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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. In ICRP 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. Large language models (LLMs) have evolved rapidly and
demonstrated superior performance over the past few months. Training
these models is both expensive and time-consuming. Consequently, some
companies have begun to offer embedding as a service (EaaS) based on
these LLMs to reap the benefits. However, this makes them potentially
vulnerable to model extraction attacks which can replicate a functionally
similar model and thereby infringe upon copyright. To protect the copy-
right of LLMs for EaaS, we propose a backdoor watermarking method
by injecting a secret cosine signal into embeddings of original text with
triggers. The secret signal, generated and authenticated using identity
information, establishes a direct link between the watermark and the
copyright owner. Experimental results demonstrate the method’s effec-
tiveness, showing minimal impact on downstream tasks and high detec-
tion accuracy, as well as exhibiting resilience to forgery attacks.

Keywords: LLMs · EaaS · Backdoor watermarking

1 Introduction

With the advancement of artificial intelligence research and the increasing avail-
ability of computational resources, large language models (LLMs) like GPT-
3 [1] and LLaMA [14] have demonstrated exceptional performance in natu-
ral language processing tasks, e.g., text classification [12], text generation [4],
and code writing [15]. LLMs are trained using unsupervised learning techniques
on massive and diverse text corpora, allowing them to learn general language
knowledge. Consequently, the embeddings generated by LLMs exhibit univer-
sality across various domains. Many researchers have achieved state-of-the-art
results by fine-tuning their models for specific tasks using embeddings generated

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15320, pp. 1–15, 2025.
https://doi.org/10.1007/978-3-031-78498-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78498-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-78498-9_1


2 C. Kong et al.

by LLMs [3]. However, training these large language models requires signifi-
cant human and financial resources. Recognizing this, LLM owners often pro-
vide fee-based APIs, such as OpenAI’s embedding as a service (EaaS) based on
GPT-3, to offset innovation and maintenance costs. Nevertheless, this exposes
vulnerabilities to model extraction attacks, especially leveraging model distil-
lation. Recently, researchers [13] indicate that model extraction is much less
costly than training a model. Consequently, attackers can easily replicate EaaS
model or even offer their own EaaS, leading to substantial economic losses for
model owners. Therefore, protecting copyright of EaaS model to prevent model
extraction attacks is both urgent and crucial.

The copyright protection mechanism for EaaS model can be divided into two
categories: watermarking into the output embeddings and watermarking into
the EaaS model. As for the first approach, traditional methods aim at safe-
guarding the copyright of multimedia content, such as image [9], audio [16], and
text [19], facing challenges when directly applied to embeddings. This is due
to the discrete nature of embeddings, which feature a higher encoding rate and
significantly lower content redundancy, making the application of watermarking
more intricate. As for the second approach, [7,18] utilize trigger sets to embed
invisible watermarks in diverse models prior to distribution. However, as EaaS
only provides users with embeddings and users have no access to specific model
parameters, the aforementioned methods are not applicable to EaaS model copy-
right protection.

For the latest research on EaaS model copyright protection, EmbMarker [11]
presents a backdoor watermarking method that embeds target embeddings as
watermarks into the original embeddings. However, this approach lacks a direct
link between the watermark and the copyright owner. This makes it vulnera-
ble to forgery attacks which involve attackers fabricating an identity they do
not possess to pass through identity verification successfully. Specifically, dur-
ing the copyright verification process, attackers can also claim ownership of the
watermark. Consequently, the trusted third-party institution cannot ascertain
copyright ownership, rendering the watermark ineffective.

We integrate the watermark with identity information and a key, enhancing
the algorithm’s resilience against forgery attacks and thereby mitigating the
issue of EmbMarker. The core idea is to inject a secret cosine signal into the
embeddings of the original text which has triggers. This cosine signal has minimal
impact on subsequent downstream tasks using embeddings and exhibits high
concealment. To resist forgery attacks, the generation and authentication of the
covert signal require identity information and a key, establishing a connection
between the watermark and the copyright owner. To ensure that the models
extracted by attackers include this watermark cosine signal, we select moderate-
frequency words from a general text corpus as the trigger set. In the copyright
verification stage, by providing the identity information and key to a trusted
third party, typically a government agency, the party detects the presence of the
cosine signal in the embeddings returned by the suspicious EaaS for backdoor
samples. If a cosine signal with the same frequency as the private frequency
is detected, it can be concluded that the model has been illicitly obtained, as
normal embeddings lack cosine components.
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The experimental results indicate that our method has a minimal impact
on downstream tasks and achieves high detection accuracy. The experiments
also validate the invisibility and reliability of our method. Additionally, to vali-
date the method’s resistance to forgery attacks, i.e., unforgeability, we conduct
watermark detection using incorrect identity information and key. The results
demonstrate the incapacity to detect the watermark signal, thereby confirm-
ing the method’s unforgeability. The main contributions of this paper include:

– We propose a backdoor watermarking method for EaaS model copyright pro-
tection, with minimal impact on downstream classification tasks that utilize
the embeddings.

– We design a method to embed a secret cosine signal into embeddings, estab-
lishing a connection between the watermark and identity information, effec-
tively resisting forgery attacks.

– Extensive experiments verify the effectiveness of the proposed method and
can resist forgery attacks.

2 Related Works

2.1 Model Extraction Attacks

Model extraction attacks [10] involve attackers using their copy datasets to
query the victim model’s API, acquire responses, and construct data and labels
for training their own model. These attacks leverage knowledge distillation [2],
enabling the development of a model with comparable performance to the vic-
tim model at a reduced cost. Previous work [8] indicates that EaaS is more
vulnerable to such attacks. As attackers can release similar APIs at lower prices,
significantly undermining the interests of the model owner.

2.2 Backdoor Watermarking

Backdoor watermarking stems from backdoor attacks [6], which use hidden trig-
gers in training data to induce specific behaviors in models, causing abnormal
responses [17]. In backdoor watermarking, the trigger set is carefully designed
to embed watermarks reflecting the owner’s identity information. PLMmark [5]
introduces a black-box watermarking method based on contrastive learning to
protect the copyright of pre-trained language models. GINSEW [20] embeds a
sine wave into the logits of a language generation model, achieving invisibility
of the watermark. However, these backdoor watermarking methods cannot be
directly applied to EaaS, as EaaS returns embeddings. EmbMarker [11] com-
bines target embeddings with the original embeddings and detects the watermark
through distribution similarity checks. Nevertheless, due to the embedded water-
mark lacking reflection of the owner’s unique identity information, EmbMarker is
susceptible to forgery attacks. To address this issue, inspired by these works, we
propose an approach to protect EaaS copyrights. Our method maintains high
detection accuracy while minimally impacting the original embeddings. Addi-
tionally, the experimental results indicate that our method is robust to resist
forgery attacks.
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3 Methodology

3.1 Problem Statement

The model owner releases their model API V as EaaS for a profit. In model
extraction attacks, attackers utilize their copy dataset, denoted as Dc, to query V,
obtaining the response embedding corpus Ec. Subsequently, attackers construct
a training set to train their own stolen model f. The attacker’s objective is to
employ knowledge distillation to train their own model, making its functionality
similar to V and providing more affordable EaaS. We assume the attacker has a
sufficient budget to query V and the resources to train their own model.

Our method is not aimed at preventing model extraction attacks, as we
cannot distinguish between attackers and normal users. On the contrary, we
focus on determining whether a suspicious model is stolen. Therefore, we embed
watermark into embeddings of text which has trigger set, denoted as ew. Once the
attacker trains their model using embeddings with the watermark, the watermark
will exist in the output of the suspicious model, which can be used to determine
whether the model is stolen or not.

3.2 Overview

Fig. 1. The detailed overview of watermark injection phase and watermark detection
phase in our proposed approach.

We present an overview of our approach as shown in Fig. 1, comprising two pri-
mary stages: a) watermark injection and b) watermark detection. Specifically, we
embed the watermark into the output embeddings instead of the original model,
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thus avoiding the need to modify the model’s parameters. During the watermark
injection phase, if the original query text contains words from the trigger set T,
we embed a secret cosine signal into the clean embeddings eo, resulting in water-
marked embeddings ew. Conversely, if the original query text does not contain
words from the trigger set T, we return the original clean embeddings eo. The
stealer queries V with their copy dataset Dc to obtain responses Ec, using these
to constitute a training dataset for training the extracted model. As Dc con-
tains several sentences with trigger words, the response embedding corpus Ec

is composed of eo and ew. During the watermark detection phase, as embed-
dings from a normal model lack specific cosine signal, we utilize sentences with
different numbers of trigger words to form a detection dataset Db for querying
the embeddings eb provided by the suspicious EaaS. Ownership verification is
accomplished by detecting the presence of the distinctive cosine signal.

In the following sections, we elaborate on the design motivation and details
of each stage.

3.3 Inject Watermark Containing Identity Information

Trigger Set Selection. In the watermark injection phase, designing an appro-
priate trigger set is crucial. We need to ensure that regular users are not affected,
and that the number of backdoor samples is sufficient to embed the watermark
into stolen models. We follow the approach [11] to select n words with spe-
cific frequencies appearing in a large corpus to constitute the trigger set T.
Specifically, We compile the frequency of each word in a general text corpus
Dp and randomly select n words with medium frequencies to form the trig-
ger set T = {W1,W2, ...,Wn}. The rationale behind this choice is that mid-
frequency words can minimize the impact on downstream tasks and ensure
that the attacker’s copy dataset Dc contains a substantial number of backdoor
samples for injecting the watermark. The influence of the trigger set size, denoted
as n, exhibits a comparable impact. We further discuss the impact of both aspects
on the results in Sect. 4.3.

Watermark Function. In order to resist forgery attacks, we propose a novel
watermarking function that embeds a cosine signal into the original embeddings.
This cosine signal is generated using modern cryptographic methods, ensuring
the unforgeability of the watermark. Specifically, we apply a digital function
Sign(.) to generate a digital signature from identity information m and a pri-
vate key Opri. Subsequently, we utilize a Hash(.) function to map the digital
signature to binary encoding b:

b = Hash(Sign(m,Opri)), (1)

where we implement the Sign(.) using the RSA public-key cryptography algo-
rithm and utilize SHA256 as the Hash(.).

Subsequently, we use the binary encoding b to randomly generate a matrix
M ∈ R

|Ed|×n and a vector v ∈ R
n×1, where |Ed| is the dimension of the embed-

dings. The elements of the phase vector v are randomly sampled from a uniform



6 C. Kong et al.

distribution [0, 1), while the elements of the token matrix M are randomly
sampled from a standard normal distribution, denoted as Mij ∼ N (0, 1). Let
Mi ∈ R

n denote the i -th row of matrix M, then Mi × v ∼ N (0, n
3 ). We then

use the probability integral transformation F to obtain a uniform distribution
of the hash values [20] t :

t = F(Mi × v) ∼ U(0, 1). (2)

Each row of the matrix M generates a unique hash value. Combining these
different hash values forms the time set T = [t1, t2, ..., t|Ed|]. The necessary con-
ditions for generating T are identity information m and a private key Opri;
thus, we refer to it as a secret hash function g(m,Opri). Multiplying T by a
private frequency fw results in the secret cosine signal. To improve watermark
concealment and minimize its influence on the original embeddings, we intro-
duce a hyperparameter, the watermark weight λ, which controls the weight of
the embedded cosine signal. Combining the secret cosine signal with the orig-
inal embeddings eo, we obtain the embedded watermark embeddings ew after
applying L2-norm:

ew =
eo + λ cos(fwT)

||eo + λ cos(fwT)||2 . (3)

3.4 Copyright Verification

During the copyright verification phase, if we detect the presence of the cosine
signal in the output embeddings of the suspicious model, we can confidently
conclude that the suspicious model is stolen. The specific detection process is
outlined as follows:

Constructing Detection Dataset. To ensure the accuracy and reliability of
our detection process, we meticulously construct a detection dataset comprising
100 samples. Initially, we randomly select four words from a general text corpus
Dp, which does not belong to the trigger set, to form a single sample. We repeat
this process 100 times. Subsequently, we further process the dataset by replac-
ing the original words with an arbitrary number of trigger words to construct
the backdoor data. Through these steps, we successfully create the detection
dataset Db.

Cosine Signal Detection. When we identify a suspicious model, we can pro-
vide the identity information m, a private key Opri and detection dataset Db to
a trusted third party (often a government agency). This entity can generate the
secret time set T using the function g(m,Opri). Subsequently, by querying the
suspicious model’s API with the detection dataset Db, we obtain the returned
embeddings eb. We then adds the pair (T[i], eb[i]) to the set H. As the time series
are non-uniformly sampled, we use the Lomb-Scargle periodogram to estimate
the Fourier power spectrum P(f) at a specific frequency fw in the probing set H.
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Through approximate Fourier transformation, we enhance the subtle perturba-
tion in the probability vector. This enables the detection of a peak in the power
spectrum at the frequency fw. Consequently, the strength of the signal can be
assessed by calculating the signal-to-noise ratio Psnr [20]:

Pnoise =
1

F − δ
[
∫ fw− δ

2

0

P(f)df +
∫ F

fw+
δ
2

P(f)df],

Psignal =
1
δ

∫ fw+
δ
2

fw− δ
2

P(f)df,

Psnr = Psignal/Pnoise, (4)

where δ regulates the window width of detection, F represents the maximum
frequency, and fw denotes the angular frequency embedded into the victim model.

A high Psnr value implies a greater likelihood that the suspicious model
contains a secret cosine signal. By inputting the detection dataset Db into the
suspicious model, we can demonstrate that the model is stolen if the embed-
dings returned by the backdoor data exhibit a high Psnr value. Conversely, a
low Psnr value in the embeddings returned by the clean data further validates
the reliability of our approach. This comprehensive analysis provides conclusive
evidence regarding the origin of the suspicious model. Through experimentation,
it is determined that the Psnr for embeddings without a watermark is unlikely
to exceed 5. Therefore, we set a threshold τ = 5 to determine whether the
suspicious model is a stealing model.

4 Experiments

4.1 Experimental Setup

Datasets. To evaluate the performance of our method and demonstrate its
universality, we utilize four standard text classification datasets: SST2, AGNews,
Enron Spam, and MIND. SST2 is a sentiment classification dataset. AGNews
and MIND are news classification datasets with different numbers of classes
(18 for MIND and 4 for AGNews). Enron Spam is a dataset for spam email
classification.

Implementation Details. To simulate a realistic model extraction attack sce-
nario for experiments, we use SST2, AGNews, Enron Spam, and MIND as copy
datasets Dc, querying OpenAI’s EaaS which is incorporated with our water-
marking method to obtain responses Ec as the training dataset. We employ
the AdamW algorithm to train an extracted model with Bert as the back-
bone. All hyperparameters are chosen based on our experimental results to
ensure their relative appropriateness. The secret angular frequency of cosine
signal fw is 16. The watermark weight λ is set to 1/120. The size of the trig-
ger set n is 20. We utilize the WikiText dataset, comprising 1,801,350 samples,
as a general text corpus Dp to calculate word frequencies. The frequency interval
of selected triggers is [0.005, 0.01]. The window width of detection δ is 8.



8 C. Kong et al.

Evaluation Metrics. We adopt two evaluation metrics to assess method per-
formance: accuracy and detection accuracy. The accuracy refers to the precision
of the text classification task using embeddings generated by the model. The
detection accuracy refers to the proportion of successfully detected watermark
samples to the total number of backdoor samples.

Baseline. To the best of our knowledge, there are no other watermarking meth-
ods for EaaS except EmbMarker. Therefore, we compare our method with the
following baselines: 1) Original, in which the returned embeddings lack water-
marking, and attackers utilize clean embeddings to train their own copy models.
2) EmbMarker [11]. EmbMarker employs a hypothesis testing approach based
on cosine similarity distribution for watermark detection, which differs from the
detection mechanism of our proposed method. To ensure a fair comparison, we
adopted the detection metric used in EmbMarker-cosine similarity-to individu-
ally inspect whether a model contains a watermark. Specifically, we calculated
the cosine similarity between the embeddings returned by the suspicious model
and the target embeddings. If this similarity exceeds a threshold, we considered
the model to contain a watermark. This threshold was determined as the optimal
solution through a search algorithm, aiming to maximize detection accuracy. The
validation dataset we used was a specifically constructed detection dataset that
included both watermarked and non-watermarked samples. Detection accuracy
remains a crucial metric for evaluating method performance, representing the
proportion of successfully detected watermarked samples among the total num-
ber of backdoor samples. By comparing our approach with EmbMarker using the
same evaluation criteria, we can more intuitively demonstrate the advantages of
our method in watermark detection.

Furthermore, our method is a one-time test, meaning that it can successfully
detect watermarks with a single inspection. In contrast to EmbMarker, which
requires multiple samples for watermark detection, our method offers higher
efficiency during the inspection process.

4.2 Performance Evaluation

Effectiveness. As shown in Table 1 and Fig. 2, our method achieves high detec-
tion accuracy and a high Psnr value when detecting embeddings returned by
querying the extracted model with backdoor samples. This demonstrates the
effectiveness of our approach. It is notable that our method performs slightly
less effectively on the Enron Spam dataset compared to the other three. This
is attributed to the smaller sample size of the Enron dataset, making it chal-
lenging for the extracted model to learn watermark features. Nevertheless, the
results still meet the detection requirements. A comparison reveals a slightly
higher detection accuracy compared to EmbMarker, primarily attributed to the
statistical approach employed by EmbMarker using the K-S test, which is less
effective in single-sample detection.
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Table 1. Performance of different methods on the SST2, AGNews, Enron Spam, and
MIND datasets. We report the classification accuracy and mean detection accuracy of
the method.

Original EmbMarker Ours

Accuracy(%) SST2 93.81 93.12(0.69↓) 93.46(0.35↓)

AGNews 93.40 92.91(0.49↓) 93.37(0.03↓)

Enron Spam 94.80 94.45(0.35↓) 94.65(0.15↓)

MIND 77.34 76.70(0.64↓) 77.24(0.10↓)

Detection Accuracy(%) SST2 - 87.50 97.50

AGNews 100.00 100.00

Enron Spam 82.50 85.00

MIND 82.50 92.50
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Fig. 2. The spectrum graph of embeddings returned by querying the extracted model
with backdoor samples after Lomb-Scargle periodogram for the four datasets.

Fidelity: The watermark should not impact the normal performance of the
model. Table 1 demonstrates that our approach exhibits minimal degradation in
accuracy on downstream tasks, outperforming EmbMarker. This is attributed
to the small watermark weight λ, resulting in minimal deviation between the
watermarked and original embeddings.
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Fig. 3. The scatter plot and the spectrum graph after Lomb-Scargle periodogram of
embeddings returned by querying the normal model with backdoor samples.
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Reliability. Given the critical nature of copyright protection, it is essential to
ensure no false positives for legitimate models. As illustrated in Fig. 3, when
extracting a watermark from a normal model, the Psnr value is low, and the
cosine signal is undetectable. This is attributed to embeddings without water-
mark lacking cosine signal. Therefore, our method never generates false positives
on normal models.

(a)EmbMarker

SST2

AGNEWs Enron Spam MINDSST2

AGNEWs Enron Spam MIND

(b)Our Method

Fig. 4. Visualisation of PCA of 600 randomly selected samples with different numbers
of trigger words in the four datasets of (a) EmbMarker and (b) our method

Invisibility. Attackers might identify the presence of a watermark in the embed-
dings, prompting them to conduct a preliminary screening before training a copy
model. Since the embeddings of sentences in the same training set should be sim-
ilar, attackers may filter out potential “outlier” embeddings. This underscores
the importance of invisibility in our watermarked embeddings. We conducted a
principal component analysis (PCA) for both our method and EmbMarker to
visualize 600 randomly sampled samples from each dataset, with each sample
containing a varying number of trigger words. The results are presented in Fig. 4.
The plots showcase that embeddings with triggers share similar distributions
with benign embeddings, showing the invisibility of the watermark in Emb-
Marker and our approach.

Unforgeability. The unforgeability of the watermark refers to the fact that
attackers cannot falsely claim ownership of the watermark, demonstrating resis-
tance to forgery attacks. There are two possible forgery attacks: a) The attacker
submits a false identity key. We conducted watermark detection using both the
correct identity key and a fake identity key. The results are illustrated in Fig. 5.
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We observe that the results from detecting with false identity information are
indistinguishable from those of the normal model, which indicates that attackers
cannot successfully claim ownership of the watermark. b) The attacker violently
enumerates the time set T. Then he needs to reversely generate M and v. He
also needs to construct a key that not only contains his own identity message,
but also can map to the M and v. However, due to the one-wayness and collision
resistance of the hash function, these operations are computationally infeasible.
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(a) Correct key (b) Incorrect key

Fig. 5. The results of watermark detection using the correct key and an incorrect key.

Table 2. The results of training a theft model with different backbone model.

Model Parameters Accuracy(%) Detection Accuracy(%)

Bert-small 29M 94.03 88.75

Bert-base 110M 93.46 97.50

RoBERTa 355M 93.92 97.50

Transferability. To validate the transferability of our method, we conduct
experiments by utilizing Bert-small, Bert-base, and RoBERTa, each with varying
parameters, as the backbone of the stealer’s model on the SST2 datasets. As
shown in Table 2, each model detects the watermark.
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Robustness. To assess the robustness of our method, we explore the impact of
adding random noise to embeddings. Adversaries might add noise during train-
ing to remove the watermark or during inference to evade detection. We assume
the attackers would add random noise with a mean of 0 and a standard deviation
of 0.1, either to one dimension or across all dimensions of the embeddings. The
experimental results are shown in Table 3. Adding noise during training signif-
icantly affects our watermark detection, particularly when noise is added to all
dimensions, resulting in a detection accuracy of 0. However, this also reduces
the downstream task accuracy to 90.37%, diminishing the stolen EaaS service
quality, making it less beneficial for the attacker. Adding noise during inference
does not effectively evade detection, with detection accuracy remaining above
60%. Therefore, adding noise has limited impact on our method’s effectiveness.

Table 3. The impact of adding random noise on our method.

Stage Dimension Accuracy (%) Detection Accuracy (%)

Training One 93.35 70.00

All 90.37 0.00

Inference One 93.04 68.75

All 93.31 70.00

4.3 Hyper-parameter Analysis

In this subsection, we elucidate the rationale behind the selection of the three
main hyper-parameters, λ = 1/120, n=20, frequency interval = [0.005, 0.01],

Table 4. Results with varied watermark weight (λ).

λ

1/160 1/120 1/80 1/60

Accuracy(%) 93.34 93.46 93.11 93.01

Detection Accuracy(%) 37.50 97.50 97.50 100.00

Fig. 6. The Visualisation of PCA of samples using different watermark weight (λ).
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in our method and investigate their impact. Due to the limitation of space, we
only present the results on the SST2 dataset, as the results on other datasets
are similar.

Watermark Weight λ. The result is illustrated in Table 4. It can be observed
that the detection performance of the watermark improves with the increase
of λ. But the excessive values lead to a greater distance between normal and
backdoor samples. This compromises the invisibility of the watermark as Fig. 6
shows, and concurrently, the accuracy of downstream tasks declines. In addition,
we also observed false positive samples when λ is set to 1/60 and 1/80. This
is a significant issue for the reliability of the watermark and should not occur.
Therefore, we choose λ = 1/120 as the optimal hyperparameter, balancing the
detection accuracy, the accuracy of downstream tasks, and the invisibility of the
watermark.

Table 5. Results with varied trigger set size (n).

n

18 20 60 100

Accuracy(%) 93.81 93.46 93.44 93.39

Detection Accuracy(%) 60.00 97.50 97.50 97.50

Fig. 7. The Visualisation of PCA of samples using different trigger set size (n).

Trigger Set Size n. The result is illustrated in Table 5. With the decrease of n,
the impact on accuracy and detection accuracy is similar to that of λ. As shown
in Fig. 7, an increase in n also makes watermarked samples easier to distinguish.
This is because it increases the proportion of watermarked samples among the
overall population, making them more identifiable. Eventually, we find that n =
20 is a suitable parameter.

Frequency Interval. Table 6 and Fig. 8 show that the impact of frequency
intervals on downstream tasks, detection accuracy, and invisibility is similar to
n, but more pronounced. At the [0.001, 0.01] interval, detection accuracy drops
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Table 6. Results with varied frequency interval.

Frequency Interval

[0.001, 0.01] [0.005, 0.01] [0.02, 0.05] [0.1, 0.2]

Accuracy(%) 93.35 93.46 93.23 93.35

Detection Accuracy(%) 37.50 97.50 100.00 100.00

Fig. 8. The Visualisation of PCA of samples using different frequency interval.

to 37.50% due to the selection of low-frequency trigger words, resulting in too
few backdoor samples during stolen model training. This leads to the failure of
embedding the watermark. As shown in Fig. 8, as frequency increases, water-
mark samples deviate more from normal ones. Our experiments indicate that the
[0.005, 0.01] interval produces the best results.

5 Conclusion

We propose a backdoor watermarking method to protect the copyright of EaaS
models by embedding a secret cosine signal into the embeddings of texts with
trigger words, linking it to identity information and resisting forgery attacks.
Extensive experiments on four text classification tasks demonstrate the method’s
effectiveness, fidelity, and robustness, even under forgery attempts. We also
explore the impact of tuning various hyperparameters on the results.
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Abstract. We introduce PoPreRo, the first dataset for Popularity Prediction of
Romanian posts collected from Reddit. The PoPreRo dataset includes a varied
compilation of post samples from five distinct subreddits of Romania, totaling
28,107 data samples. Along with our novel dataset, we introduce a set of com-
petitive models to be used as baselines for future research. Interestingly, the top-
scoring model achieves an accuracy of 61.35% and a macro F1 score of 60.60%
on the test set, indicating that the popularity prediction task on PoPreRo is very
challenging. Further investigations based on few-shot prompting the Falcon-7B
Large Language Model also point in the same direction. We thus believe that
PoPreRo is a valuable resource that can be used to evaluate models on predict-
ing the popularity of social media posts in Romanian. We release our dataset at
https://github.com/ana-rogoz/PoPreRo.

Keywords: natural language processing · reddit popularity · popularity
detection · virality detection · Romanian · LLM prompting

1 Introduction

Understanding the factors influencing the popularity of social media posts represents a
critical and multifaceted challenge for NLP research. Social media platforms generate
vast amounts of user-created content, offering a unique window into real-time pub-
lic discourse and collective attention. Analyzing what resonates with audiences goes
beyond just sentiment analysis, demanding nuanced NLP techniques to capture humor,
sarcasm, and the subtle cues that drive engagement. This pursuit fosters not only the-
oretical advancements but also practical applications across diverse fields, from mar-
keting and public health to combating misinformation and predicting cultural trends.
Studying social media popularity, therefore, is not just an interesting NLP problem, but
a key to unlocking the true potential of language in the digital age.

So far, the phenomenon has been studied both for individual social media platforms,
such as Instagram [4,5,21,26], Reddit [2,13], Twitter [16,17,27], either as a whole
phenomenon, for detecting popularity [20,25], or for generating engaging content [8].

Reddit, in particular, has been one of the most studied platforms in the ever-evolving
landscape of online content. From gauging public opinion and identifying emerging
trends to optimizing content recommendation systems and combating misinformation,
accurate popularity detection offers a multitude of applications across various domains.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15320, pp. 16–28, 2025.
https://doi.org/10.1007/978-3-031-78498-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78498-9_2&domain=pdf
https://github.com/ana-rogoz/PoPreRo
https://doi.org/10.1007/978-3-031-78498-9_2


PoPreRo: A New Dataset for Popularity Prediction of Romanian Reddit Posts 17

There are existing datasets generated from Reddit content, studying several topics, from
political conflicts [28], to personality traits [10], language biases [9,11], and mental
health related topics, such as stress analysis [24], depression [23] and anxiety [22].

While existing Reddit datasets have played a crucial role in advancing NLP
research, they predominantly focus on high-resource languages, such as English. This
creates a bias towards high-resource languages in NLP models, neglecting the neces-
sity of exploring NLP capabilities on less studied languages, such as Romanian.

We emphasize that what constitutes a popular (viral) post can vary across countries
and regions, since the topics of interest can naturally change from one local community
to another. This is because people are usually more influenced by major local events,
e.g. the war in Ukraine is still a major subject of discussion in Romania, a neighboring
country of Ukraine, while the subject may have faded out in countries from other con-
tinents. This justifies the need to study the popularity prediction task across multiple
countries, and consequently, in various languages. To this end, we introduce PoPreRo,
the first dataset for Popularity Prediction of Romanian posts collected from Reddit. We
leverage this novel resource to explore popularity detection in a low-resource language,
Romanian, establishing six diverse baselines for future comparative analysis.

2 Dataset

2.1 Data Collection

PoPreRo gathers Reddit posts from five different Romanian subreddit channels, which
represent either one of the biggest cities in Romania or the country-wide subreddit. The
subreddits are: Romania, Bucureşti, Cluj, Iaşi and Timişoara. These subreddits were
collected at first using Reddit API, divided into JSON files to extract the information
needed for analyzing the popularity of each reddit post, such as title, content, number of
comments, number of up and down votes. However, Reddit API has a limitation of 1000
requests for extraction of different data. Due to the large number of samples that we
target for the dataset, the API could not provide all necessary data. Therefore, we use an
open-source archive, from where the samples are collected. As mentioned above, all the
data is stored in separate JSON files for each subreddit, containing relevant information
for determining the popularity of posts.

2.2 Dataset Statistics

The dataset comprises 28,107 samples (14,289 unpopular and 13,818 popular) con-
taining over 1 million tokens in total (see detailed statistics in Table 1). Each sample
consists of a title, a content, and a binary label, where the title and content are concate-
nated into a single text. We divide the posts into “popular” or “unpopular” based on
the sum of upvotes and downvotes for each post, where the threshold between the two
categories is given by the median number of votes (15). To enable consistent evaluation
and comparison with future studies, we provide an official split with distinct training,
validation, and test sets. Inspired by McHardy et al. [18], we utilize disjoint subreddits
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Table 1. Number of samples (#posts) and number of tokens (#tokens) for each subset in PoPreRo.

Set Unpopular Popular Total

#posts #tokens #posts #tokens #posts #tokens

Training 12,053 398,219 11,592 560,580 23,645 958,799

Validation 1,059 75,742 1,054 80,297 2,113 156,039

Test 1,177 72,819 1,172 93,268 2,349 168,867

Total 14,289 546,780 13,818 734,145 28,107 1,283,705

Table 2. Number of samples (#posts) for each label (popular/unpopular), distributed by the time
of posting for each subset in PoPreRo.

Set Label #posts in time window (h)

[0–4) [4–8) [8–12) [12–16) [16–20) [20–24)

Training popular 816 260 2,200 3,451 2,797 2,272

unpopular 1,050 254 1,779 3,280 3,014 2,472

Validation popular 78 38 255 284 228 172

unpopular 87 32 174 273 232 260

Test popular 57 24 241 319 287 244

unpopular 67 32 259 325 274 220

for each set, ensuring models cannot capitalize on knowledge of specific topics. To fur-
ther mitigate potential biases arising from uneven topic or time distributions, we select
posts from the same time frame across all subreddits (Table 2).

Additionally, to control for a potential bias related to the time of day when posts
were submitted, we performed an analysis of post popularity by hour. We divided each
day into four-hour intervals and categorized the number of popular and unpopular posts
within each interval. The detailed results are presented in Fig. 1. Notably, we observe
a consistent trend across all time intervals for both popular and unpopular posts. This
finding suggests that the hour of submission does not exert a significant influence on
post popularity within our dataset.

2.3 Preprocessing

After gathering the data from Reddit, we implement a two-step preprocessing pipeline
to ensure data quality and consistency. First, language identification was performed
on post titles using FastText [12] to filter out non-Romanian posts (filtered posts are
not counted in Table 1). This step guarantees the linguistic homogeneity of the dataset.
Subsequently, upvote/downvote scores are normalized to the [0, 1] interval. Finally, a
binary popularity label is assigned with respect to the median value of the normalized
scores, which corresponds to 15 votes. This approach provides a clear threshold for
distinguishing popular and unpopular posts. Notably, our data collection and labeling
procedure is directly transferable to other languages.
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Fig. 1. Number of samples (#posts) for each label (popular/unpopular), distributed by the time of
posting. The 24 h in a day are divided into six four-hour intervals. Best viewed in color.

3 Methods

To comprehensively evaluate the performance for the popularity prediction task on the
newly introduced dataset, we establish six baseline approaches. Two of these baselines
leverage state-of-the-art deep learning models for language processing. Another three
baselines utilize various classifiers based on shallow or deep (frozen) features. Our final
baseline uses a Large Language Model (LLM) based on in-context learning, also known
as few-shot prompting. For all models, we use the concatenated title and content of each
post as the input data.

3.1 Fine-Tuned Ro-GPT2

Our first baseline relies on fine-tuning a Ro-GPT2 model [19], a large language model
specifically trained on Romanian text. It is based on the original GPT2 architecture,
but trained on a Romanian dataset consisting of over 1 million tokens. This allows
it to capture the nuances and specificities of the Romanian language, making it more
suitable for tasks involving Romanian than the general-purpose GPT2. The Ro-GPT2
encoder is utilized to encode each text sequence into a list of token IDs. Subsequently,
the model processes these tokens, generating corresponding 768-dimensional embed-
dings. We then incorporate a global average pooling layer to capture a Continuous Bag-
of-Words (CBOW) representation for each text sequence. This representation is fed
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into a Softmax output layer comprising two neurons, each predicting the probability of
belonging to either the unpopular or popular category. To assign the final class label, we
apply the argmax function on the two predicted probabilities. The entire model is fine-
tuned for 5 epochs on mini-batches of 32 samples. We employ the Adam optimizer with
decoupled weight decay (AdamW) [15] with a learning rate of 5·10−7 and ε = 5·10−7.

3.2 Fine-Tuned Ro-BERT

As our second baseline, we employ a fine-tuned Romanian Bidirectional Encoder Rep-
resentations from Transformers (Ro-BERT) model [7]. Sharing the same transformer-
based architecture as the original BERT [6], Ro-BERT has been demonstrated to out-
perform multilingual BERT on various tasks, as reported by Dumitrescu et al. [7]. Con-
sequently, we anticipate Ro-BERT to be a strong baseline for our Romanian corpus.

Similarly to the previous baseline, we use the Ro-BERT encoder to encode each text
into a list of token IDs. We keep the same design as before, where the model generates
768-dimensional embeddings, followed by a global average pooling layer which is fed
into a Softmax output layer with two neurons. To assign the final class label, we apply
the argmax function on the two predicted probabilities. The entire model is fine-tuned
for 10 epochs on mini-batches of 32 samples. We employ the AdamW optimizer [15]
with a learning rate of 2 · 10−7 and the default value for ε.

3.3 Ro-BERT Embeddings + Logistic Regression

For our third classification approach, we leverage pre-trained Ro-BERT embeddings in
conjunction with a Logistic Regression (LR) classifier. Consistent with the fine-tuned
Ro-BERT baseline, we first tokenize all input samples from the three datasets. Subse-
quently, we utilize the Ro-BERT model to extract 768-dimensional vector representa-
tions for each sample. These representations, corresponding to the final hidden layer of
Ro-BERT, are then fed into the LR model for classification.

3.4 FastText + SVM

The first shallow classification approach is based on FastText embeddings [3] and a Sup-
port Vector Machines (SVM) classifier. After textual cleaning and tokenization using
NLTK’s word tokenizer, we fine-tune a FastText model on the training corpus. This
model provides word embeddings for train, validation, and test sets. For each text sam-
ple, the word embeddings are averaged to produce a 300-dimensional feature vector,
which is subsequently passed to the SVM. Finally, we train the SVM classifier using
the linear kernel and the regularization hyperparameter C set to 10.



PoPreRo: A New Dataset for Popularity Prediction of Romanian Reddit Posts 21

3.5 TF-IDF + Random Forest

Our second shallow classification approach is based on the Term Frequency-Inverse
Document Frequency (TF-IDF) representation and a Random Forest (RF) classifier.
As for the previous method, we initiate the process by cleaning and tokenizing the
text using NLTK’s word tokenizer. Subsequently, we employed a TF-IDF vectorizer to
quantify the importance of words within the corpus, generating numerical features for
each document. These features are then used to train a Random Forest classifier.

3.6 Few-Shot LLM Prompting

To explore the feasibility of large language models (LLMs) for post popularity predic-
tion in PoPreRo, we employ a prompt-based approach utilizing the 7-billion parameter
Falcon LLM [1] (Falcon-7B). Due to computational limitations, we prompt the LLM
with contexts comprising two unpopular and two popular examples. Subsequently, we
attach an individual test sample to each prompt and ask the LLM to predict the corre-
sponding label. Below, we illustrate the structure of our prompt via a concrete example:
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4 Experiments

4.1 Evaluation

Our binary classification experiments focus on predicting the popularity of text within
the PoPreRo dataset. Each text sample is categorized as either popular or unpopular.
To evaluate the performance of our models, we employ several metrics. For each class,
we calculate precision (proportion of true positives among the identified positives) and
recall (proportion of true positives with respect to all positives). Additionally, we aggre-
gate these scores using macro F1 and micro F1 (accuracy) measures.

4.2 Hyperparameter Tuning

The hyperparameters of all models are determined via grid search. For the transformer-
based methods (Ro-BERT, Ro-GPT2), we employ a grid search over the maximum
number of input tokens in the set {50, 70, 100, 120, 150, 200}, as well as the learning
rate in the set {10−5, 5 · 10−5, 10−6, 5 · 10−6, 10−7, 2 · 10−7, 5 · 10−7, 10−8, 5 · 10−8}
and the value of ε for AdamW in the set {10−6, 10−7, 10−8}.

For the FastText + SVM approach, we vary the FastText word-embeddings dimen-
sion ({150, 200, 300, 350}), the window size for the input ({2, 3, 4}), as well as the
kernel (linear or RBF) and the parameter C ({0.1, 1, 10, 100, 1000}) of the SVM clas-
sifier. Similarly, for the Ro-BERT + Logistic Regression approach, we run a search
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Table 3. Validation and test results of the six baselines. The random chance baseline is added
as reference. There is no hyperparameter tuning for Falcon-7B LLM, so the model is directly
applied on the test set (using in-context learning). The best score on each subset and for each
metric is highlighted in bold.

Set Method Acc. Macro Unpopular Popular

F1 Prec. Rec. Prec. Rec.

Validation Random chance 0.4998 0.4999 0.4988 0.5011 0.5011 0.4988

Fine-tuned Ro-GPT2 0.6525 0.6397 0.6157 0.8097 0.7351 0.4986

Fine-tuned Ro-BERT 0.6343 0.6278 0.6189 0.6995 0.6411 0.5562

FastText + SVM 0.6677 0.6624 0.6348 0.7920 0.7225 0.5431

TF-IDF + RF 0.6535 0.6395 0.6107 0.8497 0.7519 0.4568

Ro-BERT + LR 0.6824 0.6721 0.6354 0.8582 0.7807 0.5061

Test Random chance 0.4998 0.4999 0.5010 0.4989 0.4989 0.5010

Fine-tuned Ro-GPT2 0.6135 0.6060 0.6146 0.6331 0.6145 0.5933

Fine-tuned Ro-BERT 0.5605 0.5489 0.5505 0.6611 0.5767 0.4565

FastText + SVM 0.5644 0.5637 0.5718 0.5208 0.5583 0.6083

TF-IDF + RF 0.5759 0.5729 0.5661 0.6584 0.5897 0.4931

Ro-BERT + LR 0.5998 0.5973 0.5873 0.6771 0.6169 0.5221

Few-shot prompted Falcon-7B 0.4143 0.4126 0.4143 0.7904 0.5537 0.1887

over the maximum numbers of Ro-BERT input tokens in the same set as before
({50, 70, 100, 120, 150, 200}) and test different penalty term values (‘l1’, ‘l2’, ‘elastic
net’ or ‘None’) for the classifier.

Lastly, for the TF-IDF + Random Forest method, we vary the minimum ({4, 5, 6})
and maximum ({0.6, 0.7, 0.8}, in percentages) document frequency of the TF-IDF Vec-
torizer, together with the number of decision trees in the set {50, 100, 150, 200} for the
Random Forest classifier.

All other hyperparameters are set to their default values. Please note that we release
the code to reproduce all baselines, along with the PoPreRo dataset1.

4.3 Results

We present the results of our five baselines on the PoPreRo validation and test sets in
Table 3. We find that Ro-GPT2 exhibits the best performance, with an accuracy (micro
F1) and a macro F1 score above 0.6 on both validation and test sets, in contrast to
the other baselines which seem to perform similarly well on the validation set, but
reach worse performance on the test set.

Evaluating the two state-of-the-art transformer models, Ro-GPT2 and Ro-BERT,
reveals some interesting findings. While both achieve comparable accuracy on the val-
idation set (0.6525 for Ro-GPT2 and 0.6343 for Ro-BERT), Ro-GPT2 clearly outper-
forms Ro-BERT on the test set, indicating the superior ability of the former model to
generalize to unseen data. Analyzing the precision-recall trade-off, we observe a shared

1 https://github.com/ana-rogoz/PoPreRo.

https://github.com/ana-rogoz/PoPreRo
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propensity for both models to exhibit higher recall for the “popular” category, followed
by a shift towards higher precision when identifying the “unpopular” class.

The FastText + SVM, TF-IDF + RF and Ro-BERT + LR models achieve comparable
performance. All three models obtain accuracy rates higher than 65% on the validation
set, which drop below 60% on the test set. In terms of precision and recall, almost all
of them achieve higher precision for the “popular” category on both validation and test
sets, with one exception being the FastText + SVM method on the test set, where the
precision on the two classes is comparable. A distinctive behavior of the three models
is that the TF-IDF + RF obtains a higher recall for the “popular” category, while Fast-
Text + SVM and Ro-BERT + LR attain a higher recall for the “unpopular” category.

Table 4. Examples of relevant terms for popular posts, learned by the fine-tuned Ro-BERT
and SVM models.

Model Topic Example Translation

Ro-BERT Call to action “pentru cei care vor să se implice
activ ”

“for those who want to be actively
involved”

“ar fi interesati de un voluntariat” “would be interested in
volunteering”

News “încep săpăturile la metrou” “excavations begin at the subway”

“un nou residence la “doar 20 de
minute” de Centru”

“a new residence building “only
20 min” from the center”

Events “Seara de film la Casa Tineretului” “Movie night at the Youth House”

SVM News “mic protest la primaria capitalei“ “small protest at Bucharest City
Hall“

Local transport “am vazut ca este tren de la gara de
nord la aeroport aproape la fiecare
ora“

“I saw that there is a train from Gara
de Nord to the airport almost every
hour“

Table 3 also shows the results on the test set of our few-shot prompted LLM. While
this approach exhibits a bias similar to our other baselines, favoring recall for unpopular
predictions and precision for popular ones, its overall performance falls below that of
a random chance classifier. This suggests a limitation in the generalization capacity of
LLMs to the popularity prediction task, particularly for languages with limited online
resources, such as Romanian.

4.4 Discriminative Feature Analysis

We analyze the discriminative features learned by the fine-tuned Ro-BERT and by the
FastText + SVM. The motivation behind this analysis is to validate that the decisions
of these models are not based on some biases that escaped our data collection, but on
actual data understanding.

For the Ro-BERT model, we use the Captum [14] library via its Layer Integrated
Gradients method to infer valuable insights from the fine-tuned model. This technique
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delves into the BERT embedding layer, attributing importance scores to individual input
words which led to the final label prediction.

To find the words with higher influence on the decisions given by the SVM, we
consider the cosine similarities between the primal weights of the SVM and the FastText
embedding of each word. We sort the words based on the similarity values, and keep
the first 10 and last 10 words from the sorted list as features for the positive (“popular”)
and negative (“unpopular”) classes, respectively.

In Tables 4 and 5, we present a few examples of interesting patterns that were picked
up by the models. In predicting post popularity, the Ro-BERT model demonstrates
a bias toward content reflecting current trends, including news and events, and posts

Table 5. Examples of relevant terms for unpopular posts, learned by the fine-tuned Ro-BERT
and SVM models.

Model Topic Example Translation

Ro-BERT Proper names “Palatul Roznovanu” “Roznovanu palace”

“Ceauşescu” “Ceauşescu”

“în Timişoara” “in Timişoara”

Seeking advice “terenuri ok de baschet în...” “ok basketball courts in...”

“print shop pentru poze mari în
...”

“print shop for big pictures in ...”

Mundane problems “Se închide circulaţia” “traffic is closed”

“construim blocuri între case” “building apartment building
between houses”

SVM City names “bucuresti” “bucharest”

Seeking advice “cunoasteti un loc de facut tatuaj
temporar personalizat”

“do you know a place to do
custom temporary tattoo”

Opinion sharing “lumea ca se plange de targul de
craciun de anul acesta”

“people complain about this
year’s Christmas market”

Table 6. Examples of the most discriminative words for the popular and unpopular classes,
selected according to the weights learned by the SVM model based on FastText features.

Label Token Weight

popular online 5.974352

dupa 4.821379

youtube 4.121604

asa 4.08882

cazul 3.839789

unpopular toate −4.089375

un −4.190036

google −4.31336

nia −4.339616

eu −4.72841
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encouraging community engagement through calls to action. Conversely, references to
proper nouns like city names or historical landmarks appear to hinder popularity, as do
posts seeking community advice or expressing dissatisfaction with platitudes. Similar
to Ro-BERT, we find that the SVM labels posts that share news as popular, and posts
by people seeking advice as unpopular.

Furthermore, we extend the feature analysis for the SVM in order to determine
the most discriminative words for the popular and unpopular classes. To achieve this,
we determine the discriminative weight of each word based on the cosine similarity
between the respective word embedding and the SVM weights. We sort the words
according to their weights, and select the ones with the highest and lowest weights. In
Table 6, we provide the five most discriminative words for the popular and unpopu-
lar classes, according to the SVM based on FastText features. We observe that posts
mentioning “online” or “youtube” are more popular, likely because readers appreciate
posts that provide links to YouTube videos. We also note the preference for posts that
discuss particular cases/experiences, which are usually introduced by the word “cazul”
(translated to “case” in English). On the other hand, posts that recommend searching on
“google” are unpopular, as the readers consider such suggestions unhelpful. Moreover,
discussing subjective perspectives, using the singular first person pronoun “eu”, is again
unpopular, likely because the readers appreciate more objective posts.

5 Conclusion

In this paper, we introduced PoPreRo, the first publicly available dataset of Romanian
Reddit posts dedicated to the task of popularity prediction. We collected 28,107 posts
from five diverse Romanian subreddits, amounting to over 1 million tokens. Aiming to
predict binary labels resulting from the sum of upvotes and downvotes for each post, we
explored five distinct popularity detection methods and presented comparative results.
We found that Ro-GPT2 significantly outperforms the other models.

Building upon our foundation, future research can further study popularity detection
algorithms and delve deeper into the factors driving engagement on Romanian Reddit.

6 Limitations

It is crucial to acknowledge that Reddit’s popularity in Romania might not be repre-
sentative for the wider population. While Reddit offers a valuable platform for research
due to its diverse communities and open discussions, its user base in Romania is com-
paratively smaller than other social media platforms, such as Facebook, Instagram, or
YouTube. Furthermore, Reddit’s API restricts data access, limiting historical data col-
lection and imposing retrieval caps.

Ethics Statement. The data was collected from a publicly available Reddit archive, selecting five
Romanian subreddits. The social media posts are freely accessible to the public without any type
of subscription. As the data was collected from an archived public website (Reddit), we adhere
to the European regulations (https://eur-lex.europa.eu/eli/dir/2019/790/oj) that allow researchers
to use data in the public web domain for non-commercial research purposes. We thus release our

https://eur-lex.europa.eu/eli/dir/2019/790/oj
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corpus as open-source under a non-commercial share-alike license agreement, namely CC BY-
NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/).
We acknowledge that some posts could refer to certain people, e.g. public figures in Romania.
Following GDPR regulations, we will remove all references to a person, upon receiving removal
requests via an email to any of the authors.
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Abstract. This paper examines the Code-Switching (CS) phenomenon
where two languages intertwine within a single utterance. There exists a
noticeable need for research on the CS between English and Korean. We
highlight that the current Equivalence Constraint (EC) theory for CS in
other languages may only partially capture English-Korean CS complex-
ities due to the intrinsic grammatical differences between the languages.
We introduce a novel Koglish dataset tailored for English-Korean CS
scenarios to mitigate such challenges. First, we constructed the Koglish-
GLUE dataset to demonstrate the importance and need for CS datasets
in various tasks. We found the differential outcomes of various foundation
multilingual language models when trained on a monolingual versus a
CS dataset. Motivated by this, we hypothesized that SimCSE, which
has shown strengths in monolingual sentence embedding, would have
limitations in CS scenarios. We construct a novel Koglish-NLI (Natural
Language Inference) dataset using a CS augmentation-based approach to
verify this. From this CS-augmented dataset Koglish-NLI, we propose a
unified contrastive learning and augmentation method for code-switched
embeddings, ConCSE, highlighting the semantics of CS sentences. Exper-
imental results validate the proposed ConCSE with an average perfor-
mance enhancement of 1.77% on the Koglish-STS(Semantic Textual Sim-
ilarity) tasks. (Source code available at https://github.com/jjy961228/
ConCSE).
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1 Introduction

Code-switching (CS) refers to the phenomenon of two languages intermixed
within a single sentence [8,29]. Such occurrences are frequently observed in mul-
ticultural countries, social media, and online platforms [6,9,29]. According to
recent findings, despite the growing interest in CS, there remains a dearth of
related studies [32]. Especially in countries where English is not the dominant
language, the phenomenon of CS between English and the native language is par-
ticularly prominent [7,9,25,27,29,41]. For example, the English sentence “The
movie was very dull” can be represented as “ was very dull.” for English-
Korean and “la peĺıcula was very dull.” for English-Spanish.

Past research introduced the Equivalence Constraint (EC) theory as a condi-
tion for the occurrence of CS [29], prompting attempts to construct CS datasets
based on The EC theory [30,33]. The EC theory posits that switches between
languages in a code-switched discourse tend to happen at points where the gram-
matical structures of the involved languages match. According to the EC the-
ory, such alignment in grammatical structures demonstrates that code-switching
adheres to systematic linguistic constraints. This foundational concept has been
central in many CS studies, particularly language pairs like English-Spanish and
English-Chinese [19,29,30,37,38]. However, studies on CS between English and
Korean show that this assumption is not always met [41]. For English-Korean CS,
there is a potential limitation that EC Theory does not satisfy due to the gram-
matical difference between the two languages. For instance, the grammatical dif-
ferences between English and Korean primarily manifest in word order and case
marking. English predominantly follows an SVO (Subject-Verb-Object) word
order, and this sequence largely determines the meaning of a sentence. In con-
trast, Korean offers greater flexibility in the positioning of subjects and objects,
thanks in large part to its distinctive case markers like “ ” (nomina-
tive), “ ” (accusative), and “ ” (dative). Crucially, altering
the word order in English can significantly change the meaning of a sentence,
whereas, in Korean, where the language’s case markers are well developed, posi-
tion shifts within sentence components are accessible [22,41].

This paper introduces a novel Koglish dataset and proposes a new app-
roach to constructing CS datasets, considering the inherent complexity of CS.
The Koglish dataset includes Koglish-GLUE, Koglish-NLI, and Koglish-STS
datasets. In particular, we propose to apply constituency parsing [20] to con-
struct the Koglish dataset to obtain parse trees and transform English sentences
into CS sentences following the approach proposed in Sect. 3.2. To construct the
Koglish dataset, We utilize GLUE benchmark [34], Semantic Textual Similarity
(STS) [1–5,24], The Stanford Natural Language Inference Corpus (SNLI) [10],
and The Multi-Genre Natural Language Inference Corpus (MNLI) [36]. To better
understand the need for code-switching (CS) datasets, we posited the following
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hypothesis: There will be a noticeable difference in performance between training
with a monolingual dataset and then testing on a CS dataset (EN2CS) versus
conducting both training and testing with a CS dataset (CS2CS). This signifi-
cant disparity underscores the importance of using our CS dataset, Koglish, in
CS scenarios. To our knowledge, this is the first presentation of Koglish datasets
suitable for English-Korean and Korean-English scenarios.

Determining semantic relationships between sentences is a critical challenge
in natural language processing. Recently, contrastive learning drew significant
attention in natural language processing [13,16,39], where the model learns to
distinguish between pairs of similar and dissimilar samples. For example, Sim-
CSE [16] proposed to convert the sentence pairs of (premise, hypothesis) in the
Natural Language Inference (NLI) dataset [10,36] into the triplets of (premise,
entailment, contradiction) to provide extra signals for contrastive learning. How-
ever, the study of contrastive learning under code-switched sentences has been
largely yet to be underexplored. To address this issue, we propose a unified
contrastive learning and data augmentation method dubbed ConCSE to model
the code-switched sentences explicitly. For each sentence triplet of (premise,
entailment, contradiction), we generate a triplet of code-switched sentences
(CS-premise, CS-entailment, CS-contradiction) via CS-augmentation in Sect. 3.2
using a constituency parser. Then it considers the relationships between the six
sentences to define three novel loss functions: (1) Cross Contrastive Loss (LCon

CS ),
(2) Cross Triplet Loss (LTri

CS ), and (3) Align Negative Loss (LSim
neg ), providing

richer supervision compared to plain SimCSE. For example, the sentence pairs
of (premise, CS-premise) are considered positive, while those of (CS-premise,
contradiction) are considered negative. As a validation, we compared the per-
formance of four baseline multilingual models across seven NLP tasks included
in Koglish-STS. The baseline multilingual models struggle to perform on the
code-switched scenarios, suggesting the intricacy and effectiveness of the Koglish
dataset. The experiments on the ConCSE method on the Koglish-STS dataset
show consistent performance improvements over SimCSE across seven semantic
textual similarity (STS) tasks included in Koglish-STS.

Our contributions can be summarized as follows:

– We introduce the first dataset referred to as Koglish which is suitable for
English-Korean and Korean-English CS scenarios including Koglish-GLUE1,
Koglish-STS23, and Koglish-NLI4.

– We demonstrate the necessity of the Koglish dataset through various experi-
ments.

– We propose an effective sentence representation learning method that con-
siders the CS sentences through a specialized CS-focused augmentation tech-
nique.

1 https://huggingface.co/datasets/Jangyeong/Koglish GLUE.
2 https://huggingface.co/datasets/Jangyeong/Koglish STS.
3 https://huggingface.co/datasets/Jangyeong/Koglish SICK.
4 https://huggingface.co/datasets/Jangyeong/Koglish NLI.

https://huggingface.co/datasets/Jangyeong/Koglish_GLUE
https://huggingface.co/datasets/Jangyeong/Koglish_STS
https://huggingface.co/datasets/Jangyeong/Koglish_SICK
https://huggingface.co/datasets/Jangyeong/Koglish_NLI
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2 Related Work

2.1 Theoretical Foundations of Code-Switching

In previous research, the conditions for the occurrence of Code-Switching (CS)
and Code-Mixing (CM) were proposed as the Equivalence Constraint (EC)
theory, Matrix Language Framework (MLF), and Functional Head Constraint.
Notably, when the EC Theory criteria are met, studies have constructed CS
and CM datasets using a Constituency parser [30,33]. This approach has found
application in English-Chinese Code-Switching studies as well [30,38]. However,
investigations into English-Korean CS have demonstrated that most instances do
not conform to the EC theory, indicating its unsuitability for English-Korean CS
scenarios [27,28,41]. The research highlights that in English-Korean and Korean-
English code-switching, nouns or noun phrases often serve as the Embedded Lan-
guage (EL), with their usage being notably prevalent, accounting for 74.6% and
61% respectively [28,41]. These prior empirical results showed the importance of
selecting nouns or noun phrases as EL in constructing an English-Korean CS
dataset. Pursuing this approach, our study uses a pre-trained Constituency
parser [20] to identify and extract nouns or noun phrases.

2.2 Representation Learning

Deep Metric Learning. Deep Metric Learning was formulated to decipher the
dynamics of embedding spaces [12,17,35]. Among its diverse strategies, triplet
loss stands out [18]. It emphasizes the interrelationships and distances of samples
within the embedding space, aiming to cluster similar samples and distance dis-
similar ones closely. A pivotal element in this approach is the ‘margin’, a hyper-
parameter designed to ensure a defined distance between the anchor-positive and
anchor-negative pairs [31]. This paper utilizes triplet loss as an auxiliary loss to
bolster the model’s stability.

Contrastive Learning. In fields like natural language processing [13,16,39]
and computer vision [11,21], the core aim is to enhance representations by
discerning between positive and negative samples. Contrastive learning, which
builds upon the foundations of deep metric learning, offers refined techniques for
achieving superior representations. A notable advancement is the introduction
of data augmentation to enrich training datasets. While random cropping and
image rotation succeed in computer vision [11,40], their adaptation to natural
language processing poses challenges. Nevertheless, strategies reconstructing NLI
datasets for contrastive learning have been proposed to bridge this gap [13,16].
In particular, in the strategy of reconstructing NLI datasets [13,16], first, all
datasets labeled as neutral are excluded, and only datasets labeled as entailment
for two sentences (premise, hypothesis) are extracted. In this case, the premise
and hypothesis are defined as a positive pair, and the hypothesis is defined as an
entailment sentence. Second, extract hypothesis sentences where the hypothesis
is labeled as a contradiction for the same sentence as the premise used in the
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Fig. 1. Schematic of the parse tree, based on constituency parsing, to convert a mono-
lingual sentence into an English-Korean code-switched sentence.

first step. In this case, the premise and hypothesis are defined as a negative
pair, and the hypothesis is defined as a contradiction sentence. The NLI dataset
was redefined as premise, entailment, and contradiction sentences and used for
training SimCSE. Yet, the proposed strategies of SimCSE are limited to mono-
lingual datasets. To address this limitation, our study presents a novel method:
augmenting a resource-rich English dataset with a CS dataset in a supervised
setting.

3 Proposed Dataset: Koglish

This section elaborates on English-Korean and Korean-English code-switching
sentences and our specialized Koglish dataset construction and CS augmentation
strategies. A summary of the constructed dataset is provided in Table 1.

3.1 Code-Switching Patterns and Dataset Construction

According to a study by [27], Code-Switching (CS) between English and Korean
does not adhere to the guidelines established by the EC Theory [29] and the
Matrix Language Frame (MLF) Model [26]. This is due to the fact that the gram-
matical units (e.g., phrase, adjective phrase, verb phrase) converted in CS are
language-specific. Consequently, when constructing CS datasets, it is imperative
to use strategies tailored to each respective language [7,25,27–29]. Historical
analyses indicate that in Korean-English CS, nouns and noun phrases consti-
tute 74.6% of code-switched instances [28]. English-Korean exhibits a similar
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Table 1. Summary of Koglish Datasets.

GLUE Benchmark

Task Train Dev Test Total

QNLI 61,764 15,441 19,303 96,508

SST-2 26,552 6,632 8,289 41,473

COLA 4,341 1,087 1,358 6,759

STS-B 4,269 1,068 1,335 6,672

MRPC 3,610 904 1,129 5,643

RTE 1,642 412 514 2,568

Semantic Textual Similarity(STS)

Task Train Dev Test Total

STS-B - 3,334 3,334 6,668

STS12 - 2,142 2,142 4,286

STS13 - 622 622 1,244

STS14 - 1,561 1,561 3,112

STS15 - 1,351 1,351 2,702

STS16 - 496 496 992

SICK-R - 4,767 4,767 9,534

Natural Language Inference(NLI)

Task Train Dev Test Total

NLI 218,255 - - 218,255

trend, with nouns representing 61% of code-switched [41]. As shown in Fig. 1(a),
code-switching the noun phrase maintains the sentence’s integrity, mirroring
the structure of the original. In contrast, code-switching VBP(Verb, non-3rd
person singular present) as shown in Fig. 1(b), produces a sentence that is
awkwardly constructed. Japanese, sharing syntactic similarities with Korean,
also has a high noun switching rate at 68.8% [25]. This structural congru-
ence suggests the potential for applying our CS dataset construction strategy
to other languages with grammatical structures akin to Korean’s [41]. In con-
trast, Spanish-English code-switching contains a significantly lower noun switch
rate, sometimes reaching lower than 20% [29]. Given these patterns, we primarily
focused on switching nouns or noun phrases when constructing English-Korean
and Korean-English CS datasets. Additionally, due to the distinction between
Matrix Language (ML) and Embedded Language (EL) is not explicit in English-
Korean code-switching [26], the dominant use of nouns and noun phrases in both
English-Korean and Korean-English code-switching endorses the suitability of
our proposed dataset strategy for both scenarios.

3.2 Constructing Koglish Dataset

This section details constructing and augmenting the proposed CS dataset,
Koglish. The overall process is shown in Fig. 2.

1. We constructed a parse tree using a top-down constituency parsing app-
roach [20]. During this process, we selectively extracted the NP nodes, ensur-
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Fig. 2. Systematic Approach to Constructing and Augmenting the Koglish Dataset.
Constituency parser extracts nouns or noun phrases(NP) using the Google Translate
API. In this case, GLUE and STS datasets are generated as CS datasets, and NLI
datasets are CS-augmented.

ing the inclusion of nouns and noun phrases (see Fig. 2(1)). In some data,
entire sentences were constructed solely from the NP structure. When such
sentences underwent the translation process, they resulted in monolingual
sentences, negating the goal of CS. Therefore, we excluded these particular
entries. Additionally, if the NP0 node contained only pronouns (e.g., It, That,
This), it led to mistranslation issues. To address this, we extracted the NP
node from the subsequent NP1 node and applied the top-down approach to
the leaf nodes. If the data did not align with our criteria when it reached the
leaf node, we considered it inappropriate for the CS dataset and subsequently
excluded it. For example, GLUE’s COLA task data excluded 29.1% of the
entire data.

2. Generate CS sentences from the Switched Sentence Tree of Fig. 2(1) as shown
in Fig. 2(2). The first is the GLUE [34] and STS dataset [1–5,24], and the
second is the NLI [10,36] dataset. As an example of the first, GLUE and
STS take monolingual sentences as input and generate a CS sentence if it
satisfies the abovementioned conditions (in step 1). The second example is the
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NLI dataset, which receives triplets of monolingual sentences (e.g., premise,
entailment, and contradiction) as input. If the above conditions (in step 1) are
satisfied for the triplet of monolingual sentences, it generates CS-premise, CS-
entailment, and CS-contradiction. In the following Sect. 4, the three sentences
(premise, entailment, and contradiction) of the Koglish-NLI dataset and CS-
Augmented sentences (CS-premise, CS-entailment, and CS-contradiction) are
integrated, and used for learning ConCSE, so in this paper, we assume that
only NLI is CS-Augmented sentences.

3. To ensure reliability and accuracy, we performed critical manual annota-
tions on the generated Koglish datasets. This process involved bilingual
experts proficient in both Korean and English. We employed four annotators,
each tasked with evaluating the contextual accuracy of the Code-Switching
sentences in the dataset. Following their assessments, the four annotators
produced each dataset through a meticulous cross-validation process, rig-
orously examining each other’s evaluations(see Fig. 2(3)). Finally, we split
each dataset. The Koglish-GLUE was divided into train, development, and
test sets in the ratios of 0.64, 0.16, and 0.20, respectively, to formulate the
Koglish-GLUE dataset. Since the Koglish-STS dataset is only used to evaluate
ConCSE in Sect. 5.2, we constructed the Koglish-STS dataset by splitting the
development and test sets equally (0.5 ratios each). We constructed Koglish-
NLI without any segmentation since the Koglish-NLI dataset is only used for
training.

4 Proposed Method: ConCSE

This paper aims to train universal sentence embeddings in Code-Switching
(CS) contexts. As detailed in step 2 of Sect. 3.2, we use the monolin-
gual datasets Den = {xi, x

+
i , x−

i }m
i=1 and the augmented CS datasets

Dcs = {x̂i, x̂
+
i , x̂−

i }m
i=1 to fine-tune a pre-trained multilingual sentence encoder

Mφ, such as mBERT [15] or XLM-R [14], to adapt to the CS scenario.
The notation for the comprehensive loss function used is:

Ltotal = LCon
CS + λLTri

CS + LSim
neg (1)

where λ signifies the weight factor assigned to the triplet loss. Detailed explana-
tions of LCon

CS , LTri
CS , and LSim

neg can be found in Sect. 4.1, 4.2, and 4.3, respectively.
An overview of ConCSE is shown in Fig. 3.

4.1 Cross Contrastive Loss

We train Mφ with Cross Contrastive Loss (LCon
CS ) on monolingual and CS sen-

tences. The hidden state of “[CLS]” for Den within Mφ is defined as:

H = {hi, h
+
i , h−

i }N
i=1 (2)

For Dcs within Mφ, it is defined as :

Ĥ = {ĥi, ĥ
+
i , ĥ−

i }N
i=1 (3)
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Fig. 3. Overview of ConCSE. A mini-batch contains both Den = {xi, x
+
i , x

−
i }m

i=1 and
CS-augmented Dcs = {x̂i, x̂

+
i , x̂

−
i }m

i=1, and its hidden representations are H =

{hi, h
+
i , h

−
i }N

i=1 and Ĥ = {ĥi, ĥ
+
i , ĥ

−
i }N

i=1. They are processed by the sentence encoder
Mφ, producing “[CLS]” as the final sentence representation. The “[CLS]” of the
multi-positive group, comprising monolingual sentences (hi, h

+
i ) and CS sentences

(ĥi, ĥ
+
i ), should be attracted to each other. Similarly, the “[CLS]” of the multi-negative

pair, comprising a monolingual sentence (h−
i ) and CS sentence (ĥ−

i ), should also
be attracted to each other. Moreover, multi-positive groups and multi-negative pairs
should push each other.

where N is the batch size. This paper extends contrastive loss to include six
combinations, facilitating cross-training on Den and Dcs :

H1 = {hi, h
+
i , h−

i }N
i=1,H2 = {ĥi, ĥ

+
i , ĥ−

i }N
i=1,

H3 = {hi, h
+
i , ĥ−

i }N
i=1,H4 = {ĥi, ĥ

+
i , h−

i }N
i=1,

H5 = {hi, ĥi, h
−
i }N

i=1,H6 = {h+
i , ĥ+

i , ĥ−
i }N

i=1

(4)

For instance, the loss function Lcon
H3 , which cross-trains on Den and Dcs, can

be denoted as:

LCon
H3 =

N∑

i=1

−log
esim(hi,h

+
i )/τ

∑N
j=1

(
esim(hi,h

+
j )/τ + esim(hi,ĥ

−
j )/τ

) (5)

where, sim(·, ·) is the cosine similarity function.
By integrating from Eq. 4 and 5, the Cross Contrast Loss LCon

CS is calculated
as follows:

LCon
CS =

6∑

k=1

LCon
Hk (6)
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4.2 Cross Triplet Loss

Following the proposed Cross Contrastive Loss (LCon
CS ), the triplet loss [31] is

introduced to adjust the distance between the anchor and positive and the dis-
tance between the anchor and negative by a margin (α). Triplet loss can be
extended to six combinations, as in Eq. 4, to allow cross-training on Den and
Dcs. An example for LTri

H3 is defined as:

LTri
H3 =

N∑

i=1

max(0, ‖hi − h+
i ‖22 − ‖hi − ĥ−

i ‖22 + α) (7)

where N is the batch size. To this end, LTri
CS , derived from Eq. 4 and 7, is defined

as:

LTri
CS =

6∑

k=1

LTri
Hk (8)

4.3 Align Negative Loss

The negative samples from Den and Dcs should share the same meaning, imply-
ing that they should be in a positive relationship with each other. We define the
loss function Lsim

neg to encode this relationship into the Mφ:

Lsim
neg =

N∑

i=1

CE(sim(h−
i , ĥ−

i )) (9)

where CE(·) denotes cross-entropy loss, sim(·, ·) is the cosine similarity function,
and N is the batch size.

5 Experiments

5.1 Experiments on Koglish: The Role of Koglish in Code-Switching
Scenario

Setup. In this experiment, we utilize our Koglish-GLUE dataset. Considering
the MRPC task as an example, which determines if a pair of sentences in the
Koglish-GLUE dataset are semantically equivalent: this task comprises the orig-
inal English sentences, namely sentence0 and sentence1 from GLUE, as well as
the Code-Switched (CS) versions, CS-sentence0 and CS-sentence1. For exam-
ple, in the EN2CS scenario, we perform training and evaluation using only the
monolingual English dataset sentence0 and sentence1. In the EN2CS scenario,
sentence0 and sentence1 serve as the training data, while CS-sentence0 and CS-
sentence1 are utilized for evaluation. Detailed information regarding the data
used in the experiments is provided in Table 1. The evaluation metrics for each
experiment align with those adopted in BERT [15]. Specifically, the MRPC uses
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Table 2. Comparative performance of various multilingual models on Koglish-
GLUE across Different Scenarios: Monolingual (EN2EN), English to Code-Switching
(EN2CS), and Code-Switching to Code-Switching (CS2CS). Best performances in
EN2CS and CS2CS are highlighted. The MRPC uses the F1-score, STS-B uses
Spearman’s correlation, and the remaining tasks use accuracy for performance mea-
surement.

English to English(EN2EN)

Model COLA SST-2 MRPC RTE STS-B QNLI Avg.

mBERTbase 74.66± 1.52 92.62± 0.47 87.23± 2.24 66.28± 1.11 87.18± 0.69 88.48± 0.26 82.74

XLM-Rbase 72.37± 0.59 93.85± 0.32 88.38± 0.69 60.27± 1.97 87.23± 0.46 87.87± 0.19 81.66

XLM-Rlarge 79.90± 4.03 95.10± 0.14 89.53± 0.80 65.34± 4.14 90.51± 0.28 91.82± 0.14 85.37

mBARTlarge 78.94± 0.40 94.29± 0.09 89.32± 0.31 69.40± 1.10 89.24± 0.32 90.83± 0.09 85.34

English to Code-Switching(EN2CS)

Model COLA SST-2 MRPC RTE STS-B QNLI Avg.

mBERTbase 68.59± 3.86 81.48± 2.04 79.18± 2.43 56.10± 1.86 74.42± 1.51 77.75± 0.6 72.92

XLM-Rbase 72.20±0.27 88.55± 0.46 83.65± 1.84 54.58±1.18 78.84± 1.04 79.44± 0.4 76.21

XLM-Rlarge 74.61±1.98 91.78± 0.13 87.98± 0.49 62.88±4.19 87.73± 0.14 88.27± 0.28 82.19

mBARTlarge 56.36± 2.77 88.19± 0.19 86.83± 0.32 62.30± 1.24 79.24± 0.61 84.96± 0.31 76.31

Code-Switching to Code-Switching(CS2CS)

Model COLA SST-2 MRPC RTE STS-B QNLI Avg.

mBERTbase 72.48±2.04 89.83±1.04 80.80±1.85 57.31±4.38 81.77±1.28 83.91±0.32 77.68

XLM-Rbase 72.07± 0.00 91.29±0.44 85.52±1.52 53.57± 1.39 81.64±2.36 84.96±0.15 78.18

XLM-Rlarge 74.35± 1.51 93.69±0.05 88.68±1.1 60.36± 6.74 88.54± ±0.34 90.31±0.15 82.64

mBARTlarge 74.37±0.78 92.60±0.09 86.85±0.71 62.38±0.97 85.09±0.29 88.39±0.07 81.61

the F1-score, STS-B uses Spearman’s correlation, and the remaining tasks rely
on accuracy for performance measurement.

The central hypothesis of this experiment is twofold. First, if the proposed CS
dataset construction method is valid, the performance difference between English
to English(EN2EN) and Code-Switching to Code-Switching(CS2CS) should be
insignificant. Second, if CS2CS’s performance is better than EN2CS’s, this sug-
gests the need for fine-tuning using proposed CS datasets in a CS scenario.

Training Details. We initiated our experiments based on the checkpoints
of four pre-trained multilingual models: mBERTbase [15], XLM-Rbase, XLM-
Rlarge [14], and mBART [23]. We utilized the representation of the “[CLS]”
token as the final sentence embedding to validate the performance. More train-
ing details can be found in Appendix A.

Results. Table 2 shows the results of the experimental outcomes using the
Koglish-GLUE dataset. We observed that the models trained and evaluated on
English-only data (EN2EN) outperformed those trained and evaluated on a
mixed English-Korean Code-Switching dataset (CS2CS). This disparity stems
from EN2EN’s monolingual nature and CS2CS’s bilingual complexity, which
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Table 3. Performance comparison of SimCSE and ConCSE on various Koglish-STS
tasks: Performance is measured in terms of Spearman’s correlation in “all” settings.
Bold values highlight the top performance in each task. “v.s” in the table is
the result of the T-test between SimCSE and ConCSE.

Model STS-B STS12 STS13 STS14 STS15 STS16 SICK Avg.

SimCSE-mBERTbase 77.68± 0.17 63.43± 0.22 70.93± 0.33 68.59± 0.32 79.07± 0.28 72.52± 0.28 75.91± 0.08 72.59

SimCSE-XLM-Rbase 78.65± 0.30 67.49± 0.60 75.55± 0.24 71.40± 0.18 80.03± 0.38 76.65± 0.34 77.22± 0.20 75.29

SimCSE-XLM-Rlarge 82.43± 0.12 71.02± 0.21 82.28± 0.32 76.19± 0.23 83.11± 0.23 79.52± 0.25 79.05±0.20 79.09

*ConCSE-mBERTbase 79.95±0.24 68.29±0.21 70.52± 1.12 71.24±0.32 80.40±0.27 73.13±0.52 77.01±0.22 74.36

*ConCSE-XLM-Rbase 79.93±0.26 71.27±0.43 75.56±0.63 74.23±0.28 80.94±0.31 76.17± 0.22 78.08±0.16 76.60

*ConCSE-XLM-Rlarge 82.85±0.11 75.00±0.34 82.72±0.23 77.80±0.27 84.12±0.23 79.43± 0.38 78.91±0.30 80.12

p-value(T-test) STS-B STS12 STS13 STS14 STS15 STS16 SICK

v.s SimCSE-mBERTbase 3.1 × 10−7 9.8 × 10−10 0.508 2.8 × 10−6 1.3 × 10−4 0.071 1.2 × 10−5

v.s SimCSE-XLM-Rbase 2.0 × 10−4 6.8 × 10−6 0.996 1.4 × 10−7 4.9 × 10−5 0.046 1.4 × 10−5

v.s SimCSE-XLM-Rlarge 8.7 × 10−5 4.0 × 10−8 0.056 1.7 × 10−5 2.0 × 10−5 0.688 0.473

operates within a Korean context with comparatively fewer resources. Addition-
ally, larger models such as XLM-R and mBART exhibit a reduced performance
discrepancy between EN2EN and CS2CS. This suggests that the models’ perfor-
mance benefits from the increased diversity of training data spanning multiple
languages. One of our experiment’s standout insights is the pronounced efficacy
of the CS2CS method compared to EN2CS across almost all model evaluations.
This outcome underscores the efficacy of using Code-Switching training in the
Koglish dataset in contexts where English-Korean Code-Switching is prevalent.

5.2 Experiments on ConCSE

Setup. In this experiment, we utilize the Koglish-NLI dataset for training
and the Koglish-STS dataset for evaluation. The Koglish-NLI dataset contains
triplets of monolingual English sentences (hypothesis, entailment, and contra-
diction) alongside triplets of code-switched (CS) augmented sentences (CS-
hypothesis, CS-entailment, and CS-contradiction). The Koglish-STS dataset
consists of pairs of original sentences (sentence0 and sentence1) and their CS
counterparts (CS-sentence0 and CS-sentence1). During the training phase, we
leverage SimCSE [16] to train the sentence encoder Mφ using CS-augmented sen-
tence triplets. Moreover, ConCSE trains Mφ on both triplets of original English
sentences and CS-augmented sentences, promoting learning in a CS scenario.
We evaluated both SimCSE and ConCSE using the CS sentence pairs from
Koglish-STS. We adopt Spearman’s correlation as the primary metric for this
assessment.

Training Details. In our experiments, we initialize our sentence encoder Mφ

using pre-trained mBERT [15] or XLM-R [14], and we use “[CLS]” as Mφ final
representation. We adopt SimCSE [16] as our baseline model during the imple-
mentation phase. Furthermore, as ConCSE had to handle a larger volume of
sentences compared to SimCSE [16], we only adjusted the batch size. The rest of
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the experimental settings were maintained identically to SimCSE. To ensure the
accuracy and reliability of our results, we conducted experiments using five dif-
ferent random seeds and recorded the corresponding T-test results. More details
on training can be found in Appendix B.

Results. The performance of SimCSE [16] and ConCSE is summarized
in Table 3. In the CS scenario, our proposed ConCSE significantly outper-
forms SimCSE because it helps implicitly align the representations across lan-
guages in CS situations. Specifically, ConCSE-mBERTbase outperforms SimCSE-
mBERTbase by improving the average Spearman’s correlation score from 72.59%
to 74.36%, which significantly outperforms. We also note consistent perfor-
mance enhancements with ConCSE-XLM-Rbase and ConCSE-XLM-Rlarge mod-
els. These improvements across all ConCSE backbone models are instrumental
in augmenting the comprehension of CS contexts, demonstrating their signifi-
cant impact. Furthermore, The results demonstrate that our ConCSE can scale
to multiple datasets and more languages in CS scenarios.

5.3 Ablation Studies

In this section, we conduct a comprehensive set of ablation studies to substanti-
ate our ConCSE architecture. Particularly, we evaluated the effects of the com-
bination of the loss function and the effects of temperature, triplet loss, and
margin on training by testing the ConCSE-mBERTbase on the Koglish-STS-B
task. Detailed experimental results related to these ablation studies can be found
in Appendix C.

6 Conclusion

In this work, we first introduced the novel Koglish dataset, focusing on code-
switching (CS) between English-Korean and Korean-English. This Koglish
dataset marks an initial pioneering attempt, and exhaustive evaluations have
highlighted the critical need for such a resource. Second, we propose a method
to learn universal code-switched sentence embeddings using this newly con-
structed Koglish dataset. Surprisingly, Through extensive testing, ConCSE sur-
passed other leading sentence embedding techniques in Koglish-STS tasks. Nev-
ertheless, our study has certain constraints: Although less frequent, grammatical
elements other than nouns or noun phrases can also be CS in English-Korean CS
situations. In our future work, we aim to develop a more comprehensive CS
dataset encompassing all grammatical elements. We are optimistic that our con-
tributions will spur further research and progress in the understanding and appli-
cation of low-resource CS data.
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Abstract. Hallucination is a persistent challenge in large-scale language
models, manifesting at multiple stages and leading to outputs that stray
from reality and produce some content that does not conform to com-
mon sense. We introduce a novel approach to alleviate hallucination by
contrasting the probability of intermediate layer with the last layer to
obtains the next-token distribution during inference. Then, introduce in-
layer stability factor to tackle the issue of token probability fluctuation
across transformer layers. Our approach effectively addresses the issue of
inconsistent output distributions from lower decoder layers in extensive
models, evidenced by impressive results on benchmarks such as GSM8k,
StrategyQA, and Wiki Factor. These outcomes highlight the significant
potential of our method in reducing hallucination in large language mod-
els.

Keywords: Mitigating Hallucination · Decoder Layer Contrasting ·
Layer Stability Factor

1 Introduction

Following the success of ChatGPT, large language models (LLMs) are rapidly
evolving, and exceeding human expert performance in some specialized compe-
titions [1]. Nonetheless, LLMs still have some limitations, especially regarding
hallucination where the model output content that deviates from reality or is fac-
tually incorrect. For out-of-distribution inputs or novel input contexts, LLMs can
generate seemingly plausible yet ultimately inaccurate or nonsensical content [2].
Hallucination may arise when the model encounters data that differs substan-
tially from the training data during inference, due to distributional shifts [3].
Study indicate that a major cause of hallucination is the training objective of
predicting the next token’s output probability based on maximum likelihood
estimation. This training objective leads the token with the highest probability
in the vocabulary, which is problematic because it assigns a non-zero probability
to every token, even though most tokens are highly improbable [4].

Despite this, it remains the currently prevalent training objective. Some
researchers posit that hallucination may stem from a lack of essential knowledge
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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not imparted during the pre-training phase [5]. It is propose that additional
pre-training on an existing pre-trained model to incorporate the missing knowl-
edge, which, however, could lead to catastrophic forgetting [6]. Recent research
have focused on improving the following of LLMs to given instructions during
the Supervised Fine-Tuning (SFT) stage as a strategy to exacerbate the hallu-
cination. Nonetheless, improper supervised fine-tuning can significantly improve
performance on new tasks while degrading performance on others [7]. Aligning
LLMs with human intentions is another effective strategy for addressing hal-
lucination, but study have shown a bias towards giving higher scores to more
agreeable or flattering responses during manual evaluation, which can severely
impact alignment and introduce further hallucination [8].

To address this, we propose a novel decoding algorithm to alleviate the hal-
lucination in LLMs, without the need for retraining. During inference, it dynam-
ically selects lower decoder layers and calculates the output probability distri-
bution based on the difference from the last layer’s output probability. In the
transformer architecture, lower decoders tend to encode general information,
while higher decoders focus on semantic information [9]. Inspired by this, we
aim to leverage the transformer’s modular information encoding to reinforce the
factual knowledge of LLMs through a comparative method using output prob-
ability differences between decoder layers. This probability difference is derived
from the logits discrepancy between high-level and low-level decoders, highlight-
ing the significance of the higher decoder while deemphasizing basic knowledge.
Additionally, we have introduced a metric to gauge the stability of the decod-
ing layer, penalizing credibility issues caused by significant fluctuations in the
output logits, thus reducing the hallucination phenomena in LLMs.

Our contributions can be summarized as follows:

1) We introduce decoder Layer contrasting of decoding strategy to alleviate hal-
lucination, which use the difference of logits between intermediate layer and
output layer as the probability distribution of the next token.

2) We propose a penalty the jitter of decoder layer method, it penalizes tokens
with substantial logit variability, designed to curb the emergence of halluci-
nation associated with fluctuating logits.

2 Related Works

Hallucination in LLMs manifest as generated texts that lack adherence to the
original intent, known as faithfulness, or deviate from factual accuracy, termed
factualness. In most text generation tasks, the term hallucination specifically
pertains to issues with factualness. A primary cause of these hallucinations is
the subpar quality of during training stage. Lee et al. [10] used a fact-enhanced
sampling algorithm during the model training and introduced a Topicprefix to
improve the perception of facts during the fine-tuning, reducing the named entity
error from 33.3% to 14.5%. Touvron et al. [8] used RLHF to align with human
preferences, collecting human preference data to train a reward model, and
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employing the PPO algorithm for reinforcement learning on top of the super-
vised fine-tuning model, making Llama2 a powerful performance display that has
become the current mainstream open-source LLMs training base. Cao et al. [11]
proposed a novel method to automatically evaluate high-quality data, which
greatly alleviate the hallucination problems brought by the source data, becom-
ing the SOTA of Judge-as-LLM at that time. Gabriel et al. [12] proved that
supervised fine-tuning training can only solve task-specific hallucination prob-
lems, which will inevitably lead to more severe hallucination problems in other
individual tasks. Therefore, researchers have also tried to alleviate hallucination
from the inference phase of LLMs.

In addition, some researchers exploring way to mitigate the hallucinations of
LLMs from the inference stage. Shi et al. [13] proposed a new decoding method
that amplified the difference between LLMs’ output logits with and without con-
text, which also inspired the innovative work of this article. Li et al. [14] identified
a group of attention heads with high linear probing accuracy through inference-
time intervention, moving activations along these directions related to the ground
truth. It is worth noting that Li et al. also mentioned that there could be signif-
icant differences in the information dimensions between the middle layers and
the output layer. Dhuliawala et al. [15] used the COT method to let LLMs auto-
matically verify the reliability of answers and make corrections, experiments
showed that this method reduced hallucination by 21% on benchmarks. There
has also been some related work in assisting LLMs to mitigate hallucination with
external knowledge. Peng et al. [16] used external knowledge to automatically
generate feedback to assist in modifying the original answer. Other works, such
as intelligent agents [17], chain-of-thought reasoning [18], and retrieval-enhanced
generation [19], have all proven that leveraging external knowledge can effectively
alleviate the hallucination of LLM.

3 Method

The Llama2, which is a state-of-the-art LLM, generally consist of an input
embedding layer N , decoder layers D = {D1,D2, . . . , DN}, and a mapping layer
ϕ(.). This structure aims to capture worldly knowledge by predicting the output
probability of the next token. Given an input sequence x = {x1, x2, . . . , xn}, the
objective is to maximize the joint probability distribution p(x1, x2, . . . , xn). The
sequence x is project to a vector of fixed dimensionality E0 = {e01, e

0
2, . . . , e

0
n}

via the embedding layer. LLM typically define the final output probability dis-
tribution in the following:

p (xt|x<t) = softmax
(
DN

(
ϕ

(
eN
t

)))
, xt ∈ Ψ (1)

where Ψ represents the vocabulary set.
Inspired by prior study on early exiting techniques and the context-aware

decoding approach presented by Shi et al. [13], we introduce a new decoding
strategy that contrasting the logits distribution between an intermediate decoder
layer Dj and the output layer DN to replace the customary method in Eq. 1.
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Firstly, we define the output probability p(xt|x<t) of the next token for the jth

decoding layer Dj as follow:

p (xt|x<t) = softmax
(
Dj

(
ϕ

(
ej
t

)))
, xt ∈ Ψ (2)

where ej
t denotes the t-th token of the j-th layer.

Then, we names the intermediate layer as the premature layer and the final
layer as the mature layer, and now redefine the formula for calculating the prob-
ability of the next token is defined as follows:

p (xt|x<t) = softmax (F (pM (xt) , pN (xt))) (3)

M = argmaxj∈N−1(d (pm (.) , pj (.))) (4)

here, F denotes the function that contrasting measuring the discrepancy between
the output probability and a premature layer, and M denotes the layer that
exhibits the most difference divergence from the refined prediction layer, and N
stands for the output layer. The d is used to assess the divergence between the
premature layer and the mature layer, which aids in identifying the optimal
premature layer that amplifies the distinction between the layers. The overall
flowchart of the algorithm is presented in Fig. 1. A thorough discussion of these
concepts is presented in Sects. 3.1 and 3.2.

Fig. 1. illustrates the LDLC to dynamically choosing premature layers, as well as the
strategy for leveraging the stability of inter-layer probability distributions to address
hallucinations. It is observed that the probability associated with certain tokens dimin-
ish as they progress through deeper transformer layers, while others increase or exhibit
variability. The LDLC effectively utilizes these variations in the probability distribu-
tions across decoding layers to tackle the hallucinations in LLMs.
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3.1 Dynamically Selecting Lower-Level Layers

It is most importance to obtain the optimal premature layer and contrast with
the output layer to obtain the difference, and exploit it as the prediction prob-
ability. We first define a set of candidate decoder layers DC = D2,D4, . . . , Dz,
which is the even-numbered layers within the LLM, and z indicating the total
layer of the LLM. Subsequently, by analyzing the entropy of the output proba-
bility from the set of candidate layers and by establishing a suitable threshold
δ, we determine the effective set of premature layers, named as Dz′ .

Dz′ =
{

j ∈ DC |p̂ (x|x<t)j > δ
}

(5)

The goal is to maximize the differentiation between the premature layer and
the mature layer, ensuring that the choice of the premature decoder layer is
dynamically tailored to each individual instance.

d (pN (x<t) , pi (x<t)) = max (pN (x<t) ||pi (x<t)), i ∈ Dc (6)

where pi denotes the output probability distribution of the i-th layer.
Subsequently, by employing the Wasserstein distance, a prevalent metric for

calculating discrepancies, we can quantify the variations in distribution between
each premature layer and the mature layer. The Wasserstein distance excels
in its ability to effectively gauge the distance between two distributions without
substantial overlap. By determining the Wasserstein distance between each layer
and the mature layer and identifying the maximal value, we pinpoint the layer
that exhibits the most significant deviation. The mathematical formula for the
Wasserstein distance is as follows:

d (pi, pN ) = W [pi, pN ] = infγ∈∏
[pi,pN ]

∫ ∫
γ (x, y) d (x, y) dxdy (7)

Here, pi and pN denote two distinct probability distributions, while γ refer
to the joint distributions of pi and pN . In conclusion, within the set of prema-
ture layers, we select the premature layer that exhibits the most pronounced
divergence from the mature layer:

M = argmaxEMD(pm (.) , pj (.)) (8)

where Wasserstein distance also known as the EMD.
The determined layer M is chosen as the optimal premature layer, and we

compute the difference in logits between M and the mature layer N . This differ-
ence is then utilized as the ultimate probability output for the next token in the
model. The precise methodology for this calculation is illustrated as following:

{
p (xt|x<t) = softmax (F (pM (xt) , pN (xt))) ,

F (pM (xt) , pN (xt)) = log pN (y|x<t)
pM (y|x<t)

(9)
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To ensure the advantage of the mature layer in the final outcome and to
reduce the influence of the premature layer, we calculate the difference by sub-
tracting the output probability of the premature layer from that of the mature
layer, denoted as p(xt).

3.2 Inter-layer Distributional Stability

The dynamic selection of premature layers offers a partial solution to the prob-
lem of LLM generating unreliable predictions. However, this approach does not
adequately consider the fluctuations in the output probabilities of inter-layers. It
depends exclusively on the logit differences that exhibit the greatest confidence,
which it assumes to represent the true probability distribution. When a token
from the vocabulary exhibits significant variability in its output probability at
the premature layer, it remains an unreliable prediction, which we term a hes-
itant token, even if its logit is select from the mature layer or contrast with
decoder layers.

To address the potential issues arising from hesitant tokens, we introduce a
stability factor for the decoder layers. The factor assesses the stability of each
token by examining the monotonicity of its confidence scores across the sequence
in both forward and reverse order. A sequence of scores is deemed to be mono-
tonically increasing, thus demonstrating considerable stability, if each element
in the sequence is at least as large as the one before it. Aligned with this defini-
tion, we evaluate the fluctuations in confidence scores for tokens over successive
transformer layers, hypothesizing that the confidence of a genuine token should
display a steady increase as it progresses through the layers. Based on this step-
wise analysis, we derive a stability score S(x) for each token in the vocabulary.

S (x) =
nC

N
− nD

N
(10)

Here, nC denotes the count of pairs that exhibit a growing, nD the count of pairs
that show a decrease, and N the total count of pairs considered. The stability
score S(x) thus obtained lies within the interval [−1, 1]. Subsequently, S(x)
undergoes a non-linear transformation via the Logistic function to be normalized
within the interval (0, 1). The formula for the decoding layer stability factor is
delineated as follows:

C (x) =
1

1 + e−β(S(x)−α)
(11)

Therefore, we consider the following resultant distribution as the actual predic-
tion for the next token:

p (xt|x<t) = softmax

(
(1 − λ) log

pN (y|x<t)
pM (y|x<t)

+ λC (xt)
)

(12)

4 Experiments

4.1 Dataset

LLMs are encountering issues with hallucination during logical reasoning tasks
and complex question-answering tasks. To address this, we utilized the Strat-
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egyQA dataset, which is popular among researchers for eliciting creative and
varied yes/no questions necessitating implicit reasoning steps. For evaluating
mathematical logic reasoning, we selected the test subset from GSM8k, which
assesses LLMs’ ability to reason through different types of mathematical prob-
lems. It is essential that LLMs correctly perform each reasoning step and arrive
at an accurate final answer to be deemed fully correct. Additionally, we employed
the wiki factor as a means to test the factual assessment capabilities of the LDLC.

4.2 Baseline

We evaluate LDLC against several decoder strategies which is the most prevalent
baselines in the field: 1) Random Sampling. 2) Constrained Decoding. 3) FECS:
employs a context-based regularization factor to improve the contrasting search
mechanism. FECS encourages the generation of tokens that are semantically akin
to the input while discouraging redundant phrases in the output text.

4.3 Main Results

Firstly, we investigate the impact of the layer stability factor λ of mitigating
hallucination, by set values of 0, 0.05, 0.1, 0.2, 0.3, and 0.4 separately on the
StrategyQA dataset. As illustrated in Fig. 2, it was observed that λ value takes
0.1, which optimally mitigates the hallucination exhibited by LLMs.

Fig. 2. The change in accuracy of StrategyQA varies when different values are taken.

Table 1 shows the outstanding results of LDLC on the StrategyQA, GSM8k,
and Wiki Factor. The evaluation was conducted on models of different sizes,
namely Llama 7b and Llama 13b, focusing on the precision on the datasets. The
results indicates that our approach is especially effective on models with a smaller
number of parameters, achieving a 7% improvement on GSM8k, compared to a
3% enhancement on the 13b model. This suggests that as the parameter count
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Table 1. LDLC’s performance on TruthfulQA and GSM8k.

StrategyQA GSM8k Wiki Factor

Llama2 7b 64.2 10.2 62.1

Llama2 13b 67.1 17.3 66.8

of LLMs increases, the incidence of hallucination tends to decrease, and their
innate ability to self-correct appears to improve.

We delved into the comparative performance of LDLC against standard
methods on the StrategyQA and GSM8k. Our findings reveal that LDLC consis-
tently outperforms the alternatives on both the Llama 7b and Llama 13b, even
surpassing the random sampling approach by 7%, thus underscoring LDLC’s
effectiveness in reducing hallucinatory responses from LLMs during inference. we
assessed the integration of LDLC with Greedy Decoding and Sample Decoding,
finding that LDLC particularly complements Sample Decoding, slightly enhanc-
ing performance across all datasets. LDLC also achieved approximately a 4%
improvement over traditional Sample Decoding on StrategyQA and Wiki Fac-
tor. The detailed experimental outcomes are presented in Table 2.

Table 2. Performance of Different Decoding Algorithms on Different Model Scale Sizes.

Method StrategyQA(%) GSM8k(%) Wiki Factor(%)

Llama2 7b Llama2 13b Llama2 7b Llama2 13b Llama2 7b Llama2 13b

Random Sample 61.1 66.6 10.6 16.7 58.8 62.5

Constrained Decoding 60.7 62.7 9.8 9.8 58.8 64.4

FECS 61.6 65.2 10.1 15.3 60.2 65.1

LDLC(+sample) 63.1 67.1 10.2 17.3 62.1 66.8

LDLC(+greedy) 64.2 66.9 10.2 17.2 61.6 64.2

To substantiate the importance of the dynamic selection algorithm within
LDLC, we employed a random layer sampling strategy from the decoding phase
as our baseline for comparison. In particular, we select a layer at random from
the set of potential layers and calculate the actual output logits by determin-
ing the discrepancy between the probability outputted by this randomly chosen
layer and those from mature layer. For this purpose, we extracted a sample of
200 data points from the GSM8k test set and conducted an evaluation over 20
matches using the Elo rating system. The LLMs’ responses were graded using
GPT-4, with victories labeled as ‘win’, ‘Tie’, and ‘lose’. LDLC exhibits a defini-
tive superiority when compared to the baseline. The experimental findings are
depicted in Fig. 3.

To corroborate the essential roles of the dynamic decoding layer selection
algorithm and the stability confidence of decoder layers, we performed an abla-
tion study using the Llama 7b model on the StrategyQA dataset, as depicted in
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Table 3. The ablative experiment of LDLC on StrategyQA.

Method StrategyQA

LDLC 64.2

(w/o) LC 61.4

(w/o) LSC 63.8

(w/o) LC+LSC 61.1

Table 3. The study revealed that solely employing stability confidence of decoder
layers is insufficient for significantly reducing hallucination in LLMs, yielding
results comparable to the baseline. LDLC’s effectiveness predominantly stems
from the dynamic contrast of decoder layers, which bolsters the reliability of
their outputs.

Fig. 3. Evaluating the Winning Opportunities of LDLC Based on GPT4.

5 Conclusion

In this work, we present a novel approach for reducing the instances of halluci-
nation in LLMs at the inference stage. We dynamically select the discrepancy
between premature layers and the output layer to contrasting, and obtain the
final probability distribution of the token. Additionally, we introduce a stability
factor for the decoding layer, designed to penalize tokens that contribute to hal-
lucination in LLMs. Experimental evaluations across three widely-used datasets
for hallucination detection underscore the effectiveness of the LDLC approach.
It significantly support the model’s grasp of factual knowledge and mitigates
the influence of the decoder-only model’s training objective, which is to pre-
dict the probability distribution of the next token. Our findings suggest that



54 G. Liu et al.

LDLC holds considerable promise for tasks involving inference and fact-based
question answering. Looking ahead, we aim to investigate how LDLC can strike
an optimal balance between the diversity and factual accuracy of the content it
generates.
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Abstract. LLMs such as Chat Generative Pre-Trained Transformer
(ChatGPT), Pathways Language Models (PaLM), and Bard Artificial
Intelligence (Bard AI) can generate human-like text. On top of that,
interestingly, these generated texts can correspond to ‘any’ domain of
human life such as finance, medicine, and health. Due to the training of
these LLMs on a large amount of text corpus, the generated text is hard
to be detected merely by reading. Therefore, it creates a havoc of pri-
vacy and copyright issues and hence effective detection of the generated
texts is critical. In this research, we take a strong step towards effectively
detecting generated text that belongs to several domains humans deal
with in our day-to-day lives. Interestingly, existing detection methods
utilize either LLM models or deep neural networks to detect generated
text; one catch here is that since these models also utilize similar back-
bones, therefore, existing defenses are found non-generalized. We further
categorize the difficult examples into multiple categories based on the
evaluation settings such as unseen domain, unseen dataset, and mod-
ified text, and show the detection performance of different categories.
In this research, we utilize the potential of traditional machine learning
classifiers to differentiate human text from generated text in a resource-
efficient manner. Our extensive investigation reveals surprising yet simple
relationships between generated examples from different domains. It is
demonstrated that paraphrasing can degrade the performance of LLM-
based AI-generated text detection algorithms drastically as compared to
the traditional classifiers. Further, the fusion of multiple text encoders
and machine learning classifiers can boost the performance of a single
model.
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Fig. 1. Effective paradigms for real-world AI-generated text detectors

1 Introduction

In recent times, large language models such as ChatGPT have been a significant
breakthrough in the field of natural language processing (NLP) and artificial
intelligence (AI). ChatGPT has shown a tremendous performance and hence
has caught tremendous attention that just within a few days of its launch is
put to the test by millions of users worldwide [6,7]. Since then we have wit-
nessed the development of many other large language models capable of gen-
erating and understanding human-like text. These models have demonstrated
exceptional proficiency across a wide range of language-related tasks, includ-
ing machine translation, text summarization, question-answering, and sentiment
analysis. Despite their exceptional capabilities, these LLMs face challenges and
ethical considerations which include the generation of false, biased, and offensive
content. Due to this, it is also observed that several companies, research publish-
ing venues, and institutes have banned or limited the use of LLM models [11].
On top of that, the generated data poses significant copyright issues, the prime
reason might be the unethical use of the text available freely on social media
platforms.

Further, as people’s interest in various AI chatbots has been increasing,
there has also been a growing interest and use of ChatGPT by hackers. These
ChatGPT-themed lures are used to spread malware across Meta, Instagram,
and WhatsApp. Meta has observed the increase of malware related to ChatGPT
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[35,41] which poses a serious security risk to our social-media data. The com-
pany said that since March 2023, its security teams have uncovered 10 malware
families using ChatGPT (and similar themes) to deliver malicious software to
users’ devices. While the ChatGPT sometimes might produce the wrong out-
put, the results can be very similar to as written by humans. It makes the
problem interesting and has resulted in the development of several machine-
learning techniques that can differentiate between human text and ChatGPT or
any AI-generated text.

It is showcased that the detection of AI-generated text is hard and is going
to be further complicated due to the advancement of newer LLMs. However,
still, several recent works claimed the detection of AI-generated text with high
accuracy, but show poor generalizability as soon as the unseen domain or LLMs
come for evaluation [12,27,31,39] Therefore, we believe, that before claiming
the effective and accurate detection of generative text, the detectors must be
evaluated in several real-world settings. Figure 1 shows a few evaluation settings
that are extremely relevant before releasing the AI-generated text detectors in
the real world. The prime reasons for such extensive evaluation depend on two
forms of errors: (i) False Positive: where the human written text can be wrongly
labeled as AI-generated text. This scenario can decrease the trust in human
writing capabilities and can be dangerous as can wrongly punish the genuine
writers and (ii) False Negative: where the AI-generated text can be classified as
written by humans. This scenario can increase copyright and other related issues.
Therefore, in this research, for the first time, we have presented a comprehensive
and benchmark study for the detection of AI-generated text based on settings
depicted in Fig. 1. Further, it is seen that the traditional machine learning clas-
sifiers can outperform the deep learning classifier where the training dataset is
limited or the adversary (AI-generated) text is generated by the deep neural
network itself [3,4,18,29]. Therefore, in this research, we have evaluated more
than 25 traditional machine learning classifiers including support vector machine
(SVM) and tree-based models. In brief, the contributions of this research are:

– A comprehensive evaluation of traditional machine learning classifiers for the
detection of AI-generated text;

– Robustness analysis of these detectors in several real-world settings reveals
interesting findings such as which domain human and AI text can be used to
detect other domains;

– A novel computationally efficient AI-generated text detection algorithm has
been proposed.

Figure 1 shows several real-world evaluation settings that we feel must be
taken care of before developing effective AI text detectors. As mentioned above,
the current LLMs can generate ‘any’ domain of human life such as medicine
and finance. Therefore, in a traditional setting, the detectors must be effective
for each domain on which they are trained and going to be tested (namely seen
domain setting). Due to the limited language corpus, it might be impossible to
train the detector for each domain; therefore, the detectors for one domain must
be able to detect generated text for another domain (namely unseen domains
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such as finance vs. medicine). Other possible evaders of the detector are that
while the generated correspond to the same domain (finance vs. finance) but are
generated by different individuals; therefore, based on writing or prompting style,
the generated text might have a different distribution. Hence, the trained detec-
tors must be robust to handle distribution shifts (namely unseen datasets). One
such example of distribution shift and evader is paraphrasing [25]; therefore, the
developed generated text detectors must be evaluated in this simple but intu-
itive and intelligent adversarial setting. To the best of our knowledge, for the first
time, we have benchmarked the AI-generated text detectors against such wide
evaluation settings and provided several findings that can help in developing
effective detectors in the future.

2 Literature Survey

The problem of AI-generated text detection can be formulated as binary clas-
sification and the literature has seen a tremendous amount of work carried out
in this direction [5,9,14,23,33]. At a global level, these existing binary classifi-
cation algorithms can be grouped into two categories: (i) feature extraction and
classification techniques and (ii) fine-tuning or training deep neural networks.

It is observed that human text follows Zipf’s law [46]: where the frequency
of a word is inversely proportional to its rank. Interestingly, AI-generated text
does not follow this distribution property and can be a cue to detect gener-
ated text [21]. Another useful cue based on the repetitiveness of the words, the
overlap in n-gram text can be used to detect the AI-generated text [15,16].
Another feature to identify the generated text is its readability and coherency
[21,40]. One way to measure coherency is the use of phrasal words in the sen-
tences [34]. Apart from that simple text features such as length of sentences,
use of idioms, and punctuation marks leave a watermark that can be effectively
used for generated text detection [15,34]. Other than these text feature-based
binary classifiers, several research works have been done where deep networks
are trained for binary class classification.

For example, in one of the earliest studies, Open AI fine-tuned the RoBERTa-
based GPT-2 detector to distinguish the generated text from the human written
text [30]. However, as mentioned earlier, the major limitation of the approach
is its generalizability and ineffectiveness in handling unseen LLMs and hence
requires fine-tuning on each LLMs text data to differentiate text generated vs.
written by the humans [10]. Another limitation of neural network-based detection
approaches is their vulnerability against adversarial texts which can be of any
form such as perturbed text samples, out-of-distribution due to paraphrasing,
or unseen domains [20,39]. To improve the generalizability or improve the com-
putational efficiency of the detection approaches, several zero-shot approaches
are also proposed [17,22]. These approaches learn the threshold based on the
log score of the tokens [33]. If we assume that the LLM model leaves some kind
of watermark, then this can be used to detect whether the text is written by
a human or an AI algorithm [24,45]. However, since, currently it is not feasi-
ble to have a similar form of watermarking across the LLMs, hence, the above
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approach is found less effective in detecting unseen LLMs generated text. We
refer the reader to the survey papers which present a detailed survey of the
existing techniques of text generation and detection for better understanding
[13,43]. Overall, through the literature, it is observed that the current genera-
tive text detector models fall short in detecting the AI-generated text due to
their improper evaluation and therefore we believe they provide the “false sense
of security” and fail drastically as soon as the unseen LLM model or domain
comes for evaluation [8,20]. Therefore, we believe, it is utterly important to
first understand the strength and limitations of machine learning classifiers for
detecting generative texts. The proposed research is the first step in this direc-
tion by providing a comprehensive study by evaluating more than 25 machine
learning classifiers for AI-generated text detection.

Fig. 2. Schematic diagram of the proposed AI-generated text detection framework

3 AI-Generated Text Detectors Utilizing Traditional
Classifiers

The literature shows that AI-generated text detectors based on feature extrac-
tion coupled with machine learning classifiers show promising results. However,
the existing feature extraction does not effectively encode the text. The fea-
ture extractors considered so far: (i) frequency-based features such as ranking of
words and term frequency-inverse document frequency (TF-IDF), (ii) coherency
features, (iii) linguistic features such as part of speech and named entity tags,
and (iv) others such as the use of phrases, punctuation marks, and length of
sentences. Therefore, in this research, we also looked at the problem of AI-
generated text detection from the perspective of the utilization of effective and
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state-of-the-art sentence encoders. Therefore, we have used three recent and
state-of-the-art text encoders namely all-MiniLM-L6-v2, all-mpnet-base-v2, and
multi-qa-mpnet-base-dot-v1. The all-MiniLM-L6-v2 model maps the input sen-
tences to a 384 dimensional encoding vector. The model has shown its effective-
ness in solving several interesting tasks such as clustering and semantic search.
Since it is believed that the sentiments of human-written text and AI-generated
text might have a different sentiment quotient; therefore, the use of this encoder
is intuitive. Similar to the above model, all-mpnet-base-v2 is also effective for
semantic search; however, it encodes the sentences and paragraphs to 768 dimen-
sional encoding vector. Semantic search is based on the understanding of the text
content and it is also effective even in the case of finding the synonyms. This
property can also help make the proposed AI-generated text detector where a
simple adversarial attack can be performed by replacing the words with their
synonyms. The multi-qa-mpnet-base-dot-v1 also maps the input text to a fixed
768 dimensional feature vector. This model is pre-trained on 215M question-
answer pairs from diverse sources. We have used the sentence BERT [38] library
available at the hugging face [1] platform to encode the sentences using these
three different encoders.

Table 1. Characteristics of the AI-generated and human-written text datasets used in
this research

Dataset HC3 TruthfulQA SQuAD GPT-2 Ours

Samples
Train 4719 1496 1424 20260 1010 –

Test 3147 998 950 13508 674 817 1000 5000 2700

AI

Model
GPT3.5 GPT-3 GPT-2

GPT-3

Davinci

Domain Finance Medicine Others Reddit Wikipedia

38 Domains

(Health, Law,

Fiction,

etc.)

Wikipedia Reddit

Politics,

Environment,

AI&ML

Once both the human and AI-generated sentences are encoded, they are used
as the input to several popular and benchmarking machine learning classifiers.
The classifiers trained using scikit-learn [36] are: ✓ LGBMClassifier (LGBM),
✓ NearestCentroid, ✓ RidgeClassifierCV, ✓ CalibratedClassifierCV, ✓ Lin-
earDiscriminantAnalysis, ✓ RidgeClassifier, ✓ LinearSVC, ✓ AdaBoostClassi-
fier, ✓ LogisticRegression (LR), ✓ BernoulliNB, ✓ NuSVC, ✓ KNeighborsClassi-
fier, ✓ BaggingClassifier, ✓ SVC, ✓ RandomForestClassifier, ✓ PassiveAggres-
siveClassifier, ✓ DecisionTreeClassifier, ✓ ExtraTreesClassifier, ✓ SGDClassi-
fier, ✓ QuadraticDiscriminantAnalysis, ✓ GaussianNB, ✓ Perceptron, ✓ Extra-
TreeClassifier, ✓ LabelSpreading, and ✓ LabelPropagation. These used classi-
fiers can also be grouped into two broad categories: (i) single-stage (such as
KNN, Logistic Regression) classifiers and (ii) ensemble-based learners (such as
Bagging and Extra Trees).

Figure 2 shows the overall architecture of the proposed AI-generated text
detection system. Both the human and AI-generated text are first encoded
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and later used to train the supervised binary classification network. Later, the
trained networks are used for evaluation on the testing set and the performance
is reported in terms of detection accuracy.

4 Experimental Results and Analysis

To effectively understand the robustness and effectiveness of AI-generated text
detectors, the detector must be evaluated on a vast variety of datasets covering
the settings shown in Fig. 1. Henceforth, in this research, we have used several
benchmark AI-generated datasets. An interesting fact about the used datasets is
that they cover a wide domain of human life such as politics and law. Along with
that, we have evaluated several popular and benchmarking supervised machine
learning (ML) classifiers and multiple text encoding algorithms. First, we will
briefly describe the characteristics of the datasets used followed by the exper-
imental results and analysis reflecting the effectiveness and robustness of the
AI-generated text detectors.

Datasets. Guo et al. [19] has developed one of the largest AI-generated and
human-written text datasets namely Human ChatGPT Comparison Corpus
(HC3). The dataset contains the questions corresponding to multiple domains
or captured from multiple social media platforms such as Reddit and Wikipedia
and the questions correspond to various critical domains such as finance and
medicine. For each domain/platform, human answers are collected using multi-
ple existing datasets, and AI-generated answers are generated using GPT3.5. In
this research, we have used the English corpus of the HC3 dataset. We believe
due to the vast variation in the dataset, it is one of the ideal candidates to
evaluate the generated text detectors. In total, we have used the 48k+ text sam-
ples to understand the effectiveness and robustness of the classifiers. To evaluate
the truthfulness of the LLMs in generating the answers to questions, Lin et
al. [28] have developed a truthful dataset. Compared to the HC3 dataset, the
truthful dataset contains questions spanning 38 domains including health, law,
and politics. It makes the dataset effective in understanding the generalizability
of AI-generated text detectors under unseen domain training testing settings.
As each of the domains is critical, false/fake information in any domain can be
dangerous; therefore, an ideal detection model can not be biased toward one par-
ticular domain. Stanford Question Answering Dataset (SQuAD) [37] addresses
the need for a large-scale reading comprehension dataset which is collected from
Wikipedia. In contrast to the previous datasets, here the answers in the dataset
are either segments of text or spans of a reading passage. The GPT-2 Output
dataset [2] is a collection of outputs generated by the GPT-2 language model as
compared to the HC3 ad the truthful which utilized the advanced LLMs. The
dataset contains the text information from the WebText dataset and the GPT-2
model trained on the WebText dataset is used to generate samples. Apart from
these benchmark text datasets challenging to detect the AI-generated text, we
have also developed a novel dataset comprising domains not explored so far in
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the existing datasets such as AI and ML. AI/ML which has shown tremen-
dous success in solving several real-world tasks corresponding to vision, biomet-
rics, and NLP is also not untouched by fake/false information generated from
itself. Our dataset comprises four main categories: politics, environment, AI,
and ML. For the Human-generated texts, we have used Reddit, StackOverflow,
and some common essays from the Internet, which contain genuine user interac-
tions, offering real-world perspectives and discussions from different individuals
across the globe. To generate the responses from the AI model, we have used
ChatGPT’s Davinci model. The characteristics of each of the datasets used in
this research are given in Table 1. Overall, in this research, we have used 57, 703
text samples corresponding to human and AI-generated categories.

4.1 Results and Analysis

As shown in Fig. 1, in this research, we have designed the experimental protocols
along those four critical and real-world evaluation settings. For training the
AI-generated text detection models, only the HC3 subsets have been used due
to their large-scale nature and covering wide domains. We have divided the
subsets into two parts: 60% of the random split has been used for training and
the remaining 40% has been used for the evaluation. The remaining datasets
are used for unseen dataset testing only to evaluate the generalizability and
robustness of the detector.

Traditional Seen Setting. In the first and traditional setting, we trained and
tested the AI-generated text detectors for the seen evaluation setting. For exam-
ple, if the detectors are trained on the finance subset of HC3, they are evaluated
on the testing subset of the finance subset of HC3. The results of this setting are
reported in Table 2. The results of this setting can be broadly divided into three
categories: (i) effectiveness of the classifier, (ii) effectiveness of the text encoding
algorithm, and (iii) performance on the individual subset of the HC3 dataset.
In terms of the effectiveness of the classifiers, it is seen that the RidgeClassi-
fier including traditional (RidgeClassifier) and utilizing cross-validation (Ridge-
ClassifierCV) performs the best across each domain in comparison to the other
classifiers. RidgeClassifiers uses the concept of L2 regularization and avoids the
overfitting of the model to ensure its generalizability against unseen datasets. On
top of that, the RidgeClassifierCV further exploits the concept of cross-validation
to make the detector more efficient. Therefore, the average performance of Ridge-
ClassifierCV is 91% which is higher than 1% from RidgeClassifier and signifi-
cantly higher than other classifiers. The logistic regression and Linear support
vector machine classifier (SVC) perform comparably to the RidgeClassifierCV.
As mentioned above, the encoder-3 (multi-qa- mpnet-base-dot-v) is trained on a
wide source of text information which is also visible in its performance in detect-
ing AI-generated text. The classifiers receiving the text encoded using encoder-3
are found highly effective in segregating them into binary classes: human and
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Table 2. Human vs. ChatGPT detection when the seen subset has been used for train-
ing and testing the machine learning models. F, M, O, R, and W represent the Finance,
Medicine, Others, Reddit, and Wiki subset, respectively. -1, -2, and -3 represent the
sentence encoders all-MiniLM-L6-v2, all-mpnet-base-v2, and multi-qa-mpnet-base-dot-
v1, respectively

Model F-1 F-2 F-3 M-1 M-2 M-3 O-1 O-2 O-3 R-1 R-2 R-3 W-1 W-2 W-3

RidgeClassifierCV 0.92 0.95 0.98 0.96 0.96 0.99 0.89 0.88 0.91 0.87 0.94 0.96 0.77 0.81 0.89

RidgeClassifier 0.92 0.95 0.98 0.95 0.96 0.98 0.89 0.87 0.88 0.87 0.94 0.96 0.76 0.77 0.83

LDA 0.92 0.95 0.98 0.96 0.96 0.98 0.88 0.87 0.87 0.87 0.94 0.96 0.76 0.74 0.78

LogisticRegression 0.91 0.93 0.97 0.96 0.96 0.98 0.85 0.86 0.90 0.88 0.94 0.96 0.77 0.84 0.88

SVC 0.91 0.93 0.97 0.95 0.93 0.97 0.82 0.80 0.89 0.92 0.94 0.97 0.73 0.74 0.82

LinearSVC 0.91 0.92 0.96 0.94 0.95 0.97 0.82 0.85 0.89 0.87 0.93 0.95 0.75 0.83 0.87

NuSVC 0.90 0.92 0.95 0.94 0.92 0.95 0.82 0.81 0.89 0.89 0.91 0.93 0.74 0.78 0.84

SGDClassifier 0.89 0.93 0.96 0.94 0.94 0.97 0.84 0.84 0.88 0.85 0.93 0.95 0.77 0.84 0.85

PAC 0.88 0.93 0.97 0.95 0.95 0.98 0.84 0.85 0.89 0.83 0.90 0.95 0.76 0.82 0.86

Perceptron 0.87 0.92 0.96 0.95 0.94 0.97 0.84 0.84 0.89 0.82 0.91 0.95 0.75 0.82 0.85

XGBClassifier 0.87 0.88 0.92 0.91 0.88 0.92 0.87 0.77 0.82 0.85 0.86 0.91 0.68 0.68 0.73

LGBMClassifier 0.86 0.87 0.91 0.90 0.87 0.92 0.87 0.77 0.82 0.84 0.86 0.90 0.65 0.65 0.74

GaussianNB 0.84 0.82 0.86 0.87 0.85 0.87 0.78 0.76 0.82 0.80 0.80 0.84 0.65 0.67 0.69

RFC 0.83 0.84 0.87 0.90 0.85 0.88 0.83 0.71 0.77 0.81 0.82 0.86 0.61 0.61 0.68

ExtraTreesClassifier 0.83 0.83 0.88 0.88 0.84 0.89 0.74 0.63 0.74 0.81 0.81 0.86 0.57 0.55 0.63

CalibratedClassifierCV 0.90 0.93 0.97 0.95 0.95 0.98 0.84 0.86 0.91 0.88 0.94 0.96 0.76 0.85 0.87

NearestCentroid 0.83 0.83 0.86 0.87 0.84 0.90 0.77 0.76 0.84 0.79 0.79 0.84 0.68 0.69 0.70

AdaBoostClassifier 0.80 0.83 0.87 0.89 0.83 0.91 0.83 0.77 0.80 0.77 0.79 0.83 0.65 0.68 0.73

BernoulliNB 0.80 0.81 0.85 0.87 0.83 0.88 0.78 0.75 0.82 0.77 0.78 0.82 0.65 0.69 0.70

QDA 0.80 0.78 0.87 0.78 0.50 0.50 0.47 0.48 0.49 0.84 0.83 0.89 0.39 0.49 0.49

BaggingClassifier 0.76 0.77 0.83 0.85 0.79 0.87 0.84 0.67 0.71 0.75 0.77 0.81 0.62 0.61 0.63

DecisionTreeClassifier 0.67 0.69 0.73 0.75 0.71 0.81 0.78 0.61 0.62 0.70 0.70 0.72 0.53 0.59 0.59

KNeighborsClassifier 0.67 0.64 0.78 0.72 0.68 0.79 0.55 0.52 0.59 0.62 0.58 0.68 0.49 0.48 0.50

ExtraTreeClassifier 0.59 0.60 0.67 0.64 0.59 0.72 0.54 0.53 0.54 0.61 0.61 0.66 0.54 0.53 0.58

LabelSpreading 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.56 0.56 0.56 0.54 0.54 0.54

LabelPropagation 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.56 0.56 0.56 0.54 0.54 0.54

AI-generated. It is interesting to note that the effectiveness of this encoder is
consistent across classifiers and domains. For example, when the best-performing
classifier i.e., RidgeClassifierCV is used, the performance on the encoder-3 is at
least 3% better on Finance and Medicine subsets, 2% better on others and Reddit
subsets, and 8% better on Wikipedia subset. In terms of domains, it is observed
that the text related to the Wikipedia subset of the dataset is highly challenging
to detect as compared to the other subsets. The probable reason might be that
the Wikipedia texts follow any particular domain question-answer responses as
compared to other subsets that explicitly follow one domain such as Finance
or Medicine. A similar challenge can be observed on the other subset which
also contains the random Wikipedia question-answer texts. We want to high-
light that, this benchmark understanding is missing in the literature
and hence it is difficult to build a universal classifier that can detect
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Train on Finance, Test on Remaining Train on Medicine, Test on Remaining Train on Others, Test on Remaining

Train on Reddit, Test on Remaining Train on Wiki, Test on Remaining

Fig. 3. Human vs. ChatGPT detection when 5-fold unseen subsets cross-validation has
been performed. In this case, the classification models are trained on a single subset
and tested on remaining individual subsets

AI-generated text across various domains. On top of that, as good initial-
ization in deep neural networks is extremely important [32,42], utilization of an
effective feature extractor (encoder) is critical for the success of ‘any’ traditional
machine learning classifier. It is observed from these experiments that encoders
effective in extracting the semantic understanding of the texts can pave the way
for an accurate and robust AI-generated text detector.

Train on Finance Train on Medicine Train on Others

Train on Reddit Train on Wiki

Ac
cu

ra
cy

Fig. 4. Human vs. ChatGPT detection when training and testing have been performed
on the seen subset of the HC3 dataset; however, now the testing sets are paraphrased
using Pegasus [44]
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While it is observed that in a few cases, CalibratedClassifierCV shows bet-
ter performance than Linear SVC and Logistic Regression; the time taken by
the CalibratedClassifierCV is 3 and 6 times higher than LinearSVC and Ridge-
ClassifierCV, respectively. Further, it is also empirically observed that the per-
formance of CalibratedClassifierCV is significantly lower than LogisticRegres-
sion and LinearSVC in unseen domain settings. Therefore, keeping the trade-
off between accuracy and computational time, we have chosen LinearSVC and
Logistic Regression for detection.

Unseen Domain Setting. It is seen that the success of text-generated AI
tools is not limited to any particular domain and can answer the questions of
humans alike. Further, it is highly difficult to train the generated text detector
on each domain text date, the reason can be many including computational cost
and limited availability of the text corpus. “Therefore, the first critical crite-
rion of an effective AI-generated text detector is its generalizability in handling
unseen domain text prompts”. Therefore, to showcase the generalizability of the
best-performing text detectors obtained from the first experiment (RidgeClassi-
fierCV, LinearSVC, and Logistic Regression (LR)) are evaluated under unseen
domain settings using the HC3 dataset. As seen in the first experiment the Ridge-
ClassiferCV outperforms the other classifiers, it is also showcased in the unseen
domain experiments as well. For instance, when the finance subset is used in the
training and evaluation has been performed on other subsets, the performance
of the RidgeClassifierCV is at least 6% higher on the medicine subset and 2%
higher on Reddit and medicine subsets. Except in the case of the Wikipedia sub-
set where the LR and LinearSVC perform the same but higher than RidgeClas-
siferCV. In terms of the domain, it is seen that the detectors trained on Reddit
texts are found highly effective in handling unseen text domains. For example,
RidgeClassifierCV trained on the Reddit subset is found 18%, 7%, and 1% effec-
tive on finance, medicine, other, and Wikipedia subsets respectively compared
to the detector trained on other unseen domains. We want to highlight here that
the encoding of texts is performed using the best-performing encoder-3. Figure 3
shows the detailed results obtained using ‘unseen domain’ setting.

Evading Detection Using Paraphrase. It is seen that it is possible to water-
mark the text generated using the LLMs [24] and can be used as an effective
defense to detect the generated text; however, one simple solution to evade the
defense is text paraphrasing [25]. Therefore, it is imperative to evaluate the AI-
generated text detectors which show significant success in detecting the texts
corresponding to both seen and unseen domains under this evading mechanism.
The results reported in Fig. 4 showcase the drop in the detection performance
of each best-performing classifier used in the unseen domain setting. Here the
evaluation has been done under both seen and unseen domain settings. Out of
5 domains, in 3 domains (finance, medicine, others) LR outperforms the other
classifiers and in two cases (Reddit and Wikipedia), RidgeClassifierCV shows
the best performance. For example, on the unseen medicine subset, the average
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Train on HC3, Test on SQuAD Train on HC3, Test on TruthfulQA

Train on HC3, Test on GPT-2 Train on HC3, Test on Ours
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Fig. 5. AI-generated text detection accuracy when classifiers are trained on the indi-
vidual subsets of the HC3 dataset and tested on unseen datasets namely SQuAD,
TruthfulQA, GPT2, and ours

performance of LR, LinearSVC, and RidgeClassifierCV is 54.25%, 53.75%, and
52.25%, respectively. In brief, through our experiments, we have found that the
existing ML classifiers can be evaded using a simple paraphrasing technique and
the accuracy drop can be as high as 25%.

Unseen Dataset Evaluation. It is well known that security is a game of cat
and mouse; once a defense algorithm has been developed a new attack comes
into the picture. Secondly, it is extremely necessary for a ‘universal’ defense that
is evaluated using several datasets prepared using various researchers having
different thoughts/prompts while developing them. However, once the defense
is developed re-training or fine-tuning on the newer dataset is computationally
costly; therefore, the built system must be resilient to the unseen dataset as
well. Here the unseen datasets also contain AI-generated text coming from var-
ious seen and unseen domains as well. In this setting, the individual subsets of
the HC3 dataset are used for training, and multiple existing along proposed
datasets are used in the evaluation. It is found that the SQuAD dataset is
one of the toughest datasets to solve using traditional machine learning clas-
sifiers. The prime reason might be that the dataset is acquired using old LLM
techniques and contains either segments of text or spans of a reading passage
which is contrasting to other question-answer datasets. The LinearSVC outper-
forms the other classifier and achieves the best accuracy when the classifier is
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Fig. 6. AI-generated text detection accuracy when classification models are trained on
HC3 subsets and tested on our paraphrased dataset
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Fig. 7. Proposed AI-generated text detector using an amalgamation of text encoders
and classifiers

trained using the finance subset. The GPT-2 dataset is also found challenging
and only RidgclassifierCV shows decent performance. Figure 5 reports the results
on unseen datasets.

In comparison to the other unseen datasets, the text in the proposed dataset
is easy to detect. Out of five domains in the HC3 dataset, the ‘medicine domain’
is found the least effective in detecting the text of our dataset. It reflects that
while a selection of an ML classifier is essential, the training domain is also
critical and must be selected carefully. While the proposed dataset is found less
complex, the paraphrasing attack can degrade the performance of each classi-
fier on our dataset as well. The RidgeClassifierCV which shows 93% detection
accuracy when trained using the finance subset, shows a significant reduction of
18% when our dataset is paraphrased using the PEGASUS library. As shown in
Fig. 6, a similar reduction in the performance of each classifier trained on any
subset has been noticed. However, it is interesting to note here that the para-
phrasing shows a limited impact on our dataset as compared to the previously
evaluated paraphrased unseen domains of HC3.
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Table 3. AI generated text detection using the proposed score fusion algorithm. Avg.
represents the average performance of the proposed algorithm. The values in red/blue
color show the improvement/decrement from the best baseline performance obtained
after training the ML classifiers for seen and unseen domain evaluation

Train
Finance Medicine Other Reddit Wiki Ours Avg.

Orig. Para Orig. Para Orig. Para Orig. Para Orig. Para Orig. Para Orig. Para

Finance
0.98

0.01

0.71

0.06

0.91

0.02

0.64

0.01

0.75

0.06

0.55

0.02

0.87

0.05

0.66

0.01

0.62

0.0

0.59

0.04

0.97

0.0

0.88

0.02

0.85

0.05

0.67

0.06

Medicine
0.83

0.01

0.63

0.06

0.99

0.0

0.78

0.02

0.66

0.0

0.54

0.02

0.73

0.02

0.62

0.03

0.53

0.08

0.57

0.02

0.78

0.10

0.69

0.15

0.75

0.01

0.64

0.01

Other
0.69

0.07

0.60

0.0

0.63

0.20

0.61

0.0

0.93

0.02

0.56

0.02

0.71

0.0

0.59
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0.71

0.04

0.57

0.04

0.88
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0.82
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0.76

0.02

0.63

0.06

Reddit
0.95

0.01

0.59

0.01

0.95

0.0

0.65

0.0

0.87

0.05

0.53

0.01

0.97

0.01
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0.02

0.59

0.04
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0.01
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0.03

0.64

0.06

Wiki
0.77

0.04

0.63

0.0

0.79

0.06

0.62

0.01
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0.03

0.56

0.0

0.69

0.04

0.61

0.02
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0.02

0.59

0.03

0.90

0.03

0.82

0.04

0.81

0.00

0.64

0.04

4.2 Proposed AI-Generated Text Detection Algorithm

Inspired by the effectiveness of individual text encoding algorithms
and AI-generated text detectors, in this research, we have further pro-
posed a novel AI-generated text detection algorithm. As shown in Fig. 7,
the algorithm works on the amalgamation of the semantic encoding of texts using
two best-performing algorithms which are later used to train two robust machine
learning classifiers. The decision/classification probabilities of these classifiers are
later fused using a weighted score fusion strategy to achieve the final classification
score of a sample. We have used encoders 2 and 3 to extract the text embed-
dings and, LinearSVC and RidgeClassifierCV to train the AI-generated text
detectors. Similar to the previous settings, we have trained the proposed detec-
tor using a training set of individual domains of the HC3 and evaluated it on
the seen and unseen domain both in its raw and paraphrased format. Results
reported in Table 3 showcase that the proposed embedding and score amalgama-
tion improves the classification performance drastically especially when the texts
are paraphrased. For example, the average performance shows an improvement
of 6% when the finance domain is used for training and all domains are used.
Even on the raw text dataset, the proposed algorithm yields 5% better aver-
age performance than the performance of best-performing individually trained
models.

To further demonstrate the effectiveness and robustness of the proposed app-
roach, we have evaluated it on a recent complex dataset developed for deepfake
text detection [26]. The dataset is created using 27 LLMs and we have used
the pre-defined train-test for experiments. When evaluated on the ‘wilder
testbed’ (includes unseen domains and paraphrasing attack samples),
the performance of the proposed fusion architecture is at least 6% bet-
ter than complex algorithms such as [26], DetectGPT [33], and GLTR
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[17]. Further, the prime limitation of existing defense based on deep networks
including LLMs is not robust against out-of-distribution samples including para-
phrased samples.

5 Conclusion

The presence of powerful AI-generated models has led to the generation of fake
content or content that might not be written by humans. While it is hard to
stop the functioning of these open-source modes, a defense mechanism that can
effectively detect whether the content is developed by humans or generated using
an AI tool can be helpful. In literature, several defense works have been proposed;
however, the improper evaluation and complexity of these defenses provide a false
sense of security. Therefore, in this research, for the first time, we have conducted
an extensive evaluation study to find how easy or hard to detect AI-generated
text. The findings include the impact and effectiveness of the classifier along
with which domain should be used for training and/or which domain is hard to
defend. Therefore, future benchmark studies must evaluate their defense mech-
anism thoroughly under several evaluation settings to reach solid and reliable
observations. We have also proposed a novel multi-classifier and multi-encoder
AI-generated text detector that showcases higher performance and resiliency
in handling unseen domains, datasets, and paraphrasing attacks. In the future,
we aim to extend our dataset covering several other domains and social media
platforms and provide a certified defense against AI-generated text.

References

1. Sentence transformers (2022). https://huggingface.co/sentence-transformers
2. GPT2 output dataset (2023)
3. Agarwal, A., Singh, R., Vatsa, M., Ratha, N.: Image transformation-based defense

against adversarial perturbation on deep learning models. IEEE Trans. Dependable
Secure Comput. 18(5), 2106–2121 (2020)

4. Agarwal, A., Vatsa, M., Singh, R., Ratha, N.: Parameter agnostic stacked wavelet
transformer for detecting singularities. Inf. Fusion 95, 415–425 (2023)

5. AI, O.: GPT-2: 1.5b release (2019). https://openai.com/research/gpt-2-1-5b-
release

6. Amaro, I., Barra, P., Della Greca, A., Francese, R., Tucci, C.: Believe in artificial
intelligence? A user study on the chatgpt’s fake information impact. IEEE Trans.
Comput. Soc. Syst. 1–10 (2023). https://doi.org/10.1109/TCSS.2023.3291539

7. Amaro, I., Della Greca, A., Francese, R., Tortora, G., Tucci, C.: AI unreli-
able answers: a case study on chatgpt. In: International Conference on Human-
Computer Interaction, pp. 23–40. Springer (2023)

8. Antoun, W., et al.: Towards a robust detection of language model generated text:
is chatgpt that easy to detect? arXiv preprint arXiv:2306.05871 (2023)

9. Bakhtin, A., Gross, S., Ott, M., Deng, Y., Ranzato, M., Szlam, A.: Real or fake?
Learning to discriminate machine from human generated text. arXiv preprint
arXiv:1906.03351 (2019)

https://huggingface.co/sentence-transformers
https://openai.com/research/gpt-2-1-5b-release
https://openai.com/research/gpt-2-1-5b-release
https://doi.org/10.1109/TCSS.2023.3291539
http://arxiv.org/abs/2306.05871
http://arxiv.org/abs/1906.03351


70 A. Agarwal and M. Uzair

10. Bhattacharjee, A., Liu, H.: Fighting fire with fire: can chatGPT detect AI-
generated text? arXiv preprint arXiv:2308.01284 (2023)

11. Brainard, J.: Journals take up arms against AI-written text. Science 379(6634),
740–741 (2023)

12. Cai, S., Cui, W.: Evade chatgpt detectors via a single space. arXiv preprint
arXiv:2307.02599 (2023)

13. Crothers, E., Japkowicz, N., Viktor, H.L.: Machine-generated text: a comprehen-
sive survey of threat models and detection methods. IEEE Access (2023)

14. Fagni, T., Falchi, F., Gambini, M., Martella, A., Tesconi, M.: Tweepfake: about
detecting deepfake tweets. PLoS ONE 16(5), e0251415 (2021)
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Abstract. This research explores the performance of various language
models for generating Bangla text, with an emphasis on the task of text
abstractive summarization, specifically newspaper headline generation.
Given the concern regarding the lack of diversity in previous news-
paper article datasets, we have created a dataset from Bangla online
newspapers, focusing on the most recent and diverse news for evalua-
tion purposes. The dataset contains a wider variety of article types and
includes articles from a greater number of newspapers than previous
datasets. Through comprehensive experimentation and evaluation, we
identify BanglaT5 and GPT-3.5 as standout performers in this domain.
While GPT-3.5 falls short of surpassing the fine-tuned BanglaT5, its per-
formance notably outshines that of other large language models (LLMs),
boasting a substantial performance margin exceeding 10% in compari-
son. Moreover, the analysis we conducted indicates that the fine-tuned
BanglaT5 performs much better than GPT-3.5 by 5% for both ROUGE-
1 and ROUGE-L scores, demonstrating the effectiveness of capturing
the subtleties of this task. These findings underscore the pivotal role of
model fine-tuning and highlight the nuanced interplay between various
language models. They showcase that while LLMs are making progress,
they still do not perform as well as traditional LMs in the Bangla lan-
guage processing landscape.

Keywords: Summarization · Abstractive Summarization · LMs ·
Tiny-LLMs · LLMs

1 Introduction

Due to the exponential growth in textual content and the time-consuming pro-
cess of manual summarization, the need for Automatic Text Summarization
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(ATS) is of growing importance. Emphasizing it, El-Kassas et al. [11] offered
an extensive overview of ATS approaches, procedures, methods, standards, and
future directions for research in this field. Given the increasing volume of Bangla
textual content in digital format, our study focuses on the summarization of
Bangla news documents. In this work, we focus on one-line summary genera-
tion, where we take news headings as the summary of news articles. Leveraging
Large Language Models (LLMs), this research aims to compare the performance
of the text summarization text-to-text transformer model with the LLMs that
address the challenge posed by the abundance of textual data.

In Natural Language Processing (NLP), Large Language Models (LLMs)
have become a revolutionary force. These models mark a significant shift in the
way machines understand and generate human language. A thorough overview
of the models, datasets, and insights that have been developed subsequently
in the field of large language models is provided by Naveed et al. [24]. With its
comprehensive analysis and comparisons of different LLMs, including their archi-
tectures, training methods, and performance in various contexts, it is a valuable
resource for researchers. With hundreds of millions to billions of parameters,
LLMs have the capacity and sheer scale to learn intricate linguistic patterns,
semantics, and contextual links.

A variety of research has been conducted in the field of text summarization.
Some of the works involving machine learning [3] [16], deep learning [28] [31]
and comprehensive surveys on text summarization are discussed in the litera-
ture review section of this paper. Additionally, sequence-to-sequence model [37],
GPT2 model [26], IndoBERT and BERTsum model [22], pre-trained language
models [30], and T5 model [27] are also discussed. For the Bengali language,
graph-based features [15], sentiment analysis, and sentence interconnections [19]
and incorporating pre-trained language models in a graph-based model [9] have
been approached.

From observing these existing studies, it can be noted that the performance
of LLMs has not been adequately analyzed in the context of Bangla text sum-
marization. The recent advancements in LLMs have opened up new possibilities
in the field of text summarization, which motivated us to conduct research in
this field. LLMs, or large language models, have a remarkable capability to grasp
complex linguistic patterns and syntax. These models can be fine-tuned to per-
form well on particular tasks, especially for languages with limited resources,
such as Bangla. By doing so, they gain a deep understanding of the context and
improve their grasp of semantic relationships.

The major contributions of our work are as follows:

– Leveraging the advantages of transfer learning for fine-tuning LLM on a spe-
cific task in the context of the Bengali language.

– Fine-tune the Bangla-T5 model for the specific task and leverage the LLMs
to analyze the performance gap between them.

– To see if the LLMs are ready for the Bangla text summarization task.
– Creating a custom test dataset of the recent Bangla news documents made

by scraping from online newspapers.
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The rest of this paper is organized in the following manner: the literature
review section provides a detailed discussion of available studies regarding text
summarization of various languages, including Bangla. In the dataset creation
section, the way of creating the new dataset is described. Followed by dataset
creation, the experimented models are described. The section called Experimen-
tal Setup and Result Analysis demonstrates the way this research has been
conducted and the results that we obtained from them. Finally, in the conclu-
sions section, an overview of our work, its limitations, and future direction are
presented.

2 Related Works

The fundamental concept of text summarization and various approaches taken
in this domain are mentioned hereafter in this section.

2.1 Text Summarization in Natural Language Processing

The main objective of text summarization is to extract the most important
details from a given text while reducing its length. Text summarization falls into
two primary categories: extractive, which takes sentences or phrases from the
original text and rearranges them to create a summary, and abstractive, which
creates entirely new sentences to convey the summarized content and frequently
necessitates a deeper comprehension of the source text.

Extractive Text Summarization Approaches. While the goal of extractive
text summarization methods is to identify and compile the most important infor-
mation from source texts, several studies have made substantial contributions
in this field. For instance, A. K. Yadav et al. [25] proposed a transfer model
on extractive text summarization techniques, with a focus on graphical-based
approaches, and addressed their benefits, drawbacks, and methods of assessment.
In a similar vein, Waseemullah et al. [13] introduced an extractive summarization
model to balance compression and retention ratios.

Abstractive Text Summarization Approaches. Significant advancements
have also been made in abstractive text summarization, which aims to produce
summaries that might not exactly match the original text. In this context, the
study [32] provided a comprehensive survey of neural network-based abstrac-
tive text summarization models, emphasizing important aspects of the design,
difficulties encountered, and recommendations for enhancing performance. This
thorough analysis by T. Shi et al. [29] offers an open-source toolkit (NATS) and
explores recent developments in seq2seq models for abstractive text summariza-
tion. Akash et al. [14] used a multimodal approach for abstraction summarization
using Clip and general-purpose LLMs.
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Hybrid Text Summarization Approaches. Text summarization hybrid
approaches integrate multiple techniques, including extractive and abstractive
methods, to enhance the quality of the summary. Several important studies that
address this subject include the study of A. Widyassari et al. [36] provided a
comprehensive review of the literature on text summarization, highlighting the
importance of features for both abstractive and extractive summarization, P.
Muniraj et al. [23] introduced HNTSumm, an algorithm that combines super-
vised and unsupervised learning techniques to facilitate automatic text summa-
rization for documents containing transliterated words.

2.2 Related Studies in Multilingual Text Summarization

In the field of natural language processing, multilingual text summarization aims
to produce concise summaries from text in several languages. This more com-
prehensive multilingual viewpoint is pertinent to Bangla text summarization
because it makes it possible to create automated summarization systems that
can process and summarise text in Bangla as well as other languages, enabling
cross-lingual knowledge extraction and information retrieval.

Using the IndoBERT model and BERTSum, H. Lucky et al. [22] investigated
Indonesian single-document abstractive text summarization. In comparison to
single-encoder models, Y. Shin [30] presented a Korean abstractive text sum-
marization model that improved performance by utilizing multiple pre-trained
language models through a multi-encoder approach. B. Ay et al. [4] used the T5
model to abstractly summarise Turkish text, produce good results, and make the
dataset available to other researchers. Using state-of-the-art results on the TR-
News and MLSum (TR) datasets, B. Baykara and T. Güngör [5] investigated the
applicability of pre-trained Seq2Seq models, such as mT5 and BERTurk-cased,
on Turkish text summarization and title generation tasks. Moreover, it is note-
worthy that studies have been conducted in this field for the Bangla language
[20] as well. P. Protim Ghosh et al. [15] used graph-based sentence scoring fea-
tures introduced for summarising Bangla news documents. A hybrid method for
Bengali text summarization that makes use of sentiment analysis, sentence inter-
connections, and keyword scoring is presented by M. Islam et al. [19]. Fatima et
al. [12] improved news headline text generation quality using POS-Tagging in
the tokenization. Ding et al. [10] experimented with human-AI text co-creation
for summarizing as headlines using LLMs to harness the power of it.

3 Dataset Creation

The existing datasets (e.g., Potrika [2]) often contain news articles that are
outdated, as these were created in the past. As a result, these datasets lack
diverse and recent styles of news reporting. Keeping this in mind, we have created
a small dataset that aims to address these limitations. The new dataset comprises
articles from ten different types of news variations, ensuring greater diversity. To
capture the most up-to-date styles, we have scraped articles from ten different
online newspapers in 2024. Compared to previous datasets, this new collection
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includes a broader range of news variations to better reflect the evolving nature
of news reporting and article styles. In Table 1, the feature level comparison with
the existing similar type dataset is shown. IndicNLG-BN [21] and Potrika [2] are
two popular datasets for News Articles. Primarily, our dataset has more diverse
types and sources of data. We also have the links to news articles for verifying
their authenticity. In the Fig. 1, the way of data scraping is described. The figure
illustrates the process from data collection to normalizing the entire dataset.

Source of Data: We chose online newspapers as our data source. Every day,
almost 6 million people read newspapers online. There are many different kinds
of articles in every newspaper, including ones about the economy, sports, national
and international news, entertainment, science, politics, and short stories by var-
ious novelists. Every article has an appropriate title. The newspapers that we
used to gather our data were: Prothom Alo, Daily Ittefaq, Daily Kaler Kantho,
Bangladesh Pratidin, Daily Samakal, Daily Janakantha, Daily Naya Diganta,
Amader Shomoy, and Daily Inqilab. Since each online newspaper has a unique
website, we used the Beautiful Soup framework and Selenium to scrape data
from eight different newspapers. With Selenium, we can replicate various web
page activities like scrolling and dynamic loading. To enable code to commu-
nicate with browsers (such as Chrome, Firefox, etc.), a web driver is needed.
We can parse the HTML and XML documents using Beautiful Soup. We used
this framework to scrape the data after Selenium enabled us to access the web-
page. It assists us in gathering and organizing the necessary information from
the complete HTML content.

Table 1. Feature-level comparison among the proposed and the existing datasets.

Noise Removing and Normalizing: Following the raw data scraping pro-
cess, the texts still had some extra HTML codes, digits, and extraneous English
letters. Consequently, we eliminated these noises and also removed the unnec-
essary spaces from the beginning and end of every text. Generating human-
readable one-word headlines that sufficiently encapsulate the news is difficult,
so it is even more difficult for the machines. So, every single one-word title in
the dataset was chosen and eliminated once the noise was eliminated. This was
achieved by splitting the titles by spaces into a list and then removing any values
that had a length of 1.

To convey pronunciation and grammatical information, Bangla text makes
use of a variety of diacritical marks. The normalizer either eliminates or

https://www.prothomalo.com/
https://www.ittefaq.com.bd/
https://www.kalerkantho.com/
https://www.bd-pratidin.com/
https://samakal.com/
https://www.dailyjanakantha.com/
https://www.dailynayadiganta.com/
https://www.dainikamadershomoy.com/
https://dailyinqilab.com/
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Fig. 1. Flowchart for data collection.

substitutes a standard form for these diacritical marks. The normalizer also
has the responsibility of eliminating punctuation entirely or replacing it with
a conventional form (e.g., a full stop “.” in place of a vertical bar “|”) because
punctuation can produce variations and inconsistencies. Furthermore, there are
a few minor variations in how Bangla characters might be written. For example,
the normalizer may change ligatures to their separate forms or convert conjuncts
to their respective forms.

Following the process of data cleaning, the BUET normalizer [1] is used to
normalize the whole dataset. The primary purpose of the BUET normalizer is
to reduce data sparsity by standardizing characters and punctuations that have
various Unicode representations. Additionally, it eliminates foreign strings that
show up on both sides of a pair-mostly sentences that have had translations done
on both sides of the pair. We carried out the remaining normalization procedure
by ourselves.

4 Experimented Models

Text summarization has always been a difficult task for machine learning mod-
els, specifically if the summarization is the headline generation of a news article.
We fine-tuned the encoder-decoder-based language models (LM) for the sum-
marization task and also fine-tuned some Large Language models (LLMs) using
Peft Lora [18].
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4.1 Fine Tuning Language Models

Let X = (x1, x2, ..., xn) represent the input sequence of tokens for a news article,
where n is the length of the input sequence. Similarly, let Y = (y1, y2, ..., ym)
represent the output summary sequence, where m is the length of the output
summary.

The Encoder portion of the model is a stack of encoder_layers. Each
encoder_layer consists of bidirectional self_attention and a multi-layer percep-
tion layer (MLP) [35]. Each layer helps the encoder to capture the contextual
representation.

Encoder: Z = Encoder(X)

where Z = (z1, z2, ..., zn) represents the contextualized input representations. Z
captures the contextual information of a given input article.

Similarly, The Decoder portion of the model is a stack of decoder_layers
where the output at each step is conditioned on the previously generated tokens.
Each decoder_layer consists of uni-directional self-attention, encoder-decoder
attention, and an MLP [35]. The decoder outputs a probability distribution over
the vocabulary at each step.

Decoder: P = Decoder(Y, Z)

where P = (p1, p2, ..., pm) represents the probability distribution over the vocab-
ulary for each token in the output summary sequence.

During training, the model is optimized to maximize the likelihood of gener-
ating the target summary sequence given the input sequence:

L(θ) =
m∑

i=1

logP (yi|y<i,X; θ)

where θ represents the parameters of the model.
During inference, the model generates the output summary sequence by itera-

tively sampling tokens from the probability distribution produced by the decoder
until an end-of-sequence token is generated or a maximum length is reached.

We used both BanglaT5 [8] and small BanglaT5 [8] to fine-tune our dataset
for this task. BanglaT5 is a sequence-to-sequence Transformer model specifically
designed for Bangla NLG tasks. It’s based on the T5 (Text-to-Text Transfer
Transformer) architecture but pre-trained on a massive Bangla text corpus. The
model can acquire general representations of the Bangla language through this
pre-training phase.

4.2 Fine Tuning Large Language Models

We fine-tuned LLMs (Llama 2, TinyLlama, and Gemma-2b) using LoRA (Low-
Rank Adaptation) [18] and PEFT (Parameter-Efficient Fine-Tuning) [38]. PEFT
is a technique focused on adapting pre-trained models to new tasks with minimal
changes to the original parameters. This reduces training time and memory usage
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compared to traditional fine-tuning approaches that heavily modify the pre-
trained model. LoRA is a specific method within PEFT that introduces a low-
rank matrix to capture the task-specific adjustments needed for fine-tuning. This
low-rank matrix requires significantly fewer parameters compared to modifying
all the parameters in the pre-trained model, leading to efficiency gains.

Let’s consider the original pre-trained model parameters as W , and the Lora-
based fine-tuned parameters as W ′. The Lora decomposition can be expressed
as:

W ′ = W + ΔW (1)

where ΔW is the low-rank update to the original parameters W . The low-rank
update ΔW is further decomposed as:

ΔW = A ∗ BT (2)

where A and B are the trainable Lora matrices with reduced rank r << d,
where d is the original dimension of the weight matrix W. Here, the rows of
A and the columns of B represent the task-specific adaptations to the original
weight matrix W .

The input article A is tokenized using the tokenizer of the chosen model. Here,
A is converted into a sequence of numerical IDs representing each word using
the tokenizer trained on the pre-trained LLM’s vocabulary. Then the tokenized
sequence is transformed by the fine-tuned model with the Lora-adapted weights
W ′ as follows:

Y = W ′ ∗ X (3)

We used the TinyLlama-1.1B [39] model to fine-tune our dataset. This model
offers versatility across applications requiring constrained computational and
memory resources. It uses 3 trillion tokens from the original Llama model in
pretraining. The other fine-tuned model is Gemma 2b [33]. It is with 2 billion
parameters. Gemma is noted for being surprisingly responsive, even faster than
the 1.1B parameter TinyLlama model. This suggests it might be optimized for
speed while maintaining good performance.

Bangla Llama. Using the HuggingFace API of the Llama 2 [34] model, we fine-
tuned the model on a single portion of the dataset (Bangla2B+ [7]) used to train
BanglaBert. Bangla2B+ is a massive corpus of Bangla text data crawled from
various popular Bangla websites (around 27.5 GB as mentioned in the research
paper). This data could include news articles, blog posts, social media content,
and other web-based text sources in Bangla.

To fine-tune, we used the PEFT-LoRA method. We also trained the embed-
dings, LM heads, and the newly included LoRA parameters for this model. The
goal is to make Bangla Llama. For this challenge, we employed the original tok-
enizer from Llama2. After fine-tuning this general-purpose dataset, we tested
our dataset using different prompting for the summarization task.
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4.3 Generation Using Prompt

We used prompting to experiment with the summarization task in various LLMs.
Prompting entails organizing the needs into a format for input that conveys the
desired results to the model, thus achieving the intended output. The chosen
models for this task are Gemma-7b, Llama 2 (without any fine-tuning), and
GPT 3.5-Turbo.

Gemma-7b and Llama 2: We used both Gemma-7b [33] and Llama 2 [34]
models for our task. We used the same prompt for both models. We tested by
using different prompts and achieved the best result using the following prompt:

Here is a Bangla Article. Provide one one-line summary for the article in
Bangla. Article: {Tokenized_Input}

GPT 3.5: Like other Transformer-based models, GPT-3.5 likely utilizes an
encoder-decoder architecture. After processing the incoming text, the encoder
records the word relationships and meanings inside it. The decoder then produces
the output text using the encoded data.

A well-crafted prompt can guide the model toward an output style, format, or
subject. We tried both zero-shot prompting and few-shot prompting for summary
generation. In the case of few-shot prompting, we provided three examples of
the model. The prompt was different from the prompt of the Gemma model. In
the following prompt, we achieved the best result from the GPT. For both types
of prompting, we used a similar style.

Prompt for few-shot:

What is the short and concise headline of the given Bengali news article
delimited by <> in Bengali while preserving the context?
The headline should be strictly restricted to one short, meaningful Bengali
sentence having accurate grammar and spelling. Only keep the generated
headline in the output. Ignore all preceding and all non-contextual English
words in output.
Here are a few examples of Bengali news articles along with their concise
one-line titles in Bengali.
Example 1: "ex1"
Example 2: "ex2"
Example 3: "ex3"
Article: <Article>

5 Experimental Setup and Result Analysis

In this experiment, we incorporated our dataset for both training and testing
and used the Potrika dataset for testing with prompts for the summarization
task. We also used the Bangla2B+ dataset for fine-tuning Llama 2. We explored
various setup configurations to achieve the best result for a specific model.
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5.1 Experimental Setup

BanglaT5. We extensively experimented to find the best setup for fine-tuning
the BanglT5 model. We trained the model for 10 epochs with the learning rate
2e−5 and weight decay 0.01. We used 8 batch sizes for low-resource GPU. We
used Kaggle’s limited version of p100 (16 GB GPU) to train the entire train
data with the stated setup. Evaluation metrics like rogue-1, rogue-2, and rogue-l
were computed.

Bangla Llama. To develop the primary version of Bangla Llama, we fine-
tuned Llama-2. We used the model with 7b parameters. 1.8GB out of the whole
Bangla2B+ dataset was used for the training. The pertaining was performed
with the Casual Language Modelling Approach, which is integrated with LoRA
adapters into the attention vectors and subsequently, we trained the embeddings,
LM heads, and the newly incorporated LoRA parameters. We used Colab 40GB
T4 GPU for this purpose. The training approach involves setting the batch size
to 64, utilizing FP16 for training precision, an initial learning rate of 2e-4, a
maximum sequence length of 512, a LoRA rank of 64, a LoRA alpha of 128 and
LoRA target modules including QKVO and MLP.

Other Models. We fine-tuned the tiny LLMs in our dataset. The process is
completed using the PEFT-LoRA method same as the Llama2. For this purpose,
we used Kaggle p100 setup for training. The setup for LoRA configuration is:
LoRa rank is 8, Lora alpha is 16 with batch size is 8 and 3 epochs.

Additionally, we choose two summarization models from the Buetnlp archive
to analyse the results of this task. These models are mT5-m2m-crossSum [6]
and mT5-multilingual-XLSum [17]. These are multilingual models pre-trained
in CrossSum [6] dataset and XLSum [17] dataset chronically. We generate sum-
marization from these models and compare the results with our findings.

5.2 Performance Metrics

Various critical performance metrics are utilized to evaluate language models
and offer valuable perspectives on their efficacy. To obtain a thorough grasp
of the model’s performance, we have concentrated our evaluation on the com-
monly used metrics. We used the ROUGE metric to evaluate our training and
testing. ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a suite
of metrics used to evaluate the quality of text summaries by comparing them
with reference summaries created by humans. We used three types of ROUGE:
ROUGE-1, ROUGE-2, and ROUGE-L. All ROUGE scores measure the overlap
(n-gram match) between the generated summary (X) and reference summaries
(R). Equation 1 defines the way of calculating the value.

ROUGE − N =
∑

count(Xn)∑
count(Rn)

(4)
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Table 2. ROUGE score evaluation for all the models on the proposed dataset. The
left column stated the types of the model.

Model ROUGE-1 ROUGE-2 ROUGE-LBertScore

Prompting Fewshot on GPT-3.5 20.1 2.12 17.32 78.24
Zeroshot on Test 20.34 2.26 17.42 74.65
Llama2-7b 8.44 0.88 5.72 68.23
Gemma-7b 6.392 1.67 6.015 71.31

LM Fine Tuned BanglaT5 25.899 4.098 23.828 81.20
Fine Tuned Small BanglaT5 21.873 3.243 20.049 85.62
mT5-m2m-crossSum 15.240 2.12 13.741 75.12
mT5-multilingual-XLSum 13.716 1.89 11.342 74.44

LLM Bangla Llama 8.97 0.92 6.27 72.76
Fine Tuned TinyLlama 2.132 0.024 1.971 61.56
Fine Tuned Gemma 2b 2.865 0.378 2.716 64.87

where, N : Denotes the n-gram size (1 for unigrams, 2 for bigrams, etc.), Xn:
Number of n-grams in the generated summary that exactly match n-grams in
any of the reference summaries, and Rn: Total number of n-grams in all reference
summaries. Firstly, ROUGE-1 measures the overlap of individual words (uni-
grams) between the generated summary and the reference summaries. Secondly,
ROUGE-2 focuses on the overlap of two-word sequences (bigrams) between the
generated summary and the reference summaries. Finally, ROUGE-L finds the
longest sequence of words that appears in both the generated summary and
any of the reference summaries. This metric doesn’t have a single equation but
involves finding the LCS (Longest Common Subsequence) length between the
summary and each reference and then taking the maximum LCS length across
all references.

We also used BERTScore for our evaluation. It evaluates text similarity by
converting text into BERT embeddings and comparing token-level cosine similar-
ities between candidate and reference texts. It then aggregates these similarities
to compute precision, recall, and F1 scores, capturing semantic meaning beyond
mere word overlap.

5.3 Result Analysis

In our investigation, we analyzed the performance of variants of the fine-tuned
BanglaT5 model and the popular LLMs. Through concise experimentation and
evaluation, we gained a gist about the performance of the T5 model and LLMs.
For comparison, we also generate other Bangla summarization models with our
dataset.

In Table 2, the performance in our dataset is shown. In comparing the per-
formance of BanglaT5 base and BanglaT5-small models, the difference proves
to be marginal, with the base model edging out its smaller counterpart by
approximately 3% in both ROUGE-1 and ROUGE-L scores across datasets.



How Good are LM and LLMs in Bangla Newspaper Article Summarization? 83

Table 3. ROUGE score evaluation for all the models on the Potrika dataset. The left
column stated the types of the model.

Model ROUGE-1 ROUGE-2ROUGE-LBertScore

Prompting Fewshot on GPT-3.5 18.61 2.28 16.76 73.74
Zeroshot on Test 20.32 2.73 18.38 73.35
Llama2-7b 8.14 0.78 5.22 65.05
Gemma-7b 5.679 1.456 5.57 69.16

LM Fine Tuned BanglaT5 25.345 4.854 23.048 76.06
Fine Tuned Small BanglaT5 22.865 4.215 20.926 74.65
mT5-m2m-crossSum 14.546 1.94 13.082 72.89
mT5-multilingual-XLSum 13.526 1.39 10.841 73.11

LLM Bangla Llama 8.37 0.8 5.67 70.03
Fine Tuned TinyLlama 1.971 0.018 1.742 60.701
Fine Tuned Gemma 2b 2.69 0.315 2.418 62.12

Notably, both BanglaT5 variants outshine other summarization models such
as mT5-multilingual-XLSum and mT5-m2m-crossSum. Conversely, among large
language models (LLMs), GPT-3.5 Turbo exhibits superior zero-shot perfor-
mance compared to all other LLMs, including fine-tuned versions like LLama
and tiny LLMs, albeit marginally outperforming the base LLama version. While
GPT-3.5 Turbo’s results approach those of T5 models, it falls short of surpass-
ing them. The disparity between GPT-3.5 Turbo and other LLMs is substantial,
with a notable gap of approximately 12% from the performance of the fine-
tuned LLama 2 version, which outperforms its base counterpart. Furthermore,
prompting solely in GPT yields better performance than other LLMs. Lastly,
while Gemma-7b surpasses LLama 2 in ROUGE-1 and ROUGE-2 scores, it lags
in ROUGE-L compared to fine-tuned LLama models. However, in the case of
BERTScore, Fine-tuned small BanglaT5 excels other models, and the rest of the
models follow a similar trend as the ROUGE-L scores.

Experimentation on Other Dataset. We also tested on the Potrika [2]
dataset in the same setup as our dataset. The performance of each model is shown
in Table 3. Here, the results show the same trends as our dataset’s performance.
Among the prompting-based approaches, GPT-3.5 variants demonstrate notable
performance, outpacing other prompting models such as Llama2-7b, Gemma-7b,
and Bangla Llama. However, fine-tuned language models (LMs) like BanglaT5
showcase superior summarization capabilities, surpassing both prompting-based
and other LM variants like mT5-m2m-crossSum and mT5-multilingual-XLSum.
Notably, Fine Tuned BanglaT5 and Fine Tuned Small BanglaT5 emerge as top
performers, underscoring the efficacy of LM fine-tuning. Conversely, fine-tuning
large language models (LLMs) like TinyLlama and Gemma 2b yields subopti-
mal results, indicating significant challenges in generating accurate summaries
for Bangla text.
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6 Conclusion and Future Works

The study on Bangla text summarization demonstrates the continued domi-
nance of fine-tuned language models over large language models (LLMs). Specif-
ically, the BanglaT5 model emerges as the most efficient choice, consistently
outperforming other models across various evaluations. In contrast, LLMs, such
as GPT, struggle to match the performance of fine-tuned models, even when
attempting to fine-tune smaller LLMs. This indicates that LLMs have yet to
reach the same level of proficiency as language models in Bangla summarization
and text generation tasks. The experimental findings corroborate these conclu-
sions, with BanglaT5 variants consistently outperforming both prompting-based
methods and other LM and LLM variants in terms of ROUGE scores. While the
GPT-3.5 Turbo model demonstrates promising zero-shot performance, it falls
short of surpassing fine-tuned models like BanglaT5, reaffirming the superiority
of fine-tuning approaches for optimizing language models in specific domains,
such as Bangla text processing.

Our future plan includes enlarging our proposed dataset to improve the effec-
tiveness of our models. We also intend to train the Llama2 model on this com-
prehensive dataset to create a state-of-the-art Bangla Llama.
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Abstract. Malicious URLs are a form of cyberattack, that manipulates individu-
als into disclosing sensitive information. Typically, Malicious URLs constitute a
minor proportion of all searchable URLs and are marked by multi-labeling and a
significant imbalance in sample data. These characteristics considerably diminish
the effectiveness and precision of existing detection methodologies. This paper
introduces LGNet, an innovative network framework designed to identify Mali-
cious URLs in practical scenarios efficaciously. To tackle the multi-labeling issue,
we have developed a label propagation algorithm that employs a confidence
threshold limitation, ensuring high-confidence labeled URLs are acquired. We
enhance the scalable tree system by using BILSTM and attention mechanism to
address the substantial disparity between labeled and sample data in Malicious
URL prediction. Our experimental results demonstrate that LGNet markedly sur-
passes existing state-of-the-art algorithms in detecting Malicious URLs.

Keywords: Malicious URLs · Label propagation · BILSTM · Attention
mechanism · Scalable tree system

1 Introduction

Malicious URLs are a prevalent online attack aiming to fraudulently acquire sensi-
tive information from network users, potentially leading to malware exposure, identity
theft, or financial loss. The detection and blocking of Malicious URLs present signifi-
cant challenges, as attackers frequently employ sophisticated techniques to circumvent
traditional detection methods [6,30,40]. Moreover, Malicious URLs are complex and
diverse, and there is no standardized labeling system to define the nature of different
types of fraud (e.g., matrimonial scams and lottery scams). These challenges are exac-
erbated by the growing number of Malicious URL attack methods.

Current researches on Malicious URLs include analyzing definitions [15], inves-
tigating human factors [33], and identifying Malicious URLs sites [35]. Traditional
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detection methods focus on training both end-users and automated software classifiers
to recognize Malicious URLs [2,32]. These methods are fast and expected to be false-
positive in cases where Malicious URLs are labeled by subjectively and objectively
collecting labeled Malicious URLs from databases [10], However, they cannot exhaus-
tively identify all labeled Malicious URLs. Additionally, manually labeling a Malicious
URL requires visiting the URL’s page, which is a very dangerous behavior. Meanwhile,
with the explosive growth of actual Malicious URLs, these methods tend to fall short in
terms of accuracy and validity, especially in failing to recognize new Malicious URLs
[13], which are becoming increasingly difficult to distinguish from legitimate URLs.

With the large number of URLs being generated every day, traditional methods
struggle due to their severe limitations. In addition, Malicious URLs are complex and
diverse, updating and iterating rapidly. They have become highly deceptive. Shallow
features are insufficient to identify Malicious URLs, and many deep features are dif-
ficult for humans to extract manually. To address such limitations, models based on
machine learning [4] and deep learning [3] have been developed to generalize the pre-
diction of new, unseen URLs. Valentim et al. [39] suggest employing Generative Adver-
sarial Networks (GAN) for enhancing Malicious URL website detection in zero-day
networks. Ozcan et al. [31] propose a hybrid model combining Long Short-Term Mem-
ory (LSTM) and Deep Neural Network (DNN) algorithms for this purpose. Notably, the
datasets in these studies typically feature a balanced or nearly balanced ratio of Mali-
cious URLs to normal URLs [1,28]. In practice, however, Malicious URLs constitute
only a small fraction of all URLs and are characterized by multi-labeling and extreme
data imbalance. This significantly reduces the efficiency and accuracy of existing detec-
tion methods.

This paper introduces LGNet, a neural network framework specifically designed
to accurately identify Malicious URLs amidst a vast array of largely unlabeled and
highly unbalanced URL data. LGNet incorporates a label propagation algorithm with a
confidence threshold limit for effective data augmentation, producing high-confidence
labeled data. Moreover, we have enhanced the scalable tree boosting systemwith a Bidi-
rectional Long Short-Term Memory (BILSTM) with an attention mechanism, optimiz-
ing our Malicious URL prediction framework. Consequently, our experimental findings
demonstrate that LGNet significantly outperforms existing state-of-the-art algorithms
in multi-classification tasks involving unbalanced datasets. The main contributions of
this paper are summarized as follows:

• We propose a novel Malicious URL detection network, namely LGNet, to address
the situation of detecting Malicious URLs with multiple labels and extreme data
imbalance in real situations.

• We design label propagation algorithms with confidence threshold constraints that
employ a small amount of labeled Malicious URL data to propagate labels on unla-
beled data.

• We propose to employ a novel two-channel, single-pooled structure using an
improved tree enhancement system to integrate multiple weak classifiers in the
detection of fishing URLs, thus improving the accuracy of detection.
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2 Related Work

2.1 Malicious URL Detection

In the domain of Malicious URL Detection, recent advancements have pivoted towards
employing sophisticated machine learning and deep learning techniques to enhance
detection accuracy and efficiency [7,8,22]. In the work by Wang et al. [41], the authors
explore the use of deep convolutional neural networks (CNNs) to automatically extract
and learn feature representations from URL strings, negating the need for manual fea-
ture engineering. This approach acknowledges the dynamic and polymorphic nature
of malicious URLs, where attackers continuously evolve their tactics to evade detec-
tion mechanisms. Another notable study by Mourtaji et al. [29] introduces a hybrid
model combining the strengths of machine learning and rule-based filtering. The model
leverages the quick response of rule-based systems for known threat patterns and the
adaptive learning capability of machine learning algorithms for new, unseen URL struc-
tures. This synergy aims to improve the overall detection rate while minimizing false
positives.

Furthermore, the integration of natural language processing (NLP) techniques has
gained traction [17,34]. The study by Buber et al. [11] employs NLP-based feature
extraction to analyze the lexical and semantic aspects of URLs, facilitating the dis-
tinction between benign and malicious web addresses. By treating URLs as natural
language strings, this approach benefits from the rich context and linguistic patterns,
improving the detection of sophisticated phishing and malware-distributing URLs.

2.2 Extremely Unbalanced Data Processing

The challenge of Extremely Unbalanced Data Processing is prevalent in malicious
URL detection due to the disproportionate ratio of benign to malicious URLs [12,20].
Addressing the imbalance is crucial for developing effective detection systems. Recent
literature has focused on innovative methods to mitigate the skewness of data distri-
bution. A significant contribution in this area is the work by Li et al. [25], which pro-
poses an oversampling technique specifically designed for imbalanced URL datasets.
Their method, based on synthetic minority oversampling (SMOTE), generates synthetic
examples of malicious URLs to balance the dataset, thereby enhancing the training
process of machine learning models and improving their generalization capabilities on
real-world data.

In the realm of deep learning, the study by Tsai et al. [38] introduces a novel loss
function tailored for unbalanced data scenarios commonly encountered in malicious
URL detection. This function, termed ‘Balanced Cross Entropy’, adjusts the penalty
for misclassification dynamically, giving more weight to the minority class (malicious
URLs) and thus addressing the bias towards the majority class (benign URLs). The app-
roach has shown to significantly improve the performance of deep learning models in
detecting malicious URLs amidst a vast majority of benign ones. Additionally, the work
of He et al. [21] explores the use of ensemble learning techniques to tackle data imbal-
ance. By combining multiple classifiers, each trained on different subsets of the data,
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their ensemble model achieves a more balanced view of the data landscape, reducing
the dominance of the majority class and improving the detection of malicious URLs.

These studies underscore the critical importance of addressing data imbalance in the
context of malicious URL detection. By developing and employing techniques specif-
ically designed to handle extremely unbalanced data, researchers and practitioners can
improve the accuracy and reliability of detection systems, ultimately contributing to
more secure online environments.

3 Methodology

In this section, we propose a novel Malicious URL detection network framework called
LGNet for detecting Malicious URLs that have an extreme imbalance in labeling and
data volume in real-world situations.

3.1 LGNet Framework

Fig. 1. LGNet Framework: The LGNet network detects Malicious URLs in the following ways:
First, a large amount of labeled data is generated by label propagation, using a small amount of
labeled URL data to label a large amount of unlabeled URL data with pseudo-labels. Then, the
labeled data is classified and detected. In the classification module, string-level and word-vector-
level feature extraction is performed on all labeled data to generate string matrices and word
matrices. The extracted features are classified through the attention mechanism with the BIlstm
framework, combined with the dual-channel single-pool structure.

Figure 1 shows the framework of our LGNet. Specifically, the LGNet network employs
a two-stage approach for detecting Malicious URLs. Initially, it generates a substantial
dataset through label propagation, leveraging a limited set of labeled URL data to assign
pseudo-labels to a vast quantity of unlabeled URL data. Subsequently, this labeled
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dataset undergoes classification and detection processes. The classification module exe-
cutes feature extraction at both the string level and word-vector level for all labeled
data, producing string matrices and word matrices. These extracted features are then
classified utilizing an attention mechanism within the BI-LSTM framework, which is
integrated with a dual-channel, single-pool structure.

To facilitate feature extraction by LGNet, URL sequences are encoded into word
vectors through a two-step process. Initially, URL data are segmented at both character
and lexical levels to generate respective corpora. These are then subjected to a dual
encoding process, producing character and lexical encoding vectors for the URLs [24].
This results in the formation of word-embedded feature vectors, constituting both word
and character matrices, crucial for subsequent extraction of semantic features.

After splitting, the URLs in the dataset consist of 96 characters, and each URL ui

is represented as a sequence of characters ej , where each character is a vector ej of
dimension m = 96. The vector is essentially a one-shot encoding, where each dimen-
sion corresponds to a character in a dictionary of size 96. The set of characters in a URL
is represented by a matrix E of size m×n, where n is the length of the URL. Each col-
umn of the matrix corresponds to a character in the URL, represented as a click vector.
And each URL constitutes a one-hot matrix E = Em×n = (e1, e2, ..., en). The matrix
E is then embedded with a single-layer neural network. The weight matrix W of this
layer has a dimension to the g ×m power, where g = 128 is the embedding dimension.
This process is essentially a linear transformation that maps click-encoded characters
into a continuous vector space. The result of the embedding process is a representation
matrix S, where each column of S corresponds to a embedding of a character in the
URL. The dimension of the matrix S is g multiplied by n, where n is the length of the
URL. The arithmetic flow is as follows:

Sc = WE =

⎡
⎢⎢⎢⎣

w11 w12 · · · w1m

w21 w22 · · · w2m

...
... · · · ...

wg1 wg2 · · · wgm

⎤
⎥⎥⎥⎦ ×

⎡
⎢⎢⎢⎣

e11 e12 · · · e1n
e21 e22 · · · e2m
...

... · · · ...
em1 em2 · · · emn

⎤
⎥⎥⎥⎦ (1)

After word vector embedding, URLs are characterized as feature vectors Xi =
(Sc

i , S
w
i ), where Sc

i is a character-level feature vector learned from ui, and Sw
i is a

vocabulary-level feature vector. Sequence vectorization makes feature-based mathe-
matical computation possible. The feature vectors of URLs will then be learned and
multicategorized.

After word embedding, the URL enters the convolutional layer, where it is con-
volved with a kernel to create multiple feature mappings. The data then goes through a
single pooling layer, where maximum pooling is applied for dimensionality reduction.
Among them, LGNet removes the pooling layer of Web2Vec [16] in the word-level
channel to prevent the pooling layer from losing the semantic information of the text
and to optimize the feature extraction of the original model.

The obtained feature data is fed into the convolutional layer. For a certain convolu-
tion kernel W , the convolution operation on the matrix Rj is computed as:

Rj = f(W ⊗ Vj:j+h−1 + b) (2)
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where f is the activation function, ⊗ represents the dot product operation, V is the
input matrix, h is the kernel size, and b is the bias. To reduce the network parameters
and extract the most important features, 1-Maxpooling is applied to the feature maps
after the convolution operation.

The attention mechanism [19] helps models focus on critical parts of the input
sequence. In URL classification tasks, URLs are variable-length sequences [26], and
some subsequences may contain crucial information, such as domain names, paths,
or parameters. By leveraging the attention mechanism, the model can prioritize these
key parts, thereby enhancing its capability to capture essential information. Traditional
recurrent neural networks [36] and BiLSTM [37] often struggle with gradient vanish-
ing or explosion when dealing with sequence data. The attention mechanism addresses
these issues by better capturing long-distance dependencies and improving the model’s
long-term memory capabilities.

In the attention mechanism, the inputs are transformed into key, query, and value
vectors. The calculation formulas are as follows:

ui = tanh(S + b)

ai =
exp(ui)∑
i exp(ui)∑

i

ai = 1

V =
∑
t

αS

(3)

where S ∈ R
f(·)×T , f(·) represents the dimension of the word vector or character

vector, b is the bias of neurons, αi is computed by applying the Softmax function to the
input scores, and V is the weighted summed feature vector. In this setup, S represents
the features, and the attention mechanism utilizes these features to compute the attention
scores and the final output vector V .

In the process of classification prediction, a scalable tree boosting system [14] is
chosen as a classifier for it is able to integrate multiple weak classifiers to obtain better
classification performance. In the given D = {(xj , yj)}(|D| = n, xj ∈ Rm, yj ∈ R)
training set, the prediction function is:

ŷj =
K∑

K=1

tk(xj), tk ∈ M (4)

where K denotes that there are K decision trees. Each basic classifier tk(xj) is in the
form of a tree, M = {M(x) = wq(x)}(q:Rm → T,w ∈ RT ) denotes the space of
decision trees, q denotes the structure of each tree, which maps an input sample x to
the corresponding leaf node, and T denotes the number of leaf nodes in each tree, each
tk corresponds to a separate tree structure and leaf weight w. Unlike decision trees,
regression trees have a score on each leaf. Here iw is used to represent the score of the
i-th leaf. To learn the set of functions in the model, the regularized objective function
can be written as:

L(θ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(tk) (5)
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Ω(t) = ζT +
1
2
λ‖w‖2 (6)

where l is the second-order differentiable loss function used to measure the error
between the true value and the predicted value. ζ is the complexity penalty term for
the tree, and the canonical term represents the model complexity to prevent overfitting.

Assuming that ŷ
(z)
i is the predicted value of the ith sample at the zth iteration, the

residuals are used to fit the loss function, denoted as:

ŷ
(z)
i = t̂

(z−1)
i + tz(xi) (7)

The objective function becomes the following equation:

L(z) =
n∑

i=1

l
(
yi, t̂

(z−1)
i + tz(xi)

)
+ Ω(tz) (8)

Performing a second-order Taylor expansion of the above equation, removing the
constant term, and defining Ij = {i|q(xi) = j} as the set of instances of the jth leaf,
the substitution collation yields the objective function to be solved as:

L̃(z) =
n∑

i=1

[
Eitz(xi) +

1
2
Hit

2
z(xi)

]
+ ζT +

1
2
λ

T∑
j=1

w2
j

=
T∑

j=1

⎡
⎣

⎛
⎝∑

i∈Ij

Ei

⎞
⎠ wj +

1
2

(∑
i∈Ik

Hi + λ

)
w2

j

⎤
⎦ + ζT

(9)

Ei = ∂ŷ(z−1)l(yi, ŷ(z−1)) (10)

Hi = ∂2
ŷ(z−1)l(yi, ŷ

(z−1)) (11)

3.2 Loss Function

The aggregate loss function comprises two distinct components: the feature loss
incurred during string and word feature extraction, and the node splitting loss incurred
during tree refinement.

Prediction Loss. Character feature and word feature extraction aim to encode the orig-
inal URLs to be processed into the network framework for classification and prediction.
In the classifier, we use a softmax classifier to predict the label ŷi from the discrete set
of categories yi after splicing the feature vectors of the two-channel output. Therefore,
the difference between the predicted and actual values can be defined as the loss during
feature extraction, defined as follows:

Lpre (θ) = − 1
N

N∑
n=1

logP (ŷi|yi; θ) (12)
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where P is the conditional probability of the model with θ indicating the parameters of
the model.

Node Splitting Loss. The above equation is used as a score function to measure the
goodness of the tree structure, and in practice, it is difficult to enumerate all tree struc-
tures q to select the one with the highest score. Therefore, a greedy algorithm is used
for node splitting. Starting from the root node as the only leaf node, branches are added
by traversing the attributes, assuming that IL and IR denote the left and right subtree
nodes after splitting, respectively. Then letting IL ∪ IR. The value of the loss that is
reduced by splitting a node is:

Lsplit (θ) =
1
2

[ (∑
i∈IL

Ei

)2
∑

i∈Il∈L
Hi + λ

+

(∑
i∈IR

Ei

)2
∑

i∈IR
Hi + λ

−
(∑

i∈I Ei

)2
∑

i∈I Hi + λ

]
− ζ

(13)

Total Loss Function. The total loss function is the sum of feature loss and node split-
ting loss. The feature loss and node splitting loss are independent of each other, so no
weights are assigned to them in this paper, denoted as follows:

Lloss = Lsplit + Lpre (14)

In addition, the node splitting process can effectively avoid the overfitting phe-
nomenon by such a pruning process, despite the losses incurred. Therefore, no addi-
tional hyperparameters are added to mitigate the overfitting phenomenon [43].

3.3 Label Propagation

In addressing the challenge of highly unbalanced datasets, this study employs label
propagation based on the threshold screening for data augmentation. Label propaga-
tion [18] occurs as category labels are transmitted from labeled to unlabeled data via
these connecting edges. Typically, label propagation is more efficient between similar
vertices, as their probability distributions tend to be closely aligned. Consequently, the
resulting categorization forms a distribution that is not constrained to a specific shape,
thereby more accurately reflecting the true data distribution. The process of label prop-
agation is executed on a weighted, undirected relational graph [23]. The weights on the
graph’s edges intuitively represent the similarity between samples, facilitating the anal-
ysis of label propagation intensity along these edges. Therefore, the preliminary step
in label propagation is constructing a graph where labeled and unlabeled samples are
interconnected through undirected edges.

Consider constructing a labeling matrix to represent the labeling changes during the
propagation process. Assuming that the sample set has a total of c category labels and l
labeled samples, therefore, this paper defines a lxc labeling matrix YL, with the ith row
denoting the labeling probability composition of the ith sample. Given an unlabeled
sample u, a labeling matrix YU of dimensions u × c is defined. So the total training



Navigating Data Imbalances in Cybersecurity 95

sample set can be represented by a labeling matrix Y T = (YL, YU ) of (l+u)×c where
the conceptual composition of the sample xi ai = (ai1, ai2, . . . , aij), aij denotes the
jth labeled conceptual part of the xi sample lj . Assume that aij > 0 and that aT

i = 1
for each sample xi. Accordingly, the labeling matrix Y is constructed as shown in the
following equation:

α(1) α(j) α(c)

↓ ↓ ↓⎡
⎢⎢⎢⎢⎢⎢⎣

α11 · · · α1j · · · α1c

...
. . .

...
. . .

...
αi1 · · · αij · · · αic

...
. . .

...
. . .

...
αn1 · · · αnj · · · αnc

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

αT
1
...

αT
i
...

αT
n

⎤
⎥⎥⎥⎥⎥⎥⎦

← x1

← xi

← xn

(15)

In the initialization of matrix Y, the initial value of the unlabeled data labels in this
paper is taken as 0. The formula for generating the matrix Y is shown in the following
equation:

aij =

⎧
⎨
⎩

1
|Yi| , lj ∈ Yi

0, otherwise
(16)

During label propagation, the label matrix should preserve the samples’ label prob-
ability distribution. For test samples, the labels with the highest probability values are
selected as the predicted labels. With one label propagation, the category labels will be
propagated from labeled data to unlabeled data, and if the distribution of the training
data satisfies the real data distribution, then the unlabeled data will play a role in helping
to improve learning.

4 Experiments

4.1 Data Preprocessing

In this paper, we examine the data from three datasets provided by the Mobile Innova-
tion Institute, identifying a significant imbalance among them. Normal websites account
for the vast majority of the data set, the total number of data for other labels does not
add up to more than 30,000, and the amount of data for different labels also varies
greatly, with some exceeding 10,000 and others not even exceeding ten. To mitigate
this imbalance, we initially employs a semi-supervised learning model to augment cat-
egories with fewer data points. Subsequently, we apply data augmentation techniques
to further rectify the data imbalance, resulting in a more evenly distributed dataset.
The final dataset division allocates 80% for training and 20% for testing. Following the
labeling and classification of these datasets, we present a comprehensive data overview
in Table 1:

To verify that our dataset represents a real problem rather than an artificial con-
struction of multi-categorical and unbalanced data, we compared LGNet with several
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Table 1.Data tagging and classification about URLs. Types represent the categorization of URLs,
including normal URLs and different types of Malicious URLs, and Numbers represent the num-
ber of different types of URLs in the dataset.

Labels Types Numbers

1 Normal 8509522

2 Shopping 22

3 Dating 17780

4 Counterfeit Identity 173

5 Phishing 4658

6 Impersonation of Lawyers 2

7 Platform Fraud 2603

8 Recruitment 11

9 Killing Plate 883

10 Betting and Gambling 595

11 Credit management 998

12 Swipe fraud 549

13 Lottery Scam 7

Table 2. Benchmark comparison of different Malicious URL detection methods, deeper color is
the best result.

Model Accuracy↑ F1↑ AUC↑ Score↑
Phishnet [32] 0.453 0.456 0.502 0.513

MPURNN [9] 0.836 0.825 0.848 0.857

URLNet [24] 0.896 0.899 0.945 0.954

DNN-LSTM [31] 0.908 0.914 0.953 0.964

Aljofey et al. [5] 0.911 0.913 0.953 0.967

Web2Vec [16] 0.925 0.925 0.959 0.975

LGNet 0.974 0.965 0.984 0.988

other methods. These include a traditional phishing URL detection method, Phishnet
[32], and five machine learning methods: MPURNN [9], URLNet [24], DNN-LSTM
[31], Aljofey et al. [5], and Web2Vec [16]. The comparisons were conducted on our
dataset and two traditional phishing URL detection datasets, ISCX-URL2016 [27] and
the Phishtank data collected by Yasin et al. [42]. All experiments were performed using
an NVIDIA GeForce GTX 1650 GPU.

4.2 Experimental Results

To validate the effectiveness of our method, we compare it with several state-of-the-art
methods for detecting Malicious URLs, including a traditional software URL classifier
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Table 3. Comparison of F1 and scores of LGNet with the next best scoring state-of-the-art model
under the Specific Fishing URL tab. Deeper colors represent better results.

Types F1↑ Score↑
Web2Vec LGNet Web2Vec LGNet

Normal 0.96 0.96 0.98 0.99

Shopping 0.88 0.92 0.93 0.97

Dating 0.87 0.92 0.91 0.96

Counterfeit Identity 0.97 0.98 0.98 0.99

Phishing 0.89 0.94 0.92 0.99

Impersonation of Lawyers 0.96 0.96 0.98 0.99

Platform Fraud 0.85 0.91 0.93 0.98

Recruitment 0.94 0.97 0.97 0.99

Killing Plate 0.93 0.95 0.95 0.99

Betting and Gambling 0.97 0.96 0.99 0.99

Credit management 0.92 0.95 0.96 0.98

Swipe fraud 0.96 0.96 0.98 0.99

Lottery Scam 0.95 0.97 0.97 0.98

Phishnet [32], and five machine learning methods, including MPURNN [9], URLNet
[24], DNN-LSTM [31], Aljofey et al. [5], and Web2Vec [16]. We used our dataset to
retrain these Sota models. There are four metrics to compare the strengths and weak-
nesses of the fishing URL prediction models, including accuracy, F1, AUC, and total
score. The accuracy is the rate at which the model correctly predicts Malicious URLs.
The F1 score is the harmonic mean of the check accuracy and recall rates, and the AUC
value is the sum of the areas under the ROC curve. The final score is a suitable per-
formance metric based on the area under the precision-recall curve (P-R curve). In the
paper, we define the score as formula 17. There is a trade-off between recall and accu-
racy, where increasing recall usually leads to decreasing accuracy. The performance of
the model at different levels of recall is reflected by a weighted average of the accu-
racy of the three working points 0.7, 0.8, and 0.9. The formula 17 indicates that we
pay more attention to points with low recall, where a higher score represents capturing
more Malicious URLs. By prioritizing low recall, we aim to minimize underreporting
and mitigate potential risks. Higher values of accuracy, F1, AUC, and total score prove
that the model predicts Malicious URLs with better quality.

Score = 0.5 × PR=0.7 + 0.3 × PR=0.8 + 0.2 × PR=0.9 (17)

Table 2 compares the numerical results of our LGNet with the state-of-the-art
method. As illustrated in Table 2, our LGNet searches through a large number of URLs
to predict Malicious URLs with multi-labeling and extremely unbalanced sample data
significantly outperforms other methods in all four metrics. The comparison results
demonstrate that our LGNet exhibits significantly higher accuracy in detecting mali-
cious URLs on real networks.
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Table 4. Accuracy detection results of different malicious URL detection models on classical
datasets.

Model ISCX-URL2016 Phishtank

Phishnet [32] 0.746 0.738

MPURNN [9] 0.947 0.942

URLNet [24] 0.913 0.887

DNN-LSTM [31] 0.914 0.892

Aljofey et al. [5] 0.984 0.921

Web2Vec [16] 0.975 0.925

LGNet 0.981 0.917

In the Malicious URL detection process with multiple labels and extremely unbal-
anced data, the overall detection accuracy may not represent the Malicious URL detec-
tion accuracy for each specific label. To verify the superiority of our LGNet in actual
detection processes, we compared it with Web2Vec, the second-best SOTA model in
overall score comparisons. We subdivided and analyzed their F1 scores and specific
scores for each type of tag. Table 3 shows the results of the comparison between LGNet
and Web2Vec in each type of tag. It can be seen that our LGNet is superior to Web2Vec
in detecting Malicious URLs for most specific tags. In particular, the detection scores
for each specific type of tag exceed 0.97, indicating that our LGNet has a superior per-
formance in Malicious URL detection.

To demonstrate that our model’s superior detection results stem from LGNet’s effec-
tiveness in feature extraction and handling multiple categories and imbalances in mali-
cious URLs, we applied a confusion matrix heat map to compare its detection results
with Web2Vec, as shown in Fig. 2. Figure 2 shows that our approach focuses on each

(a). Confusion matrix heat map of feature ex-
traction model detection results for Web2Vec
processing of multi categorical unbalanced
datasets

(b). Confusion matrix heat map of feature ex-
traction model detection results for LGNet
processing of multi categorical unbalanced
datasets

Fig. 2. Confusion heat matrix plot. Each cell on the diagonal of the confusion heat matrix indi-
cates the number of samples correctly classified by the model. Brightly colored regions indicate
correct classification, and the shade of the color reflects the accuracy of the classification.
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category in the unbalanced dataset simultaneously, which improves the accuracy of
multi-category identification. Also, from the color or value of the non-diagonal region,
it can be seen that our method has a lower color in this region, and more intuitively,
the value of this region is smaller in the figure, indicating that our method has a lower
misclassification rate.

To ensure that LGNet’s superior performance is not confined to the multi-labeled
and highly unbalanced datasets we used, we compared it with the current SOTAmethod
on a widely-used phishing website detection dataset. The results, as shown in Table 4,
show that our model achieves comparable results with the current SOTA method on
the frequently used phishing website detection dataset, and even better results on some
datasets. We analyze the results and find that the better performance of LGNet is due
to its superior classification ability, which allows it to still perform better for malicious
URL detection in the general classification case.

4.3 Ablation Experiments

To test the effectiveness of our LGNet in detecting malicious URLs, we validated it
with ablation experiments. The experiment is conducted in two phases. In each phase,
we validate and analyze the detection accuracy, F1 score, recall value, and precision
value.

Phase I: In this phase, no attentional mechanism was used.
Phase II: In this phase, the attention mechanism is introduced and label propagation

is included.
The results of the experiments are shown in Fig. 3. The CNN-BILSTM in the first

phase outperforms the SOTA in accuracy, recall, and f1-score, and is only slightly
lower than the CNN-LSTM in precision. In the second phase, by introducing the atten-
tion mechanism and label propagation, CNN-BILSTM attention with label propagation
achieves SOTA in all four metrics.

(a). LGNet ablation experiments without at-
tention mechanisms and label propagation

(b). LGNet ablation experiments incorporat-
ing attention mechanisms and label propaga-
tion

Fig. 3. Ablation Experiments of LGNet

Ablation experiments in Fig. 3 validate the significance of LGNet’s components.
In the absence of attention mechanisms and label propagation (Phase I), LGNet still
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surpasses the state-of-the-art in some metrics. However, incorporating attention mecha-
nisms and label propagation (Phase II) results in further improvement, achieving state-
of-the-art performance in all evaluated metrics.

Overall, the study establishes LGNet as a robust and effective method for detect-
ing malicious URLs, outperforming existing state-of-the-art approaches across multiple
datasets and scenarios. The ablation experiments further underscore the importance of
attention mechanisms and label propagation in enhancing the model’s performance.

5 Conclusion

In this paper, we propose a neural network framework, LGNet improving the accurate
identification of Malicious URLs in a large amount of actual unlabeled URL data with
a highly unbalanced sample size. Our LGNet employs a label propagation algorithm,
implying it can apply semi-supervised learning to obtain new data with high-confidence
labels. We improve the scalable tree enhancement system to obtain a better prediction
framework for Malicious URLs in the prediction. Experimental results show that our
LGNet significantly outperforms other SOTA methods in prediction results.
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Abstract. We propose contour-guided context learning (CCL) for bilin-
gual scene text recognition (STR). The CCL framework consists of three
parts: Contour Guided Transformer (CGT), Contextual Learning Trans-
former (CLT) and Multimodal Transformer (MMT) for fusion. CGT
embeds a CLIP image encoder and utilizes CLIP’s pre-training capa-
bilities to capture contour features from input images, and CLT embeds
a CLIP text encoder to correct contextual errors. The fusion network
incorporates attention features extracted by Transformer to enhance text
recognition performance. Unlike most STR methods that only target
English, the proposed CCL is designed to handle both English and Chi-
nese and can handle irregularly shaped scene text. We conduct a com-
prehensive evaluation on Chinese and English benchmark datasets to
validate the performance of our approach against state-of-the-art meth-
ods.

Keywords: Scene Text Recognition · CLIP · Contour-guided
transformer

1 Introduction

Scene Text Recognition (STR) has a broad scope of applications, includ-
ing mobile scanning, surrounding understanding, assistive guidance, and oth-
ers. It has received increasing attention in recent years. However, most STR
approaches suffer from the following limitations among others. Firstly, most
only work for English and unintentionally ignore other languages. Since Chinese
is another popular language with complicated geometric shapes, we focus on
both English and Chinese in our study. Secondly, most work for texts of regu-
lar shapes/qualities and often fail to handle texts of irregular shapes (rotated,
curved, blurred, or occluded). We, therefore, propose the Contour-guided Con-
text Learning (CCL) to address these issues. To avoid misunderstanding, the
context of this paper means symbol-level context. The CLT model aims to refine
the possible spelling error from CGT.

The proposed CCL is composed of two CLIP-embedded transformers, namely
the Contour-guided transformer (CGT) and the Context-learning transformer
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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(CLT), and a fusion network. As CLIP shows remarkable zero-shot capacity
across various vision-language tasks [25], the embeddings of the CLIP image
encoder and text encoder offer effective coherence between images and texts. We
train the CGT to extract the geometrical traits of the character contours and
the attention features between images and texts, making it capable of handling
texts of irregular shapes and poor image quality. Although Chinese characters
appear more complicated than English characters in geometrical properties, the
CGT is trained to handle both languages appropriately. On the other hand,
the CLIP-embedded CLT explores the embeddings of the CLIP text encoder to
correct occasional recognition errors in individual characters from the CGT. The
fusion network fuses the attention features from the CGT and CLT to render
the overall recognition output.

We use the Chinese Scene Text Competition (CSTC) dataset [5], which
offers 17,943 text images to evaluate the performance in Chinese, and six
English datasets, namely, IIIT5K (IIIT) [22], ICDAR2013 (IC13s) [19], SVT [33],
ICDAR2015 (IC15s) [18], SVTP [24], and CUTE80 (CUTE) [26] to evaluate the
performance in English. We compare our approach with other state-of-the-art
methods on these benchmarks.

The contributions made by this work can be summarized as follows.

– The proposed Contour-guided Context Learning (CCL) is verified effective
in handling bilingual STR, especially so for Chinese, as Chinese shows more
complexity in contour than English.

– The strength of the CLIP pretrained image and text encoders is verified
through the handling of the domain gap between synthetic data and real
scene data of irregular shapes and various image qualities.

– The proposed approach outperforms other state-of-the-art methods for Chi-
nese STR, and demonstrates competitive performance for English.

In the following, we will first present related work in Sect. 2, then our approach
in Sect. 3, then the experiments in Sect. 4, and a conclusion in Sect. 5.

2 Related Work

Scene text recognition methods can be generally divided into two categories,
language-free and language-based. The language-free methods extract visual
characteristics and do not consider context relationships [1,11,15,30]. The
language-based methods consider the context information from language models
to improve visual model prediction [2,6,9,23,29]. Since language-based methods
consider context information to enhance performance, they often outperform the
language-free and become an important family of approaches, such as ABINet
[9], which uses a multi-modal fusion manner to leverage the vision and language
model, MATRN [23] identifies visual and semantic feature pairs and encodes
spatial information into semantic features, enables interactions between visual
and semantic features for better recognition performances.
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The proposed CCL is inspired by the work that embeds pretrained vision-
language models, such as CLIP [25] and ALIGN [17], which demonstrate impres-
sive generalization capabilities. VLMs that have been pre-trained on exten-
sive collections of image-text pairs exhibit numerous intriguing characteristics
[10,25,28]). Notably, certain neurons within CLIP demonstrate the ability to
comprehend both visual and textual representations of the same concept. [10]
identifies specific neurons within CLIP that react to both images of Spiderman
and the textual input “spider”. Wherein VLMs prioritize textual content over
the natural objects depicted in an image.

The proposed CCL belongs to the language-based family. We observed that
state-of-the-art research seldom addresses bilingual STR, and we thus include
traditional Chinese in our study. Intricate geometric shapes and a vast char-
acter set characterize traditional Chinese characters, posing threats to many
approaches. To tackle this challenge, we refer to the MSTR [30] and CLIP [25]
when developing the CCL framework. The MSTR employs a mask branch to
enhance the resilience of complex and blurred images, while CLIP demonstrates
exceptional generalization capabilities across diverse tasks, particularly in chal-
lenging STR tasks [18,24,26]. In this study, we leverage the mask branch and
CLIP when developing the proposed approach.

3 Proposed Approach

The proposed CCL is composed of 3 parts: a Contour-guided transformer (CGT),
a Context-learning transformer (CLT), and a Multi-Modal Transformer (MMT)
for fusion. The configuration is shown in Fig. 1. CGT is a visual module, CLT is a
language module, and MMT is a module that fuses visual and language module
predictions. The overall workflow is that we first enter the scene text image Is
into CGT to make a visual-attention feature fv and a visual model prediction
p̂v(“ ” in Fig. 1) as outputs. fv contains the features of the contour mask
mi and the visual features If generated by the pretrained CLIP image encoder
Ci. We then enter p̂v into CLT, which is composed of the pre-trained CLIP
text encoder Ct and a transformer decoder Ld, to generate a language-attention
feature fl. MMT fuses the visual-attention feature fv and language-attention
feature fl to produce the final prediction P̂f .

The training of the CCL is composed of two phases. In Phase 1, the whole
system is trained on the synthetic data with contour mask mi GT available, and
we can train the segmentation model. In Phase 2, we train the whole system on
the real data and will not update the segmentation model weight.

3.1 CLIP

CLIP, which aggregates 400 million image-text pairs without human annotation
for model pretraining, has demonstrated significant potential in learning trans-
ferable knowledge and open-set visual concepts. During training, CLIP utilizes
a contrastive loss to learn a joint embedding space for both modalities. For each
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Fig. 1. CCL consists of three components: a contour-guided transformer (CGT) for
handling visual aspects of contour guidance, a context-learning transformer (CLT) for
context learning, and a multi-modal transformer for multi-modal fusion (MMT).

image in a batch of image-text pairs, CLIP maximizes the cosine similarity with
the corresponding text while minimizing it with all other non-matching texts.
Similarly, for each text, the loss is computed in the same manner as for each
image. This process enables CLIP to perform zero-shot image recognition. In
CLIP, the text and image features are aligned within a joint image-text embed-
ding space. The text encoder in CLIP is a transformer encoder [7,32], and the
text tokenizer uses lower-cased byte pair encoding (BPE) [27] with a vocabulary
size of 49,152.

The CLIP image encoder is a vision transformer (ViT) [8]. For an image,
ViT employs a visual tokenizer (convolution) to convert non-overlapping image
patches into a discrete sequence. The CLIP image encoder typically returns the
feature of the [CLASS] token, but in this work, we return features of all tokens.
These features are also normalized and linearly projected into the joint image-
text embedding space. Generally, we use a ViT-B/16 (patch size 16× 16) as the
image encoder.

3.2 Contour-Guided Transformer

The Contour Guided Transformer (CGT) consists of a contour segmentation
model, dual-clip pre-trained encoder and decoder structures. The contour seg-
mentation model will transfer Is ∈ R5122 to the contour mask mi ∈ R5122 . The
model process first inputs Is and mi respectively into the dual-clip pre-trained
encoder. The first pre-trained encoder is denoted as Ci, the input of Ci is Is,
and the output is Is features If , and the second pre-trained encoder is denoted
as Cm, the input of Cm is the contour mask mi, and the output is the mi feature
(mf ). Since the contour mask feature mf can capture the contour of each char-
acter on Is, we propose to use the contour mask mi to enhance the character
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Fig. 2. Segmentation model structure.

features and the position accuracy of each character. To fuse character contour
features mf into image features (If ), we design a contour-guided transformer
decoder Td. We use If as keys and values and mf as query. The contour query
cross-attention is calculated as follows:

CrossAttention(mf , If , If ) = softmax(
mf · Itf

d
) · If (1)

where d is the scale factor, given that the contour mask aims to capture the
contour of each character, we use the contour mask feature mf as a query to
make the contour feature the image feature of interest.

The segmentation model Sm follows a U-Net architecture. The U-Net
encoder, En, consists of 5 residual blocks that downsample the input image
into feature ci. The U-Net decoder, De, includes five convolutional layers that
upsample the feature ci, resulting in a segmentation mask mi with dimensions [1,
32, 128]. During the upsampling process, skip connections are used to concate-
nate features from corresponding downsampling levels, preserving information
extracted at various stages. The structure of the segmentation model is illus-
trated in the Fig. 2. The output of the segmentation mask mi is a binarized
image, where the white regions represent the character and the black regions
represent the background.

The Transformer decoder consists of 3 blocks, each block consists of a self-
attention layer, a cross-attention layer and an MLP. The loss functions used to
train the segmentation model Sm are weighted binary cross-entropy Lwbce, dice
loss Ld and Laplacian pyramid loss [4] Llap. Here is an explanation of the loss
function we use in our segmentation model:

WBCE Loss is designed to minimize the discrepancy between the probability
distributions of the predicted contour mask m̂i and those of the ground-truth
contour maskmi, respectively, computed across all pixels.

Lwbce = −
Np∑

i=1

[w1 · yi log(pi) + w2 · (1 − yi) log(1 − pi)] (2)
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where Np represents the total number of pixels, w1 and w2 are weights to adjust
the contributions of positive and negative samples to the loss, respectively. yi is
a binary indicator from mi, and pi is the predicted probability of m̂i.

Dice Loss [31] is often used in segmentation tasks to minimize the similarity
between the predicted contour maskmi and their ground-truth contour maskmi.

Ld = 1 − 2|mi ∩ m̂i|
|mi| + |m̂i| (3)

Laplacian Pyramid Loss [4] aims to reduce the disparities in structural details
between the generated contour mask and the ground truth. This loss enhances
the clarity of edges and shape details in the generated masks, thereby improving
the overall quality.

Llap =
Nl∑

i

2i−1 · ∥∥Li(mi) − Li(m̂i)
∥∥2 (4)

Nl denotes the number of layers in the pyramids (we selected Nl = 3 from a
comparison experiment). Li(·) represents the ith level Laplacian pyramids.

In Phase-1 training, we train the Contour-guided transformer on the synthetic
data using the loss function λwbceLwbce + λdLd + λlapLlap, where λwbce, λd, and
Llap are determined in the experiments.

3.3 Context-Learning Transformer and Fusion Model

The input to the context learning transformer CLT is the visual prediction of
p̂v from CGT . The role of CLT is to refine the visual model prediction p̂v. For
example, in Fig. 1, CGT predicts incorrectly in the third character “ ” to the
character “ ”, CLT uses contextual information and refines the error Forecasts
from CGT .

The model workflow inputs the CGT prediction p̂v to the clip pre-trained
text encoder, and outputs the text feature lf . The next step is to feed (lf ) into
the converter decoder. The structure is the same as CGT’s transformer decoder
Td, Td is the language feature fl, and the prediction result is p̂l.

After we get the feature fv and fl, we use a Multi-Modal Transformer (MMT)
as a fusion model; our multi-modal transformer is comprised of a stack of 2
blocks, where each consists of a self-attention layer and an MLP. The visual and
semantic features are first concatenated and processed through the self-attention
layer. The MMT output is p̂v and p̂l fusion weight vb, vb = MMT([fv, fl]), vb is
a trainable weight to tune the relative importance between p̂v and p̂l by MMT,
and we fuse as below.

p̂f = vb ⊗ p̂v + (1 − vb) ⊗ p̂l (5)

As CGT’s prediction p̂v, CLT’s prediction p̂l and MMT’s prediction p̂f can all
be used to compute the cross entropy loss for text recognition with the ground-
truth x = [x1, x2, ..., xd] provided (where d ≤ dl is the text length and xj ∈
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Fig. 3. Samples from the CSTC dataset (“top half”) and our generated Chinese and
English synthetic dataset with contour mask (“bottom half”).

Rvc is the one-hot vector for each ground-truth character), vc is the number of
character classes, vc is defined as 36 for English, and 765 for Chinese in this
study, dl is the maximum length of the character considered. We would compare
the performance using these three feature codes in the experiments. In Phase-2
training on the real data, we consider the following total loss L:

L = λvLV + λlLl + λfLf (6)

where Lv = −1
d

d∑

j=1

xt
j log(p̂v(:, j)) (7)

p̂v(:, j) is the jth column vector of p̂v. Ll and Lf take the same form as (7) but
with p̂v replaced by p̂l and p̂f , respectively. λv, λl, and λf are balanced factors,
which are determined in the experiments.

4 Experiments

4.1 Datasets and Protocols

The proposed CCL requires two training phases, one depending on synthetic data
where the masks are available and the other depending on real data for practical
application. We refer to the SRNet [35] for the synthetic data generation. To
generate Chinese synthetic data, we first crawled the web with arbitrary key-
words, obtained 31k text lines, and selected the text lines with characters under
25. The text lines were used to make binary images with randomly selected font
types. All binary text images were rotated in yaw, pitch, and roll to increase the
orientation diversity and used as the contour character masks. We used the back-
ground images provided by [35] and weighted sum the background images and
contour masks to form the synthetic data, ending up with 300k Chinese text
images (CS). Similarly, we generated another 300k English text images (ES)
using the text lines in the English corpus from the WikiText-103 [21]. Figure 3
shows some samples of our synthetic dataset in English and Chinese.
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For handling English, we first trained the Contour-guided transformer CGT
on the synthetic data, then trained the whole model on the MJSynth (MJ) [16]
and SynthText (ST) [13] datasets, and then tested the model on the IIIT5K
(IIIT) [22], ICDAR2013 (IC13s) [19], SVT [33], ICDAR2015 (IC15s) [18], SVTP
[24], and CUTE80 (CUTE) [26]. The CSTC dataset also provides 17,108 English
samples. We split it into a training set and testing set of 12,914 and 4,194 images,
respectively, following the data splitting protocol used in [36]. We named the
training set as CSTCen

train and testing set as CSTCen
test.

For Chinese, we also first trained CGT and the whole system on the synthetic
data, then the whole model on the CSTC training set (CSTCch

train), and then
tested on the CSTC testing set (CSTCch

test). The CSTC dataset for Chinese STR
offers 17,943 text images. We split it into a training set of 13,740 images and a
testing set of 4,203 images with the same splitting rule used in English. Samples
from the CSTC are shown in Fig. 3. In addition, we merged the training set and
testing set of both languages in the CTSC dataset as CSTCen−ch

train and CSTCen−ch
test

for bilingual experiments.

4.2 Ablation Study

The ablation study was conducted to compare the performance of different set-
tings in our proposed CCL, including the contour mask mi, the influences of
different loss functions, and the influences of the CLIP (CLIP-ViT-B/16) pre-
trained model. Table 1 shows the performance comparison on Chinese dataset
CSTCch

test dataset and on English benchmarks (SVTP), the performance is mea-
sured by word accuracy. Word accuracy indicates that each character in the
predicted word needs to be the same as the GT word. For example, if the input
image GT text is “style”, and the model predicts “style”, this case is correct; if
the predict is “style”, it is incorrect. Table 1 reveal the following observations:

– The contour mask Mi aims to obtain the character shape and reduce the
background noise of the input image. And Llap, as one of the Mi loss func-
tions, can improve the edge and structural details of the generated Mi. Exper-
iments show that the contour mask Llap is an effective component of accu-
racy in the Chinese dataset CSTCch

test and the English benchmark SVTP The
improvement is minor. The reason is that Chinese characters have complex
geometric shapes. Many Chinese characters look similar but have different
meanings. Mi is an effective component to obtain the geometric shape of
Chinese characters.

– Lcon is inspired by the idea of contrastive learning. We introduce the con-
trastive loss proposed by [39]. Unlike the English alphabet, which has only
26 letters, Chinese has thousands of characters, and different instances of the
same character exhibit different appearances, such as different fonts, orienta-
tions, and other effects. Therefore, the model must learn each Chinese char-
acter in the sample, limited to English letters. Contrastive loss helps build an
implicit and unified character-level representation for each character category
during training. It can be seen that there is a slight performance improvement
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on the English data set (SVTP), but there is a significant improvement on
the Chinese data set (CSTCch

test). To validate the effectiveness of contrastive
loss in learning character features, we perform dimensionality reduction on
position-aware features and use t-SNE to visualize the distribution of dif-
ferent character features. Figure 4 shows the feature distribution of different
Chinese characters.

– The CLIP (CLIP-ViT-B/16), we use the CLIP-ViT-B/16 pretrained model.
The experiment shows that CLIP can significantly improve accuracy on both
Chinese and English datasets. In Table 4, we observe that CLIP is good at
irregular (rotated, curved, blurred) and non-frontal viewpoints image recog-
nition; this is the reason why CLIP can improve on both Chinese and English
datasets.

– The below experiment is to evidence the language model CLT can improve
the overall prediction accuracy. Table 2 shows the performance evaluation on
the Chinese dataset CSTCch

test and the English dataset CVTP. p̂v is CGT
prediction accuracy, p̂l is CLT accuracy, and p̂f is final accuracy. Table 2
shows that CLT can improve recognition accuracy in English and Chinese
datasets.

Table 1. Ablation study of different components. Boldface shows the best perfor-
mance. The baseline model, in addition to removing two loss functions. The wo/clip
version replaces the Two CLIP image encoders with ResNet [14], and the one CLIP
text encoder is converted to a regular transformer architecture. The absence of contour
means the segmentation model is removed; originally, cross attention was performed
between mi and If , but now If performs self-attention.

Baseline Contour(Mi) Llap Lcon CLIP CSTCch
test SVTP

� – – – – 73.8 88.9
� � – – – 75.2 89.1
� � � – – 77.2 89.2
� � � � – 79.4 89.9
� � � � � 83.4 91.2

4.3 Comparison with Previous Methods

In order to clearly assess the performance of various languages, we divide the
comparison into three distinct parts. The evaluation of Chinese language per-
formance CSTCch

test is presented in Table 3, while the benchmark performance
for English is displayed in Table 4. Additionally, the performance on bilingual
datasets can be found in Table 5. Below, we provide detailed observations for
each table:
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Table 2. Performance comparison of different module prediction.

Module SVTP CSTCch
test

p̂v 87.4 77.6
p̂l 42.3 17.0
p̂f 91.2 83.4

– Performance on the Chinese CSTC Dataset: Table 3, Fig. 5 and Fig.
6 presents the performance comparison with other methods on the CSTCch

test

dataset. All approaches followed the same protocol: training on synthetic data
and then retraining on the Chinese CSTC training set (CSTCch

train). A funda-
mental disparity between Chinese and English lies in the nature of Chinese
characters, symbolic representations with distinct meanings. Many Chinese
characters exhibit visual similarities but convey different meanings, posing
additional challenges for recognition. As demonstrated in the ablation study,
the contour mask and Llap play crucial roles in extracting Chinese charac-
ter contours, while Lcon effectively distinguishes between different character
features. Hence, our CCL model outperforms other methods, showcasing sig-
nificant improvement.

– Performance on the English Benchmark Datasets: Table 4 displays the
performance of CCL on six English benchmark datasets compared to other
methods trained on MJSynth and SynthText. We categorize the datasets into
two types: regular and irregular. The regular type comprises IIIT5K, SVT,
and IC13S, consisting primarily of data with frontal viewpoints and minimal
orientation variations. In contrast, the irregular type includes SVTP, IC15S,
and CUTE; this type encompasses non-frontal viewpoints, rotated, curved,
blurred, or occluded data. The irregular type presents a more diverse distri-
bution and poses significantly greater challenges for recognition. According to
the experiments, our approach performs better than other methods on irreg-
ular data. This is mainly due to the CLIP model and Lcon, which improve
the accuracy of complicated text. Additionally, our model has also achieved
competitive results on regular data. These experimental results demonstrate
that our model can robustly perform on both regular and irregular data. Since
the CUTE, SVTP, and IC15 datasets are irregular datasets, our method out-
performs the other methods on irregular datasets.

– Performance on the Bilingual CSTC Dataset: The performance com-
parison with other methods on the bilingual dataset (CSTCen−ch

test ) is depicted
in Table 5. When assessing the recognition performance of the model on the
bilingual dataset, we initially determine the accuracy of the model on the
Chinese dataset (CSTCch

test) and the English dataset (CSTCen
test) separately,

and then compute their average. All methods followed the same protocol:
training on synthetic datasets (ES+CS) and retraining on the CSTCen−ch

train

dataset. CCL demonstrates superior performance over others by a significant
margin in most cases, underscoring the effectiveness of our approach. The
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Fig. 4. Visualization for the character feature distribution. The second row demon-
strates the feature distribution of visually alike characters.

main reason why CRNN [29], TRBA [2], and DAN [34] perform quite poorly
is that they cannot recognize Chinese recognition; since the bilingual recogni-
tion output class includes Chinese characters and English letters, the CRNN
[29], TRBA [2], and DAN [34] will recognize Chinese scene text to English.
Therefore, they could improve in this bilingual situation.

Table 3. Performance comparison with other methods on CSTCch
test dataset.

Methods Train Data CSTCch
test

CRNN [29] CS + CSTCch
train 51.1

TRBA [2] CS + CSTCch
train 69.7

DAN [34] CS + CSTCch
train 60.7

ABINet [9] CS + CSTCch
train 73.7

MATRN [23] CS + CSTCch
train 74.8

LevOCR [6] CS + CSTCch
train 70.9

CCL CS + CSTCch
train 83.4
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Table 4. Text recognition accuracy (%) comparison on different benchmarks. Bold-
face shows the best performance and second best with underline.

Methods Train Data IIIT5K SVT IC13S SVTP IC15S CUTE Avg.

CRNN [29] MJ+ ST 78.2 80.9 89.4 70.0 69.4 65.5 75.5
TRBA [2] MJ+ ST 87.9 87.5 92.3 79.2 77.6 74.0 83.08
DAN [34] MJ+ ST 94.3 89.2 93.9 80.0 74.5 84.4 86.05
RobustScanner [38] MJ+ ST 95.3 88.1 94.8 79.5 77.1 90.3 87.51
SATRN [20] MJ+ ST 96.0 91.8 97.1 88.4 84.2 89.9 91.23
SRN [37] MJ+ ST 94.8 91.5 95.5 85.1 82.7 87.8 89.56
ABINet [9] MJ+ ST 96.2 93.5 97.4 89.3 86.0 89.2 91.93
MSTR [30] MJ+ ST 96.1 94.4 96.5 88.4 85.8 91.7 92.15
MATRN [23] MJ+ ST 96.6 95.0 97.9 90.6 86.6 93.5 93.36
LevOCR [6] MJ+ ST 96.6 92.9 96.9 88.1 86.4 91.7 92.1
PARSeqA [3] MJ+ ST 97.0 93.6 96.2 88.9 86.5 92.2 92.4
SIGAT [12] MJ+ ST 96.6 95.1 96.8 90.5 86.6 93.1 93.1
CCL MJ+ ST 97.5 95.1 97.3 91.2 87.6 95.5 94.03

Table 5. Performance comparison with other methods on bilingual CSTC dataset
(CSTCen−ch

test ).

Methods Train Data CSTCen−ch
test

CRNN [29] ES + CS + CSTCen−ch
train 18.2

TRBA [2] ES + CS + CSTCen−ch
train 26.8

DAN [34] ES + CS + CSTCen−ch
train 32.1

ABINet [9] ES + CS + CSTCen−ch
train 79.2

MATRN [23] ES + CS + CSTCen−ch
train 80.9

LevOCR [6] ES + CS + CSTCen−ch
train 43.4

CCL ES + CS + CSTCen−ch
train 82.2

Fig. 5. Prediction comparison on the blurred samples.
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Fig. 6. Prediction comparison on the vertical samples.

5 Conclusion

Our innovation, Contour-guided Context Learning (CCL), revolutionizes bilin-
gual scene text recognition (STR). At its core, CCL combines two CLIP-
embedded transformers with a fusion network. These transformers leverage
CLIP’s pretrained prowess to capture contour features and rectify context errors
within input images. Through merging attention features extracted by the trans-
formers, the fusion network significantly boosts text recognition performance.
Unlike conventional STR methods that focus solely on English, CCL is designed
to tackle both English and Chinese texts, including those with irregular shapes.
Our comprehensive evaluations on Chinese and English benchmark datasets
underscore the superiority of our approach over existing state-of-the-art meth-
ods.
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Abstract. Shaky and non-shaky videos are quite common in real-time applica-
tions such as surveillance and monitoring vehicles and human movements in pro-
tected areas. As a result, text detection in such videos is a formidable challenge due
to motion blur, noise, shaky cameras, poor quality and poor visibility. In contrast
to existing text detection methods, which focus on text detection in scene images
or specific types of images, the present work focuses on text detection in both
shaky and non-shaky video frames. Inspired by the impressive performance of
the HourGlass network for adverse situations, we explore the HourGlass network
for successful text detection in shaky, non-shaky video frames and natural scene
images. To improve the performance of the HourGlass network, we employ the
Real-Time Model (RTMHead) for predicting text precisely and the Cross Stage
Partial Network (CSPNet), which is a neck architecture for robust feature fusion.
In addition, the integration of the SiLu activation function with the HourGlass
network improves the discriminative power ability. To test the efficacy of the pro-
posed method, we conducted experiments on shaky and non-shaky video frames,
as well as ICDAR 2015 video frames. Furthermore, to show the effectiveness
of the proposed method, we used Total-Text scene images for experimentation.
The results on different datasets and a comparative study with the state-of-the-art
models show that the proposed model outperforms the existing methods.

Keywords: Text Detection · Video Text Detection · Arbitrary Moving Text ·
CSPNeXt · Hourglass · SiLU Activation

1 Introduction

Text detection and recognition approaches in natural scene images have made signif-
icant progress, but there is a gap when we look at real-time applications, particularly
in dynamic environments like day and night surveillance (Halder et al. 2023; Halder
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et al. 2024). To protect sensitive areas in all conditions (day and night) from robbery
and theft, vehicle and human movements are automatically detected, which plays a vital
role. However, the adverse effects of indoor and outdoor environmental factors, includ-
ing poor visibility and movements of tree leaves and branches, make the problem more
complex for detecting text in shaky and non-shaky video frames (Asadzadehkaljahi et al.
2023a, b).

Noisy frame                                   ICDAR 2015 frame                               Total-Text frame 

(a) Text detection performance of the state-of-art method (Zhang et al. 2023)

Shaky frame                                    Non-Shaky frame                                Night frame

Noisy frame                                   ICDAR 2015 frame                               Total-Text frame 

(b) Text detection performance of the Proposed model.

Shaky frame     Non-Shaky frame      Night frame

Fig. 1. Challenges for text detection in shaky and non-shaky video frames.
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The literature (Yin et al. 2016; Zhang et al. 2023; Zhu et al. 2022) discusses robust
and sophisticatedmethods that investigate deep learningmodels for text detection. These
methods addressed challenges like arbitrary orientation, shaped, and complex back-
grounds, but they are not robust to images affected by adverse effects of night, such as
night-blurred and night-noisy images, as demonstrated in samples in Fig. 1. Therefore,
the state-of-the-art models are not effective for shaky and non-shaky videos. This is due
to limitations of the existing methods, which were developed for normal natural scene
images.

The examples in Figs. 1(a) and 1(b) demonstrate that accurate text recognition in
nighttime, shaky, and non-shaky video frames is not possible using the state-of-the-art
approach (Zhang et al. 2023), which investigates deep learning for random scene text
detection. On the other hand, text is well detected using the same way for photographs
of natural scenes. Conversely, the suggested approach correctly identifies text in every
image across several domains. We developed a novel model for text identification in
natural scene video frames and photos that were taken by both shaky and non-shaky
cameras as a result of this finding. In this work, we explore the HourGlass network
by modifying it with a new RTMHead bounding box prediction, CSPNet for feature
extraction, and a new SiLU activation function, motivated by the HourGlass network’s
success for object detection in complex situations (Banerjee et al. 2022).

Thus, the way the proposed work adapts the existing models to solve the complex
problem is the key challenge of ourwork. For example,HourGlassNetwork has been used
to extract multi-level features. However, this work replaces the neighbor interpolation,
which was used in the existing HourGlass network, with deconvolution layers for better
feature extraction. Therefore, overall, the key contribution lies in the novel integration
of the strengths of different models as a new model for addressing a complex problem
of text detection in shaky and non-shaky video frames. Thus, the key contributions
are listed here. (i) Exploring the HourGlass network for text detection in natural scene
frames/images and shaky andnon-shakyvideo frames. (ii) Proposing a newhead function
and new architecture for feature extraction from images of different domains. (iii) The
way the proposed work fuses the strengths of different components to achieve the best
results for text detection in shaky and non-shaky video frames.

The content of the rest of the paper is organized as follows. The methods related
to text detection in natural scene images and video frames are reviewed in Sect. 2.
Section 3 introduces the architecture of the HourGlass network with modified head
and feature extraction modules. The experimental results and analysis are discussed in
Sect. 4. Conclusions and future directions are presented in Sect. 5.

2 Related Work

Since text detection in natural scene images is not newwork, we can find several methods
in the literature.We review the latest methods in twomain categories: text detection from
images and text detection from videos.
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2.1 Text Detection in Scene Images

A Differentiable Binarization Module Network (DBNet) was proposed by Liao et al.
(2020) for text identification in photos of natural scenes. DBNet creates adaptive thresh-
olds to optimize network performance. Similarly, Naiemi et al. (2021) presented a multi-
oriented scene text localization (MOSTL) method, which incorporates an enhanced
ReLU layer (i.ReLU) and an improved inception layer (i.inception). Another notable
approach in this category is the work by Xu et al. (2020), who introduced LayoutLM.
This transformer-based model uses BERT to capture layout and text information in
documents. Facebook AI (2020) developed Rosetta, which is designed to handle text
in photos and videos across different languages. Lu et al. (2022) introduced a system
with four components—feature extraction, boundary refinement, boundary prediction,
and text recognition modules—to enhance their model’s performance. Zhu et al. (2022)
proposed using ResNet series networks for feature extraction in text detection models,
introducing a feature redistribution module to maximize multi-level features. Shikha
et al. (2023) incorporated Darknet53 and pre-trained YOLOv4 weights for Kannada text
detection in images, highlighting the potential of deep learning techniques.

2.2 Text Detection in Video Frames

In the domain of video text detection, Halder et al. (2023) proposed a transformer-
based text detection module for low-light video frames, combining similarity detection
and detection modules for optimal performance. Bennet et al. (2022) presented a deep
learning-based model for Telugu word recognition in videos, emphasizing the impor-
tance of language-specific information. Nandanwar et al. (2022) integrated deep learning
with wavefront modeling for text detection in 3D videos, addressing inherent challenges
through amultidisciplinary approach.Chen et al. (2021) proposed text detection in videos
using parametric shape regression and fusion techniques, highlighting the interconnect-
edness of intra-frame and inter-frame data. Although limited in low-contrast scenarios,
Chaitra et al. (2022) combined Yolov5 and TesseractOCR for text detection in video
frames. Wang et al. (2019) explored progressive scale expansion networks for scene
text detection, showcasing advancements in feature extraction for challenging scenar-
ios. An arbitrary-shaped scene text identification system called CT-Net was presented
by Shao et al. It makes use of progressive contour regression using contour transformers.
Adaptive refinement and a rescore mechanism are used in this technique to improve text
identification accuracy, therefore addressing problems like improper contour initializa-
tion and multi-stage error accumulation. Banerjee et al. (2022) introduced an end-to-end
technique for text watermark detection in videos that aims to mitigate the impacts of
poor contrast and complex backgrounds. The lack of robustness in the approaches now
in use when applied to films with shaky or non-shaky material was observed by Halder
et al. (2024).

In conclusion, while the current techniques handle a number of text identification
issues in photos and video frames of natural scenes, they are unable to address the issues
of text detection in daytime and nighttime video frames recorded by shaky or non-shaky
cameras. Furthermore, none of the models investigated the Hourglass network for word
recognition in photos of natural scenes or video frames that are unsteady or not. Thus,
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this study aims to identify text in natural scene pictures and video frames, as well as in
shaky and non-shaky video frames.

3 Proposed Methodology

It is noted from the previous section that there are open challenges for accurate text
detection in shaky, non-shaky day and night video frames. Motivated by the special abil-
ity of the HourGlass network, which was successfully implemented for object detection
in adverse situations (Banerjee et al. 2022), we explore the HourGlass network with
the following modifications. A new head function and architecture for feature fusion
are integrated with the baseline HourGlass network. The complete architecture of the
Hourglass can be seen in Fig. 2. Since the scope of the method is limited to text detec-
tion in video frames, we use the method called activation frame selection, presented in
(Asadzadehkaljah et al., 2023) for keyframe selection from the input video. This app-
roach estimates the Structural Similarity Index (SSIM) using luminance, contrast, and
structure information to select key video frames.

The proposed HourGlass network comprises the Real-Time Model (RTMHead) for
predicting text precisely and the Cross Stage Partial Network (CSPNet), which is a
neck architecture for robust feature fusion. Further, the SiLu activation function has
been integrated with the HourGlass network rather than the ReLu activation function to
improve discriminative power ability.

Fig. 2. Proposed Hourglass Network for text detection. (a) HourGlass Structure (b) Residual
Block (c) Downsample Structure (d) Connect Structure (e) Upsampling Structure
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3.1 The Proposed HourGlass Network for Text Detection

In the context of text detection from shaky videos, the Hourglass backbone architecture
emerges as a pivotal component owing to its inherent adaptability to capturing multi-
scale features robustly. Its distinctive capability lies in its iterative down-sampling andup-
sampling mechanism, akin to a series of nested hourglass structures. This design enables
the network to preserve detailed spatial information while concurrently discerning high-
level semantic features, thus rendering it particularly adept at handling the intricacies
posed by text detection in dynamic and volatile video environments. Specifically, in the
presence of motion blur and camera shake, the Hourglass architecture facilitates the
extraction of comprehensive contextual information while mitigating the adverse effects
of spatial distortions, ultimately enhancing themodel’s capacity for robust text detection.
The Hourglass architecture is mathematically represented as defined in Eq. (1).

H (x) =
∑T

t=1
Ut(Ft−1(x)) +

∑T

t=1
Dt(Ut(Ft−1(x))) + FT (x) (1)

here, H (x) denotes the output of the Hourglass network, Ut represents the up-sampling
operation, Dt denotes the down-sampling operation, Ft is the residual block, and T
signifies the number of Hourglass stages. This architecture effectively preserves spatial
informationwhile capturing high-level semantic features, crucial for robust text detection
in shaky videos.

Complementing the Hourglass backbone (Banerjee et al. 2022), we employ the
RTMDetSepBNHead for precise bounding box prediction under motion blur and camera
shake. The bounding box prediction process is formulated as defined in Eq. (2).

B
∧

= RTMDetSepBNHead(F) (2)

where B
∧

represents the predicted bounding box coordinates and confidence scores, and
F denotes the feature maps extracted from the Hourglass backbone. By incorporating
convolutional layers and batch normalization, the RTMDetSepBNHead enhances the
localization accuracy of text regions despite the challenging conditions of shaky videos.

To address the adverse effects of motion blur and camera shake on feature represen-
tation, we introduce the CSPNeXtPAFPN neck architecture for robust feature fusion.
TheCSPNeXtPAFPN (Cross Stage Partial Network with extended feature Pyramids and
Feature Pyramid Networks) neck architecture assumes paramount importance in forti-
fying the text detection pipeline within shaky videos. By virtue of its innovative design,
CSPNeXtPAFPN orchestrates a seamless fusion of features from multiple network lay-
ers, thereby engendering a holistic understanding of the spatial and contextual intricacies
inherent in text instances. Particularly in the realm of shaky videos, where conventional
architectures may falter in discerning coherent features amidst motion-induced distor-
tions, CSPNeXtPAFPN ‘s adaptive cross-stage partial connections and feature pyramid
networks serve as a cornerstone for preserving information fidelity across various scales
and resolutions. This, in turn, equips the model with the requisite acuity to discern
text instances with heightened accuracy and resilience in the face of dynamic video
conditions. The feature fusion process is mathematically expressed as defined in Eq. (3).

Ffusion = CSPNeXtPAFPN (F1,F2, . . . ,Fn) (3)
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where Ffusion denotes the fused feature maps and F1F2, . . . ,Fn represent feature maps
from different network layers. By leveraging cross-stage partial connections and feature
pyramid networks, CSPNeXtPAFPN facilitates adequate information flow across net-
work stages, enhancing the model’s ability to capture context and spatial information
essential for text detection in shaky videos.

Furthermore, we integrate the SiLU activation function within the neck architecture,
further augmenting the model’s capacity for feature discrimination and representation.
SiLU ‘s unique characteristic of promoting smoother gradient propagation and enhanc-
ing feature learning imbues the network with a heightened sensitivity to subtle textual
cues amidst the chaos of shaky videos. In essence, by fostering more nuanced feature
representations, SiLU facilitates themodel’s ability to discern text instances with height-
ened acuity, thereby bolstering the overall efficacy of the text detection framework in
challenging video environments. The SiLU activation function is defined in Eq. (4).

SiLU (x) = x.σ (x) (4)

Fig. 3. Illustrating the SiLU activation function for text detection.

where σ(x) represents the sigmoid function. By applying SiLU activation within the
neck architecture, we enhance gradient propagation and feature learning, contributing
to improved text detection performance in challenging video conditions, as shown in
Fig. 3. In Fig. 3, in the context of our network, Zk represents the input to the k − th SiLU
activation function. It can be inferred from Fig. 3 that the SiLU is better than ReLU
activation function for text detection. Figures 4(a)–(d) show the whole architecture of
the suggested detection approach and show how the modules work together to improve
outcomes.

Overall, the “RTMDetSepBNHead” module is designed for precise bounding box
prediction under challenging conditions caused by shaky and non-shaky video frames.
The module receives feature maps from the Hourglass network, and the convolutional
layers are designed to capture the vital pattern that represents text in the frames. This
step usually detects text for the text in the frames. The batch normalization stabilizes and
accelerates the training process, andfinally, the processed featuremaps are used to predict
bounding box coordinates through confidence score. Similarly, the CSPNeXtPAFPN
(Cross Stage Partial Network with extended feature Pyramids and Feature Pyramid
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Networks) module is used for robust feature fusion. It uses the features extracted from
different layers of the network to represent the text pattern accurately. The adaptive
cross-stage partial connections ensure effective information flow across network stages.
The feature pyramid networks maintain information fidelity across various scales and
resolutions. SilU activation is used rather than ReLu to improve the classification of text
and non-text performance. The details of architectures of the whole proposed method
for text detection in shaky and non-shaky video frames are illustrated in Fig. 4(a)–(d).

Loss Functions: Dynamic label assignment strategies are used to match dense pre-
dictions from each scale with ground truth bounding boxes in order to train our one-stage
object detector. Strategies that employ cost functions consistent with training loss as the
matching criterion have been implemented in recent breakthroughs. Nevertheless, we
pointed out flaws in these cost estimates and suggested a SimOTA-based dynamic soft
label assignment method.

The cost function is formulated as defined in Eq. (5).

C = λ1Ccls + λ2Creg + λ3Ccenter (5)

where Ccls,CregandCcenter correspond to the classification cost, regression cost, and
region prior cost, respectively, with weights λ1 = 1, λ2 = 3andλ3 = 1.

Classification Cost (Ccls): Motivated by GFL, we propose soft labels to compute
the classification cost, where the soft label is the IoU between ground truth boxes and
predictions. This eliminates the instability brought on by binary labels, as stated in
Eq. (6), by reweighting the matching costs with various regression quality.

Ccls = CE
(
P,Ysoft

) ∗ (
Ysoft − P

)2 (6)

Regression Cost (Creg): Rather than using the Generalized IoU found in the loss
function as described in Eq. (7), we utilize the logarithm of the IoU as the regression
cost to increase the discriminativeness of the match quality.

Creg = −log(IoU ) (7)

Region Cost (Ccenter): We use a soft center region cost instead of a fixed center prior
to stabilizing the matching of the dynamic cost as defined in Eq. (8).

Ccenter = α|xpred−xgt|−β (8)

These modifications ensure that our model effectively handles both shaky and non-
shaky video frames, enhancing the robustness and accuracy of text detection.

4 Experimental Results

For text detection in shaky, non-shaky day and night video frames, the standard dataset
is not available. Therefore, we constructed our own dataset for experimentation, which
will be discussed in the subsequent section. To verify the fairness of the results and the
performance, the proposed method is tested on a standard dataset of ICDAR 2015 video
frames (KaratzasDet al. 2015) andnatural scene text images ofTotal-Text datasets (Chng
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Fig. 4. (a) Abstract Block Diagram (b) Details of the Pillars (c) Details of the Neck (d) Details
of the Head
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Fig. 4. (continued)

et al. 2017). It is noted that our dataset represents shaky, non-shaky day and night frames,
ICDAR 2015 represents natural scene text video frames, while the Total-Text dataset
represents natural scene images but not frames. The experiment on diverse datasets
ensures fair, stable, robust, and reliable text detection compared to the state-of-the-art
models.
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4.1 Dataset Creation and Evaluation

We built our own dataset, including 237 films, of which 51 contain samples from shaky
cameras and 186 have samples from non-shaky cameras, for the purpose of text identi-
fication in shaky, non-shaky day and night video frames. Our dataset comprises a large
warehouse as well as the entrances to companies and industrial regions where products
and supplies can be placed in open spaces. A CCTV camera installed on the ceiling for
inside situations and on poles for outside scenarios records the 1–8 s movies. Movies can
contain any item, including people and cars, and our dataset includes a variety of movies
with varying quality, deterioration, and distortion due to the fact that videos are recorded
under various weather conditions and at different times. If the video is inside, it has low
quality and resolution. If the video is taken outside, it is affected by outside elements
like the light from the stars and the weather. The issue is even more complicated when
it comes to outside footage because of the trees and leaves there. In conclusion, com-
pared to standard word identification natural scene video frame datasets, our bespoke
dataset presents more challenges. There are 36 shaky and 130 non-shaky videos used
for training, and there are 15 shaky and 56 non-shaky videos used for assessment.

We employed the ICDAR-2015 dataset and the Total Text dataset, both from the
ICDAR2015Robust Reading competition, for benchmark experiments. BecauseGoogle
Glasses did not take position into account when shooting these pictures and because the
entire text dataset is publicly accessible on Kaggle’s official website, the text in the scene
can be oriented in any way. The Total Text dataset contains 1555 scene photos, while the
ICDAR 2015 Video comprises of 28 videos that range in length from 10 s to one minute
and feature either indoor or outdoor settings. Total-Text is split into two sets of 300
and 1255 images, respectively, for the training and test sets. This dataset has a number
of problems, such as various text orientations, text fonts, and picture backgrounds. In
order to assess the efficacy of the suggested and current approaches, we employ the
conventional metrics of Average Precision (AP) and Average Recall (AR).

Implementation Details: For the implementation of our research experiments, we uti-
lized a robust computing environment comprising a Windows 10 Enterprise operating
system. Our hardware setup included a powerful 13th Gen Intel(R) Core (TM) i7-1370P
processor clocked at 1.90 GHz, paired with 16.0 GB of RAM. Graphics processing was
facilitated by two GPUs: Intel(R) UHDGraphics and Nvidia GeForceMX550 with 2GB
of dedicated memory. The CUDA framework, version 12.3, was employed to leverage
parallel processing capabilities for the efficient execution of our computational tasks.
This configuration provided the necessary computational horsepower to conduct our
experiments effectively and analyze the results with precision.

4.2 Ablation Study

A few crucial stages are included in the suggested strategy in order to attain the best text
identification results regardless of domain. We provide ablation research to evaluate the
performance of each essential element. Our study primarily focuses on the utilization
of the Hourglass architecture as the backbone network. Additionally, we explore the
impact of alternative backbone networks, specifically ResNet and CSPNext, to elucidate
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the significance of our chosen architecture. Further, the SiLU activation function is also
used to improve the performance of the proposed text detection.

According to Table 1’s experimental results, every component included in the sug-
gested task is efficient andmakes an equal contribution to getting the best outcomes. This
is because the results of individual components are lower than the results of the proposed
method. The results also indicate that the baseline ResNet is not effective compared to
CSPNext, and the CSPNext is not effective compared to the HourGlass network for text
detection in different datasets. In the same way, when we compare the results of the
SiLU and ReLU activation function, the conventional ReLU is not better than the SiLU
on all three datasets. This shows that SiLU is effective against the ReLU activation func-
tion. Overall, one can infer from the ablation study experiments that although individual
components are effective, the individual components are not capable of achieving the
best results as the proposed method.

Table 1. Validating the effectiveness of the key components

Experiments Our dataset ICDAR2015 dataset Total Text

AP AR AP AR AP AR

Backbone + ReLU

Resnet 84.2 81.7 83.8 55.6 81.2 79.9

CSPNext 85.7 83.2 80.6 68.2 82.7 74.5

Backbone + SiLU

Resnet 85.2 82.2 88.3 85.0 84.0 78.0

CSPNext 88.1 82.3 88.5 84.7 87.6 79.9

Proposed Hourglass 95.0 95.0 92.3 89.9 87.6 86.1

4.3 Experiments on Detection

Figure 5 displays the text detection outcomes of the suggested approach on several
datasets, demonstrating accurate text detection in every image. This suggests that the
the approach works effectively for texts from many fields. As was mentioned in the
section on ablation studies, this is the main component’s benefit. The quantitative find-
ings of the suggested and current methodologies, listed in Table 2, support the same
conclusions. The comparison between the performance of the proposed and current
approaches demonstrates that, across all datasets, the proposed method outperforms all
current methods. The lack of domain independence and generalization capacity in the
current methods is the cause of their subpar performance.

Cross-Dataset Validation: We also carried out an additional experiment known as
cross-dataset validation to confirm the generic property, domain independence, and per-
formance that is not significantly dependent on training samples. In these studies, sam-
ples from one dataset are used to train the algorithm and samples from another dataset
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Night Hazy                                  Complex & Tiny                            Dark & Complex

Noisy Day frame                           Noisy Night frame                                Blurred frame

Day Shaky frame                            Day Non-Shaky frame                            Night frame

ICDAR 2015 frame Total-Text image                             Total-Text image 

Fig. 5. Text detection of the proposed model on images of different datasets

are used to test it. Comparing the suggested model to the state-of-the-art technique
(Zhang et al. 2023), consistent and stable results are obtained for all trials, as shown in
Table 3. Therefore, we can conclude that the proposed method is generic and domain-
independent; more than that, our method is robust enough to address the challenges of
shaky, non-shaky day and night video frames.

Robustness Validation: Figure 5 shows that the proposed method performs well for
night, noisy, blurred images, and other complex situations. To draw the same conclusion
quantitatively, Gaussian noise and blur are added randomly to the normal images for
experimentation, and the results are reported in Table 4. It is noted from Table 4 that
the performance of the proposed method for noisy and blurred datasets is almost similar
to the results of the proposed method on the normal datasets. Therefore, overall, the
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discussion on the above experiments asserts that the proposedmethod is generic, domain-
independent, and robust.

For all the experiments, it is noted that the performance of the state-of-the-art meth-
ods is inferior to the performance of the proposed method. This is due to the lack of
generalization ability of the existingmethods. In addition, the scope of the existingmeth-
ods is limited to scene images but not complex images of shaky and non-shaky videos.
On the other hand, the way the proposed work fuses the strengths of different modules
in the novel makes a difference in achieving better results for both scene images and
shaky and non-shaky video frames.

Table 2. Performance of the Proposed and existing methods for text detection

Methods Our Dataset ICDAR-2015 Total Text

AP AR AP AR AP AR

YOLOv5s (Chaitra et al. 2022) 71.8 62.1 61.0 46.0 66.3 61.4

Shikha et al. (2023) 75.6 64.47 67.8 53.29 67.1 63.5

Zhang et al. (2023) 78.7 74.2 86.9 84.5 81.4 78.5

Halder et al. (2023) 82.6 79.6 80.4 77.8 – –

Cai et al. (2022)-(DText) – – 88.5 85.6 86.9 82.7

Su et al. (2022)-(TextDCT) – – 88.9 84.8 85.0 85.3

Zhao et al. (2022) – – 89.4 82.4 86.1 82.1

Liao et al. (2023)-(DBNet + +) – – 90.9 83.9 87.9 82.8

Shao et al. -(CT-Net) – – 90.9 86.4 87.9 82.7

Proposed Method 95.0 95.0 92.3 89.9 87.6 86.1

Table 3. Performance of the Proposed and state-of-the-art method (Zhang et al. 2023) method
with cross-dataset validation

Train Test

Proposed method Zhang et al. (2023)

Our
Dataset

ICDAR-2015 Total Text Our
Dataset

ICDAR-2015 Total Text

AP AR AP AR AP AR AP AR AP AR AP AR

Our Dataset 95.0 95.0 52.4 54.8 56.2 63.5 78.7 74.2 50.0 43.0 54.1 40.7

ICDAR-2015 66.5 72.3 92.3 89.9 69.3 74.3 50.8 33.4 86.9 84.5 54.2 51.6

Total Text 75.6 77.2 70.2 71.0 87.6 86.1 73.1 76.8 69.2 64.2 81.4 78.5

All Datasets 87.8 90.1 86.1 88.8 86.4 87.0 70.7 77.2 81.0 63.0 73.4 68.3
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Table 4. Validating the performance of the Proposed and existing methods for text localization
in challenging scenarios

Methods Noisy Blurry

AP AR AP AR

YOLOv5s (Chaitra et al. 2022. 54.5 62.7 69.1 64.5

Shikha et al. (2023) 67.9 85.3 74.4 68.5

Zhang et al. (2023) 56.3 52.4 73.4 66.9

Proposed Method 90.2 88.8 92.1 88.1

Limitation: When we look at samples of shaky, non-shaky day and night video frames,
there are frames (shown in Fig. 6 as a sample), for which the proposed method fails to
detect the text in the frames. This is because the text in the frames is not visible even
to our naked eyes due to fog and poor vision at night. This is beyond the scope of the
work. However, for such challenges, our plan is to integrate a language model with the
proposed model. This is because the language model can predict the missing text and
invisible text in the images.

Foggy-Night frame  Noisy Night frame 

Fig. 6. Poor performance of the proposed method

5 Conclusions and Future Work

We provide a unique method for text detection in unstable or non-existent video frames
captured throughout the day and night in this work. Unlike prior models that focus on
text recognition in natural scene video frames and scene photographs, our model focuses
on both shaky and non-shaky standard/natural scene photos/frames. We have proposed
the HourGlass network and integrated it with a new head function and feature design to
produce optimal results for photos of various datasets. Comparing the suggested app-
roach to the state-of-the-art methods, the results of several experiments conducted using
the current methods demonstrate its exceptional performance. Furthermore, experiments
on datasets of different domains, cross-dataset validation, and noisy and blurred datasets
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show that the proposed method is sufficiently generic, domain-independent, and robust
to noise and blurred images. However, when the images are affected by severe fog
and night settings where the text is invisible, the performance of the proposed method
degrades. To address this challenge, our plan is to integrate language models with the
proposed model to predict the invisible text, which will be our future work. However, as
you suggested, there is a scope for optimizing the proposed model, which is beyond the
scope of the work and, therefore, which is discussed in the conclusion and future work.
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Abstract. The proliferation of scene text in both structured and
unstructured environments presents significant challenges in optical char-
acter recognition (OCR), necessitating more efficient and robust text
spotting solutions. This paper presents FastTextSpotter, a framework
that integrates a Swin Transformer visual backbone with a Transformer
Encoder-Decoder architecture, enhanced by a novel, faster self-attention
unit, SAC2, to improve processing speeds while maintaining accuracy.
FastTextSpotter has been validated across multiple datasets, including
ICDAR2015 for regular texts and CTW1500 and TotalText for arbitrary-
shaped texts, benchmarking against current state-of-the-art models. Our
results indicate that FastTextSpotter not only achieves superior accuracy
in detecting and recognizing multilingual scene text (English and Viet-
namese) but also improves model efficiency, thereby setting new bench-
marks in the field. This study underscores the potential of advanced
transformer architectures in improving the adaptability and speed of text
spotting applications in diverse real-world settings. The dataset, code,
and pre-trained models have been released in our Github.

Keywords: Text Spotting · Vision Transformers · Multilingual ·
Attention

1 Introduction

In the rapidly evolving field of pattern recognition, text spotting- the task
of localizing and recognizing text within natural scenes - poses unique chal-
lenges. These challenges have been addressed through powerful optical character
recognition (OCR) systems designed to handle text in both structured [11] and
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unstructured [1,8] environments. These environments commonly feature text
in multiple ranges of orientations (from arbitrary-shaped [3,22,36] to regular-
shaped [15]), annotation styles (from rotated quadrilaterals [15], polygonal word-
level [3], polygonal sentence-level [22] to hierarchical layout-level [25]) and diverse
language domains (multilingual [28,29] to low-resource languages [30] to different
scripts [46]). The overall computational load of processing such high-resolution
images to detect and recognize text accurately across different text orientations,
languages and styles is substantial.

Fig. 1. Trade-off between text spotting performance h-mean vs number of
training iterations: The blue curve indicates the model without the SAC2 attention
module while the orange curve depicts the model performance with our proposed SAC2
module. (Color figure online)

Current state-of-the-art models have made significant contributions towards
improving text detection and recognition capabilities, which employs both Con-
volutional Neural Networks (CNNs) [21,23,32,33] and Transformers [4,8,14,45,
47]. Despite significant advancements, these models typically struggle with bal-
ancing high accuracy and computational efficiency, especially under constrained
resources or in real-time applications. This is particularly critical in scenarios
where quick text interpretation is essential, such as in navigation aids for visu-
ally impaired individuals or instant translation services. Fast and reliable text
interpretation can indeed help bridge the digital divide by making information
more accessible to people who speak less common languages or dialects. More-
over, it can automate and improve the process of annotating vast amounts of
data, which is essential for training more robust OCR systems that provide
higher-quality, context-aware annotations.

The emergence of text spotting transformers (TESTR) [47] has prompted
the adoption of detection transformer (DETR) architectures [2] as foundational
backbones within text spotting frameworks as in [4,45]. Recent methods [44,45]
have focused on enabling more efficient training and faster convergence using
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deformable attention [49] on the dynamic control point queries of text coordi-
nates. Using point coordinates to obtain positional queries rather than anchor
boxes, as described in [47], allows the transformer decoder to dynamically update
points for scene text detection. In this work, we explore the possibility of extend-
ing this dynamic attention mechanism towards the task of scene text spotting.
Moreover, recent works [4,5,14] have recently shown the effectiveness of Swin
Transformers [24] by generating hierarchical feature maps which are critical for
fine-grained predictions necessary in text segmentation. This work introduces
FastTextSpotter, a novel text spotting framework that combines a Swin-tiny
backbone for visual feature extraction with a dual-decoder transformer encoder
architecture [47] tailored for text spotting. To optimize training, we introduce
a novel attention module, SAC2 (Self-Attention with Circular Convolutions),
inspired by [31,44]. This novel component, integrated within our text spotting
framework, not only competes well with existing state-of-the-art (SOTA) text
spotters but also enhances operational efficiency, particularly in frames per sec-
ond (FPS), setting a new benchmark in text spotting performance. Figure 1 illus-
trates the accuracy vs efficiency trade-off and the impact of the SAC2 attention
module. In this context, we also explore the following key research questions to
gain a more comprehensive understanding of the trade-offs between accuracy
and efficiency in SOTA text spotting models. 1) How can the computational
efficiency of attention mechanisms in Transformer models be improved without
compromising on text detection and recognition accuracy? 2) What architec-
tural modifications are necessary to adapt the Swin Transformer for optimal
performance in diverse text spotting scenarios and orientations? 3) Can the
model effectively handle multilingual text spotting, particularly in low-resource
languages like Vietnamese?

The paper proposes a three-fold contribution: 1) We develop FastTextSpot-
ter, integrating a Swin-Tiny backbone with an efficient text spotting setup, sig-
nificantly enhancing scene text detection and recognition efficiency. 2) We intro-
duce SAC2, a dynamic attention mechanism that accelerates training and con-
vergence while maintaining high detection accuracy. 3) FastTextSpotter excels in
detecting multilingual and variably oriented texts, including in resource-limited
languages like Vietnamese, broadening its utility in diverse applications.

2 Related Work

Our FastTextSpotter framework is designed to refer to the previous works intro-
duced below, aiming to handle scene text spotting in an efficient way that com-
bines text spotting transformers with a dynamic and faster attention module.

End-to-End Object Detection. The DETR approach [2] proposed the first
end-to-end transformer-based object detection as a set prediction task without
complex hand-crafted anchor generation and post-processing. The Deformable-
DETR [49] addressed the task by attending to sparse features using a deformable
cross-attention operation which reduces the quadratic complexity of DETR to
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linear complexity and leveraging multi-scaled features. DE-DETR [41] identi-
fies that the main element which impacts the model efficiency is related to the
sparse feature sampling, whereas DAB-DETR [19] handled the above issue using
dynamic anchor boxes as position queries. In our study, we recast this query in
point formulation to modify the Transformer Decoder backbone in TESTR [47]
for both detection and recognition tasks to handle arbitrarily shaped scene texts
and also fasten the training process. Recent methods like [48] focus attention
on more information-rich tokens for improving trade-off between efficiency and
model performance.

Scene Text Spotting. The rise of deep learning has significantly advanced the
field of scene text spotting. Early methods treated text spotting as a two-stage
process, training separate detection and recognition modules that were com-
bined at inference time [18,39]. More recent approaches have adopted end-to-end
strategies [16,20], simultaneously tackling detection and recognition through RoI
operations to address arbitrary-shaped texts with some using quadrangle text
region proposals [10,37]. Other approaches employ the MaskTextSpotter [17,27]
series which employed binary maps for text and character-level segmentation
tasks based on Mask-RCNN [12] to reduce segmentation errors. PAN++ [42]
have further refined these methods by enhancing segmentation efficiency and
reducing background interference, similar to those adopted in [34,43]. While
these approaches produced acceptable performance, the mask representation
needed some further post-processing steps. MANGO [32] proposed a mask atten-
tion module to utilize global features across several text instances, however, it
required center-line segmentation for the predictions. Other attempts to create
customized representations for curved texts include Parametric Bezier curves
[21,23], Shape Transform module [33] etc.

Impact of Transformers. The introduction of Transformers [38] has marked a
pivotal shift towards transformer-based architectures in text spotting, eliminat-
ing the need for RoI operations by leveraging global feature modelling, as seen in
applications like ABINet and SwinTextSpotter [9,14]. The introduction of vision
transformers [7] also opened the floodgates to its application in STR applica-
tion [1]. ABINet [8,9] integrate advanced techniques such as bidirectional lan-
guage modelling and Feature Pyramid Networks (FPNs) to improve text detec-
tion and recognition, particularly for texts entangled with complex backgrounds
or small sizes. Our proposed framework, leveraging a Swin-Transformer [24]
with a tiny variant for computational efficiency, utilizes a multi-scale deformable
attention mechanism [49] used by TESTR approach [47] to optimize feature
extraction across various text sizes without necessitating post-processing for poly-
gon vertices or Bezier control points, thereby streamlining the text spotting pro-
cess and enhancing overall system performance.

3 Methodology

The core objective of the FastTextSpotter framework is to enhance the efficiency
and accuracy of scene text detection and recognition. This section details the
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Fig. 2. Overview of FastTextSpotter illustrating a Swin Transformer visual back-
bone with a Transformer Encoder-Decoder framework. Key features include the SAC2
attention module, dual decoders for accurate text localization and recognition, and the
Reference Point Sampling system for effective text detection across various shapes and
languages.

architectural components and the novel self-attention unit, SAC2, which together
form the backbone of our proposed system. Additionally, we outline the training
objectives and processes that drive the performance of the entire framework.

3.1 Model Architecture

he overall architectural framework, as depicted in Fig. 2, is composed of three
primary components: (1) a visual feature extraction unit that utilizes a Swin-
Transformer [24] backbone for the extraction of multi-scale features; (2) a text
spotting module that includes a Transformer encoder, which encodes the image
features into positional object queries, followed by two separate Transformer
decoder units that are responsible for predicting the locations of text instances
and recognizing the corresponding characters.

Visual Feature Extraction Unit. anilla convolutions, which operate locally
at fixed sizes (e.g., 3 × 3), struggle to connect distant features effectively. Text
spotting, however, demands the ability to capture relationships between vari-
ous text regions within the same image, while also accounting for similarities
in background, style, and texture. To address this, we selected a compact yet
efficient Swin-Transformer [24] unit, referred to as Swin-tiny, to extract more
detailed and fine-grained image features in Fig. 4.

Text Spotting Unit. The text-spotting module primarily comprises a trans-
former encoder and two transformer decoders dedicated to text detection and
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recognition, following a schema similar to the TESTR framework [47]. We
formulate this task as a set prediction problem inspired by DETR [2], aim-
ing to predict a set of point-character pairs for each image. Specifically, we
define it as A = (E(j), F (j))

K

j=1, where j indicates the index of each instance.

Here, E(j) = e
(j)
1 , . . . , s

(j
M represents the coordinates of M control points, and

F (j) = f
(j)
1 , . . . , f

(j)
M corresponds to the sequence of M text characters. In this

unified framework, the text location decoder (TLD) predicts E(j), while the text
recognition decoder (TRD) predicts F (j).

Text Location Decoder. In the location decoder, queries are transformed into
composite queries that predict multiple control points for each text instance.
We define these as Q queries, with each one corresponding to a text instance
denoted as E(j). Each query comprises several sub-queries en, such that e(j) =
e
(j)
1 , . . . , e

(j)
M . These initial control points are then processed through the location

decoder, which consists of multiple layers. This is followed by a classification
head that predicts confidence levels for the final control points, alongside a two-
channel regression head that generates the normalized coordinates for each point.
In this context, the control points are defined as the polygon vertices, starting
from the top-left corner and proceeding in a clockwise direction.

Text Recognition Decoder. The character decoder operates similarly to the
location decoder, with the key difference being that control point queries are
replaced with character queries, denoted as F (j). Both E(j) and F (j) queries,
sharing the same index, correspond to the same text instance. Consequently,
during the prediction phase, each decoder simultaneously predicts the control
points and the characters for the corresponding instance. Finally, a classification
head is employed to predict multiple character classes based on the final character
queries.

3.2 Query Point Formulation and SAC2 Attention Module

The training efficiency of the FastTextSpotter is primarily driven by a dynamic
point update strategy, which updates prediction points during sampling from
the transformer encoder unit. This is followed by the application of the SAC2
attention module in the subsequent text location and recognition decoders.

Reference Point Sampling. We adopt the box-to-polygon conversion method
from TESTR [47], which effectively transforms axis-aligned box predictions into
polygon representations of scene text. This approach, inspired by [44] simplifies
and improves the scene text detection. Positional queries are generated from
anchor boxes using a 2D positional encoding, enhanced with a multi-layered
perceptron as implemented in [19], with the objective of making these queries
learnable. Specifically, these dynamic anchor boxes-post the final Transformer
encoder layer-are concatenated with M content queries for control points and
A content queries for text characters, refining the text spotting process. The
following Eq. 1 explains the used strategy of creating the compositional queries



FastTextSpotter 141

Q(j)(j = 1, ...,K) :

Q(j) = E(j) + F = θ((s, r, c, d)(j)) + (e1, e2, .., eM ) (1)

where S and R stand in for the relevant positional and content components of
each composite query. The sine positional encoding function is followed by a
normalising and linear layer. The center coordinate and scale details of each
anchor box are represented by (s, r, c, d). The M learnable control point content
queries shared over K composite inquiries are (e1, ..., eM ). Keep in mind that we
used the detector with the Eq. 1 query formulation in our model. We sample M

2
point coordinates pointm(m = 1, ...,M) evenly on the top and bottom side of
each anchor box, respectively, motivated by the positional label form and the
shape prior that the top and bottom side of a scene text are often close to the
corresponding side on bounding box as in Eq. 2:

pointn =

⎧
⎨

⎩

(s − c
2 + (m−1)×c

M
2 −1

, r − d
2 ), m � M

2

(s − c
2 + (M−m)×c

M
2 −1

, r + d
2 ), m > M

2

(2)

With (point1, ..., pointN ), we can generate composite queries using the following
complete point formulation as in Eq. 3 (Fig. 3):

Q(i) = ϕ((point1, ..., pointM )(i)) + (e1, ..., eM ) (3)

Fig. 3. Visualization of attention maps for Resnet-50 feature backbone. (L)
to (R) shows attention maps starting from the first layer.

The ϕ function in Eq. 3 shows the dynamic point query update and is differ-
entiable. This results in the best training convergence since each of the N control
point content queries has its own explicit position prior.

The SAC2 Attention Block. We use the Factorized Self- Attention (FSA)
[6] in our model in accordance with [44,47]. FSA takes advantage of an intra-
group self-attention (SAintra) across M subqueries that correspond to each of
the Q(j) to capture the relationship between various points within each text
instance. FastTextSpotter captures the relationship between various objects by
introducing an inter-group self-attention (SAinter) across K composite inquiries
is used after SAintra. We hypothesize that the non-local self-attention mech-
anism, SAintra, does not adequately capture the spherical shape of polygon
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Fig. 4. Visualization of attention maps for Swin-Tiny feature backbone. (L)
to (R) shows attention maps from the first layer.

control points. To address this, we incorporate local circular convolution [31] to
bolster factorized self-attention (FSA). Initially, SAintra processes to produce
internal queries Qintra = SAintra(Q), using identical keys as Q and values that
exclude positional elements. Concurrently, locally enhanced queries are formed:
Qlocal = ReLU(BN(CirConv(Q))). These are then integrated to create fused
queries Qfuse = LN(FC(C +LN(Qintra +Qlocal))), where C represents content
queries acting as a shortcut, and FC, BN , and LN denote fully connected layer,
BatchNorm, and LayerNorm, respectively. Subsequently, Qinter, which explores
inter-positional relations, is derived from Qfuse using SAinter and passed to
the deformable cross-attention module [49]. Optimal performance and inference
speed are achieved using the aforementioned training setup.

3.3 Loss Functions

The overall losses used for FastTextSpotter can be summarised under the encoder
Lenc and decoder Ldec blocks shown in Eq. 4 and Eq. 5 respectively.

Lenc =
∑

j

(
λcls L(j)

cls + λcoord L(j)
coord + λgloU L(j)

gloU

)
(4)

Ldec =
∑

i

(
λcls L(i)

cls + λcoord L(i)
coord + λchar L(i)

char

)
(5)

Here, Lcls(i) represents the focal loss for text instance classification, while
Lcoord(i) denotes the L-1 loss used for control point coordinate regression.
Lchar(i) corresponds to the cross-entropy loss for character classification, and
LgloU is the generalized IoU loss for bounding box regression, as defined in [35].
The weighting factors for these losses are represented by λcls, λchar, λcoord, λcls,
and λgloU.

Instance Classification Loss. We use the focal loss as the classification loss
of text instances. For the i-th query, the loss is denoted as:

Lcls = −1{i∈Pic(σ)}α(1 − b̂(i))γ log(b̂(i)))

−1{j /∈Pic(σ)}(1 − α)(b̂(j))γ log(1 − b̂(i))
(6)
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Control Point Loss. We used L-1 loss for control point regression the loss is
defined for the i-th query:

L(i)
coord = 1{i∈Pic(σ)}

M∑

j=1

∥
∥
∥e

(σ−1(i))
j − ê

(i)
j

∥
∥
∥ (7)

Character Classification Loss. Character recognition seems like a classifica-
tion problem, where each class is a specific character. We use cross-entropy loss,
it defined as:

L(i)
char = 1{i∈Pic(σ)}

A∑

j=1

(−f
(σ−1(i))
j log f̂

(i)
j ) (8)

4 Experimentations

4.1 Datasets

Table 1. Results of scene text spotting on Total-Text and CTW1500. “None ” denotes
recognition without a lexicon. The “Full” lexicon contains all the words in the test set.
Results style: best, second best.

Methods Total-Text CTW1500 FPS

Detection End-to-end Detection End-to-end

P R F None Full P R F None Full

Text Perceptron [33] 88.8 81.8 85.2 69.7 78.3 87.5 81.9 84.6 57.0 – –

ABCNet [21] – – – 64.2 75.7 – – 81.4 45.2 74.1 6.9

MANGO [32] – – – 72.9 83.6 – – – 58.9 78.7 4.3

ABCNet v2 [23] 90.2 84.1 87.0 70.4 78.1 85.6 83.8 84.7 57.5 77.2 10

Swintextspotter [14] – – 88.0 74.3 84.1 – – 88.0 51.8 77.0 –

Abinet++ [8] - - - 79.4 85.4 – – – 61.5 81.2 10.6

TESTR [47] 93.4 81.4 86.90 73.25 83.3 89.7 83.1 86.3 53.3 79.9 5.5

DeepSolo [45] 93.1 82.1 87.3 79.7 87.0 60.01 78.4 10

FastTextSpotter 90.58 85.46 87.95 75.14 86.0 91.45 85.16 88.19 56.02 82.91 5.38

For comparison with state-of-the-art methods, we selected the following bench-
marks for experimental validation: ICDAR 2015 [15], the official dataset of the
ICDAR 2015 robust reading competition, is used for evaluating regular text spot-
ting, employing the same test-train split as in the competition. Total-Text [3]
is a widely recognized benchmark for arbitrary-shaped text spotting, providing
word-level text instances for evaluation. CTW1500 [22] serves as another bench-
mark for arbitrary-shaped text spotting, featuring sentence-level text instances.
Vin-Text [30] is a Vietnamese text dataset utilized for assessing the perfor-
mance of multilingual text spotting systems.
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4.2 Implementation Details

The hyper-parameters for the deformable transformer [49] were configured sim-
ilarly to the original implementation, with 8 attention heads and 4 sampling
points utilized for the deformable attention mechanism. The number of layers
for both the encoder and decoder was set to 6.

Data Augmentation. During pre-training, we apply data augmentation by
randomly resizing the images, with the shorter edge ranging from 480 to 896
pixels, while constraining the longest edge to a maximum of 1600 pixels. Addi-
tionally, an instance-aware random cropping technique is employed.

Pre-training. We pre-trained FastTextSpotter using the SynthText150k [21],
MLT 2017 [29], and TotalText [3] datasets over 4000K iterations, starting with
a learning rate of 2 × 10−5, which was reduced by a factor of 0.1 after 3000K
iterations. The AdamW [26] optimizer was employed, with parameters β1 = 0.9,
β2 = 0.999, and a weight decay of 10−5. We utilized Q = 100 composite queries,
with 20 control points, and set the maximum text length to 25. The entire pre-
training process was conducted on an RTX 3080 Ti GPU with a batch size of 1,
spanning a total of 16 days.

Fine-Tuning. Following pre-training, we fine-tuned on the Total-Text and
ICDAR2015 datasets for 200K iterations. For the CTW1500 dataset, Fast-
TextSpotter was fine-tuned over 2000K iterations, with the maximum text length
set to 100, given its sentence-level annotations that require additional training
iterations. For the VinText dataset, the model was trained for 1000K iterations.

4.3 Comparison with State-of-the-Art

Table 1 summarizes the results of FastTextSpotter compared to other text spot-
ting methods. We surpass the state-of-the-art Abinet++ [8] in end-to-end recog-
nition on both the word-level Total-Text [3] and sentence-level CTW1500 [22]
benchmarks. For scene text detection, our model outperforms SwinTextSpot-
ter [14] on CTW1500 and achieves the second-best F-score on Total-Text.
Notably, our model excels in recall metrics across both benchmarks. Qualita-
tive examples are provided in Fig. 5.

We evaluated our method on the ICDAR15 benchmark [15] and compared
it with state-of-the-art approaches (Table 2). For text detection, we achieved a
5% precision gain over TESTR [47] and slightly exceeded the best F-measure.
In text spotting, our method delivered the top performance in the challenging
“Strong” category, where each image contains a lexicon of only 100 words. We
outperformed TESTR, SwinTextSpotter, and Abinet++ by roughly 1.5%, 2.5%,
and 0.5%. Figure 5 shows our model’s performance on this dataset in the third
column.

Text Spotting in Low-Resourse. We also evaluated Vintext [30], a low-
resource benchmark for Vietnamese scene text detection, to demonstrate our
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Table 2. Results of scene text spotting ICDAR-15 datasets. “S”, “W”, and “G” are
“Strong”, “Weak”, “Generic”, lexicas to recognise, respectively. Results style: best,
second best.

Methods Detection End-to-end

P R F S W G

Text Perceptron [33] 89.4 82.5 87.1 80.5 76.6 65.1

Unconstrained [34] 89.4 87.5 87.5 83.4 79.9 68.0

MANGO [32] – – – 81.8 78.9 67.3

ABCNet v2 [23] 90.4 86.0 88.1 82.7 78.5 73.0

Swintextspotter [14] – – – 83.9 77.3 70.5

TESTR [47] 90.3 89.7 90.0 85.2 79.4 73.6

Abinet++ [8] – – – 86.1 81.9 77.8

PGNet [40] 91.8 84.8 88.2 83.3 78.3 63.5

DeepSolo [45] 92.8 87.4 90.10 86.8 81.9 76.9

FastTextSpotter 95.03 85.70 90.13 86.63 81.67 75.44

model’s generalizability. As shown in Table 3, our method outperforms the state-
of-the-art by nearly 2%. Figure 5 illustrates our model’s performance on Vintext
in the last column.

Why ABINet++ has Better Performance in Text Recognition? ABI-
Net++ [8] and MANGO [32] leverage linguistic information for text spotting,
enhancing their performance in this metric. Despite relying solely on a visual
approach, our method outperforms both.

Performance vs Efficiency Trade-Off. Compared to previous approaches,
our method shows optimum performance in terms of FPS which is 5.38 reported
in Table 1. Our FPS is almost halved in comparison to ABINet++ and Deep-
Solo [45] approach. As depicted in Fig. 1, we observe the effectiveness of the
SAC2 attention module introduced in the model (as shown in orange curve) when
compared to the one with normal deformable attention [49]. The key explanation
behind this phenomenon is the usage of cyclic convolutions which was previously
proposed for real-time instance segmentation [31]. Using this layer on top of the
self-attention module along with the reference point resampling strategy used for
both position and character queries helps in faster convergence during training
and a better end-to-end spotting h-mean.

Efficiency Comparison with MANGO. The MANGO text spotter [32]
adopts a position-aware mask attention module to generate attention weights
on each text instance and its characters to recognize character sequences with-
out RoI operation. They achieve a slightly better FPS of 4.3 compared to ours
owing to the fact that it’s a single stage model with no self-attention. However,
Table 1 and Table 2 highlight the fact that utilizing self-attention and trans-
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former frameworks helps in significant improvement in metrics for detection and
recognition tasks.

Table 3. Text recognition performance of the proposed and the state-of-the-art systems
on the Vintext datasets. Results style: best, second best.

Methods H-mean

ABCNet + D [30] 57.4

ABCNet [21] 54.2

Mask Textspotter v3 + D [30] 68.5

Swintextspotter [14] 71.1

Mask Textspotter v3 [30] 53.4

FastTextSpotter(w/o fine-tune) 21.54

FastTextSpotter 72.95

Fig. 5. Some illustration of our method on different datasets. Zoom in for better visu-
alization. First two images from Total-Text, third and fourth images from CTW1500,
fifth and sixth images from ICDAR15, and the last two images from Vintext.

4.4 Ablation Studies

We conducted ablation studies to assess the significance of the various compo-
nents within the FastTextSpotter framework, leading to the following insights.

Swin Transformer Serves as a Robust Visual Backbone for Text Spot-
ting. We show a comparison of attention maps visualized in different layers for
ResNet-50 backbone [13] when compared to the Swin-Tiny [24] variant. The Swin
attention better captures the global interactions between the different objects to
localize the text region which helps them to get a substantial gain over ResNet-
50 which primarily captures more local spatial relationships with the attention.
The hierarchical shifted-window mechanism is highly useful to control the atten-
tion on top of the text region boundaries to have a more complete understanding
using better contextual cues. More empirical results on the utility of the Swin
backbone for the text spotting has been illustrated in previous works [4,5].

Effect of Reference Point Resampling and SAC2 Module. The effect of
adding the SAC2 and reference point resampling strategies is shown in Table 4
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where we clearly observe substantial gain in end-to-end recognition performance
along with an optimal gain in detection too. Also using these modules helps us
to gain faster convergence during the pre-training of FastTextSpotter.

Table 4. Effectiveness of SAC2 and Reference Point Resampling Modules.
Performance obtained by pre-training model under this setting. “LD” and “CD” stand
for Text Location Decoder and Text Recognition Decoder, respectively. ‘None’ indicates
that no lexicon was used.

Modules Detection End-to-End

Refference Points
Reampling

SAC2
in LD

SAC2
in CD P R F None

✗ ✗ ✗ 89.63 70.34 78.82 60.56

✓ ✗ ✗ 91.36 72.52 80.85 62.38

✓ ✗ ✓ 91.75 74.35 82.13 65.46

✓ ✓ ✗ 93.59 75.20 83.40 67.06

✓ ✓ ✓ 91.3 77.3383.68 68.87

5 Conclusion and Future Work

We proposed a novel efficient transformer model for text spotting, FastTextSpot-
ter, which not only establishes itself as a robust and efficient solution in the
field of text spotting but also excels in operational efficiency. It outperforms
previous state-of-the-art models in both end-to-end text recognition and scene
text detection tasks, notably achieving top recall metrics for the Total-Text and
CTW1500 benchmarks. The model’s efficiency is highlighted by its enhanced
processing speed and reduced computational demands compared to the existing
SOTA models, making it well-suited for real-time applications. Moreover, we
show the effectiveness of the model for spotting in multiple languages, namely
English and Vietnamese. Expanding its capabilities to include a broader array
of languages, especially those with complex scripts could significantly increase
its applicability and utility. We plan to extend our evaluation to include diverse
languages and scripts such as Arabic, Chinese, and Hindi, to further validate and
enhance the model’s versatility and effectiveness in various linguistic contexts.
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Abstra
t. S
ene text dete
tion plays a 
ru
ial role in the develop-

ment of 
omputer vision. However, 
urrent s
ene text dete
tion algo-

rithms mainly fo
us on Chinese and English, while Vietnamese s
ene

text dete
tion still remains a 
hallenging task. The 
urrent algorithms

to dete
t Vietnamese s
ene text frequently result in the in
apa
ity of

dete
ting Vietnamese dia
riti
s and wrongly dete
ting ba
kground as

text. To address these 
hallenges, in this paper, a Vietnamese s
ene

text dete
tion algorithm is proposed to 
on
entrate on dia
riti
s and

effe
tively redu
e ba
kground interferen
e. Spe
ifi
ally, an Edge Infor-

mation Enhan
ement Module (EIEM) is first proposed to enhan
e the

edge features of Vietnamese 
hara
ters by 
ombining a gradient filter

with an attention me
hanism. Se
ondly, a Text Region Enhan
ement

Module (TREM) is proposed to enhan
e the feature representation of

text regions by 
apturing global 
ontextual information and dependen-


ies among Vietnamese 
hara
ters, thereby enhan
ing the distin
tion

between ba
kground and text. Experiments on the Vintext dataset illus-

trate that the proposed method performs better in Vietnamese s
ene text

dete
tion tasks 
ompared with several 
ontemporary s
ene text dete
tion

algorithms. The 
ode of the proposed algorithm is available at https://

github.
om/mlmmwym/VSTD-EITRFE.
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1 Introdu
tion

S
ene text dete
tion, a 
riti
al task in 
omputer vision, holds vast potential

appli
ations a
ross various domains su
h as edu
ation, logisti
s, and tourism. In

re
ent years, signifi
ant advan
ements have been a
hieved in this field, show
as-

ing a substantial body of outstanding work [1�5℄. However, most of these studies

predominantly fo
us on dete
ting Chinese or English texts in natural s
enes,

while there is limited resear
h dedi
ated to Vietnamese s
ene text. However,

a

ording to statisti
s [6℄, about 85.3 million people speak Vietnamese globally,

and it is the 20th language in the world in terms of the number of speakers. The

number of international tourists visiting Vietnam has in
reased from 10 million

in 2016 to 18 million in 2019. After 2022, Vietnam's tourism industry re
ov-

ered rapidly, and in 2023, Vietnam ranked the 8th among the top 10 
ountries

globally with the highest growth rates. Therefore, addressing the dete
tion and

re
ognition 
hallenges of Vietnamese texts in natural s
enes will bring signifi
ant


onvenien
e to tourists.

(a) PANET (b) PSENET (c) DBNET (d) DB++NET

Fig. 1. The dete
tion results of several 
ontemporary s
ene text dete
tion algorithms

on the dataset of Vintext

Vietnamese is a tonal language, and its 
hara
ters are 
omposed of Latin

letters and dia
riti
s. There are primarily nine dia
riti
s, with four symbols


ombined with vowels, and the remaining five indi
ating tones in Vietnamese.

The different 
ombinations of Latin letters and dia
riti
s will result in distin
t

meanings. For example, the meanings of �thi¶n� and �thi»n� represent the sky and

virtue, respe
tively. �d÷a�, �døa�, and �dùa� are three distin
t fruits: watermelon,


o
onut, and pineapple, respe
tively. Thus, subtle 
hanges in a Vietnamese 
har-

a
ter 
an result in signifi
antly different meanings.

Even though there have been many ex
ellent works in s
ene text dete
tion

tasks for Chinese and English 
hara
ters, applying these methods to handle

Vietnamese s
ene text dete
tion is still 
hallenging. In Fig. 1, we show some

results of several 
ontemporary s
ene text dete
tion methods, while in Fig. 6,

we show the qualitative results of these methods on the Vintext dataset [7℄. It


an be observed that dia
riti
s are often omitted or insuffi
iently dete
ted, and
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ba
kgrounds are mistakenly re
ognized as text. We sele
ted 100 images from

the Vintext dataset and performed a statisti
al analysis of dia
riti
s dete
tion,

as shown in Table 4. It 
an be observed that these 
ontemporary s
ene text

dete
tion methods 
annot dete
t dia
riti
s very well.

There are several reasons for these wrong dete
tion results. Firstly, the dia-


riti
s of Vietnamese are smaller 
ompared to Latin letters, whi
h makes the

dia
riti
s to be easily mixed with its surrounding ba
kground. Existing methods

do not pay spe
ial attention to this situation during feature extra
tion, whi
h

leads to ineffe
tive extra
tion of dia
riti
's features and makes them more sus-


eptible to interfere with ba
kground information during dete
tion. Se
ondly, the

unique stru
ture formed by the 
ombination of Latin letters and dia
riti
s 
an

make 
ertain text-like obje
ts more sus
eptible to being mistakenly identified as

text targets.

In this paper, a new Vietnamese s
ene text dete
tion method is proposed to

effe
tively address the 
hallenges mentioned above. Spe
ifi
ally, we use DBNet [2℄

as the baseline. Our 
hoi
e of DBNet is supported by its outstanding performan
e

in s
ene text dete
tion, 
oupled with its ex
eptional ability to pro
ess texts of

varying shapes, sizes, and orientations. The main 
ontributions of this paper are

as follows:

• We proposed an edge information enhan
ement module (EIEM) to utilize

gradient filter whi
h 
onsists of a Sobel filter and improved 
hannel attention.

It enhan
es the dia
riti
's features by extra
ting relevant Vietnamese text

edge information whi
h is then integrated into the low layers of the ba
kbone

network.

• We proposed a text region enhan
ement module (TREM) to first 
apture

global 
ontextual information and dependen
ies between Vietnamese 
hara
-

ters, and then enhan
e the feature representation of text region by utilizing

this information to adjust all shallow features to intensify the differentia-

tion between ba
kground and text. Thus, TREM redu
es the interferen
e of

ba
kground information.

• We 
ondu
ted extensive experiments on the Vintext dataset and 
ompared

it with five well-established s
ene text dete
tion methods to demonstrate the

superiority and reasonableness of our proposed method.

2 Related Work

In this se
tion, we briefly introdu
e the resear
h related to s
ene text dete
tion,

edge dete
tion methods, and feature pyramids.

2.1 S
ene Text Dete
tion

Currently, there has already been a substantial amount of ex
ellent work on s
ene

text dete
tion tasks. Here, we only sele
t several well-known segmentation-based

algorithms for a brief introdu
tion. And then, we espe
ially introdu
e some work

for Vietnamese s
ene text dete
tion.
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Segmentation-based methods 
lassify pixels to obtain a probability map of

text regions, and bounding boxes are obtained through a post-pro
essing algo-

rithm. This type of approa
h primarily relies on Mask R-CNN [1℄ and Fully

Convolutional Networks (FCN) [8℄ for text dete
tion. Wang et al. proposed

PSENet [5℄, whi
h learns the segmentation regions of text through a progressive

s
ale expansion algorithm. Subsequently, PANNet [9℄ was introdu
ed to address

the 
omplex post-pro
essing in PSENet, proposing a 
ost-effe
tive segmentation

module and a learnable post-pro
essing approa
h. Liao et al. proposed DBNet

[2℄, whi
h makes the threshold binarization pro
ess differentiable to optimize

segmentation predi
tion results. DBNet++ [3℄ adds the Adaptive S
ale Fusion

(ASF) module on top of DBNet, enhan
ing the robustness of the fused features.

There are limited studies on Vietnamese s
ene text dete
tion, Nguyen et al.

[7℄ proposed the Vintext dataset, whi
h is the first publi
ly available Vietnamese

s
ene text dataset. In addition, they proposed a new way of in
orporating lan-

guage models into text re
ognition to solve the problem of visual ambiguity in

s
ene text re
ognition. Pham et al. [10℄ 
ondu
ted an empiri
al study using the

Vintext dataset in DBNet [2℄, PMTD [11℄, PANNet [9℄ and FCEN [12℄ to test

the effe
tiveness of these four dete
tion models. Huang et al. [13℄ proposed a

new re
ognition transformation me
hanism that 
o-optimizes the dete
tion and

re
ognition parts in the same ar
hite
ture, whi
h outperforms ABCNet+D [7℄ on

the Vintext dataset. Huang et al. [14℄ first proposed an algorithm for Vietnamese

s
ene text dete
tion, whi
h improves dete
tion a

ura
y by enhan
ing dia
riti
's

features, introdu
ing IoU-v mat
hing boundaries, and fusing dia
riti
's features.

2.2 Edge Dete
tion and Feature Pyramid

Edge dete
tion and feature pyramid are pivotal te
hniques in image pro
essing

and pattern re
ognition.

Edge in an image is delineated by a string of neighboring pixels that display

pronoun
ed variations in their brightness, marking the transition between dis-

tin
t visual elements [15℄. The edge dete
tion algorithm proposed by Sobel in

1970 has evolved into a fundamental te
hnique in image pro
essing [16℄. Chetia

et al. [17℄ designed an improved Sobel dete
tion method, whi
h employs non-

maximum suppression and dual thresholding strategies to effe
tively over
ome

the problem of in
omplete extra
tion of information from the edges of the image

by the traditional Sobel algorithm. Tian et al. [18℄ improved Sobel operator and

proposed a new image denoising algorithm, whi
h improves the performan
e of

Sobel operator in pro
essing noisy images.

The feature pyramid makes the development of 
omputer vision faster. Liu

et al. proposed SSD [19℄ to utilize feature maps of various sizes to dete
t targets

at different s
ales, but due to its unique stru
ture, it often performs poorly in

dete
ting small obje
ts. To solve the short
omings of SSD, Lin et al. proposed

FPN [20℄, whi
h fuses the features of different feature maps through a top-down

path setup so that the bottom-level feature maps also have better semanti


information. Liu et al. proposed PANet [4℄, whi
h is based on FPN, and adds a
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Fig. 2. The ar
hite
ture of the proposed Vietnamese s
ene text dete
tion algorithm

bottom-up path so that the high-level features 
an also obtain enough informa-

tion about the bottom-level features. Overall, the feature pyramid, by extra
ting

features at multiple s
ales, provides more 
omprehensive information for 
om-

puter vision tasks, enhan
ing the adaptability and performan
e of models a
ross

different s
enarios.

Inspired by the above work, we 
ombine the sobel operator with an attention

me
hanism to enhan
e the edge information of Vietnamese s
ene texts in the

network. Then, we propose a text region enhan
ement method that allows effi-


ient intera
tions between features from deep and shallow layers, thus enabling

the network to extra
t ri
her and more effe
tive features.

3 Methodology

In this se
tion, we present the implementation details of the proposed Vietnam

S
ene Text Dete
tion Algorithm. Firstly, the overall framework of the algorithms

is introdu
ed in Se
t. 3.1, and then the two proposed modules, EIEM and TREM,

are introdu
ed in Se
ts. 3.2 and 3.3, respe
tively.

3.1 Overall Framework

The overall framework of the proposed method is illustrated in Fig. 2. It in
ludes

four main 
omponents: (1) A CNN ba
kbone network for extra
ting visual fea-

ture pyramids; (2) Edge information enhan
ement module (EIEM); (3) Text

region enhan
ement module (TREM); (4) Text post-pro
essing module.
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Fig. 3. The framework of the edge information enhan
ement module

Spe
ifi
ally, an image is first input into the ba
kbone network (i.e., Resnet-

50) to extra
t the features of Xi (i = 0, 1, 2, 3, 4), and their sizes are in 1/2,

1/4, 1/8, 1/16, and 1/32 of the input image, respe
tively. EIEM is designed to

extra
t text edge detail information XE
from the input image. After EIEM, XE

is added with X0 to obtain the intermediate feature Xmid whi
h in
ludes ri
h

edge information.

Xmid = Conv3×3,1×1

(
XE

⊕ X0

)
(1)

TREM is implemented at the top level of the feature pyramid (i.e., X4) to


apture the global 
ontextual information in X4 and the dependen
ies between

Vietnamese 
hara
ters.

Then, the output of TREM is up-sampled to modulate X1, X2, and X3,

respe
tively, 
as
ading to generate new feature maps. These new feature maps,

along with X4, are all then upsampled to the same size and 
on
atenated to

obtain the feature map F . Then F is input into the text post-pro
essing module

to obtain a probability map P and an adaptive threshold map T that mat
hes

the dimensions of the original input image. Finally, a differentiable binariza-

tion operation is performed on P and T to obtain an approximate binary map,

thereby determining the boundaries of text boxes.

3.2 Edge Information Enhan
ement Module

In Vietnamese s
ene text dete
tion, the detailed information on the edge of

Vietnamese 
hara
ters 
annot be well extra
ted using only 
onvolutional neural

networks (CNN), be
ause the extra
ted feature of small-sized dia
riti
s easily

interfered with ba
kground noise in natural s
enes. Moreover, with in
reasing

network depth, the down-sampling pro
ess of CNN may lose the detailed infor-

mation of dia
riti
s.

Therefore, inspired by Park et al. [21℄ and as shown in Fig. 3, EIEM is pro-

posed to enhan
e the edge information of Vietnamese s
ene text to a
hieve higher
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dete
tion a

ura
y. The horizontal gradient Xx
is first obtained through a 3× 3


onvolution and a horizontal Sobel operation, while a 3 × 3 
onvolution with

a verti
al Sobel operation is deployed in the verti
al dire
tion to 
ompute the

verti
al gradient Xy
. Subsequently, both the horizontal and verti
al gradient

information are added to output XG
. XG

is then fed into the subsequent 
han-

nel attention to 
ompute attention weights, whi
h are then multiplied by the


orresponding elements of the feature maps XG
, and then passed through a


onvolutional layer to obtain the final feature maps XE
. The above pro
ess 
an

be expressed as follows:

Xx = Sobelx
(
Conv3×3

(
XRGB

))
(2)

Xy = Sobely
(
Conv3×3

(
XRGB

))
(3)

XG = Xx + Xy
(4)

where Sobelx (·) and Sobely (·) represent sobel filters. Conv3×3 (·) denotes the


onvolution of 3 × 3, Xx
and Xy

represent the horizontal and verti
al gradient

information, respe
tively.

XE = Conv
(
Channel_Attention

(
XG

))
(5)

where Channel_Attention represents our proposed 
hannel attention, Conv (·)
denotes the 
onvolution of 7 × 7, 3 × 3.

Traditional effi
ient 
hannel attention first utilizes global average pooling to

obtain aggregated features, and then generates attention weights by 1D 
on-

volution with dynami
 kernel and sigmoid a
tivation fun
tion. In EIEM, we

improved the traditional 
hannel attention by adding an additional global max

pooling bran
h, and then fusing the outputs of global average pooling and global

max pooling after 1D 
onvolution to obtain the weights for ea
h 
hannel via a

sigmoid fun
tion. The global max pooling operation 
an help to retain the most

signifi
ant edge features in the input features, and 
ombining it with the global

average pooling 
an make the network fo
us more on the edge part. Finally, these

weights are multiplied by the 
orresponding elements of XG
and the results are

passed through two 
onvolution operations to obtain XE
whi
h in
ludes detailed

information on 
hara
ter's edge.

3.3 Text Region Enhan
ement Module

As shown in Fig. 4, the proposed TREM is 
omposed of two parallel parts,

where the MLP part is used to 
apture global 
ontextual information from the

top-level feature X4 while the Strip Attention (SA) part is used to 
apture the

dependen
ies between Vietnamese 
hara
ters. The results of these two parts are

fused as the final output of TREM. The above pro
ess 
an be expressed as:

Xout = Conv1×1 (Concat (MLP (Xin) , SA (Xin))) (6)

where Xout denotes the output of TREM, Xin is the output of performing 
onvo-

lution, bat
h normalization, and ReLU on X4. Concat (·) denotes the 
onne
tion
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Fig. 4. The framework of the text region enhan
ement module

along 
hannel dimension. SA (Xin) and MLP (Xin) denote the outputs of the

SA and MLP part, respe
tively. Conv1×1 (·) represents the 1 × 1 
onvolution.

The 
omputing of Xin is presented in (7).

Xin = ReLU (BN (Conv7×7 (X4))) (7)

where Conv7×7 (·) denotes a 7 × 7 
onvolution with step size 1, BN (·) denotes
the bat
h normalisation, and ReLU (·) denotes the ReLU a
tivation fun
tion.

Inspired by PoolForme [22℄, in this se
tion, the MLP part is designed to 
ap-

ture the global 
ontextual information while effe
tively preserving the spatial

information in the 2D feature representation of a s
ene image, whi
h helps the

network to re
ognize text regions. The MLP part is mainly 
omposed of two

serial residual blo
ks. Spe
ifi
ally, Xin is first pro
essed by the group normal-

ization and then sent to the depth-wise 
onvolution layer. Be
ause traditional

pooling redu
es the spatial dimension of the data by down-sampling, resulting

in loss of spatial information, whi
h may have a great negative impa
t on Viet-

namese s
ene dete
tion. Thus, 
ompared with pooling, depth-wise 
onvolution is


hosen to perform feature extra
tion while maintaining spatial resolution, whi
h


an better preserve important spatial information. Its output is subsequently

pro
essed through 
hannel s
aling and dropout. Finally, the residual 
onne
tion

with Xin is element-wisely added. The above pro
ess is spe
ifi
ally represented

as follows:

X̂in = (Drop (Scale (DConv1×1 (GN (Xin))))) ⊕ Xin (8)
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where X̂in represents the output of the first residual blo
k, GN (·) represents

the group normalisation, DConv1×1 (·) represents the depth-wise 
onvolution

with kernel size 1 × 1, Scale (·) represents 
hannel s
aling, Drop (·) represents

dropout, and ⊕ represents element-wise addition.

In the latter residual blo
k, group normalization is first performed on X̂in.

Subsequently, 
hannel MLP [23℄ is applied to the outputs of the previous opera-

tion. Finally, after implementing 
hannel s
aling, dropout, and residual 
onne
-

tion on X̂in, the final output is presented as follows:

MLP (Xin) =
(
Drop

(
Scale

(
CMLP

(
GN

(
X̂in

)))))
⊕ X̂in (9)

where CMLP (·) represents the 
hannel MLP [23℄, and the rest of the symbols

have the same meaning as above.

In the SA part, we proposed to employ strip pooling [24℄ to implement an

attention me
hanism, for the reason that strip pooling only 
aptures both hor-

izontal and verti
al 
ontexts while our attention me
hanism not only 
aptures


ontextual information but also reinfor
es dependen
ies between 
hara
ters.

Xin is first passed through multiple serial 
onvolution layers to yield X̃in.

X̃in = Conv (Xin) (10)

where Conv (·) denotes the serial 
onvolutions of 1 × 1, 3 × 3, and 1 × 1. Then,
the number of 
hannels of X̃in is 
ompressed to

C
r
through 1 × 1 
onvolution

operation. In this paper, the hyper-parameter r is set to 4.

Subsequently, two strip pooling layers are employed in parallel to produ
e

horizontal and verti
al stripe features. Subsequently, a 1D 
onvolution with a

kernel size of 3 is used to adjust the dependen
y relationships between features

at ea
h position, and bi-linear interpolation is then employed for up-sampling to

obtain yh
∈ R

C
r

×H×W
and yv

∈ R
C
r

×H×W
, whi
h are then fused together by

element-wise addition to obtaining z ∈ R
C
r

×H×W
.

z = yh
⊕ yv

(11)

Then, the attention matri
es are obtained using a 1×1 
onvolution and a sigmoid

a
tivation fun
tion. The weighted sum of the relevant attention matri
es with

X̃in is element-wisely added with X̃in to obtain the final output. The final output


an then be expressed as:

SA (Xin) =
(
X̃in ⊗ σ (Conv1×1 (z))

)
⊕ X̃in (12)

where Conv1×1 (·) represents the 1×1 
onvolution, σ (·) denotes the sigmoid fun
-

tion, and ⊗ denotes element-wise multipli
ation, and ⊕ represents the element-

wise addition.

3.4 Text Post-pro
essing Module and Loss Fun
tion

Both the text post-pro
essing module and loss fun
tion are 
onsistent with those

in DBNet [2℄. Differentiable binarization algorithm is used in the post-pro
essing
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part, and its formula is:

B̂i,j =
1

1 + e−K(Pi,j−Ti,j)
(13)

where B̂i,j , P̂i,j , and T̂i,j represents the value of pixel (i, j) in the binary map, the

probability map, and the adaptive threshold map, respe
tively. K is a parameter

set to 50.

In this paper, we use DBNet's overall loss fun
tion, where the spe
ifi
 param-

eter settings remain 
onsistent with it. The expression is as follows:

L = Ls + α × Lb + β × Lt (14)

where Ls, Lb, and Lt denote the loss of the probability map, the binary map, and

the threshold map, respe
tively. α, β are hyperparameters for balan
ing loss.

4 Experiments

Our experiments were performed on the Vintext dataset [7℄. The entire Vintext

dataset 
ontains 2000 images, in
luding 1200 training images, 300 validation

images, and 500 test images, with 56,084 text instan
es.

We use ResNet-50 pre-trained on the ImageNet dataset [25℄ as the ba
k-

bone. During the training pro
ess, we employed the adaptive moment estima-

tion (Adam) optimizer with an initial learning rate of 0.001, while enabling the

AMSGrad optimization method. At the same time, we employ a �poly� learning

rate poli
y, whi
h adjusts the learning rate for ea
h iteration based on the rule:

the learning rate of the 
urrent iteration is equal to the initial learning rate mul-

tiplied by

(
1 −

iter
max_iter

)0.9

. The max_iter denotes the maximum number of

iterations, depending on the maximum epo
hs and the number of bat
hes. The

network is trained on the Vintext dataset for 250 epo
hs with the bat
hsize set

to 16. In addition, our enhan
ement methods for the training data in
lude: (1)

random 
ropping; (2) random flipping; (3) random rotation, with the rotation

range set to (−10◦, 10◦). Finally, resize the image to 640 × 640. Our method

employs pre
ision, re
all, and F-measure as performan
e evaluation metri
s.

Table 1. Ablation Results

EIEM TREM Pre
ision Re
all F-measure

$ $ 88.1 78.9 83.2

" $ 92.6 79.6 85.6

$ " 93.3 79.4 85.8

" " 92.7 81.0 86.5
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4.1 Ablation Experiment

To verify the validity of EIEM and TREM, a series of experiments have been

performed on the Vintext dataset. Table 1 illustrates the results of the ablation

experiments, where �$� means that the 
orresponding module is not used while

�"� means that the 
orresponding module is used. And thus, the first row of

Table 1 presents the results of DBNet [2℄, whi
h means the baseline.

The se
ond row of Table 1 shows that the employment of the EIEM results

in improvements of 4.5%, 0.7%, and 2.4% on pre
ision, re
all, and F-measure,

respe
tively, 
ompared to the baseline. The reason is that the EIEM provides

more detailed textual edge information, whi
h enhan
es the dia
riti
's features

for subsequent pro
essing. To further verify the effe
tiveness of the EIEM, we

visualized the feature maps after EIEM employment and the feature maps of

baseline, as shown in Fig. 5. It 
an be observed that EIEM employment 
an

obtain ri
her text edge information, and the features of dia
riti
s are more promi-

nent.

The third row of Table 1 shows that the employment of TREM results in

improvements of 5.2%, 0.5%, and 2.6% on pre
ision, re
all, and F-measure,

respe
tively, 
ompared to the baseline. The observed out
ome 
an be attributed

to TREM's 
apability to augment text region feature representation by 
aptur-

ing global 
ontextual information and dependen
ies among Vietnamese 
hara
-

ters. This information 
onditions the shallow network, enhan
ing its ability to

re
ognize text regions while redu
ing the interferen
e of the ba
kground.

Finally, the fourth row of Table 1 demonstrates that signifi
ant improvements

have been a
hieved on all three evaluation metri
s. Compared with the baseline,

they are improved by 4.6%, 2.1%, and 3.3% respe
tively.

4.2 Comparison with Other Methods

Firstly, our method is 
ompared with five segmentation-based methods, namely

Mask R-CNN [1℄, PANNet [9℄, PSNet [5℄, DBNet [2℄, and DBNet++ [3℄ on the

Vintext dataset. The results are presented in Table 2.

A

ording to Table 2, it 
an be observed that our method a
hieves on pre-


ision, re
all, and F-measure by 92.7%, 81.0%, and 86.5%, respe
tively. When


ompared with Mask R-CNN [1℄, PANNET [9℄, PSENET [5℄, DBNET [2℄, and

Table 2. The results of different methods on the Vintext dataset

Method Pre
ision Re
all F-measure Params (10
6
) BS Optimizer Lr Epo
hs

Mask R-CNN 83.2 86.8 85.0 42.3 4 SGD 2e−3 26

PANNET 84.1 60.0 70.0 24.8 8 Adam 1e−3 250

PSENET 85.6 78.2 81.3 29.2 8 Adam 1e−3 250

DBNET 88.1 78.9 83.2 28.7 16 Adam 1e−3 250

DBNET++ 89.4 79.8 84.3 29.3 16 Adam 1e−3 250

Ours 92.7 81.0 86.5 29.1 16 Adam 1e−3 250
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Fig. 5. Visualization of feature maps after the first stage of Resnet, where the top row

in
ludes original images, the middle row presents the feature maps when EIEM was

not used, and the bottom row presents the feature maps when EIEM was used. In

addition, to make the images 
lear, we have standardized the s
ale 
hanges

DBNET++ [3℄, our method a
hieves improvements on F-measure by 1.5%,

16.5%, 5.2%, 3.3%, and 2.2%, respe
tively.

Se
ondly, our method is 
ompared with two spe
ial s
ene text re
ognition

methods, ABCNET+D [7℄ and SwinTextSpotter [13℄, whi
h have been evaluated

on the Vintext dataset, and the results are shown in Table 3. It 
an be observed

that our method still outperforms both on the F-measure.

Table 3. Comparison between two spe
ial methods and ours on the Vintext dataset

Method Pre
ision Re
all F-measure

ABCNET+D 90.1 80.2 84.8

SwinTextSpotter 95.6 75.1 84.1

Ours 92.7 81.0 86.5

Thirdly, to further illustrate the effe
tiveness of our method in dia
riti
s

dete
tion. We sele
ted the first 100 images from Vintext's test set and performed

a statisti
al analysis on the instan
es whose dia
riti
s were dete
ted in
orre
tly.

As shown in Table 4, the error rate of our method is only 11.7%, signifi
antly

lower than the other methods.

Fourthly, to evaluate whether the ba
kground is wrongly dete
ted as text,

experiments are 
ondu
ted by applying the aforementioned dete
tion algorithms
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(a) Original (c) PANNet (d) PSENet (e) DBNet (f) DBNet++ (g) Ours (h) GT(b) Mask R-CNN

Fig. 6. Qualitative results of different algorithms on the dataset of Vintext

and ours on the ICDAR2015 and Vintext datasets. From Table 5, it is very inter-

esting to observe that all 
omparison methods a
hieved higher rates of wrongly

dete
ting ba
kground as text on Vintext than on ICDAR2015. These results sug-

gest that the 
omplex 
onstru
tion of Vietnamese 
hara
ters makes the dete
tion

of Vietnamese s
ene text more 
hallenging 
ompared to English s
ene text dete
-

tion. Furthermore, it 
an be observed that our method gets a signifi
ant de
rease

on the rates of wrongly dete
ting ba
kground as text on Vintext. These results

illustrate our method is more suitable for Vietnamese s
ene text dete
tion tasks.

Table 4. Dete
tion results of different algorithms in dia
riti
s dete
tion

Method Total Instan
es Errors Instan
es Error Rate

Mask R-CNN 1116 204 18.3%

PANNET 1116 520 46.6%

PSENET 1116 231 20.7%

DBNET 1116 212 19.0%

DBNET++ 1116 190 17.0%

Ours 1116 131 11.7%

It should be noted that the experimental results in Table 4 and Table 5

were obtained by taking the average of the statisti
al results obtained by two

resear
hers in our laboratory, so there may be 
ertain errors. However, the dif-

feren
es in the experimental results are signifi
ant, and it 
an be believed that

our experimental results still have some reliability.
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Table 5. The rates of wrongly dete
ting ba
kground as text on ICDAR2015 and Vin-

text

Method ICDAR2015 Vintext

Mask R-CNN 22% 29.6%

PANNET 7.8% 24.6%

PSENET 17.2% 21.4%

DBNET 13% 30%

DBNET++ 10% 41.6%

Ours � 5.6%

To visually explain the above results more intuitively, we sele
ted several

text images from Vintext to perform text dete
tion. The results are shown in

Fig. 6. The dete
tion results indi
ate that the above-mentioned dete
tion meth-

ods struggle to fully dete
t dia
riti
s, however, there are still serious wrongly

dete
ting ba
kground as text and in
orre
t dia
riti
s dete
tion. In 
ontrast,

our method demonstrates better dete
tion of dia
riti
s and distinguishes ba
k-

grounds more effe
tively.

Table 6. De
tion results of DBNet and ours on the ICDAR 2015 dataset

Method Pre
ision Re
all F-measure

DBNet 88.06 77.14 82.24

Ours 91.74 73.12 81.37

Finally, we verified the generalization performan
e of our proposed method

on other tasks. We employ the ICDAR 2015 [26℄ dataset for evaluation. From

Table 6, It 
an be observed that our proposed method only redu
es 0.87%

on F-measure, while ours does better than DBNet on pre
ision and worse on

re
all. Therefore, it 
an be believed that even though our method is spe
ially

designed for Vietnamese s
ene text dete
tion task, it also generalizes 
omparably

to English s
ene text dete
tion tasks.

5 Con
lusion

In this paper, we proposed a new method for Vietnamese s
ene text dete
tion.

Firstly, we proposed an Edge Information Enhan
ement Module to enhan
e the

edge detail information of Vietnamese text to augment the features of dia
rit-

i
s. Then, we proposed a Text Region Enhan
ement Module to improve the

distin
tion between ba
kground and text, effe
tively redu
ing the ba
kground

interferen
e with Vietnamese s
ene text. Comprehensive experiments illustrated

that the short
omings of several existing algorithms in Vietnamese s
ene text
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dete
tion have been over
ome to a 
ertain extent and our method a
hieves better

performan
e in Vietnamese s
ene text dete
tion.

In addition, we believe that our approa
h is not only appli
able to Viet-

namese s
ene text dete
tion but also to other similar tonal languages. However,

the absen
e of publi
 datasets of other similar tonal languages makes it diffi-


ult to prove our idea. For future work, we aim to develop s
ene text dete
tion

datasets for more tonal languages and evaluate our model's performan
e on these

datasets.
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Abstract. In recent years, with the development of deep learning, text
detection research has achieved good research results. However, there is
still relatively little research on the detection of Uyghur text in natu-
ral scenes. Therefore, this paper proposes a scene Uyghur text detection
model based on adaptive feature fusion for scene Uyghur texts with spe-
cial writing styles, complex and variable backgrounds, and different text
scales. First, a normalization-based attention module is introduced into
the feature extraction network to enhance text features while suppress-
ing background noise. Second, in order to better extract the features of
multi-scale text, this paper adds the proposed adaptive feature fusion
module in the feature fusion stage. The efficient fusion of text features
at different scales is realized by adaptively adjusting the weights between
features at different levels. Finally, experiments on the Scene Uyghur text
dataset and the ICDAR2015 dataset show the effectiveness and robust-
ness of the proposed method in this paper.

Keywords: Uyghur Text Detection · Natural scenes · Adaptive
feature fusion

1 Introduction

Text detection is a subtask of optical character recognition, whose main task
is to accurately locate the text area in a picture. With the rapid development
of artificial intelligence, it has been applied in many fields, such as traffic cue
recognition [1], document key information extraction [2], wearable smart devices
[3], etc. In recent years, good progress has been made for the research of text
detection in natural scenes, but most of these researches are for Chinese and
English, while the research of text detection for Uyghur is still in its infancy, so
the research of scene text detection for Uyghur is very meaningful.
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Uyghur letters have their own specific writing forms, which consist of strokes
as well as dots and symbols. In addition, Uyghur words are adhesive, that is, the
letters in a word tend to be closely linked together to form a whole. At the same
time, the form and rules of writing letters vary according to their position at the
beginning, middle and end of the word. Therefore, the detection algorithms for
Uyghur text, which has special writing rules and adhesion characteristics, are
faced with multiple challenges.

First of all, Uyghur words are prone to inaccurate word localization in the text
detection algorithms due to their unique writing style, as well as the complex
backgrounds, noises, and even text-like textures that are extremely similar to
text textual textures that may exist in text images of natural scenes. Second, the
scale of text in natural scenes tends to vary greatly due to a variety of influences,
including the text itself and the angle at which it is shot. All these factors bring
considerable challenges to the accurate detection of text. Therefore, in this paper,
we improve the DBNet [4] network and design a proposed Scene Uyghur text
detection model based on adaptive feature fusion. The main contributions of this
paper are shown below:

(1) In order to alleviate the problem of inaccurate word localization due to the
special writing style of Uyghur and the complex background interference in
text images, this paper introduces a normalization-based attention module in
the feature extraction network.

(2) In order to better and more accurately detect multi-scale text in text images,
this paper adds an adaptive feature fusion module in the feature fusion stage.

2 Related Work

2.1 Scene Text Detection

In recent years, many scholars have made significant progress in the field of
natural scene text detection using deep learning algorithms. Deep learning-based
natural scene text detection methods can be roughly categorized into regression-
based methods and segmentation-based methods.

Regression-based scene text detection methods usually utilize a convolutional
neural network to directly predict the text’s enclosing frame through the regres-
sion layer, which is direct, efficient, and suitable for many scenarios. The EAST
method proposed by Zhou et al. [5] is an anchor-free region suggestion network,
which directly predicts words or lines of text in the full image in any direction
and quadrilateral shape, eliminating the intermediate steps and the complex ref-
erence frame design, thus significantly improving the detection efficiency. How-
ever, due to the sensory field limitation, there may be a more difficult recognition
problem for longer text. TextBoxes proposed by Liao et al. [6] is an improvement
on SSD [7] by modifying the anchors and scales of the convolutional kernel for
text detection. Despite adapting to various image sizes in the detection process,
using multiple anchors of different sizes increases the computational burden and
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is not ideal for detecting multi-directional text instances. To solve the prob-
lems of TextBoxes, Liao et al. [8] proposed TextBoxes++. The method further
adjusts the horizontal bounding box to a quadrilateral with a specific angle,
which enhances the detection of non-horizontal linear text instances. Tang et al.
[9] proposed SegLink++, a text detection method based on instance perception
and component combination, which solves the problem of detecting dense and
irregular text in natural scenes through a bottom-up approach and significantly
improves the effectiveness of dense text detection.

However, regression-based scene text detection methods may suffer from some
limitations when dealing with complex text scenarios such as curved or multi-
directional text. Segmentation-based scene text detection methods, on the other
hand, segment the image by pixel level to accurately determine the boundaries
of the text. The key of the method is to classify each pixel as text or non-text,
generating a segmentation map of the same size as the input image that visu-
alizes the shape and contour of the text. This method performs well in dealing
with a variety of text morphologies including curved, multi-directional and irreg-
ularly shaped text, but may have higher computational complexity compared to
regression-based methods. He et al. [10] viewed text detection as an instance
segmentation problem using multi-scale image input. Firstly, FCN is used to
predict text blocks, followed by text line prediction through two CNN branches
and instance-aware segmentation from the estimated text blocks. Deng et al. [11]
proposed a segmentation network, PixelLink, to achieve high-precision text local-
ization and recognition by predicting text regions and inter-pixel connectivity on
a pixel-by-pixel basis. Wang et al. [12] proposed PSENet to generate a series of
kernels of different scales for each text instance, and ultimately achieve accurate
detection of arbitrarily shaped text instances by progressively expanding the ker-
nel scale from a larger one to a smaller one. DBNet proposed by Liao et al. [4]
uses a differentiable binarization module to combine the binarization process in
the text detection task with network training, and improves the accuracy of text
detection by adaptively learning the appropriate binarization threshold, which is
especially suitable for dealing with complex backgrounds and arbitrarily shaped
text instances. To further improve the robustness of text detection Liao et al.
[13] proposed an effective adaptive scale fusion module based on DBNet, which
improves the scale robustness by adaptively fusing features of different scales. Qu
et al. [14] proposed an adaptive inflationary network focusing on the reconstruc-
tion process from shrinking polygons aiming to provide a rigorous and complete
textual representation. Xu et al. et al. [15] proposed a model called Text Loca-
tion Aware Pixel Aggregation Network that aims to improve the performance
of segmentation-based scene text detection models when dealing with crowded
or overlapping text. Yang et al. [16] proposed a Bidirectional Perspective strat-
egy based Network (BiP-Net) to simultaneously achieve high detection accuracy
and fast detection of arbitrarily shaped text instances. Zhu et al. [17] proposed
a new method called Expand Kernel Network (EK-Net) as a way to achieve
precise localization of arbitrarily shaped text by detection networks.
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2.2 Uyghur Text Detection

For the detection of Uyghur text Yan et al. [18] proposed a fast and stroke-
specific FASTroke keypoint extractor, in addition to the proposed clustering
method based on component similarity, which reduces the computational cost
while improving the accuracy of the detection. Peng et al. [19], based on the
unique characteristics of Uyghur characters, made the detection network more
effective in adapting to the requirements of Uyghur language detection by adjust-
ing the aspect ratio of the anchor frame. Abdulweli Ruzhe [20] et al. improved
Yolo (You Only Look Once) by generating three types of fixed-width anchor
frames, and then performed multi-directional Uyghur text detection by regres-
sion. Li et al. [21] proposed a Uyghur text detection method based on Sobel edge
detection algorithm. The method can effectively detect the Uyghur text regions.
In addition, accurate localisation of Uyghur text is achieved through the merg-
ing operation of text regions. Wang et al. [22] improved DBNet by firstly using
Res2Net in the feature extraction network so as to adapt to the Uyghur language
with adhesion. Secondly, in the process of feature fusion, an adaptive multi-level
feature map fusion strategy is used to overcome the inconsistency of information
in the fusion process. Thus, the detection accuracy can be effectively improved.

3 Method

The proposed detection model in this paper is shown in Fig. 1. The model is
mainly divided into three modules, which are feature extraction module, feature
fusion module and text box inference module.

Fig. 1. Architecture of Scene Uyghur text detection model based on adaptive feature
fusion.
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3.1 Feature Extraction Network

In this paper, ResNet-50 is used as a feature extraction network for extracting
text features from images. However, due to the unique writing form of Uyghur
text and the presence of complex background noise in natural scenes, ResNet-50
may have difficulty in adequately capturing the key features of text regions when
processing Uyghur text. Therefore, in this paper, normalized attention based
(NAM) [23] is introduced into the residual network to enhance the network’s
attention to text regions. NAM is introduced to enhance the network’s focus on
the text region. NAM helps the model capture the key information of Uyghur
text more accurately during feature extraction by focusing on and enhancing the
representation of Uyghur text features while suppressing the non-text features
in the complex background. In this way, not only the problem of inaccurate word
localization can be alleviated, but also the interference of background texture
and noise on text recognition can be significantly reduced. In addition, unlike
other attentions NAM adopts a normalization-based approach, which avoids the
addition of fully connected and convolutional layers, thus reducing the complex-
ity and computation of the model. The residual block with the addition of NAM
module is shown in Fig. 2.

Fig. 2. Improved residual block.

In NAM module, the feature map is first input into the BN layer, and for
each channel, the BN layer learns its corresponding scaling factor λ. The BN
layer is calculated as shown in equation (1):

Bout = BN(Bin) = λ
Bin − μ

σ2 + ε
+ γ (1)

where Bin is the input, μ is the mean, σ is the standard deviation, and ε is a
very small number; γ is the offset parameter and λ is the scaling factor of the
channel, where both γ and λ are trainable parameters.



172 D. Wang et al.

Next, the scaling factor λi corresponding to each channel is used to find its
corresponding weight wi. A larger weight indicates that the channel will contain
richer information, and conversely, a smaller weight indicates that the channel
will contain less information. The calculation formula is shown in Eq. (2):

wi =
λi∑n

j=0 λj
(2)

where n represents the number of channels. Finally, the obtained weights are
dot-multiplied with the feature map that has gone through the BN layer and
input to the Sigmoid function to obtain the feature map F1, which is calculated
as shown in Eq. (3):

F1 = sigmoid(wi(BN(F )) (3)

3.2 Adaptive Feature Fusion Module

Feature pyramid networks (FPN) [24] are often used in image segmentation net-
works to effectively utilize feature maps at different scales. FPN enables the
network to capture both low level detailed features and high level semantic fea-
tures by constructing a multi-scale feature hierarchy. In order to achieve effective
fusion of these feature maps at different scales, most of the methods will use con-
catenation or summation. However, this approach may make it difficult for the
fused feature maps to capture the features of both small-scale and large-scale
text, which in turn affects the accuracy of text detection. In addition, high-level
feature maps usually contain rich semantic information, while low-level feature
maps are more detail-oriented. Direct splicing fusion may lead to redundancy of
high-level semantic information, especially when detecting small-scale text, too
much high-level semantic information may drown out the detailed features of
small text, which further affects the detection accuracy.

To address the above problems, this paper proposes an Adaptive Feature
Fusion Module (AFM), which can adaptively learn the importance of each fea-
ture map according to the semantic information of the feature maps at different
scales and adjust its weight in the fusion process accordingly to be more adap-
tive in feature fusion. This adaptive fusion makes the model more flexible in
capturing the information of different scales of text, which enables the model to
better detect different scales of text. The AFM module is shown in Fig. 3.

The main idea of the adaptive feature fusion module is to adaptively generate
the corresponding weights for the feature maps at different scales in the FPN.
The AFM module first upsamples the feature maps P5, P4 and P3 by 8x, 4x,
and 2x and resizes them to match the size of P2. Second, the resized feature
maps are concatenated with P2. Next, the feature map β of size 4 × H × W is
obtained by convolution operation. Then softmax operation is performed on the
feature map β in the channel dimension to generate the corresponding weight
map αl, l ∈ 2, 3, 4, 5 for each feature map Pi. The calculation formula is shown
in Eq. (4).

αl =
eβc

i,j

eβ1
i,j + eβ2

i,j + eβ3
i,j + eβ4

i,j

(4)
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Fig. 3. Adaptive feature fusion modules.

where βc
i,j denotes the value of the feature map β at position (i, j), the cth

channel. Finally, the feature maps Pi of different scales are adjusted by multi-
plying them with their corresponding weight maps αl so that the model is able
to weight each feature map individually, highlighting the key features, thus cap-
turing the multi-level semantic information more effectively and improving the
performance of the model in processing text of different scales.

3.3 Text Bounding Boxes Inferencing

In the inference of text box, the feature map output from the feature fusion mod-
ule is first predicted to obtain the probability map and threshold map respec-
tively. Then, the approximate binary map is generated using differentiable bina-
rization method, and finally the text box is obtained by post-processing. The
formula for the differentiable binarization is given in Eq. (5):

B̂i,j =
1

1 + e−K(Pi,j−Ti,j)
(5)

where Pi,j is the pixel point in the probability map, Ti,j represents the pixel
point in the threshold map, and K represents the magnification factor, which is
set to 50 in this paper.

3.4 Label Generation

When training the detection network, labels need to be generated for supervised
learning. These labels include the probability map, the binary map and the
threshold map. The probability map and the approximate binary map use the
same supervised signal, so two labels need to be generated. Probability map
labels are obtained by shrinking the labels of the text box by a distance D,
while threshold map labels are obtained by expanding the labels of the text box
outwards by D. The offset distance D is calculated as shown below:

D =
A × (1 − r2)

C
(6)
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where A represents the area of the text box, C represents the perimeter of the
text box, and r represents the shrinkage factor, which is set to 0.4 in this paper.

3.5 Loss Function

The loss function L of the text detection model proposed in this chapter consists
of a probabilistic graph loss function Lp, a binary graph loss Lt and a threshold
graph loss Ld.

L = Lp + ω × Lt + ϕLd (7)

where ω and ϕ represent the weight coefficients set to 1 and 10, respectively.
For the probabilistic graph loss Lp and the approximate binarised graph loss

Lt a binary cross-entropy loss function is used, as shown in Eq. (8):

Lp = Lt =
∑

i∈St

yilogxi + (1 − yi)log(1 − xi) (8)

where St is the set of samples with a positive to negative ratio of 1:3, while
yi represents the labelled values in the probability map and xi represents the
predicted values of the network. The threshold graph loss function Ld used in
this paper is the L1 loss function, Eq. (9):

Ld =
∑

i∈Rt

|y∗
i − x∗

i | (9)

where y∗
i and x∗

i represent the labelling of the threshold map and the prediction
of the threshold map, respectively.

Fig. 4. Sample scene Uyghur text dataset.
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4 Experiments

4.1 Dataset

Scene Uyghur Text Dataset. The scene Uyghur text dataset was collected
and produced by Wang et al. [22] in Xinjiang, China and other places. The
dataset contains 2400 sheets of training set, 800 sheets of validation set, 800
sheets of test set, and the total number of samples is 4000 sheets in total. These
text images are text images of natural scenes collected by shooting, and the
images contain street scenes such as traffic signs, shop signs, and promotional
banners. Due to the influence of lighting, equipment, and shooting techniques,
the text images are characterised by multiple scales and directions. A sample
data set is shown in Fig. 4:

ICDAR2015 Dataset. The ICDAR2015 dataset [25] is the official dataset
used in the Scene Text Detection Competition organised by the International
Conference on Document Analysis and Recognition (ICDAR) in 2015, which
contains 1,000 images in the training set and 500 images in the test set, with
a total of 1,500 images in the total number of samples. The text images in this
dataset were taken with Google Glass, and the shooting method is relatively
casual. There is a large amount of fuzzy text in the images, and the text scale
varies a lot, so the detection is more difficult. The sample of the ICDAR2015
dataset is shown in Fig. 5:

Fig. 5. Sample ICDAR2015 dataset.

4.2 Experimental Details And Configuration Environment

In this paper, we use the pre-trained ResNet-50 network weights on the ImageNet
dataset to initialise the feature extraction network, and the overall training pro-
cess is carried out for a total of 1200 epochs. In this paper, the initial learning
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rate and batch size are set to 0.0001 and 10, respectively, and the learning rate
is adjusted using the WarmupPolyLR strategy, where the warm-up phase lasts
for 3 cycles. For the optimiser, AdamW is chosen in this paper. The details of
the required environment parameter settings for the experiment are shown in
Table 1. In this paper, Accuracy (P), Recall (R), F-Measure (F) and Frames per
Second (FPS) are used as evaluation metrics.

Table 1. Experimental environment parameters configuration.

Type Configuration

CPU Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50 GHz

GPU NVIDIA RTX 3090

Operating System ubuntu20.04

Deep Learning Framework PyTorch 1.11.0

4.3 Ablation Study

In order to verify the effectiveness of the added individual modules, this paper
evaluates and analyses the scene text dataset and the ICDAR2015 dataset
respectively. The experimental results are shown in Table 2,where the first row
represents the experimental results of the baseline model.

Table 2. Ablation experiments with different modules.

NAM AFM Scene Uyghur text dataset ICDAR2015 dataset

R P F FPS R P F FPS

91.1 96.1 93.6 39.3 79.5 88.5 83.8 35.2

� 91.2 96.3 93.7 36.5 80.3 89.0 84.4 31.9

� 91.3 96.6 93.9 38.7 79.5 89.3 84.1 34.6

� � 92.1 95.9 94.0 35.8 82.9 88.8 85.8 30.5

The first set of experiments, shown in the second row of Table 2, adds NAM
module to the feature extraction network of the baseline model. As the NAM
module can adjust the weights of the feature map to highlight the key infor-
mation in the text while mitigating the interference of the complex background
in the text image. As can be seen in Table 2, on the Uyghur text dataset, the
module resulted in a 0.2% improvement in the accuracy of the model, while the
F composite metrics also gained 0.1%. On the ICDAR2015 dataset, the effect
of the NAM module is even more significant, resulting in a 0.8% increase in the
model’s recall and a corresponding 0.6% increase in the F composite metric.
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These improvements fully demonstrate the effectiveness of the NAM module in
improving the performance of text detection models.

The second set of experiments, shown in the third row of Table 2, adds the
adaptive feature fusion module to the feature fusion module of the baseline
model. The experimental data show that the introduction of the AFM module
improves the F-integrated metrics of both datasets by 0.3% compared to the
baseline model. This is because the AFM module flexibly adjusts the weights
of feature fusion thus enabling the model to better capture and adapt to text
features at different scales.

The third set of experiments, shown in the fourth row of Table 2, incorporates
both the NAM and AFM modules into the baseline model. Compared to the base-
line model, the Baseline+NAM+AFM network model improves the recall and
F-integrated metrics by 1% and 0.4% on the scene Uyghur text detection dataset,
while the recall and F-integrated metrics on the ICDAR2015 dataset improve
by 3.4% and 2%, respectively. In addition, its F-composite metrics improved
in both datasets with the addition of both modules, relative to the comparison
using only a single module. The experimental results demonstrate that the simul-
taneous use of these two improved modules is more beneficial for enhancing the
performance of the text detection model, and further validate the effectiveness
of these two modules.

4.4 Comparative Experiments On Uyghur Text Dataset

In order to further demonstrate the effectiveness of this paper’s method in
Uyghur text detection. In this paper, DBNet and EAST [5] algorithms are repro-
duced and compared with the method proposed in this paper for experiments on
the scene Uyghur text dataset, in addition to comparing the scene Uyghur text
Detection method proposed by wang [22]. The experimental comparison results
are shown in Table 3. It should be noted that the data marked with citation
corners in the table come from the experimental results in the original litera-
ture, while the part without citation is the experimental data reproduced by this
paper.

Table 3. Experimental results of different methods on the Scene Uyghur dataset.

Method R P F FPS

EAST 81.1 90.8 85.7 7.8

Wang [22] (736) 91.5 96.6 93.9 26.4

DBNet+Resnet18 (736) 89.8 96.0 92.8 62.8

DBNet+Resnet50 (736) 91.1 96.1 93.6 39.3

Ours (736) 92.1 95.9 94.0 35.8

Ours (1024) 93.1 96.3 94.7 21.9
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From the fifth row of the table, we can see that the proposed method in
this paper achieves 94% of the F composite index, and the F composite index
even reaches 94.7% when the image size is adjusted to 1024. However, since the
FPS decreases by more than 1.6 times, the image size of 736 is used in this
paper. The model used in this paper is ResNet50 network selected for feature
extraction. The reason for choosing ResNet50 as the feature extraction network
can be seen through the experimental results in the third and fourth rows of
Table 3. Although the FPS of using RenNet18 as the feature extraction network
is much faster, the experimental results show that the network using RenNet50
improves the recall, accuracy and F composite metrics by 1.3%, 0.1% and 0.8%
respectively than the one using RenNet18, so RenNet50 is chosen as the feature
extraction network. Compared with the regression-based EAST algorithm, the
method proposed in this paper achieves higher performance in all the three met-
rics of R, P, and F, and the improvement in speed is also significant. Compared
with the improved DBNet-based scene Uyghur text detection method proposed
by Wang et al. [22], the proposed method in this paper achieves 0.6% and 0.1%
improvement in recall and F composite metrics, respectively, which further indi-
cates that the proposed method in this paper is competitive on scene Uyghur
text datasets.

Table 4. Experimental results of different methods on the ICDAR2015 dataset.

Method R P F FPS

EAST [5] 72.8 80.5 76.4 6.5

TextBoxes++ [8] 76.8 87.2 81.7 11.6

SegLink++ [9] 73.7 86.3 79.5 9.5

PixeILink [11] 80.0 85.5 83.7 3.0

DBNet [4] 82.7 88.2 85.4 26.0

Wang [22] 81.8 88.3 84.9 18.9

BiP-Net [16] 82.1 86.9 83.9 24.8

EK-Net [17] 80.2 92.0 85.7 35.4

Ours 82.9 88.8 85.8 30.5

4.5 Comparative Experiments With The ICDAR2015 Dataset

In order to further verify the effectiveness and generalization of the model, the
experimental results of this paper on the public dataset ICDAR2015 are com-
pared with a variety of text detection algorithms, and the experimental compar-
ison results are shown in Table 4. From the table, it can be seen that the pro-
posed method in this paper achieves the best performance in terms of Recall and
F-Measure, which further illustrates the effectiveness of the improved method.
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Since the segmentation approach labels the text and background at the pixel
level, it can be more flexible to adapt to irregularly shaped text. Therefore,
compared with several regression methods, such as EAST [5], TextBoxes++ [8],
and SegLink++ [9], the method proposed in this paper shows better performance
in all metrics. The reason why the improved method in this paper is better than
other segmentation-based methods may be that the NAM module introduced
in this paper can reduce the interference of the background in the text image
while enhancing the network’s attention to the text region, and the adaptive
feature fusion module can make the feature extraction network better adapt to
the text features at different scales so as to better detect the text at multiple
scales. Therefore, the accuracy of the proposed method in this paper is higher
than other models.

4.6 Comparison Of Some Test Results

Some test results of this paper’s method with the baseline model DBNet are
shown in Fig. 6, where (a) and (b) are the detection results on the scene Uyghur
text dataset and the ICDAR2015 dataset, respectively.

Fig. 6. Visualization of experimental results for comparison.

As can be seen from Fig. 6, in the first and second columns, the baseline
algorithm has misdetection because of the interference of text-like texture and
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background noise in the text image. In the third column, the baseline algorithm
has leakage detection when detecting multi-scale text images, and the detection
effect is not good. Compared with the baseline algorithm, the improved method
in this paper can correctly localize the text region. Through these sets of com-
parisons, it can be seen that the improved model has good detection effect when
facing complex background interference and multi-scale text. This further proves
the robustness of the method proposed in this paper.

5 Conclusion

In order to improve the accuracy of Uyghur text detection, this paper proposes
a Uyghur text detection model based on adaptive feature fusion. First, in order
to accurately locate Uyghur text in complex backgrounds, this paper introduces
a normalization-based attention module in the feature extraction network. Sec-
ond, in order to improve the model’s ability to accurately recognize multi-scale
Uyghur text in natural scenes, an adaptive feature fusion module is designed in
this paper. Finally, a series of experiments are conducted to verify the effective-
ness and robustness of the proposed model in this paper on the task of Uyghur
text detection in natural scenes.
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Abstract. Handwriting trajectory recovery aims to reconstruct the
writing trajectories from images of handwritten characters, holding appli-
cations in various areas such as text recognition, signature authentica-
tion, and forensic handwriting analysis. Current methods commonly used
CNNs for feature extraction from character images, excelling in local fea-
ture identification but lacking in capturing global handwriting structures.
Subsequent trajectory generation is typically handled by RNNs, which
model the temporal sequence of writing but are hindered by gradient
vanishing issues, leading to accuracy reduction in longer sequences. In
this paper, we propose a Trajectory Transformer with a Global Radical
Context-Aware (GRCA) module to realize precise trajectory recovery
by analyzing intricate structural relationships in handwriting characters
and modeling contextual correlations within trajectory sequences. Con-
cretely, the GRCA module utilizes dilated convolutions to extract char-
acter radical features across various scales and perceives the structural
associations embedded within the multi-scale features. Additionally, we
introduce a Transformer to capture the contextual correlations among
trajectory sequences, thus alleviating the issue of trajectory drift. Exper-
iment results show that our proposed Trajectory Transformer achieves
state-of-the-art performance on four benchmark datasets.

Keywords: Handwriting Trajectory Recovery · Global Radical
Context-Aware Module · Transformer

1 Introduction

Handwritten pattern analysis encompasses two primary categories: offline image-
based patterns captured via cameras [7,8,13], and online patterns delineat-
ing pen-tip trajectories from touch-sensitive or pen-enabled devices [20,21].
Handwriting trajectory recovery is a sophisticated cross-modal text genera-
tion technology that aims to recover online handwriting trajectories from offline
images, thus promoting the development of text recognition and related fields
[9–11,15,29].
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Early traditional methods in trajectory recovery [3,4,14,16,22–25] relied on
heuristic rules which were effective for single-stroke images and simple alphanu-
meric characters. However, these methods exhibited limited generalization capa-
bilities for complex multi-stroke character images (Fig. 1).

Fig. 1. Visualization of handwriting text images and trajectory, where green dots rep-
resent the trajectory coordinate points, and the strokes of the writing trajectory are
depicted in a gradient from blue to red to indicate the sequence of writing. (Color
figure online)

To address this, some approaches [1,2,26–28,31,32] leveraged the CRNN
architecture to extract features from character images and recover trajectory
points based on these extracted features. Specifically, Zhao et al. [31,32] used
CNNs to extract image features and generate a pen movement heat map. Bhunia
et al. [2] extended this paradigm by introducing LSTM to capture context within
trajectory sequences. Archibald et al. [1] further extended the idea of [2] and
introduced the Dynamic Time Warping (DTW) loss function to optimize model
learning. Sumi et al. [27] employed a Cross Variational Autoencoder to establish
a shared latent space for offline-to-online character conversion. However, these
methods suffer from the forgetfulness of RNNs, which may lead to position drift
when predicting lengthy trajectory sequences.

Recently, some works considered introducing the attention mechanisms to
fuse 2D features of character images [5,19]. Nguyen et al. [19] introduced 2D
attention and incorporated a Gaussian Mixture Model to enhance model robust-
ness. Chen et al. [5] proposed a two-stream parsing encoder to compress feature
maps from vertical and horizontal directions to improve the accuracy of 2D coor-
dinates recovery. They also proposed a global tracking mechanism that incor-
porates global features to predict each trajectory point, which alleviates the
position drift phenomenon to some extent.

Despite the promising progress of existing trajectory recovery models, we
find that they still suffer from two major challenges: (1) Failing to adequately
analyze structural relationships in complex characters. In complex char-
acter sets like Chinese and Japanese, radicals are frequently distributed across
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Fig. 2. The proposed Trajectory Transformer consists of a GRCA module and a Trans-
former architecture. The GRCA module extracts global character image features and
analyzes the structural relationships, while the Transformer models the contextual cor-
relations of trajectory sequences and further predicts trajectory points based on the
extracted features.

distinct positions and exhibit various sizes, thereby resulting in multi-level struc-
tural relationships. (2) Failing to sufficiently model contextual correla-
tions among trajectory sequences. Intuitively, each trajectory point is linked
to previous trajectory points and global context information. Understanding
these contextual relationships among trajectory sequences is critical for trajec-
tory recovery.

In this paper, we propose a Trajectory Transformer with a Global Radical
Context-Aware (GRCA) module to tackle the above two challenges. For the
first challenge, we introduce the GRCA module, which uses dilated convolution
to extract radical features of various scales and analyze their structural relation-
ships. For the second, we propose a Transformer architecture to capture context
correlations among trajectory sequences based on the features extracted by the
GRCA module, thus enhancing the precision of lengthy trajectory recovery. Our
contributions are summarized as follows:

– We propose a Trajectory Transformer for handwriting trajectory recov-
ery, which can effectively capture the contextual correlations of trajectory
sequences.

– We design a novel GRCA module for complex character feature extraction
that can comprehensively analyze its internal structural relationships.

– Our method achieves state-of-the-art performance on four datasets across
various languages, which outperforms previous methods by a large margin.

2 Method

2.1 Trajectory Transformer

Figure 2 illustrates the architecture of the proposed Trajectory Transformer,
which integrates a Global Radical Context-Aware (GRCA) module with
a Transformer framework. This framework processes a handwritten image,
denoted as I, and outputs predicted trajectory sequences represented by P =
(p1, . . . , pl), where l denotes the trajectory’s length. Each trajectory point,
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pi =
(
xi, yi, s
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i , s
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i

)
, includes the 2D coordinates (xi, yi) along with pen

tip states (s1i , s
2
i , s

3
i ), corresponding to “pen-down”, “pen-up”, and “end-of-

sequence” actions, respectively. The GRCA module is crucial in processing the
input image I, enhancing the perception across multiple scales and extracting
a detailed 2D feature map O. This map is subsequently flattened and fed into
the Transformer encoder, a key step for obtaining the global context feature V
that is intricately linked with the input image I. By employing a self-attention
mechanism, the Transformer encoder embeds positional information into the
sequence features and analyzes relationships within the sequence. It calculates
and compares the similarity of each position to every other, using these calcu-
lations as weights to integrate trajectory features into the encoded feature V,
which encapsulates comprehensive global context information.

During each sequential step t in the Transformer decoder, the feature V
is combined with the historical trajectory sequences p1, p2, ..., pt−1 to predict
the next trajectory point pt. This iterative process, based on an auto-regressive
model, continues until the complete trajectory sequence p1, p2, ..., pl is recon-
structed.
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Fig. 3. The GRCA module consists of a GRA module and a RCA module, in which the
GRA module captures multi-scale features, and the RCA module conducts attention
perception of multi-scale features.

2.2 Global Radical Context-Aware Module

As previously noted, prevailing methodologies predominantly utilize standard
convolution for feature extraction from character images. However, this app-
roach may limit the model’s comprehensive understanding of character radicals,
primarily due to the constrained scope of continuous receptive fields. In response
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to this limitation, our approach is inspired by the multi-scale contextual analysis
method detailed in Li et al. [17]. We have developed a novel module, termed the
Global Radical Context-Aware (GRCA) module, which integrates dilated convo-
lutions within the backbone network. This integration facilitates the extraction
of multi-scale radical features from handwritten images, thereby allowing for a
more subtle perception of the structural interrelations inherent within these fea-
tures. The GRCA module’s design substantially augments the sequence model’s
capability to discern intricate details in character images, consequently improv-
ing the accuracy of writing trajectory predictions.

Figure 3 outlines the structure of the GRCA module, which is divided into two
distinct yet interconnected submodules: the Global Radical-Aware (GRA) mod-
ule and the Radical Context-Aware (RCA) module. The GRA module focuses
on recognizing and perceiving the global aspects of radicals, going beyond mere
local feature extraction. It leverages dilated convolutions to encompass a wider
field of view, thereby capturing the essence of radicals more comprehensively.
Meanwhile, the RCA module specifically targets the contextual relationship of
these radicals. It employs techniques such as dynamic attention mechanisms and
contextual embedding to analyze the spatial and semantic relationships among
different radical features, providing a deeper layer of contextual understanding.
Together, these modules work to enhance the model’s cognition and understand-
ing of complex character structures in handwritten text images.

The GRA Module: The GRA module is an innovative aspect of our archi-
tecture that integrates dilated convolutions to enhance the capture of multi-scale
features within character images. This approach is pivotal in augmenting the
global representation of radical features. The rationale behind employing dilated
convolutions lies in their capability to expansively augment the receptive field
without altering the convolution kernel’s dimensions. This approach is essen-
tial for facilitating the neurons’ perception of the intricate radical relationships
present in characters.

A critical step in our methodology involves dynamically modulating the
receptive field of neurons to optimize feature perception. We commence this
process by computing the maximal receptive field for each pixel within the fea-
ture map, dimensions of which are denoted by H × W . It is important to note
that pixels located at the boundary of the image have a reduced receptive field
due to the absence of surrounding pixels, leading to distinct calculations for
boundary and non-boundary pixels.

The dilation rates in horizontal and vertical directions for the i-th scale
feature map are represented as DW

i and DH
i , respectively. To determine the

maximal receptive field, we apply the following equations for non-boundary
pixels (RPi) and boundary pixels (REi) within the feature map Oi: RPi =
1 + 2 × ∑i

j=1 DW
j and REi = 1 +

∑i
j=1 DH

j

To maintain continuity in feature extraction, we first employ standard con-
volution, setting the initial dilation rate D1 to 1, to procure the initial output
feature map X0. The calculation of the maximum receptive field guides our selec-
tion of dilation rates for various convolution layers within the GRA module. By
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judiciously choosing dilation rates within the bounds of the calculated maxi-
mum receptive field, we progressively expand the receptive field. This strategic
expansion is crucial for perceiving multi-scale features while preserving the con-
textual continuity of the receptive field. Ultimately, this methodical approach
culminates in the extraction of multi-dimensional features, thereby enhancing
the overall functionality of our module.

The RCA Module: In our model, the Radical Context-Aware (RCA) module is
specifically designed to focus on salient features within characters. This module
enhances the model’s capabilities by attending to the multi-scale feature maps
produced by the Global Radical-Aware (GRA) module. The primary objective
of the RCA module is to judiciously assign varying attention weights to these
feature maps, thereby generating global-aware feature maps that encapsulate a
comprehensive understanding of the character structures.

As depicted in Fig. 3, the initial step in the RCA module involves the amal-
gamation of multi-scale features. This is accomplished by summing the features
across different scales, resulting in an aggregated output denoted as Õ. Subse-
quently, to condense these aggregated features spatially, we apply average pool-
ing, which effectively transforms the feature maps into a vector z ∈ R

C .
The critical phase of the RCA module involves assessing the importance of

various scale contexts associated with z. To achieve this, we utilize a series of
five fully connected layers applied to the feature vector z. This architecture facil-
itates the learning of weight coefficients b ∈ R

5×C , corresponding to each scale.
The weight coefficients are determined through softmax normalization executed
independently for each channel, as represented by the following equation:

bi =
exp(fci(z))

∑5
j=1 exp(fcj(z))

. (1)

The culmination of this process involves the application of the learned weights
b to integrate the feature maps across various scales, resulting in a global-aware
feature representation O: O = b0X0 +

∑4
i=1 biOi.

This global-aware feature O is then employed by the Trajectory Transformer
in predicting trajectory sequences. The RCA module’s ability to discern and pri-
oritize different scale features plays a crucial role in the Trajectory Transformer’s
overall accuracy and efficiency. By focusing on both local and global character
features, the RCA module ensures that the Trajectory Transformer has a com-
prehensive understanding of the intricacies involved in character trajectories.

2.3 Loss Functions

We employ L1 regression loss Lreg and cross-entropy loss LCE to optimize
the coordinates and pen states of the trajectory points respectively. The cross-
entropy loss is formulated as follows:

LCE = − 1
3Np

Np∑

i=1

3∑

k=1

wks
k
i log

(
p

(
ŝki

))
, (2)
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where ŝki denote the predicted pen tip state, while ski represent the ground truth,
and w1, w2, and w3 are the weight coefficients for “pen-down”, “pen-up”, and
“end-of-sequence” states, which are set to 1, 5, and 5. In summary, the overall
optimization objective is as follows:

L = λ1Lreg + LCE, (3)

where λ1 is a balance factor, which is set to 0.5.

3 Experiments

3.1 Datasets and Evaluation Metrics

We use the following datasets as the benchmark for validation.

Chinese Dataset: CASIA-OLHWDB [18] is a million-level online handwrit-
ten character dataset, covering Chinese characters, numbers, English characters,
and some special characters. We extract all Chinese characters from it for exper-
iments, including the most frequently used Chinese characters.

English Dataset: We collect all the English characters in CASIA-OLHWDB
as the English dataset for training and testing.

Japanese Dataset: Referring to [19], we train on the Nakayosi t-98-09 dataset
and test on the Kuchibue d-96-02 dataset.

Indian Dataset: We use the Tmail online text dataset [2], which was used as
the dataset for the IWFHR2006 online Tamil Handwriting character recognition
competition.

We employ four metrics to evaluate the writing order and font fidelity accord-
ing to [5]. For writing order evaluation, we compare the recovered writing trajec-
tory with the ground truth trajectory using Length-independent Dynamic Time
Warping (LDTW) and Dynamic Time Warping (DTW) [12]. In terms of font
fidelity evaluation, we render the recovered writing trajectory into text images
and compare these with ground truth text images, utilizing Adaptive Intersection
over Union (AIoU) [6] and Learned Perceptual Image Patch Similarity (LPIPS)
[30].

3.2 Implementation Details

In the experiment process, we normalize the coordinates of the writing trajectory
to the size range [0,64) and keep the aspect ratio constant. In addition, for the
Japanese and Indian datasets, the high density of writing trajectory points may
result in overlapping trajectory points after normalization. Therefore, we remove
the overlapping points after scaling and downsample the remaining trajectory
points. The model performs 500,000 iterations on the Chinese and Japanese
datasets and 200,000 iterations on the English and Indian datasets. The batch
size is set to 128, and the Adam optimizer is adopted for training with a learning
rate of 0.001.
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Table 1. Comparison with four current SOTA methods on four benchmarks. The best
results are highlighted in bold.

Dataset Method AIoU↑ LPIPS↓ LDTW↓ DTW↓
Chinese Dataset Cross-VAE [27] 0.146 0.402 13.64 1038

Kanji-Net [19] 0.326 0.186 5.51 443

DED-Net [2] 0.397 0.136 4.08 303

PEN-Net [5] 0.450 0.113 3.11 234

Ours 0.641 0.033 2.33 160

English Dataset Cross-VAE [27] 0.238 0.206 7.43 177

Kanji-Net [19] 0.356 0.121 5.98 150

DED-Net [2] 0.421 0.089 4.70 110

PEN-Net [5] 0.461 0.074 3.21 77

Ours 0.608 0.035 3.06 74

Indian Dataset Cross-VAE [27] 0.235 0.228 4.89 347

Kanji-Net [19] 0.340 0.163 3.04 234

DED-Net [2] 0.519 0.084 2.00 130

PEN-Net [5] 0.546 0.074 1.62 105

Ours 0.637 0.048 1.50 84

Japanese Dataset Cross-VAE [27] 0.164 0.346 22.7 1652

Kanji-Net [19] 0.290 0.236 6.92 395

DED-Net [2] 0.413 0.150 4.70 214

PEN-Net [5] 0.476 0.125 3.39 145

Ours 0.564 0.074 3.22 119

3.3 Evaluation Results

Our research entailed comprehensive experiments to benchmark our proposed
model against current state-of-the-art (SOTA) methods. These methods include
DED-NET [2], Cross-VAE [27], Kanji-Net [19], and PEN-Net [5]. The compar-
ative results, as tabulated in Table 1, unequivocally demonstrate the superior
performance of our method across various evaluation metrics and datasets. Sig-
nificantly, our approach exhibits remarkable improvements in datasets featuring
complex characters, particularly Chinese scripts.

The observed enhancement in performance can be ascribed to two pivotal
aspects of our model:

Global Radical Context-Aware (GRCA) Module: Our uniquely designed
GRCA module plays a crucial role in comprehensively understanding the struc-
tural nuances within complex character images. This module’s ability to discern
and integrate multi-scale radical features significantly contributes to the model’s
efficacy in handling intricate character representations.
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Integration of Transformer Architecture: Another key factor is the incorpora-
tion of Transformers within our model. The Transformer architecture effectively
mitigates the issue of trajectory drift, a common challenge in character tra-
jectory prediction. By leveraging self-attention mechanisms, the Transformer is
adept at maintaining consistency in trajectory sequences, especially for lengthy
and complex characters.

Furthermore, the visualizations presented reinforce our findings. While pre-
vious methods demonstrated proficiency in recovering simple character trajecto-
ries, they often faltered with more complex characters, leading to issues such as
stroke repetition and trajectory drift. In stark contrast, our method consistently
and accurately predicts complex character trajectories, showcasing remarkable
reliability.

In summary, compared to existing SOTA methods, our approach not only
excels in handling complex characters but also demonstrates unparalleled accu-
racy in predicting extensive trajectory sequences. This advancement marks a
significant step forward in the field of handwriting recognition and trajectory
prediction, particularly for scripts that pose intricate structural challenges.

3.4 Ablation Studies

In order to rigorously evaluate the efficacy of the individual components of our
model, we conducted a series of ablation experiments. For these experiments, we
utilized the PEN-Net [5], based on the Convolutional Recurrent Neural Network
(CRNN) architecture, as our baseline model. The results, delineated in Table 2,
provide a clear quantitative assessment of the enhancements contributed by each
module in our proposed system.

Impact of Transformer Integration: The introduction of the Transformer into
our model architecture has resulted in substantial improvements across all perfor-
mance metrics. The key to this enhancement lies in the Trajectory Transformer’s
ability to capture the contextual correlations within trajectory sequences. Unlike
traditional approaches, the Transformer’s self-attention mechanism allows for
a more nuanced understanding of the sequential dependencies and structural
nuances in handwriting, resulting in more accurate trajectory predictions.

Effectiveness of the GRCA Module: The addition of the GRCA module
has also shown a significant positive impact on the model’s performance. This
improvement underscores the GRCA module’s robust capabilities in feature
extraction and analysis, particularly for characters with complex structures. The
module’s design, focusing on multi-scale radical features, equips the model with
an advanced understanding of the intricate details and contextual relationships
present in complex characters. This is especially pertinent in scripts where rad-
icals play a crucial role in character formation, such as in Chinese handwriting
(Fig. 4).



Trajectory Transformer 191

Label Kanji-Net DED-Net

Chinese

English

Indian

Japanese

Cross-VAE OursPEN-Net

Fig. 4. Visualization of the trajectories recovered by different methods for qualitative
analysis, with each color representing a specific stroke. Compared with our proposed
methods, it shows that the precision of the previous methods is poor when recovering
complex character images and a noticeable drift phenomenon arises in the recovery of
lengthy sequences.

In conclusion, these ablation studies validate the substantial contributions of
the Transformer and GRCA modules to our model’s overall performance. By sys-
tematically analyzing the performance improvements with each added module,
we demonstrate that both the nuanced context handling of the Trajectory Trans-
former and the sophisticated feature analysis of the GRCA module are integral
to the model’s success in accurately predicting handwriting trajectories (Fig. 5).
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PEN-Net [5]

Ours

Chinese Japanese

Fig. 5. Our method is compared with the visualized results of PEN-Net, where the
black text is Groundtruth and the red text is the model prediction result. Although
PEN-Net can recover the glyphs of text images as a whole, there is a certain degree of
offset in the stroke details. (Color figure online)

Table 2. Ablation studies on our designed modules.

Transformer GRCA AIoU↑ LPIPS↓ LDTW↓ DTW↓
✗ ✗ 0.450 0.113 3.11 233.8

� ✗ 0.627 0.042 2.55 182.9

� � 0.641 0.033 2.33 159.2

4 Conclusions

In this research paper, we introduce the Trajectory Transformer, a novel app-
roach devised for the precise prediction of trajectory points from handwritten
text images. Our model is specifically tailored to address the intricate, multi-
level structural relationships inherent in handwritten images, a challenge that
has been a focal point in the field of handwriting analysis and recognition.

A key innovation in our approach is the development of the Global Radi-
cal Context-Aware (GRCA) module. This module is meticulously engineered to
extract and analyze the nuanced relationships between various scale features of
radicals in handwriting. Radicals, especially in certain scripts like Chinese, play
a critical role in character structure and meaning. The GRCA module’s ability
to dissect these features and their interrelationships is instrumental in enhancing
the overall accuracy of character recognition.

To further refine our model, we have integrated Transformer architecture,
renowned for its efficiency in modeling contextual relationships. In the realm of
handwriting trajectory recovery, one of the persistent challenges is the drift that
occurs in lengthy trajectory sequences. The Transformer’s self-attention mecha-
nism adeptly tackles this issue, ensuring consistency and precision in trajectory
prediction over extended sequences.

Evaluation Through Extensive Experiments and Ablation Studies: The effi-
cacy of our Trajectory Transformer has been thoroughly evaluated through
extensive experiments on benchmark datasets. Additionally, we have conducted
detailed ablation studies to confirm the effectiveness of each individual compo-
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nent within our model. These studies are crucial in isolating and understanding
the contributions of the GRCA module and the Transformer architecture to the
model’s overall performance.

In conclusion, the combination of the GRCA module and Transformer archi-
tecture in our Trajectory Transformer presents a significant advancement in the
field of handwriting recognition. Our model not only addresses key challenges
such as the handling of complex structural relationships and trajectory drift but
also sets a new benchmark in trajectory prediction accuracy.
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Abstract. Handwriting exhibits intra-variability within the same writer
due to friction between different writing surfaces, such as transitioning
from paper to a computer tablet. This study investigates such intra-
variability in handwriting characteristics across different writing sur-
faces and its implications for writer identification. An empirical study
is conducted to assess the performance of state-of-the-art deep archi-
tectures in identifying writers amidst such intra-variation. Addition-
ally, a transformer-based model is proposed to capture writer identifi-
cation under these intra-variable circumstances. A dataset comprising
1560 handwritten English text-line images from 130 writers is created
and utilized for experimentation. The results reveal insightful outcomes
regarding the utilization of deep architectures and the proposed model in
handling intra-variability for writer identification. This study contributes
to advancing the understanding of intra-variability in handwriting and
offers practical implications for forensic analysis and document authen-
tication in the digital age.

Keywords: Biometric · Computer Forensics · Handwriting
Intra-Variability · Transformer Networks · Writer Identification

1 Introduction

In the realm of forensic investigation and beyond, the analysis of handwriting
has long been a fundamental tool for identifying individuals and authenticat-
ing documents. However, with the advent of digital technology, traditional pen-
and-paper writing is progressively giving way to computer tablets for various
writing tasks [14]. This shift raises pertinent questions about the consistency
and reliability of handwriting characteristics across different writing surfaces.
Forensic contexts, such as writer identification in legal documents or criminal
investigations, necessitate a deep understanding of handwriting intra-variability
(variations within an individual’s writing) [2] across surface transitions to ensure
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accurate analysis and interpretation [10,25]. Moreover, in the education sector,
studying handwriting analysis amidst surface transitions can provide valuable
insights into students’ adaptability [15].

The friction between the writing instrument and the writing surface plays
a pivotal role in shaping handwriting [15]. For instance, on a computer tablet,
factors like pressure sensitivity, screen responsiveness, and the angle of the writ-
ing instrument contribute to variations in writing output. As individuals adapt
their writing behaviors to accommodate digital mediums, it becomes impera-
tive to examine the degree of intra-variability that may emerge within their
handwriting patterns [3]. Writings among different writers are distinguished by
unique styles, known as inter-class variance or inter-variability. Moreover, within
the writings of a single person, considerable variations can occur due to various
mechanical, physical, and psychological factors [22], termed intra-class variance
or intra-variability [4]. Despite significant intra-variations in ink-strokes among
handwritten samples of a writer, individuals familiar with certain writing over
an extended period may still identify it. This ability may stem from implicit
stroke characteristics present in the writing [1].

This paper explores the intra-variability inherent in individual handwriting
across surface transitions, particularly focusing on the transition from paper to
computer tablets, and its implications for writer identification. While the field
of pattern recognition lacks studies similar to ours, research in the domains of
education and psychology has addressed related topics [14,15]. Gerth et al. [15]
studied whether age-related effects exist in graphomotor execution due to varia-
tions in writing surfaces. Their another research [14] also indicated that proficient
writers can adjust their handwriting movements to suit the writing surface. The
study by Alamargot et al. [6] examined the impact of writing on tablet screens
on students’ graphomotor skills across different grade levels. Some past studies
also explored the impact of varying writing instruments (e.g., pen, and pen-
cil) on individual handwriting, revealing insights into these tools’ influence on
intra-variability [19,23].

In this paper, we recognize the potential of transformer networks in address-
ing the challenges posed by handwriting intra-variability across different writing
surfaces. Through our empirical study, we aim to assess the effectiveness of deep
architectures in accurately identifying writers amidst intra-variation and dis-
cerning subtle nuances in handwriting patterns. The past researches on writer
identification can be found in [8,26,36]. In recent days, contemporary deep convo-
lutional architectures have also been employed for writer identification, including
models like CaffeNet [13], AlexNet [27], SqueezeNet, GoogLeNet, Xception Net,
VGG, ResNet, etc. [2]. Integration of global and local features in architectures
can also be seen, e.g., FragNet [17], GR-RNN [18]. Very recently, papers employ-
ing spatial attention [30] and multi-head self-attention [5,21] have emerged. By
bridging the gap between traditional handwriting analysis and emerging digital
technologies, our paper aims to provide valuable insights for practitioners across
diverse fields.
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Our contributions to this paper are outlined as follows:
(i) We conducted a thorough study on writer identification using the intra-

variable characteristics found within an individual’s handwriting. This involves
a comprehensive and detailed investigation into the unique attributes and vari-
ations present in individual writing style.

(ii) We investigated both traditional pen-and-paper writing and computer
tablet writing, demonstrating intra-variation influenced by a range of writing
instruments. We systematically investigate the variables within each category to
mimic real-world writing conditions, encompassing writing on paper, on-screen
display tablets, and off-screen graphics tablets. This comprehensive approach
facilitates research in handwriting analysis by capturing the nuanced variations
observed across different writing mediums and environments.

(iii) We have proposed a transformer-based network and conducted rigorous
experiments aimed at thoroughly investigating the effects of intra-variability in
handwriting. Through systematic testing and data collection, we aimed to gain
a comprehensive understanding of how surface transitions influence handwrit-
ing characteristics within individuals. Our experiments were designed to provide
insights into the nuances of intra-variability and its implications for handwrit-
ing analysis on surface changes, with the goal of enhancing the accuracy and
reliability of automated systems for writer identification.

The rest of the paper is organized as follows. In Sect. 2, we mention the
employed dataset details and associated challenges. Section 3 presents the pro-
posed method. The experimental analysis and results are discussed in Sect. 4.
Finally, Sect. 5 concludes this paper.

2 Dataset Details and Challenges

This study aims to examine intra-variability in handwriting across surface tran-
sitions and its significance for writer identification. Given the absence of publicly
available datasets meeting our specific requirements, we undertook the task of
creating our own dataset.

Writer Details: Our dataset includes contributions from 130 distinct writers
from various regions of India, all of whom have at least a professional work-
ing proficiency in English. None of the writers are known to be native English
speakers, and all have completed at least a higher-secondary level of education
with English as part of the curriculum. The ages of the writers range from 16 to
33 years, with an average age of 19.14 and a standard deviation of 2.22; among
them, 101 are male, and 29 are female. The writers have different levels of expe-
rience with writing on computer tablets, ranging from extensive to minimal.

Text-Dependent Writing: In our dataset, all writers were tasked with writing
a standard English pangram, “The quick brown fox jumps over a lazy dog”. This
enabled us to closely examine the characteristics of each English character in a
text-dependent manner.



Handwriting Intra-Variability Across Surface Transitions 199

Writing Surface: For each of the 130 writers, we engaged three writing surfaces
as mentioned below:

(i) Paper: Each writer was provided with a standard form printed on 75
GSM white A4 paper, featuring blank 24.5 cm × 2 cm sized rectangular boxes.
Participants were instructed to scribble the above English pangram within this
designated box. We provided all the writers with the same 5 writing tools, i.e.,
pencil, gel pen, fountain pen, 0.5 mm and 1 mm ball pens. Here, we have incorpo-
rated 2 distinct paper surfaces to capture a comprehensive array of handwriting
variations. Firstly, participants were provided with a stack of paper containing
fifty A4 sheets as platform, on which they kept the printed paper form to write,
allowing for a regular writing experience akin to standard note-taking condi-
tions. Secondly, we offered a wooden exam clipboard as an alternative to place
only the printed paper form, providing a hard platform for writing tasks. Here,
each writing tool offers unique tactile feedback and line thickness, contributing
to the diverse range of handwriting styles observed in the dataset. By offering
participants a selection of tools commonly encountered in everyday writing con-
texts, we aimed to capture the full spectrum of handwriting variability across
different mediums and tools. Thus, using 5 tools on paper placed on both regular
and hard platforms, each writer wrote 10(= 5 × 2) copies of the above pangram.
The pages were scanned on an autofed flatbed scanner (EPSON DS-1630) to
convert into digital images.

(ii) On-screen display tablet: Each writer wrote 1 copy of the above pangram
on Wacom One Pen DTC133W0C Display Tablet (size: medium). We captured
this writing as an image.

(iii) Off-screen display tablet: Each writer scribbled 1 copy of the abovemen-
tioned pangram on Wacom Intuos CTL-4100/K0-CX Digital Graphics Tablet
(size: small). This device features a decoupled writing surface without a built-
in display, requiring the writer to view the connected computer screen while
writing. Here also, the writing was captured as an image.
In this way, we have collected 12 (= 10 + 1 + 1) handwriting samples from each
of the 130 writers. Therefore, our dataset contains a total of 1560(= 12 × 130)
handwritten text lines.

Major Challenges Observed in Dataset: This database offers valuable
insights into intra-variant handwriting, which encompasses the natural variations
in a person’s handwriting due to diverse mechanical factors. We have observed
various challenging cases in our database, some of which are mentioned below:

(i) Micro-structure intra-variation: This type of variation occurs when the
writer is less accustomed to touch tablets and must concentrate on the screen to
which the tablet is connected. It reflects the deviations in the micro-level details
of handwriting strokes due to the writer’s adjustment to the digital writing inter-
face. These deviations are often observable in the subtle details of pen movement,
line thickness, and overall flow of the handwriting, highlighting the impact of
the digital medium on the intricacies of handwritten expression. Figure 1 shows
the impact of micro-structure variations in Fig. 1(a3) where the writer has lost
the smoothness of the writing that was maintained in Figs. 1(a1), (a2).
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Fig. 1. Some samples from our database. Here, Writer-a has written four samples (a1)-
(a4). Similarly, Writers-b, c, d have written (b1)-(b4), (c1)-(c4), (d1)-(d4), respectively.
(a1), (b1), (c1), (d1): Writing on paper while the paper is placed on a hard surface. (a2),
(b2), (c2), (d2): Scribbling on paper placed on a medium/ regular surface. (a3), (b3),
(c3), (d3): On-screen display tablet writing. (a4), (b4), (c4), (d4): Off-screen graphics
tablet scribbling. Writing tools: (a2), (d1): pencil;(b1), (c2): gel pen; (d2): fountain
pen; (b2): 0.5 mm ball pen; (a1), (c1): 1mm ball pen.
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(ii) Stroke reduction intra-variation: It occurs due to the continuous surface
of the tablet screen, which requires the writer to maintain contact without lift-
ing the pen as frequently as with traditional paper writing. Consequently, the
writing process on a tablet involves longer strokes and fewer interruptions in pen
movement, leading to alterations in the typical patterns of handwriting strokes.
This change in writing behavior can result in differences in stroke length, spacing
between letters, and overall fluidity of the handwriting, reflecting the influence
of the digital medium on the intricacies of writing style. Figures 1(b1), (b2),
(b3),(b4) reflect the stroke reduction in the handwriting samples.

(iii) Ink type intra-variation: It refers to the variations in handwriting char-
acteristics resulting from the distinct visco-elastic properties of the inks used in
these two types of pens. The gel pen’s smooth, consistent lines from gel-based
ink contrast with the intermittent flow of the ballpoint pen’s oil-based ink, lead-
ing to varying stroke widths and intensities in handwriting. Figures 1(c1), (c2),
(c3),(c4) illustrate the variation in ink flow within the handwriting samples.

(iv) Idiosyncratic intra-variation: Arises from the writer’s tendency to
employ different forms of letters while writing. This phenomenon reflects the
unique stylistic choices and habits of the writer, resulting in variations in the
shapes, sizes, and embellishments of individual letters within the handwriting
samples. These idiosyncrasies contribute to the distinctive and personalized
appearance of the handwriting, highlighting the individuality and nuances in
the writer’s writing style. In the writing structure of the first character ‘T’, we
can see a clear difference in Fig. 1(𝑑4) from Figs. 1(d1), (d2), (d3).

3 Proposed Methodology

The aim of this study is to examine handwriting intra-variability across transi-
tions between various writing surfaces and explore its relevance to writer identi-
fication. Therefore, we first formally define the problem in the context of writer
identification, and subsequently discuss the methodology to address it.

3.1 Problem Formulation

A handwriting image (I) has been given as input. The task is to identify
the writer (𝑤𝑖) from a set of writers (W), who has scribbled the text; for
𝑖 = 1, 2, . . . , |W|. Therefore, we formulate the undertaken task as a multiclass
classification problem to classify the correct writer-class 𝑤𝑖 ∈ W of handwrit-
ing image I. The database employed in this paper contains samples from 130
writers; i.e., |W| = 130.

3.2 Solution Architecture

Before moving on to the main processing module, we conducted some prepro-
cessing steps.
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Pre-processing: A handwritten text-line image (I) is input to our model, which
is first resized into 𝑑ℎ × 𝑑𝑤 sized I𝑇 without distorting the aspect ratio. Such
distortion is undesirable in the context of writer identification tasks due to pre-
serving the ink-stroke individuality or writer inter-variability. We introduce zeros
into certain rows or columns to maintain the aspect ratio. We here empirically
fix 𝑑ℎ = 192, and 𝑑𝑤 = 1920.
Transformer Network: For the task at hand, our approach involves utiliz-
ing a transformer network due to its minimal inductive bias and resilience to
noise [12]. However, unlike directly employing the Vision Transformer (ViT) [12]
that feeds raw image patches directly to the transformer encoder, our model
initially extracts deep features from the image patches before embedding in the
transformer encoder. This workflow is visually depicted in Fig. 2.

Fig. 2. Workflow of the proposed writer identification model

I𝑇 is partitioned into a sequence of non-overlapping 𝑛𝑝 patches denoted as 𝑥𝑖𝑝
(for 𝑖 = 1, 2, ..., 𝑛𝑝), each having dimensions 𝑑𝑝×𝑑𝑝×𝑐𝑝, where 𝑐𝑝 represents the
channel count of I𝑇 . Each patch 𝑥𝑖𝑝 undergoes processing through a convolutional
architecture 𝑓𝐶 to extract the corresponding deep feature 𝑔𝑖𝑝 with a dimension
of 𝑑𝑔. In 𝑓𝐶 , we utilize the layers before the global average pool of ResNeXt-50
[35], as it exhibited superior performance compared to contemporary models like
VGG19 [29], ResNet [16], MobileNetV2 [28], etc. The weights of 𝑓𝐶 ’s are shared
across all patches. We refrain from utilizing a distinct objectness network [34] to
delineate between background and foreground ink-stroke (object) patches, since
transformer network inherently leverage the attention mechanism [33] to priori-
tize important patches. Here, 𝑐𝑝 = 3, since I𝑇 is an RGB image. Empirically, we
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fix 𝑑𝑝 = 64; therefore, 𝑛𝑝 = �(𝑑ℎ×𝑑𝑤)/(𝑑𝑝×𝑑𝑝)� = �(192×1920)/(64×64)� = 90.
We also choose 𝑑𝑔 = 2048.

Each 𝑔𝑖𝑝 undergoes further flattening and is then transformed into a 𝐷-
dimensional vector, i.e., embedding 𝑧0 through transformer layers [12], utilizing
the following linear projection:

𝑧0 = [𝑔𝑐𝑙𝑎𝑠𝑠 ; 𝑔1𝑝 E ; 𝑔2𝑝 E ; . . . ; 𝑔
𝑛𝑝
𝑝 E] + E𝑝𝑜𝑠 (1)

Here, E ∈ R
𝑑𝑔×𝐷 is the embedding projection matrix; E𝑝𝑜𝑠 ∈ R

(𝑛𝑝+1)×𝐷 denotes
the position embedding added to the deep feature embeddings extracted from
patches, serving to retain positional information; 𝑔𝑐𝑙𝑎𝑠𝑠 = 𝑧00 refers to a learn-
able embedding [11]. Following the embedding space, a sequence of transformer
encoder is incorporated [12,33]. The right-hand side of Fig. 2 depicts the inter-
nal structure of a transformer encoder, which consists of alternating layers of
𝑀𝑆𝐴 (Multi-head Self-Attention) [12] and 𝑀𝐿𝑃 (Multi-Layer Perceptron) [37]
modules. 𝐿𝑁 (Layer Normalization) [7], and residual connections [37] are applied
before and after each of these modules, respectively. This composition is formally
presented in Eq. 2 with general semantics. The 𝑀𝐿𝑃 module utilized here com-
prises two layers with 4𝐷 and 𝐷 neurons, respectively, incorporating the GELU
(Gaussian Error Linear Unit) non-linear activation function [12].

𝑧′𝑙 = 𝑀𝑆𝐴(𝐿𝑁 (𝑧𝑙−1)) + 𝑧𝑙−1; 𝑧𝑙 = 𝑀𝐿𝑃(𝐿𝑁 (𝑧′𝑙)) + 𝑧′𝑙; 𝑙 = 1, 2, . . . , 𝐿 (2)

where, 𝐿 denotes the total count of transformer blocks. The core element of
the transformer encoder is 𝑀𝑆𝐴, which incorporates ℎ (> 1) number of ℎ𝑒𝑎𝑑s.
Each ℎ𝑒𝑎𝑑𝑖, ∀ 𝑖 ∈ {1, 2, ..., ℎ} uses 𝑆𝐴 (Scaled dot-product Attention) [12,33],
wherein the input consists of query (𝑄), key (𝐾), and value (𝑉) matrices. The
𝑆𝐴 module calculates the attention assigned to the input patches. The results of
𝑆𝐴 computations across all heads are concatenated within the 𝑀𝑆𝐴 module, as
illustrated below.

𝑀𝑆𝐴 (𝑄, 𝐾,𝑉) = [ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, . . . , ℎ𝑒𝑎𝑑ℎ] ;

ℎ𝑒𝑎𝑑𝑖 = 𝑆𝐴(𝑄 ·𝑊 𝑖
𝑞 , 𝐾 ·𝑊 𝑖

𝑘 , 𝑉 ·𝑊 𝑖
𝑣) ;

𝑆𝐴(𝑄, 𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(
𝑄𝐾𝑇

�

√
𝐷ℎ

)
𝑉

(3)

where, 𝑊𝑞, 𝑊𝑘 , 𝑊𝑣 are the weight matrices for the linear transformation; 𝐷ℎ =
𝐷/ℎ. Following 𝐿 transformer encoder blocks, the <class< token [11] is enriched
with contextual information. The learnable embedding state resulting from the
transformer encoder (𝑧0𝐿) serves as the image representation 𝑦 [12]; 𝑦 = 𝐿𝑁 (𝑧0𝐿).

Feed Forward Network (FFN): The final stage of our model integrates an
FFN consisting of two hidden layers, sequentially added with 1024 and 𝐷 nodes,
respectively, which engages GELU activation function. The output layer consists
of 𝑛𝑤 neurons with 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥, resulting in the distribution 𝑠< 𝑗>, from which the
writer-id 𝑤 is identified as below.

𝑤 = arg max 𝑗 𝑠< 𝑗> ; for 𝑗 = 1, 2, . . . , 𝑛𝑤 ; (4)
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where, 𝑛𝑤 is the number of writers in the database, i.e., 𝑛𝑤 = |W|. Here, we
utilize cross-entropy loss, as it has been found effective for multi-class classifi-
cation tasks [37]. Furthermore, we employ the Adam optimizer [20]. The details
regarding hyper-parameter tuning and training are elaborated in Sect. 4.

4 Experiments and Discussions

This section starts with an outline of the dataset and experimental setups, fol-
lowed by experimental results to evaluate the effectiveness of our model and
some contemporary deep architectures for the undertaken task.

4.1 Dataset Employed and Experimental Setups

As mentioned in Sect. 2, we have collected a total of 1560 handwritten English
text-line images from 130 individuals. Each writer scribbled 10 samples on
“paper”, 1 sample on “on-screen” display tablet, and 1 sample on “off-screen”
graphics tablet.

We have created 4 experimental setups (ES ), as below:

• ES-1: All samples written on paper (i.e., 10 × 130 samples) were used as
training set, and on-screen 1 × 130 samples were engaged for testing.

• ES-2: The training set was kept similar to ES-1, and off-screen 1×130 samples
were used for testing.

• ES-3: The training set was the same as ES-1. The test set combined the on-
screen and off-screen samples used for testing in ES-1 and ES-2 (i.e., 2×130
samples).

• ES-4: We randomly split all 1300 (= 10× 130) samples written on paper only
into training and test sets with a ratio of 8 : 2. We ensured that the training
set included samples from all 130 writers.

In each of the above experimental setups, 10% of the training data was allo-
cated for validation purposes. During model training, we augmented the training
set samples by introducing random changes in image saturation, brightness, and
contrast to mitigate overfitting.

4.2 Results

We performed the experiments on an Intel(R) Xeon(R) CPU @ 2.00 GHz with
52 GB RAM and Tesla T4 16 GB GPU. The hyperparameters of the employed
models were tuned and fixed during the model training, considering the per-
formance of the validation set [37]. For training, the mini-batch size was equal
to 16. In this study, 100 epochs were used for model training. The Adam opti-
mizer [20] parameters were selected as follows: the initial learning rate was set to
10−4, the exponential decay rates for the 1𝑠𝑡 and 2𝑛𝑑 moment estimates, 𝛽1 and
𝛽2, were set to 0.9 and 0.999, respectively, and the zero-denominator removal
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parameter (𝜖) was set to 10−8. For transformer network, we empirically chose
𝐿 = 6, 𝐷 = 192, and ℎ = 12. All results presented in this paper were obtained
from the testing set. We utilize average top-1 accuracy % over all writers as the
evaluation metric for assessing model performance [2].

Table 1. Performance analysis on various experimental setups and comparative study

Methods Top-1 Accuracy %

ES-1 ES-2 ES-3 ES-4

Baseline VGG19 [29] 56.4391 56.3369 57.3468 67.4889

ResNet50-V2 [16] 64.3467 64.2342 65.4734 79.3504

Inception-V3 [31] 69.3458 69.3456 69.3456 80.0581

Xception [9] 69.3563 69.3873 69.5647 80.1904

MobileNet-V2 [28] 69.4737 69.3884 70.4098 80.4259

EfficientNet-B3 [32] 72.3422 72.8463 72.6833 81.2626

RAM [24] 72.4523 72.2346 72.5842 81.4558

SOTA Fiel et al. [13] 54.5692 54.1956 54.8073 65.4442

GR-RNN [18] 71.7432 71.6591 72.1226 81.0562

Koepf et al. [21] 73.2389 73.2420 73.3460 81.6678

Srivastava et al. [30] 75.1104 75.0188 75.3365 81.7277

WiT [5] 75.3602 75.3600 75.5308 83.1328

FragNet [17] 75.3613 75.0404 76.2904 83.4105

Ours 75.6061 75.5975 76.8509 83.6481

Table 1 presents the performance of our model, and provides a comparison
with some major baseline deep architectures [9,16,24,28,29,31,32] and state-of-
the-art (SOTA) writer identification methods [5,13,17,18,21,30] across above-
mentioned four experimental setups (i.e., ES-1, ES-2, ES-3, and ES-4 ).

From the results presented in Table 1, we have the following major obser-
vations:

(i) Our method outperformed major baseline deep architectures and SOTA
methods by attaining 75.6061%, 75.5975%, 76.8509%, and 83.6481% top-1 accu-
racies for ES-1, ES-2, ES-3, and ES-4, respectively.

(ii) Among the compared baseline and SOTA methods, EfficientNet-B3 [24]
and FragNet [17] obtained superior performances, respectively, in ES-3. In all
individual setups, the best performances of baseline and SOTA methods are
underlined in Tabel 1.

(iii) Overall, the comparable methods, including ours, achieved better perfor-
mances in ES-4 than other setups. One possible reason is that the training and
test samples in ES-4 encompass handwriting produced by various tools (e.g.,
pencil, gel pen, fountain pen, 0.5 mm and 1 mm ball pens) on paper while placed
on regular and hard surfaces.
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(iv) Overall, our method and some major baseline/ SOTA methods encoun-
tered challenges stemming from the surface transition from paper to computer
tablets. This is evident from performances on ES-1, ES-2, and ES-3 setups,
where training samples were written on paper while test samples were scribbled
on computer tablets.

(v) We also noted that overall, the comparable methods, including ours,
demonstrated better performance in ES-1 compared to ES-2. One plausible rea-
son is that individuals encountered more challenges in ES-2 when writing on
an off-screen graphics tablet, which involves a decoupled writing surface while
viewing the computer screen. However, for some writers, the act of scribbling on
a on-screen relatively smoother surface of a display tablet posed challenges in
ES-1.

These observations highlight the presence of intra-variation in handwriting
resulting from surface transitions, as evidenced by the performance of writer
identification methods. As a matter of fact, while baseline and state-of-the-art
(SOTA) methods achieve high accuracy in benchmark datasets [36], their per-
formance is notably poorer in the dataset examined in this paper.

Ablation Study: We also performed an ablation study by removing the 𝑓𝐶
component from our model (refer to Fig. 2 and Sect. 3.2). After ablating 𝑓𝐶 , we
obtained top-1 accuracies of 73.2389%, 73.2420%, 73.3460%, and 81.6678% in
ES-1, ES-2, ES-3, and ES-4 setups, respectively. This ablation led to a decrease
in accuracy ranging from 1% to 3.5%.

5 Conclusion

This paper studies the intricate challenge of understanding intra-variability in
handwriting, which encompasses the variations observed across different writ-
ing surfaces, ranging from traditional paper sheets to modern computer tablets.
The study explores these diverse writing contexts, including writing on both
traditional paper and digital tablets, with and without visual displays, to shed
light on how they influence the characteristics and patterns of handwriting. By
examining the variations arising from these different conditions, the paper aims
to provide insights into the underlying factors contributing to intra-variability in
handwriting. We utilized a transformer network with deep features to assess per-
formance in this study. We curated an intra-variable handwriting dataset across
various surfaces, incorporating English handwriting samples from 130 distinct
writers, totaling 1560 samples. Our model demonstrated an overall accuracy of
76.8509% on this dataset, showcasing promising outcomes. In future research
endeavors, we aim to further investigate intra-variation stemming from various
writing tools and explore multiple scripts to deepen our understanding of hand-
writing characteristics across diverse contexts.
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Abstract. Table Structure Recognition (TSR) aims to extract the
bounding boxes of cells and table structure (e.g., HTML) from table
images. Although current approaches have made significant progress, the
latest image-to-sequence methods overlook the explicit utilization of the
bounding box information when predicting HTML sequences, leading to
error predictions in complex scenes. In this paper, we introduce a novel
framework BGTR (Bounding Box-Guided Table Recognizer). To more
effectively utilize bounding box information, we first predict the bound-
ing boxes of cells and then use this information to guide the genera-
tion of HTML sequences. While utilizing bounding box information can
enhance the accuracy of HTML sequences, for natural scene tables, the
data volume is too small to allow for sufficient training of bbox-guided
HTML generation. In response, we adopt a progressive training method
for natural scene tables and introduce SNSTab, a synthetically gener-
ated natural scene table dataset. Our experiments on five benchmark
datasets demonstrate SOTA performance.

Keywords: Table structure recognition · Image-to-sequence ·
Bounding box guidance · Dataset

1 Introduction

Tables are a crucial medium for structured information dissemination. Table
detection (TD) aims to extract the position of tables from document images, and
many methods [1,8,20] have shown excellent results. Table Structure Recognition
(TSR) aims to transform images containing tables into structured data, which is
both crucial and challenging. Leveraging the advancements of transformer [23],
which have proven highly effective in various fields [7], image-to-sequence meth-
ods [3,11,18,27] have demonstrated promising results in TSR. These methods
employ an encoder-decoder architecture to simultaneously predict the HTML
(Hyper Text Markup Language) sequence and the bounding box (bbox) of table
cells. In predicting HTML sequences, they rely solely on image information and
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overlook the explicit utilization of bbox information. However, table structure
and formatting can be highly complex, and bbox information is essential for pars-
ing the structure of tables. Therefore, exclusive reliance on image information
may lead to error predictions in complex scenes, like spanning cells (Fig. 1(a)).
In this paper, we introduce a novel framework BGTR (Bounding Box-Guided
Table Recognizer). Unlike previous image-to-sequence methods [3,11,18,27], we
explicitly utilize bbox information to obtain accurate HTML sequences. We first
use a Bbox Predictor to predict bboxes. Then, during HTML sequence decoding,
we enable the Bbox-Guided Structure Decoder to perceive both the image and
bbox information of the table, resulting in accurate HTML sequences.

Fig. 1. The motivation behind the proposed method. (a) Comparison of HTML visual-
ization with and without bbox-guided generation on TabRecSet [26], the red dotted
boxes indicate error results, the blue dotted boxes indicate spanning cells. The results
indicate that using bboxes for guidance achieves better performance in spanning cells.
(b) A comparison between two types of datasets reveals that the sample size of the
digital document table dataset is significantly larger than that of the natural scene
table dataset. (Color figure online)

Although utilizing bbox information can improve the accuracy of the HTML
sequence, for natural scene tables, as shown in Fig. 1(b), the data volume is
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small, and the structure and style of tables in natural scenes are complex, mak-
ing it insufficient for adequate training of bbox-guided HTML generation. In
response, we adopt a progressive training method for natural scene tables and
introduce SNSTab. Progressive training method includes a foundation train-
ing stage and a advancement training stage. In the foundation training stage,
we aim to train the model with a large number of tables from natural scenes,
thereby enabling it to learn how to more effectively utilize bbox information for
guiding the generation of HTML sequences, this approach leads to improve the
model’s foundational understanding of tables. In the advancement training stage,
training is conducted on a specific natural scene table dataset (e.g., TabRec-
Set [26] and iFLYTAB [28]). SNSTab is a synthetically generated natural scene
table dataset containing 500k table images for the foundation training stage. It
includes wired tables, wireless tables, inclined tables, and curved tables, featur-
ing diverse table structures and backgrounds. This variety enables the model to
comprehensively learn various aspects of table knowledge during the foundation
training stage, thereby achieving better results in complex scenes like spanning
cells and deformed tables, as shown in Fig. 7.

Extensive experiments demonstrate the effectiveness of our proposed BGTR
and the progressive training method, achieving state-of-the-art performance on
five public benchmarks.

To sum up, our contributions are as follows:

– We propose BGTR, a novel framework that explicitly utilizes bbox infor-
mation for guiding HTML sequence generation, which aims at enhancing
structural recognition accuracy in challenging table scenes.

– To ensure that bbox-guided HTML generation is adequately trained in natu-
ral scenes, we adopt a progressive training method and introduce SNSTab, a
synthetically generated natural scene table dataset for the foundation training
stage.

– Our experiments on five benchmark datasets demonstrate state-of-the-art
performance.

2 Related Work

2.1 Table Structure Recognition

With the rapid development of deep learning, a variety of table structure recog-
nition methods have emerged, which can be divided into three categories: graph-
based methods, split-and-merge methods, and image-to-sequence methods.

Graph-Based Methods. These methods utilize cells or text boxes as the basic
elements of the table, employing a graph network to determine the row and
column relationships between them. GraphTSR [4] utilized graph attention net-
works to the TSR task, determining the row and column relationships of adja-
cent cells through graph edge classification. TabStruct-Net [19] implemented a
unified end-to-end framework for cell detection and cell relationship analysis.
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GFTE [12] employed a graph-based convolutional network that integrates image
features, position features, and textual features to predict relationships between
cells. NCGM [14] enabled cooperation among geometry, appearance, and content
modalities, leveraging their interaction to enhance multi-modal representation
in intricate situations. However, these methods are limited by their reliance on
additional bbox data or OCR accuracy, leading to potential errors in table struc-
ture recognition, and additionally, they need complex post-processing methods.

Split-and-Merge Methods. Typically, these methods comprise two models:
the split model and the merge model. The split model initially detects the row
and column regions of the table and then intersects them to obtain the grid cells
of the table. Subsequently, the merge model is employed to determine which adja-
cent grid cells need to be merged. SPLERGE [22] became the first to use the
split-and-merge framework for the TSR task, addressing an issue where previous
methods struggled with resolving spanning cells. By utilizing textual informa-
tion, SEM [29] achieved enhanced results on complex tables with spanning cells.
To address geometric distortion in table images, TSRFormer [13] approached the
detection of row and column regions as a linear regression problem. However,
two-stage training can be complex and resource-intensive, potentially leading to
longer training times and difficulties in optimization compared to more stream-
lined, end-to-end methods.

Image-to-Sequence Methods. These methods treat the table as a structured
sequence (e.g., HTML or LATEX), using an encoder-decoder framework to con-
vert the table image into a structured sequence that fully describes the table
structure. EDD [31] employed a CNN-based encoder to extract the visual fea-
tures from table images and utilized two LSTM-based decoders to simultane-
ously recognize the table structure and cell content. TableMaster [27] intro-
duced a transformer-based [23] architecture, achieving significant progress in
the TSR task by recognizing the table structure and cell bboxes simultaneously.
Based on TableMaster [27], VAST [11] treated bbox prediction as a coordi-
nate sequence generation task and introduced a visual-alignment loss that sig-
nificantly improved bbox accuracy. However, bbox information is essential for
parsing the structure of table, unlike previous methods that produce inaccu-
rate HTML sequence predictions in complex table scenes due to the lack of
bbox information, this paper utilizes bbox information to guide the generation
of HTML sequences, resulting in more accurate HTML sequences.

2.2 Existing Datasets

While the size of table datasets has significantly increased, existing datasets pri-
marily focus on digital documents [18,21,30,31], such as PDF files. Building a
digital document table dataset is relatively straightforward because annotated
information can be directly extracted from PDF files. However, tables captured
in natural scenes through cameras cannot be automatically annotated, and man-
ual annotation is a time-consuming process. Additionally, natural scene tables
are more complex, often inclined, rotated, and curved, further increasing the
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annotation difficulty. Due to these challenges, there is a substantial disparity in
the number of table datasets between natural scenes and digital documents, as
illustrated in Fig. 1(b). To address this issue, we propose a large-scale syntheti-
cally generated natural scene table dataset.

Fig. 2. The production process of SNSTab: (a) table generation. (b) table transforma-
tion. (c) background synthesis.

3 SNSTab

SNSTab contains 500k synthetic images of natural scene tables, including wired
tables, wireless tables, provincial line tables, inclined tables, curved tables and
large tables. Although image generation has achieved significant success in other
fields [6], its application in table recognition remains quite limited. To our
knowledge, SNSTab is the first large-scale natural scene table synthesis dataset.
SNSTab’s annotations contain the coordinates of the table cells, the text inside
the cells, and the HTML sequence that describes the table structure. The cre-
ation of the SNSTab dataset involves three phases: table generation, table trans-
formation, and background synthesis, as shown in Fig. 2.

Table Generation. This step is to generate digital document table images. We
randomly generate table images based on the open source tool Table Genera-
tion1. First, we will generate a grid with a random number of rows and columns;
Then, we will randomly merge the adjacent grids to get spanning cells, and gen-
erate random text for each grid; Finally, we convert the above table into HTML
sequences, and get the final table image through the browser rendering.

Table Transformation. Since tables in the nature scene tend to be inclined
or rotated. Therefore, after automatically generating tables, we apply thin plate
spline (TPS) [2] to randomly transform them. This simulation captures the com-
plexities observed in natural scenes. As shown in Fig. 2(b), we take the four ver-
tices of the table image and the midpoints of the four sides as the source points,
the target points are then obtained by randomly moving the source points within
1 https://github.com/WenmuZhou/TableGeneration.

https://github.com/WenmuZhou/TableGeneration
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the range of the red dotted line. After the TPS transformation, the coordinates
of the cells are also transformed.

Background Synthesis. In addition to their complex structures, tables in nat-
ural scenes often exhibit a variety of backgrounds. We captured 400 background
images of natural scenes, including paper, walls, daily-life items, and more. For
each table image, a random background image is first selected, and then a ran-
dom area of the same size as the table image is extracted from the background
image. Finally, the table image is merged with the selected background to pro-
duce the final image.

For more details of the dataset and for additional dataset samples, please
refer to the supplementary materials.

Fig. 3. A simple example of using HTML sequences to represent a table structure,
different colors in the figure represent different rows of the table.

4 Method

4.1 Preliminary

In this paper, we utilize HTML sequences to represent the table structure, as
shown in Fig. 3. Given a table image, our model outputs HTML sequences of
the table and the corresponding cell bboxes. To better facilitate prediction, we
tokenize HTML sequences into HTML tokens. For cells without spanning, non-
empty cells and empty cells are denoted by < td >< /td > and < em ><
/em >, respectively. In the case of spanning cells, the tokens are divided into
three parts: < td, colspan = N or rowspan = N , and >< /td >. Here, < td
indicates the beginning of the spanning cells, N specifies the count of cells that
are spanning, and >< /td > marks the end of the spanning cells. < tr > and
< /tr > respectively represent the beginning and the end of each row in a table.
We use HN = {hi}Ni=1 ∈ R

N×1 to denote HTML sequences, where N is the
sequence length and hi denotes the i-th HTML token. We use BN = {bj}Nj=1 ∈
R

N×4 to denote the bbox of table cells. For each cell, its bbox is represented
as [x1, y1, x2, y2], where [x1, y1] denotes the coordinates of the top-left corner,
and [x2, y2] represents the coordinates of the bottom-right corner. Moreover, the
HTML tokens have a one-to-one correspondence with the bboxes, and the bbox
value is non-zero only if the HTML token is < td >< /td > and < td.
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4.2 Overall Architecture

The overall framework of BGTR is illustrated in Fig. 4. Given a table image,
denoted as P ∈ R

H×W×3, where H and W represent the height and width of
the image, respectively. We employ an Image Encoder to extract image fea-
tures, resulting in the feature map Fencoder ∈ R

H
8 ×W

8 ×d, where d denotes the
dimension of the features. After applying 2D positional encoding, the flattened
image features are obtained as Fimage ∈ R

HW
64 ×d. The image features Fimage are

further fed into the Shared Decoder for decoding, resulting in decoded features
F1

share ∈ R
N×d. The Shared Decoder is used to reduce the gap between the image

and the sequence, making it more aligned with the sequential features. F1
share is

first fed into the Bbox Decoder to obtain bboxes BN . Then, F1
share is sent into

the Bbox-Guided Structure Decoder (Sect. 4.3), using the predicted bbox infor-
mation to guide the generation of HTML sequences HN . For additional details
regarding the Image Encoder, Shared Decoder, and Bbox Decoder, please refer
to Sect. 5.2.

Fig. 4. Architecture of BGTR. The Bbox Predictor aims to acquire the bboxes of
table cells and consists of three parts: an image encoder, a shared decoder, and a bbox
decoder. The Bbox-Guided Structure Decoder generates the HTML sequence.

4.3 Bbox-Guided Structure Decoder

To more effectively utilize bbox information, we first predict the bboxes of
cells and then utilize the bbox information to enhance the accuracy of HTML
sequence prediction. Since we employ an autoregressive decoding approach, we
utilize parallel training methods during training to accelerate the training speed.
Specifically, the Bbox-Guided Structure Decoder receives F1

share ∈ R
N×d from

the Shared Decoder and Fbbox ∈ R
N×d from the Bbox Decoder as input. In the

Bbox Decoder, after Fbbox passes through a linear layer and a sigmoid layer,
the bboxes BN ∈ R

N×4 are obtained. F1
share initially passes through a masked

self-attention layer, resulting in F2
share ∈ R

N×d. Here, the mask refers to the
prediction of the current time step HTML token being based on the output
of previous time steps. Subsequently, F2

share and Fbbox are fed into a masked
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cross-attention layer. Here, the mask indicates that the prediction of the current
time step HTML token is based on the bbox outputs of both the current and
previous time steps. F2

share serves as the query vector, while Fbbox serve as the
key/value vectors. By utilizing the cross-attention mechanism, bbox information
Fbbox becomes effectively integrated into F1

share. The use of Fbbox for decoding
allows the model to comprehensively understand the position and relative rela-
tionships of each cell while predicting HTML sequences. This process allows the
model to generate HTML sequences guided by bbox information. After passing
through a linear layer and a softmax layer, the decoder’s output yields the final
HTML sequences HN = {hi}Ni=1 ∈ R

N×1.

Fig. 5. An overview of the progressive training method. (a) Foundation training stage
training on SNSTab. (b) Advancement training stage training on natural scene table
datasets (e.g., TabRecSet [26] and iFLYTAB [28]).

4.4 Progressive Training Method

As illustrated in Fig. 5, this section will discuss the implementation of the pro-
gressive training method.

Foundation Training Stage. In the foundation training stage, the purpose is
for the model to acquire common knowledge about tables. Due to the diverse
types and varied structures of tables in natural scenes, the foundation train-
ing stage requires a large number of data samples. Based on this, we introduce
SNSTab, a large synthetic table dataset in natural scenes. For further details
about SNSTab, please refer to Sect. 3 and the supplementary material. After
completing the foundation training stage on SNSTab, the model develops a
foundational capability for recognizing table structures in natural scenes. Addi-
tionally, it can learn how to effectively utilize bbox information to guide the
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generation of HTML sequences, particularly in complex scenes such as spanning
cells and deformed tables (Fig. 7).

Advancement Training Stage. Building on the foundation training stage,
the advancement training stage is conducted on a specific natural scene table
dataset. With the common knowledge acquired in the foundation training stage,
the model demonstrates improved convergence speed and enhanced overall train-
ing effectiveness in the advancement training stage. And in this stage, the Shared
Decoder and the Bbox-Guided Structure Decoder are initialized using the train-
ing from the foundation training stage. Due to certain differences in the data
between the two stages, the Bbox decoder is trained from scratch.

Through the progressive training process, the issue of insufficient data leading
to inadequate training of bbox-guided HTML generation in natural scenes has
been significantly alleviated.

4.5 Loss Functions

Our model adopts an end-to-end training approach and includes two loss func-
tions. For the Bbox Decoder, L1 loss is employed to supervise the prediction of
bboxes, which is denoted as Lbbox. For Bbox-Guided Structure Decoder, cross-
entropy loss is utilized to supervise the prediction of HTML tokens, which is
denoted as Lhtml. The final loss function is formulated as follows:

L = λLhtml + Lbbox, (1)

where λ is the hyperparameter.

5 Experiments

5.1 Datasets and Evaluation Metric

Datasets. Our method is evaluated on five popular public benchmarks, includ-
ing TabRecSet [26], iFLYTAB [28], PubTabNet [31], FinTabNet [30] and Syn-
thTabNet [18].

TabRecSet [26] is a natural scene table dataset featuring tables from diverse
scenes with various forms. It has 32.07K images and 38.17K tables, the number
of images is not equal to the number of tables because some images contain
multiple tables. As TabRecSet did not provide a predefined split, we randomly
divided the dataset into train and test splits (80%, 20%), resulting in 30.6k
training table images and 7.5k testing table images.

iFLYTAB [28] has 12,104 training samples and 5,187 testing samples. It con-
tains both wired and wireless tables from natural scenes and digital documents.

PubTabNet [31] contains 500,777 training images and 9,115 validating images,
each accompanied by annotation information detailing the table structure and
text content along with their positions. All the tables are extracted from the
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scientific articles, and annotations are automatically obtained from the PDF
source files.

FinTabNet [30] is a large-scale dataset containing 91596 training tables, 10,635
validating tables and 10,656 testing tables. All the tables are sourced from the
annual reports of the S&P 500 companies. Following [11,17,18,30], we use vali-
dating sets for testing.

SynthTabNet [18] is a synthetically generated dataset with diverse table styles,
complex structures, and an increased number of rows and columns. It contains
480k training images, 60k validating images, and 60k testing images. In addition
to the bounding boxes of the non-empty cell, it also has the bounding boxes of
the empty cell.

Evaluation Metric. The Tree-Edit-Distance-based Similarity (TEDS) [31] is
employed as the evaluation metric, treating tables as tree structures. To mitigate
the impact of OCR errors on the final score, we also utilize TEDS-S to assess
the accuracy of the table structure without the table content.

Table 1. Comparison with state-of-the-art methods. PT indicates that progressive
training method is used. S indicates simple tables. C indicates complex tables. Bold
indicates the best performance, while underline indicates the second-best performance.
� indicates the image-to-sequence method. † means pre-training on PubTabNet [31].

Method PubTab FinTab SynthTab TabRecSet iFLYTAB

TEDS-S TEDS TEDS-S TEDS-S TEDS-S TEDS-S

S C All

EDD � [31] 89.90 88.30 90.06 - 95.01 77.71 91.03† -

GTE [30] 93.01 - 87.10 - - - - -

TableMaster � [27] 96.04 96.16 - - 97.20 84.11 94.14 84.63

SEM [29] - 93.70 - - - - - 75.90

NCGM [14] - 95.40 - - - - - -

TableFormer � [18] 96.75 93.60 96.80 96.70 - - - -

VAST � [11] 97.23 96.31 98.63 - - - - -

GridFormer [17] 97.00 95.84 98.63 - - - - -

SEMv2 [28] 97.50 - - - - - - 92.00

TSRFormer [13] 97.50 - - - - - - -

BGTR � 97.63 96.57 98.89 99.11 98.35 89.27 96.23 91.02

BGTR (PT) � - - - - 98.65 92.47 97.21 92.00
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Table 2. Comparison of cell bbox detection results on PubTabNet. PP indicates the
post-processing.

Method mAP mAP (PP)

EDD + BBox [18] 79.2 82.7

TableFormer [18] 82.1 86.8

BGTR 91.9 -

5.2 Implementation Details

In this paper, the experimental settings are as follows: the table images are
resized to 480×480, and the flattened image sequence length is 3600. The dimen-
sion of the features d is 512. The multi-head number is 8. The maximum HTML
sequence length is 500. We used Ranger [25] as the optimizer, the mini-batch
size is set to 8. For TabRecSet, PubTabNet, FinTabNet and SynthTabNet, we
trained 25 epochs, the initial learning rate is established at 1e−3, and divided
by 10 at 17 and 22 epochs. For iFLYTAB, we trained 120 epochs, the initial
learning rate is established at 1e−3, and divided by 10 at 75 and 105 epochs.
For the foundation training stage on SNSTab, we trained 3 epochs, the initial
learning rate is established at 1e−3. Experiments are conducted using 2 NVIDIA
GeForce RTX 3090 GPUs with 24 GB of RAM memory.

We use the ResNet-50 [10] combined with the Multi-Aspect GCA [16] module
and 2D positional encoding to form the Image Encoder. To enhance the model’s
understanding of the 2D topology of table images, we employ 2D positional
encoding to encode image features. The Shared Decoder comprises two identical
stacked transformer [23] decoding layers. The Bbox Decoder comprises a single
transformer [23] decoding layer. The Bbox-Guided Structure Decoder comprises
two identical stacked transformer [23] decoding layers.

5.3 Comparison with Previous State-of-the-Arts

As shown in Table 1, our method not only outperforms non-image-to-sequence
methods, but also outperforms the best image-to-sequence method.

Results on Natural Scene Tables. We evaluate the performance of our model
on two natural scene table datasets: TabRecSet [26] and iFLYTAB [28]. Given
the absence of a baseline method in TabRecSet, TableMaster [27] is adopted as
the baseline. We divide the dataset into two categories: simple (S) and complex
(C). A table is considered complex if it contains spanning cells, otherwise, it
is classified as a simple table. On TabRecSet, a TEDS-S score of 98.65% for
simple tables and 92.47% for complex tables is achieved. Compared with baseline
TableMaster, our method demonstrates improvements of 1.45% on simple tables,
8.36% on complex tables, and 3.07% overall. On iFLYTAB, a TEDS-S accuracy
of 92.00% is achieved by our method, comparable to SEMv2 [28] and outperforms
other methods.
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Results on Digital Document Tables. The performance of our model is also
evaluated on three digital document table datasets: PubTabNet [31], FinTab-
Net [30] and SynthTabNet [18]. For PubTabNet, similar to previous meth-
ods [9,11,17], the OCR results are from the text detection method PSENet [24]
and text recognition method MASTER [16], and we match the text bboxes to
the cell bboxes as described in [27]. A TEDS-S score of 97.63% and a TEDS
score of 96.57% are achieved on PubTabNet which outperforms other methods.
For FinTabNet and SynthTabNet, TEDS-S scores of 98.89% and 99.11% are
achieved, respectively. Compared with TableFormer [18], our method exhibits
improvements of 2.09% and 2.41% on FinTabNet and SynthTabNet, respectively.

In addition, we evaluate the performance of cell bbox detection on PubTab-
Net [31] using the PASCAL VOC mAP metric. As shown in Table 2, our method
outperforms TableFormer [18] by 5.1% even without using post-processing.

The results on five datasets validate the effectiveness of using bbox to guide
the generation of HTML sequences.

5.4 Visualization

We illustrate some visualization of BGTR in PubTabNet [31], FinTabNet [30],
SynthTabNet [18], TabRecSet [26] and iFLYTAB [28]. As shown in Fig. 6, BGTR
is adept at handling a wide range of scenarios and complex table structures. This
includes tables with row and column spans, those containing multi-line text, as
well as instances with empty cells. Moreover, it demonstrates strong robustness
in both digital documents and natural scene environments.

Table 3. Ablation studies of module design. BG signifies bbox-guided HTML gener-
ation. PT signifies the progressive training method.

Methods TEDS-S

BG PT Simple Complex All

98.30 86.50 95.54

� 98.35 89.27 96.23

� � 98.65 92.47 97.21

5.5 Ablation Studies

For simplicity, we conduct ablation experiments on TabRecSet [26]. Several
experiments were conducted to validate the effectiveness of our methods.

Effectiveness of Module Design. As indicated in Table 3, BG signifies bbox-
guided HTML generation. PT signifies the progressive training method, we con-
structed the baseline experiment following the previous methods [3,11,18,27]
which overlook the explicit utilization of bbox information when predicting
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Fig. 6. Visualization effects of BGTR. The predicted cell bounding boxes are depicted
using green polygonal frames. From top to bottom, the sequence is PubTabNet [31],
FinTabNet [30], SynthTabNet [18], TabRecSet [26] and iFLYTAB [28]. The first and
third columns show the visualization of bounding boxes, while the second and fourth
columns display the visualization of HTML sequences. (Color figure online)

Table 4. Ablation studies of advancement training stage training method. SD indicates
Share Decoder. BD indicates Bbox Decoder. BGD indicates Bbox-Guided Structure
Decoder.

Methods TEDS-S

SD BD BGD Simple Complex All

� 98.60 92.21 97.11

� � 98.56 91.96 97.02

� � 98.65 92.47 97.21

� � � 98.60 92.18 97.10
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HTML sequences. Utilizing BG significantly improves the TEDS-S score by
2.77% on complex tables, indicating the effectiveness of guiding HTML sequence
generation with bbox information in complex table scenes. Meanwhile, PT
enhances the model’s generalization capabilities, particularly in handling com-
plex tables, proving the effectiveness of the progressive training method. As
shown in Fig. 7, using the progressive training method can yield better results
on spanning cells and deformed tables.

Fig. 7. Comparison of HTML visualization w/ and w/o progressive training on TabRec-
Set [26], the red dotted boxes indicate error results, the blue dotted boxes indicate
spanning cells. (Color figure online)

Table 5. Ablation studies of λ in loss function.

λ TEDS-S

Simple Complex All

0.5 98.49 91.82 96.94

1 98.65 92.47 97.21

2 98.57 91.92 97.02

Effectiveness of Advancement Training Stage Training Method. As
indicated in Table 4, placing a check mark (�) signifies that the module contin-
ues to the advancement training stage of training, building upon the foundation
training stage, while its absence indicates starting the training anew. From the
results, we can see that SD (Share Decoder) and BGD (Bbox-Guided Struc-
ture Decoder) are very helpful for the training in the advancement training stage.
This indicates that training in the foundation training stage with a large amount
of data enables the model to learn a wide variety of table structures. However,
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due to the data differences between two stages, BD (Bbox Decoder) is not much
of a help for the training in the advancement training stage.

Effectiveness of λ in Loss Function. As indicated in Table 5, the table indi-
cates that deep supervision positively impacts performance. However, the numer-
ical results demonstrate a notable consistency across various trade-off parameter
settings. For simplicity in model training, we recommend using λ = 1 in practical
applications.

6 Conclusion

In this paper, we introduced BGTR, a novel framework that explicitly use bbox
information to guide the generation of HTML sequences. Besides, to alleviate
the problem of insufficient data leading to inadequate training of bbox-guided
HTML generation in natural scenes, we adopted a progressive training method
for natural scene tables and introduced SNSTab, a large synthetic table dataset
in natural scenes. Experimental results on five benchmark datasets demonstrate
that the proposed method achieves state-of-the-art performance.
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Abstract. License Plate Recognition plays a pivotal role in modern traf-
fic law enforcement, ensuring public safety and order. However, conven-
tional surveillance systems such as CCTVs and static cameras lack real-
time response capabilities and have limited mobility. With the growing
number of vehicles, the requirement for automated and mobile methods
for license plate recognition has soared. The noisy and dynamic environ-
ment of license plates further exacerbates this issue. While Deep Learning
(DL) can help automate such tasks, the computational demands of DL
pose a significant hurdle for real-time usage and mobility. In this regard,
the declining costs and enhanced computational capabilities of micro-
controllers offer promising potential for enabling the implementation of
DL-based techniques in license plate recognition in resource-constrained
scenarios. This paper introduces an approach for automated license plate
recognition designed to guarantee mobility and real-time responsive-
ness. The proposed framework integrates various elements, encompass-
ing microcontrollers, Internet of Things (IoT), Deep Neural Networks,
and computer vision technologies. Furthermore, to alleviate the compu-
tational overhead on the microcontroller, the system leverages Transfer
Learning and Cloud Computing for enhanced efficiency. The system was
tested for real-time performance using a camera onboard a microcon-
troller, which was used to detect the license plates. The system delivered
good accuracy for license plate recognition, both across existing datasets
and for real-time images on multiple metrics. This system can also be
integrated with wearable devices such as helmets or goggles and used by
traffic law officials to facilitate easy monitoring and surveillance of traffic
laws.
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1 Introduction

Road safety continues to be a significant developmental issue, a public health
concern, and a leading cause of death and injury worldwide. In 2021, road acci-
dents resulted in a total of 1.19 million fatalities globally, emerging as the pri-
mary cause of death for individuals aged 5 to 29 [1]. The Global Status Report
on Road Safety 2023 from the WHO further underscored the importance of
enhancing the effectiveness of enforcing traffic laws for various violations as
a key objective. Manual methods of license plate recognition are often faced
with several problems compromising their efficacy [2]. They encounter complica-
tions in scalability, especially with handling high traffic [3]. Moreover, efficiently
recalling the license plates of moving vehicles is a task of considerable difficulty
for humans [2]. In light of these shortcomings, there has been a growing shift
towards increased adoption of Automatic License Plate Recognition (ALPR)
systems, aiming to establish a more sophisticated and intelligent transportation
system [2]. With its capability of reading and detecting data from heavy vol-
umes of fast-moving vehicles, ALPR has been integrated into various domains
such as parking management, tolling, traffic management, policing, and many
others [4,5]. Furthermore, the additional information provided by ALPR makes
it well-suited to aid tasks such as search and surveillance.

However, ALPR often faces issues with noisy data that is rife with com-
plex variations, which hampers the performance of the system. License plate
deflection, which refers to tilted and turned images of license plates, makes
accurate recognition challenging for models trained on simple data sets with
well-centered images [6]. Another prominent issue is noise in license plate images
caused by varying weather conditions such as rain or snow, resulting in blurred
and unevenly lit license plates, further impeding the accuracy [7].

While Deep Learning (DL) based methods can tackle noisy data, the com-
putational demands of DL models are high. This requires the models to be kept
in immobile computationally rich servers, which impedes the mobility of the
solution required for real-time on-site usage.

To overcome challenges related to noisy data and enable mobile usage,
the proposed solution integrates a microcontroller for capturing license plate
images. These captured images are then transmitted to a remote server utiliz-
ing IoT-based methods, and the computational requirements of the DL model
are offloaded to the remote server. Through the integration of these compo-
nents, the system guarantees portability while efficiently handling noisy data to
achieve precise license plate recognition.

2 Related Works

2.1 Overview of ALPR Works

There has been considerable research focusing on the development of accurate
and efficient systems for license plate recognition in recent years. This research
can be mainly divided into two areas: License Plate (LP) Detection and LP
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Character Recognition. We begin with a brief overview of previous works in
both these areas and then discuss various end-to-end approaches in detail, along
with their drawbacks.

LP Detection. LP detection involves identifying the presence and location
of the license plate and its characters within an image. Traditional LP detec-
tion methods often rely on edge information [18–22] which make use of the dis-
tinctive edges and aspect ratio of license plates to detect them, or background
analysis [23,25,26] which examine the differences in color between the license
plate and the vehicular body. These techniques are generally lightweight and
fast, however, at times they are often sensitive to irrelevant edges and vary-
ing illumination, leading to errors. Works like [27–29] used texture-based meth-
ods that leverage the unique texture and color transitions of license plates to
detect and localize them. Despite these techniques being generally considered
robust, they also suffer from the issue of high computational complexity and
inability to deal with changes in lighting conditions. With the rise of deep neu-
ral networks, many researchers have shifted towards these advanced techniques.
Several studies such as [30–33] have utilized You Only Look Once (YOLO) [24]
based networks and their variants for the detection and localization of license
plates within images.

LP Character Recognition. LP Character recognition involves accurately
extracting the sequence of characters present in the license plate. Works like
[20,34] use template matching techniques, where known fonts and character sizes
are leveraged to classify license plate characters. These methods face challenges
with generalization, variations in typography as well as a high computation time
due to additional templates for rotated characters. There have also been multi-
ple approaches which made use of feature extraction techniques like eigenvector
transformation, Gabor Filters, etc. [35] in conjunction with traditional Machine
Learning models like Support Vector Machines (SVM) [36] or Hidden Markov
Models (HMM) [37] to recognize characters. Similar to LP detection, in recent
years, there has been a major shift towards the usage of neural networks, espe-
cially Convolutional Neural Networks (CNNs) [38–40] which act as both feature
extractors and classifiers directly from raw pixel data.

End-To-End Approaches. Zhang et al. [8] used a modified CycleGAN
model for generating license plate images and an image-to-sequence network for
license plate recognition. However, due to being trained only with license plates
from China and Taiwan, this work presents limited practical applicability in
other countries. The work done by Xu et al. [17], presents the widely used Chi-
nese City Parking Dataset (CCPD) dataset and a baseline for recognition of
Chinese license plates. They use a model RPNet which is capable of taking a
single RGB image as input and predicting the bounding box of the plate and the
corresponding characters. However, this work also suffers from the same issue of
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limited suitability towards non-Chinese license plates as well as greater compu-
tational complexity. Pustokhina et al. [9] utilized K-Means clustering for image
segmentation followed by a Convolutional Neural Network (CNN) for license
plate recognition. The experimental evaluation of this work focused on data sets
such as the Stanford Cars dataset and FZU Cars dataset, which do not accu-
rately depict real-world scenarios by overlooking various challenges such as par-
tial occlusion, diverse lighting conditions, and variations in plate sizes. Björklund
et al. [10] proposed the usage of a tailored CNN architecture trained on a syn-
thetic image data set, generated by modeling the critical variables of license
plates. While synthetic generation can be useful for extending data sets, the
realism of the generated images does not always represent the wide variability
found in real-time images of license plates. Another issue in implementing license
plate recognition is the usage of static cameras for license plate image capture,
potentially reducing the quantity and quality of the captured data, as their
installation locations may not necessarily align with the optimal locations [11].

2.2 ALPR for Resource-Constrained Scenarios

Despite the extensive research done for ALPR, work done in the context of
resource-constrained scenarios remains limited. Most of the existing solutions
are catered towards scenarios with sufficient computational resources. In recent
times, there have been explorations towards edge computing and IoT-based
approaches [41,42]. However, the demand for ALPR systems that are capable of
effectively operating in diverse, and challenging environments still persists.

Keeping in view the limitations of the existing approaches, the following
requirements were identified for the proposed approach.

1. The solution should be in the form of a portable component, enhancing the
application’s flexibility and enabling it to perform more diverse tasks such as
search and surveillance.

2. A deep learning framework should be utilized to ensure that the solution is
robust and performs well under noisy and variable environments as well as
handle variations in license plates.

3. In order to accommodate deep-learning-based inference, the proposed method
should facilitate effective communication between the application user and a
remote server capable of performing computationally intensive tasks.

3 Methodology

Based on the requirements identified in the previous section, as depicted in
Fig. 1, the proposed license plate recognition system involves a portable device
for capturing the image of the license plate, a deep-learning framework hosted
on a remote server that is able to process the image and predict the license plate
characters, and a proper channel to ensure effective communication between the
two. The proposed ALPR system comprises the following components:
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Fig. 1. The input image is captured by the microcontroller device, which is sent to the
remote server hosting the pre-trained model, which has been fine-tuned using the syn-
thetic dataset. Once the model has completed the prediction, it is sent communicated
back to the user.

1. User Node (U) : It is a microcontroller device U equipped with a camera
module for capturing real-time images of license plates. For its power source,
either a power bank or a 5 V battery can be used. The microcontroller cap-
tures an image I of the license plate using the onboard camera. In order
to perform training, processing, or inference, the image I is transmitted to
a remote server R, using an IoT-based technique. In order to outsource the
computational load, the microcontroller leverages the internet to connect to a
GPU-enabled remote server.The internet connection can be realized by using
a local WiFi hotspot or by using a microcontroller with built-in GSM support.
The compactness of the microcontroller device enables seamless integration
with wearable devices or handheld equipment to be used by traffic law officials

2. Remote Server : The remote server R comprises a Graphics Processing Unit
(GPU) hosted on the cloud and is used for training, processing, and drawing
inferences on the transmitted image I. The remote server is connected to the
User Node U under an IoT setup using the Message Queueing Telemetry
Transport (MQTT) protocol. The user node U publishes the data to the
remote server subscriber. By leveraging the capabilities of the remote server,
resource-intensive tasks are offloaded from the microcontroller. Within the
server, the image I is processed to make it suitable for character recognition.
The processed image is fed to a Deep Neural Network (DNN) deployed on
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Fig. 2. t-stochastic Neighbour Embedding Visualization of the Synthetic Dataset used
for fine-tuning the pre-trained model

the server, which yields the final inference for image I. This inference is then
relayed back to the user node.

3. Pretrained Model : A pre-trained CNN model is used as the base of the DNN
model by the remote server R. To prepare the model, we leverage transfer
learning for license plate recognition by creating a synthetic dataset consist-
ing of cropped images of license plate characters ranging from 0–9 and A–Z.
Keeping the rest of the layers frozen, the output layer of the DNN model is
trained using the synthetic data. Before the image I is passed onto the model
for prediction, it is processed and the characters of the license plate are seg-
mented. The model treats each segmented character as a separate image and
makes the predictions. These predictions are concatenated to obtain the final
prediction for the complete license plate. The remote server communicates
the final prediction back to the user node. The model’s deep and complex
network structure allows it to learn a wide range of visual patterns, making
it a suitable candidate for license plate identification. The diversity of the
training dataset in terms of character textures, font styles, and orientations
ensures the model’s robustness in the prediction of license plates captured in
real-life scenarios.

4. Synthetic Dataset: Due to the limited size as well as the low diversity of
existing datasets for license plate recognition, a synthetic dataset was created
by isolating characters from images of the AOLP Dataset [16]. This newly
generated dataset consisted of 36 distinct classes - alphabets from A to Z and
numbers from 0 to 9. Each image of a character underwent identical processing
procedures as their counterparts in the original images, ensuring uniformity
and consistency. The processing steps included grayscale conversion, adaptive
thresholding for contrast enhancement, contour detection, and segmentation
to obtain each individual character of the license plate for prediction, as fur-
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ther elaborated in the later sections. To provide an intuitive understanding of
this dataset’s class distribution, t-distributed Stochastic Neighbor Embedding
(t-SNE) visualization was used as shown in Fig 2, with the colors indicating
different classes. By utilizing this synthetic dataset, which focuses on charac-
ters extracted from license plates, the model gains improved adaptability to
variations encountered in real-world license plate images, thereby enhancing
its performance across diverse datasets.

3.1 Preprocessing Steps for the Captured Image

The image captured by the microcontroller is rife with noise and is not suitable
in its raw form for feeding it into the model for LP Character Recognition.
Consequently, the captured image is subjected to a series of processing steps to
prepare it for feeding into the model (Fig. 3).

The preprocessing commences by converting the raw image (Fig. 3a) cap-
tured by the microcontroller into a grayscale image (Fig. 3b). This is followed by
applying top-hat and blackhat morphological transformations over the resulting
image to increase its contrast. Adaptive thresholding is further performed over
the image to convert it to a binary image (Fig. 3c). This helps in segmenting the
characters from the background of the license plate. After thresholding, contour
detection is used to identify continuous regions of white pixels in the binary
image (Fig. 3d). These contours represent regions of interest in the image, i.e.
characters of the license. Among the detected contours, potential license plate
regions are filtered out using criteria such as height and width (Fig. 3e). Within
these filtered regions, individual license plate characters are segmented by isolat-
ing each character. The segmented characters are then resized to the dimensions
of the training data of the classifications model as represented in Fig. 3f. The
model is used to predict the characters within these segmented regions. The
individual character-wise predictions are aggregated to represent the prediction
for the complete license plate (Fig. 3g).

4 Experiments and Results

In order to evaluate the proposed approach’s real-time performance, multiple
experiments were performed on various datasets. The experiments help in ana-
lyzing the robustness of the system in handling various lighting and weather
conditions and differences in the types of license plates.

For the proposed approach, an ESP32-CAM was used as the microcontroller
device. It is a small, portable camera module based on the ESP32-S chip. It
hosts an OV2640 camera, multiple GPIO pins, and a microSD card slot. It also
has a low form factor with a 3.3 V or a 5 V voltage rating that allows it to
run on a battery. The image captured on the ESP32-CAM was sent via the
MQTT [12] protocol using the Mosquitto broker to a cloud-based Nvidia T4
GPU system acting as the remote server. The Keras library [13], the TensorFlow
[14] framework, and the Jupyter Notebook [15] were used to realize the DNNs
used in the experimentation.
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Fig. 3. Preprocessing steps for the image captured by the ESP32CAM

4.1 Performance Evaluation

In this section, we have evaluated the performance of the system using two dif-
ferent approaches, each utilizing a distinct model. In the first approach, a custom
Convolutional Neural Network (CNN), as shown in Fig. 4, initially trained on the
Street View House Numbers (SVHN) dataset, was used as the base model. The
SVHN dataset was chosen due to its relevance in digit recognition tasks, which
are crucial for LP Character Recognition; it provides a diverse set of real-world
digit images, allowing the model to develop robust features that are transfer-
able to our task. The second approach used a pre-trained model trained on a
larger dataset, as the base model. For both these cases, the output layers of the
models were fine-tuned using the synthetic dataset.

To choose an appropriate pre-trained model for LP character recognition for
the second approach, we tested various standard pre-trained architectures by
fine-tuning them on our synthetic dataset and analyzing their performance. All
the models were trained for 30 epochs with a fixed learning rate of 0.01. The
results are shown in Table 1.

Among the tested models, InceptionResNetV2 consistently achieved the high-
est accuracy, making it the most suitable candidate for further experiments.
However, given that other pre-trained models also performed well, they also
could be expected to achieve similar performances in future experiments.

In order to test our approaches outlined earlier, two different datasets were
used. The first dataset comprised images from the AOLP Dataset, distinct from
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Fig. 4. Network Architecture

Table 1. Performance of various pre-trained models on the synthetic dataset

Model Accuracy

InceptionResNetV2 99.71%

ResNet50 99.57%

InceptionV3 99.28%

VGG19 98.43%

the images used for creating the synthetic dataset while the second dataset
comprised 60 images captured using an ESP32 CAM Module. Further, to address
stochastic variations, each of these experiments was carried out 5 times. This
yielded a total of 20 experiments for both the approaches.

AOLP Dataset. The AOLP dataset was used as the test data for analyzing
the performance of the approach in each of the experiments.

The performance of the approach was evaluated by using two accuracy-based
metrics detailed as follows:

1. Metric 1 : This metric was obtained by dividing the summation of correctly
classified characters across all the license plates by the total number of char-
acters across all the license plates.

Metric 1 =
∑N

i=1 Ci
∑N

i=1 Ti

(1)
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where Ci is the number of correctly classified characters in the i-th license
plate, Ti is the total number of characters in the i-th license plate, and N is
the total number of license plates.

2. Metric 2 : This metric was obtained as the percentage of accurately classified
license plates, where a license plate prediction is regarded to be accurate only
if all the corresponding characters are correctly classified.

Metric 2 =

(∑N
i=1 Li

N

)

× 100 (2)

where Li is 1 if the i-th license plate is accurately classified (i.e., all characters
are correct), and 0 otherwise.

Fig. 5. Comparison of Inception-ResNet-v2 and Custom CNN on the AOLP Dataset

As observed through Fig. 5, the performance of the Inception-ResNet-v2
model was much better than the custom CNN with both metrics. This could
be attributed to the greater diversity of images used for the initial training of
the Inception ResNet-v2 model. The Inception-ResNet-v2 model was further
tested on the real-time images captured with the ESP32 CAM.

ESP32 CAM Dataset. The ESP32 CAM dataset consisted of license plates
that had a variable number of characters. To accommodate this variability, along
with Metric 1 and Metric 2, an additional metric was introduced as Metric 3.
This new metric was calculated as the average of correctly classified charac-
ters per license plate and was used to assess how well the model performed
character recognition on each license plate, as shown in Table 2.
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Metric 3 =
1
N

N∑

i=1

(
Ci

Ti

)

(3)

where Ci is the number of correctly classified characters in the i-th license
plate, Ti is the total number of characters in the i-th license plate, and N is
the total number of license plates.

Table 2. Evaluation of the Inception ResNet model on the ESP32 CAM Dataset,
across our three custom defined metrics

Expt. Metric 1 Metric 2 Metric 3

1 94.72 85.00 92.27

2 94.44 85.00 92.00

3 95.27 86.67 93.33

4 95.00 85.00 93.00

5 94.44 85.00 93.33

It was observed that the performance was slightly worse on the images cap-
tured by the ESP32 CAM. This could be attributed to greater variations in
the images including a variable number of characters across license plates, noisy
images due to real-time capturing as well as lower resolution of the images. It
was also seen that the values of Metric 3 were lower than that of Metric 1. This
is because the number of characters on each license plate is taken into consid-
eration in the latter case. If a plate has a smaller number of characters, even a
single misclassified character could have a substantial impact on the average.

The performance of the model on the real-time images and its ability to han-
dle diverse weather and lighting conditions showcased its suitability for practical
situations.

Comparison with Other Works. To further evaluate the strength of our
approach, we compare it with ther works by testing on benchmark license plate
recognition datasets: CCPD Dataset and the PKUData.

1. CCPD (Chinese City Parking Dataset): This dataset was introduced Xu et al.
[17] and it is one of the largest publicly available LP datasets with over 250,000
unique images. We test our approach on images from the Base (common
case), Rotate (rotated images), Weather (images with rain, snow or fog) and
challenge subsets.

2. PKUData: It was introduced in the work done by Yuan et al. [45]. It includes
images of vehicles in diverse scenarios such as images taken from city roads,
highways, nighttime and daytime. Similar to CCPD, we experiment on various
subsets of this data to evaluate our approach’s ability to generalize to varying
conditions.
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Table 3. Comparison of various methods on the different subsets of PKUData using
LP Detection accuracy and inference time in milliseconds

Approach AP Base Rotate Weather Inference Time (ms)

Ren et al. [43] 92.8 97.2 82.9 85.5 57.6

Wang et al. [48] 96.6 98.9 91.9 95.4 18.5

Luo et al. [49] 98.3 99.5 98.1 97.6 18.2

Zherzdev et al. [40] 93.0 97.8 79.4 92.0 7.5

Liu et al. [46] 95.2 98.3 88.4 87,3 25.6

Ke et al. [33] 99.8 99.9 99.9 99.6 10.2

Ours 97.5 98.3 97.7 97.3 5.4

As our approach is only capable of handling alphanumeric characters in the
Latin Script, we do not consider the Chinese characters whilst evaluating on
CCPD and PKUData. The results are presented in Table 3 and Table 4.

Table 4. Comparison of various methods on the different subsets of CCPD Dataset
using LP Detection accuracy and inference time in milliseconds

Approach Base Rotate Weather Challenge Inference Time (ms)

Ren et al. [43] 97.2 82.9 85.5 76.3 57,6

Li et al. [44] 97.8 87.9 86.8 81.2 31.0

Xu et al. [17] 98.5 94.7 84.1 92.8 11.7

Liu et al. [46] 99.1 95.6 83.4 93.1 24.6

Zhang et al. [47] 99.8 98.1 98.6 89.7 24.9

Wang et al. [39] 99.9 99.9 99.1 94.8 11.7

Ours 97.2 97.6 94.2 90.3 6.2

Despite our method not outperforming SOTA methods, it remains highly
effective due to its lightweight nature and low inference time. These charac-
teristics allow our approach to achieve comparable results to more complex
approaches while being faster and more efficient, making it a strong contender
against existing methods, especially for real-time usage.

4.2 Analysis of the Preprocessing Steps

The preprocessing steps outlined earlier are vital for the detection of the license
plates, and subsequently the character recognition process. Hence, we analyze
the performance of these methods in this section.

In the preprocessing experiments for LP detection on the AOLP data, key
hyperparameters include the structuring element size (3× 3) for morphological
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operations, and specific contour filtering criteria such as a minimum area of 80,
minimum width of 2 pixels, minimum height of 8 pixels, and an aspect ratio
between 0.25 and 1.0. These parameters help in accurately isolating potential
character regions, ensuring that only relevant contours are considered for further
processing. These values were empirically chosen by qualitatively analyzing the
results at each step.

The performance of these steps is calculated for both the AOLP Dataset and
the ESP32 CAM Dataset and is outlined in Table 5 using the following measures:

1. Percentage of License Plates Correctly Identified in step Fig. 3e, calculated
as the total percentage of license plates that were identified in their entirety
with every character present.

2. Percentage of Characters correctly identified during segmentation in Fig. 3f,
given as the percentage of segments that correspond to actual license plate
characters.

Table 5. Evaluation of the image preprocessing for the AOLP and the ESP32 CAM
Dataset

Experiment Percentage of Correctly
Identified License Plates

Percentage of Correctly
Identified License Plate
Characters

ESP32 CAM Dataset 95.0 96.4

AOLP 95.5 96.8

The reported figures in Table 5 were obtained with fixed threshold values
for the height and width used to filter potential license plate regions for each of
the datasets. By maintaining consistent threshold values across all images during
the analysis, the preprocessing steps applied the same filtering criteria uniformly.
The primary advantage of using this approach is its computational efficiency, par-
ticularly when compared to more resource-intensive techniques involving Deep
Learning techniques Unlike these methods which require significant computa-
tional resources and processing time, the approach utilized here is lightweight
and efficient. However, this efficiency comes with a trade-off - the reliance on
manually set threshold values for filtering out license plate regions. Practical
images display diverse characteristics in license plate sizes, making it challeng-
ing to establish a universal threshold applicable to all images.

Conclusion

The work demonstrated in this paper introduces a real-time Automated License
Plate Recognition (ALPR) system tailored specifically for resource-constrained
scenarios. By combining microcontrollers, IoT, Deep Neural Networks, and
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Cloud Computing, the proposed approach is able to show promising results in
terms of accuracy and deployability. The experiments involving the Inception-
ResNet-v2 model fine-tuned on a synthetic dataset, showcase robust perfor-
mance across multiple diverse datasets, including real-time images captured by
an ESP32CAM. The system’s capability to detect license plates in real time,
as well as its portability and maneuverability, highlight its practical viability.
This is further enhanced by the ability to handle variable lighting, weather con-
ditions, and license plate fonts and configurations. The integration of Transfer
Learning and Cloud Computing addresses computational constraints, thereby
enabling deployment in portable devices like wearables for effective traffic law
enforcement. Future works could include the implementation of onboard learning
mechanisms to enhance the system’s adaptability and responsiveness. Onboard
learning would allow the system to improve its performance continuously by
adapting to new environments, license plate variations, and emerging patterns.
The preprocessing steps could also be enhanced by adopting a more adaptive
approach that allows for fine-tuning the threshold parameters on a per-image
basis. By dynamically adjusting the thresholds to suit the specific characteristics
of each image, the preprocessing algorithm could better accommodate the vari-
ability inherent in real-time images, providing improved performance in license
plate recognition.
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Abstract. Omnidirectional images are widely used in various fields such
as virtual reality (VR), augmented reality (AR), and panoramic pho-
tography. However, most existing reference-free (NR) omnidirectional
image quality assessment methods provide a single quality metric and
are unable to identify the types of distortion that may exist in omnidi-
rectional. This prevents subsequent image restoration tasks from auto-
matically selecting an appropriate restoration method based on the dis-
tortion type. Furthermore, these methods often require extensive training
resources. To address these two issues, we propose an ordinal prompt that
can assess the quality level of omnidirectional images and classify dis-
tortion types. To better extract the distortion information of images, we
further propose a proportional viewport sampling method that adapts
to human browsing patterns. We conduct extensive experiments on two
mainstream datasets (CVIQD and OIQA) and compare our method
with state-of-the-art methods in terms of correlation coefficient, accu-
racy, and generalization ability. Various experimental results show that
when trained with few parameters, our method still outperforms exist-
ing methods and has better generalization ability to different datasets
and distortion types. The models and code are available on GitHub at
https://github.com/w-qhai/MTIQA360.

Keywords: Omnidirectional Image · Image Quality Assessment ·
Multitask

1 Introduction

Omnidirectional imaging captures the entire surrounding scene from a single
viewpoint, offering viewers an immersive experience akin to being physically
present. With the rapid advancement and widespread adoption of virtual real-
ity technology, omnidirectional images have become a crucial medium in diverse
fields such as tourism, education, and entertainment. However, due to their inher-
ently spherical nature, these images typically require conversion into a 2D image
format via equirectangular projections (ERP) or cubemap projections (CMP)
for storage and transmission. This conversion process renders traditional 2D
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Fig. 1. (a) The previous method cannot provide sufficient differentiation information
for two omnidirectional images (ODIs) with different distortion types and similar qual-
ity. This isinconducive to the continuation of subsequent tasks. (b) Our method, while
giving the quality score, also suggests the distortion type, and can use different restora-
tion strategies for specific tasks.

image quality assessment (IQA) metrics unsuitable for omnidirectional images
[36]. Furthermore, omnidirectional images are prone to degradation or distortion
during acquisition, compression, storage, and transmission, leading to diminished
image quality. Low-quality omnidirectional images not only impair the viewing
experience but may also induce viewer discomfort, such as dizziness and nausea
[25,37]. Consequently, there is an urgent need for an effective omnidirectional
image quality assessment (OIQA) algorithm.

OIQA methods are categorized based on the availability of reference images
into full-reference (FR), reduced-reference (RR), and no-reference (NR) meth-
ods. FR and RR methods necessitate the original or partial information of the ref-
erence images, which limits their practical application. NR methods, also known
as blind omnidirectional image quality assessment (BOIQA) methods, do not
require any reference information and rely solely on the distorted images for
quality assessment. BOIQA methods are more suitable for real-world scenarios
where reference images are difficult to obtain.

In the realm of BOIQA, existing methods [17,19,23,24,30] have primarily
focused on predicting image quality, but they often overlook a critical aspect:
the interplay between image content and distortion types. As illustrated in Fig. 1,
existing methods miss out on the synergistic potential that arises from under-
standing both factors simultaneously. Consequently, their performance remains
suboptimal, especially when dealing with critical low-level features like lines and
textures. Additionally, the tendency to overscale images during viewport extrac-
tion exacerbates the loss of essential details.
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When discussing the realm of traditional IQA, there are indeed success sto-
ries. These methods [20,34] have demonstrated the positive impact of multitask-
ing on quality evaluation. However, these methods often require multiple models
to work together or significant training resources and time. Furthermore, their
training processes do not fully exploit the powerful zero-shot capabilities inher-
ent in visual language models.

Instead of fine-tuning the entire model, which would narrow its scope to a
specialized image quality assessment tool, we propose an innovative approach.
Our method involves an ordinal regression-based prompt specifically tailored for
omnidirectional images. By doing so, we retain the generality of the original
model while achieving excellent performance with minimal parameter training.
Additionally, this approach allows parameters to be shared across tasks, ulti-
mately reducing model deployment costs.

Overall, our contributions are as follows:

– We propose a multi-task network for blind omnidirectional image quality
assessment (MTIQA360) for learning image quality features using image dis-
tortion pairs and outperforms current state-of-the-art methods

– We designed multitasking prompt based on ordinal regression, retaining the
generalization ability of the original model while achieving better performance
with minimal parameter training.

– We developed an equal-scale viewport extraction algorithm using saliency
detection, proving that scaling images doesn’t improve their low-level details.
It extracts appealing viewports from omnidirectional images at various resolu-
tions, overcoming the excessive scaling and detail loss issues of past methods,
and aligning viewport selection more closely with the human visual system.

2 Related Work

In this section, we will introduce previous BOIQA methods and other related
works.

2.1 Quality Assessment for Omnidirectional Images

Traditional Methods. These methods are based on peak signal to noise ratio
(PSNR) and structural similarity (SSIM), which are common metrics for 2D
image quality assessment. They modify these metrics to account for the spher-
ical projection and saliency effects of omnidirectional images. However, these
methods do not consider the human perception and viewing behavior of omni-
directional images.

Deep Learning Based Methods. These methods use neural networks to learn
features and predict quality of omnidirectional images. In the field of omnidirec-
tional image quality assessment, the DeepVR-IQA [9] method evaluates the qual-
ity of each image block using positional and visual features, optimized through
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adversarial learning guided by human perception. Methods like MC360IQ [17],
VGCN [24], JN [30], and ST360IQ [19] select viewports from the image and
score them using CNN [5] or ViT [3], with scores aggregated by a global model
or RNN. The Assessor360 [23] method models the observers viewing process
through recursive sampling of viewports, fusing distortion and semantic features
with a distortion perception module and a multi-scale feature aggregation mod-
ule to produce the image quality score.

Current approaches in omnidirectional image quality assessment predomi-
nantly utilize single-modal data, which inherently limits their capacity to encap-
sulate the multi-modal quality attributes of such images [35]. Furthermore, these
methodologies frequently incur a loss of low-level detail due to the excessive scale
of images during viewport extraction. As a result, these methods cannot relearn
low-level information and features, such as distortion information. An enhanced
BOIQA algorithm should, therefore, be capable of not only determining the
quality score but also identifying the specific type of distortion present in omni-
directional images. This dual capability would significantly aid in the selection
of the most suitable restoration algorithm tailored to the identified distortion
type.

2.2 Image-Text Pretraining

Image-text pre-training exploits the natural correspondence between images and
text. It first adopts contrastive learning to align image and text representations,
and then applies self-supervised learning objectives such as masked region recon-
struction, masked object prediction and word region alignment. Recently, several
methods, such as CoCa [29], ALIGN [6] and CLIP [14], have introduced image-
text backbone models trained on large-scale image-text datasets. These meth-
ods typically use billions of image-text pairs scraped from the web and achieve
excellent performance on a variety of tasks, such as retrieval, classification, and
subtitles. However, on the Internet, information about image quality and its text
description is relatively scarce, which makes it difficult for the model to under-
stand image quality through text. CLIP-IQA [20] and LIQE [34] use fine-tuning
models to let the model learn image quality information., but this reduces the
versatility of the original model. We believe that the model pre-trained on a
large number of image and text pairs has learned enough image information,
but lacks a suitable prompt to guide the model to establish the relationship
between image and quality. Therefore, the development of a nuanced prompt
that can effectively bridge the gap between image content and quality assess-
ment is essential for leveraging the full potential of pre-trained image-text models
in this field.

3 Proposed Method

This section introduces the entire process of the proposed method, including
dataset preprocessing, prompts design, model training, and loss function.
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Fig. 2. Architecture of the proposed MTIQA360 for BOIQA. First, the image is input
into the saliency detection model to obtain a saliency map, and the most attractive
viewport is extracted based on the saliency map. The extracted viewport sequence and
ordinary prompt are encoded separately, and then the cosine similarity is calculated to
obtain the mixing probability matrix. Finally, the distortion type and quality score of
each viewport sequence are calculated.

3.1 Viewport Sampling Strategy

Here we introduce the process of the viewport selection strategy, which aims to
select viewports that can more effectively capture the viewers attention [27]. The
purpose of the viewport selection strategy is to select a viewport that can more
effectively capture the viewers attention based on the saliency information of the
omnidirectional image. As shown in Fig. 2, we use the visual saliency detection
algorithm [2] for omnidirectional images to obtain the saliency map. The specific
process is as follows. We first input the omnidirectional image into the visual
saliency detection model for omnidirectional images, obtain the saliency map as
shown in Fig. 3,

Is = SD(I), (1)

where I represents the omnidirectional image, SD is the visual saliency detection
algorithm for omnidirectional images, and Is indicates the saliency map. Then
extract the viewport according to the salient position in the Is. In order to ensure
the consistency of the content, we fixed the field of view and the aspect ratio
of the viewport. Therefore, the viewport will be scaled by a certain proportion
compared to the original image. The scaling factor λ is calculated as follows:

λ =
fov × W

360 × w
, (2)

where fov represents the field of view (FOV), W is the original image width,
and w stands for the viewport width. The new width and height of Is are λ×W ,
λ × H, respectively. Based on the saliency map, we extract N viewports with
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Fig. 3. The computed saliency map of
an omnidirectional image.

Fig. 4. Some attractive viewports.

the highest saliency from high to low. The specific method is as follows: we first
find the most salient point, convert the position of the point into longitude and
latitude coordinates,

v = − y

λ × H
× 180 + 90,

u =
x

λ × W
× 360 − 180,

(3)

where (u, v) is the coordinate in Is, (x, y) represents the position in Is. We then
extract the fov viewport centered on (u, v) and convert it to a 2D perspective
to ensure that the viewport is consistent with the human eye. To highlight areas
of high importance, areas of high attractiveness are sampled to multiple view-
ports. The above process is repeated N times to obtain a sequence containing
N viewports, as shown in Fig. 4.

3.2 Ordinal Prompts

This section gives an overview of learnable ordinal prompts, to improve the
performance of image quality assessment and distortion type recognition.

Human-designed prompts often have limitations [38,39]. Inspired by some
works leveraging CLIP for number problems [10,11], we design ordinal prompts
to improve the model performance. In the dataset we use, there are some distor-
tion types D ∈ [“jpeg compression”, “jpeg 2000 compression”, “hevc compres-
sion”, “avc compression”, “noise”, “blur”, “others”]. We first classify images into
5 quality levels Q ∈ [“Unacceptable”, “Defective”, “Normal”, “Professional”,
“Exceptional”]. We map the words of each quality level to a vector, and obtain
L quality levels by interpolation. There are a total of Tp = |D| × L prompts,
where |·| denotes the number of elements in the set. Our methods multitasking
capabilities come from the prompts we designed. We set two task goals in the
prompt, which are image quality assessment and distortion type recognition.

3.3 Quality Regression and Loss Function

Through the viewport sampling and ordinal prompts, we obtain N viewports
for each omnidirectional image and Tp prompts for all of omnidirectional image.
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A viewport is a region that simulates the human FOV on the omnidirectional
image. A prompt is a short text that describes the image quality level and
distortion type of a viewport.

During training, we have a batch of viewports X = {xi | 0 ≤ i < B, xi ∈
R

N×w×h×C}, where B is the batch size and C is the number of channels of the
viewport. We use ViT to encode each viewport and a text GPT-2 [15] to encode
each prompt. We then obtain a batch of N viewport features F = {fi | 0 ≤
i < B × N, fi ∈ Rdim} and Tp text features P = {pi | 0 ≤ i < Tp, pi ∈ R

dim}
for each prompt. We compute the similarity between each viewport feature and
each text feature,

M = FP�, (4)

where M is the mixed probability matrix, we convert M(B×N×Tp) to
MB×N×|D|×L. We take the average along the N dimension to obtain the sepa-
rated probability matrix, and then take the average along the |D| and L dimen-
sions to calculate the quality level and distortion type probabilities of the view-
port sequence. We assign a weight W = [1, 2, 3, ..., L] to each prompts, indicating
its contribution to the final score, and use the following formula to calculate the
final score of the image:

S =
L∑

i=1

WiQi, (5)

where S is the final score, Qi is the probability of the i-th quality level. For
the quality regression task, we use MAE loss as L1, and for the distortion type
recognition task, we use cross entropy as L2. The overall loss L = L1 + L2.

4 Experiments and Results

In this section, we present our experimental settings and results. Then we com-
pare MTIQA360 with the state-of-the-art BOIQA methods on two mainstream
datasets: CVIQD and OIQA. We also analyze the performance of MTIQA360
on different distortion types. Finally, we conduct a series of ablation studies to
validate the effectiveness of our approach.

4.1 Datasets and Evaluation Metrics

We use two publicly available datasets for omnidirectional image quality assess-
ment: CVIQD [16] and OIQA [4]. CVIQD contains 16 reference images, each
with 3 distortion types: JPEG compression, HEVC/H.265 compression, and
AVC/H.264 compression. There are 10 distortion levels for each distortion type,
for a total of 544 images. The resolution of each image is 4096 × 2048. OIQA
contains 16 reference images, each with 4 distortion types: JPEG compression,



250 Q. Wang and S. Liu

JPEG 2000 compression, Gaussian noise, and Gaussian blur. There are 5 dis-
tortion levels for each distortion type, for a total of 336 images. The resolution
of each image is 11332 × 5666. Both datasets provide subjective ratings for each
image, ranging from 0 to 100, where higher ratings indicate better quality.

We use three widely used evaluation metrics for BOIQA: Pearson’s correla-
tion coefficient (PLCC), Spearman’s rank correlation coefficient (SRCC), and
root mean square error (RMSE). PLCC measures the linear correlation between
the prediction quality score and the subjective rating, while SRCC measures the
monotonicity between the prediction quality score and the subjective rating, and
RMSE represents the difference between the predicted value and the observed
value. Higher values of the two correlation coefficient indicators indicate better
performance. The lower the RMSE, the better.

4.2 Implementation Details

We implement MTIQA360 using PyTorch. We encode each viewport using the
ViT-Base and each prompt using the GPT-2. We freeze the image encoder
parameters and the text encoder parameters. We extract 20 viewports from
each image, and the viewport size is 224 × 224. We set the fov view to 45◦,
which is a common value for human vision. We use the Adam optimizer with a
learning rate of 1e−2 and a cosine annealing scheduler to train our model. We
train for 300 epochs with a batch size of 16. We use a 80/20 split for training
and testing, and report the average results of 10 random splits. We conduct our
experiments on a Nvidia GeForce A100 GPU and less than 4 GB of memory is
required for training.

4.3 Comparison with State-of-the-Art Methods

We compare MTIQA360 with 22 state-of-the-art quality assessment methods,
which consist of 8 FR methods and 14 NR methods. The FR methods include
PSNR, SSIM [21], MS-SSIM [22], WS-PSNR [18], WS-SSIM [40], VIF [31],
DISTS [1], and LPIPS [32]. The BIQA methods include NIQE [13], BRISQUE
[12], PaQ-2-PiQ [28], MUSIQ [8], MANIQA [26], CLIP-IQA [20], LIQE [34],
SSP-BOIQA [33], MP-BOIQA [7], MC360IQ [17], VGCN [24], ST360IQ [19],
and Assessor360 [23]. Note that some of the BIQA methods, such as NIQE,
BRISQUE, PaQ-2-PiQ, MANIQA, MUSIQ, CLIP-IQA and LIQE are 2D image-
based quality assessment metrics.

The quantitative results are shown in Table 1, which indicates that
MTIQA360 has a significant improvement in performance and greatly outper-
forms the comparative BOIQA methods. On the CVIQD dataset, MTIQA360
achieves a PLCC of 0.9822 and a SRCC of 0.9781, which are about 1.1% and 1.9%
higher than the second best method Assessor360, respectively. On the OIQA
dataset, MTIQA360 achieves a PLCC of 0.9852 and a SRCC of 0.9868, which
are 1.3% and 0.8% higher than the second best method Assessor360, respectively.
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Table 1. Quantitative comparison of the state-of-the-art methods and proposed
MTIQA360. The best are shown in red , and the second best (except ours) are
blue. MTIQA360+ represents prompt and image encoder training at the same time.
MTIQA360- indicates training using a viewport that retains more distortion informa-
tion. Methods with * indicate that the data comes from Assessor360 [23] with the same
experimental setup. “#Params” represents trainable parameters.

Methods CVIQD OIQA

PLCC↑ SRCC↑ RMSE↓ PLCC↑ SRCC↑ RMSE↓ #Params↓
PSNR* 0.8425 0.8015 - 0.3893 0.3929 - -

SSIM* 0.7273 0.6737 - 0.2307 0.3402 - -

MS-SSIM* 0.9272 0.9218 - 0.5084 0.575 - -

WS-PSNR* 0.8410 0.8039 - 0.3678 0.3829 - -

WS-SSIM* 0.7672 0.8632 - 0.3537 0.6020 - -

VIF* 0.9370 0.9502 - 0.4158 0.4284 - -

DISTS* 0.8613 0.8771 - 0.5809 0.574 - -

LPIPS* 0.8242 0.8236 - 0.4292 0.5844 - -

NIQE* 0.8392 0.9337 - 0.785 0.8539 - -

BRISQUE* 0.8199 0.8269 - 0.8206 0.8213 - -

PaQ-2-PiQ* 0.6500 0.7376 - 0.2102 0.1667 - -

MANIQA* 0.6142 0.6013 - 0.4171 0.4555 - -

MUSIQ* 0.3678 0.3483 - 0.3087 0.3216 - -

CLIP-IQA* 0.4347 0.4884 - 0.2531 0.2330 - -

LIQE* 0.8086 0.8594 - 0.7419 0.7634 - -

SSP-BOIQA* 0.9077 0.8614 - 0.8600 0.8650 - -

MP-BOIQA* 0.9390 0.9235 - 0.9206 0.9066 - -

MC360IQ* 0.8240 0.8271 - 0.8925 0.9071 - -

VGCN* 0.9651 0.9639 - 0.9584 0.9515 - -

AHGCN* 0.9658 0.9617 - 0.9682 0.9647 - -

ST360IQ 0.9698 0.9696 4.2719 0.9254 0.9235 5.5729 7.86 × 107

Assessor360 0.9713 0.9591 - 0.9724 0.9790 - 8.93 × 107

MTIQA360- 0.9817 0.9749 2.8727 0.9825 0.9824 2.8065 8.79 × 107

MTIQA360+ 0.9824 0.9798 2.8310 0.9847 0.9840 2.6453 8.79 × 107

MTIQA360(Ours) 0.9822 0.9781 2.8651 0.9852 0.9868 2.5897 1.33 × 107

This demonstrates the effectiveness of our method for learning the quality repre-
sentation of omnidirectional images by combining the complementary informa-
tion between image levels and distortion types. Table 2 further demonstrate the
performance of our method for different distortion types and degrees. We sep-
arate each dataset based on distortion type. PLCC and SRCC were calculated
separately for each subset.
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Table 2. Performance of our method on various distortion types in CVIQD and OIQA.

CVIQD OIQA

JPEG HEVC AVC JPEG J2K Blur Noise

PLCC↑ 0.9878 0.9809 0.9760 0.9860 0.9735 0.9906 0.9808

SRCC↑ 0.9811 0.9768 0.9726 0.9560 0.9560 0.9835 0.9708

RMSE↓ 3.0710 2.3892 2.8664 2.9262 3.0163 2.0391 2.4787

ACC↑ 1.0000 0.9722 0.9677 1.0000 1.0000 1.0000 1.0000

Fig. 5. Our method targets quality score prediction for different scenarios, distortion
types, and distortion levels. The upper left gives the true score of the image, and the
upper right shows the distortion type of the image.
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Figure 5 shows the quality prediction of our method in different scenarios,
different distortion types, and different distortion levels. Affected by omnidirec-
tional distortion, the scene prediction accuracy will deteriorate, but the predic-
tion accuracy of distortion type and quality score is extremely high.

Table 3. Cross dataset validation.

MC360IQ VGCN Assessor360 MTIQA360+ MTIQA360- MTIQA360

Train on OIQA PLCC↑ 0.5930 0.5929 0.8878 0.8763 0.8550 0.7825

test on CVIQD SRCC↑ 0.5687 0.6932 0.8961 0.8948 0.8725 0.6523

ACC↑ - - - 0.13 0.20 0.05

Train on CVIQD PLCC↑ 0.4295 0.2582 0.4030 0.8639 0.5955 0.6137

test on OIQA SRCC↑ 0.4189 0.2361 0.4613 0.8639 0.5513 0.6188

ACC↑ - - - 0.24 0.24 0.24

4.4 Cross-Dataset Validation

In order to verify the generalization ability of the model, we conduct cross-
validation on different data sets. And the results are compared with three state-
of-the-art methods: MC360IQ, VGCN, Assessor360. The results are shown in
Table 3. As can be seen from the data in Table 3, although the results of our
method are slightly lower than other methods when only training a small num-
ber of parameters, they are still competitive. In addition, it can be seen from the
data in the table that the generalization of the models trained on the CVIQD
data set is generally poor. This is because OIQA mainly focuses on JPEG,
JPEG2000, blur and noise distortion, each distortion type has only 5 distortion
levels, while CVIQD mainly focuses on JPEG, AVC, HEVC distortion, each dis-
tortion type has 10 distortion levels. This gap allows models trained in CVIQD
to learn relatively little distortion information and therefore have weak gener-
alization capabilities. In addition, the performance of our method and ablation
experiments exceeds other methods. This is because our method better utilizes
the richer features of the CVIQD type distortion level. The accuracy of the distor-
tion type can also support this. In CVIQD, the model trained on can accurately
identify JPEG distortion from the 4 distortion types in the OIQA dataset, but
the opposite effect is not good.

4.5 Ablation Study

Ordinal Prompts. To evaluate the effectiveness of prompts we proposed, we
ablate our learnable prompts on the OIQA dataset. We first used CLIP to per-
form image reasoning without any modifications. We manually designed the
prompts as “a photo with {distortion} artifacts, which is of {quality level} qual-
ity”, where quality level = [“abysma”, “terrible”, “poor”, “bad”, “acceptable”,
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“good”, “great”, “excellent”, “outstanding”, “perfect”] correspond to the level
10. Compared with the results of 100 epoch of training in our original experi-
ment, the results are shown in Table 4. This shows that our multi-task ordinal
prompts are effective.

Table 4. Effectiveness of ordinal prompts on different dataset. Bold indicates the best
results.

(a) OIQA

PLCC↑SRCC↑RMSE↓ACC↑
handmade 0.4547 0.4453 46.7314 0.38

ordinal 0.97620.9758 3.280 0.94

(b) CVIQD

PLCC↑SRCC↑RMSE↓ACC↑
handmade 0.4185 0.4143 46.7509 0.09

ordinal 0.97620.9708 3.3688 0.95

Train More Parameters. In cross-validation, we found that the model gen-
eralization ability was slightly lower than other methods. This is because there
are relatively few image-text pairs on the Internet about image quality and dis-
tortion types, which may mean that the model has not been exposed to enough
relevant data during the learning process to understand and improve image qual-
ity and distortion issues. To solve this problem, we tried to fine-tune the image
encoder in the hope that the model would better understand the nuances of
image quality.

During the fine-tuning process, we increase the number of parameters of the
model so that the model can capture more features and patterns. As shown in
Table 1, our method still outperforms other methods. Furthermore, as depicted
in Table 3, the fine-tuned model demonstrates a notable leap in its generalization
aptitude. This implies that the model not only excels in the training dataset but
also upholds its robust performance on novel, unencountered data. Specifically,
when the model is trained on the CVIQD dataset and evaluated against the
OIQA dataset, it showcases superior performance, significantly outshining other
methods.

Viewport Extraction Strategies. We trained MTIQA360+ on OIQA and
tested it on CVIQD, achieving great generalization performance on scoring but
bad performance on distortion type recognition, as shown in Table 3. We then
ablated the viewport sampling strategy and extracted a 224×224 viewport from
the original image, preserving the distortion information of the original image.
Figure 6 shows the viewports sampled by the two methods, respectively. We can
observe blocking artifacts due to JPEG compression in Fig. 6b, while in Fig. 6a
most of the distortion information is lost since the scaling details are mosaicized.
This explains why OIQA has poor generalization ability in distortion type recog-
nition. This is unavoidable, as viewers see consistent FOV content when brows-
ing omnidirectional image of any resolution. To ensure consistency between the
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Fig. 6. Different viewport sampling strategies.

model and human eye input, we have to sacrifice some distortion information. We
also trained on the original viewport and performed cross-validation. As shown
in Table 3, MTIQA360- that the model’s accuracy in discriminating distortion
types improved, but due to the inconsistent content of the FOV, PLCC and
SRCC decreased significantly.

To enhance the validation of our viewport extraction method, we employed
the viewport obtained through ST360IQ method as a training dataset. The
outcomes, presented in Table 5, indicate a notable decline in several metrics,
especially the accuracy of distortion type recognition. This reduction can be
attributed to the methods process of resizing the image to 1024768 and sub-
sequently scaling the extracted viewport, which significantly compromises the
integrity of distortion information.

Table 5. Comparison of training results using different viewport extraction strategies
on MTIQA360. Subscripts indicate viewport extraction strategies, bold indicates the
best results.

Method CVIQD OIQA

PLCC↑ SRCC↑ RMSE↓ ACC↑ PLCC↑ SRCC↑ RMSE↓ ACC↑
MTIQA360ST360IQ 0.9780 0.9768 3.2261 0.8455 0.9661 0.9678 3.8454 0.7059

MTIQA360(Ours) 0.9822 0.9781 2.8651 0.9455 0.9852 0.9868 2.5897 0.9853

4.6 Discussion and Limitations

Although our method performs well in BOIQA, there are still some challenges
that remain unsolved. First, regarding the dataset, we propose a new paradigm
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for OIQA, viewing distortion type identification as an auxiliary task, which leads
to higher requirements for the dataset, as the labels of the omnidirectional images
not only need to include mean opinion score (MOS), but also distortion types.
Second, omnidirectional images with slight distortions and high resolutions are
still a difficulty for this problem. If we sample small viewports to preserve the
distortion information, it is difficult to ensure the generalization ability of the
model; if we sample large viewports to ensure the generalization ability, the dis-
tortion information will degrade into downsampling, which prevents the correct
prediction of the image quality. Perhaps there will be more clever data prepro-
cessing schemes in the future, which can guarantee both aspects of information.
Finally, while the method demonstrates excellent performance in its current
form, its effectiveness and adaptability are heavily dependent on the distortion
types it has been trained to recognize. This reliance may limit its applicability
in scenarios involving novel or uncharacterized distortions.

5 Conclusion and Future Work

In this paper, we have proposed a multi-task BOIQA method. Specifically, we
designed a fixed viewport sampling scheme to extract regions that simulate
human vision from omnidirectional images. Moreover, we designed learnable
prompts for multi-task learning to fully exploit the prior knowledge of image-text
pretraining model. Our method achieves great performance on two mainstream
OIQA datasets and demonstrates the negative impact of scaling images on the
distortion type identification of the model. Although the models complexity is
increased, the training difficulty does not escalate because most parameters are
locked. This approach reduces the resources required for training and avoids
catastrophic forgetting caused by fine-tuning CLIP, thereby retaining its versa-
tility.

Unfortunately, we have not yet found an optimal balance point between pre-
serving large FOV and distortion information. However, we believe that our
work can provide new insights for future BOIQA research. In the future, we will
focus our work on how to extract sufficient distortion information while retaining
large FOV, so that the model can adapt to images with different resolutions and
correctly identify distortion types.
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Abstract. Recently, 2D convolution has been found unqualified in
sound event detection (SED). It enforces translation equivariance on
sound events along frequency axis, which is not a shift-invariant dimen-
sion. To address this issue, dynamic convolution is used to model the fre-
quency dependency of sound events. In this paper, we proposed the first
full-dynamic method named full-frequency dynamic convolution (FFD-
Conv). FFDConv generates frequency kernels for every frequency band,
which is designed directly in the structure for frequency-dependent
modeling. It physically furnished 2D convolution with the capability
of frequency-dependent modeling. FFDConv outperforms not only the
baseline by 6.6% in DESED real validation dataset in terms of PSDS1,
but outperforms the other full-dynamic methods. In addition, by visualiz-
ing features of sound events, we observed that FFDConv could effectively
extract coherent features in specific frequency bands, consistent with the
vocal continuity of sound events. This proves that FFDConv has great
frequency-dependent perception ability.

Keywords: Sound Event Detection · Full-Frequency Dynamic
Convolution · Frequency-Dependent Modeling · Independent
Representation spaces · Vocal Continuity

1 Introduction

Sound event detection (SED) is one of the subtasks of computational auditory
scene analysis (CASA) [20], which helps machines understand the content of an
audio scene. Similar to visual object detection [32] and segmentation [22], SED
aims to detect sound events and corresponding timestamps (onset and offset),
considered as a prior task of automatic speech recognition (ASR) and speaker
verification. It has wide applications in information retrieval [9], smart homes [5],
and smart cities [1].
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Initially, methods from other domains have greatly promoted the devel-
opment of SED. Some methods from computer vision, such as SENet [7],
SKNet [13], and CBAM [26] improved the capacity of feature representation
of the network, adding the attention mechanism to the convolution network.
The method from speech processing, for example, conformer [16] also improved
the representation capacity, which added the local modeling to the transformer
structure by inserting a convolution layer. These methods didn’t study the char-
acteristics of audio data, resulting in not great detection performance. Specifi-
cally, SENet, SKNet, and CBAM are designed on image data with a clear 2D
spatial concept, while audio data is a time sequence. Conformer is designed on
speech data containing only the speech sound event, meaning time-frequency
patterns of speech data are distributed only in a certain fixed frequency band.
However, audio data always contains multiple sound events, and so has diverse
time-frequency patterns of sound events.

Shared kernel

Frequency-adaptive kernels

Frequency spacesAcoustic feature

t

f

f
t

Kernel application Kernels generating Convolution Kernel

Ours Acoustic feature

Acoustic feature

Fig. 1. Illustration of frequency-dependent modeling. Top models time-frequency pat-
terns in the same space with a shared kernel. Bottom models them in several spaces
with frequency-adaptive kernels, in which time-frequency patterns specific to sound
events can be considered.

Recently, the characteristics of audio data started to be studied, and the
dynamic convolution network has been tried in SED. Dynamic convolution net-
work [8] was initially proposed for video prediction. It was designed to gener-
ate future frames based on the motion pattern within a particular video. The
parameters of the dynamic convolution kernel are always adapted to the input.
In SED, different sound events are distributed in different frequency regions,
and this frequency dependence is invariant over time. This has motivated some
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researchers to investigate whether the adaptivity of dynamic convolution can
improve the capability of 2D convolution in modeling the frequency dependence
of sound events. [17] proposed frequency dynamic convolution (FDConv), which
found that the time-frequency spectrogram is not translation invariant on fre-
quency dimension like image data. FDConv extracts frequency-adaptive atten-
tion weights from input for several pre-initialized convolution kernels. These
kernels are then weightedly combined in the number dimension to obtain one
convolution kernel. Then, the combined kernel is convoluted with the input in a
standard manner. [27] proposed multi-dimensional frequency dynamic convolu-
tion (MFDConv), which extends the frequency-adaptive dynamic properties of
convolutional kernels to more dimensions of the kernel space, i.e. in-channels,
out-channels, and kernel numbers.

Although FDConv and MFDConv have achieved great performance, they are
essentially the same as basic convolution, which is spatially shared. They belong
to semi-dynamic convolution in the field of dynamic convolution. As shown in
the upper part of Fig. 1, their perception abilities of different frequency bands
are identical. They can only model time-frequency patterns in one representa-
tion space, where sound events are not easily recognized from each other. Com-
pared with semi-dynamic convolution, full-dynamic convolution [8,24,25,28,31]
attracts more attention recently, which uses a separate network branch to pre-
dict a specific filter for each pixel. [31] found this type of dynamic convo-
lution is equivalent to applying attention on unfolded input features, which
enables it more effective when modeling complex patterns. Sound events’ time-
frequency patterns are highly frequency-dependent, and full-dynamic convolu-
tion can model features of spatial pixels with different filters. Full-dynamic con-
volution may be optimal in dealing with recognizing sound events.

In this paper, we propose a novel method named full-frequency dynamic
convolution (FFDConv), which is the first full-dynamic convolution method
for SED. As shown in the lower part of Fig. 1, FFDConv generates frequency-
specific kernels, resulting in distinct frequency representation spaces. This design
is applied directly in the network structure for frequency-dependent modeling.
In this way, the 2D convolution is physically furnished with the capability of
frequency-dependent modeling, so that the specific time-frequency patterns can
be acquired for different sound events. In the end, sound events can be easily
recognized from each other in subsequent classification.

Contributions. (1) We proposed full-frequency dynamic convolution that
can model time-frequency patterns in independent representation spaces. This
method will extract more discriminative features of sound events, resulting in
effective classification. (2) The Proposed method outperforms not only baseline
but also pre-existing full dynamic filters method in other domain. (3) By visual-
izing features of sound events, we found the ability to model temporally coherent
features is essential to the detection of sound events. And the FFDConv has this
ability.



Full-Frequency Dynamic Convolution 263

2 Related Work

Recently, sound event detection has achieved great success with the help of
deep learning. Existing methods include uninitialized learning and fine-tuning
pretrained models.

Uninitialized Learning in SED. Most uninitialized Learning methods employ
convolution networks. They either use initial version networks from the com-
puter vision domain or design a new convolution network. As for methods from
the computer vision domain, viewing the audio spectrogram as 2D image data,
SENet [7], SKNet [13], and CBAM [26] directly extract features from the audio
spectrograms, not considering the physical consistency between standard convo-
lution and audio spectrogram. As for designing a new convolution network, find-
ing the audio spectrogram is not translation invariant on frequency dimension
like image data, FDConv [17] designed a frequency-dependent convolution, which
equipped the basis convolution with the capacity to model frequency dependence
of sound events. To further improve this capacity, MFDConv [27] extended con-
volutional kernels’ frequency-adaptive dynamic properties to more kernel space
dimensions, i.e., in-channels, out-channels, and kernel numbers.

Fine-Tuning Pretrained Models in SED. In comparison, fine-tuning pre-
trained models always initialize the networks with weights from the upstream
tasks. Chosen models either come from out-of-domain task (vision pre-training)
or in-domain task (audio pre-training). As for fine-tuning models from the audio
pre-training task, AST-SED [10] and PaSST-SED [11] fine-tuned the audio spec-
trogram transformer(AST) [6] with task-aware adapters in SED. ATST-SED [21]
fine-tuned the ATST [12] and BEATs [4] with a two-stages training strategy. As
for fine-tuning models from the vision pre-training task, HTS-AT [3] fine-tuned
the swin-transformer [14] in the SED task.

3 Methodology

3.1 Full-Dynamic Convolution

A basic 2D convolution can be denoted as y = W ∗ x+ b, where x ∈ R
T×F×Cin

and y ∈ R
T×F×Cout denote the input feature and output feature; b ∈ R

Cout and
W ∈ R

k×k×Cin×Cout denote the bias and weight of a basic convolution kernel.
In contrast to basis convolution, full-dynamic convolution [8] leverages separate
network branches to generate the filters for each pixel. Full-dynamic convolution
operation can be written as:

y = Concat(W t,f ∗ x(t, f))
W t,f = G(x, t, f)

(1)

where W t,f denotes weights of filter for the current pixel; The G is the filter
generating function; Concat here aims to convey that convolution operation of
each pixel is independent and parallel. For simplicity, the bias term is omitted.



264 H. Yue et al.

3.2 Overall of Proposed Method

As is commonly understood, different sound events have different frequency band
distributions. For instance, catcall, which is sharp, shrill, and high-pitched, is
often heard in the high-frequency range; running water, which is low, soft, and
soothing, is often heard in the low-frequency range. Based on this, we explore
designing a new convolution for SED, which can capture the distribution of
frequency bands and model time-frequency patterns of sound events in different
frequency representation spaces.

Channel 
Filter 
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Spatial 
Filter�

generating

Assembly Workshop

Kernels producing

Frequency 
kernels 

production factory

Assignment Workshop

Attention Workshop

Conv1D Conv1D

Window
Conv2D

Information Workshop

FC FC

Avg

GAP
Pooling

Pooling

Frequency kernelsKernels
moving direction

Element-wise
multiplication

Fig. 2. Illustration of full-frequency dynamic convolution. In general, the factory pro-
duces frequency-dependent kernels from acoustic feature, and then kernels are convo-
luted with input along the time axis. In the factory, there are two workshops aiming
to produce spatial filters and channel filters, respectively. And they are integrated in
the assembly workshop.

Inspired by full dynamic convolution [31], we designed the full-frequency
dynamic convolution (FFDConv) for SED. Overall, as shown in Fig. 2, FFDConv
employs a separate branch to predict kernels for each frequency band, in which
the content of kernels is based on input feature. In the kernel-generating branch,
there are two sub-branches: the spatial filter-generating branch for the spatial
space of kernels and the channel filter-generating branch for the channel space
of kernels. After spatial and channel filters are obtained, they are combined
and then convoluted with the input feature. Note that similarly, full-temporal
dynamic convolution (FTDConv) predicts kernels for each temporal frame, and
kernels are convoluted with input along the frequency axis.

3.3 Full-Frequency Dynamic Convolution

Unlike the previous semi-dynamic convolution, FFDConv is designed directly in
the structure for frequency-dependent modeling. It models the feature along the
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frequency axis in different representation spaces. Mathematically, FFDConv can
be written as:

y = Concat(W f ∗ x(f), dim = f)
W f = Gs(x, f) � Gc(x, f)

(2)

where W f is the content-adaptive kernel for the f th frequency band; x(f) ∈ R
T

is the f th frequency band of input feature; Gs and Gc are the spatial and channel
filter-generating function; � denotes the elemental dot product operator. For
clarity, Concat here aims to convey that W f is convoluted with input along
the time axis and the operation is parallel.
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Fig. 3. Details of the FFDConv

FFDConv employs a separate branch to generate convolution kernels for each
frequency band, in which there are two sub-branches: spatial filter-generating
branch and channel filter-generating branch. The spatial filter-generating module
is designed to predict the spatial content of dynamic kernels, and the channel-
generating module is designed to predict the channel content of dynamic kernels.
For efficiency, the dynamic filters are decoupled into spatial and channel ones,
following [31].

Spatial Filter Generating. As illustrated in Fig. 3, we use a standard Conv2D
to compress the time dimension of input and map channel dimension from C
to K2, whose kernel weight W ∈ RC×K2×T×W , where W is the window size of
the kernel in the frequency dimension. It moves along the frequency axis when
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convoluted with input. In this way, not only are the adjacent frequency compo-
nents considered, but information along the time axis is aggregated. Then, the
spatial filter of FFDConv is obtained, which assigns K × K spatial weight to
every frequency kernel and is highly related to the input. Consequently, FFD-
Conv can model features from different frequency bands of the input in indepen-
dent representation spaces. In comparison, the convolution map in FTDConv
is W ∈ RC×K2×W×F , and it moves along the time axis when convoluted with
input, resulting in K × K spatial weight to every time kernel. The convolution
map in full dynamic convolution [31] is W ∈ RC×K2×1×1, and assigns K × K
spatial weight to every pixel finally.

Considering these representation spaces may be far apart from each other,
we employ an attention2d module following [17] to limit individual differences
between them so as not to be too large. Finally, the spatial filter is passed through
a Filter-Norm module following [31], avoiding the gradient vanishing/exploding
during training.

Channel Filter Generating. As illustrated in Fig. 3, the channel filter gener-
ating module is similar to the SE block [7]. It compresses the time and frequency
feature of input by applying an average pooling and maps the channel dimension
from C to CK2 by two fully connected (FC) layers. Between two fully connected
layers, the ReLU activation function is applied to introduce non-linearity. After
input is passed through this module, the channel filter of FFDConv is obtained,
which assigns C channel weight to each spatial location of the frequency kernel.
It should be noted that the channel filter for F frequency kernels is the same.
In the end, the channel filter is also passed through the Filter-Norm [31]. The
spatial and channel filters are mixed by dot product, and the full frequency ker-
nels are obtained. We then use them to model time-frequency patterns of input
features. Note that full dynamic convolution [31] and FTDConv have the same
channel filter generating branch.

3.4 FFDConv Block

Considering that the frequency kernels of FFDConv don’t have the ability to
change the channel dimension of input features, we design an FFDConv block
that contains the channel mapping. As illustrated in Fig. 3, firstly, the channel
dimension of input is mapped from Cin to Cout after passing through the channel
transformation module, where a standard 2D convolution is employed. Then,
based on the input feature, the spatial and channel filters are obtained by passing
through the spatial and channel filter generating module. Full-frequency dynamic
kernels are obtained by mixing the spatial and channel filters. Finally, the kernels
are convoluted with input along the time axis.

In the actual algorithm, following [31], spatial filters, channel filters, and
input are sent to DDF operation to get the output, which is implemented in
CUDA, alleviating any need to save intermediate multiplied filters during net-
work training and inference. Note that the DDF op needs H ×W spatial filters.
We repeat the 1 × F spatial filters to T × F so that the kernel’s weights are the
same along the time axis when convoluted with input in f th frequency band.
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4 Experiment

4.1 Dataset, Metrics and Implementation Details

Dataset. All experiments are conducted on the dataset of Task 4 in the DCASE
2022. The training set consists of three types of data: weakly labeled data (1578
clips), synthetic strongly labeled data (10000 clips), and unlabeled in-domain
data (14412 clips). The real validation set (1168 clips) is used for evaluation.
The input acoustic feature is the log Mel spectrogram extracted from 10-second-
long audio data with a sampling rate of 16 kHz. The feature configuration is the
same as [13], in which the input feature has 626 frames and 128 mel frequency
bands.

Implementation Details. The baseline model is the CRNN architecture [33],
which consists of 7 layers of conv blocks and 2 layers of Bi-GRU. Attention pool-
ing module is added at the last FC layer for joint training of weakly labeled data,
and mean teacher (MT) [23] is applied for consistency training with unlabeled
data for semi-supervised learning. Data augmentations such as MixUp [29], time
masking [19], frame-shift, and FilterAugment [18] are used. The data augmenta-
tion parameters are identical to [17]. The metrics hyper-parameters are identical
to [17]. The model is trained using the Adam optimizer with a maximum learning
rate of 0.001, and ramp-up is used for the first 80 epochs.

Metrics. Poly-phonic sound event detection scores (PSDS) [2], collar-based F1
score (EB-F1) [15], intersection-based F1 score (IB-F1) [2] are used to evaluate
the model performance. Median filters with fixed time length are used for post-
processing, and sound events have different thresholds from each other to obtain
hard predictions for calculating EB-F1. These metrics have different focuses.
PSDS1 and CB-F1 reflect more on the system’s capacity for detecting sound
events. PSDS2 and IB-F1 reflect more on the system’s capacity for classifying
and differing sound events.

Table 1. SED performance comparison between models using different convolutions
on the real validation set. The best results are in bold, and the second best are in
underlined. * denotes the results from our implementation using the codebase from [17].

Model Params PSDS1 ↑ PSDS2 ↑ CB-F1 ↑ IB-F1 ↑
Baseline* [33] 4M 0.370 0.579 0.469 0.714

DDFConv* [31] 7M 0.387 0.624 0.467 0.720

FTDConv* 7M 0.395 0.651 0.495 0.740

SKConv [30] – 0.400 – 0.520 –

FDConv* [17] 11M 0.431 0.663 0.521 0.738

MFDConv [27] 33M 0.461 0.680 0.542 –

FFDConv* 11M 0.436 0.685 0.526 0.751
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4.2 Full-Frequency Dynamic Convolution on SED

We compared the performances of baseline with full dynamic convolution meth-
ods, including decoupled dynamic convolution (DDFConv) [31], full-temporal
dynamic convolution (FTDConv), and full-frequency dynamic convolution
(FFDConv). For full dynamic convolution methods, dynamic convolution layers
replaced all convolution layers except the first layer from the baseline model [33].
Besides, some typical convolution methods are also compared.

Compared with dynamic convolution methods, from Table 1, three types of
full dynamic convolution can all outperform the baseline, which proves full
dynamic convolution qualifies in SED. In addition, it can be seen that the
effects of three types of convolution are in increasing order. First, FTDConv
and FFDConv employ content-adaptive temporal or frequency kernels, which
can be viewed as giving prior knowledge to SED compared with DDFConv.
Second, FFDConv outperforms FTDConv, which can prove that time-frequency
patterns of sound events are highly frequency-dependent, and this dependency
is time-invariant. Moreover, FFDConv models acoustic features with different
kernels along the frequency axis, which can be thought to be frequency compo-
nents modeled in different representation spaces. As if components of the feature
are split into different frequency spaces and then reassembled. This is consistent
with the characteristics of sound events.

Compared with other typical methods, such as MFDConv [27], SKConv [30],
FDConv [17], FFDConv still demonstrates competitive performances. Especially
in terms of PSDS2 and IB-F1, FFDConv was the best among all convolution
methods. It approves the effectiveness of FFDConv, which captures the infor-
mation of different frequency band distributions for different sound events and
then models more differentiated time-frequency patterns for them, favoring the
classification of sound events. In terms of the PSDS1 and CB-F1, the FFDConv
is suboptimal and slightly higher than FDConv [17]. FFDConv’s kernels are
time-invariant in some frequency band, the same as FDConvs [17], leading to a
close result. Compared to the MFDConv [27], the latest state-of-the-art convo-
lution method, FFDConv can also get competitive performances, with a 66.7%
decrease in the number of parameters.

4.3 Fine-Grained Modeling Study

To explore FFDConv’s ability to understand acoustic spectral information at a
fine-grained level. We visualized feature of the middle layer. More visualizations
can be found in the supplementary material.

The visualization results are shown in Fig. 4. Comparing the features of FFD-
Conv and CRNN, we can see that most of the time-frequency patterns modeled
by CRNN are temporally isolated and disjoint. In contrast, FFDConv’s patterns
and their neighbors are in a whole, thereby forming a distinct time-frequency rep-
resentation. Moreover, this phenomenon can also be found in trends of frequency
band features over time. The waveforms of FFDConv are smoother than CRNN.
Specifically, the duration of peak and trough is longer in FFDConv’s waveform,
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Fig. 4. Feature comparison of FFDConv and CRNN. Features activation of the 5th
Conv block are shown in the 4th row. The trends of frequency band features over time
are shown in the 5th row. Note that y-axis labels of strong prediction are abbreviations
of the sound event categories. For example, Abr stands for Alarm bell ringing.

which results from the feature being mostly coherent over time. There are more
pulses in the resting state of CRNN’s waveforms, which are in a disorganized
state. Besides, the distributions of frequency band features are consistent with
alarm bell ring’s spectrogram in FFDConv’s waveforms. The values of the low-
frequency band features are smaller than those of the middle and high-frequency
bands when the alarm bell rings. However, the differences between frequency
bands in CRNN are ambiguous. As for the model’s prediction, the CRNN’s
isolated features directly lead to the incoherent output compared with ground
truth, which proves that the feature’s coherence over time is essential. Interest-
ingly, the low-frequency white noise of the sound clip is filtered by FFDConv,
but CRNN tagged it as speech. This has to do with that dynamic convolution
concentrates more on high-frequency texture information, and white noise in the
spectrogram lacks clear contour information.

Most SED models are trained in a frame-based supervised way, which always
leads to the feature and output being discrete over time. However, FFDConv
can alleviate this by frequency-dependent modeling, which models different pat-
terns for frequency bands, leading to a distinct representation of a sound event.
This modeling way is like an attention mechanism in which the distribution
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of frequency band information of the spectrogram is maintained. Besides, the
convolution kernel for a frequency band is shared in all frames, which produces
temporally coherent representations. This is consistent with both the continuity
of the sound waveform and the vocal continuity of sound events.

4.4 Ablation Study

We compared the performance of different window sizes of the build kernel when
generating spatial filters. Note that the size of the spatial filter K is set to 3.

Table 2. Comparison of different window size, W.

Model AttenW PSDS1 PSDS2

✗ 3 0.421 0.650

� 1 0.421 0.659

FFDConv � 3 0.436 0.685

� 5 0.423 0.656

� 7 0.432 0.666

The results are shown in Table 2. With constraints of the attention module,
FFDConv can get better performance. This proves that before attention, spatial
filters of different frequency spaces may have a large distance from each other.
The performance of FFDConv is the best when window size is set to 3. This
is because the adjacent frequency components are considered compared to size
1 when generating the spatial filter, and size 5 may suffer from overfitting. In
addition, it’s interesting that the performance recovers when the window size
is set to 7. This may have to do with the fact that dynamic convolutions are
relatively unstable.

5 Conclusions

In this paper, we proposed full-frequency dynamic convolution, the first full-
dynamic method for SED. Full-frequency dynamic convolution is designed to
model time-frequency patterns in different frequency spaces. This design in
structure physically furnished 2D convolution with the capability of frequency-
dependent modeling. Experiments on the DESED show that full-frequency
dynamic convolution is superior to not only baseline but also other full-dynamic
convolutions, which proves FFDConv qualifies in SED. In addition, by visual-
izing features of sound events, we found that FFDConv can extract temporally
coherent features in specific frequency bands, which is consistent with the vocal
continuity of sound events. This proves that FFDConv has great frequency-
dependent perception ability. In the future, we aim to explore new methods to
model vocal continuity of sound events.
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Abstract. Music Signal Processing has significantly evolved in the past
decades. One of the major areas of interest in this field has been auto-
matic music transcription. It is a challenging task by itself that aggra-
vates even more when the input audio is polyphonic (multiple instru-
ments and timbres are played simultaneously). This requires the iden-
tification of musical instruments in the piece at the outset. The field
of music signal processing that deals with this aspect is known as auto-
matic music instrument identification. This field also has the potential of
categorizing and recommending music based on instruments. Disparate
datasets have been proposed to date for this task but none of them have
interclass background similarity to the best of our knowledge. Further,
the lead melody being played also varies from class to class in most
cases. These aspects can introduce a possible bias for the machine learn-
ing models that can get manipulated unfairly by the additional variances
in the classes other than the lead instrument itself. This sets the stage
for a dataset where the classes are different only in terms of the tone
of the lead instrument alone. In this paper, we introduce the first musi-
cal instrument dataset of 10 musical instruments with Electronic Dance
Music melodies (EDM10) having identical background music (BGM)
across instruments. This dataset is the first of its kind wherein synthetic
tones have been used that have taken over the Globe. We introduce out-
of-mood testing using exotic scales for musical instrument identification.
The dataset is composed of 35800 polyphonic clips of 3 s each and a base-
line result of 89.73% was obtained using a deep learning-based approach.
The dataset is freely available for research purposes. https://forms.gle/
yV5e36TK1jHMKjpC6.
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1 Introduction

The field of Computer Science that deals with automatic analysis, manipula-
tion, and understanding of music signals is known as Automatic Music Signal
Processing [15]. It is composed of multifarious aspects like music generation
[4], genre identification [11], beat tracking [18], instrument identification [14],
music transcription [1], etc. Leveraging concepts from digital signal processing,
machine learning, and music theory, scientists in this field attempt to automate
disparate aspects of music production and analysis that require human expertise.
It involves the extraction of different meaningful information like rhythm, pitch,
and timbre to name a few. One of the major areas of interest in this domain is
Automatic Music Transcription which facilitates automatically notating a music
piece. This is essential for music understanding, music generation, and other
tasks.

A music piece can be broadly categorized into 2 groups - Monophonic and
Polyphonic based on the number of notes that are played simultaneously. A
Monophonic audio is one where a single musical note is played at a time which
implicitly means that a single instrument is played at a time. In the case of
polyphonic music multiple notes are played at a time which can be from the
same or different instruments. The songs and instrumentals that we listen to are
mostly polyphonic. Automatic Transcription for a monophonic piece is a chal-
lenging task that greatly increases when the piece is polyphonic. As multiple
instruments can simultaneously play in this type of audio, it becomes necessary
to identify the instrument being played and thereafter invoke the transcription
mechanism for a specific instrument. This has led to the development of a field
of research named Automatic Musical Instrument identification [14] from audio
clips. Another application of this field is the categorization and recommenda-
tion of music pieces based on musical instruments. This field has the potential
to contribute to the advancements in music technology and also enhance the
accessibility and understanding of music for both professionals and enthusiasts.

Szeliga et al. [21] presented a convolutional neural network (CNN)-based
approach for musical instrument recognition. They trained the system using 3
different monophonic datasets namely University of IOWA Musical Instrument
Samples1, Philharmonia Orchestra Sound Samples2, and RWC Music Dataset
[7]. They also experimented with polyphonic audio from the IRMAS dataset [3].
They used a staged training approach wherein, the system was initially trained
with monophonic audio and thereafter using polyphonic audio. The experiments
were performed on 7 instruments namely Cello, Clarinet, Flute, Guitar, Trum-
pet, Saxophone, and Violin. They reported the highest average training accuracy
1 https://theremin.music.uiowa.edu/MISPost2012Intro.html.
2 https://philharmonia.co.uk/resources/sound-samples/.

https://theremin.music.uiowa.edu/MISPost2012Intro.html
https://philharmonia.co.uk/resources/sound-samples/


EDM10 275

of 75.29% with the lowest average difference of 24% for the 2 stage approach.
Han et al. [8] also experimented on the IRMAS dataset using a CNN-based app-
roach coupled with Mel-spectrograms. They reported micro and macro F-Scores
of 0.619 and 0.513 respectively which was 23.1% and 18.8% above the baseline
results. Uruthiran and Ranathunga [23] attempted to distinguish Oriental musi-
cal instruments from the Philharmonia dataset. They used multifarious spectral
and time domain features for categorizing the audios and reported the highest
classification accuracy of 94.02% for 20 instruments using SVM. Toghiani-Rizi
and Windmark [22] presented a neural network-based system for the distinc-
tion of 8 different musical instruments namely Trumpet, Oboe, Violin, Clarinet,
Guitar, English Horn, Cello, and Banjo. They performed several experiments
wherein the base experiment involved frequency-based analysis which yielded
the highest accuracy of 93.5%. Nirozika et al. [17] attempted to distinguish 10
different Sri Lankan instruments with an SVM-based approach. The dataset
consisted of solo instruments which were parameterized using Mel Frequency
Cepstral Coefficient (MFCC)-based features and the highest accuracy of 86.8%
was reported. Mukherjee et al. [13] attempted to distinguish 6 different types
of pianos from a dataset where the backgrounds were the same for the differ-
ent classes. Out of the 6 Pianos, 2 were electric while the rest were acoustic.
The audio clips were parameterized using line spectral frequency-based features
wherein the highest performance of 97.06% was obtained with neural network-
based classification. Dutta et al. [5] presented a scalogram-based approach cou-
pled with CNN for instrument identification. Experiments were performed on a
monophonic dataset of 14 instruments wherein an accuracy of 85% was reported
by using only 20% of the data for training and the rest for testing. Ghosh et al. [6]
presented a Decision Tree-based approach for distinguishing 9 different instru-
ments. The dataset was monophonic wherein the highest accuracy of 84.02%
was reported by using spatial features that were extracted from the 2D repre-
sentation of the audio. Blaszke and Kostek [2] used a CNN-based approach for
distinguishing musical instruments. They experimented with only 4 instruments
from the Slakh dataset [12] namely Bass, Drum, Guitar, and Piano. They mod-
eled the audio using MFCC features and reported class-level accuracies in the
range of 86% to 99%. Nagawade and Ratnaparkhe [16] used MFCC-based fea-
tures coupled with KNN classifier for distinguishing 5 instruments namely Piano,
Cello, Violin, Flute, and Trumpet. The system was limited to working only for
monophonic clips and an accuracy of 88.33% was reported. Solanki and Pandey
[20] used Mel Spectrogram for the identification of musical instruments from the
IRMAS dataset. The spectrograms were fed to an 8 layered CNN wherein the
highest accuracy of 92.8% was reported.

It is observed from the literature that many works are based on monophonic
datasets which is not ideal for real-World scenarios. There are works on poly-
phonic datasets as well, but most of them are not tested with data having iden-
tical backgrounds or melodies across instruments. Testing on such a scenario can
help to identify a system’s lead instrument tone-identifying capability.
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2 Dataset

Data is an essential entity of any experiment. It should be robust enough to
portray real-world characteristics that in turn facilitate the training of robust
systems. The test-train split of data is a very important factor. It needs to be
ensured that the test set is not biased in terms of the contributors in the training
set. The dataset should be focused on the objective of a task and it needs to be
ensured that all the factors that are variable in the dataset are directly related
to the objective and do not provide additional variance within classes which in
turn can unfairly enhance the performance of a system. Though such systems
yield higher results, their application in the real world is limited at times.

In this paper, we introduce a dataset for Musical Instrument Recognition
which has several distinctive features that are not available in the presently avail-
able datasets to the best of our knowledge. The dataset is based on Electronic
Dance Music and encompasses 10 Musical Instruments, hence the name EDM10.
The instruments include Cello, Clarinet, Guitar, Harmonium, Pan Flute, Piano,
Santoor, Sitar, Trumpet, and Violin. These instruments were selected to accom-
modate both Eastern and Western instruments. The chosen instrument set cov-
ers multiple instrument families like Wind (Clarinet. Pan Flute, Harmonium,
Trumpet), String (Guitar, Violin, Cello, Santoor, Piano), Reed (Clarinet, Har-
monium), Key (Harmonium, Piano). Several instruments belong to multiple fam-
ilies like Piano, Harmonium, and Santoor to name a few. In the case of Piano,
it is played by pressing keys, in the background strings are struck by the ham-
mer of the respective keys on being pressed. Hence, it can be considered as a
key, string, or even percussion instrument. Similarly for Santoor, it is a stringed
instrument but is played by striking the strings with hammers. In the case of
Harmonium, it produces sound when a key is pressed coupled with an inflow of
air into the reed.

Electronic Dance Music was chosen to engender this dataset for several rea-
sons. One of the primary reasons is its popularity over the years3. Another reason
is that processing EDM can be very challenging due to multifarious aspects which
are discussed as follows:

– Complicated Arrangements: EDM often contains multiple layers of synthetic
sounds, samples, and effects which poses a challenge during analysis.

– High Dynamic Range: EDM tracks demonstrate a wide dynamic range in
many cases. A single piece often has very quiet and very loud sections. This
is challenging to process without the introduction of distortion or clipping.

– Fast Tempo and Rhythms: EDM can be characterized by a fast tempo with
intricate rhythmic patterns in the background and foreground. Such intrica-
cies of the background music (BGM) often hinder with the lead instruments
during automated processing.

– Frequency Spectrum: EDM tracks mostly have a broad frequency envelope.
This includes strong basslines, high-frequency, and complex synths.

3 https://www.yourmusiccharts.com/50-best-edm-songs-2023/.

https://www.yourmusiccharts.com/50-best-edm-songs-2023/
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– Dynamic Effects and Transitions: EDM often uses dynamic effects like sweeps,
filters, drops, and transitions. These change the overall characteristics of the
audio and are difficult to tackle for autonomous systems.

– Compression and Limiting: EDM tracks are often accompanied by heavy com-
pression and limiting to achieve a loud and punchy sound. This poses a chal-
lenge in the automatic analysis and parameterization of a single aspect like
the lead instrument.

Musicians were asked to play melodies in 6 different scales namely Major,
Major Pentatonic, Minor Pentatonic, Blues, Hirajoshi, and Arabic. They were
provided with stereophonic background tracks consisting of a bassline, a synth
arpeggio, and a percussive section. These layers were composed using multiple
stems, for instance, the percussive section consisted of a kick stem, a hi-hat stem,
and a snare stem in certain instances. In some cases, the BGM was formed using
patterns extending across multiple bars. The MIDI session of the lead melody
for the different scales was recorded. These sessions were thereafter assigned to
the different instrument tones. This ensured that the exact same melody was
played for the different instruments which were mixed with the BGM. Thus,
the final pieces were only different from each other in terms of the tone of the
lead instrument. Since every instrument class consisted of all the 6 scales, each
of which had the exact same BGM and lead melody notation, it was ensured
that the classes only differed in terms of the tone of the lead instrument thereby
facilitating unbiased lead instrument identification. Different melodies in differ-
ent instrument classes can at times introduce bias in the models by providing
an unfair advantage which is avoided in this dataset. The finally rendered clips
were split into lengths of 3 seconds for generating the train and test sets. Each of
the instruments consisted of 2415 instances in the train set and 1165 instances
in the test set. The train set was composed of melodies from the Major, Major
Pentatonic, Minor Pentatonic, and Blues scale. The test set was composed of
the remaining 2 exotic scales namely Arabian and Hirajoshi. The mood of these
2 scales was completely different from the ones used in the training set thereby
ensuring an unbiased out-of-mood test scenario. The details of the train and
test set in terms of the encompassed scales, their root notes, the range of played
notes, and the tempos are tabulated in Table 1.

Table 1. Scales along with their constituent notes, tempo, and used range of notes
present in the Train and Test set

Partition Scale Notes Range Tempo

Train Major C, D, E, F, G, A, B, C C5-C7 115

Major Pentatonic C, D, E, G, A, C C4-C7 103

Minor Pentatonic C, D#, F, G, A#, C F4-F7 110

Blues C, D#, F, F#, G, A#, C C4-G7 108

Test Arabic C, C#, E, F, G, G#, B, C C5-C7 120

Hirajoshi C, D, D#, G, G#, C C4-G#6 106
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The BGM and lead melody mixing methodology is illustrated in Fig. 1. The
scheme has been demonstrated for a scenario consisting of 3 BGMs (B1, B2, and
B3) for 3 instruments (I1, I2, I3) generating 3 types of track (A1, A2, and A3).
The mixing of a lead melody from an instrument with a BGM is demonstrated by
a colour-coded arrow from B to I. Since the melody from every instrument was
mixed with every BGM leading to 3 associations per background (demonstrated
by 3 colour-coded arrows originating from each B). This led to 3 type tracks
(based on BGM). This led to the production of 9 mixed tracks which were of
3 types as demonstrated in Fig. 1. The first A1 indicates that it was formed by
mixing the lead melody from instrument I1 (hence the same coloured box) with
the BGM B1 (hence the red hue behind the box denoted as A1). In a nutshell,
every mixed track can be considered as a constrained walk from B to A via I.
The constraint is that the incoming and outgoing edge for any I needs to be of
the same colour wherein every coloured line can be considered as an edge and
every box can be considered as a vertex.

B1

B2

B3

I3

I2

I1 A3

A2

A1

A3

A2

A1

A3

A2

A1

Fig. 1. Associativity of a BGM B with an instrument I leading to an audio A. It is a
constrained walk from B to A, via I. The constraint is that the incoming and outgoing
edge for any I needs to be of the same colour

The instrument tones were easy to distinguish when played without the
BGM, but the overall mix made it difficult to distinguish them. The Mel Spec-
trogram of a Blues scale melody for the different instruments along with the
BGM is presented in Fig. 2. The Mel Spectrograms for the same melody on mix-
ing with the BGM are presented in Fig. 3. It is observed that similar components
were introduced post-mixing. The spectrograms were generated by merging both
the channels of the stereo tracks into a single track.

The overall tonal texture varied due to different BGMs which is illustrated
in Fig. 4. In this Figure, a single clip of Harmonium for the different BGMs is
shown. It is seen that for each of these BGMs, a variation is introduced in the
audio.
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CELLO CLARINET GUITAR HARMONIUM PAN FLUTE

PIANO SANTOOR SITAR TRUMPET VIOLIN

BACKGROUND

Fig. 2. Mel Spectrograms of the 10 instruments without the presence of BGM. The
Mel Spectrogram of the BGM is shown at the bottom

CELLO CLARINET GUITAR HARMONIUM PAN FLUTE

PIANO SANTOOR SITAR TRUMPET VIOLIN

Fig. 3. Mel Spectrograms of the 10 instruments in the presence of BGM

BLUES MAJOR PENTATONIC MINOR PENTATONIC

MAJOR ARABIC HIRAJOSHI

Fig. 4. Mel Spectrograms of Harmonium clip for different scales
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The clips were initially recorded in the key of C which was then transposed
to the key of B and A# on the lower side (−1 and −2 semitones) as well as C#

and D on the upper side (+1 and +2) semitones. It was noted that differences
in the overall audio were introduced due to this transposition which is shown in
Fig. 5.

C

A#

C#

B

D

Fig. 5. Mel Spectrograms of a Piano clip in different Keys

The level of the Foreground melody in comparison to the BGM in terms
of loudness is presented in Table 2. It presents the instrument-wise mean and
standard deviation of the Foreground to BGM levels for the train and test. It
is noted that for most of the instruments, the BGM was more dominant as
compared to the foreground instrument. This is especially common for the lower
octave lead melody sections wherein the bassline becomes more dominant.

Table 2. Foreground and Background power (dB) comparison in instrument level along
with their designated symbols

Instrument Symbol TrainMean TrainStd TestMean TestStd

Cello CEL –2.32 3.07 –0.37 1.92

Clarinet CLA –0.94 3.24 0.7 1.92

Guitar GUI –0.11 3.62 1.06 3.17

Harmonium HAR –2.68 4.37 –2.79 4.89

Pan Flute PAN –0.9 2.86 0.99 1.71

Piano PIA –2.64 4.09 –0.58 3.68

Santoor SAN –2.17 5.83 –0.12 4.8

Sitar SIT –5.02 4.87 –4.07 5.43

Trumpet TRU –8.3 2.86 –6.54 1.35

Violin VIO –5.77 3.38 –4.17 2.23

The main features of EDM10 can be summarized as follows:
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– The dataset is composed of 10 Musical instruments from both the Eastern
and Western World. It has exotic instruments like Santoor and Harmonium
as well as closely linked instruments like Violin and Cello.

– The dataset consists of 35800 clips of 3 seconds duration wherein the mood
of the clips in the train set is different from the test set thereby ensuring an
out-of-mood test scenario. The test set is composed of exotic scales (Hirajoshi
and Arabic) while the train set is composed of common scales.

– The BGM of the clips does not vary across instruments thus avoiding
unwanted positive bias in instrument identification. Every BGM is present
for every instrument in the dataset.

– The lead melody is the same across instruments thereby avoiding unfair pos-
itive bias in instrument identification.

– The dataset is composed of stereo audios with a sampling rate of 48000 Hz
which is the studio standard.

– Synthetic tones are used in the dataset which is common in the present days.
The BGMs are also multilayered and complex. The EDM genre makes ana-
lyzing the audio even more challenging due to the complex characteristics of
the genre.

3 Baseline System

3.1 Audio Parameterization

The audio clips were parameterized using Mel Spectrograms [19]. A Mel Spectro-
gram is used to represent the frequency spectrum of an audio computed using
the Mel scale. It involves the use of triangular bandpass filters each of which
is centered around a particular Mel frequency and spans over a range of fre-
quencies. The Mel Spectrogram represents the distribution of energy across the
different frequency bands with temporal information. The regions with higher
energy are more brightly coloured than the ones with lower energy distribution.

In this approach, an audio signal x(t) is divided into short overlapping frames
of length T where t represents time. Each of these frames is subjected to a win-
dowing function w(t) to avoid spectral leakage. The Fourier transform is com-
puted for each of the frames xn(t) that produces its frequency domain represen-
tation Xn(f) where f represents frequency. This is followed by the generation of
the Mel Filterbank consisting of m filters. Hm(f) represents the mth filter whose
center frequency is represented by fm on the Mel scale. This is followed by com-
putation of the power spectrum Pn(f) wherein Hm(f) is applied on Xn(f). This
procedure is represented as follows:

Pnm =
∑

f |Xn(f)| · Hm(f) (1)

The summation symbol represents the summation of all frequencies covered by
a Mel Filter. It aggregates the magnitude spectrum within the filter. This is
followed by the conversion of Pnm to a logarithmic scale to mimic human per-
ception. As this is done separately for every frame which is thereafter aggregated
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to form the entire spectrogram, time resolution is also obtained. In this experi-
ment, the left and right channels of the audio were merged into a single channel
at the initial phase before parameterization. The Fourier transformation was
performed with a length of 2048 and 512 samples were present in between 2
successive frames. The frames were subjected to the Hanning window which is
represented as follows:

w(n) = 0.5
(
1 − cos

(
2π

n

N

))
(2)

where, window length = N + 1 and 0 ≤ n ≤ N .

3.2 Deep Learning-Based Classification

Deep learning [10] is a sub-field of Machine learning that leverages complex
neural networks with multiple layers. These networks can learn complex pat-
terns from data using hierarchical representations thereby introducing successive
abstraction. They are different from traditional Machine Learning techniques
that require handcrafted features.

Convolutional Neural Networks (CNNs) [9] are one such type of Deep Learn-
ing architecture designed to process grid data and are composed of 3 main com-
ponents namely: Convolution layer, Pooling layer, and Dense/ Fully-Connected
layer.

– Convolution layer: This layer is used for extracting spatial patterns/ features
from data using a set of filters. These filters perform element-wise multipli-
cation with the input data and produce feature maps.

– Pooling layer: This layer is used to reduce the spatial dimension of the
extracted feature maps from the convolution layers. This achieved by down-
sampling the maps which involves aggregating adjacent values which is gov-
erned by the filter size. This layer helps to reduce the computational com-
plexity and controls overfitting.

– Dense/ Fully-Connected Layer: This layer is located at the end of a CNN
which is responsible for performing the classification/ regression task. Every
neuron of a dense layer is connected to every neuron of the subsequent dense
layer.

In this work, the baseline architecture Instrument-Network (I-NET) was com-
posed of 4 blocks. The first 3 were feature blocks while the last was a classifi-
cation block. Each of the blocks was composed of 3 layers. Initially, the Mel
spectrograms of 128 � 128 dimension were fed to the first block having the first
convolution layer consisting of 64 filters of 5 � 5 dimension. This layer used a
ReLU activation which is presented below.

f(x) = max(0, x), (3)

where x represents the input.
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The feature maps extracted from this layer were passed on to a pooling layer
where max-pooling was performed on 2 � 2 windows. This was followed by a
15% dropout and the resultant was passed on to the second block having the
second convolution layer consisting of 32 filters of 3�3 dimension. This layer also
used ReLU activation whose outcome was max-pooled with 2 � 2 windows. The
resultant was subjected to 20% dropout and passed on to the third block having
the third convolution layer consisting of 32 filters each of size 2�2. The activation
was similar to the previous convolutions whose result was again max-pooled with
2�2 filters and 25% of the parameters were discarded. This was passed on to the
last block composed of 3 fully connected/ dense layers. The first 2 dense layers
consisted of 256 and 128 neurons with ReLU activation. The final dense layer
consisted of 10 neurons in accordance with the number of instruments and used
softmax activation which is presented below.

σ(z)j =
ezj

∑K
k=1 ezk

, (4)

where z is an input vector of length K.
The network was trained for 100 epochs coupled with categorical cross-

entropy and adam-based optimization. The network is illustrated in Fig. 6.
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Fig. 6. Architecture of I-NET

4 Results and Analysis

The dataset was subjected to 2 networks wherein 10% of the training data was
used for validation. The first was based on the architecture proposed by Solanki
et al. [20] and the second (I-NET) was designed to enhance the recognition
performance. The networks were trained for the same number of epochs along
with the other parameters. However, a higher image size of 256�256 was used for
[20] to avoid diminishing inputs. The experiments were repeated 42 times and the
highest recognition rate of 88.32% was obtained for [20] whose confusion matrix
is presented in Fig. 7. It is noted that the system confused several instances
of “Cello” to be “Violin” and “Trumpet”. There were several clips where notes
were played across different octaves. In the case of higher octave notes of “Cello”
it might have been a reason of confusion with “Violin”. There were certain
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instances, where the tone of the “Cello” appeared to be similar to that of the
“Trumpet” in the lower octave which was further smoothened by the BGM. This
also led to the confusion. There were lead arpeggios that often spanned across
octaves. In the case of “Trumpet”, the higher octave seemed to be like that of
the “Violin” in short clips which led to several clips of “Violin” being labeled as
“Trumpet”.

Fig. 7. Confusion matrix for the best result obtained using the architecture based on
Solanki et al. [20]

In the case of I-NET, the highest accuracy of 89.73% was obtained whose
confusion matrix is presented in Fig. 8. One of the highest false negatives was
observed for “Cello” which was classified as “Trumpet”. In the case of the I-NET
model, this confusion was reduced by 50.36% over the previous architecture. In
this case, similar confusion as that for the model by [20] was observed. In certain
instances, the lower octave of the “Harmonium” resembled a “Trumpet” in a clip
of short duration. This led to misclassifications of several clips of “Harmonium”
as “Trumpet”.

To get a clearer understanding of the results for both systems, the instrument
level accuracies for the best performances are presented in Fig. 9. It is observed
that out of the 10 instruments, the architecture of [20] performed better for 4
instruments namely “Cello”, “Clarinet”, “Santoor”, and “Trumpet”. The per-
formance was better by 1.01%, 2.97%, 1.70%, and 1.69% for the aforementioned
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Fig. 8. Confusion matrix for the best result obtained using I-NET architecture

instruments respectively. In the case of the other 6 instruments, I-NET outper-
formed [20] by 11.51%, 7.32%, 0.89%, 3.41%, 1.70%, and 1.03% for “Guitar”,
“Harmonium”, “Pan Flute”, “Piano”, “Sitar”, and “Violin” respectively.
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The mean accuracies in instrument level for the 2 systems were computed
across the 42 runs whose results are presented in Fig. 10. A higher average accu-
racy of 85.91% was obtained for the I-NET architecture as compared to [20]
which produced an average accuracy of 81.73%. On analyzing the instrument
level results it was observed that [20] performed better for 4 instruments namely
“Pan Flute”, “Santoor”, “Trumpet”, and “Violin”. The performance was bet-
ter by 3.10%, 2.66%, 5.98%, and 0..71% for the aforementioned instruments
respectively as compared to I-NET. In the case of the other 6 instruments, I-
NET outperformed [20] by 13.90%, 6.62%, 10.71%, 9.77%, 39.44%, and 0.92% for
“Cello”, “Clarinet”, “Guitar”, “Harmonium”, “Piano”, and “Sitar” respectively.

64
.33

86
.09

63
.2

81
.79

95
.57

58
.07

98
.12

94
.72 95
.65

79
.78 81

.73

73
.27

91
.79

69
.97

89
.78 92

.7

80
.97

95
.58

95
.6

90
.25

79
.22 85

.91

CEL CLA GUI HAR PAN PIA SAN SIT TRU VIO AVERAGE

Fig. 10. Average Instrument-wise accuracies obtained using [20] (Blue) and I-NET
(Red). Bold numbers on top of the bars signify higher values for each instrument.
(Color figure online)

5 Conclusion

In this paper, e new stereo polyphonic dataset for Musical Instrument Identifi-
cation (EDM10) is introduced. The dataset consists of Electronic Dance Music
clips of 3 seconds duration. It also introduces an out-of-mood testing scenario and
identical background and notation across the 10 instruments in the dataset. This
ensures an unbiased Musical Instrument Identification scenario wherein models
cannot get any unfair advantage from other varying characteristics within the
different classes. The baseline results were obtained using a custom CNN archi-
tecture named I-NET that yielded the highest accuracy of 89.73%. Tests were
also performed based on a CNN architecture proposed by [20] which yielded the
highest accuracy of 88.32%.
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Abstract. Time delay estimation or Time-Difference-Of-Arrival esti-
mates is a critical component for multiple localization applications such
as multilateration, direction of arrival, and self-calibration. The task is
to estimate the time difference between a signal arriving at two differ-
ent sensors. For the audio sensor modality, most current systems are
based on classical methods such as the Generalized Cross-Correlation
Phase Transform (GCC-PHAT) method. In this paper we demonstrate
that learning based methods can— even based on synthetic data—
significantly outperform GCC-PHAT on novel real world data. To over-
come the lack of data with ground truth for the task, we train our model
on a simulated dataset which is sufficiently large and varied, and that
captures the relevant characteristics of the real world problem. We pro-
vide our trained model, SONNET (Simulation Optimized Neural Net-
work Estimator of Timeshifts), which is runnable in real-time and works
on novel data out of the box for many real data applications, i.e. with-
out re-training. We further demonstrate greatly improved performance
on the downstream task of self-calibration when using our model com-
pared to classical methods.

Keywords: Time Delay Estimation · Time-Difference-of-Arrival ·
Generalized Cross-Correlation · Data Simulation · Audio

1 Introduction

Time Delay Estimation (TDE) is the problem of determining how much later
(or earlier) a signal from a transmitter is received at two different receivers. The
result is often denoted Time-Difference-Of-Arrival (TDOA), see Fig. 1. TDE is a
pivotal problem, primarily due to its critical role in localization and positioning
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systems. By enabling the determination of the TDOA of a signal at different
receivers, TDE provides the foundational measurements for inferring the spatial
location of senders and/or receivers using further methods. Examples of such
methods are:

– Multilateration, where the positions of the receivers are known and the TDOA
estimates are used to estimate the position of the sender, [12,16].

– Direction of arrival, where prior knowledge of the geometry of a receiver array
is used together with TDOA measurements from multiple pairs of receiver to
compute from which direction the signal is received.

– Self-calibration, where the positions of both receivers and senders are esti-
mated solely based on the measured TDOA, [17,24,28].

Accurate localization of sender and receiver nodes is crucial for various
applications, including microphone array calibration, speaker diarization, beam-
forming, radio antenna array calibration, mapping, and positioning [20].

In these and many other applications, the initial signal processing step of
obtaining reliable TDOA estimates, plays an important role. Currently, the state-
of-the-art method is the Generalized Cross-Correlation Phase Transform (GCC-
PHAT) and its variants [15]. However, recent research indicates that there is
substantial room for improvement. In [30] it was shown that the average per-
formance of existing methods fell below the desired threshold in nearly 40% of
estimations based on a real dataset with ground truth.

The TDE problem is relevant across multiple different signal modalities such
as audio and radio. However, in this paper the main focus is directed towards
the analysis of audio, although studying radio signals is an interesting subject
for future studies.

Fig. 1. Since the microphones are at different distances from the speaker, the signal
arrives at different times for each of them. By estimating the timeshift in the signals
(right figure), and combining it with the propagation speed of the signal, we get a
measurement of distance difference (left figure)
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1.1 Challenges

TDE in the audio domain presents a set of challenges that significantly compli-
cates the estimation process. Unlike scenarios involving controlled signal trans-
mission, for a variety of audio applications the sound source is not a controlled
entity. Therefore our estimation techniques need to handle unknown signals with
unpredictable characteristics. This difficulty is compounded by reverberations,
a common phenomenon in acoustic spaces where sound waves reflect off sur-
faces, creating multiple delayed echoes that can obscure the true signal path.
Another challenging aspect arises when dealing with moving sound sources, as
this introduces a dynamic element to the TDE problem [7]. As the source moves,
the relative distances to the receivers change continuously, altering the TDOA
in real-time and demanding adaptive estimation techniques capable of handling
these variations. Together, these factors-unknown signal characteristics, rever-
berations, and source mobility-make audio-based TDE a particularly demanding
task, necessitating sophisticated algorithms and approaches to achieve reliable
estimation.

1.2 Related Works

Previous methods for TDE in audio signal processing exhibit notable limitations
in handling complex real-world scenarios. The Generalized Cross-Correlation
method, and specifically its Phase Transform variant GCC-PHAT is often used
as a starting point. It is robust to measurement noise and works well across
diverse signal types. However, GCC-PHAT shows limitations when dealing with
reverberations and moving sound sources.

In [7] methods were developed for estimation of TDOA with sound source
or receiver motions. These methods were based on local optimization of initial
estimates based on the GCC-PHAT.

Recent advancements have seen the adoption of machine learning techniques
for TDE. For small baseline receiver arrays, where the receivers are typically
placed equidistant, direction of arrival can be made using alternative techniques,
for example steered-response power with phase transform [4], spectrograms [26]
and raw waveforms [13]. For DOA estimation both traditional and data driven
methods have been used successfully.

For large baseline arrays, where the receivers are placed in an ad-hoc fashion
there has been some attempts at data-driven methods, see for example [6,8–
10,25] and [11] for an extensive overview. Many of these are, however, trained
and evaluated for specific subtasks. One of the problems has been the lack of
real world data with accurate ground truth. Previous work circumvents this by
using simulated data to train their models. While this approach is promising,
these papers make no claim to have a model which works on novel real world
data. Instead, only training and evaluating on similar simulated datasets.
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1.3 Contribution

In this paper we propose more careful modeling of the problem, and thereby
improving over previous learning methods by increasing the scope and quality of
the simulations. Many learning based approaches focus primarily on reverbera-
tion effects, neglecting other critical factors. Thus, limiting the generalizability of
these methods to real data. This paper aims to contribute to the body of knowl-
edge on TDE by leveraging simulated data to explore and enhance estimation
techniques for audio signals. To summarize, our contributions are:

– Demonstrating that data driven models trained on large scale simulated sound
datasets, generalize to real data as well as to novel sounds for the TDE task.

– Providing a model, SONNET - Simulation Optimized Neural Network Esti-
mator of Timeshifts, which outperforms state of the art methods for TDE
and is evaluated on both simulated and real data.1

– Demonstrating how the new estimators improve performance on downstream
tasks.

2 Problem Setup

Consider a reverberant room containing two receivers positioned at r1, r2 ∈ R
3

and a moving sender located at s(t) ∈ R
3. The sender is emitting an unknown

signal x(t) which is being recorded by the receiver at ri as the signal xi(t). The
TDOA at time t for receivers i and j, is defined as

Δ(t) =
||ri − s(t)|| − ||rj − s(t)||

vx
, (1)

where vx is the propagation speed of the signal. We are in this paper primarily
interested in this direct path TDOA, but an interesting extension would be
to also consider TDOA measurements corresponding to multi-path components
from reflective planes, that could potentially provide richer information, [5,29].

For the modeling we assume that the received signal xi(t) can be modeled as

xi(t) =
∫

hi(t − τ, τ)x(τ)dτ + εi(t), (2)

where ε is the noise and hi(t, τ) is the impulse response from the sender to
receiver i at the position s(τ). The impulse response captures the acoustic prop-
erties (position, orientation) of both the receiver and sender as well as the rever-
berant properties of the room. Typically there is a strong direct path component
in the impulse response, corresponding to a time-delay of ||ri−s||

vx
, which allows for

the TDOA estimation. While the TDOA is time dependent, we will for the rest
of this paper refer to the TDOA of a pair recorded signals xi(t), xj(t), 0 < t < T
as the TDOA value at the middle of the signal, i.e. Δ(T2 ). The goal is to use two
recorded signals xi, xj to estimate this TDOA value.

1 Code available at: https://vision.maths.lth.se/sonnet/.

https://vision.maths.lth.se/sonnet/
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3 Data Simulation

Similar to earlier work by Berg et al. [2], we use Pyroomacoustics [22] to compute
impulse responses using the image source method [1]. However, we augment the
simulation in a number of important ways. Instead of simulating a single room
we simulate a broader class of rooms in order to cover a larger set of possible
impulse responses. Also, with the goal of making the simulation better reflect
reality, we both simulate a moving sound source and also microphones and sound
sources which are not omnidirectional. How and why will be explained in more
detail in the following sections and motivated by our ablation study in Sect. 6.5.

3.1 Moving Sound Source

To simulate a moving sound source we first generate a path by constructing a
quadratic Bézier curve s(t), 0 < t < T with a length shorter than some maximum
length. Because simulating the sound from a moving sound source is difficult
within the Pyroomacoustics framework, we instead discretize the curve into k
points

{s(t1), . . . , s(tk)}, ti =
i − 1
k − 1

T. (3)

The sound from a moving sound source is then approximated by dividing the
played sound x(t) into k equally sized parts and simulating part x(t), i−1

k T <

t < i
kT as a stationary speaker at point s(ti). This is essentially simulating that

the sound source is jumping to a new location along a path after each time T
k .

Following this methodology, the signal is computed as a sum of convolutions

xi(t) =
k∑

j=1

hi(t,
j

k
) ∗ x̄(j)(t), (4)

where x̄(j) is the jth part of the signal, zero-padded to have the same shape as
the original signal x.

3.2 Directionality

Previous work simulated both microphones and speakers as being omnidirec-
tional, which means they emit/receive their signal equally well in all directions.
However, the directional dependence in reality is rather complicated, since it
depends on what hardware is used. This is further complicated by the direction-
ality of a microphone not being constant for all frequencies, as demonstrated in
[27]. We settled on using the subcardioid sensitivity pattern, since it is a com-
mon model for directional microphones and therefore already implemented in
Pyroomacoustics [3].
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4 Inference Model

One of the main contributions of this paper is to show that it is possible to
close the sim2real gap, i.e. to demonstrate that simulated data generalizes to
real data, given enough simulations of sufficiently rich character. Therefore we
opted for a network architecture with the properties of simplicity and being
easily trainable, see Fig. 2. The main part of our network is a ResNet, since it
is a simple architecture which is easily trainable. However, an issue with audio
data is that it has low information density, making it difficult to input the audio
data directly into the ResNet, without significantly increasing the number of
parameters of the model. We therefore use two common approaches to compress
the audio data.

Fig. 2. System overview: Our model takes two audio recordings of length d as input
data. The data is first converted to the frequency domain, using the fast Fourier trans-
form, and stored with real and imaginary components as different channels. It is then
sent through a series of 1d convolutional layers. The features are then processed using
M stacked pairs of linear layers along with skip connections. Finally, the logits are
acquired by adding a linear layer after the last residual block

First we use a fast Fourier transform and only store the values for frequencies
which are below some threshold frequency fmax. Another advantage of using the
Fourier transform is that it mitigates the problem of the spectral bias in neural
networks [21]. Secondly, we use a backbone of 1d convolutional layers to extract
more dense features from the data.

In the same manner as [2] our model performs regression-via-classification
(RvC). This means that our network does not output TDOA values, but rather
outputs logits for a fixed number of classes. Each of the classes then corresponds
to a range of TDOA values.

To make the data have the right size we use linear layers as projections
between the backbone and the ResNet, as well as a linear classifier between the
ResNet and the final logits.

5 Implementation Details

In our code we have provided a pretrained model SONNET. In this section we
have outlined implementation details on both how SONNET was trained, as well
as how the dataset it was trained on was generated.
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The sound used when training the model are from the Musan dataset [23],
which is an openly available corpus containing about 18 GB of music, speech
and noise. For our simulations we used a signal length of d=10,000 samples with
a sampling frequency of 16 kHz. However, since we want reverberations to be
present at the beginning of the recording we simulated 2000 extra samples at
the beginning of each simulation. For each recording, we simulated a new room
in the shape of a rectangular cuboid with each of the three dimensions having
a length uniformly sampled in the interval [1, 10] m. The reverberation level in
the room was varied by sampling the reflection coefficient of the walls from the
interval [0.05, 0.99]. The path of the sender was simulated in one of two different
ways with equal probability, either as a stationary point source or as a randomly
sampled quadratic Bézier curve with maximum velocity of 5 m/s. In each room
we simulated 50 microphones recording the signal.

The dataset consist of 10,000 rooms, which means that it in total contains
10, 000

(
50
2

)
= 12 million training examples of pairs of recordings. The memory

footprint of the dataset is 19 GB.
For the model we set our threshold frequency fmax = 4800 Hz. The backbone

consisted of three 1d convolutional layers. The ResNet consisted of M = 4 blocks.
Throughout the network we used GELU [14] as activation function. We choose
to have 1000 output classes as possible predictions for our model. Each class
corresponded to bins of TDOA values with a width of 1 sample. This means our
model makes predictions with the same resolution as GCC-PHAT.

The model was trained in PyTorch [19] with the AdamW optimizer [18], a
batch size of 4096, a learning rate of 0.0003, during 20 epochs. We used the
cross-entropy loss with label-smoothing of 0.1 as our loss function. The training
was done on Tesla V100-PCIE-16GB GPU and took 3 h.

6 Experiments

In this section we first analyze the inference speed and memory footprint of the
proposed system. We then study the performance of the system on both simu-
lated and real data, by making several comparative studies against GCC-PHAT.
Finally we show how the proposed system can be used to improve a previous
state-of-the-art system for automatic self-calibration of an ad-hoc configuration
of microphones. We quantitatively and qualitatively (see Figs. 3, 4 and 5) show
that our model outperforms previous methods for performing TDE in novel real
world settings.

6.1 Inference Speed and Memory Footprint

The ideas in this paper can be used train TDE models of different sizes, and can
therefore be tailored to the available memory and computation requirements for a
specific use case. However, we suggest as a starting point to use SONNET, which
we have provided along with this paper. SONNET has 20 million parameters and
a memory footprint of 75 MB.
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Inference speed was evaluated on both CPU, Intel(R) Xeon(R) W-2125 CPU
@ 4.00 GHz, and on a GPU, Tesla V100-PCIE-16GB. The results are shown
in Table 1. To summarize, SONNET takes four times longer to run than GCC-
PHAT, however, the inference time is still fast enough to run SONNET on a
CPU in real-time without any issues.

Table 1. Computation time per pair using a batch size of 100 recording pairs

SONNET (ms) GCC-PHAT (ms)

CPU 0.94 0.32

GPU 0.022 0.005

6.2 Noise and Reverberation Sensitivity (simulated Data)

We have also evaluated our model’s robustness to noise and reverberation using
simulated data, see Fig. 3. We use accuracy at 10 cm as our main evaluation met-
ric. To motivate this, we would like to highlight the distribution of the residuals.
The residual distribution for all three detectors shown here seems to be well
explained by a combination of a normal distribution (inliers) and a uniform dis-
tribution (outliers), a common combination of distributions in the area of robust
estimation. Because of this, using mean squared error as an evaluation metric is
both noisy and highly dependent on the space of values the model can estimate
making comparisons between models more difficult. When using these detections
for downstream tasks, because they contain outliers one probably need to use
methods from robust estimation. Because of this, we think reporting inlier ratio,
at a given inlier threshold, is a better evaluation metric.

The evaluation examples are created in the same manner as the training data,
with the change that instead of using audio from Musan we used the audio from
tdoa 20201016 (described in Sect. 6.3) in the simulation. Our model outperforms
GCC-PHAT in a wide range of reverberant and noise environments, as shown
in Fig. 3.

6.3 Real Data

Arguably, the most important evaluation of our model is the results on real
world data. We have evaluated our model on the tdoa 20201016 dataset provided
by [30]. The advantage of using this dataset is that it contains ground truth
values for the TDOA for any pair of two microphones. The dataset also contains
recordings without accompanying ground truth but these were not used in our
evaluation. The dataset is recorded in 96 kHz, which means that we have to
down-sample, since our model is trained on 16 kHz. The total playing time of the
speaker over all the experiments is around 600 s with 12 microphones recording.
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Fig. 3. Results on the simulated data. (a) Noise sensitivity evaluated at T60 = 0.2 s.
Note that GCC-PHAT is very robust against white noise (b) Reverberation sensitivity
evaluated at SNR = 10 dB

Using a window overlap of 5/6, we get 384648 pairs of windows to estimate
TDOA on. As shown in Fig. 4, the learned models significantly outperforms
GCC-PHAT. We also show qualitative results over some of the recordings in the
dataset in Fig. 5.

6.4 Downstream Application

Since the main reason for studying TDE is its use in downstream applications, we
have evaluated our models on the task of self-calibration using the [30] dataset. In
self-calibration the goal is to estimate the 3D geometry of both the receivers and
senders using only the TDOA values as input, i.e. no prior position information.

To do this, we used the TDOA values acquired as input to a published self-
calibration system [17,30]. We then compare our estimated 3D positions with
the ground truth positions provided in the dataset. In order to be able to do
this comparison, we need to fix the gauge freedom in the solution, in this case
the solution and ground truth might differ by a Euclidean transformation. We
estimate this Euclidean transformation using the receiver positions of our solu-
tion compared to the ground truth receiver positions. This is similar to how to
evaluate maps found using Structure-from-Motion (SfM) or Simultaneous Local-
ization And Mapping (SLAM). After applying the Euclidean transformation to
the solution, the residuals are then computed as the distances between corre-
sponding receivers in the solution and ground truth.

As can be seen in Table 2, using the TDOA values from our learned mod-
els makes the self-calibration system converge to good solutions on all of the
experiments. This is a significant improvement compared to using GCC-PHAT
for which the system only manages to converge on some of the experiments and
even when it converges it has larger errors. An example of a 3D reconstruction
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Fig. 4. Quantitative results on the dataset tdoa 20201016 showing the probability of
correct detection at different inlier thresholds. We have marked the 10 cm threshold
which we use as our main evaluation metric

Table 2. RMS error of the receivers for the estimated 3D geometry after registration
to the ground truth. Estimation is done using TDOA values from SONNET or GCC-
PHAT. Experiments missing a value have an error larger than 1 m

Experiment SONNET (m) GCC-PHAT (m)

chirp 0001 0.05 0.80

chirp 0002 0.05 0.17

chirp 0004 0.05 0.40

iregchirp 0006 0.06 0.54

iregchirp 0007 0.04 0.59

music 0008 0.07 –

music 0009 0.06 –

music 0010 0.04 0.31

music 0011 0.05 –

music 0012 0.04 –

music 0013 0.03 0.35

music 0014 0.04 0.28

music 0015 0.04 0.10

metronom 0021 0.16 –

metronom 0022 0.10 –

median 0.05 0.59
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Fig. 5. Qualitative results of the estimated TDOA values on the dataset tdoa 20201016.
(a) and (c) correspond to the recording music 0014 while (b) and (d) correspond
to chirp 0001. The microphone paired used for all four plots are microphone 1 and
microphone 6. SONNET significantly outperforms GCC-PHAT when music is played
while also achieving a performance gain when chirp sounds are played

resulting from using the learned model together with the self-calibration system
can be seen in Fig. 6.

6.5 Ablation Studies

Earlier works which use simulated data to train models to solve TDE have
not been demonstrated to generalize to real world data. We claim that we can
achieve a good generalization to novel real world data by: scaling the dataset,
simulating sound source with movement and directionality. To show that these
three changes are helpful we have performed two ablation studies.

In the first ablation study we changed how the dataset was generated by
including or excluding the simulation augmentations: moving the sound source or
directionality of the sound source. For each of the four configuration we trained
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Fig. 6. Example of 3D reconstruction, on the experiment music 0014

a separate model in the same way as the full SONNET model. Each of the
models were then evaluated on tdoa 20201016 in the same way as in Sect. 6.3,
and the results are shown in Fig. 7a. As we can see, using learning based methods
on stationary omnidirectional data outperforms GCC-PHAT. However, we can
further improve the method by augmenting the simulation.

For the second ablation study, we trained models on different sizes of the
training dataset. The models were then evaluated on tdoa 20201016 in the same
way as in Sect. 6.3, the results are shown in Fig. 7b. As we can see, having a
large enough dataset is important for generalization and scaling up the dataset
might be a way to improve the model further.

7 Conclusions

As we have demonstrated in this paper, combining the ability to simulate data
with learning based methods is a promising direction for further studies. In this
paper we have shown that it is possible to improve on TDE, a key task when
performing audio based localization. However, using simulation together with
learning based methods is also a ripe area for further studies, since it enables
an approach to harder versions of the TDE problem. Such examples include
using multiple sound sources, multipath components of the sound, or utilizing
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Fig. 7. Results from the ablation studies. (a) Ablation study on the effect of intro-
ducing the simulation augmentations: sound source movement (m) and directionality
(d). Introducing sound source movement gives a larger performance gain. (b) Ablation
study on the effect of the size of the simulated training dataset, when model is evalu-
ated on the real data from Sect. 6.3. The size of the dataset is given in relative sizes to
the dataset SONNET was trained on

the information from more than two microphones at the same time. Since we can
simulate such data with ground truth, it might be possible to create detectors
for such problems. It is our belief that this paper is a key stepping stone for
further studies in the area.
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28. Zhayida, S., Andersson, F., Kuang, Y., Åström, K.: An automatic system for micro-
phone self-localization using ambient sound. In: 2014 22nd European Signal Pro-
cessing Conference (EUSIPCO). IEEE (2014)

29. Zhayida, S., Rex, S.S., Kuang, Y., Andersson, F., Åström, K.: An automatic sys-
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Abstract. In natural continuous speech, speakers articulate at both
Inspiratory Reserve Volume (IRV) and Expiratory Reserve Volume
(ERV), commonly referred to as high and low lung volumes respec-
tively. This paper aims to investigate whether glottal parameters of a
speaker portray the variations in their corresponding lung volumes dur-
ing vowel articulation. It also seeks to ascertain the extent to which each
parameter conveys this information. To capture these parameters, we
employ two Glottal Closure Instant (GCI) detection algorithms: Speech
Event Detection using the Residual Excitation And a Mean-based Signal
(SEDREAMS) and Single Frequency Filtering (SFF). These observations
are made while participants are engaged in continuous reading of a pho-
netically balanced paragraph over a span of 2–3 min. Our research delves
into examining how lung volume influences glottal parameters among
94 speakers as they articulate vowels with the first formant exceeding
700 Hz and the second formant below 2500 Hz. Among a vector of 24
glottal parameters, three consistently show higher values during vowel
articulation at high lung volume. Leveraging these three parameters, we
can accurately differentiate between high and low lung volume in vowel
articulation among 77% of the speakers.

Keywords: Glottal Patterns · Speech-Breathing Patterns · Acoustics
Patterns

1 Introduction

The process of speech production, particularly in vowel articulation, is closely
intertwined with respiration. Respiration entails a continuous cycle of inhalations
and exhalations. Inhalation entails the expansion of the lungs, while exhalation
involves their contraction. There are four recognised standard lung volumes: 1)
Tidal volume: This is the amount of air that enters the lungs during normal
breathing at rest. 2) Inspiratory Reserve Volume (IRV): This refers to the addi-
tional volume of air that can be inhaled beyond the normal tidal volume during
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maximum inspiration. 3) Expiratory Reserve Volume (ERV): This is the extra
volume of air that can be exhaled beyond the normal tidal volume during max-
imum expiration. 4) Residual Volume: This is the volume of air that remains in
the lungs even after maximal expiration when the smallest airways are closed.
In natural speech, individuals often seamlessly phonate during both high lung
volume (IRV) and low lung volume (ERV) phases. Figure 1 illustrates the time-
synchronised speech and breathing pattern of a speaker reading a phonetically
balanced text. As observed in the figure, the speaker pronounces vowels both at
inhalation peaks and during long exhalations. Inhalation peaks signify expanded
lungs with a high volume of air, while the exhalation phase denotes the contrac-
tion of the lungs to expel air, indicating a low volume of air. As the speaker
engages in speech production while reading, these phases exceed or fall short
of tidal volume capacity and are thus termed IRV and ERV respectively.

Fig. 1. The time-synchronised speech signal (above) and corresponding breathing pat-
tern (below) depict a speaker reading a phonetically balanced text. This illustrates that
the speaker utters vowels with both high and low breathing values, referring to high
and low lung volumes, respectively

As outlined in [12] and [7], speech-breathing represents a cognitive phenom-
ena. The natural manner in which individuals speak and breathe provides insight
into their approach to planning breathing during speech. This, in turn, reflects
underlying bio-psychological states such as emotions [6], confidence [3], detec-
tion of Parkinson’s disease [13] and pulmonary health. Therefore, it is crucial to
comprehend the effects of fluctuating lung volume during continuous speech on
vowel production.

1.1 Previous Work

Previous studies aimed to explore the effects of lung volumes typically involved
subjects speaking deliberately with both high and low lung volumes. This type of
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speech is termed “acted speech,” designed to simulate specific conditions, such
as varying lung volume levels. However, these conditions may not accurately
replicate those found in natural continuous speech, such as reading a paragraph
or engaging in conversation, which are common real-world scenarios.

In a study conducted by Hoit et al. in [8], subjects are asked to consciously
pronounce syllables during high and low lung volumes. It is reported that
the voice onset time is longer at high lung volumes. Similarly, Iwarsson et al.
report that the glottal adduction is shorter at higher lung volume in [10]. Fur-
ther to this in [9], Iwarsson et al. reported a higher sub-glottal pressure, lower
larynx, and higher closed quotient for higher lung volumes. Winkworth et al. in
[14] observed higher lung volume for louder phonation and for those pronounced
during sentence and paragraph boundaries. All these observations require a rep-
resentation technique using statistical measures validated empirically on a larger
population.

Below we highlight a comparison of earlier studies with ours with respect to
number of subjects, methodology for collecting and analysing speech, and the
parameters extracted:

1. Number of subjects: We have conducted our experiments on 94 subjects as
compared to 5, 5, 6, and 24 subjects based experimental results presented in
[8–10,14] respectively.

2. Speech Types: In our experiments, the speech data is collected while partici-
pants read a phonetically balanced paragraph, ensuring natural variations in
lung volume without any intentional alterations. In contrast, the studies by
[8,9], and [10] involved subjects intentionally producing speech with high and
low lung volumes, which does not reflect a natural setting.

3. Measurement Approach: Higher lung volume is identified by longer voice onset
time in [8] using hard-copy wide-band spectrograms. Iwarsson et al. In [10],
and [9] measured the parameters employing several sensors such as: thin plas-
tic tube based flow-mask, electroglottogram (EGG), and Glottal Enterprises
filter (inverse filter). In [14] Winkworth et al. performed manual inspection to
study the time-synchronous speech and respiratory signal. They paid special
attention to aligning the speech and respiratory signals on the screen, discard-
ing any data that did not meet the required alignment criteria. In contrast,
our approach proposes extracting these parameters using data from a single
sensor: speech.

4. Parameters : Voice onset time (VoT) is studied in [8] where a longer VoT
is observed at higher lung volume. In [10], and [9], decreased glottal clo-
sure duration, and an increase in the values of sub-glottal pressure, peak-
to-peak flow amplitude, and glottal leakage are observed at higher lung vol-
ume. Winkworth et al. observed higher lung volumes for louder phonation
at sentence and paragraph boundaries. Our analysis includes 24 parameters
extracted from speech signals using the corresponding glottal closure wave-
form. This set of parameters not only encompasses those from previous studies
but also includes additional statistical measures. Additionally, we identify the
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top three parameters that effectively differentiate between high and low lung
volumes from speech signals collected from 94 individuals.

2 Current Study

Fig. 2. The methodology employed to investigate the influence of lung volume on vowel
production, utilising glottal parameters for a speaker, consists of the following stages: 1)
vowel segment identification, 2) Determination of pairs of vowel segments pronounced
at high and low lung volumes, with minimal discrepancy in their F1, F2, and F3 values,
3) Extraction of glottal parameters for the identified pair, and 4) Analysis of prominent
disparities between the feature vectors

This paper aims to investigate the influence of lung volume on vowels produced
in continuous natural speech signals. To achieve this, data from a dataset com-
prising 100 individuals reading phonetically balanced text is utilised. During this
task, individuals engage in continuous speech for approximately 2–3 min while
reading the text. As illustrated in Fig. 2, it begins with the detection of vowel
segments from the speech. These segments are then processed to extract vector
of audio features and glottal parameters. Feature vectors obtained from vowels
pronounced at both high and low lung volumes are compared using subtraction
operation. Positive differences in these features indicate higher values for vowels
pronounced at high lung volumes. This analysis is conducted across all speakers
to assess consistency in the difference values of the feature vectors. This approach
helps identify prominent features that consistently exhibit higher or lower val-
ues in vowels pronounced at high lung volumes compared to those at low lung
volumes. Consequently, the main contributions of this paper lie in comparing
audio and glottal parameters for vowels pronounced at different lung volumes
and identifying prominent features affected consistently across all speakers.

2.1 Data Details

As explained in [4], we gathered simultaneous speech and breathing data from
a cohort of 100 healthy college students. Utilising ADInstruments’ Power-
Lab equipment, we recorded time-synchronised speech and respiratory signals
employing a microphone and respiratory transducer belt, respectively. Both
speech and breathing patterns are sampled at a rate of 40 kHz. Subsequently,
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speech data is down-sampled to 16 kHz, while breathing patterns to 50 Hz. The
breathing values are normalised to a range between −1 and 1 by dividing by
the maximum value. Breathing patterns encompass a series of time-varying sig-
nals corresponding to inhalation and exhalation phases. The time-span of high
breathing values signifies the period of high lung volume, while the span of low
breathing values denotes the phase of low lung volume. For further elaboration
on the study, additional details can be found in [4].

The captured metadata encompasses the instantaneous pulse rate, blood
pressure, height, weight, and a questionnaire consisting of six inquiries from the
State and Trait Anxiety Inventory, current mental state, smoking habits, and
any existing respiratory disorders or family history, with the aim of categorising
participants as physically and mentally healthy. All participants fall within the
18 to 23 age group, comprising 31 females and 69 males. Each individual typically
requires 2–3 min to read a phonetically balanced paragraph.

2.2 Data Processing

Fig. 3. The figure introduces naming conventions for the breathing values: the max-
imum and minimum breathing values are denoted as –breathmax– and –breathmin–
respectively. Values that are 10% lower than the maximum and 10% higher than the
minimum are termed –breathmod– and –breathmild– respectively

From the recorded speech signals, vowels are isolated using the Praat vocal
toolkit [2]. Vowels that meet the following conditions are selected for subsequent
analysis:
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1. As seen in Fig. 3, the maximum breathing value is identified as –breathmax–.
–Breathmod– represents the breathing value that is 10% below –breathmax–
. Vowels pronounced with breathing values ranging between –breathmod–
and –breathmax– are categorized as vowels articulated at high lung volume
(Vhigh).

2. The minimum breathing value is identified as –breathmin–. The breathing
value that is 10% below –breathmin– is represented as –breathmild–. Vow-
els pronounced with breathing values ranging between –breathmin– and –
breathmild– are labelled as vowels articulated at low lung volume (Vlow).
This is depicted in Fig. 3.

3. Vhigh and Vlow of a speaker with first formant frequency (F1) value surpass-
ing 700 Hz, and

4. Vhigh and Vlow of a speaker with second formant frequency (F2) value falling
below 2500 Hz.

5. A speaker may exhibit multiple instances of Vhigh and Vlow. The F1, F2
and the third formant frequency (F3) for the identified Vhigh and Vlow of a
speaker are determined. Then, the difference between F1 values (F1diff), F2
values (F2diff), and F3 values (F3diff) among the same speaker’s Vhigh and
Vlow is computed. This difference is referred to as the Formant difference
value (Fdiff). Finally, the pair of Vhigh and Vlow with the minimum Fdiff
are selected for further analysis. This ensures that we compare the Vhigh and
Vlow of a speaker having similar F1, F2, and F3 values. Similarity in formant
values indicates that the vowels being produced share similar tongue positions
or articulatory characteristics. Also, it suggests that the vowels have similar
acoustic properties in terms of their height and front-back tongue position.
This similarity often reflects similarities in vowel quality or perceived sound
quality.

It is important to highlight that if a speaker lacks instances of either Vhigh or
Vlow, the comparative analysis cannot be conducted for that speaker. Therefore,
such cases are excluded from the current study. Among the 100 speakers, 94
have pronounced vowels meeting all five criteria. The designations of high and
low lung volume serve as the ground truth for further speaker based analysis. Six
features are derived from the identified vowel segments utilising Praat software
[1]. The first three formants-F1, F2, and F3-reflect the resonant frequencies of
the vocal tract, while the remaining three features encompass pitch, intensity,
and duration.

2.3 Glottal Parameter Extraction

The segments acquired from vowel boundaries undergo processing to extract
GCIs and their corresponding features. We have investigated two algorithms,
SEDREAMS and SFF, for extracting GCIs from voiced speech.

SEDREAMS Algorithm: The Speech Event Detection using Residual Exci-
tation and Mean-based Signal (SEDREAMS) algorithm, presented in [5], is
designed for detecting GCIs and Glottal Open Instants (GOIs). Given our study’s
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emphasis on identifying GCIs, we will exclusively outline the steps for GCI detec-
tion. This algorithm comprises two primary steps: In the initial phase, a mean-
based signal is computed to identify the brief intervals where GCIs are antici-
pated. These intervals, as depicted in Eq. 1, are derived by applying a Blackman
window directly onto the original signal. This process is akin to convolving the
original signal with an FIR filter exhibiting a frequency response similar to that
of a low-pass filter.

y(n) =
1

2N + 1

N∑

m=−N

w(m)s(n + m), (1)

where w(m) is the window and s(n) is the original speech signal. The authors
suggest that the method’s reliability improves with the appropriate choice of
the window length, denoted as 2N + 1. Maximum reliability is achieved when
the window length is between 1.5 to 2 times the average pitch period of the
speaker under consideration. The signal y(n) obtained after applying the window
operation is termed the mean-based signal. Short intervals containing GCIs are
derived from the minima of the mean-based signal. These intervals span from
the minima to 0.35 times the local pitch period, where the pitch period is defined
as the duration between two consecutive minima of the mean-based signal.

During the second step, the GCI location is further refined by employing the
LP residual signal. By combining the intervals extracted from the mean-based
signal with the LP residual, peaks within the identified intervals are selected,
resulting in the determination of GCIs. This signal is termed the speech event
detection (SED) signal, which is obtained by merging the LP residual and the
GCI interval signal. The SED signal is used further for the extraction of glottal
parameters.

SFF Algorithm: The Single Frequency Filtering (SFF) technique for GCI and
GOI detection is presented in [11]. Given the primary focus of this paper on
GCI-based analysis, we will exclusively address the GCI aspect discussed in [11].
This method of GCI detection relies on variations in the spectral characteristics
throughout a glottal cycle. The algorithm consists of two stages: 1) SFF spectra
calculation, and 2) calculation of spectral flatness from SFF spectra. The speech
signal s[n], as shown in Eq. 2, undergoes a difference operation to eliminate low-
frequency variations:

x[n] = s[n] − s[n − 1]. (2)

The signal x[n], after differencing, undergoes multiplication by a complex
exponential to generate a frequency-shifted signal, as illustrated in the Eq. 3:

xk[n] = x[n]ejωkn (3)

ωk = π − ωk = π − 2πfk

fs
. (4)

xk[n] is the frequency shifted signal at any desired frequency k. This is further
filtered using a single pole filter as per Eq. 5:

yk[n] = −ryk[n − 1] + xk[n]. (5)
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To ensure filter stability, the r value is chosen to approximate 1. The ampli-
tude envelope of the filtered signal yk[n] is derived by taking the square root
of the squared sum of its real and imaginary components. These amplitude
envelopes are computed for all frequencies at intervals of Δf , set at 10 Hz as
recommended by the authors. The SFF spectrum exhibits flatter characteris-
tics around the instances of glottal closure. Although temporal smearing occurs
because of the Infinite Impulse Response (IIR) nature of the filter response,
the impact of the impulse-like excitation remains consistent at the correspond-
ing time points across all frequencies. The SFF spectra exhibit harmonics as a
result of the sequence of impulse-like excitation.

The spectral flatness measure derived from the SFF spectra accentuates the
impulse-like characteristics at the GCIs. Spectral flatness is computed by divid-
ing the geometric mean of the spectral values by the arithmetic mean. Elevated
spectral flatness signifies a uniform distribution of spectral values, which occurs
at the GCI positions. The spectral flatness calculated from the SFF spectra
offers a one-dimensional depiction of the excitation source features. The spec-
tral flatness contour gradually decreases between the GCIs due to the temporal
smearing of the SFF output. This SFF spectrum is further used for the extraction
of glottal parameters.

Fig. 4. The process for feature extraction involves three steps: 1) Extracting features
from the raw speech signal, 2) Extracting features from the GCI signal acquired through
the SFF algorithm, and 3) Extracting features from the GCI signal obtained with the
SEDREAMS algorithm. In total, 24 features are extracted using these three methods

Feature Extraction: Figure 4 depicts the procedure followed for the extraction
of speech and glottal features from the identified vowel segments. As explained in
Sect. 2.2, 6 features are calculated directly from the speech signals (F1, F2, F3,
pitch, intensity, and duration). Further, 11 features from the SFF spectrum, and
7 features from SED signal are extracted. The SED signal and SFF spectrum
are 1-dimensional signals obtained from the SEDREAMS and SFF algorithms,
respectively. All the 24 features extracted from the speech signal, SED signal,
and spectral flatness are as described below. It should be noted that the features
extracted from SED and SFF signals are referred to as glottal parameters.
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1. Audio based features: Formants (F1, F2, and F3), Pitch, Intensity, and Dura-
tion: The first three formants, pitch, intensity, and duration are calculated
directly from the speech signal using the Praat [1] software.

2. Number of peaks (SFF:Np and SED:Np): This is the count of peaks detected
in the SFF spectrum and SED signal.

3. Peak-maxima, -minima, and -average (SFF:PeakMax, SFF:PeakMin, and
SFF:PeakMean; SED:PeakMax, SED:PeakMin, and SED:PeakMean) : The
maximum, minimum, and average of the amplitudes of the peaks identified
in the SFF spectrum and SED signal.

4. Local pitch period-maxima, -minima, and -average (SFF: PitchMax, Pitch-
Min, and PitchMean) and (SED: PitchMax, PitchMin, and PitchMean): The
distance between two consecutive peaks (sample count) is the local pitch
period. The maximum, minimum, and the average of the local pitch period
is calculated for both SFF and SED.

5. Local pitch period amplitude-average, -maxima, and -minima (SFF:Pmean,
SFF:Pmax, and SFF:Pmin): These features are calculated only from the SFF
spectrum. They are the average, maximum, and minimum of the harmonics
appearing between two consecutive peaks.

6. Power spectral entropy (SFF:Entropy): This feature is also calculated only
from the SFF spectrum. It represents the entropy calculated for the regions
between consecutive peaks. Entropy is calculated following the Eq. 6:

Entropy = −
n∑

i=1

piln(pi), (6)

where n represents the number of samples in the SFF spectrum and pi is the
amplitude of the sample at index i.

3 Results

Figure 5 displays the GCIs extracted through the SEDREAM and SFF algo-
rithms for the speaker, designated with identity (ID) 6. Notably, the SFF signal
throughout exhibits higher amplitude values at elevated lung volumes. Elevated
values in the SFF spectra indicate greater spectral flatness, as discussed in Kadiri
et al. [11]. This observation suggests that Speaker ID 6 exhibits higher spectral
flatness during Vhigh compared to Vlow. The SED signal reveals more peaks,
indicating additional glottal closure instances during vowel pronunciation at high
lung volumes.

To assess the influence of lung volume on the glottal parameters extracted
from GCI signals of Vhigh and Vlow, we compare their respective feature vectors.
As detailed in Sect. ??, we extract 24 features from speech signals using Praat,
and from SED and SFF signals using their respective algorithms. Since vowel
segments are tagged with ground truth labels for high and low lung volume,
their feature vectors inherit this labelling. As depicted in Fig. 2, we compare the
feature vectors associated with high and low lung volume labels to analyse varia-
tions across the 24 feature values. We then calculate the difference feature vector
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Fig. 5. Glottal closure instants extracted using SEDREAMS and SFF algorithms.
(a) represents the SFF signals for the vowels pronounced at high and low lung vol-
umes extracted using SFF algorithm. (b) represents the SED signal extracted using
SEDREAMS algorithm for the same vowels articulated at high and low lung volume
by the same speaker. Further glottal parameters are extracted from these SFF and
SED signals

for all 94 speakers to examine the consistency of feature differences across the
entire dataset. The criterion employed to gauge the importance of a particular
feature is the count of speakers, out of the 94, for whom the disparity in feature
values between Vhigh and Vlow adheres to a discernible trend. The emphasis
here lies on whether the trend in feature value difference is positive or negative.

As illustrated in Fig. 6, the absolute values of speaker percentages displaying
elevated feature values for Vhigh is depicted. In our analysis, we find that speaker
counts falling between 40% and 60% do not carry remarkable weight, as they
closely resemble chance-level outcomes. This region is hence termed as plateau
region as seen in Fig. 6.

Out of six audio features, the three formant frequencies are utilised to
pinpoint suitable vowel segments that capture similar vowel articulation for
analysing variations in glottal parameters. For this reason, the three formant
frequencies are not compared and displayed in Fig. 6. While the speaker pitch
values, although not exceeding 60%, are observed to be higher during high lung
volumes for nearly 60% of the speakers. It is worth noting that intensity and
vowel duration do not show any discernible pattern for distinguishing between
Vhigh and Vlow among the speakers. Notably, there are no speaker counts below
40%, suggesting that no audio parameter values are lower for Vhigh when com-
pared to those of Vlow.
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Fig. 6. This illustration shows the percentage of speakers exhibiting a higher feature
value for high lung volume. Among the 94 speakers analysed, more than 60% speak-
ers display a higher value of the three features marked in the figure: SFF:Pmean,
SFF:Pmin, and SED:PeakMin

Among the 11 SFF features examined, SFF:Pmean shows elevated values for
Vhigh in 69% of the speakers. This percentage represents the highest occurrence
of a higher value for this glottal parameter in Vhigh instances, underscoring
its important role in distinguishing between Vhigh and Vlow for each speaker.
Additionally, SFF:Pmin remains elevated for over 60% of the speakers. Both
SFF:Pmean and SFF:Pmin illustrate that vowel pronunciation at higher lung
volumes elicits greater harmonics compared to those at lower lung volumes.

Out of the seven glottal parameters derived from the SED signal, the min-
imum amplitude values of peaks exhibit higher values in Vhigh for 68% of the
speakers. Although falling below the 60% threshold, the number of peaks identi-
fied with SED signals surpasses those for Vlow in approximately 60% of speakers.
Likewise, the average amplitude value of peaks identified in SED also exceeds for
Vhigh in about 60% of speakers. A higher value for SED:Np indicates more fre-
quent glottal closures during the pronunciation of vowels at higher lung volumes.
An interesting trend is observed with SED:PitchMax, which denotes the maxi-
mum distance between two consecutive peaks identified in the SED signal. This
is also referred to as maximum local pitch period. For 37% of speakers, this dis-
tance is higher in Vhigh instances, implying that 63% of speakers exhibit a low
maximum local pitch value for Vhigh compared to Vlow. This suggests that the
pitch, which is inversely related to the pitch period, does not decrease notably
for vowels pronounced at high lung volume.

When examining the top three performers-SFF:Pmean, SFF:Pmin, and
SED:PeakMin-it is noted that these three glottal parameters collectively enable
differentiation between Vhigh and Vlow for 77% of speakers.

4 Conclusion

In conclusion, glottal parameters offer insights into an individual’s lung vol-
ume during vowel pronunciation within continuous speech. Augmented with a
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broader array of features, they are poised to enhance classification performance
considerably. Building upon the findings of previous studies such as Hoit et al.
[8], Iwarsson et al. [9], and Winkworth et al. [14], we supplemented our empiri-
cal analysis of glottal parameters. Our findings suggested that higher harmonics
and increased instances of glottal closure are additional indicators of vowels pro-
nounced at higher lung volumes.
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Abstract. The dysarthric severity-level classification system serves as
a valuable diagnostic tool, which enables the assessment and monitoring
of the condition progression in patients, and a selection of appropriate
severity-specific models for recognizing dysarthric speech-an important
assistive technology. Determining the severity of dysarthria presents a
considerable challenge in clinical practice, given the heterogeneous nature
of speech impairments associated with this motor speech disorder. This
study investigates the application of Linear Frequency Residual Cepstral
Coefficients (LFRCC), which are derived from the excitation source infor-
mation captured via the Linear Prediction (LP) residual signal, for clas-
sification of dysarthria severity-levels. To our knowledge, this is the first
work to utilize LFRCC for this purpose. Experimental assessments were
conducted on two extensively employed datasets, namely, UA-Speech and
TORGO. Validation of the results was carried out using a Convolutional
Neural Network (CNN) with 5 -fold cross-validation and test accuracies
with MFCC, LFCC, and web-scale Supervised Pretraining for Speech
Recognition (WSPSR), also known as Whisper, encoder module as the
baseline features. Additionally, to ensure speaker-independence, Leave-
One-Speaker-Out (LOSO) experiments were conducted. Furthermore,
the robustness of LFRCC features against noise was explored, encom-
passing both stationary and non-stationary noises at varying Signal-to-
Noise Ratio (SNR)-levels. Lastly, comparative analysis of latency periods
with baseline feature sets suggests the potential applicability of LFRCC
in real-world scenarios for severity-level classification systems.

Keywords: Dysarthria Severity-Level Classification · Linear
Frequency Residual Cepstral Coefficients · Noise Robustness

1 Introduction

Dysarthria, a motor speech disorder characterized by impaired articulation,
phonation, and prosody, poses significant challenges in clinical assessment and
management due to its heterogeneous nature and varying severity-levels [1]. Sev-
eral speech disorders, such as apraxia, dysarthria, and stuttering, affect an indi-
vidual’s ability to generate speech sounds. Accurate classification of dysarthria
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severity is essential for guiding treatment planning and monitoring disease pro-
gression. Over the years, researchers have explored methodologies and feature
sets to improve the reliability of dysarthria severity classification. The severity-
level of the pathology speech can be identified using speech intelligibility, which
is affected by various factors, such as articulation rate, audibility, prosody, etc.
[2]. Hence, the severity of dysarthria can be identified by all these factors as
they are related to the intelligibility of speech. The subjective analysis of the
severity-level of dysarthria speech has proved to be exhaustive, expensive, and
time-consuming, which brings the need for automation of the severity-level clas-
sification. The automation of severity-level classification also helps towards the
betterment of automatic speech recognition (ASR) systems for dysarthric speech.

Early approaches focused on acoustic features derived from fundamental or
pitch frequency (F0), formant frequencies, and duration measures. However,
these traditional features often lack the sensitivity and specificity required for
precise severity classification, particularly in cases of subtle or nuanced speech
impairments. Previous studies have demonstrated the efficacy of cepstral-based
features for the classification of the severity-level of dysarthria, which captures
the characterstics of vocal tract system. In [3], the study shows that measures
obtained from fundamental or pitch frequency (F0) and the second formant fre-
quency (F2) are highly correlated with the intelligibility of dysarthric speech.
The Mel Frequency Cepstral Coefficients (MFCC) showed the ability for speech
pathology classification more so for dysarthric speech [4]. In [5], MFCCs are
encoded using a deep belief network and used for dysarthria classification using
Multi-Layer Perceptron (MLP). Furthermore, the combination of MFCC with
auditory features resulted in better results. Later, Linear Frequency Cepstral
Coefficients (LFCC) are used to observe the information captured through the
linear frequency scale. In [6], LFCC features are used to capture the speech intel-
ligibility of dysarthric speech. One promising approach involves the extraction
of cepstral features from the residual signal obtained through Linear Prediction
(LP) analysis. Linear Frequency Residual Cepstral Coefficients (LFRCC) cap-
ture fine spectral details and excitation source information. By leveraging the
LP residual signal, which represents the discrepancy between the actual speech
signal and its linear prediction, LFRCC offers a novel perspective on dysarthric
severity classification. This paper proposes application of LFRCC features, which
contains the information of excitation source of the speech production mecha-
nism, for the classification of dysarthria severity-level. Previously, the LFRCC
features are used for various applications, such as speaker recognition [7], spoof
detection [8], emotion recognition [9]. Furthermore, work represented in [10] indi-
cates the importance of excitation source information for dysarthric speech and
study reported in [11] indicated the importance of excitation information for
nasalized speech. To the best of our knowledge and belief, no prior research has
explored the potential of LFRCC features specifically for this task.

The rest of the paper is organized as follows: Sect. 2 represents a brief techni-
cal details about the proposed LFRCC feature extraction, whereas Sect. 3 gives
the details about the database used, classifiers used, and the baseline features
considered for this work. Section 4 consists of the motivation for the applica-
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tion of LFRCC features for dysarthric severity-level classification task. Section 5
contains the experimental results and the work is concluded with results and
conclusion along with potential future research direction.

2 Linear Frequency Residual Cesptral Coefficients
(LFRCC)

Historically, the original idea of linear predictions is adopted from control and
system identification literature to speech coding application [12]. Traditionally,
in the framework of linear time-invariant (LTI) assumption, LP analysis is used
to separate excitation source and vocal tract system information responsible for
speech production. In LP analysis, each sample of a speech signal is represented
by a linear combination of past “p” speech samples. The parameter “p” is called
the order of linear prediction. The linear combination of the past speech samples
are associated with weight parameter, which are called as Linear Prediction
Coefficients (LPC). The predicted speech sample x̂(n), given the current speech
sample x(n) given by:

x̂(n) = −
p∑

k=1

fkx(n− k), (1)

where fk are the weights or LPC assigned for each of the previous speech samples.
The difference between the original speech sample, x(n) and predicted speech
sample, x̂(n) is termed as LP residual signal, r(n). In particular,:

r(n) = x(n) − x̂(n) = x(n) +
p∑

k=1

fkx(n− k). (2)

Furthermore, an all-pole filtering is applied to the speech signal with LP analysis:

F (z) = 1 +
p∑

k=1

fkz
−k, (3)

H(z) =
G

1 +
∑p

k=1 fkz
−k

, (4)

where F(z) denotes an inverse filter associated with the all-pole LP filter, H(z).
This system function is associated with the vocal tract system information, and
the variable G is the gain term in LP model. In general, the system informa-
tion is combined with excitation source information and ideally, the LP residual
spectrum effectively captures the excitation source information by filtering out
the system-related information. In particular, the peaks and valleys of the LP
residual spectrum indicate the Glottal Closure Instant (GCI) and Glottal Open
Instant (GOI), respectively, during the speech production mechanism [13]. The
excitation source information is approximated either by a quasi-periodic train of
impulses for voiced and noisy for unvoiced speech signal and a combination of
both for voiced fricatives [10].
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Furthermore, the LP residual is processed in the cepstral-domain using a
linear filterbank to extract proposed LFRCC (as shown in Fig. 1) for the task
of dysarthria severity classification because the linearity in the speech increases
with the severity of the dysarthria [14]. The features are extracted using a pre-
emphasis (high pass) filter with system function [1-0.97 z−1] followed by a win-
dow duration of 25 ms and an overlap of 15 ms. We used 40 linearly-spaced
subband filters followed by the logarithm of the filterbank output. Finally, Dis-
crete Cosine Transform (DCT) is applied to obtain 20 -D LFRCC features. DCT
is used for feature decorrelation, energy compaction, and dimensionality reduc-
tion.

Fig. 1. Functional block diagram of proposed LFRCC extraction for dysarthic severity-
level classification. After [8].

3 Experimental Setup

3.1 Dataset Used

In this work, two well-known dysarthria speech corpora, namely, the Universal
Access Dysarthria Speech Corpus (UA-Speech) [15] and TORGO [16] are used,
whose statistics are summarized in Table 1. Both corpora are primarily of the
spastic dysarthric type, which is characterized by several factors, such as breath-
iness, hypernasality, harsh voice, and incorrect articulation that causes unintel-
ligible speech. For UA-Speech corpus, 8 speakers (4 males, namely, M01, M05,
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M07, and M09, and 4 females, namely, F02, F03, F04, and F05) is considered.
From 735 utterances, 465 utterances per speaker as mentioned in [17] were used.
The TORGO corpus consists of 1982 samples with 671 samples belonging to very
low severity, 627 samples belonging to low severity, and 684 samples for medium
severity. For both corpora, 80% of the data is used for training, and 20% is used
for testing. The train-test split is performed in a manner such that both the
splits consists of words, non-words, and sentences. The experiments conducted
involve a 5 -fold cross-validation (CV), where the training split is exclusively used
for performance evaluation to understand the model’s robustness and has some
speaker robustness (or independence). The classifier is further tested on the sep-
arate test split, ultimately leading to enhanced generalization capabilities and
possible speaker independence. Further in order to ensure speaker-independency
of the proposed system, we performed leave one speaker out (LOSO) on both
corpora.

Table 1. Class-wise patient details for UA-Speech and TORGO. After [15,16].

Severity Level UA-Speech Dysarthria Type TORGO Dysarthria Type

Very Low (VL) F05, M09 Spastic F04, M03 Spastic

Low (L) F04, M05 Mixed, Spastic F01, M05 Spastic

Medium (M) F02, M07 Spastic M01, M04 Spastic

High (H) F03, M01 Spastic – –

3.2 Classifier Used

The experiments were performed using Convolutional Neural Network (CNN)
classifier. The work uses CNN as a classifier because of its ability to maintain
translation invariant, and it can effectively capture relevant spectro-temporal
patterns and variations of speech signals. Table 2 reports a detailed description
of CNN architecture. The model is trained using stratified 5-fold cross validation
(CV) strategy with a seed value and a train and validation split of 80% and 20%
using adam optimizer, categorical cross-entropy as a loss function, and accuracy
as the evaluation metric. The stratified method ensures the distribution of data
in each fold to be similar to the distribution of the entire data. The algorithm
was tuned using grid search to select the best learning rate, and the batch size
for 80 epochs. Two activation functions are used, namely, ReLU and softmax.
A ReLU is used in order to improve the learning speed while reducing the
computational cost, and the softmax activation is used at the final layer for
multiclass classification. A normalization layer is added along with a dropout
layer after each convolutional layer in order to avoid the overfitting of CNN
model. The fine-tuning of resulted in a learning rate, batch size, and epochs as
0.01, 128, and 70, respectively. The networks were implemented using the python
library Keras v.2.24 using TensorFlow-GPU v.1.14.0 backend. The experiments
are performed using GeForce GTX 1660 Ti graphic card.
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3.3 Baseline Features

MFCC and LFCC features are considered as the baseline for this work. For a
fair comparison, 20 -D feature vectors were extracted using a 25 ms and a hop
length of 10 ms using Librosa toolkit for all the feature sets used for this study.
Additionally, whisper tiny model [18], as part of the whisper suite of models is
selected as state-of-the-art baseline. Tiny model represents the smallest variant
with relatively fewer trainable parameters and layers compared to its counter-
parts. With 4 layers, a width of 384, and 6 attention heads, the whisper tiny
model provides a compact yet efficient solution for various speech-related tasks.
The fixed-dimensional vectors obtained from the encoder module are of size 1 ×
1500 × 384, capturing temporal values of the input audio signal. Table 1 illus-
trates the specifications of whisper models, showcasing the different dimensions
and complexities associated with varying model sizes [18] (Table 3).

Table 2. CNN Architecture

Output Size Description

(20,2000,1) LFRCC

(20,2000,16) convolution layer, 16 filters, BN, relu

(10,1000,16) max-pooling, (2,2), dropout (0.25)

(10,1000,32) convolution layer, 32 filters, BN, relu

(5,500,32) max-pooling, (2,2), dropout (0.25)

(5,500,64) convolution layer, 64 filters, BN, relu

(2,250,64) max-pooling, (2,2), dropout (0.25)

(2,250,128) convolution layer, 128 filters, BN, relu

(1,125,128) max-pooling, (2,2), dropout (0.25)

(1,125,256) convolution layer, 256 filters, BN, relu

(1,125,256) dropout (0.25)

128 dense layer, ReLu

64 dense layer, ReLu

16 dense layer, ReLu

4 dense, softmax

Table 3. Parameter details of baseline features used.

Parameters Whisper (Tiny) MFCC LFCC

Freq. Scale – Mel Scale Linear Scale

Feat. Dimension 1 × 1500 × 512 20 20
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4 Spectrographic Analysis

From Fig. 2, it can be observed that as the LP order increases, the noise content
in the residual signal increases along with unwanted peaks and valleys at non-
Glottal Closure Instance (GCI) and non-Glottal Open Instance (GOI) locations.

Fig. 2. Spectrogram of LP residual for (a) p = 4, (b) p = 10, (c) p = 18. Panel-A and
Panel-B shows very low and high severity dysarthric signal, respectively.

For further analysis of residual signal for various severity-levels of dysarthria,
vowels are selected because of their role in the speech production and their
importance in estimating speech intelligibility [19]. In particular, vowels being
typically longer carry prosodic components, such as rhythm and intonations
(pp.96, Chap. 3, [20]). Vowels are generated by the quasi-periodic vibration of
vocal folds in the larynx, which results in quasi-periodic sound waves. The shape
of the vocal tract system results in distinct vowel sounds. Vowel Onset Point
(VOP) marks the beginning of a vowel within a speech utterance. Since vowels
are the major energy carriers in a speech signal, analyzing the VOP energy
helps us understand how the source signal is affected for a dysarthric speaker.
The time-varying changes in a speech signal are captured in the residual signal,
however are smeared due to the peaks and valleys in the residual. In order to
highlight these changes, the Hilbert envelope of the residual is considered [21].
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From the Hilbert envelope of residual signal, for normal voiced speech segment,
the signal consists of impulse-like excitation peaks at GCI locations. However,
for a speaker with dysarthria, the residual signal becomes noisier due to the
harshness introduced in the speech signal, resulting in random/unwanted peaks.
This is because, the dysarthric speech (spastic dysarthria in particular) often
consists of excessive nasalization. The residual signal for voiced speech segments
is related with the glottal pulses and reflect strong impulse-like excitation peaks.
However, since the spastic dysarthria speech is highly influenced by nasalization,
the residual signal shows peaks at random instances instead of glottal excitation
location as can be seen in Fig. 3.

Fig. 3. Speech signal, Hilbert envelope of LP residual, and smoothened Hilbert envelope
of LP residual of the word “November” for (a) normal speaker, (b) very low, (c) low,
and (d) medium severity-level dysarthria speaker, where X-axis is time and Y-axis
represents pitch (F0) intensity.

Furthermore, to capture the VOP, the Hilbert envelope is smoothened by
convolving the signal with a Hamming window of 50 ms duration [22]. This
smoothened signal helps us to locate the VOP regions easily as compared to
the Hilbert envelope. From Fig. 3, it can be observed that the energy content at
the VOP region is lower for a dysarthria speaker when compared with a normal
speaker. Additionally, it can be observed that the VOP peaks are merged for a
dysarthria speaker, and unwanted peaks starts to occur as the severity increases.
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5 Experimental Results

This section evaluates proposed LFRCC feature set w.r.t. several evaluation
factors, such as fine-tuning of LP order, comparison with existing speech features
(such as MFCC and LFCC), robustness under signal degradation conditions, and
analysis of latency period.

5.1 Effect of LP Order

In this experiment, we determine the optimal LP order (p) by exploring values
ranging from 4 to 18 with a step size of 2, considering a sampling frequency of
16 kHz. The evaluation employs a CNN classifier with 5 -Fold cross-validation.
An LP order of 10 achieves the highest fold (test) accuracy of 92.01 (94.91)
and 91.43 (94.20) for UA-Speech and TORGO, respectively. Analysis from
Fig. 4 reveals that higher values of p result in decreased classification accuracy
compared to lower LP order.

This is likely due to the noisy nature of dysarthria speech, where higher order
LP models tend to capture more noise components as the higher order has a ten-
dency to capture finer spectral information, which can be observed from Fig. 5.
Furthermore, given the reduced articulatory precision in dysarthric speech, lower
order LP models may adequately capture severity-specific information.

Fig. 4. Fine-Tuning of Order (P) for LFRCC on UA-Speech and TORGO.
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Fig. 5. (a) Speech signal of the word “November” for very low severity dysarthric
speaker and its residual with LP order (b) p = 8, (c) p = 10, (d) p = 14, and (e) p =
18.

5.2 Comparison with Baseline Spectral Features

Table 4 shows the relative comparison of LFRCC feature set along with baseline
spectral features, such as MFCC, LFCC, and state-of-the-art whisper model-
based features using CNN classifier.

For both datasets, LFCC outperforms MFCC features, indicating the effec-
tiveness of linear frequency scale for the task of dysarthria severity classification.

Table 4. Fold, Test, Precision (P), Recall (R), and F1-Score for various features using
CNN classifier on UA-Speech and TORGO.

Data Feature Set Fold Acc. Test Acc. Precision Recall F1-Score

UA-Speech MFCC 87.29 90.68 91.52 90.21 90.86

LFCC 91.50 92.93 93.61 92.41 92.68

Whisper (Tiny) 92.01 94.80 93.28 92.44 92.51

LFRCC 92.01 94.91 95.06 94.85 94.83

TORGO MFCC 85.71 88.62 89.40 88.64 89.01

LFCC 90.58 91.82 91.51 91.02 91.26

Whisper (Tiny) 90.97 94.10 93.47 94.00 94.00

LFRCC 91.43 94.20 93.96 94.19 94.07
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LFRCC outperforms both MFCC and LFCC baseline features by a fold (test)
accuracy margin of 4.72% (4.23%), 0.51% (1.98%) for UA-Speech, and 5.72 %
(2.81%), 5.58% (2.38%) for TORGO. Furthermore, state-of-the-art Web-scale
Supervised Pretraining for Speech Recognition (WSPSR), also known as Whis-
per encoder module is used as a baseline for dysarthria severity level classification
task. The proposed LFRCC features perform on par for UA-Speech and outper-
forms by fold (test) accuracy of 0.46% (0.2%) for TORGO, when compared
with whisper model, which is an advance machine learning model that is trained
using labelled data of 680,000 h. Table 5 indicate the classwise precision, recall,
and F1-Score of LFRCC with p = 10 for UA-Speech and TORGO database. We
notice the balanced F1-score across all the severity-levels reflects the model’s
robustness and consistency in classification performance.

Table 5. Class-wise precision (P), recall (R), and F1 score for UA-Speech and TORGO.

Data Class Precision Recall F1-Score

UA VL 94 93 93

L 88 99 94

M 100 94 97

H 98 93 96

TORGO VL 99 89 94

L 92 95 94

M 93 98 95

Due to computational limitations, further experiments are compared against
MFCC and LFCC baseline features.

Additionally, Leave-One-Speaker-Out (LOSO) strategy was employed to
evaluate the model’s performance across different speakers. For UA-Speech, a
total of 8 speakers were considered, while 6 speakers were utilized for the TORGO
corpus (Table 6).

Table 6. LOSO Based Speaker-Independent Results

Data Features Accuracy Precision Recall

UA-Speech MFCC 31.55 23.89 33.33

LFCC 32.90 20.77 36.90

LFRCC 41.37 30.56 44.71

TORGO MFCC 24.70 17.70 36.90

LFCC 20.41 16.40 33.31

LFRCC 40.10 31.59 39.72
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This analysis was performed to investigate whether the classification model
could generalize well to unseen speakers and thus, verifying its speaker indepen-
dence. The results demonstrate that the LFRCC feature set outperforms both
MFCC and LFCC features by a significant margin. Specifically, for the UA-
Speech corpus, LFRCC features yield an improvement of 9.82% over MFCC and
8.47% over LFCC. Similarly, for the TORGO corpus, LFRCC features exhibit
superiority with enhancements of 15.4% over MFCC and 19.69% over LFCC.
The observed superior performance of LFRCC feature set over the baseline fea-
tures suggests that the utilization of a lower LP order may contribute to captur-
ing dysarthria-specific characteristics. This result may indicate that the lower
LP order helps to capture dysarthria-specific information rather than speaker-
specific characteristics. Furthermore, the LOSO experimentation highlights the
robustness of the classification model across different speakers, underscoring the
effectiveness of the LFRCC feature set in capturing generalizable dysarthric
severity-specific acoustic cues while ignoring individual speaker-specific varia-
tions.

5.3 Noise Robustness of LFRCC

In order to test the practical applicability of the proposed LFRCC feature set,
the robustness of LFRCC is analyzed using additive stationary (white) and non-
stationary (babble) noises at different Signal-to-Noise Ratio (SNR) levels. From
Table 7, it can be observed that the proposed LFRCC features outperforms the
baseline (MFCC and LFCC) features for regions with higher noise energy, i.e.,
(at SNR –10 dB and –5 dB). Moreover, as illustrated in Fig. 6, the integrity
of the excitation source characteristics within the residual signal remains intact
even in the presence of –10 dB babble noise, as evidenced by the clear presence
of Voice Onset Time (VOT) regions under noisy conditions.

Table 7. Accuracy for stationary and non-stationary noise types across various SNR
levels using CNN classifier on UA-Speech.

Noise Feature Set SNR (dB) Level

–10 –5 0 5 10

White MFCC 83.94 87 90.12 90.25 90.45

LFCC 83.19 86.15 90.81 91.24 92.79

LFRCC 90.52 92.37 93.91 94.07 95.02

Street MFCC 83.92 84.91 91.66 93.92 94.42

LFCC 81 81.04 91.79 92.14 94.62

LFRCC 89.40 90 90.67 93.36 95.62

Furthermore, LP residual captures information about glottal activity by
shooting a peak (positive peak for glottal closure instant and negative peak
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for glottal open instant). Thus, the LP residual profile preserves the sequence
of impulse-like excitation to vocal tract system. Moreover, the SNR is higher at
open and closure instances and these regions are supposed to be more immune
to noisy conditions [23]. Further, LFRCC represents the cepstral information
extracted from LP residual in various sub-bands. On the other hand, MFCCs
are known to be notoriously affected by noise due to its poor spectral represen-
tation at higher frequencies. Thus, it is the sequence of impulses that is initially
captured by LP residual, which is generally occupied by noise energy, and thus,
justifying noise robustness of proposed LFRCC feature set and then its Fourier
transform (which is also expected to be sequence of impulses in the frequency
domain) helps to maintain relatively better speech intelligibility under noisy
conditions.

Fig. 6. (a), (b) represents clean speech and its smoothened Hilbert envelope, and (c),
(d) represents speech signal with –10 dB babble noise, and its smoothened Hilbert
envelope of the word “November” for very low severity-level

5.4 Analysis of Latency Period

The analysis of latency period helps us understand the minimum number of
speech frames required to achieve maximum classification accuracy. This indi-
cates the responsiveness of the proposed features. From Fig. 7, it can be observed
that LFRCC achieves maximum accuracy with 750 ms (30 frames) of the input
signal, and outperforms the baseline MFCC and LFCC features.
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Fig. 7. Latency Period Analysis for MFCC, LFCC, and LFRCC features on UA-
Speech.

6 Summary and Conclusions

The study proposed using LP residual-based LFRCC features for dysarthric
severity-level classification task employing two widely recognized dysarthria
speech corpora: the UA-Speech and TORGO. Through several experiments,
we uncovered several key insights that showcase the utility of LFRCC features
in dysarthria severity classification. Our exploration of the optimal LP order
revealed that an order of 10 yielded the highest accuracy, maintaining a bal-
ance between capturing spectral information and minimizing noise interference.
Notably, higher LP orders exhibited a tendency to incorporate more noise com-
ponents, leading to poor classification accuracy, showcasing the importance of
selecting the LP order for relatively accurate severity-level classification.

Comparative analysis against baseline features, namely, MFCC and LFCC,
unveiled the superiority of LFRCC features in dysarthria severity-level classifi-
cation. These findings were particularly significant as LFRCC features demon-
strated comparable performance to state-of-the-art whisper model features, indi-
cating their effectiveness in capturing dysarthria-specific characteristics. More-
over, the robustness of LFRCC features to noise emerged as a notable advan-
tage, as they outperformed MFCC and LFCC features under both stationary
and non-stationary noise conditions. Even at lower SNR, LFRCC features main-
tained high accuracy, preserving the integrity of excitation source characteristics
within the residual, and thus, showcasing their suitability for real-world appli-
cations, where noise may be prevalent.
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Further analysis of the latency period revealed the responsiveness of LFRCC
features, achieving maximum accuracy with a relatively short input signal dura-
tion of 750 ms (equivalent to 30 frames). This responsiveness surpassed that
of MFCC and LFCC features, highlighting the agility of LFRCC features in
dysarthria severity-level classification tasks. In conclusion, the comprehensive
evaluation of LFRCC features across multiple dimensions-LP order optimiza-
tion, comparative analysis against baseline features, robustness to noise, and
latency period analysis-underscored their efficacy and versatility in dysarthria
severity-level classification. This work can further extended by feeding the resid-
ual based information to existing state-of-the-art deep learning models such as
wav2vec 2.0, whisper model.
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Abstract. Existing symbolic music generation methods usually utilize
discriminator to improve the quality of generated music via global per-
ception of music. However, considering the complexity of information
in music, such as rhythm and melody, a single discriminator cannot
fully reflect the differences in these two primary dimensions of music.
In this work, we propose to decouple the melody and rhythm from
music, and design corresponding fine-grained discriminators to tackle
the aforementioned issues. Specifically, equipped with a pitch augmen-
tation strategy, the melody discriminator discerns the melody variations
presented by the generated samples. By contrast, the rhythm discrimi-
nator, enhanced with bar-level relative positional encoding, focuses on
the velocity of generated notes. Such a design allows the generator to
be more explicitly aware of which aspects should be adjusted in the gen-
erated music, making it easier to mimic human-composed music. Exper-
imental results on the POP909 benchmark demonstrate the favorable
performance of the proposed method compared to several state-of-the-
art methods in terms of both objective and subjective metrics. The source
code and more demos are available at https://github.com/ZZDoog/fine-
grained-music-discriminators.

1 Introduction

Due to the high-level representation of music based on Musical Instrument Dig-
ital Interface (MIDI) and its variants, symbolic music generation models do not
need to learn how to create the sounds of various instruments so that they can
focus more on the music itself [4,14,21]. Since the high-level discrete tokens of
music are similar to words of text, transformer-based models have been widely
applied in symbolic music generation, and towards the goal of generating high-
quality music in recent years [2,3,10–12,17,18,22,25,27,31,33]. Most symbolic
music generation models are trained to maximize the likelihood of observed
sequences. These methods can learn the patterns of discrete token sequences
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Fig. 1. (a) Main structure of conventional GAN-based method with coarse-grained
global discriminator. (b) The structure of proposed fine-grained discriminators archi-
tecture.

and ensure statistical consistency, but they may suffer from noticeable quality
degradation when generating complex music sequences due to exposure bias [20].

Some studies [6,20,32] have attempted to address the aforementioned issues
by introducing adversarial loss [8]. They enhance the generative model by utiliz-
ing the feedback from the discriminator based on the discriminator’s discernment
on generated and real music. Despite the progress, their discriminators cannot
explicitly reflect the defects in terms of two important music properties: melody
and rhythm, due to the lack of corresponding designs. According to music per-
ception theory, melody and rhythm are two primary dimensions of music [7].
They respectively represent the arrangement of musical pitches in a particular
order and the progression patterns of notes, which constitute the core of music
composition [13]. Well-sounding music should feature a stable melody with rich
variation, supported by a rhythmic framework that maintains smooth and var-
ied progressions [7]. Lacking an effective targeted model, the quality of music
generated by existing methods is limited.

To address the above problems, we propose a novel architecture with fine-
grained discriminators for symbolic music generation, as shown in Fig. 1. Aim-
ing to provide fine-grained adversarial feedback to the generator, we first design
a decoupling module to well disentangle the melody and rhythm information
from music. Specifically, we mask all the note velocity and note pitch tokens
with the same token [Mask] in the sequence respectfully to extract melody
and rhythm information from the original music sequence. After decoupling,
we design the corresponding fine-grained melody and rhythm discriminator for
the generator. To discriminate whether the melodies of generated music closely
resemble real data, a pitch augmentation strategy is used in the melody discrim-
inator to reduce the impact of the absolute pitch. Correspondingly, we design
a fine-grained rhythm discriminator elaborately. By devising a bar-level relative
positional encoding to enhance the discriminator to better capture the rhythm
pattern within the local structure.
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The contributions of this paper are summarized below:

• We propose a fine-grained discriminators architecture for melody and rhythm
respectfully in symbolic music generation domain, which is more aligned with
music perception theories.

• We design a melody-rhythm decoupling module for symbolic music and incor-
porate pitch enhancement strategies and bar-level relative position encoding
to enhance the corresponding fine-grained discriminators, providing elaborate
feedback to the generator.

• Extensive experiments show the favorable performance of our method in
terms of both objective metrics and subjective listening tests. More gener-
ated examples are available at materials.

Fig. 2. Main framework of the proposed symbolic music generation model, consists
of three main components: a music generator and two fine-grained discriminators—
rhythm discriminator and melody discriminator.

2 Methodology

The proposed model consists of an auto-regressive symbolic music generator and
two fine-grained discriminators as shown in Fig. 2. First, the generator takes a
representative condition music sequence c as the input, and attempts to gener-
ate whole music sequence align with the condition. Then, during the generator
optimization, the fine-grained melody and rhythm discriminators provide more
precise feedback to the generator by decoupling and analyzing the output of the
generator. Simultaneously, the fine-grained discriminators continually enhance
their discriminatory abilities relying on samples generated by the evolving gen-
erator to provide further feedback to the generator. The value function of the
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generator and fine-grained melody and rhythm discriminators are defined as
follows:

min
Gθ

max
Dm,Dr

V = {E[logDm(sr)] + E[logDr(sr)]

+ E[log(1 − Dm(Gθ(c)))] + E[log(1 − Dr(Gθ(c)))]},
(1)

where the G, Dm, and Dr denote the generator, melody discriminator, and
rhythm discriminator respectively. θ and sr denote the parameter of the gener-
ator and real sample from the dataset respectively.

2.1 Generator

We adopt the seq2seq symbolic music generation transformer model [23] as our
generator. It takes condition music sequence as input and generates a complete
and harmonious music composition that aligns with the input. The condition
music sequence is the thematic material of each music composition, implies the
main idea of the whole composition, retrieved from the complete music by clus-
tering algorithm [23]. The overall loss function of the generator as follows:

LG = LNLL + α · Ladv Melody + β · Ladv Rhythm, (2)

LNLL =
N∑

n=1

−logP (xn|θ, x1:n−1, c), (3)

where the α and β are pre-defined hyper-parameters. Details of the two adversar-
ial losses are in the following sections. Note that our fine-grained discriminators
architecture applies equally to other state-of-the-art music generation methods.

2.2 Melody Discriminator with Pitch Augmentation Strategy

Melody is one of the primary properties of music. It provides a tuneful and rec-
ognizable musical line that serves as a focal point for listeners. The arrangement
of pitches in a particular order and duration forms the melody [19]. Traditional
NLL-trained models perform poorly in generating long and harmonious melodies
due to the lack of specific guidance. To deal with this issue, we propose a melody
discriminator with a pitch augmentation strategy to facilitate the discrimination
of the melody in generated music.

First, we decouple the melody information from symbolic music by replac-
ing all the [Note-Velocity] tokens with the [mask] token. Then, to enhance
our melody discriminator, we augment the original data via uniformly raising
or decreasing the absolute pitch of all original notes to simulate the melody in
different voice parts, as shown in Fig. 2 top right. All these decoupled melody
data are fed into the melody discriminator which uses an encoder-only trans-
former with a multi-head self-attention mechanism as backbone [26]. During the
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adversarial training process, the adversarial loss from the melody discriminator
and back-propagation gradients to the melody discriminator are formulated as:

Ladv Melody =
1
N

N∑

i=1

[log(1 − Dm(Gθ(c(i))))],

∇θm

1
N

N∑

i=1

[log(D(s(i)r ) + log(1 − Dm(Gθ(c(i))))],

(4)

where θm denotes the parameter of melody discriminator, s
(i)
r and c

(i)
r denote as

i-th ground truth and conditional input.

2.3 Rhythm Discriminator with Bar-Level Relative Positional
Encoding

Fig. 3. Illustration of the proposed bar-level relative positional encoding (RPE). The
relative position accumulates from the previous [Bar] token to the next [Bar] token,
implemented by learnable embedding, and then added to the token embedding with
the vanilla positional embedding.

In addition to melody, rhythm is another crucial property of music, as it
reflects the progression of notes and variations in velocity, governing the dynam-
ics of music [9]. To improve the quality in terms of rhythm, we design a fine-
grained rhythm discriminator.

To facilitate the discriminator to focus on rhythms instead of other music
elements, we decouple rhythm information from the music by replacing the
[Note-On-Pitch] token with the [Mask] token. Apart from that, we observe
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that the symbol “bar” plays a fundamental role in organizing and structur-
ing music, which therefore can help establish the rhythmic framework of the
music [16]. Based on this observation, we introduce a bar-level relative posi-
tional encoding as shown in Fig. 3. It accumulates position starting from the
beginning of each bar and resets at the beginning of the next bar, i.e., from
[Bar] token to next [Bar] token, embeds the bar-level relative position infor-
mation into the decoupled music rhythm sequence. Like other relative position
embedding implementations, our bar-level position embedding is also learnable.
The general position encoding of a symbolic music token, e.g., t-th in the whole
sequence and x-th within the current bar, is defined as follows:

At,x = cos/sin(t/10002i/d) + WBRPE [δ(x, 1), δ(x, 2), . . . ], (5)

where the first part is traditional sine and cosine position encoding in the Trans-
former, the WBRPE is a learnable matrix, and δ(·) is dirichlet function. The
rhythm discriminator shares similar back-propagation and adversarial loss to
the generator as the melody discriminator in Eq. (4).

3 Experiments

3.1 Experimental Setting

Dataset and Preprocess. We employ the POP909 dataset [28] for performance
evaluation. There are three separate tracks in each arrangement in the dataset:
MELODY, BRIDGE and PIANO. To encode a MIDI file into a sequence of
discrete tokens, we adopt the REMI-like [12] encoding method. In detail, we
use metric-related tokens [Bar], [Tempo], [Position] and note-related tokens
[Note-On-Pitch], [Note-Duration] and [Note-Velocity] to represent music,
as shown in the generator part of Fig. 2. For fair comparisons, we retrain all the
baseline models using the same data as ours, and reserve 4% of them only for
evaluation where all models take the same music piece as the condition or the
prefix sequence.

Implementation Details. The proposed melody and rhythm discriminators
use a 6-layer encoder-only Transformer as the backbone. Both of them have 8
heads for multi-head attention, 256 hidden dimensions, 1,024-dim feed-forward
layers, and ReLU as the activation function. In the first stage, we pre-train the
generator along with all baseline models using Adam optimizer (β1 = 0.9 and
β2 = 0.99) [15] until the training NLL loss model below 0.55. Afterward, we pre-
train the melody and rhythm discriminator using the dataset and the output of
the trained generator for 120 epochs. During adversarial training, both α and
β are set to 0.15, and using the same optimizer in the first stage to train the
generator for 100 epochs.

Baselines. 1) GT [28]: the above-mentioned 4% of the dataset which is
not included in the training set or validation set. 2) Music Transformer
(MT) [11]: pioneer algorithm that successfully applied the transformer model to
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the domain of symbolic music generation. 3) Theme Transformer (TT) [23]:
a theme-conditioned music generation model optimized by NLL loss only. 4)
Anticipatory Music Transformer (AMT) [24]: the current state-of-art
model for piano music generation based on transformer. 5) WGAN [32]: music
generation model that utilizes a conventional global discriminator which will
primarily serve to validate the effectiveness of our proposed fine-grained dis-
criminator approach. 6,7) Ours (wRo) & Ours (wMo): our model uses only
rhythm discriminator or melody discriminator in the adversarial training. 8)
Ours: the complete fine-grained discriminator model.

3.2 Objective Evaluation

Evaluation Metrics. We employ various metrics to demonstrate the compre-
hensive performance of the models. First, following [5,29], we adopt 1) pitch
class entropy, 2) scale consistency, and 3) groove consistency to evaluate
entropy of the normalized note pitch class histogram, largest pitch-in-scale rate
over all major and minor scales, and mean hamming distance of the neighbor-
ing measures. Then, we calculate the 4) pitch and 5) velocity divergence
between the generated and real music to measure the distribution similarity in
melody and rhythm respectively. Furthermore, we utilize a pre-trained music
understanding model MIDI-BERT [1] and transform the music into feature vec-
tors. The cosine 6) MIDI-BERT similarity between generated and real music
can measure the proximity of generated music to real music in a higher-level fea-
ture.

Table 1. The results of objective evaluation. For the pitch class entropy, groove consis-
tency and scale consistency, a closer value to that of ground truth is considered better.
Mean values and 95% confidence intervals are reported. Red and blue fonts denote the
best and second-best performance, respectively.

Pitch Class
Entropy

Groove
Consistency

Scale
Consistency

Pitch
Divergence↓

Velocity
Divergence↓

MIDI-BERT
Similarity↑

GT [28] 2.7726 ± 0.0012 0.9889 ± 0.0023 0.9799 ± 0.0029 - - -
MT [11] 2.5907 ± 0.0035 0.9876± 0.0029 0.9634 ± 0.0039 0.7092 ± 0.0085 0.3529 ± 0.0089 0.3073 ± 0.0046

TT [23] 2.6749 ± 0.0073 0.9572 ± 0.0038 0.9706 ± 0.0020 0.1470 ± 0.0007 0.0904 ± 0.0011 0.2809 ± 0.0027

AMT [24] 2.7133 ± 0.0094 0.9165 ± 0.0043 0.9792 ± 0.0033 1.3645 ± 0.0165 0.6346 ± 0.0132 0.2921 ± 0.0025

WGAN [20] 2.6437 ± 0.0129 0.9575 ± 0.0064 0.9739 ± 0.0074 0.1516 ± 0.0012 0.0824 ± 0.0010 0.2733 ± 0.0012

Ours (wRo) 2.7123 ± 0.0088 0.9579 ± 0.0020 0.9735 ± 0.0047 0.1598 ± 0.0028 0.0625± 0.0012 0.3103 ± 0.0030

Ours (wMo)2.7590± 0.0021 0.9553 ± 0.0045 0.9743± 0.00350.1368± 0.0014 0.0726 ± 0.0031 0.3205± 0.0028

Ours 2.7164± 0.00240.9583± 0.00220.9763± 0.00260.1282± 0.00130.0675± 0.00210.3239± 0.0026

Compared with SOTA Methods. Table 1 shows the comparison results. We
can observe that the introduction of the fine-grained melody discriminator makes
our model closer to the ground truth on pitch class entropy, scale consistency,
and pitch distribution divergence. Regarding rhythm, we can see that our model



Fine-Grained Discriminators for Music Generation 339

Table 2. The results of the subjective evaluation. Mean values and 95% confidence
intervals are reported.

Coherence Richness Overall

GT [28] 3.98 ± 0.18 4.15 ± 0.23 4.06 ± 0.10
MT [11] 3.56 ± 0.24 2.94 ± 0.18 3.37 ± 0.33
TT [23] 3.21 ± 0.20 3.48 ± 0.16 3.44 ± 0.32
AMT [24] 3.43 ± 0.34 3.32 ± 0.27 3.39 ± 0.24
WGAN [20] 3.60 ± 0.35 3.57 ± 0.29 3.59 ± 0.26
Ours 3.68 ± 0.283.81 ± 0.253.71 ± 0.26

and Music Transformer [11] outperform other models in groove consistency, sug-
gesting better rhythm control and more stable groove. With the inclusion of the
rhythm discriminator, music generated by our model is also closer to ground
truth in note velocity distribution. In terms of MIDI-BERT similarity, which
largely reflects the overall quality of the generated music, our complete model
achieves the highest average similarity. This suggests that according to the pre-
trained music understanding model, music generated by our model exhibits a
closer resemblance to human music compositions, both in style and musical qual-
ity.

Overall, compared to the conventional GAN-based baseline model
WAGN [20] and other benchmark models, our model achieves superior perfor-
mance in objective performance metrics attributable to the fine-grained tuning
of the generator by melody and rhythm discriminators.

3.3 Subjective Evaluation

To assess the quality of music samples generated by our model, we conduct a
listening test with 17 survey participants. Ten of them can play at least one
musical instrument and understand basic music theory. We provide 6 sets of 30
music samples for participants, consisting of ground truth and samples generated
by each model. All generated MIDI files are rendered to audio using MuseScore
General SoundFont [5]. In the questionnaire, each participant is asked to listen
to all 30 samples and then rate them on a scale of 1 to 5 according to three
criteria-coherence, richness, and overall. Results are reported in Table 2.

The results show that our model achieves higher scores across all criteria than
other models. It’s worth noticing that while Music Transformer [11] surpasses
our model in terms of the groove consistency metric in objective evaluation, it is
less favorable than our model in terms of coherence and richness in subjective lis-
tening tests, especially richness. Based on the feedback from survey participants,
we find that the music generated by Music Transformer contains a larger amount
of repetition, leading to a monotonous listening experience. Benefiting from the
fine-grained adversarial optimization, our model outperforms the SOTA single
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Fig. 4. Quantitative analysis. (a) & (b)Visualization of the note pitch and note velocity
distribution of music generated by different models and the Ground Truth.

discriminator method WGAN. The performance improvements demonstrate the
effectiveness of our method on both coherence and richness aspects and overall
quality.

3.4 Ablation Studies and Qualitative Evaluation

As shown in Table 1, when using only the fine-grained melody discriminator,
our method has shown a significant improvement compared to other baseline
models in metrics strongly related to melody such as pitch class entropy, scale
consistency, and pitch divergence, reaching a closer level to real music. Moreover,
since melody and pitch are the core components of music expression [30], the
melody discriminator enables the model to generate more realistic music, as
indicated by the outstanding MIDI-BERT similarity. When solely using the fine-
grained rhythm discriminator, our method also achieves better performance than
baseline models in velocity divergence and MIDI-BERT similarity, proving the
effectiveness of both fine-grained discriminators.

Figure 4(a) and (b) visualize the pitch and velocity distribution between the
music generated by different models and the ground truth. We approximate each
distribution to a normal distribution for better comparison. It can be observed
that benefiting from the fine-grained melody and rhythm discriminators, our
model is closer to real music in both attributes.

To better evaluate the effectiveness of our method, we compute the feature
vectors of music generated by each model along with the ground truth using
the pre-trained music understanding model MIDI-BERT [1]. We utilize PCA
algorithm to reduce the high-dimensional feature vectors to 2 dimensions and
visualize the feature vectors in Fig. 5. It is evident that the music generated by
other baseline models exhibits a noticeable domain gap compared to the ground
truth, while MIDI-BERT can effectively distinguish whether they are real music
or not. Music Transformer [11] and AMT [24] are trained solely using maxi-
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Fig. 5. The PCA visualization results of music feature obtained from MIDI-BERT [1].

Fig. 6. WGAN [20], AMT [24], and our model’s generated examples and their corre-
sponding ground truth music piece.

mum likelihood as a training objective function, thus they suffer from quality
degradation caused by exposure bias. Therefore, music generated by them has a
certain degree of uniformity, with their feature vector distributions being highly
concentrated.

WGAN [20] alleviates quality degradation through adversarial loss, resulting
in a more dispersed distribution of its feature vectors compared to the previous
two, but still exists a considerable gap from the ground truth. Equipped with
fine-grained discriminators, our model’s style vectors exhibit a distribution that
closely resembles the ground truth and also diversifies itself.
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Figure 6 illustrates examples generated by both our model, WGAN [20] and
AMT [24] when giving the same condition. Compared to other models, our gen-
erated example exhibits a closer resemblance to the ground truth in terms of
melody design and transitions (highlighted by the green bounding boxes). The
example from AMT [24] and WGAN [20] exhibits some disharmony caused by
abnormal notes and discrepant rhythm patterns (highlighted by the red bound-
ing box).

4 Conclusion

This work proposes a fine-grained discriminators architecture for the symbolic
music generation task. We decouple the music into melody and rhythm for inde-
pendent discrimination, which provides the generator with more specific feed-
back. We also devise a pitch augment strategy and a bar-level relative positional
encoding scheme to enhance the learning of melody discriminator and rhythm
discriminator, respectively. Extensive objective and subjective results demon-
strate the effectiveness of the proposed method.
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Abstract. High-resolution (HR) remote sensing is essential for remote sensing
image interpretation, but challenges in super-resolution (SR) stem from scale and
texture differences within images, neglecting high-dimensional detail extraction
and long-range dependencies among multi-dimensional features. Addressing this,
we propose TDSNet, a enduring memory self-learning multi-level Transformer
Network for remote sensing image super-resolution (RISSR). The utilization of
the similarity balancing module and memory gated group establishes connec-
tions between mixed-scale information, while also possessing enduring memory
across various receptive fields. Shallow and deep-level data fuse in the trans-
former, employing a dual learning strategy, enhancing reconstruction through a
constrained mapping process with a loss function. This transforms the ill-posed
problem into a well-posed one. Attribution analysis with the LAMmethod reveals
TDSNet’s efficacy in capturing content information. Experiments on NWPU-
RESISC45 and AID datasets demonstrate TDSNet’s superior performance in
remote sensing image super-resolution compared to other methods.

Keywords: Dual learning · transformer · remote sensing image super-resolution
(RSISR) · super-resolution (SR)

1 Introduction

Super-resolution (SR) is a technique that enhances the resolution of images by process-
ing low-resolution (LR) images, finding applications in diverse fields such as computer
vision, image and video compression, medical imaging, and satellite remote sensing
[1]. In satellite remote sensing, crucial for various domains like agriculture, meteo-
rology, and military, the spatial and spectral resolution often falls short due to limita-
tions of Earth observation satellites in optical and sensor equipment, hindering high-
resolution remote sensing images acquisition. Super-resolution algorithms reconstruct
high-resolution images from low-resolution counterparts, addressing challenges related
to expensive sensors [2] and improving recognizability by recovering lost information.
This enhances the accuracy of tasks like image recognition and detection [3].

Traditional image super-resolution methods, like interpolation [4], and reconstruc-
tion [5], have limitations. Interpolation, rearranging pixels, struggles with texture and
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high-frequency details, resulting in jagged contours. Reconstruction methods, involv-
ing complex mathematical operations, offer superior texture and detail restoration but
grapple with nonlinear noise, inability to model complex relationships, and substantial
computational requirements. Recent attention has shifted to deep learning-based super-
resolution algorithms [6–8], leveraging deep learning to predict missing high-frequency
information in LR images by learning themapping betweenLRand high-resolution (HR)
image spaces. These techniques automatically extract relevant features from images,
offering a time-efficient solution.

To address the challenges outlined above and extract intricate structures and tex-
ture details efficiently from extensive remote sensing images, this paper introduces the
Enduring Memory Self-Learning Multi-Level Transformer Network with Dual Regres-
sion Mechanism (TDSNET). The network, combining a dual-learning mechanism with
a Transformer framework, considers mixed-scale texture features and incorporates long-
term memory capabilities. In the feature extraction phase, the model utilizes a combi-
nation of aggregated self-similar mixed-scale feature blocks and memory blocks with
a gating mechanism. This enhances the network’s discriminative capabilities, resulting
in more precise extraction of both shallow and deep features. During the reconstruction
phase, themodel synergizes the strengths of the SwinTransformer and convolutional lay-
ers to effectively explore the correlation between high-dimensional and low-dimensional
features. Additionally, a dual-learning mechanism is implemented to restrict the reverse
mapping of loss function, effectively optimizing the solution domain for reconstruction
and mitigating the ill-posed nature inherent in the super-resolution process.The primary
contributions are as follows:

• We introduce amulti-level Transformer-enhanced network utilizing a dual-regression
mechanism. This network utilizes a dual-learning approach to govern the oppo-
site mapping process, integrating multi-scale high-dimensional and low-dimensional
information from remote sensing data. The primary focus is on reconstructing finer
structures and textures, leading to the generation of more accurate super-resolution
images.

• We design a Utilize similarity balancing module that capitalizes on the internal recur-
sive nature of information in remote sensing images. This module establishes skip
connections between mixed-scale information, simulating interdependencies among
different channels and spatial positions. Additionally, we introduce a Memory gated
group to learn increasingly abstract feature representations and explore persistent
memory through an adaptive learning process.

• The proposed network is evaluated on two publicly available remote sensing bench-
mark datasets, NWPU-RESISC45 and AID, and compared with eleven state-of-the-
art methods. Experimental results highlight the method’s effectiveness in achieving
superior super-resolution effects in both accuracy and visual performance.

2 Related Work

Local image patterns exhibit recurring small patches at various scales, showcasing simi-
lar contours and textures [9]. This self-similarity, indicative of internal data redundancy,
proves crucial for tasks like image denoising [10], deblurring [11], and super-resolution
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reconstruction [12]. Early work by Glasner et al. [13] proposed a unified framework
that integrates multi-image super-resolution (SR) and example-based SR, leveraging
repeated patches within and across image scales. Recently, there has been a growing
interest in enhancing the resolution of remote sensing images, captured from altitudes
of hundreds of kilometers, facing challenges from diverse scenes and variable weather
conditions. In remote sensing super-resolution (SR), sparsity and self-similarity play
pivotal roles. While sparse representation methods initially dominated, with Dong et al.
[14] introducing a coupled sparse autoencoder, recent deep learning methods [15, 16]
surpass sparse representation-based approaches. Xia et al. [17] integrates meta-learning
with MCMC to optimize kernel priors and employs a plug-and-play framework for
unsupervised blind super-resolution. LGCNet [18], the first CNN-based model, incor-
poratesmultipleCNN layers for image residuals.HSENet [12] exploresmixed-scale self-
similarity in remote sensing images using non-local attention. Lei et al. [34] integrates
multi-scale features through convolutional extraction and hierarchical super-resolution
reconstruction. Liu et al. [19] utilize a dual-learning graph neural network, constraining
the mapping for more accurate remote sensing SR results.

3 Methodology

3.1 Overview of TDSNET

Unlike natural images, remote sensing images display intricate textures and structural
details, complicating the learning of mapping relationships between Low-Resolution
(LR) and High-Resolution (HR) images. Moreover, the scale range of objects in remote
sensing images is extensive, surpassing the capabilities of single-level features in ful-
filling the requirements of super-resolution (SR) tasks. Thus, considering mixed-scale
features, persistent memory, and long-range dependencies becomes crucial. Achiev-
ing an optimal solution is paramount. As a typical ill-posed problem, traditional deep
learning-based methods often produce images with artifacts due to the vast solution
space. To tackle these challenges, this paper introduces TDSNET, an innovative remote
sensing SR algorithm building upon the classical SR model RCAN [20]. Illustrated in
Fig. 1, TDSNET comprises four main sections: shallow feature extraction, deep feature
extraction, super-resolution reconstruction, and dual-learning (indicated by the red solid
line).

The shallow feature extraction section involves three primary operations: downsam-
pling, the initial three layers of VGG19, and the CLCmodule (Conv-LeakyReLU-Conv),
extracting partial semantic information and shallow features. The deep feature extraction
section consists of twomain operations: theUtilize similarity balancingmodule (USBM)
and the Memory gated group (MGG). The former utilizes channel and spatial attention,
establishing skip connections among mixed-scale information, while the latter learns
deep feature representations and forms long-term memory through an adaptive learning
process. Subsequently, the super-resolution reconstruction section includes three main
operations: upsampling, the Residual.

Conv-swintransformer structure (RCSTS), and iterative upsampling-downsampling.
Leveraging internal features for detailed reconstruction, this section transfers shallow
information from the network’s front to later stages through shortcuts, producing more
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Fig. 1. Framework of the proposed TDSNet.

details with HR features. In RCSTS, several Residual channel attention blocks (RCAB)
[20] are used to construct each basic block to improve the module’s capacity. Finally,
the dual-learning section employs simple CLC modules with lower computational costs
compared to the original model, allowing the network to learn the transformation from
SR images to the original LR images, thereby reducing the solution space for SR. The
image degradation process is described as follows: ILR = IHR↓bic where represents the
LR image ILR, represents the HR image IHR, and represents bicubic downsampling ↓bic.
We simplify the SR reconstruction process with the following equation: ISR = G(ILR)

where represents the SR image ISR, and G(·) is the proposed method in this paper.

3.2 Utilize Similarity Balancing Module

In Fig. 2, we devised the USBM module, integrating the Sub-balanced attention mod-
ule (SBAM) to enhance spatial attention (SA) and channel attention (CA) mechanisms.
Operating on an intermediate feature map, the SBAM block acquires SA and CA map-
pings, optimizing the input feature map adaptively through attention-based mappings.
The mapping function of SBAM is represented as follows:

TCA = fsigmoid

(
f k1s1conv

(
fReLU

(
f k1s1conv (fAvePool(F0))

)))

MSBAM(F0) = fsigmoid

(
f k7s1conv (fMaxPool(TCA))

) (1)

The input shallow information is denoted asF0, where fAvePool represents the average
pooling layer mapping function, fMaxPool represents the max pooling layer mapping
function, f k1s1conv denotes the convolution operation with a kernel size of 1 and a stride of
1, f k7s1conv denotes the convolution operation with a kernel size of 7 and a stride of 1, and
fsigmoid is the sigmoid mapping function.
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Next, we exploit both single-scale and cross-scale similarity information in remote
sensing images through a series of operations. Let Fb

S symbolize the input denoted as
Single similarity group (SSG), considered the feature derived from the fundamental
scale. To exploit the internal recursion of information at different scales, features at the
downsampled scale Fd

S can be acquired through downsampling operation Fb
S = DS

(
Fd
S

)
,

where DS represents the downsampling operation with a s scale factor. Subsequently,
we extract potent feature representations at two different scales, Fb

S and Fd
S , where the

output of the downsampled scale is further upsampled by the same scale factor. The
outputs through the basic scale and downsampling scale are denoted as X b and X d ,

X b = MSSG(Fb
S )

X d = USMSSG(Fd
S )

(2)

where US represents the up-sampling operation, and its scale factor is s.
Afterward, we utilize the self-similarity information extracted by SSG as attention to

guide the main high-frequency feature extraction. We also use Across similarity groups
(ASG) to exploit the correlation between the two remote sensing image scales. Specif-
ically, in the main branch, convolution layers extract higher-level features, while in the
attention branch, SSG is used to adaptively rescale features generated by themain branch.
The non-local operation is expressed as:

Yi =
⎛
⎝∑

∀j
f (Xi,Xj)g(Xj)

⎞
⎠/

∑
∀j

f (Xi,Xj) (3)

Here, i denotes the index of the output position, j enumerates all positions, X and Y
are the input and output of the operation, f functions use embedded Gaussian functions
to compute correlations among all positions, resulting in a single-scale self-similarity
feature representation.

Moreover, ASG can integrate features at multiple scales and exploit their similarities,
differingmainly fromSSG in the input structure, while the subsequent workflow for self-

similarity computation remains similar. For ANLB, the computatio
∑

∀j f
(
X b
i ,X d

j

)
is

denoted as exp
(
θT

(
X d
i

)
ϕ
(
X b
j

))
, X b

i and X d
j represent the outputs through SSMs for

the basic scale and downsampling scale. At the end, Conv-ReLU block (CRB) is applied
to further map the fused feature output.

3.3 Memory Gated Group

Recent findings [21] highlight the significant contribution of second-order statistics in
deep CNNs to discriminative representation. To leverage this, we introduce a Memory
gated group (MGG) in Fig. 3 for capturing feature interdependence through adaptive
learning, emphasizing persistent memory. Given a C-feature map of size H × W , we
reconstruct it into a feature matrix A. The sample covariance matrix is calculated as
� = AIAT , where I is the identity matrix. Covariance normalization plays a crucial
role in achieving more discriminative representations. Therefore, we utilize a normal-
ized covariance matrix that characterizes the correlation of channel features through
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Fig. 2. Structure of Utilize similarity balancing module. Details of the SSG are in the lower right
of the figure.

Fig. 3. Overview of the Memory gated group.

global covariance pooling. This approach fully exploits the interdependence of features
in aggregated information, treating this normalized covariance matrix as the channel
descriptor.

w = f (WU δ(WD(HGCP(y)))) (4)

Let HGCP(·) represent the global covariance pooling function. Applying a simple
gating mechanism with sigmoid. WD and WU as the convolutional layer’s weight set
and f (·) and δ(·) as the Sigmoid and ReLU functions, respectively, we obtain channel
attention mapping, achieving adaptive scaling of residual components.

A memory block of recursive and gating units establishes long-term memory of
deep features. Some Research [22] suggest recursive units can learn multi-level repre-
sentations under different receptive fields, generating short-term memory. Assuming R
recursions in the unit, the r-th recursion’s representation is expressed as

Qr
m = Rm(Rm(...(Rm︸ ︷︷ ︸

r

(Bm−1))...)) (5)

where {Qr
m}Rr=1 is the multi-level representation. These representations concatenate to

form short-term memory Oshort
m = [

Q1
m,Q2

m, . . . ,Q
R
m

]
. Additionally, long-term memory

from the previous block is constructed as Olong
m = [

O0,O1, . . . ,Om−1
]
. Both memory
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types concatenate as inputs to the gating unit.

Ogate
m = [Oshort

m ,Olong
m ] (6)

Representations from the previous block and output are sent to the gating unit, which
learns adaptive weights for different memories. In this paper, a 1×1 convolutional layer
implements the gating mechanism.

Om = f gatem (Ogate
m ) (7)

Here, f gatem and Om represent the convolutional layer and the m-th memory block’s
output functions. The weight control of long-term memory determines how much of the
previous state to retain, while short-term memory weight control decides how much of
the current state to store.

3.4 Loss Function

The entirety of the network is composed of a Super-Resolution (SR) process and a
Dual-learning (DL) process, with the primary goal of establishing a two-way mapping
between Low-Resolution (LR) and High-Resolution (HR) images. The loss function
comprises three components: pixel loss between ISR and IHR, pixel loss between ILR and
ILR′. TDSNet aims to simultaneously update the SR and DL operations by minimizing
pixel-level losses (between LS and LD).

LS = L1(S(I iLR), I iHR)

LD = L1(D(S(I iLR)), I iLR)
(8)

Due to the stronger robustness ofL1 loss overL2 loss, we applyL1 in our loss function
for pixel-level losses in both the SR and DL processes. Learning the mapping from HR
to LR images introduces constraints into the network, alleviating ill-posed problems.
The overall loss of TDSNet is expressed as a weighted sum of the mentioned losses.

(9)

Here, λ1 and λ2 expressing the weighted coefficients in the loss function, set λ1, λ2 to 1
and 0.1, respectively. The lower index i denotes the sequential order of image set, with
N representing the overall quantity of image sets.

4 Experimental Analysis

4.1 Experimental Dataset and Metrics

This paper validates the proposed method using two publicly available remote sensing
datasets: NWPU-RESISC45 [23] and AID [24]. Each dataset is partitioned into training,
testing, and validation sets at a ratio of 6:3:1.
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1. NWPU-RESISC45 Dataset: A remote sensing image dataset with a pixel size of 256
× 256, comprising a total of 31,500 images across 45 scene categories, with 700
images per category.

2. AIDDataset: A remote sensing image dataset with a pixel size of 600× 600, featuring
30 scene categories and approximately 220–420 images per category. The dataset
contains a total of 10,000 images, with resolutions ranging from 8 m to 0.5 m.

Building upon the foundations of HAUNet [25], we employ the original images
from each dataset as authentic HR references. LR images are generated through bicubic
interpolation, forming HR/LR image pairs for both training and evaluation. Building on
this foundation, quantitative assessments are undertaken, encompassing Peak Signal-to-
Noise Ratio (PSNR) [26], Structural Similarity Index (SSIM) [26], Spatial Correlation
Coefficient (SCC) [27], and Spectral Angle Mapper (SAM) [28]. Higher PSNR, SSIM,
SCC, and lower SAM values signify improved image quality. To gain deeper insights
into the workings of the super-resolution (SR) network and understand its behavior, we
leverage Local Attribution Map (LAM) [29]. LAM helps identify which input pixels
contribute significantly to the overall performance. For instance, in Fig. 4 (b), pixels
marked in red are pivotal for the reconstruction process. Furthermore, the varyingDegree
of Importance (DI) indicates the extent of pixel involvement, with higher DI reflecting
a broader attention range. Intuitively, superior network performance is achieved when
more informative pixels are utilized.

4.2 Implementation Details

In this study, we focus on scale ratios 2, 3, and 4, adjusting the upsampling operations in
the reconstruction based on the specific scale factor. The quantities of Utilize similarity
balancing module and Memory gated group in the proposed TDSNet are set to 2, and
the number of transformer layers in the Residual Conv-swintransformer structure is set
to 4. Regarding the number of transformer heads in the RCSTS, if the magnification
factor is 4, the number of heads for the first upsampling is set to 4, and for the second
upsampling, it is set to 8, with a uniform window size set to 8. In the training process,
the initial learning rate is set to 1e–4, and the number of iterations is set to 200. The
training model is optimized using Adaptive Moment Estimation (ADAM) [30] with β1
= 0.9, β2 = 0.999, and ε = 1e-8. All experiments were performed using the PyTorch
framework on an NVIDIA GeForce RTX 2080Ti graphics processing unit (GPU).

4.3 Comparisons with State-Of-The-Art SR Methods

In Fig. 4 (a) and (b), we present super-resolution results for various magnification factors
on a general test set, highlighting the detailed reconstruction effects of super-resolution
images through subjective visual analysis. Figure 4 (a) compares super-resolution out-
comes at 2× and 4× magnification rates using images from the NWPURESISC45.
Low-Resolution (LR) images are derived by downsampling test set images, and the pro-
posed algorithm, along with comparison methods, is employed for image reconstruc-
tion. Images produced by TDSNet exhibit clearer shapes and edges compared to other
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methods, which often result in excessively smooth and somewhat blurry outputs. Par-
ticularly, details in the locally zoomed-in region (highlighted in the red box) reveal that
the bicubic method produces overly blurry details, and images from deep learning-based
algorithms like FSRCNN [7] and DRN [8] exhibit less clear and sharp edges than our
proposed algorithm. In comparison to deep learning-based remote sensing image super-
resolution algorithms such as LGCNET [18] and HSENet [12], our proposed algorithm
provides clearer and sharper reconstructions, preserving high-frequency information and
enhancing visual results in texture, edges, and similar content.

In Fig. 4 (b), qualitative comparisons of Local Attention Map (LAM) and Super-
Resolution (SR) results for different networks on the NWPURESISC45 test dataset at a
4x magnification factor are conducted. Remarkably, the LAM result images of FENET
[15] and SRDD [16] contain fewer informative pixels for reconstruction, resulting in
less detailed structural information and an inability to recover clear white lines. In con-
trast, TDSNet’s attention extends along the texture direction, distributing more widely
across the scene, resulting in superior performance in the SR task and a more accurate
understanding and reconstruction of detailed information. TDSNet, featuring USBM
and MGG, not only retains local detailed information but also captures more global and
meaningful attention to context and content, maintaining competitive performance.

Fig. 4. (a) Comparisons of results using various methods on NWPU-RESISC45 datasets. (b)
Evaluating 4 × Super-Resolution (SR) results and LAM attribution results from different SR net-
works on NWPU-RESISC4. The LAM outcomes visually represent the significance of individual
pixels.

Beyond visual assessments, quantitative comparisons using PSNR, SSIM, SCC, and
SAM values are presented in Tables 1 and 2. The best and second-best performances
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are highlighted in red and blue, respectively. These values represent the average PSNR,
SSIM, SCC, and SAM values of the NWPU-RESISC45 and AID test sets after undergo-
ing super-resolution enlargement through various algorithms. For theNWPU-RESISC45
dataset at a 4x magnification factor, TDSNet outperforms the classical dual-regression
SRmethod DRN [8], improving PSNR and SSIM values by 2.06 dB and 0.0941, respec-
tively. Compared to SRDD [16], our proposed method enhances PSNR and SSIM values
by 0.25 dB and 0.0083, respectively. In Table 2, compared to TransENet [34], the pro-
posed method improves PSNR and SSIM values by 0.27 dB and 0.0064, respectively.
The results underscore TDSNet’s higher performance, showcasing the practicality of the
proposed method in edge and fine detail recovery. The USBM, MGG, and RCSTS are
emphasized as practical tools for achieving more accurate recovery.

Table 1. Experimental results on NWPURESISC45 dataset. Red color indicates the best perfor-
mance, blue colorindicates the second best performance and green color indicates the third best
performance.

Method
NWPURESISC45

×2 ×4
PSNR SSIM SCC SAM PSNR SSIM SCC SAM

BICUIC 32.12 0.8801 0.5375 0.0730 27.61 0.6967 0.1483 0.1192

SRCNN[6] 34.06 0.9202 0.6050 0.0587 28.59 0.7431 0.2073 0.1069

LGCNET[18] 34.26 0.9227 0.6080 0.0574 28.74 0.7519 0.2124 0.1052

FSRCNN[7] 34.16 0.9219 0.6116 0.0581 28.82 0.7554 0.2222 0.1044

DRN[8] 32.39 0.8878 0.4917 0.0709 27.47 0.6882 0.1249 0.1210

HSENET[12] 34.62 0.9284 0.6650 0.0551 29.20 0.7709 0.2575 0.1000

FENET[15] 34.55 0.9272 0.6340 0.0555 29.16 0.7694 0.2527 0.1006

SRDD[16] 34.68 0.9289 0.6401 0.0546 29.28 0.7740 0.2666 0.0991
OMNISR[31] 34.51 0.9266 0.5964 0.0552 29.44 0.7800 0.2810 0.0973

Ours 34.86 0.9329 0.6912 0.0536 29.53 0.7823 0.2920 0.0967

4.4 Ablation Studies

To evaluate the impact of key modules in TDSNet, we conducted ablation studies by
removing specific components: 1) Utilize similarity balancingmodule, 2)Memory gated
group, 3) Residual Conv-swintransformer structure, and 4) Dual Learning (DL) module.
The study maintained consistent datasets and experimental settings across different vari-
ations. Table 3 and Fig. 5 present both the quantitative and qualitative results of the abla-
tion study conducted on the AID dataset, showcasing the best-performing outcomes. It is
crucial to note that the removal of any essential component leads to a significant decrease
in evaluationmetrics and visual quality. Specifically, the elimination of RCSTS results in
a substantial decrease in PSNR (-1.97dB), and consequently, the depiction of ship lines
in the image becomes notably blurred, thus emphasizing the Transformer’s powerful
performance in enhancing SR results. Additionally, omitting the dual learning module
not only leads to a decrease in PSNR of 0.14 dB on the AID dataset but also results in
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Table 2. Comparison results of PSNR, SSIM, SCC and SAM on AID dataset with a scale factor
of 3 and 4.

Method

AID
×3 ×4

PSN
R SSIM SCC SAM PSN

R
SSIM SCC SAM

BICUIC 29.82
0.753

5

0.169

7

0.094

1
28.69

0.733

4

0.158

6

0.105

1

SRCNN 31.85
0.859

6

0.349

6

0.072

4
29.76

0.778

8

0.217

3

0.092

8

FSRCNN 32.03
0.860

3

0.349

9

0.072

2
29.80

0.779

8

0.207

4

0.092

9

VDSR[32] 32.14
0.860

7

0.351

4

0.071

3
30.35

0.797

6

0.249

1

0.087

1

DRN 30.21
0.742

1
0.1198

0.097

1
28.48

0.720

3

0.092

7

0.107

2

HSENet 32.69 0.877
5

0.398

0

0.064

3
30.44 0.8011

0.260

3

0.086

3

DCM[33] 32.52
0.874

4

0.399
5

0.063
7 30.50 0.803

2
0.268
5

0.085
7

TransENet[34

]
32.80 0.881

2
0.402
5

0.662
8 30.53 0.804

8
0.265
5

0.085
3

Ours 32.94 0.882
1

0.404
2

0.062
4 30.80 0.8112 0.288

9
0.083
0

insufficient recovery of terrain edges, underscoring its im-portance.Consequently, this
study continues to employ this approach. In conclusion, through comprehensive con-
siderations, we achieved further generalization, affirming the indispensability of each
design element for attaining satisfactory SR results in the proposed network.

Table 3. Ablation study with different components combinations (× 4)

To gain a better understanding of the model’s complexity, we also present a compari-
son between PSNR and network parameters (Params) on the AID (×4) dataset in Fig. 6.
As observed, our TDSNet achieves higher PSNR compared to existing re-mote sensing
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Fig. 5. Ablation results figure. From top to bottom, left to right: original high-resolution image,
results from our proposed network, results without USBM, results without RCSTS, results without
MGG, and results without dual loss.

super-resolution methods while utilizing fewer parameters. Our ap-proach effectively
strikes the optimal balance between reconstruction performance and computation.

Fig. 6. PSNR vs. Params

5 Conclusion

In this paper, we present a novel remote sensing image super-resolution network, amulti-
level transformer-enhanced model with a dual-regression mechanism. The proposed
algorithm incorporates a Utilize similarity balancingmodule and aMemory gated group,
enabling the integration of valuable information from analogous patches throughout the
entirety of the remote sensing image and providing long-term memory for accurate
feature extraction. The model effectively combines features from CNN and SwinTrans-
former, allowing the integration of high-dimensional and low-dimensional features and
modeling distant relationships between pixels. Additionally, a dual-regression approach
is introduced to govern the mapping from low-resolution (LR) images to high-resolution
(HR) images, as well as from super-resolved (SR) images to LR images. To assess
TDSNet’s generalization capability, training and testing are conducted on two public
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datasets. Finally, the proposedmethod is compared with traditional bicubic interpolation
and various deep learning-based super-resolution methods for both natural and remote
sensing images. The experimental results demonstrate the superiority and effectiveness
of this method, showcasing improved quantitative and qualitative performance.
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Abstract. Image super-resolution (SR) technology aims to enhance the
resolution and improve the quality of images, and it has been widely used
in face recognition, small target detection, medical imaging and remote
sensing image analysis. Image quality assessment (IQA) is important for
optimizing SR algorithms. At present, the main challenge lies in how
to comprehensively learn features to characterize perceptual properties
of human visual characteristics. Therefore, in this paper, we propose a
no-reference quality assessment method for SR images based on local
and global features fusion. First, a two-branch feature extractor is pro-
posed, which uses convolutional neural network and vision transformer
respectively to extract local features and global features. Then, consid-
ering the perception properties of the human visual system (HVS), local
and global features are fused and adaptive weight strategy is applied to
predict the quality score. Finally, Experimental results show that the pro-
posed method outperforms the state-of-the-art methods in terms of pre-
diction accuracy and generalization capability on benchmark datasets.

Keywords: Image quality assessment · Super-resolution · Feature
fusion

1 Introduction

Image super-resolution (SR) reconstruction technology is used to reconstruct
blurred low-resolution images into high-resolution images containing rich details,
which can improve the visual perception of low-quality images [9]. In the past
few decades, SR technology has developed rapidly and been widely used in face
recognition, small target detection, medical imaging and remote sensing image
analysis [10,18]. With a large number of SR algorithms being proposed, how to
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effectively assess the quality of SR reconstructed images has become an urgent
problem to be solved.

Image quality assessment(IQA) can be classified into subjective quality
assessment and objective quality assessment [28]. Although subjective quality
assessment is considered to be the most direct and reliable way, it is time-
consuming, expensive, and difficult to be embedded into practical application.
Therefore, objective quality assessment plays a more effective role in evaluating
image quality. According to the amount of reference information, these objec-
tive models can be classified into three categories: full-reference image quality
assessment (FR-IQA) [15,19], reduced-reference quality assessment (RR-IQA)
[4] and no-reference quality assessment (NR-IQA) [11,14]. FR-IQA and RR-
IQA methods can achieve good performance, but they both require information
of the reference image [26]. In practical SR applications, it’s almost impossible
to obtain the original reference image, thus NR-IQA appears more important
for the quality assessment of SR images. However, most existing NR-IQA are
designed for generic distorted images rather than SR images [22]. Different from
the general natural image distortion, the distortion of SR images is mainly due to
the blurring, sawtooth and checkerboard distortion introduced by the SR recon-
struction algorithms [29]. Therefore, it’s not suitable to simply apply generic
NR-IQA methods to assess the quality of SR images [1,23,27].

Researchers have presented some no-reference quality assessment methods for
SR images (NR-SRIQA), including traditional methods [6,31] and deep learning-
based methods [3,13,24,30]. Traditional NR-SRIQA methods are usually based
on manual feature extraction, thus the performance is limited by the accuracy
of hand crafted descriptors. In recent years, the NR-SRIQA method based on
convolutional neural network (CNN) has been gradually developed. However,
due to the limited local perception ability of CNN, these methods may ignore
the context information and lose the global perception information of the SR
image, degrading performance of these NR-SRIQA methods.

In this paper, to comprehensively learn features to characterize human visual
characteristics, we propose a local and global features fusion based no-reference
quality assessment method for SR images, named as LAGFBN. Our contribu-
tions are summarized below:

• We propose a two-branch feature extractor based NR-SRIQA framework.
The two branches are complementary, using CNN and vision transformer
respectively to capture local information and global information of super-
resolution images.

• We fuse local and global features and apply adaptive weight strategy to pre-
dict the quality score, which could better simulate the perceptual properties
of the human visual system.

• Extensive experiments on two benchmark SRIQA datasets show that our
proposed method could achieve more accurate predicted scores compared with
the state-of-the-art methods.
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2 Related Work

No-Reference Quality Assessment for General Natural Images. The
current NR-IQA methods can be roughly classified into the traditional method
based on manual extraction of image features and the method based on deep
learning. Traditional methods aim to design suitable manual feature extractors
to quantify image distortion. For example, Saad et al. [14] used discrete cosine
transform (DCT) cofficients to design perceptual features suitable for quality
scores, and used a simple Bayesian model to predict quality scores. Liu et al.
[11] developed an NR-IQA index called SSEQ by using the local space and spec-
tral entropy features of distorted images. In recent years, NR-IQA methods based
on deep learning have been gradually developed. These methods have achieved
better performance than traditional methods by building deep neural networks
to automatically learn the mapping relationship between input images and qual-
ity scores. For example, Kang et al. [7] proposed a groundbreaking CNN-based
NR-IQA method to achieve end-to-end NR-IQA method. Considering that the
dual-stream network is more effective to extracting rich quality perception fea-
tures, Yan et al. [20] used two identical branches to extract the features of RGB
distorted images and gradient images respectively for image quality assessment.

Full-Reference and Reduced-Reference Quality Assessment for Super-
Resolution Images. According to the amount of reference information, SR-
IQA methods can be divided into FR-SRIQA, RR-SRIQA and NR-SRIQA. FR-
SRIQA requires original high-resolution images as reference information. For
example, Zhou et al. [29] proposed a FR-SRIQA method by considering both
structure components and texture components in SR images. This method gives
the final quality score by calculating the variation of texture distribution and the
similarity of structural components. Zhou and Wang [31] proposed to measure
the distortion of SR images by developing fidelity (DF) and statistical fidelity
(SF) models, and use content-adaptive weighting scheme to combine SF and DF
into an overall quality predictor. For RR-SRIQA, it needs part of the original
image information as reference. For example, Yeganeh et al. [21] proposed a NSS-
based distortion measurement method using LR images as reference information.
This method established the statistical model based on frequency energy falloff,
dominant orientation and spatial continuity. Zhao et al. [28] designed an end-
to-end RR-SRIQA method named DISQ, which utilized a dual-flow deep neural
network to extract LR and HR image features respectively.

No-Reference Quality Assessment for Super-Resolution Images. NR-
SRIQA can predict image quality without reference information. Therefore, it
is more practical in actual SR problems compared with FR-SRIQA and NR-
SRIQA. Ma et al. [12] proposed to extract the frequency and spatial features of
SR images, and use random forest regression and ridge regression to establish
the mapping relationship between perception features and quality scores. Zhou
et al. [30] proposed to use two parallel AlexNet networks to extract discriminant
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features from structure maps and texture maps, and use fully connected layers to
predict quality scores. Zhang et al. [24] quantified the distortion of SR images by
using two different subnetworks to learn the low-level features and middle-level
features of SR images, where the CBAM attention module in the middle-level
feature extraction subnetwork could better extract the prominent features of
space and channel. Quan et al. [13] used the triple attention mechanism to learn
the association between spatial dimension and channel dimension in SR images,
and constructed multi-scale modules to capture features at different scales, thus
further improving the prediction accuracy of image quality scores.

trans trans trans trans trans

CNN CNN CNN Conv *C

Concat Hadamard product1×1 convolution kernel

Downsample

C *Conv

Feature extraction and fusion module Feature pooling module

Branch1: Extract local features Branch2: Extract global features

Score:
9.0372

Score map

Weight map

Input

Output

Fig. 1. The overall framework of proposed LAGFBN, where “CNN” represents the
residual block in ResNet50, “trans” represents the encoding block in vision transformer.

3 Proposed Method

The framework of proposed LAGFBN is shown in Fig. 1, consists of two modules:
feature extraction and fusion module and feature pooling module. In the feature
extraction and fusion module, two-branch feature extraction network is designed
to comprehensively learn features of SR images. Branch 1 extracts local features,
Branch 2 extracts global features, and features from two branches are fused. In
the feature pooling module, adaptive weighting strategy is applied to predict the
final quality scores. The overall learning algorithm of proposed LAGFBN could
be summarized as Algorithm 1.

3.1 Feature Extraction and Fusion

As shown in Fig. 1, we use two branches to extract the features of the input
image. Branch 1 uses residual blocks in ResNet50 [5] to capture local informa-
tion such as texture details. Considering that human beings are not only affected
by the local information, but also by the global information when evaluating the
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Algorithm 1. The learning algorithm of proposed LAGFBN
Input: Super-resolution images, and their corresponding subjective quality scores Qgt

Output: Predicted quality scores Qpred

Number of epoch: Nepoch

Number of batches: Nbatch

1: Initialize ViT and ResNet50 with pre-trained parameters
2: for 1 ≤ ei ≤ Nepoch do
3: for 1 ≤ ej ≤ Nbatch do
4: Extract the features Flocal and Fglobal

5: Concat(Flocal,Fglobal)
6: Generate score map(S) and weight map(W)
7: Use formula(8) to calculate Qpred

8: end for
9: end for

10: L = L2 loss(Qpred,Qgt)
11: Backpropagation with Adam optimizer
12: Updating the model parameters θ

quality of the image. Branch 2 captures remote dependencies between image
patches through encoding blocks in vision transformer [2]. The self-attention
mechanism contained in each encoding block can spatially model the spatial
dependencies between image patches, thus capturing global information and
high-level semantic representation of SR images. Furthermore, deep neural net-
works exhibit superior performance only when applied to large-scale datasets.
However, the currently available datasets for SR-IQA are limited in size. There-
fore, we use pre-trained parameters to initialize ResNet50 and vision transformer,
and then feed the obtained features into the pooling model to get better exper-
imental results.

Local Feature Extraction. Branch 1 extracts the local features by three basic
residual blocks in ResNet50. The internal detail of the residual block is shown in
Fig. 2, which works based on the idea of residual connection. With the residual
connection, the network is able to learn subtle changes and details in the image
more intently, which in turn better captures complex visual perception features
in the input image. In addition, the skip connection in the residual block enables
the model to bypass unnecessary CNN weight layers, effectively reducing the
risk of overfitting the training set. We represent the output features obtained
by each residual block with fi(i= 1,2,3). By concatenating them in the channel
dimension, we can get the output Flocal of branch 1. The formula is as follows,
where C is equal to 256.

Flocal = Concat(f1, f2, f3), Flocal ∈ R
56×56×3C (1)
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Fig. 2. Residual block of stage 1 in ResNet50.

Global Feature Extraction. We use the first five encoding blocks from the
vision transformer to capture the global features of the SR image. The internal
structure of the encoding block in vision transformer is shown in Fig. 3.

MLP

Norm

Norm

Multi-Head 

Attention

Q K V

Embedded 

patches

+

+

Fig. 3. Internal detail of encoding block in vision transformer.

The input SR image first passes through a large convolution kernel to obtain
multiple image patches, then these patches are converted into vector represen-
tation by linear mapping. Next, the position vectors are added to the feature
vectors of image patches by position coding to retain the position information of
image patches. Finally, the obtained embedded vectors are used as the input of
the encoder. The encoder consists of multi-head self-attention and MLP blocks,
calculated by the following formula:

f
′
i = MSA(LN(fi−1)) + fi−1 (2)
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fi = MLP(LN(f
′
i )) + f

′
i (3)

In the above formula, fi(i=1,2,3,4,5) represents the output features obtained
by each encoding block, MSA represents multi-head self-attention mechanism,
LN represents layer normalization, and MLP is a multi-layer perceptron com-
posed of feedforward neural networks. The ability of vision transformer to cap-
ture global features of images is mainly due to the self-attention mechanism. The
self-attention mechanism allows each image patch to interact with other image
patches and calculate the similarity between them. This similarity is determined
based on the semantic correlation between image patches, and is not limited by
specific location or distance. The input sequence is first transformed linearly to
obtain three feature maps: query (Q), key (K), and value (V), and then the inner
product of the query and key is used to calculate the attention weight. Finally,
the values are weighted and summed according to the attention weight to obtain
the final feature representation. Therefore, the self-attention mechanism allows
different areas in the image to interact with each other, thus capturing the con-
text dependencies of the image.

F
′
global = Concat(f̂1, f̂2, f̂3, f̂4, f̂5), F

′
global ∈ R

N×5C (4)

Fglobal = Reshape(F
′
global), Fglobal ∈ R

√
N×√

N×5C (5)

In addition, considering that the extracted quality perception features may
gradually disappear in the process of deep network propagation, we concatenate
the output features of the first five encoding blocks, instead of only using the
output features of the last encoding block in vision transformer. It can be seen
in Eq. (4), where f̂i stands for the encoding block output feature dropping the
class token, C=768, N=196. N represents the number of image patches obtained
through convolution operation before the input SR image enters the encoding
blocks, and C represents the vector length obtained after flattening the input
image patches. Then we reconstructed the feature sequence F

′
global obtained after

concatenating into Fglobal, which is given by Eq. (5).

Feature Fusion. To enable the model learn both local and global information of
the input image, Flocal from branch 1 and Fglobal from branch 2 are concatenated
in channel dimension. However, it should be noted that the width and height of
Flocal are four times that of Fglobal. Therefore, Flocal needs to be downsampled
before concatenation, which is shown in Eq. (6), where F ∗

local represents the
feature representation obtained after downsampling. Then we concatenate the
downsampled local features and global features to achieve feature fusion, which
is expressed by Eq. (7).

F ∗
local = Conv2(ReLU(Conν2(Flocal))) (6)

Fall = Concat(F ∗
local, Fglobal) (7)
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Fig. 4. Feature pooling module.

3.2 Feature Pooling

Our feature pooling module is shown in Fig. 4. We apply an adaptive weighting
strategy for two-branch architecture to establish a mapping relationship between
visual perception features and quality scores, so as to better simulate the visual
characteristics of human eyes. The module obtains a score map (S) and a weight
map (W) of shape C × H × W by two independent linear projections, where C=1,
H and W are both 14. The values contained in the score map represent the quality
scores of elements in different regions, and the weights of the corresponding
fractions are represented in the weight map. The weighted summation of the
two feature maps can obtain the final image quality prediction score, and the
formula is calculated as shown in Eq. (8). In addition, we optimize the parameters
of the network model by minimizing MSE losses during the training process. It
can be expressed as the following Eq. (9):

Qpred =
s ∗ w
∑

w
(8)

Loss =
1
N

N∑

i=1

(Qpred,i − Qgt,i)2 (9)

where N represents the batch size during the training process, Qpred,i and Qgt,i

represents the predicted score and subjective quality score label of the i-th image
in each batch, respectively.

4 Experiments

4.1 Datasets and Metrics

We use two SR-IQA datasets named CVIU-17 [12] and QADS [29] for training
and testing. In addition, we also use the small-scale dataset called SISRSet [16]
to conduct cross-dataset experiments to further verify the generalization capa-
bility of our method. CVIU-17 is composed of 1620 images generated by 8 SR
algorithms and bicubic interpolation with 6 scaling factors. QADS is composed
of 980 SR images generated by 21 methods with 3 scaling factors. SISRSet con-
sists of 360 SR images generated by 8 SR algorithms with 3 scaling factors. We
randomly selected 80% of the images for training and 20% for testing, and there
was no image overlap between the training set and the test set.
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We use four quantitative indicators including Spearman Rank Order Cor-
relation Coefficient (SROCC), Kendall Rank Order Correlation Coefficient
(KROCC), Pearson Linear Correlation Coefficient (PLCC) and Root Mean
Square Error (RMSE) to evaluate the performance of the comparison methods
[13,24].

4.2 Training Details

As ResNet50 and ViT-B/16 (pre-trained on ImageNet) are used as the backbone
in our network, we need to randomly crop the input image into the size of 224
× 224 in the image preprocessing stage. In the training process, we use random
horizontal flip to enhance the generalization ability of the model. In the test
process, we randomly crop 20 image patches of 224 × 224 size from the input
image, and use their average score as the final image quality prediction score. In
the implementation process, we use AdamW algorithm to optimize the network
parameters, and set the initial learning rate to 10−4, weight attenuation to 10−5.
We set the batch size as 8, and the number of training epochs as 200. The network
model is trained on an NVIDIA GeForce RTX 3090 GPU.

Table 1. Performance comparison on CVIU-17 and QADS

Methods CVIU-17 QADS

SROCC PLCC KROCC RMSE SROCC PLCC KROCC RMSE

BLINDS-II 0.8983 0.8921 0.7252 1.2621 0.8889 0.8838 0.7100 0.1437

SSEQ 0.8854 0.8832 0.7013 1.1087 0.8679 0.8643 0.6887 0.1502

Ma 0.9139 0.9258 0.7531 0.8833 0.8954 0.8964 0.7280 0.1174

CNN 0.9226 0.9364 0.7599 0.9494 0.9533 0.9502 0.8114 0.0943

CNN++ 0.9312 0.9307 0.7710 0.9874 0.9525 0.9509 0.8160 0.0932

Two-Stream 0.9424 0.9423 0.7931 0.9645 0.9541 0.9584 0.8192 0.1047

DBCNN 0.9465 0.9509 0.8021 0.8389 0.9575 0.9449 0.8200 0.0921

HyperIQA 0.9327 0.9284 0.7717 1.0166 0.9541 0.9568 0.8151 0.0986

JCSAN 0.9490 0.9565 0.8080 0.7769 0.9705 0.9734 0.8576 0.0646

TADSRNet 0.9516 0.9585 0.8120 0.7966 0.9720 0.9742 0.8616 0.0671

LAGFBN(Pro.) 0.9784 0.9808 0.8762 0.5355 0.9776 0.9777 0.8771 0.0684

4.3 Comparison with State-of-the-Art Methods

Ten NR-IQA methods are compared with proposed LAGFBN, including NR-
IQA methods for generic distorted images (BLINDS-II [14], SSEQ [11], CNN [7],
CNN++ [8], Two-Stream [20], DBCNN [25], HyperIQA [17]) and NR-SRIQA
methods specifically designed for SR images (Ma [12], JCSAN [24] and TADSR-
Net [13]).
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Fig. 5. Scatter plots and fitted straight lines of the MOS against the scores generated
by proposed LAGFBN on different datasets

Table 1 shows the performance comparisons of all NR-IQA methods on
CVIU-17 and QADS. It can be seen that, firstly, the proposed LAGFBN almost
achieves the best performance on both two datasets CVIU-17 and QADS in
terms of all the metrics (SROCC, KROCC, PLCC and RMSE). For example,
in terms of SROCC, the proposed LAGFBN has a performance advantage of
0.268 compared to the second best method TADSRNet on CVIU-17. Secondly,
NR-SRIQA methods (e.g. JCSAN and TADSRNet) have significant performance
advantages over generic NR-IQA methods (e.g. CNN++ and DBCNN), which
verifies that it’s not suitable to simply apply generic IQA methods to assess qual-
ity of SR images. Thirdly, the proposed LAGFBN has significant performance
advantages over CNN-based methods (e.g. HyperIQA, JCSAN and TADSRNet),
because our method jointly learns local and global features of SR image, while
CNN-based NR-IQA methods only consider local features.

Figure 5 shows the scatter plots and fitted straight lines of the MOS against
the scores generated by proposed LAGFBN on CVIU-17 and QADS, where the

Table 2. Cross-dataset evaluation: trained on CVIU-17 and tested on two complete
datasets SISRSet and QADS

Methods SISRSet QADS

SROCC KROCC SROCC KROCC

CNN++ / / 0.7282 0.5432

Two-Stream 0.7952 0.5974 0.6619 0.4750

DBCNN 0.8372 0.6430 0.8087 0.6160

HyperIQA 0.7749 0.5756 0.7687 0.5730

JCSAN 0.7549 0.5733 0.7020 0.5298

TADSRNet 0.8183 0.6265 0.7390 0.5465

LAGFBN(Pro.) 0.8495 0.6528 0.8456 0.6571
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Table 3. Cross-dataset evaluation: trained on QADS and tested on two complete
datasets SISRSet and CVIU-17

Methods SISRSet CVIU-17

SROCC KROCC SROCC KROCC

CNN++ / / 0.6287 0.4460

Two-Stream 0.9010 0.7296 0.5819 0.4165

DBCNN 0.6769 0.4876 0.6533 0.4595

HyperIQA 0.8075 0.6160 0.8095 0.6235

JCSAN 0.9036 0.7345 0.6305 0.4629

TADSRNet 0.9225 0.7583 0.6574 0.4894

LAGFBN(Pro.) 0.9118 0.7383 0.8399 0.6498

horizontal axis represents the mean opinion score (MOS) values obtained by
human subjective tests, and the vertical axis represents the predicted quality
score obtained by proposed LAGFBN. As can be seen from Fig. 5, our distribu-
tion is relatively concentrated and fitted straight lines are close to diagonal. In
other words, the proposed LAGFBN matches well with the human visual system.

Figure 6 intuitively shows the model parameters (Params) and floating point
operations (FLOPs) versus the performance (SROCC) value on QADS. Where
Fig. 6(a) represents model parameters versus the SROCC, and Fig. 6(b) repre-
sents FLOPs versus the SROCC. It should be noted that, for better visualization,
the x-axis is scaled using logarithmic coordinates. From the results in Fig. 6, we
can see that our method achieves the best performance with a slight increase in
Params and FLOPs.

In order to further verify the generalization capability of proposed LAGFBN,
we conducted cross-dataset experiments on CVIU-17, QADS and SISRSet, and
the experimental results are shown in Table 2 and Table 3. Table 2 shows the
results of different methods trained on CVIU-17 and tested on SISRSet and
QADS. The results reveal that proposed LAGFBN achieves the highest SROCC
value and KROCC value on both two datasets. Table 3 shows the results of dif-
ferent methods trained on QADS and tested on SISRSet and CVIU-17. Similarly,
the proposed method still achieves impressive results. The experimental results
show that the proposed LAGFBN achieves stable generalization ability, which
may be due to the results of pre-trained models used in our network framework.

4.4 Visualization

In this part, we visualize the attention map to show important roles of the two
branches within the feature extraction module. As depicted in Fig. 7, the redder
color indicates that the network model pays more attention to this region. Specif-
ically, Fig. 7(a) corresponds to the input super-resolution image, while Fig. 7(b)
and Fig. 7(c) represent the attention maps of branch 1 and branch 2, respec-
tively. We can see that the attention map of branch 1 in Fig. 7 (b) verifies that
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Fig. 6. Params and FLOPs versus performance (SROCC) on QADS

Fig. 7. Visualization of attention map, where (a) represents the input SR image, (b)
and (c) represent the attention map of branch 1 and branch 2, respectively

the convolutional blocks could effectively capture local texture features, and the
attention map of branch 2 in Fig. 7 (c) exhibits a stronger emphasis on extracting
global semantic features of the image.
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4.5 Ablation Experiment

To prove the complementarity of local features and global features in the feature
extraction and fusion module, we test the network performance of a single branch
on QADS as ablation experiment, and the results are shown in Table 4. From the
Table 4, we note that the model using both branch 1 and branch 2 achieves the
best performance metrics than other methods. Compared with method 1 that
only uses branch 1 to extract local features, the SROCC value, PLCC value and
KROCC value of the two-branch method are increased by 0.0116, 0.0105 and
0.0312, respectively, and the RMSE value is decreased by 0.025. Compared with
method 2 that only uses branch 2 to extract global features, the SROCC value,
PLCC value and KROCC value of the two-branch method are increased by 0.003,
0.0024 and 0.0078, respectively, and the RMSE value is decreased by 0.0042.
Therefore, it can be concluded that the multi-source information combined with
local and global features is more beneficial to the quality prediction task of SR
images.

Table 4. Ablation experiment on QADS

Branch1 Branch2 SROCC PLCC KROCC RMSE

1 � 0.9660 0.9665 0.8459 0.0934

2 � 0.9746 0.9753 0.8693 0.0726

3 � � 0.9776 0.9777 0.8771 0.0684

5 Conclusion

In this paper, we propose a new dual-stream NR-SRIQA network named
LAGFBN. Branch 1 uses convolutional neural network to capture local fea-
tures, and branch 2 utilizes the self-attention mechanism in vision transformer
to capture global features. In order to better simulate the visual characteristics
of human visual system, we feed the fused features into the feature pooling mod-
ule of two-branch architecture, and the final prediction score can be obtained
by the weighted summation of the score map and the weight map. The exper-
imental results show that proposed LAGFBN achieves better performance on
benchmark datasets.
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Abstract. Super-resolution reconstruction stands as a critical task
within the domain of computer vision. To enhance texture informa-
tion extraction and improve visual perception, we introduce the Multi-
Scale Hybrid Attention Network (MSHA), a novel single-image super-
resolution model engineered to augment image global processing capa-
bilities while accentuating detail reconstruction. The MSHA architecture
seamlessly integrates a Multi-Scale Feature Block (MFB) for comprehen-
sive feature extraction and a Parallel Hybrid Attention Module (PHA)
for refining detail reconstruction capabilities. Through extensive experi-
mentation and comparative analyses against state-of-the-art models, we
substantiate the superior performance of the MSHA network in produc-
ing high-quality super-resolution images. Our methodology effectively
addresses the shortcomings of existing approaches by emphasizing multi-
scale feature extraction and detail reconstruction, thereby significantly
advancing the field of image super-resolution.

Keywords: Multi-scale Feature Extraction · Parallel Hybrid
Attention · Single Image Super-Resolution

1 Introduction

Image super-resolution is a pivotal technique in image processing, dedicated to
reinstating intricate details in high-resolution images from their low-resolution
counterparts. Within the domain of image super-resolution, methodologies can
be classified into two distinct categories based on the quantity of input images:
single-image approaches and multi-image approaches. Single-image techniques
predominantly adopt two strategies: interpolation-based and learning-based
methodologies [1]. Interpolation-based approaches elevate the resolution of low-
resolution images through interpolation, often leading to blurred and distorted
outputs [2]. Conversely, learning-based methodologies leverage deep learning
models to assimilate image mapping relationships from extensive high-resolution
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image datasets [3], subsequently applying these learned relationships to low-
resolution inputs to yield clearer and more authentic high-resolution recon-
structions. Prominent examples of such methodologies encompass the Super-
Resolution Convolutional Neural Network (SRCNN) [4], Efficient Sub-Pixel Con-
volutional Neural Network (ESPCN) [5], and Super-Resolution Using a Gen-
erative Adversarial Network (SRGAN) [6], which have demonstrated remark-
able performance in advancing image super-resolution techniques. Conversely,
multi-image methodologies harness multiple low-resolution images to gener-
ate corresponding high-resolution reconstructions. Among these approaches,
motion estimation-based methodologies exploit motion data among multiple
low-resolution images to recuperate detailed information in the resulting high-
resolution reconstruction, whereas self-similarity-based methodologies capital-
ize on self-similarity patterns within multiple low-resolution images to extract
detailed information in the high-resolution reconstruction. By amalgamating
information from multiple low-resolution inputs, these methodologies yield more
precise and accurate high-resolution outputs.

With the proliferation of deep learning methodologies in recent years,
learning-based single-image techniques have emerged as potent means to gen-
erate high-fidelity super-resolution imagery. These approaches excel by adeptly
capturing intricate image mapping relationships through the utilization of
sophisticated deep learning architectures. This trend, coupled with inherent
drawbacks associated with multi-image methodologies, notably high data pro-
cessing and computational expenses, has established single-image techniques
as the predominant approach adopted across both industrial and academic
domains.

In 2014, Dong et al. introduced the Super-Resolution Convolutional Neu-
ral Network (SRCNN), a seminal contribution that revolutionized single-image
super-resolution (SISR) by leveraging a series of convolutional layers, rectified
linear units, and up-sampling layers to learn the mapping from low-resolution
to high-resolution images. SRCNN represented a significant breakthrough in
the application of convolutional neural network models to SISR tasks. The effi-
cacy of image super-resolution reconstruction employing convolutional neural
network models primarily stems from their depth and incorporation of resid-
ual connections. Numerous scholars have subsequently proposed representative
SISR methodologies, focusing on leveraging the depth and residual connectivity
of convolutional neural networks to advance the field.

Despite the considerable success achieved by existing SISR methods, there
persists a noticeable oversight in their design, particularly regarding the preserva-
tion of intricate details such as edge segments and dense textures. This limitation
poses a barrier to the generation of high-quality super-resolution (SR) images.
The introduction of attention mechanisms by previous researchers has brought
attention to the potential to prioritize more effective feature components dur-
ing the training process [7]. However, it is worth noting that these mechanisms,
including the channel attention mechanism, primarily focus on amplifying or
attenuating the influence of individual channels based on correlation informa-
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tion. While such mechanisms have shown promise in improving metrics like peak
signal-to-noise ratio (PSNR), they still fall short in addressing the finer details
of image boundaries and textures.

In light of these limitations, we propose the development of the Multi-Scale
Hybrid Attention (MSHA) network. This innovative approach incorporates a
multi-scale feature extraction mechanism, enabling a holistic analysis of images
from a global perspective. Central to this framework is the Multi-Scale Fea-
ture Extraction Block (MFB), which consists of an unconventional convolutional
layer, an activation layer, and a Multi-Feature Hybrid Extraction (MFHE) pro-
cess. The MFHE component utilizes null convolution following an expanded
receptive field, thereby facilitating the capture of features across a broader spec-
trum while maintaining model simplicity.

Furthermore, our proposed MSHA network leverages the Parallel Hybrid
Attention (PHA) module to refine the detail reconstruction capabilities of the
model. By generating feature maps at various scales and inputting them into
the PHA module, we ensure a comprehensive enhancement of the model’s abil-
ity to reconstruct fine details. This strategic integration of multi-scale feature
extraction and parallel hybrid attention mechanisms serves to overcome the lim-
itations of existing methodologies and facilitate the production of high-fidelity
SR images.

The main contributions of this article are as follows:

1. We propose the Multi-scale Hybrid Attention Network (MSHA), a novel
single-image super-resolution model designed to enhance image global pro-
cessing capabilities while prioritizing detail reconstruction.

2. We introduce the Multi-Scale Feature Block (MFB) to comprehensively cap-
ture essential features through multi-branch atrous convolution within the
Multi-Feature Hybrid Extraction (MFHE) process. Subsequently, the cor-
responding feature image is fed into the Parallel Hybrid Attention Module
(PHA) to augment feature expression across both channel space dimensions.
Ultimately, this facilitates detailed reconstruction.

3. We conduct multiple rounds of experiments and the results show that our
model outperforms other SOTA SISRs on multiple dimensions of multiple
metric datasets.

2 Related Work

2.1 Deep CNN-Based Networks

Dong et al. pioneered the use of Convolutional Neural Networks (CNNs) for
image super-resolution with their proposal of the SRCNN, marking a signifi-
cant milestone in CNN-based SR tasks. Following this breakthrough, researchers
embarked on optimizing network depth to further enhance performance. Kim et
al. [8] introduced residual connections to construct deeper networks, leading to
the development of the Very Deeply Structured Convolutional Network (VDSR),
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which achieved superior performance in image super-resolution. Shi et al. [refer-
ence] introduced an efficient sub-pixel convolutional layer in the ESPCN, facil-
itating the upscaling of low-resolution feature maps to high-resolution images
at the conclusion of training. This sub-pixel convolution has since emerged as a
prominent architectural choice in deep network design for super-resolution tasks.
Lim et al. [9] proposed the Enhanced Deep Residual Network (EDSR), refining
the residual network architecture for super-resolution by eliminating unnecessary
modules like batch normalization, thereby enhancing efficiency. Ahn [10] intro-
duced the Cascaded Residual Network (CARN), a neural network architecture
featuring cascaded modules and multiple shortcut connections, effectively lever-
aging multilevel representations to boost performance in image super-resolution
tasks.

2.2 Enhenced Deep Residual Networks

The Enhanced Deep Residual Network (EDSR) stands as a cornerstone in image
super-resolution tasks, elevating the performance of deep convolutional networks
to new heights. Its significance is underscored by its selection as the baseline
model in our study. In the Super-Resolution Residual Network (SRResNet) [6],
the residual block comprises two batch normalization layers, two convolutional
layers, a Rectified Linear Unit (ReLU) activation function, and residual con-
nections. While batch normalization serves to expedite model convergence and
mitigate overfitting-a widely acknowledged benefit across various deep learning
tasks-it can inadvertently smooth out reconstructed super-resolution images,
leading to texture loss. Thus, EDSR strategically omits batch normalization
from its ResBlock. Moreover, to enhance model complexity, EDSR augments
the number of output channels in the ResBlock to 256 and stacks 32 blocks for
profound feature extraction. This architectural refinement underscores EDSR’s
capability to generate reconstruction results surpassing those of competing algo-
rithms. It substantiates the notion that a judiciously chosen network depth is
pivotal in achieving superior performance in image super-resolution tasks.

2.3 Multi-scale Feature Fusion

Multi-scale feature fusion has become key to improving the performance of com-
puter vision models, enabling the integration of features at different scales to cap-
ture both fine and coarse details. For example, Chen et al. (2021) [27] enhanced
the detection capability of target objects by using multiple inputs to improve the
extraction of effective information through multi-scale feature fusion. Similarly,
Zhu et al. (2024) [28] proposed ConvNeXtFF, which employs multi-level down-
sampling to obtain contextual information at different scales, thereby improv-
ing segmentation performance. In medical image analysis, Xie et al. (2023) [23]
introduced a structure using dilated convolution to capture multi-scale features,
demonstrating its effectiveness in image super-resolution tasks. Building upon
the structure proposed by Xie et al., our work introduces the MSHA model,
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which fully utilizes and integrates the information obtained from multi-scale
feature processing.

3 Methodology

3.1 Network Architecture

As depicted in Fig. 1, the entire network architecture is delineated into three
distinct components: shallow feature extraction, deep feature extraction, and
super-resolution reconstruction. This architectural configuration, as evidenced
by prior research [11,12], has proven highly efficacious for image super-resolution
(SR) tasks. In the shallow feature extraction stage, a single-layer convolution is
employed to extract low-frequency information directly from the input image
[3,9]. This extracted structure serves as the foundation for subsequent deep fea-
ture extraction, ensuring the preservation of essential low-frequency components
inherent to the image.

The deep feature extraction network is structured with multiple Residual
Convolution Blocks (ResBlocks) and Multiscale Feature Blocks (MFBs). The
MFBs are crucial for recalibrating feature weights and enhancing attention to
detailed image components. This mechanism significantly enhances the network’s
capacity to capture fine-grained information essential for high-quality super-
resolution reconstruction. Subsequently, the deeply extracted features are prop-
agated through the reconstruction network to produce the high-resolution (HR)
image. The reconstruction network consists of a varying number of convolu-
tions and sub-pixel convolutions, tailored to meet the specific requirements of
the desired reconstruction size. This modular approach ensures adaptability and
scalability in generating HR images across diverse resolution specifications.

Fig. 1. General structure of our proposed Multi-Scale Hybrid Attention (MSHA) model

The data undergoes processing within the network as follows: the low-
resolution image (LR) ILR ∈ R

H×W×Cin is initially inputted into the network
and forwarded to the shallow feature extraction network. Here, it undergoes a
single layer of convolutional processing to derive shallow features F0 ∈ R

H×W×C .

F0 = CSF (ILR) (1)

CSF (•) represents the convolution operation that performs shallow feature
extraction. Subsequently the shallow features F0 are fed into the deep feature
extraction network for processing.
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FDF = CMR (F0) (2)

The multi-scale and residual operations within the deep feature extraction
network are denoted as CMR(•) executed through MFBs and ResBlocks. Sub-
sequently, the features FDF , obtained after full image extraction, progress to
the final stage of the model. Here, they are transmitted to the super-resolution
reconstruction network, where a high-quality SR image ILR ∈ R

H×W×Cout is
generated through amplification via sub-pixel convolution.

ISR = CUP (FDF ) (3)

Subsequently, our MSHA model employs the L1 loss function to optimize its
parameters.

Fig. 2. The composition of Multi-scale Feature Block (MFB).

3.2 Multi-Scale Feature Block

The structure of our Multi-Scale Feature Module is illustrated in Fig. 2. The
input feature initially undergoes convolutional processing, as depicted by the
contents enclosed within the dotted box in the figure. We employ the Gaussian
Error Linear Unit (GELU) activation function, which has been shown to exhibit
exceptional performance in various image processing tasks [22,23]. Unlike the
baseline ResBlock, which omits Batch Normalization (BN), we reintroduce BN
in our convolutional group. This choice is driven by the subsequent weighting
operation on the features. BN enhances the regularization of feature represen-
tations and helps adjust input distributions to maintain stability. Consequently,
this fosters more effective learning of feature relationships by the attention mech-
anism, ensuring robustness against distribution fluctuations.

F
′
0 = CG (F0) (4)

After the convolution group processing, F
′
0 ∈ R

H×W×C and F0 exchange
information through the Local Feature Fusion (LFF) mechanism and then enter
the multi-feature hybrid extraction module.

F
′′
0 = CLF

(
F0 + F

′
0

)
(5)
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Through iterative learning processes within the Multi-Feature Hybrid Extrac-
tion Module, intricate features are comprehensively captured, and the feature
weights of each channel are judiciously allocated. Once fine-grained processing is
accomplished, the next step involves acquiring low-level global features to com-
plement these details. To facilitate the exchange of high-level and low-level fea-
ture information, we employ Global Feature Fusion (GFF). Notably, rather than
directly adding features, a multiplication operation is conducted. This meticulous
approach enables precise control over information flow, minimizing information
loss, and empowering the model to discern the relative importance of features.

F1 = MUL
(
MFHE

(
F

′′
0

)
+ F0

)
(6)

Fig. 3. Multi-Feature Hybrid Extraction(MFHE) in MFB.

3.3 Multi-Feature Hybrid Extraction

As implied by its name, the Multi-Feature Hybrid Extraction module encom-
passes both extraction and fusion processes. As illustrated in Fig. 3, the input
feature Fn undergoes four 3 × 3 atrous convolution layers with varying expan-
sion rates, enabling the capture of multi-scale image features. Following each
branch’s convolution operation, the processed features are shared across adja-
cent branches to facilitate information exchange across different scales. This fea-
ture extraction segment not only maintains network depth in a parallel manner
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but also enhances network width, thereby improving the network’s capability to
extract both fine local textures and broad global semantic information.

After completing the feature extraction operation in each branch, the result-
ing feature maps are passed to the PHA module for hybrid weighting operations.
Subsequently, the input feature Fn and the features obtained through the hybrid
extraction process are fused via residual connections to produce the output fea-
ture F

′
n.

F
′
n = PHA (Cd=1 (Fn1)) +

∑
PHA

(
Cd=i

(
F

′
nj

+ Fnj+1

))i=(2,4,8)

j=(1,2,3)
+ Fn (7)

3.4 Parallel Hybrid Attention

The PHA mechanism extends from channel attention principles by integrat-
ing channel and spatial dimensions to extract comprehensive and detailed key
features. It also enables the fusion of features across various scales. Detailed
illustrations of PHA are provided in Fig. 4.

Fig. 4. Illustration of Parallel Hybrid Attention (PHA) module.

Given M feature representations
[
F

′
n1

, F
′
n2

, . . . , F
′
nm

]
∈ R

C×H×W of iden-
tical sizes, the global feature representation is initially derived through global
average pooling, capturing long-distance dependencies in both horizontal and
vertical directions while preserving positional relationships. Subsequently, 1 × 1
convolutional operation models inter-channel correlations, generating channel
descriptors via a sigmoid activation function.

Xni
∈ R

1×1×W = sigmiod
(
Conv

(
AvgPoolH

(
F

′
n1

)))
i = (1, . . . ,m) (8)
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Ynj
∈ R

1×H×1 = sigmiod
(
Conv

(
AvgPoolW

(
F

′
n1

)))
j = (1, . . . , m) (9)

Following this, two sets of orthogonal global features, each corresponding to
M scales, are concatenated along the second dimension, representing the chan-
nel dimension, resulting in feature sets X

′ ∈ R
M×1×W and Y

′ ∈ R
M×H×1.

Subsequently, multi-scale channel weights are derived through the application
of the Softmax function along the channel dimension. Finally, the features are
element-wise multiplied by the corresponding normalized weights, and the pro-
cessed features are summed to obtain the new multi-scale mixed feature F

′
n.

Wx [:, i, : ] ∈ R
1×1×W Wy [:, i, :] ∈ R

1×H×1 (10)

F
′
n = Fn + Wx [:, i, : ]

⊙
F

′
ni

+ Wy [:, j, :]
⊙

F
′
nj

i=(1,...m)

j=(1,...,m)
(11)

4 Experiments

4.1 Datasets and Metrics

In our experiments, we employed the DIV2K dataset for training, which encom-
passes 800 high-quality images. This dataset offers a wide range of image types,
including natural landscapes, portraits, animals, and more, making it well-suited
for assessing the generalizability of image super-resolution algorithms. For test-
ing purposes, we utilized standard datasets such as Set5, Set14, B100, Urban100,
and Manga109. To evaluate the results, we measured the Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index (SSIM) metrics specifically on
the Y channel within the transformed YCbCr color space.

4.2 Experiment Details

For Multi-Features Extraction, we utilize atrous rates of (2, 4, 8), which have
been validated through extensive experiments to exhibit exceptional performance
for the MFEB. The complete model comprises 32 ResBlocks and 5 MFBs. More-
over, all ResBlock intermediate feature channels align with those in EDSR, set to
256. Regarding input data, we utilize LR images with a batch size of 64× 4 along-
side their corresponding HR counterparts. The learning rate is initialized to 1e-4
and is halved every 200 epochs, ultimately reaching the final model after 1000
epochs. We employ the ADAM optimizer with parameters β1 = 0.9,β2 = 0.999,
and ε = 10−8. The experiments are conducted using the PyTorch framework and
trained on an Nvidia 3090 GPU for efficient computation.

4.3 Ablation Study

In this section, we undertake multiple sets of ablation experiments on the pro-
posed Multi-scale Feature Block o assess the efficiency of related modules. Ini-
tially, we address the necessity of normalization operations within the MFB.
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Table 1. Effectiveness of relevant components in MFB in the Set14 when scale is 2.

Module PSNR/SSIM

Pure 33.65/0.9172

Pure+BN 33.72/0.9183

Pure+LFF 33.70/0.9173

Pure+GLF 33.76/0.9189

Pure+BN+LFF+GLF(MFB) 34.04/0.9228

While normalization operations are omitted in many super-resolution reconstruc-
tion networks, our MFB requires normalization to facilitate subsequent hybrid
extraction processes. Simultaneously, we hypothesize that both the Local Fea-
ture Fusion within the convolution group and the overall Global Feature Fusion
play corresponding roles in capturing effective features, as delineated in Table 1.

Next, we delve into the investigation of the number of MFBs. While the
performance of deep convolutional neural networks is partly attributed to the
depth of their stacking, in super-resolution tasks, it’s known that deeper networks
may not always yield better results; the optimal depth is crucial. Accordingly,
we insert 5 ResBlocks into the baseline for each MFB interval. The exploration
results regarding the number of MFBs employed will be presented in Table 2.

Table 2. Results of different usage of MFB in the network for each batchmarks at x4
scale.

Number of Blocks Set5 Set14 B100 Urban100 Mange109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

3 32.31 0.8956 28.70 0.7834 27.63 0.7386 26.20 0.7875 30.70 0.9107

4 32.43 0.8953 28.78 0.7863 27.70 0.7415 26.72 0.8060 31.14 0.9169

5 32.58 0.9000 28.85 0.7875 27.75 0.7423 26.89 0.8072 31.28 0.9181

6 32.40 0.8946 28.78 0.7861 27.71 0.7415 26.70 0.8060 31.02 0.9154

7 32.37 0.8942 28.76 0.7858 27.64 0.7392 26.53 0.8042 30.87 0.9130

Finally, we selected several models and conducted a comparative analysis of
FLOPs, parameter count, and running time with the proposed MSHA, as pre-
sented in Table 3. Our findings indicate that, in order to comprehensively capture
effective features, our model exhibits an increased computational workload and
parameter count relative to the baseline. However, through optimization of run-
ning time and overall performance, we have achieved superior results.

The results substantiate our hypothesis that blindly increasing network depth
does not necessarily lead to improved performance. Additionally, it underscores
the notion that the attention mechanism should not be overused. Improper usage
not only escalates computational costs and reduces model efficiency but also
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Table 3. Comparing the complexity of different Methods, Complexity metrics and
PSNR are evaluated on Manga109 (x2)

Metrics

Method
MSRN HRAN EDSR RDN MSHA

FLOPs(G) 297.6 388.5 2043.7 1109.8 2089.2

Param(M) 5.9 7.9 40.7 20.3 52.1

PSNR(dB) 38.82 39.12 39.10 39.18 39.47

Runtime(s) 0.06 0.1565 0.09 0.1132 0.0987

risks overfitting irrelevant information in the data, consequently diminishing the
model’s generalization ability and overall performance.

4.4 Comparisons with State-of-the-Arts

To assess the performance of MSHA, we conduct comparative evaluations against
10 state-of-the-art methods, namely, WMRN [14], MSRN [15], SeaNet [16],
EDSR [9], RDN [3], SRFBN [17], DBPN [18], WDRN [19], MGAN [20], HRAN
[21], DDistill [24], TPCNN [25], and ESRT [26]. The datasets and visualization
results utilized in the comparisons are sourced from the respective authors of
each paper or reproduced independently.

Quantitative Evaluation. As depicted in Table 4, a clear comparison between
our model and other SOTA methods is presented. It’s evident that due to
MSHA’s multi-scale fusion functionality, its adeptness at capturing global infor-
mation and collecting detailed textures surpasses that of other SOTAs. This
superiority is corroborated by both qualitative observations and numerical indi-
cators. Across all benchmarks, our MSHA consistently outperforms other meth-
ods in terms of PSNR and SSIM at nearly every scale, affirming its efficacy in
enhancing super-resolution image quality.

Qualitative Evaluation. To experience the actual perceptual impact of
MSHA-processed images, we present the reconstruction results after applying
MSHA alongside the results of other methods on each benchmark dataset. As
illustrated in Figs. 5, we evaluate the image reconstruction effects of different
methods across four benchmarks, each at a scale factor of x4. From these results,
it’s evident that most methods struggle to achieve satisfactory completion in the
detailed texture areas, yielding only vague results. Conversely, MSHA consis-
tently produces clearer and more natural textures. This compelling outcome
further underscores the efficacy of our multi-scale hybrid attention mechanism
in image super-resolution tasks.
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Table 4. Quantitative evaluation of the average values of PSNR and SSIM of SOTA
methods on several benchmarks with scale factor ×2, ×3, and ×4. Red and blue suggest
optimal and suboptimal results.

Method Scale Set5 Set14 B100 Urban100 Mange109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

WMRN[14] x2 37.83 0.9599 33.41 0.9162 32.08 0.8984 31.68 0.9241 38.27 0.9763

MSRN[15] 38.08 0.9605 33.74 0.9170 32.23 0.9013 32.22 0.9326 38.82 0.9868

SeaNet[16] 38.15 0.9611 33.86 0.9198 32.31 0.9013 32.68 0.9332 38.76 0.9774

EDSR[9] 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773

RDN[13] 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780

SRFBN[17] 38.11 0.9609 33.82 0.9196 32.29 0.9010 32.62 0.9328 39.08 0.9779

DBPN[18] 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 38.89 0.9775

WDRN[19] 38.19 0.9631 33.39 0.9212 32.27 0.9014 32.64 0.9372 - -

MGAN[20] 38.16 0.9612 33.83 0.9198 32.28 0.9009 32.75 0.9340 39.11 0.9778

HRAN[21] 38.32 0.9613 33.85 0.9200 32.34 0.9016 32.95 0.9357 39.12 0.9780

DDistill[24] 38.08 0.9608 33.73 0.9195 32.35 0.9007 32.39 0.9301 39.16 0.9781

TPCNN[25] 38.03 0.9613 33.67 0.9187 32.25 0.9014 31.76 0.9257 - -

ESRT[26] - - - - - - - - - -

MSHA(Ours) x2 38.39 0.9623 34.04 0.9228 32.40 0.9023 33.24 0.9376 39.47 0.9787

WMRN[14] x3 34.11 0.9251 30.17 0.8390 28.98 0.8021 27.80 0.8448 33.07 0.9413

MSRN[15] 34.38 0.9262 30.34 0.8395 29.08 0.8041 28.08 0.8554 33.44 0.9427

SeaNet[16] 34.65 0.9290 30.53 0.8461 29.23 0.8081 28.68 0.8620 33.73 0.9463

EDSR[9] 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476

RDN[13] 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653 34.13 0.9484

SRFBN[17] 34.70 0.9292 30.51 0.8461 29.24 0.8084 28.73 0.8461 34.18 0.9481

WDRN[19] 34.62 0.9292 30.50 0.8454 29.20 0.8085 28.59 0.8625 - -

MGAN[20] 34.65 0.9292 30.51 0.8460 29.22 0.8086 28.61 0.8621 34.00 0.9474

HRAN[21] 34.69 0.9292 30.54 0.8463 29.25 0.8089 28.76 0.8645 34.08 0.9479

DDistill[24] 34.43 0.9276 30.39 0.8432 29.16 0.8070 28.31 0.8546 33.97 0.9465

TPCNN[25] 34.43 0.9281 30.48 0.8451 29.16 0.8085 28.59 0.8625 - -

ESRT[26] 34.42 0.9268 30.43 0.8433 29.15 0.8063 28.46 0.8574 33.95 0.9455

MSHA(Ours) x3 34.79 0.9308 30.67 0.8479 29.29 0.8102 28.95 0.8678 34.41 0.9493

WMRN[14] x4 32.00 0.8925 28.47 0.7786 27.49 0.7328 25.89 0.7789 30.11 0.9040

MSRN[15] 32.07 0.8903 28.60 0.7751 27.52 0.7273 26.04 0.7896 30.17 0.9034

SeaNet[16] 32.44 0.8981 28.81 0.7872 27.70 0.7399 26.50 0.7976 30.74 0.9129

EDSR[9] 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148

RDN[13] 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151

SRFBN[17] 32.47 0.8983 28.81 0.7868 27.72 0.7409 26.60 0.8015 31.15 0.9160

DBPN [18] 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137

WDRN[19] 32.43 0.8985 28.75 0.7862 27.65 0.7384 26.41 0.7975 - -

MGAN[20] 32.45 0.8980 28.74 0.7852 27.68 0.7400 26.74 0.7981 30.81 0.9131

HRAN[21] 32.43 0.8976 28.76 0.7863 27.70 0.7407 26.55 0.8006 30.94 0.9143

DDistill[24] 32.29 0.8961 28.69 0.7833 27.65 0.7385 26.25 0.7893 30.79 0.9098

TPCNN[25] 32.14 0.8957 28.72 0.7846 27.62 0.7381 26.00 0.7835 - -

ESRT[26] 32.19 0.8947 28.69 0.7833 27.69 0.7379 26.39 0.7962 30.75 0.9100

MSHA(Ours) x4 32.58 0.9000 28.85 0.7875 27.75 0.7423 26.89 0.8072 31.28 0.9181
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Fig. 5. Visualizing the results of MSHA and SOTAs at a scale of ×4, it is clear to
perceive that the quality of MSHA’s reconstruction for details is higher than that of
most of the other models.
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5 Conclusion

To address the limitations of existing SISR methods in recognizing detailed tex-
tures and processing images with larger field of views, we introduce a novel SISR
approach called the Multi-Scale Hybrid Attention Network (MSHA). MSHA
leverages a larger receptive field at multiple scales during feature extraction,
enabling better inference based on adjacent information. Additionally, MSHA
prioritizes detail enhancement, leading to significant improvements in the per-
ceptual quality of the reconstructed images.

References

1. Freeman, W.T.: Learning low-level vision. Int. J. Comput. Vision 40, 25–47 (2000)
2. Zhang, L.: An edge-guided image interpolation algorithm via directional filtering

and data fusion. IEEE Trans. Image Process. 15(8), 2226–2238 (2006)
3. Zhang Y., Tian Y.: Residual dense network for image super-resolution. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2472–2481 (2018)

4. Dong, C.: Image super-resolution using deep convolutional networks. IEEE Trans.
Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

5. Shi, W., Caballero, J.: Real-time single image and video super-resolution using
an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

6. Ledig, C., Theis, L.: Photo-realistic single image super-resolution using a generative
adversarial network. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4681–4690 (2017)

7. Mnih, V.: Recurrent models of visual attention. In: Advances in Neural Information
Processing Systems, vol. 27 (2014)

8. Kim, J., Lee, J.K.: Accurate image super-resolution using very deep convolutional
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1646–1654 (2016)

9. Lim, B., Son, S.: Enhanced deep residual networks for single image super-
resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition Workshops, pp. 136–144 (2017)

10. Ahn, N., Kang, B.: Fast, accurate, and lightweight super-resolution with cascading
residual network. In: Proceedings of the European Conference on Computer Vision,
pp. 252–268 (2018)

11. He, K., Zhang, X.: Deep residual learning for image recognition. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

12. Zhang, Y., Li, K.: Image super-resolution using very deep residual channel atten-
tion networks. In: Proceedings of the European Conference on Computer Vision,
pp. 286–301 (2018)

13. Hendrycks, D., Gimpel, K.: Learning low-level vision. Int. J. Comput. Vision 40,
25–47 (2000)

14. Sun, L.: Lightweight image super-resolution via weighted multi-scale residual net-
work. IEEE/CAA J. Autom. Sinica 8(7), 1271–1280 (2021)

15. Li, J., Fang, F.: Multi-scale residual network for image super-resolution. In: Pro-
ceedings of the European Conference on Computer Vision, pp. 517–532 (2018)



388 N. Wang et al.

16. Fang, F.: Soft-edge assisted network for single image super-resolution. IEEE Trans.
Image Process. 29, 4656–4668 (2020)

17. Li Z,. Yang, J.: Feedback network for image super-resolution. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3867–
3876 (2019)

18. Haris, M., Shakhnarovich, G.: Deep back-projection networks for super-resolution.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 1664–1673 (2018)

19. Xin, J.: Wavelet-based dual recursive network for image super-resolution. IEEE
Trans. Neural Netw. Learn. Syst. 33(2), 707–720 (2020)

20. Wu, H.: Multi-grained attention networks for single image super-resolution. IEEE
Trans. Circuits Syst. Video Technol. 31(2), 512–522 (2020)

21. Muqeet, A.: HRAN: hybrid residual attention network for single image super-
resolution. IEEE Access 7, 137020–137029 (2019)

22. Hendrycks, D.: Gaussian error linear units. arXiv preprint arXiv:1606.08415, (2016)
23. Xie, L., Li, C.: SHISRCNet: super-resolution and classification network for low-

resolution breast cancer histopathology image. In: Proceedings of the International
Conference on Medical Image Computing and Computer-Assisted Intervention, pp.
23–32 (2023)

24. Wang, Y.: Ddistill-SR: Reparameterized dynamic distillation network for light-
weight image super-resolution. IEEE Trans. Multimedia 33, 7222–7234 (2023)

25. Alireza, E.: Ultralight-weight three-prior convolutional neural network for single
image super resolution. IEEE Trans. Artif. Intell. 4(6), 1724–1738 (2023)

26. Zhisheng, L.: Transformer for single image super-resolution. In: Proceedings of
the 35th IEEE/CVF Conference on Computer Vision and Pattern Recognition
workshops, pp. 456–465 (2022)

27. Qiang, C.: You only look one-level feature. In: Proceedings of the 34th IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 13034–13043 (2021)

28. HaoChen, Z.: Effective image tampering localization with multi-scale ConvNeXt
feature fusion. J. Vis. Commun. Image Represent. 98, 1724–1738 (2024)

http://arxiv.org/abs/1606.08415


A Sinkhorn Regularized Adversarial
Network for Image Guided DEM
Super-resolution Using Frequency

Selective Hybrid Graph Transformer

Subhajit Paul(B) and Ashutosh Gupta

Space Applications Centre (SAC), ISRO, Ahmedabad, India
{subhajitpaul,ashutoshg}@sac.isro.gov.in

Abstract. Digital Elevation Model (DEM) is an essential aspect in the
remote sensing (RS) domain to analyze various applications related to
surface elevations. Here, we address the generation of high-resolution
(HR) DEMs using HR multi-spectral (MX) satellite imagery as a guide
by introducing a novel hybrid transformer model consisting of Densely
connected Multi-Residual Block (DMRB) and multi-headed Frequency
Selective Graph Attention (M-FSGA). To promptly regulate this pro-
cess, we utilize the notion of discriminator spatial maps as the condi-
tional attention to the MX guide. Further, we present a novel adversarial
objective related to optimizing Sinkhorn distance with classical GAN. In
this regard, we provide both theoretical and empirical substantiation of
better performance in terms of vanishing gradient issues and numerical
convergence. Based on our experiments on 4 different DEM datasets, we
demonstrate both qualitative and quantitative comparisons with avail-
able baseline methods and show that the performance of our proposed
model is superior to others with sharper details and minimal errors.

Keywords: Sinkhorn loss · Graph Attention · Adversarial learning

1 Introduction

The Digital Elevation Model (DEM) is a digital representation of any three-
dimensional surface. It is immensely useful in precision satellite data process-
ing, geographic information systems, hydrological studies, urban planning [27],
and many other key applications. The main sources of DEM generation are
terrestrial, airborne, or spaceborne, depending on the platform used for data
acquisition. However, each of these scenarios has its own set of advantages and
disadvantages. While elevation models generated using terrestrial and airborne
systems have a high spatial resolution, their coverage is quite restricted and
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they typically suffer from several issues and systematic errors [22]. Space-borne
missions such as SRTM, and ASTER [1,10], on the other hand, have almost
global coverage but lack the spatial resolution. Due to the emerging significance
and diverse applications of DEM, both its accuracy and resolution have a sub-
stantial impact in different fields of operation [18]. However, HR DEM products
are expensive, as they require special acquisition and processing techniques. As
an alternative to generating HR DEM from scratch, enhancing the resolution
(super-resolution) of existing DEM datasets can be seen as the most optimal
strategy to address the shortfall. Hence, we intend to take a step in this direc-
tion to generate HR DEM and, to make it more tractable, we formulate this
problem in an image super-resolution (SR) setting. As shown in Fig. 1, our pri-
mary objective is to synthesize HR DEM provided its coarser resolution and
existing False Colour Composite (FCC) of HR MX imagery.

Fig. 1. Two sample results of DEM SR consisting HR FCC of NIR(R), R(G), and
G(B), Bicubic interpolated LR DEM, and Generated HR DEM, respectively.

Recent advances in deep learning (DL) show compelling progress over con-
ventional approaches for various computer vision applications like image or video
SR. However, we found that very few methods approach the problem of DEM
SR, especially, for real-world datasets. We propose a novel framework, which
effectively addresses this problem. Our key contributions can be summarized as

1. We propose a novel architecture for DEM SR based on a hybrid transformer
block consisting of a Densely connected Multi-Residual Block (DMRB) and
multi-headed Frequency Selective Graph Attention (M-FSGA), which effec-
tively utilizes information from an HR MX image as a guide by conditioning
it with a discriminative spatial self-attention (DSA).

2. We develop and demonstrate SiRAN, a framework based on Sinkhorn regu-
larized adversarial learning. We provide theoretical and empirical justification
for its effectiveness in resolving the vanishing gradient issue while leveraging
tighter iteration complexity.

3. We generate our own dataset where we take realistic coarse resolution data
instead of considering bicubic downsampled HR image as input.

4. We perform experiments to assess the performance of our model along with
ablation studies to show the impact of the different configuration choices.
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2 Related Work

Traditional DEM super-resolution (SR) methods include interpolation-based
techniques like linear, and bicubic, but they under-perform at high-frequency
regions producing smoothed outputs. To preserve edge information, multiple
reconstruction-based methods like steering kernel regression (SKR) [34] or non-
local means (NLM) [28], have also been proposed. Though they can fulfill their
primary objective, they cannot produce SR DEM at a large magnification factor.

DEM is an essential component for RS applications, but research on DEM
SR is still limited. After the introduction of SR using Convolutional Neural Net-
work (SRCNN) in the category of single image SR (SISR), its variant D-SRCNN
was proposed by [5] to address the DEM SR problem. Later, Xu et al. [38] uses
the concept of transfer learning where an EDSR (Enhanced Deep SR) [20], pre-
trained over natural images, is taken to obtain an HR gradient map which is
fine-tuned to generate HR DEM. After the introduction of Generative Adver-
sarial Network (GAN), a substantial number of methods have evolved in the
field of SR like Super-resolution using GANs (SRGAN). Based on this recently,
Benkir et al. [8] proposed a DEM SR model, namely D-SRGAN, and later they
suggested another model based on EffecientNetV2 [7] for DEM SISR. Although
D-SRGAN produces good perceptual SR DEMs, it usually results in noisy pre-
dicted samples. They also suffer from issues of conventional GAN, mode col-
lapse, and vanishing gradients. To resolve this, Wasserstein GAN (WGAN) [2]
and its other variants [14] have been introduced. However, these methods are
computationally expensive, which can be untangled by introducing an entropic
regularization term [6]. In this study, we explore the efficacy of sinkhorn distance
[13] in DEM SR, which is one of the forms of entropic optimal transport (EOT).

Recently, Li et al. [15,24] proposed DEM SR algorithms using a global Krig-
ing interpolation based information supplement module and a CNN based local
feature generation module. It results preferably as a SISR technique, but, in prac-
tical scenarios, it generates artifacts near boundary regions and are unable to
reproduce the very fine ground truth (GT) details in the predicted SR. Hence,
here we propose a guided SR technique which is a key research area in com-
puter vision, especially for depth estimation. One of the pioneering works in this
domain is [17], where Kim et al. proposes Deformable Kernel Networks (DKN)
and Faster DKN (FDKN) which learn sparse and spatially invariant filter ker-
nels. Later, He et al. [16] exerts a high-frequency guided module to embed the
guide details in the depth map. Recently, Metzger et al. [25] has achieved baseline
performance by adapting the concept of guided anisotropic diffusion with CNNs.
Our proposed method aligns with such depth SR methods as we leverage impor-
tant HR MX features to generate SR DEM. To address this promptly, we incor-
porate a graph-based attention due to their efficacy in representation learning
for image restoration tasks [23,32]. However, these works are extended versions
of graph neural networks (GNNs) which suffer from over-smoothing problems.
To resolve this, [39,40] utilizes GNN based on filtering in the frequency domain.
Despite its efficacy in different DL tasks, it is not properly explored for vision
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tasks. Hence, here we design our graph attention based on its selected frequen-
cies.

Fig. 2. Overview of proposed framework. (a) The generator G have multiple HTBs
with parallelly connected (c) DMRB and (d) FSGT. Given guide z and upsampled LR
DEM x̃ to G, each HTB extracts global selective frequency information by FSGT and
dense local features via DMRBs in latent space. (b) The discriminator D consists of
only DMRBs. Besides classifying predicted ŷ and GT y as real or fake, D also estimates
DSA DSA with input x̃. DSA is passed through a PSA [21] block to estimate As which
acted as spatial attention for HR guide z during passing it to G along x̃.

3 Methodology

In Fig. 2, we have illustrated the architecture of our framework. The generator
G takes upsampled low-resolution (LR) DEM x̃, and HR MX image guide z,
consisting FCC of NIR, red and green bands as input. Let z ∼ PZ , where z ∈
R

H× W×3 with PZ being the joint distribution of FCC composition and x̃ ∼ Px̃,
where Px̃ constitute of upsampled LR DEM with x̃ ∈ R

H×W . Let ŷ ∼ PGθ
be

the predicted SR DEM where PGθ
is the generator distribution parameterized by

θ ∈ Θ, parameters of set of all possible generators. Let y ∼ Py with Py represents
the target HR DEM distribution. The discriminator D classifies y and ŷ as real
or fake, and is assumed to be parameterized by ψ ∈ Ψ , parameters of a set of all
possible discriminators. Our D is also designed to estimate spatial attention DSA

from its latent space features with LR DEM x̃ as input as shown in Fig. 2. Since
DSA contains discriminative information of HR DEM, it acts as spatial attention
for z allowing the model to focus on salient parts of it and avoid generating out-
of-distribution (OOD) image information in the predicted SR DEM. To ensure
this further, we process DSA through a self-attention (SA) block PSA [21] to
remove redundant semantics, resulting in an enhanced representative attention
map As as demonstrated in Fig. 2. Therefore, the predicted SR DEM (ŷ) is
estimated as ŷ = G(x̃, z � As), where � denotes element-wise multiplication.
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3.1 Network Architecture

As shown in Fig. 2, G is designed based on a novel hybrid transformer block
(HTB) [41,43] due to their effectiveness in capturing both long-distance as well
as local relations in image restoration tasks. Our HTB consists of a DMRB and
a FSGT block. DMRB is developed based on ResNet and DenseNet by using
both skip and dense connections. Each DMRB block is constituted of multiple
densely connected Residual Convolution Blocks (RCBs). DMRB enables efficient
context propagation and also stable gradient flow throughout the network while
allowing local dense feature extraction. We introduce FSGT to leverage the
extraction of global structural and positional relationships between spatially
distant but semantically related regions. We use similar design for D. Both
incorporate an encoder followed by a feature extractor and finally, a decoder.
The feature extractor in G consists of six HTBs while for D, it only consists of
six DMRBs to extract dense discriminative latent space features, which are used
as spatial attention to the HR MX guide. D also adds a Multi-Layer Perceptron
(MLP) layer to map its latent features into the required shape. We avoid using
batch normalization as it degrades the performance and gives sub-optimal results
for image SR [36] tasks. Next, we discuss the functionality of FSGT and DSA.

3.2 Frequency Selective Graph Transformer (FSGT) Module

To exploit high-frequency sharp details from HR guide and enhance latent fea-
ture representations, we propose a novel graph transformer, FSGT. As shown in
Fig. 3, for a given input Fin ∈ R

H×W×C , FSGT extracts N patches using the
patch generation method in W-MSA to construct the graph followed by a FSGA
block for graph processing. A graph is represented as G = (V, E) with nodes
V = {vi|vi ∈ R

hw×c, i = 1, ..., N}, where h, w and c denotes height, width and
channels for each patch represented as node and E is the set of all the edges
connecting these nodes. The edge weights are defined by an adjacency matrix
A ∈ R

N×N . The value of N is decided by the shape of each patch (h,w).
As shown in Fig. 3 (a), we build the graph connections by computing the

similarities [44] between the nodes after the linear transformation as Ai,j =
〈f1(vi), f2(vj)〉, where 〈·, ·〉 is the inner product, vi and vj are i-th and j-th node,
and f1 and f2 corresponds to 1 × 1 convolution. However, the generated graph
G is dense connecting every node to every other node. Thus, low similarities
between some nodes confuse the model on how close different nodes are in the
graph. This redundant information will hamper the objective and quality of
graph reconstruction. To tackle this, we design FSGA to focus on high-frequency
features and also generate a sparse representative graph.

Fig. 3(b) shows the detailed workflow of FSGA. Initially, the nodes V are
flattened out and converted to a matrix X ∈ R

N×hwc as shown in Fig. 3(a). It is
later projected to query (Q), key (K) and value (V) matrices with Q = XWq,
K = XWk and V = XWv, with Wq, Wk, and Wv being learnable projection
weights. However, instead of using K directly, we filter out certain nodes in X
based on graph Fourier transform (GFT) to generate filtered graph matrix as X̄.
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From this the updated key matrix is computed as K̂ = X̄Wk which is used to
get the attention as A = Softmax(QK̂T )/

√
d).

Fig. 3. Workflow of FSGT, (a) graph construction mechanism, (b) FSGA block

Graph signals can be analyzed in the frequency domain [31] by using normal-
ized Laplacian L = I − D− 1

2 AD− 1
2 , where I is the identity matrix and D is the

diagonal matrix with Dii =
∑

j Aij . Taking the eigen-decomposition of L, we
get: L = PΛP−1, where P is the eigen-vector matrix and Λ = diag([λ1, . . . , λN ])
is the diagonal eigen-value matrix with eigen values λi ∀i ∈ {1, . . . , N} ordered in
a ascending order. Then, the GFT of X is defined as X̃ = Fg(X) = PT X, where
P ∈ R

hwc×N (for this section, we use tilde for frequency domain signal). Sim-
ilarly, the inverse GFT (IGFT) is written as, X = F−1

g (X̃) = PX̃. Fg(·) and
F−1

g (·) denotes GFT and IGFT operation. Hence in GFT, the time domain is
graph space while the frequency domain is the eigen values [λ1, . . . , λN ] with each
λi being related to a particular frequency. To estimate the high-frequency, we
consider only higher-order eigen values as λ1 < λ2 ≤ . . . . . . ≤ λN . It results in
a sparse graph representation with significant frequency elements by blacking
out low-weighted edges as they result in lower eigen values. Hence, we define a
vector h̃ =

[
0 1

]T to act as a filter in frequency domain, where 0 = {0}k×hwc

is all-zero matrix, 1 = {1}(N−k)×hwc is all-one matrix and k is related to cut-off
eigen value λk. The final filtered graph matrix is obtained as Eq. 1.

X̄ = F−1
g (h̃ � Fg(X)) = P̄P̄T X, (1)

where, P̄ = P:,k:N are first k eigen vectors. Hence, the node feature aggrega-
tion occurs by taking a sparse representative version of A. It also reduces the
computational complexity of our attention module. As we are blacking out k
insignificant patches during key estimation, the effective complexity of our over-
all attention module is O((N − k)hwc) while it is O(Nh2w2c) for regular MSA.

Using X̄, we estimate the attention weights as X̂ as shown in Fig. 3 (b), from
which the updated node feature patches are generated as V̂ = {v̂i|v̂i ∈ R

hw×c}
by reshaping each node v̂i. The output of a FSGA is computed as Fout =
Fin + patch merger({v̂}N

i=1). For patch merging, we adapt the method used
in W-MSA. We also employ muti-headed attention (M-FSGA) and to stabilize
our training process, we dynamically select the value of k ∈ {
N

2 �, . . . , N − 1}
for different heads to ensure not to miss out significant features at different
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frequencies. The outcomes of M-FSGA ({Fj
out}j=M

j=1 ) are passed through a Feed
Forward Network (FFN) consisting of a concatenate and 1×1 convolution block
to aggregate them and project them to a desired shape as shown in Fig. 2 (d).

3.3 Discriminator Spatial Attention (DSA)

The feature maps from the latent space of D can be viewed as spatial attention
to the HR guide z. Since D performs binary classification, apparently, it cap-
tures the discriminative features in latent space. [9] introduced the concept of
transferring these domain-specific latent features as attention to G. We use this
similar notion to help G focus on the salient parts of the HR guide while also
helping to avoid the generation of redundant image features in SR DEM.

Therefore, besides classification, D has another major functional branch,
DSA, to approximate spatial attention maps. For any input m, DSA is used to
estimate the normalized spatial feature maps, DSA : RH×W → [0, 1]H×W . Let D
consist of t DMRBs and ai be the activation maps after ith DMRB with c chan-
nels, such that ai ∈ R

H×W×c. We select t different attention maps after t DMRBs
since at different depths, D focuses on different features. Eventually, we calculate
these attention coefficients according to [9], DSA(m) =

∑t
i=1

∑c
j=1 |aij(m)|.

To estimate the attention, we use upsampled LR DEM x̃ as unlike image-to-
image translation in [9], we do not have HR samples in the target domain during
testing. Hence, we use domain adaptation loss from [30] to estimate sharper
latent features. The final attention maps As are derived by passing DSA through
a PSA [21] to exclude redundant features while highlighting key areas. It is chosen
because of its ability to retain a high internal resolution compared to other SA
modules. Next, we discuss the theoretical framework for optimizing our model.

3.4 Theoretical Framework

We train our model with SiRAN, a novel framework regularizing traditional GAN
with Sinkhorn distance. Compared to WGAN and its variants which are designed
to solve the Kantarovich formulation of OT problems to minimize the Wasser-
stein distance, SiRAN showcases favourable sample complexity of O(n−1/2) [11]
(for WGAN, it is O(n−2/d) [37]), given a sample size n with a dimension d. This
is because Sinkhorn is estimated based on entropic regularization. Another key
issue with WGANs is the vanishing gradient problem near the optimal point
resulting in a suboptimal solution. SiRAN avoids such scenarios, as it provides
better convergence and tighter iteration complexity as we derive later.

Let μθ ∈ PGθ
and ν ∈ Py be the measure of generated and true distribution

with support included in a compact bounded set X ,Y ⊂ R
d, respectively. There-

fore, the EOT [3] between the said measures can be defined using Kantarovich
formulation as shown in Eq. 2 where we assume ŷ = G(x̃, z � As(x̃)).

WC,ε(μθ, ν) = inf
π∈Π(μθ,ν)

Eπ[C(ŷ,y)]+ εIπ(ŷ,y), Iπ(ŷ,y)) = Eπ[log(
π(ŷ,y))

μθ(ŷ)ν(y)
],

(2)
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where, Π(μθ, ν) is the set of all joint distribution on X ×Y with marginals μθ and
ν, C : X × Y → R is the cost of transferring unit mass between locations ŷ ∈ X
and y ∈ Y, and the regularization Iπ(·) is the mutual information between two
measures [12] with ε as its weight. When C(·) is distance-metric the solution
of Eq. 2 is referred to entropic Wasserstein distance between two probability
measures. To fit μθ to ν, WC,ε(μθ, ν) is to be minimized which can be treated as
loss function for G [2]. However, it has one major issue of being strictly larger
than zero, i.e. WC,ε(ν, ν) �= 0 which is resolved by adding normalizing terms to
Eq. 2 leading to the Sinkhorn loss [13] as defined below.

SC,ε = WC,ε(μθ, ν) − 1
2
WC,ε(μθ, μθ) − 1

2
WC,ε(ν, ν). (3)

Based on the value of ε, Eq. 3 shows asymptotic behaviour [13]. When ε → 0,
it recovers the conventional OT problem, while ε → ∞, it converges to max-
imum mean discrepancy (MMD). Therefore, the Sinkhorn loss interpolates
between OT loss and MMD loss as ε varies from 0 to ∞ leveraging the con-
current advantage of non-flat geometric properties of OT loss and, high dimen-
sional rigidity and energy distance properties of MMD loss (when C = || · ||p
with 1 < p < 2). Apart from this, the selection of ε also affects the overall gra-
dients of G, which eventually results in preventing vanishing gradient problems
near the optimal point. This can be established from the smoothness property of
SC,ε(μθ, ν) with respect to θ. In this context, we propose Theorem 1, where we
derive a formulation to estimate the smoothness of Sinkhorn loss.

Theorem 1 (Smoothness of Sinkhorn loss). Consider SC,ε(μθ, ν) be the
Sin-khorn loss between measures μθ and ν on X and Y, two bounded subsets of
R

d, with a C∞, L0-Lipschitz, and L1-smooth cost function C. Then, for (θ1, θ2) ∈
Θ,

E||∇θSC,ε(μθ1 , ν) − ∇θSC,ε(μθ2 , ν)|| = O(L(L1 +
2L2

0L

ε(1 + Be
κ
ε )

))||θ1 − θ2||, (4)

where L is the Lipschitz in θ, κ = 2(L0|X | + ||C||∞), B =
d.max(||m||, ||M ||) with m amd M being the minimum and maximum in set
X . Let Γε be the smoothness mentioned above, then we get the following asymp-
totic behavior in ε:

1. as ε → 0, Γε → O( 2L2
0 L2

Bεe
κ
ε

), and, 2. as ε → ∞, Γε → O(LL1).

Proof. Refer to Appendix B in supplementary (supp.).

Theorem 1. shows the variation of smoothness of SC,ε(μθ, ν) with respect to
ε. Using this, we can estimate the upper bound of the overall expected gradient
of our proposed adversarial set-up. Hence, to formulate this upper bound, we
present Proposition 1. Here, we assume x = concat(x̃, z � As(x̃)).

Proposition 1. Let l(·), g(·) and SC,ε(·) be the objective functions related to
supervised losses, adversarial loss and Sinkhorn loss with smoothness Γε, and
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θ∗ and ψ∗ be the parameters of optimal G and D. Let us suppose l(ŷ,y), where
ŷ = Gθ(x) is β-smooth in ŷ for some input x. If ||θ−θ∗|| ≤ ε and ||ψ−ψ∗|| ≤ δ,
then ||∇θE(x,y)∼X×Y [l(ŷ,y) + SC,ε(μθ(ŷ), ν(y)) − g(ψ; ŷ)]|| ≤ L2ε(β + Γε) + Lδ.

Proof. Refer to Appendix C in supp.

In GAN setups as mentioned in [29], ε → 0 leads to a vanishing gradient near the
optimal region due to reductions in δ. However, regularizing with Sinkhorn intro-
duces an upper bound dependent on Γε, which varies exponentially with ε (see
Proposition 1). Choosing an appropriate ε mitigates the vanishing gradient and
enhances performance. Additionally, Sinkhorn regularization improves iteration
complexity [29], resulting in faster convergence as established in Proposition 2.

Proposition 2. Suppose the supervised loss l(θ) is lower bounded by l∗ > ∞
and it is twice differentiable. For some arbitrarily small ζ > 0, η > 0 and ε1 > 0,
let ||∇g(ψ; ŷ)|| ≥ ζ, ||∇SC,ε(μθ, ν)|| ≥ η and ||∇l(ŷ,y)|| ≥ ε1, with δ ≤

√
2ε1ζ
L ,

and Γε <
√
2ε1η
L2ε , then the iteration complexity in Sinkhorn regularization is upper

bounded by O( (l(θ0)−l∗)β1
ε21+2ε1(ζ+η)−L2(δ2+L2Γ 2

ε ε2)
), assuming ||∇2l(θ)|| ≤ β1.

Proof. Refer to Appendix D in supp.

Corollary 1. Using first order Taylor series, the upper bound in Proposition 2
becomes O( l(θ0)−l∗

ε21+ε1(ζ+η)
).

Proof. Refer to Appendix D.1 in supp.

When Γε <
√
2ε1η
L2ε , the denominator of the derived upper bound in Proposition

2 is greater than the same in Theorem 3 of [29]. This is true for almost all valid
ε as we experimentally verify in Appendix E in supp. Therefore, SiRAN has
tighter iteration complexity compared to the regular GAN set-ups. Corollary
1 also verifies this using a simpler setup, as it increases the convergence rate
from O((ε21 + ε1ζ)−1) [29] to O((ε21 + ε1(ζ + η))−1). Due to these advantages, we
regularize the generator loss with Sinkhorn distance as defined below,

LOT = Ex̃∼Px̃,z∼PZ ,y∼Py
SC,ε(μ(ŷ), ν(y)), (5)

where μ and ν is the measure of generated and true distributions. LOT is esti-
mated according to [13] which utilizes ε and the Sinkhorn iterations T as the
major parameters. As Sinkhorn loss also minimizes the Wasserstein distance, it
serves the purpose of WGAN to resolve the issues of the original GAN more effec-
tively. Hence, we use original GAN objective function (LADV ) while regularized
with Sinkhorn loss. We also regularize the objective function of G with pixel
loss (LP ) and SSIM loss (LSSIM ) to generate samples close to GT in terms of
minimizing the pixel-wise differences while preserving the perceptual quality and
structural information. Therefore, the overall generator loss is defined as

λPLP + λSSIMLSSIM + λADV LADV + λOTLOT , (6)
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where λP , λSSIM , λADV and λOT represent the weight assigned to pixel
loss, SSIM loss, adversarial loss, and Sinkhorn loss respectively.

Similarly, the objective function of D is designed based on the original GAN.
In addition, we include domain adaptation loss [30] (LDA) to enforce the D to
mimic the latent features of the HR DEM and sharpen spatial attention maps
provided an upsampled LR DEM data. The final objective function of D becomes

min
D

−Ey∼Py
[log(D(y)))] − Eŷ∼PGθ

[log(1 − D(ŷ))] + λDALDA, (7)

where λDA is the assigned weight for LDA in the discriminator objective. The
details of LADV , LP , LSSIM , and LDA are discussed in Appendix A in supp.

4 Experiments

Here, we discuss the necessary experiments and datasets for DEM SR.

4.1 Datasets

DEM SR is a relatively unexplored area that suffers from a lack of realistic
datasets. Hence, we generate our own DEM SR dataset for this study. From
the real-world application point of view, we use real coarse resolution SRTM
DEM with a ground sampling distance (GSD) of 30 m as input instead of con-
ventional bicubic downsampled while taking Indian HR DEM (GSD=10 m) gen-
erated from Cartosat-1 stereoscopic satellite as the GT. For the guide, we take
the HR MX data (GSD=1.6 m) from the Cartosat-2S satellite. The DEMs are
upsampled to the resolution of MX images using bicubic interpolation to gen-
erate a paired dataset. This helps in increasing the training samples and also
assists the model in learning dense HR features from the guide. The dataset
consists of 72,000 patches of size (128, 128) including various signatures such as
vegetation, mountains, and, water regions. We use 40,000 samples for training,
20,000 for cross-validation, and 12,000 for testing, where 10,000 patches belong
to the Indian region and the rest outside India. As GT is only available for
Indian regions, our model is trained on limited landscape areas. To check its
generalization ability, we test our model on data from the Fallbrook region, US,
where Cartosat DEM data is unavailable. For these cases, we validate our result
based on available 10 m DEM data of 3DEP [35]. We further test our trained
model by taking other available 30 m DEM like ASTER [1] and AW3D30 [33]. In
these cases, we have taken 5000 samples each from different parts of the India for
testing.

4.2 Implementation Details

All the experiments are conducted under identical environments. We use 3 × 3
convolution kernel and leaky ReLU activation except in the last layer where
1 × 1 kernel is used without any activation. Each DMRB has 64 convolution
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Table 1. Quantitative comparison SOTA methods. Testing is performed with the
trained model on generated training dataset using LR SRTM DEM. First and second
methods are highlighted in red and green.

Dataset Inside India (SRTM) Outside India (SRTM) ASTER AW3D30

Method
RMSE

(m)

MAE

(m)

PSNR

(dB)

SSIM

(%)

RMSE

(m)

MAE

(m)

PSNR

(dB)

SSIM

(%)

RMSE

(m)

MAE

(m)

PSNR

(dB)

SSIM

(%)

RMSE

(m)

MAE

(m)

PSNR

(dB)

SSIM

(%)

Params

(M)

Avg.

Runtime

Bicubic 14.25 13.42 30.37 71.27 14.79 13.86 30.07 70.49 25.24 23.19 27.37 68.47 18.24 17.16 30.05 70.57 - 0.25s

ENetV2 [6] 20.35 18.72 29.74 70.63 30.53 28.36 25.58 69.63 35.62 32.71 25.63 69.49 26.34 25.13 28.44 71.49 24 1.43s

DKN [16] 12.98 11.18 32.16 73.59 21.16 19.78 28.02 68.45 28.43 27.24 26.24 73.04 23.26 21.74 29.15 76.29 1.15 0.625s

FDKN [16] 13.05 11.34 32.09 74.43 21.93 20.41 27.86 66.83 30.49 28.68 26.05 72.27 23.94 22.42 29.06 76.54 0.69s 0.54s

DADA [23] 37.49 32.17 27.94 73.32 40.89 37.74 25.59 69.86 39.66 37.84 25.79 68.46 34.49 33.43 27.59 71.26 - 22.80s

FEN [22] 12.15 11.06 32.23 76.49 20.96 19.06 28.42 73.49 26.27 24.91 27.09 71.67 25.28 23.82 28.63 77.63 1.31 1.23s

GISR [14] 13.18 12.34 32.49 78.49 20.15 18.84 28.61 76.34 27.59 26.13 26.48 70.14 24.49 23.17 28.96 78.56 1.49 1.27s

D-SRGAN [7] 21.33 19.56 29.88 85.68 20.45 18.34 29.55 80.48 24.29 22.62 28.79 75.19 21.28 20.31 29.87 81.49 40 1.57s

FDSR [15] 12.89 10.87 33.07 86.49 21.57 20.22 29.09 79.81 22.08 20.87 29.13 78.84 19.26 18.43 30.26 80.28 0.61 0.51s

SiRAN (ours) 9.28 8.51 34.55 89.36 14.74 12.25 31.56 83.90 20.28 18.59 30.16 82.42 16.52 14.87 31.14 84.79 7.41 0.92s

operations. For FSGT in HTB, we select patch size as 7 × 7 and the number of
heads in the attention block as M = 16. We use an ADAM optimizer with a fixed
learning rate of 0.0001. During adversarial training, we update the critic once
every single update in the generator. We set λDA = 0.1, λP = 100, λstr = 1,
λADV = 1 and λOT = 0.01. For estimating LOT , we set T = 10 and ε = 0.1. The
entire framework is developed using PyTorch. All the experiments are performed
on 2 Nvidia V100 GPUs. We compare our method with traditional bicubic as
well as other learning-based state-of-the-art (SOTA) DEM SR methods [7,15,24].
For a fair comparison, we also include recent baseline models for image-guided
depth SR [8,16,17,25]. All the learning-based methods are trained on our dataset
from scratch according to the respective authors’ guidelines. Among them, we
train [7,15,24] without any guide as there is no provision in including an image
guide in these methods, whereas, [8,16,17,25] are trained on our dataset in the
presence of the guide due to their similar set-up for guided SR.

5 Result Analysis

Here, we analyze both qualitatively and quantitatively, the quality of generated
HR DEM by our proposed method.

5.1 Quantitative Analysis

To quantitatively analyze the performance, we use RMSE, MAE, PSNR, and
SSIM as the evaluation metrics. Our proposed method outperforms other SOTA
methods for 4 different datasets, as shown in Table 1. For both inside and outside
India images, SiRAN achieves more than 24% improvement in RMSE and MAE,
8% in SSIM, and 1.2 dB in PSNR with respect to the second best. Despite hav-
ing different source domains for reference DEM for outside India cases, SiRAN
generates SR DEM closer to GT as depicted in Table 1 suggesting better gen-
eralization capability of other baseline methods. This also can be depicted by
analyzing on test cases for other LR DEM data like ASTER and AW3D30 as
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Fig. 4. Test results (inside India) for DEM super-resolution (better viewed at 200%)
and comparisons with other baseline methods.

Fig. 5. Test results (outside India) for DEM super-resolution (better viewed at 200%)
and comparisons with other baseline methods.

shown in Table 1. In these cases, SiRAN gains more than 10–18% improvement
in RMSE, 11–27% in MAE, 4% in SSIM, and ∼ 1 dB in PSNR. Among others,
FDSR [16] performs close to our model for Indian patches as well as for other
LR DEM samples. However, for outside patches, it performs poorly. Although
D-SRGAN captures structural details, it has poor RMSE and MAE. Figure 7
shows the line profiles of SiRAN and other baselines with respect to GT. Com-
paratively SiRAN has the lowest bias and follows the true elevation values most
closely. This supports the error analysis in Table 1. Table 1 shows a comparison
of number of parameters and average runtime for 512 × 512 patches. Despite
having larger parameters, our model takes comparable inference time due to its
effective complexity as discussed in Sect. 3.2.

5.2 Qualitative Analysis

Figure 4 demonstrates the qualitative comparison of DEM SR for patches of
India. Clearly, SiRAN highlights key features and comparatively retain more the
perceptual quality with respect to GT. D-SRGAN also captures major structural
information in its outcomes, however, it tends to produce artifacts and noise in
the generated DEM which is depicted in Table 1 and Fig. 7. In Fig. 5, we have
compared the outcomes for outside India cases. Here also compared to other
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Fig. 6. Test results on ASTER (top row) and AW3D30 (bottom row) dataset for DEM
super-resolution (better viewed at 200%) and comparisons with other baseline methods.

Fig. 7. Line profile analysis of SiRAN
and other baselines.

Fig. 8. Illustration of 3-D visualization
of Super-resolved and SRTM DEM

SOTA methods, SiRAN is able to generate higher resolution DEM in close prox-
imity to the GT despite having a different source domain. Although FDSR [16]
performed well for Indian patches, due to a lack of generalization capability it
introduces image details prominently in the generated DEM for test patches out-
side India. The generalization ability of these models can also be visualized from
6 where we demonstrate visual test cases for LR DEMs of ASTER and AW3D30
datasets. Clearly, SiRAN captures the high-frequency details most effectively in
the predicted SR DEM followed by FDSR and D-SRGAN. Among the other
models, while DKN and FDKN try to incorporate HR guide details in the SR
output, DADA blurs out important features resulting in outputs similar to bicu-
bic interpolation. GISR model also showcases similar results, however, it gener-
ates boundary artifacts in their predictions. In Fig. 8, we show 3-D visualization
of generated DEMs for a region, where GT is unavailable. We compare it with
available SRTM DEM, and clearly, our topographic view of generated DEM cap-
tures sharper features in mountainous regions and in the tributaries of the water
basin area as shown in Fig. 8.

5.3 Ablation Study

We discuss different configuration choices we have taken in our designed model
for optimal performance in DEM SR in our dataset.
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Table 2. Quantitative analysis on effect
of different modules for DEM SR.

Image Guide DSA PSA FSGT RMSE (m) MAE (m) SSIM (%) PSNR

✗ ✗ ✗ ✗ 20.04 17.63 75.27 30.27

✓ ✗ ✗ ✗ 20.32 18.41 82.92 30.57

✓ ✓ ✗ ✗ 16.06 13.62 85.68 32.08

✓ ✓ ✓ ✗ 13.43 11.31 87.04 32.71

✓ ✓ ✓ ✓ 9.28 8.51 89.36 34.55

Table 3. Ablation
of No. of heads.

Number of heads Params (M) PSNR SSIM

4 5.29 34.34 89.04

8 7.41 34.55 89.36

12 16.37 34.59 89.64

16 21.36 34.61 90.09

24 30.22 34.72 90.13

Table 4. Model
size comparison.

Model Params (M) FLOPs (G) PSNR (dB)

SwinIR [19] 11.90 215.3 34.41

CAT [4] 16.60 360.7 34.16

HAN [26] 16.07 269.1 33.94

ART [42] 11.87 278.3 34.25

FSGT (ours) 21.36 189.4 34.55

Fig. 9. Quantitative ablation study for: (a)
introducing different loss functions, and (b) dif-
ferent values of patch size (h,w) on various test
dataset.

Fig. 10. Loss ablation: (a) LR
DEM, (b) GT; predicted SR DEM
of (c) all losses, (d) LP +LSSIM +
LADV , (e) LP + LSSIM , and (f)
LP .

Choice of Different Architectural Designs: Table 2 shows the performance
comparisons in terms of different proposed modules. Introducing FSGT brings
about the best performance of our framework for DEM SR. However, the utiliza-
tion of the image guide improves the SSIM only due to its tendency to promi-
nently capture HR MX features in SR DEM. Introducing discriminator spatial
attention (DSA) and PSA controls the imitation of guide features phenomenon
which results in performance gain in terms of all the metrics. This can also be
visualized from Fig. 11 and 12 where we show how D focuses on different fea-
tures at different depths and also how PSA highlights certain features to give
more weight. FSGT further enhances this performance. In this regard, we have
also tested with constant k = 
 3N

4 �, and we have seen more than 0.75 dB per-
formance drop in terms of PSNR and 1.34% in SSIM.

Choice of Different Loss Functions: Figure 9 (a) shows the performance
of our model with different combinations of loss functions. Introducing LADV

decreases the PSNR by 0.2-0.3 dB, while adding LOT improves it by 0.1 dB.
Although, it is still less by 0.15 dB compared with LP +LSSIM loss combination,
the major reason for using LADV and LOT is to improve the overall perceptual
quality of SR DEM as shown in Fig. 10. However, as depicted in Proposition 2,
it provides faster convergence as shown in Fig. 13. More experiments are carried
out in Appendix E to justify these claims.
Different Patch Sizes in FSGT: Figure 9 (b) shows the performance of our
model for different patch sizes in FSGT layers. In our case of DEM SR, patch
size 7 × 7 performs the best in terms of PSNR for all of the four datasets.
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Fig. 11. (a) Source, (b)
Target, (c)-(h) Discrim-
inator spatial attention
after each DMRB.

Fig. 12. Weights of
(a) mean DSA (DSA),
and (b) after passing it
through PSA block.

Fig. 13. Effect of Sink-
horn loss in training con-
vergence.

Different Numbers of Heads in M-FSGA: Table 3 shows the performance of
our model for different numbers of heads (M) in proposed M-FSGA. As shown
in the table, M = 8 is the optimal choice in our case. M = 24 improves the
performance by 0.13 dB PSNR but at the cost of 40% more parameters.
Model Size Comparison: Table 4 shows the comparison of model size, com-
putational complexity, and performance for DEM SR with respect to popular
benchmark transformer models. Clearly, FSGT provides excellent performance
while having the least number of FLOPs with competitive model size.

6 Conclusion

In this paper, we present an effective approach for DEM SR using realistic coarse
data samples in the presence of an HR MX guide. We propose a novel hybrid
transformer model based on FSGT and DMRB. In particular, FSGT is con-
structed to capture the HR features based on dynamically selected frequen-
cies in a graph attention layer. This also reduces the overall complexity from
O(Nh2w2c) to O((N − k)hwc). To control the in-painting of HR guide features
in SR DEM, we also introduce DSA, and through an intense ablation study, we
validate the performance of each of these proposed modules. We also present a
new adversarial set-up, SiRAN based on Sinkhorn loss optimization. We provided
theoretical and empirical evidence to show its efficiency in improving the conver-
gence and speed of training our model. We perform quantitative and qualitative
analysis by generating and comparing DEMs related to different signatures for
four different datasets which includes not only the generated inside and outside
India test cases corresponding to LR SRTM DEM but also includes LR test sam-
ples corresponding to other DEM datasets, ASTER and AW3D30. In all these
cases, our model performs preferably by generating close-to-ground truth SR
predictions compared to other baseline methods, which showcases its efficiency
in capturing high-frequency details as well as better generalization capability.
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Abstract. The challenge of non-line-of-sight (NLOS) imaging lies in the
multiple reflections of light paths, causing a significant drop in signal-
to-noise ratio. Visible light is easily affected by illumination conditions,
making passive NLOS reconstruction algorithms based on visible light
difficult to achieve clear results. However, long-wave infrared (LWIR)
light provides stronger specular reflections compared to visible light,
improving the signal-to-noise ratio when imaging obscured targets. While
LWIR can enhance the quality of NLOS reconstructions, it typically lacks
the chromatic details present in visible light. In this study, we make an
unprecedented attempt to combine LWIR for high-quality reconstruc-
tion with methods to preserve color information, which is crucial for
passive NLOS imaging. We introduce NLOS-I2V, an innovative end-to-
end training framework. NLOS-I2V reconstructs two-dimensional images
of thermal radiation captured on a relay wall and converts these blurred
infrared domain images into the clear visible light domain using a gener-
ative adversarial network (GAN). This method allows for the synthesis
of high-quality, long-range reconstructions while preserving color infor-
mation. Extensive experiments on a custom-built LWIR NLOS dataset
demonstrate exemplary performance in both quantitative metrics and
subjective visual representation. The code is available at https://github.
com/codeMakerZWH/NLOS-I2V.

Keywords: Non-line-of-sight · Long-wave infrared · Infrared to visible

1 Introduction

NLOS imaging is an innovative technique that extends beyond the limitations of
traditional perception, allowing for the detection of hidden targets through scat-
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teredoptical signals on the relay surface. This technology is of significant impor-
tancein various application scenarios, such as disaster rescue, assisted driving,
and industrial patrol.

Early studies on NLOS imaging mainly rely on external encodable light
sources, high-resolution time detectors, and the analysis of photon responses
at different times and locations [1,4,11,17]. However, this results in a con-
siderably large and expensive system design. In contrast, some NLOS imag-
ing works are carried out by estimating the motion trajectory [28] of hidden
objects from the shadows produced by the reflection of ambient light or its own
light on the objects, or by conducting 2D imaging, a method referred to as
passive NLOS imaging. The passive NLOS imaging method struggles to recon-
struct high-quality two-dimensional images due to the high complexity of the
light transmission matrix. To enhance the available imaging data, prior studies
attempt to stabilize the linear problem by utilizing the prior knowledge of the
scene [21], coherence [3] and polarization [22] to enhance the conditions of the
light transmission matrix.

The emergence of deep learning has catalyzed the advancement of sophisti-
cated passive NLOS imaging techniques. These data-driven methodologies con-
sider passive NLOS imaging tasks as a more challenging form of image trans-
lation, which refers to the process of converting an image from one domain to
another while preserving essential features and details. A significant portion of
this work has been conducted using conventional cameras within the visible spec-
trum [2,7,8,23,25,30]. Visible light, with its inherent color information, is readily
interpretable by the human eye, leading to a focus on the accurate reconstruc-
tion of occluded visible-light scenes. However, the propagation of visible light in
NLOS environments is marred by extensive scattering and absorption, resulting
in signal attenuation and color information loss. Some passive NLOS imaging
circumvent this by employing luminous screens to project images of obscured
objects within a distance of one meter.This approach enhances signal quality,
albeit at the cost of practical applicability in real-world scenarios.

In the LWIR spectrum, common materials ranging from coarse metallic sur-
faces to colored acrylic exhibit more pronounced mirror-like reflections compared
to visible light [16]. LWIR has begun to play an active role in the field of NLOS
imaging [6,12,18,20]. Subsequent research combining polarization with LWIR
has shown promising results [14,15]. Although NLOS imaging with LWIR is
generally easier to reconstruct, it is limited by the absence of color information,
as it only captures thermal radiation.

Specifically, we make the following contributions:

(1) We introduce a novel passive NLOS imaging method that leverages LWIR
cameras to capture thermal radiation on relay surfaces. This approach estab-
lishes a mapping between the target and its color, compensating for the lack
of color while maintaining the high signal-to-noise ratio advantage of long-
wave infrared at long distances.

(2) We develop NLOS-I2V, an end-to-end training framework that simultane-
ously addresses passive NLOS two-dimensional reconstruction and infrared
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image colorization. Based on a GAN architecture, NLOS-I2V effectively
transforms blurry infrared images into clear visible light images.

(3) To further improve the quality of reconstruction, a novel Efficient Multi-
Scale Attention (EMA) [19] module is implemented, which is coupled with
enhancer module, to refine the embedded GAN.

2 Related Work

2.1 Data-Driven Passive NLOS Imaging

Recent advancements in NLOS imaging have leveraged sophisticated techniques
and deep learning to detect and track objects concealed around corners. Tancik
et al. [23] have integrated geometric processing with deep learning to identify,
locate, and track hidden objects in 2D spaces. Maeda et al. [16] have employed
LWIR for human pose estimation of NLOS concealed targets. Aittala et al.
[2] have utilized Convolutional Neural Networks (CNNs) to reconstruct videos
of hidden scenes. Wang et al. [27] have demonstrated the superiority of CNN-
trained NLOS recognition models compared to traditional methods. Zhou et al.
[30] have developed deep neural networks based on Phong reflection theory. Geng
et al. [7] have proposed a novel imaging framework that incorporates manifold
embedding and optimal transport theory. Wang et al. [25] have introduced a
passive, event-based method for NLOS imaging. He et al. [8] have proposed a
deep learning framework, R-UNet, for simultaneous imaging and tracking using
standard RGB cameras. Liu et al. [14] have developed PI-NLOS, which uti-
lizes polarized infrared for NLOS imaging, providing enhanced image quality by
reducing noise and improving clarity. Additionally, Liu et al. [14,15] have devel-
oped PI-NLOS and DFAR-Net, utilizing polarized infrared and a dual-input,
three-branch attention fusion reconstruction network to enhance image quality,
reduce noise, and improve clarity in NLOS imaging.

Despite its potential, data-driven passive NLOS imaging continues to con-
front a multitude of challenges, such as limited imaging distance and subpar
image quality. These issues primarily stem from the severe attenuation of useful
information caused by the diffusive properties of common surfaces and the multi-
ple reflections of visible light. While LWIR can simplify the problem by reducing
multiple reflections to primarily single-bounce reflections, accurate image recon-
struction remains challenging due to the scattering and absorption properties of
the materials.

2.2 Infrared Image Coloring

Infrared image coloring converts infrared images into a format visible to the
human eye. Color is one of the essential features of the human visual system,
and introducing color information can make the reconstructed scenes more real-
istic and recognizable, enhancing the ability to understand the scenes. However,
the issue of NLOS has not been considered by anyone. This includes image-
to-image translation and video-to-video translation. The Pix2pix framework, as
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introduced by Isola et al. [10], delves into the realm of image-to-image transla-
tion, necessitating the use of paired datasets. To alleviate the constraints imposed
by the need for paired data, Zhu et al.’s CycleGAN [31] employs cycle consis-
tency to preserve content fidelity throughout the training process. Nonetheless,
its bidirectional mapping strategy incurs additional computational overhead due
to the requisite supplementary generators and discriminators. To address this,
certain frameworks have been proposed that implicitly maintain structural coher-
ence by leveraging high-level semantic information [5]. Extending the concept of
image-to-image translation, Li et al. [13] have broadened the scope to include
video-to-video transformations. The technique of infrared image coloring has
been instrumental in compensating for the shortcomings of long-wave infrared
NLOS reconstruction, thereby enriching the semantic information, which holds
significant implications for the field.

3 Method

3.1 Passive NLOS Imaging In The LWIR Spectrum

In the current experimental scenario, as depicted in Fig. 1, let’s assume a con-
cealed target in the scene. This target, under the thermodynamic temperature
Ts (measured in K or R), can emit radiation at a rate which is connected to its
temperature Ts and surface emission rate As. This rate E can be expressed as
follows:

E (Ts) = AsσT 4
s (1)

Fig. 1. Passive NLOS Imaging. The image on the far left portrays an individual wield-
ing a ping-pong paddle, representing the original scene. The image on the right exhibits
the reconstructed image obtained using the proposed method. The middle image illus-
trates an NLOS image captured through LWIR at a distance of 6 m.



410 S. Jin et al.

where, σ symbolizes the Stefan-Boltzmann constant. Kirchhoff’s law of radiation
illustrates that at certain temperature and wavelength, a surface’s emission rate
equals its absorption rate. In most practical scenarios, the surface temperature
and incident radiation source temperature are of the same order of magnitude.

Assuming the reflection of the relay surface (a wall) conforms to a specific
bidirectional reflectance distribution function (BRDF), the intensity of the ther-
mal radiation obtained by the camera can be represented as follows:

I =
∫

Ω

E(ωi)fr(ωi, ωo)(ωi · n) dωi (2)

where, E(ωi) is the incident radiation intensity, fr(ωi, ωo) is the Bidirectional
Reflectance Distribution Function (BRDF), ωi and ωo are the incident and exit
directions respectively, n is the normal vector of the relay surface, and Ω is the
hemisphere space.

Based on Phong theory, NLOS imaging works have demonstrated that the
specular reflection component is crucial for non-line-of-sight reconstruction [30].
Therefore, we consider the specular reflection BRDF of micro-surfaces to simplify
and understand the optical process:

fr(ωi, ωo) =
ρ

π
δ(ωi − ωr) (3)

where ρ is the reflectance of the relay surface, ωr denotes the direction of specular
reflection, and δ represents the Dirac delta function, ensuring that there is a non-
zero reflection component only when the incident direction ωi exactly matches
the reflection direction ωr.

Substituting the BRDF into the equation for I Hence, we get:

I =
ρ

π

∫
Ω

E(ωi)δ(ωi − ωr)(ωi · n) dωi (4)

The main objective of the NLOS-I2V is to reconstruct a two-dimensional
image by inverting the transformation from the hidden scene to the projection
image. This inverse mapping process is a key component of the reconstruction
task that NLOS-I2V aims to achieve.

3.2 Network Structure

In this study, we introduce an innovative end-to-end network, NLOS-I2V, that
originates from GANs [26]. A notable feature of our method is that it is specif-
ically designed to handle both NLOS imaging and infrared image colorization
tasks simultaneously, rather than performing these tasks in a cascading manner.
This is achieved through self-constructed NLOS paired datasets, where each
NLOS infrared image corresponds to a ground truth visible-light image.
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Fig. 2. The image depicts the generator, comprised of two components, namely NLOS
reconstruction and the enhancer. The bottom part shows the network components,
including Residual Blocks [9] and EMA [19].

Generator Structure. In the context of the NLOS-I2V framework, as depicted
in Fig. 2, the generator assumes a pivotal role in achieving high-fidelity recon-
structions and colorization of LWIR images. Meticulously designed with two
integral components, namely the NLOS reconstruction and the enhancer, the
generator is tailored to address the unique challenges presented by passive NLOS
imaging.

The NLOS reconstruction component is the core of the generator, featur-
ing an encoder that delves into the input image to extract high-dimensional
features. These features are intricately processed by the EMA (Efficient Multi-
Scale Attention) [19] module, which employs an attention mechanism to discern
and accentuate contextually significant information across various scales. This is
particularly advantageous for NLOS imaging, where discerning obscured details
is paramount. The residual blocks within this segment further aid in preserving
and refining the feature information, ensuring that the quality of the image is
not compromised through the layers of the network.

The incorporation of group normalization and convolutions within the EMA
module enables the network to dynamically focus on salient features, a critical
aspect for reconstructing images within the context of NLOS scenarios, which
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Fig. 3. Architecture of the Enhancer and Discriminator. (a) The network architecture
of the Enhancer constructs a four-scale pyramid for the detailed processing of features
at different scales. (b) The Discriminator discriminates the generator at two scales
through average pooling layers.

are frequently hindered by the inherent limitations of optical phenomena. The
softmax normalization of attention weights ensures a concentrated and efficient
integration of features, thereby augmenting the clarity and detail of the recon-
structed image.

Mirroring the encoder, the decoder employs Deconvolutional Blocks to metic-
ulously upsample the feature maps, restoring them to their original image
size. This symmetrical design facilitates the reconstruction of a high-resolution
image from the condensed feature representation, integrating the nuanced details
refined by the EMA module and residual blocks.

The enhancer module complements NLOS reconstruction by refining the
visual clarity of the reconstructed image, as depicted in Fig. 3(a). Employing
convolutional layers, it systematically refines feature maps and captures spatial
information across different scales. These multi-scale features are combined to
form a comprehensive representation, further refined by a final convolutional
layer to yield enhanced output.

Within the enhancer block, two 3× 3 front-end convolutional layers are uti-
lized. Their outputs are downsampled by factors of 4x, 8x, 16x, and 32x to con-
struct a four-scale pyramid, providing varying receptive fields for image recon-
struction. Subsequently, a 1× 1 convolution with an adaptive weighted channel
attention mechanism reduces dimensionality. Upscaling the feature maps and
concatenating with the original size, a 3× 3 convolution is applied. In NLOS-
I2V, the enhancer consists of two enhancement blocks. The first block receives
input from the original image’s concavity and generator feature maps, which are
also provided to the second block.
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Discriminator Structure. The discriminator Fig. 3(b), has been enhanced in
this study to enable it to operate efficiently across various image scales. This is
achieved by resizing the real and reconstructed images by a factor of 2, which
results in a pyramid of scaled images. Consequently, the discriminator can distin-
guish between the real and reconstructed images at two different scales. Though
the discriminator’s structure remains unchanged, the coarsest-scale discrimina-
tor has the broadest receptive field. It offers a holistic view of the image, thus
guiding the generator towards achieving globally consistent image production.
Conversely, the fine-grained discriminator encourages the generator to produce
more elaborate details, such as colors and finer information.

3.3 Loss Function

Our loss function comprises adversarial loss Ladv, fidelity loss LL1, perceptual
loss Lvgg and color loss Lcolor [24].

LGAN = Ladv(G,D) + λL1LL1(G) + λvggLvgg(G) + λcolorLcolor(G). (5)

In the equation above, λL1, λvgg, and λcolor are hyperparameters used to
balance the contributions of the corresponding loss components in the total loss
function.

Ladv facilitates the training of the generator and discriminator within an
adversarial game context. For the generator, the goal is to minimize the discrep-
ancy between the generated image and the real image within the discriminator’s
purview.

LL1 ensures the uniformity of the generated image with the actual image at
the pixel level.

Lvgg leverages a pre-trained VGGNet, renowned for image classification, to
distill the activation layers, which are construed as perceptual features. The
pixel-wise Euclidean distance serves as the metric for quantifying discrepancies.
To preserve the perceptual and semantic integrity, the perceptual loss function
is employed to gauge high-level differences.

Lcolor calculates the discrete cosine similarity between the reconstructed
image and the original within the three channels of RGB at the pixel level.
Here, k represents each pixel value.

Lcolor =
1

HWC

∑
i∈ξ

K∑
k=1

∠ (Ii, I
′
i) , ξ = {R,G,B} (6)

where ∠ (, ) denotes the pixel-wise computation of the discrete cosine similarity
between the output image and the ground truth visible image across the R, G,
B channels. The variable K signifies the total number of pixels present in the
image, while i represents the elements of the R, G, B channels. This compensates
for the color information deficit left by the infrared presence, thereby enabling
the reconstructed image to obtain more detailed information.
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4 Experiment

4.1 Experimental Setup

This experiment was carried out under a real-world scenario replicated from
Fig. 4 schematic diagram, which ensures the complexity of the real-world experi-
mental conditions. The relay wall is regular plywood with a surface roughness of
approximately 30 µm, which is larger than the wavelength of LWIR. Therefore,
LWIR scattering on the relay wall includes both specular and diffuse reflections.
The LWIR camera used has a resolution of 640× 512 pixels, each pixel measur-
ing 17 µm, a NETD less than 25 mK, and a response band of 8–14 µm. The
distance between the hidden target and the camera is approximately 6 m, with
both the hidden target and the camera being 3 m away from the relay surface.
Due to the angle β being around 85 milliradians, we ignore the minor differences
caused by slight perspective deviations.

Fig. 4. (a) The overall data collection setup is illustrated. (b) It includes the actual
relay surface and the data collection scenarios.

The dataset is collected in various scenarios, including different lighting con-
ditions and temperature environments. It encompasses a wide range of human
poses, such as waving limbs and holding objects. Each group contains ground
truth images and grayscale images of the target in invisible scenarios, with 3,500
groups for indoor lighting, 8,000 groups for indoor dimming, and 6,000 groups
for natural light.

Variations in ambient temperature, influenced by different lighting condi-
tions, lead to differences in thermal radiation from the objects being imaged and
their surroundings, indirectly influencing the imaging outcome. The greater the
temperature difference, the higher the image contrast, enabling our model to
better distinguish and reconstruct target objects in different scenes. Thus, the
different lighting effects shown in Fig. 5 (Input) are actually a result of thermal
radiation differences caused by changes in ambient temperature.
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Fig. 5. Results under different kinds of hidden images.(a), (b), and (c) which illustrate
Indoor lighting, Indoor dimming, and Natural light conditions respectively.

For color transformation, our goal is to establish a mapping between objects
and their colors from infrared images that lack color information. Therefore, in
addition to clothing, the dataset includes various objects such as red ping pong
paddles, green water bottles, and black toy guns.

We utilized PyTorch 2.0.0+cu117 framework and NVIDIA RTX A4000 GPU
for model training. We implemented ADAM optimizer with momentum parame-
ters β1 and β2, preset at 0.5 and 0.999, respectively. The learning rate and batch
size were respectively started off with 0.0002 and 16. A total of 200 epochs of
training were performed to ensure effective model convergence during training.

4.2 Experimental Results

In our study, we utilized the Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity Index Measure (SSIM) as the evaluative metrics. Our proposed
method, NLOS-I2V, was compared against a selection of high-performing meth-
ods. These include Uformer [29], a universal image restoration network; NLOS-
OT [7], which integrates variational autoencoder (VAE) and optimal transmis-
sion theory and is currently the state-of-the-art in passive NLOS; and the I2V-
GAN [13] model, specifically engineered for the transformation of imagery from
the infrared spectrum to the visible range.
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Table 1. Quantitative Comparison with SSIM and PSNR(dB).

Method Params(M) Indoor lighting Indoor dimming Natural light

PSNR SSIM PSNR SSIM PSNR SSIM

Uformer [29] 50.88 17.6727 0.5781 24.3446 0.7231 18.1554 0.5004

I2V-GAN [13] 49.67 12.6293 0.3134 18.7249 0.445 15.2168 0.3374

NLOS-OT [7] 49.89 24.6828 0.8537 27.1549 0.8649 23.4984 0.7459

NLOS-I2V 45.63 25.4158 0.8676 28.6245 0.8741 25.485 0.7849

As depicted in Fig. 5, the datasets presented in sections (a), (b), and (c) are
utilized to draw comparisons under varying conditions of ambient light. Among
the current methodologies, Uformer and I2V-GAN are impeded by the intrinsic
constraints of NLOS imaging tasks, culminating in suboptimal image fidelity. In
contrast, NLOS-OT has been specifically engineered to tackle the more challeng-
ing aspects of image translation tasks within NLOS contexts, thereby outper-
forming the aforementioned methods. The NLOS-I2V, with its generative adver-
sarial architecture featuring multi-scale enhancement, achieves superior feature
representation. This is evidenced by the more comprehensive limb reconstruction
in sections (a) and (b), as well as the detailed depiction of objects held by the
model in section (c), such as the black toy gun, green bottle, and red ping-pong
paddle. Furthermore, despite the differing lighting conditions across sections (a),
(b), and (c), the outcomes are not significantly impacted. This is attributed to
the LWIR imaging’s ability to capture thermal radiation. The thermal radiation
from the human body contrasts with that of the relay surfaces, endowing LWIR
with robust illumination robustness. This attribute demonstrably affirms the
superiority of LWIR in the NLOS imaging. Additionally, environmental temper-
ature changes caused by different lighting conditions significantly impact NLOS
imaging in the LWIR band. The quality of the input data is closely related to the
difference in thermal radiation between the hidden target and the environment.
Consequently, the image quality of inputs (a), (b), and (c) varies distinctly. We
can clearly observe that I2V-GAN and NLOS-OT perform worse in (a), charac-
terized by more artifacts and less detailed information. However, our proposed
NLOS-I2V method effectively overcomes this, demonstrating its robustness and
superiority.

Table 1 provides a quantitative comparison of our NLOS-I2V approach with
existing methods across different datasets. The results reveal notable improve-
ments achieved by our NLOS-I2V method compared to other approaches. Specif-
ically, in scenarios involving indoor lighting conditions (low thermal radiation
difference), our method achieves a PSNR of 25.4158 dB and an SSIM of 0.8676,
outperforming Uformer [29], I2V-GAN [13], and NLOS-OT [7]. Moreover, under
indoor dimming and natural light conditions (higher thermal radiation differ-
ence), our method continues to demonstrate superior performance, with PSNR
values of 28.6245 dB and 25.485 dB, respectively, accompanied by SSIM scores
of 0.8741 and 0.7849.
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The qualitative and quantitative evaluations fully demonstrate the superi-
ority of the NLOS-I2V method in NLOS imaging tasks. This method not only
significantly enhances reconstruction quality but also excels in preserving color
information. These findings validate the feasibility of combining NLOS recon-
struction with color conversion, providing a novel approach for future NLOS
imaging technologies.

4.3 Ablation Study

In the ablation experiment, we conducted a comprehensive analysis of the dif-
ferent components of the NLOS-I2V framework and their contributions to the
overall performance. The experiment was designed to isolate the effects of the
EMA module and the Enhancer modules on the image translation quality.

Figure 6 illustrates the qualitative advancements across different configura-
tions. The visual progression from the baseline to the fully enhanced model
clearly demonstrates the efficacy of each added module. Incorporating EMA has
resulted in a more accurate alignment with the ground truth in terms of overall
background coloration and luminance. The addition of the Enhancer modules
has been instrumental in mitigating artifacts and bolstering detail enhancement.
Furthermore, a deeper network architecture has facilitated a richer feature rep-
resentation, successfully mapping objects such as the red ping-pong paddle, the
green bottle, and the black toy gun back to their authentic color spaces.

Table 2. Results of the ablation experiments.

EMA Enhancer Enhancer PSNR (dB) SSIM

18.5486 0.6239√
19.6545 0.7286√ √
23.0265 0.7528√ √ √
25.485 0.7849

The results, as shown in Table 2, demonstrate a clear trend of improvement
in both PSNR and SSIM with the incremental addition of these components.

The baseline model, without any additional modules, achieved a PSNR of
18.5486 dB and an SSIM of 0.6239. The integration of the EMA module resulted
in a PSNR of 19.6545 dB and an SSIM of 0.7286, indicating a significant
enhancement in image quality. The addition of a single Enhancer module further
improved the PSNR to 23.0265 dB and the SSIM to 0.7528. The incorporation
of two Enhancer modules, along with the EMA module, yielded the best results
with a PSNR of 25.485 dB and an SSIM of 0.7849, marked in bold to signify the
optimal performance achieved by the proposed NLOS-I2V approach.

These results underscore the effectiveness of the EMA module in providing
a robust initial enhancement, while the Enhancer modules contribute to further
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Fig. 6. Ablation experiment results. The baseline configuration does not include the
EMA and Enhancer modules. ‘+EMA’ denotes the addition of the EMA module to
the baseline. ‘+EMA+Enhancer’ indicates the inclusion of one Enhancer module on
top of the EMA module. ‘+EMA+Enhancer*2’ signifies the addition of two Enhancer
modules to the EMA module, which constitutes the proposed NLOS-I2V approach in
this paper.

refinement of the image details. The progressive increase in both PSNR and
SSIM with the addition of each module confirms their synergistic effect, leading
to superior image translation outcomes.

5 Conclusion

This paper presents a long-range, high-quality passive non-line-of-sight (NLOS)
imaging method and introduces an exemplary model, NLOS-I2V. This model
employs a generative adversarial network combined with a efficient multi-scale
attention and multi-scale enhancement modules. It leverages the advantages of
long-wave infrared (LWIR), including its robustness to lighting conditions and
stronger specular reflections, while addressing the lack of chromatic information.
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Extensive experimentation on a custom-built LWIR NLOS dataset has demon-
strated that NLOS-I2V significantly enhances image clarity and color fidelity
compared to existing methods. However, it is important to note that while LWIR
facilitates easier NLOS reconstruction, it also presents certain limitations, such
as the material properties of relay surfaces and the thermal radiation character-
istics of hidden objects.

Future work will focus on incorporating a wider range of optical conditions,
such as polarization information [14,15], to capture more effective data and
enhance the retrieval of finer details, such as hands, feet, and facial features. In
terms of infrared coloring, more advanced coloring methods will be used, such
as unpaired and video2video, to enhance the generalization ability of the model.
Additionally, efforts will be directed towards expanding the dataset to encompass
a wider array of scenarios, thereby enriching the robustness and applicability of
NLOS-I2V.

References

1. Ahn, B., Dave, A., Veeraraghavan, A., Gkioulekas, I., Sankaranarayanan, A.C.:
Convolutional approximations to the general non-line-of-sight imaging operator.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 7889–7899 (2019)

2. Aittala, M., et al.: Computational mirrors: blind inverse light transport by deep
matrix factorization. Adv. Neural Inf. Process. Syst. 32 (2019)

3. Beckus, A., Tamasan, A., Atia, G.K.: Multi-modal non-line-of-sight passive imag-
ing. IEEE Trans. Image Process. 28(7), 3372–3382 (2019)

4. Cao, R., de Goumoens, F., Blochet, B., Xu, J., Yang, C.: High-resolution non-line-
of-sight imaging employing active focusing. Nat. Photonics 16(6), 462–468 (2022)

5. Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement net-
works. In: Proceedings of the IEEE International Conference on Computer Vision,
pp. 1511–1520 (2017)

6. Divitt, S., Gardner, D.F., Watnik, A.T.: Passive, thermal, reference-free, non-line-
of-sight imaging. In: CLEO: QELS Fundamental Science, pp. FW4Q–5. Optica
Publishing Group (2020)

7. Geng, R., et al.: Passive non-line-of-sight imaging using optimal transport. IEEE
Trans. Image Process. 31, 110–124 (2021)

8. He, J., Wu, S., Wei, R., Zhang, Y.: Non-line-of-sight imaging and tracking of moving
objects based on deep learning. Opt. Express 30(10), 16758–16772 (2022)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

10. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1125–1134 (2017)

11. Jin, S., Xu, Z., Xu, M., Liu, H.: Time-gated imaging through dense fog via physics-
driven swin transformer. Opt. Express 32(11), 18812–18830 (2024)

12. Kaga, M., Kushida, T., Takatani, T., Tanaka, K., Funatomi, T., Mukaigawa,
Y.: Thermal non-line-of-sight imaging from specular and diffuse reflections. IPSJ
Trans. Comput. Vis. Appl. 11(1), 1–6 (2019). https://doi.org/10.1186/s41074-019-
0060-4

https://doi.org/10.1186/s41074-019-0060-4
https://doi.org/10.1186/s41074-019-0060-4


420 S. Jin et al.

13. Li, S., Han, B., Yu, Z., Liu, C.H., Chen, K., Wang, S.: I2v-gan: unpaired infrared-to-
visible video translation. In: Proceedings of the 29th ACM International Conference
on Multimedia, pp. 3061–3069 (2021)

14. Liu, H., et al.: Pi-nlos: polarized infrared non-line-of-sight imaging. Opt. Express
31(26), 44113–44126 (2023)

15. Liu, H., et al., Xu, M.: Dfar-net: dual-input three-branch attention fusion recon-
struction network for polarized non-line-of-sight imaging. In: Chinese Conference
on Pattern Recognition and Computer Vision (PRCV), pp. 41–52. Springer (2023)

16. Maeda, T., Wang, Y., Raskar, R., Kadambi, A.: Thermal non-line-of-sight imaging.
In: 2019 IEEE International Conference on Computational Photography (ICCP),
pp. 1–11. IEEE (2019)

17. Mu, F., et al.: Physics to the rescue: deep non-line-of-sight reconstruction for high-
speed imaging. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

18. Nagase, Y., Kushida, T., Tanaka, K., Funatomi, T., Mukaigawa, Y.: Shape from
thermal radiation: passive ranging using multi-spectral lwir measurements. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 12661–12671 (2022)

19. Ouyang, D., et al.: Efficient multi-scale attention module with cross-spatial learn-
ing. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1–5. IEEE (2023)

20. Sasaki, T., Hashemi, C., Leger, J.R.: Passive 3d location estimation of non-line-
of-sight objects from a scattered thermal infrared light field. Opt. Express 29(26),
43642–43661 (2021)

21. Saunders, C., Murray-Bruce, J., Goyal, V.K.: Computational periscopy with an
ordinary digital camera. Nature 565(7740), 472–475 (2019)

22. Tanaka, K., Mukaigawa, Y., Kadambi, A.: Polarized non-line-of-sight imaging. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 2136–2145 (2020)

23. Tancik, M., Satat, G., Raskar, R.: Flash photography for data-driven hidden scene
recovery. arXiv preprint arXiv:1810.11710 (2018)

24. Tang, L., Xiang, X., Zhang, H., Gong, M., Ma, J.: Divfusion: darkness-free infrared
and visible image fusion. Inf. Fusion 91, 477–493 (2023)

25. Wang, C., et al.: Passive non-line-of-sight imaging for moving targets with an event
camera. Chin. Opt. Lett. 21(6), 061103 (2023)

26. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-
resolution image synthesis and semantic manipulation with conditional gans. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 8798–8807 (2018)

27. Wang, Y., et al.: Accurate but fragile passive non-line-of-sight recognition. Com-
mun. Phys. 4(1), 88 (2021)

28. Wang, Y., Wang, Z., Zhao, B., Wang, D., Chen, M., Li, X.: Propagate and calibrate:
real-time passive non-line-of-sight tracking. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 972–981 (2023)

29. Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: Uformer: a general u-shaped
transformer for image restoration. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 17683–17693 (2022)

30. Zhou, C., Wang, C.Y., Liu, Z.: Non-line-of-sight imaging off a phong surface
through deep learning. arXiv preprint arXiv:2005.00007 (2020)

31. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 2223–2232 (2017)

http://arxiv.org/abs/1810.11710
http://arxiv.org/abs/2005.00007


Re-Identification Based on the Spatial-Temporal
Fusion Network

Hye-Geun Kim1, You-Kyoung Na1, Hae-Won Joe1, Yong-Hyuk Moon2,

and Yeong-Jun Cho1(B)

1 Chonnam National University, Gwangju, Republic of Korea
{hyegeunkim,youkyoung,haewon716,yj.cho}@jnu.ac.kr

2 Sungshin Women’s University, Seoul, Republic of Korea
yhmoon@sungshin.ac.kr

Abstract. Re-identification (ReID) in a large-scale camera network is critical
in public safety, traffic control, and security. However, due to the ambiguous
appearance of objects, the previous appearance-based ReID methods often fail
to track objects across multiple cameras. To overcome this challenge, we pro-
pose a ReID based on a spatial-temporal fusion network that estimates a reliable
camera network topology based on the adaptive Parzen window method and opti-
mally combines the appearance and spatial-temporal similarities through a fusion
network. The proposed methods demonstrated the best performance on the pub-
lic vehicle dataset (VeRi776) with 99.7% rank-1 accuracy and on the person
dataset (Market1501) with 99.11% rank-1 accuracy. The experimental results
support that using spatial and temporal information for ReID can leverage the
accuracy of appearance-based methods and effectively manage appearance ambi-
guities.

Keywords: Re-identification · adaptive Parzen window · Fusion Network

1 Introduction

Recently, a large number of surveillance cameras have been installed in public places for
safety, traffic monitoring, and security. However, monitoring all cameras requires sub-
stantial human effort and resources. To reduce human efforts, re-identification (ReID),
which automatically tracks targets across multiple non overlapping cameras, can be
applied. In general, most studies have focused on the visual appearances of the tar-
gets to perform ReID. For example, many studies [1,6] have proposed feature learning
methods to represent target appearances. Similarly, metric learning methods [23,43]
have also been proposed to measure feature distances effectively between query and
gallery images. Recently, developments in deep learning have led to higher perfor-
mance improvements by training visual features and distance metrics [11,13]. These
appearance-based methods are robust to target pose variations, viewpoint changes, and
illumination changes.

Nevertheless, appearance ambiguity caused by objects with similar appearances is
still not alleviated. As shown in Fig. 1 (a), vehicles can have the same appearance due to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15320, pp. 421–436, 2025.
https://doi.org/10.1007/978-3-031-78498-9_29
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the same model types, making it difficult to match the correct target. Compared to vehi-
cle, people have relatively distinctive features, but they show similar appearances due to
the same clothes. Furthermore, the appearance of numerous objects in multiple cameras
causes high computational complexity and low identification performance (Fig. 1 (b))
because the number of objects with a similar appearance to the target increases. Thus,
relying only on the target appearance is ineffective for the object ReID problem.

ID 318 ID 315ID 310

ID 40 ID 124 ID 154 ID 246

(a) Appearance ambiguity in ReID

CAM

Road

A huge number of images

(b) High computational complexity

Fig. 1. Challenges in object re-identification

Recently, ReID studies that use additional spatial and temporal information have
been proposed to alleviate appearance ambiguity [8,18,35,39]. Researchers have built
a camera-network topology explaining spatial and temporal relationships between cam-
eras and used the topology to reduce redundant searching time ranges for queries.
While the methods exhibit the potential for improving appearance-based ReID mod-
els [11,13], they still have limitations. Their camera network topology modeling
approaches are too simple, and the integration of the appearance model with spatial-
temporal information lacks optimization.

In this work, we propose ReID based on the proposed spatial-temporal fusion net-
work (FusionNet) to overcome the limitations. The proposed ReID framework con-
sists of two main parts: 1) camera network topology estimation, 2) fusing appearance
similarity and spatial-temporal probabilities. For the camera network topology estima-
tion, we newly propose an adaptive Parzen window that is robust to outliers and sparse
responses between camera pairs (Sect. 4.1). It can effectively manage different connec-
tion strengths of camera pairs for reliable camera network topology estimation. After
estimating the topology, we train a FusionNet that can optimally combine appearance
similarity and spatial-temporal probabilities (Sect. 4.2).

To evaluate the proposed methods, we tested the VeRi776 [25] vehicle ReID
dataset and Market1501 [42] person ReID dataset. In the experiments, we evaluated
the effectiveness of the proposed methods, and achieved the best performances in both
datasets for the rank-1 accuracy (99.7%, 99.11%) and mean average precision (mAP)
(91.71%, 95.5%). The results support that our methods can significantly improve the
re-id performance regardless of the data domain (e.g., vehicle, person).
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The main contributions of this work are as follows:

– We estimated a reliable camera network topology based on the proposed adaptive
Parzen window.

– We trained the FusionNet to combine two different similarities optimally (appear-
ance and spatial-temporal).

– We achieved superior performance on the both vehicle and person ReID tasks.

To the best of our knowledge, this is the first attempt to train a network to fuse the
appearance and spatial-temporal similarities. In addition, the proposed framework is
very flexible because any appearance-based model can be used as a baseline of the
framework.

2 Related Works

2.1 Appearance-Based ReID

Most ReID studies have focused on learning visual representations of images to distin-
guish their appearance. To this end, metric learning and feature learning methods have
been widely studied. For metric learning, learning the Mahalanobis distance [23,43]
has been widely studied. Particularly, optimizing the triplet loss for deep metric learn-
ing [7,13,17] has exhibited superior performance in ReID tasks. Ghosh et al. [11] pro-
posed Relation Preserving Triplet Mining (RPTM), a feature matching guided triplet
mining scheme that ensures that triplets preserve natural subgroupings in object IDs.

For the feature learning method, Ahmed et al. [1] initially used deep convolutional
neural network (CNN) architecture that captures local relationships between two input
images based on mid-level features. Chen et al. [6] improved the CNN-based ReID and
proposed a deep pyramid feature learning CNN, which can learn scale-specific discrim-
inative features. Similarly, studies [7,34] have tried to extract robust local features. To
capture more appearance details, Khamis et al. [21] employed the attributes of targets
for ReID. Recently, He et al. [16] proposed TransReID, which is the first attempt to
use a transformer to learn robust features from the image patches and Chen et al. [4]
used Swin Transformer [27] as a backbone to downstream to the ReID task. For a better
visual representation, Li et al. [24] proposed CLIP-ReID, which fine-tunes the initial-
ized visual model using the image encoder in CLIP. Some studies [41,46] have focused
on the pre-training methods that can overcome the domain gap in ReID tasks.

Moreover, several methods [9,14,30,36] have employed additional cues, such as
human pose and body parts, to handle pose variations and occlusion problems. Simi-
larly, studies [19,45] have tried to improve visual representation quality based on addi-
tional identity-guided human semantic parsing and multi-head attention. However, alle-
viating appearance ambiguity is still challenging when relying only on appearance for
ReID.

2.2 Spatial-Temporal ReID

Many studies have used spatial-temporal information from cameras and target objects
to overcome the limitations of appearance-based ReID. Generally, they have employed
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an appearance-based ReID model as the baseline and exploited the spatial and tempo-
ral information. In spatial-temporal ReID, there are two main problems: 1) estimating
spatial-temporal information (the camera network topology) in given camera networks,
2) using the estimated camera network topology for ReID.

To estimate the camera network topology, many studies have attempted to design
accurate transition time distributions of targets (e.g., person, vehicle). For example,
Huang et al. [18] modeled a spatial-temporal model leveraging vehicle pose view
embedding. Wang et al. [39] proposed the Histogram–Parzen method to estimate
spatial-temporal probability distributions. Liu et al. [25,26] proposed a progressive
vehicle ReID that partially applies simple spatial-temporal information. Similarly, stud-
ies [8,28,33,44] have estimated spatial-temporal information to filter out irrelevant
gallery images. Moreover, Shen et al. [35] proposed a Siamese-CNN+Path-LSTM net-
work to predict the path through visual feature information and spatial-temporal infor-
mation.

While numerous spatial-temporal ReID methods have been proposed, there are still
some limitations. First, methodologies for estimating spatial-temporal models are sim-
ple. For example, many methods [8,25,26,28] have built object transition time distri-
butions based on the positive responses between cameras. However, noisy and sparse
responses make the estimated distributions unreliable. Second, the usage of the spatial-
temporal information is not optimized. For example, studies [18,33,39] have merged
both probabilities (i.e., appearance and spatial-temporal) with the same importance to
obtain the joint probability. Similarly, many methods [8,28,33,44] have applied spatial-
temporal information to reduce the search range or perform re-ranking of the initial
ReID results.

3 Motivation and Main Ideas

To address the challenges in ReID, we analyzed the characteristics of objects in cam-
era networks. First, there are many objects showing similar or the same appearances in
large-scale camera networks. For example, people can show similar appearances due
to the same clothes (e.g., uniforms, belongings). Especially, in the vehicle ReID task,
vehicles can look exactly the same according to their same model types. Second, move-
ments of objects between non-overlapping cameras are predictable. E.g., vehicles can
only move along roads and highways, rarely deviating from existing roads. Compared
to vehicles, people show more complex transition patterns across cameras, but peo-
ple paths are also generally established along the sidewalks and aisles. To summarize,
objects show high appearance ambiguities but predictable movements. Therefore, rely-
ing only on appearance differences between objects is not effective for the ReID tasks.

Based on these observations, we additionally exploited spatial and temporal rela-
tionships between cameras, called a camera network topology. As shown in Fig. 2, the
proposed ReID framework consists of two parts: 1) camera network topology estima-
tion, 2) the fusion of the appearance and spatial-temporal similarities. We first built the
topology based on the proposed adaptive Parzen window (Sect. 4.1). Then, we trained a
FusionNet that optimally combines visual similarity and the camera network topology
information for the final ReID prediction (Section 4.2).
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Fig. 2. The overall framework for re-identification with spatial-temporal information.

4 Proposed Methods

4.1 Adaptive Parzen Window for Camera Network Topology Estimation

The camera network topology represents spatial-temporal relationships and connections
between cameras that can be represented by a graph G = (V,E). The vertices V
denote the cameras, and the edges E denote the distribution of the object transition
time. If Ncam cameras exist in the camera networks, the topology is represented as
follows:

V ∈ {ci|1 ≤ i ≤ Ncam},

E ∈ {pij |1 ≤ i ≤ Ncam, 1 ≤ j ≤ Ncam, i �= j },
(1)

where c denotes a camera, and pij denotes the object transition time distribution
between camera pairs ci and cj .

To build the transition time distribution pij , we used positive pairs between all cam-
era pairs in the training dataset. Based on the multiple time differences (Δt) of positive
pairs, we generated an initial histogram of the transition time hij , as depicted in the
cyan vertical lines (—) in Fig. 3. Cho et al. [8] proposed connectivity checking crite-
ria regarding whether a pair of cameras is connected by fitting a Gaussian model to
the histogram hij . However, this parametric method followed strong assumptions and
had difficulty handling outliers and the sparsity of the histogram. Inspired by [39], a
Parzen window method can be applied to the initial histograms, and we estimated the
probability density function (PDF) of the transition time in a non-parametric manner as
follows:

pij (τ) =
1
Z

∑

l

hij (l) K (l − τ) , (2)

where τ is an index of the distribution, Z =
∑

l pij(τ) represents a normalized factor,
and K(·) is a kernel function. For the kernel K, we used the Gaussian function, as
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follows:

K(x) =
1√
2πσ

exp
(−x2

2σ2

)
, (3)

where σ is a standard deviation.
While the Parzen window method efficiently estimates continuous PDFs from dis-

crete histograms, employing a single kernel across diverse histograms from various
camera pairs is unreasonable. The strength of the spatial-temporal connection between
cameras can be determined by how many objects pass through those cameras during a
certain period [8]. For example, few positive pairs between two cameras indicate weak
connectivity. Nevertheless, the Parzen window method extremely enlarges those small
responses with a small σ value, as depicted in the orange line (—) in Fig. 3 (c). In that
case, it is better to use a large σ value to avoid overfitting the distribution for noise and
outliers.

In contrast, if many positive pairs occur between the cameras, then the connectivity
should be strong. However, with a large σ value, the resulting distribution becomes
uniform, failing to capture any meaningful spatial and temporal relationships between
the cameras, as depicted in the green line (—) in Fig. 3 (a). In that case, it is better to
use a relatively small σ value to reflect temporal information between cameras. Thus,
selecting the proper σ value is important to the estimated distribution (pij) quality.

To overcome the limitation of the original Parzen window method [39], we newly
propose an adaptive Parzen window by setting various σij values for the camera
pairs (ci, cj). To this end, we designed an adaptive standard deviation according to
the different strengths of the camera connectivity as follows:

σij = max
(

α exp
(−Nij

β

)
, 1

)
, (4)

where Nij denotes the number of positive object pairs between camera ci and cj . In
addition, α is a scale factor determining the maximum range of σij , and β is a smooth-
ness factor that adjusts the sensitivity of σij . The minimum value of σij cannot be less
than 1 unit of the histogram. Then, the values of σij lie on [1, α].

By considering the camera indexes, Eq. 2 and Eq. 3 are reformulated as follows:

pij (τ) =
1
Z

∑

l

hij (l) Kij (l − τ) , (5)

Kij(x) =
1√

2πσij

exp

(
−x2

2σ2
ij

)
. (6)

Therefore, we can estimate reliable distributions (pij) from the initial discrete his-
tograms (hij) by considering the connectivity between cameras. The blue lines (—)
in Fig. 3 are our results based on the adaptive Parzen window.

4.2 Fusion Network

The proposed ReID framework can employ any appearance-based ReID method as its
baseline to estimate appearance similarities between images. Images from each cam-
era (ci, cj) are denoted by Imi , Inj , where m and n are indexes of the images. Then, the
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Fig. 3. Examples of estimated transition time distributions between camera pairs. Each bin cov-
ers 100 frame ranges. Solid blue lines (—) mark the estimated distribution (pij) from the his-
togram (hij) by the proposed adaptive Parzen window. (Color figure online)

appearance-based ReID methods estimate the visual similarity between two images as
SA(Imi , Inj ) that lies on [0, 1]. The proposed framework does not depend on the types of
appearance-based models.

To perform spatial-temporal ReID, Cho et al. [8] used only camera network topol-
ogy to restrict the search range of the gallery, which is effective in reducing the com-
plexity of ReID. However the spatial-temporal probability does not affect the final sim-
ilarity. In contrast, previous studies [18,33,39] have merged both probabilities (i.e.,
appearance and spatial-temporal) with the same importance to obtain the joint proba-
bility. However, they neglected two points. First, the domain of each probability is not
the same. Second, both appearance and spatial-temporal probabilities can be imperfect.
Therefore, it is unreasonable to simply merge these probabilities.

In this work, we optimally combined visual similarities SA(Imi , Inj ) and estimated
spatial-temporal probability distributions pij (τ) through the fusion network named
FusionNet. An input vector of the network for two images (Imi , Inj ) in the camera pair
(i, j) can be represented by

xmn
ij = [SA(Imi , Inj ), ST (Imi , Inj )], (7)

where SA is an appearance similarity, and ST is a spatial-temporal vector. The ST

vector between the images is defined by

ST (Imi , Inj ) =

[
pij

(
τmn
ij − W

)
, ..., pij

(
τmn
ij

)
, ..., pij

(
τmn
ij + W

)]
, (8)

where τmn
ij denotes the time difference between two images Imi and Inj . W is the size

of a time window. According to W , the range of the ST vector is determined around
distributions of pij

(
τmn
ij

)
. For example, when we set W = 0, the ST becomes a scalar

value as ST (Imi , Inj ) = pij
(
τmn
ij

)
. When we set W > 0, the ST vector has a 2W + 1

dimensional vector. By adjusting the value of W , we can determine how much spatial-
temporal information to provide for the FusionNet. Then, the dimension of the input
vector xmn

ij for FusionNet is 2W + 2.
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We designed the FusionNet based on the simple multi-layer perception. We empir-
ically found that the FusionNet does not require a sophisticated deep neural network
structure to estimate the final similarity. The network has one hidden layer with sev-
eral nodes and a one-dimensional output layer, as shown in Fig. 2. For the activation
function, we used Rectified Linear Unit (ReLU) for nodes in the hidden layer, and
used the sigmoid function for the output node. Then, the final output of the FusionNet
SF (Imi , Inj ) lies on [0, 1]. To train the network, we optimized the binary cross-entropy
loss defined by

L =
∑

k

yk log SF (k) + (1 − yk) log(1 − SF (k)), (9)

where k represents the index of the training image pair, and yk ∈ [0, 1] denotes the
ground truth of the kth image pair.

5 Experimental Results

5.1 Dataset and Settings

For the experiments, we used the VeRi776 [25] vehicle re-identification (ReID)
dataset and Market1501 [42] person ReID dataset. The VeRi776 [25] dataset con-
tains over 49,000 images of 776 different vehicle identities (IDs) captured by 20 non-
overlapping synchronized cameras. Market1501 [42] contains over 32,000 images
of 1,501 different people IDs captured by 6 non-overlapping synchronized cameras. In
both datasets, each image contains object IDs, timestamps (frame No.), and camera IDs.

To estimate the camera network topology G = (V,E), we used training
datasets (576 IDs in VeRi776 and 751 IDs in Market1501). Among them, 90% of
the training data were used for appearance-based ReID model training and the remain-
ing 10% were used for FusionNet training. Note that the object identities (IDs) were
completely separated for each training task. In VeRi776 with 20 cameras (Ncam =
20), the estimated camera network topology contains 400 object transition time distri-
butions (pij). Among them, 380 distributions are between different camera pairs (i.e.,
pij , where ci �= cj), and each distribution has 300 bins, each covering 100 frame
ranges. All distributions were estimated based on the proposed adaptive Parzen win-
dow. By performing the same processes, we estimated the camera network topology of
Market1501 as well.

For the appearance-based ReID model in our framework, we trained FastReID [13]
and SOLIDER [4] to extract the appearance similarity. The hyper parameters of Fas-
tReID in both datasets are as follows: epoch – 60, batch size – 64. For vehicle ReID
task, a simple ResNet-50 [12] was utilized as the backbone network structure of Fas-
tReID. Meanwhile, for the Person ReID task, ResNet-101 with MGN [40] were utilized
as the backbone network structure of FastReID.

The proposed FusionNet has a single hidden layer, and we designed the number of
nodes in the hidden layer to be around 65% of the size of the input vector by rounding
(2(2W + 2)/3 + 1). Training parameters of FusionNet are as follows: epoch – 40,
batch size – 128, learning rate – 0.001, optimizer – Adam. We evaluated the top-k
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accuracy (k = 1, 5) and mean average precision (mAP) for the test images. VeRi776
and Market1501 have 200 and 750 different IDs for the performance validation of
methods.

5.2 Effects of FusionNet

In this experiment, we tested VeRi776 [25] dataset according to W values in Fusion-
Net. Additionally, we compared other methods such as FastReID [13] using only
appearance similarities (SA) between images. FastReID +Wang’s estimated the appear-
ance similarity (SA) based on FastReID [13] and simply combined the spatial-temporal
similarity by SF = SA(Imi , Inj ) · pij

(
τmn
ij

)
, as in [39].

As shown in Table 1, FastReID [13] using only appearance information achieved a
rank-1 accuracy of 96.96% and mAP of 81.91%. On the other hand, FastReID +Wang’s,
which used additional spatial-temporal similarity, improved the mAP of the appearance-
based ReID [13] by 3.56%. However, simple combining of two different similarities by
SA(Imi , Inj ) · pij

(
τmn
ij

)
is not yet optimized. The rank-1 and rank-5 performances were

degraded after adopting wang’s approach in FastReID [13].
Based on the proposed FusionNet, we significantly improved the ReID perfor-

mance. For fair comparisons, we employed FastReID [13] as the appearance model
for our framework and utilized 526 IDs for appearance model and 50 IDs for FusionNet
training. When W was set to 10, FusionNet achieved the best performance in rank-
1 accuracy of 99.70%, rank-5 accuracy of 99.82%, and mAP of 91.71%. Except at
W = 0, FusionNet outperformed other methods in all evaluation metrics (rank-1, -5,
and mAP). This result supports that the proposed FusionNet can optimally combine dif-
ferent types of information, such as appearance similarity and spatial-temporal informa-
tion. In addition, even if the training image for the appearance model was less utilized,
it achieved superior performance compared to other methods.

Figure 4 (a) illustrates the trained weight vector (w1) between input and hidden
layer (h1). The row numbers (0–14) denote the index of the nodes in h1, and col-
umn numbers (0–21) denote the index of the input vector xmn

ij . The first column (0
index) shows the weights for appearance similarity (SA). As we can see, the magni-
tudes of the weights are relatively bigger than those of other weights. It means that the
FusionNet properly trained the importance of the appearance similarity (SA). The other
columns (from 1 to 21 index) are the weights for spatial-temporal distribution (ST ).
Interestingly, the weights from the 10th to 12th columns showed large magnitudes. It
implies that the spatial-temporal information around the time difference (τmn

ij ) between
two images plays a key role in ReID. In addition, FusionNet has a lightweight structure
but effective.

5.3 Effects of Adaptive Parzen Window

We evaluated various factors for the proposed adaptive Parzen window method, such as
the scale factor α and smoothness factor β in Eq. 4. In all experiments, we set W = 10
for FusionNet. Figure 4 (b) illustrates the mAP according to the α and β factors. When
the scale factor α = 6 and the smoothness factor β = 25, the proposed framework
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Table 1. ReID performances of VeRi776 [25] dataset according to W values in FusionNet.
The method FastReID [13] does not exploit spatial-temporal information ST . FastReID+Wang’s
estimates the final similarity by SF = SA(Imi , Inj ) · pij

(
τmn
ij

)
, as in [39] and employed Fas-

tReID [13] for its appearance model.

Methods No. of IDs Rank-1 Rank-5 mAP

FastReID [13] 576 for 96.96 98.45 81.91

FastReID [13]+Wang’s [39] Appearance 95.77 97.74 85.47

FusionNet (W = 0) 97.08 98.57 80.58

FusionNet (W = 2) 526 for 98.09 98.87 84.68

FusionNet (W = 4) Appearance 99.52 99.70 90.77

FusionNet (W = 6) ———- 99.64 99.82 91.45

FusionNet (W = 8) 50 for 99.64 99.82 91.55

FusionNet (W = 10) FusionNet 99.70 99.82 91.71

FusionNet (W = 12) 99.64 99.82 91.57

Table 2. ReID performance according to the values of σ for the Parzen window method.

Methods VeRi776 [25] Market1501 [42]

Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP

Fixed σ = 1 99.70 99.82 91.57 99.02 99.58 93.56

Fixed σ = 5 99.52 99.70 91.43 98.81 99.55 93.34

Fixed σ = 10 99.28 99.76 91.28 98.25 99.41 92.12

Fixed σ = 100 98.81 99.46 86.62 97.25 99.08 91.91

Adaptive σ (ours) 99.70 99.82 91.71 99.11 99.58 93.80

achieved the best mAP performance. Note that ReID performances do not fluctuate
significantly due to the factor values (min mAP: 91.62 – max mAP: 91.71).

We further compared the ReID performances for the fixed and adaptive σ values.
The fixed σ = 1, 5, 10, 100, and the adaptive σ as in Eq. 2 were tested. As summa-
rized in Table 2, the fixed σ = 100 performed the worst because a too-large σ leads
to smoothed distributions close to a uniform distribution and reduces the influence of
spatial-temporal information. On the other hand, σ = 1, σ = 5 and σ = 10 performed
relatively well, achieving higher than a 98% rank-1 accuracy. Compared to using fixed
σ values, the proposed adaptive Parzen window with the adaptive σ performed the best
in all evaluation metrics. It achieved 99.70% rank-1 accuracy, 99.82% rank-5 accuracy,
and 91.71% mAP on the VeRi776 [25] dataset and 99.11% rank-1 accuracy, 99.58%
rank-5 accuracy, and 93.80% mAP on the Market1501 [42] dataset. As explained in
Sect. 4.1 and Fig. 3, a fixed value of σ has difficulty handling various types of initial
histograms hij . This result implies that setting different σij values by considering the
various connection strengths of camera pairs is effective and improves ReID perfor-
mance on both vehicle and person ReID.
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5.4 Comparison with State-of-the-Art Methods

In this section, we compare the proposed method with state-of-the-art re-identification
methods using the VeRi776 [25] vehicle ReID dataset and Market1501 [42] per-
son ReID dataset. The methods are primarily categorized into two approaches: 1) only
appearance-based, 2) using additional spatial-temporal information (marked by †). The
methods marked by a ‘*’ performed re-ranking post-processing for the final ReID
results.

Fig. 4. Illustrations for effects of FusionNet and adaptive Parzen window.

Table 3 summarizes the vehicle and person ReID results. In VeRi776 [25] dataset,
our framework achieved the best performance with 99.7% rank-1 accuracy and 91.71%
mAP. Although the spatial-temporal approaches [25,26,35] have improved their base-
line methods, the performance is relatively worse than other appearance-based methods.
That is because their appearance models were quite older methods, such as the SIFT,
bag-of-words, and Siamese-CNN for ReID. Furthermore, the methods did not provide a
direct estimation of the camera network topology or optimize the use of spatial-temporal
information.

As deep learning models have developed, many appearance based methods have
improved ReID performance. For example, FastReID [13], which is our baseline
appearance model, achieved a 96.96% rank-1 accuracy and 81.91% mAP. Especially,
RPTM [11] used the GMS [2] feature matcher and employed the ResNet-101 [12] struc-
ture, demonstrating the superior performance with 97.3% rank-1 accuracy and an 88.0%
mAP. Our methods used a lightweight structure (ResNet-50) for the appearance model,
but it outperformed the sophisticated RPTM [11] method by the rank-1 accuracy of
2.4%, rank-5 accuracy of 1.42%, and mAP score of 3.71%. In addition, the our meth-
ods did not perform any re-ranking processes for post-processing.

In Market1501 [42] dataset, st-ReID [39] using spatial-temporal information
achieved reasonable rank-1 accuracy of 98.1%, but the mAP of 87.6% was quite lower
than the other state-of-the art methods. SOLIDER [4] with Swin Transformer [27]
achieved the good performance in mAP (93.9%), but the rank-1 performance of 96.9%
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was relatively low. In this dataset, we selected two different appearance-based models
such as FastReID [13] and SOLIDER [4] as the baseline of our framework. As a result,
our frameworks achieved the best rank-1 accuracy (99.11%) with the FastReID [13],
and the best rank-5 accuracy (99.6%) and mAP (95.5%) with the SOLIDER [4]. These
results imply that the proposed spatial-temporal framework improves both vehicle and
person ReID tasks. In addition, it has the potential to achieve higher performance when
it employs better appearance-based model as its baseline.

Figure 5 illustrates the qualitative ReID results. We compared the proposed
method (Ours) with the baseline method (FastReID [13]), which used only appearance
information. The baseline method shows numerous false matches, where the appearance
closely resembles that of the query image. In particular, it rarely matched the correct
images of the 662-nd vehicle query image due to many similar black cars. In contrast,
the proposed method perfectly matched the correct images at rank-1 to rank-10 under
the challenging query and gallery pairs thanks to the spatial-temporal information.

In the person ReID task, the baseline model easily failed to match correct pairs in
the gallery. For example, ID 342 wearing a stripe yellow shirt, gray shorts and carrying
a black backpack is easy to confuse with others wearing very similar outfits. ID 1083
wearing red dress and carrying a shoulder bag is also very confusing with other person
wearing similar red dress with a hand bag. These results support that the proposed
ReID (Ours) based on the spatial-temporal fusion network can effectively manage the
appearance ambiguity problems and overcome the limitations of the previous ReID
methods.

Table 3. Performance comparisons on the VeRi776 [25] and Market1501 [42] datasets. † and
∗ indicate the spatial-temporal approach and re-ranking, respectively. The best and second best
performances are marked in bold and underline.

Models VeRi776 [25] Models Market1501 [42]

Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP

†Siamese-CNN+Path-LSTM [35] 83.49 90.04 58.27 †st-ReID [39] 98.1 99.3 87.6

†PROVID [26] 81.56 95.11 53.42 GCP [31] 95.2 – 88.9

†KPGST [18] 92.35 93.92 68.73 TransReID [16] 95.2 – 89.5

†FastReID [13] + Wang’s [39] 95.77 97.74 85.47 ISP [45] 95.3 98.6 88.6

PAMTRI [38] 92.86 96.97 71.88 GASM [14] 95.3 – 84.7

CAL [32] 95.40 97.90 74.30 ABDNET [3] 95.6 – 88.28

PVEN [29] 95.60 98.40 79.50 SCSN [5] 95.7 – 88.5

TBE [37] 96.00 98.50 79.50 CLIP-ReID [24] 95.7 – 89.8

VehicleNet* [44] 96.78 – 83.41 SAN [20] 96.1 – 88.0

SAVER* [22] 96.90 97.70 82.00 FastReID [13] 96.35 – 90.77

DMT* [15] 96.90 – 82.00 PASS [46] 96.9 – 93.3

FastReID [13] 96.96 98.45 81.91 SOLIDER [4] 96.9 – 93.9

CLIP-ReID [24] 97.30 – 84.50 Unsupervised Pre-training [10] 97.0 – 92.0

Strong Baseline* [19] 97.00 – 87.10 UP-ReID [41] 97.1 – 91.1

RPTM* [11] 97.30 98.40 88.00 †Ours (SA = FastReID [13]) 99.11 99.58 93.8

†Ours (SA = FastReID [13]) 99.70 99.82 91.71 †Ours (SA = SOLIDER [4]) 99.0 99.6 95.5
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Fig. 5. Qualitative ReID results of the baseline and proposed methods (Ours). The baseline
model [13] is an appearance-based method. Green and red boxes denote true and false match-
ing. Compared to the baseline method, the proposed method can match true positive pairs despite
similar appearances and overcome the appearance ambiguities due to the spatial-temporal infor-
mation (best viewed in color).

6 Conclusion

In this work, we proposed a ReID framework based on spatial-temporal fusion net-
work that can estimate camera network topology and combines appearance and spatial-
temporal similarities to alleviate appearance ambiguity. To this end, we proposed an
adaptive Parzen window for reliable topology estimation and FusionNet for optimal
similarity aggregation. The proposed framework achieved the best performance for
vehicle ReID with a rank-1 accuracy of 99.70% and mAP of 91.71% on VeRi776
dataset and achieved the best performance for person ReID with a rank-1 accuracy
of 99.11% and mAP of 95.5% on Market1501 dataset as well. The results sup-
port that using spatial and temporal information for ReID can leverage the accuracy of
appearance-based methods and effectively deal with appearance ambiguity. Although
the proposed framework has a lightweight networks, it can effectively perform ReID
task. In addition, the proposed framework is flexible, so it has the potential to achieve
higher performance by utilizing other appearance-based methods as its baseline.
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Abstract. In recent years, the intersection of deep learning, hashing,
and retrieval systems has witnessed significant advancements, particu-
larly in the realm of image processing and information retrieval. In this
paper, we present a novel end-to-end trainable network using contrastive
masked autoencoder (CMAE) for efficient image retrieval. We compre-
hensively investigate the integration of contrastive masked autoencoders
with hashing techniques, coupled with various types of losses, namely
HashNet loss, Deep Supervised Hash (DSH) loss, and Greedy Hash loss,
for enhancing retrieval performance. We delve into the efficacy of dif-
ferent masking methods in conjunction with these techniques to facil-
itate efficient representation learning. We investigate HashNet loss, a
novel objective function tailored for learning hash functions directly from
data, and contrastive loss, which encourages similar items to have similar
hash codes while pushing dissimilar items apart. First, we introduce the
concept of masked autoencoders, a variant of traditional autoencoders
designed to learn robust representations from partially observed input
data. We explore various masking strategies, such as attention masking,
random masking, and patch masking, elucidating their effects on the
encoding process and subsequent retrieval performance. Furthermore,
we present a comparative analysis of different retrieval methods, includ-
ing cosine similarity, knn approach and content-based retrieval approach,
within the context of contrastive masked autoencoder method on differ-
ent benchmark datasets like CIFAR10, ImageNet, MS-COCO and NUS-
WIDE in terms of retrieval accuracy (mAP). The code is available at
https://github.com/Mehulk43/CMAEH.
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1 Introduction

Effective image retrieval is crucial in several domains, such as computer vision,
multimedia databases, and recommendation systems. Conventional techniques
often face challenges when dealing with complex and multi-dimensional charac-
teristics of image data, which calls for efficient feature representations. Recent
progress in deep learning has led to substantial improvements in image retrieval
tasks.

Contrastive learning, shown by recent improvements like SimCLR [4] and
MoCo [10], has proven highly effective in acquiring resilient representations from
unlabeled data. Contrastive learning methods have shown greater performance
in tasks such as image classification, object detection, and semantic segmentation
by focusing on maximizing similarity between positive pairs and minimizing sim-
ilarity between negative pairs. When it comes to image retrieval, the importance
of contrastive learning principles cannot be underestimated in finding seman-
tically similar images from a vast database. Furthermore, autoencoders have
been commonly used to reduce dimensionality and learning features. Autoen-
coders learn to extract important features from input images by encoding them
into a latent space and then reconstructing them in the original space while
filtering out noise and extraneous details. In vision tasks, autoencoders can be
used for various applications such as denoising, image compression, and image
generation. Similarly, in anomaly detection, autoencoders excel at accurately
reconstructing normal data instances. However, when confronted with anoma-
lous data, they typically exhibit higher reconstruction errors, allowing anomalies
to be detected based on deviations from the normal data. The adaptability and
versatility of autoencoders make them valuable tools in various domains. Their
ability to learn representations directly from data without the need for explicit
labels makes them particularly well-suited for tasks where labeled data is scarce
or expensive to obtain.

Hashing-based methods are used to convert high-dimensional data, such as
images, into compact binary codes. This allows for quick and effective similar-
ity search by utilizing the Hamming distance metric. By transforming images
into concise hash codes, these methods simplify storage and retrieval processes,
leading to a significant decrease in memory usage and computing costs. Finding
hash functions that maintain semantic similarity is still a difficult task. Masked
Autoencoders (MAEs) [9] have become a potent deep-learning architecture for
acquiring concise and semantically significant image representations. MAEs uti-
lize the reconstruction loss of autoencoders and include masked regions in the
input images during training. This encourages the model to concentrate on rel-
evant image areas, boosting its capacity to collect distinct features and enhance
retrieval effectiveness.

The Contrastive Masked Autoencoder (CMAE) [12,21] is yet another variant
of MAEs that combines contrastive learning principles with a masked autoen-
coder framework. In this paper, CMAE attempts to tackle the issues of efficient
image retrieval by merging the powers of masked autoencoders in learning concise
representations with the discriminative abilities of contrastive learning. Further-
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more, we explore Contrastive Masked Autoencoder’s theoretical underpinnings
and practical applications for efficient image retrieval. Here, we augment the
hashing layer with the Contrastive Masked Autoencoder to ensure similarity-
preserving learning, which facilitates efficient image retrieval. Furthermore, we
utilize a joint loss optimization strategy to combine the deep supervised con-
trastive loss and hash loss. Previous research has been done on masked autoen-
coders for classification tasks, and we are doing masked autoencoder hashing for
retrieval tasks. Wang et al. [21] have proposed new methods combining masked
autoencoders and contrastive learning for video hashing in a self-supervised man-
ner. In this paper, the authors take two random samples from a given video
frame, then apply the hash layer to both samples and apply the contrastive
loss. They have not used any masking ratio. Mishra et al. [15] proposed a new
architecture combining Contrastive Learning, Masked Autoencoders, and Noise
Prediction. In this paper, the authors implemented the two views of the masked
autoencoder model, added noise after masking the image, and regenerated the
image after denoising the model for the classification task. In [20], authors pro-
posed a novel deep hashing method with minimal-distance separated hash cen-
ters that are used to represent image classes. In this paper, the goal is to learn
the hash center along with the hashing function for efficient image retrieval
tasks. However, in our model, we have done this by just applying the random
masking after patch generation, adding the hash layer at last for generating the
hash code, and then applying the supervised contrastive loss. Bao et al. [[12]
presented BEIT (Bidirectional Encoder representation from image Transformer)
using masked image modeling (MIM) similar to BERT. This method works on
two views: discrete representations of patches (visual tokens) and image patches.
Random patches are masked during the training, and BEIT predicts the orig-
inal visual tokens based on the remaining patches and visual tokens. Cao et
al. [2] proposed Deep Cauchy hashing (DCH) architecture that leverages deep
learning and hamming space retrieval. DCH used a deep network to encode
images into compact binary codes for hamming space retrieval. After that, a
Cauchy distribution-based loss function is used. However, our work presents
MAE (Masked autoencoder) architecture focusing on reconstructing the original
image from masked patches of images.

The novel contributions are as follows:

– Using the pre-trained MAE-ViT models, we present a novel end-to-end train-
able Contrastive Masked Autoencoder Hashing (CMAEH) model for image
retrieval.

– The proposed CMAEH model uses the MAE model’s encoder as a feature
extractor, adds a hashing module and leverages existing hashing frameworks
for training. Finally, we utilize training within a joint loss optimization frame-
work.

– The CMAEH model has demonstrated outstanding performance on bench-
mark CIFAR10, ImageNet, NUS-Wide, and MS-COCO datasets in hash-
ing frameworks. We provide exhaustive experiments to exhibit the proposed
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model’s performance with varying masking ratios, different masking strate-
gies, and different hashing techniques.

2 Related Works

Deep Supervised Hashing (DSH) [14] represents an early endeavor leverag-
ing Convolutional Neural Networks (CNN) by converting network outputs into
binary hash codes through quantization. DSH integrates a regularizer on the
real-valued network outputs to produce binary outputs. HashNet [3], on the
other hand, introduces a Tanh function-based continuation method to facili-
tate a seamless transition from real-valued features to binary codes. HashNet
employs weighted cross-entropy loss to effectively learn sparse data while pre-
serving similarity. To mitigate the issue of vanishing gradients encountered in
the GreedyHash method [16], HashNet employs an identity mapping through
which gradients are propagated. GreedyHash utilizes the Sign function on the
hash layer. These models utilize CNN as the backbone network architecture.

The transformer [17] architecture, first employed for sequence-to-sequence
learning in NLP, has been a great success based primarily on the attention mech-
anism, which permits it to identify long-range interdependencies within input
sequences. Vision Transformer (ViTs) [6], which received a big boost from the
success of transformer architectures in NLP, represent image data as sequences of
patches which allow such models to represent global spatial relationships effec-
tively. Through this hierarchical process, ViTs learn to find the features from
images that can be generalized for image retrieval purposes. These representa-
tions not only encode features at low-level and high-level embeddings but also
recognize and retain semantically similar images. ViTs have unique abilities that
include adaptation to different input types, scalability, and parallelization to
process large amounts of data. Consequently, this creates the need for further
research and developments involved in these image retrieval systems.

Autoencoder, as a classical method, brings forth the issue of representation
learning. It utilizes an encoder that converts an input to a low-dimensional repre-
sentation and a decoder that replicates the input, as in PCA and k-means [11].
Denoising autoencoders [18] are autoencoder variants that take the corrupted
input signal and learn to reconstruct the original uncorrupted version [19]. In [8],
the authors introduced an unsupervised image hashing method designed to com-
press images into binary codes without supervision. It is essential to retain sig-
nificant data while compressing information. It provides a simple method to
fine-tune the Vision Transformer (ViT) for unsupervised hashing, based on the
success of ViT as a large-scale vision pre-training model. The suggested method
consists of two primary components: a module for storing features and a mod-
ule for storing hashes. The feature-preserving module utilizes the pre-trained
ViT model to restore the original features of corrupted images, emphasizing
the retention of valuable information. The hashing-preserving module retains
semantic information from the Vision Transformer (ViT) by using Kullback-
Leibler divergence loss and enhancing quantization and similarity loss to mini-
mize quantization error.
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3 Proposed Method

Random MaskingImage Archive

Encoder Decoder

Target

Hash Layer Hash Code

Supervised Contrastive
Loss Hash Loss+

Reconstruction Loss

Pretrained on Imagenet for
classification task

Training on Retrieval task
Concatenation

Text

Text

Fig. 1. The framework for image retrieval is named Contrastive Masked Autoencoder
hashing (CMAEH ). The pre-trained MAE_VIT is utilized for image classification in
this framework, as denoted by the Red Dotted Line. The model is then trained for
the primary retrieval task, as shown by the Blue Dotted Line. We optimize the model
by using a combined strategy that includes the Hashing Loss, Supervised Contrastive
Loss, and Reconstruction Loss.

Figure 1 illustrates the proposed Contrastive Masked Autoencoder hashing
(CMAEH) architecture. The architecture includes modules for MAE encoder,
patch embedding with random masking, MAE Decoder, pre-training within the
classification framework, hashing, and image retrieval.

3.1 Masking

The architecture presented by the authors in [6] is that images are to be divided
into regular, separate, and non-overlapping patches. Subsequently, we choose
from a range of patches and replace others by the use of masking. In our sam-
pling method, we randomly pick up patches, which we process without replace-
ment, using the uniform distribution. This is called random sampling. Taking
advantage of random sampling with a high masking ratio to stop repetition
is the way in which our brain works by making the task more challenging, as
extrapolating from the nearby visible patches becomes impossible. Similarly, we
have implemented two additional masking techniques: Patch/block masking:
The illustrated patch/block-wise masking method used by [1] has the intention
that all the big blocks are removed. The patch masking with 50% block masking
gives poor results as compared with random masking with a 50% masking ratio.
This task is more complex than random sampling because a bigger training loss
is seen. Similarly, the reconstruction is obscure. In the case of attention grid
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masking, the approach implies that the patches are not randomly selected for
masking, but, instead, they are systematically selected at equal intervals. In Fig.
2, we can see some examples of random masking of images. Images may have
repetitive patterns and smooth gradients in neighboring pixels or patches. By
using random masking on patches within images, our model considers the global
context and relationships between different regions of the image. Our model uses
the ViT as a backbone network that learns long-range dependencies between dif-
ferent image parts. The decoder part is trained to reconstruct the masked areas
based on the remaining visible patches.

Fig. 2. Reconstruction of the images with masking ratio 0.75 where, 1st, 2nd, 3rd and
4th rows correspond to images taken from CIFAR10, IMAGENET, NUS-WIDE and
MS-COCO respectively.

3.2 MAE Encoder

We utilize a ViT [6] encoder, but it is only applied to visible, unmasked patches.
In our model, patches are embedded through linear projection coupled with
positional embeddings, after which Transformer blocks are used successively to
work on the set. The encoder handles (1- [mask-ratio]) of the whole set at a time.
Masked patches have been eliminated, with no usage of mask tokens. In this
way, we are capable of efficiently training very big encoders with very limited
computation resources and memory. The whole set of the compressed data is
appropriately decoded by a lightweight decoder, which will be discussed in the
next section.

Pretraining This paper utilizes the pretrained MAE-ViT model [9]. The pretrain-
ing is conducted using the ultimate result of the MAE encoder on the ImageNet
dataset within a classification framework. The MAE-ViT extracts the important
features from the initial vector of the transformer encoder output.
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3.3 Hash Layer

In this layer, we fine-tune the pre-trained MAE-VIT model in the image retrieval
task. A hash block is added above the MAE encoder output so that the model
will learn to hash an image. Then, there is a dropout step from encoder MAE
having a dropout factor of 0.5 which is applied to the output MAE encoder.
A linear projection is utilized to transform the feature into a 1024-dimensional
vector, followed by forwarding it via the ReLU activation function. A linear
projection is utilized to generate the final hash features, ensuring they have the
same quantity of values as the hash bit length.

3.4 MAE Decoder

As we can see in Fig. 1, the MAE decoder will receive a complete set of tokens,
including visible patches that were encoded and the mask tokens. The mask
token is a standard learned vector that is applied to detect the missed spot
that needs to be predicted. All the tokens in this specific assembly are given
positional embeddings. Mask tokens would lack spatial information if this is not
provided. The decoder contains an additional sequence of Transformer blocks.
The MAE decoder is utilized for image reconstruction during pre-training, and in
this paper, we have used the encoder feature for generating hash code for image
retrieval tasks. The decoder architecture can be developed independently of the
encoder design. We evaluate smaller decoders and have less depth compared to
the encoder. In our model, the decoder part is not directly involved in retrieval
tasks, but it plays an important role in encouraging the encoder part to learn
a latent representation that captures the essential information from the visible
patches. This includes not only the basic visual features but also the relationships
between different parts of the image that are very useful for retrieval tasks.

3.5 Loss

In this section. we present the reconstruction loss along with joint loss optimiza-
tion (for retrieval) used in our framework.

Reconstruction Loss. As in [9], we use the normalized image as target recon-
struction. We essentially apply MSE (denoted as Lrec) loss for masked patches
between input image Xinp and target image Xtar, as shown below,

Lrec =
1

Nmask

∑
(Xtar−Xinp)2 (1)

where Nmask denotes the total number of patches masked in an image.
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Contrastive Loss. Contrastive loss is an objective in a representation learning
technique of the SimCLR [13] that aims at maximizing the agreement between
differently augmented images representing the same data example in the latent
space. Instead of augmented images, we leverage images with the same label in
our framework. Like [5], we also focus on maximizing similarity between positive
samples, i.e., an image and another image with the same label. We employ cosine
similarity metric siml(x, y), as defined below:

siml(x, y) =
xT y

||x||2 ||y||2 (2)

where we compute the dot product between any two vectors x and y after they
have been normalized. The loss function for a positive pair of examples (i, j) is
defined as follows:

Lossc =
∑

k∈P (i)

−log
exp(siml(Zi, Zj)/τ)∑

k∈P (i) exp(siml(Zi, Zk)/τ)
(3)

where P (i) denotes the set of indices of images having the same label as ith

image, and τ is the temperature parameter.
The final loss is calculated for all positive pairs, including both (i, j) and

(j, i), within a mini-batch.

HashLoss. This paper incorporates three hash loss functions: HashNet loss,
DSH loss, and GreedyHash loss. Deep Supervised Hashing (DSH) [14] employs
CNN to convert network outputs into binary hash codes through quantization,
utilizing a regularizer to ensure the generation of binary outputs from real-valued
network outputs. HashNet [3] utilizes weighted cross-entropy loss to learn sparse
data while preserving similarity. Gradients are directed through identity mapping
to prevent vanishing gradients, as encountered in the GreedyHash method [16].
In HashNet loss [3], Cao et al. proposed a deep learning approach to learn binary
hash code. In this paper, authors have used a continuation method to gradually
adjust the scale of the learned hash codes, facilitating the optimization process.
The loss function is used to find the similarity between hash code obtained by
using pairwise similarity between samples and employing a weighted logistic
regression loss function. In DSH [14], Liu et al. proposed a deep supervised
hashing method to generate the binary code for image retrieval. The loss function
is used to find the minimum distance between the hash code of a pair of images,
which is done by using pairwise similarity loss and Quantization loss. In [16], Su
et al. proposed a novel approach called greedy hashing to learn binary hash codes
efficiently. The loss function used here is to find fast and accurate optimization
of hash codes within a convolutional neural network (CNN) framework. There
are two components used in this loss. First, quantization loss ensures that the
learned continuous codes are close to their binary hash code equivalents. Second,
similarity preservation loss ensures that the pairwise similarities between samples
are preserved in the binary hash codes. The main function of the loss is to
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minimize the difference between the inner products of the continuous code and
their binary code. In the proposed model CMAEH, the best results are achieved
with HashNet loss.

3.6 Joint Optimization

Then, we use a weighted combination of Hash Loss [3] and Supervised Con-
trastive Loss [13] which is computed as,

JointLoss ≡ α × HashLoss + (1 − α) × SupConLoss (4)

where:

α is the hyper-parameter
HashLoss is the loss in the hashing module and
SupConLoss is Supervised Contrastive Learning module.

We can regulate the trade-off between the two loss components and customize
the joint optimization loss for the image retrieval task on the CIFAR10 dataset
by adapting the values of α.

4 Results

4.1 Experimental Setting

Datasets. In this paper, we have used four datasets, namely CIFAR-10, IMA-
GENET, MS-COCO, and NUS-WIDE, for evaluating our proposed model. The
CIFAR-10 dataset is a collection of 60,000 images consisting of 10 different
classes, and each class consists of 6,000 images. Based on the standard experimen-
tal process, as done in [2,23] we conduct experiments on the CIFAR10 dataset.
The 5,000 images are randomly picked from the different class sets, which is 500
images for each category. A random sample of 100 images from each category is
used in a query set containing 1000 images, as the rest of the images serve as the
database. ImageNet dataset is a subpart of the Large Scale Visual Recognition
Challenge (ILSVRC 2015). In similar lines to [7,22], we follow the same retrieval
protocol on the ImageNet dataset. We pick 100 random classes. All images from
these classes that are in the validation set are part of the query set. All training
set images of these classes are considered as the database. There 13,000 images
are sampled from the database for the purpose of using them as the training set.
In the case of the NUS-WIDE dataset, according to the retrieval protocol in [7],
we take the 21 most frequent concepts as image annotations, and this extends
into 195K images. The query set has 100 images per concept and is obtained
through random sampling. The remaining images are used to build a database
of those such that they can be retrieved. Moreover, our training set consists of
500 images from the database picked randomly from each concept. MS-COCO
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dataset is a collection of images with a set of 80 categories. We utilize the exist-
ing protocol used in [2,22], which contains query, training, and retrieval sets
having 5000, 10000, and 117218 images.

Table 1. mAP of our model of different masking ratios and different datasets using
different masking strategies.

(a) mAP of our model of different masking ratios and different datasets on random
masking method.

Masked
Autoencoder

Hashing
(Random masking)

Masked Ratio mAP (CIFAR 10) mAP (ImageNet) mAP (MSCOCO) mAP (NUS-WIDE)
0.00 97.70 81.01 82.80 87.61
0.25 96.50 76.40 79.22 83.40
0.50 95.90 75.20 77.31 78.31
0.75 94.40 72.40 73.56 75.40

(b) mAP of our model of different masking ratios and different datasets on Patch
masking method

Masked
Autoencoder

Hashing
(Patch masking)

Masked Ratio mAP (CIFAR 10) mAP (ImageNet) mAP (MSCOCO) mAP (NUS-WIDE)
0.00 97.14 80.41 78.67 85.13
0.25 95.82 74.33 74.08 80.14
0.50 94.63 72.42 73.18 76.51
0.75 93.11 70.67 68.16 72.96

(c) mAP of our model of different masking ratios and different datasets on
Attention grid masking method

Masked
Autoencoder

Hashing
(Attention masking)

Masked Ratio mAP (CIFAR 10) mAP (ImageNet) mAP (MSCOCO) mAP (NUS-WIDE)
0.00 97.45 80.91 81.47 87.13
0.25 96.20 75.98 78.81 83.14
0.50 95.63 75.10 75.33 78.10
0.75 93.11 71.53 73.10 75.01

Evaluation Metrics. In this paper, we adopt the Mean Average Precision
(mAP) as the evaluation criterion. The mAP is utilized to compare the cor-
rectness of the entire binary codes in terms of the Hamming distances. It is
measured by the mean of average precision (AP) of all queries. We have adopted
the prevalent evaluation approach [7,22] of measuring the accuracy of our image
retrieval methods and computing the Mean Average Precision (mAP). We utilize
MAP@1000 for CIFAR10 and ImageNet and MAP@5000 for NUS-WIDE and
MS-COCO, respectively. We measure the quality of retrieval using five standard
measures: Mean Average Precision (mAP), Precision-Recall curves (PR), Recall
curve with respect to the number of retrieved samples (R@N), Precision curve
with respect to the number of retrieved samples (P@N) and Top 5 retrieved
images.

Implementation Details. In this paper, we used MAE-VIT(large) hashing
in which image sizes are resized with n = 224. Patch size is 16, the hidden
dimension is 1024, the number of encoder and decoder blocks is 24, 8. The
number of attention heads is 16. We used 16,32,64 bits length to generate the
hash code. We run the model for 150 epochs and test the model after every 30
epochs; the batch size is 32 for all experiments, and the default masking ratio
is 25%. We use Adam as an optimizer with a learning rate of 1e−5. We also try
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Table 2. mAP Using different types of loss function on CIFAR-10 dataset using our
model

Loss Model name Mask ratio Bits Dataset mAP

Reconstruct loss MAE using VIT 0.25 64 CIFAR10 95.08
HashNet Loss + Reconstruct loss MAE using VIT 0.25 64 CIFAR10 95.50
HashNet Loss + Contrastive loss + Reconstruct loss MAE using VIT 0.25 64 CIFAR10 96.10
Deep Supervised Loss + Contrastive loss + Reconstruct loss MAE using VIT 0.25 64 CIFAR10 96.00
GreedyLoss + Contrastive loss + Reconstruct loss MAE using VIT 0.25 64 CIFAR10 95.80

Table 3. The comparison of our model with respect to other methods on different
datasets with different hash bit code

Methods Backbone CIFAR-10 NUS-WIDE MSCOCO
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

ITQ VGG 0.305 0.325 0.349 0.627 0.645 0.664 0.598 0.624 0.648
DeepBit VGG 0.194 0.249 0.277 0.392 0.403 0.429 0.407 0.419 0.430
BinGAN - 0.476 0.512 0.520 0.654 0.709 0.713 0.651 0.673 0.696
GreedyHash VGG 0.448 0.473 0.501 0.633 0.691 0.731 0.582 0.668 0.710
HashGAN - 0.447 0.463 0.481 - - - - - -
DVB VGG 0.403 0.422 0.446 0.604 0.632 0.665 0.570 0.629 0.623
TBH VGG 0.532 0.573 0.578 0.717 0.725 0.735 0.706 0.735 0.722
CIBHash VGG 0.590 0.622 0.641 0.790 0.807 0.815 0.737 0.760 0.775
ITQ ViT 0.870 0.901 0.910 0.724 0.756 0.779 0.715 0.805 0.844
GreedyHash ViT 0.879 0.901 0.915 0.629 0.690 0.752 0.647 0.756 0.836
CIBHash ViT 0.903 0.925 0.938 0.779 0.810 0.826 0.809 0.846 0.867
IPHash ViT 0.942 0.951 0.958 0.797 0.816 0.826 0.826 0.875 0.894
Joint Loss(ours) MAE(ViT) 0.951 0.961 0.968 0.768 0.823 0.834 0.781 0.793 0.816

different masking ratios m = [0.00, 0.25, 0.50, 0.75]. The best result is obtained
at m = 0.25, as shown in the experiments. We have implemented the model in
RTXA6000 GPU in pytorch framework; the time complexity of three methods
(Random masking, Patch masking, and Grid attention masking) is provided as
in Table 4. The average retrieval run time is 0.2 s for 1000 images.

Table 4. Retrieval time of different variants of our proposed architecture.

Masked Autoencoder
hashing

Dataset Training Run Time Retrieval Running time Retrieved image time

Random Masking CIFAR10 1.45 min per epoch 0.2 s for 1000 images <0.1 s
Patch masking 1.45 min per epoch 0.2 s for 1000 images <0.1 s
Grid Attention
Masking

1.45 min per epoch 0.2 s for 1000 images <0.1 s
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4.2 Experimental Results

In this section, we present the details of experimental results analysis using our
model on different datasets and also using different masking ratios. An ablation
study is also given to check the effect of the joint loss on our model.

Quantitative Results. From Table 1a, 1b, 1c, we can see the experimental
analysis of our model using different masking techniques and different mask-
ing ratios. Table 2 shows the quantitative results of our model using different
loss function parameters on the CIFAR10 dataset. Table 3 shows the detailed
comparative analysis of our model with other state-of-the-art models. We have
used the MAE-VIT as the backbone network. While comparing with the latest
state-of-the-art methods, our model has shown an average 1.1% increase on the
CIFAR10 dataset for all hash code lengths and an average 0.8% increase on
NUS-WIDE dataset for 32 and 64 bits hash code length, while on 16 bits hash
code length, IPHash has shown great result. In the case of MSCOCO, IPhash
has shown great results. Additional results are given in supplementary material.

Random Masking Patch Masking Attention Grid Masking

Fig. 3. Masking Ratio vs mAP on the datasets

stib46stib23stib61

Fig. 4. PR curve on CIFAR-10 dataset
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Fig. 5. Pr curve of different masking ratios [0.00, 0.25, 0.50, 0.75] using our model on
CIFAR10, ImageNet, MSCOCO and NUSWIDE Dataset, respectively, using random
masking

(a) 0.25 Masking ratio (b) 0.50 Masking ratio (c) 0.75 Masking ratio

Fig. 6. Top 5 query image retrieval using different masking ratio [0.25] using our model
on CIFAR10 Dataset, respectively, using random masking where 1st rows indicates
cosine similarity retrieval, 2nd rows indicates knn search retrieval and 3rd rows indicates
distance retrieval method
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(a) TSNE visulization on CIFAR10 (b) Alpha vs mAP

Fig. 7. a)TSNE visualization on CIFAR 10 and b) Alpha vs mAP graph

Qualitative Results. Figure 3 shows the masking ratio vs mAP graphs over
various datasets. Figure 4 demonstrates Precision-Recall (P-R) curves with our
model on CIFAR-10 with the various methods. We surpass IPHash, CIBHash,
GreedyHash, and ITQ in retrieval performance. The proposed technique can save
crucial, meaningful information even when it is compressed a lot. Figure 5 shows
the roc curve of our model, using different masking ratios on different datasets.
Figure 7a presents the T-SNE visualization results of our model on CIFAR-10.
In 64-bit hash samples, distinct embeddings (labels) are clearly distinguished,
proving our model’s great information-preserving ability using joint loss. Our
CMAEH method is capable of generating hash codes that are more discrimina-
tive than those generated by existing hashing techniques. Figure 6 indicates the
relevant top 5 qualitative retrieval performance of the proposed model.

4.3 Ablation Study

Alpha Parameter: Our model implemented a loss function that integrated a
Hash loss with a supervised contrastive loss. The parameter alpha does a very
crucial task of maintaining the balance between the two components of this joint
loss. The parameter alpha allows us to control the model’s alignment through the
change of the relative importance between Hash Loss and contrastive supervised
loss during the training process. To conduct a complete analysis of the effect
of alpha, we performed a trial with different alpha values. We investigated how
the proposed model’s performance varied for various alpha settings, i.e., higher
values gave more relevance to the hash loss and lower values gave more weight to
supervised contrastive loss. We evaluated both fixed alpha options with adaptive
techniques to pick the most efficient approaches for our specific tasks. As shown
in Fig. 7b, the mAP value for CIFAR10 is higher with alpha = 0.3 than other
alpha values.

5 Conclusion

This paper introduced a novel hashing method called contrastive masked autoen-
coder hashing, which is based on the MAE-ViT large-scale vision pre-training
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model. When learning the information-preserving feature extractor, we utilized a
random mask to eliminate spatial redundancy and preserve semantic information
in the source image. We used the hashing-preserving module to generate hash
codes. Comprehensive experiments are carried out on four benchmark datasets.
The results demonstrated that our method outperforms other baseline methods.
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