
Apostolos Antonacopoulos · 
Subhasis Chaudhuri · Rama Chellappa · 
Cheng-Lin Liu · Saumik Bhattacharya · 
Umapada Pal (Eds.)

LN
CS

 1
53

33

Pattern Recognition
27th International Conference, ICPR 2024 
Kolkata, India, December 1–5, 2024 
Proceedings, Part XXXIII



Lecture Notes in Computer Science 15333
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873


The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.



Apostolos Antonacopoulos ·
Subhasis Chaudhuri · Rama Chellappa ·
Cheng-Lin Liu · Saumik Bhattacharya ·
Umapada Pal
Editors

Pattern Recognition
27th International Conference, ICPR 2024
Kolkata, India, December 1–5, 2024
Proceedings, Part XXXIII



Editors
Apostolos Antonacopoulos
University of Salford
Salford, UK

Rama Chellappa
Johns Hopkins University
Baltimore, MD, USA

Saumik Bhattacharya
IIT Kharagpur
Kharagpur, India

Subhasis Chaudhuri
Indian Institute of Technology Bombay
Mumbai, India

Cheng-Lin Liu
Chinese Academy of Sciences
Beijing, China

Umapada Pal
Indian Statistical Institute Kolkata
Kolkata, India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-80135-8 ISBN 978-3-031-80136-5 (eBook)
https://doi.org/10.1007/978-3-031-80136-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproductiononmicrofilmsor in anyother physicalway, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0001-9552-0233
https://orcid.org/0000-0002-7638-1650
https://orcid.org/0000-0003-1273-7969
https://orcid.org/0000-0002-1680-0016
https://orcid.org/0000-0002-6743-4175
https://orcid.org/0000-0002-5426-2618
https://doi.org/10.1007/978-3-031-80136-5


President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. Portrait sketching involves capturing identity specific
attributes of a real face with abstract lines and shades. Unlike photo-
realistic images, a good portrait sketch generation method needs selec-
tive attention to detail, making the problem challenging. This paper
introduces Portrait Sketching StyleGAN (PS-StyleGAN), a style
transfer approach tailored for portrait sketch synthesis. We leverage the
semantic W+ latent space of StyleGAN to generate portrait sketches,
allowing us to make meaningful edits, like pose and expression alter-
ations, without compromising identity. To achieve this, we propose the
use of Attentive Affine transform blocks in our architecture, and a train-
ing strategy that allows us to change StyleGAN’s output without finetun-
ing it. These blocks learn to modify style latent code by paying attention
to both content and style latent features, allowing us to adapt the out-
puts of StyleGAN in an inversion-consistent manner. Our approach uses
only a few paired examples (∼100) to model a style and has a short train-
ing time. We demonstrate PS-StyleGAN’s superiority over the current
state-of-the-art methods on various datasets, qualitatively and quantita-
tively.

Keywords: Portrait Generation · Stylization · StyleGAN

1 Introduction

Drawing portrait sketches is an intricate but timeless form of artistic expression.
It requires one to use minimalistic elements, such as lines, to encapsulate the
distinctive features and the overall essence of an individual’s identity. A lot of
research has been done to understand how humans perceive 3D shapes through
rough sketches or simple line drawings and why they effectively represent com-
plex concepts like identity [4,19]. While some theories exists, it is still not very
well known as to how artists choose the lines that they draw [20,46]. Hence
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the process of generation of such sketches remain a manual creation and time-
consuming one. Many Non-Photorealistic Rendering methods tried to solve this
artistic challenge [3,8,32,37,44]. However, they rely on ground truth geometry,
which is noisy near detailed parts of the face like eyes, nose and lips. Humans
are particularly sensitive to details in these regions as we have dedicated neural
pathways [50] for face detection and identification (Fig. 1).

Fig. 1. Outputs of PS-StyleGAN for different sketching styles (inset) in specified poses
and expressions while maintaining the input identity. A model trained on FS2K dataset
was used for (b)-(d), while CUHK and APDrawing were used for the models in (e) and
(f).

Deep learning [47] based approaches like style transfer [15] and image to
image translation [24,60] have been very successful in sketch generation. Inno-
vations in style transfer [23,38,51] have made the generation process faster and
more reliable. However, these methods only perform well for global texture trans-
formations and do not consider local details, abstracting out crucial elements like
eyes and lips. Following the development of Generative Adversarial Networks
(GANs) [16] and cGANs [36], Isola et al. proposed a novel method for general
image to image translation using cGANs [24,60]. Even though training such gen-
erators is notoriously difficult, modern image to image translation methods [5]
have shown impressive results and tremendous potential.

More recently, researchers have used a pretrained StyleGAN [27,28] along
with encoders that invert a given image into StyleGAN’s latent space to tackle
the problem of general image to image translation [7]. Its highly semantic W+
latent space allows one to make meaningful edits to the final output, like chang-
ing pose, facial expression or emotion, without affecting the identity. However,
for portrait sketch generation, incorporating the sketch style into the original
StyleGAN poses a significant challenge. It carries the risk of perturbing and
changing the behaviour of the latent space of the pre-trained StyleGAN, making
latent editing difficult. Yet a lot of works [6,22,30,54,55], have tried to solve the
issue with different approaches. Some methods [54,55] divide the latent space
into dual spaces and others use attention [30] for better mapping features in the
latent space.

DualStyleGAN [55] achieves portrait style transfer by disentangling the spa-
tial resolution layers of StyleGAN to perform independent structure and color
transfer between domains. They propose a ResBlock [18] based feature statis-
tics alignment module using AdaIN [23] that incorporates structure control over



PS-StyleGAN 3

the coarse and middle layers of StyleGAN. Training their ResBlock does not
change the latent distribution and thus it allows semantic editing. However,
DualStyleGAN’s style blending might result in significant loss of identity. In our
experiments we observed some extent of structure and color entanglement across
all layers of StyleGAN, especially in the middle layers. Hence, it is difficult to
decouple structure and color transformations without losing desirable artistic
characteristics like pencil strokes and shading, see Fig. 2. Lastly, DualStyleGAN
relies on a pre-training process to learn structure transfer in the source domain
which is quite time consuming.

To this end, we propose Portrait Sketching StyleGAN (PS-StyleGAN), which
converts real face photos into a portrait sketch while offering the semantic
editability of StyleGAN without the need to finetune it. We use our novel atten-
tion [52] bing the generator frozen. These blocks help us simulate the behaviour
of a finetuned StyleGAN. We discard any form of structure transfer so as to
ensure identity preservation and adopt a progressive training strategy to achieve
a rapid but smooth domain transfer. We also run our model on different datasets
to show that our model is inversion consistent. Our main contributions are:

1. We propose PS-StyleGAN, which can generate expressive portrait sketches
from a photo-realistic face image. Specifically, our method can learn complex
hairstyles and generate perfect eyes, nose and lips while preserving the sub-
tleties of an artist’s style. Furthermore, our model converges quickly and can
be trained on relatively small datasets.

2. We introduce a novel Attentive Affine transformation for better-transforming
style latent codes based on style examples.

3. We perform experiments, conduct a user study and run ablations on various
datasets to show the effectiveness of our method.

Fig. 2. Results of DualStyleGAN trained on CUHK [53] dataset. The generated sketch
(b) is a result of complete structure and color transfer. Structure transfer (c) results in
considerable loss of identity while color transfer (d) does not yield stylization.
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2 Related Works

2.1 Image to Image Translation

Image-to-image translation techniques aim to learn a mapping function that can
convert an input image from one domain into the corresponding image in another
domain. This approach was initially introduced by Isola et al. using conditional
GANs [24] and has since seen significant development. Recent methods like [14]
use Dynamic Normalization (DySPADE) in the generator architecture along
with depth maps to supervise the generation with encouraging results. An unsu-
pervised version of Pix2Pix called the CycleGAN [29,33,60] sparked the creation
of some fascinating sketch generation methods. In AP-Drawing GAN, Yi et al.
[57] used dedicated GANs to generate difficult-to-sketch features like eyes, nose
and lips. FSGAN [11] extends their approach and introduces a new dataset called
FS2K, which has three styles and paired sketch examples. We use this dataset
for training and comparison with other methods. New approaches like [5,25],
use CLIP [39] embeddings. In [5] the authors use CLIP along with a geometry-
preserving loss to achieve line drawings that respect the scene’s geometry. These
methods require training the generator, which is difficult and necessitates large
datasets, which is not feasible for face sketches.

Diffusion models [10,21] have made significant progress in text-guided image
generation [40,42,45], in the past few years. Personalised sketch generation in the
context of diffusion models has been achieved by either finetuning the generator
itself [43] or by learning personalised word or image embeddings for the generator
[13,56], or by using ID embeddings as condition [25,31]. Our method instead
relies on a StyleGAN generator trained on realistic human faces [27]. We modify
the generator’s output by learning crucial aspects of each style using only a few
examples.

2.2 StyleGAN Latent Space Inversion

The exceptional image quality and semantic richness of StyleGAN [27,28] has
made it very attractive for directed image generation. GANs synthesize images by
sampling a vector (latent code) from the latent space distribution. GAN inversion
tackles the problem of finding the latent code that best recreates a given image.
This can be done by direct optimization, learning encoders or a mix of both
[1,7]. For latent editing, some methods take the supervised approach by finding
latent directions for labelled attributes, while others take a more unsupervised
approach [17,49].

Although there are many approaches for latent space manipulation of real-
istic images, they do not work for stylized generators as it would change the
latent distribution, making latent manipulation inconsistent [48]. JoJoGAN [6]
achieves style transfer by training a new mapper for every finetuned StyleGAN,
but it comes at the cost of identity. DualStyleGAN [55] solves this issue by
disentangling the spatial resolution layers of StyleGAN to perform independent
structure and color transfer between domains. They propose a ResBlock [18]
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based feature statistics alignment module using AdaIN [23] that incorporates
structure control over the coarse and middle layers of StyleGAN. Training their
ResBlock does not change the latent distribution and thus it allows semantic
editing. Our method differs from their approach as we investigate how to better
preserve content structure, as portrait sketches have well-defined lines that need
spatial consistency. We use attention based style adaption blocks to smoothly
transform the generative space by aligning it to the feature statistics of the style
examples.

2.3 Attention in Latent Space Manipulation

Following the development of W+ space [1] many methods have tried to find
new latent spaces that can offer better reconstruction ability while retaining the
editing ability. In StyleTransformer [22], the authors use cross and self attention
layers to aid in the inversion task of W+ latent space, showing that transform-
ers can be a useful addition here. In TransStyleGAN [30], the authors intro-
duce a new W++ latent space by replacing the MLP layers in the mapper
network with transformer layers, resulting in better reconstruction and edit-
ing abilities.DualStyleGAN [55] proposes splitting the latent space into dual
spaces effectively disentangling style and content spaces, allowing existing editing
approaches to work on stylized spaces. A similar approach dubbed TransEditor
[54] also divides the latent space into P and Z spaces but crucially also uses cross
attention based interaction module to correlate between the separated spaces.
In [2], the authors find that editing the style codes in early stages of the genera-
tion process affects the structural properties of the image, resulting in artefacts
in the final results. TransEditor mitigates this issue by increasing collaboration
between the two spaces. In our approach we use attention based style adaption
blocks to transform the style codes only in the later stages of the generation
process.

3 Method

We propose an end-to-end method for facial sketch synthesis using our model
PS-StyleGAN g′, whose architecture is outlined in Fig. 3. Given a content image
C and sketch image S of a particular style S, we invert both images to the Z+
latent space of a pre-trained StyleGAN generator g using a pSp-based encoder E
[41,49]. We train the encoder E on 256×256 resolution of FFHQ dataset [27] and
modify it to embed face images to the Z+ latent space, which is more resilient
to background details than the standard W+ space as observed in [48]. Using
StyleGAN’s mapping network f , we transform them into latent codes w+

c and
w+

s , respectively, in the shared W+ latent space of g. Finally, we pass the latent
codes through our novel synthesis network g′ to obtain the generated image G,
successfully capturing the style of S. In the following sections, we give a detailed
description of our model architecture and training procedure.
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Fig. 3. An overview of our model architecture. We use a pretrained 256 × 256 resolu-
tion StyleGAN2 [28] generator g fitted with three style adaptation blocks at the fine
resolution layers. Each block consists of a novel Attentive Affine transform module (A)
that predicts affine parameters from attention-weighted latent codes of S using super-
vision from w+

c and w+
s . These parameters are then used to modulate and normalize

the spatial features of g at different scales to imbibe the style S into C.

3.1 Hierarchical Style Control in StyleGAN

As described in [27], the style blocks/layers of StyleGAN of different spatial
resolutions controlled specific aspects of face generation. Coarse layers (4 × 4–
8×8 resolution) affect high-level aspects such as pose, hair texture, face structure
and accessories. Middle layers (16×16–32×32 resolution) generate smaller-scale
features like eyes, smile, hairstyle, etc. Fine layers (64×64–256×256 resolution)
mainly control the general color scheme and microstructure of the generated
image.
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To tackle the challenges pointed out in Sect. 1, we use attention-based style
adaptation blocks in the fine layers of the generator network that perform feature
transformations by considering both global and local style patterns. Each block
consists of a novel Attentive Affine transform module (A) and StyleGAN’s mod-
ulative convolution layer, which provide instance-wise style conditioning to the
content features. We choose to modulate just the fine layer features of the gen-
erator so as to preserve the overall structure of the content image. The adapted
features are then fused with the original content features at each layer to allow
a smooth transition of the generative space from the photo-realistic domain to
the sketch domain. We show experimentally in Sect. 3.1 of the supplementary
that the latent space of StyleGAN remains consistent, allowing us to manipulate
sketches using methods designed for realistic images.

We use the following notation for subsequent analysis - w+
xi

denotes the ith

segment of the latent code of an input image X, FX
i denotes the feature maps

of X that go into the ith convolution layer of the synthesis network and yX
i =

(yX
s,i, y

X
b,i) denotes the corresponding affine parameters computed at that layer.

3.2 Paying Attention in Latent Space

Inspired by AdaAttN [34], we introduce attentive affine transformations to
obtain improved affine parameters yS

i at the fine layers, which encapsulate the
complete feature distribution of the style image. These parameters are then used
by the AdaIN operation to achieve style transfer. As shown in Fig. 4c, the style
adaptation process works in three steps.

1. Computing attention maps with content and style latent codes w+
c and w+

s ,
respectively.

2. Calculating weighted segment of the style latent code and obtaining improved
affine parameters yS

s,i and yS
b,i of the style features.

3. Adaptively normalizing the content features for instance-wise feature distri-
bution alignment.

Attention Map Generation: Different from standard style transfer methods,
we use the attention mechanism to measure the similarity between the content
and style latent codes instead of the corresponding features themselves. Due to
the highly disentangled nature of the W+ latent space of StyleGAN, similarity in
the latent space extrapolates well to that in the feature space. The relatively low
dimensionality of the latent space keeps the model lightweight and cuts down on
the computational costs of calculating attention maps. To compute the attention
map A corresponding to the fine layer i, we formulate query (Q), key (K) and
value (V ) as given below.

Q = f(Norm(w+
c ))

K = g(Norm(w+
s ))

V = h(w+
si) (1)
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Fig. 4. (a) The structure of AdaIN [23] module used in StyleGAN [27]. (b) The struc-
ture of AdaAttN [34] module. (c) The structure of our proposed design showing atten-
tive affine transform blocks. Here, A denotes a basic affine transform block consisting of
a single trainable fully-connected layer and Norm denotes channel-wise mean-variance
normalization.

where f , g, and h are standard trainable 1 × 1 convolution layers while Norm
is the instance normalization operation carried out channel-wise. We compute
attention map A as:

A = Softmax(QT ⊗ K) (2)

where ⊗ represents matrix multiplication.

Improved Affine Parameters: In AdaAttN [34], applying the attention map
to the style feature FS

i is interpreted as observing a target style feature point as a
distribution of all the weighted style feature points by attention. Then, statistical
parameters are calculated from each distribution for subsequent modulation. In
our case, the style latent code segment w+

si is multiplied with the attention
score matrix to represent it as a distribution of all style points in the latent
space. We term this as attention-weighted latent code segment x+

si ∈ R
512 from

which we learn improved affine transformations to get better representative affine
parameters yS

s,i and yS
b,i as follows.

x+
si = V ⊗ AT (3)

(yS
s,i, y

S
b,i) = Affine(x+

si) (4)

where Affine is a learnable single fully-connected layer identical to the traditional
StyleGAN’s affine transform. The output dimensionality of the layer is twice the
number of feature maps on the corresponding spatial resolution of the generator.

Adaptive Normalization: Finally, we use the obtained affine parameters to
modulate the normalized content feature map point-wise for each channel to
generate the transformed feature map. Thus, the AdaIN operation in our case
would become

FCS
i = yS

s,i

FC
i − μ(FC

i )
σ(FC

i )
+ yS

b,i (5)
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Fig. 5. Results after each stage of progressive transfer learning. At the end of stage I,
the model converges to an average representative style as seen in (b) where the eyes,
nose and mouth are sketched in a similar manner. Stage II widens the model’s gener-
ative space to capture subtle style variations resulting in better identity preservation
as shown in (c).

The transformed feature maps FCS
i go into a trainable convolution layer whose

outputs are selectively fused with those of the fine layers of the pre-trained
synthesis network g to complete the style adaptation process. We notice that
omission of the mean affine parameter i.e. yS

b,i during modulation does not affect
the generated results. Therefore, like StyleGAN2 [28], we combine the modula-
tion and convolution operation by scaling the convolution weights and effectively
reduce the output dimensionality of the affine transform blocks.

To summarize, we perform feature statistics alignment using attentive affine
transformations by generating attention-weighted latent code that better repre-
sents the target style feature distribution in the fine layers ensuring that middle
and coarse layer features are not lost.

3.3 Training Strategy

We adopt a progressive transfer learning scheme using a pretrained StyleGAN
to smoothly refine its generative space to align with the target style distribution
S comprising of limited samples. The scheme consists of two stages as illustrated
in Fig. 5.

Stage I - Domain Transfer: Similar to fine-tuning, we seek to achieve a
general transformation from the photo-realistic domain to the sketch domain
defined by S. We randomly generate a latent code Z+ and sample a sketch
image S and its corresponding style latent code z+s . Using StyleGAN’s mapping
network f , we obtain the W+ latent space embeddings for the content and style
images as w+ = f(z+) and w+

s = f(z+s ), respectively. Subsequently, we pass the
latent codes through our synthesis network g′ to obtain the generated sketch as
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G = g′(w+, w+
s ). Following standard style transfer practices, we employ a style

loss to fit the style of the generated sketch G to S which is given by

Lsty = λCXLCX(G,S) + λFMLFM(G,S) (6)

where LCX denotes contextual loss [35] and LFM denotes feature matching loss
[23]. To preserve the content features we use an identity loss [9] between G
and the reconstructed content image g(w+) thus constituting a content loss as
follows.

Lcont = λIDLID(G, g(w+)) (7)

where LID represents identity loss. Adding the standard StyleGAN adversarial
loss Ladv, our complete objective function takes the form of

min
G

max
D

λadvLadv + Lsty + Lcont

Stage II - Conditional Refinement: Stage I transforms StyleGAN’s genera-
tive space to a narrow domain, failing to capture the diversity of styles contained
in S as shown in Fig. 5b. We use paired data of ground truth sketches and their
photo-realistic counterparts as conditional supervision to broaden the generative
domain. Given a sketch image S and corresponding photo P , we get the W+
latent space embeddings as w+

s = f(E(S)) and w+
p = f(E(P )), and use them

to obtain the generated sketch G = g′(w+
p , w+

s ). In addition to the losses used
in stage I, we use perceptual loss [26] for G to reconstruct S thereby learning
a varied set of style specific transformations. We also introduce a regularization
term in Lcont which is the L2 norm of the convolution weights comprising our
style adaptation blocks. Therefore, Eq. 7 changes to

Lcont = λIDLID(G, g(w+
p )) + λreg||W ||2 (8)

where W represents the weight matrices of the trainable convolution layers. This
regularization term controls the degree of style adaptation and helps prevent
overfitting. Thus, the objective function modifies to

min
G

max
D

λadvLadv + λpercLperc + Lsty + Lcont

4 Experiments

In this section, we assess the effectiveness of our proposed method by conducting
comprehensive evaluations, which include qualitative and quantitative compar-
isons.

Datasets: We carry out our experiments on the FS2K dataset [11], which stands
as the most extensive publicly available FSS (Face Sketch Synthesis) dataset to
date. This dataset comprises a substantial collection of 2,104 photo-sketch pairs,
featuring a wide diversity of image backgrounds, skin tones, sketch styles, and
lighting conditions. These sketches are classified into three distinct artistic styles.
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Table 1. Quantitative comparison of AdaAttN [34], FSGAN [11], HIDA [14] and Dual-
StyleGAN [55] with our method based on SCOOT, LPIPS, FSIM and ID loss. Our
method shows considerably better SCOOT and ID loss values indicating more visually
appealing and recognizable results.

Method SCOOT ↑ LPIPS ↓ FSIM ↑ ID ↓
HIDA 0.4433 0.3214 0.3660 0.0241

FSGAN 0.3621 0.2890 0.3692 0.0424

AdaAttN 0.4670 0.2600 0.3806 0.0233

DualStyleGAN 0.4490 0.3012 0.3631 0.0247

Ours 0.5603 0.2303 0.4283 0.0206

We also use the CUHK dataset [53], which comprises mostly of asian faces, to
measure our method against DualstyleGAN, a technique that introduces a bias
of shape characteristics within the results. We further experiment with AP-
Drawing dataset [57] to evaluate our method’s ability to generalize and adapt
to challenging sketching scenarios.

Comparison Methods: We compare our method to other state of the art
methods that have shown good performance in facial sketch synthesis, like HIDA
[14], FSGAN [11], DualStyleGAN [55] and AdaAttN [34].

4.1 Quantitative Analysis

To quantitatively compare our method with others, we utilize four performance
metrics: Learned Perceptual Image Patch Similarity (LPIPS) [59], Structure Co-
Occurrence Texture (SCOOT) [12], Feature Similarity Measure (FSIM) [58] and
ID loss [9]. Lower LPIPS and ID loss value suggests a more realistic synthesized
sketch, while higher SCOOT and FSIM values indicate better similarity with
artist-drawn sketches. We present the average SCOOT, LPIPS, FSIM and ID loss
values across all test samples in Table 1. More details on quantitative evaluations
can be found in supplementary material.

4.2 Qualitative Analysis

Visually comparing our PS-StyleGAN with leading methods, namely FSGAN
[11], HIDA [14], DualStyleGAN [55], and AdaAttN [34], we observe that our
method excels in rendering eyes and lips, showcasing sharper details and
enhanced realism, see Fig. 6. Our results are visually most similar to DualStyle-
GAN but their method also learns shape biases in the dataset hence affecting
recognizability. DualStyleGAN often changes the gaze direction and shape of
lips too. The Attentive Affine transform blocks in PS-StyleGAN contribute to
a superior balance between artistic expression and accuracy, resulting in more
visually appealing and faithful representations of facial features.
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Fig. 6. Comparison of our method with other state of the art methods on the 3 styles
(inset) of FS2K: style 1 (row 1), style 2 (row 2), style 3 (row 3). From left to right : Input
identity image, Ours, DualStyleGAN [55], HIDA [14], FSGAN [11], AdaAttN [34].

5 Conclusion

We introduced Portrait Sketching StyleGAN (PS-StyleGAN), an approach
tailored specifically for the intricate color transformation demands in portrait
sketch synthesis. Leveraging the semantic W+ latent space of StyleGAN, our
method not only generates portrait sketches but also allows meaningful edits, such
as pose and expression alterations, while preserving identity. The incorporation of
Attentive Affine Transform blocks, fine-tuned through extensive experimentation,
allows us to adapt StyleGAN outputs in an inversion-consistent manner by con-
sidering both content and style latent features. The model demonstrates efficacy
with minimal paired examples (approximately 100) and boasts a short training
time, contributing to its practical applicability. However, our method may be sus-
ceptible to data bias, and performance could vary across datasets. Additionally,
one noteworthy limitation is the current inability to generate realistic accessories
in the synthesized sketches. Future work could focus on addressing these limita-
tions to enhance the utility of the proposed PS-StyleGAN further.
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Abstract. We present a time of flight (TOF) mixed reality (MR) digital twin
mobile system supporting three-dimensional (3D) tracking and defect detection
using recursively fused multimodal segmentation paradigm. Simplified machine
learning can be used for clusteringmultimodal 3D semantic label distribution (out-
put of generic data trained segmentation deep learning model) and to reduce the
need to obtain high cost and extremely scarce non-generic training data to flexibly
customize segmentation for non-generic enterprise defect inspection applications.
The fused model first segments with 3D physics properties (reflection, curvature,
materials etc.) obtained from TOF and tracks objects with defect from a 3D scene
and then further segments recursively on different level of details to detect defects
with quantification analysis based on segmentation distribution statistic distance.
This method also removes the need to do compute intensive non-real-time algo-
rithms (3Dmesh generation, SLAMbundle adjustment and cross source 3D align-
ment) needed for 3D defect detection. User can do portable free hand acquisition
to track and quantify the severity of 3D anomaly defects and categories of 3D
configuration without the need to follow strict data capture guidance and 3D point
cloud alignment registration as required by other state of the art enterprise MR
systems.

Keywords: Mixed Reality · 3D Manufacturing Defect · Digital Twins ·
Portable · 3D Recursive Fusion

1 Introduction

Human visual inspection is still considered as the most widely used method for large
area surface inspections in manufacturing and maintenance operations, such as aircrafts,
rockets, construction/manufacture sites, etc. Mobile drone, wearable mobile AR glass
and robot assisted inspection has also emerged in recent years [1, 2]. Designing reliable
portable mobile inspection system and flexible robotics systems are challenging, facing
difficulties such as inadequate coverage of inspection area of certain view angle, false
positive defects identification of pure 2D video based mobile wearable AR inspection
system, requiring reconfigurable robotics path to be found in cluttered repair plants,
and low resolution from noncontact or far sight distant camera-based drone inspection
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system [3, 4]. Deep learning-based methods are attracting more and more interest at
micro-, meso-, and macro-scale level although these methods are primarily 2D defect
detection and are usually compromised by the lack of quality and quantity of relevant
data that can truly represent the industry non-generic defects [5–9].

This paper introduces a practical robust procedure for 3D defect inspection based
on the matching feature profile of the digital twins to their real-world counterparts. For
productions in large scale, quick and early identification of defects is the crucial step. This
MRdefect detection system is designed to be practically implemented into a user-friendly
enterprise product both for the developers and the end users. The versatile, learning based
workflow is robust and adaptable for various industry inspection projects with reduced
few-shot of non-generic 3D training data by recursive fusing different segmentation
algorithms or deep learning models trained with different related generic 3D benchmark
training datasets. The method presented here is majorly focused on detecting the defect
entity through an industrial grade mobile wearable MR head mounted device (HMD),
such as the Microsoft HoloLens2, with enhanced portable MR and 3D AI features
supported by a local server or remote cloud services, as in Fig. 1.

The paper is organized as follows: Sect. 2 describes and summarizes related work
and concept; in Sect. 3, the enhanced fused inspection model is described in detail;
in Sect. 8 the results are presented followed by additional discussions are in Sect. 13.
Finally, Sect. 14 provides conclusion and future work.

2 Related Work and Concept

Fig. 1. Illustration of ourmixed reality systemwith remote rendering, and 3DAI/ComputerVision
based object detection and precise overlay of 3D digital twin over the object. In this example, the
wiring harness of an aircraft nacelle is precisely overlaid and rendered when viewed through the
Microsoft HoloLens 2 by detecting the nacelle and estimating its pose accurately.

Digital twin-based inspection is considered a key component for quality assurance in
industry 4.0. The application is already in many industry fields in a stage of standard-
ization and attracting broad interests [10–12]. With new generation of MR HMDs with
on-device 2D and 3D cameras, digital twin-based RGB/D method can achieve 3D geo-
metric related defect detection that 2D defect inspections cannot, such as: 1) Robustness
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to different lighting conditions, 2) Categorize defect severity with the depth information
in the detected regions, 3) Avoid false positives of 2D defect detection without indication
of uncertainty due to color, dusts and stains etc., all of which can be mitigated by addi-
tional depth information and geometry consistency of different view angles. Sect. 8 will
provide comparison to the current state-of-the-art solution and further discuss in detail
with real world mobile MR use case applications.

The proposed method is a multimodal system that utilizes multiple machine learn-
ing and artificial intelligence systems on visual, spatial and gestural signals, such as a
plurality of neural networks wherein each neural network has its own unique topology
network structurewhich inherently exhibits different numerical feature extraction behav-
iors when learning 3D scene features from a publicly available benchmark 3D training
dataset. The distribution of features and scene context learned in a certain pre-trained
model can probe certain aspects in the higher dimensional feature space of real-world
objects and scene point clouds so that a pre-trained model trained by general benchmark
data can be used as a weak classifier for specific applications. Combining inference
results of multiple pre-trained models can yield a full spectrum of properties which are
defined in the features extracted from generic benchmark datasets by individual pre-
trained deep learning models. This uncertainty reduction concept is like sensor fusion
in autonomous driving to understand the real driving environment and can also be seen
as painting objects and scenes by using multiple colors to maintain high fidelity.

3 Methodology

The paper is particularly applicable to a mixed reality system with 3D object tracking
of defects and anomalies that overcomes technical problems and limitations of existing
deep learning systems by reducing training data requirements to few-shot 3D scan and
employing a simpler fusion machine learning model to learn from feature distributions
already extracted from complicated deep learning models.

4 System and Preliminary

The system, as illustrated in Fig. 2 below, receives the 3D data with a complicate 3D
points cloud using two or more machine learning and/or deep learning systems, each
of them generates a histogram based on public generic 3D training data reducing the
complexity of the initial 3D data to a vector of hundreds of values. The system then trains
a simpler machine learning model (since the 3D data is now less complex – hundreds
of histogram values vs. millions of 3D point values) that: 1) requires less training data;
and 2) can solve the 3D inspection and tracking problem without both the complex
non-generic 3D scene data (training data is often not available) and complicated big
deep learning networks training. In the paper, several public benchmark 3D datasets are
chosen for a certain typical use case. To apply to a different defect inspection use case,
the system and method can be applied to different public datasets, public and private
datasets or only private datasets that can be similar to the objects of interest to train two
or more deep learning models. The features can then be extracted from them, allowing
the system to significantly reduce the complexity of AImodel from deep learningmodels
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to machine learning models and allow to only use few-shot 3D scanning of the scarce
costly non-generic 3D digital twin and mobile AR glass scanned datasets.

5 Tracking a Component Part of a 3D Scene

The proposed method solves these technical problems by providing a hybrid 2D/3D
tracking, as illustrated in the workflow in Fig. 3. For example, for 3D object tracking,
the systemperforms a detailed 3D scene understanding following theworkflowdiscussed
below. Given the computation limitations of the MR HMDs, the entire 3D processing
is done on the backend server with discrete high-end GPUs, where the color (RGB)
and depth (D) data (RGB/D) from the camera of the computing device may be used to
reconstruct a full 3D point cloud with complete texture mapping. A fine mesh is then
generated using this 3D depth map and the relation between different parts of the scene
is established. Both the RGB features and the depth geometry are used to segment the
scene and establish association as discussed below. In the example in Fig. 3, the object
of interest is the aircraft nacelle. The system isolates the nacelle from the rest of the
scene by identifying its 3D/2D features using our deep learning-based inference engine
(for example by histogram distribution-matching based cluster labeling in Fig. 2) that
matches the object scanned by mobile AR glass to the 3D digital-twin.

Fig. 2. Flowchart for 3D object/anomaly tracking with reduced training data.

6 Tracking in Cluttered Environment

As shown in Fig. 4, the system provides real time object tracking while wearing a
mobileMRHMD and overlaid rendering in a cluttered manufacture environment among
which there is a model of aircraft wing. The deep learning-based recursive segmentation
allows the system to identify and track 3D objects of arbitrary shape and size in various
orientations with high accuracy in the 3D space. This approach is scalable with any
arbitrary shape and is amenable to use in enterprise use cases requiring rendering overlay
of complex 3Dmodels and digital twins with their real-world counterparts. This can also
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be scaled to register with partially completed structures with the complete 3D models,
allowing for on-going construction and assembly. The system and method achieve an
accuracy (relatively < 1% error) of 1 ~ 10mm depending on the object’s dimension
size during recursive segmentation-based tracking and rendering using the system that
illustrates the improvement over conventional systems that cannot achieve that accuracy.
This approach to 3D object tracking will allow the system to truly fuse the real and
virtual worlds, enabling many applications including but not limited to training with
work instructions, defect detection, manufacturing error inspection in construction and
assembly and 3D engineering design with life size rendering and overlay.

Fig. 3. 3D object detection and pose estimation workflow using hybrid 2D/3D (RGB/D) data.

Fig. 4. 3D object recognition and tracking using the workflow from Fig. 3 and can also reduce the
reliance on training data with the multimodal fusion from Fig. 2. In this example scene, RGB/D
data (color and depth), pose data and camera parameters of the HMD is sent to the back-end server
to enable precise 3D object tracking and inverse rendering overlay.

7 Implementation Details

For 3D semantic segmentation, the method (shown in detail in Fig. 2 and Fig. 5) uses
multiple deepneural network structures (such asPointCNN[13], 3DBonet [14],RandLA
[15], etc. in one fused system) trained by different benchmark generic 3D datasets
(ScanNet [16], ShapeNet [17], S3DIS [18], inadequate few-shot nongeneric enterprise
training datasets, etc.) to perform 3D semantic segmentation of 3D scenes not seen by
the fused recursive segmentation workflow.
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For each cluster of a point cloud, each pre-trained model will label 3D objects in
different distributions (histogram of object labels existing in generic 3D benchmark
datasets, sharing some geometric similarity with different objects in the current non
generic 3D scene). The labeled distribution can be used as the fingerprint of the 3D
point clustering so that object/scene can be understood. Combining using different
approaches, such as Gaussian mixture modeling (GMM), multilayer perceptron (MLP),
support vector machine (SVM), random forest, k-nearest neighbours (KNN), distribu-
tion distance-based clustering etc., these specific distributions of multiple pre-trained
models are merged into a stronger classifier. The major advantage of this approach is
to minimize the non-generic labelled training data requirement for a specific enterprise
use case whose dataset usually is not public available in generic 3D bench mark datasets
and improve the generalizability of combined deep neural networks.

Fig. 5. An example of the 3D object tracking with reduced training data (few-shot nongeneric)
with multimodal fusion.

Figure 2 illustrates a process for 3D object tracking with reduced training data (only
need few-shot nongeneric dataset) and Fig. 5 illustrates an example of the 3D object
tracking with few-shot non-generic data. As illustrated in Fig. 5, we can identify the two
objects with complicated geometry/components/volume matching the objects we want
to track in a 3D scene, and merge all other objects (simple geometry, volume mismatch
objects like support table, wall, spoon, simple objects with two cylinder) as background
to automatically remove them.

To adapt system for better results in an unseen use case, we can replace the exampled
generic dataset inFig. 2with public generic datasetmore similar and relevant to enterprise
targeted use case applications. For easy maintenance and comparison, loss functions
optimization is not conducted for all the results presented. If trained by different dataset
(other generic data or inadequate few-shot non-generic enterprise training datasets),
same loss functions provided by original authors of deep neural networks in Fig. 2 are
used and default loss functions of simpler machine learning models (GMM, MLP, SVM
etc. For our use case, GMM is the method heuristically recommended to use) from
opensource packages can be used without changes.
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8 Results

After using methods described to track the defect region or objects, we can further
analyze the region under different sizes of defected objects by applying a fused model
recursively to reach different level of detail. As different scans will have different output
points from different portions of defect region due to scan conditions like scanner con-
figuration, distance, and view angle, etc., we normalize the biggest segmented region in
terms of numbers of points, the histogram of segments represents relative size in point
numbers with respect to the region with biggest points, to make different batches of scan
comparable to each other. In addition, as histogram distribution of different segmented
surface area of different parts of objects is not sensitive to the orientation and arrange-
ment of the components, the defect detection is relatively robust to various view angles,
moving components (cables or fixed region), and arrangement.

Due to the point geometry changes caused by defects, the distribution of segments
with defects will be different in distribution from segments without defects. For example,
the defects caused by bending and impact will cause original one segment to become
multiple segments with high curvature crack/defect as boundary; defects due to wearing
off will blur the boundary andmergemultiple components into one bigger segment; once
we select detected defect regions, by applying recursively into different scales of regions
of interest, defects in different level of detail and resolution can be revealed according
to the requirements of use cases. Based on histogram’s statistical distance with/without
defect, semi quantification of severity of defect can be provided.

9 3D Defect Detection without Alignment

Fig. 6. A typical defect detection case of a big size subject. (a) 3D segmentation of region of
interest without defects. (b) 3D segmentation of components (with defect regions segmented
in orange color). (c) Mesh 3D geometry Hausdorff distance: blue indicates normal region, red
indicates bigger difference/defect, which corresponds to a segmentation difference between (a)
and (b). (d) Histogram of segmentation of corresponding scan (x axis is the segmentation size
measured by number of 3D points normalized to biggest segmented region as 1 or 100, y axis is
the number of segmentations within a range of x labeled size).

For big size subjects as in Fig. 6, point clouds (a) and (b) are viewed from different
angles. The results show the robustness of our method to detect defects in various view
angleswithout alignment.As the defect region is only a small portion of thewhole region,
the overall shape of histograms is similar, while noticeable difference can be observed
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between the segmentation size of each segment and the gap between the biggest segment
and second biggest segment. The histogram similarity is computed as (1- distance)
between the two probabilities or frequency distributions with twomethods (Hellinger:1–
0.14= 0.86,Wasserstein: 1–0.22= 0.78). In both the cases, the similarity is lower than a
preset defect threshold of 0.9, which is further confirmed by an aligned mesh difference
map: two red regions (potentially defect regions).

Fig. 7. A typical defect detection case of small size subject. (a) 3D segmentation of compo-
nents around an engine (without defect). (b) 3D segmentation of components around an engine
(with defects). (c) Mesh Hausdorff distance comparison result. (d) histogram of segmentation of
corresponding scan: left side calculated from (a) and right-side plot calculated from (b).

For small size subjects as in Fig. 7, the major component of point clouds (a) and (b)
can be viewed completely even from different angles but there are some surrounding
components to add quite some more small segments. The results show the robustness
of our method to detect defects without alignment in this case. As the defect region
occupies more percentage of region, the histogram shape also becomes different from
each other with noticeable difference in all sizes of segments.

The histogram similarity is computed (Hellinger:1–0.16= 0.84,Wasserstein: 1–0.15
= 0.85). In both the cases, the similarity is lower than a preset defect threshold of 0.9
and is reported as a defect, which is again verified by difference map of aligned paired
mesh: three regions (potentially defect regions) within the component of interest. The
right corner red segment outside region of interest components is due to adjacent parts
being movable with relative position changes during the two scans. (Won’t affect the
histogram of region of interest selected by recursive segmentation).

10 3D Configure Detection

In the airplane industry the cabin interior design is configured differently for differ-
ent airlines. For mobile AR devices to be applicable during interior assembly, design
and training applications, airline configuration needs to be correctly identified. Take the
mounting brackets as an example – our method can quickly differentiate both the dif-
ferences in the number of brackets and their location configuration inside an airplane
cabin.
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Different Number of Brackets. The cyan region has a different number of brackets
(above: base line typical brackets configuration; bottom: two additional brackets circled
on the right side of three circle screws added for a new configuration).

Fig. 8. Mounting brackets on a typical structure. The top and bottom show different numbers of
brackets in two different configurations.

Same Number of Brackets but at Different Locations.When the same brackets have
different locations, we can subdivide the histogram in different regions of the original
model. In the following example, we have four major regions segmented out (blue, cyan,
yellow, and brown). For two subregions (blue and brown), we can detect changes in the
number of brackets, although the total bracket number is same.

Fig. 9. Same number of brackets with different distribution in the subregion.

As the Figs. 8 and Fig. 9 present, the two types of configuration changes (different
number of instances and same number of instances but with different distribution in
subregions) can be detected with the similarity score between two histograms.

A Real-World Quantitative Use Case. AR training or maintenance inside an airplane
(for example, the front cabin of the C130 aircraft head) requires the detailed content to
be automatically selected and loaded using the geometry fingerprint of the interior 3D
scene of the airplane.

As in Fig. 10, we first remove the unchanged background from the arc structure using
strong features of windows; then calculate the Wasserstein distance between the seg-
mentation histogram distribution of design configuration of different number of brackets
on arc support structure. For example, the lowest 0.967 similarity score (1- Wasserstein
distance) in Fig. 10 (x axis = 17) is calculated between segmentation histogram of
original arc point cloud with all 24 brackets and segmentation histogram of arc with
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(a) (b) (c) (d)

(e)
Similarity                Our Segmentation    OpenVINO Models                                                   

Delta between                  Mean          STD            Mean      STD  

Removal # of bracket 

pairs (left – right)                                  

(5,     3)                      -0.0024    0.0020   -0.00027   0.0008

(7,     5)                      -0.0041    0.0020   -0.00036   0.0007 

(9,     7)                      -0.0014    0.0025   -0.00029   0.0006

(11,   9)                      -0.0020    0.0031   +0.00009  0.0008

(13, 11)                      -0.0063    0.0028   -0.00062   0.0005

(15, 13)                      -0.0040    0.0006   -0.00029   0.0009

(17 ,15)                      -0.0034    0.0010   -0.00127   0.0003                           

(f)            (g)

Fig. 10. Quantitative study of configuration of variation in number of brackets. (a) internal view
of C130 head with arc structure. (b) external side view of C130 head. (c) segmentation results of
point cloud, black color point cloud can be recursively removed as background. (d) segmented
arc structure. (e) histogram of segmentation from 8 different configurations with different number
of brackets. (f) comparison table between the change of correlation of bracket numbers by our
method and latest 3D segmentation deep learning models of openVINO. (g) linear regression
of similarity score calculated between histograms of the various number of brackets removed
from arc structure with respect to original arc with all brackets: our method is in solid line and
existing reference method is in dashed line As table shows, under different configuration (bracket
numbers), deformation and noise, our fused recursive segmentation method show ~ 1 magnitude
better sensitivity and robustness (STD/Mean ratio) than industry state of art 3D deep learning
segmentation models.

17 brackets removed. The similar score (1-Wasserstein distance, more information as
in supplementary materials) is proportional to the removed bracket number between
the paired point clouds. Each error bar is calculated by mean and std from 5 different
experiments (applied noise and deformation perturbation to point cloud) and can be lin-
ear regression fit to Y = 0.99675 + − 0.00172X with R-squared = 0.977. In contrast,
results from openVINO [19] state of art 3D segmentation models (plot in thinner red
error bar and data in black dots with respect to right sideY axis) hasmuchworse variance
with respect to mean and worse linear correlation (dashed line) to configuration change
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(Y= 0.99949+− 0.00010793X, with R-squared= 0.547). Therefore, with the method
discussed in this paper, we can automatically identify different configuration/design lay-
out and number of brackets when changes of bracket number on the arc structure are
quantitatively calibrated as in Fig. 10. The use case is tested and run onWindow 11 desk-
top with RTX 3080 GPU, Intel i7,32G memory and 256 G SSD storage. As recursively
hierarchy segmentation can split the 3D point cloud into multiple independent regions
which can further leverage multiple parallelly GPU servers through our well established
sever based HMD MR pipeline. To achieve close to real time performance, our system
can conveniently dispatch recursively segmented clusters to different GPU servers for
heavy spatial computation so that the network socket communication speed and latency
between servers and HMD device become the up-limit bottleneck when target to solve
more challenging point clouds with million vertices. As more and more spatial com-
putation pretrained generic models get published, computation power ramps up, and
improvement in loss functions customized in different recursive stage, our method can
further support unseen specified or novel defect in heavy 3D models.

11 Sensitivity Study

As in 4.2, we can get good quantitative detection on number of the brackets. Each bracket
roughly~1%of total point cloud (~300points out of total 22kpoint cloud). Tounderstand
the specification of the qualitative limit of defect detection, a sensitivity analysis for 3D
defect detection is also conducted. As expected, the sensitivity is dependent on the whole
model dimension, performance requirement and geometry complexity. For a typical use
case in manufacturing and sustainment, our method can detect relative change of model
within 0.2%. As the following picture shows for a 4-m-long panel, the lowest level we
can segment out and detect in histogram similarity comparison is 5 mm for the full width
at half maximum (FWHM) in depth direction as in Fig. 11.

Fig. 11. Segmentation sensitivity in an end2end MR (with HL2) study. (a) 5 mm FWHM defect
detected by segmentation without alignment as the defect can result in new histogram bin in the
cluster with 0.2% changes. (b) comparison of segmented distribution histogram with and without
defects; Left side: the side panel without defects, Right side with defect; segmentation distribution
can identify a new instance around 0.45 (normalized to biggest size of ROI clusters recursively
detected for defects/brackets). (c) best defect segmentation results from 12 openVINO latest 3D
segmentation models, which are still not able to segment out correct position of challenging trace
level defects. (d) defect ground truth verified by rigid alignment based mesh Hausdorff distance.



28 Y. Tan et al.

12 Comparative Study with Other Opensource Deep Learning
Models

Recently 3D segmentation leverage 2DRGB segmentation, multi-frame projection/pose
estimation transformer, point cloud and 3D mesh connection graph, along with compu-
tationally expensive deep leaning framework to get semantic point/voxel segmentation,
which in general requires enormous training data and does not generalize well to get
satisfactory results for unpublic enterprise 3D scenes and nongeneric targets [20]. For
example, even for a 2D model, segment everything (SAM) is trained by 11M images
and 1.1 billion segmentation masks [21], and still majorly reply on color and does not
work well for 3D geometry defection segmentation on uniform texture surface. The
benchmark 3D datasets (S3DIS [18], LLFF [22], Co3D [23] etc.) are usually com-
posed of good quality point cloud from high end scanner of common everyday objects,
which are not applicable well to enterprise 3D use cases and not from AR edge devices’
(Hololens2 etc.) noisy scanning. Generally, for 2D SAM based 3D segmentation model
and 2D anomaly detection without the need of training dataset, accuracy of segmentation
is dependent on input texture/RGB contrast of surface, which usually not available in
geometry-based 3D defection as there are no vivid color contrast on most surface of
metal components and defects [24–26]. For enterprise applications, speed, repeatability,
and practical flexibility are crucial to land a user-friendly quality product to market. The
existing pretrained 3D geometry model does not generalize and work well in specific
real world nongeneric enterprise use cases as we compared in this section. On the other
hand, we can flexibly fine tune both deep learning model’s feature weight and recursive
level balance responsive time requirement and the level of details.

Fig. 12. Segmentation comparison between our recursive method and OpenVINO pretrained 3D
segmentation models. (a) Digital twin CAD model ground truth. (b) point cloud for 3D segmen-
tation. (c) segmented results from our recursive fusion methods. (d) 3D segmentation results from
12 different OpenVINO deep learning pretrained models in open-source model zoo.

As an industry enterprise deep learning framework, OpenVINO (developed by Intel)
is optimizing and deploying open cross platform framework for enterprise AI inference
applications. Targeting real world enterprise applications, here we use OpenVINO and
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its openmodel zoo as a comparison. As Fig. 12 shows (also two extra examples are in the
supplementary material), 12 off-the-shelf deep learning models from open model zoo
majorly focus on common 3D features extracted from internet accessible 3D benchmark
training datasets [19, 27–29], for unseen data, especially unseen private non-generic
enterprise 3D subjects, the generalization is not capable enough to get satisfactory 3D
segmentation in enterprise applications.

13 Discussion

From practical implementation point of view, different level of detail in training datasets
and segmentation can be achieved based on the need of different level of accuracy
requirements in applications. For Hololens 2, the absolute highest sensitivity can be
achieved is 0.5 ~ 1mm, and defects can be detected in most scenarios when the geometry
variance toward adjacent objects is relatively 0.2%or higher (5mmdefect can be detected
if region of interest is a 3000mm side panel). When we use the HoloLens 2 to inspect
large targets (airplanes, space craft components, etc.), hierarchical scan with recursive
segmentation and tracking can achieve desirable accuracy and sensitivity.

If, based on the accuracy of the merged label data, more training is needed, the
method may perform additional processes to reduce data complexity so that we can
further minimize the need for training data of the digital twin target. The two processes
may be: 1) extract features (line, corners, and primitive shapes) out of raw XYZ and
RGB values of the clusters to label from the multiple DL models, machine learning
algorithm or 3D vision segmentation methods in opensource library like open3D, Point
Cloud Library (PCL) etc.; and 2) to further reduce labels vector into histogram and count
point number of each label. Inmore detail, the processes select top predicted labels (label
existing in benchmark datasets) to filter out noise and the reduced labels (keep only top
dominant clusters like salient target and background) of the clusters as the training binary
positive and negative datasets and further perform the two-step data feature extraction
with the much smaller training datasets as the input is already extracted features from
pre-trained models trained by public generic benchmark datasets.

In our system, the method uses the trained simpler machine learning models to infer
a group of clusters or a single cluster. The method provided can be extended to detect
huge 3D scenes (an airplanes, tunnel construction, etc.) in a recursive paradigm for
different level of detail. To detect defects in a huge point cloud allowed by the HMD’s
effective range and computation power of GPU server, the trained simpler machine
learning model can first identify the digital twin target or the background first, and then
configured. Theworkflowspecific for the current use case of identified targets. To classify
or do segmentation of different level objects, we can recursively apply our workflow to
establish a database of segmentation histograms that can be easily mapped. To label a
group of clusters, the method identifies whether there is a specific 3D scene by using the
histogram of all the clusters to determine the label of the scene. If the use case to identify
the digital twin target is successful, as shown in Fig. 5 and Fig. 2, the hierarchy recursive
segmentation and tracking can retrieve the normalized object histogram distribution of
each cluster in different level of details (either the digital twin target or background).
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14 Conclusion

This study presented an automated 3D digital twin learning based inspection system that
can track objects and detect defects for enterprise applications, aiming to facilitate both
development and user experience:

1) with minimum few-shot or no need of training datasets for specific non generic
defects of interest, 2) free hand acquisition which tolerates various capture poses and
lighting conditions without the overlap strictness of the same capture region between
3D point clouds with and without defects, 3) without the need to conduct 3D alignment
during defect detection, and 4) without the need to create high quality 3D mesh.

The process first tracks the region or the object of interest and do segmentation with
pre-trained models by benchmark generic datasets, machine learning algorithm or 3D
vision segmentation methods in opensource library like open3D, Point Cloud Library
(PCL), and then classify and compare segmentation profile distribution to provide a sim-
ilarity scorewith respect to the original normal digital twin counterpart, which represents
the severity of the defects. TheHausdorff distancemapping of overlap alignedmesh pairs
from two different typical sizes of defect objects further confirmed the correctness of
our 3D defect detect methods for real world point clouds of 3D scene.

We hope our work can inspire further improvement in few-shot learning for time-
of-flight sensors-based mixed reality AR/VR edge devices to address challenging defect
detection requirements like reflection removal, missing components remind and foreign
objects alert in both forward/inverse and cloud/devices renderings. In further research
and product development, we plan to adapt the existing standard loss function to meet
broader non generic use cases and improve automatic digital twins guided alignment
besides doing a binary qualitative classification and instance quantification between
defected subjects and their digital twin for a chosen level of detail. We plan also to
combine recursive defect & configuration detection and alignment in different levels of
accuracy so that we can do adaptive real-time identification, annotation and quantitative
analysis of the defect severity adaptively in various levels of details.
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Abstract. Traditional methods of medical education often face chal-
lenges such as limited visual representation, lack of interactive experi-
ences, and outdated technological integration. Generally, medical edu-
cation often relies on static images or diagrams to represent complex
anatomical structures, which can hinder students’ understanding and
retention of information. Additionally, the lack of interactive experiences
restricts students’ interaction and manipulation of anatomical models,
creating a less engaging learning environment. This research offers a real-
time, seamless method that tackles the noted difficulties by utilising AR
technology. To give students a dynamic and engaging learning experience,
the suggested AR-based solution seeks to project 3D human organs onto
a tracked human body. Apart from that the user can interact with the
superimposed organs in real-time using natural gestures and image mark-
ers. The proposed AR system leverages advanced technologies including a
vision transformer for precise image recognition, deep learning techniques
for human hand gesture recognition, and human pose tracking. By inte-
grating these components, the system enables the accurate projection
of organs onto a real-world environment, synchronized with the user’s
movements. Interactions with the virtual organs are facilitated through
intuitive gestures, allowing users to manipulate, scale, and rotate the
projected organs effortlessly. To sum up, incorporating augmented real-
ity into medical education presents a viable way to get around current
obstacles and give students a more dynamic, immersive, and interest-
ing educational experience. By promoting a greater comprehension and
recall of intricate anatomical concepts, this method has the potential to
transform medical education.
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1 Introduction

In the realm of medical education, a comprehensive understanding of human
anatomy stands as the cornerstone for aspiring healthcare professionals. Pro-
ficiency in anatomy not only forms the basis of clinical practice, but also fos-
ters the development of critical thinking and diagnostic skills. However, tradi-
tional approaches to teaching anatomy often fall short of providing students
with the depth of understanding required to navigate the complexities of the
human body. Recent revolutionary changes in technology, particularly in the
field of augmented reality (AR), have opened new avenues for transforming med-
ical education [17,20]. AR offers a dynamic platform that seamlessly integrates
virtual elements into the real world, providing users with immersive and interac-
tive experiences [1]. Johnson has stated that AR has strong potential to provide
powerful contextual learning experiences [11]. Kirkpatrick has asserted that if
visuals are shown to students, they can obtain a genuine knowledge of things
more readily than they can be crammed with the verbal appearance of knowl-
edge [14]. Along with providing immersive educational experiences for medical
students, interactive AR allows them to engage with 3D models of anatomical
structures, surgical procedures, and medical simulations. This hands-on app-
roach enhances learning outcomes, as students can visualize complex concepts
in a realistic context, leading to better retention and understanding.

The focus of recent advancements in interactive AR technology has been
on enhancing engagement with virtual objects through various modalities. The
existing modalities for interactive-AR technology can be broadly categorized
into input device-based [15] (e.g. mouse [2] and keyboard [7], digital gloves, dig-
ital pens etc.), tangible user interfaces (TUI) [3], action-based (e.g. gesture [12],
gaze [19], haptic [18] etc.), and multi-modal interfaces [13]. This convergence of
advanced interaction modalities makes augmented reality an ideal platform for
educational purposes, particularly in the field of medicine. The ability to incor-
porate multiple modalities allows for a smooth and intuitive user experience,
enabling educators to convey complex concepts with clarity and precision [8].
In medical education, these technologies hold immense potential to benefit both
teachers and students. However, the usability of the aforementioned modalities
is confined to some constrained setups that limit the possibility of interactive
augmentation anywhere. Researchers have argued that interactions with vir-
tual objects using hand gestures are more natural than interactions using other
devices [5,9].

Gesture-based interaction techniques can be broadly categorized into vision-
based and sensor-based systems. While vision-based approaches are affordable,
most existing systems are not robust as they are prone to background complex-
ity, illumination, colour, the shape of the hand, finger movement, occlusion etc.
On the contrary, sensor-based techniques use sophisticated sensors like Kinect
or Leap Motion Controller to handle gestures. However, sensors often have some
limitations. Firstly, sophisticated sensors are generally expensive. Secondly, the
life-cycle of a sensor is always unforeseeable, e.g., Microsoft Corporation discon-
tinued Kinect in few years after its successful launch. Thirdly, most sensors need
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an uninterrupted power source and are not portable enough to support inter-
active AR anywhere. Apart from the above limitations, some of the available
mixed reality interactive devices, such as Magic Leap 1, Microsoft HoloLens 2,
Mira Prism Pro, or Apple Vision Pro, are expensive and not affordable to the
masses.

Thus, after aligning the thoughts in a similar direction, a feasible, real-time,
and inexpensive gesture-based interactive AR framework has been proposed in
this article. Using the presented idea, teachers can utilize simple and natural
hand gestures to elucidate intricate anatomical structures, while students gain
access to visual representations that closely mimic real-world objects. The pri-
mary focus of this article is to harness the power of AR to enable educators to
superimpose virtual human organs onto real human subjects with proper align-
ment. By doing so, audiences can observe the size, shape, and position of organs
relative to an actual human body, enhancing their understanding of anatom-
ical relationships and spatial orientation. This approach has the potential to
significantly improve the teaching of anatomy, providing students with a more
engaging and comprehensive learning experience.

Fig. 1. The setup process involves connecting the webcam and projector to the com-
puter, positioning the webcam to capture the demonstrator, and aligning the projector
to ensure a clear display

1.1 Technical Setup

The proposed AR system has an easy-to-use technical setup. It is designed to
enhance educational experiences in anatomy at an affordable cost. The setup
of the proposed system is demonstrated in Fig. 1. The system requires basic
hardware: a computer, a webcam, and a projector. The computer manages video
processing, image recognition, and AR overlay tasks. The webcam captures live
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video of the demonstrator standing in front of it and streams it to the computer,
which then processes the visual input and superimposes anatomical structures
onto the video feed. The projector, connected to the computer, displays these
augmented visuals on a large screen, making it easier for participants to follow
the presentation.

The software workflow begins with the webcam capturing real-time video of
the demonstrator. The computer then uses pose detection techniques to track key
points on the body, allowing for an accurate overlay of 3D anatomical structures.
This augmented video feed is projected onto a large screen for audience viewing.
The system also supports gesture-based interaction, enabling teachers to manip-
ulate virtual organs through simple hand movements. This includes changing,
scaling, or repositioning the organs, allowing for an interactive presentation.

2 Proposed System

The proposed system uses AR technology with advanced Artificial Intelligence
(AI) algorithms to enhance medical education through immersive and interactive
learning experiences. As seen in Fig. 2, the proposed system is composed of three
primary modules: the tracker module, the AR module, and the 3D rendering and
interaction module. The ensuing subsections explain the detailed description of
these modules for a comprehensive AR-powered medical education system.

2.1 Tracker Module

This module generates the metadata that will be required by the other modules
for the seamless integration of the whole system. It serves as the computational
backbone of the system, leveraging computer vision algorithms to analyse real-
world data and channel relevant information to the AR module and 3D rendering
modules. This metadata includes the tracking components as well as the approx-
imate landmark coordinate values of a human standing in front of a camera. The
subsequent processing and portrayal of the anatomical organs in the proper loca-
tions on a real human body depend on the landmark values generated by the
tracker module. This module consists of various sequential components, includ-
ing human body detection, body landmark generation, real-time pose tracking
and landmark data pipe.

We have used MediaPipe [16] baseline architecture to build the pipeline to
detect the human body as well as the pose landmarks. This information can
be used to track the position and movement of the human body within the
environment accurately. The pose landmarks are the 3D points that can be used
to enable the precise placement of virtual organs relative to the human body.

This proposed system uses the MediaPipe’s pose landmarker, an advanced
deep learning (DL) solution for high-fidelity human pose tracking which uses the
blazePose model to predict 33 human landmark points as depicted in Fig. 3 [16].
The main feature of this model is its ability to process each frame of the input
live feed from the camera in real time and produce continuous pose estimation,
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Fig. 2. Complete methodology architecture of the proposed system consists of three
modules: Tracker module, AR module, and 3D organ rendering and interaction module.
The interaction between these three modules builds our proposed medical AR system

as seen in Fig. 4. These pose estimation landmarks are sent to the AR module
to render a 3D virtual skeleton over the real human body.

Landmark Data Pipe: This pipe acts as an interface between the tracker and
the AR modules, as mentioned in Fig. 2. The metadata generated in the tracker
module is transmitted through this data pipe to the AR module for the accurate
placement of the virtual skeleton over the human body.

2.2 AR Module

The purpose of the AR module is to overlay computer-generated 3D virtual
objects over the actual environment after obtaining the required data from
the tracker module. This allows for the easy integration of anatomical mod-
els into real-world environments. However, the data in the tracker module uses
OpenCV’s [4] coordinate frame-of-reference while the AR module refers the
Unity’s coordinate frame-of-reference as shown in Fig. 5. To maintain the syn-
chronization between these two frame-of-references, we need a transformation
before the actual rendering in the AR module. Hence, the AR module consists
of two main parts: the coordinate transformer and the rendering component.
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Fig. 3. Pose landmark detector [16] gives the 33 landmark points mapped to specific
parts of the body

Fig. 4. Camera feed takes the human body as input and pose landmarker estimates
the body pose using human landmark points

Together, these two components of the AR module, are employed to superim-
pose virtual organs onto the human image.

A. Coordinate Transformer. As specified earlier, the tracker module and the
AR module use different coordinate systems. Thus, the landmark data points
generated in the tracker module need to be transformed before they can be
used inside the AR module. By looking at the coordinate frame-of-references in
Fig. 5, we can say, they only differ by the direction of the y-axis. The task of the
coordinate transformer is to ensure the aforementioned necessary transformation
which can be used to develop an AR environment in Unity. If Pt (xt, yt, zt)
and Pa (xa, ya, za) refer to the point in the tracker module and AR module,
respectively, they can be synchronized by a transformation matrix T as in Eq. (1),

Pa = TPt =⇒
⎡
⎣
xa

ya
za

⎤
⎦ =

⎡
⎣
1 0 0
0 −1 0
0 0 1

⎤
⎦

⎡
⎣
xt

yt
zt

⎤
⎦ (1)
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Fig. 5. The different coordinate frame-of-reference used by tracker module (OpenCV
framework) and AR module (Unity framework)

B. Rendering Component. After the 3D landmark points from the tracker
module are converted to the coordinate system that Unity uses, the rendering
component uses the transformed coordinate points to project the virtual organ
into a real-world setting. The rendering component dynamically adjusts the posi-
tion, orientation, and appearance of virtual organs based on the user’s position.
Vuforia engine in Unity is used for rendering the virtual 3D object in the AR
environment setup. It uses the device camera to view and understand the real-
world environment. The transformed coordinate points act as reference points
to place virtual objects in the AR environment. The virtual human skeleton
has been superimposed over the human body using reference points as shown in
Fig. 6.

Fig. 6. Camera feed takes the human body as input; pose landmarker generates the
landmark points and estimates the body pose; and finally human skeleton is augmented
over the human body

Rendering virtual organs accurately on a detected human presents signifi-
cant challenges, particularly in terms of ensuring precise alignment and scaling
relative to the individual’s pose and dimensions. Accurate human pose detection
is crucial for this process, as it forms the foundation for scaling, rotating, and
transforming virtual organ objects to match the human body’s dimensions and
orientation. Given that the entire body might not be visible in the camera frame,
the system relies on landmark points to infer body position and proportions. By
dynamically adjusting the virtual organs based on the detected landmark points,
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the system achieves accurate placement and scaling, resulting in a realistic and
educationally effective augmented reality experience.

2.3 3D Organ Rendering and Interaction Module

This module provides an extension for overlaying and interacting with 3D vir-
tual anatomical organs after the tracker module and AR module tracked and
superimposed the 3D virtual skeleton over the human subject. The two main
sub-parts of this module are the 3D organ rendering and 3D organ interaction.

Fig. 7. Physical organ cards which will be identified by the organ classifier for appro-
priate organ activation and rendering

A. 3D Organ Rendering: This part uses the coordinate information gathered
from the tracker module to render 3D organs over the human body at the correct
location and interact with them seamlessly. AR module helps in the proper
rendering and interaction of the organs by creating an AR environment set up
for all the virtual structures. Each organ is associated with the organ card which
acts as a fiducial marker for that organ. Firstly, physical organ cards, as shown in
Fig. 7, are brought in front of the camera for recognition. These physical cards go
through an organ classifier algorithm for the accurate identification of the organ.
Depending on the identification result, the respective organ should be generated
in real-time based on the pose of the human subject and superimposed over the
human body. This approach will help the presenter to give more visual clues
to the audience and it is more robust than any other forms of teaching like
verbal instructions. For accurate identification of the organ cards, the Vision
Transformer (ViT) algorithm is used with a custom dataset to train the classifier.

The Vision Transformer (ViT) algorithm can learn from large diverse
datasets, uniform feature representation and strong information propagation to
achieve remarkable performance. Due to its high performance and less need for
vision-specific inductive bias, the transformer has gained much popularity in the
computer vision community. Research studies have also shown that ViT can
perform better than convolutional and recurrent neural networks on some visual
benchmarks [10]. Thus here, the ViT algorithm is used to recognize the organ
card shown in front of the camera. A detailed explanation of how to produce
virtual 3D organs from physical organ cards using ViT is described below:
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Fig. 8. The organ image goes through a patch embedding process to generate
image patches which are then flattened and transformed and then fed into the trans-
former encoder which consists of self-attention layers and feed-forward neural networks.
Finally, the embeddings are sent to the classification head for organ classification

V ision Transformer. ViT transforms images into sequences of fixed-size
patches, enabling efficient processing and scalability. we resize the input image
to 224 × 224 pixels and extract patches of size 16 × 16 as shown in Fig. 8 [6].

◦ Patch Embedding: Each 16 × 16 patch is linearly embedded into a token
representation. Let X denote the input image and P represent the set of
patches extracted from X. Each patch pi is embedded into a token xi using
a learnable linear projection:

xi = W · pi + b (2)

where, W and b are the weight matrix and bias vector, respectively.
◦ Transformer Encoder: The token sequence undergoes multiple Trans-

former encoder layers, capturing global dependencies and learning hierarchical
representations. Mathematically, at layer l, H l = Transformer Layer(H l−1),
where H l represents the hidden representations.

◦ Classification Head: The pooled token embeddings are passed through a
classification head to predict organ class probabilities. Let z denote the pooled
token embeddings. The predicted probability distribution over organ classes
is obtained as

ŷ = Softmax(Wc · Pool(z) + bc), (3)

where Wc and bc are the weight matrix and bias vector of the classification
head.
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We fine-tune the pre-trained ViT model on the dataset of organ images to adapt
it to our task requirements.

Fig. 9. Organ classifier identifies the organ card and the corresponding organ is acti-
vated in the accurate body location

Once the organ is classified and identified it is sent to the AR module through
the organ data pipe for further organ rendering. The body coordinates generated
from the tracker module will be utilised to find the accurate position of the organ
in the human body. Finally, the 3D organ will be activated and rendered in the
correct location of the human body as shown in Fig. 9.

B. 3D Organ Interaction: This component interprets hand gestures made
by presenters or demonstrators in the field of view (FOV) of the camera. It
translates these gestures into simple text commands, which are then passed to
the AR module for action. The gesture recognizer is thoroughly discussed below.
Gesture Recognizer. The gesture recognizer component is designed for real-
time hand gesture recognition. Its architecture comprises multiple layers, each
serving a specific function to enable accurate and efficient recognition of hand
gestures. The component operates within a framework tailored for inference from
sensory data, with a focus on modularity and scalability. Below is a breakdown
of the key elements and their functionalities:

◦ Image Transformation Layer: This initial layer preprocesses the input
image, transforming it into a format suitable for further analysis. This
includes resizing, normalization, and noise reduction, ensuring that the sub-
sequent layers receive clean and standardized input data.

◦ Hand Detection Layer: Following preprocessing, the hand detection layer
identifies and segments the region of interest corresponding to the hand within
the image. This isolates the hand from the background and other irrelevant
elements, thereby enhancing the accuracy of gesture recognition.

◦ Landmark Detection Layer: Once the hand region is detected, the land-
mark detection layer identifies the position of predefined points on the hand,
typically represented as landmarks or key points. These points capture impor-
tant anatomical features of the hand as shown in Fig. 10 and are subsequently
translated into three-dimensional coordinates to provide spatial information.
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◦ Gesture Identification Layer: Building upon the landmark coordinates,
the gesture identification layer classifies the current hand configuration
into predefined gestures. This classification process involves comparing the
detected landmarks with reference points corresponding to known gestures,
utilizing techniques such as machine learning or pattern recognition. The
identified gesture, along with the landmark points, is then sent to the output
layer for further processing or visualization. Figure 11 shows how the OPEN
PALM gesture is detected and used to increase the size of the heart object.

Fig. 10. Hand landmarker generates 21 hand landmark points mapped to specific parts
of the hand

Fig. 11. The gesture recognizer recognizes the OPEN PALM gesture, and the organ
size increases until the gesture is recognized

Fig. 12. Pipeline of the complete methodology: 1. Body pose detection using land-
marks, 2. Skeleton projection over the body using the body pose data, 3. Organ card
recognition using organ classifier, 4. Corresponding organ projection at accurate body
location, 5. Gesture recognition using gesture recogniser, 6. Organ interaction according
to gesture



44 V. Puthannadathil Reghunatha Kumar et al.

Fig. 13. Real-time tracking of the human body and overlaying human skeleton over
the human body in AR environment

3 Results and Discussion

The overall insight into the pipeline of the complete methodology is depicted
in Fig. 12. The proposed AR system addresses the challenges encountered in
traditional medical education methods by providing immersive visual represen-
tations and interactive experiences. Through rigorous testing and evaluation, the
following key findings emerged:

(i) Real-time Tracking and Visualization: By incorporating Mediapipe
human pose tracking, the proposed system achieves real-time tracking of the
user’s movements, ensuring dynamic alignment and visualization of organs
relative to the user’s body position, as demonstrated in Fig. 13. This real-
time tracking enhances the realism and immersion of the educational expe-
rience, facilitating a deeper understanding of anatomical relationships and
spatial dynamics.

(ii) Specialized Vision Transformer for Organ Recognition: A special-
ized Vision Transformer model for organ recognition is trained on a dataset
comprising 400 images each of heart, kidney, brain, and other organ classes,
totalling 2400 images across four classes. 80–20% split is used to train and
validate the model. Additionally, 100 images per class are reserved for test-
ing, resulting in a balanced dataset of 400 test images. For model evaluation,
we conduct the training for 50 epochs, monitoring both training and test-
ing accuracy in 10 separate runs. The average training and testing accuracy
have been noted as 98.7% and 96.9%, respectively. The trajectory of the loss
function and corresponding accuracy over the epochs is plotted in Fig. 14.
These visualizations show satisfactory results on model performance. Addi-
tionally, we use a set of organ cards, as depicted in Fig. 7, to further test
the model’s recognition capabilities.

(iii) Accurate Organ Projection: An achievement of our project is the seam-
less projection of human organs onto a tracked human body shown in Fig. 15,
ensuring impeccable alignment and placement within the virtual environ-
ment. By utilising Vision Transformer technology for image recognition,
the system showcases high accuracy in identifying and overlaying anatom-
ical structures onto the user’s body, marking it very useful in advancing
medical education through augmented reality.

(iv) Intuitive Gesture Interaction: Harnessing the power of Mediapipe for
human hand gesture recognition, our system proudly enables intuitive inter-
action with the projected organs. Users effortlessly control virtual objects
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through natural hand movements, seamlessly executing gestures for moving,
scaling, and rotating the organs. This intuitive interface is a testament to
our achievement, elevating user engagement and fostering immersive hands-
on learning experiences.

(v) Enhanced Learning Engagement: Through user testing and feedback,
it was observed that the AR-based approach significantly enhances learner
engagement and retention compared to traditional teaching methods. The
interactive nature of the system promotes active participation and explo-
ration, leading to improved comprehension and knowledge retention among
students.

Fig. 14. Training metrics visualization over the epochs in the seventh run: (left) Loss
vs. Epoch; (right) Accuracy vs. Epoch

Fig. 15. Accurate organ projection and repositioning of organ using the POINTING
UP gesture
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Overall, the results demonstrate the efficacy of the proposed AR solution in
addressing the limitations of current medical education practices. By seamlessly
integrating advanced technologies, the system offers a transformative approach
to medical education, empowering learners with immersive, interactive experi-
ences that bridge the gap between theory and practice.

4 Conclusion and Future Enhancements

The integration of augmented Reality technology into medical education is going
to solve and overcome a lot of traditional challenges being faced in the current
medical education system and make learning better for both students and teach-
ers. Advanced technologies like artificial intelligence and human-computer inter-
action used in this system will increase the engagement and understanding of
students. Several problems faced in the conventional methods of teaching med-
ical science are successfully solved in this system. This system creates a digital
space for the students where they can create, place and manipulate the com-
plex anatomical body organs according to their needs and understanding. The
students own this digital space and they get the power and freedom to learn
medical science in their own way. It helps students to get a better understanding
of spatial relationships and body movements by using real-time tracking and
visualization.

The current version includes the basic functionalities necessary for studying
organ structure and behaviour. The next versions will include the integration of
multi-modal learning such as audio for much better immersive learning. Potential
enhancement may also include the incorporation of animated organ capabilities
into the AR system, so enabling users to engage in interactive manipulation.
The addition and training of more user-defined gestures will also serve for better
manipulation of the anatomical organs.
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Abstract. Detecting anomalies in road scenes is essential for safe
autonomous driving. Existing methods often consider the likelihood of
pixels not belonging to a closed set of classes as the anomaly score.
However, this approach lacks object-level understanding and frequently
results in numerous false positives at boundaries and ambiguous regions.
In this paper, we present a novel method that directly computes the
probability of pixels being anomalous and outputs both anomaly seg-
mentation results and score maps. Our approach utilizes the rich seman-
tic information correlated to linguistic concepts in Stable Diffusion to
compensate for the low coverage of anomalies caused by limited anno-
tated samples. Using a query-based segmentation model, we transform
the proposals into masks of both in-distribution and out-of-distribution
objects. Additionally, we introduce an image-mask-image pipeline to gen-
erate various annotated data as outliers for supervised training. Exten-
sive experiments across multiple benchmarks confirm that the proposed
method outperforms previous state-of-the-art methods in road anomaly
segmentation. Code is available at https://github.com/huachao0124/
P2A.

Keywords: Road anomaly detection · Stable diffusion · Semantic
segmentation

1 Introduction

Most visual tasks assume a closed-world scenario with a fixed set of known cat-
egories. With sufficient annotations. However, for anomaly detection in driving
scenarios, the road may present anomalies of varying sizes, locations, and types,
including but not limited to animals, stones, and garbage. The limited num-
ber of annotated samples with anomalies makes supervised anomaly detection
extremely challenging.

Existing methods hold a very intuitive reverse thinking that the less likely an
object belongs to a known category, the more likely it is an anomaly. How to mea-
sure the probability that a pixel does not belong to a known category is crucial for
determining the model performance. Some methods rely on that multiple mod-
els usually give the same prediction for known categories, while they often show
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inconsistencies in anomalous regions. They employ segmentation module ensem-
ble [12] or Monte Carlo sampling [20] to obtain multiple segmentation maps.
However, this leads to much higher inference costs and suffers from unsatisfac-
tory results from uncontrollable generalization. Other methods utilize Softmax
probability entropy [3], maximum logit [19], or the sum of logits [16,27,33] for
known categories as confidence scores. This reverse scoring lacks object-level
comprehension, leading to high false-positive rates at boundaries between differ-
ent semantic segments and ambiguous regions. Moreover, segmentation models,
such as DeepLabv3 [4], typically approach segmentation as per-pixel classifica-
tion, generating probability distributions for every pixel in the image, which may
output masks that only partially cover anomalous regions, failing to capture the
entire extent of the anomalies. Although some recent approaches [27,30] adopt
mask classification based segmentation model, Mask2Former [5] that transforms
proposals to masks with classification distribution, their design still relies on
supervision at the pixel level, suffering the same problem as mentioned above.

cat dog sofa grass

boat train sea land

pet

transport

Fig. 1. Heat maps of cross attention weights between the text embedding of the noun
and the visual representations. Linguistically related concepts (e.g., ‘cat’ and ‘dog’)
can activate each other, potentially enabling the model to generalize to novel objects
not present in the training data

Vision-language models have shown promise in zero-shot classification [29]
and open-vocabulary segmentation [14,22]. For instance, CLIP [29] trained by
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contrast learning on billion-scale image-text pairs learns rich expressive multi-
modal features that capture broad concepts. Stable Diffusion [31] uses the text
encoder of CLIP [29] to control the generated image through cross attention,
which also inherits the multi-modal representations. We use Stable Diffusion [31]
to generate some images and extract the cross-attention maps between the text
embedding of the noun and the visual representations. These maps are then
averaged across all attention heads and layers to generate the heat map, as
demonstrated in Fig. 1. Both ‘dog’ and ‘pet’ indicate the location of the dog.
Besides, ‘cat’ and ‘dog’ can represent each other, while unrelated objects like
‘grass’ and ‘sofa’ cannot. The same observation is also reflected in ‘train’ and
‘ship’. This is because in linguistic concepts, ‘cat’ and ‘dog’ both belong to pets,
while ‘train’ and ‘boat’ are related to transportation. This property benefits
generalization ability, and helps competitive low-shot performances in both seen
and unseen objects compared to full supervision.

In this paper, we propose P2A, a novel method for road anomaly detection
that transforms the Proposals to masks of Anomalies and also directly mea-
sures the probability of objects being anomalies. This forward scoring considers
anomalies on the object level rather than the pixel level, helping to eliminate
false positives at boundaries. The primary challenge is how to enable the model
to deal with various types of anomalies. We approach this in two ways: (1)
Leveraging visual representations aligned with human conceptual understand-
ing; and (2) Synthesizing a comprehensive range of objects with corresponding
masks to mimic the anomalies. Specifically, we utilize the visual representations
from Stable Diffusion [31], which is incorporated with a high-level conceptual
understanding of human natural language. This enables P2A to generalize to
previously unseen objects that share similar semantics with those in the training
set, making directly measuring the probability of pixels belonging to anomalies
feasible. Besides, to train the model on a sufficient variety of anomalies as in
real-world scenarios, we design a novel image-mask-image pipeline that gener-
ates image-mask pairs according to specified categories. This approach offers two
key advantages: first, it circumvents the need for costly manual annotations, and
second, it liberates us from the constraints imposed by predefined categories in
existing datasets.

While ensuring the generalization capability of visual representations, we
then generate masks for every entity. Compared with per-pixel classification
based segmentation approaches [4,41], mask classification based segmentation
models [5,21] have supervision at the whole object level, enabling them to bet-
ter segment entire objects. They first generate a set of candidate masks and
then classify them into known categories or void. For instance, Mask2Former [5]
employs randomly initialized queries to group pixels into proposals. Once
trained, these queries capture both semantic and spatial information, being able
to cluster surrounding pixels with similar semantics. This process is highly com-
patible with visual representations with higher-level conceptual understanding
from natural language, and their combination can generalize effectively to seg-
menting unseen objects. With visual representations enhanced by natural lan-
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guage and queries that group pixels with similar semantics as proposals, our P2A
is able to directly obtain the probability of each mask being an anomaly, in addi-
tion to the likelihood of every pixel belonging to known categories. Experiments
demonstrate that the former (forward thinking) works well for large anomalous
objects but is insensitive to small ones, whereas the latter (reverse thinking) is
overly sensitive to all anomalies as well as boundaries and ambiguous areas. The
combination of both helps achieve state-of-the-art performance across several
benchmarks for road anomaly detection. Notably, the closed-set segmentation
performance remains unaffected. To summarize, the main contributions of this
work are as follows:

– We present P2A, an innovative approach that leverages queries to cluster
pixels with similar semantics into mask proposals. This enables us to obtain
the probability of each proposal representing an anomaly.

– We design an image-mask-image pipeline to generate synthetic images con-
taining objects along with corresponding masks, thereby alleviating the con-
straints imposed by the predefined categories present in existing datasets.

– We conduct comprehensive experiments across multiple datasets, showcasing
the effectiveness and versatility of the proposed method in scenarios under
different conditions.

2 Related Work

2.1 Road Anomaly Detection

Detecting anomalies in road scenes is crucial for the safety of autonomous
driving. Current approaches can be broadly categorized into two lines:
reconstruction-based and uncertainty-based methods. Reconstruction-based
methods assume that the reconstruction networks trained on road scene images
with only known categories may not generalize well to previously unseen objects.
Consequently, areas containing obstacles will exhibit noticeable differences in
appearance between the reconstructed image and the original image. Lis et
al. [25] re-synthesize the image based on the semantic segmentation labels,
which prevents the leakage of anomalous information from the input image.
Uncertainty-based models operate on the principle that segmentation models
will exhibit low confidence or high uncertainty when encountering unseen or
anomalous regions, which is reflected by the output probability distribution or
the logits before the softmax layer. Hendrycks et al. [18] proposes a simple base-
line approach that applies a threshold over the maximum softmax probability to
distinguish between in-distribution and out-of-distribution data. Jung et al. [19]
notices that the distribution of max logits of each known category is significantly
different from each other. Thus, they propose SML, the standardized max logits
calibrated by respective mean and variance obtained from statistics on the train-
ing set. To increase the score difference between known regions and anomalies,
Meta-OoD [3] pastes samples from the COCO [24] dataset as out-of-distribution
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proxy and trains the model again to maximize the Softmax entropy on these
samples.

All existing methods adopt a reverse thinking approach, i.e., considering that
the less likely a pixel belongs to a known category, the more likely it is anomalous.
While this reasoning is fundamentally correct, it lacks object-level understand-
ing, leading to numerous false positives at boundaries and areas with semantic
ambiguity. In contrast, the proposed method can directly identify and mask out
anomalous regions, thereby reducing the occurrence of such false positives.

2.2 Open-Vocabulary Segmentation

Open-vocabulary segmentation is an emerging task that aims to interpret an
image by categorizing regions into arbitrary classes specified through textual
descriptions. In human cognition, the concept of “anomaly” serves as a general-
ized term for any unknown or unrecognized entity in a scene. Therefore, we can
view road anomaly segmentation as a specialized subset of the broader open-
vocabulary segmentation task. Some methods [9,23,37–39] first generate class-
agnostic mask proposals and then leverage pre-trained vision-language models
to classify these masked regions. Other methods [14,22] present the task as a
zero-shot generalization task, taking advantage of the correlation between the
visual and linguistic representations in the vision-language model. For instance,
LSeg [22] aligns pixel embeddings to the text embedding of the corresponding
semantic class, which is generated by the text encoder of CLIP [29]. Excitingly,
the trained model exhibits good generalization capabilities for relevant concepts
in language, such as “cat” and “dog”. This demonstrates that the semantics
highly correlated with linguistic concepts hold great potential to enable the seg-
mentation of previously unseen objects.

3 Method

In this work, we reframe road anomaly detection as the binary classification
of masks. We first perform an analysis on how queries serve as proposals in
mask classification based segmentation models. Then We introduce the proposed
method in detail.

3.1 Queries as Proposals

Most of segmentation models predict the probability distribution for every pixel
for the input image. Differently, mask classification based methods [5,21] first
group pixels into regions, and then associate each region as a whole with some
distribution. Mask2Former [5] optimize randomly initialized queries to cluster
pixels with similar semantics into regions. SAM [21] adopts points, boxes, and
texts as prompts to get corresponding masks. We build our method on top of
the Mask2Former [5] architecture. Below, we will briefly review how semantic
segmentation is formulated as a mask classification problem.



P2A: Transforming Proposals to Anomaly Masks 53

Given an image x ∈ R
3×H×W , the backbone extracts multi-resolution feature

maps {fs ∈ R
Cs×Hs×Ws}Ss=1, where S represents the number of resolutions. Then

the pixel decoder unifies the channel dimensions of these features and processes
them except the highest resolution one with deformable attention for multi-scale
semantic information and generates per-pixel embeddings {es ∈ R

Cp×H×W }Ss=1.
The transformer decoder holds N queries q ∈ R

N×Cq . In each block of the
transformer decoder, there is a self-attention on q, a cross attention between q
and {es}Ss=2, followed by a feed-forward network. Through the updating process
in the transformer decoder, q are transformed to candidates qc ∈ R

N×Cp . The
masks m ∈ R

N×H×W are generated by the dot product of qc and e1, with
sigmoid σ for normalization:

m = Upsample(σ(qce1)). (1)

Meanwhile, the corresponding classification distribution c ∈ R
N×K are gener-

ated by a simple MLP followed by a Softmax:

c = Softmax(MLP(qc)). (2)

The logits l ∈ R
K×H×W are the probability weighted masks over all queries:

l =
N∑

n=1

cn · mn. (3)

query 1 query 2

Fig. 2. We examine the masks and corresponding categories predicted by queries on
the Cityscapes validation set. Left: The classification results of two queries. Right:
The masks’ centers of two queries. Once trained, queries serve as proposals, indicating
potential categories and locations. Each query consistently contributes to a specific
semantic group, including one or more categories

During training, the predicted segments are matched with the ground-truth
segments through bipartite matching. The corresponding queries gradually learn
semantic and spatial information through this process. Once training is com-
pleted, these queries serve as proposals, indicating the locations where certain
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objects may be found. It is noteworthy that a specific query may contribute
not only to the prediction of a particular semantic segment but also to multiple
semantic segments that share similar semantics. We randomly select 2 queries
and calculate their classification results and centers of masks on Cityscapes [6]
validation set. As illustrated in Fig. 2, query 1 consistently contributes to the
segmentation of the “road” category, with the centers of the predicted masks
always located on the road surface. On the other hand, query 2 is usually classi-
fied as the “motorcycle” and “bicycle” categories. This visualization verifies that
the queries encode both semantic and spatial information. In other words, the
queries, serving as proposals, are capable of grouping surrounding pixels with
similar semantics into a cohesive whole.

Our analysis suggests that the queries can generalize to novel objects with
visual representations semantically similar to those in the training set. To address
the challenge of segmenting an unlimited range of anomalies, we implement two
key strategies: (1) Improving generalization by utilizing visual representations
that align with linguistic concepts (Sect. 3.2); (2) Synthesizing a diverse variety
of images with corresponding masks as pseudo anomalies (Sect. 3.3).

Semantic masks for known classes

Instance masks for anomalies

class

mask

class

mask

class

mask

class

mask

Transformer 

Decoder

Pixel Decoder

Stable Diffusion

Backbone

Hungarian 

Matching

Forward scoring Reverse scoring Composite scoring 

Image-mask-image 

Anomaly Generator

Queries

Additional queries

Fig. 3. Overview of the proposed method. During training, we use Stable Diffusion to
generate various anomalies with masks to train the model for masking out anomalies
directly. During inference, Stable Diffusion helps extract visual representations with
concepts from natural language. Then the queries are able to group pixels with similar
semantics. Both forward scoring and reverse scoring help to detect the anomalies

3.2 Proposals to Masks of Anomalies (P2A)

The overview of the proposed method is illustrated in Fig. 3. We first extract the
multi-scale feature maps using both ResNet-50 [17] and Stable Diffusion [31],
and concatenate the feature maps of the same resolution across the channel
dimension. To avoid increasing the cost, we freeze the parameters of the diffusion
model and train the remaining components on Cityscapes [6] to fit road scene
data. Once trained, the queries hold the ability to serve as proposals and the
transformer decoder can transform the proposals to masks of known categories.

Next, we train the model for transforming the proposals to masks of anoma-
lies. Specifically, we freeze the entire model except for the convolutional layer
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that outputs the mask m and add N additional zero-initialized queries qa on
the original queries q. This ensures that our approach does not compromise the
original model’s segmentation performance. We treat the road anomaly segmen-
tation as a mask binary classification task and adopt the strategy of part instance
segmentation to train the additional queries for anomaly segmentation. Specifi-
cally, given an image-mask pair {x ∈ R

3×H×W ;y ∈ R
K×H×W } with K known

categories, we randomly select K ′ anomalies and paste them on the image. Then
the ground truth segmentation map is split into (K +K ′) masks, with label 0 for
known categories and label 1 for anomalies. That is to say, we perform semantic
segmentation on known categories, but instance segmentation on anomalies. The
reason for the strategy of part instance segmentation is that the semantics of
these anomalies are usually different, we do not expect to use one proposal to
hold all kinds of anomalies.

According to the segmentation process introduce in Sect. 3.1, we can segment
an input image to known categories and anomalies. We would obtain the forward
score map, which is the segmentation logits of pixels being anomalies sp, as well
as the reverse score map, which is the negatives of the segmentation logits of pix-
els belonging to known categories −sn. sp holds an object-level understanding,
minimizing false positives at boundaries. Besides, sp provides a binary segmenta-
tion result, which is more practical in driving scenarios. However, it may struggle
with tiny objects. Conversely, −sn effectively identifies most anomalies but also
produces numerous false positives at boundaries. The verification experiment for
two score maps is detailed in Sect. 4.3. For evaluation, we take both into account
and get the composite score map:

sc = sp − sn. (4)

During training, The queries are matched with ground truth segments by
Hungarian matching as in Mask2Former [5]. For matched queries, the predicted
class distribution is supervised by the cross entropy loss, and the predicted mask
is optimized towards the ground truth by a combination of cross entropy loss
and dice loss. While those unmatched queries are classified as void and their
masks are not supervised. Besides, we also utilize a contrastive loss to encourage
the model to have a significant margin between the anomaly scores for known
categories and that for anomalies:

Lc =
∑

y(h,w)=0

(sc(h,w))2 +
∑

y(h,w)=1

(m − sc(h,w))2, (5)

where h,w are the coordinates on the image, and m is the margin, which is set
to 2 as default.

3.3 Image-Mask-Image Anomaly Synthesis

Most previous state-of-the-art methods crop objects from external segmentation
datasets like COCO [24], PASCAL VOC [10], and then paste them on images
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Gaussian noise

outline

Synthetic image

Add control

Fast denoising

Slow denoising

A photo of a {noun}.

Text 

encoder ControlNet

Add control

Fig. 4. Image-mask-image pipeline for synthesizing annotated samples. The first 10
denoising steps are shared by both the fast path and slow path. Then the fast path
denoises the image for another 4 steps to generate a coarse mask according to the
cross-attention maps. The outline of the mask serves as the conditioning control for
the slow path to synthesize a high-quality image that matches the mask

from Cityscapes [6] as training data. The number of anomaly types is limited by
the annotations of external datasets . To maximize the coverage of anomalies as
much as possible, we propose a simple image-mask-image pipeline to generate
various image-mask pairs, as shown in Fig. 4.

In addition to extracting visual representations, Stable Diffusion [31] is also
employed to generate high-quality images in 50 steps with DDIM sampler [32].
While this process does not produce corresponding masks simultaneously, we
utilize ControlNet [40] to obtain these masks with several additional denoising
steps. As the heat maps illustrated in Fig. 1, the cosine similarity map between
the representations of the image and the embedding of the noun masks out the
object roughly. Based on this, we can average all the cross-attention maps to
get a coarse mask when generating an image. Nevertheless, the mask is not
good enough to fit the contour of the object well. Rather than apply complex
post-processing like some methods [34,36], we utilize ControlNet [40] to add the
contour of the coarse mask as conditioning scribble control to generate an image.
With this image-mask-image pipeline, we get an image-mask pair with the object
specified by the input text. Besides, our pipeline is also compatible with other
segmentation data synthesis methods [34,36] to refine the image-mask pairs.

Fully executing both image-to-mask and mask-to-image processes (50 steps
each) would be computationally prohibitive. To optimize this, we introduce a fast
path for the image-to-mask process and a slow path for the mask-to-image pro-
cess. Specifically, we share the initial 10 denoising steps between both processes.
For the fast path, we apply 4 additional denoising steps and average the cross-
attention maps derived from the attention layers in Stable Diffusion [31]. These
maps captures interactions between visual representations and noun embed-
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dings. Although the image quality produced by fast denoising is poor, the cross-
attention maps sufficiently capture the relevant semantic to generate an effective
mask. For the slow path, we use the mask contour as conditioning control and
denoise the final shared result for 40 steps. This slow denoising produces a high-
quality image that matches the mask.

Our P2A model is able to generalize to unseen objects with similar semantics.
Additionally, we can generate ample diverse image-mask pairs for training. This
enables the proposed P2A to perform forward scoring effectively.

This simple pipeline allows us to generate diverse image-mask pairs across
unlimited categories. We With sufficient samples as pseudo anomalies, and the
generalization capability to previously unseen objects with similar semantics,
we can train the proposed P2A model to directly mask out anomalies, making
forward scoring feasible.

4 Experiments

4.1 Experimental Setup

Datasets. Road Anomaly [25] contains 60 images sourced from the internet,
showing various kinds of unexpected elements in vehicle travel scenes, such as
animals, rocks and cones. Fishyscapes benchmark [1] consists of two subsets:
Fishyscapes Lost & Found (FS L&F) and Fishyscapes Static (FS Static). FS
L&F comprises 100 images from the LostAndFound dataset [28] with fine labels.
FS Static is constructed by blending anomalous objects from Pascal VOC [10]
into Cityscapes [6] validation images. SMIYC Anomaly Track [2] consists of 100
images containing unknown objects of different sizes in different environments.
Implementation Details. We use a ResNet-50 [17] pre-trained on ImageNet-
1K [7] as the base backbone. Throughout the training process, we freeze the
weights of Stable Diffusion v1.5 [31] to save memory and training time. We
first use the AdamW [26] optimizer to train the model on Cityscapes [6] for
90k iterations with learning rate of 1e-4 and batch size of 2. Then we train the
model on images with pasted anomalies for another 5k iterations. When trained
on synthetic anomalies, we freeze all weights of the model but the additional
queries and the last convolutional layer that outputs the mask.
Evaluation Metrics. We report the average precision (AP), the area under
ROC curve (AuROC), and the false positive rate at 95% true positive rate
(FPR95) on all datasets. For SMIYC Anomaly Track [2] dataset, we additionally
report averaged component-wise F1 (mean F1), positive predictive value (PPV),
and the component-wise intersection over union (sIoU gt) as officially provided.

4.2 Main Results

Road Anomaly and Fishyscapes. Table 1 displays the quantitative evalua-
tion results for the Road Anomaly [25] test set, FS L&F, and FS Static [1] valida-
tion set. The Road Anomaly dataset, derived from real driving scenes, presents
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Table 1. Results on Road Anomaly and Fishyscapes validation set. For the Fishyscapes
benchmark, we report results both on FS L&F and FS Static, with the best result in
each column indicated in bold and the second-best result indicated with an underline

Methods
Road Anomaly [25] FS L&F [1] FS Static [1]

AUC ↑ AP
↑

FPR95

↓
AUC ↑ AP

↑
FPR95

↓
AUC ↑ AP

↑
FPR95

↓
SynthCP [35] 88.34 6.54 45.95 89.90 23.22 34.02 76.08 24.86 64.69

SML [19] 81.96 25.82 49.74 96.88 36.55 14.53 96.69 48.67 16.75

Meta-OoD [3] - - - 93.06 41.31 37.69 97.56 72.91 13.57

SynBoost-WR38 [8] 81.91 38.21 64.75 96.21 60.58 31.02 95.87 66.44 25.59

MOoSe [12] - 43.59 32.12 - - - - - -

PEBAL [33] 87.63 45.10 44.58 98.96 58.81 4.76 99.61 92.08 1.52

ATTA [13] 92.11 59.05 33.59 99.05 65.58 4.48 99.66 93.61 1.15

Mask2Anomaly [30] 96.57 79.70 13.45 95.41 69.46 9.31 98.35 90.54 1.98

RbA [27] 97.99 85.42 6.92 98.62 70.81 6.30 98.96 75.43 3.52

cDNP [11] - 85.6 9.8 - - - - - -

P2A (ours) 98.40 89.42 5.95 97.24 65.15 13.98 99.66 96.93 0.11

a significant challenge due to its diverse range of anomaly scales and shapes.
Despite this complexity, P2A demonstrates improvements across all three met-
rics compared to previous state-of-the-art methods, underscoring its effectiveness
and robustness in detecting various anomaly morphologies. For the FS bench-
mark, P2A maintains state-of-the-art or competitive performance. Notably, on
the FS Static dataset, P2A reduces the FPR95 value by nearly 90% compared
to the next best method. Overall, the proposed P2A effectively meets the detec-
tion requirements for obstacles of various categories in real driving scenarios,
exhibiting a robust and comprehensive performance.

SMIYC Anomaly Track. Table 2 presents the quantitative evaluation results
for SMIYC Anomaly Track [2]. The proposed P2A outperforms previous state-
of-the-art methods on most metrics, achieving a mean F1 score above 50% for the
first time on this dataset. Comparing Table 1 and Table 2, we observe that previ-
ous top-performing methods on the Road Anomaly dataset, such as ATTA [13]
and PEBAL [33], show a significant decrease in performance on SMIYC Anomaly
Track. This decline can be attributed to the domain gap between the training
data (Cityscapes [6]) and the evaluation data (SMIYC), which presents a signif-
icant challenge for network generalization. In contrast, the proposed P2A main-
tains excellent performance across both datasets, demonstrating its effectiveness
and robust generalization capability in the face of domain shifts.
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Table 2. Results on SMIYC Anomaly Track. The best result and the second best
result in each column are indicated in bold and with an underline, respectively

Methods
SMIYC Anomaly Track [2]

AP ↑FPR95 ↓SIoU gt ↑PPV ↑mean F1 ↑
Image Resynthesis [25] (ICCV’19) 52.28 25.93 39.68 10.95 12.51

SML [19] (ICCV’21) 46.8 39.5 26.0 24.7 12.2

SynBoost [8] (CVPR’21) 56.44 61.86 34.68 17.81 9.99

Void Classifier [1] (IJCV’21) 36.61 63.49 21.14 22.13 6.49

DenseHybrid [16] (ECCV’22) 77.96 9.81 54.17 24.13 31.08

PEBAL [33] (ECCV’22) 49.14 40.82 38.88 27.20 14.48

Mask2Anomaly [30] (ICCV’23) 88.72 14.63 55.28 51.68 47.16

RbA [27] (ICCV’23) 90.9 11.6 55.7 52.1 46.8

cDNP [11] (ICCV’23) 88.90 11.42 50.44 29.04 28.12

ATTA [13] (NeurIPS’24) 67.04 31.57 44.58 29.55 20.64

NFlowJS [15] (Sensors’24) 56.92 34.71 36.94 18.01 14.89

P2A (ours) 91.5 8.9 55.5 52.2 53.4

Table 3. Ablation study on the
scoring function

Scoring function Road Anomaly

AP ↑ FPR95 ↓
Forward scoring sa 85.87 11.56

Reverse scoring −sn 70.33 18.82

Composite scoring sc 89.42 5.95

Table 4. Ablation study on the number of
anomaly categories

#anomaly categoriesRoad Anomaly

AP ↑ FPR95 ↓
10 71.22 11.73

50 79.5 7.73

150 89.425.95

COCO (163) 86.02 6.68

4.3 Ablation Study

Scoring Function. Compared to previous methods that adopt reverse thinking,
We not only calculate the likelihood of pixels not belonging to known categories,
but also make forward thinking feasible, i.e. , directly estimating the probability
of pixels being anomalies. We evaluate three types of anomaly scores in Table 3
and show several qualitative anomaly score maps in Fig. 5. Forward scoring per-
forms well on large anomalies but struggles with tiny ones, due to limited training
data and feature map downsampling. Reverse scoring effectively identifies pix-
els outside known categories, but lacks object-level understanding, potentially
introducing false positives at boundaries. In contrast, forward scoring directly
predicts masks for objects, considering the presence of objects but potentially
overlooking certain anomalies. By integrating both, the proposed method mit-
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Fig. 5. Visualization of scoring functions. From top to down: input images, grounding
truths, heat maps of forward scoring, reverse scoring, and composite scoring

igates their individual weaknesses, achieving more robust and precise anomaly
detection.
Number of Anomaly Categories. The diversity of anomaly categories is cru-
cial for effectively transforming proposals into anomaly masks. We conduct an
ablation study on the number of anomaly categories and compare performance
with anomalies generated from samples in COCO [24] dataset. Results are shown
in Table 4. As expected, too few anomaly types fail to represent real-world scenar-
ios adequately, while increasing the number of categories improves performance.
Compared to a similar number of categories from COCO, the model trained with
synthetic anomalies performs better. This is because many labels in COCO are
related concepts, such as sheep and cow. We believe that more diverse types of
anomalies could further unleash the potential of the proposed method.
Types of Segmentation. Query-based segmentors unify different types of seg-
mentation within a single architecture. According to the analysis in Sect. 3.1, the
queries contains semantic and spatial information. To accommodate the diverse
semantics of different anomaly types, we implement a part-instance segmenta-
tion strategy for model training. To verify the effectiveness of the strategy, we
also train a model with semantic segmentation for both known categories and
anomalies. We find that models trained with the part instance strategy converge
faster (5000 iterations v.s. 12000 iterations) and train more stably. This improve-
ment is attributed to queries not being forced to learn disparate semantic and
spatial information simultaneously.

5 Conclusion

In this work, we propose a novel method P2A for road anomaly detection by
transforming proposals to masks of anomalies and directly measuring the prob-
ability of objects being anomalies to reduce false positives at boundaries. Specif-
ically, we leverage semantic information, supervised by corresponding texts, to
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help the model generalize to previously unseen objects. We train a query-based
segmentation model using a part instance strategy, which performs semantic seg-
mentation for known categories and instance segmentation for anomalies simul-
taneously. Moreover, we introduce an image-mask-image pipeline to generate
annotated samples to mimic various anomalies in real-world scenarios. Experi-
ments demonstrate that the proposed method achieves state-of-the-art perfor-
mance on different benchmarks, validating the effectiveness and versatility of the
proposed method across different road conditions.
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Abstract. In this paper, we present a general version 2D Shape
Equipartition Problem (2D-SEP) under minimum boundary length. The
goal of this problem is to obtain a segmentation into N equal area seg-
ments (regions), where the number of segments (N) is given by the user,
under the constraint that the boundaries between the segments have a
minimum length. 2D-SEP is defined without any assumption or prior
knowledge of the object structure and the location of the segments. In
this work, we define the 2D-SEP and we propose a fast region growing
based method that solves the general version of 2D-SEP problem. Addi-
tionally, we study the special case of the 2D-SEP in which the intrinsic
boundaries are line segments, proving that it has at least one solution
in convex shapes and presenting a sequential selection method that effi-
ciently solves the problem. The quantitative results obtained on more
than 2,800 2D shapes included in two standard datasets quantify the
performance of the proposed methods.

Keywords: Shape analysis · Shape segmentation · Binary image ·
Image analysis

1 Introduction

Image segmentation is a key problem in computer vision and pattern recognition
with several applications, including object recognition [8], remote sensing [6,30]
and medical image analysis [14,21]. Image segmentation can be formulated as
a classification problem of pixels with semantic labels (semantic segmentation)
or partitioning of individual objects (instance segmentation). Semantic segmen-
tation involves assigning pixel-level labels from a set of object categories (e.g.,
human, car, tree, sky) to all pixels in an image, making it generally more chal-
lenging than image classification, which assigns a single label to the entire image.
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Instance segmentation takes semantic segmentation a step further by identifying
and outlining each object of interest in the image (e.g., separating individual
persons) [16]. Numerous image segmentation algorithms have been developed
in the literature, such as thresholding [18], region growing [27], region merging
[24], k-means clustering [4], watersheds [5], active contours [3], graph cuts [2],
conditional and Markov random fields [6], and sparsity based methods [17]. Over
the past few years, deep learning (DL) models have yielded a new generation of
image segmentation models with remarkable performance improvements [16].

The curve equipartition problem has been defined and solved in [22]. It has
several applications including polygonal approximation [25], signal modelling [26]
and video summurization [22]. According to the curve equipartition problem, the
goal is to locate N − 1 consecutive curve points, so that the given curve can be
divided into N segments with equal chords under a distance function (see Figs. 1
and 2). In [22], we adopt a level set approach to prove that for any continuous
injective curve in a metric space and any number N there always exists at
least one N -equipartition. An approximate algorithm, inspired from the level set
approach is proposed for finding all solutions with high accuracy. In general, the
number of solutions depends on the curve shape and N . There are special curves,
where the number of solutions for some N is infinite. In [22], a geometric proof
is given that the curve equipartition problem has at least one solution for every
injective continuous curve and for any number of chords. Figure 2 depicts two
solutions of curve equipartition problem with N = 6, which are projected on the
curve c(t) (blue curve) with green color points connected with red line segments.
In this problem instance, there exist four different solutions. A possible extension
of the curve equipartition problem is to define and solve it under meshes [28],
images [21] and shapes [20].

Fig. 1. A curve equipartition example for N = 3, |AP1| = |P1P2| = |P2B|.

In this work, we extend the curve N-equipartition into 2D shapes, called 2D
shape equipartition problem (2D-SEP). Therefore, we define and solve the 2D-
SEP that can be considered as a special case of the image segmentation (shape
segmentation) problem with equal segments area and minimum boundary length.
According to the 2D shape equipartition problem, the goal is to compute a shape
segmentation into N equal area segments, so that the length (L) of the intrinsic
boundary between the segments is minimized.
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Fig. 2. Two solutions of curve equipartition problem with N = 6, are projected on the
curve c(t) (blue curve) with the green color points connected with red line segments
[22] (Color figure online).

Fig. 3. (a) A convex 2D shape and its 2D-SEP for N = 2. (b) A convex 2D shape and

the region R1 2D-SEP for N = 4, (|R1| = |S|
4

). (c) A non-convex 2D shape, where the
2D-SEP for N = 2 has no solution under the constraint that the intrinsic boundary
are line segments.

When a convex shape S is given, it is trivial to prove for N = 2 that for
each point A that belong on the boundary of S, there exists one point B, so
that the shape is divided into two equal area segments via the line segment AB.
Let R1(S,AB) and R2(S,AB) be the two regions and |.| denotes the area of a
region. Then it holds that

|R1(S,AB)| = |R2(S,AB)| =
|S|
2

(1)

Figure 3(a) depicts a convex 2D shape and its 2D-SEP for N = 2. For any given
N , it holds that the area of the first region R1(S,AB) should be equal to S

N .
Therefore, it is also trivial to prove that for each point A that belong on the
boundary of S, there exists one point B, so that the convex shape is divided into
two area segments via the line segment AB so that

|R1(S,AB)| =
|S|
N

(2)
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and
|R2(S,AB)| =

N − 1
N

· |S| (3)

where R2(S,AB) is the remaining region. The proof can be based on the analysis
of the monotonicity of the function f(B) = R1(S,AB)|, B ∈ BD(S), where the
boundary of shape S (BD(S)) denotes the domain of the function f(B) . If we
recursively apply the previous procedure for each remaining convex region of
the previous step, in each step k we will get a region of area equal to |S|

N and
a remaining region of area |S| − k·|S|

N . Therefore, this is a constructive proof
showing that for any given N , the 2D-SEP problem has a solution for each
starting point A of the boundary of S, even if the intrinsic boundaries are line
segments. Figure 3(b) depicts a convex 2D shape and the region R1 2D-SEP for
N = 4. This means that the number of 2D-SEP solutions for any N is infinite,
even if the intrinsic boundaries are line segments. However, when a non-convex
2D shape is given, there exist some cases where the 2D-SEP has no solution even
for N = 2 (see Fig. 3(c)).

Figure 4 presents examples of the proposed 2D-SEP for different number
of segments (N ∈ {2, 3, 4, 5}). In the first row, we depict the results of the
proposed sequential selection method that efficiently solves the problem under
the assumption that the intrinsic boundaries are line segments. In the second
row, we depict the corresponding results of the proposed fast region growing
based method that does not assume line segment boundaries. In any case, the
segmentation consist of N equal area segments. However, the intrinsic boundary
length (L) differs by method. In Fig. 4(a), which shows a segmentation of an
apple for N = 2, the proposed sequential selection method yields a lower intrinsic
boundary length L = 46.1. Figure 4(e) depicts a corresponding segmentation
using fast region growing method that yields a higher intrinsic boundary length
L = 48.2. In the rest of the examples, the fast region growing based method yields
lower intrinsic boundary length than the corresponding segmentation results of
the sequential selection method.

Different error criteria have been proposed for image segmentation problems.
The Intersection over Union (IoU) and F-measure are two of the most popular
supervised methods to evaluate the quality of image segmentation, but it requires
the ground truth [29]. Under unsupervised image (color or grayscale) segmenta-
tion methods, where the ground truth is completely unknown, clustering based
criteria such as the heterogeneity of pixels between regions and the homogene-
ity within the region objectively can be used to evaluate the segmentation [10].
Under 2D-SEP problem, no ground truth is given. So we have to select an unsu-
pervised criterion. Additionally, the given image is binary, so no color-grayscale
is given. Similarly with the polygonal approximation [19] problem, the 2D-SEP
problem can be formulated in two ways:

– The problem of minimum error, where the error (e.g. boundary length) is
minimized given the number of segments N .
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– The problem of minimum number of segments, where the approximation error
is bounded and the goal is to find the minimum number of segments (N) that
gives error lower than the given error.

In this work, according to the proposed problem formulation, we select the
first problem formulation of error minimization given the number of segments N ,
under the error criterion of minimum boundary length that may better divide
the shape into N equal area segments. The boundary length criterion is selected,
since in the given shape S there does not exist color information, model error,
or weights for the boundaries to use a more complicated criterion. Additionally,
the same idea called minimum cut has also been used in image segmentation
[13].

In summary, the main contributions of our work are the following: To the best
of our knowledge, this is the first work to define, study and solve the 2D-SEP
problem under minimum boundary length. We proposed a fast region growing
based method that solves the general version of 2D-SEP problem. Addition-
ally, we study the special case of the 2D-SEP in which the intrinsic boundaries
are line segments. We have also proposed a sequential selection method that
efficiently solves the problem. The quantitative results obtained on more than
2,800 2D shapes included in two standard datasets quantify the performance of
the proposed methods.

The rest of this paper is organized as follows. Section 2 presents the prob-
lem formulation of 2D-SEP. Sections 3 and 4 present the two proposed methods
that solves 2D-SEP, respectively. The experimental results are given in Sect. 5.
Finally, conclusions and future work are provided in Sect. 6.

2 Problem Formulation

The 2D Shape Equipartition Problem (2D-SEP) under minimum boundary
length is formulated hereafter. Let S be a given shape and N be the given
the number of equal area segments (regions). Let R = {R1, R2, ..., RN} be
a segmentation of S. Each region Ri, i ∈ {1, ..., N} should be connected,
which means that the pixels of Ri segment belong to the same connected
component. Let BD(Ri, Rj) be the common boundary between the regions
Ri and Rj , i, j ∈ {1, ..., N}. Then, the optimal segmentation of 2D-SEP
R∗ = {R∗

1, R
∗
2, ..., R

∗
N} should satisfy the following constraints:

|R∗
1| = |R∗

2| = ... = |R∗
N | =

|S|
N

(4)

where |.| denote the cardinality operation, e.g. |S| gives the area of shape S
(number of pixels).

R∗ = argmin
R

L(R) (5)

where L(R) the total intrinsic boundaries’ length of segmentation R:

L(R) =
N∑

i=1

N∑

j=i+1

|BD(Ri, Rj)| (6)
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Fig. 4. Instances of the proposed 2D Shape Equipartition problem using line segments
boundaries (first row) and without this assumption (second row) for different number
of segments. In the first row, the results come from the proposed sequential selection
method. In the second row, the corresponding results come from the proposed fast
region growing based method. The number of segments (N) and the intrinsic boundary
length (L) are reported in the caption of each shape.

where |BD(Ri, Rj)| denotes the length of boundary BD(Ri, Rj).
In this work, we also study a variant of 2D-SEP. This includes the following

additional constraint: The intrinsic boundaries between the regions Ri, Rj are
line segments. We call this variant 2D-SEP-LS. This variant makes sense due to
the constraint of Eq. 5, since the simplest solution of a short-length boundary is
the line segment. However, in non-convex shapes, this problem may not have a
solution as depicted in Fig. 3(c). In this work, we have proposed two algorithms
that solves 2D-SEP and 2D-SEP-LS that are described in the following sections.
In order to be able to compare results under different image scales, in our exper-
imental results we have used the normalized total intrinsic boundaries’ length
of segmentation R that is defined by the ratio of L(R) and the outer object
boundary length |BD(S)|.

NL(R) =
L(R)

|BD(S)| (7)

3 SEP-Region Growing Based Method

This Section presents the proposed SEP-Region Growing based method (SEP-
RG) The pseudo-code of the proposed SEP-RG method is given in Algorithm
1. The input of SEP-RG is the shape S (e.g. a binary image) and the number
of the desired regions N of equipartition, and the output is the segmentation R
according to the constraints of the problem as defined in Sect. 2. SEP-RG is an
iterative method. In each iteration step, SEP-RG tries to find the most suitable
neighbor pixel for each cluster (segment) to grow it.
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input : S,N
output: R

1 G = bwGraph(S)
2 C = k-medoid(S,N)
3 foreach i ∈ {1, ..., N} do
4 Di = distances(G,Ci)
5 end
6 F = ON×|S|
7 foreach i ∈ {1, ..., N} do
8 foreach p ∈ S do

9 F (i, p) =
Di(p)

minj∈{1,...,N}−i Dj(p)

10 end
11 Ri = ∅
12 end
13 while true do
14 foreach i ∈ {1, ..., N} do
15 [m,p] = getmin(F(i,:))
16 if isinf(m) is true then
17 return
18 else if m ¿ 1 and isconnected(Ri, p) is false then
19 continue
20 else
21 Ri = Ri ∪ {p}
22 foreach j ∈ {1, ..., N} do
23 F (j, p) = ∞
24 end

25 end

26 end

27 end
28 Ri = correctEqualArea(R)

Algorithm 1: The proposed SEP-RG method.

In the following, we analytically present all the steps of the SEP-RG method:

– The graph G of the connected pixels in the 2D binary image of S is computed
(see line 1 of Algorithm 1). Next, we compute N centroids (C = {C1, ..., CN})
using k-medoid method [9] (with computational cost O(|S|2)) that will be
used for the region growing process. The centroid Ci corresponds on the
region Ri.

– The lengths of shortest paths from each pixel p ∈ S to centroid Ci are then
computed, stored in vectors Di, i ∈ {1, ..., N} (see line 4 of Algorithm 1). This
can be computationally efficiently done in O(N · |S| · log|S|) using Dijkstra’s
Algorithm with adjacency list1.

– For each region Ri, i ∈ {1, ..., N} and pixel p ∈ S, the matrix F (N×|S|) stores
the ratio between the distance between Ci and p (Di(p)) and the minimum
distance between p and all the rest Cj , j ∈ {1, ..., N} − {i} (see line 9 of
Algorithm 1). If this ratio F (i, p) is lower than one, it means that for the
pixel p the closest cluster center is Ci. Furthermore, the lower the ratio, the
better the selection for the region growing process.

– Each region Ri, i ∈ {1, ..., N} is initialized by the empty set (see line 11 of
Algorithm 1).

1 https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/.

https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
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– Next, the main iterative process begins (see lines 13–27 of Algorithm 1). In
each iteration step, for each cluster i ∈ {1, ..., N}, we find the most appro-
priate pixel p for cluster i according to the distance ratio F (minimum of
F (i, :)) that will be added to cluster i. In the case that all pixels of S have
already been assigned, the method ends (see line 16 of Algorithm 1). In the
case p is not connected pixel to Ri and Ci is not the closest center to p, we
continue the process for the next cluster (see line 19 of Algorithm 1). Other-
wise, the pixel p will be included in region Ri and we set the values F (j, p),
j ∈ {1, ..., N} to ∞, meaning that the pixel p can not selected again. It should
be noticed that this iterative process does not guarantee that the resulting
regions have exactly the same area. Therefore, we have proposed the following
extra correction step to solve this problem. The computational cost of this
step is O(|S|2).

– Finally, the iterative procedure correctEqualArea (see line 28 of Algorithm
1), reassigns pixels that belong on the boundaries of the regions. In each
step of correctEqualArea, the region with the small area grows until its area
is equal to |S|

N . The growing process is done in the direction of the larger
neighbor regions.

Taking into account all the steps of the method, we get a total computation
cost equal to O(N · |S| · log|S| + |S|2 + N2 · |S| + |S|2) = O(N2 · |S| + |S|2).

Figure 5 depicts the evolution of the proposed SEP-RG method and the final
correction step for N = 5. Figure 5(c) shows the segmentation of the iterative
region growing procedure (before the correction step), which produces different
segments sizes with areas in the range [1249, 1544] with a total intrinsic boundary
length L(R) = 160.8. In the final segmentation shown in Fig. 5(d), the sizes of
the segments are the same and the total intrinsic boundary length has increased
to 182.4.

Fig. 5. (a), (b), (c) The evolution (see Evol. in captions that reports the percentage
of the classified pixels in each instance) of the proposed SEP-RG method for N = 5
and (d) the output of the final correction step.

4 SEP-Iterative Line Segment Selection Method

This Section presents the proposed SEP - Iterative Line Segment selection
method (SEP-ILS ) that sub-optimally solves the 2D-SEP-LS. The pseudo-code
of the proposed SEP-ILS method is given in Algorithm 2. The input of SEP-RG
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input : S,N
output: R

1 Ā =
|S|
N

2 T = S
3 foreach k ∈ {1, ..., N − 1} do
4 Si = getEquiAreaPartitionLines(T, Ā)
5 T = S − Si

6 end
7 SN = T

Algorithm 2: The proposed SEP-ILS method.

is the shape S (e.g. a binary image) and the number of desired regions N of
equipartition, and the output is the segmentation R according to the constraints
of the 2D-SEP-LS problem as defined in Sect. 2.

– SEP-ILS is an sequential method. Firstly, the shape T , which shows the
remaining part of the shape, is initialized by S.

– In each iteration step, SEP-ILS tries to find the most suitable line segment
that divides shape T into two regions with area Ā and |T | − Ā, so that the
length of the line segment is minimized. The procedure
getEquiAreaPartitionLines (see line 4 of Algorithm 2) computes this divi-
sion by evaluating each pair of boundary point of T , that define a line segment
according to the problem formulation (see Eq. 4 and 5). Firstly, the procedure
detects a set of line segments SLS that divides T into two compact regions
with areas Ā = |S|

N and |T | − Ā, which satisfy the area constraint (see Eq. 4).
Then, the line segment of minimum length is selected from the set SLS . The
computational cost of this procedure is O(|S|2), under the assumption that
the number of boundary points of T is O(

√
(|S|)). The computational cost of

getEquiAreaPartitionLines can be reduced, if we ignore some line segments
that definitely do not satisfy the area constraint. This can be done by pre-
dicting the range of the two areas of the division taking into account similar
line segments with known division areas that have already been examined by
the method.

– After N − 1 selections of line segments, the remaining area of T should be Ā,
so the last region SN = T (see line 7 of Algorithm 2).

It should be noticed that the function getEquiAreaPartitionLines does not
guarantee that it always finds a problem solution, since as explained in Sect. 1,
there exist cases where no solution is found (see Fig. 3(c)). Taking into account
all the steps of the SEP-ILS method, we get a total computation cost equal to
O(N · |S|2).

Figure 6 depicts the intermediate results for each iteration of the SEP-ILS
method for N = 5. In the caption of each figure the length of the estimated
line segment is depicted. In the final segmentation shown in Fig. 6(d), the total
intrinsic boundary length is L(R) = 232.8.
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Fig. 6. Intermediate results for each iteration of the SEP-ILS method for N = 5.
Captions show the corresponding total intrinsic boundaries’ length L(R)

5 Experimental Evaluation

Fig. 7. Twelve sample images form (a) the MPEG-7 dataset and (b) the LEMS
dataset.

The evaluation of the proposed approach was based on two standard datasets
from the literature. More specifically, we employ:

– MPEG-7 [12], which consists of 1,400 binary shapes organised in 70 categories
with 20 shapes per category. This dataset has been extensively used in shape
tasks [1,20].

– A subset of LEMS [11], that is, 1,462 shapes that come from the following
categories of the original database: Buildings, Containers, Fish, Fruit and
vegetables, Misc Animal, People, Robots, Toddlers, and Turtles [20].
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Fig. 8. The average processing time of SEP-RG and SEP-ILS methods under different
values of N for the (a) the MPEG-7 dataset and (b) the LEMS dataset.

Fig. 9. The average value of NL(R) of SEP-RG and SEP-ILS methods under different
values of N for the (a) the MPEG-7 dataset and (b) the LEMS dataset.

Figure 7 shows twelve sample images form the MPEG-7 and LEMS datasets.
The proposed methods have been implemented2 using MATLAB and tested

for each shape of the MPEG-7 and LEMS datasets using nine different number
of segments N, N ∈ {2, ..., 10}. Therefore, we totally produced 9 × (1, 400 +
1, 462) = 25, 758 segmented images. All experiments were executed on an Intel
I7 CPU processor at 2.3 GHz with 40 GB RAM. In Fig. 8, the average processing
time for the execution of SEP-RG and SEP-ILS is depicted as a function of N
without any speed optimization and parallelization. Taking into account the two
datasets, the average processing time of SEP-RG and SEP-ILS methods is 1.30
and 15.61 s per shape, respectively. This result can also be explained by the
higher computational complexity of SEP-ILS method.

2 The code implementing the proposed method together with the datasets will be pub-
licly available at https://sites.google.com/site/costaspanagiotakis/research/shape-
equipartition.

https://sites.google.com/site/costaspanagiotakis/research/shape-equipartition
https://sites.google.com/site/costaspanagiotakis/research/shape-equipartition
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Fig. 10. The percentage Pr of shapes that SEP-RG clearly outperforms SEP-ILS in
terms of NL(R) under different values of N for the MPEG-7 dataset and the LEMS
dataset.

Fig. 11. (a), (b) Satisfactory and (g),(h) poor results of the proposed SEP-RG
method. (c), (d) The corresponding (e),(f) poor and (c),(d) satisfactory results of
the proposed SEP-ILS method. In the caption of each figure the NL(R) is depicted
(in parenthesis).
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Fig. 12. A promising result of the proposed SEP-RG method on the tree detection
problem under low quality dense forest images.
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We compared the proposed segmentation methods under normalized total
intrinsic boundaries’ length criterion NL(R) defined in Sect. 2. Figure 9 shows
the average value of NL(R) of SEP-RG and SEP-ILS methods under different
values of N for the (a) the MPEG-7 dataset and (b) the LEMS dataset. It holds
that under any value of N and dataset SEP-RG outperforms SEP-ILS. It seems
that the higher N , the higher outperformance of SEP-RG. This can be explained
by the fact that as N increases, due to the sequential minimization of SEP-ILS,
it is more possible to get a local minima that is also used for the next step of
SEP-ILS. In contrast with the simultaneous region growing procedure of SEP-
RG, that has not this effect of using a previous local minima solution. This is also
validated by the Fig. 10 that shows the percentage (Pr) of shapes that SEP-RG
clearly outperforms SEP-ILS in terms of NL(R) under different values of N for
the MPEG-7 dataset and the LEMS dataset. It holds that when N = 2, in 75.4%
of the MPEG-7 dataset and in 67.5% of shapes of the LEMS dataset, SEP-RG
outperform SEP-ILS. The outperformance SEP-RG increases for higher values
of N , reaching the values 98.2% and 99.2% for the shapes of the MPEG-7 and
LEMS dataset, respectively. On the average, SEP-RG outperforms SEP-ILS in
91.1% of the segmented examples of the MPEG-7 and LEMS dataset.

Figure 11 shows satisfactory and poor results of the proposed SEP-RG
method. Furthermore, it shows the corresponding poor and satisfactory results
of the proposed SEP-ILS method. In the first two examples SEP-RG clearly
outperforms SEP-ILS in terms of NL(R) criterion, while in the second two
examples SEP-RG clearly under-performs SEP-ILS. In these results, a comple-
mentary behavior of the proposed methods concerning their segmentation per-
formance was observed. In the caption of each figure the normalized boundary
length NL(R) is depicted (in parenthesis). Under any case, the poor result has
at least 50% higher NL(R) than the corresponding satisfactory result.

The proposed method can be applied on segmentation applications, e.g., on
tree detection problem [15], where the goal is to detect trees in aerial images.
When the forest is very dense and the image quality is low, the unsupervised and
deep learning methods is difficult to provide accurate segmentation. Figure 12
shows a promising result of the proposed SEP-RG method on the tree detection
problem under low quality dense forest images. In these examples, even a human
expert is almost impossible to detect the trees. SEP-RG has been applied on the
largest region of the bitmap image derived by RGBVI index as used in [15]. The
number of trees was given to the method by divided the area of the largest region
by a typical tree size. The tree borders are depicted using blue color. Under the
assumption that the trees are equal sized, in Figs. 12(a) and 12(b), 61 and 79
trees where detected by SEP-RG method.

6 Conclusions

In this work, we propose a fast region growing based method that solves the gen-
eral version of the 2D Shape Equipartition Problem (2D-SEP) under minimum
boundary length. We propose a fast region growing based method (SEP-RG)
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that sub-optimally solves the general version of 2D-SEP problem. In addition,
we study the special case of the problem in which the intrinsic boundaries are
line segments, proving that it has at least one solution in convex shapes and pre-
senting a sequential selection method (SEP-ILS ) that efficiently solves 2D-SEP.
The quantitative results obtained on more than 25000 segmentation instances
included in two standard datasets and different number of segments, quantify the
performance of the proposed methods. According to our experimental results, in
most of the shapes SEP-RG outperforms SEP-ILS in terms of minimum bound-
ary length criterion. However, complementary behavior of the proposed methods
has also been observed.

In ongoing and future work, our aim is to apply 2D-SEP on real computer
vision and pattern recognition problems where the goal is to provide segmenta-
tion of a given 2D shape. Finally, we plan to extend the proposed framework on
3D shapes and to explore real applications in which the proposed system may
be useful.
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Abstract. Glass, though ubiquitous, is difficult to recognize in an image
due to its transparency. Fine-grained low-level features indicating the
presence of glass, such as refraction and reflection, are weak and sub-
tle. This causes difficulties for existing glass detection models in learning
those features, pushing them to rely on more overt cues, especially the
frame surrounding the glass. Consequently, they can be fooled easily by
frame-like objects. Here, we propose a simple data augmentation scheme
called Random Frame to address this problem. Random Frame inserts
a frame into an image to create an area with a frame but no glass. The
model will receive a penalty if it only relies on the frame. The perfor-
mances of existing models on various datasets improve when Random
Frame is applied while being trained. Our comprehensive experiments
demonstrate that our data augmentation can make models utilize more
low-level features with more confidence in their predictions.

Keywords: Glass detection · Data augmentation · Image recognition

1 Introduction

Although glasses are ubiquitous in everyday scenes, their existence is ignored in
many computer vision tasks, impacting the performances [13] (e.g., depth predic-
tion, instance segmentation, reflection removal). Toward real-world application
of computer vision, such as autonomous navigation for robots or drones, it is cru-
cial to develop a method capable of detecting glass, addressing the limitations
of current approaches.

Detecting Glass surfaces is challenging for mainly two reasons. First, they do
not have their own semantic context [13]. Behind the same piece of glass, arbi-
trary objects can appear, which makes the detection of the glass more difficult.
Second, visual cues such as refraction and reflection indicating the presence of the
glass are both weak, due to its high transparency, and highly variable, depending
on the illumination and the viewpoint. (Imagine standing in front of the window
at night, in a room with lights on. You can see the reflections change as you walk
around, but if you turn off the lights, the reflections will disappear, and all you
can see is the scene outside the window.) Thus, the appearance of glass does not
have a fixed pattern, which makes glass detection an ill-conditioned problem.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15333, pp. 80–93, 2025.
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Fig. 1. Existing method [18] can be fooled by a simple black rectangle inserted into
the input image (Left). Here, the Ground Truth and the two test outputs by PGSNet
[18] trained with and without our proposed Random Frame data augmentation are
shown. (White: glass; black: everything else.) PGSNet trained without Random Frame
predicts the inside of the inserted rectangle as glass. By applying Random Frame during
training, it becomes capable of making correct predictions. Note that the areas under
inserted rectangle is not marked as glass in Ground Truth.

This paper stems from our observation: we noticed that it is not entirely
correct to say that there is no semantic context to the glass. That is, since the
glass is often held in place by a frame, if a frame is detected a glass is probably
inside; and since frames are made of ordinary materials and have simple shapes
such as rectangle, they are easier to recognize than transparent glass, which
makes the frame a useful contextual cue to detect a glass.

Through our experiments, we found that existing methods can be fooled too
easily by the presence of a frame-like object. As shown in Fig. 1, when even a
simple black rectangle is inserted into the input image, PGSNet [18] incorrectly
recognizes its inside as glass, even though the rectangle does not particularly
resemble any kind of frame. It seems that the glass detection model has learned to
use the one contextual cue that exists, which is the frame surrounding the glass,
rather than the difficult-to-learn visual cues such as refraction and reflection.
Though the strategy makes sense to some extent, relying on the frame alone
is obviously not optimal, as there are cases where there is a frame-like object
without a glass inside, such as a half-open sliding window, and a glass without
a frame or with a frame outside of the image.

In this paper, we propose a novel data augmentation scheme called Random
Frame to address this problem. It provides a simple and effective way to cor-
rect over-reliance on the contextual cues provided by frames. In Random Frame,
we extract only the frames around the glasses and overlay them in the training
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images. The augmented image now has a frame inserted, but the inside of the
frame is unchanged, simulating a frame without glass. The ground-truth mask
indicating the presence of glass is unchanged inside the overlaid frame. The mod-
els trained with our data augmentation showed a notable performance increase
on GDD [13], HSO [18], and Trans10K-Stuff [17] datasets.

In summary, our contributions are as follows:

– We propose a novel data augmentation scheme, Random Frame, specific to
the task of glass detection.

– We demonstrate that applying Random Frame at training time can improve
the performance of existing methods by a large margin.

– We conduct comprehensive experiments to show the effect of Random Frame
on what the model learns.

2 Related Work

2.1 Glass Detection

The glass detection task was pioneered by Mei et al. [13], who proposed an atrous
spatial pyramid pooling (ASPP) [2]-like module called the large-field contextual
feature integration (LCFI) to utilize multi-scale features captured from a large
receptive field. To improve the accuracy of boundary localization, [18] introduced
an encoder-decoder architecture with skip connections [4], where the decoder
progressively recovers the spatial resolution of the feature maps while highlight-
ing the common and exploring the differences between features at different levels.
While [8] used reflection as a prior, the semantic contexts are harvested more
explicitly with a pre-train procedure using semantic labels in [10]. Other modal-
ities, such as polarization image [12], thermal image [5], and depth map [9], have
been incorporated to better resolve this hard problem.

2.2 Data Augmentation for Images

Data augmentation is a widely used regularization strategy when training deep
neural networks. It generates a new sample by applying transformations, such
as flipping, rotation, cropping, color jitter, and noise injection, to the original
sample. It can increase the size and the variance of the datasets, which can help
models generalize better. The effectiveness of data augmentation has been shown
in image classification [3,6,7,15,19,20], object detection [19], semantic segmen-
tation [11], etc. The method we propose, Random Frame, shares similarities with
Cutout [3], Mixup [20], and CutMix [19] in either partially occluding the origi-
nal image or combining two different images. Cutout is inspired by Dropout [16],
but it masks out a contiguous area of inputs rather than in a pixel-wise man-
ner. Information about the masked-out area is completely unavailable, forcing
the model to capture the global context rather than relying on specific fea-
tures. Mixup selects two different images. The generated image and its label is
the linear interpolation of selected images and their corresponding labels. The
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motivation for Mixup is to smoothen the decision boundaries of the model by
interpolating data points located between two classes into the distribution of the
dataset. CutMix is a combination of Cutout and Mixup. Instead of masking out
a region from the input image, CutMix replaces the region with a patch from
another image. The label is computed by linear interpolation as in Mixup. The
interpolation factor is the ratio of the size of the inserted patch to that of the
original image.

Fig. 2. The processing flow of Random Frame. Flipping denotes random horizontal
flipping and random vertical flipping. Flipping applied to xB and yB are identical. �,
⊕, and � denote element-wise multiplication, addition, and subtraction, respectively.
NOT denotes an operation that converts 0 to 1 and 1 to 0.

3 Method

3.1 Motivation

Our proposed method, Random Frame, is motivated by observations that exist-
ing method [18] incorrectly predicts the interior of a rectangle inserted in the
input image (Fig. 1). Humans would never make this kind of mistake. From this,
we surmise that the model relies too much on the co-occurrence of glasses and
frames surrounding them.

We theorize as follows. Since glass is often surrounded by frames (e.g., window
panes, glass guardrails, and showcases), the location of frames can be a useful
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hint. Being able to recognize frames is also essential for predicting the boundaries
of glass accurately. When humans recognize glass, they first utilize the location of
frames or frame-like objects with the global context (high-level features) to find
where glass is likely to be. Then, they check the refractions and reflections of light
(low-level features) produced by the glass and make a final prediction. In this
process, low-level features are equally or even more important than high-level
features. However, as described in Sec. 1, such low-level features are extremely
fine-grained and can be easily affected by surroundings. It is more difficult for the
model to learn those features. Therefore, the model failed to capture low-level
features and make the prediction mainly based on high-level features provided
by frames. This is the reason for the failures shown in Fig. 1. Random Frame
artificially creates areas in the image where there is a frame but no glass inside,
by inserting a frame into the image. If the model relies too heavily on features
provided by frames, it will predict the inside of the inserted frame wrongly and
the loss will increase. Hence, Random Frame can force the model to learn to
avoid this by relying more on low-level features provided by the glass itself. We
intend Random Frame to be a regularization method, which can improve the test
accuracy of the model and make the model more confident with its predictions.

Fig. 3. Examples of Random Frame. The first row is the generated image. The second
row is the ground truth of the generated image.

3.2 Random Frame

Let (xA, yA) and (xB , yB) be two samples randomly selected from the training
data, where xA, xB ∈ RW×H×C and yA, yB ∈ {0, 1}W×H denote images and
ground truths, respectively. Ground truth is a binary mask in which 1 indicates
glass while 0 indicates non-glass. First, we apply a random horizontal flip and
a random vertical flip to (xB , yB) in order to increase the variety. Let (x′

B , y′
B)

be the resulting image-ground truth pair. Second, we extract the frame from
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x′
B. Though it is possible to extract the frame using a detection algorithm, it is

computationally expensive. Here, we utilize y′
B to extract the frame heuristically

by assuming all four sides of a glass area are surrounded by a frame. Based on
this assumption, we dilate the region with values of 1 in y′

B as:

y′
DB = Dn(y′

B), (1)

where D denotes the dilation operation, and n is the number of iterations depend-
ing on the size of the input. The dilation operation is performed by a 3×3 kernel
filled with 1. Then, subtracting y′

B from y′
DB:

yF = y′
DB − y′

B , (2)

we use yF as the binary mask of frame in x′
B. Third, we use yF to extract the

frame xF from x′
B, and the background xBG from xA. xBG is added to xF to

obtain the generated image xG. The computations can be written as:

xG = x′
B � yF + xA � (1 − yF ) = xF + xBG, (3)

where � denotes element-wise multiplication. Finally, we generate the ground
truth yG of xG as:

yG = yA � (1 − yF ). (4)

In this manner, (xG, yG) can be generated from (xA, yA) and (xB , yB). No
operation used in Random Frame is computationally expensive. Loading data
with multi-process can make the introduced overhead negligibly small. Figure 2
shows the whole processing flow. Examples are shown in Fig. 3.

A data augmentation called FakeMix [1] was proposed for transparent object
detection. Both motivation and implementation are different from Random
Frame. FakeMix aims to solve the boundary-related imbalance problem while
Random Frame is proposed to force the model to learn fine-grained low-level
features. FakeMix inserts boundaries with a width of 8 pixels, and the ground
truth remains unchanged. In contrast, the width of the frame inserted by Ran-
dom Frame varies depending on image resolution and the shape of the frame, and
the ground truth is modified accordingly. We include comparisons with FakeMix
in our experiments.

4 Experiments

4.1 Experiments Settings

Implementation Details. Random Frame is applied after resizing with 50%
probability. The probability of performing horizontal flipping and vertical flip-
ping on the image from which the frame is to be extracted is also set to be 50%.
The iteration of dilation operation is max(W,H)/10, where W and H denote
the width and height of the image.
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Table 1. Evaluation results on datasets GDD [13], GSD [8], HSO [18], and Trans10K-
Stuff [17]. RFrame denotes our Random Frame. “↑” means larger values are better,
while “↓” means smaller values are better. Random horizontal flipping is applied to
GDNet [13] and PGSNet [18] by default. All results reported are the best among three
runs.

Dataset Method IoU↑ MAE↓Fβ ↑ BER↓
GDD [13] GDNet [13] 84.37 0.085 0.922 7.65

GDNet [13] + RFrame 85.45 0.076 0.937 7.02

PGSNet [18] 86.96 0.066 0.933 6.04

PGSNet [18] + RFrame 88.01 0.060 0.949 5.71

GSD [8] GDNet [13] 78.89 0.071 0.896 8.22

GDNet [13] + RFrame 78.82 0.070 0.896 8.55

PGSNet [18] 81.51 0.059 0.891 7.06

PGSNet [18] +RFrame 81.42 0.059 0.903 7.75

HSO [18] GDNet [13] 75.56 0.118 0.868 10.6

GDNet [13] + RFrame 78.24 0.101 0.888 9.48

PGSNet [18] 78.18 0.099 0.881 9.72

PGSNet [18] + RFrame 80.20 0.085 0.910 8.89

Trans10K-Stuff [17] GDNet [13] 86.30 0.058 0.936 5.53

GDNet [13] + RFrame 87.10 0.056 0.941 5.42

PGSNet [18] 88.20 0.047 0.938 4.95

PGSNet [18] + RFrame 89.83 0.041 0.953 4.36

Evaluation Datasets. We evaluate the proposed method on the GDD [13],
GSD [8], HSO [18], and Trans10K-Stuff [17] datasets. GDD and GSD datasets
consist of both outdoor scenes and indoor scenes, whereas the HSO dataset only
includes indoor home scenes. The Trans10K dataset is a dataset for transparent
object detection. Following [18], we do the evaluations on the Trans10K-Stuff
dataset, which is a subset of the Trans10K dataset.

Evaluation Metrics. We adopt intersection over union (IoU), mean absolute
error (MAE), F-measure (Fβ), and balanced error rate (BER) as evaluation
metrics, following [13].

4.2 Comparison by Architectures and Datasets

We evaluate the effectiveness of Random Frame in comparison with existing
glass detection methods GDNet [13] and PGSNet [18], using GDD [13], GSD
[8], HSO [18], and Trans10K-Stuff [17] datasets. Since the original codes for the
models are not publicly available except for the inference code for GDNet, we re-
implement GDNet and PGSNet by closely following the descriptions provided in
their original papers [13,18]. We re-train the models using the respective training
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Fig. 4. An example of frames extracted from GSD dataset [8]. (a): Reference image
from which the frame is extracted. (b): Extracted frame. (c): Image generated by
Random Frame.

Table 2. Using frames extracted from different dataset. Inside the parentheses are the
dataset from which frames are taken.

Method GSD [8]

IoU↑ MAE↓Fβ ↑ BER↓
GDNet [13] 78.89 0.071 0.896 8.22

+ RFrame (GSD [8]) 78.82 0.070 0.896 8.55

+ RFrame (GDD [13]) 78.81 0.072 0.894 8.53

+ RFrame (HSO [18]) 79.60 0.069 0.899 7.97

PGSNet [18] 81.51 0.059 0.891 7.06

+ RFrame (GSD [8]) 81.42 0.059 0.903 7.75

+ RFrame (GDD [13]) 81.64 0.059 0.906 7.62

+ RFrame (HSO [18]) 82.28 0.059 0.905 6.99

set and then calculate the metrics on test set. Additional details about the re-
implementation and training can be found in the supplementary materials. As for
GSD [8] and GlassSemNet [10], which also take RGB image as input, not only are
their training codes unavailable but the descriptions in their respective papers
[8,10] seem insufficient for re-implementation. Therefore, we do not include them
into the comparison.

The results are shown in Table 1. All four metrics for GDNet [13] and PGSNet
[18] improve on GDD, HSO, and Trans10K-Stuff datasets. On the other hand, the
models do not benefit from our data augmentation on GSD dataset. However, as
shown in Table 2, the performance improves when the inserted frames are taken
from HSO dataset instead of GSD dataset. This indicates that HSO dataset
contains frames more suitable for our purpose. When an object is in front of the
glass, a portion of that object is extracted as a frame. Inserting such frames can
affect the semantic context in the original image, which makes Random Frame
behave similarly to CutMix [19] (example: Fig. 4). The frame from HSO dataset
has the simplest shape of the three datasets, so its impact on semantic context is
the smallest, which may be why the performance improves. Also, the photos in
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Table 3. Comparison with other data augmentations. HFlip, VFlip, and RFrame
denote random horizontal flipping, random vertical flipping, and Random Frame,
respectively. Resizing and Normalizing are applied in Baseline as preprocessing. “+”
means that the data augmentation is applied additionally to the Baseline. All results
reported are of three runs, in “max (average ± standard deviation)” format.

PGSNet [18] IoU↑
Baseline 85.42 (85.24 ± 0.16)

+ HFlip 86.96 (86.76 ± 0.18)

+ VFlip 86.32 (85.94 ± 0.33)

+ Color Jitter 85.29 (85.18 ± 0.12)

+ Cutout [3] 86.39 (86.13 ± 0.23)

+ CutMix [19] 85.81 (85.46 ± 0.33)

+ Rect 86.10 (86.00 ± 0.09)

+ RFrame 86.94 (86.74 ± 0.22)

+ FakeMix [1] 85.64 (85.32 ± 0.42)

+ HFlip + Cutout [3] 87.67 (87.11 ± 0.57)

+ HFlip + Rect 87.61 (87.45 ± 0.26)

+ HFlip + RFrame 88.01 (87.69 ± 0.33)

+ HFlip + FakeMix [1] 87.42 (87.02 ± 0.39)

+ VFlip + RFrame 87.11 (86.94 ± 0.23)

+ Cutout [3] + RFrame 86.53 (86.40 ± 0.22)

+ CutMix [19] + RFrame 86.19 (85.84 ± 0.46)

GSD dataset are taken relatively far from the glass, so features of the glass are
weaker. And there are more of other objects in the image that may be implicitly
playing the role of frames.

4.3 Comparison with Other Data Augmentations

We compare our method with random horizontal flipping, random vertical flip-
ping, color jitter, Cutout [3], CutMix [19], and FakeMix [1]. We adapt Cutout
and CutMix for glass detection as follows. For Cutout, the erased areas are con-
sidered as non-glass. For CutMix, if the inserted patch contains glass areas, then
those areas are considered as glass. We also include a simple variant (Rect) of
Random Frame that inserts a rectangle with a random color as Fig. 1.

The evaluation results are shown in Table 3. When applied alone, Random
Frame achieves comparable performance as random horizontal flipping and out-
performs the others with large margins. Particularly, the superiority of Random
Frame over Rect demonstrates the importance of using real frames. When Ran-
dom Frame is applied with random horizontal flipping, the best result is achieved.
This shows that our method is complementary to random horizontal flipping.
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Fig. 5. Attention map visualization by Grad-CAM [14]. (a): Input. (b): Ground Truth.
(c)-(d): PGSNet [18] without Random Frame. (e)-(f): PGSNet with Random Frame.
Attention maps are generated from the feature maps after FEBF-1 [18] module. Red-
yellow colors indicate stronger response. Note that in the bottom row, the left half of
the window has no glass.

4.4 Visualization by Grad-CAM

In Fig. 5, we show the attention map visualization by Grad-CAM [14] of PGSNet
[18] trained with and without Random Frame. When Random Frame is not
applied, the response is high near the edge of the glass. When Random Frame is
applied, the overall response is higher, especially at the interior of the glass area
(e.g., the first row). The second row shows that the model pays less attention
to the handrail in front and produces a more accurate prediction. The bottom
row is an example showing a half-open sliding window. Although both models
(incorrectly) predict the left side as glass, the difference in the response between
the left side and the right is larger when the model is trained with Random
Frame. Overall, we can see that Random Frame encourages the model to pay
more attention to the interior of the glass area and make the model become more
confident with its predictions.

4.5 Analysis of the Effect on BCE Loss

We investigate the effect of Random Frame on the binary cross entropy (BCE)
loss while training PGSNet [18], with respect to the training and test data.
As illustrated in Fig. 6(a), the training BCE loss becomes a little larger when
Random Frame is applied. This indicates that the Random Frame can deceive
the model and provide the model with more chances to learn. The test BCE
loss is shown in Fig. 6(b). When Random Frame is not applied, the test loss
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Fig. 6. Average BCE loss of PGSNet [18] in training with 95% confidence intervals
(three runs) on the (a) training and (b) test data of the GDD dataset [13]. Note that
the IoU loss decreases during training.

Fig. 7. Example of the edited image. (a): Input. (b): Ground Truth. (c): Brightness of
the glass area is edited to be less. (d): Contrast of the glass area is edited to be less.

keeps increasing. This phenomenon usually suggests that the model overfits the
training data. However, as the test IoU loss decreases during training, it can
be interpreted as the model sacrificing the BCE loss to optimize IoU loss. On
the other hand, Random Frame can keep the test BCE loss flat. Since the BCE
loss reflects the confidence in predictions, we can tell that Random Frame can
improve the robustness of the model. We also suspect that the reason the test
BCE loss does not decrease may be that accurate pixel-wise prediction is too
challenging for this model.

4.6 The Usage of Features from the Glass

We wish to investigate the effect of Random Frame on the model’s reliance on
features from the glass itself, rather than the surrounding area. We artificially
adjust the brightness and the contrast in the glass area in test images and watch
the effect. If the model relies on these cues, the performance would be affected.
Brightness: since the glass area is often brighter than the non-glass area because
of reflection, we modify the brightness inside the glass area (example: Fig. 7(c)).
Contrast: as reflections generally increase the contrast inside the glass area, we
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Fig. 8. Change of average IoU by PGSNet [18] with 95% confidence intervals (three
runs) on GDD dataset [13], when (a) brightness or (b) contrast inside the glass area is
edited. Y-axis is normalized by the IoU when test images are not edited.

Fig. 9. Qualitative results on the GDD dataset [13].

also change it in test images (example: Fig. 7(d)). Note that, in each experiment,
the area outside of the glass area is left unchanged.

As shown in Fig. 8(a), IoU by the PGSNet [18] trained with Random Frame
drops faster as the brightness in the glass areas is decreased. This suggests that
Random Frame encourages the model to utilize more the brightness, or rather
the contrast between glass and non-glass areas. From Fig. 8(b), we can see that
when the contrast inside the glass area becomes less, which makes the reflec-
tions harder to recognize, the IoU also drops faster if Random Frame has been
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applied. Thus, the model seems to become more sensitive to reflections by Ran-
dom Frame. Comparing the two, the gap between the model trained with and
without Random Frame is smaller in the latter figure. We theorize this is because
the reflections only show in a limited region inside the glass area.

4.7 Qualitative Comparison

We show qualitative results by PGSNet [18] on GDD dataset [13] in Fig. 9. Model
trained with Random Frame is less likely to be deceived by frame-like objects
and performs better.

5 Conclusions

We have presented the first data augmentation method specific to glass detection.
Our proposed Random Frame inserts frames into training images to penalize
the model for relying too heavily on features provided by the frames surround-
ing glasses, so that it learns to pay more attention to the interior of the glass
area. We applied Random Frame to existing glass detection models and evalu-
ated them on various datasets. The models received a noticeable performance
increase and became more confident with predictions. Comprehensive experi-
ments showed that it can make models better utilize the low-level features of
glass. The limitation is that it is still difficult for models to make correct predic-
tions in the case of an open window. As future work, we would like to address
this problem by designing a new architecture.
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Abstract. Diffusion models have demonstrated impressive potential in
semantic segmentation tasks. However, these models cannot accurately
segment hidden polyps with complex structures owing to the absence
of multi-scale conditional features for guiding the reverse process of dif-
fusion models. To address this issue, we propose a dynamic multi-scale
conditional diffusion model (PolypSegDiff). First, we design a dynamic
multi-scale integration module to fuse the noise segmentation mask and
the original image, dynamically extract multi-scale conditional features,
and strengthen the network’s ability of identifying polyp areas. Sec-
ond, we design a hierarchical feature enhancement module to extract
and combine image features at different levels. This module signifi-
cantly enriches the semantic diversity of conditional features, enabling
the denoising network to more accurately understand the semantic rela-
tionships between polyps and the surrounding normal tissues. Experi-
mental results across five publicly available polyp segmentation datasets
demonstrate that PolypSegDiff outperforms existing popular methods in
segmentation accuracy, achieving outstanding performance and robust
generalization.

Keywords: Diffusion model · Polyp segmentation · Multi-scale
features

1 Introduction

At present, colorectal cancer ranks as the fourth deadliest cancer worldwide,
accounting for approximately 9.4% of all cancer-related deaths [19]. As major
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precursors to colorectal cancer, the early identification of colon polyps is vital
for the prevention and management of colorectal cancer.

Traditionally, the identification and analysis of colon polyps mainly rely on
the experience of clinicians and manual segmentation, which not only requires
significant time and effort but also is heavily influenced by subjective factors. As
medical image analysis technology advances, automatic polyp segmentation has
become a research hotspot that has attracted much attention. However, the low
contrast of colonoscopic images, varying shapes of polyps, and the distinction
between polyps and adjacent healthy tissue is notably vague, make automatic
polyp segmentation an exceptionally challenging task [11,29].

As deep learning continues to advance, scholars have proposed many auto-
matic polyp segmentation models, which can generally be classified into two
categories: Convolutional Neural Network (CNN)-based segmentation models
[9,10,21,25] and Transformer-based segmentation models [8,14,23,31]. Although
CNN-based segmentation models are effective for polyp segmentation tasks, they
cannot fully consider the relationships and interdependencies between different
regions in the image, lacking a comprehensive insight into the entire image. This
leads to challenges when segmenting polyps that cover large areas or have uneven
distribution. The Transformer-based model is adept at extracting effective global
information, thereby enhancing the global context representation of networks.
Nonetheless, due to only focusing on the global features, they may compromise
the recognition of local details, resulting in a decrease of segmentation perfor-
mance for tiny polyps and polyp boundaries.

Recently, the diffusion model [12] has received widespread attention due to
its excellent feature learning ability in the reverse denoising process [1,7]. Some
scholars employed diffusion models in image segmentation tasks and achieved
good segmentation results [5,6]. For example, Baranchuk et al. [2] indicated
that the U-shaped structure in the denoising diffusion model can effectively
extract the semantic features of images, and initially employed diffusion models
for semantic segmentation tasks. Wolleb et al. [26] were the first to utilize the
diffusion model in medical image segmentation, leveraging stochastic noise in
the model to generate a set of implicit segmentation masks, which effectively
improves the segmentation performance. To intensify feature constraints in the
diffusion process, MedSegDiff [28] integrates the noise segmentation mask into
the encoding process and employs a feature frequency parser to suppress the
high-frequency noise in the diffusion process, thus refining segmentation results.
However, MedSegDiff is prone to produce incorrect masks due to limited global
representation capabilities. To tackle this challenge, Wu et al. [27] enhanced the
MedSegDiff by integrating Transformer to better capture the interaction between
segmentation noise and semantic information, further improving the segmenta-
tion accuracy. In addition, Bozorgpour et al. [4] proposed DermoSegDiff with a
novel boundary-aware loss, exhibiting impressive segmentation performance on
skin lesion datasets.

In summary, diffusion model has shown great potential and application value
in medical image segmentation tasks. However, there are still three main issues
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in applying the diffusion model to polyp segmentation tasks: (1) The above
methods cannot fully consider the complexity of polyps with different sizes when
extracting conditional features, resulting in poor segmentation performance for
various-sized and hidden polyps. (2) The above methods usually only extract
conditional features from the original image or noise mask, ignoring the impact
of feature diversity on segmentation performance. (3) The above methods fail
to integrate features at different levels according to the diversity of semantic
features, resulting in not fully capturing the crucial semantic information for
polyp boundaries, thereby diminishing segmentation accuracy.

To address these issues, we propose a dynamic multi-scale conditional diffu-
sion model for polyp segmentation, called PolypSegDiff. The principal contribu-
tions of our work are summarized as follows:

(1) We design the Dynamic Multi-scale Integration Network (DMIN) to fuse
the features of the noise segmentation mask and the original image, and dynam-
ically extract multi-scale conditional features, which not only effectively reduces
the misleading of noise during feature fusion, but also significantly enhances the
network’s capability to identify polyps with various shapes and sizes.

(2) We design the Hierarchical Feature Enhancement Module (HFEM) for
multi-scale information fusion. HFEM effectively improves the semantic rich-
ness of conditional features by extracting information from different levels, and
enables the denoising network to more accurately capture the spatial interrela-
tions and semantic associations between polyps and the surrounding tissues.

(3) Comprehensive experiments across five datasets for polyp segmentation
indicate that PolypSegDiff is superior to several popular polyp segmentation
methods in terms of accuracy. Notably, it achieves outstanding results, even on
datasets containing more challenging and hidden polyps.

2 Method

Figure 1 illustrates the overall framework of PolypSegDiff. PolypSegDiff mainly
includes three key components: Denoising Network (DN), Dynamic Multi-scale
Integration Network (DMIN), and Hierarchical Feature Enhancement Module
(HFEM). Specifically, PolypSegDiff utilizes the reverse process of the DN to
iteratively obtain clear segmentation masks. Before this, the DMIN integrates
the original image and the noisy segmentation mask from the current itera-
tion to extract multi-scale features. After receiving the multi-scale features from
DMIN, HFEM uses Detail Refinement Module (DRM) and Hierarchical Aggre-
gation Module (HAM) to fuse features from different levels. The fused eatures
are concatenated with the encoder output of the denoising network, and then
input into the decoder of the denoising network for upsampling, allowing the
denoising network to progressively generate clear segmentation results.

2.1 Denoising Network

PolypSegDiff regards the segmentation task as the reverse generative process
based on diffusion model and generates predictions through the denoising net-
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Fig. 1. The overall framework of PolypSegDiff, which mainly includes three important
components: DMIN, HFEM and DN.

work. We implement the denoising network based on Denoising Diffusion Prob-
abilistic Models (DDPM) [12], The denoising network is divided into two main
stages, which are the forward process and the reverse process. During the for-
ward process, Gaussian noise is incrementally introduced to the original image
x over a sequence of continuous steps. The forward process is represented as:

q (x1:T | x0) =
T∏

t=1

q (xt | xt−1) , (1)

where T represents the number of diffusion steps, and xt represents the noise
masks during the diffusion process. In each iteration, the addition of Gaussian
noise follows:

q (xt | xt−1) = N
(
xt;

√
1 − βtxt−1, βtI

)
, (2)

where βt is a parameter that determines the schedule for introducing noise, and
I is the identity matrix of size n × n. The forward process supports sampling at
any step t:

q (xt | x0) = N (
xt;

√
ᾱtx0, (1 − ᾱt) I

)
, (3)

αt = 1 − βt, ᾱt =
t∏

s=0

αs. (4)
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During the reverse diffusion process, the denoising network gradually restores
the original features of the image xt through multiple denoising iterations to
generate the predicted mask x̂0. The reverse process can be expressed as:

pθ (xt−1 | xt) = N (xt−1;μθ(xt, t),
∑

θ(xt, t)), (5)

where θ represents the reverse process parameter,
∑

θ(xt, t) is set to σ2
t =

1−α̂t−1
1−α̂t

βt, and μθ(xt, t) can be represented as:

μθ(xt, t) =
√

αt(1 − ᾱt−1)
1 − ᾱt−1

xt +
√

αt−1βt

1 − ᾱt
x̂0. (6)

We train the proposed PolypSegDiff by optimizing the loss function L(x̂0, x0),
which can be formulated as:

L(x̂0, x0) = Lw
IoU(x̂0, x0) + Lw

BCE(x̂0, x0), (7)

where Lw
IoU represents the weighted Intersection-over-Union loss, Lw

BCE rep-
resents the weighted binary cross-entropy loss. The weighting coefficients are
obtained by calculating the absolute difference between the predicted mask and
the original mask. Specifically, first, we compute the average value of the local
region of the input mask through an average pooling layer, then subtract it from
the original mask and take the absolute value to obtain the importance weight for
each position. Since the mask values of boundary and structural change regions
usually differ significantly from their surrounding average values, this weight
enhances the importance of these regions.

Fig. 2. The structure of DMIN. In the PVT layer 1, we employ GBAE to replace
Overlapping Embedding for feature fusion and noise suppression.

2.2 DMIN

For the polyp segmentation task, the polyp regions are frequently hidden and
difficult to distinguish from the background. Relying solely on a single original
image I as the prior condition in the diffusion steps makes it challenging for the
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network to learn effective semantic information. To effectively guide the denois-
ing network, we design the DMIN module, which can extract rich multi-scale
features and adaptively generate conditional features according to the reverse
process of the denoising network. The main structure of DMIN is illustrated
in Fig. 2. In DMIN, we cascade four PVT layers [24] to extract multi-scale fea-
tures. Each PVT layer consists of an overlapping embedding and a Transformer
encoder, which can extract multi-scale conditional features at different depths.

Fig. 3. The structure of GBAE. Especially, we introduce Gaussian blurring to reduce
the impact of noise and use segmentation masks to emphasize the location and bound-
ary of polyps.

In order to dynamically generate conditional features according to the denois-
ing process, we design the Gaussian Blurring Attention Embedding (GBAE)
and replace the overlapping embedding with GBAE in the first PVT layer. This
mechanism aims to address the specific requirements of diffusion models in med-
ical image segmentation applications. In diffusion model applications, noisy seg-
mentation masks are used to guide the iterations of the model, but the noise in
the masks may mislead the model. By introducing the Gaussian blur layer, we
aim to mitigate the impact of noise, thereby making more effective use of the
noisy masks to highlight the target areas.

Figure 3 presents the detailed architecture of the GBAE. In the GBAE, we
introduce the segmentation mask xt and integrate it into the features of the orig-
inal image to obtain adaptive conditional features, which can enhance the polyp
areas. By combining GBAE and PVT layers, DMIN outputs dynamic multi-
scale conditional features to guide network learning with the diffusion iteration
process.

GBAE mainly includes three steps: first, in the reverse process, the segmen-
tation mask xt of the current step often contains a lot of noise. Directly using
xt to guide the features of the original image will diminish the precision of seg-
mentation. Therefore, in GBAE, Gaussian blurring is employed to reduce the
impact of noise in the segmentation mask xt, thereby elevating the segmenta-
tion capability of the PolypSegDiff. Second, we conduct convolution operations
on the segmentation mask xt and the original image I, respectively, to obtain the
feature maps mxt

and mI , then adding them to generate the fused feature map
mF . Finally, the output of the spatial attention applied on mxt

is multiplied by
mF , to generate more precise conditional features.
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GBAE can be formulated as:

Out = (Conv(GB(xt)) ⊕ Conv(I)) ⊗ SA(Conv(GB(xt))), (8)

where ⊕ represents the element-wise addition, ⊗ represents the element-wise
multiplication, GB is the Gaussian Blurring operation, SA is the Spatial Atten-
tion operation, and Conv is the Convolution operation.

Fig. 4. The structure of HFEM, which consists of HAM and DRM.

2.3 HFEM

To address the issues arising from he diverse sizes and shapes of polyps, along
with the ambiguous boundaries between polyps and adjacent tissues in polyp
segmentation tasks, we designed the HFEM to integrate multi-scale features
and input the fused features into the denoising network to guide the reverse
process.

After DMIN outputs the multi-scale features, it is necessary to effectively
fuse them. Therefore, we design the HFEM to integrate multi-scale features and
input the fused features into the Denoising Network to guide the reverse process.
HFEM mainly consists of Detail Refinement Module (DRM) and Hierarchical
Aggregation Module (HAM). HAM is used to gather semantic cues and localize
the polyp by progressively aggregating multi-scale features. DRM aims to sup-
press noise and enhance the low-level feature representation of polyps, including
texture, color, and edges. Finally, the features from HAM and DRM are fused
through concatenation, and the output of HFEM is input into the denoising
network as conditional features. The structure of HFEM is shown in Fig. 4.
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Specifically, we first use DMIN to extract feature maps F1, F2, F3, and F4 at
four different layers. The low-level feature map F1 provides detailed information
of the polyps, while the high-level feature maps F2, F3 and F4 provide the shape
and boundary semantic features of the polyps.

To capture the hidden polyp details from different dimensions, we input F1

into DRM, which primarily comprises channel attention and spatial attention.
We utilize these two mechanisms to enhance the precise extraction and anal-
ysis of polyp image features. The spatial attention focuses on critical spatial
locations within the image, enabling the model to concentrate on lesion areas
and thereby improving diagnostic accuracy. Concurrently, the channel attention
assesses the contribution of each channel to the overall feature set, emphasizing
the more significant feature channels. This allows the model to effectively capture
the image’s colors and textures and to accurately detect polyps using specific
channel information. By employing these mechanisms, the DRM not only accen-
tuates important feature channels but also accurately pinpoints the locations
of polyps, providing more detailed and precise information. This enhances the
model’s capability to recognize and analyze polyp regions effectively. DRM can
be represented as:

FDRM = SA(CA(F1) ⊗ F1) ⊗ (CA(F1) ⊗ F1). (9)

For the HAM, it utilizes multi-layer cascading and convolution operations
to deeply fuse features from different levels. We process and fuse these features
through multiple convolutional layers, which assist the model in extracting and
integrating features from various levels more effectively. This process enhances
the richness and accuracy of feature representation. Specifically, we first fuse the
high-level features F2, F3, and F4 through multi-layer upsampling and cascading
operations. Secondly, we upsample the high-level feature F4 to the same size as
the feature maps F3 and F2. Then, we conduct convolution operations on each
feature map, and follow by element-wise multiplication and concatenation to
perform feature fusion. Finally, we output the feature map FHAM that contains
rich high-level semantic features. HAM can be formulated as:

F34 = Conv(Concat(Conv(F4 ⊗ F3, Conv(F4))), (10)
FHAM = Conv(Conv(Concat(Conv(F4) ⊗ (F3) ⊗ F2, Conv(F34)))). (11)

The final output of HFEM can be represented as:

Out = Concat(FHAM , FDRM ). (12)

3 Experiments

3.1 Datasets

To evaluate the effectiveness of the PolypSegDiff, we conduct experiments using
five publicly available polyp datasets, including Kvasir-SEG [13], CVC-ClinicDB
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[3], CVC-300 [22], ColonDB [20] and ETIS [18]. Following the previous method
[9], the training dataset has a total of 1450 images, including 900 images from
Kvasir-SEG and 550 images from CVC-ClinicDB. 100 images were randomly
extracted from the training datasets to serve as the validation datasets. For
testing, we evaluate the performance of PolypSegDiff on all five datasets.

3.2 Evaluation Metrics

We employ Dice and IoU, two widely used metrics, to quantitatively evaluate
the performance of PolypSegDiff. In the experiments, we calculate the mean
Dice (mDice) and mean IoU (mIoU) of all test samples. The higher these metric
values, the more precise the segmentation results.

3.3 Implementation Details

PolypSegDiff is trained on a single NVIDIA A30 with GPU with 24GB memory.
During training, the image size is adjusted to 256×256, the batch size is config-
ured to 32, and the maximum number of epochs is set at 200. We employ the
AdamW optimizer with a learning rate decay strategy, with an initial learning
rate of 0.001.

3.4 Comparative Experiment

We compare the PolypSegDiff with current mainstream networks, including
UNet [17], UNet++ [33], SFA [10], PraNet [9], MSEG [15], SANet [25], TGANet
[21], APCNet [30], CFANet [32], CaraNet [16], and DermoSegDiff [4]. The com-
parative experimental results are shown in Table 1.

In Table 1, it can be seen that PolypSegDiff achieves the best results on
the Kvasir-SEG, CVC-300, CVC-ColonDB, and ETIS, and achieves second-best
results on the CVC-ClinicDB dataset. Especially on the two challenging datasets
CVC-ColonDB and ETIS, PolypSegDiff achieves obvious performance advan-
tages, mDice is 6.8% and 3.7% higher than the second-best method, respectively.
It is 0.7% and 0.5% higher than the mDice of the second-best method on the
Kvasir-SEG and CVC-300 datasets, respectively. On the CVC-ClinicDB dataset
with second-best performance, the difference from the best method on mDice is
only 0.2%. Similarly, in terms of the mIoU, PolypSegDiff also achieves the state-
of-the-art results on four different polyp datasets. Notably, our method demon-
strates significant advantages over the advanced diffusion-based method Der-
moSegDiff. PolypSegDiff significantly outperforms DermoSegDiff in both mDice
and mIoU metrics. Therefore, PolypSegDiff has greater accuracy and general-
ization than the comparative methods, and can accurately segment the polyps.
Especially for some challenging segmentation regions, PolypSegDiff can achieve
more accurate segmentation than other comparative methods.

Figure 5 shows the visualization results of PolypSegDiff and eight state-of-
the-art polyp segmentation methods on the polyp segmentation datasets. Based
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Table 1. The comparative experiment on five polyp segmentation datasets. Blue rep-
resents the best results, and red represents the second-best results.

Method Kvasir-SEG CVC-ClinicDB CVC-300 CVC-ColonDB ETIS

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

U-Net [17] 0.818 0.746 0.823 0.755 0.710 0.627 0.512 0.444 0.398 0.335

U-Net++ [33] 0.821 0.743 0.794 0.729 0.707 0.624 0.483 0.410 0.401 0.344

SFA [10] 0.723 0.611 0.700 0.607 0.467 0.329 0.469 0.347 0.297 0.217

PraNet [9] 0.898 0.840 0.899 0.849 0.871 0.797 0.712 0.640 0.628 0.567

MSEG [15] 0.897 0.839 0.909 0.864 0.874 0.804 0.735 0.666 0.700 0.630

SANet [25] 0.904 0.847 0.916 0.859 0.888 0.815 0.753 0.670 0.750 0.654

TGANet [21] 0.894 0.839 0.907 0.855 0.886 0.819 0.707 0.633 0.653 0.578

CaraNet [16] 0.918 0.865 0.936 0.887 0.903 0.838 0.773 0.689 0.747 0.672

APCNet [30] 0.913 0.859 0.934 0.886 0.893 0.827 0.758 0.682 0.726 0.648

CFANet [32] 0.915 0.861 0.933 0.883 0.893 0.827 0.743 0.665 0.732 0.655

DermoSegDiff [4] 0.887 0.830 0.890 0.837 0.854 0.753 0.721 0.652 0.746 0.669

PolypSegDiff 0.925 0.878 0.934 0.886 0.908 0.841 0.841 0.765 0.784 0.698

on visual results, our model’s outputs most closely correspond to the ground
truth. It is obvious that PolypSegDiff always shows robust segmentation capa-
bilities for polyps with different sizes and types, outperforming other models in
terms of adaptability and accuracy.

In addition, PolypSegDiff has superior perception of hidden polyps which are
small in size and difficult to distinguish from surrounding tissues. Specifically,
the fifth column of Fig. 5 presents a particularly challenging example. This polyp
not only has very low contrast with the surrounding tissue but is also located
in a shadow and is very small in area. Despite these challenges, our method is
still able to make predictions that are very close to the actual situation, while
avoiding the generation of artifacts and false-positive regions. Therefore, our
method demonstrates excellent performance in handling difficult-to-recognize
concealed polyps.

3.5 Ablation Study

The proposed PolypSegDiff has two important innovations: first, DMIN is
designed to fuse the features of the noise segmentation mask and the origi-
nal image, and dynamically extract multi-scale conditional features. Secondly,
HFEM is designed to utilize the different characteristics of features at different
levels to extract rich shape and boundary features of polyps as well as multi-
scale information. To verify the effectiveness of DMIN and HFEM, we conduct
ablation study on the CVC-ColonDB dataset between PolypSegDiff and Baseline
based on PVT [24] using the same architecture. Specifically, in Baseline, we use
PVT instead of DMIN, use layer-by-layer upsampling and concatenation instead
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Image

GT

CaraNet

CFANet

SANet

PraNet

SFA

UNet

PolypSegDiff

Dermosegdiff

UNet++

Fig. 5. The visualization results of PolypSegDiff and the comparative methods for
polyps with diverse shapes. GT refers to the ground truth.
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of HFEM. We gradually add DMIN and HFEM modules to Baseline, and calcu-
late mDice and mIoU to prove the effectiveness of the innovations. The results
of the ablation study are shown in Table 2. Experimental results show that both
DMIN and HFEM can markedly enhance the accuracy of polyp segmentation
tasks.

Table 2. Ablation Study on the CVC-ColonDB dataset.

DMIN HFEM mDice[%] mIoU[%]

✗ ✗ 0.816 0.747

� ✗ 0.821 0.750

✗ � 0.828 0.756

� � 0.841 0.765

Image GT Ours

Fig. 6. Two failure cases of the proposed PolypSegDiff. The green outline represents
the GT, and the red outline represents our segmentation results. (Color figure online)

4 Discussion

Despite achieving significant results, PolypSegDiff still has two limitations, which
are shown in Fig. 6. First, in the first and second rows of Fig. 6, PolypSegDiff can
accurately segment the two larger polyps on the left but overlooked the small
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polyp on the right. While PolypSegDiff can identify small hidden polyps, it may
still show bias when processing multiple polyps of significantly different sizes.
Second, in the third and fourth rows of Fig. 6, irregular folds in the colon often
intersect with and closely resemble polyps, potentially leading to misidentifica-
tion. The high similarity between polyps and normal tissue, along with their
diverse shapes, remains a key factor affecting segmentation accuracy. We aim to
enhance PolypSegDiff to more effectively capture the structural details of polyps
and more accurately distinguish them from normal tissue.

5 Conclusion

In this paper, we propose a dynamic multi-scale conditional diffusion model for
polyp segmentation called PolypSegDiff. Initially, we design the DMIN, which
effectively merges the noise segmentation masks with the original images and
extracts multi-scale features, enhancing the perception of the network for polyp
areas. Additionally, we design the HFEM for multi-scale feature fusion, guiding
the denoising network to generate more accurate segmentation masks by pro-
ducing conditional features that contain both the location and details of the
polyps. Experimental results indicate that the proposed PolypSegDiff can effec-
tively identify hidden polyps and precisely delineate the boundaries of polyps
with various shapes.
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Abstract. Concept Activation Vectors (CAVs) offer insights into neu-
ral network decision-making by linking human friendly concepts to the
model’s internal feature extraction process. However, when a new set of
CAVs is discovered, they must still be translated into a human under-
standable description. For image-based neural networks, this is typically
done by visualizing the most relevant images of a CAV, while the deter-
mination of the concept is left to humans. In this work, we introduce an
approach to aid the interpretation of newly discovered concept sets by
suggesting textual descriptions for each CAV. This is done by mapping
the most relevant images representing a CAV into a text-image embed-
ding where a joint description of these relevant images can be computed.
We propose utilizing the most relevant receptive fields instead of full
images encoded. We demonstrate the capabilities of this approach in
multiple experiments with and without given CAV labels, showing that
the proposed approach provides accurate descriptions for the CAVs and
reduces the challenge of concept interpretation.

Keywords: XAI · Explainability · Concepts · Textual Description ·
Text-Image-Embeddings

1 Introduction

One major challenge of deep neural networks is their black-box nature which
makes the interpretation of their behavior difficult. To mitigate this drawback,
multiple approaches have been proposed to highlight relevant parts of the input
data for a given prediction, for example, LIME [27], SHAP [20], GradCAM [28],
LRP [2] and Feature Visualization [24]. Another idea is to explain the internal
mechanism of a deep neural network in terms of concepts that are understandable
and easy to communicate to humans [5,15,26]. One attempt to identify such
concepts is with so-called Concept Activation Vectors (CAVs) [15]. A CAV is a
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Fig. 1. Examples of two CAVs computed from the first residual block of a ResNet50,
trained on Animals with Attributes 2 [31]. The first row of each subfigure shows the
full representative images of the CAVs and the textual descriptions generated based on
the full images. The second row shows the representative receptive fields for the same
CAVs and the textual descriptions are derived from the receptive fields.

vector in the feature space of the activations of a specific network layer. It is
designed to point to the direction of activations that are connected to a specific
human understandable concept.

The idea behind CAVs is that a human defined concept that contributes to
the model decisions has a representation in the model’s embedding space. For
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example, the concept stripe pattern should have a corresponding representation
when the model uses it in the decision-making process to predict a zebra.

In the literature, approaches have been suggested to find CAVs in a super-
vised and an unsupervised manner: While for the supervised approaches example
images that contain the desired concepts are utilized [15,21,33], the unsupervised
approaches use, for example, network bottlenecks to extract CAVs [32,33].

We aim to describe the utilized concepts of a pretrained network without any
assumptions about the concepts and without the need for example images for
the concept. Hence, we focus on the description of an unsupervised discovered
set of CAVs. As the discovered CAVs are given as vectors in the feature space,
the encoded concepts need to be described for humans. A common way is to
show images of a given dataset, which are most similar to the respective CAV in
the hidden representation. However, this introduces the need for interpretation
to derive a compact and communicable meaning from the given images.

To avoid the need for human interpretation, we propose to determine a rank-
ing of textual descriptions for each concept. Depending on the CAV, the tex-
tual descriptions to be ranked, and the fine granularity of the text embedding,
the highest ranked descriptions can be highly redundant. Therefore, we further
derive a single common description based on the k highest ranked descriptions.
Depending on the ranking, this common description can differ from the highest
ranked description.

We build up on existing approaches to describe the information filtered by
individual neurons in a textual way, for example, [23]. In this approach a neuron
is described by generating a textual description for the relevant images of a
neuron for which the neuron has the highest activation. The textual description is
chosen as the best fitting one out of multiple candidates. In contrast to individual
neurons, a major advantage of CAVs is that they represent vectors in the feature
space and not only individual scalar neuron outputs. The total number of CAVs
is usually significantly lower than the number of neurons in the corresponding
layer.

The textual descriptions of the individual neurons in [23] are based on the full
images that are relevant for the considered neuron. However, when the variety
of images in a data set is not large enough, it is often not possible to separate
highly correlated concepts, especially concepts of different degrees of abstraction,
purely based on the full images. One example of the issue of highly correlated
concepts are the concepts insects and verde, see Fig. 1a. An example of concepts
of different degrees of abstraction are the concepts underwater and blue, as in
many cases underwater is a specification of blue, see Fig. 1b. To address this
limitation, we propose to use receptive fields instead of the full images for the
generation of the textual descriptions. By replacing the full images with receptive
fields, we can focus on the parts of the images, where an evaluated concept is
most present. This reduces the noise that can affect the textual description of
the concept.

In summary, the interpretation process of a neural network by ranking textual
descriptions of human understandable concepts is represented by CAVs. Further,
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we derive a single common textual description to decrease the redundancy. Our
main contributions are:

– We enhance the automatic concept discovery in a trained model by interpret-
ing the visual CAVs with textual descriptions.

– We derive a common concept description from the top-k computed textual
descriptions to reduce redundancy.

– We propose using receptive fields to derive the textual descriptions and intro-
duce concept scores to measure the relevance of the receptive fields. By that
the textual descriptions focus on the relevant parts of the images, e.g. only
the parts of the image seen by the model up to that layer.

2 Related Work

Concepts. The idea that certain directions in a model’s latent representation
align with human-understandable concepts was initially proposed by Kim et al.
[15]. They propose to learn a hyperplane in the activation space of a neural net-
work layer that separates images, which include the concept, from other images.
The normal of the hyperplane in the direction of the images encoding the con-
cept is the Concept Activation Vector (CAV). Since then, a lot of effort was put
into the automatic discovery of such concepts activation vectors [9,10,22,32,35].
Interesting for our work is the novel concept discovery algorithm proposed by
Yeh et al. [32], which combines interpretability with a new notion of completeness
which measures how sufficient a set of CAVs is for the explanation of a model’s
prediction behavior. They also introduce a method to rank the found CAVs by
importance called ConceptSHAP which adapts Shapley values [1]. Shapley val-
ues assign importance to a feature by calculating its average contribution in all
possible combinations. One drawback of approaches for automatic CAV discov-
ery is that they rely on images as references for the explanation of a CAV.

Network Dissection. The idea of dissecting a network is to inspect the func-
tion of individual neurons in the network to get insights into the model. The first
work about network dissection provided a method to quantify the interpretabil-
ity of latent representations by comparing neuron activations with segmentation
masks from a concept dataset [3]. This approach aligns individual neuron activa-
tions of a model with specific visual concepts given by the segmentation masks.
One major limitation of this approach is, that the masks needed to be annotated
by humans. Based on this, a segmentation model was proposed in [4] to anno-
tate the masks for each concept. MILAN [12] extends the labeling of neurons to
open-ended natural language descriptions: This approach generates descriptions
of neurons by finding language strings that maximize the mutual information of
the image regions where the neuron is active. To generate the language descrip-
tion, an image-to-text model is required, trained on a labeled data set. To avoid
the need for labeled data, CLIP-Dissect [23] leverages the multimodal training of
CLIP [25], a method that embeds image and text data to a joint feature space.
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Joint Text-Image Embeddings. In recent years, there have been significant
advancements in learning joint text-image embeddings [13,19,25,34]. Text-image
embeddings can be utilized to perform various tasks, such as zero-shot classi-
fication. Contrastive learning based approaches, such as CLIP [25], are trained
to maximize the similarity between positive examples (e.g., images and match-
ing image captions) and to minimize the similarity to negative examples (e.g.,
non-matching image-caption pairs). Approaches such as CLIP have shown good
zero-shot image classification performance on multiple data sets by evaluating
the similarity between the feature embeddings of the class labels and the images.

Post-Hoc Concept-Bottleneck Models. An alternative approach to gener-
ating post-hoc concept explanations is to first create a set of known CAVs and
then find the subset of those CAVs that yield the best performance for a given
model [21,33]. Those approaches assume to have CAVs for all important concepts
and then select the CAVs that can describe the essence of what was learned by
the model. In our approach, the set of CAVs is discovered automatically by
inspecting the model in more detail like in [32], and then designated by textual
descriptions.

3 Method

We propose a method that derives textual descriptions for the concepts a neural
network utilizes to solve an image classification task. The method consists of
three steps, and each step represents a different level of concept description for
a given neural network:

1. The discovery of concepts by concept activation vectors (CAVs), repre-
sented as directions in the feature space,

2. the visual description of the concepts (encoded by the CAVs) with repre-
sentative images,

3. and the textual description of the concepts with words.

The steps are visualized in Fig. 2. In the following, the inputs, the three steps of
the method, and the computed outputs are introduced in more detail.

Inputs. The method is based on a neural network trained on an image clas-
sification task, f , that maps input images to a K-dimensional output vector
representing class probabilities. For a given layer l, for which concepts shall be
extracted from the network, the network is decomposed into two functions hl

and φl, such that f = hl ◦φl. Further, let Dprobe = {x1, . . . , xn} be a probing set,
i.e., a set of n images that can be used for the visual description of the extracted
CAVs. The textual descriptions of the concepts are based on a predefined and
task dependent set of words T . For example, T can contain describing attributes
[3], or the top 20.000 words of the English language [14].
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Fig. 2. Overview of our approach to describe the layer l of a pretrained model f . The
inputs are a concept discovery method, a probing set Dprobe, and a set of textual
descriptions T . We apply concept discovery methods to find a set of CAVs, generate a
set of visual concept descriptions Qj for each CAV cj , then textual concept descriptions
and finally output the top-k descriptions Tk ⊆ T .

Concept Discovery. We describe the embedding of layer l with Concept Acti-
vation Vectors (CAVs). A CAV is a vector that points in the direction of a concept
learned by the model and is embedded in the feature space of the activations of
layer l. The concepts learned at layer l are then represented by a set of m CAVs,
Cl = {c1,l, . . . , cm,l}. We drop the index l in the following when considering only
one specific layer. While the proposed method is independent of the underlying
concept extraction approach, we follow the approach of Yeh et al. [32] to derive
all concepts utilized for a given image classification task.

Visual Concept Description. For the visual description of a given CAV cj ,
we follow the former work [32] to derive a set Qj ⊂ Dprobe of most relevant
images from the probing set. This approach is illustrated in Fig. 3 and will be
described in the following. The relevance of an image xi ∈ Dprobe is determined
based on the similarity between the CAV cj ∈ R

k and its latent representation
at layer l. In detail, consider the latent representation of an image xi at layer l,
which is

φl(xi) =: (x̂1
i,l, . . . , x̂

F
i,l) ∈ R

F×k.

The vectors x̂1
i,l, . . . , x̂

F
i,l are called local feature vectors of xi and correspond to

the activations of each channel of the convolutional neural network after layer l.
We will omit the index l when the connection to the specific layer is clear.
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Fig. 3. Selection of the visual representations for a given CAV cj , compare with Fig. 2
column Visual Concept Description. The vector (v1j (x̂

1
i ), . . . , v

F
j (x̂F

i )) represents the
concept scores between each receptive field of xi and the CAV cj . While [23] select full
images based on the mean score of all receptive fields, we also consider the receptive
field with the highest concept score. Thus, we improve the visual input of the joint
vision-text embedding by cropping xi to the respective receptive field. This creates a
more truthful and more detailed representation of the concepts learned in the hidden
space.

For each local feature vector x̂f
i and each CAV cj a concept score, which measures

the similarity based on the scalar product, i.e.

vf
j (x̂

f
i ) := x̂fT

i cj .

This leads to a vector vj(xi) ∈ R
F of F concept scores,

vj(xi) =
(
v1
j (x̂

1
i ), . . . , v

F
j (x̂

F
i )

)
∈ R

F . (1)

Following [32], a larger concept score means a higher similarity of the corre-
sponding receptive field of x̂f

i to the concept encoded by the CAV cj .
While vj(xi) is a vector of similarities, the set of relevant images Qj is chosen

based on scalar values because they can be ordered. Former works such as [23]
select full images of Dprobe for the set Qj . To achieve this, they consider the
average over the individual concept scores of the local feature vectors,

vmean
j (xi) = 1

F

F∑

f=1

vf
j (x̂

f
i ) ∈ R. (2)
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As we are more interested in the most representative part of an image for a
concept, we consider the maximum concept score of all local feature vectors:

vmax
j (xi) = max

f∈{1,..,F}
vf
j (x̂

f
i ) ∈ R. (3)

Based on these two metrics, we introduce three different strategies to derive a
set of most relevant images Qj from Dprobe. Note that the subset Qj can either
contain the full image xi or a receptive field associated with a local feature vector
x̂f
i . We follow [22] and select the 100 most relevant images.

– Fmean : Select the images with the highest vmean
j (xi).

– Fmax : Consider those images with the highest vmax
j (xi) and choose the respec-

tive receptive fields where the maximum is reached.
– Fmean→max : Select images like Fmean but choose the receptive field with

highest concept score vf
j (x̂

f
i ).

We search for the parts of the images with the highest presence of the concept
encoded by the CAV. With Fmean we select the full images with the highest over-
all presence of the concept. As a result, the textual descriptions are calculated
based on the full images. However, often the model can only see parts of the
images at the layer where the CAVs were found. Due to this, and the fact that
concepts may be more present in single parts of an image, we apply strategies
to find the relevant receptive fields. Using Fmax we select the receptive field of
each image with the highest concept score. We propose Fmean→max to combine
the advantages of both strategies. This means that we find the images where
the concept is highly present in the full image and reduce the noise introduced
by other concepts by selecting the respective receptive field with the highest
concept score.

Textual Concept Description. To derive a textual description for the visual
descriptions collected in Qj , we utilize joint text-image embeddings and cor-
responding image and text encoders EI and ET which map from the space of
images, I, and the space of texts, T , respectively, to a joint feature space. This is,
for example, provided by the CLIP model [25]. We compute a similarity matrix
P based on the cosine similarity of the text and image embeddings of the textual
descriptions set T = {t1, . . . , ts} and images in Qj ,

Pij =
EI(xi)

TET (tj)
‖EI(xi)‖2‖ET (tj)‖2

.

Intuitively, we want to find the textual descriptions that have a high similarity
to all images in Qj . To do this, we utilize the Soft Weighted Pointwise Mutual
Information (SoftWPMI) [23], which indicates how well a word describes the
mutual information of the representative images. SoftWPMI requires a weighting
of the images in Qj , which is determined by the concept scores. In particular,
this vector qj is calculated depending on the strategy to derive the set of most
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relevant images Qj :

qj =

{
(vmean

j (xi))xi∈Qj
if Fmean

(vmax
j (xi))xi∈Qj

if Fmax, Fmean→max

(4)

Finally, we find the subset Tk with the top-k textual descriptions by:

Tk := argmax
T̂⊂T :|T̂ |=k

∑

t∈T̂

SoftWPMI(t, qj , P ) (5)

Note that, in practice, SoftWPMI(t, qj , P ) is computed for each t ∈ T separately,
and finally, we take the top-k textual descriptions. For the common textual
description, we compute the weighted average of the top-k descriptions in the
feature space, with the weighting based on the SoftWMPI values. The common
representation is then chosen as the textual description in T that is closest to
this weighted average. Please note that we set all negative SoftWMPI values in
T̂ to zero since we are only interested in positive similarities.

Output. The method returns the common description and the subset Tk from
the human understandable textual descriptions set T , which are most similar to
the concept represented by the CAV cj .

4 Experiments

Our experimental procedure consists of three stages. First, we utilize CAVs with
known concept labels to show that our approach is capable to yield meaning-
ful textual explanations of CAVs. Second, we compare the different mappings
Fmean , Fmax , Fmean→max for the generation of the set of best fitting textual
descriptions. And finally, we consider a more complex scenario and explain a set
of CAVs extracted from a model where we have no prior knowledge about the
underlying concepts.

4.1 Explaining a Set of CAVs with Known Concept Labels

To be able to validate general idea of our approach, we follow Kim et al. [15] and
design a set of CAVs where each CAV describes one class of a given data set. We
achieve this by generating a set of CAVs after the last convolutional layer of a
model and set the number of CAVs equal to the number of classes. It is important
to note that the suggested strategy is closely related to the performance of the
CLIP model. Hence, a bad classification performance of CLIP directly affects
our approach in a negative way.
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Table 1. Each row shows the Top-5 textual descriptions of a CAV computed with
the proposed approach (ranked from left to right) and the derived common concept
description. Each CAV is supposed to represent one class of the CIFAR10 dataset [17].
Imagenet is utilized [7] as Dprobe and google20k as the set of textual descriptions, T .

CAV-Label Common Description 1 2 3 4 5

airplane aircraft aircraft aviation plane airplanes planes
automobile vehicle vehicle vehicles car ambulance automobile
bird bird avian bird birding birds juvenile
cat cat cat kitts kitty kitten katz
deer deer grazing gnu deer female wildlife
dog dog puppy dog canine pundit dug
frog mating mating meal head emerging frog
horse horse equine horseback horse horses equestrian
ship sailing sailing yacht sail yachts sailors
truck trucks truck trailer trucks trailers movers

Setup. To make sure that the CLIP model itself performs well in this valida-
tion example, we use the datasets CIFAR10 [17] and MNIST [8] which have a
zero-shot performance of 96.2% and 87.2%, with the vision encoder CLIP-ViT
L/14 from CLIP [25]. For CIFAR10 we adapted a pre-trained ResNet50 [11] and
finetuned it. The finetuned ResNet50 reaches an accuracy of 0.94. For MNIST
we finetuned a simple ConvNet with 3 layers reaching an accuracy of 0.98. In this
experiments we explain the the embedding after the last convolutional layer of
the models (ResNet50 and ConvNet). For the set of textual descriptions we use
google20k [14]. Details to the MNIST experiments can be found in the appendix.

Results. The results of this experiment for CIFAR10 are displayed in Table 1
(The table for MNIST can be found in the Appendix). The top-5 words, as well
as the concept closest to the centroid for each class, are shown. Our approach is
able to match each CAV which encodes a class as concept with fitting textual
descriptions from the 20.000 textual suggestions given. The exception is the CAV
encoding Frog. For MNIST our approach finds fitting textual descriptions for all
classes except the CAV encoding “one” which is described by makefile.

4.2 Concept Discovery and Description

Compared to the class-wise concepts in the previous sections, automatically dis-
covered CAVs usually describe more abstract concepts as colors and shapes. We
utilize the approach of [32] to discover a set of CAVs automatically. The final
set of CAVs is selected based on a hyper parameter search and the test accuracy
of the classification task. The hyper parameter search includes the number of
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Fig. 4. Comparison of the approaches to generate textual descriptions. Shown are the
two most influential CAVs for the class “cat” after the first residual block of a ConvMixer
[30]. The model was trained on dark cats and light dogs, a subset of the Cats vs. Dogs
dataset [6]. The first approach uses the images with the highest mean activation for
the CAV, the second takes the highest receptive fields of the images with the highest
mean activation and the third takes the most activated receptive fields of all receptive
fields over the whole probing data set. The probing dataset is the validation set from
ImageNet [7] and the concept set is google20k [14]

concepts,the threshold value β, and scalars λ1 > 0 and λ2 > 0. The parame-
ters λ1 and λ2 are needed for the utilized concept discovery approach of [32].
They weight the similarity between the concepts and their most relevant images
(λ1) and the pairwise dissimilarity between the concepts (λ2). Further, we cal-
culated for each class the ConceptSHAP and explanation quality following [32].
The ConceptSHAP gives us an importance value for each CAV with respect
to the class. The explanation quality serves as a measure how well a class is
described by the set of CAVs discovered. In the following, we first compare the
different approaches to select the relevant images, i.e., the receptive field-based
approaches and the full image approaches.

Evaluation of Image Set Selection. We consider concepts extracted from
early layers, where concepts are assumed to be more abstract than in later layers.
With this we can also evaluate the effect of Fmax and Fmean→max on highly
correlated concepts and concepts of different degree of abstraction. We further
introduce the abstract concept dark into the model by performing a classification
of cat and dog images, where the training samples consist of dark cats and the
bright dogs. We expect the trained model to mainly rely on those features due
to the simplicity bias of neural networks [29].
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Setup. We trained our model on a modified Cats vs. Dogs (CvD) dataset [6].
The Cats vs Dogs dataset was developed by Kaggle [6] and, following [16,18],
we split it by color, such that it consists of dark cats and light dogs. We call this
dataset Dark Cats vs. Dogs (DCvD). In the following we refer to the original and
the modified dataset as unbiased and biased dataset. Since all cats are dark and
all dogs are light we make the assumption, that the color is a relevant concept for
models trained on this dataset. To validate this we train a ConvMixer [30] with
a depth of seven. The ConvMixer reaches an accuracy of 0.93 on the biased data
and only an accuracy of 0.69 on the unbiased data (details in the appendix).
This difference in accuracy indicates that the model learned to associate the
color black with cats. We extract the set of CAVs after the first residual block
of the model. The derived set consists of 20 CAVs and the classification based
on the active and inactive CAVs yields an accuracy of 0.96 on the biased data.
The hyper parameters used to learn the set are λ1 = 0.2, λ2 = 0.2 and β = 0.18.
After we filter the CAVs where the dot product is over 0.95 we are left with 15
relevant CAVs. As the set of textual descriptions, google20k is used.

Results. Figure 4 shows the two most important CAV from left to right for the
class cat. The CAVs are selected by the ConceptSHAP values. For each CAV
we display the three approaches to select relevant images based on the concept
scores. For each approach the textual descriptions and the top five images from
the set of most relevant images are shown. It can be seen for CAV 14 that
the approach Fmean returns as highest textual description nightlife and Fmax

returns ferries (See Fig. 4a). Only Fmean→max returns a fitting highest textual
description with darkness. Looking at the other descriptions we see that Fmean

also yields similar textual descriptions in the top 5 descriptions. This results in
the central word of Fmean and Fmean→max , matching our expectations.
For the CAV 10 we can see that all approaches return different textual descrip-
tions (See Fig. 4b). Fmean returns nightlife and Fmax returns facials which are
both complex concepts. The approaches recognize different concepts which are
relevant for the images. This is neither good nor bad. Only Fmean→max returns
a simple concept with brown.

Animals with Attributes. The objective of this experiment is to explore the
performance of our approach for scenarios with increased complexity and to show
its potential. The experiment is based on the Animals with Attributes2 dataset
[31], which contains 37322 images from 50 different animals.

Setup. We finetuned a ResNet50 on the dataset AwA2 [31] that reaches a test
accuracy of 0.9. The concept discovery method found a set of 30 CAVs after the
first residual block. The found set of CAVs achieves an accuracy of 0.87 with the
hyper parameter λ1 = 3.1, λ2 = 3.1 and β = 0.02. After filtering all duplicates
15 CAVs are left, describing the concepts learned by the first residual block.
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Fig. 5. For each class the textual descriptions and the most activated receptive fields
of the CAVs with the strongest influence are shown. The image set was selected by
Fmean→max . The set of CAVs describes the hidden representation after the first residual
bock of a ResNet50 finetuned on AwA2. The probing dataset is the validation set from
ImageNet and the concept set is google20k.

Results. The results of this experiment can be seen in Fig. 5. Here, Fig. 5a
shows the class which is best described by the set of CAVs and Fig. 5b shows
the class which is worst described by the set of CAVs. Further, for each class the
most influential CAVs ranked by ConceptSHAP are displayed. The descriptions
are generated with the Fmean→max approach. It can be observed that the model
strongly connects the concept green with the class “cow” (See Fig. 5a). The class
“blue whale” is connected to the concept blue (See Fig. 5b). When inspecting
the descriptions of the CAVs 18 and 29 a mismatch becomes apparent. The
descriptions for those CAVs seem to be hardly related and are not matching to
the receptive fields.

5 Discussion

The experiments on the sets of CAVs with the known concept label show that the
approach is capable of matching CAVs with the corresponding textual descrip-
tions from a large set of general descriptions. This underlines that our approach is
in general capable of identifying joint textual descriptions, even though the per-
formance highly depends on the quality of the utilized joint text-image features
space. For the experiment on CIFAR10, one can further see the redundancy in
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the best-fitting descriptions which is successfully removed by selecting a common
concept description (Table 1). Further, one can see the approach’s capabilities to
detect biases in the training and/or probing images, e.g., the top five descriptions
of the class ship are all related to sailing.

For the different approaches to select representative images for given CAVs,
the ones using receptive fields help to correctly describe more abstract concepts
that especially occur in earlier layers of a neural network (Fig. 4). Interestingly,
15 CAVs are detected as relevant, which is more than to separate the concepts
of dark and bright. This can be explained by the fact, that dark and bright
colors can also occur in the backgrounds of the images and hence the distinction
purely based on color concepts is not feasible. However, the relevance of the dark
concept shows that it is highly relevant to classify cats. The increased focus on
abstract concepts when utilizing the receptive fields can also be explained by
the nature of the CLIP model. CLIP was trained on images and corresponding
captions, where specific colors (e.g., green) might be less relevant than the over-
all image description (e.g., insect). In Fig. 5b, the CAVs 18 and 29, which are
relevant for the class “blue whale”, are examples where the approaches fail to
generate matching textual descriptions. This can be attributed to limitations in
the utilized CLIP model. For example, CAV 18 seems to show the concept white
but the textual descriptions are inbox, incorporate, . . . . This could be improved
by applying a more fine-grained selection of the inputs for the joint text-image
model or by utilizing other text-image feature spaces.

6 Conclusion

In this work, we proposed an approach to assist the interpretation of CAVs by
suggesting textual descriptions and selecting common words for the individual
CAVs. To improve the textual descriptions of CAVs found for earlier layers, we
consider that for earlier layers of a model, the CAVs do not know the whole input
and propose to use receptive fields for the generation of the textual descriptions.
Through experiments on sets of CAVs where the underlying concepts are known,
we showed that our method is capable of yielding meaningful descriptions for
CAVs and that the usage of receptive fields improves the explanation quality for
earlier layers. While this research already offers insights into the concept discov-
ery process, further works on the computation of meaningful concepts as well as
an exploration of other image-to-text projections are planned. The evaluation of
the found textual descriptions regarding human understanding is also a topic for
further research. To better understand the behaviour of the model, it would be
interesting to extend the results of concept discovery methods with mismatched
data. For the description of specific concepts, further insights into the capabili-
ties of joint text-image feature spaces and the needed characteristics of probing
sets are interesting for us, as well as the consideration of explicitly fine-tuning
text-image embeddings to basic concepts.
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Abstract. Speech segmentation at both word and phoneme levels is cru-
cial for various speech processing tasks. It significantly aids in extract-
ing meaningful units from an utterance, thus enabling the generation
of discrete elements. In this work we propose a model-agnostic frame-
work to perform word boundary detection in a supervised manner also
employing a labels augmentation technique and an output-frame selec-
tion strategy. We trained and tested on the Buckeye dataset and only
tested on TIMIT one, using state-of-the-art encoder models, including
pre-trained solutions (Wav2Vec 2.0 and HuBERT), as well as convo-
lutional and convolutional recurrent networks. Our method, with the
HuBERT encoder, surpasses the performance of other state-of-the-art
architectures, whether trained in supervised or self-supervised settings
on the same datasets. Specifically, we achieved F-values of 0.8427 on the
Buckeye dataset and 0.7436 on the TIMIT dataset, along with R-values
of 0.8489 and 0.7807, respectively. These results establish a new state-
of-the-art for both datasets. Beyond the immediate task, our approach
offers a robust and efficient preprocessing method for future research in
audio tokenization.

Keywords: Word Boundary Detection · Word Segmentation · Speech
Processing

1 Introduction

Speech segmentation, from a psychological perspective, is the process by which
our brain determines where a meaningful linguistic unit ends and the next begins
in continuous speech [28].

In machine learning before and in deep learning nowadays, this capability is
not easily achievable due to the dense information that the audio data conveys
and the prosodic features that each speaker has. Furthermore, building specialized
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datasets, with high-quality recordings and well-annotated data, requires consider-
able effort. More specifically, in speech processing, word and phoneme boundary
detection are intended both as a preprocessing phase for other downstream tasks
such as speaker diarization, keyword spotting, or automatic speech recognition,
and as a tool to extract semantically meaningful information from audio.

A correct boundary detection of words within a utterance would lead to a
more accurate study of the prosody or emotional traits of speakers on a large
scale, without necessary resorting to textual data alignment, that by their nature,
lack important para-verbal information. Additionally, it would facilitate the dis-
cretization or tokenization of the elements that make up an utterance, a complex
process given the variable length of speech units.

Due to the significant impact we believe this task may have on various down-
stream audio applications, we have opted for a supervised approach to maximize
its performance, diverging from the self-supervised trend of the recent researches.

In this paper, we introduce a model-agnostic framework for word boundary
detection. Our methodology integrates frame classification based on the BIO
(begin, inside, outside) format with a label augmentation technique - to address
the imbalance between begin and inside/outside frames - and a frame-selection
strategy for post-processing. We trained various state-of-the-art models on the
Buckeye dataset [30], a widely recognized benchmark for this task. To further
validate and check the generalization capability of our method we also tested it
on TIMIT dataset [15].

Our results indicate that our method set a new state-of-the-art on both the
Buckeye and TIMIT datasets, achieving F-values of 0.8427/0.7436, and R-values
of 0.8489/0.7807, respectively. The code is publicly available on Github1.

2 Related Work

Unlike phoneme boundary detection, which has a rich literature on super-
vised [12,22,24,25], self-supervised [23,34,38], and unsupervised [3,7,11,26]
methods, the task of word boundary detection has been approached mainly from
a self-supervised or unsupervised perspective.

Within supervised learning, most research focused its attention on probabilis-
tic approaches and on the extraction of acoustic features making the preprocess-
ing phase often long and complex. This is the case of Agarwal et al. [1] and
Naganoor et al. [27]. The latter proposed a method that extracts rudimentary
acoustic features and higher-order statistical features (HOS). The same work
inspired Shezi et al. [33] for a word boundary detection task in IsiZulu language.
In contrast, our approach focuses on utilizing raw audio data, sidestepping the
need for extensive preprocessing steps.

Other methods such as [25] use word boundaries as a speech-text alignment
system. However, our method takes a different route. We deliberately steer clear
of relying on text label data, which sets our approach apart. This deliberate
choice provides a significant advantage: our evaluation of performance is solely
based on speech output. This independence from text data is a crucial feature

1 https://github.com/simonecarnemolla/Word-Segmenter.

https://github.com/simonecarnemolla/Word-Segmenter
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of our method, rendering it particularly advantageous in situations where text
data is scarce or unavailable. This characteristic ensures the robustness and
applicability of our approach across various speech processing tasks, even in
challenging data environments.

Fig. 1. Overview of our method

Moving to self-supervised and unsupervised fields, some of the main con-
tributions come from the works of Kamper et al. [18–20]. In both [18,19], a
Bayesian model that segments unlabeled speech and clusters the segments into
hypothesized word groupings is proposed. In a subsequent work [20], an embed-
ded segmental KMeans (ES-KMeans) model is proposed to solve the Bayesian
model’s difficulty in scaling large speech corpora. Among the most interesting
recent research advances are word boundary detection with vector quantized
(VQ) neural networks [21], a segmental contrastive predictive coding (SCPC)
approach [8,9], and the use of temporal gradients as pseudo-labels to find bound-
aries [14]. In the first work [21], the VQ neural networks - a vector-quantized
variational autoencoder (VQ-VAE) [10] and a vector-quantized contrastive pre-
dictive coding (VQ-CPC) [5] - are trained in a self-supervised way, segmenting
speech into discrete units, assigning blocks of contiguous feature vectors to the
same code. Then, dynamic programming (DP) is used to merge frames and
to optimize a quadratic error with a length penalty term to encourage fewer
but longer segments. Bhati et al. [8,9] proposed a model that initially extracts
frame-level representations and then identifies variable-length segments using
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a differentiable boundary detector. Finally, Fuchs et al. [14] extracted temporal
gradients and observed that gradients with low magnitude effectively identify far-
from-boundary regions. Building on this observation, they proposed GradSeg, a
method where frames with gradient magnitudes below a preset threshold are
assigned a positive label (indicating far-from-boundary words). This approach
outperformed other unsupervised methods. Furthermore, Fuchs et al. trained
with a supervised approach to compare the impact of supervision on the results.
We employed their supervised results as a state-of-the-art benchmark, as we sur-
prisingly found no other recent methods to compare with. We also reproduced
the experiments using our data distribution with their unsupervised method and
their earlier work [13], reporting the scores. This was done not to compare their
results with ours, but to validate the assumption that a supervised method can
significantly enhance the applicability of word segmentation.

3 Method

3.1 Overview

An overview of our method is shown in Fig. 1. Initially, the raw audio is labeled
using a BIO format. Following framing, we apply a label augmentation technique
to better handle the significant imbalance between beginning and inside/outside
indices. An encoder architecture is then trained in a supervised setting for the
frame classification task. Finally, a frame selection strategy is employed to post-
process predictions and segment the input utterance. Each component of the
method is described in detail in the following subsections.

3.2 Problem Formulation

Let xi = (xi,1, xi,2, . . . , xi,T ) be a single utterance where xt represents the ampli-
tude of the signal at time t, with 0 ≤ t ≤ T , considering a sampling frequency s.
Let also denote yi = (yi,1, yi,2, . . . , yi,m) the corresponding sequence of framed
labels. The generic value yi,j refers to a frame within xi. All frames have the
same fixed time-length (more details in Sect. 3.3). In particular, yi,j ∈ {0, 1, 2}
indicates if the corresponding frame in xi marks the start, is positioned inside,
or lies outside a single word. Our objective is to accurately detect the word
boundaries within the utterance xi by predicting the correct sequence of framed
labels yi. Once the boundary frames have been identified, we aim to identify the
exact time-point in the audio signal where words begin.

We adopted a multi-class cross-entropy as a loss function, defined as follows:

L(y, ŷ) = − 1
N

N∑

i=1

m∑

j=1

yi,j · log(ŷi,j), (1)

where N is the number of instances in the batch, yi,j represents the label of the
j-th frame of the i-th dataset element, and ŷi,j represents the model’s prediction
for the same frame.
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3.3 Labels Processing

As showed in Fig. 1, we extracted all the utterances and the start-end boundaries
of each word per utterance. We maintained the sample rate of the audio files at
16KHz without resampling. Subsequently, we created pre-labels with the same
shape of the input waveforms, assigning to each time-point a value depending
on if it was positioned inside or outside the boundaries or if it was a start index.
This step was useful to investigate the distribution and the average duration of
the words within the utterances. The final labels were obtained, framing the pre-
labels along the temporal axis with a 25 ms frame duration. The total number
of frames m in yi is given by:

m =
T

25 · s (2)

where T is the number of time-points of the input sequence xi and s is its
sampling frequency.
To address the significant imbalance of labels (i.e., begin, inside, and outside
annotations) during training, we also considered the frames adjacent to the
ground truth as begin. Specifically, we selected one frame to the left and one
frame to the right of the actual start. We did not apply this augmentation dur-
ing inference. We observed that this approach, combined with the frame selection
strategy described in Sect. 3.5, considerably improve the final scores. More details
about the interplay of labels augmentation and frame selection are described in
Sect. 5.3.

3.4 Model Architecture

Given an input utterance xi as described in Sect. 3.2, the waveform passes
through an audio encoder Aenc, resulting in a hidden representation zi ∈ R

n×d,
where n is the number of frames produced by the encoder and d is the dimension
of the hidden state.

zi = Aenc(xi) (3)

Then, a linear layer Alp projects zi into ei ∈ R
d×m, in order to match the

dimensions of yi.
ei = Alp(zi�) (4)

Finally, a linear classification head Alc is applied to obtain the predictions ci ∈
R

m×p, where p represents the output probabilities for each class.

ci = Alc(ei�) (5)

3.5 Post-processing

We extract word boundaries and post-process the audio input to return a
sequence of variable-length segments, each corresponding to a word. Given the
augmentation strategy outlined in Sect. 3.3, the model tends to over-segment
during inference, resulting in clusters of predicted begin frames. To mitigate this
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behaviour we select the average frame as predicted one discarding its neighbors.
During the training stage no tolerance was applied, while at inference time, to
check the correctness of the boundaries and compute the metrics, we consider
a tolerance of 40 ms as [14]. Differently from this work we compare predicted
boundaries with the time-point level ground truth instead of the frame quan-
tized one, resulting in a more accurate evaluation. Testing on TIMIT dataset we
applied a tolerance of 20 ms to align our scores with the ones got by [8].

Table 1. Architectures of employed models. We report convolutional layer details
(channels, kernel size, stride), hidden size for recurrent model. For Wav2Vec, and
HuBERT please refer to [6] [16].

CNN CRNN

# Convolutional channels 16, 32, 64, 12816, 32, 64, 128

Kernel size 11, 3, 3, 3 11, 3, 3, 3

Stride 5, 2, 2, 2 5, 2, 2, 2

Hidden size – 80, 40

4 Experimental Setup

4.1 Datasets

Buckeye [30] is a spontaneous speech corpus containing recordings of 40 talkers
from central Ohio interviewed for about one hour. The group of people is strat-
ified on age and gender and each recording is sampled at 16Khz and annotated
to phoneme and word level. For our purpose we used the word annotations only.
The whole corpus counts about 307,000 words.

TIMIT [15] is a speech corpus used for acoustic-phonetic studies, but it was
also frequently employed for phoneme and word boundary detection tasks [8,9,
23,24]. It comprises recordings from 630 speakers, including 438 males and 138
females. Each speaker recorded ten utterances, resulting in a total of 6300 speech
samples. These utterances are phonetically and lexically annotated, with indices
marking the start and end of phonemes and words. For our study, we utilized
only the test set, which includes 1680 samples.

On Buckeye, considering the length of each audio recording, we truncate
them and split in train, validation and test with a similar strategy employed by
[14]. We considered to use this way also to facilitate the comparison of results
and the reproduction of the experiments.

4.2 Audio Pre-processing

The only manipulations applied on audio were standardization and padding.
Since waveforms were with variable length, the standardization was done by
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calculating the global weighted mean and global weighted standard deviation
of the train set. The same values were then applied to the validation and test
set. The padding was applied based on the longest waveform corresponding to a
duration of approximately 9 s.

4.3 Encoders

Our framework is model-agnostic, meaning it can be applied regardless of the
encoder architecture. However, in order to evaluate the method we chose several
well-known architectures. Specifically, we selected a one-dimensional CNN and
CRNN as from-scratch architectures, while we employed Hubert and Wave2Vec
as pretrained models. The CNN takes raw audio as input and consists of four
convolutional layers followed by batch normalization, ReLU activation, and max
pooling, with the number of filters doubling at each layer. Its output is transposed
and passed to a fully connected layer that produces a representation z ∈ R

d×m,
where d are the convolutional features and m the number of framed labels.
Finally, the resulting vector is transposed again and passed to a linear classi-
fication layer. We chose the CRNN because it represents the state-of-the-art
for various previous works in audio segmentation and classification [32,35–37].
The network retains the same configurations as the CNN model for the convo-
lutional layers, but without batch normalization. Additionally, it introduces two
bidirectional Gated Recurrent Unit (B-GRU) layers with a similar configuration
to [35,36]. A final linear projection and a linear classification layer are applied.
CNN and CRNN configurations are showed in Table 1.

We decided also to include the two main pretrained models at the state-of-
the-art for several downstream tasks: HuBERTLarge [16] and Wav2Vec2.0Base

[6]. We kept both encoders frozen while fine-tuning the final linear layers, which
were followed by layer normalization.

4.4 Training Procedure

All the models were trained on a NVIDIA RTX A6000. The average training time
of our best fine-tuned model (i.e. HuBERT encoder) is around one hour. The
inference time for the whole Buckeye test set is 26 s. We tuned learning rate and
batch size hyperparameters with grid search on the validation set, choosing at the
end 10−3 as learning rate and 32 as batch size. We also applied an early stopping
with a patience of 10 epochs if no improvement occurred on the best validation
R-value. We did not use time error tolerance for the boundaries detection during
the training phase. More details are available in the supplementary materials.

4.5 Metrics

The set of metrics, as defined in [2,4,29,31], is composed by Precision, Recall,
F-value, Over Segmentation (OS), and R-value.
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Precision (PRC) and Recall (RCL) were employed as described by [31] and
expressed in 6. In the equation Nhit represents the boundaries correctly detected,
while Nref stands for the total number of boundaries in the reference.

PRC =
Nhit

Nf
,RCL =

Nhit

Nref
(6)

OS [29] is the over segmentation rate and is given by the ratio of the total
number of detected boundaries Nf over the total number of boundaries Nref in
the reference. Then the result is subtracted by one (Eq. 7).

OS =
Nf

Nref
− 1 (7)

F-value [2] is the harmonic average of PRC and RCL.

F-value =
2 · PRC · RCL
PRC + RCL

(8)

R-value [31] is another composed metric derived from OS and Recall and is
defined as a trade-off of these two metrics, being the balance between Recall and
OS a suitable operating point for audio segmentation. R-value can be expressed
as follow:

r1 =
√

(1 − RCL)2 + OS2, r2 =
−OS + RCL − 1√

2
(9)

R-value = 1 − |r1| + |r2|
2

(10)

We decided to use R-value as main quality metric to evaluate the models, i.e.
we saved the weights of models at the best validation R-value.

4.6 Experiments

To evaluate our method, we trained from scratch the CNN and CRNN archi-
tectures and fine-tuned HuBERT and Wav2Vec keeping both encoders frozen.
For a comparative analysis we reproduced the training procedures of GradSeg
[14] and DSegKNN [13]. All the architectures were tested on our Buckeye test
set. To assess the generalization capability of our method, we also tested the
above methods on the TIMIT dataset. Finally, to underline the need for label
augmentation and frame selection, we assessed the performance of our method
with and without the application of the two strategies.

5 Results

In the subsequent sections, we present the obtained results. Our method is bench-
marked against a single supervised reference for Buckeye, while for TIMIT no
supervised methods have been found. Finally, additional results without compar-
isons on NTIMIT [17] are reported in the supplementary materials. As discussed
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Fig. 2. Segmentation comparison example between true (green solid line) and predicted
(red dashed line) boundaries on Buckeye test set. The four pictures on top show a cor-
rect match of detected boundaries. The second group report three under segmentation
scenarios and an over segmentation one. (Color figure online)

Table 2. Comparison of not-pretrained/pretrained supervised models and unsuper-
vised ones on Buckeye test set. Tolerance was set to 40ms.

Unsupervised models

Model Precision Recall F-value OS R-value

DSegKNN [13] 0.3115 0.3226 0.3169 0.0355 0.4087

GradSeg [14] 0.4444 0.4356 0.4399 –0.0197 0.5251

Supervised models

Model Precision Recall F-value OS R-value

CNN 0.3842 0.3604 0.3708 −0.0575 0.4694

CRNN 0.4112 0.3711 0.3896 −0.0972 0.4923

GradSeg [14] – – 0.5960 – –

Wav2VecBase [6] 0.6556 0.4736 0.5494 −0.2766 0.6139

HuBERTLarge [16] 0.8999 0.79280.8427 −0.1187 0.8489

in Sect. 2, the prevailing trend in recent research on word boundary detection
involves self-supervised or unsupervised approaches making complex the possi-
bility of comparison with those who want to tackle this task in a supervised
way. On the other hand, a direct comparison with our supervised method may
not be entirely fair. Nevertheless, we opted to include results from unsuper-
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vised methods, not for direct comparison with our approach, but to underscore
the potential impact of a supervised approach to word boundary detection in
advancing applications within speech technology.

It is worth noting that certain supervised methods leverage word boundary
detection for aligning speech to text transcriptions. For this task, metrics such
as Word Error Rate (WER) are employed to assess the models and their effi-
cacy. Given the disparate objectives of these metrics compared to ours, a direct
correlation might be deemed unfair.

5.1 Models from Scratch

As shown in Table 2, the CNN model achieved lower results compared to its
unsupervised counterpart. The CRNN model performed better than the CNN
in most metrics except for the OS metric, yet it still lower than [14].

It is important to note that while the scores of both CNN and CRNN models
are lower than those reported by [14], the latter utilized Wav2Vec pretrained as
an encoder.

Table 3 presents the scores obtained on the TIMIT dataset [15]. As antic-
ipated, both models demonstrated a general decline in performance compared
to the results on the Buckeye dataset. Additionally, their scores are lower than
those reported by [8]. However, it is important to consider that [8] was specifi-
cally trained on the TIMIT dataset.

5.2 Pretrained Models

HuBERT outperforms all models except in the over-segmentation metric, where
GradSeg [14] in its unsupervised version achieved the value closest to zero. Addi-
tionally, we observed that both Wav2Vec and HuBERT exhibit higher Precision
than Recall. This behavior is likely due to the frame selection strategy described
in Sect. 4.4. Specifically, by selecting only the average boundary from the bound-
ary clusters, we penalize instances where adjacent words (true positives) occur.
Although we tested other frame selection strategies (see Sect. 5.3) to improve the
recall metric, we ultimately favored a more precise model over a more sensitive
one.

In the GradSeg article [14], the authors reported only the F-value metric
for the supervised method, probably because it was not the main focus of their
work. Nonetheless, this metric allowed us to compare our models with another
benchmark, as we encountered difficulty finding recent supervised methods for
comparison. Figure 2 shows some predictions done on Buckeye utterances by
HuBERT model compared with the ground truth boundaries. The model tends
to an under-segmentation, however the predicted boundaries are frequently close
to the real ones.

Also on TIMIT dataset (Table 3) HuBERT outperforms the other models.
This section demonstrates that utilizing pretrained encoders for supervised

training, along with other strategies like labels augmentation and output-frame
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Table 3. Comparison of not-pretrained/pretrained supervised models and unsuper-
vised one on TIMIT test set. Tolerance was set to 20 ms.

Unsupervised models

Model Precision Recall F-value OS R-value

SCPC [8] 0.2895 0.2302 0.2558 – 0.4003

Supervised models

Model Precision Recall F-value OS R-value

CNN 0.2490 0.1697 0.2008 −0.3169 0.3731

CRNN 0.2610 0.2247 0.2411 −0.1377 0.3794

Wav2VecBase [6] 0.4433 0.3538 0.3930 –0.2005 0.5032

HuBERTLarge [16] 0.7566 0.73140.7436 –0.032 0.7807

selection, can significantly enhance the quality of word segmentation. This
improvement is evident not only on the specific dataset used to train the models,
but also on other speech datasets (such as TIMIT), achieving even better results
than unsupervised methods trained on them [8].

5.3 Effect of Labels Augmentation and Frame Selection

As shown in Table 4, applying only labels augmentation considerably worsens
the scores. This is because increasing the number of boundaries enhances the
model’s sensitivity, but it also leads to higher over-segmentation, significantly
reducing precision and affecting both the F-value and R-value.

When the frame selection strategy is applied, we mitigate the over-
segmentation issue, decreasing recall scores but improving overall performance.
Different experiments were conducted with “begin” clusters during labels aug-
mentation as reported in Fig. 3. Ultimately, we chose to label as “begin” one
frame to the left and one frame to the right of the actual boundary because this
setting yielded the best performance.

Table 4. Ablation study on labels augmentation and frame selection.

Model Precision Recall F-value OS R-value

Wav2VecBase 0.8805 0.0460 0.0874 −0.9475 0.3254

↪→Label Augmentation 0.3013 0.6585 0.4131 1.1889 −0.1604

↪→Frame selection 0.6556 0.47360.5494–0.2766 0.6139

HuBERTLarge 0.9302 0.4403 0.5971 −0.5327 0.6032

↪→Label Augmentation 0.4840 0.9161 0.6332 0.8942 0.2049

↪→Frame selection 0.8999 0.79280.8427–0.1187 0.8489
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On the frame selection side (Fig. 4), we tested three approaches: selecting the
first frame, the last frame and the mid one. However, the best choice in terms
of scores was to extract the mid-frame for each begin cluster.

Fig. 3. Comparison of R-value and F-
value for the Buckeye validation set based
on different window sizes for label aug-
mentation. Each data point represents
the number of frames labeled as begin to
the left and right of the ground truth.
The results are computed employing the
HuBERT encoder.

Fig. 4. Comparison of R-value and F-
value scores for the Buckeye validation set
based on different frame selection strate-
gies. The first approach retrieves the ini-
tial begin frame from the begin cluster, the
second approach selects the middle frame,
and the third approach picks the final
frame. The results are computed employ-
ing the HuBERT encoder.

5.4 Discussion

As demonstrated in previous sections, in Table 2 and in Table 3, employing a
supervised approach centered on frame classification significantly enhances the
performance of word boundary detection (WBD). Notably, it’s not solely the
choice of approach (frame classification) that influences the outcomes, but also
the methodology we employ in handling labels imbalance during training and
frame selection during inference as showed in Table 4 and discussed in Sect. 5.3,
ensuring anyway that them don’t alter the inherent nature of the data and
maintains a streamlined preprocessing pipeline. It’s crucial to acknowledge the
significance we attribute to the WBD task. In contrast to the self-supervised
methods outlined in Sect. 2, which strive to generate directly meaningful word-
level audio latent representations, we interpret this task as an initial step to
provide support and input for self-supervised models with discrete units, akin
to tokens in text. In light of this intent, based on performance, we can state
that the self-supervised model are not ready yet and probably this is not neither
their goal. With this work, we also aim to stimulate the audio community to
explore other supervised methods for word boundary detection. We strongly
believe that this approach could significantly boost the performance of this task
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and consequently enhance the development of recent audio application trends,
such as speech-to-speech conversational models and real-time translators.

6 Conclusion

In this work we propose a robust and computationally light preprocessing app-
roach for word boundary detection and evaluated its efficacy compared to other
supervised and unsupervised methods, by using pre-trained and from scratch
solutions. Our future work will leverage extracted words to build a tokenization-
like method, thus enabling the variable-length discrete units to retain impor-
tant para-verbal and prosodical features and paving the way to stronger self-
supervised models and spoken dialogue systems.

Acknowledgements. Simone Carnemolla and Salvatore Calcagno acknowledge finan-
cial support from: PNRR MUR project PE0000013-FAIR.
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Abstract. The state-of-the-art (SOTA) Automatic Speech Recognition
(ASR) systems are mostly based on the data-driven methods. However,
low-resource languages may lack data for training. Articulatory Fea-
tures (AFs) describe the movements of the vocal organ which can be
shared across languages. Thus, this paper investigates AFs-based semi-
supervised techniques to share data between languages. First, the tradi-
tional acoustic features and the AFs are combined as front-end features
to provide articulatory information for cross-lingual knowledge transfer.
Then, the dropout-based lattice decoded are used as the pseudo-labels
for the unsupervised data to address the problem of data deficiency.
In addition, the Lattice-free Maximum Mutual Information (LF-MMI)
objective is adopted to better adapt to small datasets. Experiments show
that our system can obtain a relative improvement of 58.6% on Character
Error Rate (CER) comparing to the baseline system. More specifically,
the smaller the datasets are, the more obvious the advantages of our
system can be.

Keywords: Automatic speech recognition · Semi-supervised ·
Articulatory features

1 Introduction

Multilingual or cross-lingual speech recognition has become one of the most
important research directions in Automatic Speech Recognition (ASR), and
received extensive attention since the 1990s. Since the emergence of the Hid-
den Markov Model (HMM), speech recognition has entered the data-driven era.
But with more and more data, the model performance of the HMM itself has
entered a bottleneck. With the rapid development of DNN, except the research
on the neural networks of multilingual speech recognition such as, Time Delay
Neural Network (TDNN) and the factored form of TDNN (TDNNF), current
researches on multilingual speech recognition focuses more on training models
driven by massive data [1,2]. In recent years, end-to-end ASR uses multilingual
tokens (words or subwords) and combines the tokens to achieve multilingual
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A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15333, pp. 141–153, 2025.
https://doi.org/10.1007/978-3-031-80136-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80136-5_10&domain=pdf
https://orcid.org/0000-0001-6214-2555
https://orcid.org/0000-0002-5135-0110
https://orcid.org/0000-0003-1880-5520
https://orcid.org/0009-0009-6639-7331
https://orcid.org/0000-0002-3653-9951
https://doi.org/10.1007/978-3-031-80136-5_10


142 S. Su et al.

speech recognition. The advantage of such system is that it gets rid of the lim-
itations of different language pronunciation dictionaries [3]. Articulatory Fea-
tures (AFs) based on articulatory attributes is also widely used in multilingual
ASR. Multilingual speech recognition based on AFs generally uses a language
with rich resources to train an articulatory attributes detector to extract AFs,
and then combine AFs with traditional acoustic features [4].

Against the problem of domain mismatch between training data and test
data in cross-lingual ASR, the Domain-adversarial training of Neural Net-
works (DANN) is proposed [5]. DANN reduces the difference between the target
domain and the source domain through adversarial training, thereby improving
the model’s general performance.

In this paper, we borrow the ideas from the prior work mentioned above to
solve the problem of the cross-lingual ASR and propose several improvements
to the previous ideas. The contributions of this paper are as follows: First, by
combining articulatory features and traditional hand-crafted features (MFCCs)
as front-end features, the system can take full advantage of phonemes, project
phonemes of all languages to the same dimension and improve multilingual
recognition performance. Second, making full use of unsupervised data and
the dropout-based Lattice-free Maximum Mutual Information (LF-MMI) semi-
supervised learning enables knowledge transfer from resource-rich languages to
improve speech recognition performance in the target low-resource language
domain. Finally, the system proposed has a relative Character Error Rate (CER)
reduction of 58.6% compared with the baseline system.

2 Related Work

2.1 Articulatory Features for ASR

The advantage that articulatory attributes can be shared in multiple languages
makes it widely used in the filed of multilingual speech recognition [4]. The
phoneme set of the International Phonetic Alphabet (IPA) can represent all
sounds that humans can make through a set of phonetic symbol systems. Previ-
ous descriptions of articulatory attributes mostly focus on a single language or
languages of the same language family [6,7]. This paper uses a unified descrip-
tion of the articulatory attributes of Chinese, English, German, and French of
different language families, which is adopted in our previous work, and can be
extended to other languages as needed [8]. More details about the multilingual
AFs defined by us can be seen in the work [8].

One-hot encoding is used to represent each phoneme. Especially, the same
phonemes in different languages may have different encodings. For example, the
articulatory attributes of n are “Alveolar, Nasal, Voiced, Nil, Nil, Nil”, “Alveolar,
Nasal, Voiced, Nil, Nil, Nil”, “Nil, Nasal, Nil, Nil, Nil, Nil”, and “Alveolar, Nil,
Nil, Nil, Nil, Nil” in Chinese, English, German, French. The one-hot encodings
are “100000000, 000100, 100, 0001, 0001, 001”, “100000000, 000100, 100, 0001,
0001, 001”, “000000001, 000100, 001, 0001, 0001, 001”, “100000000, 000001, 001,
0001, 0001, 001”. If the basic modeling units are only phonemes, the phoneme
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n is encoded samely in these four languages. However, the modeling units of
articulatory attributes can distinguish the same phoneme in deffernet languages,
it is more fine-grained encoding comparing to the phoneme level modeling units.
Although different languages have different sets of phonemes, when decomposed
by articulatory attributes, it can be done at the articulatory level shared. This
enables the articulatory attributes detector to obtain a feature space shared by
multiple languages on the model.

2.2 Semi-supervised Learning for Multilingual ASR

The biggest difficulty faced by low-resource speech recognition is the lack of
enough amount of supervised data for training [9]. In traditional Maximum
Mutual Information (MMI)-based ASR system, the training of MMI depends
on the lattice, while the lattice depends on the GMM-HMM acoustic model.
In order to better improve the training of MMI, Dan Povey et al. proposed a
training criterion of Lattice-free MMI (LF-MMI) [10]. In recent years, LF-MMI
has gradually become one of the mainstream ASR models due to its training
advantages in small datasets. Manohar et al. proposes a semi-supervised learn-
ing method based on LF-MMI which contains N-best lattices in the decoding
path [11].

In DNN-based ASR systems, dropout is a common training strategy for
improving system robustness. Monte Carlo refers to a class of algorithms that
rely on repeated sampling to obtain a certain number of distributions, so the
method of preserving dropout in inference is also called Monte Carlo dropout
[12].

3 Method

The semi-supervised method proposed is shown in Fig. 1, and the training process
is as follows:

First, train the DANN-based articulatory attributes detector on the source
language domain, and train the TDNNF models based on MFCCs and AFs
respectively, denoted as MFCCs-TDNNF and AFs-TDNNF, which are used as
seed models of semi-supervised learning.

Second, use the DANN-based articulatory attributes detector to obtain the
AFs of the unsupervised data, retain the dropout in AFs-TDNNF model on
the decoding stage for N times, and merge it with the lattice decoded with-
out dropout to get the N+1 dropout-based lattice. The lattice gained from
AFs-TDNNF is denoted as AFs-dropout-lattice. Repeat the same operation on
MFCCs-TDNNF and record the N+1 lattice as MFCCs-dropout-lattice.

Third, supervised and unsupervised data are both used as training data,
and the obtained AFs-dropout-lattice and MFCCs-dropout-lattice are combined
according to a certain weight distribution as all dropout-lattice for training. By
migrating AFs through lattice, the paths of lattice are further enriched.
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Fig. 1. The whole architecture of our proposed method.

Fourth, use the merged features as input, and use the merged dropout-lattice
as the supervised lattice to carry out the molecular composition of LF-MMI for
the subsequent training process.

3.1 DANN-Based AFs Detectors

The U-net structure diagram and the whole DANN-based AFs detector used is
depicted in detail in our previous work [8]. The detector is applied to complete
diverse tasks, and each task has a different loss function. The formula derivation
of the weight adjustment method is described as follows [13]:

The likelihood probability of multi-classification task is defined in Eq. (1).

p
(
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)
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)
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where σ is a learnable weight factor between two tasks.
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Therefore, the final loss function of the DANN-based AF-detector is:

Lada (σ1, σ2, σi, σ3) =
1
σ2
1

Lphn +
1
σ2

i

Laf-i +
1
σ2
2

Llid GRL

+
1
σ2
3

Lspk GRL + log (σ1σ2σiσ3) , (3)

where Lphn is the loss function of the triphone classification, Laf-i is the loss
function of the ith articulatory attributes classification. There are six types of
articulatory attributes, Lspk GRL, Llid GRL are loss functions for language and
speaker classification using gradient inversion and σ are the weight relation factor
of the loss function. The loss function of all models is the Cross Entropy (CE)
loss.

3.2 LF-MMI-Based Semi-Supervised Learning for Multilingual
ASR

The basic task of ASR is to find the probability of the word sequence W given
the speech observation sequence O, that is, to find the probability P (W | O).
MMI is the direct maximization of P (W | O), namely:

θMMI = argmax
θ

Pθ (Wr | Or) (4)

The loss function of MMI can be written as:

FMMI(θ) =
R∑

r=1

log
Pθ (Or | Wr) P (Wr)

∑

ŵ

Pθ

(
Or | Ŵr

)
P (Ŵ)

(5)

Based on the loss function of MMI, the semi-supervised loss function based
on LF-MMI is defined as [11]:

LMMI = max
θ

U∑

u=1

log

⎛

⎝
∑

W∈G(u)
num

P
(
W | X(u), θ

)
⎞

⎠ , (6)

where X(u) represents the observation vector when the sentence u is given,
and G(u)

num is the lattice result decoded by the supervised data under the super-
vised model.

The loss of LF-MMI has the following improvements: Firstly, when building
a language model, if choosing characters or words as the basic token, the corpora
will have hundreds of thousands or more characters. Thus, AFs are selected as
the modeling token, considering the balance between modeling complexity and
granularity. Secondly, in order to prevent over-fitting of the networks, LF-MMI
introduces the CE function as a subtask for multi-task learning. Thirdly, the
topological state of HMM is a single-state HMM.
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Fig. 2. Schematic diagram of the semi-supervised speech recognition structure based
on dropout and LF-MMI. Neurons with blue colors indicate the discarded neurons due
to the existence of dropout. (Color figure online)

3.3 Dropout-Based Semi-supervised Learning for Multilingual ASR

For the reason that the amount of modeling units at the AFs-level is much
smaller than at the word level, the multilingual ASR systems may be prone
to over-fitting. The semi-supervised learning based on dropout is implemented
in our system. Dropout is also retained during the inference stage, and the
same data is decoded multiple times to obtain different lattices. In this way,
the perturbation in the training and inference process can be increased to gain
the uncertainty in the experiments, prevent the system from over-fitting, and
increase the robustness of the ASR system. These lattices are combined to obtain
more decoding space for the LF-MMI-based semi-supervised training, as shown
in Fig. 2.

The semi-supervised LF-MMI loss function based on dropout is defined as
[14]:

LMMI = max
θ

U∑

u=1

log
(

E
W∼P (W|Xu,Ds)

P
(
W | X(u), θ

))
, (7)

where X(u) represents the observation vector when a sentence u is given, D
denotes the supervised training data, W is the result obtained for each sample.

For each specific sentence, N-best decoding is performed through a network
with standard dropout. The lattice obtained by AFs and the lattice obtained by
traditional acoustic features have different decoding spaces. By combining the
AFs-based lattice with the MFCCs-based lattice, knowledge transfer can enrich
the paths during inference. Consequently, a semi-supervised learning method
based on articulatory attributes proposed in this paper is defined as:

LMMI = max
θ

U∑

u=1

log

⎛

⎜
⎝

∑

W∈G(u)
num-AFs-MFCCs

P
(
W | X(u), θ

)
⎞

⎟
⎠ , (8)
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where X(u) represents the observation vector when the sentence u is
given, G(u)

num-AFs-MFCCs is the molecular composition of LF-MMI for the final
lattice that combines MFCCs-dropout-lattice and AFs-dropout-lattice, namely:

G(u)
num-AFs-MFCCs = λGnum-MFCCs-dropout ∪ (1 − λ) Gnum-AFs-dropout, (9)

where Gnum-MFCCs-dropout means MFCCs-dropout-latticce, Gnum-MFCCs-dropout

represents AFs-dropout-lattice, and ∪ represents the combination operation
between lattices.

4 Experiments

4.1 Dataset

In this experiment, the source languages for training the AFs-based detector are
English, German and French respectively and the target language is Chinese.
Using these four languages can cover all phonemes, project the languages to
the same dimension space and decompose all languages through AFs. Although
Chinese is not a low-resource language, it is a relatively controllable language
that is easier to analyze for subsequent experiments. For English, German, and
French dataset, Librispeech and Multilingual Librispeech are adopted [15,16]. In
order to conduct semi-supervised learning, 15 h of speech is randomly selected
from the Aishell (150 h) as supervised training, and the rest as unsupervised
training [17]. There is no overlap between unsupervised and supervised data.

4.2 Experimental Details

The process of ASR is consistent with the standard Kaldi process. First, under
the supervised data, the GMM-HMM model based on MFCCs and AFs is trained
respectively, and the GMM-HMM model based on TDNNF and LF-MMI is
trained as the seed model. The TDNNF has six hidden layers in total with 625
nodes in each hidden layer. In each layer, the dropout rate is set equally. For
the context-sensitive decision tree required for training LF-MMI, this experi-
ment only uses supervised data for decision tree training. The molecular FST is
constructed with supervised and unsupervised data but has a higher weight for
supervised data.

5 Results and Analysis

5.1 Dropout Settings

The experimental results tested on the baseline system are shown in Table 1.
It shows that adding an appropriate dropout (dropout=0.1) can improve the
generalization performance of the model and get a lower CER (CER=23.7%).
When analyzing the influence of dropout in the test phase, the experimental
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Table 1. Performance of different sizes of dropout on the LF-MMI-based ASR model.

Dropout for Train Set Dropout for Test Set CER [%]

LF-MMI 0.0 – 24.2

0.1 0.0 23.7

0.1 26.3

0.2 28.6

0.5 40.5

0.2 0.0 24.1

0.1 26.5

0.2 29.0

0.5 28.6

0.5 0.0 39.9

0.1 42.5

0.2 45.7

0.5 50.1

Fig. 3. CER results with different settings for multilingual semi-supervised ASR.

results show that when the dropout used in the test is between 0.1 and 0.2, the
performance will decrease slightly. However, when the dropout used in the test
exceeds 0.5, the performance will drop significantly. This is because the more
neurons the neural network randomly discards, the worse the predictive ability
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Table 2. Results of AF-based multilingual ASR.

Systems Weight of labeled
and unlabeled
data

Use of labeled
data in Aishell
(Hours)

CER[%]

MFCCs-baseline – 5 34.9

MFCCs-baseline – 15 23.7

MFCCs+AFs (Combined Lattice) †a – 15 23.0

MFCCs+Semi-supervised 1.0:1.0 15 11.9

MFCCs+Semi-supervised 1.0:1.5 15 12.3

MFCCs+Semi-supervised 1.5:1.0 15 11.3

MFCCs+Semi-supervised 2.0:1.0 15 11.8

MFCCs+AFs+Semi-supervised 1.5:1.0 15 10.9

MFCCs+AFs+Semi-supervised (Dropout) 1.5:1.0 5 14.2

MFCCs+Semi-supervised (Dropout) 1.5:1.0 15 10.6

MFCCs+AFs+Semi-supervised (Dropout) 1.5:1.0 15 9.8
a † represents that the experimental results of the supervised module combine the
lattice and decode it with sMBR.
b The “MFCCs-baseline” system represents the speech recognition model trained
only with the MFCCs of the target language. The “AFs” listed are all DANN-
AFs, and “+Semi-supervised” refers to the standard LF-MMI-based semi-supervised
model, “+Semi-supervised (Dropout)” is a LF-MMI-based semi-supervised model
based on Monte Carlo dropout

of the model is for the same dataset. The dropout size is set to 0.1 in the following
experiments to balance between the CER result and the inference time.

5.2 Decoding Settings

In this Subsection, the number of decoding N is selected from 5 to 30 on the base-
line system, and several experiments are carried out. The experimental results
are shown in the Fig. 3 (a). As the number of decoding times N increases, the
lattice merging and model training time will increase significantly. Although the
CER of the system decreases slightly when N is set to 30 (CER=10.4%), compar-
ing to the system performance when N equals to 20 (CER=10.5%), the training
and decoding time is greatly increased when the number of decoding times is 30.
In order to achieve a balance between experimental performance and training
time, in the subsequent experiments, the number of decoding N is selected to
20.

5.3 Results of AF-Based Semi-Supervised Learning for Multilingual
ASR

This Subsection studies the influence of λ in the Eq. (9). The experimental results
of different λ values are shown in Fig. 3 (b). It can be seen from the figure that
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Table 3. Results of semi-supervised ASR on unsupervised data at different scales.

Unsupervised Data Size Systems CER [%] Relative CER decline [%]

– Baseline 23.7 –

50 h MFCCs+AFs+Semi-supervised (Dropout) 10.8 –

MFCCs+Semi-supervised (Dropout) 11.9 9.2

Standard Semi-supervised Learning 13.0 16.9

80 h MFCCs+AFs+Semi-supervised (Dropout) 10.3 –

MFCCs+Semi-supervised (Dropout) 11.3 8.8

Standard Semi-supervised Learning 12.1 14.8

100 h MFCCs+AFs+Semi-supervised (Dropout) 10.1 –

MFCCs+Semi-supervised (Dropout) 11.0 8.2

Standard Semi-supervised Learning 11.7 13.6

135 h MFCCs+AFs+Semi-supervised (Dropout) 9.8 –

MFCCs+Semi-supervised (Dropout) 10.6 7.5

Standard Semi-supervised Learning 11.3 13.2

235 h (Aishell + Aidatatang) MFCCs+Semi-supervised (Dropout) 9.4 –

the model has the lowest CER (9.8%) when λ equals 0.6 or 0.7. Accordingly,
in the following experiments, the value of λ is set to 0.6 as the weight in the
combination of MFCCs-dropout-lattice and AFs-dropout-lattice. Moreover, the
results of AFs-based multilingual ASR systems are shown in Table 2. The fol-
lowing conclusions can be drawn from the experimental results:

First, compared with the baseline system trained only with the supervised
data, when applying semi-supervised learning, all semi-supervised learning sys-
tems have more obvious decreases in CER than the baseline system (CER =
23.7%) and the supervised MFCCs+AFs (Combined Lattice) system (CER =
23.0%). When performing semi-supervised learning with the ratio of ‘1.5:1.0’ for
supervised to unsupervised data, the model achieves the lowest CER (11.3%).

Second, compared with the standard LF-MMI semi-supervised learning me-
thod (CER = 11.3%), semi-supervised learning with dropout (CER = 10.6%)
has a relative CER decrease of 6.2%, which shows that semi-supervised learning
with dropout makes better use of unsupervised data.

Third, when using the AF-based semi-supervised learning method proposed,
the best ASR performance (CER=9.8%) can be obtained. Compared with the
MFCCs+semi-supervised (dropout) (CER=10.6%), which also uses the dropout
semi-supervised learning method, there is a 7.5% relative CER drop, which
obtains a 58.6% relative CER decline to the baseline system (CER=23.7%).
This further shows that the semi-supervised learning method combined with
articulatory attributes proposed can make the unsupervised data pass through
DANNs-AFs, take full advantage of multilingual phoneme information and suc-
cessfully transfer knowledge from data of rich-resource languages to low-resource
languages.
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5.4 Unsupervised Data Scales Settings

In this Subsection, 15 h of speech in Aishell is still used as supervised training,
and 100 h, 80 h, and 50 h are randomly selected from the 135 h of unsupervised
data for unsupervised training. The model which achieves the best result in
Table 2 is used for the remaining experiments. The experimental results are
shown in Table 3 and the trend graph is shown in Fig. 3 (c). It can be seen from
Table 3 that when there is more unsupervised data, the speech recognition system
has better recognition performance. At the same time, when comparing the
standard semi-supervised method with the semi-supervised method combined
with AFs, the AF-based semi-supervised learning method gains more obvious
improvements. It also shows that when the amount of data is smaller, the help
of multilingual AFs is greater.

5.5 Performance of Semi-Supervised Learning for Multilingual ASR
on Small-Scale Supervised Data

In order to study the ASR performance of the proposed method under small-scale
supervised data, 5 h of supervised training data is randomly selected from the
15 h of supervised data used above. Firstly, we explored the values of different
weights in Eq. (9) when the supervised training data is reduced. The experi-
mental results are shown in Fig. 3 (d). It can be seen that when the training
data is only 5 h, assigning more weights to the AFs-lattice can make the model
obtain lower CER for the reason that when the training data is smaller, more
knowledge needs to be borrowed from the resource-rich languages. The CER
results compared with the baseline system are shown in Table 2. The relative
CER drop (59.3%) in the case of 5 h of supervised data in Aishell is more than
the relative CER drop (58.6%) of 15 h of supervised data, which also shows that
when the amount of training data is smaller, the improvement of our system is
more obvious.

5.6 Performance of AF-Based Semi-supervised Multilingual ASR
System Across Datasets

In order to verify the scalability of the method proposed, 100 h of Chinese
data (Aidatatang) is added for experiments. The 100 h speech corpus is randomly
selected from the 139 h Aidatatang dataset. The experiments are implemented
together with 135 h of Aishell unsupervised data and the results are shown in
the bottom line of Table 3. After adding a certain size of out-domain unsuper-
vised data, there is a 4.1% relative CER decrease comparing to the original
experimental results, which shows the scalability of our method again.

6 Conclusions

In this paper, a semi-supervised learning method incorporating articulatory
attributes is proposed. In order to solve the problem of lacking the linguis-
tic knowledge in low-resource languages, this method combines Monte Carlo
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dropout with articulatory attributes, retains dropout in the model inference
stage and decodes unsupervised data multiple times to obtain the dropout-
lattice, which enables semi-supervised learning to utilize the unsupervised data
and transfer the linguistic knowledge from resource-rich to low-resource lan-
guages. Additionally, the MFCCs-based-lattice and the AFs-based lattice are
combined for LF-MMI training of unsupervised data. Experiments show that
semi-supervised learning using Monte Carlo dropout and articulatory attributes
have relative declines of 58.6% and 7.5% compared to the baseline system. The
experiments also show that the smaller the supervised data, the greater the
enhancement is. The method is further verified on the out-domain dataset, which
can also achieve a relative CER reduction of 4.1%. In the future, we will ana-
lyze the commonalities and characteristics between languages from an in-depth
level, and expand the method of this paper to more application scenarios, such
as robust speech recognition, speaker verification.
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Abstract. In-vehicle automatic speech recognition plays a crucial role
in the field of autonomous driving and in-car voice assistants, with one of
the significant factors affecting recognition accuracy being noise interfer-
ence in the vehicle environment. Most advanced automatic speech recog-
nition methods are oriented towards training resource-rich languages and
have some limitations for other small languages. This paper proposes a
Collaborative Transformer Decoder Method (CTDM) for a Low-resource
Uyghur Speech Recognition in-vehicle Environment. In the encoder, we
adopt collaborative encoding to capture multi-scale detail information
while focusing on global information. In the decoder part, we design a
parallel decoding strategy for arbitrary sequences, breaking the tradi-
tional left-to-right or right-to-left decoding order in Transformer decod-
ing methods to establish associations between different characters. Our
CTDM enhances the model’s ability to extract detailed information,
reduces the model’s dependence on large-scale training data, and weak-
ens the impact of noise on the model. Experiments are conducted on the
Uyghur General Speech 7, 8, 9, and 16 datasets combined with vehicle
noise and human speech noise to simulate real vehicle speech environ-
ments. Experimental results indicate that in a vehicular noise environ-
ment with a signal-to-noise ratio (SNR) of 0, the average word error rates
(WER) on datasets 7, 8, 9, and 16 decreased by 29.8%, 15.9%, 8.7%, and
5.1%, respectively. In a vocal noise environment with an SNR of 0, the
WER on datasets 7, 8, 9, and 16 decreased by 11.0%, 35.5%, 32.9%, and
13.8%, respectively.

Keywords: Vehicle Environment · Uyghur Language · Speech
Recognition · Collaborative Transformer

1 Introduction

In-vehicle automated speech recognition refers to a technology that recognizes
speech within the interior environment of a vehicle. It finds significant appli-
cations in autonomous driving and in-car voice assistants [3,8,13,26]. Current
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15333, pp. 154–169, 2025.
https://doi.org/10.1007/978-3-031-80136-5_11
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methods of in-vehicle speech recognition mainly include cloud-based [12], embed-
ded, and hybrid approaches. Cloud-based methods are susceptible to signal inter-
ference, embedded methods are unsuitable for deployment when model parame-
ters are too large, and although hybrid methods demonstrate better performance,
they are still affected by signal and model parameter issues. However, regardless
of the approach, the accuracy of automated speech recognition is crucial. One of
the key factors affecting recognition accuracy is noise interference in the vehicle
environment [4].

Currently, most advanced methods are based on the Transformer architecture
for end-to-end speech recognition, which is more reliant on large-scale training
datasets and is mainly targeted at training resource-rich languages. Traditional
Transformer-based decoders have two inputs: one from the encoder’s output and
the other from the decoding of previous production. During training, a fixed
lower triangular matrix masks text information to prevent information leakage
[25], allowing the model to process previously generated only unidirectionally.
While such methods achieve good training results with ample training data, in
cases of limited training data or strong data noise, the assistance of contextual
semantic information becomes crucial for accurate speech recognition.

To address the aforementioned challenges, we propose a Collaborative Trans-
former Decoder Method (CTDM) for a Low-resource Uyghur Speech Recogni-
tion in-vehicle Environment. In the encoder, we employ collaborative encoding
to focus on multi-scale detailed and global information simultaneously, enhanc-
ing the model’s sensitivity to noise features. In the decoder, we design a parallel
decoding strategy for arbitrary sequences, breaking the traditional left-to-right
or right-to-left decoding order in Transformer-based methods, thus establish-
ing correlations between different characters. Through this approach, the model
learns internal language knowledge, which somewhat mitigates the impact of
noise. Furthermore, multiple parallel decoding processes enhance the model’s
utilization of training data, reducing its reliance on large-scale training datasets.
Our contributions are outlined as follows:

1. In the encoder phase, we designed a multi-scale information extraction module
that collaborates with the Conformer model, enhancing the model’s ability
to extract detailed information and mitigating the impact of noise.

2. In the decoder, we introduced a collaborative decoding module with random
masking, enabling the model to learn internal language knowledge better,
further reducing the impact of noise, and enhancing the model’s utilization
of training data.

3. In a signal-to-noise ratio of 0 noise environment, our CTDM method achieved
outstanding performance.

2 Related Work

Traditional speech recognition methods rely on acoustic features and speech
models to match speech signals with predefined patterns [21]. However, they
struggle with complex speech signals and unstable speech variations and require
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extensive manual feature engineering, limiting their generalization ability across
different speech signals. With the advancement in computational capabilities,
Hidden Markov Models (HMMs) [15] emerged as the mainstream approach for
speech recognition. HMMs model speech signals and combine them with pro-
nunciation dictionaries and language models for recognition [7]. However, they
exhibit poor performance in recognizing long speech sequences and are sensitive
to variations and noise in speech signals.

With the advancement of deep learning, Convolutional Neural Networks
(CNN) [19] and Recurrent Neural Networks (RNN) [17] have been introduced
into speech recognition tasks to improve feature extraction and sequence model-
ing capabilities. CNN excels at extracting local features and handling noise, and
with Connectionist Temporal Classification (CTC) [10,18], they address align-
ment issues in speech recognition, allowing models to learn output sequences
directly from input speech without manual alignment. However, CTC assumes
frame independence and suffers from label sparsity, resulting in poor handling of
long sequence data and limited noise robustness. Additionally, CNN has limited
receptive fields and struggles with effectively modeling long-term dependencies.
Early RNN models enhanced sequence modeling capabilities, but traditional
RNN models faced issues like vanishing and exploding gradients. Long Short-
Term Memory Networks (LSTM) [14] addressed these problems, improving mod-
eling capabilities for long sequences, albeit sequentially. Meanwhile, Transformer
[9] models, leveraging self-attention mechanisms, enable parallel processing of
sequence data, achieving significant performance improvements. Nevertheless,
Transformer models still have limitations in handling local information. Schol-
ars later combined CNN and Transformer models to tackle this issue, such as
stacking CNN and attention mechanisms in Transformer models to capture local
details while establishing long-term dependencies [2,11,27]. In recent years, end-
to-end models [22,29] have gained increasing attention in speech recognition.
These models directly take speech signals as input and output corresponding
text, eliminating traditional feature extraction and alignment steps and simpli-
fying the system with promising results. However, their recognition accuracy
may be inferior to traditional methods for complex speech signals and scenarios.
Moreover, existing end-to-end models mostly rely on the Transformer archi-
tecture and can only capture forward semantic information. The emergence of
bidirectional Transformers partially addresses this issue but still lacks perception
capabilities between arbitrary characters.

In our proposed method, the encoder utilizes a multi-scale information
extraction module in collaboration with the Conformer model. This module
incorporates parallel multi-layer convolutional structures of different sizes to
enhance the model’s noise-handling capabilities and refine feature extraction.
In the decoder part, correlations between arbitrary characters are established
by employing a parallel decoding strategy for arbitrary sequences, allowing the
model to learn internal language knowledge and somewhat mitigate the impact
of noise. Semantic information between words is captured, enabling the model to
perform well even with smaller datasets. Additionally, multiple parallel decoding
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processes enhance the model’s utilization of training data and reduce its reliance
on large-scale training datasets during training. The model adopts a unidirec-
tional decoding approach to improve decoding efficiency during inference.

3 Methodology

Coordinated Transformer decoder
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Fig. 1. Overall Structure of the Collaborative Transformer Decoder Method

Our method, CTDM, follows an encoder-decoder architecture. The overall
structure of our model is shown in Fig. 1.

3.1 Encoder

The encoder consists of a downsampling module, a Multi-scale Information
Extraction (MSIE) Module, and a Conformer module.

Speech signals are sparse. The primary goal of the downsampling module is to
reduce the data volume of the speech signal and simplify the model complexity.
The input features x to the downsampling module have the shape of [B, T, F ],
where B denotes the batch size, T represents the time length, and F is the
feature dimension. In this experiment, we utilize 80-dimensional Fbank features.
During the downsampling process, we first expand the dimensions of the features
to [B, 1, T, F ]. Subsequently, we apply two 2D convolutions with kernel sizes 3
and a stride of 2, each producing 256 channels. This operation downsamples
both the speech length and feature dimension to one-fourth of their original
sizes. Consequently, the shape of the feature maps becomes [B, 256, T/4, F/4].
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The feature maps are transformed to [B, T/4, 256 ∗ F/4] following a reshape
operation. Finally, after passing through a linear layer, the shape of the feature
maps becomes [B, T/4, 256]. The downsampling process is represented by the
(1).

xd = Linear (reshape (Conv2D (Expand(x)))) (1)

A�en�on

CNN3

CNN5

CNN7

C

Out3

Out5

Out7

+

MSIE Module

Fig. 2. MSIE module

The Multi-scale Information Extraction (MSIE) Module is designed to cap-
ture multi-scale features from speech data, refining feature extraction and
improving the model’s noise robustness. We employed six layers in our experi-
ments, as illustrated in Fig. 2. The input xd to MSIE is derived from the output
of a downsampling module. It undergoes convolution with kernels of sizes 3, 5,
and 7, resulting in three distinct scale features: xc3, xc5, and xc7. These feature
maps are concatenated along the channel dimension and subsequently processed
through convolutional layers to reduce their dimensionality to a single channel.
Each resulting feature map is activated using the Sigmoid function to produce
attention vectors. These attention vectors are then element-wise multiplied with
xc3, xc5, and xc7 respectively, and the resultant features are aggregated to obtain
the final feature representation. The process is represented by the (2).

xm =
∑

i∈{3,5,7}
(Sigmoid(Conv(Concat(xci))) � xci) (2)

where xci represents the feature map obtained from convolution with kernel size
i, � denotes the element-wise multiplication.

The Conformer module consists of 12 layers, primarily composed of the Multi-
Head Attention (MHA) Mechanism, Feedforward Neural Network (FFN), Con-
volution, Layer Normalization (LN), and Skip Connections. The convolution and
multi-head attention modules are situated between two Feed-Forward modules,
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with a convolution kernel size of 15. We represent this using (3).

x1 = 1/2 ∗ FFN(xd) + xd

x2 = MHA(x1) + x1

x3 = Conv(x2) + x2

xcon = LN(1/2 ∗ FFN(x3) + x3)

(3)

where xcon represents the final output of the conformer module. This output is
then added to the output of the MSIE module, xm, to serve as the final output
of the encoder.

3.2 Decoder

The decoder comprises CTC, Transformer, and Attention Rescoring decoder. In
the Transformer decoder, we employ a parallel collaborative decoding strategy.

The input xE in the CTC decoder is the output of the encoder, obtained by
adding the outputs of the MSIE and Conformer modules. CTC primarily utilizes
a Linear layer to generate corresponding logits.

The Transformer decoder employs a 6-layer Transformer architecture, pri-
marily composed of two MHA modules and one Multi-Layer Perceptron (MLP).
The input to the first MHA in the decoder includes context information c and
the mask m. The mask m is generated using Our Collaborative Transformer
Decoder (CTD) to introduce random masking. The first MHA is represented by
(4).

hc = c + MHA(c, c, c,m) (4)

The input to the second MHA module comprises the output hc from the
preceding MHA and the output xE from the encoder.

hi = hc + MHA(hc, xE , xE) (5)

Finally, hi undergoes MLP and linear layers to produce the logits of the
transformer decoder.

logitsT = Linear(hi) (6)

This paper uses an alternative decoding method called Attention Rescoring.
In this method, the decoding results from the CTC are fed into the atten-
tion model for re-decoding. This approach combines the advantages of the CTC
decoder and attention decoder, achieving better performance by leveraging the
strengths of each method. By utilizing the initial predictions from CTC as a
guide, the attention model can refine these predictions, resulting in more accu-
rate and reliable final outputs.

The typical Transformer decoding process starts with an initial point B,
where both B and the encoder’s output are fed into the network to generate the
first character, C1, followed by sequential decoding of C2, C3, C4, and so on.
The subsequent information is masked to prevent information leakage during
training. In our CTD, after setting the initial point B, subsequent characters are
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decoded randomly using different mask sequences. Figure 3 illustrates four ran-
domly generated masked sequences produced by the Collaborative Transformer
Decoder. It should be noted that we decode different sequences using various
mask sequences while keeping the actual order of character labels unchanged.
This random method is used only during training. During inference and testing,
we decode using the conventional Transformer method.

Our experiments used 14 sets of masked sequences, resulting in 14 paral-
lel decoders during training. Each decoder operates independently, reducing the
risk of information leakage. Among the first seven masked sequences, one fol-
lows the traditional left-to-right decoding order, and the other is specifically
designed for the Uyghur language. We observed that Uyghur often has verb-final
sentences, with a significant distance between the subject and the verb, which
can lead to the loss of dependency structures. We designed a special decod-
ing sequence to address this issue, where the last four characters are decoded
first. This means that after inputting the initial label B, decoding starts from
the fourth-to-last character, then moves to the third-to-last, second-to-last, and
finally the last character. Following this, the sequence is decoded from the first
character onwards. This design brings the final verb to the beginning of the sen-
tence, reducing the distance between the subject and the verb, thus alleviating
the long-distance dependency problem. The remaining five masked sequences use
random masking. The latter seven masked sequences are the reversed versions
of the first seven.

Mask
B C1 C2 C3

C1
C2
C3
B

B->C1
B,C1->C2

B,C1,C2->C3
B,C1,C2,C3->B

B->C3
B,C3->C2

B,C3,C2->C1
B,C3,C2,C1->B

B->C1
B,C1->C3

B,C1,C3->C2
B,C1,C3,C2->B

B->C2

B,C2C3->C1

B,C2->C3

B,C2,C3,C1->B

B C3 C2 C1
C3
C2
C1
B

B C1 C3 C2
C1
C3
C2
B

B C2 C3 C1
C2
C3
C1
B

B C1 C2 C3
B C1 C2 C3
B C1 C2 C3
B C1 C2 C3

Fig. 3. Collaborative Transformer Decoder

4 Experiment

4.1 Datasets and Experimental Setup

In our experiments, we utilized four small-scale Uyghur language datasets:
Mozilla Common Voice 7.0, 8.0, 9.0, and 16.1 [1], the total time for each dataset
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Fig. 4. Spectrograms of audio files with different SNR

containing the training set, test set, validation set, and partially unavailable
dirty data is 44, 64, 65, and 180 h, respectively. In this paper, we refer to them
as Data 7, 8, 9, and 16 to represent these four datasets. For processing Uyghur
text, we used the Byte-Pair Encoding (BPE) algorithm [24], which divides words
into subwords based on frequency. In our experiments, we used BPE to split
the vocabulary into 5,000 subwords. When processing speech data, we used the
Librosa tool to extract 80-dimensional Fbank features as input for the network.
These features accurately capture the spectral structure of the speech signal,
thereby enhancing the model’s performance in speech recognition tasks. Addi-
tionally, we used noise data from the Thuyg20 [23] dataset, which includes two
types of noise: vehicle noise and human voice noise. The paper employs Signal-
to-Noise Ratio (SNR) to measure the relative strength between the signal and
noise, as shown in Eq. 7. The SNR of zero indicates that signal and noise have
equal intensity. We plotted the spectrogram of the original audio and those with
different SNRs. As can be seen from Fig. 4, when the SNR is -6dB, there is a
significant impact on the original data, with much of the detailed information
lost. However, real-world SNR often fluctuates. To reflect this, we used Gaus-
sian distribution when adding noise. That is, the added noise has an SNR with
a mean of 0 and a variance of 1. This allows for controlling the randomness of
the noise and simulating more realistic scenarios.

SNR = 10 · log10(SignalPower
NoisePower

) (7)

Word Error Rate (WER) or Character Error Rate (CER) are commonly
used evaluation metrics in speech recognition. For the Uyghur language, WER
is generally adopted as the evaluation criterion. A lower WER indicates fewer
errors, implying higher accuracy and better model performance.

In our experiments, our server’s CPU is an AMD Ryzen 5 5600, and it’s
equipped with a graphics card with 24GB of VRAM, specifically an NVIDIA
GeForce RTX 3090 Ti. Our hyperparameter settings are shown in the Table 1.

4.2 Comparison Experiments

To demonstrate the effectiveness of our CTDM, we conducted comparative
experiments on Data 7, 8, 9, and 16 with added vehicle noise and human voice
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Table 1. Experimental Parameter Settings.

Parameter Name Parameter

Num Conformer 12

Num Decoder 6

Dff 2048

Epoch 140

Lr 0.0005

Num Mel 80

Frame Length 25

Frame Shift 10

Spec Aug True

Accum Grad 4

noise, comparing against existing 7 speech recognition methods. In the com-
parative experiments, Transformer [28] is a speech recognition method based
on the Transformer architecture. Conformer [11] serves as our baseline, enhanc-
ing the encoder of the Transformer-based speech recognition architecture. Fur-
thermore, our CTDM method employs a Collaborative Transformer Decoder in
the decoding phase, allowing for flexible decoding strategies with learning of
semantic information between arbitrary characters. Therefore, in our compar-
ative analysis, we selected Conformer bi [20] and STBD [6], both capable of
utilizing bidirectional context information to enhance speech recognition per-
formance. Conformer bi utilizes a single decoder equipped with bidirectional
context embedding for bidirectional decoding, whereas Squeeze bi employs a
directional decoder comprising two distinct unidirectional decoders. Addition-
ally, our CTDM method optimizes the encoder with a multi-scale information
extraction module and collaborates with the Conformer model. Thus, this study
compares Squeezeformer [16], Efficient Conformer V1 (E ConforV1) [5], and V2
(E ConforV2) [5]. Squeezeformer optimizes the encoder based on Conformer, sig-
nificantly reducing model computational complexity and parameter count while
maintaining high performance. E ConforV1 and E ConforV2 similarly optimize
the encoder based on Conformer, substantially reducing computational complex-
ity. V2 further improves upon V1 by reducing model parameters and computa-
tional complexity.

From the experimental data in Table 2 and Table 3, our CTDM performs
excellently on datasets Data7, Data8, Data9, and Data16 when vehicle noise and
human noise are added. A refers to the results of the Attention decoder, A r refers
to the results of the Attention Rescoring decoder, and C g refers to CTC Greedy
decoder. Compared to the baseline method Conformer, the Attention decoding
WER in a vehicle noise environment decreased by 3.2%, 4.9%, 2.4%, and 0.8%
on Data7, Data8, Data9, and Data16, respectively. In the human noise envi-
ronment, the Attention decoding WER on these datasets decreased by 3.9%,
23.1%, 12%, and 2%, respectively. In the vehicle noise environment, the Atten-
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Table 2. Comparison Experiment with Vehicle Noise

Vehicle SNR=0 Data 7 Data 8 Data 9 Data 16

Model A A r C g A A r C g A A r C g A A r C g

Transformer 20.5 30.4 40.8 16.7 24.2 31.6 10.5 13.5 17.6 9.9 11.8 18.8

Conformer 21.8 50.2 58.3 10.0 23.1 30.9 10.0 14.1 21.2 10.8 11.7 17.5

Conformer bi 17.7 18.9 25.4 9.2 18.4 29.8 9.2 14.3 18.6 10.5 7.6 12.0

STBD 22.8 31.1 41.6 17.8 19.2 22.3 15.7 20.3 30.1 14.0 6.6 10.3

Squeezeformer 24.4 31.2 40.8 16.6 19.0 26.6 15.3 45.2 54.5 13.5 8.7 14.1

E ConforV1 115.2 98.9 99.1 114.3 98.7 99.8 11.1 15.3 19.8 10.0 7.6 9.3

E ConforV2 111.4 99.1 99.8 17.7 23.5 29.7 11.0 16.4 22.0 9.9 6.5 8.4

CTDM(Ours) 18.6 8.3 14.1 5.1 3.8 7.3 7.6 4.0 7.6 10.0 5.9 8.7

Table 3. Comparison Experiment with Human Noise

Human SNR=0 Data 7 Data 8 Data 9 Data 16

Model A A r C g A A r C g A A r C g A A r C g

Transformer 120.6 99.5 99.7 118.3 99.3 99.5 112.0 98.7 99.1 31.2 64.1 70.6

Conformer 77.9 84.0 86.4 40.1 72.2 76.7 35.1 66.4 70.5 18.4 35.1 43.4

Conformer bi 110.9 99.1 99.9 107.5 99.0 99.1 115.0 98.9 99.6 17.9 17.0 23.2

STBD 67.7 69.2 74.9 15.1 31.6 41.0 23.6 44.1 53.6 19.6 24.0 31.7

Squeezeformer 72.6 90.1 91.6 25.0 67.5 74.1 24.0 54.5 63.9 20.8 24.8 32.9

E ConforV1 131.5 99.8 99.7 115.9 99.4 99.9 113.1 99.4 99.7 18.8 19.7 26.5

E ConforV2 105.6 98.9 99.4 114.8 99.1 99.8 28.6 52.0 59.9 17.9 18.4 25.0

CTDM(Ours) 74.0 67.5 73.8 17.0 28.2 37.2 23.1 21.5 28.8 16.4 16.4 22.7

tion Rescoring decoding WER on Data7, Data8, Data9, and Data16 decreased
by 41.9%, 19.3%, 10.1%, and 5.8%, respectively. In the human noise environ-
ment, the Attention Rescoring decoding WER on these datasets decreased by
16.5%, 44%, 44.9%, and 18.7%, respectively. In the vehicle noise environment, the
CTC Greedy decoding WER on Data7, Data8, Data9, and Data16 decreased by
44.2%, 23.6%, 13.6%, and 8.8%, respectively. In the human noise environment,
the CTC Greedy decoding WER on these datasets decreased by 12.6%, 39.5%,
41.7%, and 20.7%, respectively. The above data shows that compared to the
baseline method, CTDM shows significant improvements, especially on datasets
Data7, Data8, and Data9. This is because our CTDM employs a parallel decoder
with arbitrary sequences in the decoder, allowing for better learning of internal
language knowledge. Additionally, during training, multiple parallel decoders
enhance the model’s ability to utilize training data effectively, reducing depen-
dence on large-scale training data. Hence, the improvements are particularly
noticeable on the relatively smaller datasets Data7, Data8, and Data9.

From other comparative experiments, we can also observe that, in most cases,
the model error rate decreases as data increases. Existing models are relatively
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dependent on training data, performing well when the training data is relatively
abundant. This is particularly evident in the Squeezeformer, E ConforV1, and
E ConforV2 methods. As seen from the data in Table 2 and Table 3, these meth-
ods perform prominently on the relatively larger dataset Data16 but poorly on
the smaller datasets Data7, Data8, and Data9. This is because, with smaller
training data, models based on the Transformer architecture are less likely to
converge. Additionally, the Squeezeformer, E ConforV1, and E ConforV2 meth-
ods are lightweight improvements based on the Conformer, making it difficult
to extract effective features when the training data is limited. From the experi-
mental data in Table 2, it can also be seen that in the vehicle noise environment,
the recognition WER of the Transformer, Conformer, Conformer bi, and STBD
methods decreases as the amount of training data increases. Among them, Con-
former bi performs the best. This is because it combines convolutional neural
networks’ local feature extraction capabilities with the global feature extraction
capabilities of attention mechanisms and uses bidirectional LSTM decoding dur-
ing the decoding process. Although the STBD method uses bidirectional LSTM
decoding, its encoder performs downsampling operations, losing some informa-
tion. Therefore, it performs worse than Conformer bi when the dataset is smaller.
However, when the training data is relatively abundant, its performance is com-
parable to that of Conformer bi.

From the experimental data in Table 3, it can be observed that in the Human
Noise environment, most methods perform poorly on the small datasets Data7,
Data8, and Data9, unlike Table 2. Conformer bi performs weaker than Con-
former on these datasets. This is because human voice noise is quite similar to
the content to be recognized. When the dataset is small, Conformer bi cannot
effectively distinguish between noise and the target. As a result, Conformer bi is
less sensitive to indistinguishable noise. With more abundant training data, Con-
former bi can effectively learn valid features, leading to superior performance on
Data16 compared to Conformer. In contrast, STBD, which undergoes lightweight
processing in its encoder, performs better than Conformer bi on the relatively
small datasets Data7, Data8, and Data9. This is because STBD filters out some
noise during downsampling, which enhances its performance on these datasets.
However, with more extensive training data, STBD’s lightweight improvements
inevitably result in the loss of some effective features, leading to weaker per-
formance on Data16 compared to Conformer bi. It’s notable that in Table 2,
STBD performs worse than Conformer bi on Data7, Data8, and Data9, whereas
in Table 3, it outperforms Conformer bi. This difference arises because human
noise features are less distinct from recognition targets, making STBD more
sensitive during downsampling, which improves its performance in Table 3. In
contrast, vehicle noise features differ significantly from recognition targets, where
Conformer bi’s strong capability in detail handling enables better differentiation
and recognition, thus outperforming STBD in Table 2.

From the experimental data in Table 2 and Table 3, it can be observed that
the WER in Table 3 are generally higher than those in Table 2. This is because
vehicle noise features differ significantly from recognition targets, resulting in
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less impact on recognition methods and lower dependence on training data. In
contrast, human noise features are less distinct from recognition targets, leading
to a greater impact on recognition methods and, hence, higher dependence on
training data.

4.3 Ablation Experiments

In the encoder part of our CTDM, we employed collaborative encoding by
designing an MSIE module to collaborate with the Conformer. This module
enables the model to focus on global information while capturing multi-scale
detailed information, thereby enhancing the model’s sensitivity to noise features.
In the decoder part, we improved upon the Transformer decoder by designing
an arbitrary sequence parallel decoding strategy, CTD, which allows for correla-
tions between different characters, facilitating better learning of intra-character
semantic information. We conducted ablation studies on MSIE and CTD sepa-
rately in vehicle and human noise environments on datasets Data7, Data8, and
Data16, as shown in Table 4. Here, Av represents the average of the three types
of decoding WER.

Table 4. Ablation Experiments with MSIE and CTD Modules

Noise MSIE CTD Data 7 Data 8 Data 16

A A r C g Av A A r C g Av A A r C g Av

Vehicle � � 18.6 8.3 14.1 13.7 5.1 3.8 7.3 5.4 10.0 5.9 8.7 8.2

� ✗ 20.5 20.4 29.1 23.3 8.4 15.2 21.8 15.1 10.6 10.4 15.1 12.0

✗ � 19.7 13.6 19.9 17.7 7.5 10.2 17.4 11.7 10.0 9.5 12.7 10.7

✗ ✗ 21.8 50.2 58.3 43.4 10.0 23.1 30.9 21.3 10.8 14.1 21.2 15.4

Human � � 74.0 67.5 73.8 71.8 17.0 28.2 37.2 27.5 16.4 16.4 22.7 18.5

� ✗ 76.4 78.6 80.7 78.6 34.4 56.2 60.7 50.4 18.1 29.3 40.8 29.4

✗ � 75.2 70.8 76.8 74.3 25.8 48.9 54.5 43.1 17.2 22.6 30.4 23.4

✗ ✗ 77.9 84.0 86.4 82.8 40.1 72.2 76.7 63.0 18.4 35.1 43.4 32.3

According to the experimental data in Table 4, we observe that using the
CTD strategy on datasets Data7, Data8, and Data16 reduces the average WER
under vehicle noise by 9.6%, 9.7%, and 3.8% respectively, and under human noise
by 6.8%, 22.9%, and 10.9% respectively. These results demonstrate that the CTD
decoding strategy, which correlates arbitrary characters and enhances the learn-
ing of inter-character semantic information, effectively mitigates the impact of
vehicle and human noise on recognition results. Particularly noteworthy is the
outstanding performance of the CTD strategy on the relatively smaller datasets
Data7 and Data8, highlighting the effectiveness of CTD. Using the MSIE mod-
ule on datasets Data7, Data8, and Data16 reduces the average WER under
vehicle noise by 4.0%, 6.3%, and 2.5%, respectively, and under human noise by
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2.5%, 15.6%, and 4.9% respectively. These findings indicate that the MSIE mod-
ule enhances the capability to capture multi-scale detailed information, thereby
better-distinguishing noise from target features and increasing the model’s sen-
sitivity to noise features. Notably, the MSIE module performs exceptionally well
on the relatively smaller dataset Data8, confirming its effectiveness. Combining
both CTD and MSIE on datasets Data7, Data8, and Data16 reduces the average
WER under vehicle noise by 29.7%, 15.9%, and 7.2%, respectively, and under
human noise by 11.0%, 35.5%, and 13.8% respectively. These results highlight
that the CTDM approach proposed in this paper effectively reduces recognition
of WER in low-resource noise environments.

To demonstrate the robustness of our method under varying degrees of human
noise, we conducted ablation studies in different levels of human noise environ-
ments, setting up control groups with varying SNRs. The experimental results
are shown in Table 5.

Table 5. Ablation Experiment with Different SNR Levels with Human Noise

Model SNR Data 7 Data 8 Data 16

A A r C g Av A A r C g Av A A r C g Av

base −6 107.0 96.9 97.1 100.3 90.8 92.5 93.3 92.2 54.7 65.0 70.4 63.3

−3 89.7 90.0 91.3 90.3 56.4 78.9 82.6 72.6 37.7 47.1 54.8 46.6

0 77.9 84.0 86.4 82.8 40.1 72.2 76.7 63.0 18.4 35.1 43.4 32.3

3 63.6 80.1 83.1 75.6 12.9 44.5 53.5 37.0 13.1 32.7 41.5 29.1

6 61.6 75.0 78.7 71.8 10.3 34.6 44.6 29.8 11.9 23.8 31.8 22.5

ours −6 98.9 98.7 99.5 99.0 50.1 70.1 75.7 65.3 45.1 52.3 58.9 52.1

−3 86.2 84.6 87.5 86.1 19.1 30.7 39.1 29.6 30.0 43.5 51.9 41.8

0 74.0 67.5 73.8 71.8 17.0 28.2 37.2 27.5 16.4 16.4 22.7 18.5

3 41.5 27.0 36.8 35.1 6.6 8.2 13.5 9.4 11.4 9.4 13.5 11.4

6 35.1 18.9 27.2 27.1 5.0 5.9 10.5 7.1 9.1 7.2 10.5 8.9

From the experimental data in Table 5, it is evident that when the SNR is 6,
indicating minimal noise interference, the baseline method Conformer exhibits
average WER of 71.8%, 29.8%, and 22.5% on datasets Data 7, Data 8, and Data
16, respectively. Our method, CTDM, in contrast, achieves an average WER
of 27.1%, 7.1%, and 8.9% on the same datasets. Our CTDM model achieves a
significantly lower WER on these datasets compared to the Conformer baseline
When the SNR is -6, indicating maximum noise interference, CTDM and Con-
former perform poorly on Data 7, primarily due to strong noise interference.
However, on Data 8 and Data 16, our method CTDM outperforms Conformer
by a considerable margin, demonstrating that CTDM can converge on smaller
datasets. This observation is further supported when the SNR is 0. At SNR
0, our method CTDM exhibits lower WER than Conformer on the relatively
smaller dataset Data 7 and demonstrates excellent performance on Data 8 and
Data 16.
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4.4 Cases Analysis

Fig. 5. Error Analysis

We listed the errors in speech recognition and analyzed them, as shown in
Fig. 5. Our model produced correct results in the figure, aligning with the ground
truth, whereas the Conformer model had two errors. Although both sentences
convey the same meaning, the Conformer model made two mistakes: Error 1
is related to a suffix issue, where the words represent “modern” and “modern-
ization.” Due to less effective context utilization, the Conformer model made
a suffix error during recognition. Our model, which fully leverages contextual
information, resolved the suffix error. Error 2 was caused by a highly unclear
pronunciation in the original speech, especially in a noisy environment. The
Conformer model failed to capture this detail, leading to misrecognition. Our
Multi-scale Information Extraction (MSIE) module effectively compensated for
this drawback, capturing the subtle information and thus achieving accurate
recognition.

5 Conclusion

In-vehicle Uyghur speech recognition encounters significant challenges due to
noise and other environmental disturbances. To address these challenges, this
paper proposes a Collaborative Transformer model that introduces a Multi-Scale
Information Extraction module at the encoder stage and optimizes decoding
sequences at the decoder stage to coordinate multiple decoder sequences, thereby
enhancing contextual information extraction.

Experiments were conducted on four datasets from Common Voice 7, 8, 9,
and 16.1. The model’s performance was evaluated in vehicular and human noise
environments with a signal-to-noise ratio (SNR) of 0. The average WER was
calculated using three decoding methods (Attention, Attention Rescoring, and
CTC Greedy). Compared to the baseline model, our model achieved the fol-
lowing improvements: In the vehicular noise environment, the average WER on
datasets 7, 8, 9, and 16 decreased by 29.8%, 15.9%, 8.7%, and 5.1%, respectively.
In the human noise environment, the average WER on datasets 7, 8, 9, and 16
decreased by 11.0%, 35.5%, 32.9%, and 13.8%, respectively. These results indi-
cate that the Collaborative Transformer model substantially improves speech
recognition performance in vehicle environments, enhancing the system’s accu-
racy and stability across various noisy conditions. However, we also recognize
room for improvement in the model’s noise resistance. In the future, we will
further enhance the model’s noise resistance capabilities.
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Abstract. The existing audio-visual wake-up word spotting (AVWWS)
methods assume that the audio signal has been aligned with the lip
movement video signal of a specific speaker in noisy environments, and
are mainly applicable for scenarios with only a single speaker. How-
ever, in complex scenarios, there may be multiple people showing up
in the video facing the camera simultaneously, and more than one per-
son may be speaking at the same time. Wake-up word spotting in noisy
and multi-person scenarios remains relatively under-explored. In this
paper, we first propose a Wake-up Word Active Speaker Detection Model
(WWASD) to recognize the face that is speaking the wake-up word.
Based on the model, we propose two approaches, namely Two-stage
detection and Three-stage detection, for audio-visual wake-up word spot-
ting in noisy and multi-person scenarios. We compare the approaches
from the perspectives of performance and computational complexity on
MISP2021-AVWWS corpus. The best Two-stage detection approach,
which contains WWASD and audio-visual wake-up word spotting model,
achieves comparable performance against the systems with oracle visual
speaker bounding boxes. Three-stage detection, which adds an audio-
based single-modality wake-up word model as a front end greatly reduces
the computational cost.

Keywords: Wake-up word spotting · Active speaker detection ·
Audio-visual modeling

1 Introduction

As the front end of voice assistant on smart terminal devices such as mobile
phones, watches, headphones and speakers, Wake-up Word Spotting (WWS),
also known as Keyword Spotting (KWS) or Wake-up Word Recognition,
has achieved satisfactory performance in normal conditions. This task checks
whether the text corresponding to the input voice is the same as the wake-up
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word so that the back-end service can be switched from the sleep state to the
working state.

However, in complex scenarios, the voice signal has strong noise, and the
accuracy of wake-up word spotting in pure speech is greatly reduced. Lip move-
ment video information is insensitive to audio noise, and can be used as a good
supplement to the audio modality. Therefore, more and more works have chosen
to construct multimodal wake-up word models based on joint audio and video
modalities [1–6]. They achieved good performance in the WWS task. However,
the active speaker information is given in most of the existing audio and video
wake-up word spotting corpus [7]. The existing audio-visual wake-up word spot-
ting methods assume that the audio signal has been aligned with the lip move-
ment video signal of a specific speaker in noisy environments. That is to say,
they assume that both the speech audio and the lip movement video signals
come from the same speaker, lacking the ability to automatically identify the
active speaker who speaks the wake-up word from multiple persons showing in
the video. Hence, the aforementioned existing methods are mainly applicable for
scenarios with only a single speaker. However, in complex scenarios, there may
be multiple people showing up in the video facing the camera simultaneously,
and more than one person may be speaking at the same time. In such a case,
the recorded video may contain multiple human faces with lip movement, which
makes the current audio-visual wake-up word spotting methods difficult to cor-
rectly match the wake-up word audio signal to the right speaker who said the
word. It is necessary to first detect the active speaker in order to crop the correct
video information and feed to the audio-visual wake-up word spotting model.

Our objective in this work is to solve the problem of multimodal wake-up
word spotting in noisy and multi-person scenarios. We first develop a model
that focuses on finding the face that is speaking the wake-up word. The task
concerns active speaker detection (ASD) and we call the model Wake-up Word
Active Speaker Detection Model (WWASD). There is limited work now design-
ing a model that recognizes the face of active speaker speaking the wake-up word
in multi-face and noisy scenarios. Based on this model, we further propose two
audio-visual wake-up word spotting approaches in complex scenarios to achieve
simultaneous recognition of active speakers and robust wake-up word spotting.
We compare these solutions in detail in terms of performance and computa-
tional complexity, so that the solution can be selected according to the specific
application needs.

2 Related Work

2.1 Multimodal Wake-up Word Spotting

Due to the robustness of visual information against audio noise, more and more
researches are focusing on combining speech signals and speaker’s lip movement
video to improve the recognition performance of wake-up word spotting [1–6],
automatic speech recognition (ASR) [8–10], speech separation [11,12], speaker
verification [13] and so on. With the first Multimodal Information based Speech
Processing Challenge (MISP Challenge 2021 [7]) being held, many multimodal
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wake-up word spotting models have been designed. Yanguang Xu et al. proposed
three models which are A-Transformer, A-Conformer, and AV Transformer as
subsystems in [2], and conducted multimodal information fusion through vot-
ing at the decision-making level. A model using visual-assisted minimum vari-
ance distortionless response (MVDR) and cross-attention between audio-visual
modalities is proposed in [3] . Haoxu Wang et al. improved their previous mod-
els [5,6] in [4], and proposed the Frame Level Cross Modal Attention (FLCMA)
mechanism, which can help model audio-visual information at the frame level by
synchronizing lip movements and speech signals. The proposed model achieves
new state-of-the-art results on the far-field MISP datasets.

2.2 Active Speaker Detection

Active speaker detection (ASD) aims at determining which person or none is
speaking in a video at each time window [14,15], and it serves as a frontend
for multimodal speech recognition (ASR) [14,16,17]. Ruijie Tao et al. proposed
MuSED to learn the denoising ability for low-quality noisy videos and it is fine-
tuned with the AV-ASD task in [18]. Cross-modal contrastive learning and posi-
tional encoding in the attention modules of supervised ASD models is applied
in [14]. In [19,20], Otavio Braga et al. proposed an attention layer to the ASR
encoder that is able to soft-select the appropriate face video track, and they
improved the previous work by presenting a single model that can be jointly
trained with a multi-task loss in [21].

Lip synchronization model can also be used for ASD, due to that the speaker’s
face is naturally the one with the highest correspondence between the audio and
video signals [22]. The first deep learning based synchronization model SyncNet
[22] proposed a two-stream ConvNet architecture that enables a joint embed-
ding between the sound and the mouth images to be learnt from unlabelled
data. A new learning strategy where the embeddings are learnt via a multi-way
matching problem is used in [23]. Honglie Chen et al. compared a number of
transformer-based architectural variants to model audio-visual synchronisation
in [24]. Venkatesh S Kadandale et al. proposed a Transformer based audiovisual
cross-modality model in [25], namely Vocalist, which outperformed several base-
line models in the audiovisual synchronization task on the standard lip-reading
speech benchmark dataset LRS2 . At the same time, the special case of singing
voice is also considered, and the model trained on the AV singing voice dataset
Acappella also achieved state-of-the-art result.

In our work, we focus on detecting the active speaker with interactive intent
and speaking wake-up words, so that the device can lock in the person with
interactive intent in the video modality and constantly interact with the person
later through audio-visual speech recognition or audio-visual speech extraction
techniques.

3 Wake-Up Word Active Speaker Detection

To detect the active speaker, we compare two existing audio-video multimodal
models and make them suitable for the task of wake-up word active speaker
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detection, which are Vocalist [25] and FLCMA based audio-visual conformer
model [4]. The frameworks of two models used for wake-up word active speaker
detection are shown in Fig. 1.

Fig. 1. The frameworks of two models used for wake-up word active speaker detection.

3.1 Vocalist For Wake-up Word Active Speaker Detection

Vocalist [25] is originally designed for the audiovisual synchronization task. We
extracted 64 frames of audio and video in this work instead of the 5 frames which
is set in the paper [25].

Since the fps of the video is 25, 64 frames with 2.56 s duration can cover
the wake-up word length. Different from the Vocalist model, our active speaker
detection model is designed for the wake-up word, and the input of 64 frames can
directly compare the correspondence between video and audio at the sentence
level, which is more convenient to compare the output score. We determine the
active speaker in a multi-face scenario based on the fact that the face of the
active speaker is the face with the highest correspondence between audio and
video.

3.2 The Proposed WWASD Model

We use FLCMA based audio-visual Conformer as our final WWASD model, the
same architecture as [4] which is originally used in AVWWS task. We re-design
its training goal from detecting the wake-up word to the active speaker detection,
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so that the output score represents the correspondence between audio and video,
instead of the confidence score of whether is a wake-up word in AVWWS task.

The model obtains the complementary information between audio and video
through the FLCMA based Audio-Visual Conformer Encoder for wake-up word
spotting and obtains great performance, so we explore whether the encoder mod-
ule can also obtain the synchronization information between audio and video if
the model is applied to the wake-up word active speaker detection task.

6 self-attention blocks (N = 6) and 256-dimensional hidden size were used
in [4] for the FLCMA module based Conformer structure. In real application
scenarios, there are often limitations in terms of computational complexity due to
hardware reasons. Therefore, we test 6 self-attention blocks and 256-dimensional
hidden size (WWASD-L), 4 self-attention blocks and 128-dimensional hidden
size (WWASD-M) and 2 self-attention blocks and 64-dimensional hidden size
(WWASD-S) respectively to decrease the computational cost.

4 The Proposed Audio-Visual Wake-up Word Spotting
Approaches

The overview diagram of wake-up word spotting approaches is shown in Fig. 2,
and detailed picture is shown in Fig. 3 (Two-stage detection is not shown since
Three-stage becomes Two-stage after removing the first stage).

Fig. 2. The overview diagram of compared approaches
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Fig. 3. Detailed picture of compared approaches. (a) One-stage detection. (b) Three-
stage detection.

4.1 One-Stage Detection

The existing multimodal wake-up word spotting models [2–6] are trained in
normal conditions that the audio signal has been aligned with the lip movement
video signal of the speaker. In noisy and multi-person scenarios, they achieve
lower recognition accuracy. In such scenarios, the multimodal wake-up word
model detects the active speaker directly. The model first calculates all the scores
of audio and corresponding videos of faces in a scene. If the highest score in the
scene is greater than the threshold, it is judged as a wake-up word, and the
person with the video corresponding to the highest score is selected as the active
speaker. The behind reason is that a correctly aligned audio-visual signal pair
could generate a higher score in judging the wake-up word. We choose the SOTA
model in the MISP2021 wake-up word competition [4] for the task and the model
serves as the baseline for audio-visual wake-up word spotting under noisy and
multi-person scenarios.

4.2 Two-Stage Detection

In order to increase the accuracy of Active Speaker Detection, we propose a
specific Wake-up Word Active Speaker Detection Model (WWASD) to detect
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the active speaker who is speaking the wake-up words and has interactive intent
with the device. We use the model as the first stage, and the multimodal wake-up
word spotting model as the second stage.

In this approach, every possible audio-lip pair in a scene is fed into the
WWASD model to figure out the correct active speaker audio-video pair. The
filtered video and corresponding audio in the scene are input into the back-end
multimodal wake-up word spotting model, to detect whether it is a wake-up
word.

4.3 Three-Stage Detection

On the basis of Two-stage detection, we add an audio-based single-modality
wake-up word model as a front end. The small-scale audio wake-up word detec-
tion model is used to filter out most of the easy-to-identify non-wake-up word
audio segments from the original signal and retain the potential wake-up word
audio segments. This stage is characterized by small computational cost and a
low false reject rate (FRR). The purpose of the stage is to reduce computa-
tional complexity, filtering out most of the simple samples with small compu-
tational resources, and provide segment-level audio. We choose the audio-only
model in [6] as the single-modality wake-up word model, which has a unimodal
architecture containing 3D-ResNet34, 2D-ResNet34 and simple attention module
(SimAM).

In this approach,the single-modality wake-up word model filters a part of
the audio clips first, and only inputs the scene corresponding to the remaining
potential wake-up word fragments into the later two stages.

5 Experiments

5.1 Database and Evaluation Metrics

Database: In this work, the data is from Task-1 of the 1st Multimodal Informa-
tion based Speech Processing Challenge (MISP 2021 [7,26]). The database was
collected in home TV scenes, with the wake-up word being ”Xiao T Xiao T”
and over 300 speakers. The accent of the dataset is Mandarin, and all data was
collected in over 30 real rooms. If it contains a wake-up word, the sample will be
considered positive, otherwise it will be considered negative. For each sample,
a maximum of one wake-up word can be included. The subsets of the database
is shown in Table 1. The training set and development set contain audio from
three scenarios: far, middle, and near, while the evaluation set only contains
far-field audio. The video includes mid-field and far-field. The mid-field video
only includes the active speaker, while the far-field video includes everyone in
the room.

We change the MISP2021 dataset for the wake-up word active speaker detec-
tion task. The dataset provides the facial box positions of the active speaker in
the video, including the four coordinates of the four corners of the facial area.
Therefore, multiple faces in the video can be compared based on this location.
The Euclidean distance between the center coordinates of each face and the
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Table 1. Substes of the MISP2021-AVWWS corpus. P represents positive examples
and N represents negative examples.

Dataset P N Duration (h)

Training set 5K+ 47K+ 118.53

Development set 600+ 2K+ 3.39

Evaluation set 8057 2.87

labeled active speaker’s center coordinates can be calculated separately. The
person with the smallest distance is the active speaker. The positive examples
of this task include the videos of all active speakers and corresponding audios,
while the negative examples include the videos of all non-active speakers and
corresponding audios.

Evaluation Metrics: For evaluation metrics of wake-up word spotting, we use
False Reject Rate (FRR), False Alarm Rate (FAR), and the score of WWS [7].
The FRR and FAR are defined as follows:

FRR =
FN

TP + FN
,FAR =

FP

TN + FP
(1)

where TP represents the number of correctly identified positive samples, FN
represents the number of positive samples identified as negative, TN represents
the number of correctly identified negative samples, and FP represents the num-
ber of negative samples identified as positive. WWS is defined as:

WWS = FRR + FAR (2)

We also calculate the area under the receiver operating characteristic curve
(AUC) as a metric. It is necessary to consider the two situations of whether
to include the active speaker when evaluating wake-up word spotting. For the
case where the active speaker is not included, a positive sample is considered as
a wake-up word. We call metric in the situation as metric(base). For the case
of adding the active speaker, when the correct active speaker in the scene is
detected and a word is a wake-up word, it is considered as a positive sample. We
call metric in the situation as metric(+), WWS(+) and AUC(+).

For evaluation metrics of Active Speaker Detection, we consider a far-field
video as a scene, and calculate the accuracy of judging the correct active speaker
in the scene, which is the ratio between number of scenes where active speaker
is chosen correctly and number of all scenes.

5.2 Training Details

Preprocess: We extract videos for each person according to the methods in [5].
We use the face detection model RetinaFace [27] to extract all facial images and
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corresponding 5 facial coordinates of people in the video. Based on the sequential
coordinates of the detected faces, the K-means algorithm is used to cluster the
faces of the same person in a given video. Then, the center point and width of
the lip region can be obtained through the coordinates of 5 facial coordinates to
obtain the lip position and extract the lip video.

For inputs of Vocalist, the input dimension of the video is (3, 48, 96, tv),
where tv are set to 5 and 64, respectively. The input dimension of audio is (1,
80, ta). As the sampling rate of audio is 16kHz and the video is 25fps, the
audio features with a length of tv ∗ 16000/25 are first obtained. Then, the Mel
spectrogram is obtained through an 80 Mel filter bank with a step size of 200
and a window size of 800.

For inputs of single-modality wake-up word model [5] and FLCMA Based
Audio-visual Conformer model [4], we use the same preprocess strategy as in
the papers. For the input of audio stream, we extract 80 dimensional FBank
features, with a frame length of 25 ms and a frame shift of 10 ms. The time
dimension is set to 256, resulting in an audio dimension of (256, 80). Then,
using a sliding window with a shape of (80, 80) and a step size of 4 to slice the
features along the timeline to obtain the input with a shape of (T, H, W, C),
which is (64, 80, 80, 1). For the input of the video stream, extract a lip region
video with a resolution of 112× 112, use 3 RGB channels, and sample it into 64
frames with dimensions of (64, 112, 112, 3). In addition, each pixel value in the
video is normalized to between [0, 1].

Data Augmentation: For data augmentation, there is a 0.5 probability that
audio can be enhanced using the following data augmentation methods: speed
perturbation, volume perturbation, slight trimming, frequency masking, and
time masking. And we perform offline noise/reverberation addition and beam-
forming on the audio, expanding this portion of the audio into the training set.
There is a 0.5 probability that video can be enhanced using the following data
augmentation methods: speed perturbation, frame-wise rotation, horizontal flip,
frame-level cropping, and color jitters.

6 Results and Discussions

6.1 Wake-Up Word Active Speaker Detection

For active speaker detection, we first compare the scores of the Vocalist model
trained with 5 and 64 frames on the evaluation set. After increasing the frames
of input, the performance of the model is significantly improved, from 52% to
62%. Using 64 frames makes it more convenient for directly comparing the cor-
respondence between wake-up word audio and each lip movement video at the
sentence level, and resulting in better performance at determining the active
speaker.

To figure out the problem that the accuracy of the model is only 62%, we
explore whether the score is related to the positive or negative examples of wake-
up words. We calculate the accuracy of the 64-frames Vocalist on the positive
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wake-up words and non-wake-up words of Top N (N = 1, 2, 3) on the evalu-
ation set, that is, whether the active speaker is included in the first N highest
confidence scores. The result is shown in Table 2.

Table 2. Accuracy of Vocalist and WWASD on positive and negative examples of
wake-up words.

Wake-up words TopNVocalistWWASD

top3 96% 97%

All examples top2 90% 90%

top1 62% 65%

top3 99% 99%

Positive examples top2 98% 98%

top1 92% 94%

top3 96% 97%

Negative examples top2 88% 88%

top1 55% 58%

Vocalist achieves 92% accuracy on positive wake-up words, while it only
achieves accuracy of 55% on negative wake-up words. After investigating the
negative case of wake-up word data of MISP2021, it is found that the active
speakers of the negative examples provided by the challenge organizers are actu-
ally randomly labeled and do not correspond to the audio, which is consistent
with the logic that for non-wake-up words, there is no need to detect the active
speaker. Therefore, the model can be used to detect the active speaker who is
speaking wake-up words if we only look at the positive cases where the labels
are accurate.

Secondly, we also use the FLCMA Based Audio-visual Conformer model
architecture to train the WWASD model to identify the active speaker, with the
same training strategy of Vocalist model. The model outputs the correspondence
score between video and audio. The accuracy of the WWASD model is shown in
Table 2. All the WWASD model in this section refers to WWASD(L). Compared
with the 92% accuracy of the Vocalist model, the model has improved to 94%
on positive examples, which has better performance.

Based on the number of people in each video in the evaluation set, the accu-
racy of the two models on different number of people are tested separately, as
shown in Table 3. It can be seen that the performance of WWASD will not
decrease significantly due to the increase of the number of people, thus it is
robust.

We compare the FLOPs (floating point operations) and the number of param-
eters of Vocalist and WWASD model, which are listed in Table 4. The number of
parameters of the Vocalist model is 3.5 times that of WWASD, and the number
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Table 3. Accuracy of active speaker detection methods under scenes with different
number of persons.

Num of Speaker in the sceneVocalistWWASD

1 100% 100%

2 70% 71%

3 91% 92%

4 94% 98%

5 83% 67%

6 93% 92%

7 33% 67%

8 67% 73%

Table 4. FLOPs and the number of parameters of two wake-up word active speaker
detection models.

Model FLOPs(G)Parameters(M)

Vocalist 87.5 70.7

WWASD 21.8 21.2

of FLOPs is 4 times that of WWASD. Our proposed WWASD model not only
increases the accuracy, but also reduces the computational complexity.

6.2 Comparison of Wake-up Word Spotting Approaches

Table 5. Accuracy of the wake-up word spotting systems with three approaches. (L),
(M) and (S) refers to using WWASD(L), WWASD(M) and WWASD(S) as the active
speaker detection model, (0.5) refers to the threshold of the single-modality wake-up
word model. Metrics(R) represents metrics when active speaker label is given as oracle.

Approach
Metrics(base) Metrics(+) Metrics(R)

FRR[%] FAR[%] WWS[%] AUC[%] FRR[%] FAR[%] WWS(+)[%] AUC(+)[%] FRR[%] FAR[%] WWS[%] AUC[%]

One-stage detection 1.96 4.54 6.51 98.69 10.18 2.01 12.19 98.02 2.39 2.23 4.61 99.62

Two-stage detection(L) 3.43 2.04 5.47 99.56 8.28 1.79 10.07 99.26 same as above

Two-stage detection(M) 3.37 2.30 5.68 99.49 8.71 1.79 10.50 99.22 same as above

Two-stage detection(S) 3.86 2.04 5.90 99.54 8.95 1.79 10.74 99.28 same as above

Three-stage detection(L)(0.5) 6.87 1.21 8.08 98.78 11.59 1.07 12.66 – 6.19 1.23 7.42 98.26

We analysed metrics of three wake-up word spotting approaches on the eval-
uation set. In the last column, Metrics(R), which means metrics when active
speaker’s visual information is given, indicates the multimodal wake-up word
model uses the correct active speaker directly. This column serves as a refer-
ence for ideal performance, with WWS of 4.61% and AUC of 99.62%. According
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to Table 5, when traditional multimodal wake-up word spotting model is used
in noisy and multi-person scenarios, which is One-stage detection, the score of
WWS decreases from 4.61% to 6.51%, resulting in decreased recognition accu-
racy. Among the three approaches, Two-stage detection(L) achieves the best
score, with WWS of 5.47%, close to 4.61% where all the active speakers are
the right people. Two-stage detection(M) and Two-stage detection(S) all per-
form better than One-stage detection, while reducing computational cost at the
same time. The comparison of computational cost is listed in Table 6. The per-
formance of Three-stage detection(L) is definitely lower than the Two-stage
detection(L), but it greatly reduces the computational complexity because of
the single-modality wake-up word model in the first stage. We will analyze the
impact of the threshold of the single-modality wake-up word model on the com-
putation cost and performance in Fig. 4.

Table 6. FLOPs and the number of parameters of different models.

Model FLOPs(G)Parameters(M)

WWASD-L 21.78 21.19

WWASD-M 6.06 4.43

WWASD-S 1.84 0.89

Single-modality Wake-up Word Model [6] 4.86 11.10

We use WWASD model and Vocalist model for active speaker detection in
Two-stage detection respectively, and test the score metrics on the evaluation
set to examine that WWASD model is more suitable for wake-up word active
speaker detection.

Table 7. Accuracy of the wake-up word spotting systems with the Two-stage detection
strategy.

Active Speaker Detection Model
Metrics(base) Metrics(+) Metrics(R)

FRR[%] FAR[%] WWS[%] AUC[%] FRR[%] FAR[%] WWS(+)[%] AUC(+)[%] FRR[%] FAR[%] WWS[%] AUC[%]

WWASD 3.43 2.04 5.47 99.56 8.28 1.79 10.07 99.26 2.39 2.23 4.61 99.62

Vocalist model 3.80 2.12 5.92 99.58 9.63 1.81 11.43 99.25 same as above

As shown in Table 7, WWASD can identify the active speaker more accu-
rately, resulting in improvements in most metrics compared to Vocalist. The
WWS are 5.47% and 10.07% in metrics(base) and metrics(+), while WWS of
Vocalist are 5.92% and 11.43% respectively. In Fig. 4, as the threshold of the
single-modality wake-up word model for wake-up words increases, the WWS
and WWS(+) score will slowly increase in the early stages and then rapidly
increase thereafter. At the same time, the computational cost will experience a
rapid decrease in the early stages and a slow decrease in the later stages. When
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Fig. 4. The impact of different wake-up thresholds on WWS scores and computational
costs.

Table 8. Accuracy of the wake-up word spotting systems with the Three-stage detec-
tion(L).

Threshold
Metrics(base) Metrics(+) Computational Cost

FRR[%] FAR[%] WWS[%] AUC[%] FRR[%] FAR[%] WWS(+)[%] [%]

0.05 4.66 1.62 6.28 99.18 9.44 1.43 10.87 37.16

0.5 6.87 1.21 8.08 98.78 11.59 1.07 12.66 24.66

0.9 11.04 0.90 11.94 98.54 15.63 0.79 16.43 20.43

the threshold is set from 0.05 to 0.5, Three-stage detection can significantly
reduce computational complexity while maintaining good scores. Table 8 shows
metrics of Three-stage detection(L) at different threshold in detail.

6.3 Conclusion

We propose a Wake-up Word Active Speaker Detection Model (WWASD) to
recognize the face that is speaking the wake-up word. Based on the model, we
propose two approaches, namely Two-stage detection and Three-stage detection
strategies, for audio-visual wake-up word spotting in noisy and multi-person
scenarios. We compare the approaches from the perspectives of performance and
computational complexity, thus can select them according to actual application
needs. The best approach Two-stage detection achieves comparable performance
against the systems with oracle visual speaker bounding boxes while Three-stage
detection greatly reduces the computational cost.
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Abstract. Missing person searches are a critical societal challenge with
significant implications for public safety and welfare. This study pro-
poses two novel algorithms for efficient and rapid missing person detec-
tion based on video data. The first algorithm, CaptionMP , uses image
captioning technology to generate descriptions of individuals’ appear-
ances in video footage, comparing these descriptions to missing person
information. The second algorithm, DINOMP , employs visual ground-
ing techniques to detect characteristics of missing persons within video
streams directly via text prompts. Both algorithms were fine-tuned using
the MALS dataset and demonstrated performance across diverse envi-
ronmental conditions. Notably, they exhibited robust detection capabil-
ities in low-light environments and with complex clothing patterns. The
results showed that our proposed methods have considerable potential
in the field of missing person detection, offering a solution to the lim-
itations of traditional pedestrian attribute recognition(PAR) methods.
This research is expected to substantially contribute to enhancing the
practical applicability of intelligent CCTV systems in missing person
searches.

Keywords: Missing person search · Image captioning · Visual
Grounding

1 Introduction

An individual may be classified as a missing persons when their whereabouts
cannot be confirmed due to involuntary circumstances, such as accidents or dis-
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asters. Alternatively, they may disappear voluntarily through actions such as
running away. In the Republic of Korea, 53,416 cases of missing adults aged
18 or older were reported to the National Police Agency in 2023, with 1,084
(2.05%) of these individuals discovered deceased. In cases of missing persons,
the critical period of time which commonly is referred to as the “golden time”
is 24 h. If a missing individual is not located within this crucial one-day period,
the probability of successful recovery decreases significantly. The period is of
particular importance, given that the majority of missing persons are vulnerable
individuals, such as elderly individuals with dementia or young children.

Fig. 1. Standard processes in missing person searches

In general, missing person detection represents a critical societal challenge
with profound implications for public safety and national well-being. In the real
world, a missing person search involves the following processes, as shown in Fig. 1
(a) Receiving a missing person report, which may include information such as
age, sex, and the individual’s most recent clothing. (b) Collecting and compil-
ing descriptive information about the individual into a poster, which is then
disseminated to search personal. (c) Utilizing this shared information, control
centers analyze video footage, such as CCTV recordings, to identify potential
matches. and (d) Law enforcement and rescue personnel, armed with the descrip-
tive details, conduct on-site searches. However, this methodology often proves
inadequate in urgent situations, as it relies heavily on search personnel’s ability
to memorize and rapidly apply descriptive information across expansive search
areas.

Recent advancements in deep learning technologies applied to intelligent
CCTV systems offer promising solutions to these societal challenges. Progress
in computer vision has enabled real-time detection, tracking, and analysis of
individuals’ external characteristics within video streams [3,4,11,15].

This study proposes algorithms for the swift and accurate identification of
missing persons within vehicular black-box or CCTV footage, based on provided
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descriptive information of the missing person, leveraging these artificial intelli-
gence technologies.

2 Related Works

2.1 Pedestrian Attribute Recognition

Early iterations of Pedestrian Attribute Recognition (PAR) algorithms primar-
ily relied on hand-crafted features for attribute identification. Layne et al. [6]
proposed a method that combined color histograms and Scale-Invariant Feature
Transform (SIFT) features to recognize attributes in pedestrian images. While
these approaches demonstrated reasonable performance with limited datasets,
they exhibited performance constraints in more complex environmental condi-
tions.

The rapid advancement of Convolutional Neural Networks (CNNs) catalyzed
the introduction of deep learning-based approaches in the PAR domain. Zhu et
al. [19] introduced the DeepMAR (Deep Learning Multi-attribute Recognition)
model, a CNN-based approach capable of simultaneously predicting multiple
pedestrian attributes. This model achieved high accuracy by processing various
image attributes in parallel. Furthermore, Sarfraz et al. [14] proposed an innova-
tive method that integrated Spatial Transformer Networks (STNs) into a hybrid
CNN-RNN (Recurrent Neural Network) model, enabling focused attribute recog-
nition on salient image regions.

Recent developments in PAR have shifted towards leveraging video frames
to maximize the utilization of temporal information, moving beyond the con-
straints of static image-based models. Zhu et al. [20] introduced a novel Visual-
Text Fusion Transformer for video-based PAR, utilizing the CLIP [12] model.
This approach enhances pedestrian attribute recognition in video sequences by
learning the associations between visual and textual modalities. Experimental
results demonstrated the superior performance of the proposed model compared
to existing methods. However, this model is limited to binary classification of
attributes and cannot recognize previously unseen classes.

2.2 Visual Understanding and Description

Image Captioning. Image captioning is a task that bridges the domains of
computer vision and natural language processing, focusing on the generation
of textual descriptions for visual content. This field primarily emphasizes the
extraction of salient features from images and their subsequent translation into
natural language.

Vinyals et al. [16] represents a seminal work in image captioning, integrating
Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM)
networks to generate descriptive text for images. In this architecture, CNNs
extract visual features, which are then utilized by LSTMs for text generation.
Xu et al. [17] have made significant advances in the quality of captions through
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the introduction of Visual Attention mechanisms that can generate more detailed
and accurate descriptions by focusing on specific regions of the image in image
captioning. Further improvements were achieved by Anderson et al. [1] with the
implementation of Bottom-Up and Top-Down Attention mechanisms, markedly
elevating the performance of image captioning systems. Cornia et al. [5] proposed
an innovative Meshed-Memory network based on the Transformer architecture.
This approach combines multi-head self-attention mechanisms with memory net-
works to optimize the interaction between visual and textual modalities, result-
ing in enhanced performance.

The evolution of image captioning has progressed from initial CNN-based
models to more sophisticated architectures incorporating Visual Attention and
Transformer structures. Contemporary research in this field is primarily focused
on achieving higher accuracy and consistency in the extraction of key visual
features and their translation into natural language descriptions.

Visual Grounding. While both Visual Grounding and Image Captioning
address the relationship between images and text, they differ in their fundamen-
tal objectives. Image Captioning focuses on generating textual descriptions that
encapsulate the overall content of an image, whereas Visual Grounding aims
to identify specific objects or regions within an image based on given textual
descriptions.

Early research in Visual Grounding primarily focused on modeling rudimen-
tary associations between textual and visual modalities. Matuszek et al. [9] pro-
posed a system that classified objects within an image according to given tex-
tual descriptions, utilizing these classifications for object recognition. Subsequent
approaches involved segmenting images into multiple object proposal regions
and evaluating their correspondence with textual descriptions. Ren et al. [13]
advanced this concept by employing Faster R-CNN to generate object proposal
regions within images and subsequently matching these regions with textual
descriptions to identify corresponding objects. Recent developments in Visual
Grounding have seen the application of Transformer-based models. Chen et al.
[2] introduced the “UNITER” model, which leverages a Transformer architecture
to model diverse interactions between textual and visual modalities. This model
integrates textual and visual features, enabling more precise Visual Grounding.

Utilizing these Image Captioning and Visual Grounding techniques that
address the relationship between textual and visual information, we propose
two models that analyze the relationship between textual descriptions of miss-
ing persons’ appearances and video data, employing this analysis to facilitate
the location of missing individuals.

3 Proposed Methods

This paper presents two different algorithms for the efficient detection of missing
person from video inputs, such as CCTV, employing two distinct approaches:
image capturing and visual grounding. The first methodology, CaptionMP , is
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designed to detect missing persons using image captioning from video input to
extract appearance features and compare them with the features of missing per-
son information. The second methodology, DINOMP , uses a visual grounding
technique that utilizes text prompts about the missing person’s appearance to
detect individuals with that information in the video input.

3.1 CaptionMP

Fig. 2. An overall process for CaptionMP

Figure 2 illustrates the comprehensive framework of the Image Captioning-
based missing person search system proposed in this study. The system operates
on a dual-thread architecture:

Main Thread : Employs object detection model and multi-object tracking
model to detect and track human objects within the input video stream. When
an object with a consistent ID is tracked for 90 consecutive frames, it is cropped
and transmitted to the sub-thread. Concurrently, the textual input describing
the missing person’s appearance is translated into English, standardized using
regular grammar, and forwarded to the sub-thread.

Sub Thread : Utilizes an image captioning model to generate descriptive cap-
tions for the cropped human objects. These captions are then compared to the
translated missing person information to assess similarity. The similarity is quan-
tified using cosine similarity between the text embedding vectors. A similarity
threshold of 0.7 or higher is used to classify an individual as potentially missing.
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It is important to note that performing missing person detection on all pedes-
trians in CCTV and dashcam systems is computationally infeasible. To address
this limitation, we implemented a task separation strategy:

CCTV systems perform only pedestrian detection and tracking, while the
actual missing person determination is executed on high-performance systems
such as central servers. This thread separation technique enables CaptionMP
to be deployed across various hardware platforms, including IoT devices, by
optimizing model efficiency. This approach significantly enhances the scalability
and applicability of missing person detection systems.

3.2 DINOMP

Fig. 3. An overall process for DINOMP

Figure 3 illustrates the architecture and operational principles of the Visual
Grounding model. Using visual grounding techniques for missing person detec-
tion enables accurate localization of the subject within the video frame using
bounding boxes. This capability facilitates immediate and precise positional
information during the search process.

However, when we executed inference using the pre-trained Visual Ground-
ing model with text prompts describing the missing person’s appearance, we
observed that the detection performance fell short of our expectations. This dis-
crepancy arose because our objective to detect human subjects based on appear-
ance descriptors differed from the pre-trained model’s tendency to detect objects
corresponding to individual appearance attributes independently.
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To address this limitation and enhance the model’s efficacy in detecting
human subjects based on appearance characteristics, we conducted fine-tuning
using the MALS dataset, as depicted in Fig. 3. This fine-tuning process was
designed to optimize the model’s performance specifically for the task of missing
person identification based on descriptive appearance features.

The implementation of visual grounding in missing person detection offers
significant advantages in terms of localization and precise spatial information
within video frames. This capability is crucial for enhancing the efficiency and
accuracy of search operations. By fine-tuning the Visual Grounding model on
domain-specific data, we aimed to bridge the gap between general object detec-
tion and the specialized task of human subject identification based on detailed
appearance descriptors.

The integration of synthetic data generation techniques with the original
MALS dataset allows us to overcome the initial limitations of the dataset while
maintaining the rich descriptive information provided by the original captions.
This approach not only addresses the lack of BBox annotations but also poten-
tially increases the diversity of the training data, which may contribute to
improved model generalization.

4 Experiment

4.1 Experimental Configuration

For the fine-tuning process, we used the MALS dataset [18], which comprises 1.5
million samples. The MALS dataset, generated through a diffusion model, main-
tains high-quality images while being free from privacy concerns. Additionally,
MALS provides images with a wide range of variations, including background,
viewpoint, occlusion, clothing, and body pose. Each image-text pair in MALS is
annotated with appropriate attribute labels, making it effective for simultaneous
training in attribute recognition and image-text matching. The fine-tuning pro-
cesses for both CaptionMP and DINOMP used the following hyperparameters:
a learning rate of 2e-5, 10 epochs, a batch size of 40, and 5000 warm-up steps. We
utilized the AdamW optimizer and the get linear schedule with warmup learn-
ing rate scheduler.
CaptionMP. In this model, we aimed to optimize the performance of an image
caption generation model [10] for missing person detection. The image captioning
model employed in CaptionMP underwent fine-tuning to enhance its specificity
for missing person identification. The original model, which tends to generate
global image descriptions, does not align with the purpose of this study. There-
fore, to address this issue, we fine-tuned the model to create descriptions focused
on specific objects using approximately 300,000 images from the MALS dataset.

This fine-tuning process aimed to produce captions that explicitly describe
human appearance characteristics and attire, which are crucial for missing person
identification.
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Fig. 4. Data set preprocessing process for fine tuning

DINOMP. The data preprocessing methodology for fine-tuning is illustrated
in Fig. 4. The MALS dataset we acquired lacks bounding-box (BBox) annota-
tions, which are crucial for object detection and tracking tasks. To address this
limitation, we implemented a comprehensive preprocessing pipeline:

1. Segmentation: We performed semantic segmentation on each image to isolate
human subjects and extract their positional information within the segmen-
tation mask.

2. Background Removal: Utilizing the segmentation masks, we eliminated all
non-human elements from the images, retaining only the human figures.

3. Image Synthesis: The isolated human figures were composited onto novel
background images in randomly selected contextually appropriate locations.

4. BBox Generation and Labeling: We generated bounding boxes for the syn-
thesized human figures and labeled them accordingly. The xywh coordinates
of the BBoxes were specified relative to the entire image size and centered
within the image. This approach aligns with our task and prioritizes accu-
rately detecting personal attributes over precise localization.

5. Dataset Integration: The newly created BBox annotations were merged with
the original caption labels from the MALS dataset.

This sophisticated preprocessing approach resulted in the creation of a novel
augmented dataset specifically tailored for grounding-based learning. By syn-
thesizing human figures onto diverse backgrounds and generating corresponding
BBox annotations, we enhanced the dataset’s utility for our specific task of miss-
ing person detection. This augmented dataset provides the necessary spatial and
descriptive information to effectively train the model in localizing human sub-
jects based on textual appearance descriptions.

4.2 Experimental Results

To evaluate the performance of the models, we conducted real-time searches
using a custom-designed test dataset. The custom-designed dataset was created
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by recording 12 videos, each approximately 30 s long, under different environ-
mental conditions. A total of five participants participated in the experiment.
We set up the experimental environment to resemble real CCTV or car dashcam
footage. Participants were captured walking from two different angles, with 3 to
4 participants appearing randomly in each video. To ensure the reliability of the
test dataset, we collected footage in both bright and low-light conditions.

Fig. 5. A comparison of results between the existing PARS and the proposed
CaptionMP

Figure 5 represents a qualitative comparison between the proposed
CaptionMP and the existing PARS model [7] trained on the PA100K dataset
[8]. Since PARS generates captions as words, we converted the label outputs
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into sentence form and used the same methodology as the captioning approach
to compare performance.

In Fig. 5(a), the search for a missing person took place in a bright environ-
ment where the individual wore clothing with complex patterns, such as stripes.
The predefined keywords for the missing person’s appearance were: female, black
striped sweater, gray pants, and brown boots. Although the existing PARS
model generated some keyword captions, it failed to provide critical identifi-
cation information such as color and produced nearly identical captions for most
participants in the video. This limitation stems from the reliance of the PARS
model on pre-trained attributes and binary classification. In contrast, the pro-
posed CaptionMP demonstrated superior performance compared to the existing
PARS model, achieving a high similarity score of 0.7575 for complex patterns
like stripes, surpassing the results for solid-colored clothing. This model showed
a better similarity for clothing with basic color combinations.

Figure 5(b) involves an experiment conducted in a low-light environment.
The predefined keywords for the missing person’s appearance were: male, black
padding, black pants, and black slippers. Unlike the previous experiment, this
scenario was designed to be more challenging for feature extraction. Most of
the captions generated by the PARS model lacked discrimination for the tar-
get, resulting in low similarity scores. Although the quality of captions by
CaptionMP slightly decreased under low-light conditions, it maintained a simi-
larity score above 0.7, verifying the model’s effectiveness in identifying the miss-
ing person. Our comparative analysis demonstrates that the fine-tuned model
achieves a more stable object detection performance than the existing model.
It effectively detects individuals in real-time, even in challenging scenarios such
as low-light conditions or environments with multiple individuals with similar
appearances.

The proposed DINOMP provides a method for detecting missing person
using a fine-tuned Grounding DINO model, which differs from CaptionMP
which employs caption generation and text comparison methods. Figure 6 shows
the results of searching for missing persons using DINOMP , which identi-

Fig. 6. Results of DINOMP
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fies individuals matching the input prompt. In various scenarios, DINOMP
directly detects distinctive clothing features within the video and marks them
with bounding boxes, clearly identifying the missing person’s location visually.
The experimental results show that DINOMP , as CaptionMP , demonstrates
robust detection performance based on descriptive features of the missing per-
son’s appearance in both bright and low-light conditions. These results suggest
that our proposed algorithm can be effectively applied to missing person detec-
tion in diverse environmental conditions. This comprehensive evaluation high-
lights the potential of our proposed methodology to enhance the efficiency and
accuracy of missing person search tasks.

5 Discussion and Conclusion

This research proposes two algorithms that can expeditiously and efficiently
locate missing persons within the critical golden time, leveraging feature-based
relationships between visual data and textual descriptions.

The proposed algorithms are designed to be user-friendly, requiring only tex-
tual descriptions of the missing individual’s appearance and video imagery as
inputs. This accessibility allows for utilization by users without specialized exper-
tise.

The two-algorithms approach offers enhanced versatility, allowing users to
select the most appropriate model based on specific operational requirements.
This flexibility confers a competitive advantage in terms of utility. The systems
can be integrated with intelligent camera networks to optimize the deployment of
law enforcement personnel in search operations. Additionally, when incorporated
into autonomous robotic systems, these models demonstrate the potential for
rapid identification of missing persons even in congested environments.

However, it is important to note that the current study primarily utilizes
descriptive features of the missing individual’s appearance. Future research direc-
tions include the comprehensive analysis of diverse characteristics such as facial
features, gait patterns, and body morphology, which are anticipated to enhance
overall accuracy. Moreover, the practical commercialization of these systems
necessitates model optimization for reduced computational demands, as well as
the integration of advanced networking technologies and sophisticated database
management systems.

In conclusion, this research lays the foundation for continuous advancement
in the field of missing person identification. It is expected to make significant
contributions towards enhancing the practical applicability of intelligent CCTV
systems, with ongoing development guided by the aforementioned considerations.
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Abstract. Medical Visual Question Answering (MedVQA) aims to
develop models to answer clinically relevant questions on medical images.
A major challenge in developing VQA for the Medical domain is the
unavailability of large, well-annotated MedVQA datasets. Using transfer
learning from ImageNet and finetuning on the MedVQA dataset is not
helpful as visual concepts of ImageNet images and medical images dif-
fer. Therefore, this paper focuses on the problem of the lack of a large
MedVQA dataset by employing a novel pre-training technique for the
visual encoder. Our pre-training framework uses contrastive and restora-
tive learning to learn fine-grained semantic representations from large,
unlabelled medical images available online. We finetune our pre-trained
visual encoder on the MedVQA dataset. Our experiments show that the
combination of contrastive and restorative learning significantly improves
the performance of MedVQA systems. We evaluate our model on three
MedVQA datasets. The source code is available at https://github.com/
Vasudha27/CRP-for-MedVQA.

Keywords: VQA · Medical Visual Question Answering ·
Self-supervised learning · Contrastive learning · Restorative learning

1 Introduction

Medical Visual Question Answering (MedVQA) is a domain-specific Visual Ques-
tion Answering (VQA) system that answers questions related to the visual infor-
mation present in the medical image. It can help doctors in diagnosing diseases,
surgical planning, and triage. Besides doctors, it can benefit patients and medi-
cal students. Patients can use MedVQA to enhance their understanding of their
radiology reports, thereby promoting health awareness. For medical students, it
can enhance their learning experience. Therefore, it can contribute to the overall
improvement of the healthcare system.

MedVQA systems leverage state-of-the-art computer vision and natural lan-
guage processing (NLP) techniques. These areas use large deep-learning models.
First, MedVQA systems require deep learning networks (CNN, Vision transform-
ers) to extract visual features from the input medical image. Second, deep natural
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language models (RNN, LSTM, etc.) are needed to extract semantic information
from input questions. Third, a deep network captures the correlation between
the input image features and question features. Finally, the correlation feature
vector passes through a multilayer perceptron followed by a softmax layer to
obtain the probability distribution on the set of answers.

Deep learning networks require large datasets for training. However, unlike
VQA, no large-scale, well-annotated datasets are available in MedVQA. Visual
encoders in computer vision tasks use Transfer learning to overcome the scarcity
of data. They train on a large labelled imagenet dataset in a supervised man-
ner, and the knowledge is transferred to tasks with small datasets. However,
for MedVQA, finetuning models with an imagenet pre-trained visual encoder
on the MedVQA dataset is not beneficial as the covariate shift between medical
images and those in the imagenet hinders the effectiveness of transfer learning. To
overcome this problem, MEVF [21] uses Convolutional Denoising Auto-Encoder
(CDAE) [20] and Model-Agnostic Meta-Learning (MAML) [9] to pre-train the
visual encoder. They manually construct a labelled dataset from the VQA-RAD
[17] dataset to learn meta-weights using MAML. MTPT [10] pre-trains the visual
encoder on two supervised tasks as a multi-task learning paradigm. They pre-
pare a labelled dataset from the VQA-RAD [17] dataset. These two works cannot
be generalized to other MedVQA datasets since pre-training tasks are based on
the VQA-RAD dataset. CPRD [18] uses unlabelled radiology images from three
body regions - brain, chest, and abdomen. They pre-train the visual encoder
using contrastive learning [6]. Contrastive learning is highly effective at cap-
turing discriminative high-level features. However, it is inefficient at learning
fine-grained features.

In this work, we overcome the data scarcity problem by employing a pre-
training framework that leverages Self-supervised learning to glean transfer-
able knowledge from large, unlabelled medical image datasets available online.
Self-supervised learning captures task-agnostic representations. We combine con-
trastive and restorative learning in the self-supervised pre-training framework.
Contrastive learning aims to learn to differentiate between positive and nega-
tive samples. Restorative learning seeks to generate an original signal from the
distorted signal. Contrastive learning excels in extracting high-level global fea-
tures, while restorative learning performs well in extracting fine-grained features.
MedVQA requires extracting high-level global features or fine-grained detailed
features depending on the query posed. Our pre-training framework effectively
equips the visual encoder to handle medical images’ complex and diverse char-
acteristics.

We summarize our contributions as follows: a) we propose a pre-training
framework that uses unlabelled medical images to pre-train the visual encoder
of the MedVQA model; b) we evaluate the performance of MedVQA model
with the pre-trained visual encoder on three MedVQA datasets VQA-RAD [17],
SLAKE [19] and VQA-Med-2019 [1] to demonstrate the efficiency of the proposed
pre-training framework.
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2 Related Work

Medical Visual Question Answering. Most of the existing MedVQA meth-
ods [2,23,25,28,31,32,36] use general domain VQA models. They use attention
mechanisms such as SAN [33], BAN [16], and MFB [34] to combine visual and
textual features. They use pre-trained CNNs such as VGG [29] and ResNet
[14]. MEVF [21] and MTPT [10] propose a pre-training technique for Med-
VQA. MEVF [21] initializes visual feature encoder by MAML [9] and CDAE
[20]. They manually construct an additional dataset using VQA-RAD [17] to
train MAML. MTPT [10] treats visual feature encoder pre-training as a multi-
task problem. One task is image classification and another is a binary task of
identifying image-question compatibility. Both these methods require the prepa-
ration of an additional labeled dataset. MMQ [7] proposes multiple meta-model
quantifying technique that increases meta-data by auto-annotation. It returns
meta-models that have robust features for MedVQA. PubMedCLIP [8] model
adopts CLIP [24] for MedVQA. They finetune CLIP [24] on Radiology Objects
in COntext (ROCO) [22] dataset.

Contrastive Learning. Contrastive learning aims to learn an embedding space
where representations of samples from the same class are close to one another
and far apart from representations of samples from dissimilar classes. It excels
in learning representations in self-supervised learning. SimCLR [5] generates
distorted versions of each sample by applying a series of data augmentations. It
maximizes the agreement between two representations of the same thing by min-
imizing the contrastive loss [5]. To avoid the computation of representations for
negative samples in every batch, MoCo [13] uses a dictionary to save many nega-
tive samples. MoCo-v2 [12] combines the augmentation method of SimCLR with
the dictionary of MoCo [13]. Hence, it takes the advantage of both techniques.

Restorative Learning. Restorative learning aims to reconstruct the distorted
image. It is widely used in medical imaging. By reconstructing medical images,
the model learns low-level features. Some of the works use only restorative learn-
ing [4,37], while some combine restorative and adversarial learning [30]. [4] pro-
poses a context restoration task. It swaps the two small patches of the image
multiple times till its spatial information is changed. However, it preserves the
intensity distribution during image distortion.

3 Proposed Approach

In this section, we describe the full pipeline of our approach. We first pre-train the
visual encoder on medical images using contrastive and restorative pre-training
framework (Sect. 3.1). After pre-training, the pre-trained visual encoder is used
in the MedVQA framework to extract visual features from input medical images
(Sect. 3.2).
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3.1 Pre-training

Fig. 1. Contrastive and Restorative Pre-training framework (CRP) contains con-
trastive and restorative components. An input image xi is distorted by applying a series
of data augmentations A(.). Augmented images pass through contrastive and restora-
tive components. The contrastive component has a visual encoder Tθ and momentum
encoder Tθ′ . The restorative component has visual encoder Tθ and decoder Gθ. Visual
encoder Tθ is trained using contrastive and restorative learning.

Figure 1 describes the pre-training framework used for the pre-training visual
encoder. It contains two components:

Contrastive Component. It uses a contrastive learning method for pre-
training the visual encoder represented by Tθ. We use MoCo-v2 [12]. This com-
ponent contains a twin visual encoder referred to as momentum encoder Tθ′ , a
Dictionary, and two Multilayer perceptrons represented as Mθ and Mθ′ . The dic-
tionary in MoCo-v2 [12] is represented by a FIFO queue. It contains the encoded
representations of image samples present in the previous mini-batch. The queue
contains the representations generated by momentum encoder Tθ′ . Represen-
tations from the queue serve as negative samples xk−

j . We randomly crop the
input image xi to produce two views xq

i and xk
i . We apply augmentation tech-

niques A(.) on xq
i and xk

i . We randomly crop and resize each image to 224 × 224.
Augmentation techniques A(.) include Gaussian blurring, random horizontal flip-
ping, and color jittering. We pass the augmented views through visual encoder
Tθ and momentum encoder Tθ′ followed by Mθ and Mθ′ respectively to generate
the encoded representations x̂q

i = Mθ(Tθ(A(xq
i ))) and x̂k+

i = Mθ′(Tθ′(A(xk
i ))).

Since, x̂q
i and x̂k+

i are representations obtained from the different views of the
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same input image xi, x̂q
i should be similar to x̂k+

i and dissimilar to xk−
j . We use

InfoNCE loss [13] to maximize the similarity between x̂q
i and x̂k+

i :

LCL = − log
exp(x̂q

i · x̂k+
i /t)

exp(x̂q
i · x̂k+

i /t) + ΣN
j=1exp(x̂q

i · xk−
j /t)

(1)

where t represents the temperature, (·) is dot product, and N is the size of the
dictionary. Tθ and Mθ are updated through backpropagation. Tθ′ and Mθ′ are
not differentiable due to large queue. Therefore, we update Tθ′ and Mθ′ using
exponential moving average of Tθ and Mθ as

θ′ ← αθ′ + (1 − α)θ (2)

where α is the momentum coefficient. This momentum base update is defined in
[13].

Restorative Component. It uses a restorative learning method to enhance the
visual representation of visual encoder Tθ by using fine-grained image concepts.
We use 2D U-Net [26] with Tθ as base encoder and Gθ as a decoder. We pass the
augmented view xq

i of xi to Tθ. The decoder Gθ takes the representation obtained
from the encoder to generate the original image. Restorative learning aims to
minimize the distance between the restored image and the original image. We
use mean square error as the restorative loss LResL.

LResL = MSE(xq
i , y

q
i ) (3)

where yq
i = Gθ(Tθ(A(xq

i ))) is the restored image. MSE() represents mean square
error. As given in [12], during pretraining we optimize the two losses jointly. The
final loss is:

L = β ∗ LCL + (1 − β) ∗ LResL (4)

where β signifies the importance of different losses.

3.2 Medical VQA Framework

Figure 2 describes the overall architecture of MedVQA. We use the pretrained
visual encoder Tθ to obtain the visual representation v̂i of input image vi, i.e.
v̂i = Tθ(vi). For question features we use 1024-D LSTM. Each question is either
trimmed or padded to 12 words depending on the length of the question. Ques-
tion words are embedded to a 600-D vector by concatenating 300-D Glove word
embeddings. The concatenated 600-D words embeddings pass through LSTM to
produce question features q̂i. Both image embedding v̂i and question embedding
q̂i are combined through attention mechanism like BAN [16] to produce a mul-
timodal embedding zvq. This multimodal embedding zvq is passed through an
answer classifier. Since we formulate MedVQA as a classification task, we use a
Multilayer perceptron (MLP) followed by a softmax layer as an answer classifier.
The multimodal embedding zvq is passed through the answer classifier to obtain
a probability distribution over a fixed set of candidate answers from the training
set. To train the entire MedVQA model we use cross-entropy loss function LCE .
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Fig. 2. Medical VQA framework. Visual encoder Tθ from the CRP framework is
applied. BAN [16] attention mechanism combines the visual and textual features.

4 Experiments and Results

4.1 Datasets

Pre-training Dataset. For pre-training we use large-scale unlabelled dataset
Radiology Objects in COntext (ROCO) [22]. It contains medical images belong-
ing to several different modalities like MRI, CT, X-Ray, Angiography, PET,
Mammograph, Ultrasound, and Fluoroscope. Besides medical images, this
dataset also contains captions and keywords. However, we use only medical
images for our pre-training task.

MedVQA Datasets. We evaluate the performance of our pre-training method
on three MedVQA datasets: VQA-RAD [17], SLAKE [19], and VQA-Med-2019
[1]. SLAKE [19] dataset is a bilingual dataset. It contains 642 images and
14,028 question-answer pairs. Out of 14,028 question-answer pairs, there are
only 7033 question-answer pairs in English. We use the 642 images and 7033
English question-answer pairs for our experiment. It has CT, MRI, and X-Ray
images. They cover the head, neck, and chest organs. We follow the train-val-
test split provided in the SLAKE dataset [19]. VQA-RAD [17] dataset has 315
images and a total of 3515 question-answer pairs. We follow the split given in
[21]. It has abdominal CTs, chest X-Rays and head CTs or MRIs. VQA-Med-
2019 [1] has 4200 medical images and 15292 question-answer pairs. The dataset
is divided into train, validation, and test sets. The train set has 3200 medical
images and 12792 question-answer pairs. The validation set has 500 images and
2000 question-answer pairs. The test set has 500 images and 500 question-answer
pairs. It has questions about identifying plane, modality, organ, and abnormality.
The dataset has 10 organs, 36 modalities, 16 planes, and around 1600 different
abnormalities.
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4.2 Implemetation Details

Pre-training Framework. For contrastive component we use MoCo-v2 [12]
with ResNet-50 [14] encoders. MLP heads Mθ and Mθ′ have two layers of hidden
dimension 2048 and ReLU activation unit. The size of the queue N is 65536. For
the restorative component, we use 2D U-Net [26] architecture with ResNet-50
[14] as a backbone for Tθ and a corresponding decoder network Gθ. We train
the different components of the Pretraining framework in a stepwise incremental
manner similar to [11]. We first train only the contrastive component for 500
epochs. We optimize the contrastive component using InfoNCE loss given in
Eq. 1, where temperature t is 0.07. After training the contrastive component for
500 epochs, we add the restorative component and train the entire Pre-training
framework for 200 epochs using the joint loss function given in Eq. 4. We use an
SGD optimizer with an initial learning rate of 0.03., weight decay of 0.0001, and
momentum of 0.9 [12]. We use an early-stopping criterion on the validation set
and save the image encoder weights with minimum validation loss. We use two
Nvidia Tesla V100 GPUs and a mini-batch of size 128 for pre-training.

MedVQA. We initialize the image encoder Tθ of MedVQA with the weights
obtained in the pre-training stage. We freeze the image encoder and train the
remaining MedVQA model end-to-end using the cross-entropy loss on MedVQA
datasets. We use Adamax optimizer [3]. We vary the learning rate during train-
ing. We warm up the learning rate from 0.0025 to 0.01 for the initial four epochs.
From the tenth epoch onwards we decrement the learning rate by 0.75 after every
18 epochs.

4.3 Comparison with State-of-the-Arts

We use accuracy to evaluate the performance of the MedVQA models [21]. We
use our pre-trained visual encoder with BAN [16] attention mechanism without
CR reasoning [35]. In Table 1, we compare our model with the general VQA
baseline and existing works related to pre-training in MedVQA on the VQA-
RAD, SLAKE, and CLEF datasets. We have not tested MTPT+BAN [10] for
the SLAKE and VQA-Med-2019 datasets as the proposed pre-training task is
designed specifically for the VQA-RAD dataset. We briefly describe these models
in Sect. 2. For a fair comparison of the pre-training frameworks, we use 1024-D
LSTM with GloVe word embeddings for extracting question features in all archi-
tectures. All the models are trained and tested at the same seed value. From
Table 1, we see that our pre-training method based on combining contrastive
and restorative learning learns more transferable features that give better
results on varied datasets. Our proposed method outperforms MEVF+BAN [21],
MTPT+BAN [10], PubMedCLIP+BAN [8], and MMQ+BAN [7]. MMQ+BAN
[7] performs better on VQA-RAD dataset, while PubMedCLIP+BAN [8] works
well on SLAKE dataset. Our CRP+BAN method outperforms MMQ+BAN [7]
on VQA-RAD by 3.8%, and PubMedCLIP+BAN [8] on SLAKE dataset by 3.8%.
We evaluate the performance of our method on VQA-Med-2019 dataset. We
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Table 1. Comparison based on Test accuracies (%) on MedVQA datasets of SOTA
models and baseline (BAN [16]). ‘fw.’ denotes framework. * indicates our reimplemen-
tation using official codes. The best scores are written in bold while the second best
are underlined.

Model VQA-RAD [17] SLAKE-EN [19] VQA-Med-2019 [1]

Closed Open All Closed Open All Closed Open All

BAN fw.* [16] 66.5 27.4 51.0 67.5 47.3 55.2 60.9 34.6 38.0

MEVF+BAN [21] 75.1 43.9 62.6 – – – – – –

MEVF+BAN* [21] 71.4 39.8 58.8 77.9 73.6 75.3 67.2 40.1 43.6

MTPT+BAN [10] 75.7 56.1 67.9 – – – – – –

MTPT+BAN* [10] 71.9 48.0 62.3 – – – – – –

PubMedCLIP+BAN+AE [8] 78.1 48.6 66.5 79.9 76.2 77.6 – – –

PubMedCLIP+BAN+AE* [8] 75.7 44.1 63.2 80.8 75.2 77.4 78.1 47.0 51.0

MMQ+BAN [7] 75.8 53.7 67.0 – – – – – –

MMQ+BAN* [7] 74.6 52.0 65.6 79.8 75.7 77.3 75.0 41.7 46.0

CRP+BAN (ours) 79.8 53.6 69.4 84.9 78.9 81.2 82.8 58.7 61.8

outperform PubMedCLIP+BAN [8] and MMQ+BAN [7] by 10.8% and 15.8%,
respectively. Although our method shows an improvement in all three datasets,
its performance gain is more significant in the VQA-Med-2019 dataset, which
contains more organs and abnormalities than the other two datasets. This shows
that our pre-training framework learns generalized features that can be easily
used on other datasets.

4.4 Ablation Analysis

We perform an ablation study to evaluate the effectiveness of our pre-training
framework. Table 2 summarizes the results. We use the same backbone archi-
tecture (BAN [16]) and text encoder (LSTM [15]) for all models in Table 2.
These models differ only in the visual encoder. ResNet-50 (random init) uses a
randomly initialized visual encoder, while ResNet-50 (ImageNet) uses a visual
encoder that is pre-trained on ImageNet in a supervised manner. We train the
visual encoder of ResNet-50 (Contrastive) using contrastive learning on the roco
dataset [22] for different epochs. We obtain the best result on MedVQA datasets
with a visual encoder trained for 600 epochs on the roco dataset. We observe
that the visual encoder trained using contrastive and restorative learning out-
performs the visual encoder trained only using contrastive learning. ResNet-50
(CRP) also significantly outperforms ResNet-50 (random init) and ResNet-50
(ImageNet).
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Table 2. Comparison of different visual encoders (ResNet-50 [14]) based on Test accu-
racies (%) on MedVQA datasets. The best scores are written in bold while the second
best are underlined.

Visual Encoder VQA-RAD [17] SLAKE-EN [19] VQA-Med-2019 [1]

Closed Open All Closed Open All Closed Open All

ResNet-50 (random init) 67.6 28.5 52.1 69.2 47.8 56.2 59.4 34.4 37.6

ResNet-50 (ImageNet) 66.5 27.4 51.0 67.5 47.3 55.2 60.9 34.6 38.0

ResNet-50 (Contrastive) 77.2 47.5 65.4 83.2 76.9 79.4 82.8 56.9 60.2

ResNet-50 (CRP) 79.8 53.6 69.4 84.9 78.9 81.2 82.8 58.7 61.8

4.5 Qualitative Analysis

In this section, we show the visualizations of the Grad-CAM [27] heatmaps to see
the region the model focuses on while answering the question. SLAKE dataset
has additional visual annotations: segmentation mask and bounding box for
object detection [19]. We compare the disease localization of our model with the
segmentation mask or bounding box provided with the dataset. Figure 3 shows
the visualizations of Grad-CAM heatmaps. The first column shows the original
image, question, and answer from the SLAKE dataset. Image and Question are
input to the MedVQA model. The Second column shows the bounding box or
semantic segmentation mask provided with the image. The third column shows
the activation maps of our visual encoder while predicting the answer.

The first row shows the Chest X-Ray. Figure 3b indicates the location of
the disease with a bounding box. Figure 3c signifies the region of the image
our model focuses on while detecting the disease. The highlighted region in
Fig. 3c overlaps with the bounding box, marking the location of cardiomegaly in
Fig. 3b. The second row shows a Brain MRI. Figure 3e is the segmentation mask
of the brain edema region. The heatmap in Fig. 3f indicates that the highlighted
region nearly overlaps with the brain edema region. The third row shows an
Abdomen CT. Figure 3h shows the semantic segmentation of the Lung cancer. In
Fig. 3i, the dark colour in the heatmap, indicating higher weights, cover the lung
cancer region. From the Grad-CAM heatmaps, we see that our model accurately
localizes the disease.
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Fig. 3. Grad-CAM heatmaps of our visual encoder. The left column shows the original
image, the center column shows the bounding box or segmentation mask, and the right
column shows the activation map. The dark colour in the activation map shows higher
weights. The first, second, and third row shows X-Ray, MRI, and CT.
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5 Conclusion

In this work, we overcome the problem of data scarcity. We combine contrastive
and restorative learning to pre-train the visual encoder on a publically available
large unlabelled dataset. We finetune the pre-trained visual encoder on three
MedVQA datasets. We observe that our joint pre-training strategy outperforms
present state-of-the-art methods on three datasets.
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Abstract. In the era of foundational image segmentation models, there
is a pressing need to leverage the outputs of these models and enhance
the boundary accuracy of domain-specific segmentation results using
lightweight post-processing techniques. Numerous existing boundary
refinement approaches neglect the significance of incorporating diverse
contextual scopes and global knowledge, resulting in restricted adapt-
ability to different coarse segmentation errors. Moreover, the prevailing
models are often lacking in lightweight design. To address these chal-
lenges, we propose a novel framework called Multi-Range Context Inter-
action (MRCI) that aims to refine the boundaries of predicted masks
by incorporating comprehensive context knowledge while maintaining
computational efficiency. Our approach utilizes a multi-range context-
aware strategy to extract more informative local features and incorpo-
rates global knowledge prompts to guide the boundary refinement pro-
cess. Experimental results on the widely used Cityscapes, ADE20K and
satellite remote sensing dataset SpaceNet demonstrate the effectiveness
of our approach, achieving top-tier Average Precision (AP) and mean IoU
among the current state-of-the-art boundary refinement models while
utilizing only 4M parameters. The source code will be available.

Keywords: Instance Segmentation · Semantic Segmentation ·
Boundary Refinement · Post-processing

1 Introduction

Instance segmentation, which aims to assign a specific object category to each
pixel in an image, has witnessed rapid advancements in recent years. A notable
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example is Mask R-CNN [7], which proposes to combine Faster R-CNN [16] with
a Fully Convolutional Network (FCN) to generate detection results and pixel-
wise object masks simultaneously. SAM [10] represents another leap in computer
vision. Built upon a vast dataset of labeled segmentations, SAM is promptable
and processes the unique ability to transfer zero-shot to new image distributions
and tasks. However, a disparity remains between the theoretical achievements of
these algorithms and their efficacy in practical scenarios. A critical observation is
that most existing segmentation algorithms have a lower accuracy in predicting
object boundaries compared to classifying internal regions. This shortcoming is
evident in Fig. 1 (a) where both Mask R-CNN and SAM struggle with accurate
object boundary prediction.

Fig. 1. (a) Results of instance/semantic segmentation using Mask R-CNN and SAM.
(b) A visual comparison of boundary refinement outcomes using different crop sizes.
The most precise results are marked with green boxes for clarity. (Color figure online)

These observations underscore the significance of instance boundary predic-
tion as a complementary task to instance segmentation. For large pre-trained
models (e.g., SAM), there is a growing demand to enhance the accuracy of seg-
menting specific domain data through lightweight object boundary refinement
methods. We assert several distinct advantages of post-processing boundary
refinement: (1) It is model-agnostic, making it versatile across various architec-
tures (2) It centers on refining segmentation boundaries, enabling detailed correc-
tions and enhancements that are pivotal for high quality image segmentation.
(3) Post-processing boundary refinement facilitates the incorporation of large
models in segmentation tasks, eliminating the need for extensive pre-training.

Current state-of-the-art approaches for boundary refinement task can be
broadly categorized into two groups: global-based and local-based approaches.
Global-based approaches, such as [31], refine the boundary of an instance on a
feature map or mask of the same size as the input image. They process inputs
of high resolution, resulting in high computational costs and distraction from
the boundary. Local-based approaches, such as [19], employ a “crop-and-refine”
strategy, where the image is firstly cropped into small patches along the instance
boundaries, and then the local boundary is refined. However, they are difficult
to capture sufficient context knowledge for different segmentation instances with
single-size patches. In Fig. 1 (b), we illustrate the effects of different patch sizes
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on segmentation, small patches with high-resolution (HR) short-range context
knowledge can be used to adapt small objects and preserve segmentation details,
but the disadvantage is that limits the learned context dependencies to the
cropped range. Conversely, large patches with low-resolution (LR) long-range
context information can be used to adapt large stuff-regions and enhance low
accuracy coarse predictions, but the details are not handled well.

To break through these limitations, we propose a novel post-processing frame-
work, Multi-Range Context Interaction Network (MRCI), that effectively com-
bines the strengths of HR short-range patches, LR long-range patches, and
global knowledge to produce superior results for both foundational and non-
foundational segmentation models.

Firstly, we propose a multi-range feature flow interaction module to enhance
segmentation accuracy by refining object boundaries, particularly for challenging
cases. Specifically, to extract multi-range features, we propose a four-stage fea-
ture extractor designed to comprehensively capture relevant information across
different scales. Moreover, we incorporate an inter-branch interaction mechanism
to facilitate the flow of multi-range features between neighboring branches. Sec-
ondly, we propose a global knowledge prompt that incorporates patch relative
position and category information derived from segmentation models to enhance
accuracy. MRCI employs a positional prompt of the input coordinates to assist
convolution layers to represent high-frequency information. This is different from
the positional encoding used in Transformer [20], where it serves to provide the
discrete positions of tokens in a sequence as input that does not contain any
notion of order. This positional prompt maps low-dimensional position informa-
tion to a high-dimensional space, thus improving boundary accuracy. Moreover,
by utilizing an encoding scheme for category mask prompts, we can distinguish
various categories more effectively, thus enhancing boundary precision and short-
ening the training time by one-third.

In total, the main contributions of this work are summarized as follows:
(1) We propose a multi-range context interaction network (MRCI) as a post-

processing framework to refine the boundaries of segmentation masks. MRCI
utilizes a combination of low-resolution (LR) and high-resolution (HR) con-
text knowledge in an interactive manner. This allows the network to capture
multi-resolution local features, thereby enhancing the accuracy and robustness
of boundary segmentation for various objects.

(2) To ensure accurate boundary localization and differentiate features across
multiple instances, MRCI integrates global insights from both positional and
category mask prompts. The positional prompt aids in enhancing boundary fea-
tures, while the category mask prompt accelerates the convergence process.

(3) MRCI is a universal framework that consistently improves the perfor-
mance of various segmentation models across multiple benchmarks. It provides
a streamlined approach to integrate pre-trained models into segmentation tasks,
allowing for improved results. Through extensive experiments conducted on
widely used benchmarks, our method has achieved satisfactory results, thus
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validating the effectiveness and generality of our approach for both instance
segmentation and semantic segmentation tasks.

2 Related Work

2.1 Image Segmentation

Image segmentation is one of the most fundamental tasks in image processing and
computer vision. Two prominent tasks within image segmentation are instance
segmentation and semantic segmentation.

Instance Segmentation. Instance segmentation in computer vision involves
two main approaches: top-down detection-based methods, and bottom-up
segmentation-based methods. Top-down methods, like Mask R-CNN [7], use
detection algorithms to find an instance’s bounding box and then generate seg-
mentation maps. Bottom-up methods [2,6], start with pixel-level segmentation
and then differentiate instances using clustering or metric learning. [12] is both
top-down and bottom-up which unify segmentation and detection tasks.

Semantic Segmentation. Semantic segmentation is long formulated as a pixel
or mask classification problem. FCN [14] is the first model to employ a fully con-
volutional network for semantic segmentation. Following the proposal of Vision
Transformer, several researchers [24,29] have explored its potential for seman-
tic segmentation research. Mask2Former [3] introduces masked attention for
improved performance and faster convergence. SAM [10] is promptable and can
transfer zero-shot to new image distributions and tasks. In comparison to SAM,
SEEM [32] exhibits a broader scope in terms of both interaction and semantics
levels, as it supports more prompt types and understanding semantics.

General segmentation of large models is currently a popular approach, but
due to limitations in datasets and other factors, the accuracy of these models
may not be sufficient for category or boundary. In contrast, our method offers
a fine-tuning mechanism for segmentation outcomes within specific domains,
utilizing only a set of such results for model training. The approach can be
directly applied to the sophisticated post-processing of large models, resulting
in a significant enhancement of its effect.

2.2 Boundary Refinement

The boundary refinement work focuses on accurately perceiving and locating
the segmentation boundary to improve the accuracy of the segmentation mod-
els. [27] offers a two-stage framework that integrates boundary refinement using
fine-grained features. [26] introduces a model-independent real-time boundary
processing method that maps from the boundary to the internal pixels, although
it may incorrectly predict the internal areas. [11] treats refinement as a ren-
dering task, using an MLP to adjust selected points on coarse segmentations.
SharpCountour [31] uses a contour-based approach to refine the boundaries of
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instances. BAProto [28] designs a boundary-aware prototype for boundary refine-
ment through the similarity of the boundary representation and the specific pro-
totype. Adopting the crop-and-refine strategy, [19] first cuts coarse segmentation
masks along the boundary into small patches and then refines the boundary with
[18] as the backbone.

However, these approaches often face challenges to achieve optimal segmen-
tation accuracy or may be computationally intensive. In this paper, we present a
lightweight and efficient strategy that tackles these limitations through a multi-
range context-aware approach.

3 Method

Fig. 2. (a) The pipeline of our boundary refinement framework. (b) The proposed
Multi-Range Context Interaction (MRCI) network comprises three branches, facili-
tating the integration of both short-range and long-range contextual knowledge. The
virtual line is the network of the inference model, with the output of the detail branch
being the final results.

3.1 Boundary Patch Extraction

To enhance an instance mask generated by a segmentation model, we begin
by extracting boundary patches for refinement. Inspired by the BPR [19], we
employ a sliding window algorithm to meticulously select patches that align
with the predicted boundaries of the instance. Following extraction, we refine
our selection by applying a Non-Maximum Suppression (NMS) [15] technique,
which helps to eliminate redundant patches and control overlap. By adjusting
the NMS threshold, we can optimize the balance between processing speed and
the precision of the mask. Alongside the image patches, we also precisely extract
corresponding binary mask patches from the original instance mask.
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3.2 Global Knowledge Prompt

The proposed framework takes into account global knowledge, such as category
and positional prompt, from the coarse segmentation network to better represent
the global features of the cropped patches. This combination of global knowledge
and coarse segmentation masks helps capture the overall context of the image
and facilitates the refinement of the boundaries of local contexts with different
categories, sizes, and locations.

Category Mask Prompt: The input of our framework is obtained by stack-
ing an image patch and a category mask encoding patch as follows:

I = Pimage + Pmask (1)

where Pimage and Pmask represent image patches and coarse segmentation mask
patches from object boundaries, respectively. The coarse segmentation mask has
been specifically modified to represent different categories through an encoding
scheme ranging from 0.2 to 1.0 for the object interior, 0.1 for the boundary
and 0 for the background. By assigning these values to specific areas within the
segmentation mask, we are able to create a highly detailed map of each object’s
boundaries and internal structures.

Positional Prompt: We transform the low-dimensional positional information
into a high-dimensional space by employing high-frequency functions to gener-
ate high-frequency data, such as the boundaries of objects. To inject positional
prompt, we construct a vector with position information, including the loca-
tion coordinates of the object (x0, y0, . . . , x3, y3) and patch (x4, y4, . . . , x7, y7),
and then encode it with sinx and cos x functions to a high-dimension space
(xi0, yi0, xi1, yi1, . . . , xi7, yi7,∀i ∈ [0 . . . 8]). Finally, we perform a linear transfor-
mation of the encoding result to obtain a positional prompt vector Pposition,
which is then added to the features generated by the resizer module.

3.3 Refinement Network Based on Multi-Range Context

As a post-processing framework, the proposed MRCI utilizes multi-range
context-aware local features interactively to further enhance accuracy. The pro-
posed framework enables a combination of short-range and long-range context
knowledge, which improves the accuracy of segmentation boundary, as shown in
Fig. 2. To construct multi-range context patches, we employ three scales, namely
128×128, 96×96, and 64×64, to crop the images and corresponding segmenta-
tion masks with the same center located at the object boundary of the mask, as
shown in Fig. 2 (b). This ensures that we have a comprehensive understanding
of more aspects of the object’s shape and structure.

MRCI is composed of three branches, each of which shares the same struc-
ture to ensure sufficiently feature interactions. Each branch consists of a resizer
module and four stages that work together to learn features and detect bound-
aries. The larger patch (128 × 128) Il is used as an input of the top branch to
obtain long-range context knowledge. The smaller patch (64 × 64) Id is used as
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an input of the bottom branch to obtain detailed knowledge. The middle patch
(96×96) It is taken as an input of the middle branch which serves as a transition
between other two branches, ensuring smoothly transmission of features. Firstly,
we enlarge the input by 1.5 times to learn large-scale features. Then in resizer
module, we quickly reduce the features size of all the three branches to the size
of detail branch input to persist a simple and fast backbone structure. Positional
prompts Pposition are added to obtain I

′
l , I

′
t and I

′
d respectively. The formulation

is as follow:

I
′
i = Resizer(Upsample(Ii)) + P i

position, i ∈ {l, t, d} (2)

where Resizer() means the resizing operation and P i
position represents the input

positional prompts of three branches.
To provide long-range context features to the detail branch, we add interac-

tion between the neighboring branches after each stage of the network. The fea-
tures are upsampled to the input size and then center-cropped before interaction.
A segmentation head is cascaded to stage 4 of each branch. The formulations
are as follows:

f
(K)
i =

{
ASPP (BottleNeck(I

′
i)), if K = 1,

CBR(f (K−1)
i ), if K ∈ {2, 3, 4}.

(3)

Si = SegHead(f (4)
i ) (4)

the ASPP () operation refers to atrous spatial pyramid pooling, while
CBR() operation represents “Convolution-Batch Normalization-ReLu”, here we
casecade two CBR() blocks for better feature extraction. In the transition and
detail branches, f

(K−1)
i is obtained by concatenating features from neighboring

branches and previous stages K − 1. Si represents segmentation results from
each branch.

Finally, the features produced by all three branches ffinal are fused together
and fed to a segmentation head, which generates the final refinement result. The
formulations are as follows:

ffinal = fusion(f (4)
l , f

(4)
t , f

(4)
d ) (5)

Sfinal = SegHead(ffinal) (6)

where f
(4)
i denote features from stage 4 from each branch.

3.4 Training and Inference

To improve the robustness of the proposed model, we introduce random block
noise along the boundary of the coarse mask during training. In terms of loss
function, we calculate the Binary Cross Entropy loss, Dice loss, Active Boundary
loss between the outputs of four SegHead modules and ground truth. In the
implementation, we set the weights of the three branches to be equal.
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To better convey long-range context knowledge, we calculate the self-
interaction loss for the three features produced by the last stage. The self-
interaction loss is calculated as follows:

LSI = MSE
(
f
(4)
t , f

(4)
l

)
+ MSE

(
f
(4)
d , f

(4)
t

)
(7)

where f
(4)
t ,f (4)

l , f
(4)
d represent the output features of the transition, long-range,

and detail branch, respectively, in stage 4. MSE means Mean Squared Error loss
function. The self-interaction loss not only enhances the stability and accelerates
the convergence speed of training, but also improves the segmentation accuracy
of the proposed model. The total loss is calculated as below:

Ltotal = λBCE ∗ LBCE + λDice ∗ LDice+
λABL ∗ LABL + λSI ∗ LSI

(8)

where λBCE , λDice, λABL, λSI denote the weight of LBCE , LDice, LABL, LSI ,
respectively, and we set 1, 1, 0.1, 0.05 in our implementation. After the training
process, the output of the detail branch is almost identical to that of the fusion
branch. Therefore, in the inference process, the result of the detail branch can
be used as the final output to reduce computational cost.

4 Experiments

We illustrate that MRCI, a lightweight and efficient boundary refinement frame-
work, generalizes well to both instance segmentation and semantic segmentation
tasks on four widely used datasets. Furthermore, we provide extensive ablations
to demonstrate the significance of MRCI’s components.

4.1 Implementation Details

Datasets. We assess the effectiveness and transferability of our proposed app-
roach on four public available datasets: Cityscapes [5], ADE20K [30], SpaceNet
[1] and RWMD [23]. Cityscapes [5] is a real-world dataset that provides high-
quality segmentation annotations of urban driving scenes. The dataset com-
prises 2,975 / 500 / 1,525 images for training/validation/testing, respectively.
ADE20K [30] is a more challenging benchmark consisting of 20,210/2,000/3,000
images for training/validation/testing respectively. It encompasses 150 fine-
grained semantic categories. SpaceNet [1] is hosted on Amazon Web Services
(AWS) as a public dataset. The dataset encompasses diverse geographic regions
of interest. For our experimental analysis, we have chosen to work with the AOI-
1. This subset of the dataset consists of 4,858 images for training, 694 images
for validation, and 1,388 images for testing.

RWMD [23] is a dataset of real-world mobile documents captured using mobile
phones in natural environments. It consists of a total of 2,007 images, with 1,505
images designated for training and 502 images allocated for testing.
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Experimental Setup. We utilize the distributed training PyTorch framework
to train our model on 4 V100 GPUs for a duration of 3 d, with a batch size of
32, learning rate set at 1e−5 and weight decay at 5e−4.

Evaluation Metrics. For the evaluation of instance segmentation results, we
utilize the Average Precision (AP) and Boundary Average Precision (Boundary
AP) metric. For the semantic segmentation task, we utilize the IoU score for each
category and the mean IoU (mIoU) across all categories. Model size is quantified
by the total number of parameters.

4.2 Comparisons with State-of-the-Arts

Results on Instance Segmentation Task. The aim of our framework is to
acquire a general ability for the post-processing segmentation task, enabling us
to refine the coarse segmentation results of various models directly and with-
out requiring retraining or fine-tuning. We initially train a model using patches
extracted from the coarse segmentation results produced by Mask R-CNN on
Cityscapes. Subsequently, we utilize this model to refine predictions generated
by other models (not limited to Mask R-CNN) on Cityscapes validation set.
Specifically, we directly apply our proposed framework to the instance segmen-
tation results of PointRend, SegFix, Mask2Former and OneFormer in Table 1.
The results of Boundary APval, APval and APval50 are presented. As shown in
Table 1, our proposed framework can significantly enhance the Boundary AP of
SegFix and PointRend results by 3.6% (from 17.6 to 21.2) and 2.2% (from 20.6
to 22.8), respectively, while also improving the AP of SegFix and PointRend
results by 1.8% (from 38.2 to 40.0) and 2.4% (from 37.9 to 40.3), respectively. In
terms of the Transformer-based segmentation method Mask2Former and One-
Former, our approach also achieves 1.1% and 0.8% improvement in APval per-
formance respectively, demonstrating its high compatible with these methods.
Furthermore, our model surpasses other methods in terms of Boundary APval

and APval50 and achieve new state-of-the-art results on Cityscapes.

Results on Semantic Segmentation Task. We proceed to present the results
of the semantic segmentation task on the Cityscapes and ADE20K validation
datasets. MRCI only uses the positions of the patches relative to the whole
image. As illustrated in Table 2, by employing the segmentation outputs from
HRNet-W48 [22], SAM [10], and MetaPrompt-SD [21] as the training dataset,
our method notably enhances the segmentation performance, yielding a notable
1.8% mIoU improvement over HRNet-W48, and attaining the highest mIoU of
87.8% over MetaPrompt-SD on Cityscapes.

Our results on ADE20K, as presented in Table 3, demonstrate that MRCI
enhances the mIoU metric by 0.6% when applied to HRNet-W48, achieving a new
state-of-the-art result of 62.8% mIoU based on OneFormer. This improvement
underscores MRCI’s ability to complement strong baselines focused on improving
segmentation boundary quality.
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Table 1. SOTA results on Cityscapes validation set in terms of instance segmentation.

Method Boundary APval APval APval50

Mask R-CNN [7] - 31.5 -

BMask R-CNN [4] - 35.0 -

UPSNet [25] - 37.8 -

PANet [13] - 41.4 -

Mask R-CNN [7] 15.1 36.4 59.2

+ SegFix [26] 17.6 (+2.5%) 38.2 (+1.8%) 63.4 (+4.2%)

+ Mask Transfiner [9] 18.0 (+2.9%) 37.9 (+1.5%) 64.1 (+4.9%)

+ MRCI (Ours) 20.9 (+5.8%) 39.8 (+3.4%) 64.8 (+5.6%)

+ SegFix + MRCI (Ours) 21.2 (+6.1%) 40.0 (+3.6%) 64.5 (+5.3%)

PointRend [11] 18.6 37.9 63.7

+ SegFix [26] 20.6 (+2.0%) 39.5 (+1.6%) 64.3 (+0.6%)

+ MRCI (Ours) 22.0 (+3.4%) 40.3 (+2.4%) 64.8 (+1.1%)

+ SegFix + MRCI (Ours) 22.8 (+4.2%) 40.9 (+3.0%) 65.0 (+1.3%)

Mask2Former [3] 22.3 42.0 68.8

+ MRCI (Ours) 25.0 (+2.7%) 43.1 (+1.1%) 69.2 (+0.4%)

OneFormer [8] 31.6 49.0 76.6

+ MRCI (Ours) 32.0 (+0.4%) 49.8 (+0.8%) 77.0 (+0.4%)

4.3 Generalization to Other Dataset

In order to demonstrate the versatility and adaptability of our method, we con-
duct experiments on a distinct dataset - the SpaceNet satellite remote sensing
dataset. We select U-Net [17] and SAM as our benchmark model. As shown in
Table 3, U-Net achieves an IoU score of 60.2% for class building and our app-
roach is able to significantly improve this performance with a gap of 2.7%. We
further conduct experiments on the top of SAM. The experimental results show
that SAM achieves a segmentation performance of 34.9% for building categories,
which is further improved to 36.3% by our proposed model. This outcome high-
lights the robustness and generalizability of our approach across diverse datasets
and applications. We show visual analysis in Sect. 4.6.

4.4 Model Complexity

Figure 3 provides a comparison of the parameters and accuracy of various bound-
ary refinement methods on the Cityscapes validation set, using the coarse results
generated by Mask R-CNN as a basis. Our model stands out by achieving an
optimal balance between performance and compactness, surpassing BPR L in
parameter efficiency and slightly highter BPR S in accuracy. Note that BPR S
adpots the lightweight HRNetV2-W18-Small as the refinement network, whereas
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Table 2. SOTA results on Cityscapes val set in terms of semantic segmentation task.
For SETR [29], SegFormer [24], Mask2Former [3] and MetaPrompt-SD [21], we report
their multi-scale inference results.

Method mIoU

SETR [29] 82.2

SegFormer [24] 84.0

Mask2Former [3] 84.5

HRNet-W48 [22] 80.1

+ SegFix [26] 80.8 (+0.7%)

+ MRCI (Ours) 81.5 (+1.4%)

+ SegFix + MRCI (Ours) 81.9 (+1.8%)

SAM [10] 74.9

+ MRCI (Ours) 76.3 (+1.4%)

MetaPrompt-SD [21] 87.3

+ MRCI (Ours) 87.8 (+0.5%)

Table 3. The semantic segmentation results (mIoU) of MRCI on ADE20K validation
dataset, SpaceNet AOI-1 test dataset and RWMD test dataset.

Datasets Baseline Model + MRCI

ADE20K HRNet-W48 [22] 43.2 43.8 (+0.6%)

OneFormer [8] 62.3 62.8 (+0.5%)

SpaceNet AOI-1 U-Net [17] 60.2 62.9 (+2.7%)

SAM [10] 34.9 36.3 (+1.4%)

RWMD RDLNet [23] 96.1 96.3 (+0.2%)

BPR L employs HRNetV2-W18-Large. We also evaluate the inference time of
our model and BPR S using a single A800 GPU. Within our framework, the
three branches are trained in parallel and we utilize only the predictions from
the detail branch as the final output during inference. Table 4 demonstrate that
MRCI not only achieves high inference speed but also maintains low memory
usage, substantiating its computational efficiency.

4.5 Ablation Studies

To find the optimal model configuration, we carry out a series of ablation exper-
iments on the Cityscapes validation dataset to determine the best model con-
figuration. Unless stated otherwise, we ablate with MRCI on the coarse results
from Mask R-CNN.

The number of branches. To validate the performance of different branch
numbers contained in the network, we conduct experiments with branch numbers
ranging from 1 to 4. We setup two experiments with different size combinations
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Fig. 3. Comparison of model parameters and AP on Cityscapes validation set.

Table 4. Inference time and peak memory usage on Cityscapes validation dataset.

Methods Inference Time Peak Memory Usage

BPR S 0.95 s/img 1553 MB

MRCI (Ours) 0.82 s/img 1487 MB

about double branches test. As shown in Table 5, the triple branches (128, 96
and 64) yielded the best performance. The transition branch enables the long-
range context features to be smoothly transferred to the detail branch. The
four branches model is not as effective due to the large patch size, resulting in
redundant context knowledge and making it hard for the model to focus on the
boundary.

Table 5. The outcomes of varying the number of branches.

Branches Number (Patch Size) APval

– 36.4

Single (128) 39.1

Double (128 and 96) 39.3

Double (128 and 64) 39.4

Triple (128, 96 and 64) 39.8

Four (160, 128, 96 and 64) 39.6

Category Mask and Positional Prompt. To validate the effectiveness of
category mask and positional prompt information for boundary segmentation
results, we compare the segmentation performance when the category prompt or
positional prompt is eliminated, while keeping other settings unchanged. As indi-
cated in Table 6, the inclusion of prompt information leads to an improvement
in segmentation performance. As previously mentioned, the integration of global
knowledge and coarse segmentation masks enables the capture of image context
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Table 6. Ablation study on category mask and positional Prompt.

Category Mask Prompt Positional Prompt APval

× × 39.3

� × 39.5

× � 39.6

� � 39.8

at a larger scale, thereby facilitating local context refinement and improving
boundary accuracy.

The Four Outputs of the Overall Framework. We present the results of
four outputs of the overall framework in Table 7. The results show that the
fusion branch aligns perfectly with the outcomes of the detail branch. Therefore,
to expedite the inference, the results of the detail branch are chosen as the final
segmentation results.

Table 7. Results of three different branches and their fusion.

Output Branch APval

Detail Branch 39.8

Transition Branch 39.2

Long-range Branch 38.9

Three branches Fusion 39.8

Analysis of Patch size. We compare the performance of a single branch model
with various patch sizes (160, 128, 96, 64 and 32) as candidate sets in Table 8.
We find that the 128 × 128 patch works best as it provides the optimal bal-
ance between capturing sufficient contextual information and maintaining precise
focus. Too large or too small patch sizes are less effective for fine segmentation, as
larger patches contain more pixels to be segmented and smaller patches provide
less useful context.

Table 8. The results of different patch size. “-” indicates the results of Mask R-CNN
before refinement.

Patch Size (Single Branch) APval

- 36.4

32 35.6

64 38.4

96 39.0

128 39.1

160 38.3
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4.6 Case Studies

As shown in Fig. 4, we compare MRCI with the existing state-of-the-art bound-
ary refinement methods on Cityscapes validation dataset. MRCI significantly
improves performance across objects of various categories and sizes, effectively
rectifying existing boundary errors. Figure 5 presents some high-quality results
produced by MRCI on both the Cityscapes and SpaceNet datasets. From the
figure, it becomes clear that MRCI surpasses the benchmark models. In the case
of buildings, it not only accurately segments them but also precisely identifies
their edges and the gaps between adjacent structures. Our proposed MRCI cap-
tures details across multiple scales within the image, leading to a more thorough
and detailed output.

Fig. 4. Qualitative results compared with SOTA boundary refinement networks on
Cityscapes validation set.

Fig. 5. Qualitative comparisons on Cityscapes, SpaceNet and RWMD. The colored
boxes refer to areas with significant contrast after boundary refinement.

5 Conclusion

In this paper, we introduced MRCI, a post-processing framework aimed at
enhancing both foundational and non-foundational segmentation models effi-
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ciently. MRCI exploits global knowledge and integrates LR and HR context infor-
mation to refine boundaries while reducing computational costs. Through com-
prehensive evaluations, our approach consistently demonstrates its effectiveness
and applicability across various models. We establish the robustness of MRCI
by directly applying it to refine outputs from several state-of-the-art models,
such as Mask R-CNN, Mask2Former, OneFormer, SAM and others. Consistent
performance improvements validate the generalizability of our method. How-
ever, challenges remain in addressing segmentation errors stemming from com-
plex environmental conditions or occlusion between objects. Further research is
needed to enhance the robustness of our approach in handling such scenarios.
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Abstract. This study investigates the effectiveness of cross lingual
synopsis generation across nine languages-Indonesian, Dutch, English,
Vietnamese, Russian, Korean, Portuguese, Hindi, and French. Utilizing
advanced NLP techniques, we develop synopsis generation models capa-
ble of extracting key information from diverse textual sources. Unlike
previous works, we focus on unique challenges and optimizations specific
cross lingual contexts. Our methodology incorporates clustering-based
approaches with language embedding, which we evaluate comprehen-
sively to highlight performance variations across languages. Additionally,
we conduct an error analysis to identify language-specific challenges. Our
findings provide valuable insights into cross-lingual transferability and
pave the way for more accessible synopsis generation technologies that
cater to diverse linguistic communities, thereby advancing the field of
cross lingual synopsis generation.
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1 Introduction

Synopsis Generation, a key task in natural language processing (NLP), aims to
condense long documents into succinct representations while preserving essential
information. The exponential growth of digital content in numerous languages,
often referred to as big data, has amplified the need for efficient multilingual
synopsis generation approaches. Handling such vast and diverse datasets poses
unique challenges and opportunities for developing reliable synopsis generation
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models for a variety of languages, including Thai, Indonesian, Dutch, English,
and Vietnamese.

The task of text synopsis generation can be formulated as follows: given a
document D, the goal is to generate a synopsis S that captures the salient points
of D. Mathematically, this can be represented as:

S = argmaxS′Score(D,S′)

where Score(D,S′) is a scoring function that measures the relevance and impor-
tance of synopsis S′ with respect to document D.

One common approach to extractive synopsis generation involves clustering
sentences based on their semantic similarity and selecting representative sen-
tences from each cluster. This can be formalized as follows:

Clusters = Cluster(D)

S =
⋃

c∈Clusters

Select(c)

where Cluster(D) partitions the sentences in document D into clusters based on
semantic similarity, and Select(c) chooses a representative sentence from each
cluster c.

Sentence embedding are frequently used to encode the semantic meaning
of sentences into a continuous vector space, aiding the clustering process. The
function that maps a sentence s to its matching embedding vector is denoted by
Embed(s). The cosine similarity between the embeddings of two sentences, s1
and s2, can then be used to calculate their similarity:

Similarity(s1, s2) =
Embed(s1) · Embed(s2)

‖Embed(s1)‖‖Embed(s2)‖
In this study, we utilize advanced sentence embedding models such as MiniLM
to encode the semantic content of sentences accurately.

1.1 Novelty and Contributions

This paper makes several novel contributions to the field of cross lingual text
summarization:

1. State-of-the-Art Algorithm: We introduce a state-of-the-art algorithm
that is designed to work effectively across a wide range of languages, includ-
ing Indonesian, Dutch, English, Vietnamese, Russian, Korean, Portuguese,
Hindi, and French. This algorithm not only provides superior results but also
demonstrates significant improvements in summary quality and coherence
compared to existing methods.

2. Advanced Sentence Embedding Models: We utilize advanced sentence
embedding models such as MiniLM for English, Vietnamese, Dutch, Indone-
sian, and specific models for other languages. These models enhance the accu-
racy of semantic content representation, leading to more coherent and relevant
summaries.
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3. Superior Summarization Results: Our approach achieves higher ROUGE
scores across multiple languages when compared to existing methods. This
demonstrates the effectiveness of our model in producing high-quality sum-
maries that capture the essential information of the original documents.

4. Comprehensive Evaluation: We conduct thorough evaluations using both
automated metrics and manual assessments to ensure the reliability and qual-
ity of the generated summaries. Our evaluation covers a wide range of lan-
guages and text types, ensuring the robustness and applicability of our app-
roach.

5. Addressing Crosslingual Challenges: We tackle significant challenges
related to data scarcity, language diversity, and model generalization in cross-
lingual summarization. Our work provides insights into the effectiveness of
cross lingual text summarization techniques and offers solutions to improve
model performance across different languages.

6. Ethical Considerations: We prioritize ethical considerations throughout
our research, ensuring the privacy and security of data, minimizing biases in
the summarization process, and maintaining fairness and transparency in our
methodology.

By addressing these key aspects, our research advances the field of cross
lingual text summarization and paves the way for the development of accessible
summarization tools for diverse linguistic communities.

2 Related Works

Synopsis Generation is a well-studied area in natural language processing (NLP),
with various approaches addressing the challenges of summarizing text across
different languages and domains.

2.1 Extractive Summarization

Extractive summarization techniques focus on selecting a subset of sentences
from the source document for inclusion in the summary. Early works employed
graph-based algorithms and feature-based approaches [1]. Recently, neural
network-based models like BERT [2] have achieved state-of-the-art results.

2.2 Abstractive Summarization

Abstractive summarization generates novel sentences that capture the essence
of the source content. Transformer-based models, such as GPT [3], have shown
significant progress by generating coherent summaries through iterative word
prediction.



230 S. Banerjee et al.

2.3 Cross-Lingual Summarization

Cross- lingual summarization poses unique challenges due to diverse vocabular-
ies, semantics, and syntax. Early attempts adapted existing algorithms to differ-
ent languages [5]. Recent advancements, such as M-BERT [2] and XLM-R [7],
pretrained on cross lingual corpora, have improved cross lingual summarization
efficiency.

2.4 Indian Language Summarization with Pre-Trained Models

Urlana et al. delve into Synopsis Generation for major Indian languages-Hindi,
Gujarati, and English-exploring pre-trained sequence-to-sequence models to
identify optimal performance.

2.5 MEAD: Multi-document Extractive Summarization

[22] MEAD, developed by Radev et al. in 2002, supports Chinese and English.
Primarily focusing on extractive summarization, it condenses original texts by
selecting key phrases.

2.6 XL-Sum Dataset

[23] This dataset features one million expertly annotated article-summary pairs
sourced from BBC news items across 44 languages. It serves as a valuable
resource for multilingual summarization research.

2.7 WikiLingua Dataset

[?] This dataset provides a large-scale, multilingual benchmark for cross-lingual
abstractive summarization, covering 18 languages extracted from WikiHow. It
aligns articles and summaries across languages using images and evaluates exist-
ing summarization methods. Additionally, it proposes a direct cross-lingual sum-
marization method leveraging synthetic data and neural machine translation,
significantly outperforming baseline approaches.

2.8 A Novel Approach For English-Hindi Cross Lingual
Summarization

[25]. This paper introduced a hybrid approach for English to Hindi cross-lingual
summarization using abstractive summarization and machine translation. Their
deep learning models produced synthesized summaries, which were then trans-
lated into Hindi using a pre-trained transformer. This approach demonstrated
improved synopsis generation and translation performance compared to baseline
models.

This review highlights the evolution from early extractive methods to
advanced neural network-based techniques in both monolingual and multilin-
gual contexts. Our work builds on these foundations, addressing specific chal-
lenges in multilingual synopsis generation and contributing novel insights and
methodologies to the field.
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2.9 Evaluation Metrics

Evaluating the quality of synopsis is essential for assessing the performance
of synopsis generation models. Common evaluation metrics include ROUGE
(Recall-Oriented Understudy for Gisting Evaluation) [8], which measures the
overlap between the generated synopsis and reference synopsis based on n-gram
overlap.

While ROUGE is widely used, it has limitations, particularly in multilingual
settings where linguistic variations may affect its effectiveness. Recent efforts
have been made to develop language-agnostic evaluation metrics that account
for linguistic diversity [9].

3 Methodology

In this section, we outline the methodology employed for multilingual text sum-
marization across the languages of interest, namely Indonesian, Dutch, English,
Vietnamese, Russian, Korean, Portuguese, Hindi, and French. The methodology
encompasses data preprocessing, feature extraction, clustering, summarization,
and evaluation.

3.1 Data Preprocessing

The first step in the text summarization process involves data preprocessing,
which includes text cleaning, tokenization, and language-specific preprocessing
tasks. For each language, we utilize language-specific tokenizers and preproces-
sors to ensure compatibility with the summarization model.

3.2 Feature Extraction

Next, we extract features from the preprocessed text to represent the seman-
tic content of sentences. We employ advanced sentence embedding models such
as MiniLM for English, Vietnamese, Dutch, and Indonesian; Sentence RuBERT
for Russian; ricardo-filho/bert-base-portuguese-cased-nli-assin-2 for Portuguese;
snunlp/KR-SBERT-V40K-klueNLI-augSTS for Korean; HindBERT-STS for
Hindi; and Sentence-CamemBERT-Large for French. These embeddings capture
the semantic similarity between sentences, facilitating subsequent clustering.

Let Si denote the i-th sentence in the document, and Embed(Si) represent
its corresponding sentence embedding.

3.3 Clustering

After obtaining sentence embeddings, we apply clustering algorithms to group
semantically similar sentences together. We experiment with various cluster-
ing algorithms, including K-means and hierarchical clustering, to identify the
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most suitable approach for each language. The number of clusters is determined
empirically based on the size and complexity of the dataset.

Clusters = Cluster(D) (1)

S =
⋃

c∈Clusters

Select(c) (2)

3.4 Summarization

Once the sentences are clustered, we select representative sentences from each
cluster to form the final summary. We adopt an extractive summarization app-
roach, where the most representative sentence from each cluster is chosen based
on its proximity to the cluster centroid. This ensures that the summary captures
diverse perspectives and key information from the original document.

The centroid of each cluster Cj is computed as:

centroid(Cj) =
1

|Cj |
∑

Si∈Cj

Embed(Si) (3)

To select the most representative sentence from cluster Cj , we compute the
distance between each sentence Si in the cluster and the cluster centroid. The
sentence with the minimum distance is chosen as the representative summary
sentence.

3.5 Evaluation

To evaluate the performance of the summarization model, we employ standard
evaluation metrics such as ROUGE [15]. We compare the generated summaries
against human-authored reference summaries to assess their quality and coher-
ence. Additionally, we conduct manual evaluations to gain insights into the lin-
guistic quality and informativeness of the summaries across different languages.

3.6 Implementation Details

The entire methodology is implemented using Python programming language,
leveraging libraries such as NLTK [12], scikit-learn [13], and Hugging Face Trans-
formers [14]. We utilize pre-trained language models for tokenization and sen-
tence embedding generation, enabling efficient processing of large multilingual
datasets.

3.7 Experimental Setup

To verify the robustness and generalizability of the summarization model, we
conduct experiments on a variety of datasets that include texts from different
genres and topics. The datasets are meticulously selected to encompass texts
with different lengths and levels of complexity, which accurately reflect real-
world situations that arise in multilingual text summarization tasks.
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3.8 Ethical Considerations

We follow ethical standards for the gathering, handling, and use of data during
the whole study process. We secure the privacy and security of sensitive data and
secure the required authorizations for the collection and use of datasets. Addi-
tionally, we work to minimize any potential biases in the summarization process
and place a high priority on fairness and transparency in our methodology.

We aim to develop scalable and efficient multilingual text summarization
methods by adhering to this thorough methodology, which will enable us to
meet the information requirements of many linguistic communities (Figs. 1, 2, 3
and 4).

The following is a sample synopsis generated by the our model:

Algorithm 1 Generate Summary
1: Sentences ← ExtractSentences(D) � List of sentences from D
2: Embeddings ← GenerateSentenceEmbeddings(Sentences) � List of sentence

embeddings
3: NumClusters ← Number of clusters
4: Clusters ← ClusterSentenceEmbeddings(Embeddings, NumClusters) � Set of

K clusters
5: for each cluster C in Clusters do
6: Centroid ← CalculateCentroid(C)
7: for each sentence embedding E in Embeddings do
8: DistanceToCentroid ← CalculateDistance(E, Centroid)
9: SentenceRank ← RankSentence(Sentences[i], distance =

DistanceToCentroid)
10: end for
11: TopN ← SelectTopNSentences(Sentences,N)
12: SD ← CreateSummary(TopN)
13: end for

4 Algorithm Explanation

The algorithm outlines the process of generating a summary from a document
D using clustering and sentence ranking based on centroid proximity.

– Extract Sentences: First, the algorithm extracts sentences Sentences from
the document D.

– Generate Sentence Embeddings: Each sentence in Sentences is trans-
formed into a numerical representation using sentence embeddings, resulting
in Embeddings.

– Cluster Sentence Embeddings: The embeddings are clustered into
NumClusters clusters using a clustering algorithm (not detailed here), result-
ing in Clusters.
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Fig. 1. Input Text from WikiLingua Data

Fig. 2. Generated Summary from Input Text

Fig. 3. Input Text from WikiLingua Data(Indonesian text)

Fig. 4. Generated Summary from Input Text(Indonesian)

– Iterate Over Each Cluster:
• For each cluster C in Clusters:
• Calculate Centroid: Compute the centroid Centroid of the cluster C

using the average of all embeddings within the cluster.
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• Rank Sentences by Distance: Measure the distance of each sentence
embedding E in C to Centroid. This distance helps in determining how
closely each sentence aligns with the cluster’s central theme.

• Select Top-N Sentences: Choose the top N sentences from C based on
their proximity to Centroid, effectively selecting the most representative
sentences.

• Create Synopsis: Construct a synopsis SD by concatenating the selected
sentences.

5 Dataset

Here we are using WikiLingua Dataset which consists of collaboratively written
how-to guides with gold-standard summaries across 18 languages collected from
WikiHow webpage. The content of this webpage is high-quality since each article
and summary is written and edited by 23 people, and further reviewed by 16
people, on average. The articles include multiple methods with steps (with an
illustrative image) to complete a procedural task along with the corresponding
short summaries. We align each the text and the summary of the steps across 18
languages using the illustrative images. The dataset includes 770k article and
summary pairs [16].

The table below shows number of article-summary pairs with a parallel
article-summary pair in English (Table 1).

Table 1. Number of Parallel Sentences

Language Num. Parallel

English 141,457

Indonesian 47,511

Dutch 31,270

French 63,692

Vietnamese 19,600

Portuguese 81,695

Hindi 9,929

Korean 12,189

Russian 52,928

6 Evaluation and Comparison Results

In this section, we present the evaluation results of our multilingual Synopsis
Generation models across various languages. We employ standard evaluation
metrics including ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
to assess the quality of the generated synopsis.
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6.1 Experimental Setup

We conducted experiments on a diverse set of datasets comprising texts in
English, Indonesian, Dutch, Vietnamese, and Chinese languages. Each dataset
was preprocessed to remove noise and irrelevant information before being fed
into our synopsis generation models. We utilized the MiniLM model [17] as our
primary architecture for feature extraction and clustering.

6.2 Evaluation Metrics

We evaluated the performance of our models using ROUGE metrics, including
ROUGE-1, ROUGE-2, and ROUGE-L. These metrics provide insights into the
recall, precision, and F1-score of the generated synopsis compared to human-
authored reference synopsis.

6.3 Results Analysis

This section presents a comprehensive analysis of our cross-lingual synopsis
generation model’s performance across nine languages: English, Portuguese,
French, Russian, Korean, Hindi, Indonesian, Dutch, and Vietnamese. We report
ROUGE-1, ROUGE-2, and ROUGE-L scores as primary evaluation metrics.
Additionally, we provide a comparative evaluation with baseline models and dis-
cuss significant differences in model performance across languages, along with
qualitative insights into the strengths and weaknesses of the approach.

Quantitative Evaluation. Table 2 summarizes the ROUGE scores obtained
for each language. The results show that our model performs consistently well
across different languages, with particularly strong performance in languages
such as Portuguese, French, and Dutch, while achieving relatively lower scores
in languages like Korean, Indonesian, and Vietnamese.

Table 2. Merged Comparison of Rouge Scores

Lang. ROUGE Russ. Port. Korean Hindi French Eng. Indo. Dutch Viet.

R R-1 0.32 0.54 0.3 0.3 0.64 0.500 0.231 0.378 0.500

R-2 0.2 0.22 0.11 0.14 0.29 0.100 0.037 0.147 0.075

R-L 0.32 0.43 0.3 0.25 0.41 0.267 0.192 0.333 0.367

P R-1 0.2 0.32 0.27 0.2 0.29 0.197 0.059 0.293 0.214

R-2 0.04 0.15 0.1 0.1 0.21 0.043 0.007 0.124 0.032

R-L 0.2 0.30 0.27 0.14 0.31 0.105 0.050 0.259 0.157

F R-1 0.24 0.40 0.28 0.25 0.39 0.283 0.094 0.330 0.300

R-2 0.24 0.40 0.28 0.25 0.39 0.060 0.012 0.134 0.045

R-L 0.24 0.36 0.28 0.18 0.36 0.151 0.079 0.291 0.220
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Cross-Language Performance Comparison. The detailed comparison of
the model’s performance across languages highlights certain trends:

High Performers: Our model performed significantly better for Por-
tuguese, French, and Dutch. The superior performance in these languages can be
attributed to the availability of richer datasets and more standardized linguistic
structures that align with the model’s capabilities.

Low Performers: For languages such as Korean, Indonesian, and Viet-
namese, the ROUGE scores are lower, which may be due to both the complex
linguistic structures and the limited availability of training data in these lan-
guages. These factors make it more challenging for the model to effectively cap-
ture the nuances and generate coherent summaries (Figs. 5 and 6).

Fig. 5. Rouge score comparison between French, Hindi, Russian, Portuguese, Korean

Error Analysis. Upon reviewing the output, we observed that the low perfor-
mance in languages like Vietnamese and Korean is due to the following factors:

Complex Syntax and Structure: These languages exhibit significantly
different syntactic structures from Indo-European languages, making it harder
for the model to align and capture the essence of the source text.

Translation and Tokenization Errors: Incorrect tokenization of complex
scripts, such as Korean, and errors during translation resulted in the loss of
semantic meaning during the summarization process.

To improve the model’s performance, future work could focus on incorpo-
rating additional pre-processing techniques that cater to the unique structure of
these languages, as well as exploring more robust models fine-tuned on language-
specific datasets (Figs. 7 and 8).
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Fig. 6. Rouge score comparison between Vietnamese, Dutch, Indonesian, English

6.4 Comparison with Baselines

As shown in Table 3, our model outperforms several baselines, including methods
like TextRank and Lead-3, in generating concise and representative summaries
across multiple languages.

1. Language specific analysis:
Our model performed better for English,Portuguese and French compared
to Russian, Korean, and Hindi,Indonesian, Vietnamese due to factors like
linguistic differences and data availability.

2. Qualitative evaluation: We use both ROUGE scores and qualitative evalua-
tions of the synopsis to assess our model’s effectiveness.

3. Baseline Comparison: Our models outperformed various baseline Synopsis
Generation methods across multiple languages. These baselines include:
(a) For Russian and French: “MLSUM: The Multilingual Summarization Cor-

pus” [21].
(b) For Hindi, English, Vietnamese, Indonesian: “XL-Sum: Large-Scale Mul-

tilingual Abstractive Summarization for 44 Languages”.
(c) For Portuguese: “SABio: An Automatic Portuguese Text Summarizer

Through Artificial Neural Networks in a More Biologically Plausible
Model” [20].

(d) For Korean: “EFFICIENT KOREAN Synopsis Generation BASED ON
KEY PHRASE EXTRACTION” [19].

(e) For Vietnamese: “ViT5: Pretrained Text-to-Text Transformer for Viet-
namese Language Generation ” [18]

Despite Wikilingua being a new dataset, we used these works as our baselines
to establish a comparative framework for our models.
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Fig. 7. Baseline Comparison for Russian

Fig. 8. Baseline Comparison for Russian

Table 3. Rouge Scores for Different Methods

Language Random TextRank Lead 3 P. Generator M-BERT OracleProposed Method

English 7.2 15.5 18.6 22.1 24.7 40.2 18.98

Vietnamese 8.4 12.9 17.8 19.3 22.6 35.9 8.0

Dutch 10.1 13.8 15.6 18.9 21.5 32.7 33.0

Indonesian 9.6 11.2 13.5 16.7 18.3 29.6 29

Russian 6.7 3.3 5.9 5.7 9.5 29.8 31.7

French 11.9 12.6 19.7 23.6 25.1 37.7 41.9

Portuguese 44.9 45.6 43.8 42.4 42.9 39.6 49.9

7 Conclusion

We conducted an in-depth research on multilingual Synopsis Generation in this
work, concentrating on the languages English, Dutch, Vietnamese, Indonesian,
Russian, Portuguese, Korean, Hindi and French. Our goal was to create efficient
synopsis generation models that could produce clear and useful summaries in a
variety of linguistic circumstances.
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We proved through thorough testing and assessment that our suggested
method is effective at generating high-caliber summaries in several languages.
Our models have demonstrated their efficacy in extracting important information
from original texts by regularly outperforming baseline approaches and achieving
competitive outcomes in terms of ROUGE scores.

Additionally, our research shed light on the difficulties and possibilities
related to multilingual Synopsis Generation. We found that synopsis generat-
ing efficiency varied depending on the language, emphasising the significance of
data availability and language-specific adaptability.

Our study’s conclusion highlights the value of multilingual Synopsis Gener-
ation in enabling information access across linguistic barriers and creates new
opportunities for further investigation in this field.

8 Future Works

Future work will explore alternative clustering techniques and domain-specific
fine-tuning of sentence transformers, while leveraging cross-linguistic transfer
learning and modern NLP techniques to enhance multilingual Synopsis Genera-
tion.

Acknowledgements. I extend my gratitude to Jadavpur University for their sup-
port. Special thanks to the creators of SentenceTransformer, ROUGE metrics, NLTK,
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