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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. The Earth Mover’s Distance (EMD) is the measure of choice
between point clouds. However the computational cost to compute it
makes it prohibitive as a training loss, and the standard approach is to
use a surrogate such as the Chamfer distance. We propose an attention-
based model to compute an accurate approximation of the EMD that
can be used as a training loss for generative models. To get the neces-
sary accurate estimation of the gradients we train our model to explic-
itly compute the matching between point clouds instead of EMD itself.
We cast this new objective as the estimation of an attention matrix that
approximates the ground truth matching matrix. Experiments show that
this model provides an accurate estimate of the EMD and its gradi-
ent with a wall clock speed-up of more than two orders of magnitude
with respect to the exact Hungarian matching algorithm and one order
of magnitude with respect to the standard approximate Sinkhorn algo-
rithm, allowing in particular to train a point cloud VAE with the EMD
itself. Extensive evaluation show the remarkable behaviour of this model
when operating out-of-distribution, a key requirement for a distance sur-
rogate. Finally, the model generalizes very well to point clouds during
inference several times larger than during training (https://github.com/
atulkumarin/DeepEMD).

Keywords: Earth Movers Distance (EMD) · Point Clouds ·
Generative Modeling · Wasserstein Distance

1 Introduction

The earth mover’s distance (EMD), also known as Wasserstein distance is a
distance between distributions that is defined as the minimum total of mass-
time-distance displacement needed to transform one distribution to the other.
In the case of uniform distributions over a finite number of points, it turns into a
distance between point clouds that corresponds to finding the one-to-one match-
ing that minimizes the sum of the distances between pairs of matched points.
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Since there is no inherent ordering in point cloud data, computing the EMD
between two point clouds involves finding a matching based on the euclidean
distance between points. The matching is constrained to be bipartite so that
one point cloud is completely transformed to the other, without any fractional
assignment, and the transport cost is minimal.

Fig. 1. Example point clouds (blue)
and their VAE reconstructions
(orange) when trained with differ-
ent reconstruction losses. Training
with DeepEMD (bottom) consistently
achieves lower reconstruction error
(EMD, shown on top of each example)
than with the standard Chamfer
distance (top). (Color figure online)

Fig. 2. Example pairs of point clouds.
The true earth mover’s distance (top)
and Chamfer distance (bottom) are
shown above each example. Arrows
indicate the matching between the two
point clouds under their respective
metrics.

The EMD is the most commonly used distance metric on point clouds, and
is extremely useful in many different contexts. In particular as we will see for
both assessing the performance of, and for training variational autoencoders,
since the generated point cloud should get as close as possible to the target in
terms of displacement. It can also be interpreted as the distance between two
distributions computed with a finite number of samples and reflects the notion of
nearness properly, does not have quantization/binning and non-overlapping sup-
port problems of most other metrics, e.g., f -divergences, total variation distance,
etc.

The EMD between point clouds can be computed exactly, but it is extremely
expensive computationally. The standard method is the Hungarian matching
[12] algorithm whose complexity is O(N3) where N is the number of points. Due
to this computational cost, training deep generative models for point clouds is
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not done with this metric, even though it is a metric of choice for performance
evaluation. The standard approach uses the Chamfer distance (CD) as surrogate.
This metric can be computed in O(N2) time complexity but relaxes the one-to-
one matching, which may create pathological situations.

We propose a deep architecture that takes as input two point clouds encoded
as sets of geometric coordinate tuples, and computes an accurate estimate of the
EMD. We show that the most efficient approach, in particular if that estimate
is used as a loss for a training process, is to estimate the matching matrix itself.
Since the EMD is the sum of the distance between matched points, this approach
provides a very accurate estimate of the gradient with respect to the point coor-
dinates. Training a deep variational autoencoder with our model instead of an
exact computation is up to ×100 faster (see Fig. 8), and the resulting model per-
forms far better than one trained with the usual Chamfer surrogate (see Sect. 4.4
and Fig. 7).

The key contributions of this paper can be summarized as:

– We propose DeepEMD which approximates the EMD between point clouds
in O(N2) time complexity vs O(N3) of the hungarian algorithm (Sect. 3).

– We propose to cast the prediction of a bipartite matching as an attention
matrix from which we get an accurate estimate of the EMD and its gradient
(Sect. 3.2).

– We show that DeepEMD generalizes well to unseen data distributions
(Sect. 4.3), and can be used for evaluation of generative models. It provides
accurate estimates of the gradients of the distance and demonstrate that
DeepEMD can be used as a surrogate reconstruction loss for training deep
generative models of point clouds (Sect. 4.4).

– We show that DeepEMD achieves about 40× speed-up over Sinkhorn algo-
rithm, achieving equal or better performance for various metrics (Sect. 4.3).

2 Related Work

The two commonly used distance metrics for point clouds in literature are Earth
Mover’s Distance (EMD) and Chamfer Distance (CD). Consider two point clouds
X = {xi}N

i=1 and Y = {yj}N
j=1, where xi, yj ∈ R

d. The EMD between the two
point clouds can be computed as,

EMD(X,Y ) = min
φ∈M(X,Y )

∑

x∈X

‖x − φ(x)‖2, (1)

where M(X,Y ) is the set of 1-to-1 (bipartite) mappings from X to Y . In addition
to the distance, the optimal matching φ∗ is also interesting for some applications.
Since directly optimizing the EMD is computationally expensive, most methods
in the literature rely on CD as a proxy similarity measure or reconstruction loss.
The CD can be computed as,

CD(X,Y ) =
∑

x∈X

min
y∈Y

‖x − y‖22 +
∑

y∈Y

min
x∈X

‖x − y‖22, (2)
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and in O(N2) time complexity. The CD solution leads to a non-bipartite one-to-
many matching between x → y and vice versa. We can also use the L2 measure
with d = ‖x − y‖2 instead d = ‖x − y‖22 to make it comparable to EMD. of
Note that the above EMD for point clouds is related to the Wasserstein-2 metric
(see appendix Sect. A for details). The utility of EMD is limited by the O(N3)
computational cost of evaluating it. There have been several research efforts to
circumvent this issue in various application settings.

This is the case for application to point clouds where N is usually in the range
of several thousands. SetVAE [11] trains a variational auto-encoder with CD as
the reconstruction loss. EMD is still the metric of choice for evaluating point
cloud generative models [1,10,11,13,15,21]. Another issue is disparity between
performance measures (minimum matching distance, coverage, etc.) computed
with EMD and CD, the comparisons are contradictory and often inconsistent
across measures.

CD is usually insensitive to mismatched local density while EMD is dom-
inated by global distribution [19] and overlooks the fidelity of detailed struc-
tures. [19] proposes a new similarity metric called Density-aware Chamfer dis-
tance (DCD) to tackle these issues. DCD is derived from CD and can also be
computed in O(N2) time complexity. [16] proposed Deep Point Cloud Distance
(DPDist) which measures the distance between the points in one cloud and the
estimated continuous surface from which the other point cloud is sampled. The
surface is estimated locally by a network using the 3D modified Fisher vector
representation.

[14] proposed a linear time algorithm for approximating the EMD by exploit-
ing the Hölder continuity constraint in its dual form to convert it into a sim-
ple optimization problem with an explicit solution in the wavelet domain and
computed as the sum of absolute values of the weighted wavelet coefficients
of the difference histogram. However, their approach is limited to low dimen-
sional histograms. In the optimal transport literature, several efforts have been
taken towards improving the statistical and computational properties. Recently,
[5] proposed Information Maximizing Optimal Transport (InfoOT) which is an
information-theoretic extension of optimal transport based on kernel density
estimation of the mutual information which introduces global structure into
OT maps. The resulting solution maximizes the mutual information between
domains while minimizing geometric distance and improves the capability for
handling data clusters and outliers.

Other approaches focus on regularizing the OT problem for making it smooth
and strictly convex [3,6,7,9]. Sinkhorn distances [6] smooth the classic OT
problem with an entropic regularization term and can be computed through
Sinkhorn’s matrix scaling algorithm at a speed that is several orders of mag-
nitude faster than that of transport solvers. We provide more details in the
appendix. Meta OT [2] proposes a meta model to predict the solution to the
optimal transport problem which is then used to initialize a standard Sinkhorn
solver to further refine the predicted solution. The architecture of the meta model
depends on the data domain, and DeepEMD can be utilized when working with
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point clouds. The choice of meta model architecture is contingent upon the spe-
cific data domain, and DeepEMD demonstrates its exceptional utility in point
cloud processing.

In this paper, our goal is to approximate the EMD using a deep network in a
learning based paradigm where each sample represents two distributions and the
target for regression is either the true metric i.e. EMD or the optimal matching
φ∗, or both. Existing point cloud datasets can serve as an interesting learning
problem, where we can interpret each point cloud as a 2D or 3D distribution of
points on a shape (manifold). It is posed as a supervised learning problem where
the task is to estimate the true EMD, or the true bipartite matching, or both,
between a pair of input point clouds.

3 Method

Fig. 3. The MLP model (see Sect. 3.1)
predicts directly an estimate d̂ of the
EMD.

Fig. 4. The transformer model for
DeepEMD (see Sect. 3.2) predicts
directly the bipartite graph as an atten-
tion matrix.

We are interested in building a model which operates on a pair of point clouds
(U, V ) as input, where U, V ∈ DN , U = {ui}N

i=1, V = {vj}N
j=1, ui, vj ∈ R

D, and
N is the cardinality of the point clouds. Note that the points are unordered and
the indexing is arbitrary. We denote the earth mover’s distance between them
as d = EMD(U, V ) where d ∈ R. The goal of the model is to predict d and ∇d.
Also, let M ∈ {0, 1}N×N denote the ground truth bipartite matching from EMD,
where Mi,j = 1 indicates that ui is matched to vj and vice-versa. Bipartite-ness
implies ∀j,

∑
i Mi,j = 1 and ∀i,

∑
j Mi,j = 1.

Since point clouds are unordered and invariant to elementwise permutation,
we seek mappings f : DN × DN → R which are permutation invariant for any
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permutations π and π′, i.e.,

f(U, V ) = f(π(U), π′(V )), (3)

In the following sections, we first introduce a simple MLP based baseline,
followed by our transformer-based model, DeepEMD.

3.1 Predicting the Distance

We propose a simple MLP baseline composed of a point-wise MLP backbone,
followed by a prediction head which is also a MLP (see Fig. 3). The backbone
MLP takes a point cloud and returns an embedding e ∈ R

d as,

eu =
n∑

i=1

g(ui), ev =
n∑

j=1

g(vi) (4)

The prediction head then produces the final prediction as,

d̂ = h (eu ⊕ ev) + h (ev ⊕ eu) , (5)

where ⊕ denotes vector concatenation. Both g and h are composed of sequential
linear layers with ReLU non-linearity between layers. The embeddings are per-
mutation equivariant because of the sum aggregation which does not depend on
the ordering of points. Further, we concatenate the embeddings both ways as in
Eq. (5), which makes the mapping symmetric. We train the model with mean-
squared error loss, l = (d − d̂)2. Since the model does not predict the matching,
we can interpret it from the direction of the gradient of a point δvj =

[
∂d̂
∂V

]

j
,

e.g., by taking cosine similarity between δvj and ui − vj , where ui is the point
matching to vj from EMD.

3.2 Predicting Bipartite Matching

The transformer [18] intuitively seems to be a very good model for reasoning
with point clouds and matching. Moreover, by considering that the output is
the last layer’s attention matrix, we can use it to directly predict the bipartite
matching. Since the EMD–and consequently its gradient with respect to the
point positions–is a function of the point positions and the matching array, pre-
dicting the latter leads to an accurate estimate of the former, that in particular
is shielded from the issue of a possible decoupling between matching a func-
tional point-wise (e.g. for MSE) and matching the gradients. While it is viable
to directly predict the distance with a transformer-like architecture, we chose
to only predict the matching since it is straightforward to estimate the distance
using the predicted matching.

We propose DeepEMD composed of a sequence of multi-head full attention
layers, followed by a prediction head which is also a full attention layer, but
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with a single head. Given two point clouds U and V , add a learned cloud-
specific positional embedding to indicate if a point originates from U or V , we
concatenate the points sequence and feed the resulting I = U ∪ V as input to
the model. The group-id embedding helps the model in modulating attention
locally within a point cloud as well as globally across both point clouds. We
tried other variants with self-attention layers, cross attention layers, and an
alternating mixture of both, but found full attention over both point clouds to
be best performing.

For our problem, we get the input X for the transformer by adding positional
embeddings to I. Let 0n and 1n denote a vector of n zeros and ones, respectively.
X is then obtained as,

P = 0n ∪ 1n, X = I + WP [P ] (indexing) (6)

The intermediate feature t(X) from the transformer encoder (see appendix
for details) has the same number of elements as X with each element now being a
contextualized representation for the corresponding point in the input. Further,
these intermediate representation are fed into a single-head attention layer which
outputs the attention matrix as,

K = t(X)WK , Q = t(X)WQ, A =
QK�

dk
(7)

At = A:n,n: Ab = An:,:n (8)

Here, A is a 2N×2N matrix and we slice the top-right block (first N rows and
last N columns) as At and bottom-left block (last N rows and first N columns)
as Ab. At

i,j can be interpreted as the relatedness of ui with vj . Similarly, Ab
i,j

can be interpreted as the relatedness of vi with uj .
Given M , the ground truth bipartite matching from EMD, we define the loss

as average of the cross-entropies (CE) as,

l(U, V ) =
1
N

N∑

i=1

CE(At
i,.,Mi,.) +

1
N

N∑

i=1

CE(Ab
i,.,M.,i) (9)

The EMD is then estimated with the predicted matching as,

φb(i) = arg max
j

Ab
i,j , φt(i) = arg max

j
At

i,j (10)

d̂ =
1
2

(
∑

i

‖ui − vφt(i)‖ +
∑

i

‖vi − uφb(i)‖
)

(11)

4 Experiments

In this section, we present the overall experimental setup, performance results
and comparisons of DeepEMD across various tasks.
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Fig. 5. Scatter plot for true vs. approximate EMD from different models/metrics on
validation splits for Syn2D and ShapeNet datasets. DeepEMD (ours) consistently per-
forms better across different categories as it has less dispersion. Sinkhorn algorithm
becomes more accurate with more iterations. Also note that it encounters numerical
errors for some examples.

4.1 Datasets

We consider different datasets for our experiments - Syn2D, ShapeNet [4], Model-
Net40 [20] and ScanObjectNN [17]. Syn2D consists of 2D point clouds generated
synthetically by sampling points on squares and circles (see Fig. 2). ShapeNet
and ModelNet40 are datasets of 3D point clouds derived from 3D CAD models
for different real world objects like chairs, cars, airplanes, etc. ScanObjectNN is
a relatively new real-world point cloud object dataset based on scanned indoor
scene data. In order to improve and assess generalization, we augment the train
and test splits with synthetic perturbations. We provide more details about the
datasets and these augmentations in the Appendix Sect A.

4.2 Performance Measures

We consider various measures to assess EMD approximation methods for dis-
tance as well as matching estimation. We compare accuracy and computation
time to that of Sinkhorn and CD (see Sect. 2).
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Fig. 6. CDF of cosine similarity between true and estimated gradients for all points
across all point clouds collected together on validation splits for Syn2D and ShapeNet
datasets. The ideal cdf curve should have all the mass at cosine similarity 1. DeepEMD
(ours) consistently outperforms all the other methods across different datasets.

Distance Estimation. We visualize the true vs. predicted distance through scat-
ter plots (Fig. 5), we expect the data points to be close to x = y line. We compare
various correlation measures : linear correlation (r), Spearman correlation (ρ)
and Kendall-Tau correlation (τ), to assess the quality of distance estimation.
The Spearman and Kendall-Tau are rank-statistic based correlation measures,
indicative of the correspondence between two rankings. Note that, correlation
measures are useful metrics as they indicate appropriateness of the predicted
metric as a distance measure, irrespective of their absolute values. Addition-
ally we look at different quantiles (REn) of relative approximation error, which
penalizes the difference between absolute values of the predicted and true dis-
tance.

Matching Estimation. In order to assess quality of the matching, we consider
the cosine similarity between the true and predicted gradient. The true gradient
of EMD is always along the matched point. We visualize the cumulative distri-
bution function (cdf) of cosine similarities (Fig. 6), where we expect all the mass
to be close to 1. We also look at different quantiles (CSn) of the cosine simi-
larity. We also consider accuracy which is computed as the average accuracy of
matching source points to target points and vice-versa, bipartiteness (B) which
is fraction of points with bipartite matching, and also bipartiteness-correctness
(Bcorr) which is fraction of points which are bipartite as well as matched cor-
rectly.

4.3 Results

EMD Prediction. Figure 5 shows the scatter plot of the true EMD vs. approxi-
mate EMD predicted from our trained models on the validation split for Syn2D
and ShapeNet datasets. Note that the validation split also contains the aug-
mentations as discussed in Sect. 4.1. We also validate on specific splits for which
the results are shown in the appendix. The plots indicate that both DeepEMD
(Fig. 5c) and MLP baseline (Fig. 5b) approximate the EMD faithfully. The MLP
baseline seems to struggle a bit on ShapeNet Chair dataset. The higher dis-
persion in Chamfer (Fig. 5a) and Sinkhorn with 10 iterations (Fig. 5d) indicates
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poor EMD estimation. The approximation with Sinkhorn algorithm becomes
more accurate with higher number of iterations (Fig. 5e), as expected.

We summarize various metrics in Tables 5, 6 and 7 the appendix. DeepEMD
and MLP baseline both achieve linear correlation higher than 0.99 in each case.
The models achieve Kendall-Tau correlation close to 0.99 and 0.96, respectively,
and Spearman correlation close to 0.99 in each case, indicating that ordering of
the samples based on approximate distances and true distances are very similar,
and monotonocity of samples are preserved. It can be observed that DeepEMD
is best except for relative error where it may do worse than our method with
MLP. Also it is interesting to note that Sinkhorn performs worse than DeepEMD
on correlation- or relative error-based measures.

Matching/Gradient Prediction. Estimating the matching and gradient of the
distance is particularly important for training models with DeepEMD as a sur-
rogate distance function. Note that the gradient of a point from true EMD is
always along the matched point in the other point cloud. Figure 6a shows the cdf
of cosine similarity between the true and estimated gradient for all the points
across all point clouds collected together for Syn2D, while Figs. 6b, 6c, and 6d for
ShapeNet. The cdf has most mass at cosine similarity close to 1 with a very short
tail and is never negative indicating that the estimated gradient is aligned with
the true gradient for DeepEMD. This is particularly important when the model
is used as a surrogate reconstruction loss. Ideally, the model should provide good
estimate of the true gradient throughout training and more particularly in the
very beginning when the reconstructions are very noisy, and also towards the
end when reconstructions likely become very similar to the training distribu-
tion. We discuss more on this in the next sections and the appendix. The MLP
baseline usually did not perform well in this regard and also in generalizing to
unseen examples and thus was not useful for training generative models. The
same issue can be observed with Chamfer distance as well. Table 5 (appendix)
shows the cosine similarity quantiles (CSn), as well as accuracy, bipartiteness
(B) and bipartiteness-correctness (Bcorr). DeepEMD performs better than other
models and metrics in each of these measures and indicates better matching
approximation.

Out-of-Distribution Generalization. The generalization of the prediction to a
novel distribution is particularly important for a surrogate metric. We test the
out-of-distribution behaviour of our models in two different settings : Table 1
shows the generalization performance of the model trained on a single cate-
gory of ShapeNet and tested on validation split of multi-category ModelNet40
dataset, while Tables 8, 9 and 10 in the appendix show the performance when
tested on different ShapeNet categories. The results indicate that DeepEMD
generalizes well when test and train data differ without any adaptation or fine-
tuning. Further, the validation performance on a category of a model trained on
another category (see Appendix for details) is very similar to the performance of
the model trained on the same category. These quite remarkable behaviors point
towards the network “meta-learning” in some way the matching algorithm. This
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Fig. 7. Comparison of EMD between input and reconstructed point clouds from Set-
VAE trained with different reconstruction losses. The better model should have smaller
reconstruction loss and thus mass close to zero in the histograms. DeepEMD (ours) is
consistently better as compared to Chamfer loss and very similar to EMD loss.

is further strengthened by the results on scaling to different number of points
during test time as shown in Table 2.

Scaling Number of Points. Remarkably, the size of point clouds during testing
can differ greatly from those during training without degrading performance.
Table 2 shows performance of the model for test point cloud sizes ranging from
256 to 8196, while training was done with only 1024 points. Prediction of the
metric itself (top 6 rows) does not degrade for all practical purposes. Regard-

Table 1. Out-of-distribution (dataset) generalization for our models and comparison
with other metrics (Chamfer and Sinkhorn), tested on full validation split for Model-
Net40 (with 40 categories) and ScanObjectNN (with 15 categories). The models are
trained on a single ShapeNet category. The reported numbers are averaged over these
categories as well as four training seeds. The first six rows show distance estimation
metrics (see Sect. 4.2), while the last six rows correspond to matching estimation met-
rics. The arrows next to the metrics indicate whether higher (↑) values are better or
lower (↓). Chamfer and Sinkhorn are deterministic, thus variances are not reported.
Further, MLP does not provide accuracy and bipartiteness metrics.

dataset ModelNet40 ScanObjectNN

model chamfer sinkhornmlp deepemd chamfer sinkhornmlp deepemd

r (↑) 0.951 0.971 0.959 ± 0.011 0.999 ± 0.0 0.971 0.929 0.965 ± 0.005 0.997 ± 0.001

ρ (↑) 0.935 0.988 0.945 ± 0.017 0.999 ± 0.0 0.979 0.965 0.963 ± 0.007 0.999 ± 0.0

τ (↑) 0.792 0.983 0.819 ± 0.024 0.974 ± 0.002 0.882 0.968 0.855 ± 0.011 0.973 ± 0.002

RE0.1 (↓) 0.03 0.057 0.009 ± 0.001 0.005 ± 0.002 0.025 0.038 0.013 ± 0.001 0.004 ± 0.001

RE0.5 (↓) 0.129 0.102 0.062 ± 0.005 0.019 ± 0.004 0.094 0.078 0.076 ± 0.005 0.019 ± 0.004

RE0.9 (↓) 0.321 0.2 0.257 ± 0.03 0.04 ± 0.004 0.282 0.244 0.299 ± 0.025 0.051 ± 0.005

CS0.1 (↑) −0.067 0.824 −0.293 ± 0.0470.927 ± 0.003 0.138 0.879 −0.208 ± 0.0420.946 ± 0.002

CS0.5 (↑) 0.834 0.986 0.684 ± 0.023 1.0 ± 0.0 0.917 0.992 0.719 ± 0.02 0.999 ± 0.0

CS0.9 (↑) 0.997 0.999 0.96 ± 0.003 1.0 ± 0.0 0.998 1.0 0.965 ± 0.003 1.0 ± 0.0

Accuracy (↑) 12.651 31.91 - 56.38 ± 0.604 7.673 20.04 - 40.671 ± 0.62

B (↑) 17.045 33.458 - 70.401 ± 0.672 9.474 19.43 - 56.269 ± 0.71

Bcorr (↑) 6.544 19.615 - 47.084 ± 0.741 3.38 9.961 - 30.055 ± 0.678
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ing the matching estimation, directional measure of performance related to the
cosine similarity (rows CSn) do not degrade neither. We can notice degradation
in accuracy based measures (last 3 rows) which is natural since the problem
becomes difficult with increasing number of points N because of its combina-
torial nature. For training when memory requirement is much higher due to
backprop, we can use smaller number of points, and scale it up during inference
without any fine-tuning.

Table 2. Scaling number of points and out-of-distribution (scale) generalization for
DeepEMD. The models are trained on a single ShapeNet category with 1024 points
and tested on validation split of same category but with different number of points.
Reported values are averaged over 4 training seeds. DeepEMD generalizes well to
unseen number of points at test time without fine-tuning.

←− Less # points than training −→ Trained ←− More # points than training −→
# points 256 512 768 1024 2048 4096 8192

r 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.999 ± 0.0 0.999 ± 0.001

ρ 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.999 ± 0.0 0.998 ± 0.0

τ 0.985 ± 0.0 0.987 ± 0.0 0.988 ± 0.0 0.988 ± 0.001 0.986 ± 0.001 0.981 ± 0.002 0.974 ± 0.004

RE0.1 0.002 ± 0.001 0.002 ± 0.001 0.004 ± 0.002 0.007 ± 0.003 0.012 ± 0.005 0.013 ± 0.007 0.014 ± 0.008

RE0.5 0.01 ± 0.002 0.011 ± 0.002 0.014 ± 0.003 0.017 ± 0.005 0.027 ± 0.009 0.034 ± 0.013 0.04 ± 0.016

RE0.9 0.026 ± 0.003 0.026 ± 0.003 0.029 ± 0.004 0.032 ± 0.005 0.042 ± 0.009 0.054 ± 0.013 0.066 ± 0.018

CS0.1 0.94 ± 0.002 0.955 ± 0.002 0.961 ± 0.001 0.964 ± 0.001 0.967 ± 0.001 0.967 ± 0.001 –

CS0.5 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 –

CS0.9 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 –

Accuracy 72.348 ± 0.44 69.384 ± 0.383 66.901 ± 0.379 64.648 ± 0.404 57.588 ± 0.464 47.78 ± 0.51 35.274 ± 0.483

B 81.857 ± 0.755 80.101 ± 0.547 78.013 ± 0.507 75.896 ± 0.521 68.658 ± 0.584 58.109 ± 0.597 44.603 ± 0.734

Bcorr 64.838 ± 0.756 61.558 ± 0.587 58.545 ± 0.547 55.719 ± 0.568 46.831 ± 0.618 35.053 ± 0.6 21.606 ± 0.469

Computational Time and Complexity. Figure 8 compares the evaluation time
for different models and metrics. DeepEMD achieves a significant speedup of
about 100× as compared to EMD and 40× as compared to Sinkhorn with 100
iterations. This speedup becomes more pronounced on bigger point clouds as
hungarian algorithm takes O(N3) time vs. O(N2) for DeepEMD.

4.4 DeepEMD Used as a Loss

Training a SetVAE, as for any auto-encoder, requires a reconstruction loss to
assess the quality of the learned representation. While the eventual goal would
be to minimize the EMD, standard approach uses Chamfer Distance due to
the prohibitive computation cost of calculating the EMD. Instead of Chamfer
Distance we propose to use DeepEMD and demonstrate its utility as a recon-
struction loss as compared to Chamfer Distance.

DeepEMD was trained separately on each category of ShapeNet dataset and
the trained model was then used as a surrogate reconstruction loss for training a
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variational auto-encoder. We use SetVAE [11], a transformer based VAE adapted
for point clouds and set-structured data. The parameters of DeepEMD module
are frozen during training of the SetVAE. We follow exactly the same protocol
as in SetVAE and train using ShapeNet categories of airplane, chair, and car
and also the same hyper-parameters for training. Figure 1 and Fig. 9 (appendix)
shows the reconstruction on validation data achieved by SetVAE models trained
with different reconstruction losses. DeepEMD consistently achieves lower recon-
struction EMD as compared to CD. This is further verified from Fig. 7 which
shows the distribution of true EMD between a point cloud and its reconstruction.

Fig. 8. Comparison of empirical evaluation time and different performance measures:
Accuracy (left) and Kendall-Tau correlation τ (right). We use Python Optimal Trans-
port (POT) library for computing Sinkhorn distances, and show metrics at different
iterations (5, 10 and 100). DeepEMD is ∼ 100× and ∼ 40× faster than Hungarian
algorithm and Sinkhorn (100 iterations), respectively.

5 Conclusion and Future Work

We propose DeepEMD, a method for fast approximation of EMD, improving
time complexity from O(N3) to O(N2). It is composed of a multi-head multi-
layer transformer, followed by a single-head full attention layer as the final output
layer. It operates on two point clouds and outputs an attention matrix which
is interpreted as the matching matrix and optimized to match the ground turh
matching obtained from the hungarian algorithm. We demonstrated the effective-
ness of DeepEMD in approximating the true EMD for synthetic 2D point clouds
as well as real world datasets like ShapeNet, ModelNet40 and ScanObjectNN. It
achieves a speed-up of ×100 with 1024 points. Further, we show that it estimates
the gradients well, generalizes well for unseen point clouds (or distributions), and
can be used for end-to-end training of point cloud autoencoders achieving faster
convergence than Chamfer distance surrogate. It would be interesting to explore
fast transformer variants to further improve from the quadratic time complexity
for future work. In terms of architecture various pooling/un-pooling strategies
can be explored which can help with both, better time complexity and improved
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feature learning. In this work, we estimate the Wasserstein−2 metric, and exten-
sion to other Wasserstein−p metrics and other optimal transport problems could
also be interesting for various applications. Lastly, extension to general proba-
bility distributions with fractional assignments (i.e. mass splitting) can also be
very useful and valuable for some applications.
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Abstract. While deep learning has seen consistent improvements in
medical imaging applications, one of the biggest hurdles for further gains
is the need for large amounts of data. This data is not always readily
available for different reasons, e.g., due to a lack of experts to anno-
tate the samples. Equivariant neural networks have proven to be a way
to increase data efficiency by, e.g., forgoing the need for data augmenta-
tion. This study extends previous research on group-equivariant networks
applied to transmission electron microscopy (TEM) images of different
types of viruses. It is shown that group equivariant networks, when com-
pared to baseline convolutional networks, obtain higher accuracies by 1.4
to 2.3% when increasing the training epochs from 300 to 2400. Further-
more, data augmentation strategies by rotations and reflections, as well
as pre-training on ImageNet, can be skipped. When turning off batch
normalization, the performance of the equivariant networks drops about
25% while the baseline fails to converge, implying that equivariance and
batch normalization extract improved information from data by differ-
ent mechanisms. The VGG16 architecture outperforms a smaller custom
architecture by 3.9 to 4.4%, while the choice of symmetry group does not
impact performance significantly. This study contributes to predictable
scaling, which is already of great importance in, e.g., the training of
large language models. Predictable scaling is expected to increase in sig-
nificance in the field of biomedical image analysis since the model and
dataset sizes continue to grow.

1 Introduction

This paper provides an overview of deep learning in biomedical image analysis,
recent advances in equivariant neural networks, and promising strategies based
on empirical deep learning.

The success of deep learning in biomedical image analysis is owed to several
factors. Two of the most important ones are the availability of large amounts of
annotated data and computational power. Larger datasets tend to need larger
models to correctly discriminate between the fine-scale differences between the
classes of the data [11]. Increasing the architecture size can however increase the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15304, pp. 16–31, 2025.
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risk of overfitting to the training data as more parameters are used to distinguish
between the details of the data.

Equivariant neural networks have shown to be more efficient than baseline
convolutional neural networks (CNNs) in several respects, including accuracy
on the test set, convergence speed during training and reducing the need for
data augmentation [2–4]. These improvements follow from the equivariant net-
works’ capacity to learn symmetries in the data while decreasing the number of
parameters, reducing the risk of overfitting.

When developing deep learning classifiers, in biomedical image analysis, or
similar problem settings, one of the main goals is usually a model that yields
the highest possible accuracy on the test set [6]. Also important is the training
techniques involved during the development process [19], such as transfer learn-
ing. This is relevant not only during research and development in new problem
settings but also if older models need retraining to adapt to new settings, such
as if a different microscope is used to acquire new images.

Since one of the main driving forces behind deep learning is the increasing
amount of training data, training time is expected to increase as the years go
by. Even if more powerful computational hardware becomes available, such as
better Graphical Processing Units (GPU) [15] or more specialised Application
Specific Integrated Circuits (ASIC) [17], the cost of training is still expected to
go up in terms of electricity consumption or time spent waiting for the model
to finish training. Therefore, progress towards reducing the amount of training
data needed, and by extension the amount of computations, is highly valued.
Equivariant neural networks have shown to be more data efficient than their
baseline equivalents in biomedical image analysis contexts [16].

Characterizing the behaviour during training while varying the amount of
data or the architecture size is called predictable scaling [13]. This strategy is
used in the development of, e.g., large language models [22] when it is not feasible
to tune models comprehensively. Typically, the error on the test set is plotted
against varying sizes of data of number of model parameters in a log-log plot,
yielding a power law. In the field of molecular dynamics, the power law exponents
have shown steeper for equivariant networks, meaning it is more data efficient
than the baseline models [1]. However, it is unclear how general these effects are.

The purpose of this study is to dive deeper into equivariant neural networks
by varying the components of the trained models. Varying datasets is highly
interesting for investigating how general the results are, but data variation is
not the focus of this study. Here we instead vary other factors such as training
times and model architectures. The role of optimizations such as batch normal-
ization is also investigated. In addition, training times and test set accuracies are
measured. The experiments are carried out on a dataset of Transmission Elec-
tron Microscopy (TEM) images, containing different types of viruses [20]. This
dataset is highly relevant for characterizing equivariant neural networks, as the
orientation under the microscope does not matter, making the images globally
invariant. Still, local structures could convey important information for classifi-
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cation, which equivariant networks could exploit more efficiently than baseline
architectures.

The rest of the paper is organized as follows. In Sect. 2, related work on
equivariant neural networks is presented. Section 3 introduces the data, designs
and experimental setups. Section 4 demonstrates the results, which are discussed
in Sect. 5. Finally, Sect. 6 presents the conclusions of the paper.

2 Related Work

In Sect. 2.1, we introduce theoretical concepts of equivariant neural networks.
Empirical results of previous works are then presented in Sect. 2.2.

2.1 Theory

While Visual Transformers (ViT) have recently become one of the most success-
ful deep learning architectures [10], they lack some of the advantages of their
forerunners, the convolutional neural networks (CNNs). A consequence of the
design of CNN architectures is their equivariance to translations, or shifts, in
the input image. This means that any shift of an object in an image yields a
feature map after convolution that is identical to a shift applied to the feature
map directly. The convolution operator (C) and the shift transformation (T ) is
commutative. This can be expressed in the following equation:

T (C(x)) = C(T (x)) (1)

where x is the input image. This makes it possible to construct translation
invariant classifiers by combining convolutional layers with pooling and fully
connected layers.

This property does not hold for other distance-preserving transformations
such as reflections and rotations. The field of equivariant neural networks extend
these properties to both continuous and discrete symmetries. One of the most
used ways of achieving this in practice is group-equivariant convolutional net-
works [8]. At the core of such networks is the G-convolution, which generalizes
the convolution operator. First, a symmetry group, i.e. symmetries of an object,
is chosen. An example is the P4 group consisting of multiples of 90 degree rota-
tions in addition to translations. Then, the kernel for each filter is transformed
by the components of the group. For the P4 group, the kernel is rotated by 0,
90, 180 and 270 degrees, and each output after convolution is stored in a stack of
feature maps. Invariant classification follows from a special group pooling layer.
This is useful for e.g. rotation-invariant classification of cells.

Several other methods for achieving equivariance to various transformations
exist. Attentive Group Equivariant Convolutional Networks combine the atten-
tion mechanisms of transformers with group convolutions [24]. The method of
learning steerable filters uses learnt basis filters for continuous resolution in ori-
entation [28]. CFNET uses conic convolutions combined with the 2D discrete
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Fourier transform to achieve equivariance to the transformations of the P4 sym-
metry group [7]. Another approach is to transform the filters themselves directly,
which has been done for rotations [9]. The framework of E(2)-equivariant steer-
able CNNs implements many of these methods on the R

2 Euclidean space [27]
in a pytorch package. The E(N)-equivariant steerable CNNs framework works
by a similar principle on the R

3 Euclidean space [5].

2.2 Empirical Results

Equivariant neural networks have shown several improvements over baseline
CNNs, including higher accuracy on the test set with an intact accuracy on
the training set, meaning less overfitting. Furthermore, data augmentation steps
can be skipped, as shown for biomedical image analysis applications including
diagnosis of oral cancer based on cytology, mitosis detection, cell boundary seg-
mentation and vessel segmentation [2,3]. This holds for various imaging modal-
ities, including reflected light microscopy, transmission light electroscopy, and
TEM. Similar improvements have been seen in 3D for synthetic datasets [12].

Another improvement is faster convergence during training. This has been
demonstrated in different problem settings and modalities, including rotation-
equivariant instance segmentation, reinforcement learning, and facial classifica-
tion based on Zernike moments [4,18,23]. Finally, in contrast to CNNs, equivari-
ant networks have shown to be more data efficient. This means that they learn
faster when adding more training data, i.e. their gains in terms of test set accu-
racy is higher. This has been seen in various domains across biomedical image
analysis, e.g., tumor classification [16]. This effect has been shown quantitatively
in the following manner. In a log-log plot of test set error versus the amount of
data, the data was fitted to a power law. It was then observed that the slope
was steeper for the equivariant neural networks than for the CNNs, which has
been demonstrated in molecular dynamics [1].

3 Methods

We introduce the TEM virus dataset in Sect. 3.1. Then, the architectures and
how to extend their equivariant properties are explained in Sects. 3.2 and 3.3.
Details about the symmetry groups, metrics and experimental setups are out-
lined in Sects. 3.4, 3.5 and 3.6, respectively.

3.1 Data

The dataset consists of Transmission Electron Microscopy (TEM) images con-
taining different types of viruses described in detail in [21]. In brief, samples were
prepared by treatment of 10% phosphate-buffered saline, before added to carbon-
coated TEM grids and stained with 2% phosphotungstic acid (PTA) following
standard negative stain sample preparation procedures. Images were acquired
at different magnifications giving pixel sizes ranging from 0.26 to 5.57 nm, with
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either a LEO (Zeiss, Oberkochen, Germany) microscope mounted with a Morada
(Olympus) camera or a Tecnai 10 (FEI, Hillsboro, OR, USA) with a MegaView
III (Olympus, Münster, Germany) camera. All images were resized using a
Lanczos-3 kernel to the common pixel size 1 nm. Each image is annotated with
its corresponding virus class, of which there are 22 in total. The eight least
populous classes are excluded, which yields a total of 14 classes.

For the experiments, every image is extracted from larger images containing
multiple virus particles, where the cutout images are of size 256× 256 pixels, in
grayscale and centered around one virus particle. Figure 1 presents Adenoviruses,
where global rotation invariance is exhibited in both the raw image and cutout.

Fig. 1. Raw image of three Adenoviruses. (a) The virus particles with the cutouts
highlighted. (b) Cutout image of the bottom Adenovirus particle from the raw image.
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The training data was rebalanced to contain 93 instances for each class, the
lowest number found in any original class, for a total of 1302 images. Augmented
copies of instances were first removed. After that, the remaining images were
randomly removed until 93 instances remained. The training data was then aug-
mented again by rotating the images by 0, 90, 180 and 270 degrees, in addition
to a reflection over one axis, resulting in eight images from each original image.
No instance originated from the same original raw image between the training,
validation and test sets and there was no overlap between images to suppress
data leakage. The validation set consisted of 2249 images and the test set of 1900
images. The number of instances per class was varied for both these partitions.

3.2 Architectures

The dataset has previously been classified using several architectures [20]. Top
performing models in terms of test set accuracy were chosen for this study. The
number was limited to two to strike a balance between collecting statistics and
ensuring high quality experiments. The first architecture was VGG16 [26], which
scored a test set accuracy of 92.3% when pre-training on the ImageNet dataset.
The second was the Custom architecture with a test set accuracy of 90.1% when
training from scratch.

The VGG16 architecture was chosen for its proven track record in the biomed-
ical image classification community. It has also previously been modified to be
equivariant to the P4 symmetry group [3], making it a prime candidate for further
studies using other symmetry groups. The second architecture was the Custom
network, which is similar to ResNet but uses about one tenth of the number of
parameters. This was selected since the performance of a much smaller architec-
ture would be interesting to investigate under further equivariant constraints.

3.3 Construction of the Networks

For both the VGG16 and Custom architectures, similar approaches were used
to construct the networks. First, a baseline network was designed in pytorch
using standard convolutions and pooling layers. Secondly, equivariant versions
of the same networks were constructed. This was done using the e2cnn package
on top of pytorch [27]. Since this allows for flexible changes of symmetry groups,
it was simple to use the same model for different experiments with only the
symmetry group changed. Layer by layer, the convolutions were replaced with
group equivariant counterparts. Group pooling layers were added at the interface
between the convolutional layers and the fully connected parts of the networks
to extract the signals from any orientation or reflection, making the classifier
invariant to the transformations of the chosen symmetry group.

For the Custom network, an additional pre-convolution layer was added at the
input side for technical reasons, to avoid concatenating trivial and regular types
after the Conv2 layer. The number of trainable parameters was the same for the
different versions of the same architecture. The details of the architectures are
seen in Fig. 2. Additional settings such as hyper-parameters are listed in Table 1.
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Fig. 2. The equivariant version of the Custom architecture used in this study. Dropout
starts at a frequency of 0.2 and increases by 0.05 in every convolutional layer. The fully
connected layers use the dropout rate from the last convolutional layer. The Custom
network uses 63 instead of 64 channels in the second convolutional layer, which is then
concatenated with the one channel from the PreConv layer.
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Table 1. Settings for the architectures and training procedures.

Parameter Setting

Loss function Cross entropy

Weight initialization He

Optimizer Adam

Learning rate 0.00001

Batch size rate 32

Weight decay 0.1

No. of epochs 300

Activation functions ReLu

Convolution layers - VGG16 Layers 1–12: (3,1,1)

(size, stride, padding) Layer 13: (4,2,0)

Maxpooling layers - VGG16 Layers 1–3: (2,2,0)

(size, stride, padding) Layer 4: (4,4,0)

Layer 5: (3,1,0)

Convolution layers - CustomPreConv: (1,1,1)

(size, stride, padding) Layers 1–8: (3,1,1)

FinalConv: (4,2,0)

Maxpooling layers - Custom Layers 1–2: (2,2,0)

(size, stride, padding) Layers 3–4: (4,4,0)

3.4 Symmetry Groups

Two symmetry groups were selected for the experiments: D4 and C8. The D4
group consists of the rotations by 0, 90, 180, and 270 degrees, in addition to
translations and no reflection or reflection over one axis. This group was selected
because it matches the transformations in the augmented training data. This
implies that an equivariant network using the D4 group does not need to learn
each separate transformation, but can learn more useful features of the data
instead.

The C8 group consists of the rotations by 0, 45, 90, 135, 180, 225, 270, and
315 degrees in addition to translations. While this does not exactly match the
transformations in the augmented data, a finer angular resolution could be useful
for the problem setting of rotation-invariant classification. In previous studies,
the angular resolution of the C8 group has been the point at which the model’s
performance saturates [16], which was also observed in this study’s early stages
of experimentation.

3.5 Metrics

Several metrics are used to evaluate the hypotheses through the experiments.
Accuracy on the test set is defined as the percentage of correctly classified sam-
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ples divided by the total number of samples. Training set accuracy is defined
similarly. Both the top test accuracy attained during any part of the training
and the accuracy after the final epoch are measured. Stable accuracy is defined
as 95% of the top test accuracy. Time until convergence is defined as the time
from the start of training until the time when stable accuracy first occurs.

3.6 Experiments

Our experiments involved comparing the performance of the baseline and equiv-
ariant networks for the VGG16 and Custom models. The unaugmented and
augmented training sets were used to see if the baseline networks with data
augmentation could be replaced with equivariant versions without data aug-
mentation. For the equivariant networks, the D4 and C8 symmetry groups were
tested.

For the augmented training set, since the transformations in the D4 equiv-
ariant group match the augmentations, these models are unlikely to get any
additional information in comparison with using the unaugmented training data.
Instead, they get eight times the amount of opportunities to train. To control
for this effect, the baseline, D4 and C8 models were trained on the unaugmented
training set for eight times as long, 2400 epochs, for both architectures.

The impact of batch normalization was assessed by creating additional mod-
els without batch normalization. The batch normalization was kept in the fully
connected layers. Both the baseline and D4 equivariant models were trained on
the unaugmented and augmented training sets.

To investigate any difference in data efficiency between the baseline and the
equivariant models, both architectures were additionally trained using 25%, 50%,
75% of the unaugmented training set. Samples were randomly removed without
replacement. For the equivariant networks, the D4 symmetry group was used.
The experiments were averaged over three runs.

All experiments were run in a national high-performance computing centre.
All development and job scheduling was performed by remote access by SSH
from an integrated development environment. This provided flexibility since the
research and development process was abstracted away from system mainte-
nance. The hardware system that ran the computations consisted of an A40
GPU with 48 GB VRAM, 64 GB System memory and 16 CPU cores per GPU.

4 Results

The results from the main experiments are presented in Table 2. For the Custom
architecture on the unaugmented training set, the equivariant model with the
D4 symmetry group performed the best at 72.90%, followed by the baseline
(69.90%), and finally the C8 symmetry group (64.10%). In contrast, when using
the augmented training set, the equivariant models, with scores of 88.4% and
88.7%, respectively, for the D4 and C8 groups, performed slightly better than
the baseline, which scored 87.8%.
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When the VGG16 architecture was used on the unaugmented training set,
the D4 equivariant model performed the best with a score of 85.5%, followed
by the baseline (81.9%) and finally the C8 equivariant model (78.2%). However,
when using the augmented training set, the C8 equivariant model performed the
best with a score of 92.0%, followed by the baseline (91.1%) and finally the D4
model (91.0%).

Table 2. Results from the main experiments for the Custom and VGG16 architectures.
Best accuracy is the percentage correctly classified on the test set and Time to stability
is in hours.

Custom network Baseline D4 C8

No augmentation

300 epochs

Best accuracy 69.90 72.90 64.10

Epochs to stability 274 275 234

Time to stability 0.85 7.32 3.90

2400 epochs

Best accuracy 83.30 89.80 89.00

Epochs to stability 2260 1886 2126

Time to stability 7.06 48.72 55.61

Augmented training

300 epochs

Best accuracy 87.80 88.40 88.70

Epochs to stability 244 212 2 56

Time to stability 4.46 33.54 40.54

VGG16 network Baseline D4 C8

No augmentation

300 epochs

Best accuracy 81.90 85.50 78.20

Epochs to stability 266 262 184

Time to stability 1.33 12.80 9.04

2400 epochs

Best accuracy 87.00 92.40 92.50

Epochs to stability 1478 1474 1667

Time to stability 7.57 73.67 84.01

Augmented training

300 epochs

Best accuracy 91.10 91.00 92.00

Epochs to stability 145 253.4 275

Time to stability 4.28 75.09 81.28
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When the number of training epochs increased from 300 to 2400 on the
unaugmented training set, for both the equivariant models and both the archi-
tectures, higher accuracy was reached. The same was true for the baseline
model which reached 83.3% and 87.0% on the Custom and VGG16 architec-
tures, respectively. However, the final accuracy reached was not comparable to
the equivariant models’. On the Custom architecture, the scores were 89.8% and
89.0% for the D4 and C8 groups, respectively. For VGG16, the scores were 92.4%
and 92.5%.

When comparing the accuracy of specific classes in Fig. 3, only Adenovirus
showed an accuracy below 80%, where most mispredicted instances were instead
classified as Rift Valley. The prediction of the Papilloma and Rotavirus were
fully accurate.

Fig. 3. The D4 equivariant VGG16 model’s confusion matrix of the final epoch on the
test data, trained on the unaugmented train set for 2400 epochs.

For the Custom architecture, training on the augmented training set for
300 epochs yielded faster convergence than when training on the unaugmented
training set for 2400 epochs. This was true for both the baseline (4.46 vs 7.06 h)
D4 equivariant (33.54 vs 48.72 h) and C8 models (40.54 vs 55.61 h). Also, for the
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VGG16 architecture, this held for the baseline model (4.28 vs 7.57 h). For the
equivariant models, the convergence times were similar for both training sets;
75.09 vs 73.67 h for the D4 model, and 81.28 vs 84.01 h for the C8 model. The
D4 equivariant models generally converged faster than the C8 models, except
when using unaugmented training data for 300 epochs.

When batch normalization was removed, the baseline networks failed to con-
verge, attaining top accuracies of around 20%. This was true for both the Custom
and VGG16 architectures. In contrast, the D4 equivariant network converged and
attained fair accuracies of 64.10% using the Custom architecture with augmented
data. For the VGG16 architecture with augmented data, the top accuracy was
72.6%. Still, this was significantly lower than with batch normalization added.
The D4 model converged earlier when trained on the augmented training set
compared to the unaugmented training set, which after 300 epochs had not
attained full accuracy on the training set.

When measuring the error on the test set versus varying amounts of unaug-
mented training data and modelling a power law in a log-log plot, the results
were different depending on the underlying architecture, see chart in Fig. 4. For
the Custom network, there is no discernible difference between the slope of the
baseline (−0.67) and D4 equivariant (−0.66) models. However, for the VGG16
architecture, the D4 equivariant model has a slope of −1.05 compared to the
baseline’s −0.75.

Fig. 4. Modelling a power law for the VGG16 network and varying number of training
samples for both the baseline and D4 equivariant models. 25%, 50%, 75%, and 100%
of the training data were used, and the error on the test set was measured. Taking the
logarithm of both the data and the error resulted in the chart. Simple linear regression
resulted in regression slopes of −0.75 and −1.05 for the baseline and D4 equivariant
models, respectively.
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5 Discussion

When training on unaugmented data for 300 epochs, the choice of symmetry
group impacts the test set accuracy. In fact, the D4 equivariant network out-
performs the baseline network, which in turn outperforms the C8 equivariant
network. This might be due to the C8 group having too fine angular resolution
for the problem setting, while the D4 group offers more significant variation to
the training data. Also, it is possible that larger filter kernels would be needed
to maximize the impact of the finer rotations in the C8 group.

On the other hand, when training on augmented data, all networks achieve
similar top accuracy. Equivariant networks are thus able to adapt better to skip-
ping data augmentations, and still benefit from them. Generally, the equivariant
and baseline networks converge in a similar number of epochs.

However, the time to convergence is higher for equivariant networks since
the feature maps are stacked with the component transformations. The longer
training times could be reduced in the future with hardware improvements or
by distributing the computations across multiple GPUs, i.e., using distributed
deep learning. The results are similar for both architectures, except for the data
efficiency experiments, where the VGG16 D4 equivariant model is more data
efficient than the baseline network. This follows from the steeper slope in a log-
log plot of test set error versus amount of data, while the same does not hold
for the Custom model.

The results from turning off batch normalization show that this optimiza-
tion method is critical for high accuracy. However, the equivariant networks
suffer less than baseline models, which fail to converge at all. The mechanism by
which batch normalization improves accuracy in general is unclear, but reducing
internal covariate shift [14] and smoothing the objective function [25] are two
main hypotheses. Hence, our experimental results support the notion that batch
normalization and equivariant networks capture variations in the training data
more efficiently by different mechanisms, since both model components improve
accuracy. By the same reasoning, data augmentation and equivariant networks
extract improved information from the data by different means.

The experiments suggest that increasing the number of training epochs con-
siderably is crucial for achieving high accuracy. When increasing the number of
epochs from 300 to 2400, both the baseline and the equivariant models increased
the test set accuracy significantly. The equivariant models reached consistently
higher accuracies than the baseline. For both architectures, the top accuracies
were comparable to the top performing models in previous research on the same
dataset [20].

6 Conclusion

This study contributes to a deeper understanding of the characteristics of equiv-
ariant neural networks during training and testing. By increasing the number of
epochs significantly, we show that equivariant models trained on unaugmented
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data for more epochs could replace pre-trained baseline models using augmented
training data since their accuracies on the test set were similar. Thereby, per-
formance engineering is a good choice when the computational resources are
available.

Further research should focus on more advanced equivariant architectures
such as steerable convolutional neural networks or equivariant transformer net-
works which are becoming modern and step by step entering the field of biomed-
ical image analysis. Designing networks with different symmetry groups in differ-
ent layers depending on the scale of the symmetries in the data could also lead
to additional improvements when classifying objects of interest in biomedical
images.
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Abstract. We utilized natural language processing (NLP) to craft a
new story inspired by the iconic Harry Potter and Lord of the Rings
series. Initially, we deployed LSTM for text generation that gave us lim-
ited set of results, then the capabilities of GPT-2 were explored, revealing
challenges with grammatical correctness in the generated sentences. Sub-
sequently, we integrated GPT-2, which significantly improved the quality
of the story generation. GPT-2 not only produced logical narratives but
also breathed life into the characters and plotlines, offering a rich source
of inspiration for writers seeking novel ideas and fresh perspectives. We
further used a stable diffusion model to create images that matched the
generated story. Thus we attempted a well-rounded method to bring
together both words and pictures, creating a storytelling sequence for
writers and creators. The paper highlights how AI story generation can
effectively help support the creation of stories in gaming, education and
entertainment.

Keywords: Story Generation · Natural Language Processing (NLP) ·
GPT-2 · LSTM · Visual Storytelling

1 Introduction

Stories play a vital role in every culture, captivating people of all ages and serv-
ing as sources of entertainment, moral lessons, and wisdom. Recently, they’ve
become tools for educating children [1]. Computational creativity, based on the
interplay of psychology and artificial intelligence, involves teaching computers to
generate original and valuable stories. To achieve this, understanding human cre-
ativity is essential, allowing computer scientists to replicate the human thought
process in storytelling algorithms. In this paper, AI delves into an exciting and
evolving field - using AI for creative tasks like story generation.

Automatic story generation has wide-ranging applications, including enter-
tainment [1], education, and gaming. It involves mechanically selecting events
to form narratives that meet specific criteria. These stories incorporate elements
like characters, objects, and author goals, representing the intended message.
In gaming, interactive stories enhance player engagement, while in education,
stories can be tailored to individual learner needs. Despite the inception of story
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generation systems in the early 1960s [2], they are still considered weak AI sys-
tems, as they have not achieved creativity comparable to humans [3]. Efforts to
make computer systems creative in story generation involve crafting narratives
that are unique and encompass various elements like settings, character moti-
vations, and conflicts. Open story generation, without predefined models, adds
complexity in the construction and evaluation of stories. Computational nar-
rative research has focused on categorizing systems based on their automation
levels and addressing challenges in generating engaging stories. In 2009, Gervás
[4] scrutinized how story generation systems imitate human creativity and the
extent to which they incorporate essential features of computational creativity.
Since then, the field of computational narrative has garnered increased atten-
tion from the research community, resulting in the introduction of numerous
automatic story generators. Young et al. [5] carried out a survey focusing on
planning and reasoning within computational narratives. A more recent survey
by Kybartas and Bidarra [6] categorized story generation systems based on the
extent of automation in plot and space generation into four primary categories:
manual authoring, plot generation, space generation, and a hybrid form of story
generation that automates elements of both plot and space.

The text generation process involves training a language model on extensive
text data, enabling it to predict the next characters in a sequence based on
the input provided. For instance, given the sequence ‘Cat likes mil’, the model
predicts the next character ‘k’. In a referenced example [7], an LSTM model is
trained on conditioning text, and the Softmax activation function is applied to
predict the probability of the next character. The key to text generation lies
in the sampling strategy, where introducing randomness through a temperature
value ensures novelty and creativity in the generated text [8].

Creating a coherent narrative is a challenge for writers, impacted by factors
like text type and readability (Begeny & Greene, 2014; Sáenz & Fuchs, 2002)
[9]. In education, storytelling is integral to children’s language development and
reading skills (Agosto, 2016; Miller & Pennycuff, 2008; Peck, 1989) [10]. Fluency
and comprehension are vital for learning, influencing academic success (Bigozzi
et al., 2017) [11]. Teachers use a variety of literature to improve these skills,
adapting to online resources and tools for assessing comprehension (Bulut et al.,
2022) [12], reflecting the ongoing need for supporting online reading growth.

In this project we combined Natural Language Processing (NLP) with Books
Dataset to inspire writers with fresh ideas. We used models like LSTM and GPT-
2, with the purpose of generating captivating and unique stories. GPT-2 proved
particularly effective in achieving this goal. Post-processing ensured clarity and
error correction in the generated text. Additionally, a stable diffusion model was
used to generate visuals to complement the narrative, providing writers with a
comprehensive storytelling experience.
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2 Models

In this section, we detail the working of model architectures based on Long Short-
Term Memory (LSTM) [13] and Generative Pre-trained Transformer-2 (GPT-2)
[15].

2.1 LSTM

The model accepts a sequence of words or tokens as input, with each word typ-
ically represented using word embeddings to convert discrete words into contin-
uous vector representations. These embeddings capture semantic relationships
between words. The input sequences then pass through an embedding layer,
which transforms the discrete word representations into dense vectors of fixed
size which enables the model to learn meaningful and continuous representations
for words, taking into account their context in the input sequence. The core
of the architecture comprises Long Short-Term Memory (LSTM) layers, which
are recurrent neural networks designed to capture long-term dependencies in
sequential data. Each LSTM unit possesses memory cells capable of storing and
retrieving information over extended sequences, along with gates (input, forget,
output) to regulate the flow of information through the network (Fig. 1).

Fig. 1. Lstm Single Unit Architecture

The LSTM layers maintain both hidden states and cell states. Hidden states
capture the context or memory of the sequence up to a certain point, while cell
states store information over longer periods. These states are updated at each
time step as the model processes the input sequence. Dropout layers, if included,
are optional and may be added between LSTM layers for regularization. During
training, dropout randomly sets a fraction of input units to zero, aiding in pre-
venting the model from overly relying on specific features and thereby improving
generalization. The final layer (output layer) is responsible for generating predic-
tions that typically consists of a dense layer with a softmax activation function.
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This layer produces a probability distribution over the vocabulary, indicating
the likelihood of the next word in the sequence. During the training process, the
input sequences are fed into the model and the predicted output is compared to
the actual target sequence. The model is optimized using backpropagation and
gradient descent techniques to minimize the difference between the predicted
and true outputs.

2.2 GPT-2

The key components of GPT-2’s architecture include:
GPT-2 utilizes the transformer architecture, known for its effectiveness in

processing sequential data, enabling it to capture intricate dependencies. An
attention mechanism is employed to weigh the significance of input sequence
parts, crucial for comprehensive context consideration, especially in text genera-
tion tasks. Each transformer layer includes layer normalization and feedforward
networks, enhancing stability and introducing non-linearity for discerning intri-
cate patterns. Positional embeddings are incorporated to provide token posi-
tion information, essential for understanding sequential order and relationships
between tokens. Multi-head self-attention allows GPT-2 to attend to various
positions in the input sequence simultaneously, enhancing its ability to capture
diverse dependencies and relationships within the text (Fig. 2).

Fig. 2. GPT Architecture

PT-2 employs multiple layers of the transformer architecture stacked on
top of each other, enhancing its capacity to capture intricate patterns. Within
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each layer, position-wise feedforward networks operate independently at each
sequence position, contributing to the model’s ability to understand diverse pat-
terns. During training, GPT-2 uses masked self-attention to ensure each input
position only attends to preceding positions, preventing access to future token
information. Trained with an autoregressive language modeling objective, GPT-
2 predicts the next token based on preceding ones, capturing statistical patterns
in the training data. With its large scale, featuring numerous parameters and
attention heads, GPT-2 excels in generating high-quality and diverse text, albeit
requiring substantial computational resources.

2.3 Stable Diffusion

The stable diffusion model begins with initializing a noise image drawn from
a simple distribution, such as Gaussian, serving as the starting point. It then
proceeds with a series of diffusion steps, gradually adding controlled noise to the
current image to transform it into samples resembling the target distribution.
At each step, noise addition increases gradually, crucial for learning intricate
data distribution details. The transformation of the image during diffusion steps
is guided by a neural network, typically a generative model like a Variational
Autoencoder (VAE) or Generative Adversarial Network (GAN), which captures
patterns and features present in real data (Fig. 3).

Fig. 3. Stable Diffusion Architecture

The stable diffusion [16] model is trained to minimize the difference between
generated images and the real data distribution, often using maximum likelihood
estimation. This aims to generate samples statistically similar to the true data.
Designed hierarchically, the diffusion process allows the model to learn global and
local features of the data distribution, aiding in capturing complex structures and
dependencies in the images. Numerical stability ensures robust computations,
preventing instability or divergence and ensuring convergence to realistic images
during training. Upon completion of the diffusion process, the final generated
image is obtained, with the option to sample from different stages to observe the
progression from the initial noise image to the final generated image.
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3 Dataset

For this study, we needed extensive data and diverse fantasy narratives. To foster
innovation and creativity, we selected multiple well-known books from various
fantasy genres and distinct universes, aiming to enhance the model’s creative
capabilities. In this approach, the Books Dataset was compiled by bringing
together different volumes of literary works, including Harry Potter [17], The
Hobbit [18], The Lord of the Rings [19], and The Silmarillion [20]. Additionally,
this dataset was utilized to train GPT-2 model.

To train the base LSTM model, we leverage a dataset comprising the text of
“The Jungle Book” [21] due to architectural constraints. The LSTM architecture
faces limitations in accommodating extensive textual corpora such as complete
book datasets.

3.1 Data Preprocessing

The initial step in data preprocessing involved cleaning the text data to enhance
its consistency and readability. This entailed removing non-alphanumeric char-
acters and addressing any inconsistencies in whitespace by replacing multiple
consecutive spaces with a single space. The objective here was to establish a
more uniform and cohesive representation of the textual content.

Following the cleaning process, the cleaned text from all scripts was concate-
nated and any leading or trailing whitespaces were removed. This ensured that
the text data remained concise and free from unnecessary spacing issues.

Finally, the processed text data was stored in a file named “cleaned
text data.txt” for subsequent analysis and further processing. This step facil-
itated easy access to the cleaned data for various analytical tasks and helped
streamline the subsequent stages of the data analysis pipeline.

4 Results

4.1 LSTM

Input: Mowgli and Bagheera were playing in the forest, and then suddenly Sher
Khan appeared.

Output Generated: Mowgli and bagheera were playing in the forest and then
suddenly sher khan appeared begged pots stare pronounced augrh arm dashed rid
turn grew thinking whistled buildings show animal blind outward advice ts elders
raw hill afterward point moons beating mao naked dig whistled forgot anxious
sister boldly flung pot telling companions regard blossomed when brown struggle
h year leaves lash india freed corners wishing hilltop escort drive marks tending
dewanee wise names giant gate dimpled days milk mean she clung regard org hand
revenged field sort piteous describe coals cleverly akela swayed slowly inspection
folk sitting noiseless animal killing cobras shape pity remind there yawned freed
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copy pits rain rises sought circled roughly abreast rumbling fur blocked hauled
overhear trot relief lumps withdraw spoiled therefore raw helped rolled coils louder
right won another part bushy threatened firmly temper ah roost change gasped on
set suspicious ignorance unlike temper entered himself loud thy belonged night
khanhiwara bound fright starved me shower ruins over touched finding against
curiously shame nearly doubt busy listened re wise games sides ran steel hurried
sort accidents feeling and especially order give becomes curve suffered bounds
push son knowing brilliant living covered frogs bad forest roots date heads shoulder
belled curves pawpaws courtyards at give accepted milk built stream louder toward
psshaw check knowest plucked speaker lose indian platform herself fallen squarely
canes gorge swept mouths ask hanging kite cool jacket trot these whirled licker
talked forefoot keep roused unlike besides stump ignorance crowds idea listener
bricks boldly changed charge faded bring identify quarry knew why image indeed
just glimpses teach beneath oodeypore beaten hillside repeated am stream behave
bamboos gift whined regard phew coughing overtaking marrow drink dangerous
biting nuts called child bark sweeping climb musket dressed dreaming whither
envied circle dealt hole screen illo 2023 joy remembering before barber scattered
hopefully lash baloo leaders heard halfway call bristles sorts ahai whoo sign part
lazy fairs inspection causeways buck against everything empty yet pet hugged
doubt journey suffer worse rage own white twelve merely be happened rudyard
newly friend our sixty deserted altogether club path plot bold needs possible shower
orders tails frog scumfish thundered january along barked affairs stillness beneath
satisfied tearing worse come whine reached lowered rolled held collect waingunga
cleverly crops honor amounted boast unlucky panted our swash carrying hunt-
ing winter have could beckoned pits out thief tribe lapis entrance hurrying heads
yellow porcupine content mouths forgets odds sorely get afoot shadow heap grow
things neither little becomes bull taking sorrowfully clung toomai humming afraid
farewell bats upon morrow lamer yard swim chuckle chattering trapped breaking
striking noble sleep mountain more wouldst stuck whooping breed lord ye goest
worked dry swung proud cost amounted rains khanhiwara ram fastenings cus-
toms disappeared re fin pickers weakness gets hunts monkeys feet as blow roosted
notion lessons loved goer squarely wound ago crowds lying mean book quarters
accepted bristling night wild no feather misses wonderful this feather history canst
behave stung swam honey me peacock work stung sprang blow woodcutter vil-
lagers grass branches fear move brother toomai lied proper skin tabaqui challenge
footless summerhouse allowed five future miserable neither prettily honey owned
threshold squarely crossing majesty anxious contents blind sided empty forgets
ways anxiously day branch called olds throat roar cost feebler broke grass speed
off melted roar promised winds customs avoid animals tonight beauties stupid
enemies dancing dog pariah licked softly cobra whirled believed coughing twos
splashed today.

4.2 GPT-2

Input: The story began with Harry Potter, Hermione Granger, and Ron
Weasley inadvertently stumbling upon an ancient portal while exploring the
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Forbidden Forest during their final year at Hogwarts. Upon emerging from the
portal, they found themselves in a vast and dense forest, surrounded by tower-
ing trees. To their surprise, they were greeted by none other than Frodo, Sam,
Merry, and Pippin, the beloved hobbits from the Shire. Harry was surprised to
see hobbits and then decided to befriend them.

Output Generated: The story began with Harry Potter, Hermione Granger,
and Ron Weasley inadvertently stumbling upon an ancient portal while exploring
the Forbidden Forest during their final year at Hogwarts. Upon emerging from the
portal, they found themselves in a vast and dense forest, surrounded by towering
trees. To their surprise, they were greeted by none other than Frodo, Sam, Merry,
and Pippin, the beloved hobbits from the Shire. Harry was surprised to see him,
but he was pleased to see that he had a good sense of humor. He was also pleased
that they had found a place to sit down together, because they felt that the time
was ripe for a serious discussion. The forest was full of trees, which made it ideal
for the discussion, as it was so large and full that it seemed to be full even for an
Ent. They were not alone in this, however. There were many more Ents in the
forest than there were Entwives, who were the descendants of the ancient Ent,
descendants from ancient trees that lived in and around the Forest. Some of them
were even taller than Harry, though they looked much younger, with long, pointed
hair and long noses. One of these was called the Big One, for he looked like a
tall, balding, hairy man with a long beard and a mustache that was longer than
his hair. His hair was long and curly, too, so that his face looked rather like the
face of a large, bearded man. It was a pleasant surprise to find that Frodo’s face
was not quite as round as the others, except that there was no mustache. Frodo
was tall and handsome, very handsome. I don’t know what you mean, said Sam.
Well, I mean that, he said, looking at them. You know, you know that I am not
a hobbit, or a wizard. But I have never been in it. And I’ve never seen it before.
What do you think you’re talking about said Merry. A forest said Pompously.
That’s not the place you are talking of, is it said Frodon. Not the one I was
in, not that one. No, no, it is not, Mr. Baggins. Its the other one, I’m sorry.
I’m not sorry, Fro, its the old Ent that you’ve got to go and see. We’ve come
back, we’ve gone and seen the Ent before, yes, that’s right. Yes, well, Ill see you,
if you don’t mind. Merry and I went down to the Great Hall and sat down in
chairs, talking to each other. Then we sat on the floor, thinking about the past
and the present. At last they sat up and began to talk. After a while they talked
for some time, until they stopped. When they spoke of their past, there came a
knock on their door. Mr, Baggin came in. and knocked. Come in Come into the
hall, come in said Mr Frobin’s, coming in We have a present, a nice little present
for you. This is a big present from Mr Bilbo BaggINS. Bilbo’s friend. Very nice,
sir, answered the knocker. Good gracious, good gracious. So you have come into
my house, my dear Frodo, just now. How nice said the landlord. Thank you very
much, thank you Very good, Master Bilbob. Now, now, what is this I want to
know about you I cant tell you what I meant, nor can I tell the truth. Why don’t
you come and sit in my room, while I talk to you said Bilbo. Because I think I



40 N. Sharma et al.

must be getting very tired. If you want a drink, then you must go to bed. Master,
please, sit now and think of me, before you go back to your room. Chapter 2
The Shrieking Shack The next day they went to breakfast. Sam was sitting in his
chair, listening to all the talk, when suddenly he heard a noise. Something was
coming from a corner of his head. Someone was shouting. Somebody was calling.
Whats the matter with you Its coming, whats the trouble Its all right with us,
all ruffians, rags, gollum, lembas. Gollum’s going to get us. Ill get him. Lets get
out of here. All right, go on, quick, hurry, Gently Sam crept out. As he crept
nearer, his master saw that Gildor was standing by the door, holding a knife.
Quick, master, quickly, let us go, lets go Galdor came running. With a cry he
sprang out and ran back. Before he could catch up with him, Bilbo had fallen to
his knees beside him and was bleeding. Suddenly he fell to a dead end.

4.3 Stable Diffusion

The textual outcomes from previous models was further used as input to the
publicly accessible stable diffusion model [22] to seamlessly convert the textual
outputs into visually engaging images. The publicly accessible stable diffusion
model available. Enable to introduce a creative visual element to the generated
stories. Despite encountering computational resource constraints on the system,
the model was able to effortlessly translate textual content into aesthetically
appealing images (Figs. 4 and 5).

Fig. 4. It was a pleasant surprise to
find that Frodo’s face was not quite as
round as the others, except that there
was no mustache. Frodo was tall and
handsome, very handsome.

Fig. 5. The next day hobbits went to
breakfast.
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5 Evaluation Metrics

5.1 AI Evaluation (GPT-4o)

To evaluate the quality of the essays, we utilized a comprehensive scoring system
based on the following criteria (Tables 1, 2, 3, 4, and 5):

– Grammar (20 points)
• This criterion assesses the correctness of grammatical structures, includ-

ing sentence construction, subject-verb agreement, and punctuation.
• Score Range: 0–20 points

– Spelling (20 points)
• This criterion evaluates the accuracy of spelling throughout the essay.
• Score Range: 0–20 points

– Coherence (20 points)
• This criterion examines the logical flow and connectivity of ideas within

the essay.
• Score Range: 0–20 points

– Context (20 points)
• This criterion evaluates the clarity and relevance of the context within

which the essay is written.
• Score Range: 0–20 points

– Syntax (20 points)
• This criterion assesses the correctness of sentence structure and word

order.
• Score Range: 0–20 points

Table 1. Grammar (20 points) Grammar
Evaluation Matrix

Number of errors: Points Range

0–5 errors: 18–20 points

6–10 errors: 15–17 points

11–15 errors: 12–14 points

16–20 errors: 8–11 points

21+ errors: 0–7 points

Table 2. Spelling (20 points) Spelling
Evaluation Matrix

Number of errors: Points Range

0–2 errors: 18–20 points

3–5 errors: 12–17 points

6–8 errors: 6–11 points

9+ errors: 0–5 points

The total score for each essay is calculated by summing the points awarded
in each criterion, with a maximum possible score of 100 points. Essays are then
classified based on their total score to determine their overall quality.
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Table 3. Coherence and Clarity Evaluation Matrix

Evaluation Criteria Points Range

Excellent logical flow and clarity: 18–20 points

Good with minor lapses: 15–17 points

Fair but with noticeable issues: 12–14 points

Poor with significant issues: 8–11 points

Very poor and hard to follow: 0–7 points

Table 4. Context Evaluation Matrix

Evaluation Criteria Points Range

Highly relevant and on-topic: 18–20 points

Mostly relevant with minor deviations: 15–17 points

Some relevance but with major deviations: 12–14 points

Little relevance to the topic: 8–11 points

Irrelevant to the topic: 0–7 points

5.2 Lexical Coherence

Measures how well the words, phrases, and sentences in a piece of writing connect
logically and smoothly, ensuring that the ideas flow cohesively from one point
to the next. For example, the Lexical Coherence Score of text is 2.67 represents
the average number of words that overlap between consecutive sentences in the
given text.

5.3 Grammatical Error Rate

Grammatical Error Rate (GER) is a metric used to evaluate the grammatical
accuracy of generated text, typically in the context of natural language pro-
cessing tasks such as machine translation, text generation, or automated essay
scoring. It measures the percentage of grammatical errors present in a piece of
text, often normalized by the total number of words or sentences.

Table 5. Sentence Structure and Word Choice Evaluation Matrix

Evaluation Criteria Points Range

Excellent sentence structure and word choice: 18–20 points

Good with minor issues: 15–17 points

Fair but with noticeable problems: 12–14 points

Poor with significant problems: 8–11 points

Very poor sentence structure and word choice: 0–7 points
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Key Points to Note About GER Include:

– Definition: GER quantifies the number of grammatical errors per unit of
text, often normalized to facilitate comparison across different texts or sys-
tems.

– Types of Errors: It encompasses errors such as subject-verb agreement
issues, tense inconsistencies, incorrect word forms, and syntactic errors.

– Evaluation: GER can be calculated automatically using computational tools
that analyze syntax and grammar, or manually by human annotators.

– Application: GER is used in research and development to assess the perfor-
mance of language models, translation systems, and other NLP applications.
Lower GER indicates higher grammatical accuracy and thus better perfor-
mance.

– Limitations: GER may not capture all aspects of grammatical correctness,
as it focuses primarily on surface-level errors and may not account for seman-
tic or contextual inaccuracies.

5.4 Flesch Reading Ease

The Flesch Reading Ease score and Flesch-Kincaid Grade Level are metrics used
to assess the readability of texts. The Flesch Reading Ease score rates text on
a 100-point scale; higher scores indicate easier readability (e.g., a score of 90–
100 is easily understood by an average 11-year-old), while lower scores indicate
more difficult texts (e.g., 0–30 is best understood by university graduates). The
Flesch-Kincaid Grade Level translates the score into a U.S. school grade level.

5.5 Human Evaluation

We conducted a survey wherein participants were requested to evaluate our
responses based on several criteria, including grammar, spelling, coherence, con-
text, and syntax. Each of these parameters was to be rated on a scale from 1 to
10. The average result of all responses are presented below (Tables 6 and 7)

Table 6. Human Evaluation Matrix

Evaluation Criteria Lstm Rating GPT - 2 Rating

Grammar 3.67 7.34

Spelling 5.35 6.32

Coherence 3,13 6.98

Context 4.98 5.76

Syntax 4.56 8.43
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Table 7. Results of Lstm and GPT-2

Evaluation Metrics Lstm GPT-2

Lexical Coherence 0.0000 3.4590

Grammatical Error Rate 43 32

Flesch Reading Ease −949.28 92.22

AI Evaluation (GPT-4)

Grammar: 2/20 Grammar: 12/20

Spelling: 4/20 Spelling: 14/20

Coherence: 1/20 Coherence: 10/20

Context: 1/20 Context: 10/20

Syntax: 1/20 Syntax: 10/20

Total Score: 7/100 Total Score: 56/100

Review: Needs significant
improvement in all aspects.
The text is mostly
nonsensical and requires a
complete overhaul for
coherence and clarity.

Review: Shows potential
with an interesting crossover
story but needs substantial
revisions in grammar,
coherence, context, and
syntax to enhance clarity and
maintain a coherent
narrative throughout.

6 Discussion and Conclusion

6.1 Discussion

Pre-trained transformer models have demonstrated remarkable proficiency in
generating high-quality texts and items owing to their extensive training on vast
corpora [23]. In this research, fine-tuning pre-trained transformer models for
novel story generation has led to a nuanced understanding for crafting human-
like narratives and items. However, it’s important to acknowledge persistent
challenges within the NLP community, such as repetitive words and awkward
topic transitions [24]. The hybrid sampling approach employed in story gener-
ation has shown promising outcomes, yielding fluent, coherent, grammatically
correct, logical, and human-sounding stories. These language models offer edu-
cators the ability to spontaneously generate authentic content, alleviating the
need for extensive material search. Nevertheless, the generated items may require
deeper human evaluation than the one presented in this paper and adjustments
due to potential semantic errors or lack of coherence. Furthermore, they may
not be optimal for evaluating complex reading skills such as inference, analysis,
and critique.

AI-generated content, particularly in storytelling, raises important ethical
considerations regarding authorship, copyright, and cultural sensitivity. One way
to tackle the authorship issue is to view both humans and AI as co-creators. This
method highlights the human’s part in directing and polishing the AI’s work,
while also crediting the AI’s role in the creative process [25] To address copyright
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concerns, we could update the laws to cover AI-generated content. This might
mean giving copyright to the people or organizations that own or run the AI,
similar to how companies hold copyrights for work done by their employees.
Alternatively, we could establish a new category of copyright specifically for AI-
generated works, making sure the rights and responsibilities are clearly outlined
[26] For cultural sensitivity, it’s crucial to use diverse and representative datasets
when training AI models. Additionally, setting strong ethical guidelines and
review processes can help make sure AI-generated stories are respectful and
culturally considerate. Including human reviewers from varied backgrounds in
the review process can also provide valuable perspectives and help reduce biases
[27]

6.2 Conclusion

The study has limitations, including the use of LSTM for story and item gener-
ation due to the constraints of computing resources. Exploring more advanced
versions of GPT-2 could potentially yield higher-quality outcomes. Moreover,
the study’s training dataset, drawn from freely available reading materials like
Harry Potter and Lord of The Rings on the Internet, could be expanded with a
larger and more diverse dataset to enhance the fine-tuning of transformer mod-
els and ensure more consistent results in story and item generation. Finally, an
additional future direction involves implementing a more robust, stable diffusion
model to generate high-quality images.

The AI based story generation can find applications in education, entertain-
ment, or even assisting human writers. By including multiple transformer models
(LSTM, GPT-2), the research compares their effectiveness in story generation.
This helps identify GPT-2 as a strong candidate for this specific task. The paper
highlights the possibility of using these AI-generated stories for educational pur-
poses. This could provide educators with a new and engaging way to deliver
content. The research implements the story generation approach using differ-
ent models and presents results (stories and images) as concrete evidence of its
functionality.

In our future work, we aim to explore cutting-edge transformer models, such
as GPT-3 or its recent iterations, to bolster language modeling capabilities. By
leveraging these advanced models, we seek to address challenges such as repet-
itive language and abrupt topic transitions, thus enhancing the overall quality
of generated content. Additionally, we intend to diversify our training data by
incorporating a broader range of reading materials. This expanded dataset will
encompass various genres, subjects, and writing styles, enabling our models to
generalize more effectively and produce more versatile outputs. Furthermore, we
plan to investigate and implement stable diffusion models for image generation.
These probabilistic generative models capture complex patterns in data, thus
facilitating the production of high-quality images. We aim to build a tool that
takes text as input and generate story. From each line of text, an image to be
generated. Just like a story book.
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Abstract. In this paper we propose two sets of compressed learning
methods. First, for the setting where the matrix that is used to com-
press the signal is known, then for the setting where the matrix is
unknown. With a known measurement matrix, compressed learning can
benefit from the success of compressed sensing by utilizing the inter-
mediate results of signal recovery. In particular, we use a compressed
sensing algorithm Blocked Successive Regression (BSR) to generate
enhanced features, then apply some widely used machine learning mod-
els (such as multilayer perceptron and convolutional neural network) on
the enhanced features. It is observed that the machine learning results
are significantly improved. With an unknown measurement matrix, deep
models are developed to learn the matrix. We develop two compressed
learning models based on the variational autoencoders (VAE) framework,
reducing the problem of learning the elements of the matrix to learning
the distributional parameters of the matrix. This method significantly
reduces the number of parameters to learn, and also offers robustness to
small perturbation in data.

Keywords: Compressed Learning · Compressed Sensing · Variational
Autoencoder · Image Classification

1 Introduction

Signal acquisition and processing methods have undergone significant devel-
opments in recent years, transitioning from traditional analog techniques to
advanced digital methods to meet the growing demand for robust and cost-
effective sensing systems in various fields such as imaging, telecommunications,
and medical diagnostics. Two recent advances in this evolution are compressed
sensing (CS) and compressed learning.

While compressed sensing enables signal acquisition at sub-Nyquist rates
while achieving near-perfect reconstruction, many inference and learning tasks
do not require a fully reconstructed signal. Compressed learning (CL) is an
emerging paradigm in which learning and inference are performed directly in
the measurement domain, bypassing the need for signal reconstruction [3,6,29].
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Compressed learning was introduced to advocate performing inference tasks
directly on CS measurements [7,8,25]. However, CL faces challenges such as
information loss during the sampling process and adapting to different compres-
sion ratios. Efforts to overcome these challenges include incorporating image
priors [16], leveraging Transformer networks for correlation modeling [24], and
employing block-based compressed sensing techniques for large-scale image pro-
cessing [2]. Methods to exploit the multidimensional properties of CL are pro-
posed, highlighting ongoing efforts to enhance its capabilities [27]. Innovative
frameworks such as TransCL combine block-based compressed sensing with
Transformer networks, aiming to bridge the gap between CS and image domain
methods [20].

The advent of compressed sensing and compressed learning has opened new
research topics in signal processing and machine learning, particularly in han-
dling high-dimensional data. This paper focuses on pushing the boundaries of
these fields through innovative algorithmic contributions. The first part of the
research builds on the success of compressed sensing to enhance the perfor-
mance of deep learning models by integrating intermediate results as input fea-
tures. This novel approach is rooted in the hypothesis that intermediate results
from CS contain valuable information that can significantly improve learning
efficiency and model accuracy. The second part of the research addresses the
challenges of compressed learning in absence of a measurement matrix, and pro-
pose computationally efficient methods for learning measurement matrices. By
employing a variational autoencoder framework, we propose a method to train
only the parameters of the generative model for the measurement matrix instead
of learning the matrix itself, thereby improves the model robustness to small
perturbations and improves model efficiency. This research not only contributes
to the theoretical understanding of compressed learning but also demonstrates
practical applications in learning and inference on compressed data.

2 Inference on Compressed Signals with Known
Measurement Matrix

Compressed sensing is a technique for recovering sparse signals with fewer mea-
surements than traditionally required, while compressed learning is a technique
for performing learning and inference on compressed signals. A typical approach
in compressed learning is to first recover the signal by using a compressed sens-
ing algorithm, then to apply a machine learning algorithm on the reconstructed
signal. Sparse Bayesian Learning (SBL) [17,28] implements CS by applying a
probabilistic model with sparse priors, enhancing signal recovery through iter-
ative updates. Compressed sensing neural network (CSNN) [18,19,22,23] inte-
grates deep learning to directly map measurement results to the original signal,
optimizing the measurement matrix and neural network weights. Compression
squeeze filtering algorithms and architectures (e.g., squeeze filters) are designed
to infer directly from compression measurements, focusing on salient feature
preservation. Known for its self-attention mechanism, transformer models are
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good at capturing long-range dependencies, making them suitable for a vari-
ety of applications, including image classification via Vision Transformers (ViT)
[11,13,24]. Together, these methods improve the efficiency and applicability of
computer science in various fields.

A major challenge in previous compressed learning work involves efficient and
effective reconstruction of original signal. Sparse signal recovery is challenging
at low measurement rates, since in the process critical information could be lost.
On the other hand, the subsequent machine learning algorithms only require the
key features to perform machine learning tasks, e.g., classification, and it does
not require the signal to be reconstructed exactly. This means the full recovery
of signals by a compressed sensing algorithm is neither sufficient to meet the
requirement of machine learning nor necessary for the machine learning tasks.
The observation motivates a different compressed learning framework, in which
a compressed sensing algorithm is involved but not implemented to the end
towards full signal recovery.

We propose to use the intermediate results generated from compressed sens-
ing algorithms instead of the final product of compressed sensing as input to the
machine learning algorithms, which can potentially address the aforementioned
limitations by providing a richer, more informative set of features derived from
compressed data.

In this paper, we leverage the intermediate results from the iterative sparse
signal recovery algorithm, Blocked Successive Regression (BSR) from [26]), to
generate the enhanced features for machine learning.

Fig. 1. Features computed from the sparse signal recovery algorithm BSR are used as
input to (a) MLP, and (b) CNN.

Consider the task of image classification. Three machine learning models
are used to make inference on the enhanced features: Multi-Layer Perceptron
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(MLP), Convolutional Neural Network (CNN), and Vision Transformer (ViT).
The three methods are not specifically designed to classify compressed signals.
The performance of classifying compressed signals is expected to drop sharply
as the compression ratio increases. We will show that by using the enhanced
features generated from CS, the performance degradation is slowed down.

The architectures of these models are in Fig. 1. The method MLP on {ŷ(i)}
will use {ŷ(i)} as input to an MLP model and output the class label; the method
CNN on {ΦT

Γ ŷ(i)} will use {ΦT
Γ ŷ(i)} as input to a CNN model and output the

class lable, where Γ is the signal support at the i-th iteration; similarly, the
method ViT on {ΦT

Γ ŷ(i)} will use {ΦT
Γ ŷ(i)} as input to a ViT model and output

the class label.
The measurement matrix Φ ∈ R

M×N is a random Gaussian matrix, with
each element Φij generated by N (0, 1/N) [4]. Let y ∈ R

M represent the com-
pressed signal, and x ∈ R

N is the original signal. The measurement rate (MR)
is then defined as MR = M/N . Let ŷ(i) ∈ R

M represent the intermediate result
generated by the i-th iteration of the BSR algorithm. Figure 2 shows a sequence
of ΦT

Γ ŷ(i) for the digits 3 and 5.
As iteration continues, the images rendered from ΦT

Γ ŷ(i) became clearer and
easier to identify. It shows that with every iteration, non-essential features that
do not contribute to image recognition are filtered out, and the key features
that define the numbers are preserved. Image classification based on {ΦT

Γ ŷ(i)}
achieves better result than based on ΦT y.

Fig. 2. Transformed images for digits 3 (left) and 5 (right). The first image in the upper
left corner of each panel is ΦT y, other images are ΦT

Γ ŷ(i), with the iteration number i
increasing from left to right and from top to bottom. MR = 0.5 is used.

2.1 Experiments

In this section, we test our models on real world datasets: MNIST, Imagenet2012,
CIFAR-10 and CIFAR-100. Baseline compressive learning methods used for com-
parison are SF ([22]), DI ([18]), and TransCL ([21]).

ViT ([13]) is a transformer-based model, but it is not specifically designed to
work with compressed signals. Similarly, MLP is also not a compressie learning
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method. We will show that by using our proposed methods, how much improve-
ment they can achieve—comparing MLP on y with MLP on {ŷ(i)}, and compar-
ing ViT on ΦT y with ViT on {ΦT

Γ ŷ(i)}. We compare their classification accuracy
and training time.

Table 1 shows the results of baseline methods. Table 2 shows the results of
our models using intermediate results from BSR as input. In this experiment, the
number of channels is 4, meaning, the intermediate results from four iterations
of BSR are used when using {ΦT

Γ ŷ(i)} as input.
Accuracy: Overall, our models in Table 2 have better results than the baseline
models in Table 1, especially at smaller MR values. Comparing MLP on y with
MLP on {ŷ(i)}, and ViT on ΦT y with ViT on {ΦT

Γ ŷ(i)}, we can see point-wise
improvement in accuracy across all MR values.

At high MR(> 0.25), all methods perform well. As MR decreases, there’s
a noticeable decrease in model accuracy across all tests, which is expected,
since there is more information loss in the compressed signal. CNN and ViT
on {ΦT

Γ ŷ(i)}, especially ViT, show a graceful performance degradation as MR
decreases. CNN and ViT can still perform well when the signal is compressed at
large ratios. ViT model still achieves more than 90% accuracy even when MR =
0.01, which is remarkable. The robustness to large-ratio data compression high-
lights the advantage of convolutional and attention-based models in extracting
useful features from sparse data.
Running Time: Since MLP and SF have fewer parameters than CNN and ViT,
MLP and SF have shorter running time compared to CNN and ViT.

ViT on {ΦT
Γ ŷ(i)} in Table 2 has a little longer training time than ViT in

Table 1, but it achieved improvements in accuracy at all MR levels, especially
at low MR levels. Compared with MLP and CNN, the running time of ViT
gradually increases with the increase in the number of input channels, which is
attributed to the architectural efficiency of ViT in processing high-dimensional
data. ViT utilizes a self-attention mechanism that scales more advantageously
with input size, allowing them to handle additional channels without proportion-
ally increasing computational complexity. In contrast, MLP and CNN rely on
dense or convolutional layers, respectively, whose computational requirements
grow significantly with the number of input channels, resulting in increased run-
ning time.

Table 3 shows the classification results on a subset of Imagenet2012 dataset
(including 10274 images from 100 classes). Although the ViT model is large with
training time more than 30000 s per epoch, the result from ViT is no better than
the smaller models such as MLP or CNN. With MR = 0.01, the method ViT
on {ΦT

Γ ŷ(i)} only attained 10.65% accuracy, while the method CNN on {ΦT
Γ ŷ(i)}

attained 18.94%, which is the best result among all.
TransCL is a transformer-based compressive learning method, representing

the recent top-performing compressive learning method. TransCL uses ViT-B as
its backbone and significantly improves the performance of ViT-B. The reported
results from [21] show that TransCL-32 is better than TransCL-16. So we com-
pare our models with TransCL-32 for CIFAR-10 and CIFAR-100 datasets. The
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Table 1. Classification results on MNIST dataset using baseline methods: Direct Infer-
ence (DI) [18], Smashed Filter (SF) [22], Vision Transformer (ViT) [13], as well as MLP
on y.

SF MLP on y DI ViT on ΦT y

Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

MR = 1 86.14% 88 97.29% 79.36 97.18% 95 94.94% 1554

MR = 0.5 84.61% 81 96.52% 72.52 96.82% 91 94.03% 1559

MR = 0.25 75.58% 74 96.44% 67.10 96.05% 94 93.74% 1569

MR = 0.1 56.45% 69 96.27% 65.56 93.77% 94 93.22% 1577

MR = 0.05 46.79% 64 91.62% 62.05 88.61% 92 91.05% 1518

MR = 0.02 40.07% 59 70.89% 60.11 61.44% 94 72.08% 1548

MR = 0.01 36.97% 57 53.23% 59.94 47.57% 92 67.38% 1503

Table 2. Classification results on MNIST dataset using our models. The choice of
CNN is LeNet-5 for MNIST.

MLP on {ŷ(i)} CNN on {ΦT
Γ ŷ(i)} ViT on {ΦT

Γ ŷ(i)}
Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

MR = 1 97.79% 179 98.31% 155 98.81% 1993

MR = 0.5 97.58% 134 97.60% 153 96.47% 1989

MR = 0.25 97.21% 122 97.63% 153 96.22% 1994

MR = 0.1 96.43% 111 96.91% 152 95.79% 1938

MR = 0.05 94.17% 90 93.82% 155 95.59% 1989

MR = 0.02 80.41% 75 92.21% 151 94.03% 1966

MR = 0.01 60.43% 77 82.83% 152 90.83% 1951

Table 3. Classification results on a subset of Imagenet2012 dataset obtained under
different Measurement Rates (MR). Our methods are shown at the bottom of the
table. The choice of CNN is AlexNet for Imagenet dataset.

Accuracy

MR = 1MR = 0.25MR = 0.1MR = 0.01

SF 3.44% 3.16% 2.83% 1.67%

MLP on y 93.85% 89.22% 44.43% 11.63%

DI 83.31% 59.48% 34.90% 12.05%

MLP on {r(i)} 92.52% 87.86% 44.52% 12.14%

MLP on {ŷ(i)} 94.01% 90.76% 45.13% 13.02%

CNN on {ΦT
Γ ŷ(i)} 94.84% 92.23% 47.77% 18.94%

ViT on {ΦT
Γ ŷ(i)} 96.93% 90.04% 47.28% 10.65%

classification results are presented in Table 4. TransCL-32 results are obtained
by using the github code provided at https://github.com/MC-E/TransCL. The
results show that CNN on {ΦT

Γ ŷ(i)} achieves better accuracy and uses much less
training time than TransCL. Thus, it proves that by integrating compressive sens-
ing with a lighter model such as CNN, which might not be specifically designed

https://github.com/MC-E/TransCL


54 H. Yu and M. Cheng

Table 4. Image classification performance on CIFAR datasets. The baseline method
is TransCL-32 from [21]. The top panel is for CIFAR-10 and the bottom panel is for
CIFAR-100.

TransCL-32 MLP on {ŷ(i)} CNN on {ΦT
Γ ŷ(i)}

Accuracy Time Accuracy Time Accuracy Time

MR = 1 79.96% 24h 70.61% 35m26s 91.36% 56m

MR = 0.25 76.93% 24h 61.95% 22m54s 88.39% 55m

MR = 0.10 72.73% 24h 57.36% 15m29s 84.56% 55m

MR = 0.01 44.90% 24h 16.62% 10m48s 63.09% 52m

MR = 1 52.56% 25h 33.39% 1h27m 94.31% 1h16m

MR = 0.25 46.77% 25h 27.94% 53m18s 91.67% 1h13m

MR = 0.10 38.83% 25h 23.24% 29m36s 88.05% 1h2m

MR = 0.01 33.82% 25h 11.20% 18m51s 77.24% 1h11m

for compressed signals, it can achieve comparable or even better results than the
compressive learning methods based on heavy models such as Transformer.

3 Inference on Compressed Signals with Unknown
Measurement Matrix

The compressed learning methods in Sect. 2 rely on a known measurement
matrix, Φ. If Φ is unknown, and all we have is the compressed signals and their
class labels, can we build a learning model to classify the compressed signals?
This section will focus on the new task of learning the measurement matrix and
using it for classifying compressed signals.

3.1 Preliminaries

Inference Based on the AE Model. When the true measurement matrix
Φ is unknown, neural network models are used to learn it. In [1], Adler et al.
introduced a compressed learning algorithm based on the Autoencoder model.
It first uses a fully connected layer (FC) to embed the original signal X to the
latent vector Z, and then use another fully connected layer to reconstruct the
signal X̂. The reconstructed signal is fed into CNN for classification:

Z = Φ̃X,

X̂ = ΨZ,

label ← CNN(X̂),
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Fig. 3. The architecture of AE model [1].

where Φ̃ and Ψ are parameterized by two fully connected layers, as shown in
Fig. 3. Once the matrix Ψ is learned, it can be used to classify a compressed
signal y:

X̂ = Ψy,

label ← CNN(X̂).

Variational Autoencoders. The variational autoencoder (VAE) framework,
proposed by Kingma and Welling in [15], is designed to perform approximate
inference with continuous latent variables. It combines reconstruction loss and
regularization through an objective function to balance data fidelity and model
complexity ([9,14]). They are based on Bayesian inference [5], using variational
inference to approximate latent variable posteriors. Due to its interpretability
and generative capabilities, VAE have applications in various fields, including
image synthesis and drug discovery [12].

In the VAE framework, it is assumed that the data X are generated from
a random process from a generative model. The generative model is described
by pθ(X,Z) = pθ(X|Z)pθ(Z), where X is the i.i.d. data points, and Z is the
continuous latent variable, and both true parameters θ and the latent variables
Z are hidden from us.

In case the true posterior pθ(Z|X) is intractable, a variational approxima-
tion to it is used, denoted as qΦ(Z|X). The variational parameters Φ are learned
jointly with the generative model parameters θ using the Auto-Encoding varia-
tional Bayesian (AEVB) approach.

Using AEVB to jointly learn the true parameter θ and variation parameters
Φ involves maximizing the variational lower bound, which contains a term that
is called Kullback-Leibler (KL) divergence between the variational approximate
posterior distribution qΦ(Z|X) and the prior distribution pθ(Z). Often times,
the KL term can be integrated analytically.

When the variational approximate posterior is assumed to be a multivariate
Gaussian with a diagonal covariance structure, i.e.,

log qΦ(Z|X) = log N (Z;μ, σ2I), (1)
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where μ and σ2 represent the mean and variance of the approximate posterior,
respectively, and the prior is a standard Gaussian, the Kullback-Leibler (KL)
divergence is given as the following without estimation,

−DKL(qΦ(Z)‖pθ(Z)) =
1
2

J∑

j=1

(
1 + log((σj)2) − (μj)2 − (σj)2

)
, (2)

where J denotes the dimensionality of the latent variable Z.

3.2 Proposed Models with Variational Measurement Matrix
(VMM)

The AE model in [1] is simple and works well if we only consider the classification
accuracy. However, in compressive sensing, the matrix Φ is large, so are the
learned matrices Φ̃ and Ψ . The AE model would learn each and every element
in the matrices, leading to increased computational complexity and potentially
overfitting. This is especially true in scenarios with limited training data or
high-dimensional signals.

Additionally, the elements in the matrices are fixed once the training is com-
pleted, therefore the AE model is not robust to small perturbation on the com-
pressed signal. The VAE framework, on the other hand, uses a generative model
to generate the matrix instead of using a fixed matrix. It is naturally fit to
overcome the lack of robustness issue. We hereby propose a compressed learning
method based on the VAE framework.

The generative model for the measurement matrix is governed by a probabil-
ity density function, as the matrix is supposed to be a random Gaussian matrix.
In contrast to previous methods, our method involves learning the parameters
of the probability density function instead of learning all the elements in the
matrix. This approach reduces the number of learnable parameters and provides
a direct way to specify the properties of the matrix, thus striking a balance
between flexibility and efficiency as it allows the model to adapt the measure-
ment matrix to the input data while maintaining a compact parameter space.
Furthermore, by incorporating statistical properties such as mean and variance
into the parameterization, we can capture important features of the signal and
improve overall compression performance.

Let Φ represent the unknown measurement matrix. We denote Φi;. as the
i-th row of Φ, which has mean mui, and variance σ2

i . Each element of the matrix
is then generated by using the following generative model: Φij ∼ N (μi, σ

2
i ), ∀j.

Let ηi = (μi, σ
2
i ) represent the parameters in the generative model of Φ.

The objective of this model is twofold: first, to reduce the number of learnable
parameters and thus the computational complexity; second, to provide a direct
way to control the properties of the measurement matrix, making the model
easier to adapt to practical applications.

Suppose there are L data points in the training set. Let X represent the l-th
data point X(l), then the calculation of each hidden layer element Zi involves
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multiplying the measurement matrix Φ with the input data X,

Zi =
N∑

j=1

ΦijXj , (3)

E(
N∑

j=1

ΦijXj) =
N∑

j=1

E(ΦijXj) = μi

N∑

j=1

Xj , (4)

V ar(
N∑

j=1

ΦijXj) =
N∑

j=1

V ar(ΦijXj) =
N∑

j=1

σ2
i X2

j . (5)

The loss function is computed over the entire batch, averaging over all data
points to obtain a mean loss. The mean μZi

and variance σ2
Zi

of the i-th element
of Z can be calculated as follows,

E(Zi) ≈ 1
L

L∑

l=1

⎛

⎝μi

N∑

j=1

X
(l)
j

⎞

⎠

= μi
1
L

L∑

l=1

⎛

⎝
N∑

j=1

X
(l)
j

⎞

⎠ ,

(6)

V ar(Zi) ≈ 1
L

L∑

l=1

⎛

⎝
N∑

j=1

σ2
i

(
X

(l)
j

)2

⎞

⎠

= σ2
i

1
L

L∑

l=1

N∑

j=1

(
X

(l)
j

)2

.

(7)

With an abuse of notation, we use EX(h(X)) to represent the average value
of h(X) computed over all L data points. Thus,

μZi
= E(Zi) ≈ μi

N∑

j=1

EX(Xj), (8)

σ2
Zi

= V ar(Zi) ≈ σ2
i

N∑

j=1

EX(X2
j ). (9)

The objective is to infer ηi = (μi, σ
2
i ) in order to generate the matrix Φ, as

Φij ∼ N (μi, σ
2
i ). This can be done by using an MLP to compute μZi

and σ2
Zi

,
and then using Eqs. (10) and (11) to get (μi, σ

2
i ).

μi =
μZi∑N

j=1 EX(Xj)
, (10)

σ2
i =

σ2
Zi∑N

j=1 EX(X2
j )

. (11)
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Therefore, we can generate the measurement matrix by Eq. (12),

Φij = μi + σiε, ∀j, where ε ∼ N(0, 1). (12)

Loss Function. The loss function consists of two parts: the KL divergence
between the variational approximate posterior and the prior, and the cross-
entropy loss for classification of images [10]. The prior distribution is standard
Gaussian. Reparameterization is performed following the standard “reparame-
terization trick” in [15].

For the KL divergence part, we can either use the KL divergence on the
parameters of Φ, or on the parameters of Z:

−DKL (qθ(Z)‖N (0, I)) =
∫

qθ(Z)
(
log N (Z;0, I) − log N (

Z;μZ , σ2
ZI

))
dZ

=
1
2

J∑

j=1

(
1 + log

(
σ2

Zj

)
− μ2

Zj
− σ2

Zj

)
, (13)

−DKL (qη(Φ)‖N (0, I)) =
∫

qη(Φ)
(
log N (Φ;0, I) − log N (

Φ;μ, σ2I
))

dΦ

=
1
2

J∑

j=1

(
1 + log

(
σ2

j

) − μ2
j − σ2

j

)
, (14)

where J = M is the dimension of the latent variable Z, θi = (μZi
, σ2

Zi
) and

ηi = (μi, σ
2
i ) follow the relationship of Eq. (8) to Eq. (11).

The experiment results show that using the KL divergence on the variational
parameters of Φ gives better classification accuracy. This is no surprise since μi

and σi are directly used to generate the matrix Φ.
Two Variants of the VMM Model. The overarching approach is to learn
the parameters that are used to generate the measurement matrix Φ instead of
learning the elements of the matrix as the matrix can be very large.

let Z = g(X). g is the embedding function that maps from input X to latent
vector Z. From Z, we can compute the parameters θi = (μZi

, σ2
Zi

). Then from
Eqs. (10) and (11) we derived the paramters ηi = (μi, σ

2
i ). Using ηi, we generate

the measurement matrix Φij ∼ N (μi, σ
2
i ).

Once the measurement matrix Φ is generated based on the learned param-
eters μi and σ2

i , the input data X is compressed by multiplying it with Φ.
Subsequently, the compressed data is reconstructed by applying the transpose
of Φ. The resulting reconstructions of the images are then input to a CNN model
to address the practical task at hand.

We propose two variants for the embedding function g. The first one is param-
eterized by a fully connected layer, and the second one is a linear model by using
the estimated measurement matrix. We denote the end-to-end neural network
models as VMM-a and VMM-b, respectively.
VMM-a with Z = FC(X): In this model, we train a fully connected linear layer
(FC) to map the input data X to the latent vector Z, with Z = FC(X). As the
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Fig. 4. The architecture of model VMM-a.

Fig. 5. The architecture of model VMM-b.

training progresses, the parameters of the fully connected layers are iteratively
improved, the estimates of μi and σ2

i get improved as well. After training stops,
(μi, σ

2
i ) are used to generate the matrix Φ. For a new compressed signal y, ΦT y

is then used as input to the CNN model for classification. Figure 4 shows the
architecture of VMM-a.
VMM-b with Z = ΦX:We initialize the estimates of μi and σi as μ

(0)
i and

σ
(0)
i , and generate the initial Φ(0) using μ

(0)
i and σ

(0)
i . As μi and σi are updated

during the training stage, the new measurement matrix Φ is generated based
on the updated parameters ηi = (μi, σ

2
i ). Then the embedded vector Z = ΦX

is updated by using the new Φ. At the end of the training stage, we have the
learned parameters ηi = (μi, σ

2
i ), which will be used to generate the matrix Φ.

For a new compressed signal y, ΦT y is then used as input to the CNN model for
classification. The architecture of VMM-b is shown in Fig. 5.
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3.3 Experiments on Signals Compressed with the Same Matrix

We test our models VMM-a and VMM-b on MNIST dataset and compare them
with the baseline method AE in [1].

Table 5 and Table 6 show the experiment results of VMM-a and VMM-b
with two different loss functions. Compared to the AE model, both VMM-a and
VMM-b show a significant reduction in the number of training parameters. In
particular, VMM-b has more significant reduction, requiring only 2% to 15% of
the parameters required by the AE model. As a result, both VMM-a and VMM-b
have much shorter running time, indicating that they are more computationally
efficient than AE models.

However, a trade-off between parameter reduction and accuracy must be
acknowledged. The accuracy of VMM-a and VMM-b start to suffer when the
measurement rate gets below 5% (i.e., when the signal is compressed with a
larger ratio) although their accuracies are comparable to AE for larger MRs.
This result is expected since AE model fully parameterized the matrix, as long
as the matrix is the same matrix used for training data and testing data, AE has
excellent performance. However, when the testing data are compressed with dif-

Table 5. Model VMM-a results on MNIST dataset, showing the classification accuracy,
number of parameters, and training time (in seconds). Baseline method is AE from [1].

VMM-a with DKL Eq. (14) VMM-a with DKL Eq. (13) AE

Accuracy n Param Time Accuracy n Param Time Accuracy n Param Time

MR = 1 99.24% 1220880 257 98.91% 1220880 256 97.78% 1652650 328

MR = 0.5 98.61% 615832 202 97.94% 615832 197 97.12% 1250850 307

MR = 0.25 97.56% 308308 173 95.48% 308308 180 96.81% 1049950 294

MR = 0.1 91.17% 123116 139 91.71% 123116 154 96.40% 929000 286

MR = 0.05 88.36% 61975 112 89.22% 61975 129 95.09% 131595 233

MR = 0.02 85.88% 24319 83 11.35% 24319 79 94.88% 49638 226

MR = 0.01 83.86% 15700 76 11.35% 15700 74 93.12% 24319 222

Table 6. Model VMM-b results on MNIST dataset

VMM-b with DKL Eq. (14) VMM-b with DKL Eq. (13) AE

Accuracy n Param Time Accuracy n Param Time Accuracy n Param Time

MR = 1 98.90% 252608 184 99.21% 252608 197 97.78% 1652650 328

MR = 0.5 97.81% 126384 132 97.77% 126384 128 97.12% 1250850 307

MR = 0.25 96.82% 63272 92 96.74% 63272 101 96.81% 1049950 294

MR = 0.1 95.16% 12324 79 95.34% 12324 72 96.40% 929000 286

MR = 0.05 89.77% 3120 52 89.76% 3120 45 95.09% 131595 233

MR = 0.02 60.57% 1490 32 58.82% 1490 31 94.88% 49638 226

MR = 0.01 45.61% 414 26 44.98% 414 28 93.12% 24319 222
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Table 7. Classification results on a subset of the MNIST dataset when images are
compressed with different measurement matrices. Our models are at the bottom. For
our models and AE, it is assumed the matrix Φ is unknown.

Models MR = 1 MR = 0.5 MR = 0.25 MR = 0.1 MR = 0.05 MR = 0.02 MR = 0.01

Φ is known 98.56% 97.92% 94.93% 92.62% 79.36% 70.85% 67.80%

AE 94.55% 94.97% 91.78% 86.92% 73.55% 52.00% 34.81%

VMM-a 97.83% 97.52% 95.67% 89.90% 80.30% 64.73% 54.05%

VMM-b 97.76% 96.54% 93.61% 90.16% 82.09% 53.77% 41.82%

ferent matrix from the training data, the advantage of our model, i.e., robustness
to small perturbation, starts to show.

3.4 Experiments on Signals Compressed with Different Matrices

We generate the compressed signals with different matrices, and then randomly
split the data into a training set and a testing set. A total of 16 different mea-
surement matrices are used on the MNIST dataset.

The compressed signal is denoted by y. In the baseline method, the true
measurement matrix Φ is given to the compressed learning algorithm, then the
reconstructed signal is obtained by X̂ = ΦT y; In AE, matrix Ψ is learned by a
fully connected layer, then X̂ = ΨT y is obtained; in our models, Φ is generated
by the learned parameters μ and σ2, then the reconstructed signal X̂ = ΦT y is
obtained. For all models, X̂ is fed to a CNN (LeNet-5) for classification. Table 7
shows the accuracy result of classification. Our models achieved overall better
accuracy results than AE, and close to the baseline, while our models and AE
both deal with unknown measurement matrix. The robustness of the variational
approach compared to the autoencoder approach is once again proved.

4 Conclusion and Future Work

The proposed methods for inference on compressed signals with known measure-
ment matrices have noticeable improvement over previous work. The improve-
ment is more significant when the measurement rate (MR) is small.

For unknown measurement matrix, previous work based on AE model has
strong performance when the sparse signals are all compressed with the same
measurement matrix. Our models have shorter training time than AE, but the
classification accuracy starts to deteriorate when the measurement rate gets
below 5%. However, when the signals are not compressed with the same matrix,
our models VMM-a and VMM-b both demonstrate better applicability than AE.

The results also showed that model VMM-a with loss function including the
KL divergence on matrix parameters worked better than other variants. Future
work will focus on formal methods to verify this observation, and the optimal
neural network model versus loss function combination.
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Abstract. Remote sensing through unmanned aerial systems (UAS) has
been increasing in forestry in recent years, along with using machine
learning for data processing. Deep learning architectures, extensively
applied in natural language and image processing, have recently been
extended to the point cloud domain. However, the availability of point
cloud datasets for training and testing remains limited. Creating forested
environment point cloud datasets is expensive, requires high-precision
sensors, and is time-consuming as manual point classification is required.
Moreover, forest areas could be inaccessible or dangerous for humans, fur-
ther complicating data collection. Then, a question arises whether it is
possible to use synthetic data to train deep learning networks without the
need to rely on large volumes of real forest data. To answer this question,
we developed a realistic simulator that procedurally generates synthetic
forest scenes. Thanks to this, we have conducted a comparative study
of different state-of-the-art point-based deep learning networks for for-
est segmentation. Using created datasets, we determined the feasibility
of using synthetic data to train deep learning networks to classify point
clouds from real forest datasets. Both the simulator and the datasets are
released as part of this work.

Keywords: Deep Learning · Point Cloud Segmentation · Forest
Simulator

1 Introduction

The use of remote sensing for environmental monitoring has grown significantly
in recent years, thanks to the development of Terrestrial Laser Scanning (TLS),
Aerial Laser Scanning (ALS), and Aerial Photogrammetry, techniques widely
used in precision forestry [1]. Both LiDAR and camera sensors made it possible
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to easily acquire three-dimensional data of the studied environment, accurately
representing it with high precision level point clouds. Both have been widely
used in forest environments for health monitoring, species classification, tree
parameter estimation, and even illegal logging detection amidst other applica-
tions [2]. Laser scanning, while more expensive, heavier, and energy-consuming,
is considered the most accurate method for estimating the forest structure, as
both the canopy and the ground can be detected [3].

Deep learning architectures, popular in natural language and image pro-
cessing nowadays, have recently been extended to point cloud processing, and
multiple techniques have already been adapted to the goals of classification,
segmentation, and point completion [4].

Unfortunately, few point cloud datasets are publicly available for training,
validating, and testing deep learning architectures, among which we can men-
tion ScanNet [5], ScanObjectNN [6] and ModelNet40 [7] for object classification
and ShapeNetPart [8] and SemanticKITTI [9] for part segmentation and scene
completion. Generally speaking, none of them are designed for specific environ-
ments, such as forests. Therefore, if training a deep learning architecture for
forested environment is needed, a new dataset for this purpose has to be gen-
erated. For example, [10] developed a dataset from the regions of the Southern
Sierra Nevada Mountains, USA, [11] from Australia and New Zealand, and [12]
from Evo, Finland. All these works were conducted for forest segmentation. Of
the three, only the latter dataset is publicly available, limiting the repeatability
of the experiments and the comparison between the cited works.

Creating a specific point cloud dataset for forested environments is expensive,
as high-end equipment, including UAVs and high-precision sensors, is required
to survey the studied area. It is also time-consuming, as it implies labeling the
points manually. Moreover, forest areas could be inaccessible or dangerous for
humans, further complicating data collection.

This work aims to answer whether synthetic data for training point-based
deep learning networks is suitable for segmenting real forest point clouds gen-
erated from LiDAR or camera sensors. For this purpose, we developed a forest
simulator based on Unity [13] that allows us to generate several forested scenes
with high realism procedurally. We extract the point clouds from the synthetic
scenes, which are then used to train the deep learning architectures instead of
using real forest data. The main contributions of this work are as follows:

1. The development of a novel open-source forest simulator based on Unity that
procedurally generates forest scenes. It also includes a configurable survey
mission planner mode that takes pictures of the scene like a camera from an
up-down UAV view.

2. Public-domain synthetic datasets of forest scenes that can be used to train
or test different deep-learning networks.

3. A comparative study of state-of-the-art point-based deep learning networks
to determine whether training with synthetic data is suitable for segmenting
point clouds from real forest datasets.
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This paper is organized as follows: Sect. 2 overviews related works. Section 3
briefly explains the deep-learning architectures selected for this work, and
presents the developed forest simulator and the dataset generation. Section 4
shows and discusses the experimental results, and Sect. 5 ends with conclusions
and future work.

2 Related Work

The development of TLS, ALS and aerial photogrammetry, aided with com-
puter vision techniques, has made acquiring an accurate 3D reconstruction of
the studied environment possible. This allows to extract valuable information
for the characterization, monitoring, and conservation of forests.

Thanks to the ability of the deep learning networks to adapt to several tasks,
such as classification, segmentation, and completion, its use has expanded to sev-
eral applications, including the study of different natural environments. Specif-
ically in point cloud processing, [10,14–16] use deep learning for the extraction
of digital terrain models (DTM) from LiDAR captured data. In a forest environ-
ment, [11] segments the LiDAR captured point cloud into different categories:
terrain, vegetation, coarse woody debris and stems. It is noticeable that seg-
menting the terrain from the rest of the points results equivalent to finding the
DTM of the studied environment. Similarly, [12] uses segmentation techniques to
classify the points into terrain, understorey, tree trunk, or foliage categories; the
labeled point cloud dataset used in this work is one of the few publicly available.
To the best of our knowledge, no prior research has utilized purely synthetic data
to train networks for classifying forest strata. This approach could be beneficial,
considering the complexity of creating real forest datasets.

Numerous deep learning architectures designed for point cloud processing
were developed in the last years, such as PointNet++ [17], built mostly with
multi-layer perceptrons, and PointNeXt [18], that updates PointNet++ to the
state-of-the-art using more modern training strategies, such as newer optimiza-
tion techniques, data augmentation, and an updated architecture. Besides, trans-
former technology, based entirely on self-attention layers [19], presents advan-
tages over the use of convolutional layers and multi-layer perceptrons in encoder-
decoder architectures. This translates into more accurate results with lower train-
ing time but at the cost of using a greater number of parameters, which requires
a greater volume of input data for training. Some of the architectures that
were based on this technology are PointBERT [20], PointMAE [21] and Point-
GPT [22]. The first one divides the point cloud into several smaller local clouds,
and codifies each of them into tokens using a Discrete Variational AutoEncoder
(DVAE) [23]. A proportion of them are masked and input to the transformer
blocks which is trained to recover the original tokens of the masked clouds. On
the other hand, PointMAE masks the small cloud without the need for a DVAE,
and PointGPT orders the smaller local clouds using a Morton curve by spatial
proximity [24], and uses a dual mask strategy for masking. In this work Point-
BERT, PointMAE, PointGPT and PointNeXt were selected to study if training
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with synthetic forest point clouds will give accurate results in real forest data,
as they have state-of-the-art performance in point-cloud segmentation tasks.

Regarding the use of synthetic datasets in forest environments, in [25], a
simulator is presented using procedural techniques, where sensors like LiDAR,
an RGB camera, and a depth camera are also simulated for data extraction, all
of them with the capacity of segmenting the scene in the following categories:
background, terrain, traversable, trunks, canopy, shrubs, herbaceous plants, and
rocks. A synthetic dataset using this simulator is available in [26]. It includes
RGB images, semantic segmentation maps, depth maps and the projection of
LiDAR point clouds on the RGB field of view for two different LiDAR scan-
ning patterns. However, this simulator is not publicly available, and the dataset
does not include the 3D reconstruction neither the point clouds dataset of the
environment. Finally, [27] uses this dataset’s images for training networks to
detect fuel for preventing spread of forest fires. This work concludes that the
synthetic data fails to generalize to real data. In a similar way, for this work
an open-source forest simulator with the ability to export point clouds of the
generated scenes was developed. Two publicly available datasets were built with
these point clouds to train the aforementioned networks.

3 Materials and Methods

3.1 Point Cloud Deep Learning Networks

Following [12], we aim to train different deep learning networks to segment the
forest point clouds into trunks, canopy, understorey, and terrain. This lets us dif-
ferentiate forest strata and the DTM that corresponds with the terrain points.
We selected four well-known state-of-the-art architectures, PointNeXt, Point-
BERT, PointMAP, and PointGPT, and trained them with synthetic data gener-
ated by our forest simulator. Of these four selected architectures, the last three
are built using transformers, and pre-trained versions are available with the
ShapeNetPart dataset, so these networks can be fine-tuned specializing them
in the respective study area. On the other hand, PointNext is not built using
transformers but multi-layer perceptrons, and as we do not count on pre-trained
versions of the network, we trained it from scratch.

3.2 Forest Simulator

For this work, a forest simulator based on the Unity engine was developed,
from which synthetic data with a similar appearance to real-world forests was
extracted. We aim to train the mentioned architectures with synthetic data and
test their performance with real forest data. As [12] notices, the manual labeling
of the extracted point cloud is a very demanding task, and in several cases, it
is impossible to human experts to discern which category each point belongs
to. Using a simulator for dataset generation overcomes this problem, as the
point cloud labeling can be carried out automatically. Moreover, as transformer
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technology requires a large volume of data for training, generating synthetic data
procedurally becomes even more relevant. Below we detail the most important
modules of the presented simulator.

Terrain Generation. The simulator first generates a terrain mesh using fractal
noise to build a heightmap for all its vertices. These noise samples are from Perlin
noise layers at different scales or octaves. This permits controlling the amount
of detail and the general aspect of the terrain. As the implementation is easily
parallelizable, we took advantage of the Perlin noise function provided by Unity
and the Unity Jobs framework for parallel execution. The random appearance
and realistic aspect of this method’s results are notorious and well-regarded in
the video game developers community.

Trees, Bushes, and Plants Generation. Vegetation (excluding grass) is
generated via pipelines. Each pipeline is a Directed Acyclic Graph (DAG) that
links prefabs (i.e. reusable pre-generated game objects, like individual trees or
bushes) with their position over the terrain. This is done through textures that
determine the spawn probability and density over the terrain mesh. Each pipeline
is built using different nodes:

– Source: imports a texture from a file or another pipeline, or generates a new
one via a Voronoi diagram or sampling noise.

– Logic: applies logic operations over textures
– Sampling: variants of Poisson disk sampling method.
– Placement: generates instancing parameters for the assigned prefabs.

Regarding the sampling process, an implementation of Bridson’s Poisson disk
sampling method [28] and a variation of it were implemented. In Bridson’s orig-
inal algorithm, given an object a0 with radius r, new objects of the same radius
are added in an annulus of size [r, 2r] without overlapping, until it reaches a
maximum quantity, or until there can not be placed any more, and then this
process is repeated with the next object. Using a cell size of r/

√
n, where n is

the dimension of the background grid for storing samples, each cell can contain
only one placed object. This process is fast for object placement, but it produces
a distribution of points that may appear equidistant, especially for small values
of r giving an unrealistic point distribution. To face this issue we propose a vari-
ation to the method: new points are seeked in an annulus of size [rmin, rmax],
where rmin and rmax are a given minimum radius and a maximum radius respec-
tively, interpolating the distance linearly using the value of a greyscale texture
at each point. This means that for values near 0 (where the texture is black),
points at a distance rmin from a0 are generated, and the inverse holds for values
near 1. To do that, we tweaked Bridson’s algorithm to use a spatial cell of size
rmin/

√
n, but instead of each cell holding the index of only one placed object,

it holds a list of indices for the objects that shadow that cell and remains at an
acceptable distance between themselves.



Point-Based Deep Learning for Forest Segmentation 69

Fig. 1. Sample models of trees used in the simulator, generated with software
TreeIt [29].

The texture of spawn probability acts as the probability of effectively instan-
tiating an object at a given point. Having this as a separate node from the
sampling process is useful since the number of objects spawned in an area can
effectively be reduced, even to 0, making clearings of arbitrary shapes possible.

There can be created as many pipelines as required. The simulator already
counts with basic pipelines for trees and bushes. The prefab models of trees,
bushes, and other plants were generated with the free-to-use TreeIt software [29].
A small sample of them can be seen in Fig. 1. More models can be easily added
if needed. Before instantiating these models, some transformations are applied
to include more variability to the scene: a random spin around its up axis, a
random twist to bend the up direction with regards to the world’s up direction,
and a random scale.

Grass Generation. None of the sampling methods for vegetation distribution
could scale to generate millions of points while keeping the frame rate manage-
able. Thus, a parallelizable method was devised for placing grass. It is generated
by indirect instancing, where the geometry is produced via a compute shader (a
program that run on the GPU, outside of the normal rendering pipeline) and
sent to the graphics pipeline through a shared memory buffer. The sampling
algorithm for the grass leaves is depicted in Algorithm 1. As the tiles are non-
overlapping, the processing for each tile can be parallelized over the number of
tiles. The generated points are then transformed into the terrain coordinates
using parallel raycasting. For a 256 × 256 pixels texture, a tile size of 4 pixels
and a maximum of 1024 points per tile, the shader takes less than one second to
run approximately 4 million points, running in an Intel Core i9-10900 processor,
with 32 GB RAM and a NVIDIA GTX 1060 board.

The points are then fed into a compute shader that generates the geometry
for a single blade. The number of blade segments can be customized. To add a
realistic feeling to the grass, the following transformations are also applied to
each blade: a random jitter to the anchor point because of the grid-like pattern
of the sampling algorithm; a random rotation that sets which direction the blade
is oriented; a random bend for the tip of the blade and a random scaling. After
these transformations, the points are returned to world space coordinates to be
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Algorithm 1. Grass Sampling
Input: texture T , tile size ts, maximum number of points for a tile P
Output: points for grass leaf instancing G

1: Divide the texture T into non-overlapping tiles according to a tile size ts
2: Define an empty list G for the points for grass instancing
3: for each tile t do
4: Define density d = 1

t2s

∑

(i,j)∈t

pi,j , where pi,j is the texture’s value in pixel (i, j)

5: Define the number of sampling points in t by p = d× P
6: Define points Gt by distributing p in a grid-like pattern in the tile
7: Append Gt to G
8: end for
9: return generated points G

placed over the terrain. Finally, a shader applies a grass texture to each leaf to
add volume and color.

Approximately 4 million blades of grass, each composed of 9 points, can be
generated and updated at 20 ∼ 30 fps in the mentioned hardware, displaying all
grass blades simultaneously. It is worth noting that this instancing method is
not used with trees, bushes, and other plants because the random jitter prevents
us from enforcing a minimum radius distance between instanced objects to avoid
collisions.

Repeatability. Each scene is generated using a seed to ensure repeatability.
This seed is transmitted to every vegetation pipeline and to the grass and terrain
generators. Figure 2 shows an example of the pipelines for generating trees and
grass and a top-down view of the resulting forest scene, and Fig. 3 shows the
same scene from a front view and a closer view.

Point Cloud Extraction. The point cloud of the generated scene can be
extracted directly from the Unity Editor as a .csv file. By tagging the instanced
objects with meshes, they can be exported as various categories, including but
not limited to terrain, canopy, trunk, branches, bushes, understorey, grass, cacti,
and deadwood, assigning the corresponding label to each point of the point
cloud. The size of the scene’s point cloud can be altered by adding more points
to the terrain mesh, by generating more grass leaves or changing their number
of segments, or by importing other vegetation prefabs with the desired quantity.
This customization helps generating scenes where its point cloud can vary in
size, and thus be adapted to specific needs, such as training large deep learning
networks.

As one of the contributions of this work, the code of the presented forest
simulator was released1.

1 https://github.com/lrse/forest-simulator.

https://github.com/lrse/forest-simulator
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Fig. 2. Above: Forest scene with trees (left), and trees, bushes, and grass (right). Below:
the correspondence pipelines for instancing trees (left), and grass (right).

Fig. 3. Left: Frontal view of a generated forest scene. Right: Close up view.

3.3 Dataset Assembling

Two datasets were created to train the selected deep learning architectures,
simulating the point clouds obtained by LiDAR and applying structure from
motion algorithm to synthetic camera images, both from a top-down view. For
the camera-like dataset, a method to include occlusion to the point cloud was
used [30], as several points should not be visible from a top-down view of the
forest. Then, random noise with zero mean is added to give variability to the
point clouds, and it is partitioned in the xy plane using K-Means clustering to
assemble subclouds with which to train the networks. Both datasets, LiDAR-
like and Camera-like, and the seeds used to generate the scenes are publicly
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available2 to ensure this work’s results are reproducible and to increase the
point cloud datasets available to the scientific community.

The Evo Dataset, given by [12], was employed to test the trained archi-
tectures. We used an occluded version of this dataset to test the architectures
trained with the Camera-like dataset, using the same occlusion method [30].

Fig. 4. Above: Example scene without occlusion segmented using K-Means (left) and
segmented via labels: blue, green, yellow, and red corresponding to terrain, trunks,
canopy, and understorey, respectively (right). Below: Same example for another scene,
but using occlusion from a top-view point. (Color figure online)

To create a synthetic dataset that resembles the Evo Dataset, we have
extracted four categories from the simulator: terrain, trunks, canopy, and under-
storey, the latter including grass, bushes, and all other vegetation that are not
trees. In Fig. 4, an example of both datasets segmented using K-means and seg-
mented into the studied categories can be seen. In Table 1 there is a summary
of some statistics of both datasets. Note that the percentages of each category
are not uniformly distributed, similarly as in the Evo Dataset.

4 Results and Discussion

For experimental results, the four selected architectures were trained with an
AMD Phenom II X6 1075T Processor CPU, with 32GB RAM, and two NVIDIA
2 https://github.com/lrse/synthetic-forest-datasets.

https://github.com/lrse/synthetic-forest-datasets
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Table 1. LiDAR-like and Camera-like dataset statistics.

Dataset Number of
scenes used

Total
Points

Terrain
Points [%]

Trunk
Points [%]

Canopy
Points [%]

Understorey
Points [%]

LiDAR-like 6 120,460,000 0.0171 0.1066 0.3599 0.5164

Camera-like 20 31,230,000 0.0767 0.03654 0.4454 0.4414

RTX 3090 connected with an SLI bridge. 75 epochs were used for every network,
with an average training time of 472 s per epoch for the LiDAR-like dataset and
239 s for the Camera-like dataset. Further increasing the number of epochs did
not increase significantly the results while testing with real forest data. In Fig. 5
we can see that the accuracy of the networks converge within the scope of the
selected number of epochs for both datasets.

Fig. 5. Overall accuracy obtained for the studied networks while training the LiDAR-
like (left) and Camera-like (right) datasets.

4.1 LiDAR-Like Experiment

Table 2 shows the results of testing the networks trained with the LiDAR-like
dataset with the Evo dataset. The confusion matrix of each network is presented
in Table 3. It can be seen that, regardless of having an overall good accuracy,
the networks still struggle to differentiate understorey from terrain, especially
when the vegetation is on a near-ground level. Trunk and canopy points are also
confused, especially in branch points that are classified as canopy. This may be
related to the structure of the assets used in the simulator. Assets that relate
more closely to the Evo trees may throw better results. However, using more
specifically generated assets may result in a loss of generalization over other
forest environments. PointNeXt had a better result in classifying the points
in the Evo dataset, and therefore it seems more suitable for LiDAR datasets,
although PointMAE has better class average accuracy. It is also noticeable that
the other three networks performed better in the Synthetic Forest Dataset than
PointNeXt, but worse in the Evo Dataset. This behaviour may be due to a
strong learning of the synthetic features, but a lack of ability to generalize it
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when applied to real data. Despite this, in Sect. 4.3 we show that the networks
perform well in segmenting the trees from the rest of the categories. In Fig. 6 we
can see a small fraction of the Evo dataset classified with each network.

Fig. 6. Fraction of the Evo Dataset classified with the selected networks: terrain (blue),
trunks (green), canopy (yellow) and understorey (red). (Color figure online)

4.2 Camera-Like Experiment

Table 4 shows the results of testing the networks trained with the Camera-like
dataset with the Evo dataset with occlusion. The confusion matrices of each
network can be seen in Table 5. Similar to the previous case, the networks strug-
gle to differentiate terrain points from understorey points, and as few trunk
points remain visible, especially the ones at the base of the trunk, it is also often
confused with understorey points. We can see that the overall performance is
significantly lower than in the case without occlusion. PointBERT and Point-
MAE obtains slightly better accuracy than the other networks, although all have
similar responses. In Fig. 7 we can see a small fraction of the Evo dataset classi-
fied with each network. Again, when considering only two categories, Tree and
Non-tree, the overall accuracy achieves better results (see Sect. 4.3).
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Table 2. Results obtained testing both on the created Synthetic Forest Dataset and
in the Evo dataset, using the LiDAR-like dataset.

Network Sythetic Forest Dataset Evo Dataset

Overall
Accuracy

Class Avg.
Accuracy

Class Avg.
mIoU

Overall
Accuracy

Class Avg.
Accuracy

Class Avg.
mIoU

PointNeXt 0.9373 0.8055 0.7291 0.7878 0.5695 0.4858

PointBERT 0.9592 0.8867 0.8180 0.7010 0.6336 0.4093

PointMAE 0.96077 0.8868 0.8185 0.7269 0.6342 0.4266

PointGPT 0.9537 0.8536 0.7759 0.6528 0.5316 0.3616

Table 3. Confusion matrix for the four studied networks.

PointNeXt

Terrain Trunk Canopy Understorey

Terrain 369303 1659 99640 976022

Trunk 4 105801 218950 62017

Canopy 403 2350298469286 1091116

Understorey 79625 8288 172479 1995818

PointBERT

Terrain Trunk Canopy Understorey

Terrain 331318 114867 78758 1568793

Trunk 42 464666 148591 43254

Canopy 4922 12285126649283 686987

Understorey 51466 129174 95209 2289598

PointMAE

Terrain Trunk Canopy Understorey

Terrain 272741 26422 24020 1769680

Trunk 9 426090 179322 51339

Canopy 6392 10386886971328 553048

Understorey 52880 50075 40230 2423176

PointGPT

Terrain Trunk Canopy Understorey

Terrain 187120 12496 39142 1856968

Trunk 146 231938 247044 176434

Canopy 5801 7297016177700 1656671

Understorey 15953 23934 55922 2468470

4.3 Tree and Non-Tree Segmentation

Table 6 shows the results obtained considering only Tree and Non-Tree cate-
gories, the first one including trunk and canopy points, and the latter including
terrain and understorey points, training with both datasets, LiDAR-like and
Camera-like, and testing with the Evo Dataset. It can be seen that the tree seg-
mentation obtains a high accuracy percentage with all the considered networks,
being PointMAE the one with slightly better results.

Table 4. Results obtained testing both on the created Synthetic Forest Dataset and
in the Evo dataset, using the Camera-like dataset.

Network Sythetic Forest Dataset Evo Dataset

OverallAccuracy Class Avg. Accuracy Class Avg. mIoU Overall Accuracy Class Avg.Accuracy Class Avg. mIoU

PointNeXt 0.9491 0.6829 0.5877 0.6885 0.5144 0.4069

PointBERT 0.9368 0.7405 0.6445 0.7126 0.4963 0.4452

PointMAE 0.9402 0.7496 0.6596 0.7109 0.5669 0.4613

PointGPT 0.9341 0.7188 0.6174 0.6008 0.5364 0.3944
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Fig. 7. Fraction of the Evo Dataset classified with the selected networks: terrain (blue),
trunks (green), canopy (yellow) and understorey (red). (Color figure online)

Table 5. Confusion matrix for the four studied networks.

PointNeXt

TerrainTrunkCanopyUnderstorey

Terrain 4911 0 0 7884

Trunk 32 4 26 329

Canopy 38 0 6991 970

Understorey 1144 0 0 4295

PointBERT

TerrainTrunkCanopyUnderstorey

Terrain 11444 0 0 2792

Trunk 126 12 30 434

Canopy 173 99 6050 856

Understorey 3140 0 0 1468

PointMAE

TerrainTrunkCanopyUnderstorey

Terrain 10573 0 0 3828

Trunk 71 120 27 339

Canopy 132 188 6041 615

Understorey 2431 2 0 2194

PointGPT

TerrainTrunkCanopyUnderstorey

Terrain 8758 3 0 5587

Trunk 80 224 18 284

Canopy 121 405 4717 1752

Understorey 2346 32 0 2297

4.4 Fine-Tuning with Real Data

Table 7 shows the results obtained after applying an additional fine-tuning
training phase to the previously trained networks with the LiDAR-like dataset
(Sect. 4.1) with a small fraction of the Evo Dataset (approximately 10% of the
dataset), and testing with the remaining points. Table 8 shows the associated
confusion matrix. It can be seen that both the accuracy and mIoU significantly
increases in all cases compared to the obtained training only with synthetic data.
All the networks performed similarly, although PointBERT and PointMAE give
the best results.

This process could not be repeated with the networks trained with the
Camera-like dataset (Sect. 4.2), as very few points remains in the Evo Dataset
after applying the algorithms to simulate occlusion. This reinforces the advan-
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Table 6. Results obtained considering the categories Tree and Non-Tree, testing in
the Evo dataset and training in both the LiDAR-like and the Camera-like datasets.

Network LiDAR-like Dataset Camera-like Dataset

Overall Accuracy Class Avg.Accuracy Class Avg.mIoU Overall Accuracy Class Avg.Accuracy Class Avg. mIoU

PointNeXt 0.8966 0.9052 0.7836 0.9485 0.9184 0.8835

PointBERT 0.9169 0.9153 0.8333 0.9470 0.9077 0.8732

PointMAE 0.9460 0.9519 0.8890 0.9514 0.9196 0.8894

PointGPT 0.8680 0.8863 0.7563 0.9146 0.8519 0.7377

tage of using synthetic data over the lack or difficulty of obtaining real data from
forest environments.

Table 7. Results obtained considering the four categories, after a fine-tuning with a
fraction of the Evo Dataset.

Network LiDAR-like Dataset

Overall Accuracy Class Avg.Accuracy Class Avg.mIoU

PointNeXt 0.8669 0.5916 0.6132

PointBERT 0.8755 0.7804 0.6670

PointMAE 0.8755 0.7802 0.6658

PointGPT 0.8302 0.6776 0.5926

5 Conclusions and Future Work

In this work, we developed an open-source simulator based on Unity Engine that
generates realistic forest scenes procedurally. With it, we have created synthetic
point-based datasets, with each point labeled into one of the categories: terrain,
trunk, canopy, and understorey (including grass, bushes, and other vegetation
that are not trees). We then employed these datasets to train four state-of-the-
art deep-learning point-based networks. Finally, we tested and compared them in
the real forest Evo dataset. The results show that synthetic point cloud data can
be used to train deep-learning networks for posterior forest segmentation with
real data. Among the tested networks, PointNeXt seemed to give better overall
accuracy when trained with the LiDAR-like dataset, although PointMAE had
a better average accuracy. PointMAE also obtained slightly better results when
trained with the Camera-Like dataset. When considering only two categories,
Tree and Non-tree, a higher accuracy percentage is obtained, and PointMAE
also achieved the best results. Moreover, after applying a fine-tuning training
with a small proportion of the Evo Dataset, the results significantly increase,
giving PointBERT and PointMAE the best results, and reinforcing the notion
of pre-training with synthetic data and fine-tuning with a small amount of real
data to achieve a better performance without the need of creating larger datasets
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Table 8. Confusion matrix for the four studied networks after a fine-tuning with a
fraction of the Evo Dataset.

PointNeXt

Terrain Trunk Canopy Understorey

Terrain 1037663 1477 8657 254311

Trunk 1622 5209 307303 24976

Canopy 4306 18880 8481171 145389

Understorey 762910 3858 109044 1178568

PointBERT

Terrain Trunk Canopy Understorey

Terrain 1350273 5152 9192 486200

Trunk 813 420985 168130 12326

Canopy 1782 128501 7396903 94541

Understorey 488835 13861 126933 1640917

PointMAE

Terrain Trunk Canopy Understorey

Terrain 1382793 2485 9002 455813

Trunk 765 417884 167733 15351

Canopy 1834 106894 7399689 114228

Understorey 546291 8966 106817 1608799

PointGPT

Terrain Trunk Canopy Understorey

Terrain 1123618 24613 58181 644310

Trunk 1418 282205 293743 24981

Canopy 57133 89410 7078084 397312

Understorey 450261 27989 188923 1603163

for the training phase. Taking all the experiences into account, PointMAE seems
the most suitable network to work with the proposed approach.

As future work, we aim to test this approach on other datasets, especially
the Camera-like experiment with fine-tuning with real data. We will also per-
form experiments with simulated flight surveys, using Structure from Motion to
extract point clouds from images to ensure a more realistic scenario.
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Abstract. In recent years, the efficacy of deep learning models in accu-
rately estimating brain age using structural magnetic resonance imag-
ing (MRI) images has been extensively utilized. This study employs a
self-attention-based convolutional neural network (CNN) to extract fea-
tures from preprocessed MRI slices. While CNNs have shown remarkable
performance in brain age prediction, they often fail to capture global
dependencies within images. A self-attention mechanism is integrated
into the CNN architecture to discern long-range relationships within the
MRI images and enhance feature extraction robustness. Subsequently,
a single hidden layered random vector functional link (RVFL) network
is employed to predict the age of healthy individuals. The discrepancy
between true age and predicted age, termed the brain age gap, serves
as a biomarker for the early diagnosis of neurological disorders. Fur-
thermore, the proposed age estimation framework is evaluated using an
Alzheimer’s and Parkinson-affected dataset, demonstrating its versatility
and potential for clinical applications.

Keywords: Brain age · Magnetic Resonance Imaging · Random
vector functional link network · Regression · Self-attention

1 Introduction

As people age, the structure and functions of their brains change, and on the
other hand, neurological disorders like Alzheimer’s and Parkinson’s disease cause
significant changes to the brain’s architecture [1,2]. Neurodegenerative disorders
primarily target neurons in the brain, resulting in cognitive decline, memory loss,
and diminished mental function in Alzheimers disease (AD), as well as movement
disorders, loss of motor function, and stiffness in Parkinson’s disease (PD) [3].
The pathological characteristics of PD encompass the degeneration of neurons
in the substantia nigra and the accumulation of ubiquitinated protein deposits
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within the cytoplasm of neurons [4]. The brain age estimation (BAE) model
is a potential strategy for facilitating the early detection and diagnosis of vari-
ous neurological illnesses. The BAE model estimates an individual’s brain’s real
(chronological) age by analyzing various brain datasets, encompassing functional
and structural brain pictures acquired from neuroimaging modalities. Most pre-
diction models are developed using data from healthy individuals, suggesting
that they reflect the natural aging progression. As such, they offer a platform
for investigating how different diseases impact the aging process [5].

Neuroimaging methods have been developed to forecast an individual’s brain
age using morphological alterations in brain areas.T1-weighted Magnetic reso-
nance imaging (MRI) data has performed well in determining brain age among
other neuroimaging modalities. This modality successfully shows age-related
alterations in morphology and captures the brain structure. As a result, most
of the research has used T1-weighted MRI data to estimate brain age [6,7]. The
disparity between the predicted and chronological age is known as the brain age
gap (BAG), which can used as a biomarker for the early detection of neurological
disorders. A high BAG represents accelerating aging due to the effect of neuro-
logical ailments, and a low BAG represents normal aging or delayed aging due
to physical activities and meditations.

Machine learning (ML) techniques have played a significant role in brain age
classification and estimation tasks in recent years. Some common ML approaches
like Gaussian process regression (GPR), support vector regression (SVR), Ran-
dom Forest (RF), and Ridge regression (RR) networks have been widely used to
develop brain age estimation frameworks [8,9]. Traditional ML methods effec-
tively predict brain age, but they require feature extraction strategies, and man-
ually extracted features impact model performance. Deep learning (DL) models
are widely used in computer vision tasks such as classification, regression, and
segmentation. They excel by combining feature extraction, reduction, and pre-
diction, surpassing traditional ML methods, particularly with large datasets [10].
Convolutional Neural Network (CNN) is a powerful data-driven model known
for its automatic feature extraction capability from complex patterns in input
data by expanding the gradient backpropagation method with layers that pre-
serve spatial correlations in the input data given to the network [11]. However,
CNN-based algorithms neglect long-range dependencies in images and instead
concentrate on the local information in an image, reducing the value of the over-
all relationship. A self-attention mechanism is incorporated in the CNN design to
detect long-range relationships in images to extract robust features and improve
the efficacy of the brain age prediction model. In this context, the signal at a
particular position is determined by taking a weighted sum of features from all
positions within the same image.

Backpropagation (BP) based methods encounter several issues, including
slow convergence, learning rate sensitivity, and local minima susceptibility.
Single-layer feed-forward Networks (SLFNs) overcome these limitations of BP
models, offering faster training and superior generalization results. The random
vector functional link (RVFL) network, proposed by Pao et al. [12], stands out
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as one of the most notable SLFNs. It initializes input weights and biases ran-
domly while determining the output weights analytically. In RVFL, input and
hidden layer output features are forwarded to the output layer. An in-depth
evaluation of RVFL networks is conducted by Zhang and Suganthan [13]. They
experimented with 121 UCI datasets and concluded that direct links exhibit bet-
ter performance and no significant effect of bias in the output layer. The RVFL
network finds application in diverse fields, such as breast cancer detection [14],
emotion recognition [15], prediction of wastewater in tree plantation [16], and
wind power prediction [17].

The automatic feature extraction capabilities of CNN enhanced with self-
attention and the randomized RVFL network, serve as motivation for imple-
menting a brain age estimation model. Such a model is pivotal for the early
detection of neurological disorders and for analyzing the status of brain struc-
ture. The major contributions of the present work are

– images are preprocessed using the statistical parametric mapping (SPM-12)
toolbox before conducting experiments.

– The computed BAG is a valuable tool for clinicians to effectively assess the
health status of individuals.

– A CNN model with a self-attention mechanism is employed to extract robust
features from the 2D slices, aiming to enhance the reliability of feature extrac-
tion crucial for accurate age prediction.

– The study utilized a randomized RVFL network to predict brain age, com-
paring its performance against various conventional regression networks.

– Additionally, the age prediction model is validated using AD and PD-affected
data to estimate the brain age of unhealthy controls.

– The computed Brain Age Gap (BAG) serves as a valuable tool for clinicians
in effectively assessing the health status of individuals.

The rest of the paper is organized as age prediction-related, preliminary works
are discussed in Sects. 2 and 3, and the methodology is explained in Sect. 4.
Section 5 demonstrates the results and discussion, and finally, the conclusion is
discussed in Sect. 6.

2 Related Works

Aging impacts both the structure and function of the brain, and this can be iden-
tified through neuroimaging modalities. The brain ages due to advancements in
cell growth and myelination, but it also regresses due to cell death and shrinkage.
These changes don’t occur randomly; certain brain areas undergo more signifi-
cant changes than others. Valizadeh et al. [18] conducted a study to assess the
effectiveness of six ML algorithms like multiple linear regression (MLR), deep
neural network (DNN), K-nearest neighbors, SVR, RR, and RF networks on
healthy individuals ages 7 to 96 years across different cohorts. Their investiga-
tion revealed that the MLR method, employing concise morphological measures
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from various brain regions, achieved notable prediction accuracy, yielding a cor-
relation coefficient R2 value of 0.73. Furthermore, they demonstrated that the
DNN approach outperformed other methods through various combinations of
diverse morphological features. Cole et al. [19] segmented the T1-weighted MRI
images into gray matter (GM) and white matter (WM) maps and concatenated
them into a unified feature matrix based on vector product. The GPR network
is used to predict the chronological age and achieved 5.02 years of mean absolute
error (MAE) and 6.31 years of root mean square error (RMSE) values. Simi-
larly, Baecker et al. [20] assessed the performance of SVR, RVR, and GPR ML
algorithms using morphological features of HC subjects. Their results suggested
minimal disparities in accuracy, with 3.77 to 3.81 years of MAEs across the three
algorithms examined.

Huang et al. [21] employed a VGG-based 2D-CNN model to forecast the brain
age of 1099 HC subjects ranging from 20 to 80 years old, using T1-weighted
MRI images. Their CNN architecture comprises five convolutional blocks and
three fully connected layers, achieving an MAE of 4 years. In another study
[22], a 3D-CNN is devised to predict the age of HC subjects, yielding an MAE
of 3.67 years. While the 3D-CNN demonstrates superior performance to the 2D-
CNN, it has a trade-off in computational cost and necessitates high-end hardware
resources. Lam et al. [23] emphasized the drawbacks of 3D-CNN compared to
2D-CNN for brain age estimation, such as the extensive parameter requirements
and computational complexity during training. The authors found that 2D-CNN
efficiently extracts important features, utilizing a sagittal slice-based recurrent
neural network for age prediction.

Preprocessing MRI images is essential to optimize the brain age estimation
model’s effectiveness. ML models necessitate manual feature extraction methods,
whereas DL models autonomously derive robust features from input MRI images.
Specifically, 3D-CNN models are specialized for predicting and classifying brain
age, but they come with the drawback of higher computational demands. 2D
models have been developed to reduce the computational cost. This section pro-
vides an overview of previous research in the domain, offering inspiration and
essential insights for developing the brain age estimation framework. The subse-
quent section outlines the methodology to be employed.

3 Preliminary Works

The current section demonstrates preliminary works like self-attention mecha-
nisms and the RVFL network.

3.1 Self-Attention Mechanism

A self-attention mechanism [24] enables the model to prioritize different parts of
the input sequence with varying weights, aiding in capturing long-range depen-
dencies and enhancing performance. Within self-attention, each input feature
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map is associated with key (K), query (Q), and value (V) vectors. The key vec-
tors encode information from the input sequence to compute attention scores.
The query vectors question the key vectors to assess their relevance in generat-
ing the output. The value vectors hold the actual content used to produce the
output, influenced by the attention weights derived from key and query vectors.
The output vector is calculated by combining values through a weighted sum,
where each weight is determined by a Softmax compatibility function based on
the query and key vectors. The architecture of the self-attention mechanism is
shown in Fig. 1. The attention function can be expressed as

Attention(Q,K,V) = Softmax

(
QKT

√
d

)
V, (1)

where d is the dimensions of the key vector.

Fig. 1. Self-attention mechanism architecture

3.2 Random Vector Functional Link (RVFL) Network

In the RVFL regression network, weights w and biases b between input and
hidden nodes are randomly initialized and fixed during the training and testing.
The direct connections between input and output improve the generalization of
the RVFL network. The graphical representation of the RVFL network is shown
in Fig 2.

The RVFL network consists of only one enhancement layer (hidden layer).
RVFL is supplied with X training dataset with M samples, each containing p
features. The enhancement layer weights are structured as a matrix with dimen-
sions of p × Q, where Q denotes hidden layer neurons. The input samples are
multiplied by the generated weights to produce the input for the “radbas” acti-
vation function k() within the neurons of the enhancement layer. The output
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Fig. 2. Graphical representation of the RVFL network

layer then receives a combination of the hidden layer output H and the input
X, resulting in the concatenated matrix Z = [H X]. X and H are shown as

X =

⎡
⎢⎢⎣

x11 ... x1p

... ... ...

... ... ...
xM1 ... xMp

⎤
⎥⎥⎦ , H =

⎡
⎢⎢⎣

h1(x1) ... hQ(x1)
... ... ...
... ... ...

h1(xM ) ... hQ(xM )

⎤
⎥⎥⎦.

Here, h1(x1) = k(w1.x1 + b1) and so on. The output weights α needed to be
calculated, and the optimal solution expressed as

min
α

‖Zα − Y ‖2 + λ ‖α‖2 , (2)

where λ = 1
C is the regularization parameter, and Y is the output vector.

The output weights α can be calculated using ridge regression or matrix inver-
sion with Moore-Penrose pseudoinverse (MPPI) methods. For MPPI method
α = Z+Y and for ridge regression α value can be expressed as

Primal space : α = (ZT Z + λI)−1ZT Y, (3)

Dual space : α = ZT (ZZT + λI)−1Y. (4)

4 Methodology

The current section describes the dataset, preprocessing, feature extraction, and
regression network used to predict the age. The architecture of the proposed age
estimation model is shown in Fig. 3.

4.1 Dataset

In this study, 1150 structural MRI scans are acquired from Information Ex-
traction from Images (IXI, https://brain-development.org), Southwest Univer-
sity Adult Lifespan Dataset (SALD, http://nitrc.org/indi/sald), Parkinson’s

https://brain-development.org
http://nitrc.org/indi/sald
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Fig. 3. Architecture of the brain age prediction model

Progression Makers Initiative (PPMI, https://www.ppmi.com), and Alzheimer’s
Disease Neuroimaging Initiative (ADNI, https://www.adni.loni.usc.edu/) open-
source neuroimaging databases. In the IXI database, HC subjects are captured by
a 3T Phillips scanner with 1.2 mm slice thickness and dimensions 256×256×150.
In SALD, all MRI scans are HC subjects collected from a 3T scanner with a slice
thickness of 1 mm and 256 × 256 × 176 dimensions. From the PPMI database,
100 samples of PD subjects are collected, and the dimensions are 256×256×191
(Table 1).

Table 1. Demographical information of the Dataset

Dataset Subjects Mean Age SD TR TE

IXI 560 48.67 16.47 9 Sec 4 mSec

SALD 490 45.07 17.39 1.9 Sec 2.5 mSec

PPMI 100 64.29 14.76 3.9 mSec 8.4 mSec

ADNI 100 74.29 14.76 2.4 mSec 7.9 mSec

SD: Standard Deviation, TE: Echo Time, TR: Rep-
etition Time

4.2 Preprocessing

The preprocessing of 3D T1-weighted MRI images has been done by utilization
of the statistical parametric mapping (SPM12) toolbox. This preprocessing is
essential for illness detection as it identifies defects, outliers, and missing infor-
mation. During preprocessing, image realignment corrects any misalignment or
motion, image normalization standardizes intensity values using the Montreal
Neurological Institute (MNI)-152 template, and image registration ensures uni-
formity across scans. Following preprocessing, MRI images are resized to dimen-
sions of 256×256×150, with each scan containing 150 slices. Three middle slices

https://www.ppmi.com
https://www.adni.loni.usc.edu/
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from the sagittal plane of each MRI scan are then extracted, resized to 224×224,
and inputted into the self-attention-based CNN framework.

4.3 Proposed Model Architecture

The feature extraction model comprises four convolutional blocks, each contain-
ing a convolutional layer followed by the ReLU activation function, batch normal-
ization (BN), and maxpooling (MP) layer. Convolutional layers extract features
from the input image via filters, ReLU functions enable learning of complex pat-
terns, BN accelerates training, and MP layers reduce the spatial dimensionality
of feature maps over a 2 × 2 pooling window. The convolutional layers employ
[32, 64, 128, 256] filters, with a kernel size of 3× 3. MRI images contain hierar-
chical structures of features, from edges and textures to more intricate patterns
like anatomical structures or pathological abnormalities. The increasing number
of filters accommodates this hierarchy, ensuring the model can discern and accu-
rately capture diverse features. After each convolutional block, a self-attention
layer is incorporated to enhance the extraction of significant features. The self-
attention-based CNN model hyperparameters are as follows: learning rate: 0.001,
batch size (BZ): 26, optimizer: Adam, and number of epochs: 16 (Fig. 4).

Fig. 4. Architecture of Self attention based CNN for feature extraction

The self-attention mechanism can focus on various parts of the input MRI
image while determining the representation of each element within the image,
and it enables the model to capture long-range dependencies effectively. Finally,
the flattened layer provides the single feature matrix fed to the RVFL regression
network for accurate age prediction. RVFL networks are utilized significantly
in diverse environments due to reduced training time and strong performance
outcomes. They operate with a single hidden layer where weights and biases are
randomly initialized within a predefined range and remain fixed throughout the
training phase. The output weights are computed using a closed-form solution.
An advantageous feature of RVFL is its direct linking of input features to the
output layer, which acts as a regularization method, enhancing overall network
performance.

Depending on the input dataset, Eq. (3) or (4) can be chosen, and by mul-
tiplying α with Z = [H X], the model’s final prediction can be achieved. The
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prediction model output at the node is determined as

f(x) = [h(x) x]α, (5)

f(x) = [h(x) x]ZT (ZZT + λI)−1Y. (6)

The next section will discuss the experiments and results of the self-attention-
based CNN for robust feature extraction and RVFL regression network for brain
age estimation using HC, PD and AD datasets.

5 Results and Discussion

The following section demonstrates the results and discussion of the present
work.

5.1 Experimental Implementation Details

The evaluations are conducted using a computer with an Intel(R) i7 processor
and 16GB of RAM loaded with MATLAB R2023a and Google Colab. The HC
brain dataset is divided into a 70:30 for training and testing the brain age pre-
diction framework. In the RVFL network, the number of hidden units is chosen
from the set {256, 512, 1024}, and the regularization parameter, denoted as λ,
is selected from 2k, where k={−4,−2, . . . 10}. The regularization parameter C
value is taken as 0.5, and hidden nodes Q are taken as 500. The “radbas” activa-
tion function determines an optimal hyperparameter configuration for training
and evaluating the RVFL model.

The evaluation of the regression networks is assessed by metrics such as MAE,
RMSE, and Pearson’s correlation coefficient (PCC).

MAE =
1
M

M∑
i=1

|oi − xi| , (7)

RMSE =

√√√√ 1
M

M∑
i=1

(oi − xi)2, (8)

PCC =
∑M

i=1(oi − oi)(xi − xi)√∑M
i=1(oi − oi)2

√∑M
i=1(xi − xi)2

. (9)

where oi is predicted age and xi is real age, and oi is mean value of oi and xi is
mean value of xi.
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5.2 Comparison Between the State-of-the-Art Regression Networks
on HC Training Dataset

The performance evaluation of the proposed brain age estimation framework on
the 2205 MRI 2D samples of the HC training dataset is summarized in Table 2.
The proposed model is compared with several conventional regression networks,
including SVR, GPR, RF, RR, and Linear-R, based on metrics such as MAE,
RMSE, BAG, and PCC. On the HC training dataset, the RVFL regression model
achieved 2.62 years of MAE, 3.57 years of RMSE, and a PCC of 0.98. The SVR
model yielded an MAE of 5.19 years and a PCC of 0.90, while the GPR model
obtained an RMSE of 5.94 years. The RF and RR models provided prediction
accuracy of 4.97 years and 5.91 years for MAE and RMSE, respectively. The
suggested model achieved lower error outcomes than the conventional regression
networks on the HC training dataset.

Table 2. Various regression networks assessment on HC training dataset

Regression model MAE (years) RMSE (years) BAG (years) PCC

SVR [25] 5.19 6.08 0.97 0.90

GPR [26] 5.06 5.94 0.92 0.90

RF [27] 4.97 5.86 0.83 0.91

RR [28] 4.99 5.91 0.86 0.91

Linear-R [29] 4.96 5.89 0.83 0.91

Proposed 2.62 3.57 0.072 0.98

5.3 Comparison with State-of-the-Art Regression Networks on HC,
PD, and AD Testing Dataset

Table 3 presents a comparative analysis of regression models on 945 HC MRI
slices and 300 AD, 300 PD MRI slices from testing datasets. The proposed
regression model on the HC testing dataset achieved an MAE of 3.06 years and
0.12 years of BAG. The Linear-R model yielded an RMSE of 6.35 years and a
PCC of 0.89, while the GPR regression model obtained an MAE of 5.73 years.
Additionally, the RR model achieved a BAG of 1.183 years. The RVFL regres-
sion model yielded an MAE of 5.29 years, 6.15 years of RMSE, and a BAG
of 3.13 years on the PD testing dataset. The SVR model obtained a BAG of
7.13 years and a PCC of 0.41, while the RF model obtained an MAE of 7.46 years
and a BAG of 7.01 years.

On the AD testing dataset, the suggested model yielded an MAE of 6.97
years, and a BAG of 5.03 years. It is noteworthy that the error outcomes for
AD subjects are higher than those for HC and PD subjects, indicating that
AD-affected brains appear older than their actual age, with abnormal structural
brain variations in AD subjects. Figure 5 shows the scatter plot between the
predicted age and chronological age of HC, PD, and AD testing datasets.
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Table 3. Various regression networks assessment on HC, PD and AD testing dataset

Regression Model Group MAE (years) RMSE (years) BAG (years) PCC

SVR [24] HC 5.89 6.93 1.23 0.87

PD 7.73 8.66 7.13 0.41

AD 9.67 10.58 8.41 0.37

GPR [25] HC 5.73 6.81 1.16 0.88

PD 7.52 8.62 7.06 0.42

AD 9.57 10.49 8.25 0.39

RF [26] HC 5.52 6.49 1.19 0.88

PD 7.46 8.38 7.01 0.44

AD 9.66 10.43 8.36 0.39

RR [27] HC 5.50 6.43 1.183 0.89

PD 7.49 8.32 7.03 0.44

AD 9.58 10.78 8.40 0.39

Linear-R [28] HC 5.41 6.35 1.16 0.89

PD 7.45 8.52 7.02 0.44

AD 9.23 10.38 8.95 0.39

Proposed HC 3.06 4.12 0.12 0.96

PD 5.29 6.15 3.13 0.62

AD 6.97 7.84 5.03 0.53

5.4 Comparison with Different DL Models

The features from the MRI scans are extracted using different deep neural net-
works (DNNs) like AlexNet, InceptionV3, GoogleNet, and SqueezeNet individu-
ally. The extracted features of each DNN are fed to the RVFL model separately
to estimate the brain age. Table 4 shows the comparison between the suggested
model and various DL models on testing datasets.

5.5 Computational Complexity

The current study includes the computational complexity (CC) of self-attention-
based CNN and RVFL networks. The CC of each convolutional layer is O(BZ ×
H ×W ×Cin ×Cout ×K ×K), and the CC of BN layer is O(BZ ×H ×W ×K ×
K ×Cout). The MP layer’s CC is O(BZ ×H ×W ×Cout) The self-attention layer
adds CC of O(BZ × H × W 2 × d). The RVFL output weights are determined
by matrix inversion, the CC of RVFL is O((x + Q)3). Cin, Cout are input and
output channels, BZ is batch size, H ×W spatial dimensions, and K ×K kernel
size.
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Fig. 5. Scatter plot between chronological age and predicted age a) HC b) PD c) AD
testing datasets

5.6 Discussion

Brain age estimation techniques are vital in identifying early symptoms of neu-
rological disorders and cognitive decline. Determining the brain age gap helps
assess individuals’ brain health status, facilitating timely interventions and med-
ication to prevent the onset of diseases [30]. In this study, 1050 HC subjects
are acquired from publicly available databases to train and test the age pre-
diction model. MRI images underwent preprocessing using SPM-12 MATLAB-
based software, with three middle slices extracted from 3D images to simplify
model complexity. A self-attention-based CNN with four convolutional blocks is
employed to extract features, capturing both local and global dependencies from
the images. We utilized an RVFL regression network with a “radbas” activation
function in the hidden layers for accurate age prediction. The direct connections
between input and output layers in the RVFL network enhance model accuracy
and reliability. This study introduces novel advancements in brain age estima-
tion by integrating state-of-the-art methodologies. It employs a CNN enhanced
with a self-attention mechanism for robust feature extraction from MRI slices,
significantly improving accuracy in predicting brain age. Furthermore, pioneer-
ing the application of a randomized RVFL network for regression, the model
surpasses traditional methods, offering a unique and practical approach to pre-
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Table 4. Evaluation of various DL models on HC, PD, and AD testing dataset

Regression Model Group MAE (years) RMSE (years) BAG (years) PCC

AlexNet HC 4.65 5.71 0.15 0.90

PD 5.92 6.23 6.35 0.69

AD 7.15 8.34 7.23 0.54

InceptionV3 HC 4.08 5.12 0.09 0.92

PD 5.42 6.36 6.19 0.70

AD 6.44 7.74 7.09 0.54

GoogleNet HC 4.12 5.38 0.11 0.92

PD 5.45 6.43 6.22 0.70

AD 6.21 7.74 6.37 0.54

SqueezeNet HC 3.91 4.98 0.085 0.92

PD 5.07 6.12 5.94 0.70

AD 6.47 7.92 7.09 0.54

Proposed HC 3.06 4.12 0.12 0.96

PD 5.29 6.15 3.13 0.62

AD 6.97 7.84 5.03 0.53

cise brain age estimation. The comparison between existing brain age estimation
models and the current estimation model is summarized in Table 5. Furthermore,
when assessed with AD and PD testing subjects, our model yielded an MAE of
5.29 years and 6.15 years of RMSE on the PD dataset, 6.97 years of MAE, and
5.03 years of BAG on the AD dataset.

The suggested model shows a close alignment in RMSE values between train-
ing (3.57 years) and testing (4.12 years) datasets, suggesting it does not exces-
sively fit the training data. It indicates strong generalization capabilities, mini-

Table 5. Comparison between proposed model and existing models

Existing Model Regression Model GroupMAE (years) RMSE (years) BAG (years) R2 PCC

Valizadeh et al. SVR HC – – – 0.84 –

RF – – – 0.81 –

Cole et al. GPR HC 5.02 6.31 – – 0.94

Baecker et al. SVR HC 3.77 4.65 0.51 0.74

RVR 3.82 4.65 – 0.51 0.74

GPR 3.81 4.64 – 0.51 0.74

Huang et al. 2D-CNN HC 4.04 5.13 – – 0.94

Ueda et al. 3D-CNN HC 3.67 4.71 – – 0.96

Proposed CNN+ RVFL HC 3.06 4.12 0.12 - 0.96

PD 5.29 6.15 3.13 - 0.62

AD 6.97 7.84 5.03 - 0.53
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mizing the need for additional regularization or complexity reduction techniques
to mitigate overfitting.

The present study demonstrates promising results with HC subjects; how-
ever, further validation with larger and more diverse datasets is crucial. This
includes incorporating longitudinal studies to assess the model’s stability and
ability to accurately track age-related changes. Moreover, exploring the model’s
performance across diverse demographic groups and clinical conditions will
enhance its applicability and reliability in real-world settings. Our proposed brain
age estimation model holds significant potential for clinical applications. By pre-
cisely determining the BAG, clinicians can effectively evaluate brain health con-
ditions and identify early indicators of cognitive decline or neurological disorders.

6 Conclusion

Age-related diseases and neurological disorders are increasingly burdening soci-
ety, highlighting the need for biomarkers for the underlying biological aging pro-
cess to examine individuals at higher risk of age-related physical and cognitive
decline. This study focuses on estimating the brain age of healthy individuals,
Parkinson’s disease (PD), and Alzheimer’s disease (AD) affected subjects using
structural MRI images and deep learning models. By assessing whether a per-
son’s brain appears younger or older than their actual age, this approach offers
insights into deviations from typical healthy brain aging, as observed in PD and
AD subjects. In AD subjects, the affected brain structure appears older than
the individual’s actual age among healthy and PD subjects.

Future research can expand upon this by incorporating additional neuroimag-
ing modalities such as functional MRI (fMRI), positron emission tomography
(PET) images, and diffusion-weighted imaging (DWI) images. The model’s
hyperparameters can be optimized by suitable techniques to improve the predic-
tion accuracy. This would enable a more comprehensive understanding of func-
tional, metabolic, and chemical variations in the aging brain, both in normal
and abnormal aging.
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Abstract. Training a computer vision system to segment a novel class
typically requires collecting and painstakingly annotating lots of images
with objects from that class. Few-shot segmentation techniques reduce
the required number of images to learn to segment a new class, but care-
ful annotations of object boundaries are still required. On the other hand,
interactive segmentation techniques only focus on incrementally improv-
ing the segmentation of one object at a time (typically, using clicks given
by an expert) in a class-agnostic manner. We combine the two concepts
to drastically reduce the effort required to train segmentation models for
novel classes. Instead of trivially feeding interactive segmentation masks
as ground truth to a few-shot segmentation model, we propose IFSENet,
which can accept sparse supervision on a single or few support images in
the form of clicks to generate masks on support (training, at least clicked
upon once) as well as query (test, never clicked upon) images. To trade-
off effort for accuracy flexibly, the number of images and clicks can be
incrementally added to the support set to further improve the segmenta-
tion of support as well as query images. The proposed model approaches
the accuracy of previous state-of-the-art few-shot segmentation models
with considerably lower annotation effort (clicks instead of maps), when
tested on Pascal and SBD datasets on query images. It also works well
as an interactive segmentation method on support images. The code will
be made available at Github post paper acceptance.

Keywords: Few-shot segmentation · Interactive segmentation · Deep
Learning

1 Introduction

Image segmentation tasks, which aim to label each pixel in an image, can be
categorized into three main types: (i) Semantic segmentation assigns unique
labels to each class, (ii) Instance segmentation assigns unique labels to separate
objects, and (iii) Panoptic segmentation assigns both semantic class labels and
instance IDs to each pixel. Unlike classification and detection, segmentation tasks
require extensive manual effort to collect pixel-level annotated training data.
However, even with ample high-quality data, segmentation models struggle with
predicting novel classes with fewer samples effectively.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15304, pp. 97–113, 2025.
https://doi.org/10.1007/978-3-031-78128-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78128-5_7&domain=pdf
https://doi.org/10.1007/978-3-031-78128-5_7
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Two frameworks, few-shot segmentation and interactive segmentation,
address these issues. Few-shot segmentation uses a small support set with anno-
tated masks for an unseen class. Typically, the aim is to segment pixels of the
same class in a separate query image by learning semantic feature similarity,
disregarding class-specific information. Interactive segmentation involves human-
in-the-loop, allowing the model to refine segmentation masks through manual
clicks, scribbles, and bounding boxes.

Both Few-Shot and Interactive approaches have drawbacks. The former
focuses on predicting novel target classes but relies heavily on high-quality sup-
port masks. The latter excels at accurate masks for seen classes but is limited
to segmenting one image at a time, requiring a significant number of clicks for
satisfactory results on every test image.

We propose a semantic segmentation model that overcomes the limitations of
few-shot and interactive learning methods while leveraging their strengths. Our
model achieves simultaneous segmentation of unannotated (query set) images
without pre-existing masks by accepting sparse user annotations in the form
of clicks on a subset of images (support set). It generates dense segmentation
masks for both the sparsely annotated images and the remaining unannotated
images. Furthermore, the model can continuously improve results by iteratively
incorporating more images or corrective clicks from the user on the support set.

Through iterative refinement, our model achieves query prediction results
comparable to few-shot segmentation techniques without requiring densely anno-
tated masks as support supervision. Additionally, our model achieves support
prediction results on par with state-of-the-art interactive segmentation models.
Contributions of This Work Include:

1. Integration of Few-Shot and Interactive Segmentation: We combine
few-shot and interactive segmentation techniques to leverage their respective
strengths and address their limitations.

2. Iterative Improvement with User Input: Our method iteratively incor-
porates user-provided clicks to refine segmentation results, making it robust
to user input variability.

3. Efficient Use of Sparse Annotations: IFSENet effectively uses sparse
annotations to generate dense segmentation masks, reducing the overall anno-
tation effort.

4. State-of-the-Art Performance: We achieve state-of-the-art results on Pas-
cal VOC and SBD datasets, demonstrating the effectiveness of our approach.

5. Applicability to Diverse Domains: While we focus on general image seg-
mentation, our method can be extended to other domains such as medical
imaging and satellite imagery.

By directly connecting our contributions to prior work and providing an elab-
orative discussion, we aim to offer a comprehensive understanding of the problem
foundation and the advancements made through IFSENet. This enhanced intro-
duction benefits a wide range of readers by clearly highlighting the novelty and
significance of our work in the context of existing segmentation techniques.
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2 Related Work

2.1 Semantic Segmentation

Semantic segmentation involves assigning a category to each pixel in an image.
The Fully Convolutional Network (FCN) [9] introduced a paradigm shift by
replacing fully-connected dense layers with convolution layers, enabling end-to-
end segmentation. FCN utilizes an encoder-decoder architecture with downsam-
pling and upsampling operations. Subsequently, improved models such as U-Net
[10], DeepLab [1], PSPNet [23], and HRNet [15] emerged to enhance the perfor-
mance of semantic segmentation.

U-Net [10] utilizes a ‘U’-shaped network architecture with systematic skip-
connections. It consists of two major parts: a contracting path with convolution
and pooling, and an expansive path with convolution and upsampling layers.

DeepLab [1] is a semantic segmentation model developed by Google, with
progressive advancements across generations. The latest version, DeepLabv3+,
introduces an enhanced ASPP module that employs parallel atrous convolutions
to capture multi-scale context using multiple atrous rates. The DenseCRF post-
processing module in earlier models is replaced by a more streamlined decoder
module, resulting in improved segmentation refinement.

HRNet [15] introduces the concept of high-resolution representations for
dense prediction tasks, such as detection and segmentation. The network incor-
porates multiple high-to-low-resolution convolution streams and connects them
in parallel. This approach ensures the utilization of high-resolution information
throughout the network.

2.2 Few-Shot Segmentation

Few-shot segmentation involves predicting pixel-level labels on an image, where
the target classes differ from those seen during training. SG-One [22] addresses
one-shot segmentation using masked average pooling on the support image and
cosine similarity for query image feature relationships. PL [3] generates proto-
types for each support class and employs cosine similarity to segment query
images. PANet [16] introduces prototype alignment regularization for compati-
ble embedding prototypes. CANet [19] employs a two-branch dense comparison
module to compare multi-level features between support and query images.

PFENet [14] is a few-shot semantic segmentation model that enhances gen-
eralization on unseen classes. It achieves spatial consistency between query and
support targets and effectively utilizes mid-level semantic information of train-
ing classes. The authors propose a training-free prior mask generation method,
improving generalization. They also introduce a multi-scale architecture that
addresses spatial inconsistency by enriching query features with support fea-
tures and prior masks in an adaptive manner.
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2.3 Interactive Segmentation

Interactive segmentation allows users to segment images by providing object
cues, facilitating human-computer interaction. It offers a faster and more con-
venient alternative to manual pixel labeling for generating ground-truth masks.
Grabcut [11] introduced an iterative energy minimization approach using a Gaus-
sian mixture cost function. The first CNN-based interactive segmentation model,
DIOS [18], proposed a click simulation strategy later utilized by other authors.
CNN-based architectures such as [5–8], emphasized attention mechanisms. Other
interactive feedback forms, like scribbles and bounding boxes, were also explored
in works like [2,11,17].

RITM [13] is a click-based interactive segmentation model that incorpo-
rates segmentation masks from previous steps. Its architecture is similar to
semantic segmentation models, using DeepLabv3+ with Resnet backbone and
HRNet+OCR semantic segmentation architectures. Additional input channels
encode spatial information of positive and negative clicks, which are combined
with the backbone’s output using element-wise addition. RITM samples points
from the largest mislabelled region between ground truth and prediction, sup-
porting iterative training. It also allows the optional inclusion of the output mask
from a previous iteration, enhancing the power of iterative learning.

2.4 Fusion Methods in Image Segmentation

Fusion networks stand out due to their ability to integrate the high adaptabil-
ity of few-shot learning with the detailed, user-driven corrections characteris-
tic of interactive segmentation. The Support-Query Prototype Fusion Network
(SQPFNet) [22] employs a two-branch structure, where one branch processes
support images to generate class-specific prototypes, while the other branch
handles the query image. By incorporating interactive elements, SQPFNet can
adapt quickly to new tasks with limited data, ensuring more precise and reliable
results. Order Learning Vision Transformer (Order-ViT) [23], designed for cancer
classification in pathology images, incorporates interactive elements to refine the
segmentation based on user inputs, thus demonstrating the potential of trans-
formers in handling complex medical image segmentation tasks with minimal
supervision, effectively bridging few-shot learning and interactive refinement.
RheumaVIT [24], a transformer-based model, focuses on automated scoring of
hand joints in rheumatoid arthritis. It combines few-shot learning principles with
interactive capabilities, allowing for detailed segmentation and scoring with min-
imal examples. The model’s design ensures that it can handle new, unseen cases
effectively by leveraging prior knowledge and refining outputs based on user feed-
back. These examples illustrate the recent advancements in integrating few-shot
learning and interactive segmentation, providing robust solutions for complex
tasks in various domains, particularly medical imaging.



IFSENet 101

3 Method, Training, and Validation

Given a dataset of images, IFSENet generates binary segmentation masks, sep-
arating pixels belonging to a specific semantic class (e.g., person, car, horse) as
foreground and the remaining image as background. It can handle novel classes
unseen during training. The user provides information about the class to segment
by giving positive and negative clicks on a subset of the images.

The images on which the user provides clicks become part of the support
set S and the rest of the images constitute the query set Q. The model gener-
ates segmentation masks for both sets. Through an iterative process, the user
can refine the masks by providing clicks and incorporating the predicted masks
from previous iterations. This loop allows for continuous improvement of the
segmentation results (Table 1).

Fig. 1. Architecture of IFSENet: Notion-wise yellow blocks are operations with learn-
able parameters, grey blocks are training-free operations, β block is 1× 1conv+RELU,
resize block is spatial bilinear interpolation, argmax block operates along the channel
dimension, expand block makes multiple copies of a 1× 1×C vector and stacks them
to make the desired spatial dimension. (Color figure online)

The model’s architecture, depicted in Fig. 1, focuses on learning the similar-
ities between support and query images and leveraging the importance of clicks
on the support image for supervision. During training, the model avoids learning
class-specific information as it aims to predict novel classes during validation,
relying on user clicks.
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Table 1. Comparison of methods of General Few Shot Segmentation Models(GFSSM)
with our proposed IFSENet. Genreally, few shot segmentation models use support
images and their dense support masks to predict the query masks for query images.
But IFSENet needs support clicks instead of support masks.

Method Input Output

Support ImageSupport Mask Support Clicks Query Mask Prediction

GFSSM � � X �
IFSENet (Ours) � X � �

Both the support and query images undergo feature extraction using a pre-
trained ResNet backbone, originally trained on ImageNet classes. The support
feature is then processed through the support path, incorporating click masks
and an optional previous prediction mask, to produce a new segmentation mask
for the support image. This part of the network resembles an interactive seg-
mentation architecture. Similarly, the query feature goes through the query path,
accompanied by the optional previous prediction mask, to generate an updated
mask. Since direct supervision is absent for the query image, information from
the support path needs to be propagated. Thus, the query path receives three
additional inputs: a support vector and a click vector from the support path, as
well as an attention mask from the attention module.

It should be noted that the network is capable of handling multiple support
and query images. Handling multiple query images is straightforward as each
prediction is independent; so the model processes them one by one to generate
their respective outputs. Similarly, for multiple support images, predicting their
outputs from the support path is trivial. However, it is necessary to propagate
the cumulative information from the multiple support images to the query path.
If there are k support images, the support path produces a total of k support
vectors and k click vectors, while the attention module generates k attention
masks. To combine these outputs, we simply average across the k of them and
pass them to the query path.

3.1 Support Path

The support path architecture of our network is shown in Fig. 2. It follows a
U-Net styled structure, having a contracting half that shrinks the feature spatial
dimension 8x times, and an expanding half that restores the original spatial
dimensions. We augment the feature map with three additional channels, i.e.
two for click masks and one for the previously available segmentation mask, if
available. Apart from the support image prediction in the form of logits, this
part of the network produces two additional outputs:

Support Vector: Contains the information of the foreground pixels in the sup-
port image, which later serves as supervision for the query. To obtain this vec-
tor, the binary support prediction, calculated from the support logits, is broad-



IFSENet 103

Fig. 2. Architecture of the support (see Fig. 1): Notation-wise ‘C’ is channel concate-
nation, α block is 3× 3conv+RELU, β block is 1× 1conv+RELU, max pool halves the
spatial dimensions, upconv block doubles the spatial dimensions but also halves the
channel dimension, GAP block is spatial global average pooling operation, head block
is 1× 1conv with 2-channel output.

casted and multiplied channel-wise with the support feature, followed by a GAP
operation.

Click Vector: To propagate click information from the support to the query
path, we cannot pass the click masks alone as they lack the context of the
support image features. Instead, we utilize the output of the last layer of the
encoder, as it contains both the support image and click information. To align
the dimensions with the support vector, we reduce the channel dimensions by
applying a 1× 1 convolution followed by a GAP operation.

3.2 Attention Module

The attention module takes the support features, query features, and the output
logits from the support path as inputs. Its primary function is to generate an
attention mask for the query image, which signifies the pixel-wise correspondence
between the support and query images. In other words, it determines which pixels
in the query image are most similar to the foreground pixels in the support image.
This attention mask is obtained by calculating the cosine similarity between the
support and query features on a pixel-wise basis. A higher value in the attention
mask indicates a stronger similarity between the query pixel feature and at least
one foreground support pixel feature. By leveraging this attention mechanism,
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the model can effectively align and relate the relevant information between the
support and query images, facilitating accurate segmentation.

Fig. 3. Architecture of the query path (see Fig. 1): Notation-wise ‘C’ is channel concate-
nation, α block is 3× 3conv+RELU operations, β block is 1× 1conv+RELU operations,
head block is 1× 1conv operation with 2-channel output.

3.3 Query Path

The query path architecture of our network (Fig. 3) utilizes a multi-scale paral-
lel processing approach inspired by PFENet’s Feature Enrichment Module [14].
This allows for adaptive enrichment of query features with support vectors, click
vectors, and attention masks. Inputs are resized, expanded, and concatenated
before being processed by convolutional layers. Parallel processing layers at dif-
ferent scales produce multiple outputs, which are then fused and post-processed
to obtain the final query prediction.

3.4 Dataset: Pascal + SBD

The Pascal Visual Object Classes (VOC) dataset is widely used in object detec-
tion, semantic segmentation, and classification tasks. It comprises 17,125 images,
with 2,913 having segmentation masks for 20 object classes. The Semantic
Boundaries Dataset (SBD) is a complementary dataset with 11,355 images that
share the same 20 class labels as Pascal VOC. We merge the images and anno-
tations from both datasets, prioritizing the higher-quality segmentation masks
from SBD for common images. The merged dataset consists of 12,031 image-
mask pairs. For few-shot segmentation, we split the dataset into training and
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validation classes, with 5 classes reserved for validation and 15 classes used for
training. The dataset is denoted as Pascal-5i having four folds in total.

3.5 Training Regime

To begin with, we select the subset of images from our dataset, which contain at
least 1 training class object within them. We also select the number of shots k .
Then we run a training loop for a chosen number of epochs, where each epoch
involves iterating over all the images once. Below are the steps followed for each
image in each epoch:

1. Read the current image as query: (q image)
2. Randomly select a target class from the query image, in case multiple classes

are present. (class chosen)
3. Obtain the binary ground truth mask corresponding to the class chosen

for the q image . (q mask)
4. Obtain the stored predicted query mask on this q image and this

class chosen from a previous iteration, if it exists, else initialize as a blank
mask. (q currseg)

5. Randomly select k images having an object from the class chosen present
within them and make them the support. (s images)

6. Obtain their binary ground truth masks corresponding to the
class chosen . (s masks)

7. Obtain the stored predicted support masks on these s images and this
class chosen from previous iterations, if they exist, else initialize with
blank masks. (s currsegs)

8. Obtain the stored positive and negative click masks for these s images and
this class chosen from previous iterations, if they exist, else initialize as
blank masks. (s posclicks and s negclicks)

9. Provide s images, s currsegs, s posclicks, s negclicks q image and
q currseg as input to the model.

10. Obtain the segmentation outputs and update the stored versions of
q currseg and s currsegs with the new predictions for future iterations.

Implementation Details: Our models are trained on Pascal-5i for 100 epochs
with learning rate 0.0025 and batch size 4. We use SGD as our optimizer. Momen-
tum and weight decay are set to 0.9 and 0.0001 respectively. We adopt the ‘poly’
policy to decay the learning rate. During training, samples are processed with
mirror operation, random rotation from −10 to 10◦C and random crop of size
512× 512. During evaluation, each input sample is resized to the training patch
size but with respect to its original aspect ratio by padding zeros. We contin-
uously save the query and support predictions as well as click masks. During
the next iteration of the same training image, we use the previously saved masks
with probability 0.9 or reset those to blank masks with probability 0.1. Note that
the ground truth support and query masks are only required for loss calculation
purposes and are not given as inputs to the model.
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3.6 Validation Regime

For this part, we work with only those images, which contain at least 1 validation
class object within them. The validation proceeds in an episodic fashion, where
each episode begins by selecting a class chosen , number of support images s,
and number of query images q . The episode involves iteratively providing clicks
on the support images and updating all the predicted segmentation. Below are
the steps followed for each episode:

1. Randomly select s images as support, having an object from the class
chosen present within them (s images)

2. Randomly select q images as query, having an object from the class chosen
present within them (q images)

3. Obtain their binary ground truth mask corresponding to the class chosen
(s masks and q masks)

4. Initialize s currsegs, s posclicks, s negclicks and q currsegs as blank
masks

5. Iterate for 20 clicks:
i. Add one positive or negative click to each support image from s images,

based on the largest error region between the respective s mask and
s currseg .

ii. Store the new click for each support image in the respective click masks
s posclicks or s negclicks.

iii. Provide s images, s currsegs, s posclicks, s negclicks q images
and q currsegs as input to the model.

iv. Obtain the segmentation outputs on all the s+q images and update their
stored versions s currsegs and q currsegs with the new predictions.

Implementation Details: For generating the validation results, we conduct
100 episodes for each of the classes available in the dataset. We fix the number
of query images per episode to q = 5 and use two different values for the number
of support images i.e. s = 1 and s = 5. Note that the ground truth support and
query masks are required for metric evaluation purposes and automating the
clicking process, but are not provided as inputs to the model.

3.7 Click Sampling Strategy

Training: Positive clicks are sampled randomly from the ground truth fore-
ground (0.2) and false negative regions (0.8). Negative clicks are sampled ran-
domly from the ground truth background (0.04), other class objects in the back-
ground (0.06), border region around the ground truth foreground (0.1), and
false positive regions (0.8). If any mask is blank, probabilities are redistributed.
Higher weight is given to false positive and false negative regions to simulate
validation behavior.

Validation: We simulate user click behavior by identifying the largest misla-
beled region between the ground truth and current prediction. A click is then
provided near the center of this region. If the selected pixel is a false negative, a
positive click is given; otherwise, a negative click is provided.
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3.8 Evaluation Metrics

IoU is used to evaluate general semantic segmentation by measuring the overlap
between masks. Values range from 0 to 1, with higher values indicating better
overlap. For few-shot tasks, Class mIoU averages foreground IoU across valida-
tion classes. In interactive segmentation, mIoU is the average foreground IoU
across validation images, regardless of classes.

3.9 Loss Function

We use simple pixel-level Binary Cross Entropy (BCE) loss. The total loss is
the weighted sum of the losses over the k support image predictions (Li

S), losses
over the n intermediate query predictions at the different scales (Li

Q,1) and the
final query prediction (LQ,2).

L =
1
k

k∑

i=1

Li
S +

1
n

n∑

i=1

Li
Q,1 + LQ,2

4 Experiment and Results

The qualitative results for selected episodes on validation classes are shown in
Fig. 4. In the below figures, the network initially mis-segments the ‘Person’ class
for the ‘Potted Plant’ class but corrects it with additional support image clicks.
No clicks are given on the query images in our test results, but users have the
option to add clicks for poor-performing queries and transfer them to the support
set. Demo videos of our results are hosted at https://drive.google.com/drive/
folders/18P8vXBJVGbSHKCVFNcJDwncBMDxhXLV6?usp=sharingthis link.

Table 2. Main result: An unfair comparison of our model using only 20 clicks per
support image and no query clicks with few-shot segmentation techniques that use
dense ground truth masks on class mIoU for query images of validation classes from
Pascal-5i. Best results are bold, second-best results are underlined.

Method 1 Shot 5 Shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

SG-One [22] 40.2 58.4 48.4 38.4 46.3 41.9 58.6 48.6 39.4 47.1

PANet [16] 42.3 58.0 51.1 41.2 48.1 51.8 64.6 59.8 46.5 55.7

CANet [19] 52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1

PFENet [14] 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9

Ours 59.4 66.5 50.3 51.5 56.9 64.3 70.1 55.9 55.7 61.5

We first present key results for query image predictions on the Pascal-5i

dataset in Fig. 5. The plot shows Class mIoU, indicating improved performance

https://drive.google.com/drive/folders/18P8vXBJVGbSHKCVFNcJDwncBMDxhXLV6?usp=sharing
https://drive.google.com/drive/folders/18P8vXBJVGbSHKCVFNcJDwncBMDxhXLV6?usp=sharing
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Fig. 4. Visualization of segmentation episodes on potted plants class: Positive clicks
are green dots, negative clicks are red dots in the support images, and the segmentation
masks are overlaid blue regions on both support and query images. (Color figure online)
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Fig. 4. (continued)

with support image clicks. Notably, Split 1 exhibits higher IoUs on validation
classes due to easier class composition.

We compare the performance of our 1-shot and 5-shot models with previ-
ous works in few-shot segmentation on the validation classes of different folds.
Table 2 demonstrates that our model achieves comparable results using sparse
support information in the form of clicks, unlike previous works that rely on
dense ground-truth support masks.

In Fig. 6, we present mIoU results for support image predictions on the
Pascal-5i dataset. Additional clicks have a more significant impact on the per-
formance of support images compared to query images. The performance on
validation classes eventually catches up with training classes, indicating that the
model learns a meaningful understanding of clicks rather than relying solely on
training class features.

We also compare our support module’s mean performance on the training
classes across different folds of Pascal-5i with various previous works in interac-

Table 3. Comparison of our model with previous works on interactive segmentation
using training classes of SBD. For RITM, the training dataset is mentioned in paren-
thesis. Best results are bold, second-best are underlined.

Method NoC@85 NoC@90

Latent diversity [5] 7.41 10.78

BRS [4] 6.59 9.78

f-BRS-B [12] 5.06 8.08

RITM HRNet18 IT-M (SBD) [13] 3.39 5.43

RITM HRNet18 IT-M (C+L) [13] 3.80 6.06

Ours 3.79 7.08
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Fig. 5. Results on query predictions for our 1-shot model trained on Pascal-5i for
validation classes (upper panel) and training classes (lower panel).

tive segmentation in Table 3. The metric NoC@x denotes the mean number of
clicks to achieve an image mIoU of x.

We have observed a few failure cases where the performance of the model
tends to be sub-optimal. These largely include two scenarios: (1) as expected,
when the object to be segmented has multiple spatially-separated fragments (for
e.g. spokes of a wheel), the user needs to provide multiple clicks, (2) when the
object to be segmented has another object on top of it or at close separations
(for e.g. a cat sitting on a sofa), the second object has to be given at least one
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Fig. 6. Results on support predictions for our 1-shot model trained on Pascal-5i for
validation classes (upper panel) and training classes (lower panel).

negative click. In future work, we wish to extend our work to bigger datasets,
such as MS COCO [25], to quantify such limiting scenarios better.

We have trained our model on the Nvidia A100 GPU having a RAM capacity
of 80 GB. The model, with a size of 80 MB, was trained over 100 epochs using a
batch size of 4 for individual updates and a total of 2048 images per epoch. The
entire training process was completed in approximately 26 h. These benchmarks
highlight the model’s efficiency, making it suitable for real-time applications.
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5 Conclusion and Future Work

We have presented IFSENet, a combined network that successfully makes pre-
dictions on support images with the help of clicks, and propagates the rele-
vant information to segment query images without clicks for novel classes. The
model shows significant iterative improvement with additional clicks provided.
The support performance is comparable to previous state-of-the-art interactive
segmentation architectures, even though we use a much simpler and lighter U-
net styled architecture. Our query performance, using only sparse supervision
in the form of support clicks, is comparable to previous few-shot architectures
employing dense support masks.

As part of our future work, we aim to develop a high-quality GUI-based
application, which aids the user in interacting with our model via clicks and
runs our algorithm in the backend smoothly and efficiently. We also plan to
extend our model to other image domains such as medical, satellite, etc.

References

1. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab:
semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–
848 (2017)

2. Cheng, M.-M., Prisacariu, V.A., Zheng, S., Torr, P.H.S., Rother, C.: Densecut:
densely connected CRFs for realtime grabcut. In: Computer Graphics Forum, vol.
34, pp. 193–201. Wiley Online Library (2015)

3. Dong, N., Xing, E.P.: Few-shot semantic segmentation with prototype learning. In:
British Machine Vision Conference (2018)

4. Jang, W.-D., Kim, C.-S.: Interactive image segmentation via backpropagating
refinement scheme. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5297–5306 (2019)

5. Li, Z., Chen, Q., Koltun, V.: Interactive image segmentation with latent diver-
sity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 577–585 (2018)

6. Liew, J., Wei, Y., Xiong, W., Ong, S.-H., Feng, J.: Regional interactive image seg-
mentation networks. In: 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 2746–2754. IEEE (2017)

7. Liew, J.H., Cohen, S., Price, B., Mai, L., Ong, S., Feng, J.: Multiseg: semanti-
cally meaningful, scale-diverse segmentations from minimal user input. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 662–670
(2019)

8. Lin, Z., Zhang, Z., Chen, L.-Z., Cheng, M.-M., Lu, S.-P.: Interactive image seg-
mentation with first click attention. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13339–13348 (2020)

9. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3431–3440 (2015)



IFSENet 113

10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

11. Rother, C., Kolmogorov, V., Blake, A.: “grabcut interactive foreground extraction
using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)

12. Sofiiuk, K., Petrov, I., Barinova, O., Konushin, A.: f-brs: rethinking backpropa-
gating refinement for interactive segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8623–8632 (2020)

13. Sofiiuk, K., Petrov, I.A., Konushin, A.: Reviving iterative training with mask
guidance for interactive segmentation. In: 2022 IEEE International Conference on
Image Processing (ICIP), pp. 3141–3145. IEEE (2022)

14. Tian, Z., Zhao, H., Shu, M., Yang, Z., Li, R., Jia, J.: Prior guided feature enrich-
ment network for few-shot segmentation. IEEE Trans. Pattern Anal. Mach. Intell.
44(2), 1050–1065 (2020)

15. Wang, J., et al.: Deep high-resolution representation learning for visual recognition.
IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3349–3364 (2020)

16. Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: Panet: few-shot image semantic
segmentation with prototype alignment. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 9197–9206 (2019)

17. Wu, J., Zhao, Y., Zhu, J.-Y., Luo, S., Tu, Z.: Milcut: a sweeping line multiple
instance learning paradigm for interactive image segmentation. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 256–263
(2014)

18. Xu, N., Price, B., Cohen, S., Yang, J., Huang, T.S.: Deep interactive object selec-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 373–381 (2016)

19. Zhang, C., Lin, G., Liu, F., Yao, R., Shen, C.: Canet: class-agnostic segmentation
networks with iterative refinement and attentive few-shot learning. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5217–5226 (2019)

20. Zhang, X., Wei, Y., Yang, Y., Huang, T.S.: Sg-one: similarity guidance network for
one-shot semantic segmentation. IEEE Trans. Cybernet. 50(9), 3855–3865 (2020)

21. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2881–2890 (2017)

22. Wu, X., Gao, Z., Chen, X., Wang, Y., Qu, S., Li, N.: Support-query proto-
type fusion network for few-shot medical image segmentation. arXiv preprint
arXiv:2405.07516 (2024)

23. Lee, J.C., Kwak, J.T.: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV) Workshops, pp. 2493–2502 (2023)

24. Stolpovsky, A., et al.: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV) Workshops, pp. 2522–2531 (2023)

25. Lin, T.-Y.: Microsoft COCO: common objects in context. arXiv preprint
arXiv:1405.0312 (2014)

https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/2405.07516
http://arxiv.org/abs/1405.0312


Interpretable Deep Graph-Level
Clustering: A Prototype-Based Approach

Jianbin Cui and Lingyang Chu(B)

McMaster University, Hamilton, ON, Canada
{cuij48,chul9}@mcmaster.ca

Abstract. Many real-world data, such as chemical compounds and pro-
teins, are naturally modelled as datasets of graphs. However, the labels
of the graphs are often difficult to obtain due to the high relative cost to
label graphs. To extract knowledge from a dataset of unlabelled graphs,
we aim to conduct the task of interpretable graph-level clustering, which
aims to find good clusters of graphs and also gain useful insights into the
clustering result by interpreting why each graph is allocated to its corre-
sponding cluster. To the best of our knowledge, this is a novel task that
has not been systematically studied in the literature. In this paper, we
successfully tackle this task by developing an interpretable deep graph-
level clustering (IDGC) framework, which not only achieves good cluster-
ing performance, but also provides insightful interpretations on the clus-
tering result. Extensive experiments on six benchmark datasets demon-
strate the outstanding performance of our method. Our code is available
at: https://github.com/cjbbb/IDGC-implementation.

Keywords: Graph-level clustering · Interpretability

1 Introduction

Many real-world data, such as chemical compounds [8] and proteins [37], are
naturally modelled as graphs. However, the labels of the graphs are often difficult
to obtain due to the high human labor cost and experimental cost to label
chemical compounds and proteins. To extract knowledge from such a dataset of
unlabelled graphs, we are interested in tackling a novel unsupervised learning
task named interpretable graph-level clustering. The goal of the task is two-
fold: 1) we aim to partition a dataset of graphs into multiple clusters, where the
graphs in the same cluster are similar to each other and the graphs in different
clusters are different; and 2) we want to provide additional insight into the
clustering result by interpreting why each graph is allocated to its corresponding
cluster.

Interpretable graph-level clustering enjoys many potential applications. As
a solid example, protein clustering is a fundamental task in bioinformatics to
identify meaningful and stable groups of proteins with similar structures and
functionalities [37]. Conducting interpretable graph-level clustering on a dataset
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of proteins not only finds such groups of proteins as clusters of graphs, but
also provides useful insights into the clustering result by interpreting why each
protein belongs to its corresponding group.

As discussed later in Sect. 2, some existing methods can be extended to con-
duct graph-level clustering. For example, the graph kernel methods [3,21,22,30],
which compute the similarity between different graphs, can be coupled with
spectral clustering [31] to produce clusters of graphs. The unsupervised graph
representation learning methods [14,29,34,35], which learn graph embeddings to
represent each graph, can also be coupled with either K-means [17] or spectral
clustering to perform graph-level clustering. However, since the graph kernels
and graph embeddings are designed and trained separately from the graph-level
clustering task, the final clustering performance is often sub-optimal. Moreover,
none of these methods can interpret why a graph is allocated to its corresponding
cluster, which limits their potential to gain useful insights from the clustering
results.

To the best of our knowledge, interpretable graph clustering is a novel task
that has not been systematically studied before. In this paper, we tackle this
challenging task by a well designed method named interpretable deep graph-
level clustering (IDGC). Our contributions are listed as follows. First, we
propose the novel task of interpretable graph-level clustering, which aims to find
good clusters of graphs while interpreting why each graph is allocated to its
corresponding cluster. Second, we successfully tackle the task by the proposed
IDGC method. IDGC achieves outstanding graph-level clustering performance
by building an end-to-end clustering framework, which smoothly incorporates
the training of graph embeddings and the clustering of graphs. It also achieves
high-quality interpretations by introducing a prototype layer in the framework to
learn prototypical graph structures for each cluster of graphs. Last, we conduct
extensive experiments on six benchmark datasets to demonstrate the outstanding
performance of our method.

2 Related Work

In this section, we discuss the relationship between our work and the exist-
ing works in the literature. Our work is generally related to the graph kernel
methods [3,21,22,30] and the unsupervised graph-level representation learning
methods [14,29,34,35]. We discuss these related works as follows.

2.1 Graph Kernel Methods

Graph kernel is a classic family of methods to evaluate the similarity between two
graphs, thus they can be easily coupled with off-the-shelf clustering algorithms [6,
31] to conduct unsupervised graph-level clustering. The clustering performance
largely depends on the effectiveness of the graph kernel in accurately measuring
the similarity between graphs.
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Many existing graph kernels are well-developed in the literature. One famous
family of graph kernels focus on identifying the optimal subgraphs and using
them to compute the similarity between two graphs. These methods include:
graphlet kernel [22], random walk kernel [30], shortest path kernel [3], subgraph
matching kernel [15] and pyramid matching kernel [18]. Another famous family
of graph kernels aims to extend the Weisfeiler-Lehman isomorphism test [32].
A typical work is the Weisfeiler-Lehman kernel [21], which is notable for its
efficiency in handling large graphs. Based on the Weisfeiler-Lehman isomorphism
test, this kernel enhances graph labels by combining the original node labels with
an ordered set of neighboring node labels to encapsulate a subtree structure.
Another typical approach is the shortest-path kernel [22], which focuses on paths
rather than walks and cycles to evaluate the similarity between graphs.

Despite the elegant design of graph kernels, their effectiveness in graph-level
clustering is often sub-optimal [10,25,35], because the descriptive power of hand-
designed features is often limited [7] and many graph kernels are not specifically
customized to facilitate graph-level clustering.

2.2 Unsupervised Graph Representation Learning

By leveraging the power of deep graph neural networks, unsupervised graph
representation learning aims to learn a high-dimensional embedding vector (i.e.,
representation) for the node in a graph or for an entire graph. The well-learned
representation is a general purpose feature, which can be coupled with off-the-
shelf clustering methods [2,17,31] to conduct unsupervised clustering tasks.

Many effective graph representation learning approaches have been developed
in the literature. For instance, Node2Vec [9] learns low-dimensional embeddings
of nodes that preserve the neighborhood structure to the highest degree. DGI [29]
advances the learning of node representations by maximizing the mutual infor-
mation between local patch representations and the overall graph representa-
tions. In a similar way, InfoGraph [25] employs mutual information maximization
and graph isomorphism networks [34] to learn general purpose representations
for graph-level classification tasks. Drawing from the paradigm of self-supervised
learning, GraphCL [35] first enhances graph data to form positive and negative
sample pairs, and then adopts a contrastive learning strategy to learn good graph
representations. Similarly, MVGRL [10] enhances contrastive learning by first
generating an augmented structural view via graph diffusion, and then employ-
ing shared multi-layer perceptrons (MLP) to learn compact node and graph
representations.

The graph-level representations learned by the above methods are good gen-
eral purpose features for downstream tasks. However, since such representations
are often not specifically customized for graph-level clustering, straight-forwardly
coupling them with an off-the-shelf clustering method often cannot achieve opti-
mal clustering performance. Moreover, the clustering results are not interpretable
because the representations are learned through a black-box deep graph neural
network.
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3 The Task of Interpretable Graph-Level Clustering

In this section, we first introduce some necessary notations and then define the
task of interpretable deep graph-level clustering.

Denote by G = {G1, G2, . . . , GN} a collection of N graphs, where each graph
Gi = (Vi, Ei) is associated with a set of node features Xi = {x

(i)
v }v∈Vi

. Here,
Vi and Ei are the set of nodes and set of edges, respectively, of the graph Gi.
Let χ = {X1,X2, . . . , XN} represent the ensemble of the node features across
all graphs. We define the task of interpretable graph-level clustering as follows.

Definition 1. Given a set of graphs G = {G1, G2, . . . , GN}, the goal of inter-
pretable graph-level clustering is to partition G into a number of K non-
overlapping clusters of graphs, denoted by G(1), . . . ,G(K), in an unsupervised
manner, such that

1. G = G(1) ∪ G(2) ∪ . . . ∪ G(K), and G(i) ∩ G(j) = ∅ for any i �= j;
2. the graphs in the same cluster are similar and the graphs in different clusters

are not; and
3. for each graph Gi in a cluster G(k), k ∈ {1, . . . , K}, we can interpret why Gi

is allocated to G(k) by showing its resemblance with the other graphs in G(k).

4 Our Solution

In this section, we first introduce an overview of our entire framework; then we
introduce how to train our model to conduct deep graph-level clustering; last,
we introduce how to interpret why each graph is allocated to its corresponding
cluster.

4.1 Framework Overview

Figure 1 shows an overview of the proposed interpretable deep graph clus-
tering (IDGC) framework. It contains four major modules, such as the graph
encoder in module 1, the prototype layer in module 2, the fully connected layer
in module 3, and the pseudo label generation in module 4.

The key idea of IDGC is as follows. First, we use the modules 1, 2 and
3 to build a prototype-based graph-level classification network [38], which can
only be trained in a supervised manner when the ground truth class label of
each graph is available. Second, since we do not have ground truth class labels
in the proposed unsupervised learning setting, we use the module 4 to generate
pseudo labels according to the K clusters obtained by K-means on the graph
embeddings produced by module 1. In this way, each cluster is assigned one class
label, which means all the graphs in the same cluster belong to the same class.
Third, by using the pseudo labels of clusters as the ground truth class labels
for training, the prototype-based graph-level classification network is trained to
predict the cluster label for an input graph, thus achieving the goal of allocating
each graph Gi ∈ G to its corresponding cluster G(k). Last, the prototype layer
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Fig. 1. An overview of the proposed IDGC framework. Due to the limit of space, we
only draw the prototype embeddings for the k-th cluster in module 2, where pj,k is the
j-th prototype embedding of the k-th cluster, j ∈ {1, . . . , m}, k ∈ {1, . . . , K}. Module
2 is used during training and for post-training explaining.

in module 2 can be further utilized to interpret why Gi is allocated to G(k) by
showing its resemblance with the other graphs in G(k).

Next, we introduce each module in detail as follows.

Module 1 (Graph Encoder). Given a collection of graphs G = {Gi}Ni=1, a
GNN encoder, denoted as f , maps each graph Gi to a corresponding graph
embedding hi. The encoder leverages a backbone GNN architecture, which can
implemented by GCN [14], GIN [34], or GAT [28]. Without loss of generality, we
implement the graph encoder by GIN, and use the output of the final layer of
GIN as the graph embedding hi. For an input graph Gi, we can write hi = f(Gi).

Module 2 (Prototype Layer). In the prototype layer, denoted by gp, a fixed
number of m prototypes are associated with each cluster (i.e., class1). Since we
are using a total number of K clusters, there are in total m ∗ K prototypes.
According to [38], when the prototypes are well trained, each cluster can be
represented by a set of learned prototypes; and the prototypes should capture
the most relevant graph patterns for identifying graphs of each cluster. Denote
by pj,k the trainable prototype embedding to represent the j-th prototype
for the k-th cluster, the prototype layer calculates the similarity score between
the embedding pj,k of each prototype in each cluster and the embedding hi of
an input graph Gi by

1 A cluster corresponds to a class because we are using cluster labels as pseudo class
labels to train the prototype-based graph-level classification network consisting of
the modules 1, 2 and 3.
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sim(pj,k, hi) = log
(‖pj,k − hi‖22 + 1

‖pj,k − hi‖22 + ε

)
, (1)

where ‖ · ‖22 is the square of L2-norm and ε ∈ [0, 1] is a small hyper-parameter.
Obviously, sim(pj,k, hi) is a non-negative monotonic decreasing function with
respect to ‖pj,k − hi‖22. It reaches its maximum value when ‖pj,k − hi‖22 = 0 and
it approaches 0 when ‖pj,k − hi‖22 approaches +∞.

Module 3 (Fully Connected Layer). The fully connected layer, denoted by
c, implements a linear classifier that takes the similarity scores computed by the
prototype layer as input and predicts the final cluster label as the output.

Module 4 (Pseudo Label Generation). The pseudo label generation module
takes the graph embeddings generated by the graph encoder as input and uses
K-means to cluster the graph embeddings into K clusters. The cluster labels
graphs are used as the pseudo class labels to train the prototype-based graph-
level classification network composed by Modules 1, 2 and 3.

4.2 Training the IDGC Model

In this subsection, we introduce how to train the proposed IDGC model to
perform deep graph-level clustering. Inspired by [38], the key idea of IDGC
training is to iteratively align the predicted class labels produced by module 3
with the pseudo labels generated by module 4; meanwhile, we also aim to preserve
the interpretability of the prototype embeddings by imposing two clustering
constraints to form meaningful clusters in the embedding space.

Following the above key idea, we design the loss function of IDGC as

L(θ,P) =
1
N

n∑
i=1

CrsEnt(c ◦ gp ◦ hi, yi) + λ1CC+ λ2SC, (2)

where λ1 and λ2 are hyper-parameters, ◦ means composition of functions, hi =
f(Gi) is the embedding of graph Gi ∈ G, gp is the function of the module 2, c
is the function of the module 3, P =

{{pj,k} | j ∈ {1, . . . , m}, k ∈ {1, . . . , K}}
is the set of trainable prototype embeddings, and θ is the rest trainable model
parameters except P. The second term named clustering constraint (CC) is
defined as

CC =
1
n

n∑
i=1

min
j∈{1,...,m},k=yi

||hi − pj,k||2, (3)

and the last term named separating constraint (SC) is defined as

SC = − 1
n

n∑
i=1

min
j∈{1,...,m},k �=yi

||hi − pj,k||2. (4)

The cross entropy term, denoted by CrsEnt(c ◦ gp ◦ hi, yi), computes the
cross entropy between the pseudo label yi of each input graph Gi and the pre-
dicted label ŷi = c◦gp◦hi, where hi = f(Gi) is the embedding of Gi. Minimizing
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Algorithm 1. Training IDGC
1: Input: a set of graphs G = {G1, G2, . . . , GN}, and the periods Tc and Tp used for

generating pseudo labels and updating prototype embeddings.
2: Output: trained parameters θ and P.
3: Initialization: randomly initialize θ and P.
4: for each epoch t ∈ {1, 2, . . . , T} do
5: Compute graph embeddings: {h1, h2, . . . , hN} ← f(G)
6: if (t mod Tc) = 0 then
7: Generate pseudo labels: {y1, y2, . . . , yN} ← K-means({h1, h2, . . . , hN})
8: end if
9: if (t mod Tp) = 0 then

10: for each pj,k in P do
11: Update prototype embedding by: pj,k ← f

(
MCTS(G(k), pj,k)

)

12: end for
13: end if
14: for each mini-batch in epoch t do
15: Update θ by: θ ← θ − η∇θL(θ, P), η is the learning rate.
16: end for
17: end for
18: return θ and P.

the cross entropy term aligns the predicted label with the pseudo label, which
trains the IDGC model to predict the corresponding cluster label for each input
graph Gi.

The CC term requires the embedding hi of each graph Gi to be close to the
prototype embedding of one prototype in its corresponding cluster. Minimizing
the CC term improves the tightness of each cluster around a prototype embed-
ding, which helps the prototype embedding to capture the common similarity of
the graphs allocated to the corresponding prototype. This improves the quality
interpretation when we interpret why a graph is allocated to one cluster.

The SC term requires the embedding hi of each graph Gi to be different
to the prototype embedding of the other prototypes that is not associated with
the cluster of Gi. This avoids possible overlaps between clusters in the embed-
ding space and forces different clusters to effectively capture different categories
of graphs. Minimizing the SC term also improves the quality of interpretation
because less overlap between clusters allows each prototype to capture unique
similarities between graphs.

Algorithm 1 summarizes the algorithm to train IDGC by minimizing the
loss L(θ,P).Line 5 computes the graph embeddings of all the graphs in G. Line
7 generates the pseudo labels for every Tc epochs. Lines 9–13 update the pro-
totype embeddings for every Tp epochs, such that each prototype embedding
corresponds to a real subgraph in G. Lines 14 -16 update the model parameter
θ by standard stochastic gradient descent [1].

The MCTS(G(k), pj,k) in line 11 uses Monte Carlo Tree Search (MCTS) [23]
to find a subgraph Ĝi contained in one of the graphs in the cluster G(k), such
that the embedding of Ĝi is the closest to pj,k. By setting the reward function
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Algorithm 2. Interpreting Cluster Allocation
1: Input: a graph Gi and its allocated cluster G(k).
2: Output: a subgraph Ĝi to interpret the cluster allocation.
3: Initialization: initialize the candidate set of interpretation by I = ∅.
4: for each j ∈ {1, . . . , m} do
5: Find the most similar subgraph: Ĝi ← MCTS(Gi, pj,k)
6: Compute the similarity score: scorej ← sim

(
pj,k, f(Ĝi)

)
.

7: Buffer the candidate: I ← I ∪ (
Ĝi, scorej

)
.

8: end for
9: return the subgraph Ĝi with the largest scorej in I.

of MCTS to the similarity score in Equation (1), the MCTS is better poised
to identify the subgraph that closely approximates the prototype embedding.
Specifically, we define the process of using MCTS to search the subgraphs of all
the graphs in the cluster G(k) as

MCTS(G(k), pj,k) = argmax
Ĝi⊆Gi∈G(k)

sim
(
pj,k, f(Ĝi)

)
, (5)

where Ĝi is the subgraph to return, f(Ĝi) is the embedding of Ĝi, and G(k) is
an intermediate cluster of graphs whose pseudo labels generated by module 4 in
the corresponding epoch t are equal to k.

Updating the prototype embeddings in the above way achieves two bene-
fits: 1) it updates the m centers (i.e., prototypes) of each cluster, which helps
forming better clustering structures. Here, since each cluster is characterized by
m prototypes, the prototypes are serving as the centers to describe the cluster.
2) it improves the interpretability of each prototype embedding, because every
prototype embedding is equal to the embedding of a real subgraph, thus the
prototype embedding does not fall outside the distribution of the embeddings of
real graphs.

4.3 Cluster Allocation and Interpretation

In this section, we introduce how to allocate an input graph Gi ∈ G to a cluster
G(k), k ∈ {1, . . . , K}, and interpret why Gi is allocated to G(k) by showing its
resemblance with the other graphs in G(k).

Cluster Allocation. After training the IDGC model by Algorithm 1, we use
the modules 1, 2 and 3 of the trained IDGC model to predict the cluster labels
of each input graph Gi ∈ G. This allocates each graph Gi to its corresponding
cluster G(k), k ∈ {1, . . . , K}. Since we use the pseudo cluster labels to supervise
the training of the modules 1, 2 and 3 of the IDGC model, and we also use the
CC term and SC term to form tight and non-overlapping clustering structures
in the embedding space, the quality of the final clusters G(1), . . . ,G(K) are often
quite good. Moreover, since the modules 1, 2 and 3 of the IDGC model form a
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predictive model, they can be straight-forwardly used to allocate a new graph
Gnew that is not previously contained in G to one of the K clusters.

Interpretation. To interpret why an input graph Gi is allocated to a cluster
G(k), our key idea is to identify the subgraph Ĝi of Gi, whose embedding f(Ĝi)
has the highest similarity score sim

(
pj,k, f(Ĝi)

)
to a prototype embeddings pj,k

of the cluster G(k). The highest similarity score means Ĝi contributes the most
to the similarity between Gi and pj,k. Since the final cluster allocation is pre-
dicted by module 3 based on the similarity scores between Gi and each of the
prototypes, the highest similarity score also implies Ĝi contributes the most to
allocating Gi to the cluster G(k). As a result, we use Ĝi to interpret why Gi is
allocated to the cluster G(k). We summarize the above interpretation process in
Algorithm 2, where the MCTS function in line 5 is defined as

MCTS(Gi, pj,k) = argmax
Ĝi⊆Gi

sim
(
pj,k, f(Ĝi)

)
, (6)

which finds the subgraph Ĝi in Gi with the largest sim
(
pj,k, f(Ĝi)

)
.

5 Experiment

In this section, we compare the performance of the proposed method with
six state-of-the-art baseline methods, such as shortest path kernel (SP) [3],
Weisfeiler-Lehman kernel (WL) [21], random walk kernel (RW) [30]2, graph
contrastive learning (GraphCL) [36]3, InfoGraph [25]4, and Multi-View Graph
Representation Learning (MVGRL) [11]5.

For the graph kernel methods, such as SP, WL and RW, we employ spectral
clustering (SC) [31] 6 on the similarity matrix computed by each kernel to pro-
duce K clusters of graphs. For the unsupervised graph representation methods,
such as GraphCL and MVGRL, we produce K clusters of graphs by applying
each of K-means (KM)6 and SC on the graph embeddings learned by the meth-
ods. We use the publicly available source code of the baseline methods and we
use their default parameter settings in our experiments. Our code is available
at the following link7. For our method, we set Tc = 1, Tp = 10, λ1 = 0.05,
λ2 = 0.05, and η = 0.05 in Algorithm 1. For all methods, the number of clusters
K is set to the number of classes in each dataset.

Datasets. Table 1 summarizes the statistics of the six benchmark datasets. A
brief introduction to each dataset is as follows. MUTAG [5] is a dataset of chem-
ical compounds, each represented by a graph. Every compound is categorized

2 Source code for SP, WL and RW: https://github.com/jajupmochi/py-graph.
3 Source code: https://github.com/Shen-Lab/GraphCL.
4 Source code: https://github.com/sunfanyunn/InfoGraph.
5 Source code: https://github.com/kavehhassani/mvgrl.
6 Source code for K-means and spectral clustering: https://scikit-learn.org.
7 Source code for IDGC: https://github.com/cjbbb/IDGC-implementation.

https://github.com/jajupmochi/py-graph
https://github.com/Shen-Lab/GraphCL
https://github.com/sunfanyunn/InfoGraph
https://github.com/kavehhassani/mvgrl
https://scikit-learn.org
https://github.com/cjbbb/IDGC-implementation
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Table 1. Statistics of Datasets.

Dataset #Graphs Avg. #nodes Avg. #edges #Classes (i.e., K)

MUTAG 188 17.93 19.79 2
BBBP 2039 24.06 25.95 2
BZR 405 35.75 38.36 2
ENZYMES 600 32.63 62.14 6
COX2 467 41.22 43.45 2
BA2Motifs 1000 25.00 51.00 2

into one of two distinct classes depending on their mutagenic impact on bacte-
ria. BBBP [33] is derived from the research on blood-brain barrier permeability;
it is also a dataset of chemical compounds represented by graphs. Each com-
pound is associated with a binary label indicating a compound’s ability to pen-
etrate blood-brain barrier. BZR [19] consists of molecular structures of ligands
for the benzodiazepine receptor, where each molecular structure is represented
by a graph and classified into two categories (i.e., active and inactive) based on
their binding affinities. ENZYMES [13] consists of 600 protein structures from
the BRENDA enzyme database [20]. Each protein structure is represented by
a graph and categorized into one of six different classes. COX2 [19] consists of
chemical formulas of cyclooxygenase-2 inhibitors, where each chemical formula
is represented by a graph and categorized into two categories (i.e., active and
inactive) based on their efficacy. BA2Motifs [16] contains 1,000 synthetic graphs,
where each graph is categorized based on whether it contains a “house” struc-
ture or a five-node cycle. We use this dataset for the experiments of interpreting
cluster allocations.

Evaluation Metrics. We employ normalized mutual information (NMI) [24]
and adjusted rand index (ARI) [12] to evaluate the clustering performance
of each baseline method. Both NMI and ARI are widely used in the litera-
ture [26,27] to measure the similarity between the ground truth clustering and
the clustering computed by a clustering method. A larger value of NMI and ARI
means a better clustering performance.

5.1 Clustering Performance

In this subsection, we evaluate the clustering performance of all compared meth-
ods on six benchmark datasets. The NMI and ARI of each method are reported
in Table 2, where the best results are highlighted in bold and the second best
results are underlined.

We can see that the performance of the graph kernel methods is generally
inferior to the other methods. Although WL+SC and RW+SC achieve the sec-
ond best ARI and the second best NMI on COX2 and BZR, respectively, they
cannot consistently achieve good clustering performance on all the datasets due
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Table 2. The NMI and ARI of all compared methods.

Method MUTAG BBBP BZR ENZYMES COX2 BA2Motifs
NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI

GraphCL+SC 14.72 22.10 0.48 -0.67 2.29 1.55 5.63 0.17 2.26 0.06 73.97 82.79
GraphCL+KMeans 30.15 36.39 1.58 7.29 0.91 -3.24 7.45 4.25 1.86 -0.22 81.03 88.35
InfoGraph+SC 14.77 20.36 0.78 -2.56 2.09 3.62 4.95 0.64 1.01 0.00 62.67 73.25
InfoGraph+KMeans 29.35 35.12 0.75 -2.75 0.84 -2.79 6.17 2.95 0.61 -0.13 61.93 72.56
MVGRL+SC 13.67 18.49 1.42 1.78 2.58 4.40 7.40 3.38 0.33 -0.21 5.52 7.31
MVGRL+KMeans 26.94 33.81 5.60 11.58 0.53 -2.10 5.95 2.12 0.72 -0.24 10.77 14.05
SP+SC 21.06 31.80 1.63 0.73 2.77 -1.01 2.57 1.69 0.13 0.01 18.45 6.28
WL+SC 14.14 18.54 4.42 2.26 1.73 2.47 1.52 2.33 0.00 0.46 4.14 5.57
RW+SC 14.14 18.54 0.97 2.91 4.52 -3.49 4.64 0.61 0.04 -0.92 46.66 55.61
IDGC 43.49 36.28 4.88 14.81 5.92 8.41 8.16 4.80 6.12 8.08 87.63 91.99

to the limited descriptive power of hand-designed features [7]. The unsupervised
graph representation methods generally achieve better performance than the
graph kernel methods due to their strength of learning highly descriptive graph
embeddings in a data-driven manner. However, the clustering performance of the
unsupervised graph representation methods is still inferior to IDGC, because the
graph embeddings are trained for general purpose downstream tasks, but they
are not specifically customized to improve graph-level clustering performance.
In comparison, IDGC achieves the best graph-level clustering performance on
BZR, ENZYMES, COX2 and BA2Motifs. Its performance is also among the top
on MUTAG in terms of NMI, and on BBBP in terms of ARI. These results
demonstrate the outstanding clustering performance of IDGC, which is largely
achieved by smoothly incorporating data driven feature learning and graph-level
clustering in an end-to-end manner.

Besides the outstanding clustering performance, IDGC also produces sur-
prisingly good interpretations to illustrate why an input graph is allocated to
a cluster. We demonstrate this by conducting a comprehensive case study in
Sect. 5.2.

5.2 Case Study: Interpreting Cluster Allocation

In this subsection, we conduct a case study on BA2Motifs and MUTAG to
show IDGC’s interpretations on cluster allocation. The interpretation results
are shown in Fig. 2.

Take BA2Motifs in Fig. 2(a) as an example, there are four input graphs
G1, . . . , G4, where G1 and G3 are allocated to the cluster G(1) due to their high
similarity to the prototype p2,1; G2 and G4 are allocated to the cluster G(2) due
to their high similarity to the prototype p3,2. The graphs of the two prototypes
are called prototype graphs, which are obtained by Eq. (5) and shown in the
middle column of Fig. 2(a).

If we zoom in to take a closer look at each graph in Fig. 2(a), we will notice
a subgraph shown by bold edges. This subgraph is obtained by Eq. (6) and it
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Fig. 2. A case study to show the interpretation on cluster allocations. Better viewed
in color and zoomed in.

highlights the reason why an input graph has a high similarity score with its
corresponding prototype graph, which further interprets why the input graph is
allocated to its corresponding cluster. Specifically, in the input graphs G1 and
G3 and the prototype graph of p2,1, we can see that the subgraphs in bold edges
successfully identify the five node circle. This accurately interprets why G1 and
G3 are allocated to the cluster G(1), because G(1) corresponds to the ground
truth class of graphs containing five node circles. The cluster G(2) corresponds
to the ground truth class of graphs containing a “house” structure. Thus, we
can see the subgraphs in bold successfully identify the “house” structure in the
input graphs G2, G4 and the prototype graph of p3,2. Similar results can also be
viewed in Fig. 2(b) on the MUTAG dataset.

In summary, as demonstrated by the case study in Fig. 2, the proposed IDGC
method can produce good interpretations to illustrate why each input graph is
allocated to its corresponding cluster.

5.3 Parameter Analysis

In this subsection, we analyze the effect of K on the NMI of IDGC. We do not
evaluate the effect of K on the ARI of IDGC, because ARI is meaningless when
K is not equal to the ground truth number of classes in each dataset.

Figure 3 shows the effect of K on the NMI of IDGC on each benchmark
dataset. Like many well-known clustering tasks [6,17,31], graph-level clustering
is also an NP-hard problem and the final clustering result is often affected by
many factors, such as the distribution of data, the value of K, and the initial-
ization of the clustering algorithm. Therefore, we could not observe a consistent
trend of NMI on all the datasets.
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Fig. 3. Impact of cluster number k on NMI for IDGC on different datasets. #CLS is
the ground truth number of classes in the corresponding dataset.

However, by taking a closer look at Fig. 3, we can still summarize some inter-
esting patterns from the curves of NMI. For example, in Fig. 3(a), 3(c), 3(e) and
3(f) setting K to the ground truth number of classes yields near optimal NMI
on the corresponding dataset. We can also observe in Fig. 3(b) and 3(d) that
setting K to the ground truth number of classes yields sub-optimal NMI and
increasing the value of K will further increase NMI. Such an improvement of
NMI is likely due to the over-splitting effect caused by using a larger K than
the ground truth number of classes. This effect has also been observed by some
other deep clustering works [4]. However, the splitting-effect does not apply to
all the datasets. We can see in Fig. 3(c) and 3(e) that setting a larger K than
the ground truth number of classes does not increase NMI. Besides, in Fig. 3(a)
and 3(f), increasing K from 2 to 3 slightly increases NMI, but further increasing
the value of K drops NMI.

In summary, the optimal value of K is different on different datasets. Like
many classic clustering methods [2,6,17,31], we can use cross validation to choose
the optimal value of K in practice. However, for the fairness of comparison in
the previous experiments, we set the value of K for all the compared methods
to the same ground truth number of classes.

6 Conclusion

In this paper, we propose the novel unsupervised learning task of interpretable
graph-level clustering, which aims to find good clusters of graphs and also gain
useful insights into the clustering result by interpreting why each graph is allo-
cated to its corresponding cluster. We successfully tackle this task by an effec-
tive method named interpretable deep graph-level clustering (IDGC). IDGC
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achieves superior graph-level clustering performance by incorporating the train-
ing of graph embeddings and the clustering of graphs in an end-to-end deep
learning framework; it also achieves surprisingly good interpretation performance
by introducing a prototype layer to learn prototypical graph structures for each
cluster of graphs. Extensive experiments on six benchmark datasets demonstrate
the outstanding performance of the proposed method.
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Abstract. Blind image quality assessment (BIQA) is a crucial tech-
nique for selecting high quality images, which are vital for reliable diag-
nosis, effective algorithms, and ensuring an optimal visual experience for
users. Due to full-reference and reduced-reference IQA methods require
reference images, the demand for no-reference (NR-IQA) techniques is
more pronounced in practical scenarios. In recent years, NR-IQA mod-
els based on Convolutional Neural Networks have achieved significant
success. However, existing methods treat image regions uniformly, con-
tradicting the trend of the human visual system to prioritize attention to
salient areas. Inspired by the Human Visual System (HVS), we propose
the hypothesis that different regions contribute differently to perceived
image sharpness, with significant regions exerting a greater influence on
quality assessment. To validate this hypothesis, we conducted subjec-
tive experiments, revealing that applying the same degree of blur to
foreground and background regions results in different quality degrada-
tions. Based on this observation, we introduce A Saliency-Aware NR-IQA
Method by Fusing Distortion Class Information(SADCIQA). A hierar-
chical saliency aware module is designed to obtain weighted fusion of
features from different regions of the image. Additionally, we employ a
self-supervised method to train a quality aware module to extract image
quality features. SADCIQA emphasizes salient regions while reducing
the contribution of background areas, aligning quality predictions with
subjective judgments. We conducted experiments on six datasets, demon-
strating that our approach achieved state-of-the-art performance in both
synthetic and real distortions.
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1 Introduction

As the demand for high-quality visual content rises, image quality assessment
(IQA) becomes crucial in various applications. IQA aims to measure image
perceptual quality aligned with human judgments. IQA methods are usually
divided into subjective(relying on human evaluations) and objective (using com-
putational models). Subjective methods are generally not in the option list of
the computer vision community because of their requirements for high labor
costs. Objective methods include full-reference IQA(FR-IQA), reduced-reference
IQA(RR-IQA), and no-reference IQA(NR-IQA). In real-world scenarios, NR-
IQA methods prove more desirable due to their adaptability in the absence of
reference images.

With the advancement of Convolutional Neural Networks (CNNs) in recent
years, numerous CNN-based data-driven IQA models (such as VCRNet [1],
HyperNet [2], and DB-CNN [3]) have achieved notable success. However, we
observed that all the existed methods deal with the whole image equally and
indiscriminately, which is not consistent with that of human visual information
processing. Biological vision, including that of humans, has evolved over a long
period of time. To enhance the adaptability of species, human vision has to pro-
cess received images selectively rather than indiscriminately. On the contrary,
the visual system automatically distinguishes “critical” parts of the scene and
prioritizes attention to them, such as areas containing animals like snakes or
tigers. Therefore, we assume that different regions of an image contribute dif-
ferently to the perceived sharpness by the human visual system. The higher the
attention to a region in the image, the greater its impact on the evaluation of
image quality.

To validate this hypothesis, we conducted a quick experiment as shown in
Fig. 1. Figure 1(a) shows the original image, Fig. 1(b) applies Gaussian blur to
the central human body region, and Fig. 1(c) applies the same degree of Gaus-
sian blur to the background region outside the human body area. For these
three images, we initially invited 20 individuals to observe image (a) along with
its MOS(69.64) from the SPAQ dataset. Subsequently, they were asked to rate
images (b) and (c) separately. The final MOS scores for images (b) and (c) were
established as 64.4 and 58.2 respectively. Through analysis of the scoring results,
the following conclusions can be inferred: (1) A decrease in image quality in either
the foreground or background area results in lower subjective evaluation scores
for the image. (2) When subjected to equal degrees of image blur, the impact of
blurring on the foreground image region is significantly greater than that on the
background region.

Based on the aforementioned observations, this paper proposes a saliency-
aware nr-iqa method by fusing distortion class information(SADCIQA). The
main idea is to amplify the influence of salient regions while diminishing the
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Fig. 1. Comparison of the Impact of Foreground and Background Blur on Image Qual-
ity: Image (a) was randomly selected from the SPAQ dataset. Gaussian blur was inde-
pendently applied to the foreground and background areas, resulting in Images (b) and
(c) respectively. This allows for a direct comparison of how foreground and background
blur impact image quality perception.

influence of background regions on the assessment. Thus obtaining evaluation
results that are more aligned with subjective judgments. To achieve differen-
tial treatment of salient and background regions, we modify a salient region
segmentation model to make it applicable to our task. In addressing the issue
of insufficient annotated data in NR-IQA, we make modifications based on the
framework proposed in [4]. The primary contributions of the paper include:

1. We propose a hypothesis to impact image quality evaluation results: Different
regions of an image contribute differently to the perceived sharpness by the
human visual system. The higher the attention to a region in the image, the
greater its impact on the evaluation of image quality.

2. Based on the above hypothesis, (SADCIQA) has been enhanced.
3. The proposed SADCIQA has conducted extensive experiments on six IQA

databases, and achieved the state-of-the-art performance on the image quality
prediction accuracy.

2 Related Work

2.1 Feature Extraction Methods for NR-IQA

Prior to the emergence of deep learning, the dominance of Natural Scene Statis-
tics (NSS) theory in the field of Blind Image Quality Assessment (NR-IQA) was
notable. NSS theory posits that pristine natural images adhere to specific sta-
tistical distributions, and various distortions disrupt this statistical regularity.
[5–7]. Consequently, researchers proposed various hand-crafted features across
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different domains, including spatial [8,9], frequency [10], and gradient features
[11]. Additionally, there were initial explorations into learning-based methods,
such as support vector regression, and features learned by visual codebooks [12],
to estimate subjective quality.

In recent years, NR-IQA (No-Reference Image Quality Assessment) models
have transitioned from utilizing hand-crafted perceptual features and shallow
learners to adopting Deep Learning-based approaches trained on extensive sub-
jective databases [1–3].

However, these methods do not differentiate between different regions of the
image as effectively as the human visual system. When processing an image, the
human visual system tends to assign different levels of importance to various
regions based on the image’s content and context. For instance, in a portrait
photograph, people are more likely to focus on the facial features of the subject,
while details in the background may be less important and easily overlooked.

2.2 Solutions for Scarcity of Labeled Data in NR-IQA

Following the intricate model design, a limited number of studies have shifted
their focus to addressing the fundamental challenge in NR-IQA: the scarcity
of labeled data. In response, some researchers have explored strategies to maxi-
mize the utilization of existing supervisory signals, such as rank learning [13,14],
multi-task learning [15,16], and mixed-dataset training [17,18].

PaQ-2-PiQ [16] stands out for its utilization of a specially designed dataset,
where the authors not only collected subjective quality scores for entire images
but also for a large number of image patches. This dataset is sufficiently large to
train deep models in a supervised manner. However, despite incorporating patch-
level and image-level quality information during training, the susceptibility to
dataset sampling errors exists, as only a limited number of patches were extracted
from each image and annotated with quality scores.

MUSIQ [19] employs a transformer-based architecture, pre-trained on the
ImageNet classification dataset. The method significantly benefits from this
transformer architecture and further enhances its performance by fine-tuning
the transformer backbone on IQA test databases.

Re-IQA [4] aims to learn quality-aware representations in a self-supervised
manner. Re-IQA achieves this by learning to group images with similar types
and distortion degrees into classes using an independent dataset. We adopt the
Re-IQA approach to train an image quality aware module.

3 Proposed Method

As mentioned in the conclusion of the related work section, existed methods fail
to perceive the significant differences in various regions of the image. Addressing
this challenge, In this paper, we introduce a novel approach named a saliency-
aware NR-IQA method by fusing distortion class information(SADCIQA). SAD-
CIQA utilizes a self-supervised approach to learn image distortion classes and
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leverages salient region segmentation techniques to extract features related to
image saliency. The architecture of SADCIQA, illustrated in Fig. 2, consists of
a Quality Features Aware module and a Hierarchical Saliency Features Aware
module.

To specifically capture hierarchical saliency regions in images, we employed
our Hierarchical Saliency Aware Module, implemented using U-Net architecture.
Further, we referred to Re-IQA for the implementation of the Quality Features
Aware method. This method employs a self-supervised approach, introducing
diverse distortions to images and training a feature extractor. Further discussion
on the use of the Hierarchical Saliency Aware Module and the Quality Features
Aware method is provided in Sects. 3.1, 3.2.

Fig. 2. Architecture of SADCIQA: For the input image, feature extraction was per-
formed separately using the quality-aware module and the hierarchical-saliency aware
module. Subsequently, the extracted features were fused and passed through an MLP
head to obtain scores.

3.1 Hierarchical Saliency Aware Module

To distinguish and acquire features from different saliency regions of the image,
we enhance the salient region segmentation model as our Hierarchical Saliency
Feature Aware module. Through training, it focuses on capturing features from
salient regions within the image.

RSU-L. Inspired by both U-Net [20] and U2-Net [21], we aim to better simu-
late the Human Visual System while extracting hierarchical saliency features. To
achieve this, we introduce an RSU-L block, illustrated in Fig. 3, designed to cap-
ture intra-stage multi-scale features. The proposed model comprises three main
components: Firstly, an input convolution layer transforms the input feature map
x(H×W×Cin)into an intermediate map F1 with Cout channels, facilitating local
feature extraction. a U-Net-like structure with height of L is employed to extract
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Fig. 3. We introduce an RSU-L block to capture intra-stage multi-scale features, with
the model comprising three main components

and encode multi-scale contextual information. This structure, adaptable with
the parameter, enables the extraction of multi-scale features from input feature
maps of various spatial resolutions. Lastly, a residual connection merges local
and multi-scale features.

Architecture. Our hierarchical saliency-aware module primarily consists of
encoder and decoder components, as illustrated in Fig. 4. In the encoder stages,
En 1 to En 6, we utilize residual U-blocks (RSU) with varying heights, including
RSU-7, RSU-6, RSU-5, RSU-4, and RSU-4F. The designation “F” in RSU-4F
indicates that it is a dilated version, where pooling and upsampling operations
are replaced with dilated convolutions. The selection of block height depends
on the resolution of the input feature map, with taller blocks capturing more
large-scale information. RSU-4F in stages En 5 and En 6 are dilated versions
specifically introduced to prevent the loss of context during downsampling. Addi-
tionally, downsampling is applied between each encoder, while upsampling is
employed between each decoder.

After successfully training the saliency region segmentation model, the Hier-
archical Saliency Aware Module is used for feature extraction within the image
quality assessment framework. As depicted in Fig. 4, we extract feature maps
from different encoder components and weighted fusion them to obtain a final
feature map that accentuates salient regions while attenuating background
regions.

This approach capitalizes on the learned representations from the saliency
region segmentation task to improve the performance of the image quality eval-
uation model. By integrating the encoder component, optimized for capturing
salient features, into the image quality assessment pipeline, the resulting model
gains a deeper understanding of crucial visual cues. This strategy highlights the
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Fig. 4. We train a module for segmenting the most salient regions. Once trained, we
freeze its parameters. Then, for each trained encoder, we compute a weighted sum of
the generated features to obtain the overall hierarchical saliency features, which are
used to calculate the final quality score.

adaptability and transferability of deep neural network architectures, enabling
learned features to be repurposed across various tasks for enhanced performance
and efficiency.

3.2 Quality Aware Module

In this section, we deploy an image quality perception module inspired by the
Re-IQA method [4] as illustrated in Fig. 5, Firstly, we employ the Choosing Crop
Locations technique to perform image cropping, ensuring comprehensive cover-
age of visual content. Subsequently, we apply Image Quality Distortion Augmen-
tations to the cropped images, introducing various classes of distortions to simu-
late real-world image variations. Finally, we utilize an Encoder to extract image
features, optimizing its parameters to minimize the distance between images
with similar features while maximizing the distance between dissimilar features
in the feature space.

Choosing Crop Locations: The selection of crop locations is critical for ensur-
ing effective feature learning while minimizing redundancy. To achieve this, the
algorithm selects crop locations in such a way that the overlapping area (OLA)
between the two crops falls within predetermined bounds. This ensures that each
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Fig. 5. By employing the OLA-based crop and an image augmentation scheme, we
generate pairs of images with similar and dissimilar qualities. Subsequently, these paired
images are fed into both the query encoder and key encoder for training purposes.

pair of cropped images provides sufficient variation for learning while avoiding
excessive redundancy.

Image Quality Distortion Augmentations: A novel bank of image quality
distortion augmentations is employed to introduce a diverse range of distortions
into the image dataset. This augmentation bank comprises 25 distortion meth-
ods, each applied at five different severity levels. These distortions include, but
are not limited to, noise addition, blur, compression artifacts, and color dis-
tortions. Through the application of these augmentations, the model learns to
recognize and adapt to various classes and levels of image quality degradation.

Encoder Design and Training: The model utilizes two identical encoders:
an Online Encoder (query encoder) and a Momentum Encoder (key encoder).
Both encoders employ ResNet-50 backbones and an MLP head to generate final
output embeddings from the ResNet features. After selecting pairs of images with
corresponding distortions, one image from each pair is passed through the query
encoder while the another is passed through the key encoder. The loss between
the representations generated by the query and key encoders is calculated using
the InfoNCE [22] loss function. This loss function encourages the model to bring
representations of similar images closer together while pushing representations
of dissimilar images apart, aiding in learning distortion classes effectively. Once
the encoder pre-training is completed, the frozen ResNet-50 can be utilized as an
encoder backbone for any subsequent task related to perceptual image quality.

4 Experiments

4.1 Training Datasets

In the Quality Aware Module, we integrate pristine images and authentically
distorted images as training data. Our model ensures effective discrimination
of features between two images with identical content but differing distortion
classes. Our training data methodology parallels that of previous prominent
approaches. For pristine images, we utilize 140,000 images from the KADID
dataset [23]. Meanwhile, for authentically distorted images, we employ a dataset
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combination similar to that proposed in CONTRIQUE [24], comprising (a) 255K
images from AVA [25], (b) 330K images from COCO [26], (c) 2,450 images
from CERTH-Blur [27], and (d) 33K images from VOC [28]. In the Hierarchical
Saliency Aware Module, similar to the approach adopted by U2-Net, our network
is trained on DUTS-TR, a subset of the DUTS dataset [29]. DUTS-TR comprises
a total of 10,553 images, To augment this dataset, we perform offline horizontal
flipping, resulting in a doubled dataset size of 21,106 training images.

4.2 Evaluation Datasets

We evaluate our method on several widely used image quality assessment (IQA)
datasets, including both synthetic and authentic distortions. The synthetic
datasets include LIVE IQA [30], TID2013 [31], CSIQ [32], which provide images
impaired by various classes and levels of single distortions. For authentic distor-
tions, we utilize more recent “in the wild” datasets captured using mobile devices
in real-world scenarios. These include KonIQ-10K [33], CLIVE [34], SPAQ [35].
KonIQ-10K contains 10,000 images from YFCC100M [36] covering a wide range
of authentic quality issues. CLIVE has 1,162 mobile images exhibiting diverse
distortion classes. SPAQ provides 11,000 mobile images along with quality scores,
content labels, and EXIF data. By evaluating on both synthetic and authentic
datasets, we aim to demonstrate the generalizability of our approach across dis-
tortion classes, levels, and realism. The diversity and size of these datasets enable
thorough benchmarking of IQA methods.

4.3 Training Configurations

For the quality-aware module pre-training, we employed ResNet-50 as the pri-
mary feature extractor, accompanied by a 2-layer MLP head aimed at regressing
contrastive features of dimensionality 128. The hidden dimension of the MLP
head was configured with 2048 neurons. Training was conducted with a learning
rate of 0.5, utilizing a cosine annealing scheduler, an InfoNCE temperature of
0.1, and a momentum coefficient of 0.99.

For the hierarchical saliency-aware module pre-training, We employed the
Adam optimizer for network training, with hyperparameters of initial learning
rate lr = 1e-4, betas = (0.95, 0.999), eps = 1e-8, weight decay = 0. Training was
conducted over 40 epochs.

For fine-tuning, upon the completion of pre-training, we utilized the trained
aforementioned modules as two distinct feature extractors, responsible for
extracting saliency region features and distortion features respectively. Subse-
quently, we devised a dynamically updatable weight matrix to fuse the obtained
features, followed by input to the final MLP head. We configured the learn-
ing rate as 5e-5 for the MLP head and 0.005 for the weight matrix updates,
employing an L2 loss function, Adam optimizer, and a batch size of 128.

All implementations were realized in Python, leveraging the PyTorch deep
learning framework. During pre-training, 2 NVIDIA A100 GPUs were utilized
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with mixed precision training, while subsequently, NVIDIA RTX4090 GPUs were
employed for fine-tuning.

4.4 Evaluation Protocol

Pearson’s Linear Correlation Coefficient (PLCC) and Spearman’s Rank-Order
Correlation Coefficient (SRCC) serve as the criteria for assessing accuracy and
monotonicity, respectively, both ranging from 0 to 1. A higher PLCC indicates a
more precise numerical fit with MOS scores, while a higher SRCC signifies a more
accurate ranking between samples. Following the approach outlined in [19,37],
we split the dataset into a 80% training set and a 20% testing set randomly.
To avoid overlap of contents in datasets with synthetic distortions, splits were
selected based on source images. We also prevented any bias towards the training
set selection by repeating the train/test split operation 10 times and reporting
the median performance.

4.5 Results

Our approach, by separately learning saliency region features and distortion
classes features, aligns more closely with the human visual system by learning
salient region-specific and distortion-specific features in a decoupled manner, our
hierarchical approach is able to better capture quality degradations localized to
salient image regions. As evidenced by the results in Table 1 and Fig. 6, this
leads to performance improvements over existing general-purpose no-reference
IQA methods like Re-IQA that do not explicitly model region saliency. We

Fig. 6. Randomly Selected Images from SPAQ Dataset: (a) Original Image, (b) Gaus-
sian Blur Applied to Background, (c) Gaussian Blur Applied to Foreground

Table 1. Here are the scores obtained for images a, b, and c, respectively, along with
the scores obtained using Re-IQA and SADCIQA for image quality assessment:

Quality Score
Mos 71.43

Re-IQA 70.37
Ours 71.88

Quality Score
Mos 64.4

Re-IQA 66.37
Ours 64.33

Quality Score
Mos 54.8

Re-IQA 60.72
Ours 56.50
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Table 2. Performance comparison of SADCIQA against various NR-IQA models on
IQA databases with authentic and synthetic distortions. Presents the results of various
methods, with VCRNet sourced from [1], and others sourced from [4].

Method CLIVE SPAQ KONIQ TID2013 CSIQ LIVE
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

CORNIA 0.629 0.671 0.709 0.725 0.780 0.795 0.678 0.768 0.678 0.776 0.947 0.950
CONTRIQUE 0.845 0.857 0.914 0.919 0.894 0.906 0.843 0.857 0.942 0.955 0.960 0.961
HyperIQA 0.859 0.882 0.916 0.919 0.906 0.917 0.840 0.858 0.923 0.942 0.962 0.966
VCRNet 0.856 0.865 – – 0.894 0.909 0.846 0.875 0.943 0.955 0.952 0.963
Re-IQA 0.820 0.834 0.900 0.918 0.914 0.923 0.824 0.861 0.947 0.960 0.970 0.971
BRISQUE 0.608 0.629 0809 0.817 0.665 0.681 0.604 0.694 0.746 0.829 0.939 0.935
DB-CNN 0.844 0.851 0.911 0.915 0.875 0.884 0.816 0.865 0.946 0.948 0.969 0.966
SADCIQA(Ours) 0.850 0.857 0.916 0.920 0.901 0.914 0.856 0.882 0.957 0.965 0.969 0.978

thus demonstrate the advantages of our proposed hierarchical framework for
no-reference image quality assessment (Table 2).

Among these, the best-performing methods are denoted in bold, while the
second and third best-performing methods are underscored. Notably, on the
synthetic dataset, the third, first, and third positions were achieved, respec-
tively. Conversely, on the authentic dataset, first place was attained uniformly.
This observation underscores the efficacy of employing a method that combines
distortion-specific feature extraction with salient region feature extraction for
image quality assessment across diverse datasets.

5 Conclusion

In this paper, we proposed a novel approach to image quality assessment that
combines self-supervised learning with salient region segmentation techniques.
Our method adopts a hierarchical structure, separately learning quality features
and salient region features to better mimic the human visual system. Through
experiments on multiple datasets, we have demonstrated the effectiveness and
robustness of our approach. Compared to existing methods, our approach shows
superior performance in assessing image quality and can handle various classes
and levels of quality distortions. This provides a new perspective and method for
the field of image quality assessment, with significant theoretical and practical
implications. Future work could explore further improvements to our method to
enhance its performance and applicability.
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Abstract. The role of artificial intelligence-based decision-making pro-
cesses in the recent advancements of data-driven technology is inevitable,
but the key challenge is embedded here in the opacity of their decision-
making mechanisms, presenting difficulties in explaining these processes
to the end users. The well-known RISE method (randomized input sam-
pling for explanations) and its variants are widely used now-a-days for
explainability with image data through perturbative approach. How-
ever, due to significantly large number of forward passes as required
for increasing number of mask generation, RISE is heavy in computa-
tion. The issue is potentially addressed in this paper by intelligently
sampling fewer number of masks through a guided scheme, instead of
using large number of randomly generated masks. Our proposed app-
roach of guided input sampling-based explanations (GuISE), introduces
an innovative method for generating an importance map, illustrating the
saliency of each pixel in the model’s predictions. Unlike white-box expla-
nation schemes that depend on gradients or internal network states for
pixel importance estimation, GuISE functions as a black-box approach
and outperforms particularly in its masking technique. To validate our
approach, we compare it against the state-of-the-art importance extrac-
tion methods using both automatic deletion and insertion metrics. Exten-
sive experiments on benchmark image datasets demonstrates compara-
ble or superior performance of our proposed GuISE, even surpassing
the white-box approaches. This highlights the effectiveness of GuISE
in achieving explainability of deep neural networks for image-based
applications.

Keywords: Explainable artificial intelligence · Perturbation method ·
Deep learning · Masking · Image classification

1 Introduction

The recent breakthroughs in deep neural networks (DNNs) have propelled
substantial growth in Artificial Intelligence (AI) research. A large group of
researchers is performing their research using deep neural networks, but there is
an unclear and vague wave which is going on behind these research works due to
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the black-box nature of the deep network models [6]. In domains where decisions
carry significant consequences, like medical diagnosis, predicting diabetes [4],
multispectral video classification [2], etc., the transparency of decision-making
models becomes more important than the other models. The architectures of
DNNs present a complex and convoluted configuration, characterized by lay-
ers of interconnected nodes and parameters. This complexity often results in a
lack of transparency regarding the internal mechanisms dictating the classifica-
tion outcomes produced by these networks. Such opacity in understanding the
decision-making process within DNNs has led to the emergence of Explainable
Artificial Intelligence (XAI), a field aimed at elucidating the inner workings of
AI models, particularly in the context of image data processing which is also
shown in Morphological Fragmental Perturbation Pyramid for Black-Box model
explanations [21]. XAI strives to elucidate the specific features within an image
that contribute to a given classification by a neural network.

A prominent method in XAI is the deployment of attribution techniques
that generate saliency maps, that provide us with visual representations and
indicate the relative importance or influence of different pixels in the model’s
decision-making process. Saliency maps have primarily been applied to the task
of image classification, providing insights into the model’s focus areas within
an image. Various approaches have been developed for this purpose, includ-
ing model-specific techniques, such as Class Activation Mapping (CAM) [24]
and Gradient-weighted Class Activation Mapping (Grad-CAM) [15], as well as
model-agnostic approaches, such as Shapley Additive Explanation (SHAP) [13],
Randomized Input Sampling for Explanation (RISE) [10], and so on. While
model-agnostic method like RISE offers the advantage of universal applicabil-
ity across diverse image datasets without the prerequisite of understanding the
model’s internal architecture, it comes with certain drawbacks. A significant chal-
lenge with RISE is its high computational time. The generation of large number
of masks substantially increases the computation load, making these less prac-
tical for real-world applications where computational efficiency is crucial.

We address this critical issue by proposing an optimized approach to reduce
computational time in model-agnostic XAI techniques. We focus on optimizing
the masking process in RISE and implementing a guided approach of mask
generation. The strategy enhances computational efficiency while maintaining
the power of explainability (refer Fig. 1), thereby making the model-agnostic
XAI methods more feasible and effective for real-world applications where rapid
decision-making is essential. Our contributions can be outlined as follows:

– We propose a novel method, GuISE (Guided Input Sampling-based Explana-
tions), which enhances the explainability of deep networks in image classifi-
cation, while intelligently sampling fewer masks for saliency map generation.

– GuISE improves upon well-known RISE method, reducing the computational
overhead by minimizing the number of masks required for map generation.

– The paper presents experimental validation on benchmark image datasets
(like ImageNet and PASCAL VOC07), demonstrating that GuISE outper-
forms the state-of-the-art XAI methods.



146 A. Bano and M. Das

Fig. 1. This comparison highlights that the GuISE method outperforms RISE, offer-
ing more accurate saliency evaluations with fewer masks and less noise. The features
highlighted within the saliency map that do not contribute to image classification by a
given model, are termed here as the noise. The duration for generating saliency maps
is also noted, providing insights into the efficiency of both the methods. This study is
conducted on a Colab T4 GPU environment, with 72 GB disk space and 12 GB RAM.

– The paper extends the application of GuISE to medical image processing,
specifically for brain tumor MRI scans, demonstrating the method’s adapt-
ability and effectiveness in medical domain.

The remaining manuscript is organized as follows: Sect. 2 discusses the related
works. Section 3 illustrates the proposed GuISE method and its implementation.
Section 4 presents the experimental study along with datasets details, baselines,
evaluation metrics, and results. Finally, we conclude in Sect. 5.

2 Related Work

In this section, we begin by exploring classical methods aligned with Bayer
et al.’s [1] classification of XAI strategies based on image evaluation, such as
Gradient-based and Perturbation-based approach, both of which visualize their
interpretations through heatmaps.

Gradient-based methods analyze how each input pixel contributes to a
neural network’s final decision by backpropagating importance scores from the
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output back to the input. Techniques like Gradients [16], Excitation Backprop
[23], and Class Activation Mapping (CAM) [24] elucidate which parts of an
image influence the model’s predictions. However, these methods are often tai-
lored to specific network architectures, requiring adjustments for new models.
Grad-CAM [15], Grad-CAM++ [3], Score-CAM [20], Faster Score-CAM [20] are
advancements in this area, which generate saliency maps by combining gradi-
ents and activations from a network’s intermediate layers, offering more general
approaches that can be applied across different Convolutional Neural Network
(CNN) architectures. Grad-CAM’s low-resolution saliency maps lack the pre-
cise detail, offered by perturbation-based approaches, potentially missing subtle
but important features. Grad-CAM, Grad-CAM++ are predominantly applica-
ble to convolutional layers, limiting its versatility compared to model-agnostic
perturbation methods. In case of Score-CAM and Faster Score-CAM, a notable
drawback is that if the model is already highly confident in its prediction, these
may not effectively identify the most important regions of the image [17].

In the perturbation-based approach for image analysis, various tech-
niques are used to modify regions of an image such as occlusion, noise addition,
inpainting and blurring, to observe the effect on the model’s output. These meth-
ods then assess the significance of the perturbed region based on changes in the
model’s performance. For example, the occlusion method [22] obscures square
sections of the image sequentially, using a sliding window approach, and eval-
uates the impact on the classification score to ascertain the perturbed region’s
importance. LIME [12] simplifies the complex model into a linear classifier, which
is trained near the input data point. This training uses samples with occluded
superpixels, and the significance of superpixels is gauged by the weights assigned
during the linear classifier’s training. The drawback of LIME lies in its reliance
on a linear approximation to explain the behavior of potentially highly nonlinear
models within a local vicinity of the input being explained. Randomized input
sampling for explanations (RISE) [10] creates an ensemble of random masks,
applies them to the input image and calculates the class probabilities for each
masked version. The saliency map is then generated as a weighted sum of these
masks, with weights derived from the predicted class probabilities. However, it
incurs high demand computational costs when numerous activation maps with
positive slopes are present, impacting efficiency in the prediction output. Transi-
tioning from the exploration of classical methods in XAI, in the paragraph below,
we delve into the nuances of understanding the broader categories of method-
ology, namely white-box and black-box approaches. The categorization of the
methods here is primarily based on their strategy of governing the application
in practical settings. This also illuminates the importance of bridging the gap
between specific analytical methods and their broader implementation strategies.

White-box and Black-box approaches serve slightly different purposes.
White-box methods are faster as required for large-scale and real-time applica-
tions. The methods discussed in this context focus on explaining a scalar value in
the model’s output, typically the class probability score in image classification.
In contrast, the black-box methods, though slower at runtime, offers higher gen-
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eralizability and ease of application making them suitable for proprietary models
or Application Programming Interface (API). They directly measure the impact
of input ablations on the model without relying on backpropagation heuristics. In
our efforts to enhance the black-box approach, we aimed for real-life applicability
and reduced execution time by minimizing the number of masks employed in the
existing method. Our approach aligns with the perturbation-based methodology,
wherein we perturb the image to facilitate explainability.

3 Proposed Method: GuISE

In this study, we introduce GuISE (Guided Input Sampling for Explanations),
a novel approach that enhances saliency output and accuracy in explainability
compared to the existing RISE method. RISE requires a large number of masks
to perturb the image, significantly increasing computational time. It relies on a
random binary masking technique, further escalating computational demands.
GuISE is designed to address these challenges by reducing the number of masks
needed and optimizing the masking process for more efficient computation. Over-
all, our proposed GuISE method is inspired by the randomized perturbation
masks generation approach by the RISE model applied on the image to explain
object classifiers, except that GuISE leverages the random-masking concept to
guide masks. The key idea is to measure the effect of masking guided regions on
the predicted output, to determine the importance.

In our GuISE methodology, we have redefined the masking approach, shifting
from the traditional random binary masking to a strategy that is more targeted
and deliberate. Unlike the conventional method where each image segment has
an equal probability of 0.5 for masking, GuISE assigns priority to segments based
on the extent of the area they cover. Specifically, areas with a smaller coverage of
similar pixels are perturbed with a probability higher than 0.5. This adjustment
ensures that the smaller segments, which would otherwise receive minimal impor-
tance with a flat probability rate, are adequately emphasized in comparison to
larger areas receiving the same probability. This innovative masking technique
incorporates superpixel segmentation , followed by fuzzy c-means cluster-
ing , and histogram analysis to guide the masking process, which significantly
enhances the specificity and the effectiveness of saliency detection. In the subse-
quent part of this section we discuss on each of these steps individually.

3.1 Guided Mask Generation

Superpixel Segmentation: For this purpose GuISE employs Simple Linear
Iterative Clustering (SLIC) method. SLIC provides a straightforward approach
for clustering pixels into superpixel segments. By setting a target number k,
SLIC aims to produce a specified number of superpixels that are approximately
equal in size (refer Algorithm 1). The parameter k is used to generate the number
of superpixels, referred to as n_segments. This value is computed by dividing
the total number of pixels in the original image by 256. The choice of 256 as
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the divisor strikes a balance between computational efficiency and segmentation
granularity. SLIC incorporates parameters like sigma for enhancing the smooth-
ness of segmentation and compactness for ensuring that each segment achieves
a proper shape. This approach allows meaningful segmentation by balancing
between the spatial coherence and the appearance of superpixels.

Algorithm 1: Segmentation using SLIC
Data: original_img, n_segments, compactness, sigma
Result: segments_slice
segments_slice ← slic(original_img, n_segments = k, compactness =
10, sigma = 1);

Fuzzy C-Means Clustering: After using SLIC to generate superpixels, we
grouped similar superpixels using clustering. These groups represent areas of sim-
ilar characteristics within the image. Unlike binary classification, which restricts
groups to either 0 or 1, our approach ensures variability within groupings. To
achieve this nuanced classification, we employed fuzzy c-means clustering, which
allows for more flexibility by assigning membership levels to each superpixel
in multiple clusters. Fuzzy c-means is an unsupervised clustering algorithm
that operates without the need for pre-labeled data, grouping pixels based on
their similarity. The process begins by selecting a desired number of clusters
(n_cluster), and randomly assigning pixels to these clusters. During experimen-
tation we chose to use n_cluster = 5 as this number effectively groups similar
features together, avoiding excessive fragmentation that can occur with a higher
number of clusters. Our empirical testing showed that using 5 clusters provided
interpretable and meaningful results in our dataset. The algorithm then itera-
tively adjusts the pixel assignments based on the distance of each pixel from the
cluster centers, taking into account the level of fuzziness (m), which is controlled
by setting m = 2.

Fuzzy_cmeans ← cmeans(Image, n_cluster=n_cluster,m=2,maxiter =
1000). The parameter maxiter specifies the maximum number of iterations
allowed for optimizing the clusters to achieve the final segmentation. We are uti-
lizing fuzzy c-means clustering to identify distinct partitions within the image.
This facilitates the analysis of histograms for each unique area, enabling precise
characterization of their individual properties.

Histogram Analysis: It serves the purpose of summarizing data, appli-
cable to both discrete and continuous types measured on an interval scale.
It is commonly used to visually illustrate the significant characteristics of
data distribution. In our study, we utilized a histogram to calculate the
composition of each cluster derived from fuzzy c-means. Formally it can
be represented as: bincount(clustered_segments_img.flatten(),minlength =
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n_cluster). In this formula, n_cluster represents the number of clusters, while
the clustered_segments_img refers to the outcome after applying SLIC and
fuzzy c-means clustering to the image. The histogram is utilized to determine
area percentage per cluster and also for computing cluster-wise probability such
that the small areas are prioritized. Subsequently, a binary scheme is applied to
generate the mask while receiving guidance from these estimated probabilities.
Figure 2 presents the overall workflow of the proposed guided mask generation
approach. The approach is also elucidated through an algorithmic presentation
below (refer Algorithm 2).

Fig. 2. Guided Mask Approach: Initiates with segmenting image I using SLIC, applies
Fuzzy c-means to superpixels, and creates histograms for each superpixel cluster

Fig. 3. GuISE Workflow: Begins with image I multiplied by guided masks GMi, then
processed through the base model; saliency map is generated through linear combina-
tion of guided masks, weighted by target class scores.
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3.2 Guided Input Sampling-Based Explanation

After generating the guided mask we follow the basic perturbation approach of
RISE method and subsequently the saliency map is generated using the guided
mask. This enhanced RISE method with the added guided masking scheme is
termed as GuISE. Figure 3 shows an overview of the GuISE approach, where
the input image, denoted as I, undergoes element-wise multiplication with the
guided mask GMi and then the guided masked image (Mi) is fed into the base
model (BB). The saliency map is formed by linearly combining masks with the
weights being determined by the scores (Pi) of the target class associated with
the corresponding masked inputs (Mi). The overall approach is also formally
presented through the Algorithm 3.

Algorithm 2: Algorithm for Guided Mask
Data: Image (I), number of segment for superpixel (n_segment), number of

cluster for fuzzy c-means (n_cluster), number of Guided Mask (N)
Result: Guided Mask (GM)
Procedure:
1. SI ← SLIC (I, n_segment, compactness=10, sigma=1)/* Refer Algorithm 1
2. CI ← cmeans (I, n_cluster, m = 2, maxiter = 1000) ; /* Fuzzy C-Means
Clustering applied to Image I with n_clusters */

3. foreach segment ∈ SI do
segments ← AssignCluster (segment, CI); /* Compute and assign the
most frequent cluster from CI */

4. ClusterHistogram ← ∑n_cluster
i=1 CountSegments(CI, segments) /*For each

cluster in CI, count segments in SI and update ClusterHistogram
5. ClusterAreaPercentage ← Area (ClusterHistogram) / Area (I) ;
/* Calculate the area(number of pixel count) percentage of each
cluster, for computing cluster probability */

6. MeanArea ← Area (I) / n_cluster /*Computing mean cluster area
7.foreach c ∈ CI do

if Area(c) ≥ MeanArea then
Probability[c] ← 0.5;

else
Probability[c] ← 1 - ClusterAreaPercentage;

/* For each cluster c, assign a probability based on its area
relative to MeanArea */

8. Mask ← ZeroMatrix (I.Height, I.Width) ; /* Initialize a mask as a
zero matrix with dimensions equal to the height and width of I */

9.foreach cluster c ∈ CI do
nassigned_segments ← Round(ClusterHistogram[c] × Probability[c])
GM ← RandomAssignOne(Mask, nassigned_segments, c) /*For each cluster,
determine segment count for Mask, then randomly assign segments to 1

10. Repeat step 9 and generate N number of Guided Mask (GM).
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4 Experimental Study

Datasets: Our research is conducted using two prominent publicly accessible
datasets for object classification: ImageNet [14] and PASCAL VOC07 [5]. We
employ the Resnet-50 architecture, leveraging its capabilities as a pre-trained
model to facilitate efficient feature extraction and object classification tasks. To
extend our research into the domain of medical imaging, we have also used a
publicly available dataset comprising Magnetic Resonance Imaging (MRI) scans,
specifically focused on brain tumors [9]. By applying the Resnet-50 model as a
foundation and modifying its final layer, we adapt it for precise classification of
brain tumors into four distinct categories, showcasing the effectiveness of trans-
fer learning in adapting to specialized medical imaging tasks.

Algorithm 3: GuISE ALGORITHM
Data: Image (I), Guided Mask (GM), Pre-trained Model (M), number of

guided mask (N)
Result: Saliency Map (S)
Procedure:
1. Select an Image I /*Choose an input image I for generating saliency map
2. BlackBoxModel (BB) ← (M)/*Select a pre-trained black-box model, such as
ResNet-50 or VGG-16 which represents the decision-making process

3. foreach guidedmask GMi ∈ GM do
Mi ← I � GMi ; /* Apply the Guided Mask to the Input Image I to
get the guided masked image Mi, where 1<=i<=N */

Pi ← BB(Mi) /*Pass the modified masked image Mi to the black-box
model to predict the probability of the weighted score Pi

4. SaliencyMap(S) ← ∑N
i=1(P

T
i · Mi) /*Generate Saliency Maps by weighted

sum of modified masked images and their weighted scores

Baseline: Our methodology is benchmarked against the RISE method for
explainability in neural networks. We also compare our saliency map generation
approach with the white-box CAM variants, namely Grad-CAM++ [3], Score-
CAM [20] and Faster Score-CAM [20]. For this comparative analysis, publicly
available code implementations of CAM variants and RISE have been utilized.
It is important to note that we do not compare with recent black-box meth-
ods, like Detector Randomized Input Sampling for Explanation (DRISE) [11]
and Detector-Cascading multiple Levels of Segments to Explain (D-CLOSE)
[19], as these are primarily focused on object detection tasks. Our research
is concentrated on classification tasks and the GuISE method is an exten-
sion of the RISE concept, therefore, we have limited our comparison specif-
ically to RISE for a focused assessment. The code utilized in this research
is publicly accessible and can be found at the following GitHub repository:
//github.com/aulphin/GuISE-XAI.

https://www.github.com/aulphin/GuISE-XAI
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Evaluation Metrics: We perform quantitative and qualitative evaluations on
our proposed method. The qualitative evaluation is done based on how good it is
in generating saliency maps compared to existing methods. For the quantitative
evaluation, we use the evaluation metrics proposed by RISE [10], that is deletion
and insertion scores and the evaluation metric mGT , as discussed below.

1. Deletion score- This metric quantifies the reduction in the probability of
the predicted class as more important pixels are removed. The significance of
each pixel is derived from the saliency map. This can be presented by:

Deletionscore = DeleteP ixels(I(empty), S,N)

where DeleteP ixels is a function that deletes N pixels from saliency map S
and computes its score based on original image I till the important pixels get
empty.

2. Insertion score- It quantifies the increase in the probability of the predicted
class with the gradual introduction of important pixels, providing insights into
how efficiently the model gains confidence in its predictions during the pixel
insertion process. This can be presented by:

Insertionscore = InsertP ixels(I(blurred), S,N)

Table 1. Comparison of RISE and GuISE generated Saliency Maps by Utilizing
Ground Truth Masks on MSRA-B Image Dataset and Computed Evaluation Metrics
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where InsertP ixels is a function that inserts N pixels into the blurred image
I based on the saliency map S and computes its score.

3. mGT Metric- The mGT metric [18] is computed as the ratio of the number
of overlapping significant pixels to the total number of significant pixels in
the ground truth (GT) mask and is computed as follows: mGT = n/p,
where n is the number of pixels in the explainer model generated saliency
map mask that fall within the positive regions of the GT mask, and p is the
total number of positive pixels (binary ones) in the GT mask. Saliency map
with higher mGT value indicates a better XAI approach (refer Table 1).

Table 2. Insertion Score Comparison: GuISE outperforms RISE on Ima-
geNet/PASCAL dataset, achieving higher scores with 256 masks against RISE’s 2000;
higher scores indicate better performance.

INSERTION SCORE

IMAGE RISE[2000 masks] GuISE[256 masks]

GOOSE 0.9477 0.9679
GOLDFISH 0.8221 0.8336
BRAMBLING 0.9976 0.9910

BLACK-FOOTED FERRET 0.7081 0.7247
EUROPEAN GALLINULE 0.3514 0.5790
DRAKE 0.6815 0.5450

SPOTLIGHT 0.7942 0.8234
WHIPPET 0.6020 0.5660

Table 3. Deletion Scores Comparison: GuISE outperforms RISE on Ima-
geNet/PASCAL dataset, showing better results with 256 masks versus RISE’s 2000
masks; lower scores indicate better performance.

DELETION SCORE

IMAGE RISE [2000 masks] GuISE [256 masks]

GOOSE 0.6078 0.0167
GOLDFISH 0.0441 0.0515

BRAMBLING 0.0108 0.0951

BLACK-FOOTED FERRET 0.0021 0.0039

EUROPEAN GALLINULE 0.0008 0.0009

DRAKE 0.0015 0.0015
SPOTLIGHT 0.0063 0.0063
WHIPPET 0.0016 0.0015
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Table 4. Deletion Score Comparison: GuISE vs. RISE on Brain Tumor MRI dataset,
with GuISE’s 256 masks outperforming RISE’s 2000 masks; lower scores are better.

DELETION SCORE
BRAIN TUMOR RISE [2000 masks] GuISE [256 masks]

IMAGE1 [Pituitary] 0.0187 0.3031
IMAGE2 [Meniongima] 0.3563 0.1538
IMAGE3 [Glioma] 0.1506 0.2246
IMAGE4 [No Tumor] 0.4486 0.3998

Table 5. Insertion Score Comparison: On Brain Tumor MRI dataset, GuISE surpasses
RISE, showing higher scores with 256 masks versus 2000; higher scores are preferable.

INSERTION SCORE
BRAIN TUMOR RISE [2000 masks] GuISE [256 masks]

IMAGE1 [Pituitary] 0.6783 0.8909
IMAGE2 [Meniongima] 0.8040 0.7551
IMAGE3 [Glioma] 0.9854 0.9900
IMAGE4 [No Tumor] 0.7151 0.8487

Experimental Settings: Our study involved experiments on two categories
of datasets: ImageNet [14] /PASCAL VOC07 [5] for general classification and
the medical Brain Tumor MRI dataset [9], featuring grayscale images. For the
generation of binary guided masks, a technique is employed where probabilities
were assigned as 0 s and 1 s based on the area coverage within each image. To
achieve this, we utilize a set of 256 masks. In addition, the fuzzy c-means clus-
tering parameter n_cluster is set to 5. All images are standardized to 224×224
pixels in height and width.

4.1 Results and Discussions

Exploratory Analysis on Benchmark Image Dataset and Its Saliency:
Under conditions where fewer masks are utilized, our method outperforms RISE
by generating less noise and more effectively highlighting key features, demon-
strating its efficiency in focus and clarity. The evaluation result is shown in
Tables 2 and 3. GuISE is outperforming in most of the cases over the existing
method RISE, in terms of insertion and deletion scores. For saliency map repre-
sentation, here we have also compared our method with gradient-based (white-
box) approaches including Grad-CAM++ [3], Score-CAM [20] and Faster Score-
CAM [20], as shown in Figs. 4 and 5. While gradient-based approaches produce
good saliency maps, their limitations include difficulty in capturing small pixel
details, particularly when multiple objects are important in a single image, and
a lack of user-friendliness.
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Table 6. Saliency Map Comparison in Medical Imaging: GuISE provides more focused
saliency representation with significantly reduced noise, compared to RISE.

In case of black-box methods, we report the mean values obtained from con-
ducting five separate experimental runs. However, it is worth noting that RISE
[2000 masks] incurs heavy computational costs due to the higher number of for-
ward passes. In our saliency map generation process, we compared RISE and
GuISE methods using ResNet-50 model. RISE, which uses 2000 masks, takes
25 s to generate the saliency map. In contrast, GuISE, which uses only 256
masks, takes 9 s, demonstrating significantly higher efficiency. These tests were
conducted on a Colab T4 GPU with 72 GB disk space and 12 GB RAM.

We also experimented with RISE using 256 masks. In Figs. 4 and 5 the results
show that RISE generates saliency maps with considerably more noise. Here, by
means of noise we indicate the features which the deep learning model does
not consider important, yet are highlighted by the explainer model. In these
saliency maps, red indicates areas of higher importance, while blue signifies less
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important regions. However, the RISE method [256 masks] erroneously inter-
prets noisy regions as important, resulting in a misleadingly enhanced deletion
score. In contrast, our method generates saliency maps that effectively empha-
size important features while substantially reducing noise. This leads to a more
genuine deletion score or insertion score, even if numerically higher (which might
appear less favorable) compared to RISE. This is because our method produces
significantly less noise than the RISE method, offering a more accurate rep-
resentation of performance in the evaluation metrics. In order to strengthen
our claim regarding noisiness of the generated saliency maps, we did additional
comparative study with respect to mGT metric [18]. Since this metric requires
a ground truth mask, for the saliency map evaluation purpose we utilized the
publicly available MSRA-B dataset1, which contains the original images as well
as ground truth masks. Our results show that GuISE always performs better
than RISE in terms of mGT value, as shown in Table 1, demonstrating its supe-
rior capability to highlight important features which match well with the ground
truth.

Exploratory Analysis on Medical Image and Its Saliency: We have also
experimented on medical images to evaluate the efficiency of our method in
medical data analysis. To adapt our approach for medical image processing,
we have utilized transfer learning with a pre-trained ResNet-50 model. Since
ResNet-50 is originally trained on the comprehensive ImageNet dataset, using
this pre-trained model enables the precise classification of medical images. This
is achieved by applying the extensive knowledge gathered from the ImageNet
dataset to improve the performance of our specific task of classifying medical
images. In our study, the brain MRI dataset consisted of 300 glioma images, 306
meningioma images, 300 pituitary tumor images, and 405 images with no tumor.
After fine-tuning ResNet-50 on this dataset, we achieved a training accuracy of
98.20% and a validation accuracy of 95.35%, with a precision of 0.9570, recall of
0.9550, and an F1 score of 0.9537.

The outcomes, as presented in Tables 4 and 5, demonstrate that our method
outperforms the RISE technique with respect to deletion and insertion scores.
The experiments use the publicly available Brain Tumor MRI images dataset
to test the effectiveness of our approach in the domain of medical imaging.
Specifically, the medical image in Table 6 illustrates that the GuISE method
produces saliency maps with less noise compared to those generated by the
RISE method.

The key role of an XAI model in the medical domain can be to increase the
physicians’ confidence in prediction during the brain tumor MRI diagnosis pro-
cess. However, the application of a number of XAI methods to brain tumor MRI
datasets has not been discovered yet [8]. There is a pressing gap in our under-
standing regarding how XAI impacts the predictive accuracy, confidence levels,
and overall trustworthiness of models among physicians and radiologists in sim-
ulated environments. Moreover, the real-world implications of XAI in clinical
1 https://jianghz.me/drfi/.

https://jianghz.me/drfi/
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settings are yet to be elucidated. In our study, we observe that RISE is effective
for general image datasets, yet at the cost of increased computational demands.
However, when applied to medical imaging data, RISE’s efficiency diminishes,
primarily because it tends to interpret noise as significant pixels. This misinter-
pretation inflate its performance metrics, such as insertion and deletion scores. In
contrast, our proposed method, GuISE demonstrates a more targeted approach
by focusing on the crucial aspects of MRI images that indicate the presence of
tumors.

As shown in Table 6, in case of classified pituitary image, though RISE high-
lights salient features, the method also introduces substantial noise. In contrast,
GuISE correctly focuses on the MRI pituitary gland region. Additionally, GuISE
achieves a higher insertion score than RISE. Although RISE has a better dele-
tion score, GuISE provides more meaningful information in its saliency. GuISE
saliency indicates that the classification of pituitary tumors involves not only the
pituitary gland but also other regions of the brain. This assertion is corroborated
by the work of Kaltsas et al. [7]. This demonstrates that our approach performs
well in the medical domain, offering deeper visualization and understanding.
Similarly, in case of classified Meningioma image, we observe that the GuISE
method focuses on the relevant MRI part of the brain, while RISE highlights
areas outside the MRI. This not only indicates that GuISE performs better than
RISE by accurately focusing on the MRI region, but also reveals that RISE intro-
duces significant noise by focusing on irrelevant pixels. It must be noted here
that before applying the XAI approaches, in all the above cases, we ensured that
our fine-tuned classifier model correctly classified the respective images.

5 Conclusion

This paper introduces GuISE, a technique designed to interpret the workings of
black-box models through the evaluation of input image regions, important for
model predictions. Despite its straightforward and versatile nature, GuISE out-
performs current explanation methodologies in causal metrics and the quantity
of masks used. The guided mask method streamlines mask generation, optimiz-
ing mask quality and reducing computation by selecting the most informative
masks. GuISE effectively balances broad and detailed perspectives, facilitating
a smooth and consistent approach to mask creation. GuISE may occasionally
produce noisy saliency maps, especially with objects of varied classification, due
to sampling approximations. While we conducted evaluations of our method on
medical images using quantitative metrics, there remains a need for assessing
radiologist trust for qualitative metrics. This aspect can be explored in future
through a combined approach, to gather insights from medical radiologists.
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Abstract. In recent years, object detectionhas becomevery commonandhaswide
applications in various fields. As research deepens, CNN-based object detectors
are vulnerable to adversarial examples, and this weakness can also plague aerial
object detectors. However, existing attacks can only train one type of patch at
one time, and these adversarial patches are usually universal patches. In scenarios
where we only want to apply patch to attacks certain categories of targets but do
not attack other categories, these patches are not applicable.Meanwhile, due to the
training characteristics of universal patches (attacking all categories), they often
have an impact on the detection of objects of other categories around themwithout
patches. In this work, we focus onmulti-target category adversarial attacks against
aerial detection and propose a novel attack method, Multi target distraction attack
(MTDA). Specifically,we aim todesigndifferent patches for different categories of
targets, andgeneratemultiple adversarial examples corresponding to each category
through the patch-applymodule in order to restrict the attack area to the target area.
Furthermore, to achieve higher attack performance on aerial detector, we utilize
a novel attention loss to reduce the attention of objects in the target area while
improving the attention of non-target areas. The experimental results indicate that
compared to traditional attack methods, our method can achieve a higher attack
success rate (ASR) on the Yolov3, with the highest ASR of multi-target united
attack reaching 99.28%.

Keywords: Multi-target Adversarial Attack · Attention Dispersion · Aerial
Detection

1 Introduction

With the increasing popularity of drones in monitor and reconnaissance [1], more and
more remote sensing image datasets have been published, and deep neural networks
(DNN) have become the key to processing a large number of aerial images collected by
earth observation satellite platforms. Aerial detectionmethods based onDNN are widely
used in intelligent traffic monitoring, environmental monitoring, disaster response and
rescue, border security and defense, and other fields. It exhibits excellent performance
in both accuracy and efficiency.
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However, recent studies have validated the vulnerability ofDNN to adversarial exam-
ples, which can also affect the object detector of aerial images. Only a small amount of
malicious disturbance added to clean images can mislead deep neural networks to make
wrong predictions. Therefore, studying new adversarial attack methods is essential to
explain the vulnerability of DNN to adversarial examples.

At present, common adversarial attacks against object detection can be divided into
two categories based on the attack area, they are pixel-wise adversarial attacks [2–9] and
patch-wise adversarial attacks [10–14]. Pixel-wise adversarial attack mainly fine tunes
the original image through iterative gradient descent to make the added noise distributed
throughout the input image. This attack is often hardly noticeable. Patch-wise adversarial
attack refers to adding patches to the fixed region in the clean image. These patches can
be specific geometric shapes, textures, or colors, and are carefully designed to confuse
the model. Due to the ease of extending patches from the digital domain to the physical
domain, patch-wise adversarial attacks are still the mainstream attack method against
object detection by printing patches in the physical world.

However, previous work mainly focused on single category of targets and can only
generate one type of patch at a time. Meanwhile, the adversarial patches generated by
their training mode are often universal patches, which lack target specificity. Due to the
characteristics of global dispersion and local aggregation in small target remote sens-
ing images, one-on-one patching can lead to mutual influence between different target
classes, resulting in detection results deviating from expectations, as shown in Fig. 1. In
addition, most existing methods focused on downstream tasks of object detectors. As the
detection accuracy of detection models continues to improve, the generated adversarial
examples often suffer from insufficient attack intensity.

Based on the above issues, our work focuses on multi-target adversarial attacks
against aerial detection. Different patches are designed for different categories of targets,
andmultiple adversarial examples corresponding to each category are generated through
the patch apply module. The attack area is limited to the target area. In order to improve
the ASR of attack examples, a new loss function is designed to reduce the attention of
objects in the target area while increasing the attention of non-target area.

In summary, the contributions of this paper are threefold.

• To the best of our knowledge, we are the first to design a multi-target categories
patch-generation model for aerial detection, which can generate multiple patches at
once. Each patch only attacks its corresponding category. Multi-patch training can
reduce the detection bias for target categories without patches;

• We designed a new loss function that combined category loss and model attention to
reduce attention regions while improving non-attention regions, and the united attack
can achieve a higher attack success rate;

• In order to achieve the evaluationofmulti-target adversarial patches,wehavedesigned
newmetrics to measure their attack effectiveness and impact on the detection of other
categories of targets.
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Fig. 1. Impact of universal patch on detection of surrounding objects. In DOTA, the plane with
patch is incorrectly detected as a storage-tank, but the large vehiclewithout patch is also incorrectly
detected as a ship. So the same in Nwpuvhr-10 dataset.

2 Related Work

2.1 Object Detection

Object detection is a prominent research focus in various computer vision tasks. The
objective is to extract regions of interest from a given image and annotate the corre-
sponding categories and positions. Currently, object detection based on DNN [15, 16]
has superseded traditional methods that require manual feature extraction and classifi-
cation with superior detection performance. Based on the existence of candidate boxes,
CNN based object detection is divided into two-stage and single-stage detection. The
two-stage detection network, such as Faster R-CNN [17], divides the detection of objects
into two stages. Firstly, the position of the object is detected, and a region proposal net-
work (RPN) is used to extract candidate boxes from images, followed by classification.
A single-stage network does not require RPN, but directly completes classification and
localization in one go. YOLO [18] is a typical representative of single stage, which is a
grid-based object detection algorithm.

Due to the widespread adoption of Transformer [19] in the domain of natural lan-
guage processing (NLP), it has also garnered significant attention and investigation in
computer vision. In 2020, Carion et al. introduced a comprehensive object detection
DETR [20] by integrating CNN with Transformer. Then the Deformable DETR [21]
that leveraged adaptable CNN architectures was proposed in the subsequent year.

2.2 Adversarial Attack Against Object Detection

DNN-based object detection inherits the merits of neural networks, but it is susceptible
to adversarial attacks, thereby engendering certain security risks in practical scenarios.
Adversarial examples on object detectors involve adding specific perturbations to the
clean image x to obtain the perturbed image x’, with the aim of deceiving the object
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detector into generating random or erroneous results with targets. Based on the extent
of alterations deployed to the image pixels, adversarial attacks can be categorized into
global perturbation attacks and local perturbation attacks.

Global Perturbation Attacks. Global perturbation attack entails crafting adversarial
examples by manipulating the pixels of the entire image. The added perturbations is not
fixed to a single area, but is dispersed across the image. Lu et al. [22] first proposed
adding noise to the “stop” sign to mislead detectors. The iterative method TOG [23]
can attack both two-stage and single-stage object detectors simultaneously by reversing
the training process, fixing network parameters, modifying the input image during each
backpropagation, and generating adversarial examples through iteration.

Local PerturbationAttacks. Unlike global perturbation attacks requiringmodification
of all pixels, local perturbation attacks only add perturbations to a local specific area of
the original image, thereby enabling the perturbations to impact the detection of entire
image. The BPatch method [24] targets the local perturbation of two-stage detectors by
adding perturbation blocks on the background outside the image target to attack the target
detector. A visible adversarial example generation method based on YOLO network was
designed by Thys et al. [12]. Their adversarial examples can make YOLO based detector
unable to detect the presence of people.

Adversarial Attack Against Aerial Detection. Currently, adversarial attacks against
aerial detection have attracted increasing attention and research. Adhikari et al. [25]
conducted adversarial attacks on aircraft and discussed the impact of patches varying in
size. Du et al. [26] studied adversarial attacks against remote sensing images in physical
domain, optimized adversarial patches learning from Thys et al. [12], and developed
a new patch method to generate three slender patches placed around the objects. Lian
et al. [27] proposed a physical attack framework based on adaptive patches (AP-PA) and
established a comprehensive and rigorous benchmark to evaluate the attack efficiency
of adversarial patches.

Most of the current adversarial attackmethods generate universal patches [14, 28–31]
to attack all categories of targets, but we find that these methods do not have high attack
success rate on every category. Therefore, patches with target categories specificity are
needed to be effective only for the category they attack.

2.3 Attention Patterns in Computer Vision Tasks

In order to explain how deep neural networks predict the categories and positions of
objects in images, and tomake people intuitively feel where the network’s focus is, David
et al. first studied network visualization and proposed ZFnet [32] by improving AlexNet.
Although different detection models have different backbones, when inferencing, the
model usually focuses more on the target object regions rather than other irrelevant
regions. Zhou et al. proposed CAM [33] tomake neural networks visible, but it mandates
the retraining of the model to obtain the weights obtained after global average pooling.
To address the issues, Selvaraju et al. proposed Grad CAM [34], which used gradients
in feature maps to calculate weights without retraining.
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3 Methodology

In this paper, we proposed a novel multi-target distraction attack, which aims to fool
the detector by generating different adversarial patches for different categories of tar-
gets at once. In this section, we will formulate the problem first, then introduce the
MTDAframework. Finally, the design ofmulti-target patch applicationmodule, attention
dispersion module and loss function will be introduced in detail.

3.1 Overview of Multi-target Problem

The purpose of multi-target adversarial attack is to induce targets with adversarial patch
ignored or incorrectly detected, while targets without patches correctly detected by
remote sensing detection model. Technically, we first initialize n random patches p0i ∈{
p01, p

0
2, . . . , p

0
n

}
, and p01 is only for targets such as aircraft, p02 is only for targets of

ships, etc. The number of patches n depends on the specific number of categories of
the dataset. Given a clean aerial image x, we minimize the loss function L

(
x∗
i , x

∗) to
optimize adversarial patches p∗

i , which can be represented as:

arg min
p∗
i

L
(
x∗
i , x

∗) (1)

where adversarial examples x∗
i and x

∗ will be specified in Sect. 3.3. Comparedwith tradi-
tionalmainstream attackmethods, ourmethod deeply studies themulti-target adversarial
attack based on model attention according to the target characteristics of remote sensing
images. In Sects. 3.2, 3.3 and 3.4, we will explain in detail how to train multi-target
adversarial patches with strong adversarial attack capabilities.

3.2 Framework of MTDA

In order to generate highly robust adversarial patches with category specificity, we pro-
posed amulti-target attention dispersion adversarial attack framework, as shown inFig. 2.
The specific attack steps are as follows:

Step1: We first randomly initialize multiple patches, and generate multiple masks
following a sequence of angle and scale adaptive transformations. Then, we apply the
adversarial patches to the clean image x, and use the multi-patch application module
(Sect. 3.3) to correspond each patch to each category in the clean image one by one,
forming two types of patches: multiple single target category-patch 1v1 adversarial
examples and a multi-patch united adversarial example.

Step2: Next, adversarial examples will be sent to aerial detectors. Then, we extract
category prediction probability from the detector as part of the class loss Lcls (Sect. 3.3),
and minimize the Lcls to optimize adversarial patches.

Step3: In order to further enhance the attack intensity, we jointly attack the attention
module of the model to extract the attention map and calculate the loss function LCAM
(Sect. 3.4) to distract the attention of the object detector by reducing the attention of the
target area and increasing the attention of non-target areas.



168 P. Wang et al.

Fig. 2. Framework diagram of adversarial attacks with dispersed attention from multiple targets

3.3 Multi-target Patch Application

In order to make our adversarial patches more robust, we first perform various transfor-
mations PT(·) on each patch before optimizing the adversarial patch, including random
rotation and scaling, so that each transformed patch can adapt to the target object in the
image.Then, through an affine transformationmatrix θ(·),we generate the corresponding
maskMp∗ and position category sequence number Sid for each patch.

Mp∗
i
, Sid = PT

(
p∗
i , y

) = θ
(
p∗
i

) � θ(y) (2)

where y is the label of each clean image, and n patches form a set of n masks M =
{Mp∗

i
|i ∈ N}.
Next, in order to ensure that the masks of each patch correspond one-to-one with

the target objects of each category, we input the transformed patch, mask, and position
category sequence numbers alongwith the clean image into the patch applicationmodule
PA(·). The adversarial examples obtained are as follows:

x∗ = PA
(
x, p∗

i ,M , Sid
) =

(
1 − Mp∗

i

)
� x + Mp∗

i
� PT

(
p∗
i

)
(3)

We divide the generated adversarial examples into two types based on their location
category sequence numbers Sid :

Type I applies corresponding patches only to one category of target objects in clean
images, resulting in a set of adversarial examples:

x∗
i = PA

(
x, p∗

i ,Mp∗
i
, Sid

)
(4)

Type II applies different patches to target objects of all categories in a clean image
to obtain one adversarial example:

x∗ = PA
(
x, p∗

i ,M , Sid
)

(5)

In order to ensure both the aggressiveness and category specificity of the adversarial
patch, we feed both types of adversarial examples into the detection model. We take the
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category probability of the model’s output result as the multi-target class loss, which is
represented as follows:

Lclsi = 1

s

s∑

j=1

Ci,j
(
x∗
i , yi

)
(6)

Lcls =
n∑

i=1

Lclsi + 1

S

S∑

j=1

Cj
(
x∗) (7)

where Ci,j(·) is the category confidence of class i target j, yi is the label corresponding to
the patch, s is the number of target objects corresponding to each category, S is the number
of all targets in an image, s ∈ S. For Type I adversarial examples, we only reduce the
probability of the corresponding category of the patch, without paying attention to other
categories to ensure category specificity of the adversarial patch. We take the average
probability of the same category to obtain Lclsi . For Type II adversarial examples, we
reduce the probability of all categories involved in the image, sum the two, and obtain
the multi-objective category loss Lcls to ensure the patch’s robustness.

3.4 Attention Module

With the popularity of interpretable models, more and more researchers are turning their
attention to attacking models. However, in reality, the contextual information of remote
sensing images is also an important factor affecting the classification of target objects
by detection models. Therefore, we consider attacking the attention of the target area
while dispersing the model’s attention outside the target area.

In this article, we use Grad-CAM to extract the attention of the model, and input the
adversarial example x∗ generated in Sect. 3.3 into the attention map generatorGCAM (x∗)
of the target network to extract the model attention map AM :

AM = GCAM
(
x∗) (8)

Based on the attention attack algorithm in DAS [35], we calculate the attention loss
function LCAM to reduce the model’s attention to the center of the target object, after
obtaining the attention map. The attention loss function is as follows:

LCAM = ReLU (AM )

Sbbox − Smsk
(9)

where, ReLU (AM ) is the total pixel value of the extracted model attention map that is
greater than 0 after passing through the ReLU activation function, Sbbox is the area size
of the detection box, and Smsk is the area size of the patch area. Since our patches are
all applied to the center area of the target, the denominator in the formula is the target
area excluding the patch. By minimizing LCAM , the adversarial patches are optimized to
minimize the total pixel value of the AM salient region, while increasing the attention
of non-patched regions to distract the aerial detection model from the target center.
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3.5 Total Loss Function

Based on the aforementioned modules, we will elucidate our total objective function.
In order to make the patterns and color shifts of adversarial patches p∗

i smoother, we
use the common loss Ltv (total variational loss [36]):

Ltv =
∑

i,j

√(
pxi,j − pxi+1,j

)2 + (
pxi,j − pxi,j+1

)2 (10)

where, pxi,j is the pixel value at position (i, j) of each p∗
i .

In summary, we define the total loss as:

L = Lcls + LCAM + αLtv (11)

where, α is the hyperparameter. We optimize p∗
i by Adam [37] optimization algorithm.

Our goal is to update the pixels of p∗
i through gradient backpropagation, so that all the

weights of the aerial detector will be frozen during the patch optimization.
The specific adversarial example generation algorithm is shown in Algorithm 1.

4 Experiments

In this section, we conducted comprehensive experiments to test the attack effectiveness
of the proposed MTDA algorithm. We first described the experimental setup in detail
in Sect. 4.1, and then conducted experiments on multi-patch joint attention attacks and
ablation in Sects. 4.2 and 4.3, respectively.
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4.1 Settings

Dataset. We use DOTA [38] as the dataset for our experiment. Due to limitations in
experimental equipment performance, we selected 600 images for training and 200
images for testing. Moreover, with the intent of verifying the universality of the experi-
ment onmultiple datasets, the test set of this experiment also includes theNWPUVHR-10
[39] besidesDOTA,which is also a commonly used dataset in the field of aerial detection.
The detailed information of the two datasets is shown in Table 1.

Table 1. Detailed Description of DOTA and NWPUVHR-10 Datasets

Datasets Categories Images Instances Image width

DOTA 15 2806 118282 800 ~ 4000

NWPUVHR-10 10 800 3651 ~ 1000

Target Models. Our experiment selected the first stage object detection model
(YOLOv2 [40], YOLOv3 [41]), the second stage object detection model (Faster R-
CNN [42]), and the transformer-based detector (Swin-t [43]) as the target models. These
detection models were all aerial detection models trained on the DOTA dataset. We
conducted multi-patch training on YOLOv3 and tested them on multiple detectors to
validate the universality of the proposed attack methods.

Metrics. The effectiveness of adversarial patches is evaluated using two metrics: attack
success rate (ASR) and other categories detection accuracy (OCAP). The formula for
calculating the success rate of attacks on target objects with patches is as follows:

ASR =
∑

i∈I

N i
MT + Ni

WT

N i
AT

where, I is the artificially selected categories in all categories C of DOTA, I ∈ C. Ni
MT

represents the number of missed targets of category i, that is, how many targets were
overlooked by the detector. Ni

WT represents the number of wrong-detected targets of
category i, that is, how many targets were misclassified by the detector. Ni

AT represents
the number of all targets of category i.

For target objects without patches, the calculation formula for OCAP (detection
accuracy for other categories) is as follows:

OCAP =
∑

j∈J

N j
CT

N j
AT

where, J represents several categories in category C of the DOTA dataset that have not
been selected for applying patch, i.e. J ∈ {C|I ∩ J = ∅}. Nj

CT is the number of correctly

detected objects in category j, and Nj
AT is the number of all targets in category j.



172 P. Wang et al.

In this experiment, the larger the ASR, the better the attack effect. And in the case
of a larger ASR, the higher the OCAP, indicating that our patch has a smaller impact on
the detection of other categories. (OCAP is not necessarily the bigger the better.)

Experimental Environments. We refer to the settings in [12] and set α in formula
(11) to 2.5. In this article, the experiment was conducted using the NVIDIA GeForce
RTX3090 graphics processing unit on PyTorch.

4.2 Multi-patch Distraction Experiment

For the convenience of demonstrating the experimental results, we select small vehicle,
large vehicle, and aircraft in the DOTA dataset as multi-category attack targets, and
generated three adversarial patches simultaneously for each of these three categories as
shown in the Fig. 3. Then we test each patch separately on YOLOv3, and the detection
results obtained are shown in Table 2.

Fig. 3. Multi-target training patches

Table 2. ASR of Each Patch on the DATA Dataset

Patch ASR(↑) OCAP

patch_0 0.3120 0.7815

patch_1 0.9139 0.3369

patch_2 0.9655 0.3571

patch_all 0.9928 0.3730

From Table 2, except for the first patch(patch_0), the ASR of each patch reached
over 90%, and theASRof three patches simultaneously(patch_all) even reached 99.28%.
Sincewe only experiment on aircrafts, small vehicles and large vehicles, andwe hope not
affecting the detection of other categories, our patch needs to ensure the high ASR, while
ensuring that the targets of other categories can be accurately recognized. Therefore, the
OCAP is not necessarily the higher the better or the lower the better.

The reason for the low ASR of the first patch may be the size of small vehicles
is smaller than that of large vehicles and aircrafts, causing patch_0 to lose more high-
frequency information in pixels when shrinking. Since the final loss function is a fusion
ofmultiple objective functions, the Adam optimizer will have a bias towards an objective
function that is easy to detect, so the pixel optimization for the first patch is not as good
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as the last two. But the OCAP of patch_0 is the highest, which also reflects the high
detection accuracy of the yolov3 model we initially trained. However, in the case where
the ASR of the latter two patches is extremely good, there is a certain decrease in the
AP of other categories. It indicates that the patch we designed may still have a certain
impact on the detection of other categories. However, comparing patch_1 and patch_2,
patch_2 has a higher ASR than patch_1, and its OCAP is also higher than patch_1. This
indicates that patch_2 has a reduced impact on the detection of targets without patches
of other categories. Qualitative detection results are shown in Fig. 4.

Fig. 4. Results of patch detection for each patch. The first column shows only one patch applied,
the second column shows only two patches applied, and the third column shows the detection
results of all three patches applied to the corresponding targets.

The targets with the patches we trained are not detected or misclassified by the
detector, while the other targets without patches can be correctly detected. For example,
in the last row of the two-patch column, when patching aircrafts and large vehicles, they
are misclassified as playgrounds and bridges respectively, but the helicopter nearby can
still be detected correctly.

We compared our method with randomly generated patches, the baseline method
[26], and BA-AP [27], all of which were trained on YOLOv3 and tested on different
detection models in Table 3 and Table 4.

From Table 3 and Table 4, our attack method outperforms other methods in terms
of ASR and AP. Our patch trained on YOLOv3 has an over 96% ASR on CNN based
detection models. Comparing the OCAP of Yolov2, Yolov3, and Faster RCNN, our
method is effective in enhancing the detection precision of other categories without
patches compared to the baseline method. This also indicates that our proposed method
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Table 3. ASR and OCAP of different methods on different detection models

Method Yolov2 Yolov3 Faster-RCNN Swin-t

ASR(↑) OCAP ASR(↑) OCAP ASR(↑) OCAP ASR(↑) OCAP

Random 0.2667 0.9419 0.1726 0.9682 0.1993 0.8142 0.0831 0.8905

Baseline [26] 0.9922 0.0753 0.7389 0.2924 0.5028 0.3023 0.3260 0.8322

Ours 0.9967 0.1183 0.9928 0.3730 0.9671 0.3329 0.4008 0.7161

Table 4. AP of different methods on different detection models

Method Yolov2 Yolov3 Faster-RCNN Swin-t

AP(↓) AP(↓) AP(↓) AP(↓)
Random 0.8950 0.8273 0.9033 0.8901

Baseline [26] 0.3247 0.5023 0.6550 0.8526

BA-AP [27] 0.0633 0.5924 0.3535 0.8278

Ours 0.0032 0.3226 0.3367 0.8209

can reduce the impact of patched category targets on the detection accuracy of other
categories without patches to some extent.

Next, in order to validate the effectiveness of the multi-target patches we trained on
other datasets, we conducted tests on the NWPUVHR-10. Since NWPUVHR-10 does
not have large and small vehicles categories in DOTA, we selected aircraft, ships and
storage tanks that both had in common as attack targets. Three patches were retrained.
Meanwhile, patches for every 100 epochs (0, 100, 200, 300, 400, 500, 600) were selected
from the optimization process for testing.

Table 5. Comparison of attack effects of multiple patches on different datasets

Epoch DOTA NWPUVHR-10

ASR(↑) OCAP ASR(↑) OCAP

0 0 0.7315 0 0.4137

100 0.5561 0.6648 0.5846 0.4855

200 0.7772 0.6557 0.6183 0.4482

300 0.9054 0.3677 0.8623 0.4137

400 0.9079 0.3659 0.8680 0.4137

500 0.9095 0.3659 0.8680 0.4137

600 0.9095 0.3659 0.8680 0.4137
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As shown in Table 5, our patch converges quickly during the optimization process,
with a highASRafter 400–500 rounds of training. This ismainly because part of our class
loss function is to use the average class probability of all detected objects, rather than
just using the maximum objective score. This not only ensures our attack performance,
but also improves the optimization efficiency of adversarial patches. At the same time,
our attack method can still maintain a high ASR on other datasets.

On the basis of 94.40% mAP of yolov3 we used, OCAP usually decreases with
higher attack performance. But on NWPUVHR-10 dataset, OCAP first increases and
then decreases, and finally maintains a stable trend (Fig. 5). The initial low OCAP is due
to the fact that the NWPUVHR-10 lacks data on multiple categories of targets in one
image, resulting in insufficient data volume. Secondly, the most targets in NWPUVHR-
10 are smaller and more blurry than that in DOTA, making detection difficult. But with
the continuous optimization of the patch, OCAP rises, indicating that our training patch
initially had a trend of improving the detection accuracy of other categories without
patches. However, as patch optimization continues and attack performance continues to
improve, the impact of patches on detecting other categories still exists. Nonetheless,
since the final result is close to the initial value, it can be concluded that the impact of
our patch on other categories is not very large.

Fig. 5. ASR and OCAP of multiple patches on different datasets

4.3 Ablation Study

We also carried out ablation experiments on each loss term in the total loss function on
the YOLOv3 detection model to illustrate the efficacy of MTDA. In the experiment, we
used the class loss proposed in the baseline method [26], our class loss Lcls, our attention
loss LCAM , and the combination of them as the loss function. We trained one patch at a
time and conducted comparative experiments.

As shown in the Table 6, our class loss function greatly improves the attack perfor-
mance, compared to the class loss function in baseline methods. And the attention loss
can also improve the ASR of patches. Compared to combining LCAM with the Lcls of
the baseline method, combining our class loss with LCAM has a higher ASR.

Some attention map examples after patching of YOLOv3 are shown in Fig. 6. After
applying patches, the detector’s attention is dispersed, making it more focused on the
surroundings of the object.
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Table 6. Loss function ablation experiment

Loss Function ASR(↑)
Lcls in Baseline 0.3389

Lcls 0.8992

LCAM 0.4047

Lclsin Baseline + LCAM 0.3714

Lcls + LCAM (ours) 0.9655

Fig. 6. Attention Map examples of YOLOv3

5 Conclusion

In this article,weproposed aMulti TargetDistractionAttack (MTDA)method,which can
generate multiple different patches simultaneously for different categories to address the
issue of poor effectiveness of universal patches generated by traditional methods against
certain category targets. By applying the patches to the corresponding category targets,
we limit the attack area to the target area. Our method generates two types of adversarial
patches to obtain the final class loss. Andwe incorporate the attentionmodule and design
an attention loss that disperses the attention of the detector from the center area of the
target object to other irrelevant areas. Our experiments show that MTDA achieves an
ASR of 99.28% on YOLOv3, and the multi-target design to some extent reduces the
impact of patched objects on the detection of other unpatched objects. Ourmethod solves
the problem that the attack effect of the universal patch on some target objects is poor,
and provides a more efficient method for targeted attack.

However, our method still has some shortcomings, and the target specificity of multi-
target patches can be further strengthened. Our future research efforts involve verifying
the generalizability of our method on more datasets and improving the concealment of
adversarial patches and the attack efficiency against more powerful object detectors such
as YOLOv5 and Swin Transformer.
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Mask-TS Net: Mask Temperature Scaling
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Abstract. Lots of popular calibration methods in medical images focus
on classification, but there are few comparable studies on semantic
segmentation. In polyp segmentation of medical images, we find the
most diseased area only occupies a small portion of the entire image,
resulting in previous models not well-calibrated for lesion regions but
well-calibrated for background, despite their overall seemingly better
Expected Calibration Error (ECE) scores. Therefore, we proposed the
four-branches calibration network with Mask-Loss and Mask-TS strate-
gies to focus more on the scaling of logits within potential lesion regions,
which serves to mitigate the influence of background interference. In the
experiments, we compare the existing calibration methods with the pro-
posed Mask Temperature Scaling (Mask-TS). The results indicate that
the proposed calibration network outperforms other methods both qual-
itatively and quantitatively.

Keywords: Uncertainty estimation · Probability calibration · Binary
segmentation

1 Introduction

With the rapid development of deep learning technology, neural networks are
increasingly widely used in the field of medical image processing. Despite the
promise of deep learning in medical imaging, concerns over reliability and trust
impede their implementation in real-world clinical contexts, where any misjudg-
ment will bring great risks to the doctor’s diagnostic process and the patient’s
treatment. Ideal semantic segmentation networks should not merely excel in pre-
cision, but they should also possess the capability to indicate when and where
their predictions may be unreliable or prone to error. If the segmentation net-
work shows high uncertainty of its predictions, a medical expert is needed to
double-check such doubtful regions. In order to achieve this goal, uncertainty
estimation is essential.
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However, the semantic segmentation model often outputs overconfident prob-
abilities because of overfitting [1,8,10], which may mislead the final decision
of doctors. To solve this, lots of calibration techniques [7,30] are proposed
including regularization methods like data augmentation [19,25] and uncer-
tainty estimation approaches like ensemble of neural networks [12,14]. But, these
approaches can potentially compromise the segmentation model’s accuracy. So,
our focus lies in post-hoc calibration methodologies, which build an independent
post-processing model separated from the prediction model. This approach can
improve probabilistic calibration while keeping the model’s original prediction
unchanged.

What is more, the majority of existing post-hoc probability calibration meth-
ods are originally designed for image classification and typically yield a solitary
class probability per entire image [8,20,28] while for segmentation pixel-wised
probabilities of each pixel are called for. So these methods cannot be directly
applied to medical image segmentation. Although there are some methods for
semantic segmentation, the difference between background and target in the
calibration process is ignored.

Our goal is to develop a post-hoc calibration method for two-label medical
image semantic segmentation, which pays attention to the distinction between
background and target in calibration process and retains the model’s segmenta-
tion accuracy. Then, an intuitive uncertainty map with highly practical applica-
tion value for clinical contexts is given.

Here are our specific contributions:

– The prediction-based mask for temperature scaling is proposed to finely select
the region of interest, which enables precise calibration of the probabilities
associated with the lesion area.

– For segmentation task, pixel-wised probabilities of each pixel are produced
and spatial relations of pixels are concerned via our calibration networks.

– The probability calibration of two-label semantic segmentation problem is
realized without compromising the original prediction accuracy.

2 Related Work

In recent years, many calibration methods have been proposed, especially in post-
hoc calibration (Table 1). The most significant feature of the post-calibration
method is that it makes the output probability closer to the true probability
distribution without changing the prediction results of the original network,
which enhances the effectiveness of the model.

Among them, Platt scaling (PS) [20] uses logistic regression for probability
calibration and combines Support Vector Machine with Sigmoid to get a better
regularized maximum likelihood estimation. However, because it contains a series
of post-correction, it may fail when processing some independent and identically
distributed (i.i.d) data for data-generating distributions [9].

As its extension, one of the most basic but effective methods in the field of
classification is temperature scaling (TS) [8]. It divides the logits by a constant
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T so that the output of the model is calibrated. However, it only uses one param-
eter T , which still has great limitations and it is not flexible enough for spatial
distributions of probability.

Another extension of TS is ensemble temperature scaling (ETS) [28]. It
improves calibration effect by considering different calibration methods into
account. It ensembles uncalibrated vector, a maximum entropy logits vector
and the temperature-scaled vector. As a consequence, it inevitably results in an
increase in the cost of calculations.

Although PS, TS and ETS perform well in classification tasks, for semantic
segmentation tasks, the positional relationship between pixels needs to be taken
into account and probability calibration for the each pixels is needed.

For the segmentation problem, local temperature scaling (LTS) [5] takes the
spatial information into account and considers that the parameter T of each
pixel varies based on the relative positions. But it ignores the difference between
background and target. As a result, it is not well-calibrated for lesion regions
but well-calibrated for background, despite their seemingly better ECE scores.

Table 1. Comparison of Different Calibration Methods.

Methods Mainly Application Features Disadvantages

PS classification combines Support
Vector Machine and
Sigmoid

fails to process i.i.d data
for data-generating
distributions and scaling
parameter is globally
fixed

TS classification divides the logits by a
constant T , simplicity
and effective

globally fixed parameter
and not flexible for
different distributions

ETS classification ensemble uncalibrated,
maximum entropy and
scaled vectors

globally fixed parameter
and increases the cost of
calculation

LTS segmentation takes the spatial
information into account

not well-calibrated for
small target area

Improved TS segmentation combines Shape prior
module and Aleatoric-
by-augmentation
module

adapted high calculation
consuming module

Improved TS [18], is proposed to reduce the calibration error when con-
fronted with out-of-domain images. The model combines Shape prior module and
Aleatoric-by-augmentation module. It leverages the pixel susceptibility against
perturbations at the local level and the shape prior information at the global
level. The shape prior and shape residual highlight potentially unreliable predic-
tions. But the Shape prior module increases calculation costs.



Mask-TS Uncertainty Calibration for Segmentation 183

Factually, by leveraging our Mask-Loss and Mask-TS strategies, these meth-
ods can effectively enhance their focus on regions of interest and refine the cali-
bration of associated probabilities, thereby maximizing their overall effectiveness.

Fig. 1. Structure of Mask-TS Network.

3 Calibration Network

The existing probabilistic calibration methods, such as Platt scaling, TS, and
ETS primarily focus on classification tasks rather than semantic segmentation
tasks. Considering the spatial relations of pixels in an image, image segmentation
should not be simply treated as classification. We therefore design a Mask-TS
calibration network that performs different pre-temperature scaling on each pixel
via convolutional networks. And then, a mask based on prediction is applied to
the pre-temperature scaled parameters in order to pay more attention to the
potential diseased area. Here are the details:

3.1 Four Branches Calibration Network

The predictive confidence of the two labels q̂i is calculated by Eq. (1) because our
task is two-label segmentation. The original probability p̂i is the original Sigmoid
output. The mask mi based on prediction, namely the original prediction ŷi, is
similarly obtained like Eq. (2) where q̂ci is the calibrated confidence and ŷci is the
calibrated prediction.

q̂i =
{

p̂i , if p̂i ≥ 0.5
1 − p̂i , otherwise (1)

ŷci =
{
1 , if q̂ci ≥ 0.5
0 , otherwise (2)

As shown in Fig. 1, the original image xi, model output logits zi, probabil-
ity map p̂i and uncertainty map Ĥi are separately input into network block B
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composed of convolution and residual neural networks, which means taking the
spatial relationship between pixels into consideration. Then information from
the four branches are adaptively weighted and combined under the action of a
channel attention layer.

Our work is inspired by temperature scaling (TS) [8] for classification prob-
ability calibration, and improved TS [18]. However, the key component referred
to as the shape prior network in improved TS, which requires higher training
costs for a denoising autoencoder, is not utilized in our work. To avoid this, we
creatively input Ĥi and p̂i into proposed calibration network. We empirically
found that our method yields comparable results to the improved TS. These
two branches respectively play a role in enhancing the edge shape and treating
the predicted truth value more carefully while xi contains rich original informa-
tion and zi possesses segmentation-related features because it originates from a
segmentation network.

We train the post-hoc calibration network using the binary cross entropy loss
Eq. (3) for two-label image segmentation. Uncertainty map is used to quantify
the uncertainty of predictive segmentation using the aleatoric uncertainty [11,13]
for each pixel. For two-label segmentation task, this is measured by the entropy
of the confidence Eq. (4).

Lc =
−1

H · W

H,W∑

u,v=1,1

{
yi(u, v) · log[σ(

zi(u, v)

Ti(u, v)
)] + [1 − yi(u, v)] · log[1 − σ(

zi(u, v)

Ti(u, v)
)]

}

(3)

Ĥi = H(q̂i) = −[q̂ilog2(q̂i) + (1 − q̂i)log2(1 − q̂i)] (4)

Fig. 2. Workflow of the proposed Mask-Loss method.
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3.2 Mask-Loss

In practice, doctors focus more on positive predictions that may indicate poten-
tially diseased area. Nevertheless, we find that most diseased area occupies only
a small portion of the entire image, resulting the in less important predictions of
background dominating the calculation of ECE. It also leads to previous models
not well-calibrated for the actual lesion regions, despite their better ECE scores.
This is detailed in Sect. 4.2.

So Mask-Loss strategy is proposed during the training stage. Specifically,
as shown in Eqs. (5) (6) and (7), when computing BCE-Loss, we first perform
a logical OR operation on the positive labels and the positive predictions to
obtain the mask Mi. Then the masked and calibrated logits z̄ci and the masked
label ȳi, both processed through Mi, are used to calculate BCE-Loss Lc using
Eq. (3). Figure 2 also shows the workflow of Mask-Loss and it should be noted
that the light blue area, seen as background, in z̄ci and ȳi are excluded from the
loss calculation. Thus, the background interference is weakened while positive
predictions are more focused and concerned.

Mi = (yi == 1)or(ŷi == 1) (5)

z̄ci = zci � Mi = (
zi
Ti

) � Mi (6)

ȳi = yi � Mi (7)

Fig. 3. Architecture for Mask-TS.
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3.3 Mask-TS

To avoid the lack of constraints on the background pixels from causing an
increase of the temperature parameters and pay attention to the calibration
of potential lesion areas, we proposed the prediction-based Mask-TS method.

Through Mask-TS, for predictions classified as background, the correspond-
ing temperature parameter Ti is set as the global temperature parameter T0 pro-
duced by vanilla TS, while for predictions classified as lesion areas, Ti remains
as the pre-output temperature parameter T ′

i of the calibration network. Equa-
tion (8) shows how to obtain a masked temperature map Ti with the mathe-
matical expression. Figure 3 shows the architecture for Mask-TS. It illustrates
that T ′

i may miscalibrate the background areas due to the lack of constraints
caused by Mask-Loss and the masked Ti focus more on potential lesion areas
while eliminating the background miscalibration.

Through practice, it is found that the final prediction of the model remains
unchanged even zi is scaled in different forms. The reason is that when we
use Eqs. (1) and (2), the area where p̂i is greater than 0.5 still maintain its
original confidence value above 0.5 even after different scaling operations on zi.
Thus, the prediction results are unchanged, creating the conditions for confidence
calibration without changing the original prediction results.

Ti =
{
T ′
i , if ŷi = 1

T0 , otherwise (8)

Table 2. Dataset allocation.

Dataset Image Num Segmentation Net Calibration Net

CVC-ClinicDB [2] 550 Train –
Kvasir [21] 900 Train –
CVC-ColonDB [24] 380 – Train
CVC-300 [26] 60 – Validate
ETIS-LaribPolypDB [22] 196 – Test
Piccolo [23] 333 – Test

4 Experiment

We show the calibration performance of proposed method cooperating with four
different segmentation models on two different datasets and also show the uncer-
tainty maps that have highly practical application value. We compare our Mask-
TS with baseline methods such as TS, ETS and LTS and also conduct the abla-
tion studies based on four branches of our calibration network. As shown in
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Table 2, for calibration part, CVC-ColonDB [24] is the training dataset, CVC-
300 [26] is the validation dataset and ETIS-LaribPolypDB [22] along with Piccolo
[23] are the test datasets. These datasets are public except for Piccolo that was
provided by the Basque Biobank www.biobancovasco.org.

Fig. 4. Reliability diagrams and confidence histograms of comparative experiment on
ETIS-LaribPolypDB. (Color figure online)

4.1 Evaluation Metrics

To measure the performance of probability calibration, we use the following
metrics. Qualitatively, uncertainty maps compared with error maps are used
to visually evaluate the calibration results. Quantitatively, the commonly used
statistic metrics are chosen. They are reliability diagram [4,16], expected calibra-
tion error [15] (ECE), maximum calibration error [15] (MCE), static calibration
error [17] (SCE) and adaptive calibration error [17] (ACE) are used. These met-
rics, originally devised for classification, are adjusted for semantic segmentation
by treating each pixel’s confidence as a separate sample. Computations are per-
formed across 10 evenly-spaced bins.

When calculating quantitative metrics, local evaluation regions are used for
testing. In practical applications, this helps to exclude the influence of less impor-
tant backgrounds and focus more on the calibration performance of potential
lesion areas. In practice, for each prediction map to be tested, the center point
is randomly selected in the height and width range of (70, 352-70), and then 10
small patches (72 × 72) are taken based on the location of the center point. We
select ten small patches from each image in each batch and then obtain these
mentioned metrics for the whole batch. Then, the mean and standard deviation
of all batches of indicators are obtained, so that these indicators can statistically
reflect the calibration effects.

www.biobancovasco.org
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4.2 Evaluation and Results

As shown in Fig. 4, the top row shows our calibration method achieves the min-
imal misalignment (red gap) between confidence and accuracy. The middle and
bottom rows of the confidence histogram illustrate that the proposed method
better corrects overconfident predictions compared with the other results.

Note that there is a common problem of overconfident miscalibration in image
segmentation [1,10]. In our task, each pixel is given a probability by Eq. (1).
Because of this either-or mechanism where the confidences of positive and nega-
tive samples sum to one, overconfident miscalibration is greatly amplified. This
leads to a very high confidence (close to 0.99 in our task) for non-boundary pixels
with a large proportion, which has a large impact on calibration effect. This can
also explain why there are many samples between the confidence interval [0.9,1)
in the histograms.

Table 3. Quantitative metrics results for 4 different calibration methods cooperating
with 4 segmentation models on ETIS-LaribPolypDB. Results are reported in mean
(std) format

DATASETS ETIS-LaribPolypDB

Segmentation model LNPNet [27] PraNet [6] MSNet [29] PolypPVT [3]
ECE%↓ UC 13.98(21.59) 13.45(21.52) 14.30(21.81) 14.32(21.83)

TS 13.98(20.16) 14.00(19.76) 13.86(19.33) 14.43(20.45)
ETS 13.85(21.05) 13.5(20.70) 13.90(20.54) 14.21(21.23)
LTS 13.59(20.20) 13.47(19.99) 13.30(18.82) 14.09(20.73)
OURS 2.38(5.10) 3.15(7.07) 3.69(7.37) 2.27(5.36)

MCE%↓ UC 20.68(24.73) 17.88(23.47) 20.41(24.77) 20.58(24.67)
TS 19.16(21.71) 19.8(22.80) 21.43(24.09) 20.33(22.80)
ETS 19.55(23.10) 18.18(23.03) 20.62(24.38) 20.12(23.53)
LTS 19.98(22.69) 19.88(23.38) 22.76(25.39) 21.26(23.91)
OURS 12.54(18.80) 10.84(15.54) 12.94(17.09) 11.35(16.04)

SCE%↓ UC 14.12(21.71) 13.83(21.83) 14.94(22.38) 14.63(22.08)
TS 15.18(20.68) 15.10(20.55) 15.60(20.71) 15.66(21.16)
ETS 14.44(21.35) 14.27(21.30) 15.16(21.57) 14.97(21.74)
LTS 14.49(20.67) 14.46(20.76) 14.89(20.16) 15.09(21.39)
OURS 2.81(5.54) 3.75(7.86) 4.46(8.94) 2.94(6.62)

ACE%↓ UC 14.11(21.70) 13.83(21.82) 14.96(22.37) 14.64(22.07)
TS 15.35(20.62) 15.36(20.44) 15.96(20.65) 16.04(21.05)
ETS 14.45(21.33) 14.39(21.24) 15.37(21.54) 15.11(21.70)
LTS 14.65(20.62) 14.64(20.69) 15.11(20.15) 15.28(21.34)
OURS 2.86(5.55) 3.76(7.88) 4.45(8.95) 2.96(6.63)
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Table 4. Quantitative metrics results for 4 different calibration methods cooperating
with 4 segmentation models on Piccolo. Results are reported in mean (std) format

DATASETS Piccolo

Segmentation model LNPNet PraNet MSNet PolypPVT
ECE%↓ UC 20.82(28.80) 26.38(32.37) 21.09(27.97) 28.22(33.12)

TS 20.50(27.28) 26.36(29.98) 19.99(24.33) 27.75(31.67)
ETS 20.05(28.21) 26.10(31.14) 20.31(25.98) 27.80(32.40)
LTS 19.98(27.14) 25.86(30.03) 19.33(23.67) 27.37(31.75)
OURS 8.78(20.00) 5.57(9.50) 12.64(22.96) 5.72(14.21)

MCE%↓ UC 28.18(29.80) 33.3(32.29) 29.36(29.40) 35.36(32.79)
TS 26.92(27.86) 35.29(30.70) 30.26(27.51) 35.11(32.13)
ETS 22.74(28.68) 33.97(31.57) 29.82(28.35) 34.76(32.47)
LTS 27.3(27.85) 35.48(30.24) 32.72(28.89) 36.00(32.06)
OURS 20.00(24.14) 18.8(17.82) 25.45(26.61) 18.21(20.41)

SCE%↓ UC 21.09(28.95) 27.53(32.69) 22.16(28.47) 29.00(33.33)
TS 22.35(27.65) 28.92(30.53) 22.63(25.38) 30.17(31.97)
ETS 21.54(28.50) 28.10(31.63) 22.28(26.81) 29.44(32.74)
LTS 21.44(27.48) 28.13(30.54) 21.62(24.71) 29.42(32.07)
OURS 9.53(20.35) 7.06(11.52) 14.28(23.72) 7.10(15.51)

ACE%↓ UC 21.08(28.94) 27.53(32.68) 22.17(28.46) 29.00(33.11)
TS 22.53(27.56) 29.13(30.37) 22.90(25.30) 30.46(31.79)
ETS 21.59(28.46) 28.20(31.55) 22.41(26.77) 29.55(32.67)
LTS 21.65(27.39) 28.29(30.42) 21.79(24.66) 29.60(31.95)
OURS 9.60(20.33) 7.06(11.56) 14.27(23.75) 7.10(15.52)

Therefore, we find that in the task of two-label image segmentation calibra-
tion, although the previous models such as TS, ETS, and LTS reduce the value
of ECE, they actually only reduce the ECE of the background area and do not
really correct the confidence of the lesion area, nor can they give a calibration
uncertainty map with reference value. This is why Mask-Loss and Mask-TS are
needed so as to pay more attention to the lesion area.

Table 3 and Table 4 show the statistic metrics results for four different cali-
bration methods cooperating with four segmentation models on two never-seen
test datasets, ETIS-LaribPolypDB and Piccolo. It can be seen from the table
that the calibration effect is affected by different segmentation methods. But
compared with other calibration methods, the methods proposed by us all has
better evaluation metrics. It means that our method have better calibration
effect when the segmentation model is given.

As shown in Fig. 5 and Fig. 6, the results with some mispredictions are specifi-
cally selected to test whether the uncertainty map is well calibrated. The compar-
ison between the error and the uncertainty map shows that when the prediction
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Fig. 5. Uncertainty maps of comparative experiment on ETIS-LaribPolypDB.

Fig. 6. Uncertainty maps of comparative experiment on Piccolo.
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results exhibit high uncertainty, the likelihood of the prediction being incorrect
increases. In other words, the uncertainty estimate of the calibration model cor-
relates well with the actual segmentation error, denoting that the uncertainty is
well calibrated.

4.3 Ablation Studies

As mentioned in Sect. 3.1, our Calibration Network primarily consists of four
branches: uncertainty maps from the vanilla TS, probabilities from vanilla TS,
output logits and input image, which are concatenated through an attention
mechanism followed by process of Mask-Loss and Mask-TS. In the ablation
experiments, we ablate some key components: Ablation01 removes Mask-TS,
Ablation02 eliminates Mask-Loss & Mask-TS, and Ablation03 abolishes Mask-
Loss & Mask-TS & probability from the vanilla TS. Subsequently, the calibration

Table 5. Quantitative metrics results for ablation experiment.

Dataset Metrics OURS AB.01 AB.02 AB.03

ETIS-LaribPolypDB ECE↓ 0.15 3.25 0.71 0.66
MCE↓ 3.30 3.84 12.33 11.98
SCE↓ 2.17 7.06 5.45 5.70
ACE↓ 2.35 7.06 5.44 5.73

Piccolo ECE↓ 8.16 8.36 8.43 8.78
MCE↓ 16.80 18.96 19.1 19.99
SCE↓ 9.02 9.08 9.22 9.53
ACE↓ 9.05 9.15 9.31 9.60

Fig. 7. Ablation results of reliability diagram & confidence histogram on ETIS-
LaribPolypDB.
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results are tested based on quantitative and qualitative metrics, as depicted in
Table 5 and Figs. 7, 8 and 9.

In detail, the comparison of Ablation01 with Ablation02 and Ablation03
shows the calibration effect of Mask-Loss on the lesion area, which typically
consists of a smaller proportion of pixels and exhibits lower confidence levels
ranging from 0.5 to 0.9, manifested as a reduction in the red gap. But it causes
misalignment in background where confidence levels are higher, between 0.9 and
1. Our method compared to Ablation01 illustrates the well calibrated effect in
background area via introducing Mask-TS on overall network calibration. In
a word, the calibration network achieves optimal performance when the four
branches work together and the Mask-Loss & Mask-TS strategies are adopted.

Fig. 8. Ablation results of uncertainty map on ETIS-LaribPolypDB.

Fig. 9. Ablation results of uncertainty map on Piccolo.

5 Conclusion

In this work, we propose a better calibration method for binary-label polyp image
segmentation. Further work can be done to improve the accuracy by improving
the segmentation network structure preferably with smaller original miscalibra-
tion, improving the calibration network structure to reduce miscalibration or
using more detailed masks to reduce misalignment.
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Abstract. In single domain generalization, the model is trained on a
single source domain and requires being generalized to multiple unseen
target domains. However, the presence of domain discrepancies poses a
significant threat to this goal. A straightforward solution is to extract
class-specific features that are robust to domain discrepancies. Exist-
ing methods typically learn class-specific features with the assistance of
domain-specific features by enlarging the gap between them. Neverthe-
less, the absence of domain supervision limits the extraction of domain-
specific features, leading to potential misidentification of class-specific
features. To address this issue, we propose Label-expanded Feature Debi-
asing (LeFD), a novel method that learns class-specific features in a more
robust manner. Technically, LeFD introduces domain supervision and
explicitly extracts integrated domain and class features through label
expansion. Subsequently, a rationale alignment module is employed to
eliminate domain information from the integrated domain and class fea-
tures, thereby obtaining class-specific features. Extensive experimental
results on multiple benchmark datasets indicate the superiority of the
proposed LeFD compared to other state-of-the-art methods.

Keywords: Domain supervision · Label expansion · Feature debiasing

1 Introduction

Deep neural networks (DNNs) have shown remarkable performance in a variety of
tasks under the assumption that the training (i.e., source) and test (i.e., target)
domains are drawn from similar or identical distributions [1]. Unfortunately,
this assumption often fails to hold in the real world. When transferred from
the source domain to unseen target domains, the performance of the model
will typically degrade. The main reason originates that domain discrepancies
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undermine the extraction of features [38]. To address this challenge, extensive
studies on domain adaptation (DA) [30,39] and domain generalization (DG)
[13,17,23] have emerged. Despite considerable success, they are constrained by
the requirement for data from target domains or multiple source domains with
different distributions. This paper considers an extreme case of generalization,
where only a single domain is available for training, yet the trained model must
generalize to multiple unseen target domains, which is termed as single domain
generalization (SDG).

Due to the scarcity of diverse source domains in the training stage, most exist-
ing SDG methods [6,7,33] focus on data augmentation. They aim to extend the
data distribution to encompass that of the target domain as closely as possible.
However, the primary challenge encountered by these methods is the uncertainty
regarding whether the augmented data can effectively mitigate the discrepancy
between the source domain and the unseen target domains. By contrast, another
line of methods [29,32,34] strives to disentangle class-specific (semantic) features
that are robust to the domain discrepancy from domain-specific (superficial) fea-
tures. Some of these methods consider class-specific and domain-specific features
unrelated and thus achieve disentanglement by enlarging the gap between the
two features. Other methods assume that the multi-factor, domain-specific fea-
tures can infer the corresponding class labels, so they first use a multi-head
classifier to extract the domain-specific features and then force the orthogonal-
ity between the weights of the multi-head classifier and the weights of a vanilla
classifier to extract class-specific features. The key problem is that the features
extracted through these methods are not guaranteed to be accurate. The absence
of domain supervision limits the extraction of domain-specific features and thus
hinders identifying the class-specific features. To this end, it is crucial to disen-
tangle class-specific features from domain-specific features while ensuring their
plausibility and interpretability.

In this paper, we present a straightforward yet effective method, named
Label-expanded Feature Debiasing (LeFD), to facilitate reliable class-specific
feature disentanglement. The proposed LeFD explicitly extracts integrated
domain and class features under a multi-task paradigm with respect to learning
the joint distribution of class labels and domain labels, and then disentangles
these integrated features to obtain class-specific features. Operating based on
the multi-task learning paradigm, the common constraints of class labels and
domain labels enable the feature extractor to naturally extract abundant features
that contain both domain and class information [22]. Technically, this is achieved
through the construction of domain labels and the expansion of the original class
labels. In particular, LeFD augments the source domain data with simple per-
turbations to obtain a different auxiliary domain. Subsequently, LeFD assigns
domain labels (e.g., domain-0, domain-1) to the source data and augmented
data, respectively, and then constructs joint labels encompassing domains and
classes. Under the supervision of joint labels, a feature extractor is leveraged
to extract integrated domain and class features. Finally, LeFD employs a ratio-
nale alignment module to align the decision-making process of the classifier on
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data from different domains. Concretely, this module is designed to disentangle
class-specific features, which are then fed into the backbone classifier to predict
class labels. In this process, both the class-specific features and the classifier pre-
dictions of the data belonging to the same class are restricted to be consistent
despite the varying domains. Compared with existing feature disentanglement
methods, the incorporation of domain labels in LeFD ensures the reliability of
the extracted domain-specific features. Moreover, label expansion and feature
debiasing enable LeFD to extract more fine-grained and plausible class-specific
features.

We summarize our contributions as follows:

– To alleviate the ambiguity of the extracted domain-specific and class-specific
features, we present a new feature debiasing method called LeFD, which
explicitly extracts integrated domain and class features under a multi-task
learning paradigm.

– We propose constructing domain labels for the source and augmented data
to aid in extracting domain-specific features from the data. On this basis, we
perform label expansion to obtain joint domain and class labels, which serve
as supervisions for extracting integrated domain and class features.

– We introduce a rationale alignment module to align the decision-making pro-
cess of the backbone classifier on data from different domains to further decou-
ple class-specific features.

– Experimental results on multiple benchmark datasets verify the effectiveness
of LeFD in tackling SDG problems. In addition, the outstanding performance
in the DG scenario further demonstrates the favorable generalization ability
of LeFD.

2 Related Work

2.1 Domain Generalization

The goal of domain generalization (DG) is to train the model on multiple source
domains and generalize it to unseen target domains. Recent methods [4,5,13]
primarily focus on domain alignment, operating under the assumption that data
from different domains share a common representation in the feature space. For
example, HGP [13] theoretically proved that aligning the Hessian matrix and
gradient of the classifier across domains can increase the generalization ability.
[5] aligned a joint distribution and a production distribution via the Relative
Chi-Square (RCS) divergence. Apart from domain alignment, there are some
other methods that tackle DG through data augmentation [17] and meta-learning
[23]. Although these methods have achieved significant success, they cannot be
applied directly to the single domain generalization due to their reliance on
multiple source domains.
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Fig. 1. The overall framework of LeFD. The augmented domain is generated first via
perturbation augmentation G. Then we manually construct domain labels for both
source and augmented data. With the domain and class labels, we expand them to
obtain joint labels that indicate both the domain and the class to which the data
belong. Subsequently, we use joint labels as supervisions to train the feature extractor F
and the joint classifier HDC , aiming to learn the integrated domain and class features.
Based on the integrated features, we disentangle class-specific features through the
feature-debiasing network B and the backbone classifier HC .

2.2 Single Domain Generalization

As an extreme case of DG, single domain generalization (SDG) presents a more
realistic and challenging scenario. In SDG, there is only one source domain avail-
able during training, yet the model must generalize to several unseen target
domains during test. To tackle this challenge, some methods [8,36] proposed
learning-free data augmentation schemes. For instance, RandConv [36] employed
random convolutions for data augmentation, distorting local textures while pre-
serving shape. Pro-RandConv [8] further advanced this approach by introducing
random initialized offsets and recursively stacked convolutions to enhance diver-
sity. Additionally, adversarial augmentation techniques have been proposed to
generate safe and effective samples. Among them, PDEN [25] and M-ADA [28]
trained the generator in a min-max manner. To simulate larger domain dis-
crepancies, CADA [6] proposed a center-aware augmentation technique to push
generated samples away from class centers through an angular center loss. Based
on adversarial augmentation, ABA [7] introduced Bayesian neural networks and
leveraged weight uncertainty to explore a wider augmentation space. Despite
these efforts to introduce rich diversity, these methods still struggle to generate
samples that adequately cover all unseen domains.

Different from data augmentation methods, other methods [29,32,34] focused
on learning class-specific features that are robust to domain discrepancies, result-
ing in domain-specific features. Out of them, MetaCNN [32] decomposed the
features into meta-features to construct a feature bag and proposed a composi-
tional operation to eliminate domain-specific features through an addressing pro-
cess. However, the proposed feature decomposition and composition incurred sig-
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nificant computational overhead. Heuristically, some methods considered class-
specific and domain-specific features to be unrelated. Building on this assump-
tion, [34] presented cyclic disentanglement to enlarge the gap between the fea-
tures extracted by two branches, aiming to disentangle class-specific features.
Another enlightening method, named MAD [29], enforced the orthogonality
between the weights of the domain classifier and the vanilla class classifier. Unfor-
tunately, the features extracted by these methods are not guaranteed to be truly
domain-specific and class-specific due to the absence of domain supervision in
SDG, which limits the extraction of domain-specific features and consequently
hinders the identification of the class-specific features. Our work is inspired by
this limitation and aims at learning class-specific features in a more robust
manner.

3 Methodology

3.1 Preliminary

In the SDG problem, we aims to train the model with only a single source domain
DS and generalize it to several unseen target domains: {Dj

T }Jj=1, where DS and
Dj

T are sampled from different distributions with the same class label space. For
the K-class classification, we define DS = {(xs

i , y
c
i )}Ni=1, where xs

i represents the
i-th source sample and yc

i ∈ YC ⊂ R
K represents the corresponding class label.

Additionally, the set of variables will be in bold, e.g., xs = {xs
i}Ni=1.

To learn robust class-specific features, we propose a novel method called
LeFD. LeFD manually constructs joint domain and class labels to explicitly
extract integrated domain and class features based on a multi-task learning
paradigm. Subsequently, LeFD aligns class-specific features and classifier pre-
dictions from different domains to disentangle features, ultimately yielding more
reliable class-specific features. Particularly, LeFD consists of four components:
a domain expansion module to generate auxiliary domains, a label-expanded
multi-task module to extract integrated domain and class features, a rationale
alignment module to identify class-specific features, and a backbone classifier for
class label prediction, as illustrated in Fig. 1.

3.2 Perturbation-Based Domain Expansion

In order to collect more domain-specific features, we desire to expand the source
domain to obtain a different auxiliary domain. So, we apply data augmentation.
Instead of leveraging adversarial augmentation in most existing methods [6,28,
33], we design a lightweight perturbation augmentation module G. G consists
of a random 1 × 1 convolution layer Lconv followed by an AdaIN layer [18] to
introduce more randomness. Concretely, the AdaIN used contains an element-
wise normalization layer Lin and two trainable linear layers Lfc1 and Lfc2:

AdaIN(xs , n) = Lfc1(n) · Lin(Lconv(xs)) + Lfc2(n), (1)
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where n is drawn from a normalized distribution. For a given source sample xs
i ,

a corresponding augmented sample xa
i is generated by

xa
i = G(xs

i ) = Tanh(AdaIN(xs
i , n)), (2)

where Tanh(·) is a Hyperbolic Tangent activation function. Consequently, we
denote the augmented auxiliary domain as DA = {(xa

i , y
c
i )}Ni=1. It should be

noted that only the parameters of Lfc1 and Lfc2 are learnable, so the computa-
tional overhead required for domain expansion is particularly small.

3.3 Label-Expanded Multi-task Learning

Based on the source and augmented domains, we want to disentangle class-
specific features from domain-specific features. Considering that class-specific
and domain-specific features are irrelevant, existing methods design two branches
and extract these two types of features by expanding the gap between the out-
puts of the two branches or orthogonalizing the weights of the two branches by
using only class labels. A subsequent problem is that it is very fragile and unten-
able to ensure that they are really domain-specific and class-specific because of
the lack of domain labels as supervisions. Accordingly, we present a domain-
expanded multi-task learning schema. Our motivation is simple: 1) the lack of
domain labels makes the extracted domain-specific features unreliable, and thus
hindering the identification of class-specific features; 2) extracting class-specific
features alone will be interfered by domain discrepancies, as dose domain-specific
features. Therefore, we manually construct domain labels and simultaneously use
class and domain labels to explicitly extract the integrated features containing
both class and domain information.

For each sample xi from source and augmented domains, we manually assign
a domain label yd

i ∈ YD ⊂ R
2 to it. In particular, yd

i = 0 for sample from
source domain and yd

i = 1 for sample from augmented domain. In order to
extract integrated features containing both domain and class information under
a multi-task learning paradigm, we expand the domain and class label space to
obtain joint label space via YDC = YD ⊗YC ⊂ R

2K , where ⊗ denotes Cartesian
product operation. In this way, the corresponding joint label ydc

i of xi indicate
both the domain and the class to which xi belongs. For example, for an image of a
dog from the cartoon domain, its joint label is considered to be {Cartoon,Dog}.
In our implementation, a certain ydc

i is constructed as follows for simplicity:

ydc
i = yc

i + yd
i · K. (3)

For feature extraction, we introduce a feature extractor F and a joint classifier
HDC . During training, both source and augmented data are leveraged, and the
following cross-entropy loss Ldc is minimized to optimize F and HDC :

Ldc = − 1
2Nb

2Nb∑

i=1

2K∑

j=1

1j=ydc log
exp(pdcj (xi))

∑2K
k=1 exp(pdck (xi))

, (4)
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where Nb represents the batch size and pdck (xi) = HDC(F (xi))[k] denotes the k-
th dimension of the logits output by the joint classifier for input sample xi ∈ x =
xs ∪ xa . Naturally, supervised by joint domain and class labels for multi-task
learning, the features extracted by F , that is, zdc = F (x), will simultaneously
contain both domain and class information in that they are then fed into HDC

and constrained to correctly predict the domain and class to which data belong.

3.4 Feature Debiasing via Rationale Alignment

Based on the integrated domain and class features, we try to disentangle the
class-specific features. For this purpose, we introduce a rationale alignment mod-
ule. In detail, this module contains a feature-debiasing network B, which takes
zdc as input and outputs zc . Subsequently, zc is fed into the backbone classi-
fier HC to predict class labels. To ensure that zc is class-specific, we introduce
another cross-entropy loss Lc to preserve class information.

Lc = − 1
2Nb

2Nb∑

i=1

K∑

j=1

1j=yc log
exp(pcj(xi))

∑2K
k=1 exp(pck(xi))

, (5)

where pck(xi) = HC(B(F (xi)))[k] denotes the k-th dimension of the logits output
by the backbone classifier for input sample xi.

Furthermore, we introduce rationale alignment so that zc contain no domain
information, i.e., domain-invariant. The concept of rationale is first introduced
in [4], which indicates the decision-making process of networks. Correspondingly,
a rationale matrix Ri represents the rationale of classifying a sample xi and it
is formally described as follows:

Ri =

⎡

⎢⎢⎢⎣

W1,1 · zci,1, W1,2 · zci,1, . . . , W1,K · zci,1
W2,1 · zci,2, W2,2 · zci,2, . . . , W2,K · zci,2

...
...

. . .
...

WM,1 · zci,M , WM,2 · zci,M , . . . , WM,K · zci,M

⎤

⎥⎥⎥⎦ , (6)

where M represents the number of dimensions of zc , zci,j represents the j-th
dimension of zci and Wj,k represents the corresponding weight in the HC . To
remove domain information from zc , we try to ensure that the decision to classify
a sample is based on the same reasoning regardless of the variation in domains.
We achieve this goal by aligning the rationale matrices of augmented data from
the same class with those of the corresponding source data, and the alignment
loss Lalign is formulated as follows:

Lalign =
1

Nb

K∑

k=1

Nb∑

i=1,yc
i=k

‖RA
i − R̄S

k ‖, (7)

where ‖ · ‖ is the l2 norm, RA
i is the rationale matrix of the i-th augmented

sample and R̄S
k is the mean rationale matrix of source samples corresponding



202 J. Yang et al.

to the k-th class. In implementation, R̄S
k is updated in an exponential moving

average manner:

R̄S
k,t = (1 − λ) × R̄S

k,t−1 + λ × 1
|yc

i = k|
N∑

i=1,yc
i=k

RS
i , (8)

where t is the iteration index and λ is the momentum value. Specially, R̄S
k,0 is

initialized with the rationale matrix of the first iteration.

3.5 Overall Framework

During training, we adopt a two-stage learning schema. In the first stage, we
only minimize Ldc to encourage the feature extractor capable of learning the
integrated domain and class features. In the second stage, we then introduce Lc

and Lalign to disentangle the class-specific features. Therefore, the overall loss
L is defined as follows:

L = Ldc + 1t≥T (Lc + Lalign), (9)

where T denotes the first epoch of the second training stage. Consequently, the
network framework is illustrated in Fig. 1 and the corresponding algorithm is
included in supplementary materials. During testing, we can predict the class
labels without the assistance of G and HDC .

4 Experiments

4.1 Experiment Setup

Datasets. Following recent work [3,6,7], we validate the proposed method LeFD
on three popular benchmark datasets: Digits, CIFAR-C and PACS. Digits con-
sists of five sub-datasets: MNIST [21], MNIST-M [11], SVHN [27], SYN [11]
and USPS [16], with 10 classes. Each dataset is considered a domain. We choose
MNIST as the source domain and the rest of datasets as the target domains. The
first 10,000 images in the training set of MNIST are used for training. CIFAR-C
[14] is corrupted from the test set of CIFAR-10 [20] by 4 broad types (including
19 specific types) with 5 severity levels (1–5). Higher numbers indicate greater
severity. All images in CIFAR-10 and CIFAR-C are categorized into 10 classes.
We use the training set of CIFAR-10 as the source domain and CIFAR-C as
the target domains. PACS [24] contains four domains: Art, Cartoon, Photo and
Sketch, with seven classes. We choose one domain as the source domain and the
other three domains as the target domains at a time. Therefore, there are four
sets of experiments on this dataset.

Implementation Details. There are some common settings for different
datasets. First, the joint classifier HDC and the backbone classifier HC are both
constructed by a single linear layer. Second, the momentum to update R̄S

k is set
to 1e−3. The details of different implementations for each dataset are as follows.
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Digits. We leverage the ConvNet (conv-relu-pool-conv-relu-pool-fc-relu-fc-relu)
adopted in [6,8,25] to construct the feature extractor F . The feature-debiasing
network B is constructed by a single linear layer with ReLU following. During
training, the Adam optimizer is utilized with an initial learning rate of 1e−4.
We train the whole model for 600 epochs and start the second stage at the 30th
epoch. The batch size is set to 32.

CIFAR-C. We use the backbone of WRN-16-4 [37] as the feature extractor
F . The feature-debiasing network B is also constructed by a single linear layer
followed by ReLU. During training, we use the Adam optimizer. The learning
rate is initialized to 1e−3 and updated with a cosine annealing scheduler. We
also train the whole model for 600 epochs and start the second stage at the 30th
epoch. The batch size is set to 128.

PACS. We use the backbone of ResNet-18 [12] as the feature extractor F .
The feature-debiasing network B is constructed by two linear layers with ReLU
following each linear layer. During training, the Adam optimizer is used with an
initial learning rate of 1e−5. We train the whole model for 200 epochs and start
the second stage at the 20th epoch. The batch size is set to 64.

4.2 Experimental Results on SDG

For experiments targeting SDG, we compare LeFD with several state-of-the-art
methods, which are as follows: (i) the methods of data augmentation: GUD [31],
AA [9], RA [10], RSC [15], M-ADA [28], L2D [33], PDEN [25], CADA [6], ABA
[7]; (ii) the methods of learning class-specific features: CCSA [26], d-SNE [35],
JiGen [2], MetaCNN [32], MAD [29], SAR [3]. Besides, the results of ERM [19]
are also included as a reference.

In addition, we also conduct experiments in the DG scenario. More details
and results are included in supplementary materials.

Comparison on Digits. Table 1 illustrates the experimental results on Digits.
We can observe that the proposed LeFD achieves the highest classification accu-
racy on average. For data augmentation methods, we have improved by 3.73%
over the best method CADA, and for class-specific feature learning methods, we
have improved by 5.47% over the best method SAR. For each target domain,
LeFD improves on both SVHN and SYN compared to existing methods. For
MNIST-M and USPS, LeFD is slightly weaker. This may be because L2D and
CADA leverage more complex adversarial augmentation and MetaCNN weakens
color sensitivity through meta-features.

Comparison on CIFAR-C. For CIFAR-C, we consider four types of corrup-
tion as different target domains and select the data with a corruption severity
level of 5 for test. Detailed comparison results are illustrated in Table 2. As we
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Table 1. Comparison on Digits. The model is trained on MNIST using ConvNet as
the backbone and tested on the other four datasets.

MNIST-M SVHN SYN USPS Avg.

ERM 52.72 27.83 39.65 76.94 49.29

GUD 60.41 35.51 45.32 77.26 54.62

AA 60.53 45.23 64.52 80.62 62.72

RA 74.05 54.77 59.60 77.33 66.44

M-ADA 67.94 42.55 48.95 78.53 59.49

L2D 87.30 62.86 63.72 83.97 74.46

PDEN 82.20 62.21 69.39 85.26 74.77

CADA 78.66 67.27 79.34 96.96 80.56

ABA 80.05 56.87 73.40 96.55 76.72

CCSA 49.29 25.89 37.31 83.72 49.05

d-SNE 50.98 26.22 37.83 93.16 52.05

JiGen 57.80 33.80 43.79 77.15 53.14

MetaCNN88.27 66.50 70.66 89.64 78.76

SAR 78.34 69.94 78.47 88.54 78.82

LeFD 84.75 74.85 82.29 95.27 84.29

can see from Table 2, LeFD achieves optimal results in the Blur, Digital and
Weather domains. Particularly in the Blur domain, LeFD improves by 2.40%
compared to baselines, and in the Weather domain, LeFD improves by 7.19%.
In general, LeFD outperforms baselines in average accuracy and this clearly val-

Table 2. Comparison on CIFAR-C. The model is trained on CIFAR-10 using WRN-
16-4 as the backbone and tested on CIFAR-C. Data from the same broad corruption
type (i.e., Blur, Digital, Noise, and Weather) form a target domain. Only data with a
corruption severity level of 5 are used for the test.

Blur Digital Noise Weather Avg.

ERM 56.73 62.30 30.02 67.28 54.08

GUD 67.04 66.62 39.97 72.67 61.58

M-ADA 63.76 65.10 54.21 75.54 64.65

L2D 69.16 72.02 73.29 75.98 72.61

PDEN 76.41 77.93 77.11 78.65 77.53

CADA 83.77 84.84 84.84 79.93 83.57

CCSA 57.81 61.96 28.73 67.66 54.04

d-SNE 56.59 61.83 33.97 67.90 55.07

MetaCNN 76.80 81.26 78.23 77.44 78.45

LeFD 86.17 85.48 81.54 87.12 85.08
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Table 3. Comparison on PACS. The model is trained on one domain (name in column)
using ResNet-18 as the backbone and tested on the other three domains.

Art Cartoon Photo Sketch Avg.

ERM 70.90 76.50 42.20 53.10 60.70

RSC 73.40 75.90 41.60 56.20 61.80

L2D 76.91 77.88 52.29 53.66 65.18

CADA 76.33 79.08 56.65 61.59 68.41

ABA 75.34 77.49 58.86 53.76 66.36

Pro-RandConv 76.98 78.54 62.89 57.11 68.88

JiGen 67.70 72.23 41.70 36.83 54.60

MAD 75.51 77.25 52.95 57.75 65.87

SAR 77.13 80.14 59.60 62.55 69.86

LeFD 81.04 82.84 68.42 65.92 74.56

idates the effectiveness of LeFD. In addition, we show the experimental results
across different levels of corruption severity in supplementary materials, in which
we also achieve the optimal.

Comparison on PACS. For PACS, one domain is selected as the source
domain and the other three domains are selected as the target domains. The
results are illustrated in Table 3. Compared with baseline methods, LeFD per-
forms favorably better than baseline methods in all domains. In particular, LeFD
improves the optimal results of baselines by 5.53% and 3.37% in the Photo
domain and Sketch domain, respectively. Taken together, the average accuracy
of LeFD on the PACS dataset is 4.70% higher than the baselines. This fur-
ther demonstrates the superiority of the proposed LeFD in dealing with more
challenging situations.

4.3 Additional Analysis

Ablation Study. To assess the contribution of each component in our method,
we conduct an ablation study on the PACS dataset. In these experiments, we
either retain all components, remove one or two components, or eliminate all
components to train the model. Specifically, the first and last settings corre-
spond to the ERM method and the proposed LeFD respectively. The results are
summarized in Table 4. As we can see all three components contribute signifi-
cantly. Domain expansion can greatly enhance the ERM method, but it is still
not optimal. On this basis, the introduction of label expansion and rationale
alignment can further improve classification accuracy.
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Fig. 2. t-SNE visualization of extracted class-specific features from the PACS. The
Photo domain serves as the source domain, while the other three domains (Art, Car-
toon, Sketch) are used as the target domains. Each column represents the visualization
results under a specific target domain (indicated in the title). Features extracted from
the test dataset of both the source and target domains are plotted in the same sub-
graph to facilitate the evaluation of the impact of domain discrepancies on class-specific
feature extraction.

Hyper-parameter Sensitivity. We further conduct several experiments to
explore the sensitivity of LeFD to hyperparameters λ and T in the SDG sce-
narios. λ is the momentum value used to update the mean rationale matrix of
source samples and T denotes the epoch index at which the second training stage
begins. In the experiments, we value λ on multiple scales from 1e−4 to 1 and
value T from 0 to 25. From the results in Fig. 3, we know that when the value
of each hyperparameter changes, the classification accuracy remains relatively
stable.

Visualization. We present the t-SNE visualizations of the extracted class-
specific features in Fig. 2. For the ERM method, the features of different classes
are mixed, especially in the Cartoon and Sketch domain. In contrast, LeFD
blends features of the same class but from different domains, while effectively
separating features of different classes. This observation provides intuitive evi-
dence that LeFD can effectively extract class-specific features that are robust to
domain discrepancies.
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Table 4. Ablation study on PACS. The model is trained on one domain (name in
column) and tested on the other three domains. “DE”, “LE” and “RA” denote Domain
Expansion, Label Expansion and Rationale Alignment respectively.

DE LE RA Art Cartoon Photo Sketch Avg.

70.90 76.50 42.20 53.10 60.70

� 71.93 73.77 58.27 56.26 65.06

� 76.58 77.18 60.91 56.42 67.77

� � 75.68 76.94 63.81 63.05 69.87

� � 78.83 80.38 63.50 62.38 71.27

� � � 81.04 82.84 68.42 65.92 74.56

Fig. 3. Sensitivity analysis on λ and T . Experiments are conducted on PACS using the
Photo domain as the source domain and rest of three domains as the target domains.

5 Conclusion

In this paper, we present LeFD, a straightforward but efficient method to learn
class-specific features in tackling SDG problems. Unlike existing class-specific
feature learning methods, which directly enlarge the gap between the features
learned by two separate branches in the absence of domain labels, LeFD man-
ually constructs domain labels and explicitly extracts integrated domain and
class features through label expansion. Subsequently, LeFD performs feature
debiasing via rationale alignment to disentangle class-specific features from the
integrated features. Extensive experiments in SDG and DG scenarios prove the
superiority of the proposed LeFD. Nonetheless, there are still several worthy
research directions for future work: 1) Our research is currently only based on
the classification task, and more research on segmentation, detection, genera-
tion and other tasks is worth looking forward to. 2) We can try to explore more
on different modalities (such as point cloud and text) and extend LeFD into a
modality-agnostic method in solving SDG problems.



208 J. Yang et al.

Acknowledgements. This study was supported by the NSFC (grant no. 42201460),
the National Key Research and Development Program of China (grant no.
2023YFB3906600).

References

1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.:
A theory of learning from different domains. Mach. Learn. 79, 151–175 (2010)

2. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain gen-
eralization by solving jigsaw puzzles. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2229–2238 (2019)

3. Chen, J., Gao, Z., Wu, X., Luo, J.: Meta-causal learning for single domain gener-
alization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7683–7692 (2023)

4. Chen, L., Zhang, Y., Song, Y., Van Den Hengel, A., Liu, L.: Domain general-
ization via rationale invariance. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1751–1760 (2023)

5. Chen, S., Wang, L., Hong, Z., Yang, X.: Domain generalization by joint-product
distribution alignment. Pattern Recogn. 134, 109086 (2023)

6. Chen, T., Baktashmotlagh, M., Wang, Z., Salzmann, M.: Center-aware adversarial
augmentation for single domain generalization. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 4157–4165 (2023)

7. Cheng, S., Gokhale, T., Yang, Y.: Adversarial Bayesian augmentation for single-
source domain generalization. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 11400–11410 (2023)

8. Choi, S., Das, D., Choi, S., Yang, S., Park, H., Yun, S.: Progressive random convo-
lutions for single domain generalization. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10312–10322 (2023)

9. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning
augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 113–123 (2019)

10. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated
data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703
(2020)

11. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

13. Hemati, S., Zhang, G., Estiri, A., Chen, X.: Understanding hessian alignment for
domain generalization. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 19004–19014, October 2023

14. Hendrycks, D., Dietterich, T.G.: Benchmarking neural network robustness to
common corruptions and perturbations. In: 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019.
OpenReview.net (2019). https://openreview.net/forum?id=HJz6tiCqYm

https://www.OpenReview.net
https://openreview.net/forum?id=HJz6tiCqYm


Label-Expanded Feature Debiasing for Single Domain Generalization 209

15. Huang, Z., Wang, H., Xing, E.P., Huang, D.: Self-challenging improves cross-
domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.)
ECCV 2020. LNCS, vol. 12347, pp. 124–140. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58536-5 8

16. Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pat-
tern Anal. Mach. Intell. 16(5), 550–554 (1994)

17. Kang, J., Lee, S., Kim, N., Kwak, S.: Style neophile: constantly seeking novel
styles for domain generalization. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 7130–7140, June 2022

18. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4401–4410 (2019)

19. Koltchinskii, V.: Oracle inequalities in empirical risk minimization and sparse
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Abstract. Convolutional Neural Networks (CNNs) have achieved suc-
cess in the fusion of infrared and visible images, but they fall short in
modeling long-range dependencies. In contrast, Transformers, with their
global receptive field, demonstrate greater advantages in visual tasks.
To jointly utilize local-global features and effectively leverage semantic
information, we propose an infrared and visible image fusion method
based on CNN and Transformer cross-interaction with semantic mod-
ulations (SMCFusion). Our approach integrates the strengths of CNNs
and Transformers, enhancing the quality and interpretability of the fused
images by introducing semantic features. We design a single-modality
cross interaction module that facilitates the interaction between local
and global features, and a cross-modality complementary mask fusion
strategy for effective multi-modal feature fusion. The proposed semantic-
oriented attention modulation improves semantic consistency during the
fusion process. Experiments on multiple public datasets demonstrate
that our SMCFusion outperforms other state-of-the-art methods in terms
of visual quality and information retention.

Keywords: Infrared and Visible Image fusion · CNN and
Transformer · Semantic Modulations

1 Introduction

Owing to the unique imaging properties of infrared and visible images, they
exhibit complementarity in the information they provide. Fusing infrared and
visible images can produce a single image that offers both clear background
details and highlighted targets [1]. This fusion facilitates subsequent visual tasks,
such as military applications, depth prediction, and facial recognition [2–4].

Infrared and visible image fusion is a crucial area of study, and numerous
techniques have been developed to tackle this challenge. Early traditional image
fusion methods mainly relied on mathematical transformations in the spatial
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or transform domain to design fusion rules by manually analysing the activ-
ity level [5]. With the progress of deep learning, the domain of image fusion
has investigated a range of deep learning-based approaches, leading to notable
advancements. Among them, methods based on AE perform feature extraction
and reconstruction using autoencoders, and achieve feature fusion through spe-
cific fusion strategies. Methods based on CNN utilize the strong feature extrac-
tion capabilities of CNN to make significant breakthroughs in image fusion.
Additionally, methods based on GAN introduce adversarial mechanisms between
generated and source images, achieving more realistic and credible fusion results
through the competition between generators and discriminators.

Current deep learning-based image fusion methods are capable of producing
high-quality fused images, but challenges remain. A significant limitation is that
many of these algorithms rely on CNN architectures, which restrict the receptive
field size. While methods based on Transformers improve the ability to capture
global information, but there is significant redundancy between shallow and
deep layers. Some research attempts to combine CNN and Transformer, but
there is a lack of effective interaction mechanisms between them. Meanwhile,
current approaches primarily emphasize the visual quality of the images while
often overlooking the semantic content of the fused results, leading to weak
semantic expression ability of features and insufficient understanding of image
content by the network, which reduces the adaptability and robustness of the
algorithm under different environmental conditions. To tackle the challenges in
fusing infrared and visible images, we propose an innovative approach: infrared
and visible image fusion based on CNN and Transformer cross-interaction with
semantic modulations, which named SMCFusion. The key contributions of our
study are summarized as follows:

• To explore the integration potential of CNN and Transformer, we designed
them as parallel frameworks to extract fine-grained details of visible and
target intensity of infrared. We proposed a single-modality cross interaction
module to combine fine-grained and holistic features, promoting interaction
between feature sub-networks, improving single-modality feature maps, and
laying the foundation for subsequent high-quality multi-modal fusion.

• For the fusion of multi-modal features, we developed cross-modality comple-
mentary mask fusion to reduce redundant information and integrate effective
information fully. Moreover, we introduced semantic features into the fused
features using a powerful semantic knowledge base, forming semantic atten-
tion through interaction with the fused features, enhancing the expression of
source image scene semantics by the fused features, and thereby improving
the fusion performance.

• Comprehensive loss functions are formulated to take full advantage of the
rich information in the input images, ensuring that key features and complex
textures are preserved in the fused output.

• By conducting comprehensive tests across three widely used datasets, SMC-
Fusion surpassed nine notable approaches in both quantitative and qualitative
assessments.
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2 Related Work

Deep learning-based image fusion techniques commonly employ network archi-
tectures such as autoencoders (AE), convolutional neural networks (CNN), and
generative adversarial networks (GAN) [6]. DenseFuse [7] is a typical method
based on AE, which applies dense blocks to the network structure to enhance
feature representation and retain a large amount of useful intermediate infor-
mation. Ma et al.’s PMGI [8] method considers the loss function perspective,
adjusting the proportion of intensity and texture information preservation to
achieve good fusion effects. FusionGAN [9] is the first model to apply generative
adversarial networks to the field of infrared and visible image fusion, establishing
an adversarial game between the generator and the discriminator, where the gen-
erator aims to generate the fused image, and the discriminator aims to force the
fused image to have more details from the visible image [9]. There are also some
fusion methods based on transformers, such as SwinFusion [10], a universal image
fusion framework based on cross-domain remote learning and Swin Transformer
proposed by some researchers, which achieves full integration of complementary
information and global interaction. TgFuse [11] combines Transformer and gener-
ative adversarial network technologies, with a Transformer-based fusion module
generating the fused image, which is then fed into the discriminator to calculate
the loss function to improve the fusion effect. Recently, some methods have also
started to focus on whether the fused image can promote downstream tasks,
with these methods cascading fusion and downstream tasks. Liu et al. [12] pro-
posed a dual-layer optimization form for joint fusion and detection problems, and
developed it into a target-aware dual adversarial learning (TarDAL) network for
fusion.

3 Methodology

3.1 Overall Framework

Our general framework of SMCFusion is shown in Fig. 1. For the pair of aligned
infrared image Iir ∈ R

H×W×1 and visible image Ivi ∈ R
H×W×3, we use two

parallel feature extraction sub-networks to capture the detailed features and
global features of both modalities. In order to aggregate the comprehensive fea-
tures of a single modality extracted from the two sub-networks, we propose the
single-modality cross interaction module (SCIM), which enhances the commu-
nication of the feature maps acquired by the different sub-networks at the same
scale, respectively, and integrates the feature maps at different scales, so as to
obtain the single modality rich and comprehensive feature information of a single
modality. Secondly, in order to effectively fuse multi-modal features, we propose
cross-modality complementary mask fusion (CCMF) strategy. In addition, we
design a semantic-oriented attention modulation module (SAM), which provides
more semantic attention to the fused features to ensure that the generated fusion
results are more consistent with the semantic content of the image and reduce
the presence of artefacts. Finally, we use feature reconstruction to obtain the
fusion result If ∈ R

H×W×3.
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Fig. 1. Framework of the proposed SMCFusion. For the parallel extraction of single-
modality features, a dual-branch structure is utilized to capture localized and overall
features, respectively. Concurrently, a single-modality cross interaction module (SCIM)
is constructed to effectively aggregate features. For multi-modal feature fusion, a cross-
modality complementary mask fusion (CCMF) and semantic-oriented attention mod-
ulation module (SAM) are proposed to enhance the representation of fused features.
Finally, feature reconstruction is applied to generate the final fused image.

3.2 Local and Global Feature Extraction

Inspired by the ability of convolutional neural networks to extract local infor-
mation and the ability of Transformers to acquire long range dependencies and
model global images, we propose to use two sub-networks to acquire local and
global feature maps of the source image pair in parallel. Taking the input infrared
image Iir as an example, the local feature FC

ir is obtained through the CNN
branch, and the global feature FT

ir is generated through the Transformer branch.
In the CNN branch, we introduce the widely used DenseNet [13], which effi-
ciently captures features in local regions of an image through its dense con-
nectivity, thus enhancing the perception of image details. In the Transformer
branch, we introduce the lightweight Lite Transformer [14], which utilises its
long and short-range attention mechanism to efficiently process different ranges
of information. By combining deep convolution and point-by-point convolution,
Lite Transformer effectively reduces the parameter count while preserving perfor-
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mance, enabling efficient capture of global information from the source image.
By combining CNN and Transformer, the ability to capture the full range of
source image information is significantly improved.

3.3 Single-Modality Cross Interaction Module

How to make the feature maps extracted from different sub-networks commu-
nicate effectively within the equivalent scale is a key issue. To address this
issue, we propose a SCIM that captures complementary information of the same
image from two unique and different perspectives. This module introduces a
cross-modal attention mechanism, allowing one branch to maintain its original
features while insightfully integrating the representation of the other branch,
thereby enhancing the overall feature expression capability. As shown in Fig. 1,
we first reshape the feature maps extracted from the same image by CNN and
Transformer, and then project them into query Q, key K, and value V vec-
tors by three learned linear transformations, respectively. Then the computation
of attention is executed. Note that the computational process of a single self-
attention has significantly high complexity in both spatial and temporal aspects,
leading to a significant increase in resource consumption. So we here draw on
Factorized Attention as mentioned in the work [15]. Specifically, we approxi-
mate the attention map using a specific function and synchronously perform the
computation of the second matrix multiplication (keys and values) [16]. For the
cross-interaction of local and global features of the same image, we apply one
branch of Q with another branch of K, V to implement the interaction compu-
tation. Taking infrared image as an example, the above calculation process can
be expressed as:

CrossAtt
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ir
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=
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ir√
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softmax
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where T denotes the transpose operation, Qir,Kir, Vir ∈ R
N×d, N =H × W ,

denote the sequence of input vectors of the infrared modality, and d is the number
of dimensionality reduction, C denotes from CNN branch and T denotes from
Transformer branch. Additionally, we merge the two outputs F1 and F2, after
the cross-interaction by performing cascade and convolution operations to obtain
the integrated single-modality image features Fir(Fvi).

3.4 Cross-Modality Complementary Mask Fusion

After obtaining interactive infrared and visible features in the above steps, we
perform multi-modal feature fusion, aiming for the fused features to retain both
the texture details of the visible modality and the prominent thermal target
from the infrared modality. Common fusion strategies, such as directly adding
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the features of two modalities, do not adequately measure the amount of effec-
tive information in each modal feature, resulting in the omission of some impor-
tant information. In addition, the operation of direct addition may introduce
redundant information between features, thereby reducing network performance.
Therefore we propose a more refined and effective fusion strategy called cross-
modality complementary mask fusion that is able to transform the information
we are interested in from both modalities into the fused image, the structure
of CCMF is shown in Fig. 1. We first concatenate the interactive features Fir

and Fvi from both modalities, followed by passing them through convolutional
layers and a sigmoid activation to generate an attention map M. M is then used
to weight the input features, which are subsequently summed to produce the
fused feature Ff . This process is mathematically represented by the following
equation:

Ff = Fir � M+Fvi � (1 − M) (3)

3.5 Semantic-Oriented Attention Modulation

Large semantic knowledge bases can improve the representation capability of
the network as they contain rich semantic information that can help the net-
work to better understand and process the input data. Here, motivated by the
idea of enhancing important features from semantic contexts, We incorporate
visible image semantic features into the fusion features to provide richer and
more profound semantic details, thereby improving the network’s capacity to
understand image content. Inspired by [17], SAM saves computational cost by
considering each pixel of an image as a marker instead of the traditional pixel-
based self-attention computation. First, we reshape the input fusion feature
Ff ∈ R

H×W×C into Z ∈ R
HW×C . Z is then split into m heads, represented

as Z = [Z1, Z2, ..., Zm], where Zi ∈ R
HW×dm , dm = C

m , with i ranging from
1 to m, which is illustrated in Fig. 1 for the case of m = 1. Each head under-
goes a linear projection to form a query element Qi ∈ R

HW×dm , a key element
Ki ∈ R

HW×dm , and a value element Vi ∈ R
HW×dm through three separate fully

connected layers without bias:

Qi = ZiW
Qi

T
,Ki = ZiW

Ki
T
, Vi = ZiW

Vi
T

(4)

where WQi , WKi and WVi ∈ R
dm×dm represent the learnable parameters of

the fully connected layers, and T signifies the matrix transpose. We note that
visible images provide abundant visual information that enhances the ability of
the network to recognize and understand objects, scenes, and structures within
the images. Therefore, we incorporate the pre-trained semantic network [18] with
multi-scale semantic features FS extracted from visible images, FS encodes the
contextual information and is fed into SAM to provide more semantic attention
to the fused multi-modal features. To match the shape of Z, we reshape FS ∈
R

H×W×C as S ∈ R
HW×C and divide it into m heads: S = [S1, S2, ..., Sm], where
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Si ∈ R
HW×dm , dm = C

m and i = 1, 2, ...,m. The self-attention mechanism for
each head i is then given by the following equation:

Att (Qi,Ki, Vi, Si) = (Si � Vi) softmax

(
Ki

TQi

ci

)

(5)

where ci is a learnable parameter used to adaptively scale the result of the matrix
multiplication to fit different ranges of attention weights. The results from the m
heads are then combined using a fully connected layer and reshaped to generate
the final output feature, Fout ∈ R

H×W×C . By introducing the semantic features
of visible modality into the fusion features, the fusion features can be made to
have stronger semantic expression capability, thus improving the performance of
the network in the image fusion task.

3.6 Loss Function

For the final fusion result, we want it to retain the thermal target information
similar to the infrared image and the rich detail information of the visible image.
Therefore we use intensity loss Lint and texture loss Ltex as follows:

Lint = λ1
1

HW
‖If − Iir‖1 + λ2

1
HW

‖If − Ivi‖1 (6)

Ltex = λ1
1

HW
‖�If − �Iir)‖22 + λ2

1
HW

‖�If − �Ivi)‖22 (7)

Here, H and W represent the height and width of the image, respectively. �
indicates a gradient operator to obtain gradient information of the image. λ1

and λ2 are adaptive perceptual weights that determine how closely the fused
image resembles each of the source images. Higher weights indicate greater level
of resemblance, which corresponds to increased information retention from the
source images. Lint constrains the generated image to have a similar histogram
distribution as the source image, and Ltex constrains the generated image to have
a fine texture. Therefore, these two losses essentially constrain the proportion
of texture and intensity of the source image that is retained in the generated
image. To enable the network to dynamically assign the appropriate information
metric for retaining intensity and gradient details from the source images, we
use the loss term weights to select the most relevant and significant information
to be preserved in the fusion outcome. Inspired by the perceptual loss [19], we
use VGG-19 to extract the features of the source images in order to evaluate
the degree of information contained in it, and finally obtain two weight values
(λ1, λ2) by the softmax function to map (In1, In2) to real numbers between 0
and 1.
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We calculate the degree of information In using the feature maps from the
outputs of the five convolutional layers in the VGG-19 model [20]. In the above
formula, fj (I) denotes the feature maps obtained from the convolutional layer
preceding the jth max-pooling layer. ∂ is a predefined constant used to adjust
the weight values for more effective weight allocation.

The color of an image is often linked to its fine details. By managing the color
distribution in the fused image, we can preserve the realism and naturalness of
the colors. We use the discrete cosine distance [21] to regulate the color distri-
bution of the fused image, ensuring it closely matches the source image while
incorporating some intensity from the visible image. The color consistency loss
is defined by the following formula:

Lcolor =
1

HWC

∑

z∈ε

cos(Iz
f , Iz

vi), ε = {R,G,B} (10)

where z is an element of R,G,B and cos(, ) denotes the pixel-level discrete
cosine similarity calculation between the fused image and visible image in the
colour channel, the above equation is calculated by summing and normalising
the similarity of the three channels in order to arrive at the final colour loss
value. By constraining through Lcolor, it is possible to reduce color distortion
and ensure that the resulting fused image is more consistent with the enhanced
visible image in terms of color distribution.

The total loss function Ltotal of SMCFusion is denoted as:

Ltotal = Lint + Ltex + αLcolor (11)

where α is the hyperparameter that balances the three losses.

4 Experiments

4.1 Experimental Configurations

To comprehensively evaluate our SMCFusion, we conducted extensive qualita-
tive and quantitative experiments on MSRS, LLVIP and RoadScene datasets.
We compared our method with nine state-of-the-art methods including one con-
ventional fusion method, two AE-based fusion methods, one GAN-based fusion
method, two generic CNN-based fusion methods and three Transformer-based
fusion methods, which are: CBF [22], DenseFuse [7], FusionGAN [9], NestFuse
[23], U2Fusion [19], SwinFusion [10], YDTR [24], CDDFuse [25] and TgFuse [11].
The image fusion algorithms used for comparison are all publicly available and
are configured according to the parameters in their original papers. We selected
six objective evaluation metrics to quantitatively assess the fusion performance of
the algorithm, including structural similarity (SSIM) [26], Fusion Quality (Qabf)
[27], Correlation Coefficient (CC) [28], sum of correlation coefficients (SCD) [29],
entropy (EN) [30], and Pixel Feature Mutual Information (FMIpixel) [31]. SSIM
and Qabf effectively assess the visual quality and preservation of image details.
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CC and FMIpixel quantify how well information is shared and retained between
the fused and source images. SCD and EN reflect the relevance and informative-
ness of the image. Additionally, Higher values of SSIM, Qabf, CC, SCD, EN and
FMIpixel signify superior fusion performance.

4.2 Implementation Details

We trained SMCFusion using the MSRS dataset, normalizing all images to the
range [0,1] before feeding them into the network. We expanded the training
set by data enhancement means such as cropping. In our experiments, we used
a batch size of 8 and trained the model for 200 epochs. The learning rate of
the Adam optimizer was initialized to 0.001 and decayed exponentially. For the
hyperparameters in Eq. (11), we set α = 1.5. Notably, similar to most multimodal
fusion approaches [10], all our fusion operations are performed on the Y-channel.
Specifically, we convert the RGB visible image to the YCbCr color space. After
performing the fusion on the Y channel, we combine it with the Cb and Cr
channels of the original visible image to create the final color-fused output. The
method we developed was implemented using PyTorch, and all experiments were
executed on an NVIDIA RTX3090 GPU.

4.3 Comparative Experiment

To illustrate the performance of SMCFusion, we performed a comprehensive
comparison of fusion performance with nine SOTA fusion methods on the
MSRS dataset, and presented the qualitative experimental results in Fig. 2, and
reported the quantitative experimental results in Table 1.

Fig. 2. Visual comparison of SMCFusion relative to nine advanced methods on
#01501D image from MSRS dataset.

Visually, our method provides more comprehensive scene details compared to
other methods, such as clearer textures of buildings and edges of branches, and
pedestrians are also highlighted to some extent. The image exhibits strong con-
trast and excellent visual clarity. Quantitative analysis shows that all metrics
reached optimal levels, suggesting that the images produced by SMCFusion are
rich in information while preserving high structural similarity and strong correla-
tion with the original images. The color and brightness information is also closer
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Table 1. Quantitative results of the six metrics on MSRS dataset. The top-performing
result is indicated in bold, and the second-best result is marked with an underline.

CBF DenseFuse FusionGAN NestFuse U2Fusion SwinFusion YDTR CDDFuse TgFuse SMCFusion

SSIM 0.7047 0.9391 0.5098 0.9440 0.9111 0.9488 0.9377 0.9398 0.9444 0.9614
Qabf 0.5571 0.6954 0.0703 0.6406 0.4872 0.6126 0.6739 0.6589 0.6505 0.7040
CC 0.4376 0.5088 0.5205 0.5326 0.4893 0.5054 0.5093 0.5346 0.5431 0.6984
SCD 0.8603 1.0007 0.6310 1.2881 1.4559 1.3625 0.9864 1.2633 1.3377 1.7190
EN 7.4370 7.4654 5.8167 7.5715 6.7451 7.0750 7.2611 7.5238 7.4689 7.6335
FMIpixel 0.8554 0.8925 0.8320 0.8894 0.8715 0.8805 0.8790 0.8890 0.8903 0.9516

to the source images, ensuring high visual quality. This performance improve-
ment is mainly due to the joint feature extraction by CNN and Transformer,
which fully extracts the deep information of single modalities. The injection of
semantic information into the fusion features enhances the model’s perception
of the scene, and the intensity loss and texture loss based on adaptive weight
adjustment of the richness of source image information ensure that the fusion
image has good visual perception.

4.4 Generalization Experiment

Evaluation of generalization performance is crucial in deep learning methods. In
order to validate the generalisation ability of SMCFusion in different scenarios,
we performed experiments using the LLVIP and RoadScene datasets. It should
be emphasised that SMCFusion was trained on the MSRS dataset and directly
applied to the other two dataset for testing.

Figure 3 and Fig. 4 present visual comparison results of different algorithms
on the LLVIP and RoadScene datasets. CBF and FusionGAN lose most of
the texture information, resulting in blurred images with poor visual quality.
DenseFuse, U2Fusion, and YDTR exhibit weaker saliency of targets such as
pedestrians and cars, and the texture retention of background information, such
as bike landmarks on nighttime roads, road signs, and the contours of trees across
the road, is not clear. Compared to the aforementioned algorithms, SwinFusion,
CDDFuse, and TgFuse can highlight infrared targets and show certain details,
but the overall image of TgFuse is more biased towards visible images. The fusion
results generated by our SMCFusion emphasize prominent pedestrians and vehi-
cles while also effectively capturing the texture of road landmarks. Moreover, the
trees across the road have clear edges, and the colors appear relatively natural.
We attribute the superior fusion quality of SMCFusion to three primary factors.
First, we extract rich source image features from two perspectives, with SCIM
facilitating communication between feature sub-networks and CCMF achieving
extensive multimodal feature integration. Second, SAM enhances the model’s
scene perception capability, improving the understanding and representation of
scene features while preserving key information and details. Third, a comprehen-
sive loss function constrains the contrast, texture details, and color naturalness
of the fused image, significantly improving visual quality and detail retention.
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Fig. 3. Visual comparison of SMCFusion relative to nine advanced methods on
#070220 image from LLVIP dataset.

Fig. 4. Visual comparison of SMCFusion relative to nine advanced methods on #00211
image from RoadScene dataset.

To quantitatively evaluate our method, we selected 25 pairs of images from
each of the LLVIP and RoadScene datasets for testing. The corresponding results
are shown in Table 2 and Table 3. These tables reveal that SMCFusion outper-
forms on both datasets. Considering both qualitative and quantitative analy-
sis, SMCFusion demonstrates outstanding generalization capabilities and strong
competitiveness in image fusion.

Table 2. Quantitative results of the six metrics on LLVIP dataset. The top-performing
result is indicated in bold, and the second-best result is marked with an underline.

CBF DenseFuse FusionGAN NestFuse U2Fusion SwinFusion YDTR CDDFuse TgFuse SMCFusion

SSIM 0.8514 0.9441 0.7540 0.9353 0.9492 0.9087 0.8995 0.9533 0.9381 0.9554
Qabf 0.3206 0.3714 0.1075 0.4982 0.4551 0.5689 0.2231 0.5877 0.4376 0.5914
CC 0.5635 0.7061 0.5856 0.6515 0.6939 0.6466 0.6844 0.6602 0.6265 0.6982
SCD 0.6863 1.2448 0.7542 1.6123 1.3732 1.4260 1.0559 1.5996 1.2618 1.6134
EN 6.0748 6.3291 6.0773 6.7267 6.1951 6.7375 6.0346 6.9460 6.7244 6.8988
FMIpixel 0.9181 0.9192 0.8992 0.9212 0.9146 0.9166 0.9174 0.9209 0.9274 0.9381

4.5 Ablation Studies and Discussion

Single-Modality Cross Interaction Module Analysis. To explore the
impact of the SCIM on image feature aggregation and interaction communi-
cation, we designed a control group experiment. In the control group experi-
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Table 3. Quantitative results of the six metrics on RoadScene dataset. The top-
performing result is indicated in bold, and the second-best result is marked with an
underline.

CBF DenseFuse FusionGAN NestFuse U2Fusion SwinFusion YDTR CDDFuse TgFuse SMCFusion

SSIM 0.7727 0.8661 0.5005 0.8549 0.8377 0.8742 0.9087 0.8686 0.9318 0.9226
Qabf 0.4492 0.3174 0.1187 0.5105 0.4376 0.4098 0.4611 0.4756 0.4629 0.5525
CC 0.1804 0.3670 0.2239 0.3015 0.3351 0.4466 0.4215 0.3128 0.4087 0.5135
SCD 1.4584 1.8499 1.6581 1.7259 1.7258 1.6903 1.6722 1.7626 1.7102 1.7686
EN 7.0526 6.2592 7.0784 7.2332 6.5712 6.8826 7.1102 7.3140 7.0367 7.2572
FMIpixel 0.8224 0.8599 0.7964 0.8778 0.8535 0.8790 0.8878 0.8644 0.8900 0.8928

ment, after the two sub-networks extract the single-modality features, the mod-
ule is not used for information interaction and aggregation. Instead, the two
single-modality features are directly fused, and the other structures of the net-
work remain unchanged. It can be seen in Fig. 5 that compared to our method,
the images generated by the control group contain insufficient information, the
pedestrians are not prominent, and the edge details of the bushes are also rela-
tively blurry. This suggests that the module is capable of enhancing the repre-
sentational ability of image features and the integration of information.

Table 4. Quantitative results of the ablation study on the MSRS dataset. The top-
performing result is indicated in bold, and the second-best result is marked with an
underline.

SSIM Qabf CC SCD EN FMIpixel

w/o SCIM 0.8797 0.6153 0.5098 1.5982 7.0500 0.8316
w/o SAM 0.8770 0.5367 0.5703 1.5008 7.2179 0.8454
Addition 0.9110 0.6029 0.5423 1.5477 7.1988 0.8767
ours(SMCFusion) 0.9614 0.7040 0.6984 1.7190 7.6335 0.9516

Cross-Modality Complementary Mask Fusion Analysis. To validate
the effectiveness of the cross-modality complementary mask fusion strategy,
we designed addition fusion strategy for comparison with our SMCFuison, and
we named as Addition in Fig. 5. Notably, the only modification made was to
the fusion strategy within the network. By comparing the ablation experiment
results in Table 4, it becomes clear that SMCFusion shows a substantial improve-
ment across all evaluation metrics. This suggests that CCMF more effectively
leverages the complementary information between visible and infrared images,
thereby enhancing the fusion quality.

Semantic-Oriented Attention Modulation Analysis. SAM can embed the
extracted semantic features into the fused features, thereby providing the model
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Fig. 5. Comparison of visual quality in the ablation study for key modules.

Fig. 6. Comparison of visual quality in the ablation study for important loss.

with richer semantic focus points, enhancing the expressiveness of the multi-
modal fusion features at the semantic level, and thus improving the fusion effect
of the model. To verify the effectiveness of this design, we conducted an ablation
experiment comparing the performance of the network model without semantic
features and the complete fusion network integrated with semantic features. The
experimental results in Fig. 5 demonstrate that the fused images produced by
the network incorporating semantic features from visible images offer a more
comprehensive and detailed representation of the scene, with colors and bright-
ness that closely resemble the source images, leading to impressive visual effects.
This further confirms the role and value of the semantic-oriented attention mod-
ulation module.

Color Consistency Loss and Hyperparameter Analysis. For the color
consistency loss, the parameter α is utilized to adjust the level of color correc-
tion and determine the amount of visible information introduced. To investigate
how the value of α affects the fusion outcome, a series of experiments were con-
ducted, with the results displayed in Fig. 6. When α is set to 0, which implies the
absence of color consistency loss, the fusion result tends to favor the character-
istics of the infrared image, leading to a degradation in color. As the value of α
gradually increases, the fused image more comprehensively retains background
information; however, the contrast of thermal targets diminishes. When α is set
to 1.5, a balance between image clarity and contrast is achieved, resulting in a
natural and authentic fusion effect.

Table 5. Segmentation results on the MSRS dataset. The best result is highlighted in
bold.

Background Car Person Bike Curve Car stop Guardrail Color cone Bump mIoU

Infrared 98.085 89.632 69.319 69.650 48.338 61.532 57.340 54.635 65.998 68.325
Visible 98.243 90.110 64.366 69.767 53.182 68.974 74.486 60.495 69.781 72.156
Fuse 98.394 90.183 73.565 70.686 55.646 69.424 76.123 60.960 73.050 74.226
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Segmentation Performance. To explore whether the fused images generated
by SMCFusion can promote the performance improvement of subsequent visual
tasks, we trained the SegFormer [32] model on both the source images and the
fused images separately, and compared the semantic segmentation performance.
Table 5 presents the quantitative results of segmentation. We utilize the mIoU
evaluation metric, a standard in semantic segmentation tasks, representing the
mean intersection and merger ratio. It is evident that SMCFusion effectively
integrates valuable information from the source images, and the modulation of
semantic attention contributes to enriching the semantic content of the fused
images, leading to improved segmentation performance.

5 Conclusion

We propose an infrared and visible image fusion framework named SMCFusion.
To fully integrate local features and global information, we adopt the design con-
cept of parallel feature extraction by CNN and Transformer. The single-modality
cross interaction module focuses on the complementarity between local details
and global objectives, achieving fine interaction between features. The cross-
modality complementary mask fusion strategy is dedicated to mining the comple-
mentary information between images to achieve more comprehensive and accu-
rate fusion. Moreover, the semantic-oriented feature modulation injects seman-
tic information into the fused features, enabling the network to generate fusion
images with more semantic consistency and visual coherence. We conducted
extensive experimental validation on publicly available datasets, and the results
demonstrate that our proposed SMCFusion significantly enhances image fusion
quality and performance when compared to published competitors.
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Abstract. Temporal knowledge graphs (TKGs), consisting of graph
snapshots evolving over time, have attracted substantial research atten-
tion in various areas like recommender systems and relation networks.
Although significant research efforts have been devoted to this field, the
regularity and abruptness of graph evolution make it still challenging
to model temporal dynamics in TKGs. Existing works only character-
ize the short-term evolution due to the limitations of modeling long
sequences, or lack consideration of fine-grained differences between recent
snapshots in time. To tackle the issues, we propose LSEN (Long Short-
Term Evolution Learning Network), an effective model that jointly cap-
tures short-term and long-term evolution patterns in TKGs. By intro-
ducing a short-term and a long-term evolution pattern mining module,
we boost the memorization and generalization of LSEN for TKG reason-
ing. Specifically, the short-term module of LSEN simultaneously consider
the topology structure at each moment and model the chronologically
sequential effect across recent snapshots. In addition, we devise a long-
term module leveraging the frequencies of constrained triple occurrences
to explore long-term evolution patterns in the entire historical sequence.
We conduct extensive experiments on five real-world datasets, and LSEN
achieves state-of-the-art results, demonstrating the significant superior-
ity of our method.

Keywords: Deep learning · Knowledge graph reasoning · Temporal
knowledge graph

1 Introduction

Knowledge Graphs (KGs) [12], which provide a fundamental abstraction to com-
plex network systems by viewing entities as nodes and their relations as edges,
are applicable to numerous downstream tasks [38]. Recently, Temporal Knowl-
edge Graphs (TKGs) [8] have been extensively researched and applied, which
allow for a more elaborate investigation of the underlying dynamics in evolving
graphs. As many real-world systems can be formulated as evolving KGs, TKG
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Fig. 1. Importance of considering both long-term and short-term evolution patterns in
TKGs.

reasoning [16] has achieved inspiring success in various fields like international
relations [13], stock prediction [6], and recommendation systems [31].

Existing works on TKG reasoning typically obtain the structural informa-
tion in each snapshot through GNNs (Graph Neural Networks) [14,30] and use
RNNs (Recurrent Neural Networks) [3,11,22] to capture temporal dynamics in
time-evolving graphs [18,19]. Some works consider encoding the recurrence and
periodicity of interactions [33,37].

Despite the success of previous works, they are subject to significant problems
because of their one-sidedness. Due to the shortcomings of RNNs in processing
long sequences (e.g., gradient vanishing and error accumulation problems) [1,24],
methods using RNNs are less likely to capture long-term evolution patterns such
as the repetition and the regular occurrence of facts. Other sequential models
such as Transformer [29] also only process recent temporal information due to
the computational complexity and memory constraints, and thus cannot include
the full history of sequences. As shown in Fig. 1a, we investigate the proportion
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of historical entities that are recurrent at several moments in TKG datasets. It
can be observed that the repetition of facts is a common phenomenon and has a
certain periodicity. Also, the mean time interval between the last appearance and
the present of recurring entities increases over time, requiring that long-distance
time dependencies based on frequencies should be considered.

On the other hand, models based on temporal feature encoding primarily
focus on general evolution patterns in history and lack the consideration of subtle
variations across moments. For example, in Fig. 1b, it is to be predicted that
entity a will interact with either b or c at moment t. Entity b and entity c have
historically been related to entity a with the same frequency. If the prediction
is made based merely on the repetition frequencies of historical entities, it is
hard to reach an accurate conclusion. But if the structural information of recent
graph snapshots is considered, it is reasonable to perceive that both a and b have
recently interacted with d, and therefore a should more likely be connected with
b at t. This demonstrates that it is also undesirable to consider only long-term
information and ignore recent patterns of evolution.

Recently, some work such as HGLS [36] considers both long- and short-term
patterns of TKGs. However, HGLS ignores the significant importance of rep-
etition frequencies for TKG reasoning. It only integrates long- and short-term
representations through a simple gating mechanism without mining the complex
coupling between them.

Based on the aforementioned insights, we make the first attempt to close
the research gap by proposing a new model, LSEN1 (short for Long Short-
Term Evolution Learning Network), for TKG reasoning. LSEN is capable of
jointly modeling the long-term and short-term evolution patterns of TKGs. In
the whole process, the output of the short-term evolution pattern mining mod-
ule is used as the input of the long-term module. Specifically, after characteriz-
ing the short-term evolution patterns through GNNs and RNNs, LSEN further
improves embeddings by innovatively integrating long-term evolution patterns.
In the depiction of long-term evolution characteristics, LSEN takes full advan-
tage of the frequencies of constrained triple occurrences, i.e., the frequencies
with which entities have been associated with the query quadruple containing
a missing entity. By recording and effectively processing such frequencies, our
model is able to take into account the entire historical information in TKGs.
Through the refinement of short-term characteristics via long-term frequencies,
both long-term and short-term evolution patterns in TKGs are obtained by
LSEN for better prediction. The contributions of this paper are summarized as
follows:

– New Findings. We present the necessity of modeling both long-term and
short-term evolution patterns for temporal knowledge graph reasoning. More-
over, it is essential to utilize the frequencies of interactions.

– New Method. In the proposed model LSEN, we devise specific modules
for modeling short-term and long-term evolution patterns, respectively, and

1 The code of LSEN is available at https://github.com/PasaLab/LSEN.git.

https://github.com/PasaLab/LSEN.git
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integrate them into a unified framework for end-to-end training and learning.
A novel long-term evolution pattern mining module based on constrained
triple occurrence frequencies is designed to improve embeddings. Our model
is able to take into account the entire historical information for TKGs.

– SOTA Performance. We conduct extensive experiments on five real-world
datasets and LSEN achieves the best results among all the comparable base-
lines. The experimental results demonstrate that the proposed method can
improve the prediction performance of TKG reasoning.

2 Related Works

2.1 Static KG Reasoning Methods

To infer missing facts in static KGs, existing works focus on learning representa-
tions of entities and relations through GNNs, tensor factorization [15], and so on
[26]. GNNs are widely applied for reasoning over KGs since they can effectively
capture graph structural information and learn relation-aware representations.
Such approaches include R-GCN [25], VR-GCN [35], CompGCN [28], etc.

2.2 Temporal KG Reasoning Methods

According to how temporal dynamics are modeled in TKGs, recent works on
TKG reasoning can be broadly classified into two categories: models using RNNs
to capture temporal dynamics in time-evolving graphs and models based on
encoding the recurrence or periodicity of events.

Among RNN-based TKG methods, RE-GCN [19] leverages a relation-aware
GCN (Graph Convolutional Network) [14] to model the structural dependencies
of entities and relations within each moment and uses GRU (Gate Recurrent
Unit) [3] to characterize the sequential patterns of evolving graphs. HisMatch
[18] is also RNN-based, which proposes to model entities as queries or candidates
and apply different encoders from the two perspectives.

As a method based on encoding the recurrence or periodicity of events,
CyGNet [37] divides the entities to be predicted into two categories: those that
have been historically related and those that have not. Processing the two types
of entities differently actually distinguishes different entities in the time dimen-
sion by means of statistics. Similar to CyGNet, CENET [33] also distinctively
considers seen or unseen entities as well as relations, and it proposes a contrastive
learning framework to make predictions on TKGs. HIP [10] passes information
from temporal, structural and repetitive perspectives, which are used to model
the temporal evolution of events, the interactions of events at the same time
step, and the known events respectively. EvoKG [23] captures the ever-changing
structural and temporal dynamics in TKGs via recurrent event modeling, and
models the interactions between entities based on the temporal neighborhood
aggregation framework.
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3 Problem Formulation

3.1 Static Knowledge Graph

A static knowledge graph SKG can be viewed as a collection of entities E , rela-
tions R, and facts F . That is, SKG = {E ,R,F}. Each fact in can be represented
by a triple (es, r, e0), where es and eo are entities, and r is the relation type.

3.2 Temporal Knowledge Graph

A temporal knowledge graph can be regarded as a sequence of static KGs at
different time, i,e., T KG = {SKG1,SKG2, · · · ,SKGt}. The knowledge graph at
t is defined as SKGt = {E ,R,Ft}, where Ft represents the set of all facts at t
and each fact is extended to a quadruple (es, r, e0, t).

3.3 Temporal Knowledge Graph Reasoning

Reasoning over temporal knowledge graphs is to predict whether future entities
and relations will co-occur given historical snapshots of knowledge graphs, i.e.,
given {SKG1,SKG2, · · · ,SKGt−1} to predict SKGt. In practical modeling, the
temporal knowledge graph reasoning is to typically predict a missing element
except t in each query quadruple, i.e., (?, r, eo, t), (es, r, ?, t) or (es, ?, eo.t), where
? is the object to be predicted. Entities and relations are treated equally as
elements in each quadruple, and the model generates representations for them.
Therefore, relations can be seen as entities to simplify the problem, and all the
prediction tasks can be considered given a query (es, r, ?, t) to predict ?. We use
|E| = n to denote the number of entities and |R| = m to denote the number
of relations. Input embeddings of entities are denoted as E ∈ R

n×d and input
embeddings of relations are denoted as R ∈ R

m×d.

4 Method

4.1 Overall Process of LSEN

The overall process of the proposed method is shown in Fig. 2. Specifically, all
facts at the same time t in the TKG will be grouped together and constructed
into a graph Gt based on their corresponding entities and relations. Entities are
modeled as nodes, and relations are modeled as edges in the graph. If there
exists a triple like (es, r, e0) at t, two nodes corresponding to es and eo are
connected by an edge of type r and the direction is from es to eo. After the above
processing, the input of the algorithm becomes a sequence of graphs. Accordingly,
the objective of the algorithm becomes to predict Gt given {G1,G2, · · · ,Gt−1}.

The input graphs are sequentially processed by two modules of LSEN: (a) the
Short-term Evolution Pattern Mining Module based on GNN [28] and RNN [3],
and (b) the Long-term Evolution Pattern Mining Module based on the frequen-
cies of constrained triple occurrences. The short-term evolution pattern mining
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Fig. 2. Overall framework of proposed LSEN for TKG reasoning.

module encodes the recent changes. It selects the recent data within a small
time window and uses a GCN [28] to learn the relevance between entities and
relations. Then GRUs [3] are applied to model the changing representations over
time. Given the entity and the relation in a query, the long-term module cal-
culates the probability that all other entities may become the missing element
of the quadruple. The long-term module takes the representations generated by
the short-term module as input. In order to simultaneously take into account
the long-term characteristics of the TKG, the long-term module utilizes the sta-
tistical frequencies of constrained triple occurrences. Finally, LSEN predicts the
state of the TKG at the next moment based on the output probabilities.

4.2 Short-Term Evolution Pattern Mining Module

This module encodes the most recent facts within a small time window, and
the window size is denoted as w. In a typical TKG, the number of facts that
actually appear in a snapshot at each moment is limited, so the corresponding
constructed graphs may contain many nodes with degree 0. This means that
features of the 0-degree nodes remain unchanged at that moment, which should
be considered. Therefore, we add a self-loop to each node and add an additional
learnable vector to the embedding table of relations to represent the self-loop.

Graph Neural Network. After constructing the graph, LSEN applies a graph
convolutional neural network to theconstructed graph to learn the structural
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correlations, outputting representations of the entities at each moment. The
computation procedure of the graph convolutional network [28] is as follows:

xl+1
i,t =

1
√

deg(i)

∑

j∈Ni,t

Wl
1(x

l
j,t − r) +Wl

2x
l
i,t, (1)

where xl+1
i,t denotes the representation of node vi at the (l + 1)-th layer of the

graph convolutional neural network at moment t, and x0
i,0 = ei ∈ E. deg(i)

represents the entry degree of node vi. Ni,t represents the set of neighbors of
node vi in the graph at t. r ∈ R represents the features of the relation between
entities. Wl

1 and Wl
2 are the learnable parameters of the l-th graph convolutional

layer. The entity representations generated by the graph convolutional network
are denoted as: {Xt−w,Xt−w+1, · · · ,Xt−1}, which constitute a time series.

Recurrent Neural Network. To characterize the sequential patterns, the
short-term module introduces GRU [3] to encode the sequences. The specific
computational procedure of GRU is as follows:

rt = σ(Wrxt + bwr +Urht−1 + bur) (2)

zt = σ (Wzxt + bwz +Uzht−1 + buz) (3)

nt = tanh(Wnxt + bwn + rt � (Unht−1 + bun)) (4)

ht = (1 − zt) � nt + zt � ht−1, (5)

where ht is the implicit variable at moment t, xt is the input at moment t, and
ht−1 is the hidden state at moment t−1 or at the initial moment. rt and zt are the
reset gate and update gate, respectively. � is the hadamard product, and σ is the
sigmoid activation function. W∗, U∗ and b∗ are learnable parameters. After the
computation is completed, the output of the gated recurrent unit corresponding
to the last moment t − 1 will be used as the output of the module.

4.3 Long-Term Evolution Pattern Mining Module

As shown in Fig. 2, the long-term evolution pattern mining module based on
the query’s corresponding frequencies of constrained triple occurrences takes the
entire historical data (from G1 to Gt−1) as input. Compared with the short-term
evolution pattern mining module, the long-term module has a longer horizon
and is better able to focus on long-term historical information.

Processing Frequencies of Constrained Triple Occurrences. Given the
entity ei and the relation rj of a query, the long-term evolution pattern mining
module obtains the set O(ei, rj) containing entities that have had a relation rj

with ei, i.e., O(ei, rj) = {ek|(ei, rj , ek) ∈ Ft′ , t′ ∈ [1, t − 1]}. Also, this module
records the frequency of each entity occurrence in O(ei, rj), and the frequencies
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of all entities will form an n-dimensional vector F(ei, rj). Specifically, Fk(ei, rj)
(the k-th dimension of F(ei, rj)) records the frequency of occurrence of the triple
(ei, rj , ek). The frequency corresponding to the entity that is not in O(ei, rj) is 0.
Based on F(ei, rj), the long-term evolution pattern mining module generates two
vectors Fλ(ei, rj) and Fσ(ei, rj) for decoding. Fλ(ei, rj) is computed as follows:

Fλ
k(ei, rj) = fgating(Fλ

k(ei, rj), λ), (6)

fgating(x, λ) = λ · (φx>0 − φx=0), (7)

where the φρ function returns 1 when ρ is true and 0 when ρ is false. λ is a
hyper-parameter used to control the threshold. Fλ(ei, rj) is formed through a
designed gating function fgating. The purpose of Fλ(ei, rj) is to set the elements
of F(ei, rj) greater than 0 to λ and elements equal to 0 to −λ. This further
emphasizes the impact of historical entities on the prediction and reduces the
impact of non-historical entities.

In addition, candidate entities corresponding to different frequencies should
be distinguished. Entities with a frequency of 1 and 10 are significantly different
in their possibilities of establishing a connection with the query. Thus, Fσ(ei, rj)
is generated to distinguish the effects of historical entities with different frequen-
cies (σ is the sigmoid activation function):

Fσ
k(ei, rj) = σ(Fk(ei, rj)). (8)

Calculating Representation Distances. Given the query entity ei and the
query relation rj , the long-term module fuses the corresponding representations
of the two to obtain the query vector and then takes the dot products of the
vector and all candidate entity representations as distances, calculated as:

Z(ei, rj) = tanh(Wc[Hi;Rj ] + bc)HT , (9)

where H represents the evolving representations of all entities output by the
short-term module at each moment. Hi and Rj denote the representations of
the entity ei and the relation rj , respectively. [·; ·] is the concatenation operation
of variables. Wc ∈ R

d×2d and bc ∈ R
d are learnable parameters, where d is the

embedding dimension. In order to better capture the recurrence as well as the
periodicity of interactions in TKGs and to better grasp the evolution charac-
teristics over a long historical period, the module corrects the final prediction
results based on the frequencies of constrained triple occurrences as follows:

P(ei, rj) = Fσ(ei, rj) · softmax(Z(ei, rj) + Fλ(ei, rj)), (10)

where P(ei, rj) represents the probabilities that each candidate entity may have
a relation rj with ei.
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4.4 Model Training and Predicting

The task of temporal knowledge graph reasoning can be seen as a multi-class
classification task, where all the candidate entities of a query q(ei, rj) can be seen
as categories, and entities that actually generate the relations are real labels.
Therefore, we can use the cross-entropy loss function, which is calculated as:

L =
1
B

B∑

i=1

n∑

c=1

yic log (pic) , (11)

where B represents the number of queries (usually the size of a batch during
training). yic is a sign function (outputs 0 or 1) and if the true result of a query
q(ei, rj) is ec, then yic takes 1, otherwise takes 0. pic represents the probability
that entity ec is the result of the query q(ei, rj). All the probability values are
formed into P(ei, rj). When making the prediction, LSEN chooses the entity
corresponding to the largest value of P(ei, rj) as the final prediction epred, i.e.:

epred = argmax(P(ei, rj)). (12)

5 Experiments

In this section, we conduct extensive experiments to evaluate the performance
of the proposed LSEN and other baselines. The environment of experiments,
information about datasets, and the setup of experiments are described in detail.
In addition, we perform ablation studies and hyper-parameter investigations to
comprehensively analyze our method.

5.1 Experimental Setup

Datasets. We use five real-world TKG datasets that are widely used in previous
works to conduct evaluation experiments, including ICEWS18 [13], ICEWS14 [7],
GDELT [17], WIKI [16], and YAGO [21]. ICEWS18 and ICEWS14 take political
events that have taken place internationally for different periods. GDELT is a
collection of human social behaviors extracted from a news media. WIKI and
YAGO are subsets of Wikipedia history and YAGO3. In order to have a fair com-
parison with baselines, we follow [33,37] to use an 8:1:1 (train-val-test) temporal

Table 1. Statistics of datasets.

Dataset Entities Relations Train Edges Valid Edges Test Edges Granularity Time Granules

ICEWS18 23,033 256 373,018 45,995 49,545 24 h 304
ICEWS14 12,498 260 323,895 – 341,409 24 h 365
GDELT 7,691 240 1,734,399 238,765 305,241 15 min 2,751
WIKI 12,544 24 539,286 67,538 63,110 1 year 232
YAGO 10,623 10 161,540 19,523 20,026 1 year 189
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split for datasets except ICEWS14. ICEWS14 is only divided into a training
set and a testing set since the original ICEWS14 is not provided with a vali-
dation set. All these settings are the same as in previous works. The statistical
information of each dataset after delineation can be seen in Table 1.

Baselines. To evaluate the effectiveness of our method, we compare LSEN
against 16 prominent KG reasoning models, including static and temporal
approaches. Static KG reasoning methods include TransE [2], DistMult [34],
ComplEx [27], R-GCN [25], and ConvE [4]. Temp [32], RE-NET [13], TLogic
[20], RE-GCN [19], TANGO-TuckER [9], TANGO-Distmult [9], CyGNet [37],
EvoKG [23], HIP [10], TSHGE [5], CENET [33], and HGLS [36] are selected as
TKG models.

Evaluation Metrics. We use MRR and Hits@N as evaluation metrics in our
experiments, as they are standard metrics for evaluating TKG models, and this is
consistent with baselines for comparison fair. MRR is short for Mean Reciprocal
Ranks, which is the average of the reciprocal of the rank of ground truth. Hit@N
is the proportion of correct predictions ranked within the top N. The higher the
rank of the probability corresponding to the correct entity, the higher will be
the values of MRR and Hits@N.

Implementation Details. The results are reported under a widely adopted
filtering setup [10,13,33,37]. We run all experiments using PyTorch and on a
Tesla V100 GPU. As for default configurations of LSEN, we use the Adam
optimizer with a learning rate of 0.001, a weight decay ratio of 0.00001, a batch
size of 1024, and an embedding dimension of 200. The dropout rate of GNN
layers is set to 0.2, and the dropout rate of the long-term module is set to 0.4.
For the settings of baselines, we use their recommended configurations.

5.2 Quantitative Results

Table 2 shows the link (event) prediction experiment results of our LSEN and
15 up-to-date baselines. Here the results are under the traditional offline set-
ting (i.e., models are trained only using the training set). Almost all temporal
knowledge graph methods outperform static knowledge graph methods, so it is
inappropriate to directly apply existing static knowledge graph algorithms to
TKG prediction and the temporal information must be taken into account. Our
proposed LSEN achieves the best performance compared to other competitive
methods and the performance improvement on WIKI and YAGO datasets is
remarkable. The experimental results prove the effectiveness of LSEN, and show
that comprehensive consideration of the short-term and long-term evolution pat-
terns of TKGs is necessary to improve prediction performance.
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Table 2. Performance (in percentage) for the temporal link prediction task. The best
and second-best results in each column are highlighted in bold font and underlined.
LSEN outperforms other baselines on all datasets.

Method ICEWS18 ICEWS14 GDELT WIKI YAGO
MRR Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

TransE 17.56 2.48 26.95 18.65 1.12 31.34 16.05 0.00 26.10 46.68 36.19 49.71 48.97 46.23 62.45
DistMult 22.16 12.13 26.00 19.06 10.09 22.00 18.71 11.59 20.05 46.12 37.24 49.81 59.47 52.97 60.91
ComplEx 30.09 21.88 34.15 24.47 16.13 27.49 22.77 15.77 24.05 47.84 38.15 50.08 61.29 54.88 62.28
R-GCN 23.19 16.36 25.34 26.31 18.23 30.43 23.31 17.24 24.96 37.57 28.15 38.66 41.30 32.56 44.44
ConvE 36.67 28.51 39.80 40.73 33.20 43.92 35.99 27.05 39.32 47.57 38.76 50.10 62.32 56.19 63.97
TeMP 40.48 33.97 42.63 43.13 35.67 35.67 37.56 29.82 40.15 49.61 46.96 50.24 62.25 55.39 64.63
RE-NET 42.93 36.19 45.47 45.71 38.42 49.06 40.12 32.43 43.40 51.97 48.01 52.07 65.16 63.29 65.63
TLogic 37.52 30.09 40.87 38.19 32.23 41.05 22.73 17.65 24.66 57.73 57.43 57.88 1.29 0.49 0.85
RE-GCN 32.78 24.99 35.54 32.37 24.43 35.05 29.46 21.74 32.01 44.86 39.82 46.75 65.69 59.98 68.70
TANGO-TuckER 44.56 37.87 47.46 46.42 38.94 50.25 38.00 28.02 43.91 53.28 52.21 53.61 67.21 65.56 67.59
TANGO-Distmult 44.00 38.64 45.78 46.68 41.20 48.64 41.16 35.11 43.02 54.05 51.52 53.84 68.34 67.05 68.39
CyGNet 46.69 40.58 49.82 48.63 41.77 52.50 50.29 44.53 54.69 45.50 50.48 50.79 63.47 64.26 65.71
EvoKG 29.67 12.92 33.08 18.30 6.30 19.43 11.29 2.93 10.84 50.66 12.21 63.84 55.11 54.37 81.38
HIP 48.37 43.51 51.32 50.57 45.73 54.28 52.76 46.35 55.31 54.71 53.82 54.73 67.55 66.32 68.49
TSHGE – – – 36.22 26.26 40.73 – – – 39.59 – 44.24 57.33 – 64.89
CENET 51.06 47.10 51.92 53.35 49.61 54.07 58.48 55.99 58.63 68.39 68.33 68.36 84.13 84.03 84.23
HGLS 32.72 21.04 37.35 46.99 34.74 53.05 23.56 18.03 30.16 49.63 39.62 55.17 59.02 48.17 65.73
LSEN 52.12 48.37 52.95 54.82 51.15 55.53 59.47 57.44 59.38 76.13 74.01 76.82 88.07 86.70 88.61
Improv. +1.06 +1.27 +1.03 +1.47 +1.54 +1.25 +0.99 +1.45 +0.75 +7.74 +5.68 +8.46 +3.94 +2.67 +4.38

5.3 Ablation Study

We further conduct ablation studies on ICEWS18, ICEWS14, and YAGO with
offline setting to validate the effectiveness of critical modules of LSEN. The
results are shown in Table 3. Details of the ablation study are as follows:

– w/o long: We remove the long-term evolution pattern mining module of
proposed LSEN and denote this variant as w/o long.

– w/o short: We remove the short-term evolution pattern mining module of
proposed LSEN and denote this variant as w/o short.

– w/o freq: We set all the co-occurrence frequencies unchanged when evaluat-
ing LSEN on the testing set and denote this variant as w/o freq.

– w/o loop: We remove all the self-loops from graph snapshots and denote
this variant as w/o loop.

– w/o GRU: We remove the GRUs int the short-term evolution pattern mining
module of LSEN and denote this variant as w/o GRU.

– w/o gating: We don’t use the fgating function in the long-term evolution
pattern mining module of LSEN and Fλ(ei, rj) is the same as F(ei, rj).

– w/o Fσ: We remove Fσ in the long-term evolution pattern mining module
of LSEN. In this case, Eq. 10 will not include Fσ(ei, rj).

It can be seen that all components of the model are beneficial to the prediction
performance and indispensable. As the two main components of LSEN, the short-
term and long-term evolution pattern mining modules have the greatest impact
on the prediction performance (as indicated by the results of w/o long and
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Table 3. Ablation study of LSEN. Statistics are presented in percentages.

Ablation ICEWS18 ICEWS14 YAGO
MRR Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

w/o long 36.94 28.03 40.92 51.63 47.68 52.47 66.66 58.2 71.88
w/o short 50.42 47.25 50.75 53.28 50.11 53.56 71.03 69.47 71.40
w/o loop 42.82 39.72 43.22 51.85 48.43 52.44 82.06 81.47 81.92
w/o GRU 51.91 48.16 52.61 54.55 50.99 55.26 85.90 84.78 85.89
w/o freq 51.87 47.97 52.67 54.38 50.61 55.22 87.58 86.03 88.31
w/o gating 34.55 29.76 35.77 30.74 26.89 31.53 81.88 80.64 82.15
w/o Fσ 51.63 47.68 52.47 54.60 50.78 55.42 87.13 85.96 87.40
LSEN 52.12 48.37 52.95 54.82 51.15 55.53 88.07 86.70 88.61

w/o short), which reflects the significance of considering both short-term and
long-term evolution patterns for TKGs.

In the design of the short-term evolution pattern mining module, the self-
loop needs to be included in the composition, as demonstrated by the results
of w/o loop. A 0-degree node indicates that the entity is not involved in any
event, which is also a necessary characteristic. GRUs can more accurately model
the temporal patterns, which can be indicated by the results of w/o GRU.

As for the long-term evolution pattern mining module, the results of w/o
freq indicate that the frequencies of constrained triple occurrences in the long-
term module are beneficial for portraying long-term features. The variant w/o
gating results in significant performance degradation of LSEN on ICEWS18 and
ICEWS14 datasets, which highlights the importance of distinguishing between
historical and non-historical entities. Also, Fσ is indispensable as it can distin-
guish the influence of candidate entities with different frequencies. All of the
above observations can be verified in the ablation experiments.

5.4 Hyper-parameter Investigation

Impact of the Time Window Size. We conduct experiments to analyze
the effect of the time window size selected by the short-term module, which is
shown in Fig. 3. For ICEWS18, ICEWS14, and GDELT, the model achieves best
performance on these datasets with time window size between 2 and 5. While
for WIKI and YAGO, the model performs best when the time window is chosen
as 1. The granularities of ICEWS18, ICEWS14, and GDELT are at the minute
or hour level, so the information of adjacent moments is closely relevant, and
the larger time window can aggregate more short-term information and better
capture the evolutionary characteristics. The interval time of data in both WIKI
and YAGO is in years, and a time window of length 2 provides an excessive
duration. A large time window may introduce too many irrelevant historical
facts, so a window size of 1 results in a good performance.
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Fig. 3. Performance (%) of LSEN with different time window sizes.

Impact of the Number of GNN Layers. Experimental results on the
effect of the number of GNN layers are presented in Fig. 4. The performance on
ICEWS18, ICEWS14, and GDELT datasets show a similar trend with increas-
ing GNN depth. The performance is optimized at about 2 layers, after which it
decreases with more layers. On the YAGO and WIKI datasets, the model per-
formance improves as the number of GNN layers increases, reaching an optimum
at around 6–7 layers. The numbers of entities in the five datasets are close, but
the numbers of relations in WIKI and YAGO are much smaller than the other
three datasets. So the WIKI and YAGO datasets are more like entity-dominated
datasets. Deeper GNNs generate higher-order representations and lead to better
performance in entity-dominated datasets, which may be the reason why deeper
GNNs are needed in WIKI and YAGO.

Fig. 4. Performance (%) of LSEN with different numbers of GNN layers.

Impact of λ in the Long-Term Evolution Pattern Mining Module. We
investigate the effect of the hyper-parameter λ, as demonstrated in Fig. 5. λ con-
trols how much importance the model places on long-term historical information,
and either too large or too small λ will degrade the model’s performance. For
datasets with small temporal granularity like ICEWS18, ICEWS14, and GDELT,
larger λ are more appropriate because the data with a certain window size has a
smaller time span and cannot capture sufficient historical features, thus requir-
ing more emphasis on long-term historical information. As for WIKI and YAGO
with large temporal granularity, the data with a certain time window size has
a large time span and contains more long-term historical characteristics. Too
large λ values may introduce historical noise instead, so the weight needs to be
reduced. Therefore, for ICEWS14, ICEWS18, and GDELT, λ is set to 2. For
WIKI and YAGO, λ is set to 1.
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Fig. 5. Performance (%) of LSEN with different λ values.

6 Conclusion

In this paper, we proposed LSEN, a temporal knowledge graph reasoning method
that can simultaneously capture long-term and short-term evolution patterns of
TKGs. To express the recent and fine-grained evolution patterns, the short-term
evolution pattern mining module of LSEN applies GCN to capture structural
information in graphs and uses GRU to model the sequential patterns across
snapshots. The long-term evolution pattern mining module of LSEN takes into
account the frequencies of constrained triple occurrences. Extensive experiments
show that LSEN can achieve the best performance of TKG reasoning.
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Abstract. Inspired by the success of Transformers in Computer vision,
Transformers have been widely investigated for medical imaging seg-
mentation. However, most of Transformer architecture are using the
recent transformer architectures as encoder or as parallel encoder with
the CNN encoder. In this paper, we introduce a novel hybrid CNN-
Transformer segmentation architecture (PAG-PVTUnet) designed for
efficiently building a strong CNN-Transformer encoder. Our approach
exploits attention gates within a Dual Pyramid hybrid encoder. The
contributions of this methodology can be summarized into three key
aspects: (i) the utilization of Pyramid input for highlighting the promi-
nent features at different scales, (ii) the incorporation of a PVT trans-
former to capture long-range dependencies across various resolutions,
and (iii) the implementation of a Dual-Attention Gate mechanism for
effectively fusing prominent features from both CNN and Transformer
branches. Through comprehensive evaluation across different segmenta-
tion tasks including: abdominal multi-organs segmentation, infection seg-
mentation (Covid-19 and Bone Metastasis), microscopic tissues segmen-
tation (Gland and Nucleus). The proposed approach demonstrates state-
of-the-art performance and exhibits remarkable generalization capabili-
ties. This research represents a significant advancement towards address-
ing the pressing need for efficient and adaptable segmentation solutions
in medical imaging applications.
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1 Introduction

Medical imaging segmentation plays a crucial role in diagnosing, assessing sever-
ity, and monitoring progress in various medical conditions [23]. Despite signifi-
cant advancements in utilizing machine learning for medical imaging segmenta-
tion, several challenges persist in developing efficient segmentation approaches.
These challenges include limited labeled data availability, which is a laborious
and error-prone task [5,23]. The ultimate goal remains to devise a generalized
approach for different medical segmentation tasks. However, achieving efficiency
across various medical imaging segmentation tasks remains challenging due to
the high variability among diseases, ranging from single classes to multi-classes,
and from disease to organ segmentation. Consequently, many approaches are
tailored to specific tasks, limiting their applicability to other tasks.

In the last decade, Convolutional Neural Networks (CNNs) have emerged
as the primary approach for medical imaging segmentation [4,5,7,11,23]. How-
ever, CNNs are predominantly adept at extracting local features, thereby over-
looking long-range dependencies, which are crucial for modeling global contex-
tual features. Transformers have demonstrated high capability in encoding long-
range dependencies, leading to their integration into segmentation architectures
either as pure architectures or hybrid ones combined with CNNs [7,11,23,28,31].
However, existing architectures often utilize transformers as single or parallel
encoders alongside CNN encoders [7–9,29,31,32,37], indicating limitations in
efficiently combining transformer and CNN features.

To address this, we propose revisiting attention gates to build a stronger
encoder, introducing our Dual-Attention Gate. Unlike conventional attention
gates originally designed to select prominent features from the encoder during
decoding [16], our Dual-Attention Gate selects prominent features between CNN
features via an input pyramid and from the transformer branch via the main
CNN feature path. This results in a more compact main path.

The paper introduces a novel approach called PAG-PVTUnet, which com-
bines Transformer and CNN architectures using Dual-Attention Gates. These
gates aim to extract significant feature regions and merge features from both
CNN and Transformer models. The encoder structure of PAG-PVTUnet con-
sists of three branches. The first branch undergoes contraction through four
pyramid levels using convolutional blocks, producing features that act as a gat-
ing signal for highlighting prominent features in the second branch. The second
branch, termed the main branch, focuses on extracting features from the input
data. Simultaneously, the features from the main branch are used to highlight
important features in the third branch, which utilizes Transformer architecture.
The attention features from both branches are concatenated to form the new
main branch features for the subsequent level. Overall, the proposed approach
aims to capture both local and global features through attention mechanisms,
resulting in a comprehensive representation of the input data.

In summary, the main contributions of this work are:
– Introduction of a novel hybrid architecture for medical imaging segmentation,

which seamlessly integrates CNN, Transformers, and a fusion branch encoder.
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– Enhancement of the Att-Unet attention gate through our proposed Dual-
Attention Gate. This refinement involves redesigning its structure, reposition-
ing it within the encoder, and optimizing its functionality within the fusion
objective.

– Demonstration of the remarkable capability of our approach to achieve state-
of-the-art performance across a diverse range of medical imaging segmen-
tation tasks, including organ scans segmentation, infection detection, and
microscopic tissue segmentation (Fig. 1 shows examples of the considred seg-
mentation tasks).

This paper is organised as follows: Sect. 2 highlights the related works. In
Sect. 3 the proposed approach is described. Section 4 illustrates the evaluated
datasets and tasks. Section 5 depicts and analyzes the obtained results and abla-
tion study. In Sect. 6 models size and inference time are discussed. Finally, Sect. 7
concludes this paper.

2 Related Works

In recent years, Convolutional Neural Networks (CNNs) have achieved state-of-
the-art performance in medical image segmentation, particularly following the
proposition of the U-Net architecture by Ronneberger et al. in 2015 [21]. Since
then, numerous variants such as Attention U-Net (Att-U-Net) [16], U-Net++
[36], and ResU-Net [34] have emerged, each aiming to enhance segmentation per-
formance. The U-Net architecture, characterized by an encoder-decoder struc-
ture with skip connections, has proven effective in preserving fine-grained details
through feature concatenation. On the other hand, attention mechanisms have
been widely investigated for medical imaging segmentation. One of the most
famous attention mechanisms is the Attention Gate (AG), proposed by Oktay
et al. in 2018 [16], which integrates attention into U-Net after the skip connec-
tion, producing a variant known as Att-U-Net. The main objective of Att-U-Net
is to highlight salient regions in encoder features using decoder features. How-
ever, the efficacy of attention gates can vary, prompting the introduction of our
approach: the Dual-Attention Gate, integrated into the encoding phase, lever-
aging Pyramid features, CNN features, and Transformer features to enhance
feature extraction and emphasize prominent regions.

Despite the great success of CNNs in medical imaging segmentation, their
main shortcoming lies in their weakness in capturing long-range dependencies, as
CNNs are primarily focused on extracting local features [8,23,37]. On the other
hand, Transformers, renowned for their ability to capture long-range dependen-
cies in sequences, have shown promising performance in medical imaging tasks,
including classification, detection, and segmentation [9,23,29,31,32]. In segmen-
tation, both 2D and 3D transformer-based approaches, such as Fat-Net and
U-Transformer, have showed promising performance by fusing CNN and Trans-
former components to enhance segmentation accuracy [8,19,32].

The integration of CNN and Transformer blocks into single architectures
has been a focal point, particularly in the encoding phase [8,9,29,31,32,37].
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Various encoder configurations have been proposed, including solely
Transformer-based encoders [8,37], parallel CNN and Transformer encoders with
subsequent fusion [9,32], and CNN encoders followed by Transformer blocks
[29,31]. However, many existing approaches lack robust connectivity between
Transformer and CNN features, indicating a gap in feature integration. To
address this, our approach introduces a novel encoder architecture incorporat-
ing Pyramid features, CNN features, Transformer features, and Dual-Attention
Gates, aiming to significantly enhance feature fusion and improve segmentation
performance.

Fig. 1. Examples of Medical Imaging Segmentation, the first, second and third rows
represent the input image, ground truth and the prediction of our approach, respec-
tively. First, second, third, fourth and fifth columns depict abdominal multi-organ
segmentation, Covid-19, Bone Metastasis, Gland, and Nucleus, respectively.

3 Proposed Approach

Our proposed Pyramid Dual-Attention Gate PVT Unet (PAG-PVTUnet) has
three encoder branches and a Unet-like decoder as shown in Fig. 2. The detailed
architecture is illustrated in Fig. 3.

As shown in Fig. 2, the encoder of our proposed architecture consists of four
main components: (i) a Pyramid Vision Transformer (PVT-v2), (ii) a pyramid
representing the input image with four levels, each level followed by convolution
blocks (P1ConvB, P2ConvB, P3ConvB and P4ConvB), (iii) a main encoder
path that merges the PVT features and the main encoder features using Dual-
Attention Gates, and (iv) a classic Transformer (Base ViT) serving as the final
stage of encoding.
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Fig. 2. Our proposed PAG-PVTUnet architecture.

3.1 Pyramid Encoder

The pyramid encoder branch aims to provide convolutional features at four lev-
els of the input image pyramid, which are subsequently utilized in the spatial
gate attention mechanism. The image undergoes transformation into a pyramid
with four levels, each level being resized separately. There are four pyramid lev-
els, each with a pyramid input (P1, P2, P3, and P4) derived from the input
image (I). These pyramid levels generate pyramid feature maps (Pf1 , Pf2 , Pf3 ,
and Pf4) using pyramid convolutional blocks (PConvB), which consist of double
convolutional blocks (DConvB). Notably, the first pyramid level contains one
DConvB, whereas the fourth level incorporates a cascade of four DConvBs, as
shown in Fig. 4. Additionally, as depicted in Fig. 4.a, the DConvB comprises two
3×3 convolutional blocks and a residual skip connection that uses a 1×1 convo-
lutional kernel to match the input number of channels Cin to Cout. The output
of the two 3 by 3 kernels is summed with the features of the skip connection.

These pyramid feature maps play a crucial role in maintaining spatial atten-
tion awareness across all main encoder layers. They serve as gating signals for the
main encoder path, facilitating the integration of spatial attention information
throughout the encoding process.

3.2 Main Encoder: Attention Fusion

As shown in Fig. 3, the input image is fed to both the Transformer and the
main encoder branch. For the Transformer branch, we utilize PVT-v2-Li [30],
which was designed for a progressive shrinking pyramid and a spatial-reduction
attention. This makes the PVT flexible for learning multi-scale and high-level
features, similar to the CNN encoder design. For the main branch, we start with
a double convolution module as depicted in Fig. 4.a. From this point, it hier-
archically merges the current features of the main branch and the Transformer
features using a dual-gate attention mechanism (explained in the next section).
The first level of the main branch is fused with the Transformer first stage fea-
tures through the proposed Dual-Attention Gate. This attention fusion process
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Fig. 3. The detailed description of our proposed PAG-PVTUnet approach.

is performed in the main branch for four levels. At each level the corresponding
features of Transformer stage, pyramid levels, and previous main branch features
are combined.

Upon the completion of the fourth fusion, the resulting features (x4) are
concatenated with the features from the previous level (x3) in the main encoder.
These are then fed into a classic ViT (ViT Base) with a spatial resolution of
14×14, corresponding to 196 tokens. The output features from the ViT (x6) are
subsequently passed through a dual convolution module. The resulting features
(x7) are then forwarded to the decoder. Finally, the decoder of the proposed
PAG-PVTUnet consists of four stages and follows a conventional architecture,
with skips provided by two levels of features from the main encoder.

3.3 Dual-Attention Gate

The Dual-Attention gates play a crucial role in providing an effective fusion
mechanism for the Transformer features at four different stages and the fea-
tures of the main encoder branch with attention provided by the pyramid level
convolutional features. As depicted in the Fig. 5, this module has three inputs:
Transformer features, the previous main branch level features, and the features
associated with the corresponding pyramid level. The module consists of two
classical Attention Gates (AG). The first AG considers the signal and the cur-
rent features as input, while the second AG considers the current features as the
signal and the lower pyramid feature as the gate. The outputs of both AGs are
then concatenated to form the signal in the main Encoder, which is used in the
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Fig. 4. Detailed representation of the convolutional blocks used in our proposed PAG-
PVTUnet architecture.

Fig. 5. The proposed Dual-Attention Gate, left the general structure and the right is
the detailed one.

skips to decoder levels. Each module incorporates Max pooling and Up sampling
to match the spatial resolution of all three input features.

In summary, the main encoder branch receives the output of the convolution
block at the input image of resolution H×W , and then four Dual-Attention gates
are utilized to obtain the encoded features, which is passed through DConvB to
extract the next level features of the main branch. Both Dual-Attention Gate and
DConvB are used to fuse then extract higher features, respectively, constructing
a strong encoder for medical imaging segmentation.

4 Datasets and Tasks

For abdominal organ segmentation, we utilized the Synapse multi-organ seg-
mentation dataset, which has emerged as a benchmark dataset for evaluating
the performance of medical imaging segmentation approaches in recent years.
Following the precedent set by many state-of-the-art works, we adopted the
training and validation splits introduced in the TransUnet paper [7]. In sum-
mary, the Synapse dataset consists of 30 abdominal CT scans introduced first
hand in the MICCAI 2015 Multi-Atlas Abdomen Labeling Challenge and it has
the pixel level annotation of 8 abdominal organs (aorta, gallbladder, spleen, left
kidney, right kidney, liver, pancreas, spleen, and stomach).

For infection segmentation tasks, we focused on the multi-class segmentation
of Covid-19, specifically Ground Glass Opacity (GGO) and Consolidation, along
with Bone Metastasis (BM) segmentation. These tasks present significant chal-
lenges due to the variability in infection shape, position, intensity, and type. For
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Covid-19 segmentation, we followed the methodology outlined in [3,5] and uti-
lized two datasets from [20]. In total, we used 879 slices for training and 50 slices
for testing. Among the training slices, 345 and 272 slices contained GGO and
Consolidation infection types, respectively. The remaining slices without infec-
tion were included to enable the models to learn more features about healthy
tissues. For BM segmentation, we utilized the BM-Seg dataset [1], employing the
same data splits as in [1]. The BM-Seg dataset comprises 23 CT-scans, each cov-
ering one of multiple organs depending on the spread and primary cancer (e.g.,
lung, breast). In total, the dataset contains 1517 slices, and we employed a five-
fold cross-validation strategy to evaluate the performance of the segmentation
models.

For Gland and Nuclear segmentation tasks, we utilized two distinct datasets:
the Gland segmentation dataset (GlaS) [24] and the MoNuSeg dataset [12],
respectively. The GlaS dataset comprises 165 images specifically designed for
gland segmentation tasks. On the other hand, the MoNuSeg dataset consists of 44
images tailored for nuclear segmentation tasks. Following the evaluation scheme
proposed in [28], we conducted three iterations of five-fold cross-validation for
each task. This approach ensures robust evaluation by splitting the dataset into
five subsets, using each subset as a validation set once while training on the
remaining four subsets. The results are corresponding to the mean and standard
deviation of the three runs, where each run result corresponds the five folds
cross-validation results.

Table 1. Comparison on Abdominal Multi-Organs Segmentation. DSC and HD95 are
the average dice score and 95% Hausdorff distance of the 8 classes, respectively. The
fourth column to the last show the Dice-score (DSC) for each class.

Architecture Average Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

DSC↑ HD95↓
U-Net [21] 74.68 36.87 84.18 62.84 79.19 71.29 93.35 48.23 84.41 73.92

Att-Unet [16] 75.57 36.97 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95

V-Net [15] 68.81 – 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.98

TransUnet [7] 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62

MTUnet [29] 78.59 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81

UCTransNet [28] 78.23 26.75 – – – – – – – –

TransClaw U-Net [28] 78.09 26.38 85.87 61.38 84.83 79.36 94.28 57.65 87.74 73.55

ST-Unet [33] 78.86 20.37 85.68 69.05 85.81 73.04 95.13 60.23 89.15 72.78

Swin-Unet [14] 77.58 27.32 81.76 65.95 82.32 79.22 93.73 53.81 88.04 75.79

VM-UNet [22] 81.08 19.21 86.40 69.41 86.16 82.76 94.17 58.80 89.51 81.40

TransCeption [2] 82.24 20.89 87.60 71.82 86.23 80.29 95.01 65.27 91.68 80.02

Ours 83.43 15.82 89.67 68.89 86.74 84.88 95.87 68.75 92.01 80.66
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5 Experiments and Results

5.1 Experimental Setup

To produce our experiments, we mainly used PyTorch [18] library for deep learn-
ing. Each architecture is trained for 100 epochs with an initial learning rate of 0.1
and Adam optimizer. The batch size is set to 16 images. The used machine has
NVIDIA RTX A5000 GPU with 24 GB of memory, 11th Gen Intel(R) Core(TM)
i9-11900KF (3.50GHz) CPU and 64 of RAM. Three types of active data aug-
mentation are used; random rotate with an angle between −35◦ and 35◦ with a
probability of 10% and random Horizontal and vertical Flipping with probability
of 20% for each.

5.2 Results

Tables 1, 2, 3, and 4 summarizes the comparison results with the state-of-the-art
architectures in Synapse, BM-Seg, Covid-19, and GlaS and MoNuSeg
datasets, respectively. These results show the superiority of our approach over
the state-of-the-art architectures.

For the Synapse dataset results (Table 1), we selected comparison
approaches that followed the same evaluation splits as [7]. Comparing with the
TransUnet architecture, considered as the baseline for the Synapse dataset, our
architecture demonstrated superior performance with improvements of 5.95%
and 15.87 for Dice-Score and HD95, respectively. This indicates the efficacy of
our approach in leveraging both Transformer and CNN features through the
proposed Dual-Attention Gate.

Furthermore, our architecture surpassed state-of-the-art methods in terms of
both average Dice-Score and HD95 metrics, demonstrating superior performance
across all segmented classes. However, it is noteworthy that our approach did
not achieve the highest segmentation performance specifically for the Gallbladder
class.

In the BM segmentation comparison, we present the results obtained by
comparing our method with the competing approaches outlined in the dataset
paper [1] and four recent transformer-based architectures: SwinUnet [6], MTUnet
[29], MISSFormer [10], and UCTransNet [28]. Our proposed approach showcased
superiority over these architectures (see Table 2).

Moreover, the lower performance of Transformer-based architectures, such as
SwinUnet and MTUnet, raises concerns about their ability to generalize across
different tasks, especially for infection segmentation tasks. Infection segmen-
tation tasks involve high variability in shape, type, position, and intensity of
infections, which may cover only a small portion compared to the background.

In contrast, our approach exhibits a high ability to segment infection regions
due to the rich features extracted and combined during the encoding phase.
Additionally, the proposed Dual-Attention Gate effectively highlights prominent
parts through multi-scale feature maps, making it well-suited for detecting infec-
tion regions.
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Table 2. Comparison on Bone Metastasis Segmentation. F1-S, DSC and IoU are F1-
score, Dice-Score and Intersection over Union, respectively.

Model F1-S↑ DSC↑ IoU↑
U-Net [21] 79.46 72.26 65.93

AttUnet [16] 79.41 71.76 65.86

Unet++ [36] 79.74 71.99 66.31

AttUnet++ [13] 80.28 72.36 67.06

SwinUnet [6] 61.09 39.17 44.01

MTUnet [29] 58.59 44.30 41.45

MISSFormer [10] 81.44 70.42 68.73

UCTransNet [28] 83.62 73.88 71.85

Hybrid-AttUnet++ [1] 82.27 75.70 69.89

EDAUnet++ [1] 83.67 77.05 71.92

Ours 85.01 79.70 73.92

Table 3 provides a comprehensive summary for Multi-classes Covid-19
segmentation results. This Table includes the results of our proposed approach
and its comparison with three baseline CNN architectures (U-Net, Att-Unet, and
Unet++), four state-of-the-art approaches for Covid-19 segmentation (CopleNet
[27], AnamNet [17], SCOATNET [35], and EMB-TrAttUnet [5]), and four recent
Transformer-based medical imaging segmentation approaches (SwinUnet [6],
MTUnet [29], MISSFormer [10], and UCTransNet [28]).

Our analysis revealed that Transformer-based approaches exhibit limited gen-
eralization ability, achieving performance close to that of baseline CNN archi-
tectures. Additionally, a significant performance gap was observed between the
segmentation of the two classes, primarily due to the minor presence of Con-
solidation compared to GGO, both in appearance and distribution within the
lung. Remarkably, our proposed approach achieved the best performance, effec-
tively reducing the gap in segmenting both classes compared to the comparison
approaches. This highlights our method’s exceptional capability to accurately
highlight infection regions throughout all encoding blocks, leveraging the pro-
posed Dual-Attention Gates.

Following the evaluation protocol and comparing the performance with the
results obtained in [28], Table 4 presents a comprehensive comparison of our
approach with the state-of-the-art methods for microscopic segmentation tasks,
specifically Gland and Nucleus segmentation. From these results, it is evident
that our proposed architecture outperforms the state-of-the-art methods, achiev-
ing the best performance in both Gland and Nucleus segmentation tasks. This
further confirms the efficiency and versatility of our approach in various medical
imaging segmentation tasks.
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Table 3. Comparison on Multi-classes Covid-19 Segmentation. F1-S, DSC and HD95
are F1-score, Dice-Score and 95% Hausdorff distance, respectively. GGO and Con are
the two types of Covid-19 infection known as Ground-Glass Opacity and Consolidation.

Architecture Average F1-S DSC

F1-S↑ DSC↑ HD95↓ GGO Con GGO Con

U-Net [21] 48.58 32.79 35.69 65.81±1.26 31.35±12.96 50.13±1.31 15.45±5.66

Att-Unet [16] 51.92 34.85 35.84 64.81±1.89 39.04±6.81 50.44±1.35 19.26±3.55

Unet++ [36] 48.51 41.48 44.06 65.69±1.29 31.31±6.67 51.65±4.12 31.31±6.67

CopleNet [27] 54.64 31.355 39.04 60.44±1.54 29.70±10.29 46.25±3.13 16.46±4.76

AnamNet [17] 48.53 34.875 34.78 65.10± 3.56 31.97±6.12 51.69±4.8 18.06±4.61

SCOATNET [35] 45.07 37.06 30.99 65.77±3.28 43.52±1.67 50.80±4.63 23.32±2.07

SwinUnet [6] 47.47 31.11 39.42 62.74±2.63 32.2±6.68 42.46±2.61 19.77±3.87

MTUnet [29] 42.30 30.60 37.50 57.83±2.57 26.78±7.39 42.97±2.78 18.24± 4.56

MISSFormer [10] 56.70 39.79 42.08 65.66 ±3.06 47.75±4.77 51.57±4.01 28.02±2.72

UCTransNet [28] 58.33 41.41 34.67 67.46±2.97 49.21±4.27 53.42±4.24 29.41±3.48

EMB-TrAttUnet [5] 65.16 48.18 27.47 70.06±0.03 60.26±0.92 59.14±0.87 37.23±0.97

Ours 68.71 51.03 24.22 73.12±0.37 64.30±0.90 60.38±0.94 41.68±0.98

Table 4. Comparison on Glas and MoNuSeg Segmentation datasets.

Ex Architecture GlaS MoNuSeg

DSC IoU DSC IoU

1 U-Net [21] 85.45±1.3 74.78±1.7 76.45±2.6 62.86±3.0

2 Unet++ [36] 87.56±1.2 79.13±1.7 77.01±2.1 63.04±2.5

3 AttUNet [16] 88.80±1.1 80.69±1.7 76.67±1.1 63.47±1.2

4 MRUNet [26] 88.73±1.2 80.89±1.7 78.22±2.5 64.83±2.9

5 TransUNet [7] 88.40±0.7 80.40±1.0 78.53±1.1 65.05±1.3

6 MedT [25] 85.92±2.9 75.47±3.5 77.46±2.4 63.37±3.1

7 Swin-Unet [14] 89.58±0.6 82.06± 0.7 77.69±0.9 63.77± 1.2

8 UCTransNet [28] 90.18±0.7 82.96±1.1 79.08±0.7 65.50±0.9

9 Ours 94.20±0.55 89.29±0.91 79.62±0.7 66.31±0.6

Table 5. Ablation study on Synapse Dataset and Covid-19. The importance of the
following elements is studied: CNN Pyramid path (Pyr), PVT path (PVT) and the Vit
Transformer (ViT). Mean Dice-Score (DSC) and 95% Hausdorff distance metrics are
used for both tasks plus F1-Score (F1-S) for for Covid-19 task.

Architecture Ablation Synapse Covid-19

Pyr PVT ViT DSC↑ HD95↓ F1-S↑ DSC↑ HD95↓
(1) No Pyramid Path ✗ ✓ ✓ 82.32 21.45 67.84 51.07 23.23

(2) No PVT ✓ ✗ ✓ 79.44 22.92 65.98 50.25 24.05

(3) No ViT ✓ ✓ ✗ 82.39 17.67 68.92 51.69 21.53

(4) PAG-PVTUnet✓ ✓ ✓ 83.43 15.82 68.71 51.03 24.22
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5.3 Ablation Study

The aim of this section is to investigate the significance of the proposed encod-
ing elements within our approach. We examine the importance of the following
components: CNN Pyramid path (Pyr), PVT path (PVT), and the ViT Trans-
former (ViT), considering multi-organ abdominal segmentation (Synapse) and
infection segmentation (Covid-19). The results are summarized in Table 5. In
the first ablation experiment, it is evident that the Pyramid path plays a crucial
role in Synapse segmentation, as removing it leads to a decrease in performance
by 1.11% and 5.63 for DSC and HD95, respectively. Conversely, the results for
Covid-19 segmentation show stable performance despite removing the Pyramid
path.

In the second ablation study, it becomes apparent that Transformer fea-
tures are vital for both tasks. Removing the PVT path results in a significant
decrease in performance on the Synapse dataset, with a reduction of 4% and 7.1
for Dice-score and HD95, respectively. Similarly, for Covid-19 segmentation, the
performance decreases by 2.73% and 0.78% for F1-score and Dice-score, respec-
tively. Regarding the ViT block, the experiments demonstrate its importance
in Synapse segmentation, likely due to the complexity of Synapse having more
classes compared to Covid-19 segmentation. Additionally, the relatively smaller
size of the Covid-19 dataset makes it challenging to train the ViT (base varaint),
leading to potential overfitting. However, the experiments show only a minor
decrease in performance. Overall, these findings underscore the significance of
each component in achieving high performance in both Synapse and Covid-19
segmentation tasks, with particular emphasis on the Transformer features in
enhancing segmentation accuracy.

In Table 6, we investigate the importance of the ViT block in our pro-
posed architecture for binary segmentation tasks (BM-Seg, GlaS, and MoNuSeg
Datasets). The results show that the ViT block can be omitted while preserving
similar performance to PAG-PVTUnet.

Table 6. Ablation study for ViT block importance for binary segmentation (BM-Seg,
GlaS and MoNuSeg Datasets).

Architecture Bone Metastasis GlaS MoNuSeg

F1-S↑ DSC↑ IoU↑ DSC↑ IoU↑ DSC↑ IoU↑
No ViT 84.99 79.28 73.91 94.20 89.26 79.31 65.98

PAG-PVTUnet 85.01 79.70 73.92 94.20 89.29 79.62 66.31

6 Discussion

In this section, we investigate the number of parameters, number of FLOPs,
and inference times of our approach in comparison with others. Table 7 sum-
marizes these comparisons. Notably, our architecture (PAG-PVTUnet) slightly
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increases the number of parameters and FLOPs compared to state-of-the-art
architectures. Compared to baseline architectures such as U-Net and AttUnet,
our proposed architecture has a higher parameter count due to the inclusion of
the Hybrid Encoder, which has proven its efficiency in handling complex and
varied medical imaging segmentation tasks. Despite the larger parameter count,
our approach still delivers competitive inference times. In fact, the inference
time for a batch size of 50 slices is less than half a second, making it suitable for
real-time scenarios.

On the other hand, Table 7 shows that our proposed architecture without
the ViT Base block reduces the number of parameters and FLOPs by half and
has a faster inference time. As depicted in Sect. 5.3, the ViT Base can enhance
performance with more complicated tasks, such as the Synapse dataset, which
contains 9 classes. In contrast, for binary tasks, this block can be omitted while
preserving similar performance. Based on task complexity, the trade-off between
model size, testing time, and accuracy can be decided.

Table 7. Number of parameters and FLOPs of different architectures and Testing
Time for a batch size of 50 images.

Architecture Numb of FLOPs Numb of Params Inf Time

U-Net 10.73 GMac 7.85 M 89 ms

AttUnet 11.05 GMac 7.98 M 102 ms

Unet++ 26.51 GMac 9.16 M 244 ms

CopleNet 12.58 GMac 10.52 M 95 ms

AnamNet 19.48 GMac 15.63 M 117 ms

SCOATNET 29.75 GMac 40.21 M 407 ms

MISSFormer 7.21 GMac 42.46 M 223 ms

SwinUnet 15.12 GMac 41.38 M 160 ms

MTUnet 44.73 GMac 79.07 M 629 ms

UCTransNet 32.94 GMac 66.43 M 423 ms

EMB-TrAttUnet 47.71 GMac 121.13 M 475 ms

TransUnet 24.66 GMac 105.28 M 267 ms

PAG-PVTUnet (No ViT) 17.06 GMac 59.56 M 301 ms

PAG-PVTUnet 33.65 GMac 144.22 M 470 ms

7 Conclusion

In this paper, we introduce a novel hybrid architecture, termed PAG-PVTUnet,
designed for medical imaging segmentation. By seamlessly integrating Convo-
lutional Neural Networks (CNNs), Transformers, and a fusion branch encoder,
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we aim to address the limitations of existing approaches and improve segmenta-
tion accuracy. Our key innovation lies in enhancing the Att-Unet attention gate
with our proposed Dual-Attention Gate mechanism. This mechanism facilitates
the extraction of prominent features from multiple encoder branches, thereby
capturing both local and global contextual information more effectively.

Through comprehensive evaluation across various segmentation tasks, includ-
ing abdominal multi-organs segmentation, infection detection (Covid-19 and
Bone Metastasis), and microscopic tissue segmentation (Gland and Nucleus), our
proposed approach demonstrates state-of-the-art performance and remarkable
generalization capabilities. The utilization of the Dual-Attention Gate mecha-
nism enables efficient fusion of features from different encoder branches, leading
to enhanced segmentation accuracy and robustness across diverse medical imag-
ing datasets.

The contributions of this work extend beyond the development of a novel seg-
mentation architecture. We present a significant advancement towards address-
ing the pressing need for efficient and adaptable segmentation solutions in medi-
cal imaging applications. By seamlessly integrating CNNs and Transformers, our
approach provides a versatile framework capable of handling the high variability
among diseases and segmentation tasks. Furthermore, our methodology lays the
foundation for future research endeavors aimed at advancing medical imaging
segmentation techniques and facilitating clinical decision-making processes.
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Abstract. The rise of sophisticated malware poses a grave threat to computer
security, challenging traditional detection methods. Traditional malware detec-
tion techniques, which primarily rely on feature engineering and defining rules to
identify malware, are gradually failing to comprehensively and accurately detect
emerging malware variants. To address this problem, we proposed an efficient
and accurate novel malware classification model based on capsule network with
WeightedDiscreteWavelet Transform (WDWTCN). In the field ofmalware classi-
fication, datasets are predominantly composed of grayscale images, which present
samples in a single-channel format. To more adeptly capture the key features
within malware samples, WDWTCN incorporates the Weighted Discrete Wavelet
Transform (WDWT) as a preprocessing step for input data. By converting the
single-channel input of grayscale images into a four-channel input, our model
becomes significantly more efficient in extracting feature information from mal-
ware samples. We used ResNet50 as the feature extraction layer of the capsule
network. By integrating global and local features, the model can comprehensively
understand and classify malware, thereby enhancing the detection performance of
malware. Finally, to validate the performance of theWDWTCN, we conducted an
extensive experimental evaluation on three large datasets, i.e., BIG2015, MalImg
and BODMAS. The experimental results showed that WDWTCN achieves sig-
nificant improvements in malware detection accuracy, reaching 98.93%, 99.21%
and 96.14% accuracy, respectively.

Keywords: Malware Classification · Image Processing · Data Preprocessing ·
Wavelet Transform · Capsule Network

1 Introduction

Malware describes software programs designedmaliciously, posing significant threats to
computer systems, network security, and user privacy. According to theWorld Economic
Forum Global Risks Report 2023 [1], malware manifests in various forms, such as
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information leakage, financial fraud, denial-of-service attacks, malicious propagation,
exploitation of system vulnerabilities, cryptocurrency mining, and Internet of Things
(IoT) threats. Cybersecurity Ventures predicted that global cybercrime expenses will
reach $10.5 trillion by 2025 because of data theft from malware [2]. Moreover, KELA
Research Q1 2023 report highlights the phenomenal growth of the ransomware market
[3]. Supply chain attacks and ransomware-as-a-service have emerged as prominent trends
in the industry. Building a reliable and precise malware detection method is vital in these
situations.

Typically, the malware detection process includes malware analysis, feature extrac-
tion, and classification. In malware analysis, dynamic [4] and static analysis [5] are
commonly employed, followed by reversing engineering to represent malware in various
forms [6]. The emergence of deep learning techniques has led to the use of Convolutional
Neural Networks (CNN), Recurrent Neural Networks (RNN), Generative Adversarial
Networks (GAN), etc., as the basic methods for malware detection. These techniques
have significantly advanced malware detection in various fields [7–10]. Researchers
have focused on extracting malware features and converting them into grayscale or
color graphics. For instance, CNN-based classification methods may overlook the spa-
tial location associations of features, resulting in the loss of location information. RNN
encounters challenges such as long-termdependency, gradient vanishing, or having prob-
lems dealing with longer sequences. GAN can suffer from pattern collapse, producing
samples that are heavily concentrated on a few patterns and lack diversity.

To address these issues, Capsule Network (CN) has been proposed for malware
classification [11]. Unlike traditional CNN, CN utilize dynamic routing to establish
connections between lower-level and higher-level capsules. This mechanism ensures
the preservation of spatial hierarchical relationships and the part-to-whole relationships.
By analyzing these connections, we can trace the contribution of specific features to the
final classification, thereby clearly understanding the decision-making process. The use
of capsules encapsulates the positional information of objects (such as location, orien-
tation, and scale), adding a layer of interpretability. For example, if a type of malware
is characterized by a specific structural pattern, the capsules will capture these patterns,
making it easier to understand why the model classifies a sample into a particular cat-
egory. Traditional CN uses only one convolutional layer to extract features. To better
capture the features of the original samples, portray the positional relationship between
each feature, and improve the performance ofmalware classification, this study proposed
an efficient and accurate novel malware classification model based on capsule network
withWeighted DiscreteWavelet Transform (WDWTCN). The main contributions of our
work can be summarized as follows:

• We introduce a method that uses Weighted Discrete Wavelet Transform (WDWT) to
preprocess grayscale images into four-channel inputs. This method improves feature
representation and detail capturing by weighting different frequency bands, high-
lighting important features. By utilizing the multi-channel capability of modern deep
learning models, this preprocessing significantly boosts classification performance.

• Moving away from traditional CN setups, we remove the single convolutional layer
and use ResNet50, purposely leaving out the average pooling and fully connected
layers tomake the network simpler. This updatedmethod greatly boosts the network’s
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skill in identifying and showing complex patterns in the data, thanks to a multilayer
convolutional setup supported by residual connections.

• In the encoder segment, we applied transposed convolution as a replacement for
the traditional CN’s fully connected layers. This approach enables a more effective
feature extraction and better preservation of spatial information, which contributes
to enhanced model performance.

• We conducted experiments on three large malware datasets, i.e., BIG2015, Mal-
Img and BODMAS to demonstrate the performance of WDWTCN in image-based
malware classification tasks.

2 Related Works

2.1 Static Analysis and Dynamic Analysis Methods

Static analysis methods focus on analyzing static features and code of malware samples.
The extracted features were further used to classify the malware into different families.
Patricia and Ganorkar [12] proposed a static analysis approach for malware detection
using various machine learning models, such as Artificial Neural Networks (ANN) and
Support Vector Machines (SVM). Their study found that ANN achieved the highest
classification accuracy of 93.44%, making it the most effective model under memory
constraints. Lee et al. [13] proposed a method for automatically detecting malware
mutants and grouping them for classification. The method utilizes n-gram analysis and
clustering coefficients to improve accuracy. Its objective is to efficiently identifymalware
mutations and categorize them into groups based on code sequence patterns. However,
static analysis techniques rely primarily on manual analysis and do not execute code
[14].

Dynamic analysis detects malware from its operations, analyzing how it behaves and
interacts in real-time [15]. This involves capturing live Windows API function calls [16]
[17]. Advancing these methods, AI-based techniques have emerged, Molina-Coronado
et al. [18] analyze ten influential research works on Android malware detection using
a unified evaluation framework, and Huang et al. [19] innovating with a multi-task
deep learning framework for classifying software. Additionally, Pan et al. [20] inte-
grated hardware tracking with interpretable ML for a balance between precision and
computational efficiency. Despite these advances, dynamic analysis still wrestles with
environment specificity, detection balance, computational demands, and evasion tactics
[21]. Often, it’s augmented by combining static and dynamic analysis, among other
security measures, which, albeit thorough, can be time-consuming [22].

2.2 Image-Based Methods

To minimize the expense of feature engineering and reduce dependence on domain
expert knowledge, Nataraj et al. [23] pioneered the research by transforming malicious
binary files into grayscale images. Jian et al. [24] proposed a visual malware detection
framework with deep neural networks converting executable files into RGB images for
improved detection performance and highlighting the benefits of data augmentation.
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Xiao et al. [25] also proposed a novel visualization method, called Coloured Labeled
Boxes (CoLab), for labeling sections of PE files and highlighting information about the
distribution of sections in the transformedmalware images. Yajamanam et al. [26] found
that GIST descriptors performed quite well in image-based malware classification. Deep
learning has a potential advantage in thatGIST features do not need to be extracted during
the training process.

2.3 CapsuleNet-Based Methods

CN is a deep learning model originally developed by Hinton et al. [27] for its greater
expressiveness in dealing with spatial structure and pose changes. Although CN has
achieved some impressive results in other areas, its use in malware detection is still at a
relatively early stage. Cayir et al. [28] proposed a random CN based on bootstrap aggre-
gation methods for the classification of unbalanced malware, which can achieve 99.56%
accuracy on the dataset, but there are some limitations in this paper. Firstly, the estima-
tion of the number of capsules in the RCNF model is limited, and its implementation
can only contain a maximum of 10 capsules per RCNF model. Secondly, the training
time is long; for the MMCC dataset, it takes 5 h to train the RCNF with 10 capsules.
Pei et al. [29] proposed a version of CN that successfully detected DGA botnets. They
achieved this by using raw pixel values extracted from domain names and extracting
visual features from grayscale images, which helped to improve classification accuracy.
Zou et al. [30] proposed FACILE, a CN designed for malware image classification. The
goal of FACILE is to achieve effective classification with fewer capsules while retain-
ing rich hierarchical information. The network architecture prioritizes the capture of
basic hierarchical features in malware images, which helps to improve the classification
performance.

3 Methodology

3.1 Model Overview

TheWDWTCNarchitecture is shown in Fig. 1, mainly composed of three parts:WDWT,
decoder, and encoder. WDWT and the differences from traditional CN will be explained
in detail in the following sections.

Weighted Discrete Wavelet Transform (WDWT). In our proposed model, we intro-
duced the WDWT in the pre-processing stage. This method involved a two-dimensional
discrete wavelet transform to the sample image, utilizing weighting coefficients. As
a result, the number of channels in the image increased from its original value to four.
During the wavelet transform, the images were decomposed into sub-bands representing
distinct frequency components. Specifically, each wavelet transform generated a low-
frequency sub-band (LL: low frequency on row and column) and three high-frequency
sub-bands (LH: low frequency row, high frequency column; HL: high frequency row,
low frequency column; HH: high frequency on row and column). The wavelet trans-
form depended on the sub-band LL, obtained from the previous level. This iterative
process continued until the desired level was reached, completing the wavelet transform



A Weighted Discrete Wavelet Transform-Based Capsule Network 263

of the image. The value ranged from 1 to the specified level. Weighting coefficients
were assigned to the sub-band LL to enhance the capture of local structures, features,
and overall image description.

Figure 2 shows the distributions of wavelet coefficients in the first-level and second-
level wavelet transforms, with each sub-band containing its respective coefficients. It
can be observed that each wavelet transform can be seen as a sampling of the image
in the horizontal and vertical directions at specific intervals. With each transformation,
the spatial resolution decreases by half, resulting in a sub-band spatial resolution of
compared to the original image after the i-th level wavelet transform.

Fig. 1. The architecture of WDWTCN. (a) the WDWT process, the first step is to perform a high
pass, a low pass, and a down-sampling in the n-direction. Then, the high and low passes, along
with down-sampling, are performed in the m-direction, generate images for four channels. (b) the
encoder, comprising the Resnet50 feature extraction module, the primary capsule module, and the
digital capsule module. (c) the decoder of WDWTCN.

InWDWT, we use Haar as the wavelet basis for image classification tasks. The Haar
wavelet basis has a powerful ability to capture local features while also being able to
capture detailed features of an image at different scales.We first define signals and filters
that would be utilized.

• x[n]: Discrete input signal of length n.
• g[n]: Low-frequency filter.
• h[n]: High-frequency filter.
• ↓ Q: Down-sampling filter, if x[n] is used as input, the output is y[n] = x

[
Qn

]
.

The input signal becomes x[m, n] as shown in Fig. 1 (a). The n-direction is first
processed with high and low pass frequency reduction. The process is as follows:

v1,L[m, n] =
K−1∑

k=0
x[m, 2n − k]g[k] (1)
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v1,H [m, n] =
K−1∑

k=0
x[m, 2n − k]g[k] (2)

Then v1,L[m, n] and v1,H [m, n] are high-passed, low-passed and downgraded fre-
quency in the m direction, and for the LL band multiplied by our weighting factor w as
followed:

x1,LL[m, n] = w ∗ ∑

k=0
v1,L[2m − k, n]g[k] (3)

The WDWT stage enriches feature extraction by utilizing a 4-channel image, allow-
ing more nuanced information capture at multiple scales and orientations. Each channel
reflects distinct image traits, including edges, textures, and corners, through different
wavelet coefficients. The wavelet transform decomposes the image into multiple bands,
securing detail preservation while offering a layered representation, which is critical for
robust image classification.

Fig. 2. The wavelet transform of an image generates a low-frequency sub-band (LL) and three
high-frequency sub-bands (LH, HL, and HH). These sub-bands are obtained by sampling the
horizontal and vertical directions of the image. From the previous LL level, the process can be
repeated at any image level.

Encoder. To preserve spatial information, we utilized Resnet50 without the average
pooling and fully connected layers of the traditional CN. By using Resnet50 as a fea-
ture extractor, the model can more efficiently capture valuable image features, leading
to improved classification performance.We introduced the CoordAttLayer, which was
proposed by Hou et al. [31] between the feature extractor and the primary capsule in the
encoder. The fundamental concept is to use location information to improve the model’s
attention to different location features and can help the network capture the importance of
different locations in an image and consider the influence of location information when
calculating attention weights to perceive fine-grained features and distinguish between
different classes of images.

Decoder. To enable the encoder part to better extract features, preserve spatial informa-
tion, and diminish the number of parameters and computational complexity, we followed
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the DCGAN [32] and used five transposed convolutions, while adding a BN layer after
each transposed convolutional layer and using the ReLU function to elevate the model
performance and enhance the quality of the generated images.

3.2 Capsule Network

Capsule Network establish connections between lower-level and higher-level capsules
through dynamic routing, enabling them to capture spatial hierarchical relationships
and part-whole relationships in data. Lower-level capsules extract basic features, while
higher-level capsules integrate these features to form more complex abstract concepts,
such as an object’s pose information (position, orientation, scale, etc.). This mechanism
makes the model’s decision path more transparent; even without visualization, the basis
for classification decisions can still be explained by analyzing feature contributions. This
is particularly suitable for security application scenarios where understanding and trust
are essential. Below, we will introduce the main components of Capsule Network and
how they operate.

Primary Capsule. The Primary Capsule is a set of capsules located at the lower
level of the mesh. It is used to extract primary features from the input feature map
into capsules. In our model, the feature maps are extracted by Resnet50. Each primary
capsule is connected to a different location in the input featuremap and generates a vector
representing the presence and properties of the features detected at the corresponding
location. The capsule’s output is a vector and then passed to the next layer of capsules for
dynamic routing through the routing algorithm for further learning of the higher-level
feature representation.

Digital Capsule. The Digital Capsule is similar to the Fully Connected Layer in that
it is used to encode spatial information and make the final classification.

Dynamic Routings. To overcome the problems of spatial invariance and pose variation
that exist in traditional CNN, the dynamic routing algorithm is not just a weighting and
updating technique, but a way of communicating and coordinating the flow of informa-
tion between capsules. It establishes the correlation between capsules by dynamically
assigning importance weights between capsules, allowing information to flow along the
most important paths. Similar to a dynamic routing system in traffic management, the
algorithm intelligently adapts and optimizes the communication between capsules based
on the different attributes of the input data. The capsules can interact adaptively, learning
and extracting high-level features.

The input for dynamic routing is a lower-level capsule (Primary Capsule), denoted as
ui ∈ Rk×1. k represents the quantity of neurons in each capsule. Next, a transformation
matrixWij ∈ Rp×k is applied to encode the positional relationships between lower-level
and higher-level features. The output capsule has p neurons, and the input ui ∈ Rk×1 is
transformed into a prediction vector:

u
∧

j|i = Wij · ui (4)

The prediction vectors are then weighted and summed:

sj ← ∑

i
cij · u

∧

j|i (5)
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where sj is the total input to the high-level capsule, cij is theweighting coefficient, i.e., the
coupling coefficient. cij Denotes the probability distribution that capsule i will activate
capsule j, which is learned by the dynamic routing algorithm, a workflow we describe
in detail later. cij Are calculated as follows:

cij = exp(bij)∑
i exp(bij)

(6)

where bij represents the predicted logarithmic prior probability of coupling uj|i with the
senior capsule sj. bij is calculated as:

bij = bij+ + vj · u
∧

j|i (7)

At the beginning of the first dynamic routing, the value of bij is initialized to zero. The
number of routes is also set to 3 times for best results with reference to the experience.
Next, the value of the vector cij is calculated, which is the ownership weight of the lower
capsule i. The use of Softmax here ensures that all ownershipweights cij are non-negative
and that their sum is equal to 1. Since the values of all bij are initialized to zero, the
values of all coefficients cij will be equal after the first iteration. We then compute a
linear combination of the input vectors sj. The vectors from the previous step are passed
through the non-linear squash function to generate the output vector vj, which is passed
to all the higher-level capsules, whose values are updated with each iteration. At the end
of the routing iteration, a high-level capsule vj is output.

Squash. Capsules are specialized groups of neurons that collectively act as information
carriers. Unlike individual neurons, the extent of a capsule in a CN signifies the likeli-
hood or probability that a particular feature is present. To preserve this representation,
squashing is used in the CN instead of the traditional activation function ReLU, which
ensures that short vectors can be compressed to a length close to 0 and long vectors to
a length close to 1. The transformation process can be characterized as:

vj ← ‖sj‖2
1+‖sj‖2

sj
‖sj‖ (8)

Loss Function. In capsule network, a commonly used loss function is Margin Loss,
which is designed to ensure that correctly classified capsules output high values and
misclassified capsules output low values. Since the wavelet transform is capable of
extracting multi-scale features of an image, we have considered adding a reconstruction
error to the Margin Loss to ensure that the wavelet-transformed image can be efficiently
reconstructed and classified by the capsule network. The overall loss function is defined
as follows:

Lloss = Lmargin + αLrecon (9)

where

Lrecon = 1
N

N∑

i=1
xi − x

∧2
i (10)
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The Margin Loss Lmargin is given by:

Lmargin = Tj · max
(
0,m+ − ‖vj‖

)2 + λ
(
1 − Tj

) · max(0, ‖vj‖ − m−)2 (11)

Tj is 1 if the capsule represents the correct class and 0 otherwise, m+ and m− are the
margin thresholds typically set to 0.9 and 0.1 respectively, and λ is a down-weighting
factor typically set to 0.5. The term Lrecon represents the reconstruction error, ensuring
that the capsule network not only classifies the image correctly but also reconstructs it
accurately, enhancing the robustness and interpretability of the model. The inclusion of
the reconstruction loss helps in capturing the intricate details of the wavelet-transformed
image, thereby improving the overall performance of the capsule network in image
classification tasks.

4 Experiments

4.1 Experimental Environment and Dataset

The three datasets we selected for the experiment are BIG2015,MalImg, and BODMAS,
as shown in the Fig. 3. For three malware datasets:

– Nataraj et al. [23] published the MalImg dataset, which comprises 9339 grayscale
images encompassing 25malware families. These families include Rbot!gen, VB.AT,
Fakerean, Instantaccess, and several family variants such as C2Lop.p, C2Lop.gen!g
and Swizzor.gen! etc.,

– Microsoft [33] provided the data science community with an unprecedented malware
dataset: BIG2015, consisting of 10,868 samples covering 9 malware families.

– We also evaluated our model on the BODMAS [34] dataset, which contains 57,293
malware samples and 77,142 benign samples. From this dataset, we selected 14
families, totaling 34,368 samples (with each family containing more than 1,000 sam-
ples) for our experiments. Before training, we converted the binary files into 32x32
grayscale images.

Our experiments were all performed under Intel(R) Xeon(R) CPU E5-2630L v3,
32G RAM, and a GPU of GeForce RTX 3080 Ti-12G. We used PyTorch 1.13.0 and
Python 3.8 to create the training environment, and we used AdamW as the model of the
optimizer. To evaluate the generalization performance of WDWTCN, we used a 5-fold
cross-validation approach. During each round of cross-validation, four of these subsets
(80% of the total) were used to train the model, while the remaining subset (20% of the
total) was used for testing. The parameter settings remained the same as when no cross-
validation was performed, except that the data sets were divided differently. The training
of the model involved 50 epoch, 32 batch size, and an initial learning rate of 0.00038.
The learning rate is also decayed by a smaller percentage at the end of each epoch. The
tuning strategy is as follows, we set α to 0.99.

lr = lr0 · α (12)
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4.2 Baselines

WDWTCN was compared with the following state-of-the-art experimental methods
(bothCNNmethods andCNmethods):MalCaps [35], 1DCNN[36],DenseNet+DEAM
[37], MCFT-CNN [38], MSAAM [39], RCNF [28], ImgConvAttn-Greyscale[40],
Mobilenet V2 [41] and Inception V3[41].

Fig. 3. Samples of malware images sourced from three distinct datasets: MalImg, BIG2015 and
BODMAS.

4.3 Evaluation Metrics

We adopt the standard metrics of Accuracy, Precision, Recall and F1-Score to evaluate
the performance of different malware classification methods as follows:

Accuracy = TP+TN
TP+FP+TN+FN (13)

Precision = TP
TP+FP (14)

Recall = TP
TP+FN (15)

F1 score = 2 ∗Precision ∗Recall
Precision+Recall (16)

TP, TN, FP, FN stand for true positive, true negative, false positive and false negative.

4.4 Results and Analysis

Evaluation of the Weighting Coefficients for WDWT. We set the proportion of
training and test sets to 4:1, and performed five cross-validations for each weighting
coefficient. During the experiments, we only weighted the LL sub-bands. The classical
CN and DWT achieved accuracies of 97.01% and 96.14% on the MalImg and BIG2015
datasets, respectively. With the addition of WDWT, the accuracy of both datasets is
improved as shown in Fig. 4. On the MalImg dataset, the optimal LL coefficient is
0.312, resulting in a 1.1% increase in accuracy. On the BIG2015 dataset, the optimal LL
coefficient is 0.25, resulting in a 0.913% increase in accuracy.
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Fig. 4. The evaluation of various LLweighting coefficients was conducted on theMalImg dataset
and BIG2015 dataset.

Evaluation of WDWTCN as Compared to the Baselines. The WDWTCN was eval-
uated against other baseline models on the MalImg, BIG2015 and BODMAS datasets.
Figure 5 depicts the confusion matrix of WDWTCN on three datasets. Figure 6 illus-
trates the precision, recall, and F1 scores for each malware family on the three datasets.
WDWTCN is excellent at detecting the two families Kelihos_ver3 and Simda. As can be
seen from Fig. 6 (a), the overall performance is very good for the different family classi-
fications. However, there are some errors for the C2LOP family and the Swizzor family,
which could be attributed to the relatively small sample size. Tables 1, 2 and 3 show
the performance comparison of WDWTCN with other major malware classification
methods.

Experimental results on the BIG2015 dataset show that the WDWTCN model
exhibits superior performance in four metrics. In particular, our feature extraction layer
is richer compared to theMalCapsmodel.WDWTCN improves accuracy by 1.15%, pre-
cision by 6.265%, recall by 6.849%, and F1 score by 7.134%. WDWTCN outperforms
1D CNN, DenseNet + DEAM, MCFT-CNN, and MSAAM on all four metrics.

On the other hand, experimental results on the MalImg dataset confirm the robust
performance of the WDWTCNmodel. WDWTCN achieves an accuracy of 99.213% on
this dataset, outperforming other baselinemodels. It also shows significant advantages in
precision, recall and F1 score, reaching 97.176%, 97.648%, and 97.412%, respectively.
These results further demonstrate the superior performance of WDWTCN in malware
detection and classification.

On the BODMAS dataset, our model achieved an accuracy of 96.144 and a recall of
96.129. The model performed well across various families, but its performance on the
sillyp2p family was average, possibly due to the small image size leading to incomplete
feature extraction.

In summary, the WDWTCN model demonstrates exceptional performance metrics
such as accuracy, precision, recall, and F1 score in the malware classification task. By
using WDWT to introduce a multi-scale adaptive attention mechanism, we effectively
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Fig. 5. Confusion matrix of WDWTCN on (a) BIG2015 dataset, (b) MalImg dataset and (c)
BODMAS dataset.

Fig. 6. Precision, Recall, and F1 Score of WDWTCN on (a) BODMAS dataset, (b) MalImg
dataset and (c) BIG2015 dataset.

extracted feature information, increased the granularity of the capsules, and improved
the results of malware detection and classification.

4.5 Ablation Experiments

To investigate the effect of the WDWT, ResConv as the extraction layer of the CN
on WDWTCN, we conducted four ablation experiments. Table 4 shows the accuracy
and F1 values on both datasets, where we refer to the wavelet transform as DWT, the
weighted wavelet transforms as WDWT and ResNet50 as the CN extraction layer as
ResConv. From Table 4, we meticulously analyzed each component of the model to
determine their individual contributions to its overall efficacy. Notably, the DWT com-
ponent achieved an accuracy of 97.017% and an F1 score of 94.258% on the MalImg
dataset, alongside an accuracy of 96.14% and an F1 score of 94.423% on the BIG2015
dataset, establishing a foundational performance benchmark for our experiments. The
enhancedWDWTvariant, building uponDWT, registered a 1% improvement in accuracy
for both datasets by incorporating additional features, indicating a notable enhancement
in model performance attributable to the WDWT element.

Furthermore, the ResConv model recorded an accuracy of 98.72% and an F1 score
of 96.892% on the MalImg dataset, and an accuracy of 98.263% and an F1 score of
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Table 1. Performance comparison between WDWTCN and other baselines on the BIG2015
dataset.

Models Accuracy Precision Recall F1 Score

MalCaps [34] 0.97782 0.92359 0.91463 0.91334

1D CNN [35] 0.96290 − − −
Densenet + DEAM [36] 0.97300 0.95300 0.95400 0.95400

MCFT-CNN [37] 0.98055 0.95114 0.95793 0.95401

MSAAM [38] 0.98200 0.96600 0.96300 0.96400

Ours WDWTCN 0.98932 0.98624 0.98312 0.98468

Table 2. Performance comparison between WDWTCN and other baselines on the MALIMG
dataset.

Models Accuracy Precision Recall F1 Score

MalCaps [34] 0.98190 0.94213 0.95348 0.95679

1D CNN [35] 0.98910 − − −
Densenet + DEAM [36] 0.98500 0.96900 0.96600 0.96700

RCNF [28] 0.98720 − − 0.96610

MCFT-CNN [37] 0.99100 0.97360 0.97300 0.97280

MSAAM [38] 0.99200 0.98000 0.97900 0.97900

Ours WDWTCN 0.99213 0.97176 0.97648 0.97412

Table 3. Performance comparison between WDWTCN and other baselines on the BODMAS
dataset.

Models Accuracy Precision Recall F1 Score

MalCaps [34] 0.94800 0.94700 0.95000 0.94800

SeqConvAttn [40] 0.93330 − − 0.92900

ImgConvAttn-Grey [40] 0.95020 − − 0.96700

Mobilenet V2 [41] 0.92290 0.98020 0.93340 0.97280

Inception V3 [41] 0.91870 0.98780 0.92140 0.95350

Ours WDWTCN 0.96144 0.95914 0.96129 0.96021

96.253% on the BIG2015 dataset, evidencing the advantageous effect of the ResConv
component’s integration. Ultimately, the WDWTCNmodel outperformed with an accu-
racy of 99.213% and an F1 score of 97.412% on the MalImg dataset, and an accuracy of
98.932% and an F1 score of 98.468% on the BIG2015 dataset. These results distinctly
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highlight the substantial impact of each component on the model’s performance, under-
scoring the WDWTCN model’s exceptional capability in processing the MalImg and
BIG2015 datasets.

Table 4. Accuracy and F1 Score of WDWTCN and its variants on the MalImg dataset and
BIG2015 dataset.

Model Variations MalImg BIG2015

Accuracy F1 Score F1 Score F1 Score

DWT 0.97017 0.94258 0.96140 0.94423

WDWT 0.98160 0.96482 0.97050 0.95856

ResConv 0.98720 0.96892 0.98263 0.96253

WDWTCN (WDWT + ResConv) 0.99213 0.97412 0.98932 0.98468

5 Conclusion

We have developed a capsule-based malware classification model named WDWTCN,
which incorporates a WDWT module to accentuate salient frequency information,
thereby enhancing classification accuracy. By integrating ResNet50 in place of the
conventional feature extraction layer used in traditional convolutional networks, our
model achieves amore robust and comprehensive feature representation. TheWDWTCN
model outperforms the baseline across the BIG2015, MalImg and BODMAS datasets.
For future research, we aim to employ automated methods for navigating the optimal
parameter configuration and use generative models to create samples. This will address
the imbalance within software family distributions in the datasets. As for interpretability
of capsule network, we intend to devote a future paper to this issue.
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Abstract. In recent years, researchers have shown significant interest
in various fields such as transportation, social networks, and recommen-
dation algorithms regarding graph neural networks. However, achieving
high-accuracy traffic flow prediction in transportation proves highly chal-
lenging due to its complex spatiotemporal dependencies and nonlinear
traffic patterns. This paper proposes a method that utilizes a Hybrid-hop
attention mechanism to establish spatiotemporal correlations through
the combination of geographical and semantic information between dif-
ferent time steps. To reduce time complexity, we set the receptive field
of attention to neighboring spatial nodes and introduce a dynamic spa-
tiotemporal perception graph driven by data to capture hidden spa-
tiotemporal dependencies. Additionally, we design a multi-scale gated
convolution mechanism to extract dynamic temporal dependencies from
multi-receptive field features of various scales. Experimental results on
public transportation network datasets (METR-LA and PEMS-BAY)
demonstrate the model’s excellent performance.

Keywords: Traffic prediction · Transformer · Data-driven Graph

1 Introduction

With the continuous upgrade of relevant hardware and the popularity of ride-
hailing applications, the scale of traffic data has reached an unprecedented
level. Against this backdrop, data-driven traffic flow prediction has attracted
widespread attention. Accurate and timely traffic prediction not only provides
a reference for urban traffic road planning and emergency traffic management
but also offers travel advice to people, helping them devise better route plans to
improve their quality of life.

In recent years, the rapid development of deep learning has led to its
widespread application in processing spatiotemporal data. For example, com-
pared to traditional methods, the use of Graph Convolutional Networks (GCN),
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can better capture spatiotemporal correlations in non-Euclidean spatial struc-
tures of road networks [8]. However, existing GCN methods mostly rely on pre-
defined graphs constructed from distance metrics or other geographical connec-
tions, resulting in static adjacency matrices. This limitation hinders their ability
to reflect the complex, dynamic spatiotemporal correlations within the road net-
work.

Furthermore, the impact of traffic flow between nodes in time series data is
significant. This is specifically evident in a spatial graph, where one node can
influence another across multiple time intervals, sometimes extending several
jumps away. Previous research has struggled to effectively model these direct
temporal and spatial effects by using different modules and mechanisms for time
and space separately and then integrating them. Clearly, this approach may
not perform well in the situation mentioned above. Therefore, it is necessary to
consider directly integrating these spatiotemporal influences into modeling.

At different time steps, the time series exhibits dynamic pattern similarity
and the interweaving of random irregularities. In terms of similarity, homoge-
neous wide dynamic congestion between morning and evening peaks and stable
traffic pattern deviations between workdays and holidays are evident. Mean-
while, the irregularity is influenced by various factors such as personal driving
habits, adaptive traffic control strategies, and unexpected road events. This will
cause variations in traffic conditions at any given time step, making it impracti-
cal to use the same node update mechanism at different time steps. Therefore,
simultaneous consideration of the time correlation at different time steps is cru-
cial for capturing the dynamic temporal dependence in the road network. Given
the outstanding performance of Transformer architecture in language modeling
[5]and computer vision [14], we posit that employing self-attention mechanisms
to model the dynamic spatiotemporal relationships in the graph will be an effec-
tive approach.

To address the above-mentioned issue, we propose a new neural network
framework called Data-driven Spatiotemporal Aware Graph Hybrid-hop Trans-
former Network (D2HTN) for Traffic Flow Forecasting. Our specific contribu-
tions are as follows:

• The paper introduces a novel Transformer design to simulate different types
of causality in spacetime. By employing the M-GSA Block for joint model-
ing of spacetime, the model is able to better capture the hidden semantics
in the spacetime graph compared to the conventional segregated modeling
approaches.

• Furthermore, we introduce EMAG (Earth Mover Augmented Graph) as a
data-driven graph to explore spatial correlations between nodes in the past,
replacing the static predefined graph.

• The introduction of Hybrid-hop is aimed at reducing model complexity, where
temporal attention is focused on the node’s data at different time steps, while
the spatial attention is constrained within one hop, with additional relevant
points selected based on EMAG to maintain its scalable complexity. Historical
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data of the attended points in spacetime also become part of the attention
scope.

• Additionally, the use of multi-scale gating technology enhances the perception
of temporal dependency across the entire road network by extracting time
features through convolution at multiple scales.

2 Related Work

2.1 Traffic Forecasting

In recent years, with the breakthrough and development of deep learning tech-
niques in various fields such as speech recognition(SR) and image processing, an
increasing number of researchers have also gradually started to apply deep learn-
ing techniques to traffic prediction research work. Deep neural network models
have gained a lot of attention due to their ability to better capture the dynamic
characteristics of traffic data and thus get better results for the target task [16].
The models can be divided into two categories according to whether spatial
dependence is being considered or not. Some methods consider only temporal
dependences, such as feed-forward neural networks to achieve the traffic flow
prediction task. Since recurrent neural networks (RNNs) and their variants long
short-term memory networks (LSTMs) [18], gated recurrent units (GRU) [4]
make effective use of the self-loop mechanism, they learn temporal dependencies
well and obtain better prediction results. However, these models consider tempo-
ral characteristics but ignore spatial dependencies, making the changes in traffic
data unconstrained by the urban road network and unable to accurately predict
the traffic state on the road. Making full use of spatiotemporal correlation is the
key to solving the traffic prediction problem, and many studies have improved
on this basis to further capture the spatiotemporal features in the traffic data to
achieve more accurate traffic flow prediction. Some research [17]employs CNNs
to capture spatial correlations of adjacency in traffic data, which is inspired
by the rapid development of computer vision (CV) research [10]. Subsequent
work has also combined CNN and RNN to model spatial-temporal correlations
simultaneously, obtaining good traffic prediction results, A graph convolutional
recurrent attention network is proposed for traffic flow prediction [3].

In order to better characterize the spatiotemporal features of traffic data,
many studies have improved on this basis to further capture the spatiotemporal
features in traffic data [21] to achieve more accurate traffic flow prediction [11],
etc. A spatiotemporal sequence-to-sequence network is proposed in [2], which
adopts an enhanced diffusion convolutional network and a temporal convolu-
tional network to capture the dynamic spatial correlations and sequential and
periodic temporal correlations. A learnable positional attention mechanism and
a sequential component are designed in [20] to effectively aggregate information
from adjacent roads and model the traffic flow dynamics.
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2.2 Transformer Models

The Transformer was first proposed by Google’s research team in 2017, primarily
for natural language processing tasks. Its design marks a departure from tradi-
tional sequence models that rely on recurrent neural networks (RNN) or long
short-term memory networks (LSTM), as it employs a self-attention mechanism
to globally model sequence information. In recent times, numerous variants of
the Transformer, such as Informer [23], Pdformer [7], and Pyraformer [13], have
been introduced, each tailored to enhance its efficiency in specific domains. In the
field of computer vision and video processing, similar to traffic flow prediction,
modeling attention in both spatial and temporal domains is essential. Vivit [1]
extracts temporal and spatial tokens from videos, while Video Swin transformer
[15] employs a sliding window approach to compute local spatiotemporal atten-
tion within the window. Inspired by these respective studies, we incorporated
some of these methods into our own model. In the realm of traffic prediction,
researchers have begun integrating graph datasets into their models to better
model spatiotemporal information. This has led to the introduction of attention-
based spatiotemporal graph convolutional networks, such as GMAN [22] and
DSTAGNN [9]. They embed spatiotemporal information into each input token,
capturing dynamic correlations using attention mechanisms and learning spa-
tiotemporal features using graph convolution. In response to the limitations of
these methods in directly simulating spatiotemporal effects, our model performs
attention in both spatial and temporal dimensions.

3 Preliminary

3.1 Problem Formulation

Definition 1 (Road Network). We define the road network as G = (V,E,A),
where V = {vi}i=1,2,··· ,N represents the set of N nodes in the road network, E =
{eij} represents the set of edges indicating connectivity between the nodes, and
A ∈ RN×N describes the connectivity of the network. For vi, vj ∈ V , if (vi, vj) ∈
E, then Aij = 1 indicating that corresponding road segments are connected, 0
otherwise.

Definition 2 (Traffic Feature Matrix). On the road network G, at any time step
t, we can use Xt ∈ RN×C×d to represent its traffic state which will be dynamically
changing over time, where C represents the types of traffic parameters (such as
traffic volume, speed, etc.).In this paper, we consider the speed as the feature
(hence C = 1)

Problem Statement(Traffic Foretasting): Given a graph G and feature matrix
of historical T ′ time steps, the goal of traffic prediction is to learn a function F
to predict the traffic volume on the road network G for the future T time steps
X(t+1):(t+T ) ∈ RN×C×T , The mapping relationship is shown as follows:

X(t+1):(t+T ) = F [X(t−T ′+1):(t);G] (1)
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Fig. 1. The overall network architecture of the D2HTN and the specific structure of the
M-GSA Block and M-STGU, especially, when l = 1, Hl−1 is the output of X passing
through the FCS layer.

3.2 Earth Mover’s Distance

The Earth Mover’s Distance (EMD) is a method for measuring the difference
between two probability distributions, representing the minimum cost to trans-
form one distribution into another. This distance is also known as the Wasser-
stein distance. Given the original distribution Pr and the target distribution Pθ,
the Earth Mover’s distance is defined as:

W [Pr, Pθ] =
inf

γ ∈ Π[Pr, Pθ]

∫
x

∫
y

γ(x, y)d(x, y)dxdy (2)

where γ is a joint probability distribution of ∈ Π[Pr, Pθ] with marginal dis-
tributions that exactly match Pr and Pθ, that is

∫
γ(x, y)dy = Pr(x) and∫

γ(x, y)dx = Pθ(y). Here, d(x, y) represents the cost of moving a unit mass
from x to y, often derived from the Minkowski distance. The inf denotes the
minimum value among all possible schemes for transforming a probability distri-
bution Pr into another distribution Pθ, the solution with the smallest cumulative
moving distance, and the cost of this scheme is W [Pr, Pθ].

4 Methodolody

In this section, we introduced the proposed D2HTN and how it addresses
the traffic flow prediction problem through direct spatiotemporal modeling.
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D2HTN adopts the architecture shown in Fig. 1, which primarily consists of
four parts: the Embedding Layer, Geographic-Semantic Attention Layer (GSA
Layer), Multi-scale Spatial Temporal Gated Unit block (M-STGU), and Gate
Fusion.

4.1 Spatial-Temporal Embedding

The Transformer model lacks the ability, possessed by recurrent neural net-
works (RNNs), to capture the relative positional information of elements within
a sequence. Therefore, the introduction of Positional Encoding (PE) becomes
necessary to provide the model with information concerning the positions of
elements in the input sequence, enabling it to better understand the temporal
and spatial relationships among different elements within the sequence. In this
section, we will introduce how to obtain Spatial Embedding(SE∗) and Tempo-
ral Embedding(TE) in the model respectively. Adding the two can obtain the
unique representation STE∗ of different nodes at different time steps, and the
mathematical expression for this process is as follows:

STE∗ = Concat(SE∗, TE) (3)

Spatial Embedding. In terms of spatial embedding, inspired by [6], we adopt
Laplacian Positional Encodings, which utilizes graph structural information to
precompute Laplacian eigenvectors and employ them as the position information
for nodes. Subsequently, we integrate this approach into the Transformer, where
it effectively characterizes the distances between nodes in a graph. The Laplacian
positional encoding formula is given by:

SE∗ = f(Δ, k)

Δ = I − D−1/2AD−1/2 = UT ΛU
(4)

where A is a n × n dimensional adjacency matrix, D is the degree matrix, Λ
and U correspond to the eigenvalues and eigenvectors, respectively. Specifically,
we utilize k smallest non-trivial eigenvectors of a node as its positional encod-
ing. To maintain the same dimensionality as the input X, we apply a linear
transformation to it in the FC Layer and finally obtain the spatial embedding
SE∗.

Temporal Embedding. In terms of temporal embedding, to incorporate
real-world temporal features, we employ a straightforward time-step genera-
tion for temporal embedding. This involves encoding each token with a peri-
odic time encoding from the day-of-week and time-of-day dimensions to create
two-dimensional temporal embeddings. Subsequently, these embeddings are then
also fed into the FC layer to be dimensionally adjusted to be summed with the
positional embeddings, and finally obtain the temporal embedding TE.
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4.2 Earth Mover Augmented Graph

In traffic prediction, accurately extracting the spatial correlations between nodes
is a critical issue. It is widely recognized that the simple traffic flow propaga-
tion between nodes and their neighboring nodes is one source of spatial depen-
dency. However, the spatial dependency between nodes with similar function-
alities, despite being distant, is often overlooked. This is due to the existence
of similar traffic flow patterns, leading to spatial dependency. Capturing such
information is challenging through static graphs.

Inspired by Panaretos and Zemel’s work, We calculate the similarity between
nodes using Earth Mover (EM) distance and then derive EMAG from it. The
traffic data collected for each node in the road network at different time steps
can be seen as discrete data in a multi-dimensional space. We then transformed
the discrete data into probability distributions for each node. The EM distance
measures the minimal effort required to reshape one probability distribution into
another, indicating that smaller EM distances imply a higher similarity between
nodes. Specifically, let’s denote the traffic flow data for N recording points over
D days as X ∈ RN×D×dt , where dt represents the time step of daily records (e.g.,
dt=288 for records taken every 5 min). Each record point represents a day’s traffic
data in the form of a vector. Multiple days of traffic data can be represented as
a sequence of vectors: X = (rn1, rn2, ..., rnD),rnd ∈ Rdt , whered ∈ [1,D]. The
probability distribution at a certain node n can be expressed as:

Pn(Xd = mnd),mnd =
‖rnd‖2∑D

d=1 ‖rnd‖2
(5)

where mnd represents the proportion of traffic volume on a certain day over a
period of time.

After obtaining the probability distribution, we use the Earth Mover’s Dis-
tance (EMD) mentioned in Sect. 3.2 (Eq. 2)to calculate the difference between
the two probability distributions. For example, in the model application, the
EMD from the traffic flow at point n1 on day i to the traffic flow at point n2 on
day j is calculated using the following formula:

EMD(Xn1 , Xn2) =
inf

γ ∈ Π[Pn1 , Pn2 ]

∫
x

∫
y

γ(x, y)(1 − r�
n1,x · rn2,y

‖rn1,x‖2 × ‖rn2,y‖2
)dxdy

(6)

the symbol ’inf ’ represents the infimum,γ is the joint probability distribution,
with the requirement that the marginal distributions are u and v, d(x, y) is
the cost function, in the model, we use the cosine distance between traffic flow
vectors:

cost(rn1,i, rn2,j) = 1 − r�
n1,i · rn2,j

‖rn1,i‖2 × ‖rn2,j‖2
(7)

the marginal distributions u and v as:
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u =
∫

γ(x, y)dy =
‖rn1,x‖2∑D

x=1 ‖rn1,x‖2
v =

∫
γ(x, y)dx =

‖rn2,y‖2∑D
y=1 ‖rn2,y‖2

(8)

After calculating the EMD distances between all pairs of nodes, we obtain a
matrix A′ ∈ RN×N . To simplify subsequent computations, we define AE [i, j] =
1 − a′

i,j . Higher values in AE indicate stronger correlations between nodes i and
j. We also introduce a learnable parameter W to adjust AE , facilitating the
dynamic generation of EMAG. Additionally, we set a hyperparameter θ such
that Nr = N ×θ. In each i node, we set Nr largest values to 1 and the remaining
values to 0 to binaryize AE and obtain Â ∈ RN×N as the graph structure. This
will be used in the subsequent Geographic-Semantic Attention Layer to capture
the attention of Nr nodes most relevant to the given node.

4.3 Multi-scale Geographic-Semantic Attention

M-GSA Block consists of two components, geographic-semantic attention and
M-STGU. These two modules are stacked together to update node embeddings
in both spatial and temporal dimensions simultaneously. Additionally, EMAG
generation and Multi-head attention will be introduced in this section.

Geographic-Semantic Attention. As mentioned in Sect. 4.2 we believe that
the spatial dependency between nodes primarily arises from two sources: first,
the simple traffic flow propagation between adjacent nodes, which we refer to as
Geographic information, and second, from the similarity in functionality between
urban nodes, which we refer to as Semantic information [7]. Thus, in terms of
spatial dependency, we combine both to extract attention. Regarding temporal
dependency, it is evident that the current traffic flow at a node is influenced
by its own flow at the previous time step. Therefore, we extract attention from
the node itself and its previous state. Finally, due to the need for joint modeling
across space and time, we also capture the Geographic and Semantic information
before time t, referring to this approach as Hybrid-hop.

The most direct way to perform joint spatiotemporal modeling, as shown in
Fig. 2, is to calculate attention scores for all node pairs at different time steps
(full attention). However, this approach not only involves high computational
complexity but also introduces significant noise. To extract Geographic infor-
mation, we only consider the neighboring nodes within one hop of the current
node to compute their attention scores. This not only reduces the complexity of
attention but also aligns more closely with real-life logic. The representation of
node i at time step t is computed as follows:

hi,t =
∑

j∈N (i)∪i

∑
t′

α(i, j, t, t′)vt′
j (9)
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where N (i) represents the set of all one-hop neighbors of node i. α(i, j, t, t′)
denotes the attention score between node (t, i) and (t′, j), and vt′

j represents the
projection of ht′,j . We can consider this as a form of masking with full atten-
tion. The node update computation utilizes the multi-head attention mechanism
described in Sect. 4.2. The calculation formula is as follows:

GSA(X,AGeo) = Softmax[(
Q(l)(K(l))T√

DQK

)AGeo]V (l) (10)

For the extraction of Semantic information, we used the EMAG calculated in
4.2 as a mask to filter nodes with the same semantics, that is, having similar
city functions to extract attention. Like extracting Geographic information, we
also use multi-head attention, and just replace AGeo with AEMAG. It is worth
mentioning that the spatial correlation can be captured as the number of layers
is stacked even if the distance between nodes is far away, but relatively speaking,
the T is much smaller than the number of different locations N , so we use full
attention in the time dimension.

Fig. 2. A simple example of unified temporal-spatial modeling demonstrates the dif-
ference between the direct modeling approach (left) and the Hybrid-hop method. The
dashed lines represent the additional attention scores required by the direct modeling
method. Evidently, the Hybrid-hop method is more effective in improving efficiency
and mitigating the influence of noise.

Multi-scale Spatial Temporal Gated Unit. As mentioned in Sect. 4.3 when
using the Hybrid-hop method, there is less available temporal information. To
address this issue, we integrate the logic of time cycles in real life and propose
the incorporation of the M-STGU module, enabling the discovery of time pat-
terns at different scales and capturing both short-term and long-term dynamics
of traffic data. When considering convolutional networks, the selection of the
kernel size is crucial. An excessively large kernel may fail to effectively capture
short-term signals, while an overly small one may result in decreased capture of
long-term signals. In image processing, the inception strategy is often employed,
which involves the use of three kernel sizes (1 × 1, 3 × 3 and 5 × 5) with their
outputs concatenated. However, this strategy may not be entirely suitable for
time signals. In reality, time often exhibits periodicity. Daily life cycles are usu-
ally associated with fixed time slices such as 7, 12, 24 and 60. Thus, suggesting
that the three kernels used in M-STGU are κ1: 1 × 3, κ2 : 1 × 5 (for covering
weekdays), and κ3 : 1 × 7. The specific structure is depicted in Fig. 1, where
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M-STGU’s input denoted as Y (l) ∈ RN×M×C(l)
and its convolutional kernel as

K ∈ R1×κ×c(l)×2c(l) result in Y ′(l) = K ∗ Y (l) ∈ RN×(M−(κ−1))×2C(l)
with dou-

bled channels after convolution. Then we perform gating operations on it, this
can be expressed as:

K ∗g Y (l) = tanh(E) � sigmoid(F ) (11)

where ∗g is gated convolution operator,E and F respectively cut Y (l) in half based
on the channel size. As the receptive field of the gated convolution increases, the
ability to capture long-term temporal dynamics will also gradually improve.
Based on Eq. 11, we propose that Y

(l)
out can be represented as:

Y
(l)
out = M -STGU(Y (l))

= ReLU(Concat(Pooling(K1 ∗g Y (l)),

Pooling(K2 ∗g Y (l)), Pooling(K3 ∗g Y (l)) + Y (l))

(12)

whereK1,K2,K3 represent the use of convolutional kernel κ1, κ2, κ3. The pooling
layer with window size W reduces the feature dimensions to (M − K − 1)/W .
The features are then concatenated to yield a feature dimension of (3M − (κ1 +
κ2 + κ3 − 3))/W = M . This results in an output dimension equal to the input
dimension (where κ1, κ2, κ3, w are hyperparameters) enabling it to be connected
with the input using residual connections. Finally, the output Y is obtained by
applying the ReLU activation function. The use of gated and residual connections
in M-STGU helps alleviate gradient vanishing, maintains non-linearity, and plays
a role in extracting long-term and short-term features.

4.4 Gate Fusion and Output Layer

In the Gate Fusion block of our model, we employ the updating gate method of
GRU. Firstly, we obtain the update gate control signal z through the static graph
G and EMAG. Then, we use z to simultaneously forget and select memories from
hG and hEMAG. The specific calculation is as follows:

z = sigmoid(hG + hEMAG)
hout = (1 − z) � hG + z � hEMAG

(13)

where the range of the gate control signal z is from 0 to 1. when z closer to 1
signifies that more data is retained as memory, while a signal closer to 0 signifies
more data is forgotten. After connecting hout and X through residual connection,
we apply ReLU activation and LayerNorm, and finally map the output through
the FC layer to obtain the predicted value in the future time dimension T ′. In
our experiments, we utilized the widely used root mean square error function as
the loss function for model training. Assuming the predicted value is X̂t′ and
the actual value is Xt′ , the loss is as follows:

Loss(Xt′ , X̂t′) =
1
T ′

t+T ′∑
t′=t+1

|Xt′ − X̂t′ |2 (14)
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5 Experiment

5.1 Datasets

To evaluate the performance of our proposed model, we present experimental
results of D2HTN and competing baselines on two spatiotemporal traffic datasets
in this section. These datasets include METR-LA by [12]and PEMS-BAY which
was published by [19]. The original traffic data is aggregated at 5-minute inter-
vals, and spatial adjacency graphs for each dataset are constructed based on the
actual road network (Table 1).

Table 1. Traffic Forecasting Result Comparison On Different Datasets.

Datasets Methods 30 min 60 min 120 min

MAERMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA ARIMA 5.15 10.45 12.70% 6.90 13.23 17.40% 9.32 15.67 20.64%

LSVR 5.05 10.87 12.10% 6.72 13.76 16.70% 8.94 13.85 18.15%

FC-LSTM 3.77 7.23 10.90% 4.37 8.69 13.20% 6.53 10.61 14.45%

DCRNN 3.15 6.45 8.80% 3.60 7.60 10.50% 6.34 10.28 14.34%

STGCN 3.47 7.24 9.57% 4.59 9.40 12.70% 6.82 11.21 15.26%

ASTGCN 3.31 6.98 9.32% 4.52 9.24 12.62% 6.12 9.76 13.65%

Graph WaveNet 3.07 6.22 8.37% 3.53 7.37 10.01% 5.82 8.63 13.07%

GMAN 3.15 6.78 9.02% 4.03 8.11 11.73% 5.42 8.64 12.92%

PGCN 3.08 6.22 8.38% 3.54 7.36 9.94% 5.69 8.55 13.09%

PM-MemNet 3.03 6.29 8.42% 3.46 7.29 9.97% 5.38 8.28 12.83%

MTGNN 3.05 6.17 8.19% 3.49 7.23 9.87% 6.25 9.83 13.67%

MegaCRN 2.98 6.18 7.96% 3.38 7.23 9.72% 5.18 8.19 12.33%

D2HTN 2.93 6.06 7.53% 3.10 7.03 9.43% 5.06 8.08 11.75%

improvement 0.05 0.11 0.43% 0.28 0.20 0.29% 0.12 0.11 0.58%

PEMS-BAY ARIMA 2.33 4.76 5.40% 3.38 6.50 8.30% 5.13 8.04 11.87%

LSVR 2.48 5.18 5.50% 3.28 7.08 8.12% 4.97 7.76 11.45%

FC-LSTM 2.20 4.55 5.20% 2.37 4.96 5.70% 4.63 7.12 10.38%

DCRNN 1.74 3.97 3.90% 2.07 4.74 4.90% 4.52 7.15 10.08%

STGCN 1.81 4.27 4.17% 2.49 5.69 5.79% 4.72 7.31 10.62%

ASTGCN 1.75 3.98 3.95% 2.32 5.41 5.51% 4.42 7.02 9.76%

Graph WaveNet 1.63 3.70 3.67% 1.95 4.52 4.63% 4.27 6.95 9.05%

GMAN 1.62 3.72 3.63% 1.86 4.32 4.31% 3.89 6.61 8.89%

PGCN 1.62 3.67 3.63% 1.92 4.45 4.55% 3.84 6.37 8.72%

PM-MemNet 1.65 3.76 3.71% 1.95 4.47 4.54% 3.85 6.54 8.79%

MTGNN 1.65 3.74 3.69% 1.94 4.49 4.53% 3.90 6.83 8.95%

MegaCRN 1.60 3.68 3.57% 1.88 4.39 4.41% 3.81 6.41 8.62%

D2HTN 1.56 3.63 3.46% 1.67 3.86 3.85% 3.70 6. 18 8.43%

improvement 0.04 0.05 0.11% 0.21 0.23 0.36% 0.11 0.19 0.19%
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Fig. 3. Performance of different horizons on PEMS-BAY and METR-LA.

5.2 Forecasting Results and Visualization

The performance of D2HTN and ten baseline methods on the METR-LA and
PEMS-BAY datasets at 30 min (6 timesteps), 60 min (12 timesteps), and 120 min
(24 timesteps) are presented in Table 2. Our observations are as follows:

(1) Our model and other deep learning-based models that consider graphical
structures generally outperform traditional time series methods such as
ARIMA, LSVR, and FC-LSTM. This indicates the robust capabilities of
deep learning models, as well as the effectiveness of considering spatiotem-
poral correlations in traffic prediction.

(2) The graph-based models WaveNet and our model outperform the graph
models DCRNN and STGCN, highlighting that a more precise and realistic
graph construction method can capture more genuine spatial dependencies,
thereby enhancing model performance.

(3) GMAN and our model also outperform traditional graph-based deep learn-
ing models, indicating the significance of capturing dynamic spatiotemporal
correlations.

(4) D2HTN achieves nearly the best results among the existing state-of-the-art
models, demonstrating that direct spatiotemporal modeling can significantly
enhance the accuracy of traffic prediction.

In Fig. 3, we display the performance of several models on the PEMS-BAY
and METR-LA datasets at different horizons. The results indicate that the pre-
dictive performance of D2HTN is superior to that of the other models, with
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Fig. 4. Forecasting visualization of D2HTN during 1000 Time Step on PEMS-BAY.

all models experiencing a decline in predictive performance as the forecasting
horizon increases. Although the performance of our proposed model also shows
a decreasing, it remains superior to the other models. We visualized a portion
of the predictions from the PEMS-BAY dataset at a forecasting interval of 12
steps. Figure 4 shows the predictions for a specific traffic node over 1000 intervals,
with a focus on amplifying the complex and fluctuating data. Our model demon-
strates strong predictive performance in periods of low volatility, and accurately
captures the trends in traffic data even during challenging intervals, responding
quickly and accurately to significant fluctuations.

5.3 Ablation Study

To examine the effectiveness of the components in the validation model, disin-
tegration experiments were conducted on the PEMS-BAY dataset. The variants
were named as follows:

• RemE: removal of spatiotemporal node embedding
• RemGSAL: removal of the GSAL module
• RemM-STGU: traditional convolution used to replace the M-STGU module.
• RemEMAG: removal of EMAG as the graph structure in the STA-block in

the model

Table 2 presents the results of the disintegration experiments. We observed
that D2HTN outperforms its variants in three criteria, thus affirming the effec-
tiveness of each component in our model.
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Table 2. Ablation analysis on the PEMS-BAY dataset (12 steps).

Method MAE RMSE MAPE

RemE 1.86 4.35 4.32%

RemGSAL 1.82 4.27 4.21%

RemM-STGU 1.75 4.05 4.03%

RemEMAG 1.70 3.95 3.91%

D2HTN 1.65 3.86 3.85%

6 Conclusion

In this paper, we propose a novel deep learning framework, D2HTN, for traffic
prediction, which differs from existing methods by modeling spatial and tempo-
ral dependencies jointly through cross-temporal-spatial modeling. Our approach
incorporates the EM distance derived from historical traffic data to produce the
EMAG, replacing the static adjacency matrix, thus reducing reliance on prior
knowledge and enhancing the representation of dynamic inter-node relationships
within the road network. Moreover, we integrate the Multi-scale Spatial Tempo-
ral Gating Unit (M-STGU) to further enhance the information mining of time
series data. Comprehensive empirical studies on two traffic datasets demonstrate
that our proposed method outperforms state-of-the-art baselines. Moving for-
ward, we aim to incorporate external factors such as weather and unexpected
traffic incidents into our research to improve prediction results. Additionally, we
plan to integrate more efficient transformer variants into the model to enhance
model efficiency.
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Abstract. Gastrointestinal diseases have become a significant global health issue,
with early diagnosis and timely intervention being crucial for improving human
health. Although endoscopy is considered the primary examination tool, it is
time-consuming and invasive, limiting its widespread implementation. According
to Traditional Chinese Medicine (TCM) theories, the tongue reflects the body’s
physiological and pathological conditions. Therefore, tongue images can be used
to develop a non-invasive and rapid diagnostic model for gastrointestinal dis-
eases. We collected tongue images from 1123 patients using a smartphone and
categorized them into normal and abnormal groups based on their diagnostic
reports. Comparison experiments were conducted using four models: ResNet-50,
RepVGG,Deit-B and CrossViT. To address dataset imbalances, we introduced a
hybrid loss function to enhance the models’ learning for underrepresented classes.
The experimental results indicate that Vision Transformer demonstrates superior
performance in early diagnosis of gastrointestinal diseases. Specifically, the dual-
branch cross-attention model with a hybrid loss function achieved an AUC of 0.87
and an accuracy of 0.84.

Keywords: Gastrointestinal disease · Cross attention · Hybrid loss function

1 Introduction

Gastrointestinal diseases, such as gastritis, peptic ulcer disease, and gastroesophageal
reflux disease, are highly prevalent worldwide. In the United States alone, the annual
medical expenditure on gastrointestinal disorders amounts to 135.9 billion U.S. dol-
lars, with over 3 million hospitalizations and numerous outpatient visits for individuals
initially diagnosed as having gastrointestinal diseases [1]. These diseases not only con-
tribute to increased healthcare costs globally but also have a significant impact on an
individual’s quality of life [2]. Currently, medical professionals rely on endoscopes to
directly examine the lesion area by inserting them into the body through natural cav-
ities. However, endoscopy does have limitations. Many patients with gastrointestinal
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disorders may not exhibit noticeable symptoms in the early stages, and this invasive pro-
cedure carries the risk of mucosal damage, bleeding, and further infection, which can
limit its effectiveness in the early diagnosis and screening of gastrointestinal diseases.
Thus, there is an urgent demand for a rapid, non-invasive screening tool.

Tongue diagnosis is essential in traditional Chinese medicine (TCM) as a diagnostic
technique. Traditional Chinese medicine believes that various organs in the human body
are related to the tongue through the meridians [3], with the closest association between
the tongue image and the spleen and stomach [4]. The human body’s physiological pro-
cesses and pathological changes are reflected in changes to the tongue’s appearance,
which can occasionally occur before other symptoms [5]. Although tongue diagnosis
is valued for its non-invasive, contact-free, and non-traumatic characteristics, its clini-
cal application is limited by its inherent subjectivity, relying heavily on practitioners’
experience and expertise, making it difficult to be used as a large-scale screening tool
[6].

With the advancement of big data and computing technology, artificial intelligence
is becoming increasingly prevalent in the medical field [7]. Integrating tongue images
with deep learning methods may be the most cost-effective, non-invasive, and socially
acceptable approach to early screening and diagnosis. Gholami et al. [8] used a com-
bination of deep neural networks, support vector machines, and deep Convolutional
Neural Network (CNN) to improve the accuracy of gastric cancer diagnosis based on
tongue surface and color features. Zhu et al. [9] applied the Deeplabv3 + network to
tongue segmentation and extracted nine tongue features, used statistical methods and
deep learning to explore the relationship between tongue features and gastric cancer, and
finally designed a gastric cancer prediction framework. Experimental findings suggest
that this framework significantly enhances the early and accurate diagnosis of gastric
cancer patients. Li et al. [10] designed three different deep learning models APINet,
TransFG, and DeepLabV3+ to reduce the conclusion deviation caused by model dif-
ferences. The results showed that all three models proved the effectiveness of tongue
image discrimination, indicating that tongue images can be as a stable tool for gastric
cancer diagnosis. Wu et al. [11] used statistical methods to analyze the relationship
between tongue characteristics and gastroesophageal reflux disease (GERD), and used
the automatic tongue diagnosis system (ATDS) to extract and analyze the characteristics
of the tongue, including tongue shape, color, tooth marks, Tongue coating thickness,
etc. Research has demonstrated that tongue coating thickness and saliva volume in the
spleen and stomach area can reflect gastroesophageal reflux disease, and TCM tongue
diagnosis can provide a non-invasive preliminary diagnosis of GERD.

In this research, we collected tongue pictures of patients with gastrointestinal dis-
eases and healthy people, divided them into normal and abnormal groups, and marked
the tongue area for each original picture. We used two advanced deep learning architec-
tures to build the gastrointestinal disease screening model: convolutional neural network
(CNN) and visual transformer (ViT). In addition, we propose a hybrid loss function to
ensure that the model performs well across categories. The results show that our model
can effectively screen for gastrointestinal diseases, providing strong support for clinical
practice and patient health.
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2 Method

2.1 Data Collection

From September 2021 to June 2022, we collected data on patient information and their
tongue images at the Department of Gastroenterology, Qilu Hospital, Shandong Uni-
versity. All participants had clinical and image information. A retrospective study was
conducted in alignment with the Declaration of Helsinki (2013 revision). The Ethics
Committee of Qilu Hospital, Jinan, Shandong Province, China (Approval No. 2022009)
approved the study and waived the need for individual consent for this retrospective
analysis.

In this study, we collected 3,311 tongue images from 1,123 patients. Participants
were instructed by researchers to capture images by swallowing, opening their mouths
as widely as possible, protruding their tongues, and keeping them relaxed and flat. All
tongue images were captured using the same mobile phone with a resolution of 1000
× 1333 pixels and saved in PNG format. We conducted rigorous quality screening
to exclude foggy, underexposed, overexposed, stained tongue coatings, and abnormal
tongue shapes, resulting in 3,020 images meeting our criteria. The images of tongues
displayed are shown in Fig. 1.

Fig. 1. Tongue image dataset display diagram: (a) Health (b) Helicobacter pylori infection (c)
Bile reflux (d) Reflux esophagitis (e) Gastric erosion (f) Duodenal erosion

2.2 Data Preprocessing and Splitting

The original image contains a large amount of background that is unrelated to the tongue,
making it necessary to segment the tongue area. In this study, the tongue is completely
segmented by manual segmentation, and then the largest circumscribing rectangle of
the tongue contour is calculated, the redundant black background is removed, and the
size is uniformly scaled to 224 × 224, as shown in Fig. 2. All patients were divided into
normal group and abnormal group, in which the abnormal group included Helicobacter
pylori infection, bile reflux, reflux esophagitis, gastric erosion and duodenal erosion,
and the images of the two groups were compared according to 7:3 Split, so that multiple
images of the same patient will not enter the training set and test set at the same time.
The Table1 shows how the datasets were divided.
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Fig. 2. Image preprocessing flow chart.

Table 1. The number of training and testing sets of samples.

Category Training Set Testing Set Total

Normal 617 257 874

Abnormal 1497 649 2146

2.3 Neural Network Architecture

In the field of computer vision, Convolutional Neural Network and Vision Transformer
have become the mainstream Backbone network. Due to the self-attention mechanism,
ViT shows excellent generalization ability on large-scale data sets [10]. In this study, we
chose the two-branch cross-attention ViT model (CrossViT) (Fig. 3) for the examination
of gastrointestinal diseases and compared with ResNet 50 [12], RepVGG [13], Deit-
B [14]. CrossViT [15] is a Transformer architecture designed for image classification
tasks. Its key innovation lies in its two-branch structure and cross-attention mechanism,
which integrates image features at multiple scales to capture details at different scales in
the image, thereby improving the accuracy of classification. Each branch of CrossViT
processes image patches of different sizes. Patch size is generally thought to affect
the accuracy and complexity of ViT, and finer grained patch sizes lead to better ViT
performance but higher FLOPs and memory consumption. The model introduces two
branches, Small-Branch and Large-Branch, with patch sizes of 12 and 16 respectively.
The two branches are fused together through the Cross-Attention module. The Class
token of the last two branches are used for diagnosis. Figure 4 explains the attention
fusion of Large-Branch. It first collects patch tokens from Small-Branch and connects
its own Class token to it. f (·) and gl(·) are size-aligned projection and back-projection
functions respectively. The module executes Cross-Attention (CA) between xlcls and x

′l.
CA performs the following calculation:

q = x′l
clsWq, k = x′lWk , v = x′lWv (1)

A = softmax

(
qkT /

√
c

h

)
,CA

(
X ′l) = Av (2)
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where Wq,Wk ,Wv,∈ Rc×(c/ h) Wq, Wk , Wv ∈ RC×(C/h) are learnable parameters, C
and h are the embedding dimension and the number of heads respectively, in addition,
multiple heads are used and represented in CA ForMCA, the final output y

′l is defined
as follows:

ylcls = f 1
(
xlcls

)
+ MCA

(
LN

([
f 1

(
xlcls

)∥∥∥xspatch
]))

(3)

y1 =
[
g1

(
ylcls

)∥∥∥x1patch
]

(4)

Fig. 3. Transformer architecture for learning multi-scale features with cross-attention.

2.4 Hybrid Loss Function

The tongue image dataset utilized in this study displays a notable category imbalance.
This category imbalance will cause the model to be more biased towards the majority
category, thereby leading to suboptimal performance for the minority category. To miti-
gate this concern, we employ the Large Margin Aware Focal (LMF) loss, defined by the
following formula:

LLMF = αLFL + βLLDAM (5)

LFL = −(1 − pt)
γ log(pt) (6)

lLDAM ((x, y); f ) = − log
ezy−�y

ezy−�y + ∑
j �=y e

zj
,�j = c

1
n 4
j

(7)
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Fig. 4. Cross-attention module for Large branch.

The loss function consists of two parts, where LFL represents Focal Loss [16], as
shown in the formula (6), Focal Loss adds a tuning factor (1 − pt)γ on the basis of
cross-entropy loss, and pt represents the predicted probability of the model, γ is a hyper-
parameter that can be adjusted. A higher value of γ will reduce the loss of easy samples
and make the model focus on difficult samples. Here, we use γ = 1.5.

LLDAM is (Label Distribution awareMarginal Loss) [17]. Here, j represents a specific
class, nj is the number of samples in this class, and C is a constant, set to 0.5.
α and β are hyperparameters, here set to 1. Treat x as a specific sample, y is the

corresponding label of x, zy represents the model output of the specific sample, and
LDAM Loss determines the weight through the category distribution of the data set. A
linear combination of the two loss functions yields efficient results.

2.5 Experimental Setting

The Adam optimizer is used in model training, beta1 is set to 0.9, and beta2 is set to
0.99. The input size of the image is 224× 224. The initial learning rate is set to 5e-5 and
is adjusted during training using a cosine annealing function, with a minimum value of
5e-8. All models use pre-trained parameters on the ImageNet dataset with a batch size of
32. Random rotation, horizontal and vertical flipping, and random changes in brightness,
contrast, and hue are used as data augmentation techniques. The experiment utilizes the
PyTorch framework on Ubuntu 20.04. Model training and testing are performed on an
NVIDIA Tesla V100 32GB GPU.
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2.6 Evaluation Metrics

The model’s performance is evaluated across four distinct metrics.

Recall = TP/(TP + FN ) (8)

Precision = TP/(TP + FP) (9)

F1 − Score = (2 ∗ Precision ∗ Recall)/(Precision + Recall) (10)

Accuracy = (TP + TN )/(TP + TN + FP + FN ) (11)

TP, FP, TN, and FN represent true positives, false positives, true negatives, and false
negatives. Recall was calculated for each category, and the macro average was used to
evaluate overall classification performance. Classification models were assessed using
the area under the curve (AUC) and receiver operating characteristic (ROC) curves,
which plot the true positive rate against the false positive rate. A higher AUC indicates
better model performance.

3 Results

3.1 Cross-Validation Evaluation

We selected four models for comparative analysis: ResNet-50, RepVGG, Deit-B, and
CrossViT. Each model utilized two distinct loss functions: Cross-Entropy Loss (CE
Loss) andLargeMargin aware Focal Loss (LMFLoss). Table 2 presents the classification
results of thesemodels throughfive-fold cross-validation using 2,114 training set images.
Compared to the CNN model, ViT demonstrates superior performance, especially Deit-
B and CrossViT, both achieving an AUC exceeding 0.8. After introducing LMF Loss,
the four models showed varying degrees of improvement: ResNet and.

RepVGG increased their recall by 0.06 and 0.07 respectively, while Deit-B and
CrossViT improved by 0.04 and 0.02 in recall. Among them, CrossViT performed the
best with an AUC of 0.84, an accuracy (ACC) of 0.82, and a recall of 0.76.

Table 2. Cross-validation results of different models.

Model Loss
Function

AUC ACC Recall Precision F1-Score

ResNet 50 CE Loss
LMF Loss

0.76
0.78

0.72
0.74

0.66
0.72

0.79
0.86

0.81
0.81

RepVGG CE Loss
LMF Loss

0.78
0.80

0.75
0.77

0.65
0.72

0.80
0.84

0.83
0.84

Deit_B CE Loss
LMF Loss

0.80
0.81

0.78
0.77

0.69
0.73

0.81
0.81

0.85
0.83

CrossViT CE Loss
LMF Loss

0.83
0.84

0.80
0.82

0.74
0.76

0.86
0.84

0.86
0,87
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3.2 Test Set Evaluation

To further evaluate themodel’s performance and assess the impact of the loss function,we
developed four deep learningmodels using the training set and evaluated them on the test
set. The test set comprised 906 tongue images,with a training-to-test ratio of 7:3. Figure 5
illustrates the ROC curves of the variousmodels, and CrossViT achieved a superior AUC
compared to the other models. Table 3 presents a quantitative comparison of the different
loss functions employed by each model. Results in Table 3 indicate that LMF-Loss
effectively enhancesmodel performance. Specifically, the recall for ResNet-50 increased
from 0.68 to 0.70, while RepVGG and Deit-B saw increases of 0.07, and CrossViT
improved by 0.08. Notably, CrossViT demonstrated the best overall performance with
an AUC of 0.87, ACC of 0.84, Recall of 0.78, Precision of 0.86, and F1-Score of 0.89.

Table 3. The results of different models on the test set.

Model Loss
Function

AUC ACC Recall Precision F1-Score

ResNet 50 CE Loss
LMF Loss

0.77
0.79

0.75
0.78

0.68
0.70

0.81
0.82

0.83
0.86

RepVGG CE Loss
LMF Loss

0.80
0.83

0.77
0.80

0.67
0.74

0.80
0.85

0.85
0.87

Deit_B CE Loss
LMF Loss

0.82
0.85

0.81
0.81

0.70
0.77

0.81
0.87

0.88
0.87

CrossViT CE Loss
LMF Loss

0.84
0.87

0.80
0.84

0.70
0.78

0.81
0.86

0.87
0.89

Fig. 5. ROC curves using different loss functions for four models:(a) Cross entropy loss (b)
Hybrid loss.
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3.3 Ablation Study

We conducted ablation experiments using CrossViT on the tongue image dataset, includ-
ing the selection of hyperparameters for the hybrid loss function and the model’s patch
size. According to Eq. 5, the LMF Loss comprises both Focal Loss and LDAM Loss.
Table 4 shows the influence of the Focal Loss hyperparameter γ on the model’s clas-
sification results. When γ = 0, the Focal Loss simplifies to Cross-Entropy Loss. By
comparing the model’s classification results under various parameters, we found that the
highest classification accuracy is achieved when γ = 1.5. Consequently, we set γ to 1.5
in subsequent experiments.

Table 4. Focal loss ablation experiment.

γ AUC ACC Recall Precision F1-Score

0 0.85 0.81 0.75 0.85 0,87

0.5 0.84 0.81 0.76 0.86 0.84

1 0.83 0.81 0.74 0.85 0.87

1.5 0.87 0.84 0.78 0.86 0.89

2 0.84 0.81 0.75 0.85 0.87

Table 5 presents the selection of hyperparameters α and β for LMF Loss. When =
0, only Focal Loss is used as the loss function, and when α = 0, only LDAM Loss
is employed. The comparative results in the table clearly indicate that a linear com-
bination of these two loss functions enhances the accuracy of the classification model.
Table 6 demonstrates the performance of CrossViT using only the large branch and small
branch. The patch size significantly impacts the accuracy and complexity of ViT. Using
a finer patch size can potentially enhance model performance but will result in higher
FLOPs. Although using a finer patch size can potentially enhance model performance,
it results in higher FLOPs. For instance, setting the patch size for both branches to 12
increases the FLOPs from 8.2 to 13.4 without improving accuracy. Conversely, setting
the patch size to 16 reduces FLOPs from 8.2 to 7.9, with a decrease in accuracy by
0.03. Therefore, setting the patch sizes of the two branches to 12 and 16, respectively,
facilitates the model in learning multi-scale image features while balancing accuracy
and complexity.

Table 5. LMF loss ablation experiment.

α β AUC ACC Recall Precision F1-Score

1 0 0.83 0.81 0.74 0.84 0.87

1 1 0.87 0.84 0.78 0.86 0.89

0 1 0.82 0.82 0.75 0.85 0.88
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Table 6. Ablation experiments with different patch size.

Patch size

Small Large ACC FLOPs(G) Params(M)

12 12 0.84 13.4 42.9

12 16 0.84 8.2 43.1

16 16 0.81 7.9 43.2

4 Discussion

In this study, we divided patients with bile reflux, reflux esophagitis, gastric erosion,
duodenal erosion, and H. pylori infection into disease groups. Bile reflux was iden-
tified by the presence of bile in the stomach during endoscopic examination. Reflux
esophagitis was characterized by mucosal erosion of the distal esophagus due to inflam-
mation. Gastric and duodenal erosions were defined as mucosal injuries or ulcerations
in their respective regions, with all conditions being diagnosed via endoscopy.H. pylori
infection is diagnosed by a rapid urease test, a positive 13C-urea breath test (UBT),
or identification of the organism in a biopsy specimen. All patients have detailed test
reports. After data cleaning, a total of 3020 tongue images were retained. The perfor-
mance of four deep learning models was compared: ResNet 50, RepVGG, Deit-B, and
CrossViT. We combined two loss functions, Focal Loss and LDAM Loss, to address
the issue of data imbalance. Focal Loss assists the model in focusing to difficult-to-
classify samples. LDAM Loss introduces stronger regularization to minority categories
than majority categories. The combination of these two loss functions produced better
results. Finally, CrossViT achieved the best result (AUC = 0.87) using the mixed loss
function. Compared with the cross-entropy loss, the Recall of CrossViT increased by
0.08, indicating that the loss function we proposed can effectively balance the number
of two categories. Furthermore, the unique dual-branch structure of CrossViT realizes
the multi-scale feature fusion of images by dividing the tongue image into patches of
different sizes, and then using the Cross-Attentionmodule to perform vector calculations
on the class token of the master branch and the patch token of the slave branch, resulting
in notable performance advantages.

In recent years, numerous studies on tongue diagnosis have primarily utilized convo-
lutional neural network (CNN) models. Ma et al. [19] developed a screening model for
gastric cancer precancerous lesions based on tongue images using ResNet50. By inte-
grating clinical features with tongue characteristics, they achieved an AUC of 0.76. Zhu
et al. [9] used the EfficientNet network to classify tongue images of gastric cancer and
non-gastric cancer patients, addressing the limitations of traditional image classification
algorithms, including single feature scale, dimension scaling saturation, and poor classi-
fication performance. he experimental results demonstrated that this method accurately
distinguished between gastric cancer patients and non-gastric cancer patients, achieving
an accuracy of 93.6%. Wang et al. [20] collected a dataset of 1548 tongue images using
specialized medical equipment, which professional Traditional Chinese.
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Medicine physicians categorized into tooth-marked tongues and non-tooth-marked
tongues. They manually segmented the tongue regions and constructed both the original
tongue image dataset and the tongue region image dataset, comparing the performance
of ResNet34 and VGG16 on these datasets. The experimental results indicated that, after
segmenting the tongue regions, ResNet34 achieved higher performance with an accu-
racy of 91.47%. Although the above research has made some progress, several issues
remain. Firstly, most studies have utilized specialized collection equipment, which is
bulky and expensive, making long-term monitoring challenging. Our study, however,
eliminates the need for specialized equipment by using smartphones to capture tongue
images, thereby enhancing practical applicability. Secondly, previous studies typically
focused on classifying a single disease, whereas our research is capable of accurately
diagnosing five common gastrointestinal diseases, thereby aiding a larger number of
patients in receiving timely treatment. Furthermore, we introduced a hybrid loss func-
tion specifically designed to address the issue of data imbalance-LMF Loss, which
has not been explored in prior research. LMF Loss incorporates the principle of large
margins and strategies that focus on difficult-to-classify samples within deep learning
frameworks, making it suitable for scenarios that require handling class imbalance and
high discriminative feature demands. Experimental results demonstrated the efficacy of
this loss function in enhancing the model’s ability to learn from minority class samples.
Finally, we conducted comparative experiments using two CNN models and two ViT
models. Given the intricate manifestation of gastrointestinal diseases on the tongue, it
is essential to extract deeper and more comprehensive tongue features for diagnosis.
CrossViT utilizes its self-attention mechanism to establish spatial relationships among
different regions of the tongue, extracting image features at multiple scales to capture
both fine-grained local features and macroscopic global information. This method has
demonstrated superior classification accuracy, validating the efficacy of ViT models in
tongue diagnosis.

Although the model achieved commendable classification results, our research still
has some limitations. First, we collected less data from a single center and a single
race, which may limit the model’s generalizability. Additionally, manual segmentation
of tongue images is employed, which cannot meet the requirements for automated and
intelligent diagnostic systems. In the future, we will focus on collecting more diverse
tongue image datasets and implementing automated tongue region segmentation.

5 Conclusion

Based on the principle of tongue diagnosis in traditional Chinese medicine, We devel-
oped a deep learning-based diagnostic model for gastrointestinal diseases using tongue
images to achieve non-invasive patient detection. The model utilizes tongue images cap-
tured by mobile phones for diagnosis, obviating the need for costly and cumbersome
specialized equipment, thereby reducing unnecessary costs. Moreover, our model can
diagnose multiple common gastrointestinal disorders, not limited to a single disease.
Even for class datasets with uneven sample distribution, our proposed method can con-
sistently maintain high accuracy, thereby facilitating timely and accurate diagnosis for
more patients, ultimately promoting prompt treatment and enhancing patient outcomes.
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Our study demonstrates that when combined with an innovative loss function
and multiscale vision model architecture, the accuracy and practicality of the tongue
diagnosis model for gastrointestinal diseases can be significantly improved.
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Abstract. Transformer has taken computer vision field by storm in
recent years and is becoming increasingly popular in both academia and
industry. However, the remarkable success is largely fueled by training on
massive samples. In real applications, it is not always possible to have suf-
ficient annotated data. When only a small set of labeled data is available
(called tiny dataset), Transformer performs far worse than convolution
neural network (CNN). Moreover, it occupies large memory footprint
during training. Under such circumstances, a deep fusion model has been
created by integrating CNN with Transformer architecture. Specifically,
Conv-stem is implanted in the first stage of Transformer to reduce mem-
ory footprint. Then, the second and the third stages of the Transformer
encoder have been modified into parallel structure with integration of
CNN. Finally, depth-wise separable convolution blocks are appended to
the encoder to enhance feature representation. Extensive experiments
prove the effectiveness of our proposed model, in which it outperforms
other popular methods on tiny datasets by sage margins.

Keywords: Vision Transformer · Convolution Neural Networks
(CNN) · Downstream Vision tasks

1 Introduction

Early in the field of computer vision, many classical algorithms were developed to
recognize features. Those methods were indeed efficient but were subject to many
limitations. For instance, the primitive algorithms can only recognize simple
features (e.g. lines, circles), but cannot reason complex patterns. Later, with the
rapid development of deep learning techniques, computer vision has come to a
new era. The performances of some advanced models have even surpassed human
(e.g. object tracking, face recognition, behavior analysis etc.), which have already
replaced human labor in some areas (e.g. intelligent surveillance, autonomous
driving).

Currently, convolutional neural network (CNN) dominates computer vision
domain. Such success is largely due to the powerful inductive bias of spatial
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15304, pp. 302–318, 2025.
https://doi.org/10.1007/978-3-031-78128-5_20
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equivariance encoded by convolutional layers, which has been the key to strong
visual representations. However, it only aggregates local features instead of mod-
elling global contextual information. Recent work has shown that Transformer
achieves equal or even superior performance than CNN on large scale image
classification tasks. It relies on self-attention (rather than convolution) to estab-
lish long range dependencies across locations, which has aroused great interests
of scholars. However, Transformer has obvious shortcomings: firstly, the clas-
sical Transformer cannot be used as a backbone to implement feature extrac-
tion. Secondly, the spatial-temporal complexity of Transformer is proportional
to the number of input tokens, which results in high computational cost and
undoubtedly impedes its application in high-resolution scenarios. And thirdly,
Transformer lacks inductive bias, it hence only outshines CNN on large scale
datasets.

To better illustrate this problem, we train ResNet-50 and Pyramid Vision
Transformer (PVT) on a tiny dataset (CIFAR-100 with only 50k training images)
using simple data augmentation techniques (padding and random cropping). As
shown in Fig. 1, PVT converges quickly on training set, but it only reaches less
than 60% (of accuracy) on the testing set, suffering overfitting. In comparison,
CNN converges slowly on training set but achieves higher than 70% (of accuracy)
on the testing set. Usually, the best way to remedy overfitting is to train the
model on large scale datasets. However, in reality, the ideal large-scale dataset is
not always available (e.g. medical imaging). Moreover, those models that perform
well on large scale datasets are expected to have the same performances on
tiny dataset is quite demanding [1]. Besides, the training time and inference
speed are also important factors, to train the existing popular ViT based models
on large datasets are extremely time consuming, while lightweight models have
clear advantage. At last, for some real-time applications, the models have to be
implemented on mobile devices, while the heavy ViT models (e.g. ViT-L) could
not.

Fig. 1. Comparison of convergence speeds on training (left) and testing sets (right) on
CIFAR-100 between PVT and CNN

To delve deeper into this issue, we replace the first layer of PVT with CNN
and compare their attention distances after 100 and 200 epochs training (by
following the instruction of [2]). The attention distance is the weighted sum of
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the distance between any 2 tokens and their corresponding attention weights. As
shown in Fig. 2, the attention distances of the attention head in the first 2 layers
are smaller than those in the deeper layers, which means more attention is paid
to the local information in the shallower layers, while the attention is paid to
global information in the deeper layers. After 100 epochs training, the average
attention distances of block_0 and block_1 (blue and orange lines in (a) and
(b)) do not have significant changes. While block_2 and block_3 (green and red
lines in (a) and (b)) have slight decrease, and those of the deeper layers (brown
and purple lines) have almost no changes. This phenomenon indicates that the
model would adjust the attention weights during training in a continuous way.
This adjustment is more evident in the shallower layers due to the introduction
of CNN, and it gradually weakens in the middle layers, since Transformer lacks
the inductive bias so that the model needs more training samples to converge.

Fig. 2. The mean distances of Conv-PVT after 100 (upper) and 200 (lower) epochs
training

In order to improve the general performance of Transformer and to accelerate
the convergence speed on tiny datasets, we make the following 3 contributions
in this paper:

1. Conv-stem is implanted in the first stage of Transformer to reduce the memory
footprint and accelerate the training process.
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2. The second and the third stages of the original Transformer encoder have
been modified into a double branch parallel structure, while CNN is deployed
on one branch to compensate the lack of inductive bias in Transformer, which
also reduces the dependency of Transformer on massive training samples.

3. Depth-wise separable convolution blocks have been appended to the second
and the third stages of Transformer to enhance the feature representation
abilities.

2 Related Works

Transformer was initially proposed to solve machine translation, parallel data
processing and other cross-modal tasks [[3,4]]. It has strong global context mod-
elling ability due to its serialized input structure and self-attention mechanism.
Meanwhile, Transformer also breaks the dominance of recurrent neural network
(RNN) and CNN. Vision Transformer (ViT) [5] is a milestone, which splits input
images into image patches to perform various computer vision tasks and paves
the way for subsequent works. Although some improved models have achieved
appealing performances on ImageNet-1K , they cannot compete with CNN based
models on tiny datasets (e.g. CIFAR-100) due to the lack of inductive bias, and
therefore they need large training samples to acquire preferable visual represen-
tation. Some subsequent works strengthen the local attention of the network
through deploying CNN into neighboring embeddings. Among them, CCT [6]
introduces compact Transformer and replaces class token with sequence pool-
ing for small-scale learning. SL-ViT [7] presents Shifted Patch Tokenization
and Locality Self-Attention which solves the lack of locality inductive bias for
tiny datasets. EdgeViT [8] advised a highly cost effective information exchange
scheme by integrating self-attention and convolutions. Recently, the improve-
ment of Transformer has mainly focused on the following 3 aspects:

The Improvement of Token: The improvement of token in computer vision
domain can be roughly divided into 2 directions. Wang et al. [9] proposes a token
mixer free model architecture and explores the improved learning paradigm
to break the limitation of simple token mixer free backbone. Ryoo et al. [10]
learns to mine important tokens in visual data and models the pairwise atten-
tion between such tokens, which limits the number of tokens within 8 16 so as
to reduce the computation cost. Swin-Transformer [11] is a hierarchical archi-
tecture with shifted windows, which brings greater efficiency by limiting the
computation within non-overlapping local windows. Another direction centers
around tokenization methods. Most of them are still based on ViT, which split
input image into patches to yield tokens through linear projection. T2T-ViT
[12] develops a layer-wise Tokens-to-Tokens (T2T) transformer to progressively
structurize the image to tokens by recursively aggregating surrounding tokens
into one.

Positional Encoding (PE): PE aims to add the positional information of
each token into Transformer in NLP, which can be divided into fixed PE and
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learned PE. The former is based on the phase change of sine and cosine functions.
The latter learns positional embeddings through a set of learnable parameters.
However, it may fail when dealing with high-resolution input images. CVT [13]
advises hierarchical structures containing a new convolutional token embedding
and convolutional Transformer block leveraging a convolutional projection.

Introduction of CNN: CNN and ViT use different ways to enforce geomet-
ric structure priors. Inductive bias is defined as a set of hypothesis about data
distribution and solution space, which is represented as locality and translation
invariance in CNN. However, ViT utilizes the global self-attention to learn the
relationships between global image features. A combination of the advantages
of CNN (in processing local visual clues) and ViT (in processing global rela-
tionship) is potentially a better way for image modelling. DeiT [14] introduces
a teacher-student strategy to Transformer, which relies on a distillation token
to ensure that the student learns from the teacher through attention. ConViT
[15] devises a form of positional self-attention soft convolutional inductive bias
(called gated positional self-attention) to mimic the locality of CNN. BotNet
[16] replaces the spatial convolutions with global attention in the last 2 stages of
ResNet, which achieves surprisingly good results on various vision tasks. CMT
[17] puts forth a new Transformer based hybrid network by taking advantages
of both Transformers and CNN to capture long-range dependencies and model
local features respectively. A Conv-MSA structure is proposed by FlexFormer
[18] to extract local contextual information with linear computational complex-
ity on input image size. SWFormer [19] is a scalable and accurate model for
3D object detection which is built upon sparsity of point clouds and converts
3D points into sparse voxels and windows. MaskGIT [20] uses a bidirectional
Transformer decoder to predict randomly masked tokens by attending to tokens
in all directions. Wang et al. [21] designs a matching operator, combining a
multi-head attention with a modulation module across the inputs. MobileViTc
[22] learns global representations via incorporating convolution blocks. CMT [17]
captures both local and global structural information via local perception unit
and inverted residual feed-forward network.

Vision Transformer on Tiny Datasets: Most existing works focus on middle
sized datasets (e.g. ImageNet), while the performances on tiny datasets are still
less satisfactory. One possible solution is to migrate the pre-trained models to
tiny datasets. Liu et al. [29] introduces self-supervised training strategy and loss
function to train ViT on small datasets. SL-ViT [30] is a cascaded model that
utilizes hierarchical patch partition to recover the high resolution image in a
progressive way. Normally, for the same model the difference in accuracy on
CIFAR-100 is greater than that on ImageNet, the reason is that the fusion of
convolution blocks in the model is more conducive to improving the results on
tiny datasets (compared with updating the attention mechanism or adding new
feature extraction blocks).

Although the above mentioned based methods narrow the gap between ViT
and standard CNN based models on large scale datasets, they still cannot com-
pete with CNN on tiny datasets due to their lower capability in extracting fine-
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grained local feature patterns. Considering this, we integrate CNN into the atten-
tion module of Transformer to enhance its ability in extracting local features so
as to improve the performance of ViT on tiny datasets.

3 Proposed Method

In this work, our goal is to construct an efficient vision Transformer architecture
by taking the advantages of both CNNs and attention mechanisms. In the orig-
inal ViT, the straightforward tokenization of input images leads to ignorance of
local structures (e.g. lines and edges), which therefore needs multiple times more
training samples than CNN to reach comparable results. The fusion of CNN in
the model effectively alleviates such deficiency.

3.1 Overall Architecture

We divide the model into 4 stages according to the design of CNN in order to
generate feature maps of different scales. Between each stage, we down-sample
the image by 2 through the Patch Embedding layer (that consists of convolution
and normalization layers). To implement down-sampling operation, we introduce
Conv-stem to extract fine-grained local features. Besides, in each stage we stack
different number of Transformer blocks, each block has the same structure, which
consists of attention blocks and DSCFFL layers. Unlike, ViT, we deploy parallel
branches in stage 2 and 3 with CNN on one of the branch, which is proven to
be effective for tiny datasets. At the end of the last stage, the feature map is
further processed via a global average pooling layer and a classification layer
with softmax to output different classification results. The overall architecture
of our proposed network and our proposed Transformer encoder are drawn in
Fig. 3 and Fig. 4 respectively.

Fig. 3. The overall architecture of TinyConv-PVT

For a certain input image, we obtain 4 layered feature maps (i.e.multi-
resolution representation) with different resolutions through consecutive down-
sampling operation, which allows us to easily solve downstream tasks such as
object detection and semantic segmentation.

In general, we have made the following two majors changes to the original
Transformer architecture:
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Fig. 4. The structure of our proposed Transformer Encoder

1. Firstly, we replace the first stage of Transformer with 4 layers of CNN to down-
sample the input images by a factor of 8, which accelerates the convergence
speed and also reduces the memory footprint.

2. Secondly, we fuse CNN into middle layers of Transformer and change the
Transformer encoder into a parallel structure, which introduces the inductive
bias of CNN into Transformer to improve the performance on tiny dataset.

3.2 Conv-Stem

We firstly implant 4 layers of CNN in the first stage of Transformer (called Conv-
stem) to generate feature maps of different scales. A Conv-stem is created by
stacking 3×3 and 7×7 convolutions. Each layer consists of 3 Batch Normalization
(BN) + 3ReLu + 1Projection to restrict the data in a small range. In the first
layer, the kernel size is set to (7, 7) with stride 2 and padding 3 to obtain a larger
receptive field. The rest of the layers adopt kernel sizes (3, 3, 3) and strides (2,
2, 1). As a result, the inductive bias of CNN is introduced into transformer
structure by stacking overlapped convolutions to extract more fine-grained local
features. In the meantime, by replacing the attention blocks in the first layer of
Transformer with convolution layers reduces the computation cost.

3.3 Middle Layer

The self-attention mechanism of ViT achieves better results by capturing content
based global interaction. In comparison, CNN only focuses on the local feature
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patterns. In order to complement each other’s strengths and weaknesses, we
implant CNN into the second and the third stages of Transformer to form a
parallel structure. The attention operation is computed as:

Attention(Q,K, V ) = Softmax(
QKT

√
dhead

)V (1)

here the inputs are Q, K, V , and the output is a refined feature. Then the spatial
reduction operation (SR) is performed on K and V as:

SR(X) = Reshape(x,Ri) (2)

here x is either K or V . The above reshape operation is realized via convolution
operation, where Ri is the reduction ratio. The SR based attention mechanism
is called Spatial Reduction Attention (SRA). Then, our modified Transformer
Encoder processes the input feature map X as:

TransEncoder(X) = Attn(X) +DSC_FFL(X), (3)

where Attn denotes the attention operation with the residual structure, and
DSC_FFL represents the proposed depth-wise separable feedforward layer.
Next, for the second and the third stages of our model, we append convolu-
tion blocks to form parallel structures. Specifically, we use two 7 × 7 kernels,
each of which has a BN layer and a ReLU layer. For each convolution kernel,
the input feature map is processed as:

Conv_Blk(X) = Relu(BN(Conv(X))) (4)

Then, for each stage, the results of Eqn. (3) and (4) are added to yield the output
as:

Xout = TransEncoder(X) + Conv_Blk(X) (5)

3.4 Positional Encoding (PE) and Cls Token

As claimed by Islam [23], positional information and semantic feature co-exist
in CNN, and deeper layers have more positional information. Based on this,
we introduce CNN into deeper layers of Transformer, in which the output fea-
ture maps by CNN could provide positional information for Transformer. In our
model, we intentionally delete PE module, so that our network will no longer
be restricted by the size of the input images, and we can acquire the positional
information from CNN.

LeViT [24] has proved that replacing cls token with average pooling has
almost no impact on the accuracy of the model, while it somehow improves the
robustness of the model. In this light, we remove cls-token and insert an average
pooling into the classification head to produce the classification output.
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3.5 Feed-Forward Layer (FFL)

The purpose of Feed-Forward Layer (FFL) in Transformer is to implement non-
linear transformation so as to improve the representation ability. It consists of
2 linear transformations, namely a fully connected layer and an activation func-
tion. The former converts the input position vector to an intermediate variable,
the latter performs nonlinear transformation on this variable to better capture
the local and global image features. Depth-wise Separable Convolutional Feed-
Forward Layer (DSCFFL) is a variant of FFL, in which a depth-wise separable
convolution (DWS) layer is added after the self-attention blocks in Transformer.
It has the following merits:

1. Less parameters: DSCFFL is based on the idea of local connection and weights
sharing, it thereby needs less parameters than fully connected layers, resulting
in lightweight model and faster training. Meanwhile, it is more suitable to
process large-scale images than fully connected layers.

2. More focus on local features: Since DSCFFL utilizes depth-wise separable
convolution operations, it can easily learn local features. In comparison, fully
connected layers tends to capture global features.

Considering this, we replace the traditional FFL with DSCFFL.

4 Experiment

In this section, we will verify the effectiveness of our proposed scheme on improv-
ing the performance of ViT on tiny datasets. Comprehensive experiments include
image classification (Sect. 4.1), object detection (Sect. 4.2) and semantic segmen-
tation (Sect. 4.3).

4.1 Image Classification

We compare the image classification results on 3 tiny datasets: CIFAR-100[25],
Flowers[26] and Chaoyang[27].

CIFAR-100: CIFAR-100 is a subset of the tiny Images dataset, which consists
of 60k color images (32× 32). The 100 classes in the CIFAR-100 are divided into
20 super classes. There are 600 images per class. Each image has a “fine” label
(of its category) and a “coarse” label (of its superclass it belongs to). And there
are 500 training images and 100 testing images per class.

Flowers: An image classification dataset including 102 flower categories. Each
class has 40 to 258 images, which have large scale, pose and light variations.
Besides, some categories have large intra-class variance.

Chaoyang: A professional dataset labeled by several pathologists. There are
1111 normal samples, 842 serrated, 1404 adenocarcinoma, 664 adenoma for train-
ing, and 705 normal, 321 serrated, 840 adenocarcinoma, 273 adenoma samples
for testing.
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In this experiment, we compare our results with small scale Transformer
models. Firstly,we randomly crop the input image into 224 × 224, and adopt
random horizontal flipping and mix-up for data augmentation. We also adopt
Label-smoothing regularization during training. AdamW optimizer is used with
a weight decay of 5 × 10−2 and a momentum of 0.9. The initial learning rate is
set to 10−3 that decreases following the cosine schedule. All models are trained
300 epochs on 2 RTX 3090 GPUs. In the meantime, center-crop is employed on
the validation set, wherein 224 × 224 pixels are cropped to test the recognition
accuracy.

Table 1. Comparison of Classification results on 3 tiny datasets

Models Params(M) GFLOPs Top-1 Acc. (%)
CIFAR-100 Flowers Chaoyang

CNN:
ResNet-18[28] 11.7 1.8 70.43 59.83 78.12
ResNet-50[28] 25.6 4.1 79 69.23 82.71
Pure Transformer:
DeiT-Ti[14] 5.7 1.3 65.08 50.06 82
T2T-ViT-7[12] 4.2 1.1 69.37 65.2 80.74
Transformer with Hierarchy Structure:
PiT-Ti[29] 4.9 0.7 73.58 68.4 82.7
PVT-Ti[30] 13.2 1.9 69.22 62.32 73.68
PVTv2-B0[31] 3.4 0.6 77.44 67.51 82.05
mobileViT-S[15] 5.6 2.0 70.97 65.26 80.98
CMT-XS[17] 15.2 1.5 80.98 53.68 82.37
EdgeViT-S[8] 11.1 1.9 82.03 62.09 80.18
Transformer with Convolutional Inductive Bias:
ConViT-Ti[15] 6.0 1.0 75.32 57.51 82.47
Conv-PVT[32] 13.0 2.2 77.17 66.38 82.05
TinyConv-PVT 11.8 2.9 82.37 70.64 83.22
(ours)

A comparative result on tiny dataset is listed in Table 1, pure Transformer
models (including DeiT-Ti [14] and T2T-ViT-7 [12]) make poor results due to
the lack of inductive bias. For some Transformer based models with partial
fusion of CNN (including PVTv2 [31], ConViT-Ti [15] and Conv-PVT [32]),
they have increased the classification accuracy to some extents over the previous
two, which indicates that the fusion of CNN with Transformer indeed improves
the recognition accuracy. Finally, our model achieves the highest results on all 3
datasets. It’s worth noting that Chaoyang is a medical image dataset with fewer
annotated samples, which illustrates the application prospects of our model in
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medical imaging field. As shown in Table 1, our model outperforms other popular
methods on tiny dataset with large margins.

4.2 Object Detection

Object detection is implemented on MS COCO [33] dataset. MS COCO 2017
has 80 categories, which includes 118k training images, 5k validation images and
20k test dev images without labels. We use RetinaNet [34] and Mask R-CNN
[35] as our detector. We use Xaiver [36] to initialize the newly added layers, and
train our model on 2 RTX3090 using AdamW as the optimizer with an initial
learning rate of 10–4. We adopt 1x training schedule (i.e. 12 epochs) to train
both RetinaNet and Mask R-CNN. And we resize the training image to 800 and
1333 pixels for the shorter and longer sides respectively. And in the testing stage,
the shorter size of the input image is fixed to 800 pixels.

Table 2. Comparison of Object Detection on MS COCO dataset

Models Box AP
RetinaNet Mask R-CNN

PVT-Tiny[30] 36.7 36.7
PVTv2-b0[31] 37.2 38.2
LightVit-T[37] – 37.8
PoolFormer-S12[38] 36.2 37.3
Conv-PVT[32] 33.1 37.4
TinyConv-PVT (ours)38.9 39.6

As shown in Table 2, by introducing CNN into the middle layer of the Trans-
former, we have achieved some performance improvement in object detection. In
RetinaNet, compared to the original SRA models PVT and PVTv2, our model
has improved by 2.2% and 1.7%, respectively. These improvements mainly come
from the contribution of parallel convolution blocks. Similarly, we have achieved
similar effects in Mask-RCNN. Compared to the original ViT backbone, we have
improved by 2.9% and 1.4% in Mask-RCNN. This indicates that after incor-
porating convolutional fusion, our PVT can also effectively replace the original
backbone for object detection.

4.3 Semantic Segmentation

The semantic segmentation task is implemented on ADE20k dataset [39].
ADE20k is a challenging scene parsing benchmark for semantic segmentation,
containing 150 fine-grained semantic categories. It has 20210 images for training,
2000 images for validation and 3352 images for testing. We use TinyConv-PVT
as the backbone (that is pre-trained on ImageNet-1k [40]) and use FPN as our
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detector. In the training stage, we use Xaiver [36] to initialize with AdamW as
the optimizer with an initial learning rate of 10−4. The batch size is set to 16.
The training process is conducted on 2 RTX 3090 for 160K epochs. The learn-
ing rate decays according to the polynomial decay scheme. During training, the
input images are randomly cropped into 512*512, and resize the short side to
512 during testing.

Table 3. Experimental Results of Semantic Segmentation on ADE20k

Models mIoU(%)

PVT-Tiny [30] 36.6
TopFormer-T[41] 32.8
Xcit [42] 39.9
PoolFormer-S12 [38] 37.2
Conv-PVT [32] 37.2
TinyConv-PVT(ours)40.9

As shown in Table 3, we again make notable improvement over the previous
methods for 160K. This indicates that the deployment of CNN in the middle
layer of Transformer is indeed beneficial to segmentation task.

4.4 Ablation Study

As mentioned earlier, we made the following changes to the original Transformer
structure: firstly, we introduce CNN into the middle layer of Transformer to
adjust the assignment of attention. Then, we remove PE to get rid of the restric-
tion of the field input image size. Finally, we replace the traditional FFL with
DSCFFL to reduce the computation cost. In this section, we testify the effec-
tiveness of the above key designs through ablation experiments of image classi-
fication.

The Function of the Convolution Block. To further validate the function
of the convolution blocks that we implanted into ViT, we have conducted 3
groups of comparative experiments on CIFAR-10 and CIFAR-100 among dif-
ferent versions of the original ViT (including PVT, PVTv2 and scalable ViT)
and the integrated models with Conv. The experiment is conducted on a sin-
gle 3090 card using the same training strategy as mentioned in Sect. 4.1. The
experimental results are shown in Table 4, all our models (tiny conv) surpass the
corresponding original tiny models (PVT-Tiny, PVTv2-Tiny and ScalableViT-
Tiny) with safe margin, some even surpass the corresponding small versions
(PVT-Small, ScalableViT-Small), which demonstrates the effectiveness of our
proposed scheme.
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Table 4. The results of convolution blocks.

Models Params CIFAR-10 CIFAR-100

PVT-Tiny 13.23 86.72 66.30
PVT-Small 24.49 88.68 68.60
PVT-Tiny+conv 24.41 93.35 74.40
PVTv2 13.54 93.37 77.03
PVTv2+conv 24.37 95.91 77.86
ScalableVit-Tiny 14.90 91.23 71.14
ScalableVit-Small 23.32 93.15 74.73
ScalableVit-Tiny+conv 22.93 92.93 75.05

Removal of Positional Encoding (PE). In this section, we compare the
accuracies by deploying PE at different positions. We train different models 100
epochs on 2 RTX 3090. As shown in Table 5, apparently, the deployment of PE
at different positions make no major differences than without PE. This result
reflects the fact that the integration of CNN and Transformer gets rid of the
dependency on PE.

Table 5. Comparison of accuracies by deploying PE at different layers

Positions of PE Pos1+Pos2+Pos3Pos1+Pos3 Pos2+Pos3Pos1+Pos2 None

Accuracy (%) 69.33 69.32 69.26 69.30 69.32

The Impact of Depth-Wise Separable Convolutional Feed-Forward
Layer (DSCFFL). In Sect. 3.4, we propose to replace the traditional FFL
with DSCFFL. Here we investigate the impact of DSCFFL on our network. We
train the model (with FFL and DSCFFL) on 2 RTX 3090 cards 300 epochs
on the training set and evaluate their performances on the testing set. Both the
training and testing losses are shown in Fig. 5 below.Apparently, the loss curves
of DSCFFL on both the training and testing sets drop faster than that of the
traditional FFL, indicating a faster convergence speed.

The Optimal Size of Convolution Blocks. As shown in Fig. 3, we add 2 con-
volution blocks that are parallel to Transformer encoder. In this section, we will
derive the optimal size of the convolutional blocks through comparative experi-
ments. As shown in Table 6, we compare different sizes and train the network 300
epochs on CIFAR-100. Obviously, (7, 7) achieves the highest accuracy than other
sizes, while more complex convolution blocks do not bring any improvements on
the performance of Transformer.
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Fig. 5. Comparison of loss curves for training (a) and testing sets (b) between FFL
and DSCFFL

Table 6. Comparative results by using different sizes of convolution blocks on CIFAR-
100

Convolution (7,7,7,7) (3,3,3,3) (7,7,7) (3,3,3) (7,7) (3,3) (7) (3)
Blocks

Accuracy(%) 79.5 79.1 81.2 80.6 82.4 81 79.2 78.6

5 Conclusions

Aiming to improve the general performance of Transformer in implementing
downstream vision tasks on tiny dataset and reducing its computation cost. We
propose a deep fusion network that incorporates CNN with Transformer in many
aspects. Specifically, we remove the positional encoding, replace the Transformer
block in the first stage with CNN, replace FFL with DSCFFL and deploy 2 con-
volution blocks that are parallel to Transformer in the second and the third
stages. Extensive experiment have been conducted on several mainstream tiny
datasets to validate the effectiveness of our proposed network, where it manifests
superior performance by outshining other state-of-the-art methods in accuracy.
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Abstract. This work delves into the critical realm of Face Anti-
Spoofing in face recognition systems. Previous research has explored
Deep Learning methodologies, encompassing End-to-End binary cross-
entropy supervision, Pixel-wise auxiliary supervision, and Generative
models with pixel-wise supervision. In this study, we proposed a method
that synergized two main approaches: End-to-End binary cross-entropy
supervision and Pixel-wise auxiliary supervision. Specifically, our method
is called SCAD-Net and is made up of a Binary Classification Mod-
ule and a Depth-map Decoder for pixel analysis tasks. The findings
showed the effectiveness of the proposed approach, surpassing the per-
formance of both referenced architectures and current State-of-the-art
methods (SOTA). This amalgamation of methodologies not only fortifies
the robustness of Face Anti-Spoofing systems but also contributes sig-
nificantly to advancing the understandings and the capabilities of coun-
tering emerging spoofing techniques. Remarkably, with only 9.8 million
parameters and requiring only 10 milliseconds per inference, SCAD-Net
demonstrates exceptional efficiency and potential for real-world applica-
tion, highlighting its suitability for deployment in resource-constrained
environments.

Keyword: Computer Vision, Deep Learning, Face anti-spoofing.

1 Introduction

Nowadays, facial recognition has become an essential component of biometric
authentication systems, playing a significant role in various aspects of our lives,
particularly in the area of security and personal verification. This technology
offers convenience; however, it also brings along the potential risk of fraudu-
lent activities. Spoofing techniques such as printed images, phones, and tablets
demonstrated how easily it is to exploit facial recognition systems. Thus, the
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issue of face anti-spoofing (FAS) has become more and more critical. The pri-
mary challenge lies in accurately identifying instances where there are indicators
of attempted deception aimed at circumventing facial recognition systems.

The primary challenge lies in accurately identifying instances where there
are indicators of attempted deception aimed at circumventing facial recognition
systems. All face spoofing strategies can be divided into the following categories:
two-dimensional (2D) attacks and three-dimensional (3D) attacks. 2D attacks
include cases that use a photo, a printed image, or a video containing a person’s
facial features to deceive the recognition system. Compared with traditional 2D
attacks, 3D attacks are more realistic in terms of color, texture, and geometry
structure. 3D masks are made from different materials: paper, resin, plaster, plas-
tic, silicone or latex. In real-world use cases, 2D attacks occurred more frequently
due to its significantly lower barrier of entry to attempt. Therefore, the method
developed in this work focuses on countering forgery in 2D attack scenarios.

Most current models employ deep learning to counter these spoofing tac-
tics, two of the most prominent methods are End-to-End Binary Cross-Entropy
Supervision [7,26,36,37] and Pixel-wise Supervision [3,8,12,14,34,35].

End-to-end Binary Cross-Entropy Supervision utilizes deep learning meth-
ods to address the problem by treating it as a binary classification problem,
where one class represents live images, and the other represents spoof images.
The majority of methods employ CNN architectures to extract image features
for classification. However, these supervisory cues only provide global informa-
tion (spatial/temporal) for live/spoof embedding learning, potentially leading to
weak generalization capabilities. Although the models achieve fantastic accuracy
in the intra-testing set which is similar to the training set, they have poor results
in the cross-testing sets which are in different domains. As a consequence, the
models demonstrate ineffective performance with other different camera devices,
illumination, and Presentation Attacks that were not seen in the training set.

Pixel-wise Supervision is a method that provides localized supervision at
each pixel, offering detailed supervisory signals to detect signs of spoof. It is
currently the most widely used method, often employing physical signals such
as pseudo depth labels, binary mask labels, and reflection maps for the detailed
description of local live/spoof cues and supporting the auxiliary learning process.
Recent methods [3,8,17] frequently utilize depth maps for auxiliary learning in
the model. These approaches typically depend on the local features of images to
reconstruct the depth map of the face. The underlying concept is that human
faces exhibit varying depths at different facial points, whereas spoof faces pre-
sented through devices like phones, tablets, or printed photos will have consistent
depths at image points. Model [3], based on the Pixel-wise Supervision method,
has achieved the best results on the majority of current benchmarks. Never-
theless, pixel-wise supervision often depends on high-quality training data (e.g.,
high resolution) to exploit forgery cues effectively. It may struggle to provide
effective supervisory cues when training data contains a lot of noise and is of
low quality.
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Each approach has its advantages and disadvantages. Combining these two
approaches to leverage their strengths and address each other’s weaknesses was
the motivation behind our research. We researched and selected two models
[7,8] corresponding to the two approaches above. Subsequently, we integrated
their architectures to create a novel baseline model. Furthermore, we introduced
several enhancements to their structures compared to baseline models to enhance
the model’s ability to generalize. The depth map ground truth was chosen using
a new strategy to improve the model’s learning ability. Experimental results
demonstrated the effectiveness of the proposed method, surpassing state-of-the-
art models. This study has three main contributions:

– Proposing a novel anti-spoofing method that addresses the facial anti-spoofing
challenge, outperforming the state-of-the-art methods on multiple benchmark
tests, and demonstrating an applicability in the real-world system through its
remarkable speed.

– Introducing a new approach to the problem by combining End-to-End Binary
Cross-Entropy Supervision and Pixel-wise Supervision methods.

– The effectiveness of combining these methods demonstrated through exper-
iments in this thesis will encourage further exploration of novel combined
approaches in the future, potentially discovering unique and effective solu-
tions.

2 Related Work

2.1 Traditional Hand-Crafted Feature

In the initial stages of Face Anti-Spoofing (FAS) development, when CNN [2]
had not been developed yet, manual feature-based methods were employed as
a feature extractor to extract hand-crafted features from a facial image, which
were then input into binary classifiers like SVM. Some typical manual feature-
based methods have been used such as LBP [18], HoG [19], SIFT [21], SURF
[22], and DoG [23]. However, hand-crafted methods have poor results in FAS
problems, because they were not specifically designed to capture spoof cues in
facial images. Additionally, these methods were sensitive to various conditions,
including differences in camera devices, illumination, and Presentation Attack
(PA) instruments.

2.2 End-to-End Binary Cross-Entropy Supervision

The convolutional neural network (CNN) revolutionized the fields of computer
vision and image processing. The architecture of CNN is designed to automati-
cally and flexibly learn spatial hierarchies of features from input images through
convolutional filters or kernels. In the context of Face Anti-Spoofing (FAS),
CNN has replaced manual feature-based methods in feature extraction from
input images. CNN-based methods treat FAS as a binary classification task. For
instance, in [24], the input face image is passed through the VGG-face feature
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extractor (pre-trained), and then use SVM as the classifier. In another app-
roach [25], a Resnet-50 network [6] pre-trained on the ImageNet [15] dataset is
employed as the feature extractor, and a classifier is constructed from stacked
probabilities. In particular, Qiao et al. [26] proposed a method that combines
the architectures of CNN and Transformer [27] for feature extraction. The inte-
gration of self-attention modules [27] and convolution mapping enhances the
model’s ability to learn both general and local features. Although binary cross-
entropy supervised methods provided promising performances, they struggled
with detecting spoof signals which led to poor generalization.

2.3 Pixel-Wise Auxiliary Supervision

These methods pay attention to the information of pixel values and supervise the
learning of auxiliary facial features, such as depth maps and reflection maps. The
AENet model is introduced in the CelebA Spoof dataset [12] using depth maps
for supervised learning. This approach uses two Conv3×3 layers, then up-sample
the feature to 14× 14 size to learn geometric information, and finally passes the
feature map through three Fully Connected layers to learn semantic informa-
tion. The PSPNet [8] model utilizes a Segmentation network architecture [9] for
supervised learning based on facial depth maps. Notably, the TransFas method
[3] achieves the highest results on several of the current benchmarks. Trans-
Fas uses the Transformer architecture as a feature extractor to capture global
features of faces. To learn local features, TransFas uses a special architecture
called Cross-layer Relation-aware Attention (CRA) [3]. Although the Pixel-wise
Auxiliary Supervision method is more effective in learning global features than
End-to-End Binary Cross-Entropy Supervision, its learning local signals capa-
bility is limited.

2.4 Foundation Models

Fig. 1. The architecture of Face Fake Net. Resnet backbone and SCA module were
used as a feature extractor and then passed the feature map through Fully Connected
(FC) layers to classify the input images into live or spoof labels[7].

Face Fake Net. FACE FAKE NET [7] is an End-to-End Binary Cross-Entropy
Supervision solution that combines CNN architecture and Spatial Channel-
wise Attention Modules (SCA-CNN) [10]. Spatial-wise Attention Module and
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Channel-wise Attention Module work at spatial and channel levels not only to
enhance local features and global features but also to disregard unimportant
ones. As presented in Fig. 1 The input image is fed into the 44 first layers of
Resnet-50 which was trained on ImageNet dataset [15]. Then, the feature map
is fed into both Spatial Attention Module and Channel Attention Module in
parallel to extract spatial attention weight and channel attention weight. These
attention weights are concatenated together and classified into 2 labels live or
spoof by Fully Connected Layers. With the integration of these two modules,
Face Fake Net exhibits enhanced results in anti-spoofing compared to other pre-
vious End-to-End Binary Cross-Entropy Supervision methods.

EfficientNet and EfficientNetV2. EfficientNet [29] and EfficientNetV2 [30]
were introduced by Tan and Le, they are advanced convolutional neural network
architectures known for their efficiency and performance in image classification
tasks.

EfficientNet: EfficientNet is a series of structures of convolutional neural net-
works that systematically studies model scaling and identifies. EfficientNet care-
fully balances network depth, width, and resolution for optimal performance.
This observation led to the development of a new scaling method that uniformly
scales all dimensions of depth/width/resolution by using a simple yet highly
optimal compound coefficient. EfficientNets achieves state-of-the-art accuracy
on other datasets with significantly fewer parameters.

EfficientNetV2: focused on achieving faster training speed and better param-
eter efficiency compared to previous versions. New operations such as Fused-
MBConv were incorporated into the architecture. EfficientNetV2 models are up
to 6.8x smaller and train significantly faster than their predecessors.

Both architectures represent significant advancements in the development of
efficient and powerful models for image classification, specifically addressing the
Face Anti-spoofing problem. Bi-FPNFAS [38] used EfficientDet [32] which is a
modified version of EfficientNet. Bi-FPNFAS employed a bi-directional feature
pyramid network (BiFPN) that is used for convolutional multi-scaled feature
extraction on the EfficientDet detection architecture to extract facial image fea-
ture maps and perform deep pixel-wise supervision.

3 Methodology

Although both Cross-entropy supervision and Pixel-wise Auxiliary Supervision
have shown promising results, they also have their respective limitations. While
Cross-entropy supervision methods have improved local feature learning, their
ability to generalize has not seen significant enhancement. On the other hand,
Pixel-wise Auxiliary Supervision methods heavily rely on depth map supervision
for learning and reconstruction, making them highly dependent on the quality
of the input images. This results in a substantial reduction in model accuracy
when dealing with low-quality images. In this paper, we propose a solution called
SCAD-Net, and the architecture is shown in Fig. 2. This method combines the
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Fig. 2. The SCAD-Net model incorporates a Spatial-Channel Attention module to
precisely predict live or spoof images and a Depth-map Decoder dedicated to auxil-
iary learning through facial depth map analysis. It utilizes EfficientNet-V2 for feature
extraction and a Convolutional Network for depth map generation tasks.

architectures of the two aforementioned methods. The architecture of this solu-
tion was inspired by the structures of Face Fake Net [7] and further enhancements
to advance its efficacy. The proposed method is developed in the hope of leverag-
ing the advantages of the Cross-entropy supervision method and the Pixel-wise
Auxiliary Supervision method and overcoming their weaknesses.

3.1 The Architecture

The feature extractor will process the input facial image to extract the feature
map. After the feature map was obtained, it was passed independently through
the Spatial-Channel Attention (SCA) [10] module and the Depth-map Decoder
module. The SCA-CNN module uses the feature map to predict the label of
the input image while the Depth-map Decoder reconstructs the facial depth
map from the feature map. Focal Loss supervises the classification result and
Mean Square Error Loss supervises the depth map output. Total Loss (1) is
the sum of Focal Loss and Mean Square Error. The depth map provides the
auxiliary information that aid the optimization of the feature extractor in the
back-propagation step.

LossTotal = LossFocal + LossMSE (1)

3.2 Backbone

The input images are processed through EfficientNetV2’s backbone [30]. In the
experimental phase, we evaluated various architectures, including Resnet-18,
Resnet-50, Resnet-101, EfficientNet, and EfficientNetV2. We determined that
EfficientNetV2-M which was pre-trained by the ImageNet21k dataset offers the
most effective results.
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Fig. 3. The enhancements of the SCA block in the Face Fake Net model. The parts
with arrows and blocks drawn in red indicate the additional improvements made in
comparison to the original architecture. (Color figure online)

3.3 SCA-CNN Module

In the SCA block, there are several enhancements to the original model to
improve its quality. In the original architecture, the feature map extracted by the
feature extraction block is simultaneously passed through two attention modules:
Channel Attention and Spatial Attention. The Spatial-Channel Attention block,
as proposed in the Face Fake Net, only applies a sigmoid function to the atten-
tion weights and then concatenates them. This approach will potentially reduce
the information from the original image. To address this, we experimented and
added several steps before concatenating the attention feature vectors, as illus-
trated in Fig. 3. Specifically, the attention weight vectors are multiplied with the
original feature map to extract information from the input data. In this way,
we can extract the information which is important in the input image. Then,
we pass the product through a global average pooling layer to aggregate the
information contained within a feature vector. Finally, the feature vectors from
both the Channel Attention and the Spatial Attention blocks are concatenated
together. This concatenated vector is then fed into a multi-layer fully connected
(FC) neural network for classification purposes.

3.4 Depth-Map Decoder Module

In this module, we employ a simple CNN network to estimate the depth map.
The input to the module is the feature map extracted from the backbone, and
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the output is a 28 × 28 facial depth map. The depth map is a grayscale image,
supervised by the Mean Squared Error loss function, with the ground truth
generated from the PRNet network.

3.5 Focal Loss

A prevalent challenge in assessing models for the Face Anti-Spoofing (FAS) prob-
lem is imbalanced data. Within the common Face Anti-Spoofing datasets, the
majority are images with spoof labeling due to the diversity in presentation
attacks, environmental conditions, illumination, and background scenes. For
example, the number of spoof labels is 5 times more than the number of live
labels, so the model tends to overly focus on learning from the majority classes,
while it learns very few features from the minority classes.

In this case, employing fundamental binary loss can lead to unsatisfactory
prediction results. To address this issue, we employ Focal Loss instead of using
the fundamental Cross-Entropy Loss in our classifier, aiming to improve the
model’s performance by effectively managing the majority class’s effect on the
model’s weight.

Focal loss is an upgraded version of the cross-entropy loss, designed to address
imbalanced data issues by focusing more on examples of the minority class and
less on examples of the majority class. It was introduced in the context of object
detection, where the imbalance between foreground and background classes can
significantly affect performance. The innovation of focal loss lies in its ability
to dynamically scale the loss value based on the confidence of the predictions,
thereby reducing the relative loss for well-represented examples (majority class)
and focusing the model’s attention on less represented examples (minority class).

The formula for focal loss is designed to enhance the fundamental cross-
entropy loss by adding an adjustment factor to focus more on the minority class,
misclassified examples, and less on easy examples (majority class). The focal loss
is given by (2):

Focal Loss(pt) = −αt(1− pt)γ log(pt) (2)

pt is the model’s estimated probability for the class with the label y = 1,
and αt is a weighting factor that helps to balance the importance of major-
ity/minority examples, γ is the focusing parameter that smoothly adjusts the
rate at which majority examples are down-weighted, making the model focus
more on minority examples.

4 Experiments

In this section, we used public datasets to evaluate our method, followed by
the evaluations of our method’s local feature learning ability and generalization
learning ability.
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4.1 Datasets and Metrics

Datasets. To evaluate the SCAD-Net method, we used three benchmark
datasets: CelebA-spoof [12], OULU-NPU [11], and SiW [33]. Firstly, we used the
CelebA-spoof dataset to compare with the result of Face Fake Net [7](our base
method). Then, we used two high-resolution databases: OULU-NPU and SiW
datasets to validate the generalization learning ability of our method. Finally,
we used OULU-NPU and SiW databases for cross-dataset testing between them.

Metrics. In our research, we employed standard metrics to ensure a fair and
consistent comparison with previous studies. These metrics are Attack Presenta-
tion Classification Error Rate (APCER), Bona Fide Presentation Classification
Error Rate (BPCER), and Average Classification Error Rate (ACER), ACER is
the mean of APCER and BPCER. Besides, False Positive Rate (FPR) and Recall
(also known as Sensitivity or True Positive Rate) were used in CelebA-spoof to
compare with previous relevant methods.

4.2 Implementation Details

Hardware. We used four RTX3090 GPUs, Intel Xeon Gold 6230 CPU, and
128GB RAM for training. Then we used RTX1650 GPU, AMD Ryren 7 4000
series, and 16GB RAM for inference and testing.

Data Preprocessing. We used the given face annotations to get faces and
labels from datasets then used PRNet.[4] to generate the ground-truth depth
maps for live images, and spoof images depth maps are set to black image (all
pixels are zeros). The images’s size was set to 224×224 (RGB) and the depth
map’s size was set to 28×28.

Training Setting. During the training period, we set the batch size to 64, the
learning rate starts from e-4 and will reduce by half after every 10 epochs, and
the weight decay is e-4. Our model was trained in 50 epochs. In the Focal Loss, αt

is 0.8 and γ is 2. Total Loss is the sum of Focal Loss and Mean Square Error. Our
backbone is EfficientNetV2-M[30] which was pre-trained by the ImageNet21k[15]
dataset to reduce training time and enhance the model’s quality.

4.3 Ablation Study

To confirm the enhancement in the SCA-CNN module, we experiment with a
model that truncated the Depth-map Decoder from the training phase. In this
case, our model includes only the EfficientV2 backbone and SCA-CNN mod-
ule. Table 1 demonstrates that our improvements in the foundational SCA-CNN
module improved the model capabilities.

Then, we experiment with several backbones to choose the most suitable
for our architecture. We evaluated various architectures, including Resnet-18,
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Table 1. The comparison result between the original model Face Fake Net and our
version which has been enhanced in the SCA-CNN module.

Method APCER(%)↓BPCER(%)↓ACER(%)↓
Face Fake Net[7] 0.7 0 0.35

Face Fake Netenhanced in SCA-CNN module 0.29 0.37 0.33

Resnet-50, Resnet-101, EfficientNet, and EfficientNetV2. The results in the Table
2 show that EfficientNetV2-XL provides better accuracy. However, it has 235
million parameters so it is impossible to implement this version for the real-time
system in reality. As a consequence, EfficientNetV2-M which was pre-trained by
the ImageNet21k dataset offers the most suitable results.

Table 2. The comparison result between our versions in different backbone architec-
tures.

Method APCER(%)↓ BPCER(%)↓ ACER(%)↓
Resnet-50 0.29 0.37 0.33
Resnet-101 0.36 0.34 0.35
EfficientNetV2-M 0.26 0.34 0.3
EfficientNetV2-L 0.28 0.38 0.33
EfficientNetV2-XL 0.16 0.42 0.29

4.4 Result

In the testing phase, we truncate the Depth-map Decoder to optimize the model’s
speed. The inference time of 10 milliseconds per inference makes this model
exceptionally well-suited for deployment in real-time systems.

Table 3. Comparison results on the testing set of the CelebA-Spoof.[12] dataset
between our method and previous methods.

Method Parameters(Million) Recall (%)↑ APCER (%)↓ BPCER (%)↓ ACER (%)↓
FPR = 1% FPR = 0.5% FPR = 0.1%

Auxiliary [13] 22.1 97.3 95.2 83.2 5.71 1.41 3.56
BASN [14] 569.7 98.9 97.8 90.9 4 1.1 2.6
AENet [12] 42.7 98.9 97.3 87.3 2.29 0.96 1.63
Face Fake Net [7] 30.5 - - - 0.7 0 0.35
SCAD-Net (ours) 9.8 99.4 99.0 96.4 0.31 0.23 0.27
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Table 4. Comparison results on protocols of the OULU-NPU[11] dataset between our
method and previous methods.

Prot. Method APCER (%)↓ BPCER (%)↓ ACER (%)↓
1 PSPNet [8] 0.4 0.0 0.2

TransFAS [3] 0.0 0.0 0.0
SCAD-Net (Ours) 0.3 0.1 0.2

2 PSPNet [8] 0.8 1.4 1.1
TransFAS [3] 1.5 0.5 1.0
SCAD-Net (Ours) 0.5 0.3 0.4

3 PSPNet [8] 4.4±3.1 2.5±0.8 3.5±1.7
TransFAS [3] 0.6±0.6 1.1±2.5 0.9±1.1
SCAD-Net (Ours) 0.5±0.6 0.4±0.8 0.5±0.4

4 TransFAS [3] 3.3±3.7 1.7±2.4 2.5±2.9
PSPNet [8] 2.1±2.2 2.5±4.2 2.3±2.3
SCAD-Net (Ours) 1.9±1.8 2.7±2.1 2.3±1.8

Intra Testing. We execute intra-testing on both CelebA-spoof and OULU-NPU
datasets. CelebA-spoof has only one train-test setting and OULU-NPU has four
protocols to evaluate the generalization ability of face anti-spoofing methods.

Table 3 presents the comparison of results on the CelebA-spoof dataset
between SCAD-Net and the previous methods. Our method achieved outstand-
ing results compared with other methods with only 9.8 million parameters. This
outcome shows that our developments in the SCA module enhanced the model’s
quality compared to the Face Fake Net [7] method (our base method).

Table 4 shows the test result on four protocols of the OULU-NPU dataset.
This table compares the performance of our method with the performance of
two other Pixel-wise supervision methods, specifically, TransFAS [3] is a state-
of-the-art model. We perform the best results on protocols II, III, and IV of
OULU-NPU. The results show that our method has a high accuracy in the effect
of attacks created with different display devices, illumination conditions, and
location. Moreover, the model demonstrated high accuracy in handling recording
sensor variations, as evidenced by its performance on Protocol III.

Cross Testing. We proceeded to get cross-dataset testing between OULU-
NPU and SiW. Specifically, we trained our model on SiW’s training set and
then evaluated the model in four protocol testing sets of OULU-NPU. Table 5
presents outstanding results of SCAD-Net in all four protocols of the OULU-
NPU dataset. This outcome demonstrates the strong generalization learning
ability of our method.
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Table 5. The results of Cross-testing dataset between SiW and OULU-NPU. We used
SiW’s training set and the testing set of OULU-NPU and compared them to the results
of previous methods.

ProtocolMethod APCER (%)↓ BPCER (%)↓ ACER (%)↓
1 CDCN [34] 0.6 21.7 11.2

Auxiliary[13] - - 10.0
FAS-SGTD [35] 1.7 13.3 7.5
SCAD-Net (Ours) 2.0 3.0 2.5

2 CDCN [34] 10.3 15.3 12.8
Auxiliary [13] - - 14.1
FAS-SGTD [35] 9.7 14.2 11.9
TransFAS [3] 3.9 11.9 7.9
SCAD-Net (Ours) 8.0 4.8 6.4

3 CDCN [34] 17.5±4.6 11.7±12.0 14.6±4.8
Auxiliary [13] - - 13.8±5.7
FAS-SGTD [35] 11.4±5.8 11.9±10.4 11.7±3.6
TransFAS [3] 7.8±4.4 7.2±5.3 7.5±2.6
SCAD-Net (Ours) 1.9±3.9 2.3±2.8 2.1±3.1

4 CDCN [34] 0.8±1.9 10.0±11.6 5.4±5.7
Auxiliary [13] - - 10.0±8.8
FAS-SGTD [35] 0.8±1.9 15.8±20.3 8.3±10.0
TransFAS [3] 2.1±3.0 6.7±6.9 4.4±4.7
SCAD-Net (Ours) 1.9±3.5 2.3±2.6 2.1±2.8

5 Conclusion

In this work, we propose SCAD-Net for the Face anti-spoofing issue. Our method
optimizes the Face Fake Net architecture by adding several layers and the Effi-
cientNetV2 [30] backbone. By integrating Binary Cross Entropy and Pixel-wise
Auxiliary Supervision, the model capitalizes on the strengths of both methods
while mitigating their weaknesses. Its efficacy is validated by both intra-testing
and cross-testing, demonstrating superior performance. Moreover, with only 9.8
million parameters—a significant reduction compared to prior models, this model
is even capable of real world applications.
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Abstract. Neural networks are trained by minimizing a loss function
that defines the discrepancy between the predicted model output and
the target value. The selection of the loss function is crucial to achieve
task-specific behaviour and highly influences the capability of the model.
A variety of loss functions have been proposed for a wide range of tasks
affecting training and model performance. For classification tasks, the
cross entropy is the de-facto standard and usually the first choice. Here,
we try to experimentally challenge the well-known loss functions, includ-
ing cross entropy (CE) loss, by utilizing the genetic programming (GP)
approach, a population-based evolutionary algorithm. GP constructs loss
functions from a set of operators and leaf nodes and these functions are
repeatedly recombined and mutated to find an optimal structure. Exper-
iments were carried out on different small-sized datasets CIFAR-10,
CIFAR-100 and Fashion-MNIST using an Inception model. The 5 best
functions found were evaluated for different model architectures on a set
of standard datasets ranging from 2 to 102 classes and very different sizes.
One function, denoted as Next Generation Loss (NGL), clearly stood out
showing same or better performance for all tested datasets compared to
CE. To evaluate the NGL function on a large-scale dataset, we tested
its performance on the Imagenet-1k dataset where it showed improved
top-1 accuracy compared to models trained with identical settings and
other losses. Finally, the NGL was trained on a segmentation downstream
task for Pascal VOC 2012 and COCO-Stuff164k datasets improving the
underlying model performance. The loss function code and an example
of its implementation can be found on the project page https://github.
com/ZKI-PH-ImageAnalysis/Next-Generation-Loss/tree/main.

Keywords: Loss function · Genetic Programming · Deep Learning ·
Classification · Segmentation

1 Introduction

Deep learning (DL) has received extensive research interest in developing new
image processing algorithms, and resulting models have been remarkably suc-
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Fig. 1. NGL and CE functions (left) and their gradients (right) for yreal = 1.

cessful in a variety of image analysis tasks such as classification [20], segmenta-
tion [32], object detection [9] and more. Deep learning methods represented by
(or partially based on) convolutional neural networks have become a well-known
and constantly developing research topic in the field of image analysis. Vari-
ous deep learning models, for example ResNet [12], Inception [37], U-Net [32],
DeepLab [3], have been proposed over the years for different image processing
tasks and domains. Vision transformers [6] constantly gain popularity among
researchers due to their high training efficiency and scalability and are already
outperforming convolutional neural networks on multiple benchmarks for classi-
fication, segmentation and image generation problems.

The loss function plays a crucial role in deep learning in general, as it shows
the direction for model training and affects the performance of the model and
training speed. There are well-known losses used for most image processing tasks,
such as cross entropy (CE) [5], Focal Loss [23], or mean square error [43].
Recently, researchers started proposing loss functions developed for specific
applications or tasks. Usually, that is done by hand and requires a lot of expert
knowledge, time, parameter adjustments, and thus computational resources, due
to the complexity of modern models.

The loss function design can be represented as a symbolic regression problem
that can be solved by using Genetic Programming (GP) [1]. The GP approach
is frequently used to design previously unknown heuristics in order to solve
hard computational search problems [17]. Genetic programming is a domain-
independent method, which was used in this study to genetically breed a pop-
ulation of loss functions for deep learning models to solve image classification
problems. GP was applied to find a generally applicable loss function for DL clas-
sifiers independent of the dataset and model architecture. Several experiments
with different objective functions using InceptionV3 [37] trained on the CIFAR-
10 [19], Fashion-MNIST [45] and CIFAR-100 [19] datasets were conducted to
find an optimized loss function.

The loss functions found were evaluated using ResNet50 and InceptionV3
models trained on CIFAR-10 [19], CIFAR-100 [19], Fashion-MNIST [45],
Malaria [29], PCam [41], Colorectal Histology [16] and Caltech 101 [8] datasets.
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In the next step, the best function, denoted as NGL, was used to train ResNet [12]
models and Swin transformers [25] to classify the ImageNet-1k dataset. In the
end, it was applied to train U-Net and DeepLab models on Pascal VOC 2012 [7]
and COCO-Stuff164k [2] datasets to show the applicability for segmentation.

Among the evaluated functions, NGL demonstrated exceptionally good
results outperforming baseline losses, such as cross entropy loss, focal loss, sym-
metric cross entropy and dice loss. Moreover, further investigation has showed
that the reason for these good results may be self-regulation, which is inherently
present in the NGL due to its mathematical definition.

Thus, the main contributions in this paper can be summarized as follows:

– Experimental results show that GP is capable to design a good loss function
for deep neural networks without any prior knowledge neither about the model
nor about the problem at hand;

– NGL, a new highly efficient loss function, applicable for any DL model to
solve classification and segmentation problems, was found;

– Self-regularization naturally implemented in the NGL indicates a direction
for loss function design in general;

– Models trained by the NGL achieved same or better performance on a variety
of datasets including ImageNet-1k and COCO-Stuff164k datasets.

The rest of this paper is organized as follows. Section 2 briefly reviews
related work of deep neural networks used for image analysis and loss function
design. The Genetic Programming algorithm and proposed search procedure are
described in Sect. 3, while the experimental settings and results are presented in
Sect. 4. Obtained results are discussed in Sect. 5. Finally, the paper is concluded
in Sect. 6.

2 Related Work

The progress in solving image processing and visual recognition tasks is related
to the rapid development of convolutional neural networks (CNNs) and subse-
quently vision transformers, which have been already used for real-world appli-
cations in different scientific fields. A plethora of convolutional neural network
architectures have been proposed, including the widely used Inception net-
work [36] that explores the problem of multi-scale fusion in convolution calcu-
lations to better characterize image information, and ResNet [12] with residual
blocks to solve the vanishing gradients problem.

Dosovitskiy et al. [6] proposed the Vision Transformer (ViT) by formulating
image classification as a sequence prediction task of the image patch sequence
similarly to [40], thereby capturing long-term dependencies within the input
image. Transformer-based models for image processing have been rapidly devel-
oped, and the following models are considered as some of the most representative:
Vision Transformers (ViT) [6], Data-efficient image Transformers (DeiT) [39] and
Swin-Transformer [25].
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Most deep learning models initially designed to solve classification problems
can be applied also for segmentation tasks, as segmentation can be formulated
as a classification problem of pixels with semantic labels (semantic segmenta-
tion) or partitioning of individual objects (instance segmentation). In the recent
decade there were a lot of works presenting new and more powerful segmenta-
tion methods, U-Net [32], which was initially developed for biomedical image
segmentation, is one of the most widely used architectures not only in the life
sciences. Additionally, DeepLabv1 [3], DeepLabv2 [3] and DeepLabv3+ [4] are
among some of the most popular image segmentation approaches, which use
dilated convolution to address the decreasing resolution in the network (caused
by max-pooling and striding) and Atrous Spatial Pyramid Pooling (ASPP), that
probes an incoming convolutional feature layer with filters at multiple sampling
rates.

Aside from developing deeper networks with more complex structures and
features to get better performance, better loss functions have also been proven
to be effective on improving the model performance in most recent works [15,38].
Many loss functions have been utilized for neural networks based on softmax
activation function, such as Mean Square Error (MSE) loss function [43], Cross
Entropy (CE) loss function [5] (Binary Cross Entropy loss function when images
are divided into two classes, Categorical Cross Entropy for multiple classes),
etc. In most state-of-the-art supervised learning problems, practitioners typically
use large capacity deep neural networks together with cross-entropy loss. The
latter can be explained by the fact that the traditional CE loss is supported by
clear theory, easy training and good performance. Nowadays, there are many
variants of CE that have been proposed in the past few years, e.g. symmetric
CE (SCE) [11], or Focal Loss [23].

Loss functions used for segmentation can be divided into four groups
described in [15]: distribution-based, region-based, boundary-based, and com-
pounded losses. The most well-known and commonly used distribution-based
loss functions used to train segmentation models are binary cross entropy [47]
and focal loss [24]. Region-based loss functions such as dice loss [35], and Tversky
loss [33] calculate the similarity between images. Hausdorff distance loss [31] is
defined as boundary-based loss functions in [15], while the exponential logarith-
mic loss [44] is considered as the compounded loss.

Most of the mentioned loss functions can be considered as heuristic meth-
ods designed by experts by using theory and the domain knowledge for specific
tasks and/or models. Moreover, loss function design requires great effort from
experts to explore the large search space, which is usually sub-optimal in prac-
tice. Nevertheless, only several commonly used losses are usually implemented
for model training, for example, categorical cross entropy for classification or
dice loss for segmentation. Recently, the automated search of suitable loss func-
tions without domain knowledge has received much attention from the com-
puter vision community. Reinforcement learning algorithms were used to learn
better loss functions with good generalization ability on different image analy-
sis tasks [28,46]. However, loss functions found by using these approaches either
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have task-specific requirements, such as environment interaction in reinforcement
learning, or remain fixed after training.

A lot of works on automatic loss search follow the search algorithms used in
AutoML [13]. In [22] the authors explore the possibility of searching loss func-
tions automatically from scratch for generic tasks, e.g., semantic and instance
segmentation, object detection, and pose estimation. In studies such as [42]
and [21] the main focus is on the search for particular hyper-parameters within
the fixed loss formula. AutoML-Zero [30] proposes a framework to construct
machine learning algorithms from simple mathematical operations, but the
search space and search strategies are specialized, which limits its potential
application. The authors of the study presented in [10] propose a framework
for searching classification loss functions by using evolutionary algorithms but
the searched loss poorly generalizes to large-scale datasets. These works moti-
vated us to design loss functions by using the Genetic Programming algorithm,
which uses a large set of primitive mathematical operations and terminal values,
capable of training different models regardless of their structure or the task at
hand.

3 Method

Genetic Programming (GP) is a population-based evolutionary optimization
algorithm, which can be applied to design different heuristics, depending on
the problem at hand, and, additionally, it is considered as a machine learning
tool, as it can be used to discover a functional relationship between features
in data. GP was initially inspired by the biological evolution, including natural
processes such as mutation and selection. In GP, each solution is represented by
a tree structure, and each of these trees are evaluated recursively to produce the
resulting multivariate expression. There are two types of nodes used for tree-
based GP: the terminal node, also called leaf, which is randomly chosen from
the set of variables, and the tree node, which can be chosen from a predefined
set of operators (an example of the generated trees is given in the Sect. 1 of the
supplementary material).

The GP search process starts with random initialization of a set of poten-
tial solutions, which is also called a population of individuals, in the functional
search space. The number of individuals is the predefined parameter n, which
does not change through the whole search process. The overall GP search process
is summarized in Algorithm 1. Thus, for this study a set of loss functions was
randomly generated, and each loss function was represented as a tree, where the
terminals were randomly chosen from the set {ypred, yreal,R}, while the opera-
tors were chosen from the set {+,−,×,÷,×(−1),√, log, exp, sin, cos}. To utilize
these functions and terminals for loss function generation, several modifications
were applied (mentioned modifications are described in the Sect. 1 of the sup-
plementary material).

After initialization, the main search loop starts, which consists of the itera-
tively repeated steps crossover, mutation, fitness function evaluation and selec-
tion (the number of GP steps or generations is denoted as T ). The fitness function
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Algorithm 1. An overview of the implemented GP approach
Randomly initialize n trees (generation 0), each representing one formula, e.g., loss
function
Evaluate GP fitness function F for each individual in the population
Determine the best individual
Create an empty external archive A
while generation number is less than T do

for each individual from population do
Generate a child individual by applying the crossover operator
if rand1 < MST then

Apply subtree mutation to the generated child
end if
if rand2 < MN then

Apply one-point mutation to the generated child
end if

end for
Evaluate GP fitness function F for each generated child individual
Update the best individual
Create new population of size 2 × n by concatenating children and parent indi-

viduals
Select n best individuals from the new population: create new generation
Update the external archive A

end while

F determines the quality of the individual and is the crucial part of the opti-
mization process, as our goal was to experimentally find a robust loss function
that can be generalized to a variety of datasets.

The crossover operator is used to exchange the subtrees between two indi-
viduals (an example of the implemented crossover operator is demonstrated in
the supplementary material). Mutation can be applied in various ways, but in
this study two variants were used:

– a random subtree in the tree is chosen and replaced with another randomly
generated subtree (subtee mutation);

– a random node in the tree is chosen and replaced with another randomly
generated node (one-point mutation).

Both mutation operators as well as crossover have their own parameters,
such as subtree and node mutation MST , MN and crossover Cr rates, which
determine how often individuals will be changed during the main search loop.
Finally, all individuals and the ones generated after crossover and mutation steps
are combined into one population, and then the selection operator is applied. In
this study only n most fit individuals from the combined population are chosen
for the next generation on each GP step.

Moreover, the success-history-based adaptation strategy was used to improve
the efficiency of the GP approach. To be more specific, at the beginning of the
main search loop an empty external archive A was created. The maximum size
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of this archive was set equal to the population size, nA = n. All individuals not
passing selection could have been saved in the archive with a given probability
pA. Individuals saved in the external set were used during crossover step with
some probability CrA.

4 Experiments

4.1 Loss Function Search

As mentioned in the previous section, loss function search was performed by the
GP algorithm and essentially can be described as an optimization process. A set
of individuals, where each individual is a mathematical formula representing a
loss function, is generated. These individuals change by crossover and mutation
operators and then a new set of loss functions is selected. These actions are
repeated a given number of times, called generations, and in the end the best
individual or loss function is determined. In this implementation, the crucial
part is selection, which in turn depends on how the fitness of the loss function
is defined, since only the fittest individuals are transferred over to the next
generation.

In this study, five experiments were conducted to search the loss function by
GP, which only differed in how the fitness function F was defined. Specifically, the
following definitions of F were used for each individual loss for each experiment:

– Train the InceptionV3 model from scratch one time on CIFAR-10 dataset,
the validation error was used as the fitness value;

– Train the InceptionV3 model from scratch 3 times on Fashion-MNIST dataset,
the averaged validation error was used as the fitness value;

– Fine-tune the pre-trained InceptionV3 model one time on CIFAR-10 dataset,
the validation error was used as the fitness value;

– Fine-tune the pre-trained InceptionV3 model 3 times on Fashion-MNIST
dataset, the averaged validation error was used as the fitness value;

– Train the InceptionV3 model from scratch on CIFAR-10, Fashion-MNIST
and CIFAR-100 datasets (once each). The validation error for each dataset
was compared to the respective validation error obtained by the same model
trained using CE loss, and individual fitness was represented by the pair of
numbers indicating the number of wins and the percentage of improvement
compared to CE.

It should be noted that a loss function was discarded if its values were not in the
range [10−5, 105] and a new one was generated instead of it. The fitness function
evaluation procedure is described in details in the Sect. 2.1 of the supplementary
material.

The model and datasets were selected to limit the training time required
per generation while maintaining a reasonable evaluation of the selected loss
functions. Regardless of the experiment, a batch size of 128, data augmentation
including horizontal flip, width and height shift (0.1 for both), zoom (0.2), Adam
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optimizer [18] with reduction of the learning rate on plateau, and 50 epochs
for CIFAR-10 and CIFAR-100 and 35 for Fashion-MNIST were used to train
the network. The top layer of the InceptionV3 model was replaced by 9 new
layers, consisting of Flatten, BatchNormalization (×3) [14], Dense (×3), Dropout
(×2) [34], and a final Softmax layer.

The following parameters were used for GP regardless of the experiment:
n = 16, T = 100, MST = 0.3, MN = 0.1, Cr = 0.7, pA = CrA = 0.5, minimum
tree height and maximum tree size were set to 2 and 100, respectively.

The best performing functions for each of the five GP experiments were
evaluated for different models and multiple datasets (all functions are listed in
the Sect. 2.1 of the supplementary material).

4.2 Evaluation

Small Datasets for Classification. The evaluation of the five found functions
was performed by training ResNet50 and InceptionV3 on seven datasets, which
differed by the number of images, classes, by the type of images (grayscale and
RGB), and their sizes. The brief description of datasets used in this study is
given in Table 1 (N is the number of classes). ResNet50 was added to the initial
experiments, as all the found functions were evaluated on InceptionV3 model
during the GP search to rule out model specific properties. The top layers of both
InceptionV3 and ResNet50 networks were not included, in both cases instead 9
new layers such as Flatten, BatchNormalization (×3), Dense (×3) and Dropout
(×2) were added.

Table 1. Brief description of the small datasets used for classification.

Dataset N Dataset size Class size Image size Image type

Malaria 2 27558 13779 edge lengths of 40− 400 pixels RGB
PCam 2 327680 163840 96× 96 RGB
Colorectal Histology 8 5× 103 625 150× 150 RGB
CIFAR-10 10 60× 103 6× 103 32× 32 RGB
Fashion-MNIST 10 70× 103 7× 103 28× 28 Grayscale
CIFAR-100 100 60× 103 6× 102 32× 32 RGB
Caltech 101 102 9144 40− 800 edge lengths of 200− 300 pixels RGB

Parameter settings and data preprocessing varied for all datasets but were
identical for all tested loss functions, specifics are shown in the Sect. 2.2 of the
supplementary material. Classification accuracy on the test set after the last
epoch was used as the evaluation metric.

Both InceptionV3 and ResNet50 models were trained five times for each
dataset. Obtained results were averaged for both models and compared to the
averaged CE (with and without L2 regularization), focal and SCE losses for the
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same models. In the end, the percentage of accuracy improvement or decrease
compared to CE was determined. A final value from the range [−0.5, 0.5] was
considered as same performing, a value > +0.5% better performing and < −0.5%
performing worse compared to CE.

Results obtained for all evaluated loss functions (f1, ..., f5) are given in
Table 2 (results obtained for pre-trained models are presented in the Sect. 2.2
of the supplementary material). Loss function f3 demonstrates the worst results
compared to others. It showed particularly bad results on Malaria, Colorectal
Histology, CIFAR-100, and Caltech 101 datasets, it should be noted that the last
three mentioned datasets have less than 103 examples of each present class. Inter-
estingly, no function outperformed CE loss on Malaria, CIFAR-10, and Fashion-
MNIST, while 6 out of 9 functions showed significantly better results on PCam
dataset.

Table 2. Average accuracy (%) for ResNet50 and InceptionV3 each trained 5 times for
each dataset for cross entropy (CE) and percentual change of the tested loss functions
compared to CE, best result per dataset is shown in bold.

Loss Malaria PCam Colorectal Histology CIFAR-10 Fashion-MNIST CIFAR-100 Caltech 101 Mean

CE 94.0 69.4 88.9 92.8 94.0 68.2 72.5 ±0

SCE –0.06 +0.62 –0.45 –3.66 –2.42 –0.80 +2.71 –0.58
Focal +0.34 +1.03 + 2.89 -0.64 –0.02 –2.14 –0.78 +0.10
CE + L2 +0.11 –0.64 +0.88 +0.32 + 0.09 +0.38 +3.67 +0.69
f1 –0.27 +0.81 +3.27 -0.34 +0.31 -0.84 -3.67 -0.10
f2 –0.09 +2.89 –7.56 -0.81 +0.04 +0.60 –3.61 –1.22
f3 –27.98 +3.24 –62.45 –1.79 –0.48 –59.36 –41.67 -27.21
f4 –0.21 –0.13 –1.98 -0.14 0.00 –0.32 –6.49 –1.32
f5(NGL) –0.27 +7.07+1.77 +0.12 +0.07 +1.01 +5.00 +2.11

Overall, f5 is the only function showing on average significantly better results
than CE, outperforming it on four out of seven datasets with an improvement
ranging from 1 to 7 %, while there was no significant difference on the remaining
three datasets.

Given the overall good performance of the function found by an evolutionary
method, we renamed function f5 as Next Generation Loss (NGL) function, with
the following formula:

fNGL =
1
N

N∑

i=1

[
e(α−y

(i)
pred·(1+y

(i)
real)) − cos(cos(sin(y(i)

pred)))
]
, (1)

where α = 2.4092, N is the number of classes.
To further test the generalizability of NGL, we tested its performance on

ImageNet dataset and larger models.
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ImageNet-1k. Experiments on ImageNet-1k dataset were performed using the
ResNet [12] convolutional neural networks and Swin [25] transformer models
using NGL, CE, SCE and focal losses with the same settings.

For ResNet, we used the AdamW optimizer [26], cosine annealing learning
rate scheduler with a 30-epoch linear warm-up, while the learning rate was equal
to 0.003. The number of epochs was set to 180, a batch size of 256, and a weight
decay of 0.01 were used. For Swin-Transformers, the AdamW optimizer was
employed for 400 epochs using a cosine decay learning rate scheduler and 60
epochs of linear warm-up. A batch size of 1024, an initial learning rate of 0.001,
and a weight decay of 0.05 were used. All of the augmentation and regularization
strategies were the same as in [25]. Results on ImageNet-1k are shown in Table 3.
It should be noted, that for both ResNet and Swin models CE was applied with
label smoothing and L2 regularization.

Table 3. Comparison of ImageNet results for models trained on CE, SCE NGL and
focal losses. †denote results reported as 10-crop testing, all other results show single
crop accuracy.

Model top1-acc Retrained (CE) top1-acc SCE top1-acc Focal top1-acc NGL top1-acc

ResNet101 [12] 78.25 † 76.55 77.21 75.68 78.38
ResNet152 [12] 78.57 † 76.92 77.51 76.06 78.99
Swin-T [25] 81.3 81.19 78.79 77.68 81.25
Swin-S [25] 83.0 83.1 80.68 79.16 83.0

For ResNet models NGL shows a clear improvement over other losses, increas-
ing the top-1 accuracy by 1 − 3%. For the Swin architecture NGL significantly
outperforms SCE and focal losses, while it shows similar performance as regu-
larized CE.

The training process for ResNet101 model is demonstrated in Fig. 2. It can be
seen that NGL showed slower increase in accuracy compared to other losses, but
converges later with a higher accuracy. Even though the NGL was found using
only very small datasets, it shows astonishingly good performance on ImageNet-
1k. For different architectures and model sizes NGL shows on average superior
performance compared to mentioned loss functions.

Segmentation. Additionally, NGL was evaluated on segmentation problems.
Specifically, it was used to train two segmentation models, DeepLabv2 with
ResNet101 as backbone [27] and U-Net with ResNet34 as backbone. The U-Net
model was trained and evaluated only on Pascal VOC 2012 [7] dataset, while the
DeepLabv2 model was used for both Pascal VOC 2012 and COCO-Stuff164k [2]
datasets.

The first experiments were conducted utilizing the U-Net model. The same
parameter setting was used for CE, focal, dice and NGL losses: images were
resized to 224 × 224, Adam optimizer was applied, the learning rate was 0.0001
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Fig. 2. Mean validation accuracy of ResNet101 model on each epoch during ImageNet-
1k training.

and reduced on plateau with a factor of 0.2, patience 5 and lrmin = 10−6 was
used to change it according to the IoU metric value on validation dataset. The
model was trained for 100 epochs with a batch size of 32. For DeepLabv2, Adam
optimizer was chosen, the learning rate lr was set to 2.5 × 10−5 and the poly-
nomial learning rate scheduler with weight decay 5 × 10−4 and power 0.9 was
applied to decrease lr during 2 × 104 iterations. For both models the number
of program runs was equal to 5 and mean IoU value was used to evaluate the
performance of the model.

Results for Pascal VOC are presented in Table 4. Using the U-Net shows
approximately 3 − 7% improvement in terms of mean IoU when NGL is used
for training compared to other losses, while showing the same results as CE and
ouperforming dice and focal losses using DeepLabv2.

Table 4. Comparison of results (mIoU values) on Pascal VOC trained by CE, focal
and dice and NGL loss functions.

Model CE Focal Dice NGL

U-Net 50.1 49.1 46.1 52.8
DeepLabv2 76.7 75.9 74.7 76.7

Finally, the DeepLabv2 model was trained on COCO-Stuff164k using men-
tioned loss functions. The parameter setting for these experiments was the same
as for Pascal VOC 2012 dataset with the maximum number of iterations set to
3×105. A comparison of results is shown in Table 5, showing slight improvement
for NGL loss compared to CE, and significant improvement compared to focal
and dice losses.

The obtained results demonstrate that NGL is suitable for downstream seg-
mentation tasks and showing improved performance compared to other com-
monly used losses.
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Table 5. Comparison of results achieved by DeepLabv2 model on COCO-Stuff164k
dataset.

Pixel Accuracy Mean IoU Mean Accuracy

CE 66.9 39.8 51.8

Focal 67.7 39.5 51.5

Dice 39.7 17.3 26.9

NGL 67.8 39.9 51.6

5 Discussion

For qualitative analysis, the NGL function can be simplified to a binary classi-
fication problem, similar as in [10]. For a binary classification problem, NGL is
as follows:

fNGL =
1
2

[
e(α−y

(0)
pred·(1+yreal)) + e(α−(1−y

(0)
pred)·(2−yreal))

]

−1
2

[
cos (cos (sin (y(0)

pred))) + cos (cos (sin (1 − y
(0)
pred)))

]
,

(2)

where α = 2.4092, ypred = (y(0)
pred, y

(1)
pred), y

(1)
pred = 1 − y

(0)
pred and yreal ∈ {0, 1}.

Let us assume that the true labels yreal are either 0 or 1. The case where
yreal = 1 is plotted in Fig. 1 for the CE loss and NGL functions. The cross
entropy shows a monotonic decrease with ypred converging to 1, the NGL shows a
decrease in loss, resulting in a minimum at 0.57 and slightly increases when ypred

converges to 1. This increase in loss for ypred approaching the true value seems
to be counter-intuitive, but may be a factor for the overall good performance
of the loss function. The mentioned increase of the loss value may prevent the
model from becoming too confident in its output predictions and may provide an
important advantage, as it lowers the probability of overfitting. Thus, this could
provide an implicit form of regularization, enabling better generalization. A more
detailed explanation is given in the Sect. 3 of the supplementary material.

While some of the functions found during GP showed better performance
on certain datasets, NGL was the only function that performed better than
CE (with and without regularization), SCE, focal and dice losses on average
and was therefore used for ImageNet-1k and COCO-Stuff164k training, where
it was able to show its generalizability to larger datasets and models. The NGL
is independent of additional parameters, it is differentiable and has an implicit
regularization. For larger datasets it could be observed that it converges slower
than other mentioned losses, but at a higher maximum accuracy. The NGL was
discovered experimentally and is not supported by theory, which in turn provides
less information about the confidence of the model. Nonetheless, for a large
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proportion of applications the raw performance is the main goal to maximize.
The search process did not cover the entire search space and in the future better
performing functions may be found, thereby the NGL may point to a promising
direction when searching for general suitable functions for classification tasks.

6 Conclusions

This study proposes to use Genetic Programming to search a generally applicable
loss function for image classification tasks. During that process, a new function
was found and shown to outperform other losses, commonly used for classification
and segmentation tasks, on average on a variety of datasets demonstrating its
general applicability. Moreover, it was shown that proposed loss function can be
applied to train a variety of model architectures. Further analysis suggested that
improvements provided by the new loss result from implicit regularization that
reduces overfitting to the data.
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Abstract. Visual localization is a challenging task involving precise
camera position and orientation estimation from an image. Specifi-
cally, existing panorama datasets suffer from a limitation in the num-
ber of available omnidirectional images, resulting in a sparse distribu-
tion and insufficient diversity compared to the well-distributed dataset.
This makes omnidirectional localization hard for conventional feature-
based visual localization algorithms. In this paper, we introduce a novel
and efficient approach named NAOL, specifically designed to address the
omnidirectional localization problem. Our proposed pipeline unfolds in
two pivotal stages: stage one employs a visual-based algorithm for pre-
liminary coarse pose estimation. Acknowledging the number of omnidi-
rectional images is limited and the distribution is sparse, in stage two, we
take an innovative step to augment the dataset and refine the coarse pose
estimations by stage one. We introduce the Depth-supervised Panorama
Neural Radiance Fields (DP-NeRF), a novel approach designed for train-
ing on a single omnidirectional image with depth, thereby enriching the
dataset while enabling an iterative algorithm grounded in DP-NeRF to
enhance localization accuracy. Our experimental results validate the effi-
cacy of the NAOL algorithm in performing visual localization in scenarios
with sparse panorama datasets.

Keywords: Omnidirectional Localization · Visual Place Recognition ·
Neural Radiance Fields

1 Introduction

Visual place recognition stands out as a challenging taskand has received consid-
erable attention in recent years, given its pivotal role in various practical appli-
cations in autonomous driving [36], virtual reality and augmented reality [31].
Visual-based localization algorithms [34,37] offer a straightforward and cost-
effective means to locate a robot or a vehicle in a known environment, relying
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solely on camera images as input without additional information. Typical meth-
ods in this field are often formulated as an image retrieval task [2,42]. These
methods solve the problem through well-defined pipelines encompassing feature
extraction, image retrieval, and pose optimization steps. This streamlined pro-
cess ensures efficiency and practicality in solving the intricate problem of visual
place recognition. The significance of these approaches is underscored by their
relevance in addressing the demands of contemporary technologies.

Notably, we notice that visual-based localization is sensitive to environ-
mental changes, illumination variations, alterations in appearance, and diverse
perspectives, as well as to local geometric changes resulting from small scene
changes [37,44]. In addition, due to the limited field of view of perspective
cameras, some perspective images lack identifiable features and only exhibit
ambiguous local structures [39,43], thereby hindering localization accuracy. In
contrast, omnidirectional images, with their panoramic field of view, offer a com-
prehensive representation of the surroundings, making them resilient to object
displacements and insignificant local features. The distinctive trait of omnidi-
rectional images makes them promising solutions to alleviate the influence of
outliers encountered in visual-based localization. Recognizing the potential of
omnidirectional images serves as a driving force behind our exploration of their
application in the visual-based localization task.

Fig. 1. The overview of our method. Given a query image, our approach initiates
the global image retrieval phase, estimating several potential poses. Utilizing these
estimated poses, we employ an iterative process to match the omnidirectional image
rendered by the proposed DP-NeRF and the target image to optimize the estimated
camera pose, refining and enhancing the accuracy of the localization process. This
demo is performed on Stanford 2D-3D-S dataset [3].

However, existing panorama datasets are limited by the number of available
omnidirectional images, resulting in a sparse distribution and insufficient diver-
sity compared to the well-distributed dataset. This limitation adversely affects
the accuracy of the image retrieval phase, which draws our attention. Neural



352 M. Yu et al.

Radiance Fields (NeRF) [32], known for creating detailed 3D scene representa-
tions, is widely used in 3D modeling and has excelled in generating photorealistic
new views of real-world scenes. By mapping 3D spatial information to color and
density, and using ray tracing for image consistency, NeRF is ideal for enhancing
sparse panorama datasets with synthetic, lifelike images.

Yet, the sparse nature of panorama datasets hinders conventional NeRF
training, leading to suboptimal performance in the trained model. To address
this issue, we introduce Depth-supervised Panorama NeRF (DP-NeRF), a novel
approach tailored for training on a single omnidirectional image with depth.
Importantly, unlike DS-NeRF [10], which makes the density distribu-
tion on a sampling ray close to unimodal, we promote the density
to match the real density. For sampling points where the distance
from the camera is less than the measured ground truth depth, we
impose a requirement that their density should be 0. This strategic
design addresses the inherent issues associated with sparse inputs, effectively
resolving NeRF’s inability to achieve comprehensive reconstruction under such
conditions. The integration of depth supervision in DP-NeRF serves as a key
enhancement to generate more accurate and robust reconstructions, particularly
in scenarios characterized by limited and sparse panorama data.

Moreover, diverging from conventional pose optimization methods like fea-
ture matching, we employ an iterative algorithm based on our DP-NeRF to
refine the rough results. Upon obtaining several potential matches from image
retrieval, we compute the appearance difference between the panorama rendered
from the DP-NeRF and the observed image. Subsequently, we leverage DP-NeRF
to backpropagate the gradient of these residuals, employing gradient-descent
optimization to iteratively refine the camera pose. This novel form of pose opti-
mization stands out for its ability to navigate beyond the constraints imposed by
a small dataset, contributing to a notable enhancement in localization accuracy.
By incorporating the iterative refinement facilitated by DP-NeRF, our algorithm
showcases increased resilience and adaptability, particularly in scenarios where
traditional methods struggle with limited dataset size and diversity.

To summarize, our main contributions are as follows:

– We propose NAOL, a novel localization algorithm specifically tailored for
panorama images. To tackle with the sparsity of omnidirectional images, we
design DP-NeRF for training on a single omnidirectional image with depth
to enrich the dataset.

– The proposed DP-NeRF enables our method to further refine the coarse local-
ization based on the visual-based algorithm.

– The proposed NAOL excels in effectively performing better localization
in sparse panorama dataset. Our algorithm showcases increased resilience
and adaptability, particularly in scenarios where traditional methods may
encounter limitations associated with dataset size and diversity.
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2 Related Works

2.1 Visual Localization

Visual localization is the task of estimating the camera pose from an image.
With the emergence of deep neural networks, learning-based methods emerge as
prevalent solutions. One effective solution in this field is image retrieval [1,2,4,
15,41,48], which predicts the image position by matching geographic markers
with the most similar images from the database. This approach utilizes learned
image features produced by a feature extraction backbone [2], which is further
improved by spatial reranking [15] or feature reweighting [20]. In another direc-
tion, to learn the entire localization pipeline end-to-end, PoseNet [19] proposes
to use a convolution neural network to regress the absolute camera pose from the
input image directly and is later improved upon and studied in [6,45]. Direct pose
regression’s performance is closer to image retrieval and generally falls behind
structure-based approaches. One common structure-based solution [11,35,36,39]
is to leverage the 2D-3D correspondences between key points in the query image
and a prebuilt 3D map. The camera pose is then calculated through optimiza-
tion with RANSAC. Another common solution is scene coordinate regression.
Shotton et al. [38] first propose to regress the scene coordinates using Random
Forests. The other related works [5,25,46] leverage the convolutional neural net-
work to predict scene coordinates directly from an input image and obtain the
camera pose using the predicted correspondences.

2.2 Omnidirectional Localization

There have been relatively few techniques for visual localization on omnidi-
rectional images due to the unique visual distortion [12,17,49] caused by the
spherical projection equation. Conventional techniques solve omnidirectional
image-based localization without using deep learning methodologies. For exam-
ple, Caruso et al. [7] propose the calculation of direct image match for the whole
omnidirectional model and corresponding omnidirectional simultaneous local-
ization. In recent years, the advent of deep learning has spurred innovative
solutions to tackle visual localization challenges with omnidirectional images.
Zhang et al. [47] contribute by training neural networks that learn rotation
equivariant features to process omnidirectional images effectively. Spherenet [9]
proposes a deep learning framework that explicitly encodes distortion invariance
into convolutional neural networks, allowing for effective learning of omnidi-
rectional image representations. Another approach, PICCOLO [21], proposes a
point cloud-centric omnidirectional localization algorithm that bypasses spheri-
cal distortion. However, it is noteworthy that PICCOLO’s applicability is con-
strained by its reliance on high-quality dense point clouds, limiting its effective-
ness in general scenarios. The growing body of work in recent years reflects an
increasing interest and effort in developing effective deep learning-based solutions
for omnidirectional visual localization.
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Fig. 2. The pipeline of NAOL: (a) First, we train the proposed DP-NeRF with real
images. (b) With trained DP-NeRF, novel view synthesis is performed to generate
additional synthetic images. (c) Then, real and synthetic images are combined to train
a coarse pose estimator. (d) Given potential poses, fine pose estimator further improves
the localization accuracy by iterative optimization. Only the parameters in the red box
are optimized and updated during the training. (Color figure online)

2.3 Novel View Synthesis in Localization

Novel View Synthesis (NVS) [40], generating new camera views from scene
images, is a longstanding challenge in computer graphics. Recent progress in
NVS has demonstrated great success in achieving realistic view synthesis [29,30],
enhancing accuracy for visual localization methods. Recently, NeRF has shown
excellent performance in view synthesis by using a neural network to implic-
itly learn a static 3D scene for arbitrary new view synthesis of complex scenes.
Direct-PoseNet [8] achieves photo-realistic pose prediction by using an addi-
tional loss between the query image and the NeRF synthetic image for camera
pose regression. PoseGan [28] performs joint learning of pose regression and view
synthesis, improving localization accuracy. NeRF-Loc [27] utilizes a pre-trained
NeRF model along with camera views as inputs to produce labeled and oriented
3D bounding boxes for objects as outputs. LocoNeRF [33] develops the local SfM
method that employs NERF as a substitute for image databases to serve as ref-
erence images. iNeRF [26] presents gradient-based optimization to realize pose
estimates via the differentiability of NeRF but is limited to pose estimation of
small objects due to the ray sampling strategy. Instead, our approach preserves
the viewpoint’s global information, extending iNeRF-based iterative methods
for large scenes with sparse panoramas. Besides, unlike OmniNeRF [16], which
synthesizes hundreds of maps from depth maps to train a NeRF, we use the
depth maps directly for training, resulting in faster and better performance than
OmniNeRF. DS-NeRF utilizes sparse deep supervision to regularize the geomet-
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ric information and achieve faster training. Unlike DS-NeRF, which makes the
density distribution on a sampling ray close to unimodal, we promote the density
to match the real density.

3 Methodology

We now introduce our method, illustrated in Fig. 2. Our localization method
comprises two interconnected stages. Prior to these two localization stages, a cru-
cial preliminary step is taken: DP-NeRF Pretraining to augment the panorama
dataset. This preparatory process ensures that our dataset is enriched with syn-
thetic yet realistic images, setting the stage for more robust and accurate localiza-
tion in subsequent stages. After dataset augmentation, in the first stage, termed
Feature Extraction and Image Retrieval, we leverage a global image retrieval
algorithm for coarse pose estimation. Subsequently, in the second stage, denoted
as Pose Optimization Based on DP-NeRF, we deploy an iterative algorithm
based on our DP-NeRF. This iterative refinement serves to intricately enhance
the precision of position estimation, resulting in a significant improvement in
the overall accuracy of the localization process.

3.1 DP-NeRF Pretraining

Traditional NeRF training, as presented in [32], revolves around minimizing the
photometric loss across a sampled set of rays. Given a 3D point x ∈ R

3 and a
viewing direction d ∈ R

3, we use common NeRF to mimic the implicit represen-
tation F of the density σ and RGB color c as F (x, d) = (σ, c). However, when
dealing with image localization, training a traditional NeRF becomes challenging
due to the inherent sparsity of the data. Drawing inspiration from DS-NeRF [10],
we use both RGB and depth information as training supervision. Consequently,
the loss function of DP-NeRF comprises two parts:

L = LColor + λDLDepth, (1)

where LColor denotes the color supervision loss, LDepth is the depth supervision
loss, and λD is the hyper-parameter to balance the color and depth supervision.

As for RGB-color supervision, the NeRF model samples the implicit radiance
field at coordinates along each ray r to approximate the RGB-color Ĉ(r):

Ĉ(r) =
∫ tf

tn

T (t)σ(t)c(t)dt, (2)

where t parameterizes the ray as r(t) = o + td with o denoting the origin and
we utilize T (t) = exp(− ∫ t

tn
σ(s)ds) to integrate the differential density σ(s) over

points between tn to t in order to calculate the occlusions. Then, the rendered
color is reconstructed by:

LColor =
∑

r∈R(P )

‖Ĉ(r) − C(r)‖22, (3)
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where R(P ) represents the set of rays rendered by NeRF and C(r) is the ground
truth color of ray r.

Then, as for depth image supervision, we use the NeRF model to render depth
images from specific poses in a similar manner to rendering RGB color pixels,
and the formulation from the original NeRF paper. Given a ray parameterized
as r(t) = o + td:

D̂(r) =
∫ tf

tn

T (t)σ(t)tdt, (4)

where D̂(r) is the predicted depth along the axis of ray r. Therefore, the depth
image supervision loss can be formulated as:

LDepth =
∑

r∈R(P )

|D̂(r) − D(r)|2, (5)

where the D(r) is the ground-truth depth image.
In contrast to DS-NeRF, which necessitates unimodal density sam-

pling results for each ray, our approach only requires that the pre-
dicted depth agrees with ground truth. For sampling points where
the distance from the camera is less than the measured ground truth
depth, we impose a requirement that their density should be 0. With-
out generating hundreds of maps from depth map to train a NeRF, the proposed
DP-NeRF uses the depth maps directly for training. The above design facilitates
our method of faster and high-quality training.

We train our DP-NeRF for each training image and then use all DP-NeRF
to represent the whole scene. After that, we can augment the panorama datasets
with synthetic images generated from the trained DP-NeRF.

3.2 Stage One: Feature Extraction and Image Retrieval

Our coarse pose estimation leverages the original NetVLAD [2] network archi-
tecture, which employs the VLAD [18] approach to generate the image rep-
resentation by aggregating the hidden feature maps embedded from a pre-
trained CNN. Formally, given an image I, the base architecture is denoted as
f : I → R

H×W×D, producing an H × W × D dimensional output map. This
map comprises a set of D-dimensional features extracted at H ×W spatial loca-
tions. The NetVLAD architecture clusters these D-dimensional features into a
K×D dimensional matrix by adding the residuals between each feature xi ∈ R

D

and K learned soft allocation weighted clustering centers. Specifically, given N
D-dimensional local image descriptors, the output image representation is K×D-
dimensional. The VLAD aggregation layer fVLAD : RN×D → R

K×D is given by

fVLAD(j, k) =
N∑

i=1

ak (xi) (xi(j) − ck(j)) , (6)

where xi(j) and ck(j) are the j-th element of the i-th descriptor and k-th cluster
center, and ak denotes the soft-assignment function. After VLAD aggregation,
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the resulting matrix is normalized column by column, converted into a single
vector, L2 global normalization is performed on it, and finally PCA [13] with
whitening is applied (learned on the training set).

Given a query image, we use this original NetVLAD descriptor to retrieve the
top-k most likely matches. Then, we adopt several strategies to generate more
accurate top-k estimated positions:

(1) We perform weighted averages for top-3, top-5, and top-10 positions, assign-
ing weights based on the similarity scores from the NetVLAD descriptor.

(2) We cluster top-5 and top-10 positions to obtain cluster centers.
(3) Based on the distance from the cluster center to the top-1 position, we reset

the weight of the top-1 position and re-calculate the weighted average.

3.3 Stage Two: Pose Optimization Based on DP-NeRF

In this stage, we further improve the localization accuracy based on the potential
poses estimated by stage one. Inspired by iNeRF [26], we update the estimated
pose by gradient-based optimization. As is shown in Subsect. 3.1, for each train-
ing image, we train one DP-NeRF model. Given a coarse pose T0 consisting of
viewing point and direction (x0, d0) of an observed image I from stage one, we
choose the DP-NeRF Fθ nearest to the coarse pose T0 for optimization. We freeze
the parameters θ in the selected DP-NeRF Fθ, and then we need to determine
the camera location T̂ of the targeted image I. The optimization problem can
be formulated as follows:

T̂ = arg min
T∈SE(3)

L(Fθ(T ), I), (7)

where L(Fθ(T ), I) is L2-Loss of pixel difference between Fθ(T ), the panorama
rendered from the DP-NeRF Fθ at each step, and the observed image I. Similar
to iNeRF, we adopted a gradient based process for optimizing SE(3) and used
relative transformations to ensure the estimated attitude T = Ti during the
optimization process continuously located on the SE(3) manifold, where Ti is
the estimated attitude at optimization step i.

We find that the global spatial distribution and semantic relation are impor-
tant for pose estimation. However, the rays sampling strategies in iNeRF lead
to incomplete information for optimization. Thus, we adopt a downsampling
strategy to render low-resolution synthetic images. Different from ray sampling
strategies, which sample a set of pixels from a rendered image to update the pose,
we define a lower resolution for NeRF to render the image and select all the pixels
for backpropagation. See detailed experiment analysis in ablation study c. Let
the reduction factor of the resolution be r, and the original height and width
of the high-resolution image be H and W . Thus, the reduced resolution of the
image rendered by NeRF is H ′ × W ′, where H ′ = r × H and W ′ = r × W . In
the meantime, the resolution of the ground truth image is downsampled as the
same resolution of H ′ × W ′ for calculating loss function L. In this way, we not
only save the global spatial information for omnidirectional localization but also
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reduce the memory storage to speed up the optimization. Obtaining potential
coarse poses for the observed image I from stage one, we do the optimization
process for each coarse pose sequentially to calculate the final estimated poses.
We select the estimated pose with the smallest loss L(Fθ(T ), I) as our final fine
estimated camera pose.

4 Experiments

4.1 Dataset and Implementation Details

Dataset. Stanford2D-3D-S [3] is a benchmark that has been widely recognized
for its significant role in omnidirectional localization. It has become a standard
for assessing the performance of various localization methods, and it is often
used as a reference point in the field of computer vision. This benchmark pro-
vides a comprehensive set of data, concluding both panoramic images and depth
maps, and evaluation metrics. Most importantly, it consists of six large-
scale indoor areas, covering over 6,000 m2, which provides various
localization scenes meanwhile the sparse distribution of panoramic
images makes localization task realistically challenging. In contrast,
other datasets typically focus on small scenes with well-distributed images, which
are not realistic in practice. Considering the unique challenges presented by this
dataset and its provision of depth maps, a feature not commonly found in other
datasets for omnidirectional localization, we utilize the Stanford2D-3D-S dataset
to evaluate the localization performance of our method in comparison to existing
approaches.

DP-NeRF Training. We train DP-NeRF with batch-size 1400 and 30k train-
ing steps in total. We adopt the Adam optimizer with an initial learning rate of
5e-3, which is decayed by 10 times at step 20k. The number of sampling points
for coarse MLP is 64 and 128 for fine MLP. Other parameters follow the standard
NeRF [32] training. Each DP-NeRF training session takes an average of 15 min.
During synthesis, ten random positions within the DP-NeRF’s visible range are
taken as camera positions, and it takes less than 1 min to synthesize a panorama
image.

Stage One Training. Real and synthetic datasets are combined together for
training. We resize all panorama images to 1024 by 512 pixels and center crop
them to 1024 by 340 pixels to avoid the adverse effect of black edges of images.
All hyper-parameters are the same as NetVLAD [2]. Top-10 retrieval results are
recorded for fine pose regression.

Stage Two Training. The total number of optimization steps is 150, and the
initial learning rate is 0.1, which is multiplied by 0.2 at step 30 and step 60,
respectively. As for the downsampling strategy, we set the downsampling factor
as 64. Other parameters follow the iNeRF [26].
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Fig. 3. Qualitative results of our omnidirectional localization. Recommended zoom in
for observation. We can observe that (1) our trained DP-NeRF can generate synthetic
but realistic images, assisting our method for excellent localization accuracy; (2) by
iteratively optimizing from the coarse pose, we can get the fine pose which is much
closer to the pose of the observed image.
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Table 1. Quantitative results of omnidirectional localization evaluated on Stanford2D-
3D-S dataset. Note that the results are averaged across all six large-scale scenes in
Stanford2D-3D-S.

Method Translation Error (m) Rotation Error (◦)

NetVLAD [2] 7.28 N/A

SFRS [14] 7.79 N/A

PoseNet [19] 4.59 40.6

SphereNet [9] 3.86 38.5

Zhang et al. [47] 3.07 18.2

PICCOLO [22] 5.45 109.1

CPO [24] 5.00 108.7

LDL [23] 2.68 53.6

Ours (Coarse) 6.73 N/A

Ours (Fine) 1.28 8.55

Table 2. Quantitative results of omnidirectional localization evaluated on different
areas of Stanford2D-3D-S dataset. Note that T-Error represents Translation Error
and R-Error represents Rotation Error.

Area1 Area2 Area3 Area4 Area5 Area6 Total

Area (m2) 965 1100 450 870 1700 935 6020

Volume (m3) 2850 3065 1215 2780 5370 2670 17,360

Scene Num. 190 299 83 258 373 208 1411

Time Cost of Data Aug. (h) 47 74 21 64 93 52 351

Ours Coarse T-Error (m) 10.06 5.97 4.29 3.59 8.41 17.14 6.73

Ours Fine T-Error (m) 1.89 0.65 0.50 0.91 1.42 1.55 1.28

Ours R-Error (◦) 13.32 5.07 34.52 10.33 8.67 5.88 8.55

4.2 Results

In this section, we present a comparative analysis of the traditional localization
methods and our proposed method in the context of the omnidirectional local-
ization task, particularly focusing on scenarios characterized by sparse data dis-
tribution. We compare our method with eight state-of-the-art methods, namely
NetVLAD [2], SFRS [14], PoseNet [19], SphereNet [9], Zhang et al. [47], PIC-
COLO [22], CPO [24], and LDL [23].

Quantitative Results. The quantitative localization results performed on the
Stanford2D-3D-S dataset are summarized in Table 1 and Table 2. Initially, our
method’s coarse location result demonstrates an improvement in performance
over the original NetVLAD, facilitated by the incorporation of DP-NeRF syn-
thetic, but it still falls below that of other competing methods. Subsequently,
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we refine the coarse pose estimation results through the algorithm detailed in
Subsect. 3.3. This refinement process results in a significant performance boost,
surpassing other methods. Our method achieves lower translation and rotation
errors, outperforming all existing methods by a large margin.

NAOL addresses the sparse panorama data challenges in the Stanford2D-3D-
S, which traditional feature-based localization algorithms struggle with. Unlike
these approaches, DP-NeRF generates additional images and iteratively refines
pose estimation, effectively managing sparse data limitations. This realistic app-
roach enhances omnidirectional localization in data-scarce environments.

Qualitative Results As shown in Fig. 3, we present the qualitative results
of omnidirectional localization to demonstrate the effectiveness of our method.
We can observe that (1) our trained DP-NeRF demonstrates the capability to
generate synthetic yet realistic images, assisting our method in bolstering the
performance; (2) by iteratively optimizing from the coarse pose, we can achieve
a refined pose that is significantly closer to the pose of the observed image.
These visualizations provide compelling evidence of our method’s effectiveness
in handling omnidirectional localization tasks, showcasing its ability to generate
realistic synthetic data and iteratively optimize poses for improved accuracy.

Table 3. Ablation study on translation error (m) depending on panorama image or
not and adding additional synthetic dataset or not. Localization results are evaluated
on all six areas of Stanford2D-3D-S dataset.

Method Perspective Panorama Panorama + DP-NeRF

NetVLAD [2] 13.01 7.28 6.73

SFRS [14] 13.20 7.79 5.76

Table 4. Ablation study on the effectiveness of different sampling strategies. Localiza-
tion results are evaluated on Area 4 (≈1,000 m2, 260 test images) of Stanford2D-3D-S.

Sampling Strategy T-error (m) R-error (◦)

Random Sampling 1.79 13.61

Interest Point 2.12 18.67

Interest Region 1.42 12.12

Downsamping 0.91 10.33
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Table 5. Ablation study on the time of pose optimization and translation error of
different downsampling factor r on Area4 (≈1,000 m2, 260 test images) of Stanford2D-
3D-S dataset. Note that considering the real world applicability of our method, we
choose the bold scheme in the paper.

Downsampling Factor 16 32 64 128 256

Optimization Time (h) 52.50 17.50 5.25 2.63 0.88

T-error (m) 0.82 0.84 0.91 1.65 3.76

4.3 Ablation Study and Discussion

Panorama Image. To analyze the effectiveness of panorama images, we com-
pare the coarse pose estimation module with a variant that uses the perspec-
tive images in place of the panorama images. We conduct this experiment on
NetVLAD [2] and SFRS [14] to investigate the universal significance of panorama
images. Both training parameters and training setup for these two methods are
the same. Results are shown in Table 3. As expected, coarse pose estimation with
panorama images demonstrates better performance, achieving at least 4.09m
better than perspective images.

DP-NeRF Synthesis. We compare the improvement of localization accuracy
on the coarse pose estimation module to ablate the effect of the additional DP-
NeRF synthetic dataset. For a fair comparison, synthetic images are only used
in the training stage. As shown in Table 3, with the additional synthetic dataset,
both NetVLAD and SFRS demonstrate relatively better performance than only
using the raw dataset.

Sampling Strategy. We compare different ray sampling strategies in our DP-
NeRF with the proposed downsampling strategy to show the effectiveness of pose
optimization in our method. As shown in Table 4, the downsampling strategy
lower the translation and rotation error, showing a significant performance gain
over other strategies.

Pose Optimization Time and Translation Error with Different Down-
sampling Factor. In our research, we analyze the impact of the downsampling
factor r on our algorithm’s performance, in which downsamples the rendered
image and ground truth. Table 5 reveals that a lower r increases localization
accuracy, but also demands more computation, presenting a trade-off between
accuracy and runtime. After comprehensive evaluation, we choose a reduction
factor of 64 as optimal, striking a balance between computational efficiency and
localization accuracy. This selection effectively reduces the algorithm’s complex-
ity while maintaining sufficient accuracy, enhancing overall efficiency.
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Discussion: Why do we choose NetVLAD as our feature extractor? The pri-
mary role of the feature extractor is to provide coarse locations for DP-NeRF
to further improve in the second stage. Benefiting from the success of NeRFs,
the DP-NeRF can be well-optimized as long as the coarse position is within the
visible range. The classic, simple, and effective method, NetVLAD, can provide
such coarse localization. Thus, we adopt it as our coarse localization method.

5 Conclusion

In this work, we propose NAOL, an efficient visual localization algorithm intri-
cately crafted for panorama images. To overcome the challenges posed by the lim-
ited size and sparsity of panorama dataset, we design the DP-NeRF model and
leverage it to augment the existing datasets. This augmentation proves instru-
mental in addressing the inherent limitations of small-sized and sparse datasets.
Besides, the iterative optimization of DP-NeRF enhance the localization perfor-
mance, both on translation error and rotation error. Our experiments corrob-
orate that the proposed NAOL excels in effectively performing visual localiza-
tion, particularly in scenarios characterized by sparse panorama datasets. This
more realistic approach better simulates real-world conditions, which markedly
enhance omnidirectional localization accuracy in data-scarce environment.
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Abstract. In this paper, EdgeConvFormer is introduced as a novel app-
roach to unsupervised anomaly detection in multivariate time series,
combining the strengths of graph convolutions and Transformers within
a hierarchical structure. The model utilizes Time2Vec to generate tempo-
ral embeddings and subsequently constructs dynamic graphs from point
embeddings in the 2D sensor-time space, effectively extracting the most
significant spatiotemporal relationships. A novel parallel sensor-specific
attention mechanism has been developed to enhance the model’s abil-
ity to exploit sensor-specific temporal dependencies, significantly boost-
ing its detection capabilities. Extensive experiments have been con-
ducted across six benchmark datasets for anomaly detection, including
the expansive Exathlon dataset. The experimental results demonstrate
that EdgeConvFormer outperforms state-of-the-art methods across var-
ious evaluation metrics.

Keywords: multivariate time series · anomaly detection · graph
CNN · Transformer

1 Introduction

In the modern manufacturing and engineering sectors, a vast array of sensors
are usually used to continuously monitor the status and behaviors of complex
systems. Each sensor contributes a variate, defined as its individual time series
signal, resulting in a substantial volume of multivariate time series data. The pri-
mary goal in managing these systems is to identify anomalies promptly, ensuring
that potential issues are addressed in a timely manner. This proactive approach
can significantly reduce ongoing maintenance expenses [1].

However, anomaly detection in multivariate time series data presents numer-
ous challenges. Firstly, the lack of a universally accepted definition of what con-
stitutes an anomaly makes the detection process inherently complex [2]. Further-
more, multivariate time series data often contain intricate temporal and spatial
dependencies that are difficult to discern and accurately analyze [3]. The rela-
tionships within the data are also typically nonlinear and nonstationary, adding
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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another layer of complexity to their modeling [4]. Lastly, the process of labeling
data for the training of anomaly detection models is both costly and labor-
intensive, requiring specialized expertise that may not always be available. This
limitation poses a significant barrier to the practical application of these models
[5].

Recent advancements in deep learning have substantially enhanced anomaly
detection capabilities, outperforming traditional methods such as ARMA, LOF,
Isolation Forest, and OC-SVM [6,7]. Among these advancements, Transform-
ers stand out for their efficiency in capturing long-term dependencies within
sequential data through self-attention mechanisms [8–10]. However, the applica-
tion of Transformers to time series analysis is impeded by several issues, such as
their reliance on unsuitable sinusoidal positional encodings and a lack of inher-
ent inductive biases, which necessitate extensive training datasets. These issues
are often compounded by their limitations in dynamically capturing relation-
ships between different sensors [11]. On the other hand, Graph Neural Networks
(GNNs) have been investigated as a means to model the correlations between
sensors in time series data, yet they tend to overlook long-term temporal pat-
terns and depend on static, pre-defined graph structures. These limitations ren-
der them ineffective for analyzing multivariate time series data associated with
dynamic systems [12,13].

In response to these challenges, we introduce the EdgeConvFormer, a novel
architecture that seamlessly integrates dynamic graph CNNs with an advanced
Transformer model, featuring a novel parallel sensor-spefic attention mechanism.
By dividing the analysis of multivariate time series data into spatial and tem-
poral correlations and tackling them through graph modeling and an attention
mechanism alternately, the EdgeConvFormer markedly enhances its ability to
identify anomaly patterns. The main contributions of this research are detailed
as follows:

1. The development of EdgeConvFormer, a novel approach for unsupervised
anomaly detection that integrates Time2Vec encoding, graph edge convo-
lution, and parallel sensor-specific attention mechanisms. This approach
enhances the detection of complex spatiotemporal patterns in multivariate
time series by utilizing both global and local contexts.

2. The introduction of a tailored multi-head self-attention mechanism that pro-
cesses the time series of each sensor in parallel. This allows for precise detec-
tion of sensor-specific patterns and interactions.

3. The adoption of Time2Vec for positional encoding, replacing the conventional
approach. This modification allows EdgeConvFormer to better capture both
periodic and aperiodic temporal patterns from the initial stages of analysis.

4. Through rigorous testing on a variety of benchmark datasets, we demon-
strate that EdgeConvFormer outperforms current leading models in anomaly
detection, showcasing its exceptional effectiveness and efficiency in identifying
anomalies.
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2 Related Work

Deep learning advancements have significantly enhanced anomaly detection
capabilities, surpassing traditional techniques with the deployment of CNNs,
RNNs/ LSTMs, Autoencoders, generative models, and deep one-class models
[14]. Notable developments include the OmniAnomaly model [15], which com-
bines GRUs with a VAE framework to handle diverse scenarios, and the LSTM-
VAE by Park et al. [16], which merges LSTMs with VAEs to improve dynamic
anomaly detection. MSCRED [17] enhances this approach by incorporating con-
volutional and LSTM layers with an attention mechanism, and Beat-GAN [18]
uses a GAN framework to simulate normal operational data. The field has also
evolved to better capture temporal dependencies, exemplified by TCN-AE [20]
that integrates Temporal Convolutional Networks within an autoencoder setup.

Transformer-based models are increasingly prominent for anomaly detection
in multivariate time series, offering robust solutions for complex datasets [19].
The Anomaly Transformer [8] utilizes temporal patterns and a minimax strategy
to distinguish anomalies, while TranAD [10] enhances detection through self-
conditioning and adversarial training.

Graph Neural Networks (GNNs) have become pivotal in detecting anomalies
within sensor networks by elucidating complex sensor interrelations. The MTAD-
GAT model by Zhao et al. [21] uses graph attention layers to adaptively learn
sensor influences, enhancing detection precision. Deng et al. [13] introduce the
GDN model, which refines network topology understanding through similarities
in sensor embeddings, improving anomaly identification. Further advancing this
field, Chen et al. [22] develop the GTA model, which automates graph struc-
ture learning using the Gumbel-Softmax technique and influences propagation
convolution to effectively model information flow and detect anomalies.

Our approach constitutes a significant advancement beyond current models
by integrating the unique capabilities of GNNs and Transformers. It innovatively
models both spatial and temporal correlations within multivariate time series
data via a novel, modular approach, which we detail subsequently.

3 Methodology

In multivariate time series anomaly detection, given historical training data
Xtrain ∈ R

T1×S , consisting of S variates (e.g. the signals from different sensors)
each with T1 timestamps, and assume this training data is free of anomalies, the
objective is to determine the presence of anomalies at each timestamp t within a
new, unseen test time series Xtest ∈ R

T2×S . The idea is to train a neural network
for the reconstruction of the anomaly-free data Xtrain so that its reconstruction
error can be used as a quantification of the anomaly degree. The data point at
any given timestamp t is denoted as xt, where xt ∈ R

1×S is a row vector, and
Xs ∈ R

T1 represents the time series data for the s-th sensor. To facilitate anal-
ysis, both Xtrain and Xtest are segmented into overlapping windows of length lw
with a stride of lstr.
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Fig. 1. The Proposed EdgeConvFormer Architecture. (1) Input Embedding: Time2Vec
extracts time patterns for each sensor. (2) Encoder: integrating EdgeConv and parallel
temporal attention for each sensor (ParaAtten) in an alternative, hierarchical man-
ner, enhancing information capture across sensors and time. EdgeConv refines spatial-
temporal embeddings from neighbors, while ParaAtten focuses on temporal dynamics.
(3) Decoder: An MLP layer aggregates these features, projecting them onto the sensor
dimension.

3.1 Network Architecture

The proposed EdgeConvFormer is constructed as an encoder-decoder model tai-
lored for anomaly detection in multivariate time series, as illustrated in Fig. 1
(a), and the architecture backbone is detailed in Fig. 1 (b).

Time2Vec Embedding. In our model, Time2Vec [23] is utilized to enhance
the embedding process to better capture periodic and aperiodic behaviors. Each
sensor’s data, Xs, is transformed into a (m + 1)-dimensional embedding using
linear and sinusoidal functions. Specifically, the first dimension is linearly trans-
formed (ω0Xs +φ0), and the remaining m dimensions (m = 64) are sinusoidally
transformed (sin(ωiXs + φi) for 1 ≤ i ≤ m).

These embeddings are aggregated into a unified structure with dimensions
[lw, S, dE ], where lw is the sliding window length, S is the number of sensors,
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and dE ( m+1) is the embedding depth. This structure feeds into the EdgeCon-
vFormer’s encoder, enhancing its ability to recognize sequences in diverse time
series datasets.

Encoder. The encoder of the EdgeConvFormer model, depicted in Fig. 1 (b),
consists of four layers, each integrating an EdgeConv [24] module with a parallel
attention for each variate (ParaAtten) module. The EdgeConv module, designed
for dynamic graph structuring in the sensor-time 2D dimension, collaborates
with the ParaAtten to independently and concurrently capture long-range tem-
poral dependencies across various sensors, thus enhancing data representation at
each stage. Initiated by inputs from the Time2Vec module, this layered configu-
ration gradually refines the features to improve the detection of spatiotemporal
patterns in multivariate time series data.

EdgeConv module: In the EdgeConvFormer model, for each overlapping win-
dow, each of the four layers uses an EdgeConv module to dynamically update
embeddings based on spatial-temporal relationships. Inputs to each layer l are
reshaped to matrices with dimensions [lw × S, d

(l)
in ], where d

(0)
in = 65, the dimen-

sion of the Time2Vec output, and d
(l)
in are the dimensions of the outputs from

their previous layers.
At each layer, the EdgeConv module constructs a k-nearest neighbor graph,

updating the embeddings h
(l)
p for each point p by combining the difference

between each point and its neighbors in the sensor-time 2D space with the point’s
original features. This process is described by:

h(l+1)
p = max

j∈N(p)

(
ReLU

(
Θ(l) · (h(l)

j − h(l)
p ) + Φ(l) · h(l)

p

))
, (1)

where N(p) is a set of points including the k-nearest neighbors of the point p,
and Θ(l) and Φ(l) are layer-specific transformations. This operation merges local
and global contexts, emphasizing significant features through max-pooling [24].

The resulting tensor from each layer has dimensions [lw ×S, d
(l)
out] where d

(l)
out

are set to be 256, 512, 1024, and 1024 respectively for l = 0, 1, 2, 3, enhancing the
encoder’s ability to detect complex patterns and anomalies in the multivariate
time series data.

ParaAtten Module: In the EdgeConvFormer architecture, each layer incorporates
a parallel attention module (ParaAtten) for each variate, as shown in Fig. 2. This
module modifies the traditional Transformer architecture to process signals from
each sensor separately and in parallel, keeping the sensor and feature dimensions
separate and independent. This approach contrasts with traditional Transformer
models, which typically flatten these dimensions into a single combined one. This
configuration is crucial for preserving the unique temporal characteristics of each
sensor’s data.

For each sensor s, the output from the EdgeConv module, denoted by x̃, is
reshaped into a matrix x̌s with dimension lw × d

(l)
out, as demonstrated in Fig. 2.
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Fig. 2. ParaAtten module: parallel sensor-specific attention

Here, lw is the window length, and d
(l)
out is the dimension of features per sensor.

This structure ensures independent yet parallel processing for each variate.
For each sensor s, the Transformer calculates Query (Q), Key (K), and Value

(V) matrices using specific weights:

Q(l)
s = x̌s × wQs(l), K(l)

s = x̌s × wKs(l), V (l)
s = x̌s × wVs(l). (2)

The attention mechanism independently processes features for each sensor,
employing Multi-Head Scaled Dot-Product Attention:

MHA(l)
s = Concat(Head1,s, . . . ,HeadN,s)

where each Headn,s = softmax

(
Q

(l)
n,sK

(l)T

n,s√
dk

)
V (l)
n,s,

(3)

This process is followed by a layer normalization and a residual connection,
enhancing feature integration:

Tr(l)s = LayerNorm(x̌s + MHA(l)
s ), Tran(l)s = LayerNorm(Tr(l)s + FFN(Tr(l)s )).

(4)

Decoder. The decoder in the EdgeConvFormer architecture, as shown in
Fig. 1(b), concatenates the multi-channel outputs (across multiple sensors) from
the four-layer EdgeConv-ParaAtten modules (Tran(0) to Tran(3)). These outputs
are reshaped into a single feature vector and fed into a Multi-Layer Perceptron
(MLP) network to reconstruct the signals of sensors.

We measure the model’s reconstruction accuracy using the mean squared
error (MSE) between reconstructed and actual values:

LMSE =
1
lw

lw−1∑
t=0

‖x̂t − xt‖22. (5)
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3.2 Computational Complexity

The computational complexity of the EdgeConvFormer model is primarily deter-
mined by the EdgeConv and Transformer layers. Given the number of sensors S,
window size n, feature dimension d, number of layers L, and number of attention
heads h, the time complexity is O(L·S ·n·d2 ·h). This complexity can be reduced
through parallel processing and distributed training methods.

4 Anomaly Detection and Evaluation

Once the model is trained based on normal sensor signals, we can identify anoma-
lies by computing the reconstruction error Erst for each sensor s at time t. This
error, which represents the absolute difference between the reconstructed and
the original values, is defined as:

Erst = ‖x̂s
t − xs

t‖1. (6)

However, relying solely on reconstruction errors can lead to misclassifications.
To increase accuracy, specialized scoring functions and thresholding techniques
are employed to refine anomaly scores to reduce false positives and negatives
and improve detection precision.

4.1 Anomaly Scoring Function

Gauss D: The Gauss D scoring function employs a dynamic Gaussian model
that fits distributions per sensor in real-time, adjusting the mean μi

t and variance
(σi

t)
2 to evolving data trends, crucial for environments with variable character-

istics [25].

Gauss D K : The Gauss D K scoring applies Gaussian kernel smoothing to
the Gauss D model, smoothing anomaly scores across sensors to reduce noise
impacts and better align anomaly detection across different sensors. This tech-
nique enhances detection accuracy while minimizing false positives [26].

4.2 Thresholding Method

Best-F-score: This method identifies the threshold that maximizes the F
score, crucial for achieving the best balance between precision and recall, which
enhances the accuracy of anomaly detection assessments [8].

Top-k : This strategy marks the k instances with the highest anomaly scores as
anomalies, adapting to the actual anomaly count in the dataset [26].

Tail-p: Suitable for streaming data, this method dynamically sets thresholds
based on negative log probabilities across multiple sensors. It optimizes detection
by testing various small tail probability values [26].
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4.3 Evaluation Metrics

F1 score: A traditional metric that calculates the harmonic mean of precision
and recall, balancing the rates of false positives and negatives [18].

Fpa1 score: Adjusts the F1 score for time series by considering the detection
within an anomalous segment, favoring timely over constant alerts [15].

Fc1 score: Integrates point-wise precision and segment-wise recall, offering a
balanced assessment of detection performance [27].

F1-PT RT score: Focuses on range-based anomalies, combining range-based pre-
cision and recall. This metric evaluates the detection’s timing, coverage, and
accuracy within each anomalous segment, reflecting its practical utility in real-
world scenarios [28].

Additionally, AU-ROC and AU-PRC scores evaluate the model’s discrim-
inative performance across different thresholds, which is crucial for handling
imbalanced datasets [29].

5 Experiments

Datesets. To evaluate EdgeConvFormer’s performance, we use five promi-
nent multivariate time series datasets from varied real-world applications. These
include the SMD dataset from server systems [15], MSL and SMAP from NASA
space missions [30], SWaT from a water treatment facility [31], and PSM from
eBay’s server metrics [32]. MSL, SMAP, and SMD are multi-entity datasets,
containing data from various units, while SWaT and PSM are single-entity. We
train individual models for each entity in the multi-entity datasets and combine
the results to evaluate overall performance.

Additionally, we use the Exathlon dataset [28], comprising high-dimensional
and large data, which offers a comprehensive testing ground for the proposed
EdgeConvFormer, allowing us to evaluate its effectiveness with detailed, range-
based metrics against the complexities and demands of real-world anomaly detec-
tion.

Baselines To evaluate anomaly detection models, we compare EdgeConvFormer
against several leading models identified by Garg et al. [26], including LSTM-
VAE [16], MSCRED [17], OmniAnomaly [15], BeatGAN [18], TCN-AE [33], UAE
[26], and two notable Transformer-based models in anomaly detection: TranAD
[10] and Anomaly Transformer [8].

5.1 Quantitative Evaluation

Comparison with models in [26] Table 1 demonstrates that our EdgeCon-
vFormer model consistently outperforms other leading models, including UAE,
LSTM-VAE, MSCRED, BeatGan, TCN-AE, and OmniAnomaly, as identified in
[26]. These models were assessed across various thresholding methods and met-
rics using a dynamic Gaussian scoring function, except for OmniAnomaly which
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Table 1. Performance comparison of EdgeConvFormer with models from [26] using
dynamic Gaussian scoring across five datasets. Configurations are consistent with those
reported in [26]. The best results are highlighted in bold.

Metric F1 Fpa1 Fc1 AU-ROC AU-PRC AvgRank

Thresholding Top-K Best-F1 Tail-P Top-K Best-Fpa1 Tail-P Top-K Best-Fc1 Tail-P

SMD OmniAnomaly 0.4211 0.3519 0.2433 0.7670 0.9548 0.4471 0.5429 0.8233 0.3885 0.8067 0.4166 4.1

LSTM-VAE 0.3977 0.2979 0.3149 0.7321 0.9546 0.8772 0.5241 0.7844 0.6213 0.7565 0.3816 4.9

MSCRED 0.4111 0.3537 0.2653 0.6484 0.8068 0.1623 0.3989 0.5197 0.2711 0.8103 0.4174 5.5

BeatGan 0.4056 0.2664 0.2924 0.7539 0.9592 0.6940 0.5387 0.8069 0.4372 0.8282 0.4014 4.7

TCN-AE 0.4477 0.2847 0.3625 0.7628 0.9810 0.8893 0.5818 0.8597 0.5823 0.8153 0.4268 2.0

UAE 0.4131 0.2379 0.3107 0.7545 0.9815 0.8395 0.5590 0.8459 0.5944 0.8283 0.3955 3.6

EdgeConvFormer 0.4163 0.2728 0.3276 0.7546 0.9816 0.8678 0.5564 0.8595 0.6068 0.8039 0.3967 3.2

MSL OmniAnomaly 0.2308 0.1845 0.0824 0.7319 0.9174 0.5251 0.3330 0.5231 0.2823 0.6476 0.2201 3.8

LSTM-VAE 0.2192 0.0973 0.0335 0.7290 0.9467 0.1899 0.3178 0.6106 0.0352 0.5841 0.2166 5.5

MSCRED 0.2332 0.2159 0.0339 0.7305 0.7696 0.0454 0.3433 0.5055 0.0352 0.6225 0.2556 4.5

BeatGan 0.2737 0.1421 0.1940 0.7330 0.9359 0.1901 0.3857 0.5570 0.1940 0.6515 0.2516 3.2

TCN-AE 0.2561 0.1295 0.0339 0.7426 0.9642 0.0454 0.3645 0.6608 0.0352 0.6057 0.2513 3.7

UAE 0.1831 0.0638 0.1941 0.7156 0.9592 0.1903 0.2925 0.4596 0.1941 0.6178 0.1741 5.2

EdgeConvFormer 0.3307 0.3404 0.2280 0.7364 0.9669 0.1928 0.4329 0.7520 0.4653 0.5997 0.3247 1.6

SMAPOmniAnomaly 0.2272 0.1881 0.1406 0.7896 0.9494 0.2193 0.2968 0.5881 0.1934 0.6136 0.2269 4.2

LSTM-VAE 0.1391 0.0646 0.1934 0.7405 0.9783 0.2272 0.2165 0.4868 0.1934 0.5353 0.1382 5.6

MSCRED 0.2423 0.1487 0.1933 0.7640 0.8365 0.2297 0.3347 0.5921 0.1933 0.6168 0.2449 3.3

BeatGan 0.2393 0.1106 0.1928 0.7664 0.9796 0.2280 0.3318 0.6243 0.1928 0.6124 0.2267 4.1

TCN-AE 0.2396 0.1861 0.1927 0.7889 0.9845 0.2272 0.3237 0.5861 0.1927 0.6233 0.2208 3.9

UAE 0.1678 0.1475 0.1929 0.7420 0.9728 0.2276 0.2530 0.5107 0.1929 0.5678 0.1590 5.4

EdgeConvFormer 0.3490 0.1766 0.1942 0.7912 0.9845 0.2294 0.4759 0.6877 0.1942 0.7220 0.3124 1.3

SWaT OmniAnomaly 0.2154 0.2425 0.2259 0.5505 0.6358 0.5707 0.3256 0.4437 0.3502 0.5386 0.2135 6.5

LSTM-VAE 0.4008 0.3693 0.4036 0.5501 0.6685 0.5583 0.4752 0.5876 0.4930 0.6829 0.3417 4.5

MSCRED 0.2324 0.1319 0.2691 0.6945 0.8359 0.8168 0.3572 0.5436 0.4033 0.6558 0.2298 5.3

BeatGan 0.4901 0.2655 0.3652 0.7523 0.9006 0.8926 0.5905 0.6645 0.3645 0.8569 0.5049 2.8

TCN-AE 0.3315 0.2541 0.3399 0.6926 0.8884 0.8757 0.3315 0.2541 0.3399 0.7583 0.3462 4.8

UAE 0.4735 0.0834 0.4683 0.7821 0.9616 0.9464 0.6239 0.7809 0.6690 0.8441 0.4344 2.5

EdgeConvFormer 0.7412 0.7275 0.7325 0.8209 0.8833 0.8703 0.6966 0.7258 0.7169 0.9045 0.7068 1.6

PSM OmniAnomaly 0.4315 0.4106 0.3575 0.7694 0.9300 0.9259 0.5479 0.5872 0.5775 0.6462 0.4623 4.5

LSTM-VAE 0.4216 0.2132 0.4421 0.7749 0.9276 0.9211 0.5599 0.6088 0.5948 0.6431 0.4291 4.7

MSCRED 0.4399 0.5353 0.4688 0.7486 0.8028 0.7903 0.4489 0.5213 0.4645 0.7172 0.4303 5.0

BeatGan 0.3579 0.0552 0.4075 0.7561 0.9641 0.9596 0.5007 0.6948 0.6941 0.5893 0.3819 4.7

TCN-AE 0.4965 0.3041 0.5092 0.7981 0.9402 0.9344 0.6261 0.6840 0.6801 0.7268 0.5132 2.5

UAE 0.3627 0.0413 0.3942 0.7810 0.9741 0.9650 0.5128 0.6863 0.6846 0.5746 0.3649 4.5

EdgeConvFormer 0.4655 0.3265 0.4803 0.7592 0.9740 0.9701 0.6043 0.7504 0.7465 0.6835 0.5161 2.1

uses a predefined scoring approach. The EdgeConvFormer model achieved the
highest average rank on the MSL, SMAP, SWaT, and PSM datasets and the
second highest on the SMD dataset, as shown in Table 2. Specifically, for the
MSL and SMAP datasets, which contain multiple short-length entities, Edge-
ConvFormer was trained separately for each entity, excelling despite the Trans-
former architecture’s typical need for more extensive data. This underscores the
EdgeConv module’s crucial role in enhancing performance with limited data, as
confirmed by an ablation study detailed in Table 5, which shows a performance
drop when the module is removed.

The algorithm performance ranking from the best to worst is EdgeCon-
vFormer, TCN-AE, BeatGan, UAE, OmniAnomaly, MSCRED, and LSTM-VAE.
The TCN-AE model excels by capturing long-term temporal patterns with its
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Table 2. Average rank of algorithms across all five datasets.

Algorithms Avg-rank

on SMD

Avg-rank

on MSL

Avg-rank

on SMAP

Avg-rank

on SWaT

Avg-rank

on PSM

Overall
Avg-rank

OmniAnomaly 4.1 3.8 4.2 6.5 4.5 4.62

LSTM-VAE 4.9 5.5 5.6 4.5 4.7 5.04

MSCRED 5.5 4.5 3.3 5.3 5.0 4.72

BeatGan 4.7 3.2 4.1 2.8 4.7 3.90

TCN-AE 2.0 3.7 3.9 4.8 2.5 3.38

UAE 3.6 5.2 5.4 2.5 4.5 4.24

EdgeConvFormer (ours) 3.2 1.6 1.3 1.6 2.1 1.96

dilated convolutional layers, performing exceptionally when not restricted to the
first sensor’s data. BeatGan’s third-place benefits from its GAN architecture.
However, its CNN-based generator may not fully capture sensor interrelation-
ships, affecting its ability to handle long-term dependencies unless filter sizes are
optimally tuned. The UAE model excels on the SWaT dataset by independently
analyzing each sensor, avoiding the need to account for inter-sensor relation-
ships. This method is effective because the actuators in the SWaT dataset only
provide binary outputs, which are simpler than the continuous data from sen-
sors. By focusing on the temporal dynamics of individual sensors, UAE adeptly
identifies anomalies within each data stream. LSTM-VAE and OmniAnomaly,
both based on RNN structures, vary in performance. OmniAnomaly integrates
GRU and VAE, enhancing its ability to model complex time-series variabili-
ties. However, its static scoring function limits adaptability, which is critical in
dynamic environments. MSCRED struggles possibly due to its multi-scale sig-
nature matrices that might not adequately capture the full scope of the system’s
dynamics, leading to information loss.

Evaluation on the Exathlon Dataset. The Exathlon dataset provides a rig-
orous test for anomaly detection models through a structured series of evaluation
levels from AD1 to AD4, where each level increases in difficulty. This setup tests
capabilities from simple anomaly detection to precise identification and timing
of anomalies.

Our evaluation used three specific Exathlon applications to test a wide
range of anomaly types, allowing a comprehensive assessment of our models
against diverse anomaly behaviors. According to the results in Table 3, the Edge-
ConvFormer model generally outperformed other algorithms, demonstrating its
robustness across various types of anomalies and all AD levels. Key findings
include: 1) Superior Performance of EdgeConvFormer: Across all evaluation met-
rics, particularly the F1-PTRT score, this model demonstrated robust accuracy
in pinpointing anomalies. 2) Reliable Detection Across Complexity Levels: Edge-
ConvFormer consistently excelled, even at higher AD levels like AD4, showcas-
ing its ability to accurately segment time anomalies amidst increasing evaluation
demands.

Comparison with the Two Transformer-Based Approaches. Our anal-
ysis in Table 4 evaluates EdgeConvFormer against two Transformer-based mod-
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Table 3. Anomaly detection results on Exathlon dataset. AD1 (Anomaly Existence),
AD2 (Range Detection), AD3 (Early Detection), and AD4 (Exactly-Once Detection).
PT : Range-based Precision (as %), RT : Range-based Recall (as %), F1-PTRT : Range-
based F1 score (as %). The best results are highlighted in bold.

AD1 PTPTPT for Anomaly Types T1→T5 RTRTRT for Anomaly Types T1→T5 F1-PTRTF1-PTRTF1-PTRT for Anomaly Types T1→ T5

OmniAnomaly 0.4543 0.4310 0.3913 0.3500 0.3667 1.0 1.0 1.0 0.3333 1.0 0.6247 0.6024 0.5625 0.3415 0.5366

LSTM-VAE 0.9193 0.9411 0.5556 0.1259 0.6047 1.0 1.0 0.75 1.0 1.0 0.9580 0.9744 0.6383 0.2237 0.7537

MSCRED 0.2973 0.9167 0.4802 0.6347 0.7925 1.0 1.0 1.0 0.6667 0.8 0.4583 0.9565 0.6488 0.6503 0.7962

BeatGan 0.9119 0.9474 0.2714 0.3250 0.6000 1.0 1.0 0.5 1.0 0.8 0.9539 0.9730 0.3518 0.4906 0.6857

TCN-AE 0.5571 0.8571 0.3115 0.2857 0.7460 1.0 1.0 0.5 0.3333 1.0 0.7156 0.9231 0.3839 0.3077 0.8545

UAE 0.8776 0.9697 0.5000 0.5000 0.8699 1.0 1.0 0.25 0.1667 1.0 0.9348 0.9846 0.3333 0.2500 0.9304

EdgeConvFormer 0.93470.98470.5667 0.5870 0.8349 1.0 1.0 1.0 0.8333 1.0 0.96620.99230.72340.6888 0.9100

AD2 PTPTPT for Anomaly Types T1 → T5 RTRTRT for Anomaly Types T1 → T5 F1-PTRTF1-PTRTF1-PTRT for Anomaly Types T1 → T5

OmniAnomaly 0.9313 1.0 0.2034 0.2439 0.2394 0.2902 0.0120 0.0031 0.0493 0.0154 0.4425 0.0238 0.0061 0.0820 0.0290

LSTM-VAE 0.8125 0.3755 0.5556 0.1259 0.7248 0.7827 0.6889 0.2608 0.3365 0.4100 0.7973 0.4860 0.3549 0.1833 0.5237

MSCRED 0.4268 0.5890 0.3076 0.6667 0.5261 0.9316 0.9801 0.8698 0.3884 0.3148 0.5854 0.7358 0.4546 0.4908 0.3939

BeatGan 0.7894 0.8793 0.2498 0.3250 0.4233 0.6120 0.9115 0.4611 0.7907 0.1868 0.6895 0.8951 0.3241 0.4606 0.2593

TCN-AE 0.6667 0.8166 0.2185 0.1197 0.5795 0.8650 0.9687 0.3791 0.7521 0.2424 0.7530 0.8862 0.2772 0.2065 0.3418

UAE 0.7844 0.6154 0.2961 0.0915 0.8610 0.5964 0.9151 0.3207 0.7550 0.3261 0.6776 0.7369 0.3079 0.1633 0.4730

EdgeConvFormer 0.7600 0.8904 0.56210.7622 0.4551 0.8529 0.98980.9170 0.5744 0.9549 0.80380.93750.69690.6551 0.6164

AD3 PTPTPT for Anomaly Types T1 → T5 RTRTRT for Anomaly Types T1 → T5F1-PTRTF1-PTRTF1-PTRT for Anomaly Types T1 → T5

OmniAnomaly 0.9285 0.0008 0.2034 0.2439 0.2394 0.1821 0.0016 0.0021 0.0151 0.0125 0.3045 0.0102 0.0042 0.0285 0.0237

LSTM-VAE 0.8125 0.9929 0.5556 0.1259 0.3810 0.5448 0.3266 0.2545 0.2455 0.5349 0.6523 0.4915 0.3491 0.1665 0.4450

MSCRED 0.3733 0.5890 0.3077 0.5000 0.5261 0.92770.9801 0.7608 0.3670 0.2943 0.5324 0.7358 0.4382 0.4233 0.3775

BeatGan 0.7894 0.8793 0.2499 0.3250 0.4233 0.4521 0.7520 0.3964 0.7303 0.1732 0.5749 0.8106 0.3065 0.4498 0.2487

TCN-AE 0.6667 0..8166 0.2185 0.1197 0.2277 0.5825 0.6360 0.3437 0.6753 0.4868 0.6218 0.7151 0.2672 0.2033 0.3103

UAE 0.4984 0.6154 0.2961 0.0915 0.8610 0.9183 0.5642 0.2891 0.7110 0.2901 0.6461 0.5887 0.2925 0.1622 0.4340

EdgeConvFormer 0.5751 0.8904 0.56210.6097 0.4551 0.9229 0.8813 0.8613 0.5744 0.8952 0.70860.88580.68020.5915 0.6034

AD4 PTPTPT for Anomaly Types T1 → T5 RTRTRT for Anomaly Types T1 → T5F1-PTRTF1-PTRTF1-PTRT for Anomaly Types T1 → T5

OmniAnomaly 0.9445 1.0 0.2619 0.2439 0.3667 0 0 0 0.0002 0.0059 0 0 0 0.0005 0.0116

LSTM-VAE 0.4993 0.9929 0.5556 0.3333 0.3766 0.9453 0 0.2345 0.0253 0.3774 0.6535 0 0.3298 0.0471 0.3770

MSCRED 0.3733 0.5890 0.1457 0.3913 0.5261 0.9277 0.9801 0.9358 0.2860 0.2836 0.5324 0.7358 0.2521 0.3304 0.3685

BeatGan 0.3742 0.8793 0.2499 0.3224 0.4233 0.9441 0 0.2390 0.5000 0.1287 0.5360 0 0.2443 0.3920 0.1974

TCN-AE 0.3995 0.8166 0.2185 0.1189 0.5795 0.6308 0 0.2376 0.3258 0.1851 0.4892 0 0.2277 0.1743 0.2806

UAE 0.4984 0.8553 0.2961 0.0910 0.8610 0.6307 0 0.2418 0.5000 0.1842 0.5568 0 0.2662 0.1540 0.3034

EdgeConvFormer 0.5751 0.5759 0.4877 0.6097 0.4169 0.9229 0.9999 0.7565 0.53430.80220.7086 0.7309 0.59300.5695 0.5487

els, TranAD and Anomaly Transformer, which enhance sensitivity to anomalies
through adversarial training and a minimax strategy, respectively. EdgeCon-
vFormer consistently outperforms these models, particularly excelling in Fpa1
scores across multiple datasets like SMD, MSL, SMAP, and PSM, demonstrat-
ing robust anomaly detection in complex multivariate contexts and with limited
data. While it ranks second on the SWaT dataset, its high precision illustrates
its effectiveness at minimizing false positives. In competitive settings like the
PSM dataset, EdgeConvFormer closely rivals Anomaly Transformer, affirming
its capability in intricate anomaly detection scenarios.

5.2 Qualitative Evalution

The performance of the EdgeConvFormer model, shown in Fig. 3, highlights its
proficiency in anomaly detection across diverse datasets. The model consistently
aligns predicted anomalies (red) closely with the ground truth (blue), minimizing
false positives and recognizing patterns of consecutive anomalies, which indicates
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Table 4. Performance comparison of EdgeConvFormer with SOTA on the five public
datasets. P: Precision (as %), R: Recall (as %), Fpa1: point-adjusted F1 score (as %).
The best results are highlighted in bold. Except for EdgeConvFormer, all other model
results are cited from TranAD [10] and Anomaly Transformer [8].

Dateset SMD MSL SMAP SWaT PSM

Metric P R Fpa1 P R Fpa1 P R Fpa1 P R Fpa1 P R Fpa1

Anomaly Transformer 89.40 95.45 92.33 92.09 95.15 93.59 94.13 99.40 96.69 91.55 96.73 94.07 96.91 98.90 97.89

TranAD 92.62 99.74 96.05 90.38 99.99 94.94 80.43 99.99 89.15 97.60 69.97 81.51 68.13 90.18 77.62

EdgeConvFormer(ours) 97.83 98.50 98.16 95.78 97.61 96.69 97.33 99.61 98.45 97.81 80.52 88.33 98.13 96.68 97.40

Fig. 3. Qualitative evaluation of anomaly detection on SWaT dataset using the pro-
posed EdgeConvFormer model. For each dataset, the blue line is the ground truth
anomaly, the orange line is the predicted anomaly score, and the red line is the predicted
anomaly label by applying the best-Fc1 threshold (black dash line) to the anomaly
score. (Color figure online)

Fig. 4. Qualitative evaluation of anomaly detection on Exathlon dataset using the
proposed EdgeConvFormer model. The pink rectangle is the ground truth anomaly,
the green line is the predicted anomaly score (with Gauss D K scoring), and the yellow
line is the tail-p threshold to the anomaly score. (Color figure online)

a grasp of temporal context. This performance is consistent across all datasets,
where it effectively marks at least one point within nearly every anomaly seg-
ment, optimizing detection while maintaining low false positives.



EdgeConvFormer 379

Further insights from Fig. 4 demonstrate the model’s precision on the
Exathlon dataset using Gauss D K scoring and Tail-p thresholding. The model
effectively delineates true anomaly boundaries and closely matches detected
anomalies with the actual ones, affirming EdgeConvFormer’s capability to han-
dle complex anomaly detection tasks with high efficiency.

5.3 Ablation Studies

Ablation studies on the EdgeConvFormer model evaluate the individual contri-
butions of its Time2Vec embedding, EdgeConv module, and ParaAtten module.

Removing Time2Vec while using the standard positional encoding [34] signif-
icantly reduced performance: F1 score fell by 89.71%, highlighting Time2Vec’s
effectiveness in capturing temporal dynamics. Removing the EdgeConv module
led to a dramatic decrease in F1 score by 90.02% and similarly large declines
across other metrics, underscoring its crucial role in integrating spatial-temporal
data. Conversely, excluding the ParaAtten module resulted in smaller reductions
(F1 score down by 6.00%), indicating its importance in processing long-range
dependencies, though less critical than the EdgeConv module.

Replacing the ParaAtten module with the traditional Flattened Transformer
architecture resulted in decreases of 30.76% in the F1 score, 6.13% in Fpa1,
37.97% in Fc1, 13.59% in AUROC, and 27.68% in AUPRC. These results under-
score EdgeConvFormer’s effectiveness in processing sensor-specific data streams,
in contrast to the Flattened Transformer, which may merge variate and embed-
ding dimensions, potentially leading to feature confusion.

Table 5. Ablation study on the EdgeConvFormer model on the PSM dataset, assess-
ing the effects of removing Time2Vec, EdgeConv, and ParaAtten modules, as well as
replacing ParaAtten with flatted self-attention. The best results are highlighted in bold.

Metric F1 Fpa1 Fc1 AU-ROC AU-PRC

w/o Time2Vec 0.0336 0.9047 0.6007 0.6037 0.3795

w/o EdgeConv 0.0326 0.9044 0.6030 0.6112 0.3867

w/o ParaAtten 0.3069 0.9165 0.6850 0.6503 0.4464

replace ParaAtten 0.2497 0.9177 0.5439 0.6017 0.4042

EdgeConvFormer 0.3265 0.9740 0.7504 0.6835 0.5161

6 Conclusion

This paper presents the EdgeConvFormer model, an unsupervised anomaly
detection method in multivariate time series, integrating Time2Vec, dynamic
graph CNNs (EdgeConv), and parallel sensor-specific attention mechanisms for
improved detection performances. Time2Vec enriches input embeddings with
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both positional and time-specific characteristics, while EdgeConv and parallel
sensor-specific attentions are combined in a multi-layered structure to refine spa-
tiotemporal features alternatively. This configuration enhances detection accu-
racy and has proven effective across various real-world datasets, outperforming
existing state-of-the-art anomaly detection methods. Future work could explore
more efficient data representations within graph CNNs and attention mecha-
nisms, potentially at the sub-series level to optimize computational and memory
demands.
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Abstract. As a fundamental operation in modern machine vision mod-
els, feature upsampling has been widely used and investigated in the
literatures. An ideal upsampling operation should be lightweight, with
low computational complexity. That is, it can not only improve the over-
all performance but also not affect the model complexity. Content-aware
Reassembly of Features (CARAFE) is a well-designed learnable oper-
ation to achieve feature upsampling. Albeit encouraging performance
achieved, this method requires generating large-scale kernels, which
brings a mass of extra redundant parameters, and inherently has limited
scalability. To this end, we propose a lightweight upsampling operation,
termed Dynamic Lightweight Upsampling (DLU) in this paper. In par-
ticular, it first constructs a small-scale source kernel space, and then sam-
ples the large-scale kernels from the kernel space by introducing learn-
able guidance offsets, hence avoiding introducing a large collection of
trainable parameters in upsampling. Experiments on several mainstream
vision tasks show that our DLU achieves comparable and even better
performance to the original CARAFE, but with much lower complexity,
e.g., DLU requires 91% fewer parameters and at least 63% fewer FLOPs
(Floating Point Operations) than CARAFE in the case of 16× upsam-
pling, but outperforms the CARAFE by 0.3% mAP in object detection.
Code is available at https://github.com/Fu0511/Dynamic-Lightweight-
Upsampling.

Keywords: Upsampling operation · Dynamic convolution ·
Lightweight design · Deep learning

1 Introduction

Effective scene parsing and object recognition are key abilities required by most
intelligent vision systems to perceive and interact with the real world [19,30].
Recently, deep learning-based approaches have attracted increasing attention
of the computer vision community [23,29] for their strong capability in rep-
resentation learning. Despite remarkable research progress has been achieved,
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Fig. 1. Intuitive comparison of CARAFE [21] and DLU. Unlike CARAFE needs to
generate independent kernels (yellow ones) for all the positions of the upsampling
output, our DLU generates a portion (yellow ones), and samples others (red ones) with
learnable offsets through interpolation. (Color figure online)

it remains challenging to deploy large neural models in practical applications,
especially under resource-constrained conditions.

To this end, it is desirable to further explore the lightweight design of neu-
ral architecture and operation. In particular, feature upsampling, as one of the
fundamental operations in modern deep learning architectures [19,20], has been
under-explored compared with other basic operations such as convolution and
pooling. Therefore, we dive deep into this area and focus on the lightweight
upsampling design in this paper.

Traditional interpolation-based upsampling approaches such as nearest
neighbor and bilinear interpolation, have been extensively adopted in classi-
cal models for their simplicity and the nature of easy-to-implement [8]. How-
ever, interpolation operations fundamentally only consider the spatial adjacency
relationship, while failing to capture the rich semantic information encoded in
the feature map of CNNs [21]. This limitation has motivated researchers to
explore learnable upsampling techniques that can introduce additional infor-
mation through the upsampling operation in a data-driven manner [24]. The
most commonly used is deconvolution [16], which can be viewed as an inverse
operation of convolution. Albeit intuitive, the deconvolution operation has not
considered the local variations explicitly in the images, since it applies the same
kernel across different locations.

Compared with the existing interpolation-based and most learning-based
upsampling such as deconvolution [16] and pixel shuffle [18], a learnable upsam-
pling operation named CARAFE (Content-aware Reassembly of Features)
[21,22] achieves promising performance. However, this operation needs to gen-
erate a corresponding reassembly kernel for all the positions of the upsampling
output, leading to the training parameters being quadratically related to the
product of the reassembly kernel size and the upsampling ratio (detail calcula-
tion can be found in Table 1 in Sect. 3.3). This inherently limits the scalability
of the proposed method, especially under large upsampling ratios.
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To this end, we proposed a novel upsampling approach termed Dynamic
Lightweight Upsampling (DLU) in this paper. As shown in Fig. 1, different from
CARAFE generates an independent kernel for each position of the upsampling
output, the proposed DLU first constructs a “source kernel space” with a portion
of kernels, and then samples the kernels with learnable offsets from the kernel
space by interpolation. Extensive experiments on several mainstream vision tasks
justify the superior performance of the proposed DLU.

The key contributions of our paper are highlighted as follows:

– We propose a novel learnable upsampling operation called DLU by gener-
ating large-scale expected kernels from sampling in a “source kernel space”.
It is lightweight, with low computational complexity, and can be seamlessly
plugged into various modern neural architectures.

– The proposed DLU operation is notably lightweight than the original
CARAFE operation, but achieve comparable or even better task performance.
For example, DLU needs 90% fewer parameters and at least 63% fewer FLOPs
than the original CARAFE in the case of 16× upsampling, but outperforms
the CARAFE by 0.3% mAP in object detection.

– Extensive experiments on three fundemental vision tasks with four repre-
sentative neural networks verify the availability and scalability of our DLU.
For example, by integrating our DLU, the detection performance of FPN [8]
and Libra RCNN [17] can be improved by 1.2% and 0.7% mAP respectively,
compared to their original versions.

2 Related Work

Feature upsampling is widely used in vision tasks such as object detection,
semantic segmentation and instance segmentation, to increase the resolution
of the feature map. In general, it can be divided into interpolation-based and
learning-based upsampling.

Interpolation-Based Upsampling. Representative methods include nearest-
neighbor interpolation, bilinear interpolation, and bicubic interpolation. To per-
form interpolation at a specified position, these methods usually first identify
a neighborhood of the specific pixel, and then calculate a weighted sum of the
specific neighborhood. In general, these methods are fast and easy-to-implement
[8]. However, the main drawback of the interpolation-based methods is that the
output of upsampling is totally derived from the input. That is, no additional
information was introduced during the upsampling operation.

Learning-Based Upsampling. Different from interpolation-based upsam-
pling, learning-based upsampling methods aim to introduce additional informa-
tion during the upsampling operation, hence attracting increasing attention in
recent years. Deconvolution operation [16] is proposed to perform zero-padding of
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the input feature map first, and then increase the feature resolution by executing
standard convolutions. However, the effective receptive field of deconvolution is
rather small. Pixel shuffle [18] achieves upsampling by first increasing the feature
channels through convolution, and then reshaping to a specific resolution. This
method can achieve a larger receptive field, but with the price of massive extra
parameters. To improve the upsampling efficiency, Mazzini et al. [14] proposed
guided upsampling, which enlarges the input using bilinear interpolation, but
sampling pixels with learnable offsets. However, this method also suffers from
small effective receptive fields. Building upon guided upsampling, DySample [10]
delves deeper into the generation of the offsets, exploring superior methods to
achieve improved performance.

A handful recent works have started to explore the upsampling with learn-
able kernels to dynamically enlarge the receptive field [12,13,21]. Among them,
CARAFE [21] is an effective learnable upsampling operation. Given the upsam-
pling ratio as σ, CARAFE would generate σ2 kernels for each pixel of the input,
then one pixel would output σ2 pixels through convoluting the σ2 different gener-
ated kernels. Later, CARAFE++ [22] is further proposed to endow the learnable
downsampling capacity, following the similar concepts of CARAFE. FADE [12]
and SAPA [13] refined the framework of CARAFE to a double-input frame-
work. Their input requires not only the low-resolution feature to be upsampled
but also a high-resolution guiding feature as an additional input. Consequently,
their application scenarios is limited (high-resolution features must be available).
Our goal is to contribute a lightweight, scalable and effective upsampling oper-
ation. Since CARAFE-based techniques require a large collection of parameters
in generating kernels, we lighten the kernel generation module of CARAFE and
propose a dynamic lightweight upsampling operator.

3 Method

3.1 Revisit CARAFE

Given a feature map F of size H × W × C, and the upsampling ratio as σ,
the expected size of outputted feature map after upsampling is σH × σW × C.
Specifically, CARAFE achieves feature upsampling through the following steps:
1) Predicting a tensor of size H×W×k2

upσ
2 by convoluting the input feature map,

where kup × kup is the receptive field (kernel size) for upsampling. This tensor is
further reshaped to σH×σW×k2

up according to pixel shuffle [18], and each spatial
location in the tensor forms a kup × kup kernel, resulting in σH × σW kernels
in total (known as reassemble kernels). 2) All these kernels are normalized by
softmax function, respectively. 3) For each location of the expected output (i, j, c)
(position (i, j) in the c-th feature map), taking the predicted kernel at position
(i, j) from the above kernel tensor, and finding the corresponding neighbourhood
of kup×kup around the input pixel (�i/σ�, �j/σ�, c). The final response at (i, j, c)
of the upsampled feature maps is the inner product of the kernel and the pixel
neighborhood.
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Fig. 2. The overall framework of our DLU.

Limitation of CARAFE. CARAFE uses a convolution layer to predict a
tensor of size H×W ×k2

upσ
2 in the branch of reassemble kernel generation, where

the parameters in this convolution layer are proportional to k2
upσ

2. This comes
with a large collection of trainable parameters, resulting in memory-inefficient,
especially when a large receptive field (i.e., large kup) or aggressive upsampling
ratio (i.e., large σ) is used. Additionally, too many parameters also lead to a
high risk of overfitting.

Solutions. It is important to note that the kernels predicted by CARAFE are
independent of each other. However, it is argued that using independent kernels
to convolute an input may lead to an issue of so-called “checkerboard artifacts”1,
since there is no direct relationship between adjacent pixels in the upsampled
output [4]. As a result, the large collection of trainable parameters in CARAFE
are likely to be redundant. To address this issue, it may be more feasible and
effective to explore the interdependence of adjacent kernels.

Inspired by the idea of deformable kernels [3], that is, kernels can be aug-
mented by learning free-form offsets on kernel coordinates in the original kernel
space, we further proposed a lightweight upsampling operation by avoiding gen-
erating a large collection of independent kernels. Specifically, we first construct
a small-scale source kernel space, and then sample large-scale expected kernels
from the source kernel space by introducing learnable guidance offset. It is noted
that the trainable parameters can be greatly reduced in this way.

3.2 The Proposed DLU

As shown in Fig. 2, the proposed DLU mainly consists of two modules: kernel
generation and dynamic reassembly module. Given a scaling ratio σ for feature
1 https://distill.pub/2016/deconv-checkerboard/.

https://distill.pub/2016/deconv-checkerboard/
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upsampling, the kernel generation module is used to predict σH × σW kernels,
where H and W determine the shape of the input feature map. The dynamic
reassembly module is responsible for generating the upsampling output with
shape of σH×σW , each location of the input is convoluted with location-specific
generated kernels [6]. That is, the convolution is dynamic and content-aware.

Kernel Generation Module. Different from the original CARAFE [21], the
kernel generation module in our framework is composed of: channel compressor,
kernel space generator, kernel space normalizer, guidance offset predictor, and
kernel space expander.

Channel Compressor. Similar to CARAFE, this step aims to reduce the num-
ber of input feature channels, hence further saving the overall computational
cost. Specifically, we compress the input feature map from C channels to Cm

channels through a 1×1 convolution layer.

Kernel Space Generator. Next, a kencoder ×kencoder convolution layer is used
to encode the compressed feature maps to generate a tensor of size H ×W ×k2

up.
Each location in the tensor can be reshaped as a kup × kup kernel, where kup
determined the size of the receptive field for upsampling. Up to here, the tensor
with H × W kernels forms a “source kernel space”.

Kernel Space Normalizer. Here, the kernel space is normalized by performing
softmax operation spatially. As a result, the elements for each kernel in the space
are forced to be positive, with a summation of 1. This step is motivated by the
classical interpolation-based upsampling methods. Specifically, our DLU can be
fundamentally regarded as a linear weighted method, i.e., each position of the
upsampled feature is a weighted sum of the input feature and the generated
kernels represent the weights. Different from traditional deconvolution operation,
softmax normalization of the kernels is used to make the upsampled feature
have the same order of magnitudes as the input feature, which provides clearer
physical interpretability.

Guidance Offset Predictor. Here, the proposed guidance offset predictor is
used to predict the sampling coordinates for enlarging the kernel space. Specifi-
cally, a kencoder×kencoder convolutional layer is used to convolute the compressed
feature map to generate a tensor of size H ×W ×2σ2. This tensor can be further
reshaped to σH ×σW 2-D offsets (in x and y dimensions respectively), as shown
in Fig. 2.

Kernel Space Expander. For each location in the normalized source kernel
space, we assign σ2 2-D offsets and sample σ2 newborn kernels by applying
bilinear interpolation channel-wisely. Specifically, Fig. 3 illustrates the expansion
of the source kernel space.

Overall, the kernel generation module results in σH × σW final kernels, as
shown in Fig. 2. Note that it can be proved that arbitrary kernel in the expanded
kernel space is also softmax normalized after the normalization of the source
kernel space (The detailed proof can be found in our appendix).
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Fig. 3. Illustration of the expansion of source kernel space. In this figure, each kernel in
the source space (orange) generates 4 newborn kernels (pink, blue, purple, and yellow)
in the case of 2× upsampling, and the newborn kernels are sampled from the source
kernel space using bilinear interpolation channel-wisely. (Color figure online)

Dynamic Reassembly Module. Following the original CARAFE [21], a
dynamic reassembly module is used to output the upsampled feature map which
is expected to have the size of σH × σW × C. To get the response at position
(i, j) in the c-th feature map of the expected output, we first take the predicted
kernel at position (i, j) from the expected expanded kernel space, and then dig
out a neighborhood of kup×kup around the input pixel at position (�i/σ�, �j/σ�)
in the c-th feature map of the input, then, the specific response in the output is
equal to the inner product of the kernel and the pixel neighborhood.

3.3 Comparison with CARAFE

As described above, the key difference between CARAFE and our DLU is the
way to generate reassemble kernels, which further leads to different number of
trainable parameters and computational costs.

Based on [15] and [21], given the task of upsampling a feature map with
input channel Cin by a ratio of σ, the details of the required parameters and
computation in the kernel generation module of CARAFE [18] and our DLU
can be found in Table 1. Table 1 shows that both the parameters and computa-
tional complexity of CARAFE are primarily proportional to σ2k2

up, while in our
DLU, the parameters and computational complexity are primarily proportional
to k2

up +2σ2. This indicates that our DLU model generally has fewer parameters
and lower computational complexity than CARAFE when kup ≥ 3 and σ ≥ 2
(general cases). We also noticed that this advantage of our approach is more
distinguished if dense upsampling with aggressive upsampling ratios or large
receptive fields are used.

Note that, our DLU operator introduces bilinear interpolation in its kernel
space expander, which results in a term of 9σ2k2

up being included in the total
computation. However, this term is typically negligible compared to the compu-
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Table 1. Details of the required parameter and computation in the kernel generation
module of CARAFE [21] and our DLU.

# Trainable Parameters Kernel Generation Module

CARAFE (Cin + 1)Cm
︸ ︷︷ ︸

Channel Compressor

+ (Cmk2
encoder + 1)σ2k2

u p
︸ ︷︷ ︸

Kernel Generator

DLU (Cin + 1)Cm
︸ ︷︷ ︸

Channel Compressor

+ (Cmk2
encoder + 1)k2

u p
︸ ︷︷ ︸

Kernel Space Generator

+ (Cmk2
encoder + 1)2σ2

︸ ︷︷ ︸

Guidance Offset Predictor

# Per-pixel FLOPs Kernel Generation Module

CARAFE 2(Cin + 1)Cm
︸ ︷︷ ︸

Channel Compressor

+2(Cmk2
encoder + 1)σ2k2

u p
︸ ︷︷ ︸

Kernel Generator

+ σ2 × (k2
up−D sm)1

︸ ︷︷ ︸

Kernel Normalization

DLU 2(Cin + 1)Cm
︸ ︷︷ ︸

Channel Compressor

+2(Cmk2
encoder + 1)k2

u p
︸ ︷︷ ︸

Kernel Space Generator

+ 1× (k2
up−D sm)

︸ ︷︷ ︸

Kernel Normalization

+ 2(Cmk2
encoder + 1)2σ2

︸ ︷︷ ︸

Guidance Offset Predictor

+ 9σ2k2
u p

︸ ︷︷ ︸

Kernel Space Expander

(k2
up-D sm) represents the computation of softmax normalization for a k2

up-D vector.

tation of CARAFE. This is because the kernel generator of CARAFE requires
2(Cmk2

encoder + 1)σ2k2
up FLOPs, and Cmk2

encoder is typically a large value.

4 Experiments and Results

In this section, we mainly evaluate the performance of different upsampling
methods on multiple mainstream vision tasks. Specifically, these upsampling
methods are integrated into several typical deep-learning models to replace the
original upsampling operators.

4.1 Experimental Setup

– Object Detection. For object detection, we integrate different upsampling
operations into the FPN [8] framework, and then compare the performance
on the MS COCO dataset [9]. Results are evaluated based on the standard
COCO metric, i.e. mAP of IoUs from 0.5 to 0.95. Besides, we also have
experiments on Libra CNN [17], evaluating the performance of the original
CARAFE and our proposed methods with different upsampling ratios.

– Semantic Segmentation. We take Semantic FPN [7] as the baseline frame-
work and then compare the semantic segmentation performance of different
upsampling operations on the ADE20K dataset [28]. Results are measured
with mean IoU (mIoU) which indicates the average IoU between predictions
and ground truth masks.

– Instance Segmentation. For instance segmentation, we take the Mask
RCNN [5] as the baseline framework and then compare the segmentation
performance of different upsampling operations on the MS COCO dataset.
Due to the page limits, please refer to our appendix for the experimental
results on instance segmentation.
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Fig. 4. FPN architecture with the upsampling operator as DLU.

– Implementation Details. All the deep models are trained on the training
subset, and the final performance is evaluated on the validation set. Experi-
ments of object detection and instance segmentation are implemented based
on the mmdetection toolbox [1] and follow the 1× training schedule settings
on four NVIDIA Quadro P5000 GPUs. Specifically, for training our models,
we employed stochastic gradient descent for 12 epochs with a batch size of 2
examples per GPU, weight decay of 0.0001, momentum of 0.9, and a learning
rate of 0.0025. The initial learning rate decayed by a factor of 10 at the 8th

and 11th epochs. Similarly, for our experiments on semantic segmentation, we
used the mmsegmentation toolbox [26] and followed the 40k training sched-
ule settings on four NVIDIA Quadro P5000 GPUs. Our models were trained
using stochastic gradient descent for 40k iterations with a batch size of 4
examples per GPU, weight decay of 0.0005, momentum of 0.9, and a learning
rate of 0.01. We utilized the poly learning rate policy with a power factor of
0.9 to decay the initial learning rate.

Unless noted, our DLU shares the same hyper-parameters with CARAFE in
all the experiments. Specifically, Cm = 64 for the channel compressor, kencoder =
3, kup = 5 for the kernel space generator. The ablation studies of hyperparame-
ters impact can be found in the appendix. We initialized the weights of the kernel
space generator from a zero-mean Gaussian distribution with standard deviation
of 0.001, since a large standard deviation may lead to small gradients in back-
propagation for the following kernel space normalizer (softmax function). Then,
the weights of the guidance offset predictor are initialized by zero-initializing,
while other layers follow adaptive Xavier initialization.
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Table 2. Detection results on MS COCO 2017 validation set with FPN [8]. Various
upsampling operations are used. Please note that “Params” represents the introduced
additional parameters per upsampling operation, “FLOPs” represents the FLOPs of
each upsampling operation corresponding to each pixel of the input feature map.
Above the dotted line are interpolation-based methods, while below the dotted line
are learning-based methods. Best performance is in boldface, and second best is under-
lined.

Method mAP mAP50 mAP75 mAPS mAPM mAPL Params FLOPs FPS

Nearest 37.4 58.1 40.6 20.9 41.2 48.9 0 0 20.4

Bilinear 37.5 58.5 40.5 21.3 41.1 48.8 0 9K 20.3

double-input flow

FADE [12] 38.5 59.6 41.8 23.1 42.2 49.3 49K – –

SAPA-B [13] 37.8 59.2 40.6 22.4 41.4 49.1 25K – –

single-input flow

Deconv [16] 37.2 57.8 40.2 20.5 41.0 48.0 262K 1.2M 18.8

Pixel shuffle [18] 37.6 58.5 40.6 21.1 41.4 48.3 2.4M 4.7M 18.2

CARAFE [21] 38.6 59.9 41.6 23.0 42.3 49.5 74K 199K+4×(25-D sm)1 19.4

DLU(Ours) 38.6 59.9 41.8 22.6 42.2 50.1 35K 123K+1×(25-D sm) 18.8

(25-D sm) represents the computation of softmax normalization for a 25-D vector.

4.2 Object Detection

FPN. We take the FPN [8] as the backbone. Specifically, FPN constructs a
feature pyramid to exploit multi-scale features with a top-down pathway and
several lateral connections. As shown in Fig. 4, the lateral connections first are
used to align the feature channels by applying a 1×1 convolution. Then, features
of different scales are fused in the top-down pathway by upsampling the low-
resolution features by 2×.

In our experiments, we adopted a feature pyramid of 5 feature levels: {P2,
P3, P4, P5, P6} with strides {4, 8, 16, 32, 64}, and 4 upsampling operators
with a scaling ratio of 2 are used totally, as shown in Fig. 4. To compare the
impact of different upsampling operations on object detection performance, we
first replace the original nearest-neighbor interpolation with different upsampling
operators in FPN, and then evaluate the detection performance. Table 2 shows
the quantitative detection results achieved by FPN with different upsampling
operators on the MS COCO 2017 validation set. We analyse the results from the
following aspects:

(1) Effectiveness. By simply replacing the original nearest-neighbor interpo-
lation with the proposed DLU in the framework of baseline FPN, the best
detection performance is achieved, with a 1.2% improvement on mAP. We
can also see that the proposed operation is beneficial for the detection per-
formance with various object scales, since the APS , APM , APL (small,
medium, large) are all improved. More quantitative results can be seen in
Fig. 5.

(2) Scalability (Memory Consumption). FADE [12] and SAPA [13] are
methods with double-input flow, that is, their input not only comprises the
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Fig. 5. Comparison of detection results of FPN [8] with different upsampling methods
on the validation set of COCO 2017. The true positives, false positives, and false
negatives are indicated by green, blue, and red rectangles, respectively. “BI” represent
for Bilinear Interpolation. (Color figure online)

low-resolution feature to be upsampled, but also needs a high-resolution
guiding feature. While they also successfully lighten CARAFE, their depen-
dency on the availability of the high-resolution guiding features restricts
their application scenarios.
For methods with single-input flow, identical detection performance is
achieved when the original CARAFE or the proposed DLU is used in the
FPN framework. However, the proposed DLU is much more lightweight
compared with the original CARAFE. The detailed quantitative results in
our case are shown in Table 2, 74K additional parameters are required per
CARAFE, while our DLU only requires 35K additional parameters, up to
half fewer parameters, but with comparable performance. This further indi-
cates that the parameters of the original CARAFE are redundant. The
reduction of redundancy in parameters makes the computation complexity
of DLU lower than the original CARAFE in terms of FLOPs (≈ 123k vs.
199k in our case).

(3) Efficiency. DLU has lower FLOPs than CARAFE, however, we also found
that DLU’s actual FPS is not improved compared to CARAFE. We attribute
this to the inferior degree of parallelism in the interpolation operation in a
GPU environment. Nevertheless, we are confident that with increased par-
allelism and code optimization in the future work, our method will undergo
significant improvements in terms of efficiency.

Libra RCNN. Libra RCNN [17] is another representative neural architecture in
object detection. It explores better utilization of the multi-level features of FPN
[8] to generate more discriminative pyramid representations. Specifically, Libra
RCNN proposed a BFP (Balanced Feature Pyramid) module, which first inte-
grates the multi-level outputs of FPN by using multiple rescaling operations and
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Table 3. Detection results achieved by Libra CNN [17] on MS COCO 2017 validation
set with different upsampling operations. Note that the default upsampling operation
(untick) used in the BFP module is the nearest neighbor interpolation.

Method ×2 ×4 ×8 ×16 mAP Params

Baseline 37.7 0

CARAFE � 37.9 74K

� 37.8 247K

� 38.1 939K

� 38.1 3.7M

� � � � 38.1 4.9M

DLU � 37.9 35K

� 38.0 49K

� 38.2 104K

� 38.3 326K

� � � � 38.4 515K

element-wise summation. Then, it refines the so-called balanced semantic fea-
tures by several refinement operations (e.g., convolution). Finally, the obtained
feature is rescaled back to the pyramid resolutions and then added to the orig-
inal FPN features. In our experiments, we build the BFP on a FPN with 5
output feature maps and rescale all features to the highest resolution. That is,
4 upsampling operations with ratio of 2×, 4×, 8× and 16× are needed in our
BFP.

To fairly compare the performance of CARAFE and our DLU under different
upsampling ratios, we only replace the upsampling layer in BFP, while keeping
the rest of FPN unchanged. As shown in Table 3, the proposed DLU improve the
baseline by 0.7% mAP, and is consistently better than CARAFE under different
settings. Furthermore, our DLU requires far fewer parameters than CARAFE,
which is more visible at large sampling rates (e.g., 326K vs. 3.7M in the case
of 16× upsampling). This further verifies that the parameters in CARAFE are
indeed redundant, and excessively redundant parameters also increase the risk
of model overfitting (i.e., the model parameters increase but the performance
decreases).

We conducted a qualitative comparison of the detection performance achieved
by Libra RCNN by replacing all the upsampling operations in the BFP with
different methods. The results are shown in Fig. 6.

4.3 Semantic Segmentation

To further evaluate the effectiveness of our proposed DLU, we conducted exper-
iments on the task of semantic segmentation. These experiments provide addi-
tional insights into the applicability and potential benefits of DLU in other
computer vision tasks beyond object detection.
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Fig. 6. Comparison of detection results of Libra RCNN [17] with different upsampling
methods on the validation set of COCO 2017. The true positives, false positives, and
false negatives are indicated by green, blue, and red rectangles, respectively. “NI”
represent for Nearest-neighbor Interpolation. (Color figure online)

For the task of semantic segmentation, we adopted the representative Seman-
tic FPN model [7] as our baseline network. The architecture of Semantic FPN
is based on the FPN model [8]. Specifically, in its module of semantic segmen-
tation branch, each FPN level is upsampled using convolutions and 2× bilinear
upsampling progressively until it reaches a 1/4 scale of the input. These outputs
are then fused using summation operation and finally decoded to a pixel-wise
output using a 4× bilinear upsampling.

In the above processing, upsampling operations are used for two modules:
FUSE (to fuse feature maps with different spatial resolution) and Decoder
(to decode the feature map to a pixel-wise output). In our experiments, we
replaced the original bilinear interpolation used in these two modules with dif-
ferent upsampling operators and compared their segmentation performance.

Table 4. Segmentation results on ADE20K val with Semantic FPN [7]. Various upsam-
pling methods are used in its FUSE and Decoder modules. The default upsampling
operation (untick) is the bilinear interpolation.

Method FUSE(×2,×4,×8) Decoder(×4) mIoU Params

Baseline 35.53 0

CARAFE � 36.32 1.2M

� 36.57 239K

DLU � 37.07 165K

� 36.58 41K
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Fig. 7. Comparison of segmentation results of Semantic FPN [7] on ADE20K val.
Different upsampling methods are used in its FUSE module.

To compare the performance of CARAFE and our proposed DLU under
different upsampling ratios in the context of semantic segmentation, we made a
simple modification to the FUSE module. Specifically, instead of enlarging the
size of feature maps using convolutions and 2× upsampling progressively, we
used one convolution layer and one upsampling operation with a rather large
scaling ratio. For example, for feature maps that are 1/32 scale of the input,
to reach 1/4 scale of the input, we first applied a 3 × 3 convolution layer on
the feature maps and then resized the feature maps using an 8× upsampling
operation directly.

Our experiments utilized semantic FPN with four feature levels, and we used
three upsampling operations with ratios of 2×, 4×, and 8× in the FUSE module.
Table 4 presents the quantitative semantic segmentation performance achieved
by semantic FPN with different upsampling operations. The results show that, by
replacing the baseline bilinear interpolation with DLU in either the FUSE or the
Decoder module, the overall performance of semantic segmentation can be sig-
nificantly improved. For instance, in the FUSE module, DLU outperformed the
bilinear interpolation by 1.5% in terms of mIoU scores and also achieved better
task performance than CARAFE, despite having fewer parameters. Figure 7 pro-
vides a qualitative comparison of segmentation performance achieved by seman-
tic FPN with different sampling operations in its FUSE modules.
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4.4 Discussion

Albeit much lower complexity compared with CARAFE, we also noticed that
the overall framework of our DLU is still similar to the CARAFE. However, this
does not mean that our DLU has only limited significance. Instead, the practical
significance of our DLU lies in:

– Versatility. As a fundamental operation, upsampling is widely used in most
deep neural networks. By replacing the original nearest-neighbor interpolation
or bilinear interpolation operation, our DLU can be easily and seamlessly
integrated into existing deep neural networks with different purposes, leading
to better performance, but with few additional parameters.

– Scalability. As an upsampling operation with strong scalability, the pro-
posed DLU is quite suitable for deep networks with aggressive upsampling
ratios which are becoming increasingly common. For example, Upernet [25],
Libra RCNN [17] utilizes 16×, 8× upsampling when combining feature maps
with different resolutions in object detection; FCN [11] uses 32×, 16×, 8×
upsampling in its FCN-8 s version in semantic segmentation; RCAN [27], SAN
[2] uses 8× upsampling in their upscale module for super-resolution.

We hope that our DLU can be widely adopted and utilized in different tasks,
not only improving the overall performance but also keeping the model complex-
ity stable, and making a positive contribution to the field.

5 Conclusions

In this paper, we propose a lightweight upsampling operation termed Dynamic
Lightweight Upsampling (DLU). The key idea is to avoid generating a large
collection of independent kernels with massive trainable parameters, but sample
in a source kernel space to reduce redundancy. Extensive experimental results
on three mainstream vision tasks with four representation backbones show that
the proposed DLU can be seamlessly integrated into existing networks, and
effectively improve the performance of downstream tasks.
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Foundation of China under Grant 62001482 and Hunan Provincial Natural Science
Foundation of China under Grant 2021JJ40676.
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Abstract. Hand gesture recognition and facial expression analysis are
often treated as separate research problems in the existing literature.
Although hand-over-face occlusions are commonly regarded as a limi-
tation in facial expression recognition, they frequently serve as cues for
mental states. In spontaneous conversations, hands over the face are fre-
quent and informative about the participants’ mental states, providing
essential cues for understanding non-verbal communication.

This work systematically explores various hand-over-face gestures
using recent machine learning algorithms. We establish a dataset com-
prising 30 hand-over-face gestures in laboratory settings, featuring 15
subjects mimicking subconscious scenarios. In our investigation, we pro-
pose a novel two-stage approach for hand-over-face gesture classifica-
tion. Initially, an encoder is trained using contrastive learning, and
subsequently, the trained encoder serves as a feature extractor for a
feature-driven transformer classifier. This unique methodology explores
the potential of contrastive learning for acquiring discriminative features
for hand-over-face gesture classification.

To the best of our knowledge, our proposed model is the first to inves-
tigate contrastive learning for the hand-over-face gesture classification
task. Our approach achieves new state-of-the-art results on the provided
dataset, surpassing recent image classification methods in the literature,
with an impressive accuracy of 88.68%. Furthermore, we evaluate the
extensibility of our method on the widely-used facial expression dataset
FER2013 and RAFDB, achieving a comparable performance of 71.30%
and 85.74% on the test set, even though the proposed model is not specif-
ically tailored to the facial expression recognition problem.
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1 Introduction

Non-verbal communication plays a crucial role in human communication and
expressing emotions. The ability to interpret non-verbal communication is essen-
tial in understanding emotion and predicting the intent and actions of oth-
ers. The existing literature has extensively studied human emotion, expressed
through facial expressions and bodily postures, for several decades [32]. Similarly,
hand gestures have also been studied in the literature [22]. Further, simultaneous
recognition of emotion and gestures, i.e., bi-modal emotion recognition, has also
been addressed in previous research [36]. In facial expression recognition, the task
is to classify sub-conscious spontaneous expressions, where hand occlusions are
often considered unwanted and even removed [15]. However, humans often use
body, face, and hand gestures while communicating, and hand-over-face (HoF)
occlusions contain vital cues about the mental state of an individual.

Some existing work on HoF for emotion understanding exists in the liter-
ature [4,16,18,20,23]. The proposed approach in [18], detected, localized, and

Fig. 1. Sample images of 30 classes in our proposed CVLab hand-over-face gesture
dataset (HoFGD).
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classified hand-over-face gestures from a video corpus using edge detectors and
local binary patterns. The authors of [19] interpreted hand-over-face gestures
using various cues such as hand action, hand gesture, and facial region occluded
in terms of cognitive states. The work in [20] detects HoF occlusions and classifies
HoF gestures using multimodal fusion with different spatial and spatiotemporal
features. In [23] authors classify emotions despite faces being occluded by hands
using HoG features and SVM classifier. In [4] HoF gestures are classified using a
CNN. Mahmoud et al. [17,19] developed the first hand-over-face dataset focusing
on emotions rather than gestures and attempted to classify moods of the per-
son containing hand-over-face. The dataset is small with limited subjects and
lacked structure. We propose a new hand-over-face gesture dataset and develop
an approach to classify hand-over-face gestures.

Table 1. Comparative analysis of similar datasets and attributes of the proposed
dataset HoFGD

Dataset Number of classes Annotation Dimension Spontaneity Number of sample Number of subjects

Cam3D [17] 12 weak 3D spontaneous 108 7

FABO [6] 6 strong 2D posed 210 24

HoFGD (This work) 30 strong 2D posed 9000 15

The similar datasets in the HoF paradigm are summarized in Table 1. The
first dataset is the Cam3D corpus [17], where the authors aimed to capture suc-
cinct natural emotion videos featuring hand-over-face events naturally occurring
and associated with self-assessed mental states. The second dataset is the FABO
dataset [6], which includes events with both hand and facial expressions. This
corpus is posed. FABO dataset [6] is no longer available, and Cam3D dataset [17]
has weak annotation and class and subject imbalance problems. Next is our pro-
posed HoFGD dataset, and more details about this dataset can be found in
Sect. 2.1. The proposed dataset is complex due to the presence of fine-grained
gestures with small intra-class variation, background clutter, and multiple cate-
gories. We refer to this dataset as the CVLab Hand over Face Gesture dataset
(HoFGD). A snapshot of this dataset, containing different gestures and subjects,
is shown in Fig. 1.

In the earlier literature on HoF gestures, researchers predominantly relied
on traditional approaches such as edge detectors, local binary patterns, HoG,
SVM, and CNN. However, recent advancements have introduced more efficient
models such as TResnet [28] for image classification tasks. With the advent
of transformer-based models, exemplified by ViT [3], a recently proposed algo-
rithm [35] aim to understand the importance of relative position encoding in
influencing the sequence ordering of input tokens. Despite the potential benefits
of this approach, it introduces additional complexity and enforced attention in
the initial shallow layers of the transformer, which may not be optimal.

Self-supervised learning has emerged as a highly effective method for acquir-
ing discriminative representations. With the introduction of contrastive learn-
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ing [2], a multitude of studies [14,31] have harnessed its potential for addi-
tional training across various machine learning problems. Following the success
of self-supervised contrastive learning, the development of supervised contrastive
learning [9] ensued, wherein label information is effectively leveraged. In this
study, our focus is on investigating task-specific discriminative features through
the application of supervised contrastive learning [9]. This approach encourages
the network to extract similar features from clusters of points belonging to the
same class, while simultaneously pushing apart clusters of samples from different
classes. The objective is to foster the learning of discriminative representations.

In addition, our contributions include

– Introducing the integration of supervised contrastive learning as an auxiliary
task for HoF classification, employing TResnet [28] to extract superior feature
maps.

– Utilizing feature maps derived from the contrastively trained TResnet in the
subsequent training phase, choosing them over conventional image patches in
the transformer architecture to enhance the efficacy in our classification task.

– Proposing a new Hand over Face Gesture Dataset (HoFGD), representing a
significant stride forward in the realm of HoF analysis.

– Demonstrating the effectiveness of our proposed methodology in the HoF
gesture classification task and providing additional results on the FER2013
and RAFDB [13] datasets for comprehensive validation.

2 Method

2.1 Datasets

To demonstrate its capability of HoF gesture classification, we conduct exper-
iments over the HoFGD gesture dataset which was created for a basic under-
standing of non-verbal human communication. Inspired by Cam3D [17] dataset
and nonverbal body language in communication [1,24] we selected 30 HoF ges-
tures and asked our participants to enact with supervision by showing them
sample images. The dataset is captured using a Kinnect V2 RGB-D sensor in
the laboratory environment. A total of 15 subjects (8 males, 7 females) volun-
teered for capturing a total of 30 gesture classes. Each gesture is repeated 10
times for each right and left hand for a total of 20 times. Our experiments are
conducted over a total of 9, 000 frames, exclusively focusing on RGB frames.
The dimensions of the captured original RGB frames are 1, 920 × 1, 080. The
dataset is divided into 2 : 1 training and testing ratio containing 10 subjects
for training and the remaining 5 subjects for testing. Images are cropped only
to keep the subject’s upper body to remove background clutter. This cropping
is done manually. Because of manual cropping per subject, the frame size varies
for each subject and it is less than the original frame size already mentioned. We
resize the images to 384×384 for further processing into the proposed model. We
introduce this dataset because it has a very small intra-class distance, making
it harder for classification.
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FER2013 stands out as an emotion recognition dataset that encapsulates
challenging naturalistic conditions and difficulties. Unveiled at the International
Conference on Machine Learning (ICML) in 2013, it swiftly emerged as a bench-
mark for assessing model proficiency in the realm of emotion recognition. It
consists of a collection of 35,887 labeled images, categorized into seven differ-
ent facial expressions: anger, disgust, fear, happiness, sadness, surprise, and a
neutral expression. The images are relatively low-resolution grayscale images,
originally sourced from various internet platforms. The dataset is widely utilized
for evaluating and bench-marking the performance of facial expression recogni-
tion algorithms. Each image is annotated with a corresponding emotion label,
making it a valuable resource for training and testing models aimed at under-
standing and classifying facial expressions in real-world scenarios.

The RAFDB [13] is a large-scale facial expression dataset comprising approx-
imately 30,000 images. These images are annotated with seven basic emo-
tion labels: happiness, sadness, surprise, fear, disgust, anger, and neutral.
The dataset’s diversity and high-quality annotations, obtained through reli-
able crowdsourcing, make it ideal for developing and evaluating facial expression
recognition models in real-world conditions. We additionally experimented over
FER2013 and RAFDB dataset to show the robustness and adaptability of our
proposed method.

The metric used for comparison of different approaches is the average recog-
nition rate that is defined by Total number of correctly identified gestures

Total number of gestures .

2.2 Proposed Model

As shown in Fig. 2, the following components comprise our framework:

– Source data generation: To create a positive pair xj ∈ R
B×384×384 for

each image xi ∈ R
B×384×384, we employ the traditional image augmentation

methods, which include shear, rotation, flip, and crop.
– Feature extractor: Our feature extractor is pretrained TResNet [28]. Specif-

ically, we used the TResNet-L model [28] as a feature encoder which takes
384 × 384 sized images as input and the resulting feature is of size 2432. It
should be noted that all data, including augmented data, share this feature
extractor. It processes separately xi ∈ R

B×384×384 and xj ∈ R
B×384×384 and

generates hidden features hi ∈ R
B×2432 and hj ∈ R

B×2432.
– Projection head: Following contrastive training strategy [9] we apply an

MLP to convert features hi ∈ R
B×2432 and hj ∈ R

B×2432 to another rep-
resentation zi ∈ R

B×1024, and zj ∈ R
B×1024. This step aid the final model

to learn more discriminative feature.To obtain the projected representations
zi ∈ R

B×1024, and zj ∈ R
B×1024, we apply an MLP to hi ∈ R

B×2432 and
hj ∈ R

B×2432 with a single hidden layer, following SupCon [9] loss. We observe
that this MLP projection aids our model in learning more accurate discrimi-
native features, with the help of SupCon [9] loss.

– Contrastive loss: For contrastive learning, we use SupCon loss [9] to obtain
the projected representations z ∈ R

B×1024. Details of the supervised con-
trastive learning are discussed in Sect. 2.2.1.
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Fig. 2. The pipeline of the proposed method. The flow of labeled data from the dataset
is indicated by the orange arrows. Phase 1 represents contrastive training and phase 2
represents supervised training for the transformer. (Color figure online)

– Transformer classifier: To perform the final classification we employ a
transformer ViT along with cross-entropy loss to calculate HoF classification
loss Lcls. Details can be found in Sect. 2.2.2.

To address the problem of HoF gesture classification, we propose our frame-
work with contrastive learning for feature extraction in the first step. In the
second stage, we replace the patch embedding layer of the transformer with the
features extraction layer from the feature encoder.

2.2.1 Supervised Contrastive Training for HoF Gesture Classifica-
tion
As shown in the phase 1 of Fig. 2, given an input batch X of N data points where
each data point x ∈ R

B×384×384 produces two instances, (xi ∈ R
B×384×384, xj ∈

R
B×384×384), by data augmentation. To make learning robust and invariant to

noise, we use four different data augmentation techniques: flip, crop, shear, and
rotation. To achieve a normalized embedding, the encoder TResNet f(.) for-
ward propagates both instances of data xi ∈ R

B×384×384, xj ∈ R
B×384×384. This

intermediate representation, h ∈ R
B×2432, is further transmitted during train-

ing through an MLP, g(.), which would be discarded during inference. The out-



406 K. Roy et al.

put z ∈ R
B×1024 from MLP network (g(.)) are utilized to estimate contrastive

loss. After discarding MLP in the next phase the intermediate representation
h ∈ R

B×2432 is utilized to train the transformer classifier. The intermediate fea-
tures h ∈ R

B×2432 for our method are the normalized activations of the final
pooling layer of the TResNet encoder.

Given a set of N randomly selected samples and its corresponding label pairs
{xk, yk}k=1,...,N , the training batch in consideration is composed of 2N pairs,
{x̃k, ỹk}k=1,...,2N , where x̃2k and x̃2k−1 are two random data augmentations of
xk and ỹ2k = ỹ2k−1 = yk. The supervised contrastive loss can be defined as
follows:

Lsup =
2N∑

i=1

Lsup
i

Lsup
i =

−1
2Nỹi

− 1

2N∑

j=1

1[i�=j] · 1[ỹi �=ỹj ]·

log
exp(sim(zi, zj)/τ)

∑2N
k=1 1[k �= i] exp(sim(zi, zk)/τ)

(1)

According to Eq. 1, the supervised contrastive loss expands the number of pos-
itive pairs of x̃i so that all sub-data with the same label are viewed as positive
pairs. This shows that the supervised contrastive loss is an extension of the
self-supervised contrastive loss.

2.2.2 Feature Driven Transformer for HoF Gesture Classification
As shown in the second phase of Fig. 2 a standard Transformer generally con-
tains a patch embedding layer that converts input images into a 1D sequence
of token embedding. In this work, we propose to replace the patch embed-
ding layer by using a feature extraction layer from encoder f , and pass a 1D
sequence of flattened features hi ∈ RN×(P 2·C), where (P × P ) is the resolution
of each feature, N is the number of features, which also acts as the Trans-
former’s functional sequence length and C is the number of channels. E repre-
sents the learned embeddings of tokens or positional encodings, while Epos typ-
ically represents positional encodings to incorporate position information into
the model. To match latent vector size D across all of the Transformer’s lay-
ers, we use a trainable linear projection layer (Eq. 5). The Transformer encoder
constitutes alternating layers of multi-headed self-attention (MSA) and MLP
blocks. A Layernorm (LN) layer is applied followed by a residual layer before
each previously mentioned block. The MLP consists of two fully connected lay-
ers followed by GELU non-linearity. The functionality of the Transformer can be
summarized as:
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w0 = [hclass;h1
pE;h2

pE; ...;hN
p E] + Epos,

E ∈ R(P 2·C)×D,Epos ∈ R(N+1)×D (2)

w
′
l = MSA(LN(wl−1)) + wl−1, l = 1, .., L (3)

wl = MLP(LN(w
′
l)) + w

′
l , l = 1, .., L (4)

y = LN(w0
L) (5)

2.3 Implementation Details

Supervised Contrastive Learning: In contrast to classic contrastive learning
[2], our approach utilizes data exclusively from the target dataset, omitting any
auxiliary dataset. Consequently, we adopt supervised contrastive learning. In
contrast to the former, which amalgamates unlabeled datasets based on their
inter-distance on a feature plane, our method independently learns on the labeled
dataset.

Hyperparameter Tuning: As baseline approaches, we select TResNet, TRes-
Net + ML Decoder, and TResNet + ViT. Furthermore, we employ TResNet
as the patch embedding layer for the proposed model. The activation function
for the projection head is Leaky ReLU, and the MLP classifier for TResNet is
chosen. Vision transformer activation functions include Layer Normalization and
GeLU. In terms of the training approach, we train TResNet for 100 epochs using
the SGD optimizer. A linear learning rate scheduler with an initial learning rate
of 0.001 is adopted, incorporating warm-up steps constituting 0.1 of the total
training steps. For ViT, we keep TResNet fixed, utilizing it as a patch embed-
ding layer, and train ViT for 30 epochs with an initial learning rate of 0.001,
following the same setting as TResNet. Regarding contrastive learning, we set
the temperature value for SupCon loss at 0.07 and 1e−4 as the weight decay
parameter for L2.

3 Results

To compare our proposed method with other approaches, we evaluate it using
the HoFGD, FER2013, and RAFDB datasets consistently throughout the exper-
iments, as described in Sect. 2.1.

3.1 Baselines

We compare our model with state-of-the-art image classification models VGG19,
TResNet, and ViT and its variation:

– VGG19: VGG19 is a very well-established deep-learning classification tech-
nique. VGG19 model was initialized with the pre-trained ImageNet [30]
weight and further finetuned on the training data and subsequently test on
the testing data.
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– TResNet: TResNet is a recent efficient variation of ResNet which retains
the same hardware efficiency while improving accuracy. A similar evaluation
strategy is applied as discussed as VGG19.

– TResNet + ML Decoder: We adopted TResNet with ML Decoder
head [29] instead of last layers of MLP classification layers.

– ViT: Another baseline is a very recently proposed ViT model [3] for image
classification.

– TResNet + ViT: We also evaluated our approach against TResNet + ViT
without contrastive learning by using TResNet as a feature extractor instead
of feeding image patches in ViT.

– Proposed model: As shown in Fig. 2, TResNet is the encoder in our model.
In phase 1 we add one layer of MLP and in phase 2 we add a transformer
layer as a classifier similar to TResNet + ML Decoder or TResNet + ViT.
The main difference is with this baseline model that the training consists of
phase 2 only without any contrastively pre-trained TResNet encoder which
boosts the performance.

3.2 Comparison with Baselines

Table 2. HoF gesture classification accuracy on proposed HoFGD dataset and com-
parison against baseline approaches.

Method Accuracyv(%)

VGG19 69.77

TResNet 82.28

TResNet + ML Decoder 84.06

ViT 83.54

TResNet + ViT 83.48

Proposed 88.68

Table 2 provides an overview of the experiments conducted on our pro-
posed HoFGD dataset, incorporating various baseline methods and our proposed
approach. We attained accuracy percentages of 69.77%, 82.28%, and 83.54%
with VGG19, TResNet, and ViT, respectively. The inclusion of TResNet+ML
Decoder and TResNet+ViT yielded improved results of 84.06% and 83.48%.
Notably, the use of TResNet as an encoder in combination with a sophisticated
classifier demonstrated enhanced performance. In our final proposed approach,
we achieved an accuracy of 88.68%. Significantly, our algorithm consistently out-
performed the TResNet baseline by an average margin of 6.4%. By leveraging
the robust discriminative features of TResNet, our model also surpassed other
baselines such as ViT and ML Decoder by a substantial margin. The introduc-
tion of contrastive training further elevated performance, enabling our method
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Table 3. FER classification accuracy on FER2013 dataset and comparison against
baseline approaches.

Method Accuracy(%)

VGG19 63.63

TResNet 67.70

TResNet + ML Decoder 66.14

ViT 65.03

TResNet + ViT 67.45

Proposed 71.30

Table 4. FER classification accuracy on RAFDB dataset [13] and comparison against
baseline approaches.

Method Accuracy(%)

VGG19 63.20

TResNet 78.91

TResNet + ML Decoder 84.68

ViT 81.00

TResNet + ViT 66.72

Proposed 85.74

to surpass TResNet, ViT, and TResNet+ViT in HoF gesture classification on
the HoFGD dataset. These results underscore the effectiveness of our model in
providing discriminative features for classification tasks..

In Table 3, we present the outcomes of our experiments conducted on the
FER2013 dataset, employing the same set of baseline methods alongside our
proposed approach. The results indicate performance percentages of 63.63%,
67.70%, and 65.03% achieved with VGG19, TResNet, and ViT, respectively.
When incorporating TResNet+ML Decoder and TResNet+ViT, we observed
improved percentages of 66.14% and 67.45%. Notably, our proposed approach
demonstrated superior performance, reaching 71.30%. Remarkably, our algo-
rithm outperforms the TResNet baseline by an average margin of 4.4%.

In Table 4, we detail the results of our experiments on the RAFDB
dataset [13], using the same baseline methods and our proposed approach. The
results show performance rates of 63.20%, 78.91%, and 81.00% for VGG19, TRes-
Net, and ViT, respectively. By incorporating TResNet+ML Decoder and TRes-
Net+ViT, we observed improved rates of 84.68% and 66.72%. Notably, our pro-
posed approach achieved superior performance, reaching 85.74%. Impressively,
our method outperforms the TResNet baseline by an average margin of 6.9%.
Capitalizing on the robust discriminative features of TResNet, our model also
surpasses other baseline models like ViT and ML Decoder by a substantial mar-
gin. These findings underscore the effectiveness of our model in generalizing to
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Table 5. HoF gesture classification accuracy on proposed HoFGD dataset and com-
parison against state-of-the-art approaches.

Method Accuracy

CLIP [27] 86.2%

ALIGN [7] 86.8%

Florence [38] 87.61%

BASIC [25] 88.0%

CoCa [37] 88.44%

Proposed 88.68%

other related classification tasks, even without explicit modeling for the fine-
grained task of facial expression recognition.

3.3 Comparison with State-of-the-Art Methods

The classification accuracy achieved by various state-of-the-art (SOTA)
approaches [7,25,27,37,38] on the proposed HoFGD dataset is presented in
Table 5. It’s noteworthy that the studies in [7,27] showcase the learning of
image and text representations for cross-modal alignment tasks using dual-
encoder models, pre-trained with contrastive learning on noisy image-to-text
pairs. Specifically, a classification accuracy of 86.2% and 86.8% is reported for
[7,27], respectively. The Florence [38] approach aimed to generalize represen-
tations from entire scenes to fine objects, transitioning from images to videos,
and extending from RGB to modalities like captions or depth. Furthermore, the
Florence [38] model exhibits adaptability for various tasks such as image cap-
tioning, classification, retrieval, and action recognition. It attains a classification
accuracy of 87.61% as detailed in Table 5. The BASIC framework [25] experi-
mented with fine-tuning using contrastive loss after pre-training on a large-scale
image annotation dataset [30] through cross-entropy. This effort resulted in a
classification accuracy of 88.0% on the proposed HoFGD dataset. Recently, the
work presented in [37] leveraged the advantages of both contrastive learning and
image-to-caption generation through a straightforward architecture.

In Table 6, we present an overview of various SOTA approaches [5,8,21,26,33]
for facial expression recognition on the FER2013 dataset. It’s crucial to note that
our primary objective in conducting these experiments on the FER2013 dataset
is not to establish a new benchmark for facial expression recognition but to
assess the generalizability of our proposed models to related classification prob-
lems. Unfortunately, there isn’t an alternative dataset for the HoF problem that
suits our needs. The previous dataset [20] is deemed insufficiently structured
for our classification task. Our approach is not specifically tailored for facial
expression recognition compared to other SOTA approaches outlined in Table 6.
We begin by comparing our results with DeepEmotion [21], which achieved
an accuracy of 70.02%, and then against CNNHypOpt [33] with an accuracy
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Table 6. Facial expression recognition accuracy on FER2013 dataset and comparison
against state-of-the-art approaches.

Method Accuracy(%)

DeepEmotion [21] 70.02

CNNHypOpt [33] 72.16

VGGNet [8] 73.28

Residual Masking Network [26] 74.14

Ad-Corre [5] 72.03

Proposed 71.30

of 72.16%. Additionally, we compare with other methods such as VGGNet
[8], Residual Masking Network [26], and Ad-Corre [5], achieving accuracies of
73.28%, 74.14%, and 72.03%, respectively. Our proposed method achieves an
accuracy of 71.30%, surpassing DeepEmotion [21] and demonstrating compet-
itive performance with most others. It’s noteworthy that the top-performing
approaches, including [26], incorporate specific modules to enhance the fine-
grained features of facial expressions, contributing to their high performance
levels.

Table 7. Facial expression recognition accuracy on RAFDB dataset [13] and compar-
ison against state-of-the-art approaches.

Method Accuracy(%)

RAN [34] 86.9

FaceBehaviorNet [11] 78.0

C-EXPR-NET [10] 87.5

C-MT-PSR [12] 84.8

C-MT-VGGFACE [12] 81.4

Proposed 85.74

In Table 7, we provide an overview of various SOTA approaches [10–12,34]
for facial expression recognition on the RAFDB dataset [13]. Similar to our
previous experiments on the FER2013 dataset, our objective is not to set a
new benchmark for facial expression recognition but to evaluate the generaliz-
ability of our proposed models to related classification tasks. Our approach is
not specifically optimized for facial expression recognition compared to other
SOTA methods listed in Table 7. We first compare our results with RAN [34],
which achieved an accuracy of 86.9%, followed by FaceBehaviorNet [11] with an
accuracy of 78.0%. Additionally, we consider other methods such as C-EXPR-
NET [10], C-MT-PSR [12], and C-MT-VGGFACE [12], which achieved accura-
cies of 87.5%, 84.8%, and 81.4%, respectively. Our proposed method attains an
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Table 8. Ablation studies on HoFGD dataset.

Method Single phase training Data augmentation Complete training

Only phase 2 Only phase 2
No
augmentation

Only phase 1 Horizontal flip Crop No augmentation

Accuracy(%) 83.48 80.54 85.04 87.74 85.21 83.46 88.68

accuracy of 85.74%, demonstrating competitive performance with most of the
existing approaches.

3.4 Ablation Studies

The ablation studies conducted for our methodology are summarized as follows.
Firstly, we analyze the impact of solely conducting the phase 2 experiment with-
out any prior phase 1 training. The accuracy obtained on HoFGD dataset is
83.48% as shown in the first column of Table 8. Secondly, we conduct a phase
2 experiment with no data augmentation to examine the effect of no phase 1
training and data augmentation. The accuracy obtained on the HoFGD dataset
is 80.54% as shown in the second column of Table 8. Next, we scrutinize the con-
sequences of exclusively performing phase 1 training without subsequent phase
2 experimentation. Accuracy obtained is 85.04% as shown in third column of
Table 8. Next, we delve into the comparison between employing and omitting
data augmentation techniques, shedding light on its effects in the fourth col-
umn of Table 8. Furthermore, we extend our ablation studies to investigate the
specific impact of data augmentation during phase 2. These additional findings
are meticulously presented in Table 8. Lastly, we also include the final result
using both phases 1, and 2 and also data augmentations to show the full accu-
racy gained using this method. These comprehensive ablation studies allow us to
discern the individual contributions and significance of each experimental com-
ponent in our proposed methodology, contributing to a nuanced understanding
of its performance.

4 Discussion

The utilization of contrastive learning methods to enhance the feature encoder
in TResNet models has proven to be highly effective. By leveraging data-driven
training techniques, we have been able to significantly enhance the robustness
of our model, especially in the domain of HoF classification tasks. This app-
roach not only enhances overall performance but also surpasses models relying
solely on CNNs or transformers. A critical observation arises when exploring the
impact of the two-stage training strategy on classification performance. There
appears to be a trade-off between the overhead of the two-stage training process
and the resultant classification outcomes. Striking this delicate balance is imper-
ative for optimizing the model’s performance. As anticipated, the integration of
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Fig. 3. Confusion matrix for HoFGD dataset with TResNet + transformer layer with
supervised contrastive learning.

contrastive learning with transformers yields promising results in HoF classifica-
tion. This amalgamation of methodologies, encompassing contrastive learning,
CNN feature encoding, and transformers, equips the model with enhanced dis-
criminative capabilities. Consequently, we observe a substantial improvement in
classification accuracy in the HoF domain. The focus of this work is specifically
on HoF gesture, it would be out of scope to showcase the results of the proposed
approach on unrelated datasets to elaborate test on generalization. However, we
do present the performance of our approach on similar topics facial expression
datasets FER2013 and RAFDB. Larger datasets for HoF are not available in the
literature. Moreover, it might work for natural image classification tasks, but it
may be unrelated since the task is not streamlined with our problem. Biases
may arise due to reliance on the dataset. However, to mitigate this, we strive
to generalize the proposed approach. We achieve generalization by expanding
our evaluation to encompass diverse datasets and real-world scenarios. How-
ever, when transitioning to FER, the observed performance gains do not quite
reach the SOTA level. This discrepancy is likely attributable to the fine-tuned
nature of the compared methodologies, tailored to address the unique intrica-
cies of FER. Figure 3 illustrates the confusion matrix for the HoFGD dataset,
employing the TResNet + ViT framework with contrastive learning. Meanwhile,
Fig. 4, and Fig. 5 offers insights into the classification results for the FER2013
and RAFDB [13] dataset using the same framework. Notably, our model encoun-
ters challenges in distinguishing between the contempt and disgust classes, owing
to the subtle inter-class differences inherent in these expressions.
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Fig. 4. Confusion matrix for FER2013
dataset with TResNet + transformer
layer with supervised contrastive learn-
ing.

Fig. 5. Confusion matrix for RAFDB
dataset [13] with TResNet + trans-
former layer with supervised con-
trastive learning.

5 Conclusion

In this paper, we approach the challenging task of HoF classification by framing
it as a gesture recognition problem. Acknowledging the potential limitations of
existing datasets in this domain, we took the initiative to create the HoFGD
dataset, meticulously designed to represent sub-conscious HoF gestures which
naturally occur when humans communicate or contemplate while encompass-
ing a broader spectrum of classes and subjects. To address this complex prob-
lem, we devised a two-stage training paradigm. In the initial stage, we train a
TResNet feature encoder via contrastive training. Building upon this founda-
tion, the second stage introduces a new feature-driven vision transformer. Here,
we integrate the TResNet features gleaned from the previous stage into the
patch embedding layers of the vision transformer. The empirical results show-
case the efficacy of our approach. Through various experiments, we demonstrate
the superiority of our proposed methodology over contemporary deep learning
algorithms in the realm of HoF gesture recognition. Moreover, we demonstrate
the extensibility of our framework by extending its application to the domain
of FER. Despite the distinct challenges posed by FER, our approach showcases
remarkable adaptability, competing against the performance of other tailored
deep learning frameworks. The source code is made publicly available on Github
(https://github.com/kankanar/ICPR-2024). Furthermore, for researchers inter-
ested in the HoFGD dataset, it is available upon request.

https://github.com/kankanar/ICPR-2024
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33. Vulpe-Grigoraşi, A., Grigore, O.: Convolutional neural network hyperparame-
ters optimization for facial emotion recognition. In: International Symposium on
Advanced Topics Electrical Engineering, pp. 1–5. IEEE (2021)

34. Wang, K., Peng, X., Yang, J., Meng, D., Qiao, Y.: Region attention networks
for pose and occlusion robust facial expression recognition. IEEE Trans. Image
Process. 29, 4057–4069 (2020)

35. Wu, K., Peng, H., Chen, M., Fu, J., Chao, H.: Rethinking and improving relative
position encoding for vision transformer. In: Proceedings of IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 10033–10041 (2021)

https://doi.org/10.1007/978-3-642-02611-9_48
https://doi.org/10.1007/978-3-642-24571-8_27
https://doi.org/10.1007/978-3-642-24571-8_27
http://arxiv.org/abs/2111.10050
http://arxiv.org/abs/2111.12933


Hand over Face Gesture Classification 417

36. Yan, J., Zheng, W., Xu, Q., Lu, G., Li, H., Wang, B.: Sparse kernel reduced-rank
regression for bimodal emotion recognition from facial expression and speech. IEEE
Trans. Multimedia 18(7), 1319–1329 (2016)

37. Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini, M., Wu, Y.:
Coca: contrastive captioners are image-text foundation models. arXiv preprint
arXiv:2205.01917 (2022)

38. Yuan, L., et al.: Florence: a new foundation model for computer vision. arXiv
preprint arXiv:2111.11432 (2021)

http://arxiv.org/abs/2205.01917
http://arxiv.org/abs/2111.11432


TabSeq: A Framework for Deep Learning
on Tabular Data via Sequential Ordering

Al Zadid Sultan Bin Habib1(B), Kesheng Wang2, Mary-Anne Hartley3,
Gianfranco Doretto1, and Donald A. Adjeroh1

1 Lane Department of Computer Science and Electrical Engineering, West Virginia
University, Morgantown, WV 26506, USA

ah00069@mix.wvu.edu,

{gianfranco.doretto,donald.adjeroh}@mail.wvu.edu
2 College of Nursing, University of South Carolina, Columbia, SC 29208, USA

kesheng@mailbox.sc.edu
3 Yale University School of Medicine, New Haven, CT 06510, USA

mary-anne.hartley@yale.edu

Abstract. Effective analysis of tabular data still poses a significant
problem in deep learning, mainly because features in tabular datasets
are often heterogeneous and have different levels of relevance. This work
introduces TabSeq, a novel framework for the sequential ordering of
features, addressing the vital necessity to optimize the learning pro-
cess. Features are only sometimes equally informative, and for certain
deep learning models, their random arrangement can hinder the model’s
learning capacity. Finding the optimum sequence order for such fea-
tures could improve the deep learning models’ learning process. The
novel feature ordering technique, which we provide in this work, is based
on clustering and incorporates both local ordering and global ordering.
It is designed to be used with a multi-head attention mechanism in a
denoising autoencoder network. Our framework uses clustering to align
comparable features and improve data organization. Multi-head atten-
tion focuses on essential characteristics, whereas denoising autoencoder
highlights important aspects by rebuilding from distorted inputs. This
method improves the capability to learn from tabular data while low-
ering redundancy. Our research demonstrating improved performance
through appropriate feature sequence rearrangement utilizing raw anti-
body microarray and two other real-world biomedical datasets validates
the impact of feature ordering. These results demonstrate that feature
ordering can be a viable approach to improved deep learning of tabular
data.

Keywords: Deep Learning · Tabular Data · Feature Ordering

1 Introduction

Deep learning has transformed how we handle and comprehend diverse data
types, resulting in unparalleled progress in numerous fields. Deep learning mod-
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els have outperformed conventional techniques in audio analysis, picture iden-
tification, and Natural Language Processing (NLP), opening the door to new
applications previously thought impractical. For example, Convolutional Neural
Networks (CNNs) have emerged as the mainstay of image-processing applica-
tions, demonstrating exceptional performance in picture classification, object
recognition, and other applications [15,22]. In NLP, Transformer-like models
have established new benchmarks for text summarization, machine translation,
and question-answering systems [11,36]. Additionally, deep learning has helped
audio processing by advancing speech recognition and synthesis, greatly enhanc-
ing user interaction with technology [4,25,30]. These achievements demonstrate
how deep learning is an essential tool for applications where standard feature
engineering fails because it can grasp intricate patterns and relationships inside
high-dimensional data.

The quest for an optimal deep learning architecture for tabular data, crucial
in sectors like finance, healthcare, and retail, remains ongoing. Unlike image,
text, and audio data, tabular data’s structure, rows representing samples, and
columns as features present distinct challenges, especially in modeling complex
feature relationships that lack spatial or sequential correlation. Innovative model
architectures and data representation methods are essential to address tabu-
lar data’s unique aspects. Models such as TabNet [5], Neural Oblivious Deci-
sion Ensembles (NODE) [27], and TabTransformer [18] have emerged as prac-
tical solutions alongside popular gradient-boosting tree models. However, gaps
remain in handling scenarios with high-dimensional features against smaller sam-
ple sizes, such as genomic or other medical data.

We introduce TabSeq, a framework for deep learning on tabular data, using
the feature ordering to optimize tabular data utilization. Our approach is
motivated by methods of band ordering often used in the efficient analysis of
hyperspectral images. Adapting band ordering from hyperspectral images [32]
to tabular data involves comparing dataset features to spectral bands, where
features, like bands, vary in informational value. This approach uses statisti-
cal and machine learning methods to prioritize significant features and reduce
redundancy, enhancing dataset efficiency similar to compression in hyperspec-
tral imaging. The bandwidth minimization problem in communication networks
[38] focuses on optimizing data transmission order or compressing data to meet
bandwidth limits, akin to arranging features in tabular data for deep learning
models. The novel contributions of our paper are as follows:

1. We present a novel feature ordering technique that combines local ordering
and global ordering to optimize feature sequences and clustering to group
comparable features. This innovative method systematically improves learn-
ing and significantly improves the model’s performance on tabular datasets
by prioritizing features according to their relevance and informative content.

2. Our framework enables a Denoising Autoencoder (DAE) architecture to incor-
porate the Multi-Head Attention (MHA) mechanism smoothly. This integra-
tion highlights important characteristics, eliminates redundancy by rebuilding
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inputs from partially corrupted versions, and allows for dynamic attention to
vital elements.

3. Our studies using raw antibody microarray and other datasets show that our
feature ordering approach substantially improves the performance of deep
learning models. The outcomes demonstrate how feature sequencing is crucial
for training and validating the potential of feature ordering in tabular data
processing inside deep learning frameworks.

These contributions collectively address the challenges of heterogeneous feature
relevance in tabular data, setting a new precedent for data preprocessing and
model optimization in deep learning applications.

2 Related Work

Feature ordering in tabular datasets is essential for improving machine learning
models’ interpretability, accuracy, and efficiency, particularly in deep learning.
Models that recognize and rank important features can learn new information
more quickly, require less training time, and exhibit better generalization on
unobserved data [41]. While feature ordering is essential for all tabular data
types, including numerical data, it influences models that use data structures,
such as attention mechanisms or specific autoencoders.

Attention-Based Models: TabNet [5] employs an attention mechanism for
feature selection in tabular data, enhancing performance and interpretability
without rearranging features. TabTransformer [18] uses contextual embeddings
to improve accuracy in handling categorical data, though it requires pre-training
and fine-tuning. AutoInt [31] specializes in Click-Through Rate (CTR) prediction
by learning feature interactions with a self-attentive network despite assuming
unordered features. ASENN [26] predicts pavement deterioration with multi-
dropout attention layers, offering efficient infrastructure maintenance solutions.
Attention-based models might find it difficult to determine how important a
particular feature is to the model’s predictions; feature ordering can help with
this problem by highlighting the elements with the most significant impact.

Tree-Based Models: The Tree Ensemble Layer (TEL) [14] by Hazimeh et
al. enhances neural networks with the efficiency of tree ensembles through “soft
trees” and sparse activations, improving performance. TEL, however, does not
perform well in capturing complex feature interactions. NODE [27] by Popov
et al. combined deep learning flexibility with gradient-boosted with the benefit
of decision trees. They achieved superior outcomes via differentiable trees and
entmax transformation, albeit with potential limitations in capturing nuanced
feature interactions. Tree-based models might struggle to explain complex fea-
ture associations; feature ordering fills this gap by arranging features to clarify
their relationships.
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LLM-Based Models: TabLLM [16], developed by Hegselmann et al., lever-
ages LLMs for few-shot categorization of tabular data by translating tables into
natural language, showing superior performance over traditional techniques with
limited data. MediTab [40] by Wang et al. introduced a “learn, annotate, refine”
approach combined with LLMs for medical data predictions, achieving high
performance and excellent zero-shot capabilities without fine-tuning. IngesTa-
bles [43], presented by Yak et al., creates scalable tabular foundation models,
addressing key issues, such as large cardinality and semantic relevance, through
an attention-based method with LLMs, offering cost-effective alternatives to con-
ventional models for clinical trial predictions. Implicit data hierarchies may be a
problem for LLM-based models; feature ordering might help by arranging data
to represent underlying importance and relationships.

Graph-Based Models: Ruiz et al. introduced PLATO [28], leveraging an aux-
iliary knowledge graph for model regularization in MLPs. This improved learn-
ing on high-dimensional tabular datasets, reducing over-fitting by connecting
features to knowledge graph nodes. T2G-FORMER [44], by Yan et al., enhances
structured feature interactions through a Graph Estimator and a Transformer
network, offering superior interaction modeling and prediction accuracy over
conventional deep neural networks. Chen et al. proposed HyTrel [7], a model
using hypergraphs to capture tabular data’s structural properties, outperforming
existing methods with minimal pretraining by integrating inductive biases about
data structure. Graph-based models may miss linear feature correlations; feature
ordering can address this limitation by better aligning features to depict linear
trends and relationships. In general, graph-based approaches provide improve-
ments in tabular data analysis by capturing possible interactions between fea-
tures. However, they suffer from high computational costs, limiting their appli-
cability.

Autoencoder-Based Models: ReConTab, developed by Chen et al., is a deep
learning framework for automatic representation learning from tabular data, uti-
lizing contrastive learning and an asymmetric autoencoder with regularization to
enhance classification models like Random Forest and XGBoost [8]. ReMasker,
introduced by Du et al., employs masked autoencoding for imputing missing val-
ues in tabular data. This improved the results through randomization in mask-
ing extra values and offering competitive performance, especially with increased
missing data [12]. SwitchTab offers a self-supervised learning approach to iden-
tify less apparent dependencies in tabular data, using an asymmetric encoder-
decoder to improve prediction tasks and provide interpretable insights via its
embeddings [42]. Autoencoder-based models may need to be more efficient in
prioritizing influential features, a limitation that feature ordering can overcome
by arranging features to enhance model focus and interpretability.

Other Models: GrowNet introduces a method leveraging shallow neural net-
works within a gradient-boosting framework for various machine learning tasks,
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limited by static feature selection [6]. Using Scaled Exponential Linear Units
(SELU), Self-Normalizing Neural Networks (SNNN) aim for automatic activa-
tion normalization to stabilize deep learning but face restrictions due to reliance
on SELUs [20]. DCN V2 advances the integration of feature interactions, con-
strained by its static interaction framework [39]. Gorishniy et al.’s critique of
deep learning models for tabular data, including the FT-Transformer, highlights
the need for dynamic feature sequencing to enhance model performance [13].
Static feature integration is a potential problem for these models, which fea-
ture ordering can solve by dynamically modifying feature sequences to maximize
learning and performance. Also see the transformer-based model, TabPFN, and
the regularization-based model, TANGOS, in [17,19] respectively.

The literature review highlights innovative strategies for enhancing deep
learning model performance on tabular data. Our feature ordering approach
uniquely merges clustering with local ordering and global ordering in an MHA-
augmented DAE framework, focusing on the ordered arrangement of features
based on their importance and information content. This strategy contrasts with
traditional methods that often do not consider the arrangement of features.

3 Methodology

This section presents our deep learning architecture, designed primarily to ana-
lyze tabular data effectively, as seen in Fig. 1. The process begins with feature
clustering and then moves to local ordering and global ordering to improve input
feature arrangements. These rearranged features are fed into an MHA mech-
anism and a DAE, ultimately leading to feature extraction and classification
model decisions. Our methodology introduces a novel feature ordering technique
to improve the analysis of tabular datasets. This methodology seeks to improve
prediction accuracy and robustness for various applications by capturing intri-
cate feature interactions and underlying patterns in the data.

3.1 Feature Ordering

Feature ordering is finding an optimal arrangement of features within and across
clusters to minimize a defined cost function that reflects the disorganization of
feature positioning. This involves computing permutations that best sequence
the features according to their relationships. Given a dataset X ∈ R

n×m with n
samples and m features, we define a set of graphs {G1, G2, ..., Gk}, where k is
the number of clusters, and each graph Gc = (Vc, Ec) for cluster c has vertices
vi ∈ Vc corresponding to features within that cluster. The edges (vi, vj) ∈ Ec

represent significant relationships between features i and j within the cluster. For
each cluster c, the goal is to find a permutation πc of its features that minimizes
a local cost function Fc:

Fc(πc) =
∑

(vi,vj)∈Ec

|i − j|
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Fig. 1. Overview of the TabSeq framework.

where i = πc(vi) and j = πc(vj) represent the indices of features vi and vj in the
permutation πc, minimizing the disorganization within the cluster. The overall
goal is to find a global permutation Π that integrates the local permutations
πc’s and minimizes a global cost function FG:

FG(Π) =
k∑

c=1

αc · Fc(πc)

where αc represents the weight or importance of cluster c in the global context
with

∑
c αc = 1. The optimal permutation Π∗ minimizes FG(Π):

Π∗ = arg min
Π

FG(Π)

Local Ordering Function: Local ordering is the computation of a permutation
that minimizes the sum of absolute differences in positions of related features
within a cluster, thereby reducing feature dispersion.

L(Gc) = argminπc

∑

(vi,vj)∈Ec

|πc(i) − πc(j)|
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Here, L(Gc) outputs the permutation πc for cluster c that minimizes the feature
dispersion, where πc(i) is the position of feature i in the permutation πc, and
the sum quantifies the total dispersion of features in the cluster.

Global Ordering Function: Global ordering is the process of integrating local
permutations from all clusters into a global permutation that minimizes the
weighted sum of within-cluster feature dispersion to enhance the deep learning
model’s performance.

G({π1, π2, ..., πk}) = argminΠ

k∑

c=1

αc · Dπc
(Gc)

G integrates the local permutations πc of all clusters into a global ordering Π,
minimizing the weighted sum of feature dispersion Dπc

(Gc) within each cluster
Gc, where αc represents the weight or importance of cluster c. In these functions,
Dπc

(Gc) represents a measure of feature dispersion within cluster c based on the
permutation πc, and Π is the global permutation that integrates these local
orderings into a dataset-wide global feature ordering that aims to improve the
performance of the model.

Feature Dispersion: In the context of feature ordering for a tabular dataset,
the term “Feature Dispersion” describes the degree to which features with a
strong relationship (or dependency) are placed far apart in the ordering. The
goal would be to minimize this dispersion so that related features are positioned
closer together, which could be advantageous for specific deep learning models
that can benefit from the structure of the data (See statistical dispersion in
[21,33]).

For instance, a generalized feature dispersion for a cluster Gc could be defined
as:

D(πc) =
∑

(vi,vj)∈Ec

wij · |πc(i) − πc(j)|

where, πc is the permutation of features within cluster c, wij is a weight assigned
to the edge between features i and j (which could be based on the strength of
the relationship between the features e.g., correlation or mutual information),
|πc(i)−πc(j)| is the absolute difference in the ordered positions of features i and
j within the permutation πc.

Feature Dispersion and Variance: We adopt variance as a metric to guide
the ordering of features locally [29]. This approach is based on the premise that
organizing features to minimize their dispersion within clusters can enhance
model performance by affecting the variance of these features in a beneficial
manner. We understand that feature dispersion within a cluster, D(πc), reflects
how spread out the features are in terms of their arrangement or ordering based
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on certain criteria (e.g., importance, similarity, etc.). Variance, Var(Xi), mea-
sures the spread of values for a given feature i across the dataset or within
clusters. The goal is to understand how minimizing D(πc) influences Varc(Xi)
for features within the same cluster. A decrease in D(πc) (i.e., reduced disper-
sion or more closely arranged features based on their relationships) leads to an
increase in the homogeneity of feature values within the cluster. This homo-
geneity, in turn, can lead to a more meaningful and possibly reduced variance
(Varc(Xi)) for the features within the cluster, as related features that behave
similarly or have strong relationships are positioned closer together, thus reflect-
ing their actual data distribution more accurately. The conceptual relationship
can be summarized as:

Varc(Xi) ∝ 1
D(πc)

This expression suggests that as feature dispersion within a cluster decreases
(making D(πc) smaller), the variance of features within that cluster (Varc(Xi))
becomes more meaningful of the true data distribution. The inverse proportion-
ality indicates that lower dispersion (closer grouping of related features) leads to
a more stable or accurate variance representation, underlining the importance
of thoughtful feature arrangement in enhancing model understanding and per-
formance. Algorithm 1 captures the general procedure for our feature ordering,
including both steps of local and global ordering.

3.2 MHA

MHA or Multi-Head Attention, inspired from [36], is the integration that serves
as a cornerstone for enhancing the model’s capacity to capture complex depen-
dencies and interactions within the input data. This mechanism’s key feature is
its capacity to narrow down an input sequence through several attention heads
at once, which enables the model to pay attention to data from various rep-
resentation subspaces at various points in time. Formally, for each head h, we
perform linear transformations on the input X to obtain queries Qh, keys Kh,
and values Vh using parameter matrices WQ

h , WK
h , and WV

h , respectively:

Qh = XWQ
h , Kh = XWK

h , Vh = XWV
h

Subsequently, we compute the scaled dot-product attention for each head. The
attention function operates on queries, keys, and values and scales the dot prod-
ucts of queries with all keys by 1√

dk
, where dk is the dimensionality of the keys

and queries. This scaling factor helps stabilize the gradients during training.
The attention scores are then passed through a softmax function to obtain the
weights on the values:

Attention(Qh,Kh, Vh) = softmax
(

QhKT
h√

dk

)
Vh

The final output of the MHA layer is created by concatenating and linearly
transforming each head’s output, each of which captures a unique feature of
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Algorithm 1. Feature Ordering
– Preprocessed dataset Xtrain ∈ R

n×m with n samples and m features.
– Clustering Algorithm: Choose from k-means, DBSCAN, HDBSCAN, or a Custom

Algorithm.
– Sorting Order: Ascending or Descending.
– Number of clusters (num clusters), required for k-means and optional for other

algorithms.

Output:

– Reordered dataset new training set ∈ R
n×m.

Procedure

1: Initialize the clustering model based on the selected algorithm.
2: if Clustering Algorithm is k-means then
3: Specify num clusters.
4: else
5: Use default or custom settings.
6: end if
7: Apply clustering to Xtrain to get cluster labels.
8: Append cluster labels to Xtrain.
9: for each cluster, excluding noise do

10: Select data for the current cluster.
11: Calculate and order feature dispersion based on the sorting order.
12: Record feature order for the cluster.
13: end for
14: Combine feature orders from all clusters into an overall feature order.
15: Reorder Xtrain columns according to the overall feature order.
16: Assess model performance with the reordered dataset.

the incoming data. The information acquired by each head is combined by this
concatenation procedure, maintaining the diversity of the attended features:

MultiHead(Q,K, V ) = Concat(head1, ...,headh)WO

where, headh = Attention(Qh,Kh, Vh), and WO is the parameter matrix for
the output linear transformation. Using this sophisticated attention mechanism,
our model gains a more sophisticated capacity to identify and use the complex
patterns in the data. The MHA mechanism provides insights into the diverse
elements of the data that different heads focus on, hence improving the inter-
pretability and expressive capacity of the model.

3.3 DAE

TabSeq leveraged an MHA layer in addition to DAE [37] architecture to over-
come the difficulties associated with learning robust representations from high-
dimensional tabular data. The DAE enhances the model’s performance on ensu-
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ing tasks by lowering noise and extracting significant features. The DAE archi-
tecture comprises an encoder and a decoder, where the encoder maps the input
data X to a latent space representation Z, and the decoder reconstructs the input
from Z. The MHA layer improves the encoder’s capacity to focus on relevant
information by allocating different levels of attention to different data segments.
Formally stated, the encoding procedure is as follows:

Z = fencoder(X) = ReLU(We · MHA(X) + be)

where X is the input data, We and be are the weights and bias of the encoding
layer, respectively, and ReLU denotes the Rectified Linear Unit activation func-
tion. The MHA(X) function represents the output of the MHA layer applied to
X. The decoder, aiming to reconstruct the input data from the latent represen-
tation Z, is given by:

X̂ = fdecoder(Z) = Sigmoid(Wd · Z + bd)

where, X̂ is the reconstructed data, Wd and bd are the decoder weights and bias,
and Sigmoid is the activation function facilitating reconstruction. The loss func-
tion for the DAE, aiming to minimize the reconstruction error, is defined as the
Mean Squared Error (MSE) between the original input X and its reconstruction
X̂:

LMSE =
1
N

N∑

i=1

(Xi − X̂i)2

where N is the number of samples in the dataset. The MHA layer added to
the DAE architecture improves the encoder’s capacity to identify and high-
light the most informative characteristics by utilizing the attention mechanism
[9,34,35,45]. This leads to a less noisy and more discriminative representation
in the latent space, which is essential for tasks that come after, like classifi-
cation. Using a sequential network with dense layers, ReLU activation [23] for
hidden layers, and sigmoid activation [10] for the output layer, optimized for
classification tasks, the final classification model is trained on the encoded rep-
resentations. Our methodology efficiently tackles the problem of learning from
high-dimensional and noisy tabular data by incorporating the MHA layer within
the DAE framework, significantly improving the model’s predictive performance
and robustness.

3.4 Feature Extraction and Classifier Model

In the TabSeq framework, the DAE is instrumental in preprocessing the input
data by denoising and enhancing feature salience through its robust feature
extraction process, where the encoder component transforms the corrupted input
into a refined, lower-dimensional representation. These enhanced features are
then utilized by the classifier, which is specifically configured with a softmax
activation for multi-class scenarios to generate class probability distributions or
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a sigmoid activation for binary classification to yield a probability of class mem-
bership. This setup ensures that the classifier operates on high-quality features
extracted post-DAE, thereby optimizing the model’s accuracy and adaptabil-
ity to different classification tasks. In a nutshell, the DAE processes the input
data, which is then followed by a feature extraction process to extract robust,
noise-reduced features, which are then utilized by the classifier to ensure pre-
cise predictions based on clean and relevant information, illustrating an essential
sequential information flow where the classifier’s efficacy is significantly enhanced
by the high-quality features provided by the DAE.

4 Experimental Results

4.1 Datasets and Model Hyperparameters

In our research, the autoimmune diseases dataset used in [24] and publicly
released in [3] contains 393 features targeting five disease classes of 316 sam-
ples, detailing each antibody’s signal intensity. The ADNI dataset [1] includes
177 samples and 263 features with target attributes like AD123, ABETA12,
and AV45AB12, representing various stages of Alzheimer’s disease and captured
through DTI analysis for white matter integrity. Lastly, the WDBC dataset
[2] offers 32 features derived from breast mass images, aiming to differentiate
between 357 benign and 212 malignant cases. Each dataset was partitioned into
training, validation, and testing subsets following a 70:15:15 split, focusing on
specific target attributes for comprehensive classification and analysis. TabSeq
model with feature ordering integrates an MHA mechanism with four heads and
dimensionality of 32 alongside a DAE comprising dense ReLU-activated layers. It
was trained over 50 epochs with a batch size of 32 using the Adam optimizer, and
the model employs MSE loss for the DAE and binary cross-entropy loss for the
classifier. This configuration facilitates nuanced feature extraction and robust
classification, as evidenced by the model’s validation performance, optimizing
computational efficiency and learning effectiveness. In our analysis, feature order-
ing was uniformly applied across baseline models using k-means clustering with
5 clusters in ascending order for the autoimmune diseases and ADNI datasets
and 3 clusters for the WDBC dataset. This consistent methodology underscores
the effectiveness of feature ordering in enhancing model performance across the
board, with TabSeq demonstrating particularly notable improvements in accu-
racy and AUC with feature ordering.

4.2 Experiments with Autoimmune Diseases’ Dataset

Two cases were included in our investigation (Table 1), which showed how fea-
ture ordering affected model performance. In Case 1, NODE’s accuracy sharply
declined, whereas TabSeq’s increased from 85.42% to 87.23% with feature order-
ing. Case 2 demonstrated how feature ordering significantly improved TabNet’s
accuracy, raising it to 94.44%. TabSeq demonstrated its practical usage of feature
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Fig. 2. Visualization of model performance on the autoimmune diseases dataset.

ordering with consistently good performance. These findings highlight the con-
text and model-specificity of feature ordering’s efficacy, with TabSeq consistently
outperforming other models in the dataset on autoimmune disorders. Visualiza-
tions in Fig. 2 confirm effective clustering for feature ordering and model gen-
eralization and show the ROC curve’s high binary classification accuracy. From
Table 1, it is evident that feature ordering significantly affects model perfor-
mance, especially in sequence-dependent architectures (e.g., autoencoders and
LSTM), where the feature ordering aligns features in a meaningful sequence
to improve learning. However, tree-based models, such as NODE, could not
benefit as much because of their built-in feature selection methods. The local
receptive field of 1D CNNs limits the effect of feature ordering. In contrast,
TabNet’s attention mechanism already prioritizes relevant features, which may
cause inconsistent feature ordering performance. TabTransformer consistently
enhances AUC across datasets; TANGOS shows marked improvements in AUC
with feature ordering but does not demonstrate strong accuracy. These results
underline TabSeq’s capacity to discern complex patterns in high-dimensional
genomic datasets, advocating their potential for data analysis. Based on abla-
tion studies, we chose k-means with 5 clusters for feature ordering with features
sorted in ascending order (Table 1 for Case 1–2 and Fig. 2 for Case 1).

4.3 Ablation Studies

We assessed the TabSeq model’s performance using the autoimmune diseases’
dataset, mainly how the clustering algorithms affected feature ordering. Various
clustering algorithms affected AUC and model accuracy in different scenarios.
For example, in Case 1, the maximum accuracy of 87.23% and the highest AUC
of 0.92 were obtained using DBSCAN with a single cluster with the features
sorted in ascending order. Case 2, on the other hand, achieved 94.44% accuracy
and optimal performance using k-means at five clusters with features sorted
in descending order. Surprisingly, DBSCAN achieved perfect accuracy and an
AUC of 100% and 1.00 in Case 4, with features sorted in descending order. The
significance of the number of clusters, specific clustering algorithm, and sorting
order were also observed for these cases. Fig. 3 shows the assessment for Case 2,
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Fig. 3. Results’ plots for TabSeq with different feature ordering configurations.

Table 1. Comparative results on autoimmune diseases’ dataset for different models
(# = without feature ordering, * = with feature ordering, Acc. = Accuracy).

Model Acc.# AUC# Acc.* AUC*

Case 1: H vs SLE+RA+SS+SV

Linear SVM [24] N/A 0.94 N/A N/A

TabSeq (ours) 85.42% 0.92 87.23% 0.92

LSTM 82.11% 0.88 85.11% 0.91

DAE-LSTM 75.79% 0.80 82.98% 0.80

DAE 76.84% 0.80 80.85% 0.86

1D CNN 72.92% 0.84 79.17% 0.44

TabNet [5] 77.08% 0.85 83.33% 0.50

NODE [27] 89.58% 0.92 20.83% 0.40

TabTransformer [18] 82.98% 0.84 87.23% 0.75

TANGOS [19] 82.98% 0.61 82.98% 0.65

Case 2: SLE vs RA+SS+SV

Linear SVM [24] N/A 0.96 N/A N/A

TabSeq (ours) 86.11% 0.87 91.67% 0.96

LSTM 81.94% 0.86 86.11% 0.93

DAE-LSTM 79.17% 0.81 86.11% 0.87

DAE 84.72% 0.84 86.11% 0.91

1D CNN 80.56% 0.81 80.56% 0.31

TabNet [5] 91.67% 0.60 94.44% 0.74

NODE [27] 83.33% 0.82 80.56% 0.68

TabTransformer [18] 86.11% 0.77 80.56% 0.54

TANGOS [19] 86.12% 0.39 86.12% 0.73

whereas the figures for other cases also looked similar. These results highlight the
crucial role that clustering configurations in feature ordering play in improving
the predictive power of the TabSeq model, indicating that the model’s ability
to distinguish intricate patterns of autoimmune diseases is greatly influenced by
strategic cluster formation and feature ordering.
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4.4 Experiments with ADNI and WDBC Dataset

The studies done on the ADNI dataset (Table 2) show how effective feature
ordering is in several models, such as TabNet, NODE, and TabSeq. Across two
target attributes, such as AD123 and ABETA12, the addition of feature order-
ing resulted in significant gains in accuracy and AUC scores; nonetheless, AD123
presented a multi-class classification challenge. For example, the TabSeq model’s
accuracy improved from 66.67% to 67.68% for the AD123 target. Similarly, sub-
stantial improvements were noted for the ABETA12 target respectively 64.44%
to 75.13% for TabSeq. By efficiently selecting and rearranging features accord-
ing to their informative contribution to the predictive goal, feature ordering
improved the performance of deep learning models. These results highlight the
importance of adopting feature ordering to refine model predictions for complex
datasets. The studies conducted with the WDBC dataset (Table 2) demonstrate
how feature ordering can improve model accuracy and AUC scores. The Tab-
Net, NODE, and TabSeq versions performed better when feature ordering was
used. Notably, compared to its excellent performance without feature ordering,
the TabSeq model’s accuracy increased, reaching 94.71% with feature ordering.
TabTransformer boosts AUC; TANGOS shows lower accuracy; TabPFN excels in
feature-limited datasets like WDBC but without feature ordering. We employed
k-means clustering with 5 clusters for the ADNI dataset and 3 for the WDBC

Table 2. Performance on ADNI and WDBC datasets.

Dataset Model Acc.# AUC# Acc.* AUC*

ADNI Target Attribute: AD123

TabNet [5] 59.26% 0.68 66.67% 0.54

NODE [27] 59.26% 0.68 66.67% 0.54

TabSeq (ours) 66.67% 0.67 67.68% 0.61

TabTransformer [18] 66.67% 0.40 74.07% 0.70

TANGOS [19] 74.07% 0.70 74.07% 0.73

Target Attribute: ABETA12

TabNet [5] 51.85% 0.52 74.07% 0.67

NODE [27] 59.26% 0.57 59.26% 0.68

TabSeq (ours) 64.44% 0.55 75.13% 0.71

TabTransformer [18] 59.26% 0.50 59.26% 0.50

TANGOS [19] 44.45% 0.50 44.45% 0.62

WDBC TabNet [5] 91.86% 0.91 94.18% 0.99

NODE [27] 91.86% 0.99 93.71% 0.98

TabSeq (ours) 94.65% 0.91 94.71% 0.98

TabTransformer [18] 87.08% 0.91 60% 0.37

TabPFN [17] 94.19% 0.94 40.69% 0.50

TANGOS [19] 60% 0.76 60% 0.85
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dataset, ordering them ascendingly. As Fig. 3 shows, increasing cluster numbers
initially enhanced performance for most of the cases but eventually declined after
specific points. These results affirm that our feature ordering approach boosts
model accuracy and AUC across datasets, noting its importance in advancing
deep learning for tabular data.

5 Conclusion

This paper introduces TabSeq, a novel framework that employs feature ordering
to enhance deep learning’s performance on tabular datasets significantly. By inte-
grating local ordering and global ordering within a DAE equipped with an MHA
mechanism, our method systematically optimizes feature sequences to improve
learning efficacy. Studies conducted on raw antibody microarray data and other
medical datasets have underscored the capability of strategic feature sequencing
to yield substantial performance gains. These empirical results reinforce feature
ordering’s potential as a game-changing technique in deep learning for tabular
data. Its effectiveness is predominantly seen in sequence-based architectures, and
its performance on low-dimensional datasets remains to be determined. Further
research is needed to refine and extend the method’s applicability to various
architectures and datasets.
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Abstract. In this paper we introduce GraFix, a novel graph transformer
with fixed structural attention. Inspired by recent works 1) harnessing
the link between (graph) kernels and the attention mechanism of trans-
formers and 2) favouring simple fixed (non-learnable) attentive patterns
over the standard attention mechanism, we propose to use graph ker-
nels, specifically the WL kernel, to replace the learnable attention mech-
anism of a transformer with a fixed one capturing the structural sim-
ilarity between substructures in the input graphs. The resulting graph
transformer showcases an excellent performance on standard graph clas-
sification benchmarks, performing on-par with and in some instances
outperforming a wide variety of alternative graph neural network and
graph transformer-based approaches while at the same time benefiting
from a reduced number of learnable parameters and learning runtime.

Keywords: Graph Neural Network · Graph Kernel · Graph
Transformer

1 Introduction

The continuous advancement of hardware resources, particularly GPUs, of the
past few years has led deep learning to become the poster child for artificial intel-
ligence, fundamentally eclipsing longer established subfields of machine learning.
This rise in popularity has been spearheaded by models such as Convolutional
Neural Networks (CNNs) [12] and transformers [33], which have been applied
with great success to fields such as computer vision and language modelling. The
original versions of these models, however, are designed to operate on vectorial
data and are therefore unable to effectively handle graph data, where structural
features are often crucial to solve the task at hand. Indeed, a wide variety of
objects, from images [11,28] to social networks [26] and chemical structures [23]
are often more naturally represented as graphs, rather than an unstructured
collection of features. The non-Euclidean nature of graphs, while bringing the
advantage of high expressivity, also implies that it is difficult for traditional deep
learning methods to be directly applied to graphs.
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For this reason, in recent years much of the attention of the deep learning
community has focused on adapting successful deep learning architectures to
operate on graph data. The most prominent example are Graph Neural Networks
(GNNs) [1,2,13,15,27,30,35,40], which operate by transferring node feature
information between adjacent nodes to encapsulate the structural characteristics
of the graph. Prior to the introduction of GNNs, graph kernels [17–19,22,29,31]
were considered the most popular approach to apply standard machine learn-
ing techniques to graphs, however GNNs have since demonstrated superior per-
formance compared to traditional graph kernel-based learning methods. GNNs
however suffer from their own limitations, such as the inability to learn long-
range node dependencies, especially as the number of network layers increases
and feature over-smoothing becomes an issue.

The attention mechanism, which allows transformers to model long-range
dependencies [33], offers a compelling solution to the limitations of GNNs. While
the standard transformer architecture does not take the graph structural infor-
mation into account, but rather attempts to learn structural patterns by look-
ing at the features alone, structure-aware positional encodings [9] and attention
mechanisms [20] can allow a graph transformer to capture global graph informa-
tion while preserving locality. The combination of GNNs and transformers can
therefore enhance the representation learning capabilities of GNNs, leading to
improved performance in tasks involving graph data.

The present study is motivated by recent works showing that replacing learn-
able attention with a fixed one does not negatively impact the model perfor-
mance, on the contrary it can result in a slight performance improvement [5,24].
More specifically, in this paper we propose a novel Graph transformer with Fixed
attention (GraFix), where the traditional (learnable) attention mechanism is a
replaced by a fixed (non-learnable) attention mechanism based on graph kernels.
We use the well-known WL to measure the similarity between nodes neighbour-
hoods and we let the transformer use this information when attending to the
graph nodes. We compare our model with conventional GNNs methods as well
as alternative graph transformers and we find that our method achieves a com-
petitive performance in terms of graph classification accuracy while reducing the
number of model parameters and training time.

The remainder of this paper is organized as follows. Section 2 reviews the
related work, while Sects. 3 and 4 introduce the necessary background and our
model, respectively. Finally, Sect. 5 presents the experimental results and Sect. 6
concludes the paper.

2 Related Work

While standard machine learning algorithms are not originally designed to deal
with non-vectorial inputs such as graphs, the introduction of graph kernels allows
to use kernel-based algorithms, such as support vector machines [14], for graph
problems. This is achieved by defining appropriate kernel functions that can cap-
ture the structural characteristics of graphs when mapping them to an (implicit)
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embedding space. Well-known graph kernels include: 1) the graphlet kernel [18],
which counts occurrences of small connected subgraphs called graphlets; 2) the
random-walk kernel, which compares the behaviour of random walks [31] on pairs
of input graphs; 3) the subgraph kernel [17], which compares graphs by enumer-
ating common subgraphs; and 3) the Weisfeiler-Lehman (WL) kernel [29], which
refines node labels iteratively based on neighborhood information and measures
similarity by evaluating label consistency across iterations.

With the advent of deep neural networks, researchers turned their attention
to end-to-end models, attempting to generalise existing architectures to deal
with graph data. GNNs can be seen as an attempt to generalise the concept
of convolution at the core of CNNs beyond the regularity of grids of pixels [6].
Most existing GNNs follow the message-passing model, where nodes interact
through edges to update their features. Examples of well-known GNN models
include GCN [15], GraphSAGE [13], DiffPool [38], DGCNN [40], and GIN [35].
As mentioned in the previous section, the main drawback of these models lies in
their tendency to capture very well the local graph connectivity at the expense
of long-range node dependencies.

Graph transformers address this issue by adding structural awareness to stan-
dard transformers [21], which are naturally well suited to model long-range infor-
mation. This in turn can be achieved in three ways: 1) passing GNN-enriched fea-
tures to a transformer, 2) using unique position encoding of graph structures, and
3) designing more sophisticated attention mechanisms. GraphTrans [34] extracts
local information using a GCN which is then input to a transformer model.
GraphiT [20] substitutes the GCN with a Graph Convolutional Kernel Network
(GCKN) [3], where the GCKN uses kernels to extract information about local
graph substructures. While GNNs can provide decent feature extractors for local
structure, they need to be trained along with or before the transformer model,
leading to a more complex search space. Approaches based on structure-aware
positional encoding bypass this issue. For example, Dwivedi and Bresson [9] use
the eigenvectors of the graph Laplacian as the position encoding. SAN [16] works
in a similar way but it allows the use of the entire Laplace spectrum and learns
the interactions between different frequencies, thus improving the model abil-
ity to understand the complex structure of the graph. In [25], a random walk
positional encoding was proposed.

A number of graph transformer methods propose to directly modify the atten-
tion mechanism to account for structural information. The attention mechanism
of the vanilla transformer can be regarded as propagating information over a
fully connected graph, thus disregarding the underlying structure of the data.
This however can be modified to take into account the graph structure. Dwivedi
and Bresson [9] propose to use the adjacency matrix to restrict the attention
mechanism to local information about the nodes. Inspired by Tsai et al. [32],
who show how the original attention mechanism can be interpreted as the appli-
cation of a kernel smoother over the input features, GraphiT [20] applies this
idea to graphs and uses kernels between graph nodes to modulate the attention
mechanism. Chen et al. [4] take this one step further and propose to replace the
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entire attention mechanism with a kernel smoother, where the attention between
pair of nodes is a function of the similarity between the subgraphs rooted at those
nodes. In particular, they propose to use an exponential kernel between the fea-
tures extracted by a GNN on the local subgraphs around each node. Finally,
other approaches have sought to bias the attention using the the shortest path
distance [37] and the resistance distance [39] between the nodes.

Our model is closely related to [9] and [4], as we also formulate the atten-
tion mechanism between nodes in terms of graph kernels. Crucially, however, our
attention is fixed, i.e., it is not learned but rather precomputed as the graph ker-
nel between subgraphs rooted on different nodes. Whilst [9] and [4] use GNNs to
compute the embeddings of the nodes neighbourhoods, our framework allows to
directly use a wide variety of well-known (non-differentiable) graph kernels. Our
work is also inspired by [5,24], which have recently shown that fixing attention
coefficients may have little to no negative impact on the model performance. On
the contrary it can result in a slight performance improvement [24]. To the best
of our knowledge, our work is the first to apply non-learnable attention patterns
to graph transformers.

3 Background

Let G = (V,E,X) denote a graph over n nodes with edge set E, where X ∈ R
n×d

is the matrix of d-dimensional features of the nodes v ∈ V . In this section we
introduce the two main components underpinning our model, 1) the WL graph
kernel and 2) the transformer attention mechanism.

3.1 WL Graph Kernel

The WL kernel [29] is a graph kernel that operates based on concept of iterative
label refinement. Let N (v) denote the set of nodes adjacent to v, where each
node has an associated label l(v), then the label is iteratively refined as

li+1(v) = f(li(v), g(li(u)|u ∈ N (v))) , (1)

where f is an aggregation function responsible for the generation of new labels,
g is a permutation-invariant function, and i denotes the iteration number.

In the WL kernel each node is initially assigned a label. The labels are then
iteratively refined by integrating information obtained from neighboring nodes
according to Eq. 1. Figure 1 shows an example of WL label refinement, where the
initial node labels of two graphs G1 and G2 (a) are transformed into the refined
form (c) by aggregating the colors associated with the neighboring nodes (b).
Following this aggregation process, a new node coloring is performed based on
the updated features derived from the refined labels. A hash table enumerating
the refined labels is then used to create the graph embeddings ϕ(G1) and ϕ(G2).

The example of Fig. 1 shows the outcome of a single iteration, but in practice
the process is repeated until a maximum number of iterations h is reached. This
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Fig. 1. One iteration of the WL label refinement.

in turn yields a set of graph embeddings {ϕi(G1)}hi=1 and {ϕi(G2)}hi=1, from
which the WL kernel between G1 and G2 is computed as

kh
WL(G1, G2) =

h∑

i=0

〈
ϕi(G1), ϕi(G2)

〉
, (2)

where 〈·, ·〉 indicates the dot product between each pair of histograms.

3.2 The Transformer Architecture

Transformers [33] rose to prominence due to their unmatched performance in lan-
guage modelling tasks. At its core the transformer architecture revolves around
the attention mechanism, which allows the model to learn contextualized rep-
resentations of the input tokens encapsulating long-range dependencies within
the input sequence. Beyond language modelling, transformers have been applied
with success to fields including computer vision [8] and speech processing [7].

Given a matrix of input features X, the transformer maps this to the matrices
Q(Query), K(Key), and V(Value) through three distinct linear transformations.
With these matrices to hand, the attention is then defined as

Attention(X) = softmax
(QKT

√
dk

)
V (3)

where
√

dk is a scaling factor that depends on the dimension of Q. Equation 3
encapsulates the pairwise similarity between input tokens through the dot prod-
uct QKT . This allows to compute the updated features

X′ = Attention(X) + X , (4)
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which can eventually be used to solve the downstream task at hand, e.g., clas-
sification. Note that the common practice is to let Q = K and to use multiple
attention heads whereby multiple sets of matrices Q and V are learned to allow
the network to model multiple contexts. Note also that in a vanilla implemen-
tation of the transformer model for graphs, where the input features are node
features, the model inevitably ignores the crucial topological information intrin-
sic to the graph structure.

Tsai et al. [32] reformulate Eq. 3 through the lens of kernels, rewriting the
attention mechanism applied to the ith input feature xi as

Attention(xi) =
∑

xj∈X

k(xi, xj)∑
xl

k(xi, xl)
f(xj) , (5)

where f denotes the value function (in the case of the original transformer, a
linear function), k is a kernel function between input features, and we omitted
the filtering function of the formulation in [32] for simplicity.

In the case of a graph G = (V,E,X), given a structure-aware kernel function
k(xv, xu), where xv, xu ∈ X are the node features of v, u ∈ V , this yields

Attention(xv) =
∑

u∈V

k(xv, xu)∑
w∈V k(xv, xw)

f(xu) . (6)

In Chen et al. [4] this is accomplished by using a GNN to create enriched features
encapsulating the local neighbourhoods of the nodes and then using an expo-
nential kernel function k on these enriched features. Dwivedi and Bresson [9]
follow a similar but slightly more convoluted approach where two kernels, one
capturing the similarity between the features and one capturing the similarity
between the nodes positions with a graph, are multiplied together.

As explained in the next section, we differ from both these approaches in that
we directly replace k(xv, xu) with a graph kernel, specifically the WL kernel of
Eq. 2. In other words, we propose to fix the attention coefficients rather than
learning them end-to-end.

4 Our Model

Figure 2 shows the architecture of GraFix, the graph kernel transformer proposed
in this paper. The two main components of our models are 1) the WL kernel
attention computation and 2) the transformer layer(s).

In the WL kernel attention computation, we commence by extracting the
the k-hop subgraph Sk,G(v) around each node v, i.e., the subgraph induced by
selecting the nodes that can be reach from the central node by traversing at
most k edges. We then compute the kernel matrix encapsulating the similarity
between all pairs of subgraphs using Eq. 2, where all node features have been
one-hot encoded. Finally, we define the entry Av,u of the attention matrix A
corresponding to the attention coefficient between the node v and u as

Av,u = kh
WL(Sk,G(v), Sk,G(u)) . (7)
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Fig. 2. The structure of the proposed graph transformer. The attention is precomputed
and fixed by computing the WL kernel similarity between pairs of subgraphs extracted
from the input graph. The node features are then fed to a series of transformer layers
where the attention mechanism of Eq. 6 is used to enrich them.

The attention mechanism used to update the node representations in the trans-
former layer(s) is then

Attention(xv) =
∑

u∈V

Av,uf(xu) . (8)

Note that the attention mechanism of Eq. 8 differs from that Eq. 5 in that we
omit the normalization factor ensuring the row-wise stochasticity of the attention
matrix. We experimentally observe that this leads to a better performance of the
model while not impacting its convergence.

Our model also deviates from the standard practice of using multiple atten-
tion heads and relies on a single attention head instead. Raganato et al. [24] have
shown that the conventional multi-head attention mechanisms predominantly
encodes largely superfluous position information. Indeed, in our experiments we
empirically observe that a single attention head is preferable to multiple ones,
as also briefly demonstrated in the ablation study of Subsect. 5.6.

4.1 Computational Complexity

The computational complexity of the WL kernel can be expressed as O(Nhm +
N2hn), where N is the number of subgraphs, h represents the iteration count,
n corresponds to the maximum number of nodes and m denotes the maximum
number of edges within the subgraphs. We propose an efficient implementation
of the WL kernel that makes use of GPU hardware to speed up the computation
of the attention matrix. The latter is precomputed separately from the model
training, allowing us to speed up the training. Specifically, we use the scatter
function of PyTorch Geometric to aggregate the neighboring labels in a compu-
tationally efficient way and then construct histograms to enumerate the labels
for each graph, before comparing their similarity.
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Table 1. Datasets statistics.

Dataset Size Classes Avg. num. of nodes Avg. num. of edges Has node features

MUTAG 188 2 17.93 19.79 Yes

PTC 344 2 14.29 14.69 Yes

PROTEINS 1,113 2 39.06 72.82 Yes

NCI1 4,110 2 29.87 32.30 Yes

AIDS 2,000 2 15.69 16.20 Yes

IMDB-BINARY 2,000 2 19.77 96.53 No

5 Experimental Results

We compare our model against six state-of-the-art GNNs and five differ-
ent graph transformer methods: GCN [15], DGCNN [40], DiffPool [38],
ECC [30], GIN [35], GraphSAGE [13], vanilla transformer (node features
only) [33], Structure-Aware Transformer (SAT) [4], GraphiT with diffusion cod-
ing, GraphiT with adjacent coding, GraphiT with GCKN coding [20]. Recall
that GraphiT [20] and SAT [4] are the two most closely related architectures to
ours, as they both employ some sort of kernel to replace the standard attention
mechanism, although in both cases the attention is not fixed but learned.

We compare these methods on six commonly used datasets for graph
classification tasks. Five datasets are biological/chemical datasets (MUTAG,
PTC, PROTEINS, NCI1, AIDS) [23] and one is a social dataset (IMDB-
BINARY) [36]. All node features are encoded using one-hot encoding, how-
ever since IMDB-BINARY does not have node features, we use the degree of
each node as the node feature. Table 1 shows some of the graph dataset basic
statistics, including number of graphs, classes, and average number of nodes and
edges.

In our experiments we use two RTX3090 GPUs, each with a memory capacity
of 24 GB, alongside two RTX2060 GPUs, each offering 12GB of memory. All our
code is written in PyTorch and PyTorch Geometric1.

5.1 Experimental Setup

We evaluate the performance of each model using 10-fold cross-validation, with
a 90/10 training+validation/test split, further splitting train+validation into
training (90) and validation (10).

We use the training/validation sets to select the optimal model configurations
through grid search. To establish the hyperparameter search space, we follow the
ranges specified in [10] for GNNs, while for the vanilla transformer and GraphiT
we refer to the ranges outlined in [20]. For SAT [4], we vary: 1) the number of
GCN layers from 1 to 3; 2) the number of transformer layers from 1 to 3; 3) the

1 https://github.com/lcukyfuture/GraphT.

https://github.com/lcukyfuture/GraphT
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Table 2. Average mean classification accuracy ± standard error for our model (GraFix)
and the competing ones on the 6 datasets considered in this study. The best model for
each dataset is highlighted in bold, while the second best model is underlined.

Dataset MUTAG PTC PROTEINS NCI1 AIDS IMDB-BINARY

GCN 75.99 ± 3.5 56.11 ± 2.8 71.60 ± 0.8 74.53 ± 0.7 94.55 ± 0.4 72.80 ± 1.8

DGCNN 85.03 ± 2.7 50.60 ± 2.2 73.86 ± 0.7 74.38 ± 0.7 99.40 ± 0.1 71.90 ± 1.4

DiffPool 81.35 ± 2.5 57.83 ± 2.3 71.25 ± 1.5 79.32 ± 0.9 99.15 ± 0.1 70.50 ± 1.2

ECC 80.82 ± 4.2 50.87 ± 2.8 71.17 ± 1.0 75.82 ± 0.5 96.05 ± 0.2 70.40 ± 1.8

GIN 80.26 ± 3.1 58.69 ± 1.6 74.76 ± 0.9 78.89 ± 0.6 99.35 ± 0.2 72.30 ± 1.2

GraphSAGE 72.22 ± 2.8 55.78 ± 2.7 71.25 ± 1.5 77.44 ± 0.7 97.40 ± 0.3 71.30 ± 2.3

Vanilla transformer 72.78 ± 3.6 51.74 ± 2.0 70.98 ± 1.1 65.67 ± 0.7 94.70 ± 0.5 72.40 ± 1.5

SAT 79.68 ± 3.4 56.72 ± 2.2 73.31 ± 1.10 76.27 ± 0.5 96.90 ± 0.4 72.90 ± 1.4

GraphiT + Diffusion 81.46 ± 2.6 60.14 ± 2.1 74.21 ± 1.2 76.69 ± 0.7 96.75 ± 0.5 70.60 ± 1.5

GraphiT + Adj 79.27 ± 1.7 57.84 ± 2.5 71.07 ± 1.4 77.96 ± 0.7 95.85 ± 0.4 71.90 ± 1.4

GraphiT + GCKN 81.93 ± 2.2 59.91 ± 3.2 70.98 ± 1.3 78.91 ± 0.7 98.40 ± 2.5 71.10 ± 1.5

GraFix (ours) 85.09 ± 2.6 57.57 ± 2.4 75.11 ± 1.2 71.70 ± 0.5 99.45 ± 0.1 73.30 ± 1.4

number of attention heads in [1, 4, 8]; and 4) the weight decay in [0.01, 0.001,
0.0001]. For our model, we vary: 1) the number of transformer layers from 1 to 3;
2) the number of hops k to build the subgraphs from 1 to 3, with the exception
of IMDB-BINARY where the range is confined to 1 and 2; 3) the number of WL
kernel iterations from 1 to 5, with the exception of the IMDB-BINARY dataset
where the range is confined to 1 and 2.

Given the grid of hyperparameters, we select the model configuration with
the lowest loss on the validation set and we measure its accuracy on the test
set. We repeat this procedure for every fold and finally we report the average
accuracy ± standard error over the 10 folds. During the training phase, stochas-
tic gradient descent and Adam are employed as optimization algorithms, with
initial learning rates set to 0.1 and 0.001, respectively. The learning rate is sys-
tematically reduced to half of its current value every 50 epochs.

We set the maximum number of epochs for all models to 1000, with an early
stopping mechanism to minimize overfitting. To this end we use a predetermined
patience parameter, which was set in alignment with the lowest validation loss
recorded within the initial 200 epochs. More specifically, if the model validation
loss failed to improve after the 200 epoch mark, this particular loss value was
identified as the optimal validation loss.

5.2 Graph Classification Results

Table 2 shows that our model outperforms the competing ones, both traditional
GNNs and transformer-based architectures, on four out of six datasets (MUTAG,
PROTEINS, AIDS, and IMDB-BINARY), while achieving a higher mean accu-
racy than the vanilla transformer on all datasets.

We observe that GraFix seems to underperform on datasets characterized by
more complex node features, e.g., NCI1. In contrast, GraFix excels on the IMDB-
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Table 3. Average per epoch training time ± standard error (measured in seconds
×10−2). For each dataset, the fastest (second fasted) model is highlighted in bold
(underlined).

Dataset MUTAG PTC PROTEINS NCI1 AIDS IMDB-BINARY

Vanilla transformer 4.47±0.28 10.79±0.25 35.30±0.29 100.32±0.32 60.65±0.50 31.89±0.42

SAT 53.84±0.34 101.12±0.39 328.94±0.45 1193.23±0.88 578.34±0.38 294.15±0.39

GraphiT + Diffusion 6.74±0.28 11.26±0.23 43.06±0.22 131.82±0.32 76.95±0.22 39.68±0.23

GraphiT + Adj 7.30±0.18 11.61±0.23 44.52±0.23 111.67±0.31 76.72±0.24 40.39±0.25

GraphiT + GCKN 6.31±0.17 10.67±0.18 35.03±0.19 124.86±0.25 58.56±0.18 32.48±0.19

GraFix 3.02±0.28 5.00±0.03 17.13±0.20 60.15±0.25 28.20±0.13 14.94±0.06

BINARY dataset, where no node features are available, therefore highlighting
the ability of GraFix to extract and leverage structural information.

5.3 Runtime Analysis

Table 3 shows that, in terms of training time, the proposed model is significantly
faster than all the alternative graph transformers, including the vanilla trans-
former computed on the node features. Indeed, this is achieved by precomputing
the attention coefficients rather than learning them end-to-end.

Remarkably, as observed in Table 2 this does not appear to result in a reduced
classification accuracy. Note that the times shown here do not include the pre-
computation of the WL kernel (GraFix) or the GCKN features, diffusion kernel,
and adjacency matrix positional encoding of GraphiT [20]. Finally, these train-
ing times refer to the best performing models selected during the grid search
and used to generate the classification results of Table 2.

5.4 Number of Model Parameters

We compare the number of parameters of our model to that of the alternative
graph transformers considered in these experiments. The results are shown in
Table 4. As expected, by using a precomputed non-learnable attention matrix
our model uses fewer trainable parameters, even when compared to a vanilla
transformer. Our model uses less than 50% and about 65% of the number of
parameters of SAT and GraphiT, respectively. Note that to compare the number
of model parameters we fixed for all models the number of layers to 3 and the
number of attention heads to 1.

Importantly, while fixing the attention coefficients reduces the number of
trainable parameters within the model, it still maintains or improves the model
accuracy. Therefore our model is able to optimize computational efficiency with-
out sacrificing performance.
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Table 4. Comparison of the number of model parameters for different configurations
of GraphiT and our model. For each dataset, the model with the least number of
parameters is highlighted in bold.

Dataset MUTAG PTC PROTEINS NCI1 AIDS IMDB-BINARY

Vanilla transformer 105,154 105,858 104,898 107,074 107,138 113,410

SAT 142,594 143,298 142,338 144,514 144,578 150,850

GraphiT + Diffusion 104,386 105,090 104,130 106,306 106,370 112,642

GraphiT + Adj 104,386 105,090 104,130 106,306 106,370 112,642

GraphiT + GCKN 111,362 112,066 111,106 113,282 113,346 119,618

GraFix 67,522 68,226 67,266 69,442 69,506 75,778

5.5 Interpretability and Kernel Attention Visualization

Figure 3 shows a sample graph from the MUTAG dataset. The graph contains a
core of 15 nodes (labeled in red in the figure), connected to 4 pairs of leaves (grey)
through 4 nodes (orange). We visualise the attention matrices for this graph for
different choices of the subgraph hops k in Fig. 4. In the latter, the yellow colour
indicates a high value of the attention while blue indicates a low value. As
expected, these heatmaps show the ability of attention, which is computed using
the WL kernel, to discriminate between structurally dissimilar neighborhoods
exiting within the graph.

The attention matrix for 1-hop subgraphs reveals distinct block diagonal
patterns, clearly separating the core from the outer nodes. While the similarity
between some subgraphs is close to 0 when k = 1, increasing k allows to pro-
gressively integrate broader structural elements of the graph, thus smoothing
the similarity information.

5.6 Ablation Studies

To conclude our experimental analysis, we perform an ablation study of the
network parameters on the MUTAG and PROTEINS datasets. Specifically, we
study the influence of the number of subgraph hops and the number of WL
iterations.

In Fig. 5, we show the average classification accuracy of our model as we vary
the number of hops k from 1 to 3 and the number of WL iterations h from 3 to
5. On both MUTAG and PROTEINS our model achieves optimal performance
with a limited number of iterations of the WL kernel. This can be explained by
noting that as the number of iterations increases the attention matrix tends to
be smoothed (as also observed in Fig. 4), consequently diminishing the discrim-
inative power of structural features.

In terms of subgraph hops k, on the other hand, we observed different
behaviours in MUTAG and PROTEINS. Notably, we observe that in the
MUTAG dataset the model performance tends to increase when smaller sub-
graphs are used. Conversely, on the PROTEINS dataset the model tends to
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Fig. 3. Sample graph from the MUTAG dataset. Best seen in colour. (Color figure
online)

Fig. 4. WL kernel attention matrix for the sample graph of Fig. 3.

prefer subgraphs with an larger number of hops. This is in line with the size of
graphs, smaller for MUTAG and larger for PROTEINS, as shown in Table 1.

Finally, we also compare the use of a single attention heads versus multiple
ones. In Table 5 we define a simple model with two attentions heads, (i) one
equivalent to extracting subgraphs with k = 1 hops and performing h = 3 WL
iterations and (ii) one equivalent to extracting subgraphs with k = 1 hops and
performing h = 4 WL iterations. We compare this model on the MUTAG dataset
against two single-attention head models using (i) and (ii) as the head, respec-
tively. As the results show, using multiple attention heads does not necessarily
lead to a higher classification accuracy.



GraFix: Graph Transformer with Fixed Attention 447

Fig. 5. Average classification accuracy ± standard error on the (a) MUTAG and (b)
PROTEINS dataset as we vary both the subgraph hops k and the number of WL
iterations h.

Table 5. Single- versus multi-head attention on MUTAG. k and h indicate the number
of subgraph hops and the number of WL iterations, respectively.

Model Avg. accuracy ± std. error

GraFix with single head (k = 1, h = 3) 86.67±2.52

GraFix with single head (k = 1, h = 4) 84.53±3.22

GraFix with two heads (k = 1, h = 3) + (k = 1, h = 4) 82.39±2.51

6 Conclusion

In this paper we introduced GraFix, a new graph transformer architecture where
the attention is not learned but rather it is fixed and captures the similarity
between substructures in the input graphs using graph kernels. We showed that
by employing the WL kernel to precompute the attention coefficients between
the nodes of the graphs the resulting model performs well when compared to
alternative approaches, both GNNs and graph transformers, on standard graph
classification tasks. At the same time, our model retains only a fraction of the
parameters of other graph transformers and therefore benefits from a faster run-
time. Future work will aim to improve the ability of the model to deal with graph
datasets where features are highly discriminative. It would also be interesting
to investigate the application of a similar model to time-varying graphs, with
graphs themselves being interpreted as tokens.
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Abstract. Video corpus comprises multimedia information located in
multiple modalities, which brings evident challenge to emotion-cause
extraction tasks. Traditional approaches perform indifferently on multi-
modal datasets due to the inadequate inter-modal alignment and fusion.
We propose a Multi-modal Deep Emotion-Cause Pair Extraction algo-
rithm, which introduces a novel inter-modal attention mechanism to
effectively align and fuse text, audio, and video features. The proposed
two-stage algorithm first extracts modal pairwise fusion features respec-
tively for emotions and causes. Then, the pairwise features are jointly
fused by the emotion-cause fusion module to mine the relationship
between emotions and causes. Finally, we utilize a multi-modal fusion
module and classifier to identify the emotion-pair relationship among
utterances. Experiments show that the proposed algorithm improves the
performance of the extraction of multi-modal emotion-cause pairs com-
pared to baseline approaches on the current publicly available dataset.

Keywords: Deep emotion-cause pair extraction · Multi-modal Feature
Fusion · Cross Attention alignment

1 Introduction

Nowadays, social media such as Twitter and TikTok generate huge amount of
video data. Video corpora are retrieved from such data which contains multi
modalities of textual, audio, and video information. Research on emotion iden-
tification has immense potential value on public opinion analysis, recommenda-
tion, and decision-making systems. Traditionally, emotion-cause extraction [13]
has attracted much attention in natural language processing universe. The main
goal [8] of this task is to extract the emotions and the causes that trigger the
corresponding emotions from a given corpus. Recently, with the assistance of the
deep neural networks, the Deep Emotion-Cause Pair Extraction [23] task aims to
recognize emotion-cause pairs simultaneously based on deep learning technology.

The classic emotion-cause pair extraction algorithms work on textual dataset
depending on emotion annotation. A growing body of research [5,7,21] has
applied deep learning approaches to the task of emotional cause extraction in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Fig. 1. An example of emotion-cause pair extraction

conversation scenarios. By complicated neural network models, it is possible to
recognize precise emotions with interaction of multiple modalities.

Figure 1 illustrates a three modal emotion-cause pair extraction example
excerpted from a video corpus. There are five utterances in the dialog, in which
each utterance has an emotional label. We aim to identify the causes of specific
utterance by ensemble all three modal features by the proposed algorithms. In
this case, three emotion-cause pairs are extracted from the dialog example. It is
clear that an utterance can simultaneously be the source and the target of cause
relationships.

The research made in multi-modal learning have received widespread atten-
tion. The multi-modal approaches involve the study of emotional consensus,
which effectively improves the accuracy of multimodal sentiment analysis. Mul-
timodal emotion analysis identifies human emotional states using multiple dif-
ferent perceptual modalities (e.g., audio, text, images).

The task of multi-modal emotion-cause pair extraction proposes to extract
possible emotions and their corresponding triggering causes from data corpus
that contains modal combinations such as text-audio, text-video, or text-audio-
video. The emotion data is more detailed, the expression of emotions is more
diversified, and the recognition of emotions is more difficult. Therefore, extract-
ing emotion-causes pairs also relies more on the learning and fusion methods
of multi-modal feature representations, and the multimodal techniques need to
be adapted to the extraction of emotion-cause pairs. Emotion-cause pair extrac-
tion methods applied in multimodal scenes can effectively establish the associ-
ation between textual, audio and image emotion-cause information. Traditional
approaches performs indifferently on multimodal datasets due to the inadequate
inter-modal alignment and fusion.

In this paper, we propose an attention-based multimodal emotion-cause pair
extraction algorithm for extracting structural units expressing emotion-cause in
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a multimodal dialog corpus. The algorithm introduces an inter-modal attention
mechanism to effectively fuse text, audio and image features to improve the
accuracy of extracting emotion-cause pairs.

The model consists of two stages. The first stage is multimodal emotion-
cause information fusion, and the second stage is multimodal emotion-cause
pair extraction. In the first stage, we first extract the three modalities of text
(T), audio (A), and video (V) from the dialog dataset. High-dimensional fea-
ture extraction algorithms are applied to get the high-dimensional features, and
then the proposed algorithm transfers the latent features to an attention fusion
module to retrieve pairwise inter-modality features. Next, the fusion results of
the multimodal feature fusion are fed to the extraction of the emotion-cause
fusion module respectively. In the second stage, the predicted emotion-cause
information from the first step is paired, and the matched emotion-cause pairs
are labeled from the candidate pairs.

In summary, we list the contribution of this paper as follows.

(1) We propound that the inadequate alignment and fusion is the bottleneck of
multi-modal emotion-cause pair extraction algorithms.

(2) We propose a novel attention-based multimodal emotion-cause pair extrac-
tion algorithm. The algorithm utilizes emotion-cause cross attention to align
inter-modal features and a multimodal emotion-cause fusion network to fuse
features.

(3) Experiments show that the algorithm proposed in this paper improves the
performance of the extraction of inter-modal emotion-cause pairs compared
to baseline approaches on the current publicly available corpus set.

2 Related Work

In recent years, many schemes addressing the task of emotion-cause pair extrac-
tion have been proposed. We firstly introduce the algorithms that work on tex-
tual datasets, then on multi-modal scenarios.

2.1 Textual Emotion Cause Extraction

In the early stages, the emotion-cause extraction task needs to be accomplished
by manually annotating emotions. In a subsequent study, Gui [9] proposed a
dataset of emotion cause extraction based on Sina News in 2016 and found that
the sentence-level emotion-cause extraction task works better than the word-
level emotion-cause extraction task. Based on the same goal, Li [16] proposed
a CNN model with a common attention mechanism, and Chen [2] used a joint
training approach for enhanced cause feature extraction. Li et al. proposed a
graph convolutional network named ConGCN [15], which extract the features of
e speakers and utterance contexts to build a heteromerous graph which is used
to help solve the problem of conversational emotion recognition.

The emotion-cause pair extraction task [23] is proposed in 2019, which aims
to extract the corpus parts with emotion information and the cause corpus parts
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that cause emotions from documents, getting rid of the dependence on manually
labeled emotion labels.

Indep [23] is a two-step pipeline model that uses a bidirectional LSTM for
encoding and extracting emotion-cause sentences, and final pairing for predic-
tion. The Inter-EC model is based on the Indep model, but it extracts the emo-
tion sentences first in a Bi-LSTM in the contextual semantic information of
the learning clause, and then extracts the cause sentences based on the known
emotion information.

The end-to-end model transforms the extraction task of emotion-causal pairs
from the filtering of emotional and causal information at the sentence level to
the categorization of sentence pairs pij = (ui, uj). The end-to-end model focuses
more on the learning of sentence-to-sentence relations, making emotion-cause
extraction truly a relation discovery task rather than an information extrac-
tion task. The ECPE-2D [5] model uses a two-dimensional clause candidate pair
approach to represent candidate emotion-cause pairs and proposes two vari-
ants of Transformer to model the relationship between emotion-cause pairs. The
Pair-GCN [3] model serves as a candidate pair graph for nodes by construct-
ing emotion-cause pairs between two clause window distances. The model learns
the emotion-cause relationships between sentence nodes through a novel trans-
formational parsing model with joint decoding. Trans ECPE [7] model learns
the sentiment-cause relationships between clause nodes in a document through
a novel Transformer parsing model with joint decoding. Rank-CP [21] model
uses an end-to-end model to rank candidate pairs with scores, model the atten-
tional relationships between sentences, then rank them by graphical attentional
networks, and augment the ranking results by generating the relative position
of kernel functions approach. The RSN [1] model uses Recurrent Synchroniza-
tion Networks to jointly extract sentiment clauses, cause clauses, and sentiment-
cause pairs. The PTF [22] model addresses all subtasks of emotion-cause pair
extraction using global and unified clause pair labeling tasks instead of multitask
learning.

2.2 Multimodal Emotion Cause Extraction

MM-DFM [10] uses a dynamic fusion module in its approach to multimodal
fusion, which enables the fusion of multimodal contextual features. EmoCaps
[17] extracts emotional tendencies and performs modal fusion with emotion cap-
sules. Li et al. [14] proposed a two-stage multi-source multimodal fusion method
based on graph attention to perform modal fusion and solve the heterogeneous
gap problem. M2FNet [4] employs a fusion mechanism based on multiple heads
of attention to fuse the emotion representations of the input data to obtain
potentially rich emotion information. UniMSE [11] constructs a multi-modal
knowledge sharing framework to jointly learn from different modalities. The
current approach to solving the multimodal task is mainly to fuse multimodal
high-dimensional features and predict the emotion-cause candidate pairs of the
fused and unimodal data across different modalities by a classifier, which need
more explorations and designs to unify knowledge from different modalities.
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3 The Proposed Algorithm

The multi-modal deep emotion-cause pair extraction algorithm is proposed to
extract emotion-cause pair pij = MMDECPE(xi, xj) information from multi-
modal corpus which consists of three modalities: text XT , audio XA, and video
XV , where pij is a binary value, xi, xj are utterances from the corpus. pij = 1
means that there exists an emotion-cause pair between utterance i and j, and vice
versa. The proposed model for emotion-cause pair extraction for video corpus is
shown in Fig. 2.

Fig. 2. The framework of the proposed algorithm

The proposed algorithm consists of two stages. The first stage is multimodal
emotion-cause information fusion, and the second stage is multimodal emotion-
cause pair extraction. In the first stage, we first extract the three modalities of
text (T), audio (A), and video (V) from the dialog dataset. High-dimensional
feature extraction algorithms are applied to get the high-dimensional features,
and then the proposed algorithm transfers the latent features to an attention
fusion module to retrieve inter-modality feature. Next, the fusion vectors of the
multimodal feature fusion are subjected to the extraction of the emotion-cause
fusion module respectively. In the second stage, the predicted emotion-cause
information from the first step is paired, and the matched emotion-cause pairs
are labeled from the candidate pairs.
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3.1 High-Dimensional Deep Feature Extraction

In this paper, to learn the textual word-level contextual information, the feature
modeling for textual modality (T) is generated by the bidirectional long and
short-term memory network (BiLSTM). The sentence vectors are obtained by
the textual modality encoder, the word vector length is set to 200:

UT = BiLSTM(XT ) (1)

The audio feature (A) is achieved by the now popular sound feature extrac-
tion tool openSMILE [6]. At the end of pre-training, the dimension size of the
audio features obtained is 6373 dimensions. The audio feature vector is obtained
by the sound coding tool as follows:

UA = openSMILE(XA) (2)

For the video features (V), we use the 3D-CNN [12] network to learning the
temporal features of the video. Only the temporal features labeled in the dataset
are used for pre-training. We select 16 frames from each video with a resolution
of 171×128, which were then provided to the 3D-CNN network to extract 4096-
dimensional video features, followed by dimensionality reduction using a linear
layer. After pre-training, 128-dimensional video features of each discourse are
generated. The model extracts the video features for this dataset and obtains
the discourse feature vector for the video modality:

UV = 3D-CNN(XV ) (3)

3.2 Multi-modal Attentional Emotion-Cause Fusion

The proposed algorithm utilizes a cross-modal attentional fusion mechanism
which employs an attentional mechanism to fuse features across modalities.
Specifically, three independent contextual information learning LSTM networks
are used to model contextual information for different modalities. In this way,
representations of three modal with contextual information are obtained. Net-
works with the same structure are used for emotion and cause representations
to obtain representations with contextual cause information:

UE
T = LSTM(UT ), UC

T = LSTM(UT ),
UE
A = LSTM(UA), UC

A = LSTM(UA), (4)
UE
V = LSTM(UV ), UC

V = LSTM(UV ),

where the parameters of the three contextual information learning networks
comprising LSTM networks are independent of each other.

Once the representations are extracted, the emotion and cause information
of pairwise modalities are retrieved by the cross-attention module to learn inter-
modality contextual information:

UE
TV = CR-ATTN(UE

T , UE
V , UE

V ), UC
TV = CR-ATTN(UC

T , UC
V , UC

V ),
UE
AT = CR-ATTN(UE

A , UE
T , UE

T ), UC
AT = CR-ATTN(UC

A , UC
T , UC

T ), (5)
UE
V A = CR-ATTN(UE

V , UE
A , UE

A ), UC
V A = CR-ATTN(UC

V , UC
A , UC

A ),
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where CR-ATTN is the cross-attention module. Here we exemplify the calcula-
tion of UE

AT as

QE
A = WQUE

A ,

KE
T = WKUE

V ,

V E
T = WV UE

T ,

UE
AT = softmax

(
QE

AKE
T

T

√
dk

)
V E
T , (6)

where dk is the feature dimension of KE
T , W · are parameters. The other five

items in Eq. 5 are calculated similarly.
Next, with these representations and the pairwise modality representation,

emotion-cause fusing mechanism is applied for emotion-cause fusion to learn
casual relationships. This module applies the emotion-cause fusion to respective
pairwise modalities features.

UTV = EC-FUSER(UE
TV ⊕ UC

TV ),
UAT = EC-FUSER(UE

AT ⊕ UC
AT ), (7)

UV A = EC-FUSER(UE
V A ⊕ UC

V A),

where ⊕ indicates the concatenation of the two matrix. The EC-FUSER module
consist multi-head self attention transforms. The algorithm learns emotion-cause
alignment by the emotion-cause fusion.

After emotion-cause fusion, the pairwise modal latent features are used to
generate the final three-modal fusion features. We use a siamese network as
multimodal fusion module to generate final features. The multimodal fusion
module works as follows.

U
′E
V AT = softmax

(
WE (UTV ⊕ UAT ⊕ UV A) + BE

)
(8)

UE
V AT = σ

(
WEU

′E
V AT + BE

)
(9)

U
′C
V AT = softmax

(
WE (UTV ⊕ UAT ⊕ UV A) + BC

)
(10)

UC
V AT = σ

(
WCU

′C
V AT + BC

)
(11)

where softmax and σ denotes the activation function, W · and B· denote the
weight and bias parameters. UE

V AT and UC
V AT denote the emotion information

and cause information extracted from the multimodal corpus. The multimodal
feature representation extraction networks share the same parameter settings
and network structure.

The multimodal emotion-cause features obtained after cross-attention fusion
are classified by the classification network. The predicted emotional and cause
label of utterance segments are obtained. The classifier consists of simple feed-
forward layers

ŷC = σ(WCUC
V AT + bC), (12)

ŷE = σ(WEUE
V AT + bE), (13)
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where W · and b· denote the weight and bias parameters,σ denotes the activation
function. ŷc ∈ R

2×1 denotes if the utterance is a cause of other utterance. ŷe ∈
R

7×1 denotes the emotion label of the utterance.
Since the algorithm contains two stages that require independent optimiza-

tion, at the first stage, the training losses for multimodal emotion extraction and
cause extraction are shown as

L1 = αLE + βLC , (14)
LE = CrossEntropy(yE , ŷE), (15)
LC = BinaryCrossEntropy(yC , ŷC), (16)

where yE is the ground truth of emotion provided with the dataset, yC is the
ground truth of cause, which is extracted from the emotion-cause pair label and
described in Sect. 4.1, α and β are user parameters which are used to regulate the
loss of emotion and cause extraction. The L1 loss guides the model to learn reason-
able representations. Therefore, this model try to balance the impact of emotion
and cause extraction tasks, thus improving the performance of the model.

In addition, the training of the first stage isolated with the second stage,
and the parameter tuning in the first phase is independent of the subsequent
training. When the training is completed, the parameters are fixed.

3.3 Multimodal Emotion-Cause Pair Extraction

In order to extract emotion-cause pairs, this paper pairs the above emotion rep-
resentation UE

TAV with the cause UC
TAV representation by a Multi-head Attention

layer. To get the candidate pairs (uE
TAV , uC

TAV )i , we concatenate the attention
weight of all heads to form the emotion cause candidate pairs of the utterance
matrix P . This matrix will help to infer the matching emotional cause pairs.

P = [AW1(UE
TAV , UC

TAV );AW2(UE
TAV , UC

TAV ); ...;AWh(UE
TAV , UC

TAV )], (17)

where AW means attention weight calculation module.
For the emotion-cause candidate pairs pij in P , the predicted emotion-cause

pairs ŷEC are obtained using an emotion-cause filter network, which consists of
a fully connected layer :

ŷEC = σ(WECPi + bEC) (18)

where σ denotes the activation function of the fully connected layer, and here
the ReLU is used as the activation function, and WEC and bEC are the weight
parameters and bias of the classifier network. ŷEC ∈ R

2×1 is a one-hot binary
value which indicates whether the pair is an emotion-cause pair.

The second stage is emotional-causal pair filtering, and the loss in the second
stage is

L2 = LEC =
∑
i

∑
j

yEC
ij log ŷEC

ij , (19)

which is also a cross entropy loss.
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As mentioned, the proposed algorithm consist of two stages. We first train
the multi-modal attentional emotion-cause fusion part according to Eq. 14. After
accomplishing the training of multi-modal attentional emotion-cause fusion, we
train this part of model using Eq. 19.

4 Experiments

In the experiments section, we design three sets of experiments, validation on
emotion-cause pair extraction accuracy, validation on emotion extraction accu-
racy, and ablation study.

4.1 Experimental Setup

Datasets. The dataset used in this chapter was compiled based on the MELD
[18] multimodal sentiment analysis dataset by adding sentiment cause tags and
removing dialogues with inconsistent timestamps. The MELD dataset is a mul-
timodal video corpus that was collected and annotated from the TV series
“Friends”. MELD contains approximately 13,000 utterances from 1433 dialogues.
Each utterance is labeled with emotion and sentiment tags, and includes audio,
visual and text modals. The conversational utterance in the MELD dataset are
all from the seven characters in the TV series.

The benchmark dataset Emotion-Cause-in-Friends (ECF) for the MECPE
[19] task is obtained by annotating the emotion-cause labels. In the MECPE
dataset, labels such as Emotional Cause Label Position and seven types of emo-
tional categorization are added, which are Anger, Disgust, Fear, Joy, Sadness,
Surprise, and Neutral. We divide the dataset into train set, dev set, and test set.
Among all the labels of 13619 discourses in the ECF dataset, Neutral expressions
meaning no special emotion accounts for 43.53%, Disgust and Fear have the low-
est percentage, 3.04% and 2.74%, respectively; and Joy and Surprise have the
highest percentage, 16.9% and 13.51%, respectively. The percentages of Anger
and Sadness are 8.42% and 11.86%, respectively.

In the ECF dataset, the utterance index of the emotion-cause labels are
marked, which enables us to more precisely identify the causes or events in
emotional experiences. The cause label which is utilized in the first of the pro-
posed algorithm are retrieved from the emotion-cause label as follows. It can be
observed that not each utterance involves in Emotion-Cause relationship in the
dataset, and the distribution of Emotion-Cause pair label is sparse. We extract
all utterances that function as a Cause role in at least one Emotion-Cause pair
from the corpus, then assign these utterances with Cause Label yC = 1, other
utterances that do not play as the Cause role with Cause Label yC = 0.

Parameter Setting. In the training process, this paper uses the Adam opti-
mizer for training, the learning rate l1 is set to 0.005 The regularization factor
l2 is set to 1e − 5. This paper sets the batch size of the experimental data
batch to 32. For the parameters in the Loss, this paper uses the optimal settings
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recommended by it. For Bi-LSTM the vector size of the pre-trained sentence
vectors is set to 200. α,β are set to 1.0 and 1.0 for the parameter settings in Loss
respectively.

Baselines. In the experiments section, we design three types of experiments,
validation on emotion-cause pair extraction accuracy, validation on emotion
extraction accuracy on imbalance emotion label, and ablation study.

For the first validation, as there exist little arts on emotion-cause pair extrac-
tion, we pick the MECPE [19] algorithm as the main baseline. In addition, we
design four heuristic models to validate the effectiveness of the algorithm, two
emotion label prediction method and two cause distribution assumptions. In the
four heuristic settings, The emotion label in the train set can be retrieved either
by predicting the distribution of emotions or directly using the ground truth
label.

We describe the difference between Bernoulli and multinomial distribution
about cause label determination. The cause label yC is a binary value if we
choose Bernoulli distribution. We set yC = 1 when an utterance works as the
Cause role in at least one exist emotion-cause pair label, and vice versa. When
multinomial distribution is selected, yC is a continuous value in range [0, 1]. The
variable p means the utterance involved in Q emotion-cause pair(s) as the Cause
role, Q ∈ {0, 1, 2, 3+}. The parameter settings are based on the statistics of the
whole dataset. We set yC = p(x|0 < u ≤ Q) means that it accumulates the
possibility of one utterance u which occurs as a cause role more than once.

By combine the different methods respectively, we obtain the four heuristic
models:

1. Emotion prediction and Bernoulli model EP + CB ;
2. Emotion label and Bernoulli model EL + CB ;
3. Emotion prediction and multinomial model EP + CM ;
4. Emotion label and multinomial model EL + CM .

For the second validation, we take ConGCN [15], MM-DFN [10], EmoCaps
[17], EmpaGen [20] GA2MIF [14], MMTr [24] as baseline methods. They are
not designed to detect emotion-cause pairs, nevertheless they can classify the
utterance to emotional categories.

Evaluation Metrics. To assess the accuracy of the emotion-cause pair extrac-
tion, this paper uses the scores of Precision(P), Recall(R), and F1-score(F1) as
the evaluation metrics of the model’s performance. Among all three measures,
the values range from 0 to 1, and the higher value means the better performance.

In the second experiment set, we only use weighted F1-score as the criterion,
as all selected state-of-art work reported this value. The weighted F1-score are
calculated as follows

WF1 =
∑K

k=1 nk · (F1)k∑K
k=1 nk

,



Multi-modal Deep Emotion-Cause Pair Extraction for Video Corpus 461

where K mean the number of categories, nk indicates number of the utterances
in the k-th category.

4.2 Experiments on Emotion-Cause Pair Extraction Accuracy

The proposed algorithm mainly aims to improve the performance of extract-
ing multimodal emotion-cause pairs, in which the multi-modal attention-based
fusion mechanism contributes conspicuously to improvements. Through experi-
mental comparisons, this model shows that the fusion model based on intermodal
attention is superior and effective in dealing with emotional cause pair relations.
Emotion-cause pair extraction experiments derive the data in Table 1.

Table 1. The performance results on emotion-pair extraction

Methods Emotion Extraction Cause Extraction Emotion-Cause Pair Extraction

P R F1 P R F1 P R F1

EP + CB 0.7362 0.7968 0.7648 0.5491 0.5028 0.5244 0.3699 0.2677 0.3101

EL + CB 1 1 1 0.642 0.5485 0.5915 0.4958 0.3307 0.3967

EP + CM 0.7362 0.7968 0.7648 0.5488 0.5022 0.5239 0.3694 0.2671 0.3096

EL + CM 1 1 1 0.6417 0.5483 0.5913 0.4951 0.3303 0.3963

MECPE 0.7474 0.7957 0.77 0.6522 0.7776 0.7084 0.5483 0.5009 0.522

Ours 0.7507 0.7996 0.7734 0.6461 0.7915 0.7109 0.5497 0.5025 0.525

As displayed in Table 1, in the multimodal emotional cause pair extrac-
tion task, this model mainly outperforms the heuristic baseline models and
the MECPE model. The table shows the accuracy rate of inter-modal feature
fusion is improved compared to the MECPE model in comparison to the mech-
anism without any attentional fusion. The accuracy rate of intermodal atten-
tional fusion is further improved. This suggests that the model of intermodal
attentional multimodal feature fusion performs better in multimodal emotion
inference and cause extraction tasks. Based on the comparison of these three
experiments, the application of cross-modal inter-modal attention mechanisms
between modalities is useful, and emotional cause contribute to the accuracy
rate of extraction. Although the ground truth of emotion label in the test set
is provided, without the adequate cause information, it is not able to improve
the results single-handedly. Without aligning and fusing with each other, the
experiment results are not as well as MECPE and the proposed algorithm.

In the MECPE algorithm, the learning of contextual information is performed
after the multimodal feature fusion. However, in the attention-based multimodal
feature fusion model, the learning of contextual information is performed by
each modal feature separately in the attentional feature fusion. The attention
model allows the data between different modalities to interact and intermingle,
which improves the efficiency of emotion and cause pair extraction, and also
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enhances the model’s ability to perceive semantic information. In the intermodal
attention multimodal feature fusion model, the interaction of any two different
feature sequences can be learned, and thus the model enhances the relevance of
multimodal information from different modalities.

In summary, this experiment set verifies two issues. The first one is that the
inter-modal attention mechanism can provide importance weights for features in
different modalities, which makes it easier to discover and extract critical fac-
tors in emotion-cause pair extraction tasks. The second one is that distribution
selection of cause did not influence the results obviously without the proposed
aligning and fusing mechanism.

4.3 Experiments on Emotion Recognition

To evaluate the proposed model on emotion recognition task, we perform exper-
iment on the ECF dataset with the proposed and existing methods. All models
are multi-modal algorithms except for ConGCN which works on texts. We calcu-
late the emotional label ŷE of utterances compared with the baseline algorithms.
We report the F1-score for each emotion category and weighted F1-score as the
summary. We also illustrate the result of this settings on Fig. 3 which dropped
the least two emotion utterances.

Table 2. Performance on multi-modal emotion recognition

Model Neutral Joy Surprise Anger Sadness Disgust Fear WF1

ConGCN 0.7670 0.5310 0.5030 0.4680 0.2850 0.1060 0.0870 0.594

EmoCaps 0.7712 0.5750 0.6319 0.5754 0.4252 0.0769 0.0303 0.64

MM-DFN 0.7776 0.5478 0.5069 0.4782 0.2294 – – 0.5946

EmpaGen 0.792 0.618 0.556 0.502 0.276 0.109 0.095 0.596

GA2MIF 0.7692 0.5187 0.4908 0.4852 0.2718 – – 0.5894

MMTr 0.7734 0.6002 0.5714 0.4824 0.3631 0.2901 0.2048 0.6441

Ours 0.7865 0.5964 0.589 0.573 0.3124 0.192 0.1 0.6537

The results in Table 2 indicate that the model proposed in this paper achieved
an improvement in the overall weighted F1-score of the emotion recognition
task on the MELD dataset, as the proposed framework aligns and adequately
fuses the information among all modalities. The proposed framework with the
early fusing and aligning mechanism also contributes to the best accuracy on
the Neutral category. For other categories, the algorithm achieves competitive
results with baseline algorithms, although it is the intermediate task.

The ConGCN does not accumulate the audio and video information, which
leads to a weak performance. The Emocap produces best F1-score on the Sur-
prise, Sadness and anger categories, probably because it employs the emotion
capsules to maintain more information about emotion. The MMTr works best
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on Joy, Disgust and Fear categories, probably because it introduces L2 norm on
the loss function which regulates imbalance of categories.

From Fig. 3, we can observe that the imbalance in the ECF dataset is man-
ifested in the different shares of data labels. As the share of emotion categories
decreases, the accuracy of all algorithm decay which means that the lack of
samples do harm to the model performance.

Fig. 3. Performance on different emotion labels.

In a word, the proposed algorithm can get competitive accuracy result on
emotion recognition task with current baselines. The result shows that the inter-
modality alignment and fusion enhance generalization of the model.

4.4 Ablation Study

In order to further explore the interactions between different modalities, we per-
form an ablation experiment on the emotion-cause pair extraction task. Specif-
ically, the purpose of this experiment is to explore the contribution of different
modalities.

The experimental result are displayed in Table 3. The first three columns
are modality indentifiers, and only the modality with the � mark is adopted in
the experiment. When only one modality is adopted, the emotional-cause pair
extraction framework omits the relevant multimodal fusion parts.

First, in the ablation experiments, fusing all modalities gives the best results
for the emotional cause pair extraction task. When only text modalities are used,
the model performs poorly on the emotional cause pair extraction task, while
the performance of the model is significantly improved when other modalities
are introduced into the model. Based on the experimental results, it is assumed
that the relevant features in the video modality that express the emotion-cause
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Table 3. Performance on Ablation Study

Text Audio Video Precision Recall F1

� 0.5412 0.4574 0.4957

� 0.4332 0.4014 0.42

� 0.3578 0.3195 0.3376

� � 0.5376 0.4874 0.5112

� � 0.5281 0.4839 0.505

� � � 0.5546 0.5104 0.5315

information may not be sufficiently captured and extracted, which further affects
the performance of the model. It is probably because the information entropy of
audio and video modality is much less than that of text modality. Therefore, it
can be concluded that using multi-modality may be an effective way to improve
model performance.

Furthermore, the performance of multimodal sentiment analysis was investi-
gated through ablation experiments, and it was found that using text and audio
modalities trained together was better than using text or audio modalities alone.
Based on the tabular data, it was found that the effect of training using text
and video modalities was weaker relative to the effect of training using text and
audio modalities. One of the reasons may be that video is not as good as other
modalities in expressing emotions.

In addition, based on the mechanism of multi-modal fusion, following the
modal arrangement of textual modality as the dominant modality and video
and audio modalities as the supplementary modality, we can incorporate more
effective information into the modal fusion and maintain a reasonable balance
of modalities.

In summary, by conducting ablation experiments, we conclude that good
performance using multi-modality in the emotion-cause pair extraction task,
and some interesting phenomena are found. These conclusions can provide more
information to the multimodal learning frameworks.

5 Conclusions

In this paper, we propose a multi-modal attention-based multimodal emotion-
cause pair extraction algorithm, which processes the insufficient modal align-
ment and inadequate feature fusion which are encountered in the emotion-cause
pair extraction task in multimodal corpus. With the application of pairwise
modal attention fusion technique, the semantic information between modali-
ties are effectively interacted to solve the problem of insufficient expression of
emotions relying on single modalities, which in turn improves the accuracy of
emotion-cause pair extraction in multimodal contexts. Specifically, the method
uses the inter-modal attention mechanism to fuse this information to form a



Multi-modal Deep Emotion-Cause Pair Extraction for Video Corpus 465

global representation, which complements the disadvantage of the insufficient
expression of emotion-cause fusion among different modalities. Therefore, the
proposed algorithm adopts adequate inter-modal alignment and fusion to suc-
cessfully retrieve emotion-cause pairs from video corpora.
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6. Eyben, F., Wöllmer, M., Schuller, B.: Opensmile: the munich versatile and fast
open-source audio feature extractor. In: Proceedings of the 18th ACM International
Conference on Multimedia, pp. 1459–1462 (2010)

7. Fan, C., Yuan, C., Du, J., Gui, L., Yang, M., Xu, R.: Transition-based directed
graph construction for emotion-cause pair extraction. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 3707–3717
(2020)

8. Gao, K., Xu, H., Wang, J.: Emotion cause detection for Chinese micro-blogs based
on ECOCC model. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D.,
Motoda, H. (eds.) PAKDD 2015. LNCS (LNAI), vol. 9078, pp. 3–14. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-18032-8 1

9. Gui, L., Xu, R., Wu, D., Lu, Q., Zhou, Y.: Event-driven emotion cause extraction
with corpus construction. In: Social Media Content Analysis: Natural Language
Processing and Beyond, pp. 145–160. World Scientific (2018)

10. Hu, D., Hou, X., Wei, L., Jiang, L., Mo, Y.: Mm-dfn: multimodal dynamic fusion
network for emotion recognition in conversations. In: ICASSP 2022-2022 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 7037–7041. IEEE (2022)

11. Hu, G., Lin, T.E., Zhao, Y., Lu, G., Wu, Y., Li, Y.: UniMSE: towards unified mul-
timodal sentiment analysis and emotion recognition. In: Goldberg, Y., Kozareva,
Z., Zhang, Y. (eds.) Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing. pp. 7837–7851. Association for Computational
Linguistics, Abu Dhabi, United Arab Emirates (Dec 2022)

12. Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural networks for human
action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2012)

https://doi.org/10.18653/v1/2020.acl-main.288
https://doi.org/10.18653/v1/2020.acl-main.288
https://doi.org/10.1007/978-3-319-18032-8_1


466 Q. Zhao et al.

13. Lee, S.Y.M., Chen, Y., Huang, C.R.: A text-driven rule-based system for emotion
cause detection. In: Proceedings of the NAACL HLT 2010 Workshop on Compu-
tational Approaches to Analysis and Generation of Emotion in Text, pp. 45–53
(2010)

14. Li, J., Wang, X., Lv, G., Zeng, Z.: Ga2mif: graph and attention based two-stage
multi-source information fusion for conversational emotion detection. IEEE Trans.
Affective Comput. (2023)

15. Li, S., Yan, H., Qiu, X.: Contrast and generation make bart a good dialogue emo-
tion recognizer. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 36, pp. 11002–11010 (2022)

16. Li, X., Song, K., Feng, S., Wang, D., Zhang, Y.: A co-attention neural network
model for emotion cause analysis with emotional context awareness. In: Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pp. 4752–4757. Association for Computational Linguistics, Brussels (2018)

17. Li, Z., Tang, F., Zhao, M., Zhu, Y.: EmoCaps: emotion capsule based model for
conversational emotion recognition. In: Muresan, S., Nakov, P., Villavicencio, A.
(eds.) Findings of the Association for Computational Linguistics: ACL 2022, pp.
1610–1618. Association for Computational Linguistics, Dublin (2022)

18. Poria, S., Hazarika, D., Majumder, N., Naik, G., Cambria, E., Mihalcea, R.: MELD:
a multimodal multi-party dataset for emotion recognition in conversations. In:
Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, Florence, Italy, pp. 527–536 (2019)

19. Wang, F., Ding, Z., Xia, R., Li, Z., Yu, J.: Multimodal emotion-cause pair extrac-
tion in conversations. IEEE Trans. Affect. Comput. 14(3), 1832–1844 (2023)

20. Wang, L., Li, R., Wu, Y., Jiang, Z.: A multiturn complementary generative frame-
work for conversational emotion recognition. Int. J. Intell. Syst. 37(9), 5643–5671
(2022)

21. Wei, P., Zhao, J., Mao, W.: Effective inter-clause modeling for end-to-end emotion-
cause pair extraction. In: Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 3171–3181 (2020)

22. Wu, Z., Dai, X., Xia, R.: Pairwise tagging framework for end-to-end emotion-cause
pair extraction. Front. Comput. Sci. 17(2) (2022)

23. Xia, R., Ding, Z.: Emotion-cause pair extraction: a new task to emotion analysis
in texts. In: Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, pp. 1003–1012. Association for Computational Linguistics,
Florence (2019)

24. Zou, S., Huang, X., Shen, X., Liu, H.: Improving multimodal fusion with main
modal transformer for emotion recognition in conversation. Knowl.-Based Syst.
258, 109978 (2022)



Author Index

A
A. Adjeroh, Donald 418
Akhmedova, Shakhnaz 334
An, Senjian 367

B
Bano, Arju 144
Bengtsson Bernander, Karl 16
Bougourzi, Fares 243
Bylander, Karl 16

C
Cai, Zhihan 350
Cao, Chunjie 259
Cao, Dapeng 350
Chandgothia, Shreyas 97
Chen, Menglong 130
Cheng, Maggie 48
Cheng, Yinan 259
Chu, Lingyang 114
Cosmo, Luca 435
Cristóforis, Pablo De 64
Cui, Jianbin 114

D
Das, Monidipa 144
Dong, Xiaohu 383
Doretto, Gianfranco 418
Dornaika, Fadi 243
Drew, Steve 195
Duan, Miao 290

E
Ezard, Bradley 367

F
Fleuret, François 1
Fu, Baochen 290

Fu, Ruigang 383

G
Gao, Yinghui 383
Goel, Tripti 81

H
Habib, Al Zadid Sultan Bin 418
Hang, Lin 275
Hartley, Mary-Anne 418
Hou, Haojun 227
Hu, Qingyong 383
Huang, Yihua 227

J
Jing, Liwei 195

K
Karwasra, Prashant 32
Körber, Nils 334

L
Li, Biao 383
Li, Ling 367
Li, Qilin 367
Li, Shuohao 163
Li, Zhen 290
Lian, Zhichao 163
Liu, Jie 367
Liu, Xinyue 451
Lv, Xingfeng 275

M
Ma, Kaisheng 350
Minello, Giorgia 435
Minh Giang, Nguyen 319
Minh Tri, Le 319
Mohanty, Aparna 400

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15304, pp. 467–468, 2025.
https://doi.org/10.1007/978-3-031-78128-5

https://doi.org/10.1007/978-3-031-78128-5


468 Author Index

Murugan, R. 81

N
Niu, Xiaoguang 195
Nyström, Ingela 16

P
Pilli, Raveendra 81

Q
Qiao, Tonghua 259
Qiao, Xu 290

R
Ranjan Sahay, Rajiv 400
Raverta Capua, Francisco 64
Ren, Qianqian 275
Rossi, Luca 435
Roy, Kankana 400

S
Schandin, Juan 64
Sekhar, Ardhendu 97
Sethi, Amit 97
Sharma, Neha 32
Sharma, Paritosh 32
Sinha, Atul Kumar 1
Sun, Jingzhang 259
Sun, Yukuan 130

T
Tahir, Md Arbaz 32
Taleb-Ahmed, Abdelmalik 243
Tanveer, M. 81
Tao, Fangjian 259
Thi Yen, Nguyen 319
Torsello, Andrea 435
Truong Hoang, Vinh 243

V
Viet, Nguyen Quoc 319

W
Wang, Fengyi 227
Wang, Jianming 130
Wang, Kesheng 418
Wang, Panpan 163
Wang, Shujuan 163
Wu, Kailu 350
Wu, Shaowu 195
Wu, Xiao-Jun 211

X
Xiao, Zhitao 130
Xu, Bo 451
Xu, Chenhao 180
Xu, Kaiye 180
Xu, Tianyang 211
Xu, Yuanzhuo 195

Y
Yang, Jie 195
Yi, Kai 302
Yu, Huiyuan 48
Yu, Muzhou 350
Yuan, Chunfeng 227

Z
Zhang, Bowei 302
Zhang, Lingfeng 435
Zhang, Qi 259
Zhang, Xianchao 451
Zhang, Yi 302
Zhang, Yudian 180
Zhang, Yusu 211
Zhao, Qianli 451
Zhong, Ping 383
Zhu, Guanghui 227
Zhu, Haijiang 180
Zong, Linlin 451
Zou, Binghui 259
Zuo, Xiuli 290


	 President’s Address
	 Preface
	 Organization
	 Contents – Part IV
	DeepEMD: A Transformer-Based Fast Estimation of the Earth Mover's Distance
	1 Introduction
	2 Related Work
	3 Method
	3.1 Predicting the Distance
	3.2 Predicting Bipartite Matching

	4 Experiments
	4.1 Datasets
	4.2 Performance Measures
	4.3 Results
	4.4 DeepEMD Used as a Loss

	5 Conclusion and Future Work
	References

	Equivariant Neural Networks for TEM Virus Images Improves Data Efficiency
	1 Introduction
	2 Related Work
	2.1 Theory
	2.2 Empirical Results

	3 Methods
	3.1 Data
	3.2 Architectures
	3.3 Construction of the Networks
	3.4 Symmetry Groups
	3.5 Metrics
	3.6 Experiments

	4 Results
	5 Discussion
	6 Conclusion
	References

	AI Based Story Generation
	1 Introduction
	2 Models
	2.1 LSTM
	2.2 GPT-2
	2.3 Stable Diffusion

	3 Dataset
	3.1 Data Preprocessing

	4 Results
	4.1 LSTM
	4.2 GPT-2
	4.3 Stable Diffusion

	5 Evaluation Metrics
	5.1 AI Evaluation (GPT-4o)
	5.2 Lexical Coherence
	5.3 Grammatical Error Rate
	5.4 Flesch Reading Ease
	5.5 Human Evaluation

	6 Discussion and Conclusion
	6.1 Discussion
	6.2 Conclusion

	References

	Deep Learning Models for Inference on Compressed Signals with Known or Unknown Measurement Matrix
	1 Introduction
	2 Inference on Compressed Signals with Known Measurement Matrix
	2.1 Experiments

	3 Inference on Compressed Signals with Unknown Measurement Matrix
	3.1 Preliminaries
	3.2 Proposed Models with Variational Measurement Matrix (VMM)
	3.3 Experiments on Signals Compressed with the Same Matrix
	3.4 Experiments on Signals Compressed with Different Matrices

	4 Conclusion and Future Work
	References

	Training Point-Based Deep Learning Networks for Forest Segmentation with Synthetic Data
	1 Introduction
	2 Related Work
	3 Materials and Methods
	3.1 Point Cloud Deep Learning Networks
	3.2 Forest Simulator
	3.3 Dataset Assembling

	4 Results and Discussion
	4.1 LiDAR-Like Experiment
	4.2 Camera-Like Experiment
	4.3 Tree and Non-Tree Segmentation
	4.4 Fine-Tuning with Real Data

	5 Conclusions and Future Work
	References

	Brain Age Estimation of Alzheimer's and Parkinson's Affected Individuals Using Self-Attention Based Convolutional Neural Network
	1 Introduction
	2 Related Works
	3 Preliminary Works
	3.1 Self-Attention Mechanism
	3.2 Random Vector Functional Link (RVFL) Network

	4 Methodology
	4.1 Dataset
	4.2 Preprocessing
	4.3 Proposed Model Architecture

	5 Results and Discussion
	5.1 Experimental Implementation Details
	5.2 Comparison Between the State-of-the-Art Regression Networks on HC Training Dataset
	5.3 Comparison with State-of-the-Art Regression Networks on HC, PD, and AD Testing Dataset
	5.4 Comparison with Different DL Models
	5.5 Computational Complexity
	5.6 Discussion

	6 Conclusion
	References

	IFSENet: Harnessing Sparse Iterations for Interactive Few-Shot Segmentation Excellence
	1 Introduction
	2 Related Work
	2.1 Semantic Segmentation
	2.2 Few-Shot Segmentation
	2.3 Interactive Segmentation
	2.4 Fusion Methods in Image Segmentation

	3 Method, Training, and Validation
	3.1 Support Path
	3.2 Attention Module
	3.3 Query Path
	3.4 Dataset: Pascal + SBD
	3.5 Training Regime
	3.6 Validation Regime
	3.7 Click Sampling Strategy
	3.8 Evaluation Metrics
	3.9 Loss Function

	4 Experiment and Results
	5 Conclusion and Future Work
	References

	Interpretable Deep Graph-Level Clustering: A Prototype-Based Approach
	1 Introduction
	2 Related Work
	2.1 Graph Kernel Methods
	2.2 Unsupervised Graph Representation Learning

	3 The Task of Interpretable Graph-Level Clustering
	4 Our Solution
	4.1 Framework Overview
	4.2 Training the IDGC Model
	4.3 Cluster Allocation and Interpretation

	5 Experiment
	5.1 Clustering Performance
	5.2 Case Study: Interpreting Cluster Allocation
	5.3 Parameter Analysis

	6 Conclusion
	References

	A Saliency-Aware NR-IQA Method by Fusing Distortion Class Information
	1 Introduction
	2 Related Work
	2.1 Feature Extraction Methods for NR-IQA
	2.2 Solutions for Scarcity of Labeled Data in NR-IQA

	3 Proposed Method
	3.1 Hierarchical Saliency Aware Module
	3.2 Quality Aware Module

	4 Experiments
	4.1 Training Datasets
	4.2 Evaluation Datasets
	4.3 Training Configurations
	4.4 Evaluation Protocol
	4.5 Results

	5 Conclusion
	References

	A Guided Input Sampling-Based Perturbative Approach for Explainable AI in Image-Based Application
	1 Introduction
	2 Related Work
	3 Proposed Method: GuISE
	3.1 Guided Mask Generation
	3.2 Guided Input Sampling-Based Explanation

	4 Experimental Study
	4.1 Results and Discussions

	5 Conclusion
	References

	Multi-target Attention Dispersion Adversarial Attack Against Aerial Object Detector
	1 Introduction
	2 Related Work
	2.1 Object Detection
	2.2 Adversarial Attack Against Object Detection
	2.3 Attention Patterns in Computer Vision Tasks

	3 Methodology
	3.1 Overview of Multi-target Problem
	3.2 Framework of MTDA
	3.3 Multi-target Patch Application
	3.4 Attention Module
	3.5 Total Loss Function

	4 Experiments
	4.1 Settings
	4.2 Multi-patch Distraction Experiment
	4.3 Ablation Study

	5 Conclusion
	References

	Mask-TS Net: Mask Temperature Scaling Uncertainty Calibration for Polyp Segmentation
	1 Introduction
	2 Related Work
	3 Calibration Network
	3.1 Four Branches Calibration Network
	3.2 Mask-Loss
	3.3 Mask-TS

	4 Experiment
	4.1 Evaluation Metrics
	4.2 Evaluation and Results
	4.3 Ablation Studies

	5 Conclusion
	References

	Label-Expanded Feature Debiasing for Single Domain Generalization
	1 Introduction
	2 Related Work
	2.1 Domain Generalization
	2.2 Single Domain Generalization

	3 Methodology
	3.1 Preliminary
	3.2 Perturbation-Based Domain Expansion
	3.3 Label-Expanded Multi-task Learning
	3.4 Feature Debiasing via Rationale Alignment
	3.5 Overall Framework

	4 Experiments
	4.1 Experiment Setup
	4.2 Experimental Results on SDG
	4.3 Additional Analysis

	5 Conclusion
	References

	Infrared and Visible Image Fusion Based on CNN and Transformer Cross-Interaction with Semantic Modulations
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Overall Framework
	3.2 Local and Global Feature Extraction
	3.3 Single-Modality Cross Interaction Module
	3.4 Cross-Modality Complementary Mask Fusion
	3.5 Semantic-Oriented Attention Modulation
	3.6 Loss Function

	4 Experiments
	4.1 Experimental Configurations
	4.2 Implementation Details
	4.3 Comparative Experiment
	4.4 Generalization Experiment
	4.5 Ablation Studies and Discussion

	5 Conclusion
	References

	Mining Long Short-Term Evolution Patterns for Temporal Knowledge Graph Reasoning
	1 Introduction
	2 Related Works
	2.1 Static KG Reasoning Methods
	2.2 Temporal KG Reasoning Methods

	3 Problem Formulation
	3.1 Static Knowledge Graph
	3.2 Temporal Knowledge Graph
	3.3 Temporal Knowledge Graph Reasoning

	4 Method
	4.1 Overall Process of LSEN
	4.2 Short-Term Evolution Pattern Mining Module
	4.3 Long-Term Evolution Pattern Mining Module
	4.4 Model Training and Predicting

	5 Experiments
	5.1 Experimental Setup
	5.2 Quantitative Results
	5.3 Ablation Study
	5.4 Hyper-parameter Investigation

	6 Conclusion
	References

	Rethinking Attention Gated with Hybrid Dual Pyramid Transformer-CNN for Generalized Segmentation in Medical Imaging
	1 Introduction
	2 Related Works
	3 Proposed Approach
	3.1 Pyramid Encoder
	3.2 Main Encoder: Attention Fusion
	3.3 Dual-Attention Gate

	4 Datasets and Tasks
	5 Experiments and Results
	5.1 Experimental Setup
	5.2 Results
	5.3 Ablation Study

	6 Discussion
	7 Conclusion
	References

	A Weighted Discrete Wavelet Transform-Based Capsule Network for Malware Classification
	1 Introduction
	2 Related Works
	2.1 Static Analysis and Dynamic Analysis Methods
	2.2 Image-Based Methods
	2.3 CapsuleNet-Based Methods

	3 Methodology
	3.1 Model Overview
	3.2 Capsule Network

	4 Experiments
	4.1 Experimental Environment and Dataset
	4.2 Baselines
	4.3 Evaluation Metrics
	4.4 Results and Analysis
	4.5 Ablation Experiments

	5 Conclusion
	References

	Data-Driven Spatiotemporal Aware Graph Hybrid-hop Transformer Network for Traffic Flow Forecasting
	1 Introduction
	2 Related Work
	2.1 Traffic Forecasting
	2.2 Transformer Models

	3 Preliminary
	3.1 Problem Formulation
	3.2 Earth Mover's Distance

	4 Methodolody
	4.1 Spatial-Temporal Embedding
	4.2 Earth Mover Augmented Graph
	4.3 Multi-scale Geographic-Semantic Attention
	4.4 Gate Fusion and Output Layer

	5 Experiment
	5.1 Datasets
	5.2 Forecasting Results and Visualization
	5.3 Ablation Study

	6 Conclusion
	References

	Automatic Diagnosis Model of Gastrointestinal Diseases Based on Tongue Images
	1 Introduction
	2 Method
	2.1 Data Collection
	2.2 Data Preprocessing and Splitting
	2.3 Neural Network Architecture
	2.4 Hybrid Loss Function
	2.5 Experimental Setting
	2.6 Evaluation Metrics

	3 Results
	3.1 Cross-Validation Evaluation
	3.2 Test Set Evaluation
	3.3 Ablation Study

	4 Discussion
	5 Conclusion
	References

	TinyConv-PVT: A Deeper Fusion Model of CNN and Transformer for Tiny Dataset
	1 Introduction
	2 Related Works
	3 Proposed Method
	3.1 Overall Architecture
	3.2 Conv-Stem
	3.3 Middle Layer
	3.4 Positional Encoding (PE) and Cls Token
	3.5 Feed-Forward Layer (FFL)

	4 Experiment
	4.1 Image Classification
	4.2 Object Detection
	4.3 Semantic Segmentation
	4.4 Ablation Study

	5 Conclusions
	References

	SCAD-Net: Spatial-Channel Attention and Depth-Map Analysis Network for Face Anti-spoofing
	1 Introduction
	2 Related Work
	2.1 Traditional Hand-Crafted Feature
	2.2 End-to-End Binary Cross-Entropy Supervision
	2.3 Pixel-Wise Auxiliary Supervision
	2.4 Foundation Models

	3 Methodology
	3.1 The Architecture
	3.2 Backbone
	3.3 SCA-CNN Module
	3.4 Depth-Map Decoder Module
	3.5 Focal Loss

	4 Experiments
	4.1 Datasets and Metrics
	4.2 Implementation Details
	4.3 Ablation Study
	4.4 Result

	5 Conclusion
	References

	Next Generation Loss Function for Image Classification
	1 Introduction
	2 Related Work
	3 Method
	4 Experiments
	4.1 Loss Function Search
	4.2 Evaluation

	5 Discussion
	6 Conclusions
	References

	NAOL: NeRF-Assisted Omnidirectional Localization
	1 Introduction
	2 Related Works
	2.1 Visual Localization
	2.2 Omnidirectional Localization
	2.3 Novel View Synthesis in Localization

	3 Methodology
	3.1 DP-NeRF Pretraining
	3.2 Stage One: Feature Extraction and Image Retrieval
	3.3 Stage Two: Pose Optimization Based on DP-NeRF

	4 Experiments
	4.1 Dataset and Implementation Details
	4.2 Results
	4.3 Ablation Study and Discussion

	5 Conclusion
	References

	EdgeConvFormer: An Unsupervised Anomaly Detection Method for Multivariate Time Series
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Network Architecture
	3.2 Computational Complexity

	4 Anomaly Detection and Evaluation
	4.1 Anomaly Scoring Function
	4.2 Thresholding Method
	4.3 Evaluation Metrics

	5 Experiments
	5.1 Quantitative Evaluation
	5.2 Qualitative Evalution
	5.3 Ablation Studies

	6 Conclusion
	References

	Lighten CARAFE: Dynamic Lightweight Upsampling with Guided Reassemble Kernels
	1 Introduction
	2 Related Work
	3 Method
	3.1 Revisit CARAFE
	3.2 The Proposed DLU
	3.3 Comparison with CARAFE

	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Object Detection
	4.3 Semantic Segmentation
	4.4 Discussion

	5 Conclusions
	References

	Hand over Face Gesture Classification with Feature Driven Vision Transformer and Supervised Contrastive Learning
	1 Introduction
	2 Method
	2.1 Datasets
	2.2 Proposed Model
	2.3 Implementation Details

	3 Results
	3.1 Baselines
	3.2 Comparison with Baselines
	3.3 Comparison with State-of-the-Art Methods
	3.4 Ablation Studies

	4 Discussion
	5 Conclusion
	References

	TabSeq: A Framework for Deep Learning on Tabular Data via Sequential Ordering
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Feature Ordering
	3.2 MHA
	3.3 DAE
	3.4 Feature Extraction and Classifier Model

	4 Experimental Results
	4.1 Datasets and Model Hyperparameters
	4.2 Experiments with Autoimmune Diseases' Dataset
	4.3 Ablation Studies
	4.4 Experiments with ADNI and WDBC Dataset

	5 Conclusion
	References

	GraFix: A Graph Transformer with Fixed Attention Based on the WL Kernel
	1 Introduction
	2 Related Work
	3 Background
	3.1 WL Graph Kernel
	3.2 The Transformer Architecture

	4 Our Model
	4.1 Computational Complexity

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Graph Classification Results
	5.3 Runtime Analysis
	5.4 Number of Model Parameters
	5.5 Interpretability and Kernel Attention Visualization
	5.6 Ablation Studies

	6 Conclusion
	References

	Multi-modal Deep Emotion-Cause Pair Extraction for Video Corpus
	1 Introduction
	2 Related Work
	2.1 Textual Emotion Cause Extraction
	2.2 Multimodal Emotion Cause Extraction

	3 The Proposed Algorithm
	3.1 High-Dimensional Deep Feature Extraction
	3.2 Multi-modal Attentional Emotion-Cause Fusion
	3.3 Multimodal Emotion-Cause Pair Extraction

	4 Experiments
	4.1 Experimental Setup
	4.2 Experiments on Emotion-Cause Pair Extraction Accuracy
	4.3 Experiments on Emotion Recognition
	4.4 Ablation Study

	5 Conclusions
	References

	Author Index

