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President’s Address

On behalf of the Executive Committee of the International Association for Pattern Recog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that we must thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for [ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPR Prize Lectures at ICPR 2024. This year we honor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of Pattern Recognition and whose past contributions,
current research activity and future potential may be regarded as a model to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in TAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer—Rao bound, and Fisher—
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IICPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. In ICRP 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image, Video, Speech, and Signal Analysis; Biometrics and Human-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2-5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in four meeting rooms with a total of 40 oral sessions. In total 24 workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork Al,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conference would not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, Rama Chellappa and Cheng-Lin Liu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-Marc Ogier and Prabir Bhattacharya) and Tutorial Chairs (B.B. Chaudhuri, Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium. We would like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the Track Chairs and the meta reviewers who devoted significant time to
the review process and preparation of the program. We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

We hope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler
Anil Jain
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Abstract. Large language models (LLMs) have evolved rapidly and
demonstrated superior performance over the past few months. Training
these models is both expensive and time-consuming. Consequently, some
companies have begun to offer embedding as a service (EaaS) based on
these LLMs to reap the benefits. However, this makes them potentially
vulnerable to model extraction attacks which can replicate a functionally
similar model and thereby infringe upon copyright. To protect the copy-
right of LLMs for EaaS, we propose a backdoor watermarking method
by injecting a secret cosine signal into embeddings of original text with
triggers. The secret signal, generated and authenticated using identity
information, establishes a direct link between the watermark and the
copyright owner. Experimental results demonstrate the method’s effec-
tiveness, showing minimal impact on downstream tasks and high detec-
tion accuracy, as well as exhibiting resilience to forgery attacks.

Keywords: LLMs - EaaS - Backdoor watermarking

1 Introduction

With the advancement of artificial intelligence research and the increasing avail-
ability of computational resources, large language models (LLMs) like GPT-
3 [1] and LLaMA [14] have demonstrated exceptional performance in natu-
ral language processing tasks, e.g., text classification [12], text generation [4],
and code writing [15]. LLMs are trained using unsupervised learning techniques
on massive and diverse text corpora, allowing them to learn general language
knowledge. Consequently, the embeddings generated by LLMs exhibit univer-
sality across various domains. Many researchers have achieved state-of-the-art
results by fine-tuning their models for specific tasks using embeddings generated
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by LLMs [3]. However, training these large language models requires signifi-
cant human and financial resources. Recognizing this, LLM owners often pro-
vide fee-based APIs, such as OpenAl’s embedding as a service (EaaS) based on
GPT-3, to offset innovation and maintenance costs. Nevertheless, this exposes
vulnerabilities to model extraction attacks, especially leveraging model distil-
lation. Recently, researchers [13] indicate that model extraction is much less
costly than training a model. Consequently, attackers can easily replicate EaaS
model or even offer their own EaaS, leading to substantial economic losses for
model owners. Therefore, protecting copyright of EaaS model to prevent model
extraction attacks is both urgent and crucial.

The copyright protection mechanism for EaaS model can be divided into two
categories: watermarking into the output embeddings and watermarking into
the EaaS model. As for the first approach, traditional methods aim at safe-
guarding the copyright of multimedia content, such as image [9], audio [16], and
text [19], facing challenges when directly applied to embeddings. This is due
to the discrete nature of embeddings, which feature a higher encoding rate and
significantly lower content redundancy, making the application of watermarking
more intricate. As for the second approach, [7,18] utilize trigger sets to embed
invisible watermarks in diverse models prior to distribution. However, as EaaS
only provides users with embeddings and users have no access to specific model
parameters, the aforementioned methods are not applicable to EaaS model copy-
right protection.

For the latest research on EaaS model copyright protection, EmbMarker [11]
presents a backdoor watermarking method that embeds target embeddings as
watermarks into the original embeddings. However, this approach lacks a direct
link between the watermark and the copyright owner. This makes it vulnera-
ble to forgery attacks which involve attackers fabricating an identity they do
not possess to pass through identity verification successfully. Specifically, dur-
ing the copyright verification process, attackers can also claim ownership of the
watermark. Consequently, the trusted third-party institution cannot ascertain
copyright ownership, rendering the watermark ineffective.

We integrate the watermark with identity information and a key, enhancing
the algorithm’s resilience against forgery attacks and thereby mitigating the
issue of EmbMarker. The core idea is to inject a secret cosine signal into the
embeddings of the original text which has triggers. This cosine signal has minimal
impact on subsequent downstream tasks using embeddings and exhibits high
concealment. To resist forgery attacks, the generation and authentication of the
covert signal require identity information and a key, establishing a connection
between the watermark and the copyright owner. To ensure that the models
extracted by attackers include this watermark cosine signal, we select moderate-
frequency words from a general text corpus as the trigger set. In the copyright
verification stage, by providing the identity information and key to a trusted
third party, typically a government agency, the party detects the presence of the
cosine signal in the embeddings returned by the suspicious EaaS for backdoor
samples. If a cosine signal with the same frequency as the private frequency
is detected, it can be concluded that the model has been illicitly obtained, as
normal embeddings lack cosine components.
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The experimental results indicate that our method has a minimal impact
on downstream tasks and achieves high detection accuracy. The experiments
also validate the invisibility and reliability of our method. Additionally, to vali-
date the method’s resistance to forgery attacks, i.e., unforgeability, we conduct
watermark detection using incorrect identity information and key. The results
demonstrate the incapacity to detect the watermark signal, thereby confirm-
ing the method’s unforgeability. The main contributions of this paper include:

— We propose a backdoor watermarking method for EaaS model copyright pro-
tection, with minimal impact on downstream classification tasks that utilize
the embeddings.

— We design a method to embed a secret cosine signal into embeddings, estab-
lishing a connection between the watermark and identity information, effec-
tively resisting forgery attacks.

— Extensive experiments verify the effectiveness of the proposed method and
can resist forgery attacks.

2 Related Works

2.1 Model Extraction Attacks

Model extraction attacks [10] involve attackers using their copy datasets to
query the victim model’s API, acquire responses, and construct data and labels
for training their own model. These attacks leverage knowledge distillation [2],
enabling the development of a model with comparable performance to the vic-
tim model at a reduced cost. Previous work [8] indicates that EaaS is more
vulnerable to such attacks. As attackers can release similar APIs at lower prices,
significantly undermining the interests of the model owner.

2.2 Backdoor Watermarking

Backdoor watermarking stems from backdoor attacks [6], which use hidden trig-
gers in training data to induce specific behaviors in models, causing abnormal
responses [17]. In backdoor watermarking, the trigger set is carefully designed
to embed watermarks reflecting the owner’s identity information. PLMmark [5]
introduces a black-box watermarking method based on contrastive learning to
protect the copyright of pre-trained language models. GINSEW [20] embeds a
sine wave into the logits of a language generation model, achieving invisibility
of the watermark. However, these backdoor watermarking methods cannot be
directly applied to EaaS, as EaaS returns embeddings. EmbMarker [11] com-
bines target embeddings with the original embeddings and detects the watermark
through distribution similarity checks. Nevertheless, due to the embedded water-
mark lacking reflection of the owner’s unique identity information, EmbMarker is
susceptible to forgery attacks. To address this issue, inspired by these works, we
propose an approach to protect EaaS copyrights. Our method maintains high
detection accuracy while minimally impacting the original embeddings. Addi-
tionally, the experimental results indicate that our method is robust to resist
forgery attacks.
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3 Methodology

3.1 Problem Statement

The model owner releases their model API V as EaaS for a profit. In model
extraction attacks, attackers utilize their copy dataset, denoted as D, to query V,
obtaining the response embedding corpus E.. Subsequently, attackers construct
a training set to train their own stolen model f. The attacker’s objective is to
employ knowledge distillation to train their own model, making its functionality
similar to V and providing more affordable EaaS. We assume the attacker has a
sufficient budget to query V and the resources to train their own model.

Our method is not aimed at preventing model extraction attacks, as we
cannot distinguish between attackers and normal users. On the contrary, we
focus on determining whether a suspicious model is stolen. Therefore, we embed
watermark into embeddings of text which has trigger set, denoted as e,,. Once the
attacker trains their model using embeddings with the watermark, the watermark
will exist in the output of the suspicious model, which can be used to determine
whether the model is stolen or not.

3.2 Overview
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Fig. 1. The detailed overview of watermark injection phase and watermark detection
phase in our proposed approach.

We present an overview of our approach as shown in Fig. 1, comprising two pri-
mary stages: a) watermark injection and b) watermark detection. Specifically, we
embed the watermark into the output embeddings instead of the original model,
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thus avoiding the need to modify the model’s parameters. During the watermark
injection phase, if the original query text contains words from the trigger set T,
we embed a secret cosine signal into the clean embeddings e,, resulting in water-
marked embeddings e,,. Conversely, if the original query text does not contain
words from the trigger set T, we return the original clean embeddings e,. The
stealer queries V with their copy dataset D, to obtain responses F,, using these
to constitute a training dataset for training the extracted model. As D, con-
tains several sentences with trigger words, the response embedding corpus F.
is composed of e, and e,. During the watermark detection phase, as embed-
dings from a normal model lack specific cosine signal, we utilize sentences with
different numbers of trigger words to form a detection dataset D, for querying
the embeddings e, provided by the suspicious EaaS. Ownership verification is
accomplished by detecting the presence of the distinctive cosine signal.

In the following sections, we elaborate on the design motivation and details
of each stage.

3.3 Inject Watermark Containing Identity Information

Trigger Set Selection. In the watermark injection phase, designing an appro-
priate trigger set is crucial. We need to ensure that regular users are not affected,
and that the number of backdoor samples is sufficient to embed the watermark
into stolen models. We follow the approach [11] to select n words with spe-
cific frequencies appearing in a large corpus to constitute the trigger set 7.
Specifically, We compile the frequency of each word in a general text corpus
D, and randomly select n words with medium frequencies to form the trig-
ger set T = {Wy, Wa, ..., W,,}. The rationale behind this choice is that mid-
frequency words can minimize the impact on downstream tasks and ensure
that the attacker’s copy dataset D. contains a substantial number of backdoor
samples for injecting the watermark. The influence of the trigger set size, denoted
as n, exhibits a comparable impact. We further discuss the impact of both aspects
on the results in Sect. 4.3.

Watermark Function. In order to resist forgery attacks, we propose a novel
watermarking function that embeds a cosine signal into the original embeddings.
This cosine signal is generated using modern cryptographic methods, ensuring
the unforgeability of the watermark. Specifically, we apply a digital function
Sign(.) to generate a digital signature from identity information m and a pri-
vate key O,y Subsequently, we utilize a Hash(.) function to map the digital
signature to binary encoding b:

b = Hash(Sign(m, Opy)), (1)

where we implement the Sign(.) using the RSA public-key cryptography algo-
rithm and utilize SHA256 as the Hash(.).

Subsequently, we use the binary encoding b to randomly generate a matrix
M € R!Falx" and a vector v € R™ !, where |Ey| is the dimension of the embed-
dings. The elements of the phase vector v are randomly sampled from a uniform
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distribution [0, 1), while the elements of the token matrix M are randomly
sampled from a standard normal distribution, denoted as M;; ~ N(0,1). Let
M; € R™ denote the i-th row of matrix M, then M; x v ~ N(0, ). We then
use the probability integral transformation F' to obtain a uniform distribution
of the hash values [20] ¢:

t= F(M; x v) ~ U(0, 1). (2)

Each row of the matrix M generates a unique hash value. Combining these
different hash values forms the time set T'= [t, fa, ..., | g,|]. The necessary con-
ditions for generating 7' are identity information m and a private key Op;
thus, we refer to it as a secret hash function g(m, Op). Multiplying T by a
private frequency f,, results in the secret cosine signal. To improve watermark
concealment and minimize its influence on the original embeddings, we intro-
duce a hyperparameter, the watermark weight A, which controls the weight of
the embedded cosine signal. Combining the secret cosine signal with the orig-
inal embeddings e,, we obtain the embedded watermark embeddings e,, after

applying L2-norm:
e, + Acos(f, T)

® = Tley + Acos(fy DTz ®)

3.4 Copyright Verification

During the copyright verification phase, if we detect the presence of the cosine
signal in the output embeddings of the suspicious model, we can confidently
conclude that the suspicious model is stolen. The specific detection process is
outlined as follows:

Constructing Detection Dataset. To ensure the accuracy and reliability of
our detection process, we meticulously construct a detection dataset comprising
100 samples. Initially, we randomly select four words from a general text corpus
D,,, which does not belong to the trigger set, to form a single sample. We repeat
this process 100 times. Subsequently, we further process the dataset by replac-
ing the original words with an arbitrary number of trigger words to construct
the backdoor data. Through these steps, we successfully create the detection
dataset Dy.

Cosine Signal Detection. When we identify a suspicious model, we can pro-
vide the identity information m, a private key O,; and detection dataset Dy to
a trusted third party (often a government agency). This entity can generate the
secret time set 1" using the function g(m, O,,;). Subsequently, by querying the
suspicious model’s API with the detection dataset Dy, we obtain the returned
embeddings e,. We then adds the pair (777, e,[i]) to the set H. As the time series
are non-uniformly sampled, we use the Lomb-Scargle periodogram to estimate
the Fourier power spectrum P(f) at a specific frequency f,, in the probing set H.
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Through approximate Fourier transformation, we enhance the subtle perturba-
tion in the probability vector. This enables the detection of a peak in the power
spectrum at the frequency f,. Consequently, the strength of the signal can be
assessed by calculating the signal-to-noise ratio Pgy, [20]:

1 s F
Pnoise = m[/o P(.f)df+/f P(f)df]a

wts
1 fut3
Psignal = =< P(f)dfa
0 J5,~3

Popr = signal/Pnoi567 (4)

where § regulates the window width of detection, F' represents the maximum
frequency, and f,, denotes the angular frequency embedded into the victim model.

A high Py,, value implies a greater likelihood that the suspicious model
contains a secret cosine signal. By inputting the detection dataset Dj into the
suspicious model, we can demonstrate that the model is stolen if the embed-
dings returned by the backdoor data exhibit a high Pg,, value. Conversely, a
low Pgy, value in the embeddings returned by the clean data further validates
the reliability of our approach. This comprehensive analysis provides conclusive
evidence regarding the origin of the suspicious model. Through experimentation,
it is determined that the P, for embeddings without a watermark is unlikely
to exceed 5. Therefore, we set a threshold 7 = 5 to determine whether the
suspicious model is a stealing model.

4 Experiments

4.1 Experimental Setup

Datasets. To evaluate the performance of our method and demonstrate its
universality, we utilize four standard text classification datasets: SST2, AGNews,
Enron Spam, and MIND. SST2 is a sentiment classification dataset. AGNews
and MIND are news classification datasets with different numbers of classes
(18 for MIND and 4 for AGNews). Enron Spam is a dataset for spam email
classification.

Implementation Details. To simulate a realistic model extraction attack sce-
nario for experiments, we use SST2, AGNews, Enron Spam, and MIND as copy
datasets D, querying OpenAl’s EaaS which is incorporated with our water-
marking method to obtain responses E. as the training dataset. We employ
the AdamW algorithm to train an extracted model with Bert as the back-
bone. All hyperparameters are chosen based on our experimental results to
ensure their relative appropriateness. The secret angular frequency of cosine
signal f, is 16. The watermark weight A is set to 1/120. The size of the trig-
ger set n is 20. We utilize the WikiText dataset, comprising 1,801,350 samples,
as a general text corpus D, to calculate word frequencies. The frequency interval
of selected triggers is [0.005, 0.01]. The window width of detection ¢ is 8.



8 C. Kong et al.

Evaluation Metrics. We adopt two evaluation metrics to assess method per-
formance: accuracy and detection accuracy. The accuracy refers to the precision
of the text classification task using embeddings generated by the model. The
detection accuracy refers to the proportion of successfully detected watermark
samples to the total number of backdoor samples.

Baseline. To the best of our knowledge, there are no other watermarking meth-
ods for EaaS except EmbMarker. Therefore, we compare our method with the
following baselines: 1) Original, in which the returned embeddings lack water-
marking, and attackers utilize clean embeddings to train their own copy models.
2) EmbMarker [11]. EmbMarker employs a hypothesis testing approach based
on cosine similarity distribution for watermark detection, which differs from the
detection mechanism of our proposed method. To ensure a fair comparison, we
adopted the detection metric used in EmbMarker-cosine similarity-to individu-
ally inspect whether a model contains a watermark. Specifically, we calculated
the cosine similarity between the embeddings returned by the suspicious model
and the target embeddings. If this similarity exceeds a threshold, we considered
the model to contain a watermark. This threshold was determined as the optimal
solution through a search algorithm, aiming to maximize detection accuracy. The
validation dataset we used was a specifically constructed detection dataset that
included both watermarked and non-watermarked samples. Detection accuracy
remains a crucial metric for evaluating method performance, representing the
proportion of successfully detected watermarked samples among the total num-
ber of backdoor samples. By comparing our approach with EmbMarker using the
same evaluation criteria, we can more intuitively demonstrate the advantages of
our method in watermark detection.

Furthermore, our method is a one-time test, meaning that it can successfully
detect watermarks with a single inspection. In contrast to EmbMarker, which
requires multiple samples for watermark detection, our method offers higher
efficiency during the inspection process.

4.2 Performance Evaluation

Effectiveness. As shown in Table 1 and Fig. 2, our method achieves high detec-
tion accuracy and a high Pg,, value when detecting embeddings returned by
querying the extracted model with backdoor samples. This demonstrates the
effectiveness of our approach. It is notable that our method performs slightly
less effectively on the Enron Spam dataset compared to the other three. This
is attributed to the smaller sample size of the Enron dataset, making it chal-
lenging for the extracted model to learn watermark features. Nevertheless, the
results still meet the detection requirements. A comparison reveals a slightly
higher detection accuracy compared to EmbMarker, primarily attributed to the
statistical approach employed by EmbMarker using the K-S test, which is less
effective in single-sample detection.
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Table 1. Performance of different methods on the SST2, AGNews, Enron Spam, and
MIND datasets. We report the classification accuracy and mean detection accuracy of
the method.

Original | EmbMarker | Ours

Accuracy(%) SST2 93.81 | 93.12(0.69]) 93.46(0.35])
AGNews 93.40 92.91(0.49]) | 93.37(0.03])
Enron Spam | 94.80 | 94.45(0.35])  94.65(0.15])
MIND 77.34 76.70(0.64]) | 77.24(0.10])

Detection Accuracy(%) | SST2 - 87.50 97.50
AGNews 100.00 100.00
Enron Spam 82.50 85.00
MIND 82.50 92.50

Unforgeability - X v

020 Extracted Model| 15,849 020 Extracted Model 020 Extracted Model] 10970
1 * _Max Frequency * Max Frequency
L 015 15.941 L 015 L, 0.15
3 ¥ El K
Z0.10 £0.10 15.873 £0.10
g E ¥ &
g i E i E
! 0.05 ! 0.05 : 0.05
Pon=33.063 J Poy=28.254 | Pony=21.463 i Py=4.182
0.00 i 0.00 i 0.00 i 0.00
0% 10! 10° 10' 10? 107 107! 10° 10' 10? 107 10t 10" 10! 107 107 107! 100 10' 10?
frequency frequency frequency frequency
(a) SST2 (b) AGNEWs (c) Enron Spam (d) MIND

Fig. 2. The spectrum graph of embeddings returned by querying the extracted model
with backdoor samples after Lomb-Scargle periodogram for the four datasets.

Fidelity: The watermark should not impact the normal performance of the
model. Table 1 demonstrates that our approach exhibits minimal degradation in
accuracy on downstream tasks, outperforming EmbMarker. This is attributed
to the small watermark weight A, resulting in minimal deviation between the
watermarked and original embeddings.

0.8
[ Extracted Model 0.20 Extracted Model
0.6
* Max Frequency
0.4 L 0.15
0.2r <
=
0.0f 500.10
-0.2} g
0.05
0.4y P43l 19.349
0.6} 0.00} = *
-0.8 n n n n n n n L " VR 4
0.0 0.2 0.4 0.6 0.8 1.0 102 107! 10° 10! 10?
frequency

Fig. 3. The scatter plot and the spectrum graph after Lomb-Scargle periodogram of
embeddings returned by querying the normal model with backdoor samples.
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Reliability. Given the critical nature of copyright protection, it is essential to
ensure no false positives for legitimate models. As illustrated in Fig.3, when
extracting a watermark from a normal model, the Pg,, value is low, and the
cosine signal is undetectable. This is attributed to embeddings without water-
mark lacking cosine signal. Therefore, our method never generates false positives
on normal models.

s
02 61 00 01 02 03

Enron Spam

02 01 00 01 02 03
Enron Spam

(b)Our Method

Fig. 4. Visualisation of PCA of 600 randomly selected samples with different numbers
of trigger words in the four datasets of (a) EmbMarker and (b) our method

Invisibility. Attackers might identify the presence of a watermark in the embed-
dings, prompting them to conduct a preliminary screening before training a copy
model. Since the embeddings of sentences in the same training set should be sim-
ilar, attackers may filter out potential “outlier” embeddings. This underscores
the importance of invisibility in our watermarked embeddings. We conducted a
principal component analysis (PCA) for both our method and EmbMarker to
visualize 600 randomly sampled samples from each dataset, with each sample
containing a varying number of trigger words. The results are presented in Fig. 4.
The plots showcase that embeddings with triggers share similar distributions
with benign embeddings, showing the invisibility of the watermark in Emb-
Marker and our approach.

Unforgeability. The unforgeability of the watermark refers to the fact that
attackers cannot falsely claim ownership of the watermark, demonstrating resis-
tance to forgery attacks. There are two possible forgery attacks: a) The attacker
submits a false identity key. We conducted watermark detection using both the
correct identity key and a fake identity key. The results are illustrated in Fig. 5.
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We observe that the results from detecting with false identity information are
indistinguishable from those of the normal model, which indicates that attackers
cannot successfully claim ownership of the watermark. b) The attacker violently
enumerates the time set 7. Then he needs to reversely generate M and v. He
also needs to construct a key that not only contains his own identity message,
but also can map to the M and v. However, due to the one-wayness and collision
resistance of the hash function, these operations are computationally infeasible.

0.8 0.8
0.6l ‘ Extracted Model‘ 0.6 ‘ Extracted Model‘
0.4f 0.4
0.2 0.2
0.0 0.0
0.2} 0.2
-0. 4} -0.4
-0.6( 0.6
-0.8— : : : : : 0.8 : : : : :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
0.20F Extracted Model 0.20 Extracted Model
* Max Frequency * Max Frequency
o 015 » 015
] ]
=] 2
"E0.10F 15.779 '£0.10
& * &
£ 0.05 3 £ 0.05
Pynr=22.227 Pgn=1.533 13.371
0.00 0.00 *
102 10t 10 100 107 102 10t 100 100 107
frequency frequency
(a) Correct key (b) Incorrect key

Fig. 5. The results of watermark detection using the correct key and an incorrect key.

Table 2. The results of training a theft model with different backbone model.

Model Parameters | Accuracy(%) | Detection Accuracy (%)
Bert-small | 29M 94.03 88.75
Bert-base | 110M 93.46 97.50
RoBERTa | 355M 93.92 97.50

Transferability. To validate the transferability of our method, we conduct
experiments by utilizing Bert-small, Bert-base, and RoBERTa, each with varying
parameters, as the backbone of the stealer’s model on the SST2 datasets. As
shown in Table 2, each model detects the watermark.
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Robustness. To assess the robustness of our method, we explore the impact of
adding random noise to embeddings. Adversaries might add noise during train-
ing to remove the watermark or during inference to evade detection. We assume
the attackers would add random noise with a mean of 0 and a standard deviation
of 0.1, either to one dimension or across all dimensions of the embeddings. The
experimental results are shown in Table 3. Adding noise during training signif-
icantly affects our watermark detection, particularly when noise is added to all
dimensions, resulting in a detection accuracy of 0. However, this also reduces
the downstream task accuracy to 90.37%, diminishing the stolen EaaS service
quality, making it less beneficial for the attacker. Adding noise during inference
does not effectively evade detection, with detection accuracy remaining above
60%. Therefore, adding noise has limited impact on our method’s effectiveness.

Table 3. The impact of adding random noise on our method.

Stage Dimension | Accuracy (%) | Detection Accuracy (%)
Training | One 93.35 70.00

All 90.37 0.00
Inference | One 93.04 68.75

All 93.31 70.00

4.3 Hyper-parameter Analysis

In this subsection, we elucidate the rationale behind the selection of the three
main hyper-parameters, A\ = 1/120, n=20, frequency interval = [0.005, 0.01],

Table 4. Results with varied watermark weight ().

A

1/160|1/120 | 1/80 | 1/60
Accuracy (%) 93.34 |93.46 | 93.11|93.01
Detection Accuracy(%) |37.50 |97.50 | 97.50 | 100.00

-0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2 02 0.1 0.0 0.1 0.2 0.3 -0.1 00

(a) A=1/160 (b) A=1/120 (c) A=1/80 (d) A=1/60

102 03 04

Fig. 6. The Visualisation of PCA of samples using different watermark weight ().
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in our method and investigate their impact. Due to the limitation of space, we
only present the results on the SST2 dataset, as the results on other datasets
are similar.

Watermark Weight A. The result is illustrated in Table 4. It can be observed
that the detection performance of the watermark improves with the increase
of X. But the excessive values lead to a greater distance between normal and
backdoor samples. This compromises the invisibility of the watermark as Fig. 6
shows, and concurrently, the accuracy of downstream tasks declines. In addition,
we also observed false positive samples when A is set to 1/60 and 1/80. This
is a significant issue for the reliability of the watermark and should not occur.
Therefore, we choose A = 1/120 as the optimal hyperparameter, balancing the
detection accuracy, the accuracy of downstream tasks, and the invisibility of the
watermark.

Table 5. Results with varied trigger set size (n).

n

18 20 60 100
Accuracy(%) 93.81|93.46 | 93.44 | 93.39
Detection Accuracy(%) | 60.00 | 97.50 | 97.50 | 97.50

-0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2 02 01 0.0 0.1 0.2

(a) n=18 (b) n=20 (¢) n=60 (d) n=100

Fig. 7. The Visualisation of PCA of samples using different trigger set size (n).

Trigger Set Size n. The result is illustrated in Table 5. With the decrease of n,
the impact on accuracy and detection accuracy is similar to that of A. As shown
in Fig. 7, an increase in n also makes watermarked samples easier to distinguish.
This is because it increases the proportion of watermarked samples among the
overall population, making them more identifiable. Eventually, we find that n =
20 is a suitable parameter.

Frequency Interval. Table6 and Fig. 8 show that the impact of frequency
intervals on downstream tasks, detection accuracy, and invisibility is similar to
n, but more pronounced. At the [0.001, 0.01] interval, detection accuracy drops
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Table 6. Results with varied frequency interval.

Frequency Interval

[0.001, 0.01] | [0.005, 0.01] | [0.02, 0.05] | [0.1, 0.2]
Accuracy (%) 93.35 93.46 93.23 93.35
Detection Accuracy(%) | 37.50 97.50 100.00 100.00

-0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2 0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2

(a) [0.001,0.01] (b) [0.005,0.01] (c) [0.02,0.05] (d) [0.1,0.2]

Fig. 8. The Visualisation of PCA of samples using different frequency interval.

to 37.50% due to the selection of low-frequency trigger words, resulting in too
few backdoor samples during stolen model training. This leads to the failure of
embedding the watermark. As shown in Fig. 8, as frequency increases, water-
mark samples deviate more from normal ones. Our experiments indicate that the
[0.005, 0.01] interval produces the best results.

5 Conclusion

We propose a backdoor watermarking method to protect the copyright of EaaS
models by embedding a secret cosine signal into the embeddings of texts with
trigger words, linking it to identity information and resisting forgery attacks.
Extensive experiments on four text classification tasks demonstrate the method’s
effectiveness, fidelity, and robustness, even under forgery attempts. We also
explore the impact of tuning various hyperparameters on the results.
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Abstract. We introduce PoPreRo, the first dataset for Popularity Prediction of
Romanian posts collected from Reddit. The PoPreRo dataset includes a varied
compilation of post samples from five distinct subreddits of Romania, totaling
28,107 data samples. Along with our novel dataset, we introduce a set of com-
petitive models to be used as baselines for future research. Interestingly, the top-
scoring model achieves an accuracy of 61.35% and a macro F; score of 60.60%
on the test set, indicating that the popularity prediction task on PoPreRo is very
challenging. Further investigations based on few-shot prompting the Falcon-7B
Large Language Model also point in the same direction. We thus believe that
PoPreRo is a valuable resource that can be used to evaluate models on predict-
ing the popularity of social media posts in Romanian. We release our dataset at
https://github.com/ana-rogoz/PoPreRo.

Keywords: natural language processing - reddit popularity * popularity
detection - virality detection - Romanian + LLM prompting

1 Introduction

Understanding the factors influencing the popularity of social media posts represents a
critical and multifaceted challenge for NLP research. Social media platforms generate
vast amounts of user-created content, offering a unique window into real-time pub-
lic discourse and collective attention. Analyzing what resonates with audiences goes
beyond just sentiment analysis, demanding nuanced NLP techniques to capture humor,
sarcasm, and the subtle cues that drive engagement. This pursuit fosters not only the-
oretical advancements but also practical applications across diverse fields, from mar-
keting and public health to combating misinformation and predicting cultural trends.
Studying social media popularity, therefore, is not just an interesting NLP problem, but
a key to unlocking the true potential of language in the digital age.

So far, the phenomenon has been studied both for individual social media platforms,
such as Instagram [4,5,21,26], Reddit [2,13], Twitter [16,17,27], either as a whole
phenomenon, for detecting popularity [20,25], or for generating engaging content [8].

Reddit, in particular, has been one of the most studied platforms in the ever-evolving
landscape of online content. From gauging public opinion and identifying emerging
trends to optimizing content recommendation systems and combating misinformation,
accurate popularity detection offers a multitude of applications across various domains.
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There are existing datasets generated from Reddit content, studying several topics, from
political conflicts [28], to personality traits [10], language biases [9,11], and mental
health related topics, such as stress analysis [24], depression [23] and anxiety [22].

While existing Reddit datasets have played a crucial role in advancing NLP
research, they predominantly focus on high-resource languages, such as English. This
creates a bias towards high-resource languages in NLP models, neglecting the neces-
sity of exploring NLP capabilities on less studied languages, such as Romanian.

We emphasize that what constitutes a popular (viral) post can vary across countries
and regions, since the topics of interest can naturally change from one local community
to another. This is because people are usually more influenced by major local events,
e.g. the war in Ukraine is still a major subject of discussion in Romania, a neighboring
country of Ukraine, while the subject may have faded out in countries from other con-
tinents. This justifies the need to study the popularity prediction task across multiple
countries, and consequently, in various languages. To this end, we introduce PoPreRo,
the first dataset for Popularity Prediction of Romanian posts collected from Reddit. We
leverage this novel resource to explore popularity detection in a low-resource language,
Romanian, establishing six diverse baselines for future comparative analysis.

2 Dataset

2.1 Data Collection

PoPreRo gathers Reddit posts from five different Romanian subreddit channels, which
represent either one of the biggest cities in Romania or the country-wide subreddit. The
subreddits are: Romania, Bucuresti, Cluj, Iasi and Timigoara. These subreddits were
collected at first using Reddit API, divided into JSON files to extract the information
needed for analyzing the popularity of each reddit post, such as title, content, number of
comments, number of up and down votes. However, Reddit API has a limitation of 1000
requests for extraction of different data. Due to the large number of samples that we
target for the dataset, the API could not provide all necessary data. Therefore, we use an
open-source archive, from where the samples are collected. As mentioned above, all the
data is stored in separate JSON files for each subreddit, containing relevant information
for determining the popularity of posts.

2.2 Dataset Statistics

The dataset comprises 28,107 samples (14,289 unpopular and 13,818 popular) con-
taining over 1 million tokens in total (see detailed statistics in Table 1). Each sample
consists of a title, a content, and a binary label, where the title and content are concate-
nated into a single text. We divide the posts into “popular” or “unpopular” based on
the sum of upvotes and downvotes for each post, where the threshold between the two
categories is given by the median number of votes (15). To enable consistent evaluation
and comparison with future studies, we provide an official split with distinct training,
validation, and test sets. Inspired by McHardy et al. [18], we utilize disjoint subreddits
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Table 1. Number of samples (#posts) and number of tokens (#tokens) for each subset in PoPreRo.

Set Unpopular Popular Total

#posts | #tokens | #posts | #tokens | #posts | #tokens

Training | 12,053 | 398,219 | 11,592 | 560,580 | 23,645 | 958,799
Validation | 1,059 | 75,742 1,054 80,297 | 2,113 | 156,039
Test 1,177 72,819 | 1,172 | 93,268 | 2,349 | 168,867
Total 14,289 | 546,780 | 13,818 | 734,145 | 28,107 | 1,283,705

Table 2. Number of samples (#posts) for each label (popular/unpopular), distributed by the time
of posting for each subset in PoPreRo.

Set Label #posts in time window (h)

[0-4) | [4-8) | [8-12) | [12-16) | [16-20) | [20-24)
Training | popular 816 260 |2,200 |3,451 2,797 2,272
unpopular | 1,050 | 254 | 1,779 | 3,280 3,014 2,472
Validation | popular | 78 38 | 255 284 228 172
unpopular | 87 32 174 273 232 260
Test popular | 57 24 1241 319 287 244
unpopular | 67 32 259 325 274 220

for each set, ensuring models cannot capitalize on knowledge of specific topics. To fur-
ther mitigate potential biases arising from uneven topic or time distributions, we select
posts from the same time frame across all subreddits (Table 2).

Additionally, to control for a potential bias related to the time of day when posts
were submitted, we performed an analysis of post popularity by hour. We divided each
day into four-hour intervals and categorized the number of popular and unpopular posts
within each interval. The detailed results are presented in Fig. 1. Notably, we observe
a consistent trend across all time intervals for both popular and unpopular posts. This
finding suggests that the hour of submission does not exert a significant influence on
post popularity within our dataset.

2.3 Preprocessing

After gathering the data from Reddit, we implement a two-step preprocessing pipeline
to ensure data quality and consistency. First, language identification was performed
on post titles using FastText [12] to filter out non-Romanian posts (filtered posts are
not counted in Table 1). This step guarantees the linguistic homogeneity of the dataset.
Subsequently, upvote/downvote scores are normalized to the [0, 1] interval. Finally, a
binary popularity label is assigned with respect to the median value of the normalized
scores, which corresponds to 15 votes. This approach provides a clear threshold for
distinguishing popular and unpopular posts. Notably, our data collection and labeling
procedure is directly transferable to other languages.
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Fig. 1. Number of samples (#posts) for each label (popular/unpopular), distributed by the time of
posting. The 24 h in a day are divided into six four-hour intervals. Best viewed in color.

3 Methods

To comprehensively evaluate the performance for the popularity prediction task on the
newly introduced dataset, we establish six baseline approaches. Two of these baselines
leverage state-of-the-art deep learning models for language processing. Another three
baselines utilize various classifiers based on shallow or deep (frozen) features. Our final
baseline uses a Large Language Model (LLM) based on in-context learning, also known
as few-shot prompting. For all models, we use the concatenated title and content of each
post as the input data.

3.1 Fine-Tuned Ro-GPT2

Our first baseline relies on fine-tuning a Ro-GPT2 model [19], a large language model
specifically trained on Romanian text. It is based on the original GPT2 architecture,
but trained on a Romanian dataset consisting of over 1 million tokens. This allows
it to capture the nuances and specificities of the Romanian language, making it more
suitable for tasks involving Romanian than the general-purpose GPT2. The Ro-GPT2
encoder is utilized to encode each text sequence into a list of token IDs. Subsequently,
the model processes these tokens, generating corresponding 768-dimensional embed-
dings. We then incorporate a global average pooling layer to capture a Continuous Bag-
of-Words (CBOW) representation for each text sequence. This representation is fed
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into a Softmax output layer comprising two neurons, each predicting the probability of
belonging to either the unpopular or popular category. To assign the final class label, we
apply the argmax function on the two predicted probabilities. The entire model is fine-
tuned for 5 epochs on mini-batches of 32 samples. We employ the Adam optimizer with
decoupled weight decay (AdamW) [15] with a learning rate of 5-10~7 and e = 5-10~".

3.2 Fine-Tuned Ro-BERT

As our second baseline, we employ a fine-tuned Romanian Bidirectional Encoder Rep-
resentations from Transformers (Ro-BERT) model [7]. Sharing the same transformer-
based architecture as the original BERT [6], Ro-BERT has been demonstrated to out-
perform multilingual BERT on various tasks, as reported by Dumitrescu et al. [7]. Con-
sequently, we anticipate Ro-BERT to be a strong baseline for our Romanian corpus.

Similarly to the previous baseline, we use the Ro-BERT encoder to encode each text
into a list of token IDs. We keep the same design as before, where the model generates
768-dimensional embeddings, followed by a global average pooling layer which is fed
into a Softmax output layer with two neurons. To assign the final class label, we apply
the argmax function on the two predicted probabilities. The entire model is fine-tuned
for 10 epochs on mini-batches of 32 samples. We employ the AdamW optimizer [15]
with a learning rate of 2 - 10~7 and the default value for e.

3.3 Ro-BERT Embeddings + Logistic Regression

For our third classification approach, we leverage pre-trained Ro-BERT embeddings in
conjunction with a Logistic Regression (LR) classifier. Consistent with the fine-tuned
Ro-BERT baseline, we first tokenize all input samples from the three datasets. Subse-
quently, we utilize the Ro-BERT model to extract 768-dimensional vector representa-
tions for each sample. These representations, corresponding to the final hidden layer of
Ro-BERT, are then fed into the LR model for classification.

3.4 FastText + SVM

The first shallow classification approach is based on FastText embeddings [3] and a Sup-
port Vector Machines (SVM) classifier. After textual cleaning and tokenization using
NLTK’s word tokenizer, we fine-tune a FastText model on the training corpus. This
model provides word embeddings for train, validation, and test sets. For each text sam-
ple, the word embeddings are averaged to produce a 300-dimensional feature vector,
which is subsequently passed to the SVM. Finally, we train the SVM classifier using
the linear kernel and the regularization hyperparameter C' set to 10.
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3.5 TF-IDF + Random Forest

Our second shallow classification approach is based on the Term Frequency-Inverse
Document Frequency (TF-IDF) representation and a Random Forest (RF) classifier.
As for the previous method, we initiate the process by cleaning and tokenizing the
text using NLTK’s word tokenizer. Subsequently, we employed a TF-IDF vectorizer to
quantify the importance of words within the corpus, generating numerical features for
each document. These features are then used to train a Random Forest classifier.

3.6 Few-Shot LLM Prompting

To explore the feasibility of large language models (LLMs) for post popularity predic-
tion in PoPreRo, we employ a prompt-based approach utilizing the 7-billion parameter
Falcon LLM [1] (Falcon-7B). Due to computational limitations, we prompt the LLM
with contexts comprising two unpopular and two popular examples. Subsequently, we
attach an individual test sample to each prompt and ask the LLM to predict the corre-
sponding label. Below, we illustrate the structure of our prompt via a concrete example:

PROMPT (Original) :
Text: 'Nu vreau sa mail traiesc pe aceasta planeta !’/
Label: ’'Popular’.

Text: ’"Unde pot verifica compoziia unui produs?. S
testez de exemplu dac ingredientele unui produs sunt
intr-adevr acelea. Sau dac nite tablete de vitamine
chiar conin vitamine. In ce proporii? Sau cat vitamina
A conine un morcov - unde pot verifica asta? Ceva
laboratoare?’ Label: ’Unpopular’.

Text: "Azi a venit mitropolitul ardealului la noi la
liceu s ne conving s facem religie. Primul lucru
care mi-a venit in cap cadnd am vzut ce main i-a
parcat in curtea instituii..’ Label: ’'Popular’.

Text: ’"Daca intereseaza pe cineva, sa stiti ca e reddit
si in romana’ Label: ’Unpopular’.

Text: 'Am prins niste fulgere faine zilele trecute’
Label:
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PROMPT (Translated) :
Text: "I don’t want to live on this planet anymore!’
Label: ’'Popular’.

Text: "Where can I check the composition of a product?.
To test for example whether the ingredients of a
product are indeed those. Or if some vitamin tablets

actually contain vitamins. In what proportions? Or how
much vitamin A contains a carrot - where can I check
this? Some laboratories?’ Label: ’Unpopular’.

Text: ’'Today the metropolitan of Transylvania came to us
at high school to convince us to do religion. First thing
that came to mind when I saw what car he has

parked in the courtyard of institutions..’ Label:
"Popular’.

Text: "If anyone is interested, there’s reddit in
Romanian’ Label: ’'Unpopular’.

Text: "I caught some fine lightning the other day’
Label:

4 Experiments

4.1 Evaluation

Our binary classification experiments focus on predicting the popularity of text within
the PoPreRo dataset. Each text sample is categorized as either popular or unpopular.
To evaluate the performance of our models, we employ several metrics. For each class,
we calculate precision (proportion of true positives among the identified positives) and
recall (proportion of true positives with respect to all positives). Additionally, we aggre-
gate these scores using macro F; and micro F (accuracy) measures.

4.2 Hyperparameter Tuning

The hyperparameters of all models are determined via grid search. For the transformer-
based methods (Ro-BERT, Ro-GPT2), we employ a grid search over the maximum
number of input tokens in the set {50, 70, 100, 120, 150, 200}, as well as the learning
rate in the set {107°,5-107°,1076,5-1076,107,2-1077,5-10"7,1078,5 - 10~ %}
and the value of € for AdamW in the set {1076, 10~7,10~%}.

For the FastText + SVM approach, we vary the FastText word-embeddings dimen-
sion ({150, 200, 300, 350}), the window size for the input ({2,3,4}), as well as the
kernel (linear or RBF) and the parameter C' ({0.1, 1, 10,100, 1000}) of the SVM clas-
sifier. Similarly, for the Ro-BERT + Logistic Regression approach, we run a search
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Table 3. Validation and test results of the six baselines. The random chance baseline is added
as reference. There is no hyperparameter tuning for Falcon-7B LLM, so the model is directly
applied on the test set (using in-context learning). The best score on each subset and for each
metric is highlighted in bold.

Set Method Acc. | Macro | Unpopular Popular
F1 Prec. | Rec. Prec. | Rec.

Validation | Random chance 0.4998 | 0.4999 | 0.4988 | 0.5011 | 0.5011 | 0.4988
Fine-tuned Ro-GPT2 0.6525 | 0.6397 | 0.6157 | 0.8097 | 0.7351 | 0.4986
Fine-tuned Ro-BERT 0.6343 | 0.6278 | 0.6189 | 0.6995 | 0.6411 | 0.5562
FastText + SVM 0.6677 | 0.6624 | 0.6348 | 0.7920 | 0.7225 | 0.5431
TF-IDF + RF 0.6535 | 0.6395 | 0.6107 | 0.8497 | 0.7519 | 0.4568
Ro-BERT + LR 0.6824 | 0.6721 | 0.6354 | 0.8582 | 0.7807 | 0.5061

Test Random chance 0.4998 | 0.4999 | 0.5010 | 0.4989 | 0.4989 | 0.5010
Fine-tuned Ro-GPT2 0.6135 | 0.6060 | 0.6146 | 0.6331 | 0.6145 | 0.5933
Fine-tuned Ro-BERT 0.5605 | 0.5489 | 0.5505 | 0.6611 | 0.5767 | 0.4565
FastText + SVM 0.5644 | 0.5637 | 0.5718 | 0.5208 | 0.5583 | 0.6083
TF-IDF + RF 0.5759 | 0.5729 | 0.5661 | 0.6584 | 0.5897 | 0.4931
Ro-BERT + LR 0.5998 | 0.5973 | 0.5873 | 0.6771 | 0.6169 | 0.5221
Few-shot prompted Falcon-7B | 0.4143 | 0.4126 | 0.4143 | 0.7904 | 0.5537 | 0.1887

over the maximum numbers of Ro-BERT input tokens in the same set as before
({50, 70,100, 120, 150, 200}) and test different penalty term values (‘11°, ‘12, ‘elastic
net’ or ‘None’) for the classifier.

Lastly, for the TF-IDF + Random Forest method, we vary the minimum ({4, 5,6})
and maximum ({0.6, 0.7, 0.8}, in percentages) document frequency of the TF-IDF Vec-
torizer, together with the number of decision trees in the set {50, 100, 150, 200} for the
Random Forest classifier.

All other hyperparameters are set to their default values. Please note that we release
the code to reproduce all baselines, along with the PoPreRo dataset’.

4.3 Results

We present the results of our five baselines on the PoPreRo validation and test sets in
Table 3. We find that Ro-GPT?2 exhibits the best performance, with an accuracy (micro
F1) and a macro F; score above 0.6 on both validation and test sets, in contrast to
the other baselines which seem to perform similarly well on the validation set, but
reach worse performance on the test set.

Evaluating the two state-of-the-art transformer models, Ro-GPT2 and Ro-BERT,
reveals some interesting findings. While both achieve comparable accuracy on the val-
idation set (0.6525 for Ro-GPT2 and 0.6343 for Ro-BERT), Ro-GPT?2 clearly outper-
forms Ro-BERT on the test set, indicating the superior ability of the former model to
generalize to unseen data. Analyzing the precision-recall trade-off, we observe a shared

! https://github.com/ana-rogoz/PoPreRo.
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propensity for both models to exhibit higher recall for the “popular” category, followed
by a shift towards higher precision when identifying the “unpopular” class.

The FastText + SVM, TF-IDF + RF and Ro-BERT + LR models achieve comparable
performance. All three models obtain accuracy rates higher than 65% on the validation
set, which drop below 60% on the test set. In terms of precision and recall, almost all
of them achieve higher precision for the “popular” category on both validation and test
sets, with one exception being the FastText + SVM method on the test set, where the
precision on the two classes is comparable. A distinctive behavior of the three models
is that the TF-IDF + RF obtains a higher recall for the “popular” category, while Fast-
Text + SVM and Ro-BERT + LR attain a higher recall for the “unpopular” category.

Table 4. Examples of relevant terms for popular posts, learned by the fine-tuned Ro-BERT
and SVM models.

Model Topic Example Translation
Ro-BERT | Call to action | “pentru cei care vor sd se implice “for those who want to be actively
activ ” involved”
“ar fi interesati de un voluntariat” “would be interested in
volunteering”
News “Incep sdpdturile la metrou” “excavations begin at the subway”
“un nou residence la “doar 20 de “a new residence building “only
minute” de Centru” 20min” from the center”
Events “Seara de film la Casa Tineretului” | “Movie night at the Youth House”
SVM News “mic protest la primaria capitalei “small protest at Bucharest City
Hall“

Local transport | “am vazut ca este tren de la gara de | “I saw that there is a train from Gara
nord la aeroport aproape la fiecare | de Nord to the airport almost every

«

ora hour*

Table 3 also shows the results on the test set of our few-shot prompted LLM. While
this approach exhibits a bias similar to our other baselines, favoring recall for unpopular
predictions and precision for popular ones, its overall performance falls below that of
a random chance classifier. This suggests a limitation in the generalization capacity of
LLMs to the popularity prediction task, particularly for languages with limited online
resources, such as Romanian.

4.4 Discriminative Feature Analysis

We analyze the discriminative features learned by the fine-tuned Ro-BERT and by the
FastText + SVM. The motivation behind this analysis is to validate that the decisions
of these models are not based on some biases that escaped our data collection, but on
actual data understanding.

For the Ro-BERT model, we use the Captum [14] library via its Layer Integrated
Gradients method to infer valuable insights from the fine-tuned model. This technique
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delves into the BERT embedding layer, attributing importance scores to individual input
words which led to the final label prediction.

To find the words with higher influence on the decisions given by the SVM, we
consider the cosine similarities between the primal weights of the SVM and the FastText
embedding of each word. We sort the words based on the similarity values, and keep
the first 10 and last 10 words from the sorted list as features for the positive (“popular’)
and negative (“unpopular”) classes, respectively.

In Tables 4 and 5, we present a few examples of interesting patterns that were picked
up by the models. In predicting post popularity, the Ro-BERT model demonstrates
a bias toward content reflecting current trends, including news and events, and posts

Table 5. Examples of relevant terms for unpopular posts, learned by the fine-tuned Ro-BERT
and SVM models.

Model Topic Example Translation
Ro-BERT | Proper names “Palatul Roznovanu” “Roznovanu palace”
“Ceaugescu” “Ceaugescu”
“in Timisoara” “in Timisoara”
Seeking advice “terenuri ok de baschet in...” “ok basketball courts in...”
“print shop pentru poze mari in | “print shop for big pictures in ...”
Mundane problems | “Se inchide circulatia” “traffic is closed”
“construim blocuri intre case” “building apartment building
between houses”
SVM City names “bucuresti” “bucharest”
Seeking advice “cunoasteti un loc de facut tatuaj | “do you know a place to do
temporar personalizat” custom temporary tattoo”
Opinion sharing “lumea ca se plange de targul de | “people complain about this
craciun de anul acesta” year’s Christmas market”

Table 6. Examples of the most discriminative words for the popular and unpopular classes,
selected according to the weights learned by the SVM model based on FastText features.

Label Token | Weight

popular online |5.974352
dupa 4.821379
youtube | 4.121604
asa 4.08882
cazul 3.839789

unpopular | toate —4.089375
un —4.190036
google | —4.31336
nia —4.339616
eu —4.72841
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encouraging community engagement through calls to action. Conversely, references to
proper nouns like city names or historical landmarks appear to hinder popularity, as do
posts seeking community advice or expressing dissatisfaction with platitudes. Similar
to Ro-BERT, we find that the SVM labels posts that share news as popular, and posts
by people seeking advice as unpopular.

Furthermore, we extend the feature analysis for the SVM in order to determine
the most discriminative words for the popular and unpopular classes. To achieve this,
we determine the discriminative weight of each word based on the cosine similarity
between the respective word embedding and the SVM weights. We sort the words
according to their weights, and select the ones with the highest and lowest weights. In
Table 6, we provide the five most discriminative words for the popular and unpopu-
lar classes, according to the SVM based on FastText features. We observe that posts
mentioning “online” or “youtube” are more popular, likely because readers appreciate
posts that provide links to YouTube videos. We also note the preference for posts that
discuss particular cases/experiences, which are usually introduced by the word “cazul”
(translated to “case” in English). On the other hand, posts that recommend searching on
“google” are unpopular, as the readers consider such suggestions unhelpful. Moreover,
discussing subjective perspectives, using the singular first person pronoun “eu”, is again
unpopular, likely because the readers appreciate more objective posts.

5 Conclusion

In this paper, we introduced PoPreRo, the first publicly available dataset of Romanian
Reddit posts dedicated to the task of popularity prediction. We collected 28,107 posts
from five diverse Romanian subreddits, amounting to over 1 million tokens. Aiming to
predict binary labels resulting from the sum of upvotes and downvotes for each post, we
explored five distinct popularity detection methods and presented comparative results.
We found that Ro-GPT?2 significantly outperforms the other models.

Building upon our foundation, future research can further study popularity detection
algorithms and delve deeper into the factors driving engagement on Romanian Reddit.

6 Limitations

It is crucial to acknowledge that Reddit’s popularity in Romania might not be repre-
sentative for the wider population. While Reddit offers a valuable platform for research
due to its diverse communities and open discussions, its user base in Romania is com-
paratively smaller than other social media platforms, such as Facebook, Instagram, or
YouTube. Furthermore, Reddit’s API restricts data access, limiting historical data col-
lection and imposing retrieval caps.

Ethics Statement. The data was collected from a publicly available Reddit archive, selecting five
Romanian subreddits. The social media posts are freely accessible to the public without any type
of subscription. As the data was collected from an archived public website (Reddit), we adhere
to the European regulations (https://eur-lex.europa.eu/eli/dir/2019/790/0j) that allow researchers
to use data in the public web domain for non-commercial research purposes. We thus release our
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corpus as open-source under a non-commercial share-alike license agreement, namely CC BY-
NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/).

We acknowledge that some posts could refer to certain people, e.g. public figures in Romania.
Following GDPR regulations, we will remove all references to a person, upon receiving removal
requests via an email to any of the authors.
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Abstract. This paper examines the Code-Switching (CS) phenomenon
where two languages intertwine within a single utterance. There exists a
noticeable need for research on the CS between English and Korean. We
highlight that the current Equivalence Constraint (EC) theory for CS in
other languages may only partially capture English-Korean CS complex-
ities due to the intrinsic grammatical differences between the languages.
We introduce a novel Koglish dataset tailored for English-Korean CS
scenarios to mitigate such challenges. First, we constructed the Koglish-
GLUE dataset to demonstrate the importance and need for CS datasets
in various tasks. We found the differential outcomes of various foundation
multilingual language models when trained on a monolingual versus a
CS dataset. Motivated by this, we hypothesized that SimCSE, which
has shown strengths in monolingual sentence embedding, would have
limitations in CS scenarios. We construct a novel Koglish-NLI (Natural
Language Inference) dataset using a CS augmentation-based approach to
verify this. From this CS-augmented dataset Koglish-NLI, we propose a
unified contrastive learning and augmentation method for code-switched
embeddings, ConCSE, highlighting the semantics of CS sentences. Exper-
imental results validate the proposed ConCSE with an average perfor-
mance enhancement of 1.77% on the Koglish-STS(Semantic Textual Sim-
ilarity) tasks. (Source code available at https://github.com/jjy961228/
ConCSE).
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