips) can be removed before training and thus, making the model
coefficients robust to sign flips. This would significantly enhance the explain-
ability with marginal degradation in the predictive accuracy of the model. We
consider wrapper based family in this work to validate our idea as we intend to
provide a feature selection approach that can be used in conjunction with widely
employed linear models. Our approach relies on estimating the inconsistency of
features (uncertainty associated with the sign of the features) and eliminating the
inconsistent features to make the model explainable. We consider a case study
of regression (with linear and ridge regression) in linear models for demonstrat-
ing our proposed approach of selecting consistent features. We demonstrate the
inability of of traditional wrapper based feature selection approaches to select
consistent features on three well known public datasets (i.e., House Prices -
Advanced Regression Techniques dataset from Kaggle [18], Superconductivity
[13] and Appliance Energy Prediction [5] datasets from UCI repository). We
further show that the proposed approach can compete against existing feature
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selection approaches by providing similar predictive performance while signifi-
cantly outperforming in terms of explainability metrics (i.e. selecting consistent
features).

3 Proposed Feature Selection Approach

We propose a novel feature selection algorithm under the family of wrapper-
based feature selection. Our approach estimates the sign entropy of coefficients
(refer Equation (1)) and uses it to eliminate inconsistent features. When excluded
from the dataset, these eliminated features make the models consistent for expla-
nations. As our approach is a backward feature selection approach (i.e., feature
elimination) and is designed to offer consistency of explanations, we refer to it
as Consistency-driven Feature Elimination (CoFE).

In lines with the family of wrapper based approaches, CoFE is an itera-
tive approach and it begins the first iteration by bootstrapping the dataset D
and building models on the bootstrapped datasets. The coefficients from these
trained bootstrapped models are used to estimate the sign entropy of the coef-
ficients using Kernel Density Estimate (KDE). We use Scott’s rule of thumb
[29] to calculate the bandwidth in all KDE calculations. Thus, features with
positive sign entropy are considered inconsistent, while features with zero sign
entropy are deemed to be consistent. We use the term sign entropy to quantify
the consistency of a single feature and the term Coefficient Sign Stability (CoSS)
to measure the consistency of all features in a model (details in Sect. 3.1).

In the subsequent iterations, the features with positive sign entropy are
removed (i.e., dropped) to eliminate their contribution in predicting the target
(i.e., Y ), and the sign entropy of the remaining features is re-estimated. This pro-
cess is continued iteratively until a subset of consistent features is obtained (or
alternatively for a set of a predefined number of iterations). If none of the fea-
tures were identified as consistent, then the algorithm can be initiated with a
higher threshold of sign entropy instead of zero to select relatively stable features
than the original set of features (see Algorithm 1 for details).

3.1 Coefficient Sign Stability (CoSS)

We propose a metric, Coefficient Sign Stability, to quantify the variability in the
sign of the coefficients of a model. It reflects the degree of inconsistency in the
direction of the effect of the explanatory variables for the inherent variability of
data. A lower value of CoSS would indicate that the coefficients of a model are
more consistent. In contrast, a higher value of CoSS would indicate that the sign
of the coefficients of a model is likely to flip from positive to negative for small
variations in the data. CoSS for model ‘M’ and feature selection technique ‘k’
can be shown as below:

CoSSk
M =

1
N

∑

i

H(signi) (1)
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Algorithm 1. Consistency-driven Feature Elimination (CoFE)
1: Input: Data D, max tolerance τ , number of bootstrap samples N = 1000 max

iterations iter max = 10
2: Output: Indices of selected features sel indices
3: Initialize: Tolerance counter t = 0, sel indices = col ids(D)
4: while t < τ OR iter < iter max do
5: Initialize a matrix C′ with dimensions N × D
6: � D: number of features in dataset
7: for i = 1 to N do
8: Bootstrap sample Di from D
9: Fit regression model on Di to get coefficients ci

10: C′[i, :] ← ci

11: Compute the sign entropy H for each coefficient across N models using KDE
12: F ′ ← coefficients with H > 0
13: if |F ′| �= 0 then
14: D ← D[:, ¬F ′]
15: sel indices ← sel indices[:, ¬F ′]
16: t ← 0
17: else
18: t ← t + 1

19: iter ← iter + 1

20: return C

where,
H(signi) = −p+i log2(p

+
i ) − p−

i log2(p
−
i )

is the sign entropy of the ith coefficient and the quantities p+i and p−
i are the

probabilities of the ith coefficient to be positive or negative respectively. p+ and
p− are calculated for each coefficient by using Kernel Density Estimation (KDE)
owing to its non-parametric nature [29].

4 Experimental Setup

We conduct a series of experiments on three different publicly available datasets
that include House Prices - Advanced Regression Techniques dataset from Kaggle
[18], Superconductivity [13] and Appliance Energy Prediction [5] datasets from
UCI repository. These would be referred to as Housing, Superconductivity and
Energy datasets respectively. Each of these datasets are used in the context of
regressing the price, conductivity value and energy consumption respectively. We
use OLS [24] and Ridge Regression [14]3 with our proposed approach to show
the impact of consistent feature selection4.
3 Our code makes use of implementations in the official Pypi repositories (https://pypi.

org/project/feature-selector/ and https://pypi.org/project/mlxtend/) for all feature
selection algorithms to support reproducibility.

4 We do not consider LASSO regression in this work for comparison as it uses feature
selection a part of the training process making it a joint/embedded feature selection
and regressor algorithm [12,31].

https://pypi.org/project/feature-selector/
https://pypi.org/project/feature-selector/
https://pypi.org/project/mlxtend/
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Further, to eliminate the influence of any highly correlated features in the
experiments, we discard all highly correlated (i.e. with a Pearson Correlation
≥ 0.8) features from the datasets. We report our results from k-fold (k = 5)
cross-validation with 30 repeats to calculate the CoSS and RMSE (details in
Section Section S1.2) values. The RMSE values are normalized to a range of
[0,1] using min-max scaling Section S1.1. We compare our results against RFE,
SFS, SBS and BD which are feature selection approaches based on ranking.
Hence, for a fair comparison with our proposed CoFE as a feature selection
approach Algorithm 1) we determine the optimal number of features/subset
(i.e. ‘n’ top features) required for maximum predictive accuracy for each of the
counterpart approaches using a k-fold cross-validation with k = 5.

Table 1. Median CoSS scores and RMSE of all feature selection approaches for OLS
and Ridge regression. Lower CoSS and RMSE scores is good.

CoSS RMSE

M CoFE RFE SFS SBS BD CoFE RFE SFS SBS BD

Housing Price Dataset

OLS 0.06 0.48 0.4 0.39 0.39 0.23 0.16 0.15 0.15 0.15

R0.1 0.09 0.45 0.38 0.37 0.37 0.32 0.23 0.23 0.23 0.23

R0.5 0.1 0.37 0.33 0.32 0.32 0.46 0.32 0.34 0.34 0.34

R0.9 0.1 0.33 0.31 0.31 0.31 0.48 0.36 0.37 0.38 0.38

Energy Appliances Dataset

OLS 0.0 0.46 0.41 0.36 0.37 0.54 0.51 0.51 0.51 0.51

R0.1 0.0 0.44 0.39 0.35 0.35 0.54 0.51 0.51 0.51 0.51

R0.5 0.0 0.45 0.41 0.37 0.37 0.55 0.52 0.53 0.53 0.53

R0.9 0.0 0.43 0.41 0.38 0.38 0.54 0.51 0.51 0.51 0.51

Superconductivity Dataset

OLS 0.0 0.07 0.07 0.06 0.06 0.44 0.37 0.37 0.37 0.37

R0.1 0.0 0.07 0.07 0.06 0.06 0.42 0.37 0.37 0.37 0.37

R0.5 0.0 0.04 0.04 0.04 0.04 0.43 0.39 0.39 0.39 0.39

R0.9 0.0 0.04 0.04 0.03 0.03 0.53 0.49 0.49 0.5 0.5

5 Results and Discussion

Table 1 shows the median CoSS scores and RMSE scores for CoFE and other
feature selection approaches (refer Table S1 and Table S2 in supplementary
for details). CoFE has the lowest median CoSS scores as compared to all other
approaches indicating consistency. Further, the median RMSE scores for CoFE is
higher but comparable to other approaches. The difference in median CoSS scores
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Fig. 2. ECDF plots for CoSS and RMSE scores of all feature selection approaches for
Linear Regression(OLS)

Fig. 3. ECDF plots for CoSS and RMSE scores of all feature selection approaches for
Ridge Regression model with α = 0.5

is much higher than the difference in RMSE values. This can also be observed
in the Empirical Cumulative Distribution Function (ECDF) plots in Fig. 2 and
Fig. 3. In Fig. 2 we depict the ECDF plots of the CoSS scores (top row) and the
RMSE scores (bottom row) for all the feature selection approaches using Linear
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Regression (OLS) model. It can be seen that the ECDF plots of all approaches
show similar performance in the RMSE plots while for the ECDF plots for CoSS,
CoFE shows significant improvement as compared to other approaches. The same
trend can also be seen in the ECDF plots of Fig. 3 for Ridge Regression with α
values of 0.5 (refer Figure S1 and Figure S2 for Ridge Regression with α = 0.1
and α = 0.9).

5.1 CoSS Gain

To investigate the CoSS gain of CoFE against other approaches, we conduct
Mann-Whitney U tests [22] and compute the effect size using Cliff’s Delta [8]. We
postulate the null hypothesis H0 as “There is no difference in the distribution of
the CoSS scores of CoFE vs other approaches,” and the alternative hypothesis
was Ha as “The underlying distribution of CoSS scores of CoFE is lesser than
that of other approaches”.
The results of Mann-Whitney U tests [22] and the effect size (Cliff’s Delta [8]) are
provided in Table 2, Table 3 (refer Table S5 and Table S6 for additional results).
The column FS denotes the other approach (out of RFE, SFS, SBS and BD)
compared against CoFE. While the columns U and p-val indicates the U Statistic
and the p-value of the test. We also use Cliff’s Delta to calculate the effect size
of all the tests (Δ).

Table 2. Mann-Whitney U test for CoSS gain and RMSE loss of CoFE as compared
to other techniques for Linear Regression (OLS)

FS CoSS Gain RMSE Loss

U p-val Δ U p-val Δ

Housing Price Dataset

RFE 3.5e+06 0.0 0.76 2.5e+06 2.9e−37 0.23

SFS 3.7e+06 0.0 0.84 2.8e+06 3.0e−96 0.38

SBS 3.7e+06 0.0 0.83 2.7e+06 7.5e−89 0.36

BD 3.7e+06 0.0 0.83 2.7e+06 3.1e−92 0.37

Energy Appliances Dataset

RFE 2.9e+05 8.4e−80 0.62 2.0e+05 1.4e−03 0.1

SFS 2.9e+05 5.7e−76 0.6 2.0e+05 1.5e−03 0.1

SBS 2.8e+05 1.4e−63 0.55 2.0e+05 1.8e−03 0.1

BD 2.80e+05 5.3e−65 0.56 2.0e+05 1.8e−03 0.1

Superconductivity Dataset

RFE 3.5e+05 8.5e−175 0.92 2.3e+05 3.8e−15 0.26

SFS 3.5e+05 1.3e−177 0.93 2.3e+05 3.2e−15 0.26

SBS 3.4e+05 3.2e−165 0.89 2.2e+05 2.0e−13 0.24

BD 3.4e+05 2.8e−165 0.89 2.2e+05 1.5e−13 0.24
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5.2 RMSE Loss

Similar to previous analysis, we also investigate the loss in RMSE of proposed
CoFE against other feature selection approaches not offering consistency. We
postulate the null hypothesis H0 as “There is no difference in the distribution of
the RMSE scores of CoFE vs other approaches” and the alternative hypothesis as
Ha was “The underlying distribution of RMSE scores of CoFE is greater than
that of other approaches”. We include CoSS gain and RMSE loss as reported in
Table 2 and Table 3 (Additional results in Table S5 and Table S6).

We conducted Mann-Whitney U tests to compute statistical significance for
our observations regarding CoFE showing lower CoSS score (i.e., CoSS gain)
and CoFE showing higher RMSE score (i.e., RMSE loss). Further, the effect
size enables us to compare both the CoSS gain and RMSE loss to prove that
CoFE has substantial more gain in CoSS than the resulting loss in RMSE.
The extremely low p-values and large U statistics for both CoSS gain and
the RMSE loss reported in the tables provide robust statistical evidence that
CoFE has lower CoSS scores but it has higher RMSE score as compared to other
approaches. Further the effect size (Cliff’s Delta) values for the tests in the CoSS
Gain section are substantially larger than those of the RMSE Loss section. We
further provide the comparison of the effect sizes of all the tests in Fig. 5 for a
visual illustration. We use the interpretation of Cliff’s Deltas as <0.15 as neg-
ligible, 0.15 to 0.33 as small, 0.33 to 0.45 as medium and above 0.45 as large

Table 3. Mann-Whitney U test for CoSS gain and RMSE loss of CoFE as compared
to other techniques for Ridge Regression with α=0.5

FS CoSS Gain RMSE Loss

U p-val Δ U p-val Δ

Housing Dataset

RFE 3.1e+05 7.7e−101 0.71 2.3e+05 1.5e−15 0.26

SFS 3.1e+05 6.6e−112 0.75 2.3e+05 1.2e−14 0.25

SBS 3.1e+05 4.7e−108 0.73 2.2e+05 3.8e−14 0.25

BD 3.1e+05 8.2e−108 0.73 2.2e+05 5.2e−14 0.25

Energy Dataset

RFE 3.3e+05 6.5e−153 0.85 2.0e+05 2.6e−03 0.09

SFS 3.3e+05 3.2e−149 0.84 2.0e+05 3.2e−03 0.09

SBS 3.2e+05 3.5e−135 0.8 2.0e+05 3.4e−03 0.09

BD 3.3e+05 4.2e−136 0.81 2.0e+05 3.4e−03 0.09

Superconductivity Dataset

RFE 3.2e+05 5.9e−128 0.79 2.1e+05 5.6e−08 0.18

SFS 3.2e+05 3.1e−125 0.79 2.1e+05 5.3e−08 0.18

SBS 3.1e+05 8.5e−108 0.73 2.1e+05 2.4e−07 0.17

BD 3.1e+05 1.2e−107 0.73 2.1e+05 2.5e−07 0.17
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Fig. 4. Density plots for CoSS and RMSE scores of all feature selection approaches for
OLS

[23]. As seen in the Fig. 5, the Coss gain effect sizes are significantly larger than
that of RMSE loss showing the minimal loss in RMSE for CoFE compared to
the stability gain achieved.

5.3 Jensen-Shannon Distance of CoSS and RMSE Scores

We compare the distributions of CoSS Scores and the RMSE scores of CoFE
with all the approaches (i.e. RFE, SFS, SBS and BD) for both Linear Regres-
sion (OLS) and Ridge Regression models for all datasets using Jensen-Shannon
Distance (JSD) [21] in Table 4. The column ‘M’ denotes the model and the sec-
tions CoSS and RMSE depicts the JSD of CoSS scores of CoFE vs the same for
other approaches. As seen from the table, the distribution of CoSS scores (CoFE
vs other approaches) are substantially different owing to the high JSD values.
The same can be visualized in the density plots of Fig. 4 where the CoSS distri-
bution of CoFE is substantially different from that of other approaches, while
the distribution of RMSE is similar (refer Figure S3, Figure S4, and Figure S5 for
all density plots). The JSD values for the distribution of RMSE scores for CoFE
and other approaches are relatively low indicating that CoFE can achieve sub-
stantial boost in consistency of coefficient’s sign (CoSS scores) with low loss of
accuracy (RMSE) as compared to other approaches for feature selection.

5.4 Discussion

The results from the previous sub-section provides robust statistical evidence to
indicate that models built on features selected using CoFE are substantially con-
sistent as compared to models built using other approaches with a considerably
low loss in accuracy (RMSE). This makes it more suitable for XAI where the
coefficients of the Linear Model are interpreted to explain the decision.
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6 Visualizing CoFE’s Impact on Explainability

We plot the coefficients from a random run using the Housing Dataset to visualize
the impact of CoFE on the variability of coefficients’ sign in Fig. 6. The OLS

Fig. 5. Plot of Effect Size

Table 4. Jensen-Shannon Distance of the CoSS distribution of CoFE with the CoSS
distribution of other techniques

CoSS RMSE

M RFE SFS SBS BD RFE SFS SBS BD

Housing Price Dataset

OLS 0.529 0.599 0.583 0.59 0.224 0.246 0.24 0.242

R0.1 0.548 0.591 0.59 0.588 0.181 0.175 0.173 0.173

R0.5 0.467 0.513 0.502 0.502 0.179 0.167 0.167 0.166

R0.9 0.458 0.513 0.507 0.516 0.195 0.187 0.177 0.181

Energy Appliances Dataset

OLS 0.478 0.546 0.519 0.53 0.086 0.078 0.076 0.076

R0.1 0.539 0.565 0.553 0.553 0.088 0.081 0.08 0.078

R0.5 0.622 0.634 0.611 0.614 0.071 0.072 0.069 0.069

R0.9 0.651 0.653 0.629 0.63 0.075 0.069 0.068 0.067

Superconductivity Dataset

OLS 0.642 0.661 0.618 0.618 0.176 0.176 0.169 0.169

R0.1 0.637 0.648 0.591 0.591 0.145 0.144 0.136 0.138

R0.5 0.53 0.514 0.452 0.451 0.112 0.113 0.106 0.106

R0.9 0.444 0.43 0.376 0.382 0.102 0.105 0.098 0.099
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models were trained on features selected by CoFE (in Fig. 6a) and RFE (in
Fig. 6b). The Ridge Regression model (with α = 0.5) was trained on features by
CoFE (in Fig. 6c) and RFE (in Fig. 6d). Blue color indicates a positive value while
red color indicates a negative value of the coefficients. The coefficients of the
models trained on the features selected by CoFE shows no/very low variability
in their coefficients’ sign. However, the models trained on the features selected
using RFE shows high variability of coefficients’ sign making it inconsistent for
explainability tasks (refer Section S5 for visualization with other feature selection
approaches).

Fig. 6. Plot for impact on consistency of selected coefficients in Housing dataset with
coefficient values from 300 random splits. The CoSS value for CoFE was 0.0 and for
RFE it was 0.40 with OLS and for Ridge (α = 0.5) the CoSS value for CoFE was 0.10
and for RFE it was 0.37). Blue color indicates positive values of the coefficients while
red color indicates negative values of the coefficients. (Color figure online)

7 Conclusion

Linear regression model with OLS and Ridge regression, trained on selected fea-
tures from traditional approaches, exhibited low consistency of coefficients’ sign.
In the context of Explainable Artificial Intelligence (XAI), the consistency of
features for inherent data variability is crucial. For applications valuing inter-
pretability, relying solely on traditional feature selection might not fully reveal
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the directional impacts of features. Our proposed approach for feature selec-
tion demonstrated substantial improvement in the consistency of coefficients’
signs while maintaining comparable accuracy to existing approaches. Thus, bal-
ancing feature consistency with predictive performance is essential for develop-
ing interpretable and reliable linear regression models. We recommend further
research in this area to expand feature selection approaches across various model
types from an XAI perspective.
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Abstract. Drawing analogies between two pairs of entities in the form
of A:B::C:D (i.e. A is to B as C is to D) is a hallmark of human intelli-
gence, as evidenced by sufficient findings in cognitive science for the last
decades. In recent years, this property has been found far beyond cogni-
tive science. Notable examples are word2vec and GloVe models in natu-
ral language processing. Recent research in computer vision also found the
property of analogies in the feature space of a pretrained ConvNet feature
extractor. However, analogy mining in the semantic space of recent strong
foundation models such as CLIP is still understudied, despite the fact that
they have been successfully applied to a wide range of downstream tasks.
In this work, we show that CLIP possesses the similar ability of analogical
reasoning in the latent space, and propose a novel strategy to extract analo-
gies between pairs of images in the CLIP space. We compute all the differ-
ence vectors of a pair of any two images that belong to the same class in the
CLIP space, and employ k-means clustering to group the difference vectors
into clusters irrespective of their classes. This procedure results in clus-
ter centroids representative of class-agnostic semantic analogies between
images. Through extensive analysis, we show that the property of drawing
analogies between images also exists in the CLIP space, which are inter-
pretable by humans through a visualisation of the learned clusters.

Keywords: representation learning · foundation models · latent space
understanding

1 Introduction

The ability of drawing analogies is a key characteristic of human intelligence
[34]. For decades, this property has been well-studied in the field of cognitive
science. A classical model, known as the ‘parallelogram model’ [35], describes
the relations between a pair of entities in the vector space, assuming that the
difference vectors of two pairs of entities that reflect the same analogy should be

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-78189-6 25.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15309, pp. 383–399, 2025.
https://doi.org/10.1007/978-3-031-78189-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78189-6_25&domain=pdf
https://doi.org/10.1007/978-3-031-78189-6_25
https://doi.org/10.1007/978-3-031-78189-6_25


384 S. Xing et al.

close in the vector space [30]. This model formulates a A:B::C:? question (i.e.,
A is to B as C is to ?) for analogical reasoning, which is still important in
testing the reasoning abilities of humans and AI. For instance, given a pair of
images of a dog indoors (A) and a counterpart in the wild (B), it is easy for
a child to pick an image of a cat in the wild (D) from a bunch of candidates
after being shown a cat indoors (C ), to match the underlying relation between
the dog images. Analogies allow generalization because one can transfer existing
knowledge from one context to another [14].

Fig. 1. An illustration of an
analogy discovered in the CLIP
space with our proposed strat-
egy, described in the form of
A:B::C:D.

In the past years, the property of reason-
ing by analogy has been found far beyond
the field of cognitive science. In the Natu-
ral Language Processing (NLP) community,
notable examples include word2vec [27] and
GloVe [29]. These models exhibit the ability
to draw basic analogies in the word embedding
space that conform to the ‘parallelogram law’,
e.g., wqueen − wking + wman ≈ wwoman, where
wx is a word embedding for the word x [12,27].
Recently, Transformer-based language models
such as GPT-3 [7] are found to be capable of
answering more sophisticated analogy questions
[38]. Drawing analogies between images has also
attracted research interests in the computer vision community [6,18,33]. In this
paper, we define an ‘analogy’ as a class-agnostic semantic change that generalizes
to multiple classes. For instance, an analogy describing the numerical change of
‘one-to-many ’ applies to most tangible concepts (e.g., real-life objects). Exam-
ples are provided in Fig. 1.

Unlike many well-known language models such as word2vec [27], explor-
ing the property of analogy making in the feature space of visual models to
understand how they represent general semantic changes across images remains
an inspiring yet understudied topic. Recently, Hariharan and Girshick [17] pro-
posed to explore analogies in the feature space of a ConvNet feature extractor,
and trained a generative model to hallucinate features in few-shot learning sce-
narios. The way they exploit analogies between image representations is also
based on an implicit assumption of the parallelogram law. Recently, large-scale
multimodal foundation models trained with a contrastive loss gain popularity
[23,31], with CLIP [31] being an important representative. These models have
been applied to a wide range of downstream tasks successfully in a zero-shot
manner and exhibited impressive performance. However, to our best knowledge,
no existing research explores the property of analogy-making in the latent space
of these foundation models. Does CLIP possess the similar ability of drawing
analogies in the shared space as found in previous language models [27,29] and
vision models [17]? We investigate this question and give a positive answer.

To discover analogies between images, we follow the parallelogram assump-
tion that two pairs of images which reflect the same semantic change should
correspond to two difference vectors that are close to each other in the CLIP
space. This assumption is intuitive and renders it easy for manipulation. Note
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Fig. 2. Examples of four clusters discovered from the CLIP space, each visualised by a
subfigure and representing a class-agnostic analogy. Each row contains a pair of images
belonging to the same class whose difference vector is assigned to a cluster. The textual
name of the class of each image pair is written on the top-left corner of the first image.
All the images are cropped to square sizes for better display. Better zoomed in and
viewed in colour

that although CLIP is equipped with two encoders for vision and language,
respectively, we focus on exploring analogies based on images. We believe that
similar findings can be drawn for the textual modality and leave it for future
work. We first employ the frozen vision encoder to encode each image in the
training set of ImageNet [9] into a vectorial representation in the CLIP space.
Within each class, we compute the difference vectors of any two images. Each
difference vector is represented as a point in a vector space with the same dimen-
sionality of the CLIP space. We then employ k-means clustering [22] over the
difference vectors to group them into a fixed number of clusters, irrespective
of their classes. Through visualization over the learned clusters, we find that
most clusters represent a certain class-agnostic semantic change interpretable to
humans, which indicates that the CLIP space possesses the similar property of
analogy-making that follows the ‘parallelogram law’, as found in the embedding
space (or feature space) of previous models. Some examples are provided in Fig.
2. Our contributions are summarised as follows:

– We show that the CLIP space possesses the property of analogy making
as found in the embedding space of well-established word models (e.g.,
word2vec) [27] and the feature space of ConvNet [17]. To our best knowl-
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edge, no existing research has studied the ability of analogical reasoning in
the CLIP space.

– Following the parallelogram assumption, we propose a clustering-based strat-
egy to discover analogies in the CLIP space. Visualization shows that the
learned clusters represent semantic changes interpretable to humans. We hope
that our work will inspire research in the understanding of image semantics
encoded in the CLIP space.

2 Related Work

Closely related to our work are two streams of research, i.e., (1) analogical rea-
soning in the latent space of existing neural models, and (2) the interpretation
and manipulation of the CLIP space.

Analogy. Analogical reasoning refers to the ability of recognising similar
patterns among two or more sets of entities. This ability has been studied exten-
sively in the field of cognitive science [20]. Rumelhart et al. proposed the classical
parallelogram model [35], which assumes that two pairs of entities reflecting the
same semantic change translate to two difference vectors that are close in the
vector space. This assumption is found to hold in the embedding space of lan-
guage models that have been trained on large corpuses of text, such as word2vec
[27] and GloVe [29]. There is also work that attempts to understand the analog-
ical abilities of word embeddings [2,3,12,15]. Ushio et al. analyse the analogical
abilities of Transformer-based language models [38]. Hertzmann et al. [18] first
introduced the concept of Image Analogy, and proposed a statistical approach
to transform an image B to B’ given a pair of images A and A’ as reference.
However, their proposed concept of image analogy differs from the analogy stud-
ied in this paper. Specifically, they focus on pixel-level transformations between
images, e.g., change in image resolution, while analogies in our work refer to gen-
eral changes in semantics. Recently, Bar et al. [5] propose to construct a grid-like
image concatenated with a pair of input and output images from the downstream
task and a query input image, and prompt a pretrained image inpainting model
to generate the desired image output without further finetuning, a process which
they term visual prompting. This work is still based on low-level analogy between
images because image semantics is not considered. Šubrtová et al. [37] propose
to employ diffusion models [19] to edit an image in higher-level semantics, given
a pair of images which specifies the desired transition. Compared to previous
studies, [37] focuses on high-level semantic transformations across images. How-
ever, their goal is to prompt the generative model to transform the query image
based on the intended semantic change manifested by an exemplar image pair. In
comparison, our goal is to investigate the ability of CLIP to draw class-agnostic
analogies, and propose a strategy to discover such analogies in the CLIP latent
space from a large pool of images without relying on any exemplars. Understand-
ing the analogies between images in the feature space is much less studied. Some
research efforts employ vector arithmetic for face image manipulation [32]. Har-
iharan and Girshick [17] proposed to extract analogies from the feature space
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of a ConvNet feature extractor. They first train the feature extractor with base
classes, and group the feature vectors within each class into clusters. Then they
search for two pairs of clusters from two classes such that ca

1 − ca
2 and cb

1 − cb
2

(with cj
i denoting the i-th cluster of class j) have positive cosine similarity, and

collect these quadruplets (ca
1 , c

a
2 , c

b
1, c

b
2) as a dataset, which is used to train a gen-

erative model that outputs the synthesized feature cb
2 given [ca

1 , c
a
2 , c

b
1] as input.

This work is closest to ours in the idea of exploring analogies across images in
the latent space of a well-trained model. However, the motivation in their work
is to hallucinate features in scenarios where training data are scarce, whereas we
aim to investigate in the CLIP space [31] the property of semantic analogies as
found in previous models [27,29] and propose a strategy to extract such class-
agnostic analogies. In addition, they perform clustering over the feature vectors
in each class, while we collect difference vectors of a pair of any two images
belonging to the same class, and perform clustering over these difference vectors
irrespective of classes. To sum up, this paper is vastly different from previous
studies as the initial exploration in the latent space of a foundation model to
investigate its ability to draw analogies in terms of image semantics. We also
propose an effective clustering-based strategy to explicitly extract such general
analogies without relying on exemplars or generative models.

CLIP Space Interpretations. With the increasing popularity and use of
CLIP [31], there has been some research work contributing to understanding
representations in the CLIP space [16,24,26]. Recently, Gandelsman et al. pro-
pose to decompose the image representations as summands and interpret them
with textual representations [13]. To our best knowledge, no existing work aims
to discover analogies between images in the CLIP space.

3 Method

In this section, we explore the CLIP space [31] to investigate whether it has the
ability of analogy-making over image pairs using their image encodings. We also
propose a simple yet effective strategy to discover these class-agnostic analogies
that reflect general semantic changes.

We make the following assumptions: (i) the analogies in the semantics of
images translate to some vector arithmetic operations with their embeddings in
the latent space of a well-trained model (CLIP in our case); (ii) provided that
A:A’::B:B’ holds, it holds that Ev(A)−Ev(A′) ≈ Ev(B)−Ev(B′), where Ev(X)
denotes the image encoding of image X in the CLIP space (the parallelogram
assumption). The overview of the proposed strategy is provided in Fig. 3.

3.1 Image Encoding

To discover the analogies between images, we choose ImageNet [9] as our base
dataset because it covers a large number of classes, each containing ∼ 1, 000
image samples, which spans a large analogy space. Suppose that we have K
classes in the dataset (which is 1,000 for ImageNet), for each class ci, i =
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Fig. 3. The diagram of our proposed analogy discovery strategy in the CLIP space.
In the Image Encoding phase, each image is encoded into a vector representation
in the CLIP space with the frozen vision encoder. Different classes are denoted with
different shapes. The difference vector of a pair of images is represented as a point in
the delta space, where Analogy Discovery is performed with off-the-shelf clustering
algorithms.

1, 2, . . . ,K, there are ni raw images. We employ the CLIP vision encoder to
encode all ni images corresponding to class ci into the CLIP space:

xi
j = E(Xi

j), for j ∈ {1, 2, . . . , ni} (1)

where xi
j ∈ Rd is the image encoding of image Xi

j , and d is the dimensionality
of the shared space of CLIP.

After this process, we have K sets of image encodings I1, I2, . . . , IK , where
Ii = {xi

1, x
i
2, . . . , x

i
ni

} is the set of image encodings for class ci, with each xi
j

corresponding to a point in the CLIP space.

3.2 Analogy Discovery

We aim to discover general analogies irrespective of classes. For each class ci with
a set of ni images, ni × (ni − 1) image pairs can be derived from their encodings
Ii, each reflecting a semantic change. Note that an image pair, denoted as A:B,
is asymmetric because B:A would reflect a reverse semantic shift.

To extract class-agnostic analogies, we collect each possible image pair
belonging to all classes into a pool:

Q = {xi
j − xi

k | j, k ∈ [1, ni], j �= k, i ∈ [1, 2, . . . ,K]} (2)

Each sample in Q is associated with a difference vector in the CLIP space. We
define a vector space termed as the delta space that has the same dimensionality
with the CLIP space:

SΔ = {vx − vy | vx, vy ∈ SCLIP } (3)
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In this way, each difference vector in Q can be represented as a data point
in SΔ. According to the parallelogram assumption, a class-agnostic analogy
exemplified by A:A’::B:B’::· · · can be represented with Ev(A) − Ev(A′) ≈
Ev(B)−Ev(B′). However, one notable difference between CLIP and other back-
bone networks [17,27,29] is that it is pretrained with a contrastive loss based
on text-image cosine similarity. Therefore, we make a slight modification to the
conventional parallelogram assumption (which is based on Euclidean distance)
and employ cosine similarity as the metric to measure the distance between any
two points in SΔ, instead of Euclidean distance as in previous models [27,29].
In this sense, provided that A:A’::B:B’ holds, the parallelogram assumption
can be rewritten as follows:

〈 Ev(A) − Ev(A′)
‖ Ev(A) − Ev(A′) ‖ ,

Ev(B) − Ev(B′)
‖ Ev(B) − Ev(B′) ‖〉 ≈ 1 (4)

To discover these analogies, we group Q into clusters in SΔ, as illustrated in
Fig. 3. A straightforward solution is to employ k-means clustering [22] over all
the data points in Q, which we find to extract meaningful analogies on smaller
datasets e.g., ImageNet-100 [9]. However, there remain two issues that need to
be addressed: (i) k-means clustering is performed based on Euclidean distance;
(ii) when we aim to extract analogies on large-scale datasets, employing k-means
näıvely to iterate over all points in Q would be impractical because the number
of points is prohibitively large (∼ 109 for ImageNet). We address these two issues
as follows:

(i) We show that partitioning a set of data points into clusters in a vector
space by their cosine similarity is equivalent to first L2-normalising all data
points into a d-sphere, and then employing regular clustering based on Euclidean
distance:

‖ x − y ‖2 = ‖ x ‖2 + ‖ y ‖2 −2〈x, y〉
= 2(1 − cos ∠(x, y)) (5)

where 〈·, ·〉 denotes inner product.
Therefore, to perform clustering based on cosine similarity, we apply L2 nor-

malisation before employing regular k-means clustering over the data points Q
in space SΔ.

(ii) To avoid iterating over all data points in Q, we employ the minibatch
version of k-means clustering [36], which samples a batch of data points and
updates the cluster centroids in each iteration. We provide more details on mini-
batch k-means clustering and the method we use to efficiently sample a batch
of difference vectors of image pairs on the fly in Appendix.

After the clustering process, we get N clusters representative of N class-
agnostic analogies. We use the cluster centroids to represent the analogies:

al =
1

|Al|
∑

v∈Al

v, l ∈ [1, 2, . . . , N ] (6)

where Al is the set of data points that are assigned to the l-th cluster. For
minibatch k-means, a is computed on the fly without keeping the data points.
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4 Experiments

4.1 Experimental Details

Fig. 4. Total change of all clusters
at each iteration in terms of L2 dis-
tance. The value at the t-th itera-
tion is computed as

∑
l ‖ al,t −

al,t−1 ‖, with al,t being the l-th clus-
ter centroid at the current iteration

We explore image analogies in the CLIP
space1 based on ImageNet [9], which con-
tains 1,000 image classes. Each class has
no more than 1,300 images in the training
set. On average, each class has 1,281.167
image samples. Over 1.6 billion possible
image pairs can be derived from this dataset,
which span a large pool of semantic shifts
where analogies can be discovered. Unless
otherwise stated, we employ the pretrained
ViT-B/16 [10] as the CLIP vision encoder,
which we keep frozen throughout the exper-
iments. In the phase of Image Encoding,
we encode the whole dataset into the CLIP
latent space, using one Quadro RTX 5000
device, which takes approximately one GPU

day to encode all image samples. We save the image representations for the fol-
lowing phase. In the phase of Analogy Discovery, we employ the off-the-shelf
minibatch k-means clustering algorithm implemented by the scikit-learn library
[28], which does not require any GPU device and runs only on CPU. We set the
number of clusters N to 256 and keep it fixed. The batch size of clustering is
1,048,576 and we run the clustering algorithm for 1,000 iterations, which takes
about 15.5 h. We set the reassignment ratio to 0.1, so that when a cluster con-
tains an overly small number of data points, it can be reassigned. This prevents
clusters from learning over-specific analogies which can be exemplified by very
few image pairs. The total change of clusters at each iteration (in terms of L2 dis-
tance) decreases sharply at early iterations and decreases smoothly afterwards
(Fig. 4), which shows that the proposed clustering-based strategy is conver-
gent. The cluster centroids gradually stabilise with more iterations. In practice,
we find that the clusters are able to capture meaningful analogies when the total
change of clusters in terms of L2 distance reaches 0.05 or below. In our experi-
ments, this figure reaches 5.2e-3 after 1,000 iterations. To enable the use of GPU
devices, we also implement an Exponential Moving Average (EMA) based clus-
tering module with Pytorch which shares the same idea of the mini-batch ver-
sion of k-means clustering. We provide details for this type of implementation
in Appendix.

1 The code is available at https://github.com/Sxing2/CLIP-Analogy.

https://github.com/Sxing2/CLIP-Analogy
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Table 1. Categorisation of analogies observed through our visualisation.

Broad Categories Types Definitions

Content-related Analogies

numerical change change in the numbers of the objects present in the image

addition/removal of concepts addition or removal of objects external to the class of interest

perspective shift a different perspective view of the object

environment shift a different environment of the object

condition shift change in the the object condition (e.g.from old to new)

Structure-related Analogies
superimposed text irrelevant text superimposed onto the image (e.g.watermarks)

background change change of background of the image

4.2 Discussion

In this section, we qualitatively analyse the analogies extracted with our pro-
posed strategy, and show that the CLIP space exhibits the ability of analogical
reasoning. We also show that our clustering-based strategy extracts meaning-
ful image analogies, which are interpretable by humans through a visualisation
into the clusters.

Visualization of Clusters. We sample a large number (131,072) of image
pairs (each belonging to the same class), compute their difference vectors and
assign them to the nearest clusters (in terms of cosine similarity) in the SΔ

space. We visualize each cluster by sampling and displaying the image pairs
assigned to it. These analogies are extracted in the latent space without any
supervision, and we observe that they cover a wide range of changes in differ-
ent semantics levels. In general, these analogies fall into two broad categories,
which are content-related and structure-related. Content-related analogies are
those semantic changes that lead to a high level of change in the image contents,
e.g., the number of objects present. Structure-related analogies are related to
the change of the relatively low-level structure of an image without affecting the
high-level semantics. We summarise the categorisation of the extracted analo-
gies in Table 1. A user survey with 8 human participants is conducted based
on this categorisation. We provide 24 questions, each containing five image pairs
from a cluster. Both the clusters and the image pairs are randomly sampled with-
out manual picking. The participants are given the definitions of each type of
analogies and their examples, and are asked to select from the type of analogies
identified in Table 1 that the five image pairs reflect. We also provide a choice
of ‘None of the Above’ in case the image pairs do not present any interpretable
analogy to the user. For each participant, we shuffle the order of the questions
and ask the participant to answer a portion of questions in the survey (instead
of setting all the questions as mandatory). A total of 154 answers are collected,
and only 11 of them (7.14%) are ‘None of the Above’. This shows that most
of the clusters are representative of changes in image semantics interpretable to
humans. The proportion of the selected analogy types is provided in Fig. 6a. We
give more details and question samples in Appendix.

Note that each type can include more than one specific analogy, and that
if an analogy is discovered, usually its reverse analogy is discovered by another
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Fig. 5. Visualizations of some representative analogies extracted from the CLIP space,
each captured by a cluster. For each cluster we show eight image pairs whose difference
vectors are assigned to it. The class name of each image pair is written on the top-left
corner of the first image. All the images are cropped to square sizes for better display.
Better zoomed in and viewed in colour.

cluster, as shown in Appendix. For instance, the type of ‘addition/removal of
concepts’ can include the analogies of adding a human adult, a human child or
an animal, etc., or removing these concepts. Apart from the results shown in Fig.
2 and Fig. 5, we display more such examples in Appendix for limited space. The
fact that the learned clusters are interpretable to humans shows that the CLIP
space possesses the ability of making analogies by vector arithmetic operations
on the image encodings, a property also found in well-established models in the
NLP community [2,12,27,29].

Among the content-related analogies discovered in the clusters, we also
observe analogies that require sophisticated reasoning. One such example is
given in Fig. 5f, where the cluster learns an analogy that transitions the cul-
tural context of the image. As can be seen in the first, second and seventh rows
(image pairs), the text on the object of interest in the source image (on the left)
is written in Latin letters, while it is changed into Asian scripts in the target
image (on the right). In the third image pair, both the text and the humans
present are changed into Asian, while the scene (street vendors looking after a
grocery store) is retained across two images. The image pairs in the sixth and
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Fig. 6. Statistics of the learned clusters.

eighth rows can also be explained the same way. In the fourth and fifth pairs, the
objects present in the source images are changed into their counterparts with
recognisable attributes in an Asian context. This indicates that high-level seman-
tics such as cultural context shifts is encoded by a subspace determined by this
extracted analogy vector in the CLIP space. Another interesting example that we
observe is the analogy of transitioning source images that contain written words
to clean text-free images. As can be seen in Fig. 5d, in the image pairs sampled
from the cluster, written words are clearly present in the source images, while
target images are free of visual text, with other semantic information in the image
unchanged (the object of the class of interest). The disentanglement of written
and visual concepts in the CLIP space [24,26] is an important research topic,
as CLIP is shown to be sensitive to typographic attacks [4,16]. This extracted
analogy implies that a hyperplane defined by this analogy vector may be helpful
in separating written and visual concepts. We also observe that the CLIP space
is able to differentiate written words that are part of the image itself and faint
written text superimposed onto the image such as watermarks, as our proposed
strategy discovers two clusters that deal with them separately (Fig. 5d and Fig.
5e). We discuss in detail more properties, e.g., magnitude, of the analogies in
Appendix.

4.3 Similarity of Discovered Analogies

In our experiments, we discover N = 256 clusters which ideally represent an
image analogy in the CLIP space. Intuitively, some analogies can reflect more
similar semantic changes. For example, analogies of ‘adding a human adult ’ and
‘adding a human child ’ are semantically similar, while some can be opposite if
they reflect reverse analogies. To analyse how the learned analogies relate to each
other, we compute their pairwise cosine similarity, as shown in Fig. 6b. It can be
seen that most analogies are almost orthogonal to each other, as reflected by the
light colour areas. Some analogies have positive or negative cosine similarity
with a larger magnitude. In Appendix, we visualize some of these analogies and
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show that these clusters indeed reflect semantically similar or reverse analogies,
respectively.

4.4 Effect of Number of Clusters

Fig. 7. Effect of the number of clusters.

We investigate the effect of the
number of clusters (N), which is
the most crucial influencing factor
in this work. We experiment with
32, 64, 128, 256, and 512 clusters,
and report the average cosine sim-
ilarity of 10 pairs of learned analo-
gies with the highest similarity, and
10 pairs of the lowest. The results
are reported in Fig. 7. It can be
seen that as N increases, the aver-
age (absolute) cosine similarity of
the 10 most similar (or dissimilar)
analogy pairs increases smoothly, which is in line with intuitions and indicates
better consistency between analogies. Empirically, we observe a trade-off between
generality and interpretability of the analogies, which can be controlled by N .
Specifically, a smaller N leads to more general analogies, but at a cost of their
interpretability to humans. For example, in our preliminary experiments, when
N is set to 32 and 64, the clusters include image pairs from more diverse classes
in our visualization, showing better generality across classes. However, they
are more difficult to interpret. As N continues to grow, the learned clusters
become increasingly interpretable. However, they are also more class-specific,
which may compromise generality. To show this trade-off, we randomly sample
1,048,576 (220) image pairs, assign them to the nearest clusters, and compute the
percentage of classes that the learned clusters cover. We report the average class
coverage of the learned clusters in Fig. 7. It shows that the coverage percentage
decreases as N increases, which is in line with our observation. We believe that
an optimal N is also dependent on the dataset to be explored. We find that 128
and 256 clusters achieve a reasonable trade-off on ImagNet. Additionally, there
is no significant difference in convergence time.

5 Limitations and Future Work

Although we show that CLIP space possesses the analogical ability as found in
other well-established models [27,29], and propose an effective way to extract
such image analogies in the latent space, there are some limitations.

Choice of Image Datasets. We look into some clusters that do not present
a clear interpretable analogy, and find that these clusters usually contain image
pairs with almost identical semantics. One example is provided in Fig. 8. Such
clusters can be interpreted as learning an identity analogy, which transitions
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the source image to a target image that is identical in semantics. We argue
that this is partly due to the fact that ImageNet contains many images that
are visually similar. Therefore, some clusters may learn a shortcut by capturing
analogies between these similar images when clustering is performed without
any constraint.

Fig. 8. A cluster with no clear inter-
pretable analogy, visualized by six image
pairs sampled from this cluster. All
images are cropped to square sizes.

This could be solved by preprocess-
ing the dataset and filtering out visually
similar images within each class. Addi-
tionally, exploring image analogies in
the CLIP space based on one annotated
dataset means that the learned analogies
are limited to this dataset. If an analogy
cannot be derived from the dataset, it
will not be discovered with our proposed
strategy. In the future, we will employ
our clustering-based analogy discovering
approach to other large-scale datasets. It
is also possible to employ our method to
explore general analogies on web-scale
image-text data without class annotations. To ensure that the analogies are
generlisable across visual concepts, i.e., they can be applied to an image to
change the semantics without altering the visual concept present, it is neces-
sary to first identify concepts in the data, and categorise the images based on
these concepts. A possible solution could be extracting concepts from the corre-
sponding texts by applying named entity recognition. An advantage of extracting
concepts from web-scale data over pre-defined classes of annotated datasets is
that more diverse analogies could be derived from unlimited visual concepts. We
leave this exploration as part of future work.

Assumptions. We propose to explore image analogies based on the parallel-
ogram assumption, which has been shown to be able to explain some analogies
in word embedding models [12]. Albeit intuitive, the parallelogram model has
recently been shown to be better at capturing some word relations than oth-
ers [8,21,30]. We believe that more advanced analogy models can be helpful in
explaining and learning analogies in the vector space.

Evaluation of Analogies. Just as studies in cognitive science are largely
dependent on human participants, in this work, we rely on human evalua-
tion to interpret the analogies captured by the clusters. Although in princi-
ple, humans should provide higher-quality evaluation than automatic metrics, it
can be labour-intensive. Furthermore, interpretability of the learned clusters to
humans does not necessarily relate to how the representations are interpreted in
the CLIP space. One potential direction in the future is to assess image analogies
in the CLIP space based on text that explicitly describes these semantic changes.
We note that a recently proposed task, termed set difference captioning [11],
can be combined seamlessly with our analogy discovery strategy. Specifically,
Dunlap et al. [11] propose to leverage multiple vision-language foundation mod-
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els compositionally, including BLIP-2 [25], GPT-4 [1], and CLIP [31], to generate
descriptions that best separate two sets of images. As part of future work, we
are interested in combining our work with this line of research to automatically
interpret and evaluate the learned clusters.

Future Research Directions. This work initiates an exploration into the
analogical reasoning abilities of the CLIP latent space. We believe that this work
is beneficial to a variety of research directions, which we summarise below: (1)
Our work can be employed to explore the latent space of other foundation models
and further advance understanding of the properties of these widely-deployed
models, which is currently understudied. (2) In this study, we find analogies
that represent high-level semantic changes, e.g., removal of written words and
condition shift as shown in Fig. 5d and Fig. 5f, respectively. Such high-level
analogies are beneficial to various research questions. For example, CLIP has
been shown to be sensitive to typographical attacks due to the entanglement
of visual and written concepts [4,16,26]. However, the analogy of removal of
written words shows that there exists a hyperplane in the latent space determined
by this analogy vector that may be helpful in separating written and visual
concepts. Likewise, analogies of condition shift can be employed to manipulate
given images to exhibit specific conditions. Therefore, one research direction in
the future is to employ these analogies to related tasks. (3) Our study can be
employed to enrich the semantics of an image. For example, given an image
at test time, it is possible to employ the learned analogies to transform the
semantics of the image without altering the object. This is especially beneficial
to scenarios where training data are scarce, e.g., in a few-shot learning setting.

6 Conclusion

In this work, we analyse the analogical reasoning ability of the CLIP space, which
has been found in word embedding models and the feature space of ConvNet
feature extractors. We show that CLIP indeed possesses the property of making
analogies with respect to the semantics of images, by using simple linear vector
arithmetic operations in the CLIP space. An effective clustering based strategy
is proposed to discover these general image analogies irrespective of their classes.
We show that most of the analogies captured by the clusters are interpretable
to humans through a visualisation experiment. To our best knowledge, no prior
research efforts have been devoted to exploring the ability of analogical reasoning
in the CLIP space. We hope that this work inspires future research in the under-
standing of CLIP representations and the exploration of human-like reasoning
abilities in the CLIP space.
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Abstract. In MMORPGs (Massively Multiplayer Online Role-Playing
Games), abnormal players (bots) using unauthorized automated pro-
grams to carry out pre-defined behaviors systematically and repeat-
edly are commonly observed. Bots usually engage in these activities to
gain in-game money, which they eventually trade for real money out-
side the game. Such abusive activities negatively impact the in-game
experiences of legitimate users since bots monopolize specific hunting
areas and obtain valuable items. Thus, detecting abnormal players is a
significant task for game companies. Motivated by the fact that bots
tend to behave collectively with similar in-game trajectories due to the
auto-programs, we developed BotTRep, a framework that comprises tra-
jectory representation learning followed by clustering using a completely
unlabeled in-game trajectory dataset. Our model aims to learn represen-
tations for in-game trajectory sequences so that players with contextually
similar trajectories have closer embeddings. Then, by applying DBSCAN
to these representations and visualizing the corresponding moving pat-
terns, our framework ultimately assists game masters in identifying and
banning bots.

Keywords: Gaming bot detection · Trajectory representation model

1 Introduction

In MMORPGs (Massively Multiplayer Online Role-Playing Games), player
activities naturally generate diverse patterns, similar to those in the real world.
They can undertake various tasks individually or with others. Furthermore, there
are groups within the game that carry out activities with malicious intent, as in
the real world. The collective behaviors of bots, which exhibit abnormal gaming
efficiency due to auto-programs, negatively impact the in-game experiences of
regular players. Bots not only monopolize many aspects of the game but also
participate in real money trading, which disrupts the in-game economy [8,12].

In this study, we introduce a framework for mining collectively-behaving
bots, one of the most prevalent forms of abuse in MMORPGs inspired by
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moving-together patterns in the real world [2,3,7,13,21,23,24,31]. However, the
collectively-behaving groups we aim to identify differ from real-world patterns
due to the unique behaviors of bots, such as automatic and sporadic actions
needed for purchasing potions, strategic hunting, and returning from dying.
Additionally, teleportation in MMORPGs complicates the detection of these
patterns, skewing results that traditional real-world methods might yield. Con-
sequently, our defined collectively-behaving clusters comprise groups of players
who not only engage in synchronized activities to optimize farming efficiency
but also display suspicious sporadic behaviors driven by situational demands.

Despite the crucial need for fast and accurate bot detection from a service
perspective, identifying these bots based on deep learning models is challenging
for several reasons: 1) Real-time labeling of the various trajectories observed in
new forms daily is difficult. 2) To establish sufficient evidence, observing whether
group movements occur for at least an entire day is necessary, resulting in long
sequences. 3) Furthermore, to ensure stable service operation, we must begin
monitoring at 9 AM the day after an update to reflect any newly added regions in
the game. This means that the training time must be within 9 h. 4) False positive
detections can bring a loss of trust from users and also cause legal issues (e.g.
lawsuit after falsely banning a benign user), and hence an effective methodology
for a comprehensive understanding of many users is required. Therefore, we
propose a framework to effectively address these industrial challenges, with our
contributions as follows:

– This framework mines collectively-behaving bots even without labels, propos-
ing a method for trajectory representation learning and DBSCAN [5].

– The model is designed for efficiency, allowing it to train on long datasets
covering an entire day in a shorter time compared to traditional models.

– An effective visualization methodology is proposed to quickly double-check if
the detected group activity patterns are genuinely collective, contributing to
more precise operations.

To demonstrate the performance and design validity of our model, we primarily
use actual gameplay data from Lineage W1, which is an MMORPG released by
NCSOFT in November 2021 and is ranked 1 in “Top Grossing Games Worldwide
for H1 2022” (Google Play Revenue)2.

We refer to the proposed model as “BotTRep,” which stands for a
Trajectory Representation model designed to mine Bots in the game world.

2 Background

2.1 Trajectory Data Mining for Real World Tasks

Related Works. There are various research fields and applications in tra-
jectory data mining [3,4,6,13,21,23–25,27–29,32,33]. Even though our research
1 https://lineagew.plaync.com.
2 https://sensortower.com/blog/app-revenue-and-downloads-1h-2022.

https://lineagew.plaync.com
https://sensortower.com/blog/app-revenue-and-downloads-1h-2022
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aligns closely with studies such as [13,21,24], we had to design a new mechanism
because our research objectives differ from those of trajectory mining in two key
aspects. Firstly, the collectively-behaving bots we aim to detect are not merely
groups with similar movement trajectories. While there may be subsets within
the collectively-behaving bots that have generally similar trajectories, the bots
we need to identify exhibit sporadic behaviors, such as some players replenish-
ing potions in the village or returning to the hunting ground after being killed.
Bots have diverse patterns of collective behaviors. Consequently, methods that
model representations based on Euclidean space, assuming that two trajectories
are similar if they are close in time and space, are fundamentally inappropriate
for MMORPGs. Moreover, the coordinate systems in MMORPGs are based on
a local coordinate system, making spatial features in Euclidean space incompat-
ible. These are elaborated in the following paragraph. Secondly, we needed to
focus not only on how to extract appropriate trajectory representations but
also on how to efficiently train on lengthy sequences. However, studies address-
ing real-world problems [13,21,24] primarily focus on solving issues related to
shorter sequences, without considering the challenges posed by longer sequences.

Data Compatibility Issues in Two Worlds. Several issues arise when apply-
ing representation learning proposed for real-world data to our task data. The
first problem is the existence of teleportation in MMORPGs. Teleportation, a
technique that allows for instant movement between two distant spaces, com-
pletely overturns our conventional understanding of “distance”. For instance,
players use teleportation to travel from the village to a hunting ground and
briefly return to the village to purchase potions during hunting. Thus, while the
distance between the village and the hunting ground may not be short, from the
perspective of actual behavior in context, they are relatively close. Figure 1 pro-
vides an example of a common trajectory challenge encountered in Lineage W.
In this scenario, entities (b) and (c) are collectively-behaving bots, with entity
(c) having died during hunting, revived in the village, and then automatically
returned to the hunting grounds. In contrast, entity (a) represents a player with
no affiliation to (b) and (c), whose path coincidentally overlaps with that of
(b) for a portion of their movement. In this context, the question arises regard-
ing which entity, (a) or (c), should have embeddings more closely aligned with
(b). Models based on spatial features would likely find the embeddings of (a)
and (b) more similar due to the physical proximity of their trajectories. How-
ever, considering the behavioral context of (b) and (c), their embeddings should
be closer. Considering this, we implemented our model by leveraging the con-
textual relationship between regions instead of Euclidean distance. Thus, in this
study, two different spaces frequently visited by the same player are considered
“close” contextually.

Secondly, the coordinate systems of the two worlds are different. For exam-
ple, consider two different continents on Earth. The coordinates between the
first and the second continents share a coordinate system similar to the con-
cept of a global coordinate system. However, the case is slightly different in
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MMORPGs. In MMORPGs, for the convenience of game design, some spaces are
implemented to have a local coordinate system. For instance, in Linage W,
many instance dungeons share the same coordinate range. That is, although
each instance dungeon is an independent space, their coordinate ranges overlap,
and players in different instance dungeons are recorded as they were in the same
space. This means that it is impossible to use the coordinate features defined
on the assumption of spatial proximity as suggested in [13,21,24] directly.

Fig. 1. Spatially, entities (a) and (b) are
in close proximity; however, if the over-
all context between (b) and (c) is simi-
lar, then the embeddings of (b) and (c)
should be closer.

Fig. 2. This figure represents the outcome
of binning applied to coordinate values
in Lineage W. We bin coordinate values
into zones and cells of different sizes and
embed them.

2.2 Bot Detection and Trajectory Mining for MMORPGs

Related Works. The mentioned works utilize various features for classifying
abnormal players, such as logs from player’s status (portrait), events, quests,
tradings, mouse clicks, and trajectory [1,12,15,16,19,20,30]. Amongst the works,
this study aimed at trajectory mining for bot detection in MMORPGs [1,15,19,
30]. These works focused on detecting bots using their in-game trajectories with
various approaches. For instance, [1,15] designed models to classify the bots from
benign players inspired by repetitive and regular observations generated by bots
with various in-game features, such as lingering, smoothness, detour route, and
turn angle. On the other hand, [19,30] utilized deep-learning-based approaches
to classify the players with suspicious trajectory patterns.

Notably, compared to the other related works, our framework puts emphasis
on providing explainable materials for game masters. For example, authors in
[1,15,19,30] focused only on constructing accurate models to classify bots and
benign players using their trajectories and other features. Consequently, their
features were preprocessed into an unexplainable form, which is suitable for deep
learning models but challenging for human beings to understand. Particularly,
the authors in [19,30] dynamically set the size of areas corresponding to each
trajectory token based on the frequency of visits to each region and utilized
preprocessed time information with diverse event types, such as finger touches or
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mouse clicks. These features showed respectable performances in downstream
tasks but were complicated for model explanation.

The Necessity of Explainability in Industrial Applications. The cur-
rent trend focuses on automation using deep learning, and some companies aim
to exclusively use deep learning models for automatically sanctioning abnormal
users. Most studies related to gaming bots have concentrated on how to detect
the bots with high accuracy. Their research is significant; however, in practical
industries, there is a persistent question not just about whether a specific player
group is bots, but why they are bots. When there is clear evidence, game mas-
ters can go ahead and ban the detected users with lower legal risk. Therefore, in
the context of bot detection, the interpretability of model results and the ability
to provide evidence are crucial. Especially in real world scenarios, if game mas-
ters mistakenly ban legitimate users, they can face legal repercussions, and the
company may set unfavorable precedents. Moreover, even if game masters have
properly sanctioned bots, failing to provide evidence for the reasons they were
classified as bots when the bots’ owners file a lawsuit also sets a bad precedent.
For this reason, we propose a framework that does not fully automate the process
but instead aids game masters in more efficiently detecting abnormal players.

3 Proposed Approach

3.1 Preliminary

Defining Areas. In this section, we introduce three geographical terms to
distinguish areas in the game world: continent, zone, and cell. A continent is the
largest area category, classified by whether players can move on foot or need to
use a portal or teleport. For example, islands and instance dungeons are treated
as separate continents. We define zones by dividing continents into multiple
areas, each sized at 256 by 256 coordinates, as shown in Fig. 2. Similarly, zones
contain several cells, each sized at 8 by 8 coordinates. In Lineage W, players
can move about 256 coordinates per minute. The main continent measures 2048
by 2048 coordinates, and there are over 100 continents, including islands and
instance dungeons, each sized between 256 by 256 and 512 by 512. When logging
location coordinates in the game, the unique continent ID where the player was
located at each timestamp and the detailed coordinates within that continent
are recorded.

Our model is trained by zone and cell tokens, which provide spatial informa-
tion. Zones offer abstract representations for larger areas, while cells provide spe-
cific details for smaller areas. Training the model with only zone tokens reduces
the out-of-vocabulary issue but hampers its ability to distinguish between differ-
ent trajectories. Conversely, training with only cell tokens allows discrimination
between trajectories but leads to the out-of-vocabulary problem and unstable
convergence in model training.
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We determined the appropriate criteria empirically during model design. We
recommend setting the width and height of a zone to be half the size of an
instance dungeon to prevent tokens from being overly abstracted. The width
and height of a cell should be approximately the range of a ranged character,
such as a mage or archer. This ensures that the movement of ranged characters,
as well as groups of both ranged and melee characters, can be detected more
precisely.

The Definition of Collectively-Behaving Bots. As outlined earlier, our goal
is to detect collectively behaving bots as accurately and extensively as possible.
The term “collectively-behaving bots” refers to groups of 4 or more players
exhibiting evidence of group activities throughout their session. Our proposed
framework is designed to identify such behavior clusters.

ContrastiveModel. Weproposeamodel fordetectingcollectively-behavingbots
using a contrastive approach. The model learns to make the representations of sim-
ilar trajectory inputs closer together while pushing the representation vectors of
dissimilar trajectory inputs further apart. The reasons for choosing a contrastive
model are clear. First, contrastive models yield more robust trajectory representa-
tions [26]. Second, the task requires faster training times. Existing models for real-
world problems [13,21,24] typically use autoencoder structures, which lack a direct
procedure for distinguishing similar and dissimilar sequence pairs. Additionally,
autoencodersareheavyandslowduetotheirencoder-decoderstructure.Whilecom-
plex autoencoder structures are suitable for tasks that require understanding pre-
cise relationships between tokens, our task prioritizes extracting appropriate rep-
resentations of trajectory sequences over token relationships. Thus, we propose a
lightweight contrastive model that ensures faster convergence and superior perfor-
mance specifically for this task.

3.2 Data Preparation

Training Dataset. The game logs we used in this work consist of coordi-
nates and timestamp logs sampled at one-minute intervals. This means that if a
user played the game for an entire day, we would sample 1,440 logs-one for each
minute of the day.3 As mentioned earlier, the game logs we aim to train on are
significantly lengthy. Consequently, instead of feeding the entire log sequence
into the model for training, we have preprocessed the structure of the input
data to ensure the model can effectively learn the relationships between contex-
tually close cells appearing in each sequence. To achieve this, we extract a data
point in the training dataset based on the following rules:

1. Collect data for all locations where players have visited on a daily basis.
2. Utilize the collected coordinates logs to generate tokens for zones and cells.

3 24 hours a day is 1,440 minutes.
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3. Construct a sequence using the generated zone and cell tokens, ensuring that
neighboring cells within the sequence are not identical, to include various
local information within a sequence.

4. Split the sequence into multiple data points, each with a length of 32.
5. Reorganize the preprocessed data with a length of 32 into triplet formats in

two modes: 1) odd-even split mode, which uses odd and even indexes, and
2) half split mode, which uses the first half and second half indexes. In each
mode, the anchor (A), positive (P), and negative samples (N ) will have a
length of 16 each.

6. Finally, masking is applied to the preprocessed anchor sequences from the pre-
vious step. The masking occurs with a probability of r (where r ∈ {0.2, 0.3})
for the sequence tokens.

Specifically, we preprocessed the training sequences to a length of 16 to ensure
the model effectively learns the differences between token sequences in each pos-
itive and negative sample. When constructing anchor, positive, and negative
samples based on two split modes, a longer input sequence would contain too
much regional information, causing the token types in positive and negative sam-
ples to become similar. Additionally, the similarity of the trajectories between
the anchor and positive samples would decrease, especially in the half-split mode.
Consequently, the model would struggle to clearly learn the differences between
positive and negative samples.

To express the process mathematically, we first define (Lp1) in equation (1)
as the raw coordinate location sequence of a specific player p1, where p1 ∈ P, and
P is the entire set of players. Here, {p1, .., pN} = P, and N is the number of
players. An element li (where li ∈ Lp1) is in the form of (x, y) coordinate pair
with continent ID (c): (l(x)i , l

(y)
i , l

(c)
i ). The continent ID addresses the design

issue of the local coordinate system, where two players located in different spaces
could be recorded as being at the same coordinates.

Lp1 =
{

(l(x)1 , l
(y)
1 , l

(c)
1 ), (l(x)2 , l

(y)
2 , l

(c)
2 ), .., (l(x)|Lp1 |, l

(y)
|Lp1 |, l

(c)
|Lp1 |)

}
=
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l1, l2, .., l|Lp1 |

}

(1)

Now, we generate a sequence for representation learning by selecting some
elements in Lp1 corresponding to the conditions in equation (2). Equation
(2) is included to ensure that diverse cell tokens are incorporated into a sin-
gle sequence. Then, we define Sp1 in (3) as entire lengths of preprocessed
binned sequences of p1. The elements of L

′p1 are binned into bins named zone
and cell by applying two functions: z(l

′
i) = (
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⌋
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}
(2)

Sp1 =
{
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′
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′
i)) | l
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i ∈ L

′p1 , i = 1, 2, .., |L′p1 |
}

(3)
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where Lp1 , L
′p1 , and Sp1 are ordered set.

Here, we rewrite elements of Sp1 as Sp1 = {(z(l
′
1), c(l

′
1)), (z(l

′
2), c(l

′
2)), ..,

(z(l
′

|L′p1 |), c(l
′

|L′p1 |))} = (s1, .., s|L′p1 |) for readability. Afterward, we split the
preprocessed Sp1 into j subsequences, each with a length of 32 in equation (4).

Sp1
j =(s(j−1)·32+1, s(j−1)·32+2, . . . , sj·32) where j is an integer, 1 ≤ j ≤

⌊
|L′p1 |

32

⌋

(4)

Through this process, we preprocessed the entire daily coordinate sequence
of a specific user into sequences of length 32 (Sp1

j ). This process is then
repeatedly applied to all users {p1, .., pN}. The result can be represented as
Dprep = {Sp1

1 , .., Sp1

�|L′p1 |/32�, .., S
pN

1 , .., SpN

�|L′pN |/32�} = {dprep
1 , .., dprep

M } where M

is the number of preprocessed data point. Afterward, we reorganize the elements
dprep

k (where dprep
k ∈ Dprep, 1 ≤ k ≤ M) into triplet formats (A, P, and N ) in

two modes as follows:

Odd-even split

A(o)
k =

{
si ∈ mskδ

r(d
prep
k )|i = 1, 3, .., 31

}

P(o)
k = {si ∈ dprep

k | i = 2, 4, .., 32}
N (o)

k = P(o)

k
′

k �=k
′

where k
′ ∼ U(1,M)

Half split

A(h)
k =

{
si ∈ mskδ

r(d
prep
k )|i = 1, .., 16

}

(5)

P(h)
k = {si ∈ dprep

k | i = 17, .., 32}
N (h)

k = P(h)

k
′

k �=k
′

where k
′ ∼ U(1,M)

where U(1,M) is a uniform distribution. That is, when constructing the negative
sample for index k, we composed the data by assigning the positive sample from
a different sample (where k �= k

′
) out of the total M data points. Next, mskδ

r(·)
is a function that applies masking to input tokens with a probability of r, where
r ∈ {0.2, 0.3}. The information about which token indices have been masked is
recorded in a set δ.

We repeat this process for entire data points (M) to create the training
dataset
(Dtrain). That is, Dtrain = {(A(o)

1 ,P(o)
1 ,N (o)

1 ), .., (A(o)
�M/2�,P

(o)
�M/2�,N

(o)
�M/2�), ..,

(A(h)
�M/2�+1,P

(h)
�M/2�+1,N

(h)
�M/2�+1), .., (A

(h)
M ,P(h)

M ,N (h)
M )} =

{
dtrain
1 , .., dtrain

M

}
.

Dataset for Downstream Tasks. Preprocessing the dataset for downstream
tasks is much simpler compared to generating the training data. For downstream
tasks, we utilize the raw trajectory sequence Lp1 right after applying binning
functions: T p1 = {(z(li), c(li)) | li ∈ Lp1 , i = 1, .., |Lp1 |}. This process is repeated
for all N players, and we notate this dataset as Dtraj = {T p1 , .., T pN }.
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3.3 Task-Specific Representation Model

BotTRep utilizes a contrastive structure based on the Transformer architecture
[11,22]. It is trained jointly using the triplet margin loss [17] and cross-entropy
loss for two tasks: contrastive learning and masked cell prediction, as shown in
Fig. 3. The following subsections provide a detailed explanation of the design
strategy and the two tasks.

Transformer-Based Contrastive Learning Task. In this part, we begin by
explaining the process of contrastive learning with a data point of zone and cell
sequences, such as Ai from (Ai,Pi,Ni) = dtrain

i where (dtrain
i ∈ Dtrain), as

described in Subsect. 3.2. Embedding modules, ez(·) and ec(·), map each zone
and cell token to d-dimensional vectors, and ej ∈ R

d where d ∈ {256, 512}.
The embedding matrix associated with a sequence, Ai = (s1, .., sj , .., s16), is ini-
tialized as Ei = (e1, .., ej .., e16) where ej = ez(sj) + ec(sj) + te(t + j) where
te(·) is a function for timestamp encoding and t is a random index between 1
and 1424, corresponding to minute indexes in a day. The timestamp encod-
ing has a similar concept as the positional encoding [22]. The timestamp
encoding is also a mapper generated by: te(j, 2m) = sin(j/100002m/d) and
te(j, 2m + 1) = cos(j/100002m/d). Here, we limit the last random index to 1424
because the length of our input sequence is 16, and the input value for te(·) must
not exceed 1440 because it indicates 1440 min a day. The reason that we input
randomly generated timestamp values is to make the model train from diverse
input for each epoch. We set the independent random timestamp for the anchor
and negative sample, and for the positive sample, we set the dependent times-
tamp values from the anchor’s timestamp. For example, if we define a uniform
random function as t ∼ U(a, b), and tA, tP , and tN as randomly generated
timestamps of the first index, we set tA ∼ U(1, 1424), tP ∼ tA + U(−16, 16),
and tN ∼ U(1, 1424), respectively. That is, the elements of Ai are finally initial-
ized as follows: ej = ez(sj) + ec(sj) + te(tA + j), and the same applies to Pi

and Ni.

Fig. 3. The left side of the figure depicts our Transformer-based model for the con-
trastive learning task (left) and its representation extractor (right), respectively. The
right side of the figure shows how the training for the MCP task is performed.
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Now, EA
i , EP

i , and EN
i are embedding matrices of anchor (A), positive (P),

and negative sequences (N ), respectively. In training, we modified the input by
changing the ratio of anchor to positive samples to 2:1, allowing the model to
learn from a wider variety of sequence combinations.

Then, embedding matrices (EA
i , EP

i , EN
i ) are input to the Transformer

encoder layer. For convenience, all these processes are denoted as follows:
FA

i = trm(EA
i ) where trm(·) is a Transformer encoder block, and FA

i rep-
resents the token-unit output of the anchor sequence produced by the model.
Here, the lengths of EA

i and FA
i are both 16. We set the dimensionality of the

inner-layer (dinner) to 1024–2048, depending on the embedding dimension. The
encoder block is composed of a stack of 8 identical layers in this work. Next,
the pooling layer calculates average pooling from the output of the Transformer
encoder block, FA

i , then, the linear layer receives the pooled vector and calcu-
lates the final output, RA

i = Linear(Pooling(FA
i )) where Linear(x) = xWT +b.

RA
i is an example of the output representation of anchor; the positive and neg-

ative samples’ outputs, RP
i and RN

i , are calculated in the same way. The loss
of our proposed model is obtained by the below function, named triplet margin
loss (6). This function minimizes the distance between an anchor and a positive
sample and maximizes the distance between an anchor and a negative sample.

L1(RA
i ,RP

i ,RN
i ) =

[∥∥f(RA
i ) − f(RP

i )
∥∥2

2
−

∥∥f(RA
i ) − f(RN

i )
∥∥2

2
+ β

]
(6)

Masked Cell Prediction (MCP) Task. In addition to the contrastive learn-
ing task, our model incorporates the masked language model (MLM) task pro-
posed in BERT [11] to refine the learning of cell tokens. However, we named
it the “masked cell prediction” (MCP) task in our model because the task is
no longer related to language models. To apply this, masking is performed on
the sequence data before model training, and this masking is only applied to
the anchor sequences, as shown in equation (5). In MCP, the problem involves
predicting what the token was before being masked in the anchor sequence that
has been masked during the preprocessing process.

Specifically, we apply the Linear(·) function to FA
i , returned by trm(·), for

training. Since the length of the sequences inputted into our model is 16, for
convenience, we denote this as FA

i = (fA
1 , .., fA

16). In the MCP task, among
these 16 extracted results, Linear(·) is applied to the tokens that had been
masked, and then the loss between the predicted results and the actual answers
is calculated using Cross Entropy Loss. The process can be formalized as follows:

ŷj = Linear(fA
j ) for each fA

j ∈ FA
i , where j ∈ δ (7)

where δ is the set we recorded masked indexes, and ŷj is the predicted output for
the j-th token in the sequence. The objective is to minimize the loss between the
predicted output ŷj and the true label yj for the tokens that were originally
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masked. The loss is calculated using Cross Entropy Loss:

L2(yj , ŷj) = −
C∑

k=1

yj,k log(ŷj,k) (8)

where yj is the true label for the j-th token, C is the number of classes (vocabu-
laries), and k is the index for each class, ranging from 1 to C. The summation is
performed over all tokens in the sequence that were masked. Ultimately, train-
ing is conducted by summing the losses calculated from the top two tasks and
then performing backpropagation: L = L1 + L2.

3.4 Extract Representation Vectors

Now, we can extract representations from user trajectories using our trained
model. We utilize the model that extracts user representations in Fig. 3. The
entire procedure is almost the same as the model train step, but the observed
timestamp values are added to each token instead of randomly generated val-
ues. We utilize timestamp encoding designed on a minute basis, as mentioned
previously. Afterward, we extract the daily trajectory of each player from the
games, and each data point is denoted as T pi , as mentioned before. The embed-
ding matrix associated with T pi is also initialized as E

Tpi
i = (e1, .., et) where

et = ez(z(lt)) + ec(c(lt)) + te(t) where t is timestamp index from 1 to 1440,
stands for the timestamp of tth location that the player has visited. Then, the
embedding matrix Ei is input to the trained model, and the model extracts
representations. To summarize, the simplified structure of our suggestion is
T ′pi = model(ETpi

i ) where model(·) is the proposed model, and the represen-

tations of the trajectories are notated in this way: Drep =
{

T ′p1 , T ′p2 , .., T ′pN

}
.

3.5 Clustering Collectively-Behaving Groups

Once we obtain representation vectors for the trajectories, we cluster them so
that players that have similar in-game trajectories and, hence, similar represen-
tations get grouped together. In particular, we use the DBSCAN [5]. An inter-
esting property of DBSCAN is that not all data points get assigned to a cluster.
That is, the algorithm classifies points that do not belong to any group as noise.
Such points generally correspond to benign players because they have peculiar
trajectories resulting from diverse preferences in play styles and are typically
not included in specific clusters. Hence, we decided to define all the clustered
groups (i.e. DBSCAN did not classify as noise) as collectively-behaving groups.
However, in order to utilize DBSCAN appropriately, optimization of parameters,
min samples and eps (ε), should be preceded. Here, we select min samples as
4 because we target suspicious groups with more than 4 players relying on our
industrial requirement. Afterward, we control ε by referring to the distances of
representation vectors of 4 closest neighbors from each data point, inspired by
[18]. Notably, we chose not to use a fixed ε value for DBSCAN. Instead, we
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adopted the methodology from [18] that selects ε values based on the density of
representation vectors. This is because the vectors we cluster are derived from
the deep learning model. Even when using the same data for training, the inher-
ent randomness in the learning process can result in representation vectors in
hidden space having different scales of distance and density among specific data
points. In other words, using a fixed ε value led to issues in maintaining con-
sistent quality when detecting collectively-behaving bots based on the model’s
output vectors.

Figure 4 explains how we choose the ε value in the clustering process, and
the clusters that result from it. Firstly, the leftmost image shows the criterion
for selecting ε as proposed in [18] (a), and the criterion we used in this work (b).
[18] suggests drawing a plot of distance and then using the distance at the elbow
point of the curve as the ε value. However, applying the value from (a) to our
data led to the phenomenon of clustering together trajectories that are relatively
dissimilar, as shown in the second plot in Fig. 4. Consequently, we searched for
a new criterion (b) suitable for our data and are utilizing this value as the ε for
DBSCAN. Precisely, we extract the distances between each data point and their
4 nearest data points. Afterward, we select a distance value of 0.05–0.20 quantile
(q) from the extracted distances by K-NN. For example, ε = quantile0.05(dist)
where quantileq(·) is a quantile function that returns q quantile from input data,
and dist = 4 − NNdist(Drep) where 4 − NNdist(·) is a k − NN algorithm where
k = 4 and returns distances between the 4 closest neighbors from each data
point.

Fig. 4. The first image shows a comparison between the ε selection criterion proposed
by [18] (a) and our optimized criterion (b). The thrid image illustrates clustering results
using criterion (b), visualized with t-SNE [14] for dimension reduction, excluding noise
clusters.

4 Experiments

4.1 Dataset : Lineage W

We train and evaluate our proposed model with two different datasets: 1) a
preprocessed dataset for model training, and 2) a real-world gaming trajectory
dataset for the downstream task. The first dataset includes 778,656 samples of
preprocessed trajectories collected for 8 d on July 1st-8th, 2023. When train-
ing, we performed parallel computing on 8 NVIDIA A40 GPUs. We have config-
ured the model to be trained for at least 70 epochs and terminated based on early
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stopping criteria with patience of 8 epochs. The training time was approximately
6–12 minutes per epoch, depending on the parameters. The second dataset con-
tains 26,136 player trajectories collected for 7 d on July 9th-15st, 2023. Tables 1
and 2 present the experimental results for the second dataset.

4.2 Evaluation Methods

Contextual Similarity. In this work, we evaluate the similarity in representa-
tion between two pairs: collectively-behaving pairs and random pairs, which we
call positive and negative pairs, respectively. In this step, we prepared the
experimental environment by collecting daily trajectory sequences from all play-
ers in a game world and extracting their representations. Subsequently, we
generated positive and negative groups based on their representations using
DBSCAN. Then, we excluded noise-labeled data determined by the DBSCAN
algorithm. We then selected positive and negative pairs based on the cluster
labels in this way:

pos =
{

(T pi , T pj ) | i = 1, .., N, j ∈ ξ(T ′pi)
}

(9)

neg =
{

(T pi , T pj ) | i = 1, .., N, j /∈ ξ(T ′pi)
}

(10)

where ξ(·) is a function that returns the closest index from neighboring players
within the cluster containing each input player.

After composing experimental data pairs in the above way, we measure the
contextual similarity between their trajectories using a metric named time-aware
Jaccard similarity. In this study, we design time-aware Jaccard similarity to check
whether the pair of trajectories have similarities over time. We calculate Jaccard
similarity [9,10] by a 30-minute subset of each trajectory using 1440 range of
minute indexes (t). This metric returns the overall similarity by averaging every
30-minute subsets between two trajectories with 15-minute shifts. The similarity
scores from this metric can be interpreted as a measure of how contextually close
two different users were in terms of their locations at approximately the same
moments. Trajectory pairs with similar travel routes exhibit high similarity val-
ues. Contextual similarity is calculated at the cell level and is defined as follows:

1
|T |

∑
Jt(T pi , T pj ) where t ∈ {1, 16, 31, .., 1411} = T

and Jt(T pi , T pj ) =
|{trpi

t , .., trpi

t+29} ∩ {trpj

t , .., tr
pj

t+29}|
|{trpi

t , .., trpi

t+29} ∪ {trpj

t , .., tr
pj

t+29}|
(11)

Access Information Homogeneity. The another metric is designed to verify
whether there is indeed the same abuser behind the clusters mined as collectively-
behaving groups. In addition to user trajectory data, our dataset records access
information data for each user, such as the IP and device-sharing network men-
tioned in [20]. This metric aims to determine whether their access information
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actually belongs to the same person. In other words, if the access information
of players mined as collectively-behaving groups is identical, it signifies that
they are indeed real collectively-behaving bots controlled by the same user.
The specific calculation method is as follows: 1

|C|
∑

cid∈C acc info(cid), where
C represents all clusters excluding a noise cluster, that is, the entire collectively-
behaving groups we have mined. cid denotes each collectively-behaving group.
acc info(·) is a function that takes a collectively-behaving group as input and
returns the number of different access information points possessed by play-
ers in that cluster. For instance, if there are 4 players within a certain cluster
and their access information is interconnected, 1 is returned. However, if, upon
checking the access information of the 4 players, it is found that 3 of their access
information points are interconnected, but one is different, then they form 2
groups, and thus 2 is returned. That is, bots controlled by the same owner have
identical access information, resulting in low access information homogeneity val-
ues. In contrast, legitimate users who operate one avatar at a time have different
access information, resulting in high access information homogeneity values.

4.3 Ablation Study

This section summarizes the ablation study results for the proposed method. We
experimented by altering the model’s key parameters. Additionally, we highlight
the benefits of incorporating both zone and cell tokens and the Masked Cell
Prediction (MCP) technique, assessing their impact on model performance.

To validate this, we varied parameters and documented the outcomes in
experiment type (a). We compared models trained on cell inputs alone versus
those trained on both zone and cell inputs, and examined the effects of incor-
porating MCP, with results under experiment type (b). In experiment type (c),
we adjusted the clustering parameter q to observe its impact on our model and
DBSCAN’s performance. As q increases, contextual similarity and homogene-
ity of access information decrease due to less homogeneous clusters. A larger q
adopts a more lenient criterion for detecting suspicious players, while a smaller
q is preferred for higher precision.

Experimental Results. Our proposed setting for BotTRep is shown at the
top of Table 1 (†). This model showed the best performance from the perspec-
tive of contextual similarity when we conducted additional experiments adjust-
ing d model, d hid, β, and MCP ratio based on this model; the model generally
exhibited higher performances in experiment type (a). In experiment type (b),
we conducted experiments by removing zone embedding and MCP one at a time
from †, and a slight decrease in performance was observed in both cases regarding
contextual similarity. Lastly, the results from experiment type (c) showed that
as clustering ε quantile (q) increased, contextual similarity and access informa-
tion all decreased. As q increases, one can observe which clusters are included
in the suspicious clusters. For example, Fig. 5 on the far right shows a sample of
players included in the noise cluster. Their trajectories generally do not display
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a pattern; however, there are exceptions, such as case (a) in Fig. 5. If we were to
set the DBSCAN’s ε value higher, groups similar to (a) might be included in the
collectively-behaving group. To provide additional context for the metrics, the
detected bots exemplified in (https://youtu.be/bsFXvFBVYak) show an aver-
age time-aware Jaccard similarity of around 0.3 across all pairs and an access
information homogeneity of 1.0.

Table 1. The results of the ablation study are shown below, with the best performance
highlighted in bold. The dataset contains 26,136 data points.

Exp Model params clustering Detecting Contextual Acc

typesd model d hid β zone MCPε quant. (q) count pos neg info

† 256 1024 0.5 True 0.2 0.05 928 0.3625 0.0005 1.0079

256 1024 0.5 True 0.3 0.05 921 0.3596 0.0005 1.0444

(a) 256 1024 1.0 True 0.2 0.05 976 0.3552 0.00031.0079

512 2048 0.5 True 0.2 0.05 963 0.3560 0.0003 1.0697

256 1024 0.5 True 0.0 0.05 918 0.3208 0.0006 1.0787

(b) 256 1024 0.5False 0.2 0.05 917 0.3472 0.0005 1.0551

256 1024 0.5False 0.0 0.05 930 0.3183 0.0006 1.1307

256 1024 0.5 True 0.2 0.10 1932 0.3203 0.0006 1.0787

(c) 256 1024 0.5 True 0.2 0.15 3031 0.2931 0.0006 1.1094

256 1024 0.5 True 0.2 0.20 4109 0.2732 0.0009 1.1363

4.4 Baseline Models

In this study, we deliberated on selecting the most appropriate baseline model
due to the lack of precedent representation models applied to tasks similar to
ours. To compare and validate the performance of our model, we prepared
three types of baseline models, as described below. These models employ the
encoder-decoder structure most commonly used for sequence data representa-
tion, with internal layers implemented in three variants using Bi-GRU, Bi-LSTM
and Transformer blocks. We compared our model to autoencoder-based models
because they are commonly used for extracting sequence representations. Pre-
vious trajectory representation models proposed for GPS data using proxim-
ity features in the real world [13,21,24] have also used autoencoders. For the
dataset, we trained and inferred directly using the data for downstream tasks
(Dtraj) without additional preprocessing steps, such as checking if adjacent cells
are identical. This decision was made because such preprocessing significantly
slowed the model’s convergence, leading to poor performance within the time
constraints of our requirements.

When preparing these models, we set d model to 256 to enable a comparison
with our model under similar specifications. When extracting representations,

https://youtu.be/bsFXvFBVYak
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we applied mean pooling after the input data passed through the encoder block
because it achieved the best performance compared to CLS and max pooling.

Experimental Results. Table 2 describes the outcomes of the baseline exper-
iments. Results from these experiments revealed that the Transformer signifi-
cantly outperforms Bi-GRU and Bi-LSTM. The Transformer’s results in a con-
textual similarity of 0.29, slightly lower than our model, while the homogeneity
of access information stands at 1.79, indicating a somewhat higher figure com-
pared to our proposal. This suggests the inclusion of benign players within the
collectively-behaving groups. Transformer could not properly distinguish the two
trajectories active in the same area but at different times. From the perspec-
tives of contextual similarity and homogeneity of access information, BotTRep,
with our proposed setting (†) was found to have the highest performance. This
indicates that the access information of all players within a cluster is related,
signifying our model has effectively detected the bot groups we aimed to identify
with high accuracy. Furthermore, BotTRep completed training in about 8 h and
30 min, achieving over 70 epochs, while the other two models failed to surpass
its performance even after over 24 h of training.

Table 2. BotTRep showed superior performance in contextual similarity and access
information. The downstream dataset contains 26,136 data points.

Models Detecting Contextual Acc info Training Minutes

count pos neg time (per epoch)

Bi-GRU 926 0.2157 0.0006 1.8886 24+ hours 20–21

Bi-LSTM 1,064 0.1716 0.0006 3.0315 24+ hours 20–21

Transformer 970 0.2921 0.0002 1.7855 24+ hours 25–27

BotTRep (†) 928 0.3625 0.0005 1.0079 8.5 h 6–7

4.5 Trajectory Visualization

This work is designed to surveil collectively-behaving groups, supposed to be
bots, throughout the continents using their trajectory data and visualize how
much their trajectories are similar to each other. The heatmap, designed to show
similar colors when players exist contextually close to each other, is used to
visualize whether the suspicious players appear together. The heatmap’s x-axis
represents timestamps, and the y-axis represents player indices. The color, in
RGB format, indicates the player’s location at a specific timestamp. That is, we
construct a 3-dimensional vector that somehow represents spatial information,
and then visualize it as RGB coloring. Specifically, we generate colormaps as
(continent lv, x, y), where continent lv reflects average player levels in each
continent. This addition represents semantic relationships between continents.
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Regarding game geography, hunting grounds suitable for each level are located
in an adjacency to guide players in growing their avatars with less confusion.
Note that if the player was not logged in the game at a particular timestamp,
we color the corresponding spot as white.

Finally, we present a visualization of player location over time in Fig. 5. The
right-most plot corresponds to the points such that DBSCAN labeled as noise:
i.e. those that we consider benign users. We can see that these users tend to have
their own distinct trajectories, indicating that they are indeed not collectively-
behaving bots. On the other hand, the three plots on the left show the results for
trajectories where DBSCAN assigned a cluster. Each red horizontal line indicates
the separation of clusters. Recall that players located closer to each other will
exhibit similar colors in the heatmap. Clearly, we can see that players in the same
cluster tend to have similar sequences of colors throughout the entire timeline
(x-axis). That is, they collectively move across multiple areas or collectively log
in/log out, both simultaneously and in order. This pattern is a typical charac-
teristic observed in collectively-behaving bots that we have targeted: this arises
due to multiple avatars being controlled simultaneously by automated programs
connected to the same network environment. Thus, our framework that consists
of trajectory embedding and clustering identifies suspicious clusters where the
corresponding players move collectively.

Fig. 5. This image shows player locations over time based on clustering results. The
x-axis represents time in minutes, the y-axis indicates individual players, and colors
correspond to players’ location at each time point. Red lines in the heatmap separate
clusters, with similar colors denoting proximity of player locations.
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5 Conclusion

We proposed a novel framework that uses a trajectory representation model
trained jointly on contrastive learning and masked cell prediction tasks, so
that similar contextual in-game movements obtain closer representations. Then,
we used DBSCAN to identify collectively-behaving groups and introduced a
visualization method that explains their in-game trajectories. Our framework
meets the industrial needs for clear explainability and can assist game masters
by providing clustered users who are suspicious to be collectively-behaving bots.
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Abstract. We derive a set of causal deep neural networks whose archi-
tectures are a consequence of tensor (multilinear) factor analysis, which
facilitates forward and inverse causal inference. Forward causal questions
are addressed with a neural network architecture composed of causal cap-
sules and a tensor transformer. Causal capsules compute a set of invariant
causal factor representations, whose interaction are governed by a ten-
sor transformation. Inverse causal questions are addressed with a neural
network that implements the multilinear projection. The architecture
reverses the order of the operations of a forward neural network and esti-
mates the causes of effects. As an alternative to aggressive bottleneck
dimension reduction or regularized regression that may camouflage an
inherently underdetermined inverse problem, we prescribe modeling dif-
ferent aspects of the mechanism of data formation with piecewise tensor
models whose multilinear projections produce multiple candidate solu-
tions. Our forward and inverse question may be addressed with shallow
architectures, but for computationally scalable solutions, we derive a set
of deep neural networks by taking advantage of block algebra. An inter-
leaved kernel hierarchy implements a hierarchy of kernel tensor factor
models. The resulting causal neural networks are data agnostic, but illus-
trated with facial images. Computational approach has been prescribed
for asynchronous parallel computation.

Keywords: factor analysis · explanatory · latent variables ·
causality · tensor algebra · deep learning · generative · discriminant

1 Introduction

Neural networks are being employed increasingly in high-stakes application
areas, such as face recognition [14,32,63,64,87], and medical diagnosis [39,48,67].
Developing neural networks that offer causal explanations for correct results or
failures is crucial for establishing trustworthy artificial intelligence.1

1 Causal explanations specify the causes, the mechanism, and the conditions for repli-
cating an observed effect [23,45,46,86]. Quantitatively, causality is the direct rela-
tionship between two events, A and B, where “A causes B” means “the effect of A
is B”, a measurable and experimentally repeatable phenomena. Once verified with
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The validity and robustness of causal explanations depend on causal model
specifications in conjunction with the experimental designs used for acquiring
training data [57]. Prior generative artificial intelligence research conducted by
the Bengio and Hinton teams [7,20,50,65] focused on unsupervised deep learning,
which is not well-suited for drawing causal conclusions. They briefly addressed
the connection to causal tensor factor analysis [76,79] which models the causal
mechanisms that generates data, computes invariant causal representations, and
estimates both the effects of causes and the causes of effect given constraints on
the solution set [72].

We derive a set of causal deep neural networks that are a consequence of
causal tensor factor analysis, Figs. 1-5. Tensor factor analysis is a transparent
framework for both forward [76,78] and inverse causal inference [72,80].2

Forward causal inference is a hypothesis-driven process, as opposed to a data-
driven process, that models the mechanism of data formation and estimates
the effects of interventions [35,54,62,74]. This is in contrast to conventional
statistics and machine learning, which model data distributions, predict one
variable co-observed with another, or perform time series forecasting. Inverse
causal “inference” estimates the causes of effects given an estimated forward
model and constraints on the solution set [25,72].

1.1 Causal Inference Versus Regression

Neural networks and tensor factorization methods may perform causal infer-
ence, or simply perform regression from which no causal conclusions are drawn.
For causal inference, model specifications and experimental design for acquiring
training data trump analysis [57], Fig. 2.

Causal tensor factor analysis was employed in the analysis and recogni-
tion of facial identities [74,76], facial expressions [33], human motion signa-
tures [17,31,69], and 3D sound [26]. It was employed in the transfer of facial
expressions [83], and the rendering of arbitrary scenes, views and illumina-
tions [78], etc.. Tensor factor analysis was also employed in psychometrics
[8,13,27,43,68], econometrics [38,49], chemometrics [10], and signal process-
ing [18]. Simple tensor regression and decompositions which do not draw causal
conclusions, leveraged row, column and fiber redundancies to estimate miss-
ing data [15] and to perform rank reduction [89] [11,84] [6,30,37]. Recently,
tensor dimensionality reduction and contractions (i.e., mode-m product) have
been employed in machine learning to reduce neural network parameters. Net-
work parameters are organized into “data tensors”, and dimensionally reduced
[40,41,44,51] [42,53] or efficiently contracted [21].

either experimental or observational studies, the statement “the effect of A is B”
stays true regardless of new discoveries and changes in knowledge [29]. By compari-
son, interpretations are an understanding relative to a reference frame or a point of
view. As new knowledge emerges, interpretations may be deemed to be inaccurate
or invalid, which can undermine their reliability and usefulness in the development
of trustworthy artificial intelligence. Interpretations are subject to reinterpretation.

2 TensorFaces is a gentle introduction to causal tensor factor analysis [76,79].
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1.2 Causal Neural Networks

Causal neural networks are composed of causal capsules and tensor transformers,
Fig. 1. Causal capsules estimate the latent variables that represent the causal
factors of data formation, and a tensor transformer governs their interaction.

Fig. 1. A forward causal neural network is composed of a set of causal capsules and
a tensor transformer. During training, causal capsules compute invariant causal factor
representations, ûim , and the tensor transformer computes the extended core, T , which
governs their interaction. A tensor decoder with an estimated T[X], is a generative
model that computes the effects of new interventions. For scalable computation, each
shallow autoencoder-decoder is replaced by a mathematically equivalent deep network,
Fig. 3. In practice, images are vectorized and centered.



Causal Deep Learning 423

Causal capsules may be shallow autoencoder-decoder architectures that employ
linear neurons and compute a set of invariant representations [1,52,58,59,61], as
detailed in SupplementalA. The tensor transformer may be a tensor autoencoder-
decoder, a shallow autoencoder-decoder whose code is the tensor product of the
latent variables.

Fig. 2. Same data, same algorithm, but two different model specifications (problem
setups). (a) Causal Inference: The M -mode SVD (Alg. 1) factorizes a “data tensor” of
vectorized observations into a set of latent variables that represent the causal factors.
(b) Simple regression: The M -mode SVD factorizes a “data tensor” composed of images
as a “data matrix” into a column and row space, as well as into normalized PCA
coefficients. (Images are vectorized except in Fig. 2b.)

Causal deep neural networks are composed by stacking autoencoders-decoders.
Each autoencoder-decoder in a shallow causal neural network is replaced by math-
ematically equivalent deep neural network architectures that are derived by taking
advantage of block algebra. An interleaved hierarchy of kernel functions [60] serves
as a pre-processor that warps the data manifold for optimal tensor factor analysis.

https://arxiv.org/pdf/2301.00314
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Algorithm 1 M -mode SVD (parallel computation)[76,77]
Input D ∈ C

I0×···×IM , dimensions R0, R1 . . . Rm . . . RM

1. Initialize Um := I or random matrix, 0 ≤ m ≤ M
2. Iterate until convergence

For m := 0, . . . , M ,

•X := D ×0 UT
0 × · · · ×m-1 UT

m-1 ×m+1 UT
m+1 · · · × UT

M

•Set Um to the R̃m leading left-singular vectors of the SVD of X[m] or SVD of
[X[m]X

T
[m]].

a, b

3. Set Z := D ×0 UT
0 · · · ×m UT

m · · · ×M UT
M := X × UT

M
c

Output mode matrices U0,U1, . . . ,UM and core tensor Z.

a The computation of Um in the SVD X[m] = UmΣVT
m can be performed efficiently,

depending on which dimension of X[m] is smaller, by decomposing either X[m]X
T
[m] =

UmΣ2UT
m (note that VT

m = Σ+UT
mX[m]) or by decomposing XT

[m]X[m] = VmΣ2VT
m

and then computing Um = X[m]VmΣ+.
b For a neural network implementation, the SVD of X[m] is replaced with an autoen-

coder that sequentially computes the orthonormal columns of Um/Vn by performing
gradient descent with the learning parameter η or stochastic gradient descent [9][56].
In Fig. 1, the autoencoders compute the columns of Vm, where vm,r is the rþ column
and it represents the weights of the rþ neuron. Matrix Vm,r contains the first r columns
of Vm.

A
u
to

en
co

d
er

︷
︸
︸

︷

For r := 1 . . . Rm.
Iterate until convergence

Δvm,r(t+1) = η
(

X[m] − Vm,r-1(t)V
T
m,r-1(t)X[m]

)

XT
[m]vm,r(t)

︸ ︷︷ ︸

code

v̂m,r(t+1) =
(vm,r(t) + Δvm,r(t+1))

‖vm,r(t) + Δvm,r(t+1)‖
c The columns in Z[0] may be computed by initializing the code of an autoencoder to

(UM · · · ⊗ Um · · · ⊗ U0), where ⊗ is the Kronecker product. In Fig. 1, the columns
of the extended core T are computed by initializing the code of the autoencoder
with (UM · · · ⊗ Um · · · ⊗ U1)

T for batch training, and (ûT
iM · · · ⊗ ûT

im . . . ûT
i1)

T when
training one observation, di1,...,iM , at a time.

A part-based deep neural network mirrors a part-based hierarchy of tensor factor
models [73,74][71, Sec 4.4], Supplemental C.3

Inverse causal neural networks implement the multilinear projection algorithm
to estimate the causes of effects [72,80]. A neural network that addresses an under-
determined inverseproblem is characterizedbyawidehidden layer.Dimensionality
reduction removes noise and nuisance variables [28,66], and has the added benefit
of reducing the widths of hidden layers. However, aggressive bottleneck dimension-
3 There have been a number of related transformer architectures engineered and empir-

ically tested with success [22,47,85].

https://arxiv.org/pdf/2301.00314
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ality reductionmay camouflage an inherently ill-posed problem.Alternatively or in
addition to dimensionality reduction and regularized regression,we prescribemod-
eling different aspects of the data formation process with piecewise tensor (multi-
linear) models that return a set of candidate solutions [75]. Candidate solutions
are gated to yield the most likely solution.

2 ForwardCausal Question: “What If?”

Forward causal inference is a hypothesis-driven process that addresses the “what
if” question. What if A is changed by one unit, what is the expected change in B?
Causal hypotheses drive both the model specification and the experimental design
for acquiring or generating training data.

TrainingData:Formodeling unit level effects of causes, the training data is gen-
erated by combinatorially varying each causal factor while holding the other fac-
tors fixed. The best causal evidence comes from randomized experimental studies.
When randomized experiments for generating training data are unethical or infea-
sible, experimental studies may be approximated with carefully designed obser-
vational studies [57], such as natural experiments [2,12,36] or by employing the
concept of transportability where learned causal effects from a set of experimen-
tal and observational studies are transferred to a new population, in which only
observational studies can be conducted [55].4

2.1 Tensor Factor Analysis Model

Within the tensor mathematical framework (Supplemental SectionB) a “data ten-
sor,” D ∈ C

I0×I1···×Im···×IM , contains a collection of vectorized5 and centered
observations, di1...im...iM ∈ C

I0 that are the result of M causal factors. Causal fac-
torm (1 ≤ m ≤ M) takes one of Im values that are indexed by im, 1 ≤ im ≤ Im. An
observation and a data tensor may be modeled by a multilinear (tensor) principal
component analysis (MPCA) equation

D = T ×1 U1 · · · × Um ×M UM + E , (1)
di1,...,iM = T ×1 (ûT

i1 + εTi1) · · · ×M (ûT
iM + εTiM) + ξi1,...,iM ,

where T is the extended core that contains the basis vectors and governs the inter-
action between the latent variables ûT

im
(row vector im of Um), that represent the

causal factors of data formation, εim ∈ N (0,Σm) are disturbances with Gaussian

4 Datasheets for datasets, as proposedbyGebru et al. [24],mayhelp facilitate the approx-
imation of experimental studies.

5 It is preferable to vectorize an image and treat it as a single observation rather than as
a collection of independent column/row observations. Most assertions found in highly
cited publications in favor of treating an image as a “data matrix” or “tensor” do not
stand up to analytical scrutiny [71, App. A].

https://arxiv.org/pdf/2301.00314
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distribution, and ξi1,...,iM is a Gaussian measurement error. Minimizing the cost
function

L = ‖D − T ×1 U1... ×m Um... ×M UM‖ +
M∑

m=1

λm‖UT
m ×1 Um − I‖ (2)

is equivalent tomaximumlikelihoodestimation [19] of the causal factorparameters,
assuming the data was generated by the model with additive Gaussian noise. The
mode matrices Um are computed by employing a set of M alternating least squares
optimizations,

Lm = ‖Xm − T ×m Um‖ + λm‖UT
m ×1 Um − I‖, (3)

where

Xm := D ×1 ... ×m-1 UT
m-1 ×m+1 UT

m+1... ×M UT
M - parallel computation (4)

= Xm(t−1) ×n UT
n (t)Un(t−1), ∀n �= m, - asynchronous parallel computation (5)

= (Xm-1 ×m-1 UT
m-1) ×m Um - sequential computation (6)

= T ×m Um (7)

The M -mode SVD [76] (Alg. 1) minimizes the M alternating least squares (3) in
closed form by employing M different SVDs. The approach is suitable for parallel
(4), asynchronous (5), or sequential (6) computation. The extended core tensor T
is computed by multiplying the data tensor with the inverse mode matrices, T =
D ×1 UT1 · · · ×m UT

m · · · ×M UT
M, or more efficiently as T = Xm × UT

m.

2.2 Kernel Tensor Factor Analysis Model

When data D are a tensor combination φ(T ) of non-linear independent causal fac-
tors φm(Cm). Kernel multilinear independent component analysis (K-MICA) [71,
Ch 4.4] employs the “kernel trick” [60,82] as a pre-processing step which makes the
data suitable for multilinear independent component analysis [79] (Alg. 2),

D = T ×1 C1 · · · × Cm · · · ×M CM + E (8)
Cm = UmW−1+ Em,

based on negentropy, mutual information, or higher-order cumulants. K-
MPCA is a tensor generalization of the kernel PCA [60] and K-MICA is a tensor
generalization of kernel ICA [3,88].

To accomplish this
analysis, recall that the computation of covariance matrix D[m]DT

[m] involves inner
products dT

i1...im-1 j im+1...iM
di2...im-1 k im+1...iM

between pairs of data points in the
data tensor D associated with causal factor mode m, for m = 1, . . . , M (Step 2.2
in Algorithm 1). We replace the inner products with a generalized distance mea-
sure between images, K(di1...im−1 j im+1...iM ,di2...im−1 k im+1...iM), where K(·, ·) is
a suitable kernel function (Table 1) that corresponds to an inner product in some
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Algorithm 2. Kernel Tensor Factor Analysis [71, Sec 4.4][79]
Kernel Multilinear Independent Component Analysis (K-MICA) and
Kernel Principal Component Analysis (K-MPCA).
Input the data tensor D ∈ C

I0×···×IM , where mode m = 0 is the measurement mode,
and the desired ranks are R̃1, . . . , R̃M .
Initialize Cm = I, ∀0 ≤ m ≤ M
Iterate until convergence.

1. For m := 1, . . . , M

(a) Set Xm := D ×1 C+
1 · · · ×m−1 C+

m−1 ×m+1 C+
m+1 · · · ×M C+

M .
(b) Compute the elements of the mode-m covariance matrix using kernel functions,

Table1, for j, k := 1, . . . , Im:

[
Xm[m]X

T
[m]

]
jk

:=
I1∑

i1=1
...

Im−1∑

im-1=1

Im+1∑

im+1=1
...

IM∑

iM=1

K(xi1...im-1 j im+1...iM
, xi1...im-1 k im+1...iM

).

(9)

(c) a

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

For K-MPCA: Set Cm := U, the left matrix of the SVD of
[
X[m]X

T
[m]

]
from (9)

Truncate to R̃m columns Um ∈ C
Im×R̃m .

For K-MICA: Set Cm := UmW
−1
m . The additional rotation matrix Wm may be

computed based on negentropy, mutual information, or higher-
order cumulants [79]. The initial SVD of

[
X[m]X[m]

]T from (9)
truncates the subspace to R̃m.

2. Set T := XM ×M C+
M . For K-MPCA, C

+
M = CT

M.

Output the converged extended core tensor T ∈ C
I0×R̃1×···×R̃M and causal factor mode

matrices C1, . . . ,CM .

a Every SVD step may be autoencoder-decoder. See Algorithm 1, Footnotes a and b.
See Fig. 3 for a scalable neural network implementation.

expanded feature space.This generalizationnaturally leads us to aKernelMultilin-
ear PCA (K-MPCA) Algorithm, where the covariance computation is replaced by

[
D[m]DT

[m]

]
jk

:=
I1∑

i1=1

· · ·
Im−1∑

im−1=1

Im+1∑

im+1=1

· · ·
IM∑

iM=1

K(di1...im−1 j im+1...iM ,di1...im−1 k im+1...iM).

When a causal factor is a combination of multiple independent sources that are
causal in nature, we employ a rotation matrix W to identify them. The rotation
matrix is computedbyemploying eithermutual information, negentropy, orhigher-
order cumulants [4,5,16,34]. A Kernel Multilinear ICA (K-MICA) Algorithm is a
kernel generalization of the multilinear independent component analysis (MICA)
algorithm [79]. Algorithm 2 simultaneously specifies both K-MPCA and K-MICA
algorithms. A scalable tensor factor analysis represents an observation as a hierar-
chy of parts and wholes [73,74].

2.3 Neural Network Architecture

Tensor factor analysis models are transformed into causal neural networks by using
autoencoder-decoders as building blocks. Causal neural networks are composed
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Table 1. Common kernel functions. Kernel functions are symmetric, positive semi-
definite functions corresponding to symmetric, positive semi-definiteGrammatrices. The
linear kernel does not modify or warp the feature space.

Linear kernel: K(u,v) = uTv = u · v
Polynomial kernel of degree d: K(u,v) = (uTv)d

Polynomial kernel up to degree d: K(u,v) = (uTv + 1)d

Sigmoidal kernel: K(u,v) = tanh(αuTv + β)

Gaussian (radial basis function (RBF)) kernel: K(u,v) = exp
(

− ‖u−v‖2

2σ2

)

of causal capsules and tensor transformers, Fig. 1. Causal capsules estimate a set
of latent variables that represent the causal factors of data formation. A tensor
transformer governs the causal factor interaction.TheM-mode SVD (Algorithm1)
is transformed into a neural network by replacing every SVD step with gradient
descent optimization, which is outsourced to a autoencoder-decoder with neurons
that have a linear transfer function, Supplemental A. For effectiveness, we employ
stochastic gradient descent [9,56]. The extended core tensor T[0] is computed by
defining and employing a tensor autoencoder, an autoencoder whose code is ini-
tialized to the tensor product of the causal factor representations,{uim |1 ≤ im ≤
Im and 1 ≤ m ≤ M},

di1,...,im...iM = T[0](uT
iM ⊗ · · · ⊗ uT

im · · · ⊗ uT
i1)

T.

To address a set of arbitrarily non-linear causal factors, each autoencoder employs
kernel functions (Table 1).

2.4 Causal Deep Networks and Scalable Tensor Factor Analysis:

For a scalable architecture, we leverage the properties of block algebra. Shallow
autoencoders are replacedwith either amathematically equivalentdeepneural net-
work that is a part-basedhierarchyof autoencoders-decoders , or a set of concurrent
autoencoders-decoders, Fig. 3.

For example, the orthonormal subspace of a data batch, D ∈ C
I0×I1 that has

I0 measurements and I1 observations may be computed by recursively subdividing
the data and analyzing the data blocks,

D =
[
DA

DB

]
=

[
UASAVT

A

UBSBVT
B

]
=

[
UA 0
0 UB

] [
SAVT

A

SBVT
B

]

︸ ︷︷ ︸
SVD

=

=
[
UA 0
0 UB

]
WΣVT =

[
UAWA

UBWB

]
ΣVT = (9)

= UΣVT,

https://arxiv.org/pdf/2301.00314
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whereW is a rotation matrix that transforms the basis matrices,UA andUB, span-
ning the observations in data blocks, DA and DB, such that their observations no

Fig. 3. Deep neural network. Subfigures (a-e) depict (10–14) [71, pg.38–40]. (a) The
mode matrix computation Um may be thought as a constrained cluster-based PCA that
is rewritten in terms of block SVDs. Matrixizing may be viewed as a concatenation of
“cluster” data. The matrix W transforms the basis matrix V

(n)
0 such that the causal fac-

tor representation Um is the same regardless of cluster membership . In a tensor model,
there are M different constrained cluster-based PCAs. (b) Mode matrix Um computa-
tion using a single autoencoder-decoder. (c) Mode matrix computation as a hierarchy of
autoencoder-decoders, (d) Mode matrix computation written as a deep learning model
(e) Concurrent-autoencoders; i.e., constrained cluster-based autoencoders. (f) Forward
causal model with a set of capsules implemented by deep neural networks. For a parallel,
synchronized or asynchronous computation, we break the chain links and shuttle causal
information, Um, between capsules to compute X (t + 1) for the next iteration. (g) Each
capsule in (f) may be replaced with a part-based deep neural network by permuting the
rows in DT

[m] with P, segmented by Hm, which is efficiently trained with a part-based
hierarchy of autoencoders, Fig. 4.
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Fig. 4. (a) Causal capsules may be implemented with a part-based hierarchy of autoen-
coders. The dataset is permuted by P, segmented and filtered by Hm that is mode depen-
dent. (b) Implementing the capsules with a part-based hierarchy of autoencoders is equiv-
alent to performing M-mode Block SVD [70,74, Sec IV]

longer havedistinct representationsVT
A andVT

B , but have the same representations
VT.6

Computing causal factor representations, the mode matrices Um of an MPCA
tensor model, is equivalent to computing a M different of mutually constrained,
cluster-based PCA, Fig. 3a. When dealing with data that can be separated into
clusters, the standard machine learning approach is to compute a separate PCA.
When data from different clusters are generated by the same underlying process
(e.g., facial images of the same people under different viewing conditions), the data
blocks can be concatenated in the measurement mode and the common causal fac-
tor can be modeled by one PCA. However, for a scalable solution, we employ block
algebra (10) and compute a set of constrained cluster-based PCAs, i.e., a set of
concurrent PCAs.

Thus, we define a constrained, cluster-based PCA as the computation of a set
of PCA basis vectors, such that the latent representation is constrained to be the
invariant of the cluster membership.

In the context of our multifactor data analysis, we define a cluster as a set of
observations forwhich all factors are fixed but one. For every tensormode, there are
Nm = I1I2 . . . Im−1Im+1 . . . IM possible clusters and the data in each cluster varies
with the same causal mode. The constrained, cluster-based PCA concatenates the
clusters in the measurement mode and analyzes the data with a linear model, such
as PCA.

To see this, let Di1...im−1im+1...iM ∈ C
I0×1×1···×1×Im×1···×1 denote a subtensor

of D that is obtained by fixing all causal factor modes but mode m and mode 0

6 Block algebra may be employed if the tensor model is multilinear (tensor) principal
component analysis (MPCA), multilinear (tensor) independent component analysis
(MICA) [79], Kernel-MPCA or Kernel-MICA [71].
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(the measurement mode). Matrixizing this subtensor in the measurement mode we
obtain Di1...im−1im+1...iM[0]

∈ C
I0×Im . This data matrix comprises a cluster of data

obtained by varying causal factor m, to which one can traditionally apply PCA.
Since there areNm = I1I2 . . . Im−1Im+1 . . . IM possible clusters that share the same
underlying space associated with factor m, the data can be concatenated and PCA
performed in order to extract the same representation for factor m regardless of the
cluster. Now, consider the MPCA computation of mode matrix Um, Fig. 3a, which
can be written in terms of matrixized subtensors as

Dm =

⎡

⎢⎢⎢⎢⎢⎢⎣

D1...11...1[m]
T

.

.

.

DI1...11...1
T
[m]

.

.

.

DI1...Im−1Im+1...IM[m]

T

⎤

⎥⎥⎥⎥⎥⎥⎦

T

= UmΣmVT
m . (10)

This is equivalent to computing a set of Nm = I1I2 . . . Im−1Im+1 . . . IM cluster-
based PCAs concurrently by combining them into a single statistical model and
representing the underlying causal factor m common to the clusters. Thus, rather
than computing a separate linear PCAmodel for each cluster,MPCA concatenates
the clusters into a single statistical model and computes a representation (coeffi-
cient vector) for mode m that is invariant relative to the other causal factor modes
1, ..., (m − 1), (m + 1), ...,M . For a scalable solution, we rotate the cluster-based
PCA basis vectors, such that the data blocks have the same representation regard-
less of cluster memebership. Thus, MPCA is a multilinear, constrained, cluster-
based PCA.

To clarify the rela-
tionship, let us number each of the matrices Di1...im−1im+1...iM[m]

= D(n)
m with a

parenthetical superscript 1 ≤ n = 1 +
∑M

k=1,k �=m(in − 1)
∏k−1

l=1,l �=m Il ≤ Nm.

Let each of the cluster SVDs be D(n)
m = U(n)

m Σ(n)
m V(n)

m

T
, and

D[m] =
[
U(1)

m Σ(1)
m . . .U(NM)

m Σ(Nm)
m

]
︸ ︷︷ ︸

SVD

diag([V(1)
m . . .V(Nm)

m ])T (11)

= UmΣmWTm diag([V(1)
m . . . V(Nm)

m ])T, (12)

= UmΣm[V(1)
m W(1)

m . . . V(Nm)
m W(Nm)

m ]T (13)

= UmΣmVT
m , (14)

where diag(·) denotes a diagonal matrix whose elements are each of the elements
of its vector argument. The mode matrix V(nm)

m is the measurement matrix U(nm)
0

(U(nm)
x when the measurements are image pixels) that contains the eigenvectors

spanning the observed data in cluster nm, 1 ≤ nm ≤ Nm. MPCA can be thought
as computing a rotation matrix, Wm, that contains a set of blocks W(n)

m along the
diagonal that transform the PCA cluster eigenvectors V(nm)

m such that the mode
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matrix Um is the same regardless of cluster membership (11–14), Fig 3. The con-
strained “cluster”-based PCAs may also be implemented with a set of concurrent
“cluster”-based PCAs, Fig. 3e.

Causal factors of objectwholesmay be computed efficiently from their parts, by
applying a permutation matrix P and creating part-based data clusters with a seg-
mentation filter Hm, where D ×T m Hm P ⇔ HmPD[m]

T, but leaving prior analysis
intact, Fig. 3g. A deep neural network can be efficiently trained with a hierarchy of
part-based autoencoders, Fig. 4. A computation that employs a part-based hierar-
chy of autoencoders parallels the Incremental M-mode Block SVD [70,74, Sec. IV].
A data tensor is recursively subdivided into data blocks, analyzed in a bottom-up
fashion, and the results merged as one moves through the hierarchy. The computa-
tional cost is the cost of training one autoencoder, O(T ), times O(logNM), the total
number of autoencoders trained for each factor matrix, O(T logNm). If the causal
neural network is trained sequentially, the training cost for one time iteration is
O(MTlogN̄), where N̄ is the average number of clusters across the M modes.

3 Inverse Causal Question: “Why?”

Inverse causal inference addresses the “why” question and estimates the causes of
effects given an estimated forward causal model and a set of constraints that reduce
the solution set7 and render the problem well-posed [25,72,80].

Multilinear tensor factor analysis constrains causal factor representations to
be unitary vectors. Multilinear projection [72,80] relies on this constraint and per-
forms multiple regularized regressions. One or more unlabeled test observations
that are not part of the training data set are simultaneously projected into the
causal factor spaces

T +x ×T
x dtest = R followed byM -mode SVD/CP ofR

≈ r1... ◦ rm... ◦ rM, and‖rm‖ = 1.

A neural network that implements a multilinear projection architecture is an
inverted (upside down) forward neural network architecture that employs an esti-
mated T+

[X] and reverses the operation order, Fig. 5.
Neural architectures addressing underdetermined inverse problems are charac-

terized by hidden layers that are wider than the input layer; i.e., the dimensionality
of vec(R) is larger than the number of measurements in d. Dimensionality reduc-
tion reduces noise, and the width of the hidden layers [28]. However, they can aqlso
camouflage an inherently underdetermined inverse problem. Adding sparsity, non-
negativity constraints [81], etc., can further reduce the solution set in a principled
way. Alternatively or in addition, one can determine a set of candidate solutions
7 Different combinations of the same causal factors can lead to the same outcome. In

imaging, these are known as visual illusions. This is a many-to-one problem, and its
inverse is ill-posed without constraints.
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by modeling different aspects of the mechanism of data formation as piecewise ten-
sor (multilinear) factor models. A single multilinear projection [72,80] is replaced
with multiple multilinear projections. Vasilescu and Terzopoulos [75] rewrote the
forward multilinear model in terms of multiple piecewise linear models that were
employed to perform multiple linear projections and produced multiple candidate
solutions that were gated to return the most likely solution.

Fig. 5. An inverse causal network is an inverted (upside-down) forward network that
implements the multilinear projection [72,80]. Operations are performed in reverse order

using the estimated T
+
[X] from the forward pass. For a scalable solution, autoencoder-

decoders are replaced with a deep network, Fig. 3

4 Conclusion

We derive a set of shallow and deep causal neural networks that are a consequence
of causal tensor factor analysis and block algebra. Causal neural networks are com-
posed of causal capsules and a tensor transformer. Causal capsules compute invari-
ant causal factor representations, whose interaction are governed by a tensor trans-
formation. An inverse causal neural network estimates the causes of effects and
implements the multilinear projection. As an alternative to aggressive “bottle-
neck” dimensionality reduction that may camouflage an inherently underdeter-
mined inverse problem, the mechanism of data formation is modeled as piecewise
tensor (multilinear) models, and inverse causal neural networks perform multiple
multilinear projections that result in multiple candidate solutions, which may be
gated to yield the most likely solution.
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1 Introduction

In the study of pattern recognition and machine learning, the classification
problem such as diagnosis of disease and recognition of signal is one of their
basic research contents [12]. The (pattern) classification or recognition is to
establish a model (algorithm) or reasoning system describing the relationship
between object features and categories and further to determine the categories of
unknown samples based on the established model [17]. The classification problem
generally includes two-class and multi-class classification problems. However, in
practical applications, the multi-class classification problem can be often trans-
formed into the two-class classification problem. Thus, this paper mainly focuses
on the two-class classification problem.

In particular, the ROC (Receiver Operating Characteristic) curve and AUC
(Area under the ROC Curve) measure have received widespread attention and
widely applied in the fields of machine learning and artificial intelligence to better
quantify the overall performance of algorithm in recent years [1,9,13,18,21,25–
27]. Therefore, this paper mainly focuses on the research of AUC measure.

Fig. 1. The density curves of AUC measure with different true positive rates (TPR)
and false positive rates (FPR)

Furthermore, in practical applications, in order to eliminate the influence of
randomness, measure indexes based on K-fold cross-validation are often used
to measure the performance of classification algorithm. However, the point esti-
mation is trivial, without considering the estimation variance [15,36]. For this
reason, the widely used symmetrical confidence interval of AUC measure con-
structed by K-fold cross-validated t and corrected t distributions based on nor-
mal distribution assumption in the literature is proposed to measure the perfor-
mance of classification algorithm. However, these symmetric confidence intervals
often show low degree of confidence or long interval length, which can easily lead
to liberal statistical inference results [14,22].
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Through theoretically analyzing the characteristic of AUC measure, we found
that the distribution of AUC measure is actually non-symmetrical (the left tail
of the AUC density curve is much longer than the right tail, and the peak value
is skewed to the right), as shown in Fig. 1. At this time, it may be inappropriate
to use a symmetrical distribution (such as t distribution) to approximate the
distribution of AUC measure. Even more, it may lead to erroneous result or
large deviation, because the value range of AUC measure is in the (0, 1) interval,
however, the symmetrical confidence interval based on t distribution may exceed
the range of (0, 1), which is also verified by the subsequent experimental results.

Therefore, in order to effectively measure the performance of algorithm, it is
very important to construct a faithful confidence interval of AUC measure with
high degree of confidence and short interval length. The degree of confidence
of a confidence interval refers to the probability that the confidence interval
contains a true value, and interval length is used to measure the accuracy of
the confidence interval. In view of this, for the two-class classification problem,
this paper construct a new non-symmetrical confidence interval of AUC measure
based on K-fold cross-validation.

The contributions of this paper are as follows:
(1) By theoretically analyzing the characteristic of the distribution of the

AUC measure, a non-symmetrical confidence interval of AUC measure based on
K-fold cross-validated Beta distribution is proposed.

(2) Extensive simulated and real data experiments demonstrate that the
proposed non-symmetrical confidence interval has higher degree of confidence
and shorter interval length, which can effectively improve the performance of
traditional symmetrical confidence intervals based on K-fold cross-validated t
and corrected K-fold cross-validated t distributions.

The rest of this paper is organized as follows. Section 2 introduces the related
work. Section 3 introduces the ROC curve, the AUC measure, and the macro-
averaged and micro-averaged AUC measures based on K-fold cross-validation.
Section 4 gives a detailed description of the non-symmetrical confidence interval
of AUC measure based on K-fold cross-validated Beta distribution proposed in
this paper. Section 5 compares the experimental performances of the confidence
interval proposed in this paper with traditional confidence intervals through
a large number of simulated and real data experiments to verify the superiority
of the proposed confidence interval. Finally, we give the conclusion of this paper.

2 Related Work

The performance measure index widely used for classification model evaluation
generally includes three categories. A brief overview is given as follows.

Traditional Performance Measure Index. Traditionally, the commonly used
performance measure indexes for classification algorithm always include accu-
racy, error rate, precision, recall, F1 measure, sensitivity, specificity, true pos-
itive rate, false positive rate, and so on [15,19,24,32,33,35,36]. In particular,
[8,23,30,31] pointed out that although these measure indexes are proposed based
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on different research backgrounds, they are all susceptible to the impact of cat-
egory imbalance and cost sensitivity, so that they may not well reflect the real
performance of classification algorithm in these situations.
ROC Curve and AUC Measure. In view of the problem of imbalanced
data, threshold selection and multi-class classification faced in the measurement
of classification performance, [13] proposed a ROC curve measure that is not
sensitive to classification changes, which is a two-dimensional graph drawn with
the true positive rate on the ordinate and the false positive rate on the abscissa.
The closer the ROC curve is to the upper left corner of the graph, the better the
performance of the corresponding classification algorithm, but when two ROC
curves cross, it is difficult to identify which classification algorithm has the better
performance. In view of this problem, the AUC measure based on the area under
the ROC curve was proposed. Once it was proposed, this measure has received
widespread attention and widely applied in the fields of machine learning and
artificial intelligence because it can better quantify the overall performance of
algorithm [1,9,18,21,25–27].
Measure Index Based on Cross-Validation. Furthermore, in practical
applications, in order to eliminate the influence of randomness, measure indexes
based on cross-validation are often used to measure the performance of clas-
sification algorithm. For example, for AUC measure, K-fold cross-validation
divides the data into mutually exclusive and approximately equal K subsets,
using K − 1 subsets for training, and the remaining subset for testing. In this
way, K confusion matrices can be obtained and the averaged AUC measures
can be calculated based on these confusion matrices and used to measure model
performance. However, the point estimation is trivial, without considering the
estimation variance [7,15,36,38,39]. For this reason, the widely used symmet-
rical confidence interval of AUC measure constructed by K-fold cross-validated
t and corrected t distributions based on normal distribution assumption in the
literature [2,3,16] is proposed to measure the performance of classification algo-
rithm. However, these symmetrical confidence intervals often show low degree
of confidence or long interval length, which can easily lead to liberal statistical
inference results. Thus, a non-symmetrical confidence interval of AUC measure
based on K-fold cross-validated Beta distribution is proposed to more accurately
evaluate model performance.

3 AUC Measures Based on K-Fold Cross-Validation

In this section, we first introduce the definitions of ROC curve and AUC measure,
and give the exact expressions of AUC measure with multiple thresholds. Then
we present the averaged AUC measures based on K-fold cross-validation with
macro-averaged and micro-averaged operators.

3.1 ROC Curve and AUC Measure

For a specific two-class classification problem, the experimental results can be
summarized in a 2×2 confusion matrix consisting of true positive (TP ), false
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positive (FP ), true negative (TN), and false negative (FN). Then, the true
positive rate (TPR) and false positive rate (FPR) can be defined as follows:

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
(1)

The ROC curve is a two-dimensional graph plotted with TPR as vertical
coordinate and FPR as horizontal coordinate. By using different thresholds
for classification discrimination, type I and type II errors can be continuously
changed, such that the change of ROC curve can clearly reflect the change of
two type errors with the change of thresholds, which can effectively solve the
problem of category imbalance and the performance of algorithm due to different
costs of misclassification. The closer the ROC curve is to the upper left corner
of graph, the better performance of the corresponding classification algorithm
[5,10,11]. However, when two ROC curves cross, it is difficult to identify which
classification algorithm has better performance. In view of this problem, the
AUC measure based on the area under the ROC curve is proposed.

Random Classifier
TPR

FPR

  0.0                     0.2                     0.4                      0.6                     0.8                      1.0  

A

Random Classifier
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B
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C

Fig. 2. The changes of the ROC curves with one, two, and three thresholds as the
changes of TPR and FPR for two-class classification problem, where A, B, and C are
thresholds

In the two-class classification problem, when only a single threshold of 0.5 is
considered, the ROC curve has the shape shown in Fig. 2 and the AUC measure
has the following expression [29,37]:

AUCv=1 =
1 + TPR1 − FPR1

2
(2)

Similarly, for the cases of two and three thresholds, the corresponding AUC
measures have the following forms:

AUCv=2 =
1
2
TPR1FPR2 − 1

2
TPR2FPR1 +

1
2
TPR2 − 1

2
FPR2 +

1
2

(3)

AUCv=3 =
1
2
TPR1FPR2 − 1

2
TPR2FPR1 +

1
2
TPR2FPR3 − 1

2
TPR3FPR2

+
1
2
TPR3 − 1

2
FPR3 +

1
2

(4)
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And analogously, when we take m different thresholds (the larger the m, the
smoother its corresponding ROC curve), the form of AUC measure is as follows:

AUCv=m =
1
2

m−1∑

i=1

(TPRiFPRi+1 − TPRi+1FPRi)

+
1
2
TPRm − 1

2
FPRm +

1
2

(5)

where, m is the number of thresholds, TPRi and FPRi refer to the coordinate
values of TPR and FPR corresponding to the i-th (i = 1, ...,m) threshold,
respectively.

3.2 Micro-averaged AUC Measure Based on K-Fold
Cross-Validation

In practice, in order to eliminate the effect by randomness, the K-fold cross-
validation technique with multiple repetitions of training and testing is often
used. Formally, the data set S is divided into K subsets with approximately same
size and mutually exclusive, denoted as Tk, k = 1, 2, · · · ,K. Let Sk denote the
k-th training set obtained by removing the elements in Tk from the data set
S. Thus, K training sets and K corresponding test sets are obtained. For each
threshold, the averaged TP, FP, FN, and TN have the following form:

TP i(KCV ) =
∑K

k=1 TP i
k

K
, FP i(KCV ) =

∑K
k=1 FP i

k

K
,

FN i(KCV ) =
∑K

k=1 FN i
k

K
, TN i(KCV ) =

∑K
k=1 TN i

k

K
.

Then, the micro-averaged AUC measure based on K-fold cross-validation
with multiple thresholds can be obtained:

AUCmic,v=m
KCV =

1

2

m−1∑

i=1

(
TPRmic

i(KCV )FPRmic
i+1(KCV ) − TPRmic

i+1(KCV )FPRmic
i(KCV )

)

+
1

2
TPRmic

m(KCV ) − 1

2
FPRmic

m(KCV ) +
1

2
. (6)

where

TPRmic
i(KCV ) =

TP i(KCV )

TP i(KCV ) + FN i(KCV )

, FPRmic
i(KCV ) =

FP i(KCV )

FP i(KCV ) + TN i(KCV )

.

3.3 Macro-averaged AUC Measure Based on K-Fold
Cross-Validation

The macro-averaged AUC measure based on K-fold cross-validation is the aver-
age of K AUC measures computed based on K training and test sets. Specifically,
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if denoting the AUCk, k = 1, 2, · · · ,K be the AUC measure computed from the
kth training and test sets, the result of averaging these K AUC measure values
is:

AUCmac,v=m
KCV =

∑K
k=1 AUCv=m

k

K
. (7)

[37] had proved that the macro-averaged and the micro-averaged AUC mea-
sures with single threshold based on K-fold cross-validation are identical, that
is, AUCmac,v=1

KCV = AUCmic,v=1
KCV . However, when AUC measure is defined by

multiple thresholds, the macro-averaged and the micro-averaged AUC measures
based on K-fold cross-validation have a more complex form and thus it is hard to
prove that they are identical. Even so, we have experimentally verified that their
differences are actually very small in a variety of experimental situations. Thus,
in this paper, we only provide the confidence interval of macro-averaged AUC
measure based on K-fold cross-validation.

4 Confidence Interval of AUC Measure Based on K-Fold
Cross-Validated Beta Distribution

In this section, we present three confidence interval techniques for AUC mea-
sure based on K-fold cross-validation. The first two are symmetrical confidence
intervals based on K-fold cross-validated t and corrected K-fold cross-validated t
distributions commonly used in the literature, and the third is a non-symmetrical
confidence interval based on K-fold cross-validated Beta distribution proposed
in this paper.

4.1 Confidence Interval of AUC Measure Based on K-Fold
Cross-Validated t-Distribution

Symmetrical confidence intervals based on t-distribution are widely used in the
machine learning research [4,20,28,40]. In general, symmetrical confidence inter-
vals with a confidence level of 1 − α have the following form:

[
μ̂ − c

√
σ̂2, μ̂ + c

√
σ̂2

]
, (8)

where, μ̂ is the sample mean, σ̂2 is the sample variance, and c is the percentile
of t distribution. Thus, the symmetrical confidence interval of AUC measure
based on K-fold cross-validated t distribution can be written as:

CIAUCv=m
t(KCV )

=
[
AUCmac,v=m

KCV − cK−1,1− α
2

√
σ̂2
AUCmac,v=m

KCV
,

AUCmac,v=m
KCV + cK−1,1− α

2

√
σ̂2
AUCmac,v=m

KCV

]
, (9)

where

σ̂2
AUCmac,v=m

KCV
=

1
K(K − 1)

K∑

k=1

(AUCv=m
k − AUCmac,v=m

KCV )2 .
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4.2 Confidence Interval of AUC Measure Based on Corrected
K-Fold Cross-Validated t-Distribution

[3] pointed out that the correlation between different folds in K-fold cross-
validation cannot be ignored when calculating their variance, otherwise the vari-
ance will be grossly underestimated. For this reason, [16] proposed a corrected
K-fold cross-validated t test based on corrected K-fold cross-validated variance.
That is, if we let μ̂ = AUCmac,v=m

KCV and σ̂2 = σ̂2
AUCmac,v=m

KCV
/(1 − ρAUCmac,v=m

KCV
),

the confidence interval of AUC measure based on corrected K-fold cross-
validated t distribution is:

CIAUCv=m
Ct(KCV )

=

[
AUCmac,v=m

KCV − cK−1,1− α
2

√√√√ σ̂2
AUCmac,v=m

KCV

1 − ρAUCmac,v=m
KCV

,

AUCmac,v=m
KCV + cK−1,1− α

2

√√√√ σ̂2
AUCmac,v=m

KCV

1 − ρAUCmac,v=m
KCV

]
, (10)

where, ρAUCmac,v=m
KCV

is the correlation coefficient and [16] recommended a con-
servative empirical estimation of ρ̂AUCmac,v=m

KCV
= 0.7.

4.3 Confidence Interval of AUC Measure Based on K-Fold
Cross-Validated Beta Distribution

For the convenience of the subsequent theoretical derivation, we first introduce
some lemmas.

Lemma 1. [15] In a two-class classification problem, let TPR = TP
TP+FN , and

FPR = FP
FP+TN be the true positive rate and the false positive rate, then the

posterior distributions of TPR, and FPR are TPR|D ∼ Be(TP + λ, FN + λ),
and FPR|D ∼ Be(FP +λ, TN +λ) respectively, where D = (TP, FP, FN, TN),
TPR ∼ Be(λ, λ), FPR ∼ Be(λ, λ), λ is the prior parameter.

Lemma 2. [6,34] The product and sum of two mutually independent random
variables that both follow Beta distribution still approximately follow Beta distri-
bution, i.e., if random variables X ∼ Be(a1, b1) and Y ∼ Be(a2, b2), the random
variables Z = X ·Y and W = X +Y also approximately follow Beta distribution.

Recalling that the expression of AUC measure is shown in Eq. (5), we know
that it is mainly composed of four parts: TPRiFPRi+1, TPRi+1FPRi, TPRm

and FPRm. From Lemmas 1 and 2, we know that these four parts all approxi-
mately follow Beta distribution, then we can deduce that AUCv=m also approx-
imately follows Beta distribution. Furthermore, for the macro-averaged AUC
measure based on K-fold cross-validation with the mean of K AUCv=ms, its
distribution should be also close to a beta distribution.
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Theorem 1. If assuming that TPRi, FPRi+1, TPRi+1, FPRi, FPRm, and
TPRm (i = 1, ...,m − 1) are independent, the macro-averaged AUC measure
based on K-fold cross-validation with multiple thresholds approximately follows
a Beta distribution, that is

AUCmac,v=m
KCV ≈ Be(amac,v=m

KCV , bmac,v=m
KCV ), (11)

where

amac,v=m
KCV =

E

V

(
E − E2 − V

)
,

bmac,v=m
KCV =

1 − E

V

(
E − E2 − V

)
,

E =
∑K

k=1 E(AUCv=m
k |Dk)

K
,

V =
∑K

k=1 V ar(AUCv=m
k |Dk)

K2
.

Proof. By equating the first and second moments of AUCmac,v=m
KCV and the ran-

dom variable following beta distribution, we have

E (AUCmac,v=m
KCV ) =

amac,v=m
KCV

amac,v=m
KCV + bmac,v=m

KCV

,

V ar(AUCmac,v=m
KCV ) =

amac,v=m
KCV bmac,v=m

KCV

(amac,v=m
KCV + bmac,v=m

KCV )2(amac,v=m
KCV + bmac,v=m

KCV + 1)
.

From this, one can show that

amac,v=m
KCV =

E(AUCmac,v=m
KCV )

V ar(AUCmac,v=m
KCV )

[E(AUCmac,v=m
KCV )

−E(AUCmac,v=m
KCV )2 − V ar(AUCmac,v=m

KCV )],

bmac,v=m
KCV =

1 − E(AUCmac,v=m
KCV )

V ar(AUCmac,v=m
KCV )

[E(AUCmac,v=m
KCV )

−E(AUCmac,v=m
KCV )2 − V ar(AUCmac,v=m

KCV )].

From Theorem 1 we can easily obtain the non-symmetrical confidence interval
for the AUC measure based on K-fold cross-validated Beta distribution with
multiple thresholds:

CIAUCv=m
Beta(KCV )

=
[
Be(amac,v=m

KCV , bmac,v=m
KCV )α

2
, Be(amac,v=m

KCV , bmac,v=m
KCV )1− α

2

]
.

(12)
where Be(·, ·)α

2
is the percentile of the Beta distribution.
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5 Experimental Results and Analysis

In this section, simulated and real data experiments are conducted to com-
pare the degrees of confidence and interval lengths of the symmetrical confi-
dence intervals of AUC measure based on K-fold cross-validated t and corrected
K-fold cross-validated t distributions, and the approximately non-symmetrical
confidence interval of AUC measure based on K-fold cross-validated Beta dis-
tribution under multiple classifiers of classification tree (CT), support vector
machines with Gaussian kernel function (SVM), and naive Bayes (NB). In the
experiments, we choose widely used K = 10, K = 5 and K = 2 for K-fold cross-
validation. The prior parameter λ in the Beta distribution is taken as 1, and the
confidence level 1−α = 0.95, i.e., α = 0.05. All experiments were repeated 1,000
times to take into account the effect of randomness in the training and test sets.

5.1 Experimental Settings

Simulated Data: Consider a two-class classification problem with data set
Z = (X,Y ), where X = (x1, x2, · · · xd) is the d-dimensional feature vector,
Y = {0, 1} is the binary response variable, P (Y = 1) = P (Y = 0) = 0.5,
X|Y = 0 ∼ N(μ0, Σ0), and X|Y = 1 ∼ N(μ1, Σ1). Here, we take μ0 = 0d,
Σ0 = Id, μ1 = β11d, Σ1 = β2Σ0, where 0d and 1d refer to the d-dimensional
vectors with all elements 0 and 1, and Id refers to the d-order identity matrix.
The total sample size n is 200 and 1,000.

Real Data: The MAGIC Gamma Telescope data set from the UCI database is
used to simulate the localization of high-energy γ particles in the atmospheric
cherenkov telescope. Specifically, it contains 10 feature variables (long axis, short
axis, sum, continuous ratio, etc.) and 19,020 samples. The category labels are g
class (0) and h class (1), where g class represents the signal with 12,332 samples,
and h class represents the background with 6,688 samples.

A data set for identifying the letters of the roman alphabet comprises 20,000
examples described by 16 features (pixel position on the left side of the rectangle
(horizontal position), pixel position on the bottom side of the rectangle (vertical
position), rectangle width, rectangle height, etc.). The 26 letters represent 26
categories, and in this experiment we turn it into a two-calss (A-M versus N-Z)
classification problem. We sample, with replacement, 200 (1,000) examples from
the 19,020 (20,000) examples available in the Telescope (Letter) data set.

5.2 Experimental Results and Analysis of Simulated Data

Table 1 presents the results of degrees of confidence and interval lengths of three
confidence intervals of AUC measure based on K-fold cross-validation (K=2,
5, 10) under the naive Bayes, classification tree, and support vector machine
classifiers. First, from the table we can see that the degrees of confidence of con-
fidence interval of AUC measure based on K-fold cross-validated t distribution
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under all three classifiers are all below 96.00%, with a maximum of 95.30%. By
correcting the variance of t statistic, the confidence interval of AUC measure
based on corrected K-fold cross-validated t distribution has a better degree of
confidence. In most cases, it can reach 96.00%, even 99.90%. For example, in
the case of n = 200, d = 5, β = (0.2, 3), the confidence interval of AUC measure
based on corrected 10-fold cross-validated t distribution has a degree of confi-
dence of 99.80%. However, for the non-symmetrical confidence interval proposed
in this paper, the degrees of confidence are all close to 100.00% in all cases.

Table 1. Degrees of Confidence and interval lengths of three confidence intervals on the
simulated data for the cases of n = 200, d = 5, β = (1, 2) (Case 1), n = 1000, d = 5, β =
(1, 2) (Case 2), n = 200, d = 5, β = (0.2, 3) (Case 3), n = 1000, d = 5, β = (0.2, 3) (Case
4), n = 200, d = 5, β = (0.2, 3) (Case 5) and n = 1000, d = 5, β = (0.2, 3) (Case 6),
where CT, NB, and SVM refer to classification tree, naive Bayes, and support vector
machine classifiers respectively, d is the feature dimension, and n is the total sample
size

Simulated Data

CT NB SVM

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

CIAUCv=m
t(2CV )

DOC 93.10% 94.50% 94.30% 95.10% 92.50% 93.50%

IL 0.740 0.330 0.491 0.219 0.428 0.215

CIAUCv=m
t(5CV )

DOC 94.00% 91.50% 93.50% 95.30% 91.70% 93.00%

IL 0.168 0.073 0.130 0.057 0.134 0.058

CIAUCv=m
t(10CV )

DOC 91.20% 89.60% 93.30% 94.50% 91.80% 92.50%

IL 0.137 0.059 0.114 0.048 0.120 0.050

CIAUCv=m
Ct(2CV )

DOC 96.40% 96.90% 96.80% 97.00% 95.90% 96.10%

IL 1.351 0.602 0.896 0.399 0.782 0.392

CIAUCv=m
Ct(5CV )

DOC 99.10% 98.60% 98.90% 99.40% 97.90% 99.00%

IL 0.307 0.134 0.237 0.103 0.244 0.105

CIAUCv=m
Ct(10CV )

DOC 98.90% 99.30% 99.80% 99.60% 99.40% 99.60%

IL 0.251 0.107 0.209 0.088 0.219 0.091

CIAUCv=m
Beta(2CV )

DOC 100.00% 100.00% 99.80% 100.00% 100.00% 100.00%

IL 0.147 0.066 0.102 0.043 0.111 0.046

CIAUCv=m
Beta(5CV )

DOC 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

IL 0.128 0.057 0.100 0.043 0.106 0.045

CIAUCv=m
Beta(10CV )

DOC 99.90% 100.00% 100.00% 100.00% 100.00% 100.00%

IL 0.124 0.054 0.101 0.043 0.107 0.045

Second, for interval length, the confidence intervals of AUC measure based on
K-fold cross-validated t and corrected K-fold cross-validated t distributions all
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exhibit long interval lengths. The confidence interval technique of AUC measure
based on corrected K-fold cross-validated t distribution improves the degree of
confidence by correcting the degree of freedom of variance estimation, however,
the cost is that the interval length of the confidence interval of AUC measure
based on corrected K-fold cross-validated t distribution increases by about two
times compared with the confidence interval of AUC measure based on K-fold
cross-validated t distribution. For example, for the SVM classifier, the inter-
val lengths of confidence intervals of AUC measure based on 2, 5, and 10-fold
cross-validated t distributions are 0.428, 0.215, 0.134, 0.058, 0.120, and 0.050,
respectively, however, they are 0.782, 0.392, 0.244, 0.105, 0.219, and 0.091 for
the confidence intervals of AUC measure based on corrected 2, 5, and 10-fold
cross-validated t distributions. The latter is nearly twice as many as the former.

However, there is no such problem with the proposed approximately non-
symmetrical confidence interval. The proposed confidence interval technique has
shorter interval length than these two symmetrical confidence interval while
maintaining high degree of confidence. For example, from Table 1 we can see
that in the case of n = 200, d = 5, β = (1, 2), the interval lengths of confidence
intervals of AUC measure based on 2-fold cross-validated t and corrected 2-
fold cross-validated t distributions are 0.740 and 1.351, respectively, however,
the proposed confidence interval is only 0.147 while maintaining the degree of
confidence be 100.00%.

Overall, whether for degree of confidence or for interval length, the proposed
non-symmetrical confidence interval based on K-fold cross-validated Beta dis-
tribution is superior to the other two symmetrical confidence intervals based on
K-fold cross-validated t and corrected K-fold cross-validated t distributions.
However, in practical applications, a fundamental principle for selecting the
confidence interval is to select the one with the shortest interval length for
an acceptable degree of confidence. With the adopted degree of confidence of
95.00%, the interval lengths of the proposed non-symmetrical confidence interval
are only half that of the symmetrical confidence interval based on corrected K-
fold cross-validated t distribution, and sometimes shorter. That is, the proposed
non-symmetrical confidence interval technique based on K-fold cross-validated
Beta distribution is significantly better than the symmetrical confidence inter-
vals based on K-fold cross-validated t and corrected K-fold cross-validated t
distributions.

Besides, with different folds of 2, 5, and 10 in the K-fold cross-validation,
these confidence intervals behave differently. The performances of the confidence
intervals based on 5 and 10-fold cross-validations are all better than that of
the confidence intervals based on 2-fold cross-validation. When the sample size
increases from 200 to 1000, there was little change to the degree of confidence
for all confidence intervals. However, their interval lengths decrease by approxi-
mately half or two thirds.
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Table 2. Degrees of Confidence and interval lengths of three confidence intervals on
Telescope and Letter data sets

Telescope Data set Letter Data set

CT NB SVM CT NB

n = 200 n = 1000 n = 200 n = 1000 n = 200 n = 1000 n = 200 n = 1000 n = 200 n = 1000

CIAUCv=m
t(2CV )

DOC 93.70% 92.60% 96.80% 92.60% 91.60% 92.10% 91.80% 92.50% 91.40% 96.00%

IL 0.709 0.336 0.981 0.336 0.560 0.229 0.792 0.420 0.612 0.350

CIAUCv=m
t(5CV )

DOC 92.70% 93.50% 94.20% 95.20% 94.40% 95.80% 89.80% 94.50% 92.70% 96.80%

IL 0.170 0.075 0.190 0.086 0.140 0.053 0.186 0.086 0.178 0.077

CIAUCv=m
t(10CV )

DOC 88.80% 89.30% 94.50% 96.00% 95.10% 95.90% 90.00% 89.20% 93.30% 96.80%

IL 0.140 0.060 0.157 0.068 0.117 0.044 0.155 0.066 0.149 0.062

CIAUCv=m
Ct(2CV )

DOC 96.10% 96.60% 98.70% 96.60% 96.10% 95.50% 95.30% 96.20% 95.10% 97.90%

IL 1.295 0.614 1.791 0.614 1.022 0.419 1.447 0.766 1.118 0.639

CIAUCv=m
Ct(5CV )

DOC 99.30% 98.50% 99.20% 99.60% 98.70% 99.20% 98.50% 99.40% 99.10% 99.70%

IL 0.311 0.136 0.347 0.157 0.256 0.097 0.340 0.157 0.325 0.141

CIAUCv=m
Ct(10CV )

DOC 98.90% 99.30% 99.70% 100.00% 99.80% 99.50% 98.40% 98.90% 99.70% 100.00%

IL 0.256 0.110 0.288 0.125 0.214 0.081 0.283 0.120 0.272 0.113

CIAUCv=m
Beta(2CV )

DOC 100.00% 99.80% 100.00% 99.90% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

IL 0.150 0.068 0.168 0.068 0.117 0.043 0.171 0.082 0.151 0.062

CIAUCv=m
Beta(5CV )

DOC 100.00% 100.00% 99.80% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

IL 0.132 0.057 0.144 0.063 0.106 0.039 0.148 0.066 0.135 0.056

CIAUCv=m
Beta(10CV )

DOC 99.90% 100.00% 100.00% 100.00% 99.80% 100.00% 100.00% 100.00% 100.00% 100.00%

IL 0.128 0.054 0.140 0.061 0.106 0.039 0.143 0.060 0.134 0.055

5.3 Experimental Results and Analysis of Real Data

Table 2 gives the experimental comparison results of three confidence intervals of
AUC measure based on K-fold cross-validation for three classifiers on Telescope
and Letter data sets. Similar to the simulated data situation, the symmetrical
confidence intervals based on K-fold cross-validated t distribution exhibits a
degraded degree of confidence. In 21 of 30 cases, the degrees of confidence fell
below 95.00%, as shown in Table 2. By correcting the variance of t statistic, the
symmetrical confidence interval based on corrected K-fold cross-validated t dis-
tribution elevates the degree of confidence of that based on K-fold cross-validated
t distribution. They all exceed 95.00%. For the proposed non-symmetrical con-
fidence interval based on K-fold cross-validated Beta distribution has approxi-
mately 100.00% degree of confidence in all cases.

Even though for the case of low degree of confidence of the symmetrical
confidence intervals based on K-fold cross-validated t distribution, the proposed
non-symmetrical confidence interval remains have shortest interval length. For
example, in the case of n = 200 and CT classifier on Telescope data set, the
degree of confidence and interval length of the symmetrical confidence intervals
based on 10-fold cross-validated t distribution are 88.80% and 0.140, respec-
tively. However, they are 99.90% and 0.128 for the proposed non-symmetrical
confidence interval.

With an acceptable degree of confidence (above 95.00%), interval lengths
of the proposed non-symmetrical confidence interval are about half that of the
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symmetrical confidence interval based on corrected K-fold cross-validated t dis-
tribution. And the results in Table 2 show that the interval length also decreases
by half as the sample size changed from 200 to 1,000 for all three confidence inter-
vals. This implies that the sample size has a significant impact on the interval
length of confidence interval.
Remark: It is well known that the AUC measure value is between 0 and 1, how-
ever, the symmetrical confidence interval based on t distribution may exceed the
range of (0, 1). For example, the simulated and real experiments in Tables 1 and
2 with n = 200 show that the interval lengths of the confidence intervals of
AUC measure based on corrected 2-fold cross-validated t distribution is 1.351,
1.295, 1.791, 1.022, 1.447, and 1.118, which obviously exceeds the limit value of
1. In this case, it may be inappropriate using the symmetrical confidence interval
based on t distribution to measure the classification performance of algorithm.

Conclusion

In this paper, we construct a non-symmetrical confidence interval of AUC mea-
sure based on K-fold cross-validated Beta distribution with multiple thresh-
olds by theoretically analyzing its approximate posterior distribution. Extensive
experimental results demonstrate that the proposed non-symmetrical confidence
interval has higher degree of confidence and shorter interval length, which can
effectively improve the performance of traditional symmetrical confidence inter-
vals based on K-fold cross-validated t and corrected K-fold cross-validated t
distributions. This also provides a new idea and direction for the future research
of AUC measure.

To develop this view, we will further show how the proposed non-symmetrical
confidence interval can be improved to make it suitable for more complex situ-
ations such as non-independence.
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Abstract. Explainability and attribution for deep neural networks
remains an open area of study due to the importance of adequately inter-
preting the behavior of such ubiquitous learning models. The method of
expected gradients [10] reduced the baseline dependence of integrated
gradients [27] and allowed for improved interpretability of attributions as
representative of the broader gradient landscape, however both methods
are visualized using an ambiguous transformation which obscures attri-
bution information and neglects to distinguish between color channels.
While expected gradients takes an expectation over the entire dataset,
this is only one possible domain in which an explanation can be con-
textualized. In order to generalize the larger family of attribution meth-
ods containing integrated gradients and expected gradients, we instead
frame each attribution as a volume integral over a set of interest within
the input space, allowing for new levels of specificity and revealing novel
sources of attribution information. Additionally, we demonstrate these
new unique sources of feature attribution information using a refined
visualization method which allows for both signed and unsigned attribu-
tions to be visually salient for each color channel. This new formulation
provides a framework for developing and explaining a much broader fam-
ily of attribution measures, and for computing attributions relevant to
diverse contexts such as local and non-local neighborhoods. We evalu-
ate our novel family of attribution measures and our improved visual-
ization method using qualitative and quantitative approaches with the
CIFAR10 and ImageNet datasets and the Quantus XAI library.

Keywords: Attribution · Saliency · Influence · Integrated Gradients ·
Expected Gradients · Explainability · Causal Inference · Visualization

1 Introduction

While gradient-based approaches to feature attribution for deep neural networks
are both intuitive and relatively easy to implement, established methods such as
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integrated gradients [27] which rely on paths to fixed external reference inputs
often lack a compelling justification for why certain baselines should be chosen
over others. There may be situations and applications which may support obvious
baselines, but as noted by Erion et al. [10], this is often not the case. Many
of the shortcomings of integrated gradients were alleviated by computing the
expected gradients as a Monte Carlo integral over the training dataset, however
this approach does not succeed in completely generalizing the original intuition of
integrated gradients to a comprehensive family of attribution measures.

We present a generalization of integrated gradients [27] and expected gradi-
ents [10] which also encompasses a diverse family of other attribution measures.
By formulating the expected gradients in terms of a volume integral rather than
a path integral, we obtain an attribution method which is immediately gen-
eralizable to any deep learning application, and which can be easily iterated
upon. We note that our formulation has similar implementation requirements as
expected gradients while allowing us to access several unique sources of attribu-
tion information which were previously not utilized. Using our new formulation
of generalized integrated gradients, we are able to identify distinct paradigms of
attribution information corresponding to input locality.

Additionally, leverage our new formulation to develop three new measures of
gradient variance, stability, and consistency, which each quantify a unique aspect
of model behavior. Gradient variance quantifies the dispersion of model gradi-
ents, and results in attributions which provide improved visual salience over
expected gradients. Our stability and consistency measures incorporate angu-
lar information to characterize the behavior of model gradients, with stability
quantifying whether the input is a local optimum, and consistency quantifying
disagreement between gradients at different locations in the space.

Finally, considering that the interpretation of image attributions depends
heavily on their semantic interpretation, we propose a new procedure for visu-
alizing attributions which addresses several concerns associated with the visual-
ization methods commonly employed in the past. Notably, we address the prob-
lems of artificial introduction of information from reference inputs, loss of color
channel-specific information, and loss of attribution sign.

Using our new visualization procedure, we present our proposed measures
qualitatively evaluated on ImageNet [8] using gradients from a pre-trained
ResNet-34 model, as illustrated in Fig. 1 with evaluation examples shown in
Fig. 2. In summary, our contributions include:

– A method of more accurately and faithfully visualizing attributions
– A mathematical formulation to describe and develop a generalized family of

novel integrated attribution measures
– Several specific useful measures of interest constructed from descriptive statis-

tics using our formulation
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Fig. 1. Illustration of our method as compared with Expected Gradients [10]. We
notably include a locality parameter as well as the ability to compute additional descrip-
tive statistics beyond a simple sample mean.

2 Related Work

Early methods in explainability, such as layer-wise relevance propagation (LRP)
[3], decompose the predictions of nonlinear classifiers to obtain attributions for
individual pixels. Many current methods utilize various forms of gradient infor-
mation in order to generate attributions [1,2]. In an effort to increase the robust-
ness of these feature attributions, Sundararajan et al. [27] selected a set of axioms
to guide the development of a more robust attribution measure which they call
integrated gradients. Integrated gradients are computed by taking a linear path
from an input of interest to a baseline input, and integrating the gradients of
the model with respect to the input over this path, as is discussed in greater
detail below in Sect. 3.2. To allow for efficient computation of integrated gradi-
ents, Hesse et al. [14] consider a special class of nonnegatively homogenous deep
neural networks, and to remove the arbitrary baseline selection issues associ-
ated with integrated gradients. With their ’iterated integrated attributions [5],
Barken et al. utilize linear interpolations of the input as well as intermediate
representations from within the model. Erion et al. [10] use examples from the
training dataset as baselines, which re-contextualizes the resulting attribution
values as the expectation of model gradients over the data, with similar approach
being taken by Lundberg et al. [19] to approximate Aumann-Shapley (SHAP)
values. Merrill et al. define a “generalized integrated gradients” [21] from an
axiomatic, algebraic perspective in the context of Aumann-Shapley values in
order to extend the concept of path-integrated credit assignment to more diverse
function spaces such as those relevant to applications in finance. While we also
define a “generalized integrated gradients” in this work, ours is instead framed
in the context of developing a broader family of integrated attribution measures
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Fig. 2. Summary of our newly proposed family of attribution measures and visual-
ization methods [best viewed in color]. Each measure is computed using the locality
method of Eq. 4, and the sampling method of expected gradients [10] using 500 sample
points (see Fig. 4 for additional sampling details). From top to bottom: ε = 1, ε =
500, ε = 2000. From left to right: input, local integrated gradients (unsigned), local
integrated gradients (signed), gradient variance (unsigned only), stability (unsigned),
stability (signed), consistency (unsigned), consistency (signed).

of which the path-integrated gradients is a special case. Extending prior work in
attribution to include hidden units within a neural network, Dhamdhere et al. [9]
introduce the notion of conductance. This neuron attribution builds on the inte-
grated gradients attribution method, with conductance being formulated as the
flow of integrated gradients via a given hidden unit. This work on neuron conduc-
tance is refined by Shrikumar et al. [26], who develop a scalable implementation
they call neuron integrated gradients. In another instance of attribution meth-
ods being applied towards other deep learning tasks, Jha et al. [15] construct
an attribution-based confidence (ABC) metric for measuring whether an output
can be trusted. Variants of the metric utilize different attribution methods, one
being integrated gradients. Hase et al. [12] also compare several salience-based
explanation methods (such as integrated gradients) and several search-based
methods such as their parallel local search. In particular, they posit that the
use of out-of-distribution counterfactual inputs like the baselines required for
integrated gradients is problematic. Our proposed generalized method builds on
the success of expected gradients [10] in addressing the above concerns regarding
the out-of-distribution counterfactual inputs which are often used in attribution
methods, and enables further development of nuanced attribution measures.

3 Generalized Integrated Attributions

3.1 Visualization of Pixel Attributions

We first discuss the approach we have taken for visualizing pixel attributions
for computer vision tasks, as this has been an area of significant recent interest
[1,24] and is essential for the accurate interpretation of computed attributions.
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Any transformation of attribution values which is not invertible will result in
loss of information by compression, as will any transformation which introduces
information from an outside source in the form of noise. Previous methods,
such as integrated gradients [27] and expected gradients [10], chose to visu-
alize computed attribution values by taking the absolute value (compression),
aggregating values for each color channel to a single per-pixel attribution (com-
pression), clipping extreme values (compression), scaling to the range [0, 1], and
then multiplying the resulting values by the original input image (noise). Per-
haps most importantly, multiplication by the input results in an extremely mis-
leading attribution visualization which artificially resembles the original input
image (see Fig. 3). Furthermore, the choice of aggregating color channels need-
lessly obscures channel-dependent information, which demonstrate to be highly
informative. While clipping to quantiles and rescaling to a given range may
often be necessary to produce visualizations perceptible to human users, we
should always make careful note of these transformations and remind ourselves
that each of these transformations may reveal or obfuscate unique sources of
information.

Fig. 3. Comparison of visualization methods [best viewed in color]. We consider a
hypothetical input (column 1) and a hypothetical attribution consisting of a test pat-
tern with both positive and negative values to illustrate the difference between signed
and unsigned approaches. We can observe that multiplying by the input results in a
significant loss of information and bias towards the input.
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Unsigned Visualization. When we are interested in the magnitude of attri-
bution values and not whether they are positive or negative, we can take the
absolute value of the attributions and scale them to [0, 1] after first clipping
extreme values. This preserves color channel information and introduces no arti-
ficial information from the original input. Using this method, attributions with
small magnitude are dark while attributions with large magnitude are bright
(see row 1, column 2 in Fig. 3).

Signed Visualization In contrast to unsigned visualization, if we wish to visu-
alize the difference between positive and negative attribution values, we instead
scale the attributions to [−1, 1] after clipping extreme values. Then, we selec-
tively brighten or darken a blank slate image starting from 50% uniform bright-
ness to obtain the final attribution map. This method preserves both the sign
of the attributions and all color-dependent information while introducing no
artificial bias from the original input. Using this method, negative attributions
are dark while positive attributions are bright (see row 1, column 3 in Fig. 3).

As demonstrated in Fig. 3, there are unique advantages and disadvantages to
both signed and unsigned attribution visualization, and ideally both should be
used in concert when interpreting attribution results. Importantly, any visual-
ization of attribution measures should not be obscured by any information from
a particular reference input unless absolutely necessary, in the interest of intro-
ducing as little bias as possible into the final interpretation of a given attribution
result. In cases where an unambiguous mask can be constructed from prediction
attributions, such a mask might be used to highlight regions of a particular
reference input, but this masking should be performed with caution and care-
ful consideration in order to avoid the misinterpretation of input features as
attribution results.

3.2 Extending Expected Gradients

The reformulation of integrated gradients as an expected value developed by
Erion et al. [10] allows the original path integrals of Sundararajan et al. [27]
to be completely discarded in favor of volume integrals over the input space.
However, this simplification was not thoroughly realized in the presentation of
expected gradients. We now reformulate integrated gradients as a generalized
integral over a volume in the input space. Sundararajan et al. [27] defines the
path integrated gradients (Eq. 1) for a model F and path function γ(α), α ∈ [0, 1]
from the input x0 to a baseline which we recall below:

PathIntegratedGradsγ(x0)::=
∫ 1

α=0

∂F (γ(α))
∂γi(α)

∂γi(α)
∂α

dα (1)

Erion et al. [10] extends thiswith themethod of expected gradients, which aggre-
gates the path integrated gradients for a distribution of many paths γ, and specif-
ically considers a collection of paths using a uniform distribution over examples
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from the training set as baseline path endpoints. We now define the generalized
integrated gradients (Eq. 2) over a set S and a probability density function pS:

GeneralizedIntegratedGrads(S)::=ES [∇F ]

=
∫
S

∇F (x)pS(x)dx
(2)

If we follow the method of expected gradients [10] and assume a uniform
distribution over S with |S| the volume (or even more generally the Lebesgue
measure) of S, we obtain Eq. 3:

GeneralizedIntegratedGrads(S)::=
1
|S|

∫
S

∇F (x)dx (3)

The generalized formulation of Eq. 2 includes the expected gradients [10] as
a special case, which in turn includes the path-based integrated gradients [27]
as a special case. To illustrate an immediate advantage over expected gradients,
we define below the local integrated gradients (Eq. 4) for a neighborhood Bε(x0),
i.e. the n-dimensional ball of radius ε centered on an input x0, where n is the
number of dimensions of the input, and Vn(ε) is the volume of the n-dimensional
ball of radius ε. Notice that for ε = ∞, this method is equivalent to expected
gradients when the space is sampled along paths γ between the input x and
examples from the training dataset, but other volume sampling methods are now
available for exploration. Importantly, by controlling the radius ε, we are now
also able to collect the integrated gradients corresponding to a specific locality
(Figs. 4, and 8a), and we can do the same for the other descriptive statistics
which we develop below (Figs. 5, 8b, 6, 8c, 7, 8d).

LocalIntegratedGrads(x0, ε)::=
1

Vn(ε)

∫
Bε(x0)

∇F (x)dx (4)

We then to compute a numerical approximation of the desired integral over
the desired set. We can again follow the example of expected gradients [10] and
collect sample points S within the set S to approximate with a Monte Carlo
integral as follows in Eq. 5, where |S| is the volume of the set S, and |S| is the
number of points in the sample S.

GeneralizedIntegratedGrads(S)::=
1
|S|

∫
S

∇F (x)dx

∼ 1
|S|

[
|S|
|S|

∑
s∈S

∇F (s)

]
=

1
|S|

∑
s∈S

∇F (s) = ES [∇F ]
(5)

3.3 Novel Attribution Measures

Using the above framework developed for generalizing integrated gradients
(Eq. 2), we now propose three new feature attribution measures as descriptive
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Fig. 4. Local integrated gradients of Eq. 4 [best viewed in color]. We can observe how
the choice of ε results in noticeably different attributions, and how the unsigned and
signed visualizations reveal different patterns especially with respect to color channels.
We compute this measure for ε = 1, ε = 500, ε = 2000 (top, middle, bottom row
respectively). Immediately to the right of the input are the attributions visualized
using our unsigned method. We sample Bε(x0) using a reference dataset as in the
method of expected gradients [10], using 100 reference elements and 5 uniform random
sample points on each of these vectors within the ball Bε(x0), for a total of 500 sample
points, yielding a local expected gradients.

statistics which account for different aspects of model behavior. Again assuming
a uniform distribution over S, Monte Carlo approximation with a sample set S
can be applied for each of these measures as easily as for generalized integrated
gradients by following the example of Eq. 5. If we follow the method of selecting
S used for local integrated gradients 4, we can also again compute all of the
following measures according to a desired locality radius ε.

Gradient Variance. Building on the formulation of integrated gradients as a
sample mean by Erion et al. [10], we now construct a sample variance (Eq. 6)
to quantify the dispersion of model gradients over the set S. Note that we again
are able to preserve color channel information, but since variances are strictly
positive measures, we do not need to consider visualizing negative values (Figs. 5
and 8b).

GradientVariance(S)

::=
1
|S|

∫
S

(∇F (x) − ES [∇F (x)])2dx

=ES

[∇F (x)2
] − ES [∇F (x)]2

(6)

Stability We propose a measure of local stability as follows (Eq. 7). For each
sample point s within the set S, we compute the vector s−x0 defining the offset of
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Fig. 5. Gradient variance of Eq. 6 [best viewed in color]. We can again observe the
effect of the locality radius ε and the presence of color-dependent patterns. We also
obtain visualization which are significantly more salient than those we obtained for
local expected gradients (Fig. 4). We use use the same sample scheme and choices of ε
as in Fig. 4. Since variances are strictly positive, we only use our unsigned visualization
method (Sect. 3.1).

this sample point from the original input. We then compute the cosine similarity
of between the offset vector and the gradients at the sample point ∇F (s). The
intuition of this measure is that if the gradients at a sample location point back
toward the input, then that input can be considered ‘stable’, in that the input
is a local optimum. The total stability measure is taken as the expectation of
these angles over the set S as:

Stability(S, x0)::=
1
|S|

∫
S

(x − x0) · ∇F (x)
‖(x − x0)‖‖∇F (x)‖dx

= ES [cos(θ)] ,
θ the angle between ∇F (x) and (x − x0)

(7)

To avoid losing channel-dependent information, we compute three angles
(θrg, θgb, θbr) using pairs of pixels as 2-dimensional vectors. We map the values
θrg to the blue channel, θgb to the red channel, and θbr to the green channel for
Fig. 6.

Consistency Finally, we propose a measure which we call ‘consistency’ (Eq. 8).
For each sample point s within the set S, we compute the cosine similarity of
the gradients of the model at the sample point ∇F (s) and the gradients at the
input ∇F (x0). The intuition of this measure is that if the gradients at a sample
location point in the same direction as the gradients at the input, then the model
gradients are locally consistent with each other. The total consistency measure
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Fig. 6. Stability measure of Eq. 7 [best viewed in color]. We only observe salient images
for small ε, as for larger ε the input x0 is likely no longer a local optimum. We use use
the same sample scheme and choices of ε as Fig. 4.

Fig. 7. Consistency measure of Eq. 8 [best viewed in color]. This measure allows for
determining which pixels the gradients at nearby images x ∈ Bε(x0) either agree or
disagree with the gradients at the image x0. The same sample scheme and choices of ε
are the same as in Fig. 4.

is taken as the expectation of these angles over the set S as:

Consistency(S, x0)::=
1
|S|

∫
S

∇F (x) · ∇F (x0)
‖∇F (x)‖‖∇F (x0)‖dx

= ES [cos(θ)] ,
θ the angle between ∇F (x) and ∇F (x0)

(8)

Again, we preserve the color-dependent information by computing three
angles (θrb, θrg, θbg) using pairs of pixels as 2-dimensional vectors, and map-
ping the similarity value representing a given pair of channels to the remaining
channel for the final visualization (Fig. 7).
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Fig. 8. Histograms of each of our novel measures corresponding to gradients from both
a randomly initialized and fully-trained ResNet-34 (Row 1: goose, Row 2: dog). We can
observe some recognizable parametric families and different paradigms for small and
large ε, with a clear distinction between the trained (blue) and untrained (red) models.
If attribution values converge in distribution during model training, this may reveal
valuable insight regarding future training optimizations, heuristics, and diagnostics.
(Color figure online)

Generalized Integrated Attributions. In the interest of describing all of the
above measures as well as any similarly constructed descriptive statistic using
a single unified formulation, we provide the following definition of a generalized
integrated attribution (Eq. 9). By selecting an attribution function A, a model F ,
a set of interest S, and a probability density function pS, we can access a limitless
number of unique statistics to describe high-dimensional gradient landscapes.

GeneralizedIntegratedAttribution(A, F,S, pS)

::=
∫
S

A(F, x)pS(x)dx
(9)
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Note that we do not necessarily include a particular input x0 as a required
argument, as we can in theory compute attributions over entire sets S without
referring directly to any single input. For the case of local integrated gradients,
the set of interest S is the ε-ball centered at an input x0, but this is a justification
for the choice of S. Note that our stability and consistency measures appear to
require an input x0, but these can be framed instead as particular choices of
attribution function A.

While many interesting attribution measures such as the several new mea-
sures we have introduced above are described by the family of generalized inte-
grated attributions, there are likely many more complex attributions of interest
which cannot be formulated concisely as a single integral or expected value.
Nevertheless, this new formulation can assist in the classification and analysis of
newly-developed attribution measures.

4 Evaluation Using Quantus [13]

In addition to providing the above qualitative attribution outputs, we also con-
sider a quantitative evaluation of our approach, although there is still no broad
consensus regarding reliable metrics for attribution [1,16,24]. We provide some

Table 1. Quantitative evaluation of novel attribution measure family using the Quan-
tus XAI library [13]. Metrics used are: PixelFlipping [3], FaithfulnessCorrelation [6],
MaxSensitivity [28], AvgSensitivity [28], Sparseness [7], Complexity [6]. Results are
averaged over the CIFAR10 [18] test set. Our (local) Expected Gradients, Gradient
Variance, Stabiltiy, and Consistency measures were each computed by Monte Carlo
integration using 100 sample points within the ball of radius ε.

Method ε Faithfulness (↑) Robustness (↓) Complexity

PixFlip FaithCorr MaxSens AvgSens Sparse(↑) Complex(↓)

Integrated Gradients [27] n/a 0.23133 0.04774 0.13018 0.11247 0.59017 6.29801

Saliency [4,23] 0.28260 0.03239 0.13332 0.11957 0.43868 6.60204

GradientShap [20] 0.23266 0.04752 0.18278 0.14631 0.58966 6.29854

FeatureAblation [17] 0.18525 0.13089 0.11974 0.10510 0.58176 6.32653

FeaturePermutation [11] 0.16536 0.14338 0.19927 0.18554 0.55717 6.38713

Deconvolution [29] 0.30896 -0.00627 1.9e-08 1.8e-08 0.51399 6.48971

Expected Gradients 1 0.24490 0.02238 1.13295 1.03500 0.50759 7.58803

103 0.23667 0.01751 1.33943 1.07549 0.46421 7.66907

Gradient Variance 1 0.34443 0.04312 0.78553 0.65590 0.56980 7.41242

103 0.27669 0.03585 1.12104 0.80185 0.46126 7.65275

Stability 1 0.28154 0.01003 1.42457 1.25999 0.41586 7.74354

103 0.28020 -0.00411 1.02010 0.99323 0.41840 7.74035

Consistency 1 0.27990 -0.00454 0.30972 0.29827 0.10239 7.99951

103 0.28233 -0.00418 1.16962 1.09159 0.39830 7.76662
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quantitative results in Table 1 using the Quantus XAI library, which provides a
toolkit of various attribution methods and evaluation. Metrics in this library are
organized into several broad categories such as Faithfulness, Robustness, and
Complexity. Given that each metric is unique and sensitive to its own hyperpa-
rameters, detailed descriptions defining each method are provided by Hedstrom
et al. [13]. We evaluated each attribution method on the full CIFAR-10 [18] test
set, using a pre-trained ResNet-18 model.

5 Conclusion

In this work, we present a generalized formulation of the feature attribu-
tion methods integrated gradients and expected gradients by contextualizing
expected values as general integrals over sets of interest. Furthermore, we demon-
strate how this approach makes available new sources of attribution information,
such as differences between local and nonlocal attribution paradigms, and novel
attribution measures. This framework also allows for new forms of parametric
control over attribution measures such as the choice of locality radius ε and
the sampling distribution over the set S. Overall, this new formulation of inte-
grated attributions represents a significant transition towards a much broader
family of generalizable measures. Additionally, we introduce a novel method for
visualizing attributions which addresses information loss in current approaches.
Such approaches to more explainable AI can have significant societal impact,
enabling better transparency and bias mitigation than treating learning mod-
els as black boxes. Our work to reduce misinformation and bias in feature attri-
butions directly addresses the growing need for transparency and fairness with
respect to machine learning.

5.1 Limitations

Our method depends heavily on Monte Carlo integration, therefore the accu-
racy, computational efficiency, and robustness of our attribution results like-
wise depend on the design and incorporation of effective numerical integration
schemes. Specifically, for large sets S, or equivalently large radius ε, the number
of sample points required to obtain a good approximation of the true integral
increases exponentially. Similarly, any axiomatic properties of our family of mea-
sures would also depend on a good approximation of the underlying integral, so
this poses a computational challenge to scaling if we desire to measure attribu-
tions over large sets. Note however, that other state-of-the-art methods such as
expected gradients methods have similar numerical scaling limitations.

Future Work Numerical techniques, such as those developed by Mitchell et
al. [22], Reeger et al. [25], and Hesse et al. [14], may serve to improve the effi-
ciency and accuracy of integrated attributions. Additionally, we can conduct
convergence analyses for hyperparameters such as the sample size and the local-
ity radius ε, and we can explore the metrics based on Aumann-Shapley values
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developed by Lundberg et al. [19]. In addition, we should assess our new family
of measures using an analytic or algebraic approach similar to the selection of
desirable axioms by Sundararajan et al. [27] and Merrill et al. [21]. Erion et al.
[10] made another significant contribution with their method of using attribution
prior for training regularization, so we should apply this technique to train mod-
els using our new measures for these attribution priors. To explore additional
sources of model attribution, and since integrated gradients forms the basis for
layer conductance [26], we should develop implementations of our new measures
which can be applied within the space of convolutional filters. Extending attri-
bution measures to applicability in the abstract feature space may also have the
benefit of revealing new sources of relevant attribution information.
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