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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. We introduce the LS3DS dataset, a novel collection of large
3D CAD models, meshes, and point clouds of industrial sites. Addi-
tionally, the proposed dataset provides a processing pipeline to generate
synthetic meshes and point clouds from the CAD models. The open-
source pipeline makes the proposed dataset easily applicable to different
scenarios, such as the construction industry. The ground truth values
can be effortlessly generated to tackle problems such as geometric primi-
tive fitting, a meaningful challenge strongly related to segmentation and
shape fitting problems. Furthermore, we present a benchmark address-
ing the problem of large-scale point cloud geometric primitive fitting. We
adapted state-of-the-art deep learning-based methods for the benchmark
to process large-scale point clouds. We compared them to a baseline clas-
sical approach, which shows challenges in complex, large-scale industrial
environments defined by dense and varied geometric distributions. Our
paper demonstrates the meaningful contribution of the proposed dataset
with a case study presented in the benchmark, opening opportunities
for dealing with relevant problems of 3D geometric understanding using
learning approaches. The generation pipeline, LS3DS dataset and the
weights of the models trained in the benchmark are openly available to
use (LS3DS Repository: https://github.com/igormaurell/LS3DS).

Keywords: Large-Scale 3D Dataset · Geometric Deep Learning ·
Industrial Environments · Point Clouds

1 Introduction

Over the past few decades, the importance of data has increased, driven in
part by the growing application of supervised machine learning methods for 3D
data [26]. Therefore, a significant challenge in supervised learning is the need for
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a large amount of labeled data [39]. In this sense, it is crucial to understand how
difficult and time-consuming the manual labeling process is regarding different
data domains [7]. Regarding 3D data such as point clouds and meshes, manual
labeling is often more laborious and complex [10]. It occurs due to the sparsity
and difficulty of visualizing and defining masks or bounding boxes using only
multiple 2D views of the complete three-dimensional dataset [11].

Another aspect that can increase the complexity of the labeling process is the
type of ground truth to be annotated. When considering the need for geomet-
ric ground truth, including the parametrization of geometric primitive patches,
surface normal vectors, local curvature, and similar attributes [29], the labeling
process is much more challenging for human data annotators, especially when
seeking high precision [22]. In this context, manually designed 3D CAD mod-
els can be a solution to generate synthetic data with highly detailed geometric
annotation, as presented by the Koch et al. [22] in small-scale environments,
improving the generalization capacity of supervised deep learning methods. In
the industrial context, the data acquisition process is also challenging due to
problems related to manufacturing productivity, security during data collection,
or even confidentiality agreement violations [8,18].

This work introduces LS3DS, the first large-scale industrial synthetic dataset
with CAD models, meshes, point clouds, and geometric ground truth for the geo-
metric deep learning process. Large-scale can mean that the models of the dataset
are large or that the dataset has a lot of models. The present paper considers
the first definition, which means that the CAD models, point clouds, and meshes
are large, representing huge industrial sites with many internal structures of dif-
ferent shapes and sizes. Although datasets such as ShapeNet [5] and ABC [22]
have a lot of models, it is also considered small-scale since the models are single
parts or individual objects and do not represent large scenes with a bunch of
other structures inside. Instead, LS3DS is in a similar scale of datasets applied
for autonomous driving tasks, such as KITTI [9] and nuScenes [4], as well as
datasets for indoor scene understanding such as SceneNN [18] and S3DIS [2].

This work contains the following main contributions:
1. Large-Scale Industrial 3D Dataset: we propose the LS3DS, the first

large-scale synthetic dataset of 3D CAD models, meshes, and point clouds
of industrial scenes, richly annotated with ground truth normals and geomet-
ric primitive surfaces and curves.

2. Open-Source CAD Processing Pipeline: We provide the LS3DS gener-
ation tool, a pipeline for creating point clouds and meshes with ground truth
for geometric deep learning tasks from CAD models.

3. Benchmark in Point Cloud Geometric Primitive Fitting: We present
a benchmark using the LS3DS dataset composed of state-of-the-art methods
as a quantitative metric to evaluate the performance of different algorithms
and the effectiveness of the proposed dataset.
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2 Related Works

In 3D geometry processing, datasets are crucial assets for algorithmic develop-
ment, training, and validation. Table 1 shows the main datasets with 3D data
available in the literature, presenting some important characteristics that differ-
entiate them from the proposed dataset.
Context. We proposed a large-scale dataset, meaning that the models making
part of it are large and from industrial environments. In the literature, many
large-scale datasets are composed of urban scenes; some focused on autonomous
driving [4,9] and some on urban scene understanding for augmented reality,
robotics navigation and urban planning [6,15]. Some datasets of indoor scene
understanding are also available, focused on household environments [8,18] and
large offices with multiple rooms and the connections between them [2].

Despite the existence of these datasets, they are not focused on industrial
structures, which have different requirements and constructive aspects. In this
context, the availability of a dataset plays a crucial role in the industry’s digital
transformation. Although the ABC dataset [22] comprises industrial context
models, they present a small scale, where each model is an object of a single
context and not a large scene with multiple parts.
Data Representations. Table 1 specifies three data representations (CAD
models, meshes, and point clouds) that are considered important as 3D digital
depiction of real-world structures. Among them, the most unusual representa-
tion of datasets is the CAD models, in which the structures are represented
concerning their proposed design. Regarding meshes, in indoor environments,
the RGBD reconstruction methods that were used to generate SceneNN [18]
and S3DIS [2] can generate a surface representation of the observed structures
as triangular meshes. Point clouds are generated directly from LiDAR sensors
without a reconstruction method in urban environments. Thus, datasets of this
context are not normally composed of meshes [4,6,9,15]. In Table 1, datasets
such as ABC [22] and ShapeNet [5] are synthetic small-scale collections in which
the available meshes are 3D designs and not data representing real worlds sce-
narios.

Regarding point clouds, datasets containing meshes can generate point clouds
using mesh vertices or sampling strategies. However, these methods often pro-
duce point clouds that deviate from real-world data acquisition. The LS3DS
dataset generates point clouds by simulating real-world drone LiDAR acquisi-
tion, accurately capturing effects like occlusion and local sparsity.
Ground Truth. Commonly, datasets of large-scale scenes are in urban context
whether indoor or outdoor environments [2,4,9,15,18]. They provide semantic
ground truth since the geometric ground truth is not the main important infor-
mation. That is feasible since the relation between object shapes and geomet-
ric primitives is not straightforward, mainly considering scenarios in which the
objects are not industrially manufactured or not even human-made. Therefore,
the structures in the urban context data are hard to represent as a collection
of primitive patches of parametric types, e.g., planes, spheres, cylinders, and
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cones. However, human-made environments such as industrial sites are mostly
composed of previously CAD-designed objects and structures with a more para-
metrically geometric shape. On these scenarios, another fact that brings closer
the relation between the geometric primitives and object shape is that the indus-
trial components are also most often manufactured by machines that guarantee
greater precision and, as a consequence, structures more similar to what was
designed. Despite the higher constructive quality of urban buildings, the indus-
try still requires the As-Built process, also known as CAD reconstruction. In
this context, geometric primitive detection and shape fitting are important aux-
iliary tasks to dealing with this problem [33]. More recently, in the small-scale
industrial context, Romanengo et al. [35] proposed a benchmark in point cloud
geometric primitive fitting representing CAD models. Seeking to contribute to
the automatic As-Built problem, datasets such as the LS3DS with geometric
ground truth in large-scale context are essential.

Table 1. Overview of public datasets detailing real and synthetic ones with corre-
sponding context, 3D data representations, and type of ground truth that each one
has. Indust refers to industrial context, Geom is Geometric, and Sem is Semantic
ground truths.

Name Context Data Representations Ground Truth

Dataset Large-Scale Indust. CAD Models Point Clouds Meshes Geom. Sem.

Real Semantic3D [15] ✓ × × ✓ × × ✓

S3DIS [2] ✓ × × ✓ ✓ × ✓

KITTI [9] ✓ × × ✓ × × ✓

nuScenes [4] ✓ × × ✓ × × ✓

SceneNN [18] ✓ × × ✓ ✓ × ✓

Synthetic ABC [22] × ✓ ✓ × ✓ ✓ ×
ShapeNet [5] × × × × ✓ × ✓

STPLS3D [6] ✓ × × ✓ × × ✓

Front3D [8] ✓ × × ✓ ✓ × ✓

LS3DS ✓ ✓ ✓ ✓ ✓ ✓ ×

3 3D Data Generation from CAD Models

Most point cloud datasets used for deep learning are composed of real data
captured in specific scenarios and manually annotated using point cloud anno-
tation software. Although manually annotated data is common in segmentation,
detection, and classification tasks, this annotation approach cannot be easily
employed for geometric problems [22], such as geometric primitive fitting. In
addition, especially in industrial scenarios, most companies are not interested
in making 3D scans of their industrial sites openly available. Thus, it is hard
to build a real-world 3D industrial dataset with sufficient models to produce
generalization while training deep learning methods. To address the mentioned
limitation, we present the proposed 3D data synthetic generation process.
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Fig. 1. 3D data generation from CAD models pipeline. First, in green, the BRep CAD
Processing module is responsible for reading the CAD file (1) in STEP format, gener-
ating a mesh (2) and generating a features file (3), with the geometric primitive curve
and surfaces from the input model. Second, in yellow, the Point Cloud Generation
module applies a multi-view LiDAR simulation (A) approach to take the mesh and
generate a point cloud (4). After that, in the same module, the point cloud (4) is
associated with the geometric features (3) to produce the segmentation ground truth,
showed instances (6) and as types (6). (Color figure online)

Our CAD processing pipeline is divided into two main steps: i) BRep CAD
Processing and ii) Point Cloud Generation. The first uses a CAD model as input,
generating three outputs: i) a mesh representing the structure; ii) a feature file
containing the model’s geometric primitives; and iii) a statistics file are also
recorded. The second step is dedicated to point cloud generation, receiving the
mesh as input, correlating the points to its geometry, and obtaining the geometric
ground truth data. The methodology is shown in the diagram of Fig. 1.
BRep CAD Processing. We start from a 3D BRep CAD model in STEP [20]
format, i.e., a tree data structure of geometrical entities detailed in [1]. First,
a topological exploration is applied to collect the geometric curves, surfaces,
and corresponding parameters. Each geometric primitive in the tree structure is
explored and included in a hash table. The separate chaining approach is adopted
in [23] to solve collision problems in hashing data structure. They use linked lists
of geometric primitives in each hash table line. Thereby, the geometric primitives
in the tree data structure of the BRep CAD model are annotated and saved into
a features file, following similar patterns of ABC dataset [22]. We highlight that
the choice of hashing data structure with separate chaining is due to its efficient
performance, with the computational complexity of O(1).

The BRep CAD processing also carried out a stage to create a mesh from
a 3D CAD model. For this, the incremental triangulation process is performed.
The triangular meshes of each component are aggregated into a single mesh
representing the entire CAD model. During this aggregation process, the vertices
and edges in more than one geometric component local mesh are referenced with
the same index in the result, preserving the watertightness property of the final
mesh. Also, we keep track of the relation between the mesh and the geometric
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primitives based on the knowledge of the mesh associated with each vertex and
face. In this way, a list of vertices and face indexes are added to the parameters
of each geometric primitive in the features file.
Point Cloud Generation. A widely used approach for point cloud generation
involves sampling points on a mesh model. This method is particularly suitable
for study cases as it accurately reconstructs all components and geometries in
the 3D model. The resulting synthetic point cloud is comprehensive, capturing
even hidden parts such as the interior of closed geometry structures, in which
these parts should be inherently occluded. The sampling process is based on
uniformly distributing a set of N points along the mesh surface. For this, each
triangle with index k in the mesh receives a weight wk according to the ratio
of its area to the total mesh surface area. Thus, the number of points nk to
be sampled in each triangle is calculated from the product between the weight
and the total amount of points (N) initially chosen, following the mathematical
formulation: nk = wk × N . Finally, each triangle receives nk points following a
uniform random distribution on its surface.

We propose a synthetic point cloud generation method in our pipeline by
simulating LiDAR data acquisition using a multi-view scheme around the struc-
ture mesh. In this simulation, we employ a semi-ellipsoidal fitting surrounding
the model with an offset distance in which the generated points. The LiDARs are
strategically positioned within this ellipsoid surface to observe the structure from
multiple points of view. This approach is innovative in this context and enables
the generation of point clouds that reproduce some effects in a real-world LiDAR
data collection scenario. In contrast to sampling approaches, the LiDAR simula-
tion method mimics local sparsity, with fewer points in regions such as the ones
far away from the simulated sensor. In addition, the most important real-world
reproduced effect is the occlusion, in which regions of the structure that could
not be observed from any point of view do not receive any points. With point
clouds close to the real world, the methods to be trained using these synthetic
data should be more easily transposed to real application contexts, reducing the
sim-to-real gap.

Figure 2 presents a comparative analysis of the previously mentioned
approaches. As the LiDAR simulation method has generated 2.8 million points
in this structure, the same amount is used in the sampling generation. In Fig. 2a,
the widely used uniform sampling method was employed to generate points in
the input mesh. Meanwhile, in Fig. 2b, the point cloud was generated using the
LiDAR simulation method, in which it is possible to observe regions entirely
white, i.e., with nos points (occluded) and regions with a fainter color, i.e., with
fewer points (sparse).

4 LS3DS Dataset

The LS3DS dataset is generated using the proposed 3D data generation pipeline,
and it is composed of 77 free-to-use CAD models available online in STEP for-
mat. Although 77 models may seem small to generalize the learning process, it
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Fig. 2. Point clouds generated from a triangular mesh of a 3D CAD model of LS3DS
dataset, both with 2.8 million points. Figure 2a corresponds to a uniform sampling-
based point cloud. Figure 2b corresponds to a point cloud generated from LiDAR sim-
ulation.

is important to highlight that the models will be decomposed into thousands of
parts to the learning-based methods to be trained in. Section 5 provides more
details about the model decomposition. The notion of large-scale used here con-
siders the following characteristics: wider cross-section area, total volume, and
geometric primitives density, resulting in complex scenes of industrial environ-
ments. Total volume and visual analysis were used as metrics to select 3D models
of industrial scenes that satisfy the geometric density characteristics and com-
plexity of the scenes, with total volume empirically defined as 20 m3.

Another important feature of the dataset is that it is composed of industrial
models, representing complex industrial scenes containing different objects, with
many geometries of different types. Heading in the same direction of the dataset
diversity, LS3DS has a wide scale range, going from 5 m2 up to 2000 m2 of
cross-section area, as illustrated respectively in Fig. 3.

The meshes of LS3DS are used just as an intermediary representation to
obtain the point clouds. Our modified Open CASCADE Technology (OCCT)
library version generates the meshes. Focusing on the point clouds, the gener-
ation process uses the LiDAR simulation technique previously described. Con-
cerning the geometries, the chart shown in Fig. 4 quantifies the average amount
of each geometry type in dataset models. Figure 4b shows the planes and cylin-
ders are the most frequent surfaces in the LS3DS Dataset, by a large margin,
being 88.6%. The third most frequent type is the b-splines. Following up are
the cones, torus, and spheres, summing up 7.64% of all surface entities of the
dataset.

Although the charts in Fig. 4 show valuable information, the average num-
ber of instances is not the only metric to understand the distribution of LS3DS
geometries. Analyzing the average surface area occupied by each type contributes
to understanding what geometry types receive more points and are more impor-
tant in the large-scale industrial context.

5 Benchmark in Geometric Primitive Fitting

The proposed dataset presents a challenging scenario of industrial sites with
high geometry density and large-scale structures. In this context, although the
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Fig. 3. Scale diversity in LS3DS Dataset. Figure 3a shows the model with the smallest
cross-section area model (5 m2). Figure 3b shows the model with the largest cross-
section area model (2000 m2).

point clouds are synthetic, their generation method intentionally produces hard-
to-handle effects, such as occlusion and local sparsity, which leads to incomplete
and under-sampled structures in the data. In addition to these challenges, the
number of points in the clouds that represent large-scale industrial scenes is
huge, as is the case with well-collected data by physical sensors. Therefore, it
increases the difficulty of solving the problems established in the dataset and the
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Fig. 4. Amount of geometric entities of each type in the LS3DS dataset. Figure 4a shows
the distribution of the number of curves by type. Figure 4b shows the distribution of
the number of surfaces by type. Figure 4c shows the distribution of the mean area of
surfaces by type.

similarity with real-world scenarios even more. Because the generation pipeline
already produces geometric ground truth, the LS3DS dataset can be used to
train and validate methods on various 3D scene geometry understanding tasks.

In industrial scenes, which present high precision in the building process,
the geometries used to design the structures are mostly well-represented in the
real buildings. In addition, a proper 3D digital representation of the industrial
structure as it was built is fundamental to the industry’s digital transformation.
As commented in [33], geometric primitive detection and fitting are key tasks
to detect the building elements and generate a parametric representation, which
can be used to produce As-Built models. After being exploited by deep learning
methods in small-scale structures [19,24,26,28,38,41,42], the lack of a proper
dataset with large-scale models is brought in PrimitiveNet [19] as an important
restriction to enable the development of methods to face the problem in this
context. In addition to making this data available, the present paper provides a
benchmark in the problem of point cloud geometric primitive fitting applied to
large-scale industrial structures.
Point Cloud Geometric Primitive Fitting Problem. Geometric primitives
are a lightweight and concise representation for real-world manufactured objects
or even scenes, being directly used for As-Built of large environments [30], CAD
reverse engineering [14,27], point cloud simplification [13,36] or just as a regular
way to represent some object parts [40]. These methods that use geometric
primitives detected on point clouds for specific applications need some support
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approach to segment and fit those geometries that are implicitly in the points
with the highest possible precision.

Point cloud geometric primitive fitting is finding a set of geometries of primi-
tive types in the input point cloud. The mentioned problem is composed of prim-
itive instance segmentation and parameter fitting sub-problems. This problem
can be defined as a chicken-and-egg problem [25] since if the primitive parame-
ters are known; the nearest point-to-primitive distance can be used to determine
the membership between point and primitives. Additionally, robust parameter
fitting methods can be used to compute the set of parameters for each primitive,
considering points segmentation in geometry instances as known. This approach
is adopted in the model estimation module of SPFN [26] or in RANSAC-based
approaches used in Efficient RANSAC (ERANSAC) [36].

As shown by Kaiser et al. [21], the classical methods (i.e., non-learning-
based) to solve the problem is mostly based on theoretical foundations such
as RANSAC, parameter space, and primitive growing. Among them, the
ERANSAC [36] is the most widely used approach. However, after SPFN [25],
various learning-based methods have been proposed. SPFN used a PointNet++
[34] first to predict per-point properties and after fit geometric primitives using
a differentiable module. CPFN [24] improved the SPFN results, mainly in high-
resolution point clouds, using a cascade network with a global and a local SPFN.
ParseNet [38], HPNet [42] and QuadricsNet [41] used backbone to build an
embedding space of higher dimension and applied a mean-shift algorithm to clus-
ter the point cloud into geometric primitive instances. PrimitiveNet [19] used a
local-based approach to receive not just the points but the neighboring edges
between them as input. SED-Net [28] and ComplexGen [14] have improved the
quality of their results by predicting geometric surfaces and curves.

Geometric primitive fitting is a problem similar to the widely explored
point cloud instance segmentation research field [31,37,43]. The problem can
be defined as identifying and separating individual parts in the input point
cloud [16]. However, the instance segmentation problem of geometric primi-
tive fitting demands each instance to receive class labels of geometric primitive
types, unlike the semantic classes such as road, building, and car from urban
datasets [4,9] or such as wall, ceiling, and chair from indoor datasets [2,18].
Although methods like ParseNet [38] and HPNet [42] segment and fit B-Splines,
the typical subset of types covered by geometric primitive fitting methods are
plane, sphere, cylinder, and cone. Using LS3DS as a reference, Fig. 4c shows
that just these four types cover 92.4% of the total area of the dataset structures,
stating that, although not ideal, it is a suitable subset of types to represent these
industrial sites.
Metrics. To evaluate the methods in the task using the ground truth dataset,
the same metrics defined by SPFN [25] are used, which are:

– Segmentation Mean Intersection over Union (SIoU): mean corre-
spondence between detected primitive instances and the same ground truth
instances.
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– Mean Primitive Type Accuracy (TAcc): mean accuracy of primitive
instances type attribution.

– Residual Error (Res): mean point-to-primitive (P2P) error, in which the
distance of each point that belongs to a primitive on the ground truth instance
mask is measured to the predicted primitive.

– P Coverage (PCov)1: mean percentage of points from predicted instance
mask that is closer than a pre-defined ε threshold to its primitives.

Problem of Learning in Large-scale Environments. Although the geomet-
ric primitive fitting problem is faced by deep learning techniques in small-scale
contexts, the problem’s difficulty increases as the scale of the input structures
increases. In large-scale contexts, mainly in industrial sites, the construction
aspects differ greatly from small-scale individual objects, where state-of-the-art
deep learning-based methods are normally trained and validated. This aspect can
be explained by understanding the differences in the interconnection of internal
structures in small-scale versus large-scale models. In small-scale, such as ABC
Dataset [22] models, the internal parts of the objects are geared more towards
the complete connectivity, where the geometries are recursively related to each
other in a fully connected graph topology. On the other hand, scenes are more
complex in large-scale models, considering that many individual objects inside
them are unrelated to all the others. In this way, it is possible to understand
that while small-scale structures are normally single-context objects, large-scale
ones are multi-context models with many small parts that are not necessarily
related to each other. In addition to the diversity of contexts, the scale of each
part can be a lot different since at the same time, a large-scale structure can
have large floor or wall planes and small valves or motors, making learning in
large-scale environments even more difficult.

Beyond the fact that solving problems in large-scale environments is harder
than in small-scale environments because of many structural composition fac-
tors, The point clouds that represent a large model in a good resolution have
a greater amount of points. In this way, considering the higher dimension of
the raw data, the learning process becomes even harder since the neural net-
work architectures must compute features for more input points, heading in the
direction of the curse of dimensionality, explicated in the field of geometric deep
learning [?]. In this sense, semantic and instance segmentation methods prioritize
the memory and computational efficiency of the methods for them to be used
in large-scale contexts. RandLA-Net [17] is an efficient example of a semantic
segmentation problem in which the lightweight network architecture enables the
process of 1 million points in a single pass. Other approaches use voxelization
and sparse convolutions [12] to process the point cloud as a voxel grid 3D to
do semantic segmentation efficiently. Although methods for large-scale contexts
must be computationally efficient, some datasets are huger, and their scenes
are too large to process each point cloud in a single pass. Thus, the split and
merge approach is used to process then [3,37]. Inspired by this, this benchmark
will adapt the deep learning-based methods using a grid-based split and merge
1 For this benchmark, we consider ε = 0.05.
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approach, making each large point cloud a bunch of small ones to be processed
separately to generate the results to be merged afterward.

The split step uses a cuboid-based approach to split each dataset model into
regions of size 2 × 2 × 2 m. Thereby, the number of models for the learning pro-
cess increases with thousands of models in the training and validation stages,
improving the generalization, as seen in Table 2. Additionally, it is worth men-
tioning that the split and merge approach can produce a loss of context, due to
dividing the model into parts. However, when dividing geometric primitives into
two or more parts, the parts remain surfaces described by the type of original
geometric primitive and the respective equation. In this sense, the geometric
primitive fitting task is less impacted than other tasks, such as semantic and
instance segmentation.

Table 2. Number of models in the dataset without splitting and splitting it. The size
used in the paper benchmark for the cuboid split was 2 × 2 × 2.

Dataset Mean Vol. (m3) Train Size Val. Size

Complete Data ≈ 47376 52 25

Split w/ 8 × 8 × 8 512 1124 755

Split w/ 4 × 4 × 4 64 8731 2753

Split w/ 2 × 2 × 28 69626 6908

Baseline for Comparisons. ERANSAC [36] is the most adopted method to
detect and fit parameters of multiple types of geometric primitives to point
clouds since it is used as baseline by the small-scale methods [14,19,26,28,38,42].
Although Kaiser et al. [21] classify ERANSAC as a method for individual objects
context, this approach has no explicit points limitation, and it is evaluated with
point clouds of about 2 million points in [36]. In this way, the present bench-
mark considered ERANSAC as the baseline for comparing deep learning-based
strategies. To be fair and study the impact of the split and merge procedure in
the results, a modified version of ERANSAC was also evaluated.
Geometric Deep Learning Methods. Relating to the deep learning-based
methods, the split and merge adaptation is applied to make them able to process
large-scale point clouds. Even with this approach, some methods are not suitable
for the benchmark . SPFN [25] was not used because of the inflation of the
memory consumption when increasing the hyper-parameter K, and because of
some other constraints that hindered the large-scale adaptation of the official
code2. CPFN [24] uses two SPFN networks inside its architecture, holding the
2 The SPFN [25] official code assumes that all the geometric primitive instances in a

model must have the same number of points.
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same challenges in the K hyper-parameter setting and memory consumption.
PrimitiveNet [19] demands a mesh directly transformed to a point cloud as input,
which is not possible given the fact that the LS3DS point clouds were generated
using a LiDAR simulation approach3. ComplexGen [14] was not used because
the main subject of the method is to directly reconstruct the CAD model using
a B-Rep Chain Complex Generation and not just fit geometric primitives to
point clouds, requiring additional ground truth. Despite that, the ComplexGen
is already heavy4 to be trained in small-scale and it predicts the wireframe
of the objects, which may have conflicts split-and-merge approach adopted in
this benchmark. SED-Net [28] did not a pubnovailable code at the time of this
benchmark’s development. Thus, the deep learning-based approaches compared
with the classical baseline are ParseNet [38] and HPNet [42].

Despite the split and merge adaptation, the original methods are focused on
small-scale structures, which means that the methods do not aim to process many
points in a single pass. The subset of ABC dataset [22] adopted by ParseNet [38]
has 10K points for each model, and that is the amount that the method can
process. Even though HPNet [42] uses the same subset, an additional random
sample filter is used to reduce this amount to 7K points. Thus, aiming at a fair
comparison, every method was trained and validated in a dataset where each set
has 7K points, which is the least amount that every method of this benchmark
can directly take in a single pass.
Benchmark Discussion. Table 3 shows the quantitative results of the proposed
benchmark. The methods with * are the versions adapted to large-scale using the
split and merge methodology and some other specific required modifications for
each method. After the split, the generated dataset is merged again to produce a
version to be processed by the non-modified version of ERANSAC [36], making
the baseline run in the same points with the same primitives on the ground
truth as the divided version. All deep learning-based methods on this benchmark
were used with the default parameters of their official implementations. For the
baseline, the implementation of ERANSAC on CGAL [32] library was used,
using the default parameters as well.

Comparing ParseNet∗ [38] and HPNet∗ [42] with ERANSAC and
ERANSAC∗, it is possible to note that the deep learning-based methods have
better results in almost every metric. Concerning the SIoU, which evaluates the
quality of instance segmentation, the methods modified by the split and merge
approach have taken advantage. Looking at the qualitative results in Fig. 5, it is
possible to understand that processing small parts separately improves finding
small details that divide similar primitives. This fact can be observed by com-

3 The PrimitiveNet [19] authors suggestion of using a KNN to generate the neighbor
graph between point did no produce feasible results.

4 The ComplexGen [14] method takes three days o 8 NVIDIA V100 GPUs to be
trained for small-scale context.
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Table 3. Quantitative results of the methods ERANSAC, ERANSAC∗, ParseNet∗

and HPNet∗ in point cloud geometric primitive fitting on LS3DS dataset. We used the
metrics SIoU, TAcc, Res, and PCov for this.

Method ↑ SIoU ↑ TAcc ↓ Res ↑ PCov

ERANSAC [36] 0.2150 0.3627 0.0424 0.5340

ERANSAC∗ [36] 0.5528 0.4625 0.0111 0.9917

ParseNet∗ [38] 0.5633 0.9229 0.0127 0.9461

HPNet∗ [42] 0.5774 0.9233 0.0070 0.9886

paring ERANSAC and ERANSAC∗ results. Even though a significant part of
the improvements in SIoU are from the split approach, the deep learning-based
methods can produce better results with relation to the quality of instance seg-
mentation, with emphasis on the HPNet∗ [42], which achieved the best quanti-
tative and qualitative results.

Regarding accuracy in type attribution for each instance, the metric TAcc
presents the most different results between the baseline and the deep learning-
based methods. On this metric, which evaluates the percentage of instances with
the right attributed type, the learning-based methods achieved two times better
results than the classical approaches. This can be explained by the fact that the
only heuristic that RANSAC-based approaches use to evaluate if a primitive is
suitable for a set of points is by looking at the percentage of them covered by that
primitive. On the other hand, learning-based methods extract information from
the training set of dataset LS3DS. Thus, as there is no restriction, extremely
large cones and cylinders are constantly fitted to represent plane surfaces.

Through the proposed benchmark, mainly because of better results of deep
learning-based methods, it is possible to state that the LS3DS dataset is useful
and important for the large-scale geometric deep learning research. In addition,
some limitations of the state-of-the-art techniques can be disclosed since its net-
work architectures’ computational and memory non-efficiency lead to a stronger
use of split and merge approaches. This characteristic leads to the need to use
fewer points in each divided part and, as a consequence, the split of the input
cloud in more parts to keep a good resolution in the points. Although the results
are promising, it is expected that, through the use of the LS3DS dataset, new
techniques for geometric deep learning on large-scale 3D data will be developed
using the knowledge of other research fields, such as 3D semantic segmentation
and 3D instance segmentation.
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Fig. 5. Qualitative primitive instance segmentation results of the methods on
three models of LS3DS dataset. In the qualitative analysis were used ERANSAC,
ERANSAC∗, ParseNet∗ and HPNet∗ methods. In the results, each color represent
a different predicted primitive patch of the types plane, cylinder, sphere and cone. The
first row shows the LS3DS ground truth and the following rows show the results of
each evaluated method.
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6 Conclusion

We present the LS3DS, a dataset of large-scale industrial scenes with 3D data as
CAD models, meshes, and point clouds with ground truth that can be used in
many geometric deep-learning tasks. The LS3DS generation tool is provided with
the dataset, enabling the dataset expansion or switching of the context of the
input CAD models to generate other datasets. It is important to highlight that
the point clouds are generated through a multi-view LiDAR simulation method,
which reproduces effects such as occlusion and local sparsity in the produced
data, closing the gap between the generated synthetic data and the real-world
ones.

To validate the dataset’s importance, a benchmark in large-scale point cloud
geometric primitive fitting is provided. In this context, the deep learning-based
methods have reached the best results, emphasizing the HPNet [42], the best
method of this benchmark. Although the results are promising, the adaptations
of the deep learning-based methods to make them able to run on a large scale
lead to a high information loss, which keeps the problem open for proposing new
and more scalable methods. Beyond the benchmark, LS3DS can be used in other
3D scene understanding problems in which its robustness, quality, and efficiency
are required. Finally, the LS3DS can be easily expanded to another context or
fitted to a more specific one, where not only will the dataset be made openly
available, but the code of the processing pipeline is available. Thereby, anyone
can generate an expanded version of LS3DS or a new version in another context
just by changing the CAD models in the input of the data generation pipeline.
Future works will focus on working with industrial partners to make available
real-world scans and their associated 3D CAD.

Acknowledgements. This study was funded by the Human Resource Program of
The Brazilian National Agency for Petroleum, Natural Gas, and Biofuels - PRH-ANP,
supported by resources from oil companies considering the contract clause no 50/2015
of R, D&I of the ANP. The authors also thank the Aeronautics Institute of Technology
(ITA), the National Council for Scientific and Technological Development (CNPq), and
the Study and Project Funding Agency (Finep).

References

1. Al-wswasi, M., Ivanov, A.: A novel and smart interactive feature recognition system
for rotational parts using a step file. Int. J. Adv. Manuf. Technol. 104(1), 261–284
(2019)

2. Armeni, I., Sax, S., Zamir, A.R., Savarese, S.: Joint 2d-3d-semantic data for indoor
scene understanding. arXiv preprint arXiv:1702.01105 (2017)

http://arxiv.org/abs/1702.01105


Geometric Deep Learning in Industrial Scenes: A Large-Scale 3D Dataset 17

3. Boulch, A.: Convpoint: continuous convolutions for point cloud processing. Com-
put. Graph. 88, 24–34 (2020)

4. Caesar, H., et al.: Nuscenes: a multimodal dataset for autonomous driving. In:
IEEE/CVF CVPR, pp. 11621–11631 (2020)

5. Chang, A.X., et al.: Shapenet: an information-rich 3d model repository. arXiv
preprint arXiv:1512.03012 (2015)

6. Chen, M., et al.: Stpls3d: a large-scale synthetic and real aerial photogrammetry 3d
point cloud dataset. In: The British Machine Vision Conference (BMVC), BMVA
Press (2022)

7. Dos Santos, M.M., De Giacomo, G.G., Drews-Jr, P.L., Botelho, S.S.: Matching
color aerial images and underwater sonar images using deep learning for underwater
localization. IEEE RA-L 5(4), 6365–6370 (2020)

8. Fu, H., et al.: 3d-future: 3d furniture shape with texture. Int. J. Comp. Vis. 129,
3313–3337 (2021)

9. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti
dataset. Int. J. Robot. Res. (IJRR) (2013)

10. Gosala, N., Petek, K., Drews-Jr, P.L., Burgard, W., Valada, A.: Skyeye: self-
supervised bird’s-eye-view semantic mapping using monocular frontal view images.
In: IEEE/CVF CVPR, pp. 14901–14910 (2023)

11. Gosala, N., et al.: Letsmap: unsupervised representation learning for semantic bev
mapping. arXiv preprint arXiv:2405.18852 (2024)

12. Graham, B., van der Maaten, L.: Submanifold sparse convolutional networks. arXiv
preprint arXiv:1706.01307 (2017)

13. Guinard, S.A., Daniel, S., Badard, T.: 3d point clouds simplification based on geo-
metric primitives and graph-structured optimization. In: 2022 26th International
Conference on Pattern Recognition (ICPR), pp. 3837–3844. IEEE (2022)

14. Guo, H., Liu, S., Pan, H., Liu, Y., Tong, X., Guo, B.: ComplexGen: CAD recon-
struction by B-rep chain complex generation. ACM SIGGRAPH 41(4) (2022)

15. Hackel, T., Savinov, N., Ladicky, L., Wegner, J.D., Schindler, K., Pollefeys, M.:
SEMANTIC3D.NET: a new large-scale point cloud classification benchmark. In:
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. IV-1-W1, pp. 91–98 (2017)

16. Hafiz, A.M., Bhat, G.M.: A survey on instance segmentation: state of the art. Int.
J. Multimedia Inf. Retrieval 9, 171–189 (2020). https://doi.org/10.1007/s13735-
020-00195-x

17. Hu, Q., et al.: Randla-net: Efficient semantic segmentation of large-scale point
clouds. In: IEEE/CVF CVPR, pp. 11108–11117 (2020)

18. Hua, B.S., Pham, Q.H., Nguyen, D.T., Tran, M.K., Yu, L.F., Yeung, S.K.: Scenenn:
a scene meshes dataset with annotations. In: International Conference on 3D Vision
(3DV), pp. 92–101. IEEE (2016)

19. Huang, J., Zhang, Y., Sun, M.: Primitivenet: primitive instance segmentation with
local primitive embedding under adversarial metric. In: IEEE/CVF ICCV, pp.
15323–15333 (2021). https://doi.org/10.1109/ICCV48922.2021.01506

20. International Organization for Standardization (ISO): Industrial automation sys-
tems and integration - Product data representation and exchange -Part 203:
Application protocol: Configuration controlled 3D designs of mechanical parts
and assemblies. Technical Report, International Organization for Standardization,
December 1994

21. Kaiser, A., Ybanez Zepeda, J.A., Boubekeur, T.: A survey of simple geometric
primitives detection methods for captured 3d data. In: Computer Graphics Forum,
vol. 38, pp. 167–196. Wiley Online Library (2019)

http://arxiv.org/abs/1512.03012
http://arxiv.org/abs/2405.18852
http://arxiv.org/abs/1706.01307
https://doi.org/10.1007/s13735-020-00195-x
https://doi.org/10.1007/s13735-020-00195-x
https://doi.org/10.1109/ICCV48922.2021.01506


18 I. P. Maurell et al.

22. Koch, S., et al.: Abc: a big cad model dataset for geometric deep learning. In:
IEEE/CVF CVPR, June 2019

23. Köppl, D.: Separate chaining meets compact hashing. arXiv preprint
arXiv:1905.00163 (2019)
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Abstract. Recent advancements in Visual Question Answering (VQA)
have been driven by the integration of complex attention mechanisms.
This work introduces a novel approach aimed at enhancing multi-modal
representations through dense interactions between visual and textual
inputs in an alternating fashion. The proposed model features an atten-
tion framework that incorporates both self-attention and co-attention
mechanisms, strategically applied to image and text modalities. Self-
attention modules capture contextual dependencies among objects in
images and words in questions, crucial for accurate inference of answers.
Meanwhile, co-attention mechanisms facilitate effective cross-modal inter-
actions between images and text. To extract fine-grained information
from both modalities, we introduce a Cascade of Self- and Co-Attention
blocks (CSCA). This architecture is evaluated extensively on prominent
benchmarks including VQA2.0, TDIUC, and GQA datasets. Experimen-
tal results, including comprehensive ablation studies, highlight the effec-
tiveness of the model’s key components and the cascading nature of atten-
tion mechanisms in enhancing performance across diverse VQA tasks.

Keywords: VQA · Attention · Self-Attention · Co-attention ·
Multi-modal Fusion · Classification Networks

1 Introduction

Visual Question Answering [1,2,10] is a challenging multimodal AI task that
aims to answer a natural language question about an image context. VQA task
has captured considerable interest within the vision and language research com-
munity due to its extensive practical applications, including assisting the visually
impaired, advancing autonomous vehicles, refining visual chatbots etc. Simulta-
neously, VQA is a challenging multimodal task that requires a deep semantic
understanding of images to predict answers accurately. Achieving this requires
seamlessly integrating visual and linguistic information, leveraging intricate rea-
soning capabilities, and deploying advanced attention mechanisms for effective
question-answering.

Since seminal works such as [2], significant efforts have been directed towards
enriching the representation of text and image modalities. These efforts have pri-
marily focused on advancing beyond simple fusion-based features to more sophis-
ticated attention-based approaches [1,7,8,30,31,38,39]. Early attention-based
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15319, pp. 20–36, 2025.
https://doi.org/10.1007/978-3-031-78495-8_2
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Fig. 1. An example to illustrate the relevance of proposed module.[Top] An example
to illustrate the relevance of attention to dual modality through the cascaded SCA
module. [Bottom Left] Without cascaded attention, it is not getting refined and hence
is unable to give better attention. [Bottom Right] Overview of the proposed model. An
attention block, referred to as SCA, comprises of self-attention (SA) and co-attention
(CA) modules. Multiple such attention blocks are cascaded, where the outputs of (t−
1)th block (EI(t− 1) and EQ(t− 1)) are presented as input to the (t)th block.

methods [1,38,39] initially concentrated on identifying salient regions within
images based on the textual content of questions. This approach, termed visual
attention, aimed to highlight relevant image regions. Subsequent advancements
introduced co-attention methods [3], which extended this concept by integrating
textual attention with visual attention. Co-attention methods proved effective
in enhancing the performance of VQA systems by jointly attending to both the
textual and visual modalities, focusing on relevant words within the context of
the image.

A single site on image and question is insufficient to grasp the image’s intrica-
cies in the context of the question. It requires a consecutive focus on the image
and multiple reads of questions to answer. Along with these requirements, if
within modality, information is encoded and refined before the interaction, it will
give an improved representation of context and cues. To accomplish it, this work
proposes an end-to-end network with cascaded self- and co-attention blocks. This
helps obtain enriched representations, leading to improved performance. Based
on the advantages of each of the following modules: self-attention (SA), co-
attention (CA) and a cascade of attention mechanisms, this work proposes com-
bining them systematically. Towards this objective, the proposed model builds
one self- and co-attention-based attention block (SCA) that combines both SA
and CA in a specific way. For both text and image modalities, a specific SA
module obtains a feature representation for the respective modality. Then, the
co-attention module uses a self-attended representation of one modality and
attends (takes attention) to the self-attended representation of the other modal-
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ity to obtain a cross-modality contextual representation for the second modality.
Thus, there are two SA modules (one for each text and image modalities) and
two co-attention modules within a single SCA block (Figure 1, bottom-right).
In one complex attention block of SCA, both modalities guide themselves to
capture internal correlation and each other to learn the robust representation of
each of the visual and textual domains.

Figure 1 (top) serves as an illustrative example to highlight the impact of the
cascaded Self and Cross-Attention (SCA) module within the model to obtain
an enriched representation. In the initial SCA block, the model’s attention is
directed towards a broad range of image regions, encompassing various objects
such as ‘cat,’ ‘women,’ ‘window,’ and others. Additionally, it focuses on specific
words like ‘color’ and ‘t-shirt,’ as indicated by their attention scores. With the
inclusion of multiple SCA blocks, notably after the tth block, the model’s atten-
tion gradually refines, shifting towards more concentrated image regions. This
transition is accompanied by changes in word attention scores. Ultimately, in the
final SCA block, the model’s attention is concentrated on the most salient image
region within the context of the given question. Simultaneously, the attention
mechanism for the question becomes finely tuned to the most pertinent words
that enable accurate responses.

When contrasting the results with and without the SCA module in Fig. 1
(top), it becomes evident that more than a single round of attention may be
needed to capture all the relevant image regions and question words effectively.
The cascaded SCA module contributes to a progressive and refined attention pro-
cess, enhancing the model’s ability to grasp contextual information and produce
more accurate answers. The contribution of proposed framework are summa-
rized:

– Proposed a VQA framework that employs a dense alternate attention mech-
anism. This framework comprises cascaded attention blocks strategically
designed to refine the features extracted from visual and textual inputs iter-
atively.

– The iterative refinement process through a cascade of attention blocks
enhances the model’s ability to capture intricate details and relationships
between the visual and textual data, ultimately improving its performance in
answering complex questions about images.

– The core of each attention block consists of self-attention and co-attention so
that the two modalities guide each other to obtain an enriched representation.

– Extensive performance evaluation along with ablation analysis of the pro-
posed model on the three benchmark datasets – VQA2.0 [10], TDIUC [15]
and GQA [13].

2 Related Work

VQA, being a multimodal task, requires an unified representation of the text and
image modalities. Initial VQA models [2,10,11,32] adopted simple fusion based
approaches. These models first obtained feature representations of individual
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modality using corresponding pre-trained networks and then combined them
to obtain a joint representation using a fusion schema. Simple fusion schemes
include concatenation or element-wise summation or multiplication. Fukui et
al. [6] proposed bi-linear pooling to capture interaction of components of the two
modalities in a better way. Seeing the advantage of the bilinear pooling based
fusion methods, further variants of bilinear pooling with lesser complexity or
faster convergence were proposed. MFB [42], MLB [17], MFH [43] were proposed
to obtain a representation providing better interaction of the two modalities.

Introduction of attention mechanism in equipped neural models with a sys-
tematic procedure to assign relative weights of importance to sequential inputs.
Shi et al. [30] have introduced image attention guided by question to focus on
salient image regions relevant to the given question. This helped in obtaining
improved feature representations. This led to the development of several atten-
tion based approaches for VQA [1,16,22,36,38,39]. Studies in [22,36,39] have
shown that applying attention multiple times helps in obtaining enriched repre-
sentation embedded with fine-grained information.

Yu et al. [42] have proposed that attention on textual features in context of
visual features along with visual attention plays a key role in VQA models. Such
two way attention mechanism is referred to as dual attention or co-attention or
cross-modality attention in the literature. We have also used these terms inter-
changeably. Kim et al. [16] have proposed bilinear interaction based attention
for dual modality.

Another class of attention mechanism [7,8,18,21,23,35] uses intra-modal
attention (self-attention) along with cross-modal attention (co-attention) to
learn better feature representation. Gao et.al. [7] have proposed DFAF that
uses dynamic intra-modality attention flow. Dynamical flow allows for adaptive
modulation of the target modality’s attention and helps in obtaining improved
fusion of multimodal features. Multi-modal Latent Interaction (MLIN) [8] used
multi-modal reasoning through summarization, interaction, and aggregation. Yu
et al. [41] have proposed an encoder-decoder based dense attention mechanism.
These models are relatively dense than the previous approaches and hence, are
referred to as dense attention based models. Authors in [20,33] have proposed
transformer based attention models for multimodality tasks. These models are
pretrained for multiple tasks on huge datasets, that could be further exploited
for downstream tasks.

Graph-based approaches, such as NSM [12,45] and XNM [28] leverage the
structure of the connections between visual elements along with text data to
facilitate reasoning in image analysis. These methods exploit the inherent rela-
tionships to enable more effective and meaningful reasoning. XKI [44] takes
a step further by incorporating external knowledge and by integrating high-
order relational attention, thereby leading to improved reasoning capabilities.
OCCAM [35] specifically focused on concept induction, aiming to identify and
understand concepts and their hierarchical relationships in visual reasoning
tasks. Recently, Zhu et al. [46] proposed a concise and efficient dual-decoder
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Fig. 2. Functional block diagram of the proposed approach. Initial feature extraction
stage is followed by a cascade of self-attention and co-attention mechanisms. Final
attended features are fused through element-wise multiplication and are fed to a fully
connected network for answer classification.

Transformer network that predicts answers and provides visualized evidence,
combining both linguistic and visual features.

The proposed model falls under the category of dense attention-based meth-
ods. Most inter- and intra-modal attention-based methods primarily focus on
applying self-attention to the text modality only [7,8,41]. Subsequently, cross-
attention is applied to the visual modality based on the self-attended text
representation. However, in the proposed CSCA method, cross-modal atten-
tion is applied alternately on both modalities after the self-attention stage on
dual-modality. Here, each attention block comprises intra-modality and cross-
modality interactions. Unlike some existing inter- and intra-modal attention-
based models, which are trained on a massive amount of data for multiple tasks,
CSCA is trained from scratch and still persists in competitive performance. The
proposed method is described next.

3 Proposed Method

The proposed framework treats VQA as an answer classification task following
existing works like [1,2,7,8,10]. The input image I (I ∈ I) and the associ-
ated natural language question q (q ∈ Q) are first subjected to feature extrac-
tion (Subsect. 3.1). Pretrained deep networks [1] are used to extract features
from a few salient image regions. The network embeddings are used to repre-
sent the input image. Similarly, a pretrained network is used to obtain the word
embeddings of the associated input question. These word embeddings collectively
represent the input question. The feature embeddings of both image and text
modalities are subjected to self-attention mechanism (Subsect. 3.2) for capturing
the relationships among different regions of I and words of q. The self-attended
representations of these two modalities are further processed by co-attention
modules (Subsect. 3.3). This single stage of Self and Co-Attention mechanism
cascade forms a single SCA block (Fig. 1, bottom left). Multiple SCA blocks
are cascaded to obtain further fine grained representations of both modalities.
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The embeddings obtained from the final SCA block are fused (Subsect. 3.4) and
fed to the answer classification network (Subsect. 3.5) to predict the answer â
(â ∈ A). Proposed framework is depicted in Fig. 2.

3.1 Feature Extraction

A pretrained deep network based object detection model (Faster R-CNN, [27]) is
used to identify the top-nv salient regions from the input image I. The pretrained
ResNet-101 [11] network is used to compute the visual feature of each region as
an embedding r ∈ R

dv . Thus, the input image I is represented as rI ∈ R
dv×nv

by using nv number of dv dimensional ResNet-101 embeddings.

rI = [r1, . . . rnv
]; r ∈ R

dv (1)

The input natural language question q is first padded and trimmed to a
length of nw words. The word features are further extracted as pretrained GloVe
embeddings [26] eq ∈ R

dw [26]. Thus, the question q is represented as Eq ∈
R

dw×nw by using nw number of dw dimensional embeddings.

Eq = [eq1, . . . eqnw
]; eq ∈ R

dw (2)

All feature embeddings in rI and Eq are projected to a common d dimensional
space to obtain the respective initial feature embedding matrices as rI(0) and
Eq(0).

rI(0) = W I
c rI (3)

Eq(0) = WQ
c Eq (4)

Here, W I
c ∈ R

d×dv and WQ
c ∈ R

d×dw are the transformation matrices. These
representations are provided as input to the self- and co-attention modules.

3.2 Self-Attention

The self-attention (SA) mechanism is one of the key components of the proposed
model. It is incorporated for both textual (question as collection of words) and
visual (image as top-nv salient regions) modalities. At the tth (t = 1, . . . T ) block,
the input to SA are rI(t−1) and Eq(t−1). Following [34], the SA uses keys and
queries, both of dimension dKQ and values of dimension dV S respectively. The
Multi-Head Attention [34] is incorporated to capture the attention from different
aspects. For this, nh parallel heads are added, where each head is considered to
learn the relationships from different view (for image) and context (for question).

Let EM = {em1 . . . eml} be a matrix of feature embeddings, where em ∈
R

dm and EM ∈ R
dm×l. For visual features, EM = rI(t− 1), l = nv and dm = d.

Similarly, for question features, EM = Eq(t − 1), l = nw and dm = d.
The query (Q(i)

S ), key (K(i)
S ) and value (V (i)

S ) matrices for the ith head can
be respectively expressed as follows

Q
(i)
S =

(
W

QS
i

)ᵀ
EM, K

(i)
S =

(
W

KS
i

)ᵀ
EM, V

(i)
S =

(
W

V S
i

)ᵀ
EM (5)
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where, WQS
i ∈ R

dm×dKQ , WKS
i ∈ R

dm×dKQ and WV S
i ∈ R

dm×dV S are trans-
formation matrices. Using {Q(i)

S ,K
(i)
S , V

(i)
S }, the inner product of query is per-

formed with all the keys and is divided by
√
dk for more stable gradients [34].

The SoftMax function is applied on the inner product to obtain the attention
weights for question words and image salient regions. A scaled inner product
based attention is computed for all the heads in the following manner.

Hi =
(
V

(i)
S

)
SoftMax

⎛
⎝Q

(i)
S

�
K

(i)
S√

dK

⎞
⎠ (6)

MH(EM) = WmhH (7)

Here, Wmh ∈ R
dm×(nh×dV S) is the transformation matrix. The output (

MH(EM) ) of multi-head attention module is passed through fully connected feed
forward layers with ReLU activation and dropout to prevent overfitting. Further,
residual connections [11] followed by layer normalization are applied on top of
fully connected layers for faster and more accurate training. The layer normal-
ization is applied over the embedding dimension only. Finally, the self-attended
embeddings of the input feature EM are obtained as SEM = {sem1 . . . seml}
where sem ∈ R

dm and SEM ∈ R
dm×l.

3.3 Co-Attention

For cross-modal interactions, the co-attention module intakes the representations
of two modalities and generates attention in context of each other. To facilitate
this, the self-attended embeddings Ẽq(t − 1) and r̃I(t − 1) are taken as input.
For generating image attention in context of question words, keys and values
are generated from self-attended intermediate question representation while the
query is obtained from the image itself (following Eq. 6). Thus, the query (Q(i)

C ),
key (K(i)

C ) and value (V (i)
C ) are respectively computed as follows.

Q
(i)
C =

(
W

QC
i

)ᵀ
Ẽq(t − 1), K

(i)
C =

(
W

KC
i

)ᵀ
r̃I(t − 1), V

(i)
C =

(
W

V C
i

)ᵀ
Ẽq(t − 1) (8)

Here, WQC
i ∈ R

dm×dKQ , WKC
i ∈ R

dm×dKQ and WV C
i ∈ R

dm×dKV are trans-
formation matrices. Similarly, for cross-modal question attention, the query is
obtained from self-attended question embeddings. While the keys and values are
obtained from self-attended image embeddings. These queries, keys and values
are similarly processed following Eqs. 6 and 7 to obtain the multi-head attention.
This is fed to fully connected layers with ReLU, dropout, skip connections and
layer normalization. The output of this network provides the final output of the
co-attention module.
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3.4 Cascading and Fusion

A single SCA block comprising of self-attention (intra-modality interaction) and
co-attention (inter-modality interaction) generates an enriched representation
(rI(t),Eq(t)) of its input visual and textual features.

First block takes rI(0) and Eq(0) as input to respective SA module. Output
of each visual and textual self attended features serves as the input to cross
attention modules (text-to-image, image-to-text) for further refining the contex-
tual information. This flow of feature refinement is cascaded for multiple SCA
block to T steps. Let rI(T ) ∈ R

d×nv and Eq(T ) ∈ R
d×nw be the respective

visual and question representations obtained from the final (T th) SCA block.
The feature representations are obtained by averaging the attended embed-

dings of two modalities. So, the final visual embedding, say If is obtained as
follows.

If =
1
k

nv∑
j=1

rI(T )[:, j] (9)

Similarly, the question encoding, say Qf is evaluated in the following manner.

Qf =
1
nw

nw∑
j=1

Eq(T )[:, j] (10)

The unified multi-modal representation, say F ∈ R
d is obtained by fusing If

and Qf through element-wise multiplication (�).

F = If � Qf (11)

The fused embedding F is fed to a fully connected network for answer pre-
diction.

3.5 Answer Prediction

The fused embedding F is fed to fully connected network with single hidden layer
of dimension dhp. The number of labels at the output layer is nc (nc =| A |).
The output answer vector, say â is predicted as follows.

â = FCNet (F; dhp;nc) (12)

3.6 Model Learning

Let the respective ground truth and predicted answer be a and â (a, â ∈ A) for
input image I and question Q. This model uses cross-entropy loss for answer
prediction and is defined as

Lc = −
nc∑
j=1

a[j]log(â[j]) (13)

The combined set of parameters for proposed model includes the ones for feature
extraction, block of dense attention and fusion mechanism.
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4 Experiment Design

This section discusses the datasets used to benchmark the proposed model, the
three evaluation metrics and the necessary implementation details.

4.1 Dataset

The proposed model is evaluated through experiments performed on the datasets
VQA2.0 [10], TDIUC [15] and GQA [13]. The VQA2.0 [10] dataset is one of
the most commonly used for the VQA task. The dataset is divided into train,
validation and test sets with 443757, 214354 and 447793 image, question and
answer triplets respectively. The Task-Directed Image Understanding Challenge
(TDIUC) [15] is another large VQA dataset of real images. Questions are cate-
gorized into 12 types.

Total 1.6 million question, image and answer triplets are split into train and
validation sets. The train set consists of 1.1 million triplets and 0.5 million
triplets are in the validation split. To deal with language prior issues, TDIUC
consists of a special category ‘Absurd’, where an input question is not related
to the visual content of a given image. GQA [13] is the largest VQA dataset
consisting of compositional questions based on real-world images. “Balanced
split” set of the GQA dataset consists of 1M questions and ensures a better
equitable distribution of answers.

4.2 Evaluation Metrics

For evaluation of the TDIUC dataset, Arithmetic-Mean Per Type (AMPT) and
Harmonic-Mean Per Type (HMPT) are proposed in [15] as fair evaluation met-
rics along with Overall Accuracy. The AMPT is the average of question category-
wise accuracies with uniform weight to each category. On the other hand, HMPT
measures the ability of the model to have a high score across all question types.

The VQA2.0 dataset evaluation is performed using the following metric
defined in [2].

Accuracy(â) = min
{#humans that said â

3
,1

}
(14)

Each question in the VQA2.0 dataset was answered by 10 annotators. The
above evaluation metric considers a predicted answer correct if it matches the
answers given by at least 3 annotators.

For GQA dataset, standard accuracy is used, where 1 point is given if the
predicted answer â matches the ground truth answer a and 0 otherwise. The
final results are described as average over all questions in the dataset.

5 Results and Discussion

5.1 Quantitative Results

Overall Performance & Category-Wise Performance Comparison on
TDIUC Dataset – Table 1 and 3 present the respective class-wise and overall
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performance for the TDIUC dataset. In terms of the overall accuracy, Arithmetic-
MPT (AMPT) and Harmonic-MPT (HMPT) measures, the proposed model
CSCA exhibits better performance compared to most of the baseline methods.
Also, in terms of class-wise accuracy, CSCA leads in all except one class. A sig-
nificant relative gain of 12.6% is observed compared to the next best performing
model for the ‘Counting’ category of questions. Table 4 presents the results for
different models trained ‘Without Absurd’ category of questions. It is observed
that CSCA performs better than the existing ones for all three defined metrics.
Table 1. Category-wise comparison of CSCA with previous state-of-the-art methods
on the TDIUC dataset

Question Type SAN [39] RAU [15] MCB [9] QTA [29] BAN [16] CSCA

Scene Recognition 92.3 93.96 93.06 93.80 93.1 94.48

Sport Recognition 95.5 93.47 92.77 95.55 95.7 95.85

Color Attributes 60.9 66.86 68.54 60.16 67.5 75.51

Other Attributes 46.2 56.49 56.72 54.36 53.2 60.89

Activity Recognition 51.40 51.60 52.35 60.10 54.0 61.00

Positional Reasoning 27.9 35.26 35.40 34.71 27.9 42.14

Object Recognition 87.50 86.11 85.54 86.98 87.5 89.11

Absurd 93.4 96.08 84.82 100.0 94.47 97.28

Utility & Affordance 26.3 31.58 35.09 31.48 24.0 40.35

Object Presence 92.4 94.38 93.64 94.55 95.1 96.34

Counting 52.1 48.43 51.01 53.25 53.9 60.70

Sentiment Und. 53.6 60.09 66.25 64.38 58.7 67.19

Overall Accuracy 82.0 84.26 81.86 85.03 85.5 88.12

Harmonic Mean 53.7 59.00 60.47 60.08 54.9 67.05

Arithmetic Mean 65.0 67.81 67.90 69.11 67.4 73.34

Overall Performance and Category-Wise Performance Comparison on
VQA2.0 Dataset – Table 2 demonstrates the results on test-dev and test-std
splits of the VQA2.0 dataset. Performance of the proposed model CSCA is com-
parable with that of the best among the existing methods. The models LXMERT
[33], ViLBERT [20] are pre-trained for multiple vision and language based tasks
and are fine-tuned for VQA. Here, CSCA has obtained 67.36% accuracy on the
validation set. This is around 1% improvement over the best performance among
the existing methods.

Overall Performance Comparison on GQA Dataset – Table 6 presents the
results for the “balanced split” of the GQA dataset. For a fair comparison and as
per the availability of results from respective papers, the results are reported in
terms of overall accuracy. The GQA dataset emphasizes the need for multi-hop
reasoning for evaluating the reasoning abilities of model proposals.

It is observed that the competitive methods either rely on graph-based struc-
tures or incorporate information from external knowledge base to enhance visual
reasoning capability [12,28,35,44–46]. However, CSCA achieves a performance
without relying on graph-based structures or external knowledge. Specifically,
CSCA demonstrates a better performance (an improvement of 0.8%) compared
to NSM [12] (best among all).
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Table 2. Model performance on VQA 2.0 dataset: Validation, Test-Dev & Test-Std
splits. CSCA is compared with several state-of-the-art methods including Fusion based,
Visual Attention, Dense Attention based methods

Methods Val Test-Dev Test-Std

Overall Yes/No Number Other Overall Overall

MCB [6] 59.14 78.46 38.28 57.80 62.27 53.36

MLB [17] 62.98 83.58 44.92 56.34 66.27 66.62

MUTAN [3] 62.71 82.88 44.54 56.50 66.01 66.38

MFH [43] 62.98 84.27 49.56 59.89 68.76 –

BLOCK [4] 64.91 83.14 51.62 58.97 68.09 68.41

SAN [39] 61.70 78.40 40.71 54.36 61.70 –

BTUP [1] 63.20 81.82 44.21 56.05 65.32 65.67

BAN [16] 65.81 82.16 45.45 55.70 64.30 –

v-VRANet [40] – 83.31 45.51 58.41 67.20 67.34

ALMA [19] – 84.62 47.08 58.24 68.12 66.62

ODA [47] 64.23 83.73 47.02 56.57 66.67 66.87

BAN2-CTI [5] 66.00 – – – – 67.4

CRANet [25] – 83.31 45.51 58.41 67.20 67.34

CoR [36] 65.14 84.98 47.19 58.64 68.19 68.59

DFAF [7] 66.66 86.09 53.32 60.49 70.22 70.34

MLIN [8] 66.53 85.96 52.93 60.40 70.18 70.28

LXMERT [33] – – – – – 72.5

ViLBERT [20] – 70.55 70.92

VSDC [35] 65.39 83.79 48.16 59.31 68.55 68.67

RSL [37] 66.77 86.94 51.37 61.09 70.64 71.06

VQA-BC [18] 61.74 – – – – –

BCO [14] 63.80 – – – – –

EDC [23] – 83.98 48.15 58.74 67.94 68.14

CSCA 67.36 86.57 53.58 61.06 70.72 71.04

Table 3. Comparing Overall Accuracy
for TDIUC dataset

Model Overall Arithmetic

Accuracy Mean

BTUP [1] 82.91 68.82

QCG [24] 82.05 65.67

CTI [5] 87.00 72.5

DFAF [7] 85.55 NA

RAMEN [31] 86.86 72.52

MLIN [8] 87.60 NA

CSCA 88.12 73.34

Table 4. Performance of CSCA on
TDIUC data (except Absurd category
samples) trained without ‘Absurd’ Cat-
egory samples

Metrics Overall
Accu-
racy

Arithmetic
MPT

Harmonic
MPT

MCB [9] 78.06 66.07 55.43

QTA [29] 80.95 66.88 58.82

BAN [16] 81.9 64.6 52.8

CTI [5] 85.0 70.6 63.8

CSCA 85.30 71.21 65.40
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5.2 Ablation Analysis

The proposed model performs self-attention on the two modalities to obtain
intra-modality correlated features. Then the co-attention module uses respec-
tive representations of the two modalities to obtain cross-modality correlated
features by performing attention for one modality in the context of another. In
this ablation analysis, we examine the impact of individual attention module in
various combinations to understand their importance. We also analyze the set
of correct predictions obtained in these settings.

Table 5. Evaluating model performance on VQA2.0, TDIUC & GQA dataset to inves-
tigate the effect of different basic attention modules of the proposed model

SA CA VQA2.0 TDIUC GQA

Overall Accuracy Parameter (in Millions) Overall Accuracy Parameter Overall (in Millions) Parameter (in Millions)

✗ ✗ 55.80 15 69.18 7 49.11 4.47

✗ ✓ 59.69 22 70.46 21 53.58 20.08

✓ ✗ 64.13 25 87.42 25 57.82 23.24

✓ ✓ 67.36 42 88.12 36 63.60 35.85

Effect of Different Modules in SCA Block – In the Table-5 we present the
results of ablation analysis experiments in terms of performance and complexity.
The complexity is expressed in terms of the number of model parameters.

Table 6. Comparing Overall Accuracy of
CSCA for GQA

Model Overall Accuracy
NSM [12] 63.17
XNM [28] 62.04
OCCAM [35] 63.10
XKI [44] 62.38
QAA [45] 63.07
DDTN [46] 58.54
CSCA 63.60

The first row of the table shows
the model performance when neither
of the attention is incorporated. The
features for both modalities are fused
directly via element-wise multiplica-
tion without applying self- or co-
attention. Second row shows the per-
formance when only self-attention (SA
only) is incorporated on both modal-
ities and answer prediction is based
on the fused embedding of the self-
attended representations of the indi-
vidual modalities. Here, the fused rep-
resentation is obtained via element-
wise multiplication. Third row shows the results when only co-attention (CA
only) is incorporated on image and question in the context of the other. The
last row shows the results from the proposed model that comprises of both self-
attention and co-attention in cascade (SCA).

As per expectation, the model without any attention mechanism provides
the lowest performance (first row). The “SA only” model provides lower per-
formance as it lacks the interaction of two modalities and learns a compara-
tively poor representation (second row). Co-attention is the crucial component
for multi-modality that is found to perform better than self-attention. In terms
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Fig. 3. Number of attention blocks incorporated. [Left] Validation accuracy for VQA2.0
‘val’ split with respect to attention blocks. [Right] Parameter counts with respect to
attention blocks

Fig. 4. The effect of number of attention blocks incorporated on the validation accuracy
and parameter count [Left] For TDIUC‘val’ [Right] For GQA dataset

of computational complexity, a simple fusion-based model uses the least number
of parameters, while the proposed model (SCA) requires the highest number
of parameters. However, the performance improvement, especially for VQA2.0
dataset, overcomes the complexity issue. We observe that the change in model
performance is similar for all three datasets in this analysis.
Effect of Number of SCA Blocks – It is difficult for a model to grasp
all relevant information through a representation in one pass. Thus, attention
blocks in cascade extract the fine-grained information and pass it on to the
next one for further refinement. We perform experiments to identify the optimal
number of blocks in the cascade. The effect of different independent attention
mechanisms (SA only, CA only, SCA) for answer prediction is also analyzed.
In Fig. 3 (left), the overall performance for the validation split of the VQA2.0
dataset is given concerning varying numbers of blocks. Figure 3 (right) shows
the parameter counts with respect to the number of blocks. As per expectation,
we can observe that the models perform poorly with single attention blocks
(SA only, CA only, SCA). However, the performance is observed to rise only up
to four blocks. Increasing the number of blocks beyond four does not lead to
any further performance improvement. Adding more blocks also increases the
number of model parameters (Fig. 3). Furthermore, one can observe that only
the CA module can perform better than using only the SA module. This is as
per the expectation. Similarly, Fig. 4 (left) shows that the model performance
keeps improving until the fourth SCA block for the TDIUC dataset. The model
performance starts deteriorating with a further increase in blocks. For the GQA
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dataset, Fig. 4 demonstrates a similar observation. It is worth noting that the
performance steadily improves until the fifth block of the SCA. However, a drop
of approximately 2% in performance is observed on the sixth block. After this
point, the performance continues to degrade.

6 Conclusion

This work proposes a dense attention mechanism-based VQA model. Dense
attention is incorporated by exploiting both self-attention and co-attention. The
self-attention mechanism helps in obtaining improved representation within a
single modality. With self-attention, a salient region (in the case of image) inter-
acts with every other region. The final representation inherits the contextual
information for all regions. Similarly, for the input questions, self-attention pro-
vides the representation of every single word that captures the contextual infor-
mation for other words as well. The proposed model also exploits the cross-modal
interaction of two modalities which is further strengthened by self-attention of
two modalities. Attention blocks are cascaded multiple times to facilitate refined
cues of visual and textual features. The model’s capability is justified by detailed
experiments and analysis performed on the three benchmark VQA datasets.
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Abstract. Multimodal generative models have demonstrated promis-
ing capabilities for bridging the semantic gap between visual and textual
modalities, especially in the context of multimodal summarization. Most
of the existing methods align the visual and textual information by self-
attention mechanism. However, those approaches will cause imbalances
or discrepancies between different modalities when processing such text-
heavy tasks. To address this challenge, our method introduces an inno-
vative multimodal summarization method. We first propose a novel text-
caption alignment mechanism, which considers the semantic association
across modalities while maintaining the semantic information. Then, we
introduce a document segmentation module with a salient information
retrieval strategy to integrate the inherent semantic information across
facet-aware semantic blocks, obtaining a more informative and readable
textual output. Additionally, we leverage the generated text summary to
optimize image selection, enhancing the consistency of the multimodal
output. By incorporating the textual information in the image selection
process, our method selects more relevant and representative visual con-
tent, further enhancing the quality of the multimodal summarization.
Experimental results illustrate that our method outperforms existing
methods by utilizing visual information to generate a better text-image
summary and achieves higher ROUGE scores.

Keywords: Multimedia analysis · Document understanding ·
Semantic technology · Summarization

1 Introduction

Multimodal summarization aims to generate a concise and informative summary
by jointly analyzing and fusing information from multiple modalities, such as
text and images [6,10,16]. In contrast to text summarization, which relies on
a single data type, multimodal summarization requires advanced neural models
to encode multimodal data, capture inter-modal interactions, and generate an
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Fig. 1. The illustration of our proposed task Multimodal Summarization with Multi-
modal Output (MSMO). Image and text assistance can generate a richer summary for
easy understanding.

integrated text summary. This paper focuses on the Text-Image Summarization
(TIS) task [6,10,27], which considers both image and text modalities (Fig. 1).

Current multimodal summarization methods typically involve three stages:
1) feature extraction, 2) modality fusion, and 3) summary generation [2,17,24].
Most approaches separately extract textual and visual features using techniques
such as Convolutional Neural Networks (CNN) [1] for visual encoding and Recur-
rent Neural Networks (RNN) [20] for natural language processing and generation
[11,14,23,25]. Subsequently, cross-modal attention mechanisms are employed to
fuse the multimodal semantic information [24]. However, traditional multimodal
summarization methods often struggle to effectively leverage visual information
to improve the text summary, and in some cases, the visual information may
even hinder the summarization performance.

Previous multimodal works transform multiple modalities into a single
modality to improve the performance of multimodal tasks [5,8,21,22]. For exam-
ple, image captioning [8,21] can automatically generate descriptive text for a
given image called image caption, providing a comprehensive understanding of
its content. Inspired by the image caption (e.g. CLIP [18] and BLIP [12]), we
observed that it could naturally transform the visual modality into text modality,
thereby translating the multimodal summarization task into the text summariza-
tion task. However, upon transforming the multimodal summarization into the
text summarization through image captioning, we face the problem that a single
document often encompasses multiple themes or facets [19,26]. Also, we found
that the summary generated from text augmented with image captions contained
irrelevant information, necessitating the filtering of irrelevant content from the
text to enhance summary quality.
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Based on our observations, we propose a novel multimodal summarization
method, involving four modules: Text-Caption Alignment, Facet-Aware Docu-
ment Segmentation, Salient Information Retrieval strategy, and Image Selection.
Extensive experiments on the existing dataset demonstrate that our method not
only fully exploits visual information to generate a more comprehensive multi-
modal summary, but also ensures the reduction of irrelevant information without
the removal of useful data and generates an accurate summary. Our contribu-
tions are as follows:

– First, we introduce a strategy for Text-Caption Alignment based on seman-
tic localization, which can integrate visual information into textual content,
avoiding issues such as an illogical summary caused by inserting the captions
directly and enabling the generation of a more comprehensive and fluent text
summary.

– Second, we propose a sentence-level information filtering technique, capa-
ble of filtering extraneous information within the text. Which enhances the
informativeness and precision of the generated summary, ultimately achieving
state-of-the-art performance as measured by the ROUGE metric.

– Third, we propose a straightforward yet effective Image Selection strategy. By
projecting the generated summary and images into a joint textual semantic
space, we can select images with a higher degree of relevance to the generated
text summary.

2 Related Work

Multimodal summarization processes data from diverse modalities to generate
more concise information, improving the quality of the summary. For multi-
modal output with multimodal input [24,27,28], Zhu et al. [27] constructed a
large-scale dataset for TIS task, which takes the images and text as input and
outputs a pictorial summary. They also proposed a multimodal attention model
to jointly generate text and select the most relevant image from the multimodal
input. Based on previous research, Zhu et al. [28] proposed a multimodal objec-
tive function with the guidance of multimodal reference to use the loss from the
summary generation and the image selection. Zhang et al. [24] introduced a uni-
fied framework for multimodal summarization, called UniMS, which integrates
extractive and abstractive objectives, as well as selecting the image output.

However, exploiting the multimodal information is difficult because of the
semantic bias during multimodal fusion. To address the challenge, some works
align the multimodal information into a shared space. For instance, Ding et al.
[5] introduce a contrastive loss to align the image and audio representations
before fusing them through cross-modal attention. Pereira et al. [22] focuses on
capturing visual sentiment information through facial expressions in text and
selectively matching and fusing with the target aspect in textual modality. Wu
et al. [21] proposed a method to insert external knowledge into the CNN-RNN
for visual question answering, transforming the images into image captions. La
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et al. [8] utilized image captioning to extract the correlation between different
modalities to solve multimodal tasks. Inspired by converting the multimodal
task into the unimodal task, we transform multimodal summarization into text
summarization, which can reduce the complexity of data fusion and improve the
performance of multimodal summarization.

3 Proposed Method

3.1 Method Overview

Fig. 2. Overview of our work. Specifically, we mainly divide it into four parts: (1) After
generating image captions, the image is inserted into the text based on semantic simi-
larity (2) Then, the document is segmented using a document segmentation algorithm,
which is called the Facet-Aware Segmentation. (3) By filtering out the irrelevant sen-
tences in each block, we select the most relevant sentences for summarization. (4) We
select the image with the highest semantic similarity between the image description
and the text summary as the image summary.

In our paper, we propose a novel multimodal summarization approach, where
the input is a sequence of text and a set of images; the output contains a text and
an image. As shown in Fig. 2, our method mainly consists of four modules: (1)
Text-Caption Alignment, (2) Facet-Aware Document Segmentation,
(3) Salient Information Retrieval Strategy, and (4) Image Selection.

Image captions are the textual representation of visual knowledge obtained
from images and inserted into the optimal position in the original text document
based on semantic similarity between images and text, as detailed in Sect. 3.2.
As described in Sect. 3.3, we utilize a document segmentation strategy, which
divides the document into facet-aware semantic blocks to keep semantic relevance
between sentences within each block. Then, we filter out the irrelevant sentences
from each block according to a hypermeter θ and generate the text summary
from the filtered sentences, as described in Sect. 3.4. Finally, for image selection,
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we project the generated text summary and all image captions into the same
textual semantic space and select the most relevant image compared with the
text summary, as described in Sect. 3.5.

3.2 Text-Caption Alignment

Given the multimodal document {T, I}, we first transform multiple image modal
I = {I1,I2,. . . ,Ij ,. . . ,Im} into text modality Ĩ = {Ĩ1, Ĩ2,. . . , Ĩj ,. . . , Ĩm} by a pre-
trained BLIP [12] model, where Ĩj represents the corresponding image caption
of the j-th image. Basically, it reduces the modality-bias problem in such text-
heavy multimodal summarization task and thereby improve the performance of
multimodal summarization.

We sequentially process each image caption generated by the BLIP model
{Ĩ1, Ĩ2,. . . , Ĩi,. . . , Ĩm}, and calculate the semantic similarity with all paragraphs
in the document {p1, p2,. . . , pj ,. . . , pn}. In detail, we first obtain embedding
vectors Ĩi and pj of the image caption and each paragraph in the text document
through a pre-trained model. Then, the similarity of both sides of the potential
insert point is measured by cosine similarity. The equation is as follows:

α(Ĩi, pj) =
Ĩi · pj

∣
∣
∣

∣
∣
∣Ĩi

∣
∣
∣

∣
∣
∣||pj ||

(1)

where Ĩi and pj represent the i-th image caption and the j-th paragraph respec-
tively. The purpose of calculating cosine similarity is to measure the directional
similarity between two vectors, with the value range spanning from -1 to 1. The
cosine similarity value closer to 1 indicates higher semantic similarity between
the two sentences.

Upon obtaining the similarity scores between image descriptions and textual
paragraphs, we average similarity scores on both sides of the potential insert
point, serving as the matching score for that insertion point. Finally, the image
captions are inserted into the text based on the maximum matching score.

3.3 Facet-Aware Document Segmentation

By employing a document segmentation algorithm to partition the document
into k facet-aware semantic blocks, each block comprises distinct facets. Our
approach is grounded in the assumption proposed by Skorokhod’ko [13] that
when adjacent sentences exhibit semantic similarity, they converge on the same
aspect. Building upon this aforementioned assumption, we predefine potential
segmentation points (g1, g2, . . . , gn−1) at the breakpoints between every two sen-
tences, where n is the number of sentences.

To determine whether a potential segmentation point is a true breakpoint,
we calculate a score for each potential segmentation point based on the seman-
tic similarity of the sentences surrounding it. Specifically, we first compute the
features of the w sentences to the left and right of each segmentation point,
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and then calculate their similarity as the score for that segmentation point. As
shown in Eq. 2, gli and gri respectively denote the left and right features at the
segmentation point gi. The similarity of the segmentation point gi is computed
using cosine similarity simi = gl

i·gr
i

‖gl
i‖‖gr

i ‖ . It’s noted that the default value for w is
set to 2.

gli =
1
w

i∑

j=i−w+1

xj , g
r
i =

1
w

i+w∑

j=i+1

xj (2)

Inspired by TextTiling [7], we transform the similarity score into a depth
score through the following equation:

di = max{(simi−1 − simi), 0}
+ max{(simi+1 − simi), 0}

(3)

When the similarity of the potential segmentation point is the local minimum
value, the facets in the left and right blocks are different, and the corresponding
depth score is high. Thus, if di surpasses a threshold δ determined by the mean
and standard deviation of the depth score sequence, the original predefined seg-
mentation point gi is chosen. The threshold δ controls the degree of document
segmentation, where a higher δ results in more sentences per segmented block.
Finally, we obtain the facet-aware blocks (b1, b2, ..., bk).

3.4 Salient Information Retrieval Strategy

Following the segmentation of the document, sentences within each block are
related to a distinct facet. In this section, we detail how to filter out the irrelevant
information within each block based on the importance of the block. At first, we
calculate the semantic vector representation (t1, . . . , ti, . . . , tk) for each block as
the Eq. 4:

ti =
1
|bi|

∑

xi∈bi

xj (4)

where |bi| represents the number of sentences in the segmented block bi. Fol-
lowing Zheng et al. [26], we employ directed centrality to score each block, as
shown in Eq. 5. Specifically, we obtain the centrality score ρ(bi) for each block
by computing the sum of pair-wise dot product with other blocks. Noted that a
high centrality score for a block indicates that the block is highly relevant and
connected to other blocks within the document.

ρ(bi) =
k∑

j �=i

ti · tj (5)

To filter out irrelevant sentences, we calculate the proportion of sentences to
be retain within each block, denoted as ηi:
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ηi =
ρ(bi)
ρ∗ (6)

As shown in Eq. 6, ρ∗ represents the highest centrality score in the semantic
block, and ρ(bi) represents the centrality score of semantic block bi. After calcu-
lating the retention ratio η for each block, we use BERTSum [15] to score each
sentence within the block and retain the top η sentences. Blocks with higher
centrality scores retain more sentences. Finally, the selected sentences xi are
concatenated, and a fine-tuned BART [9] model generates the text summary
S = {y1, . . . , yt, . . . , yl}.

3.5 Image Selection

In order to more accurately select the image that is closely related to the gener-
ated text summary, we first use the pre-trained BERT [4] model to encode the
image captions and the generated text summary. The result of this projection is
that we obtain the feature vector representations of the text summary and the
image features, which align them in the same textual semantic space. Next, we
use the cosine similarity to calculate the semantic similarity score for each pair
of caption-text vectors, which characterizes their relative position and similarity
in the semantic space. This process enables us to accurately judge the degree of
similarity between each image and the generated text summary, thereby selecting
the most relevant image for the multimodal summarization task (Fig. 3).

Fig. 3. Image Selection Strategy

4 Experimental Settings

4.1 Dataset

During the experimental process, the data was referenced to the dataset MSMO
[27], which included 293,965 training data, 10,355 validation pairs, and 10,261
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test pairs. The MSMO dataset is constructed using a corpus from the Daily Mail
website paired with multiple images and utilizes the manually written highlights
provided by the Daily Mail as reference text summaries. To obtain the pictorial
references for the test set, MSMO employs 10 graduate students to select relevant
images from the articles corresponding to each reference text summary.

4.2 Evaluation Metrics

We choose the following evaluation metrics:
ROUGE-{1,2,L} is used as the standard evaluation metric for automatic

summarization. It measures the similarity between two text passages, typically
focusing on the overlap of n-grams, word sequences, and word pairs.

Image Precision (IP) is a commonly used metric for evaluating image selec-
tion performance. It defines image accuracy by calculating the ratio between
the properly recommended images and the reference ones. Used to measure the
ability to accurately select images with high correlation when given a reference
image.

Msim, as a metric for evaluating the correlation between images and texts,
is achieved by calculating the maximum similarity between each sentence in the
final summary and the image.

4.3 Baselines

To demonstrate the effectiveness of our proposed method, we compared it with
various summarization methods.

BERTSum [15] is a unimodel for extractive and abstractive text summariza-
tion based on BERT, with two variants of BertAbs (abstractive) and BertExtAbs
(hybrid).

BART [9] is a pre-trained model composed of a bidirectional encoder and
an autoregressive decoder that can better understand the complex context rela-
tionship.

ATG/ATL/HAN [27] uses the global, local and hierarchical image features,
respectively, for the multimodal abstractive summarization task.

MOF [28] incorporate a multimodal objective function into ATG. Out of
the four variants of the multimodal objective function, we select the two that
exhibit better performance we utilized.

UniMS [24] propose a unified framework for multimodal summarization,
which introduces a visual guided decoder to better integrate textual and visual
modalities.

ViL-Sum [3] model paragraph-level vision-language semantic alignment for
better learning multi-modal semantics.
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5 Experimental Results

5.1 Automatic Evaluation

We split the performance experiments into automatic evaluation and human
evaluation to better analyze the detailed impact of our method. Table 1 summa-
rizes the automatic evaluation results on abstractive summarization and image
selection subtasks. The first block in the table includes abstractive summariza-
tion methods with text-only input, while the second block includes abstractive
methods with multimodal input. By investigating the results, we make the fol-
lowing observations:

Table 1. Main results of different metrics. R-1, 2, L refers to ROUGE-1, 2, L, IP
refers to Image Precision. Noted that the experimental results of other methods are
taken from UniMS [24].

Model R-1 R-2 R-L IP Msim

Text Abstractive

BertAbs [15] 39.02 18.17 33.20 – –

BertExtAbs [15] 39.88 18.77 38.36 – –

BART [9] 41.83 19.83 39.74 – –

Multimodal Abstractive

ATG [27] 40.63 18.12 37.53 59.28 25.82

ATL [27] 40.86 18.27 37.75 62.44 13.26

HAN [27] 40.82 18.30 37.70 61.83 12.22

MOFRR
enc [28] 41.05 18.29 37.74 62.63 26.23

MOFRR
dec [28] 41.20 18.33 37.80 65.45 26.38

UniMS [24] 42.94 20.50 40.96 69.38 29.72

ViL-Sum [3] 44.29 20.96 41.34 66.27 32.17

Our Method 44.80 20.32 41.46 74.19 32.35

We achieve the best IP and Msim compared with other methods due to the
implementation of an Image Selection strategy (i.e., our method outperforms
UniMS by achieving 6.9% and 8.8% higher scores on the IP and Msim metrics,
respectively). Compared with existing methods that directly select the image in
the model, our method projects both image captions and text summary gener-
ated from the document into the same textual semantic space for comparison
and then selects the most relevant image caption compared with the generated
text summary, where the corresponding image is selected as the image summary.
The results illustrate that the image selection strategy enhances the coherence
between the textual and visual information to achieve higher performance than
existing methods.
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In the first block of text-only models, we find that the fine-tuned pre-trained
BART model exhibits up to 9.7% higher ROUGE-L score than MOFRR

enc, which
indicates the powerful summarization capabilities of BART. Compared with
UniMS, BART also achieves competitive results, which only decrease by 1.11,
0.67, and 1.22 under ROUGE-{1,2,L} scores, respectively.

In the second block, previous multimodal methods (such as ATL [27] and
MOF [28]) demonstrate no capability over the single-modal text summarization
model as mentioned. These results concluded that too many images could bring
noise, and the long document contains enough information for text generation.
By using a more powerful unified model, UniMS improves the ROUGE-L score
and IP score by 3.16 and 3.39 over MOFRR

enc, respectively. ViL-Sum, on the other
size, models paragraph-level vision-language alignment for summarization. In
contrast, our method utilizes a sentence-level filtering strategy capable of filtering
irrelevant information within the facet-aware semantic blocks. By employing our
designed modules, we capture useful information and generate more accurate
summaries. As a result, our method achieves higher ROUGE scores compared to
other methods. Meanwhile, the proposed strategy for text-caption alignment can
integrate visual information into the same textual semantic space and thereby
accurately select the image, achieving up to 11.9% over ViL-Sum under IP score.

Msim is used to check the text-image relevance of the pictorial summary. Our
method projects both image captions and the generated text summary into the
same textual semantic space for comparison. The results show that we achieve
32.35 under Msim, which is higher than 29.72 obtained by UniMS. Thus, we
conclude that the text-image relevance is much higher than the state-of-the-art
UniMS model as we expected, which demonstrates the effectiveness of the image
selection strategy.

5.2 Human Evaluation

We present the human evaluation results of the method we proposed. For
this purpose, we engaged three part-time graduate students from the Alibaba
Crowdsourcing platform to assess the multimodal summaries generated by our
best-performing model. We selected the most representative models, ATG and
UniMS, for comparison with our approach. We randomly selected 200 samples
from the test dataset for evaluation and instructed them to judge the multimodal
summary based on the following criteria:

– Coverage (Cov): Compare the model-generated text summary with the actual
text summary to check if the main points are adequately covered.

– Grammar (Gra): Examine whether the model-generated text summary is
grammatically correct.

– Consistency (Con): Measure the factual alignment between the summary and
the source document.

– Image-Relevance (IR): Indicate the text-image relevance of multimodal out-
puts.
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The evaluators rated the selected samples on a scale from 1 (the worst) to
5 (the best) for each of the four dimensions. The average results are presented
in Table 2. Our approach outperforms the comparative systems in all metrics,
with the lowest score exceeding 0.34. The voters generally agreed that our sys-
tem’s summary exhibit higher Cov and Con scores, reflecting factual consis-
tency between the summary and the original article. Furthermore, we achieved
the highest IR score, indicating a strong correlation between the images and
the generated text summary. Additionally, the text summary is predominantly
grammatically and semantically correct. These results provide further validation
of the effectiveness of our proposed method.

Table 2. Human evaluation results.

Model Cov Gra Con IR

ATG [27] 3.64 4.14 3.87 3.72

UniMS [24] 3.91 4.25 4.09 4.14

Our Method 4.23 4.36 4.28 4.32

5.3 Ablation Experiment

We set up an ablation study to validate the effectiveness of our method, inves-
tigating the impact of three key modules, including Text-Caption Alignment
(TCA), Facet-Aware Document Segmentation (FADS) and Salient Information
Retrieval (SIR). Our experimental setup is described as follows, with the results
shown in Table 3.

Table 3. Ablation study.

Approaches R-1 R-2 R-L IP Msim

Our method 44.80 20.32 41.46 74.19 32.35

w/o TCA 43.76 19.40 40.43 74.01 32.27

w/o FADS 44.55 20.15 41.20 74.12 32.34

w/o SIR 44.73 20.28 41.36 74.15 32.40

Impact Analysis of TCA. Our TCA strategy significantly outperforms exist-
ing methods, as shown in Table 3. TCA is crucial for enhancing information amal-
gamation and cohesiveness between textual and visual elements. Without TCA,
the lower ROUGE scores and reduced Msim metric indicate inferior congruence
between the generated summary and the reference text, as well as weakened
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semantic alignment between textual and visual components. Inappropriately
appending image captions to the text may lead to redundancy or incoherence in
the generated summary. Therefore, our TCA strategy is essential for selecting
the optimal position for visual information insertion.

Impact Analysis of FADS. Under the condition without the FADS mod-
ule, we select n sentences as a block, where n represents the average num-
ber of sentences per paragraph. The results show that incorporating FADS
significantly improves summarization performance, with notable advantages in
ROUGE scores, IP metric, and Msim metric. This highlights the crucial role of
the FADS module in shaping the summarization process. The substantial dif-
ferences in ROUGE scores indicate that FADS has a significant impact on the
informativeness and coherence of the generated summary. The decrease in the IP
value suggests that the SIR module, under the influence of FADS, contributes
to selecting more relevant sentences for summarization. Moreover, the slight
improvement in the Msim metric implies that FADS helps maintain the align-
ment between visual and textual elements, even when the optimal text summary
is not selected.

Impact Analysis of SIR. Removing the SIR module means that no sentence
filtering is performed on the blocks, and the text obtained after the TCA strat-
egy is directly fed into the summarization model. As shown in Table 3, this
leads to lower ROUGE scores, indicating that the noise in the input document
negatively affects the summarization quality. However, the minor changes in IP
and Msim suggest that our image selection remains accurate, demonstrating the
effectiveness of our method in matching visual and textual information. The SIR
strategy plays a crucial role in our approach by reducing noise and enhancing
information fusion, ultimately improving multimodal text summarization.

5.4 Case Study

Figure 4 presents a randomly selected sample consisting of multiple paragraphs
of text and images. The blue-marked part of the figure represents the results
obtained after processing the sample with the alignment module. These results
clearly demonstrate our strategy is capable of completing the cross-modal data
fusion by locating the image captions in the suitable insertion position. For
example, adding “Jose Mourinho looking on from the sidelines.” before “Mour-
inho added ...” provides extra context. Observing the results, comparing with
the other approaches, our method incorporates all the key aspects, which are
shown in the left corner as the Gold Summary marked with three different col-
ors. Specifically, our method can generate the highlighted blue sections, while
comparison systems do not. Our method and the without-all-modules method
select the same image as the gold summary and achieve better ROUGE scores
than Text-Only BART. Moreover, as shown in the Fig. 4, text-only input led to
incorrect image selection, which demostrates that incorporating image captions
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Fig. 4. A Case Study of our work. The blue text in the Text Caption Alignment section
refers to the corresponding image captions generated. The highlighted text in yellow,
green, and blue is the content part covered in the Gold Summary, and the corresponding
color on the right is the comparison between the three methods and the Gold Summary.
(Color figure online)

is crucial for accurate image selection by addressing information imbalance in
multimodal summarization.

6 Conclusion

In this paper, we propose a novel multimodal summarization method that utilizes
image captions to fusion the semantic information between visual and textual
modalities. Our method segments the document into various facet-aware blocks
and meticulously filters out irrelevant content within each block to reduce the loss
of key information and generate a more precise summary. Additionally, we also
propose a straightforward yet effective image selection strategy, which largely
bridges the gap between the pictorial summary. The experimental results demon-
strate that the proposed model outperforms existing methods on both automatic
metrics and manual evaluation. However, our method suffers from handling the
long document, which is also a challenge in existing multimodal summarization.
In future work, we will focus on improving the performance of processing a long
document in the context of multimodal summarization. Moreover, we will also
devote ourselves to refining these techniques, compressing the model, or creating
a broader applicable dataset.
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Abstract. Generating realistic handwritten word images that closely
resemble a target style remains a challenging task in document image
analysis. In recent years, deep learning techniques, such as Latent Diffu-
sion Models (LDM), have shown promise in generating styled handwrit-
ten text. However, these models face significant challenges when creating
images for ‘Out of Vocabulary’ (OOV) words, impacting their overall
effectiveness. In this paper, we introduce an extended diffusion-based
Handwritten generation method that incorporates a novel conditioning
mechanism. It is based on the Pyramidal Histogram of Shapes (PHOS)
representation, which takes into account the spatial and structural char-
acteristics of the target handwriting style. By conditioning the diffusion
model on input text, PHOS vector, and writer ID, our approach enables
the generation of handwritten word images. Notably, our approach out-
performs the original diffusion model, which only uses text and writer
ID as conditions, in generating both in-sample and out-of-sample. Fur-
thermore, we have developed a faster inference method that significantly
reduces the number of steps required for generating the output. Through
qualitative and quantitative evaluations, we demonstrate the effective-
ness of our proposed method.

Keywords: Denoising diffusion probabilistic model · Handwritten
Text Recognition · Synthetic Handwritten Data

1 Introduction

Handwritten text generation has emerged as a prominent research area within
the field of document image analysis. Its applications are wide-ranging, encom-
passing data augmentation for handwriting recognition systems and the creation
of personalized digital content. Deep learning (DL) techniques have achieved
remarkable performance in many domains, including handwriting recognition.
However, to fully realize their potential, these techniques demand extremely
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large volumes of high-quality annotated data. DL methods rely heavily on learn-
ing from large quantities of data to effectively discern patterns and generalize
capabilities, thereby enhancing their generalization and performance. Acquiring
a large annotated dataset, however, can be challenging and resource-intensive,
presenting a significant obstacle in practice. Without access to sufficient anno-
tated data for training, these approaches often struggle to attain top accuracy
levels. Data generation techniques offer a solution to this critical need. They
enable the automatic synthesis of high-quality additional training examples at
scale, supplementing limited real data. Our research focuses on generating hand-
written text data, with a specific emphasis on two key aspects: maintaining the
style of known writers and generating both known and unknown words that the
synthetic data generation system has never encountered. This sets our approach
apart by enabling us to generate text that not only preserves the desired style
of a known writer but also extends the system’s capability to generate novel
words it has never encountered. By pursuing this direction, we aim to provide a
comprehensive solution that combines style preservation with the generation of
contextually diverse and stylistically consistent text. This ultimately enhances
the practicality and versatility of data generation techniques in the field of hand-
written text generation.

Recent advancements in deep learning, particularly with the introduction of
Generative Adversarial Networks (GANs) [2,9] and LDMs like WordStylist [18],
have paved the way for generating realistic and stylized handwritten text images.
Current state-of-the-art methods for handwritten text generation, such as GAN-
writer [13], SmartPatch [17] and WordStylist [18], has demonstrated impressive
results in generating visually appealing handwritten words conditioned on both
text content and style information. However, the performance current state-of-
the-art methods in generating OOV word images have not been quantitatively
evaluated. OOV word images refer to the ability to generate handwritten words
that were not included in the training dataset. While current state-of-the-art
methods excel at replicating known words and maintaining the style, their per-
formance in generating novel, previously unseen words is not promising. This
limitation hinders the practical applicability of these methods in scenarios where
only a few word classes are represented in the dataset. GANwriter [13] employs a
conditional GAN architecture to generate handwritten word images. In contrast,
WordStylist [18] leverages the power of LDMs to generate styled handwritten
text by conditioning the model on both text content and style vectors. While
both approaches have shown promising results, WordStylist [18] has demon-
strated superior performance in terms of accuracy while maintaining the writing
style. The exceptional performance of LDM has been observed in other domains
[6]. To improve in performance metrics, it is essential to generate high-quality
synthetic data using a framework and integrate it into the recognition system
alongside the original data. However, it is crucial to ensure that the generated
data is contextually accurate to avoid any degradation in the performance of
the recognition system. When incorporating synthetic data into the recognition
system, it is crucial to ensure that the generated samples closely resemble the
characteristics and variations present in the real data. This includes accurately
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capturing the textual content, handwriting style, and other relevant features. If
the synthetic data deviates significantly from the contextually accurate represen-
tation, it may negatively impact the performance of the recognition system. We
observed several such cases with WordStylist [18]. Figure 1a illustrates training
data samples generated using the officially provided WordStylist weights. In the
first row, the framework attempts to generate the words “Higher” and “that”
exhibiting a partial resemblance to the expected text. Similarly, in the second
row of the first case, the generated word “bring” also bears partial similarity to
the expected text. However, these generated words are difficult for humans to
read due to their lack of clarity. Notably, the framework fails to generate the
second word in the second row, where the expected text is “but” The generated
output does not resemble the intended text at all, resulting in a complete fail-
ure of the framework in this case. The third row of the diagram showcases the
generation of unreadable words by the framework. The expected text in this row
includes the words “it” and “by” However, the generated words do not exhibit
any clear resemblance to the expected text, making them illegible. These fail-
ure cases highlight the limitations and challenges faced by the WordStylist [18]
framework in accurately generating desired word images, particularly in terms
of readability and reliable generation of the expected text. Similar types of sam-
ples generated by the diffusion model may hamper the performance metric when
used alongside the original training data.

Fig. 1. Images generated by Wordstylist and DiffWord framework

To address this limitation, we propose an extension to the WordStylist [18]
model, which we refer to as “DiffWord”. We incorporate a novel conditioning
mechanism based on the PHOS representation [1] along with text and writer
ID. The PHOS is a compact and discriminative representation that encodes the
spatial distribution of characters and shapes within the handwritten text image.
By conditioning the diffusion model on both the text content and the PHOS rep-
resentation, we aim to capture the spatial and structural characteristics of the
target handwriting style more effectively. In Fig. 1b, we present the same word
examples as shown in Fig. 1a, generated using the DiffWord method. The images
generated by DiffWord in Fig. 1b and 2 exhibit improved clarity, readability, and
accuracy compared to those generated by the WordStylist [18] method (Fig. 1a).
These differences are evident in the finer details, enhanced legibility, and overall
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visual quality of the DiffWord-generated word examples, making them clearer
and more visually appealing. Our proposed approach leverages the U-Net archi-
tecture [21] as the backbone of the diffusion model, similar to WordStylist [18].

The performance of the recognition [20] system also depends on the amount
of quality data provided. Therefore, the frameworks must generate high-quality
synthetic data in a timely manner. The method “WordStylist” [18] is based on
LDM approach that takes 600 to 1000 steps during the generative sampling pro-
cedure, which is computationally expensive and time-consuming. To address the
computational cost and time required, we introduce an early-sampling technique
that significantly reduces the number of steps needed. Our proposed method gen-
erates high-quality synthetic handwritten text data in just 120 steps for IAM
[16] dataset and in 200 steps for the CVL dataset [14], which is a significant
improvement over the 600 to 1000 steps required by the “WordStylist” [18]
method. This technique enables us to generate a large amount of data with
fewer steps, thus greatly enhancing the efficiency of the generation process. We
have also developed a validation framework that utilizes a recognition model to
verify the accuracy of the generated images in terms of their textual content. If
the generated images pass the validation, they are considered correct and added
to the synthetic data.

The main contributions of our work are as follows:

1. We extend the WordStylist [18] model by incorporating the PHOS condition-
ing branch, enabling the generation of handwritten word images that better
capture the spatial and structural characteristics of the target style.

2. We propose an early sampling technique that significantly reduces the number
of steps required during the generative diffusion sampling procedure from 600
to just 120 steps for IAM [16] dataset and 1000 to 200 for CVL [14] dataset.

Fig. 2. Words generated by DiffWord framework
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3. We conduct a quantitative evaluation of OOV word generation, providing
insights through detailed metrics, This analysis establishes a baseline for OOV
word performance, highlighting our model’s ability to effectively generate and
assess handwriting styles for words not present in the training dataset.

The structure of this paper is as follows: Sect. 2 reviews pertinent literature
in handwritten text generation. Section 3 provides an overview. Our proposed
methodology is detailed in Sect. 4. Section 5 outlines the experimental frame-
work, datasets, and evaluation criteria, and offers a discussion of the findings.
Limitations and challenges are discussed in Sect. 5.6. The paper is concluded in
Sect. 6.

Fig. 3. DiffWord Architecture

2 Related Work

In recent years, several techniques have been proposed for synthetic text gen-
eration, specifically in the domain of word-level generation. In this section, we
discuss the relevant works related to handwritten word generation. Graves [10]
investigated synthesizing online handwriting trajectories of English texts using
RNN. The authors of [27] extended the [11] approach for online handwriting
synthesis. Several recent works have explored the use of GANs [24,28] for syn-
thetic handwritten text generation. GAN-based approaches, such as GANwrit-
ing [13] and HiGAN+ [9], have shown promising results in generating diverse
and authentic word images. GANwriting [13] leverages calligraphic style fea-
tures and textual content to intricately condition the generative process. The
HiGAN+ model introduced in [9] improved upon prior work by conditioning
generative image synthesis on both disentangled representations of calligraphic
style and textual content, employing contextual and local patch losses to enhance
style consistency and image quality, and leveraging a more compact architecture
based on reusing early writer identification layers. In TS-GAN [4], the ability
to extract styles from images via pixel-level reconstruction was demonstrated.
While ScrabbleGAN presented in [7] had the ability to synthesize handwritten
text of arbitrary length by concatenating individual letter images, it was lim-
ited in its ability to accurately mimic the calligraphic styles. In [26], JokerGAN
was introduced, a memory-efficient model for generating handwritten text with
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awareness of the text line structure. These methods utilize adversarial training
frameworks and conditioning on input text and style features to produce coherent
word sequences. However, challenges persist in achieving perfect stylistic coher-
ence and inter-character spacing. Diffusion models like WordStylist [18] have
also demonstrated potential for word generation conditioned on text, but do not
explicitly model global stylistic cues. Transformer-based models, such as Hand-
writing Transformers (HWT) [2] and VATr [19], have also been proposed for styl-
ized word generation. These models employ transformer encoders and decoders
to capture global and local handwriting styles and enable style-content entangle-
ment at the character level. However, they do not integrate representations cap-
turing the intrinsic hierarchical structure of handwriting. HiGAN [8] introduced
an improved GAN architecture for disentangled handwriting style generation
conditioned on text. It achieved state-of-the-art performance but relied on an
unstable GAN training framework and limited style representations, constrain-
ing generalization. SLOGAN [15] proposed a method for synthesizing parame-
terized and controllable handwriting styles for arbitrary-length text, including
out-of-vocabulary words. While it demonstrated strong stylistic control, ensuring
perfect coherence when varying generation parameters posed difficulties. These
works made progress in synthesizing longer handwritten sequences, with Scrab-
bleGAN [7] achieving sentences and HiGAN/SLOGAN extending to arbitrary
lengths. However, challenges remained in maintaining perfect spatial characteris-
tics and coherence over long sequences, motivating our exploration of leveraging
holistic PHOS representations to better capture these global style cues during
word generation. The GlyphControl [25] technique utilizes diffusion models to
digitally render text guided by glyph maps. Conditioning on glyph templates
during inference enables consistent custom text synthesis. However, the gener-
ated text is not handwritten. In our work, we propose leveraging the PHOS [1]
technique, which extracts multi-scale histograms encoding the statistical distri-
bution of shape and character features. By analyzing this hierarchical represen-
tation, our model aims to capture fine-grained stylistic details and variations in
handwriting for improved word generation. To the best of our knowledge, our
work is the first to explore word-level generation using the PHOS technique in
the context of synthetic text generation.

3 Overview

Denoising Diffusion Probabilistic Models (DDPMs) aim to reconstruct the orig-
inal data inputs. They accomplish this by learning the inverse operation of
gradually adding noise onto data instances across multiple time periods. The
methodology is founded upon concepts from the field of thermodynamics, which
studies the transfer of heat and energy in systems [12,22]. DDPMs utilize a
process of incremental noising via a Markov chain. The models are trained to
minimize the effects of noise contamination by optimizing the reverse mecha-
nism. Once completed, this enables the generation of novel data representations
through chained synthesis from noise components and recovering the underlying
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uniformities across many iterations of noise subtraction. The goal of this mod-
eling approach is to reconstruct source data inputs from corrupted latent rep-
resentations produced during a forward diffusion phase. In the forward process,
the original data undergoes a stepwise transformation. At sequential intervals
numbered 1 through T , random perturbations in the form of Gaussian noise
are systematically added to and combined with the data. This incorporation of
noise leads to the derivation of a chain of latent representations x1, x2, ..., xT .
The magnitude of noise included at each interval is governed by a designated
noise parameter scale, βt, where βt can scale between 0 and 1. These derived
latents are interconnected by transitional rules that bridge adjacent time lapses,
facilitating a progressive evolution from the original data x0 into the ultimate
latent xT through the sequential introduction of varying noise as shown in Eq. 1.

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI) q(x1:T |x0) =
T∏

t=1

q(xt|xt−1) (1)

DDPMs learn to recover the original information x0 by removing the extra
noise added earlier. A neural network is trained for this task. It starts with
the hidden version that has changed the most over time. The network repeats
undoing changes step-by-step from t = T to t = 1. First, it guesses what the
version looked like before more noise was added, pθ(xt−1|xt) as shown in Eq. 2.
Then it uses this guess to help undo the next step. This process takes it back
one small change at a time. It keeps fixing previous versions xt−1 based on later
ones xt. After many repeats of pθ(xt−1|xt), the network learns by making its
guesses pθ closer to the real previous versions.

pθ(x0:T ) = p(xT )
T∏

t=1

pθ(xt−1|xt) pθ(xt−1|xt) = N (xt−1;µθ(xt, t), I)) (2)

L = Ex0,t,ε[||ε − εθ(xt, t)||2] (3)

During the training process, the loss function, defined in Eq. 3, quantifies the
mean squared error between the actual noise ε introduced at time step t and the
noise estimated by the model εθ.

4 Methodology

This section describes our proposed methodology for generative diffusion mod-
els of handwritten text images. The training procedure of a conditional genera-
tive diffusion model is discussed first. We then discuss two approaches for sam-
pling from the trained model: (a) a conventional method following the complete
reverse process, and (b) an efficient early sampling technique. In the conventional
method, an exact copy of the data used for training a diffusion model is gen-
erated, preserving the same writer ID and text associated with each image ID.
However, with early sampling, a different strategy is employed. The same train-
ing split is generated, but the writer IDs associated with each image ID change
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while keeping the text unchanged. Finally, we present a validation framework
for assessing the quality of images generated with early sampling by performing
text recognition from the images.

4.1 Training

Figure 3 illustrates the architecture of DiffWord. Our proposed method builds
upon the LDM architecture introduced in the WordStylist paper [18]. The input
image initially passes through a pre-trained Variational Encoder (VE), generat-
ing a low-dimensional latent representation of the image. This latent encoding
reduces the image’s dimensionality while retaining important semantic informa-
tion. The forward diffusion process gradually corrupts the image’s latent rep-
resentation by adding Gaussian noise at each timestep. A noise scheduler is
employed to gradually increase the level of noise. The noise level is linearly incre-
mented from an initial value of β1 = 10−4 to a final value of β600 = 0.02 over a
total of T = 600 timesteps for IAM [16] data and T = 1000 for CVL [14] dataset.
This incremental increase ensures that the diffusion process effectively spreads
and incorporates noise throughout the image’s latent representation. Our diffu-
sion model employs a U-Net [21] architecture as its backbone. The U-Net receives
several inputs, including the noisy image latents, the corresponding timestep,
and the desired conditions. These conditions consist of the writer ID, the con-
tent text, and PHOS [1] representation derived from the content text. These
inputs collectively provide the necessary information for the network to gen-
erate the desired output representations, encoding the spatial distribution and
relationships of characters and sub-characters within handwritten text images.
By incorporating PHOS as a conditioning variable, the model gains an enhanced
ability to capture and replicate the structural characteristics and style of the tar-
get domain, even for previously unseen character styles and distributions it was
not explicitly trained. The PHOS technique plays a crucial role in the condi-
tioning process of our diffusion model. PHOS extracts multi-scale histograms
encoding the statistical distribution of shape and character features. By ana-
lyzing this hierarchical representation, our model captures fine-grained stylistic
details and variations in handwriting. This enhances the diffusion model’s ability
to model the intricate stylistic nuances of handwriting, leading to more faithful
style modeling compared to text conditioning alone. The PHOS representation
is computed from the input word text and passed through an embedding layer
to obtain a dense vector representation. This embedded PHOS vector is then
concatenated with the embedded text representation and fed into the U-Net at
each timestep, as illustrated in Fig. 3. The additional information provided by
PHOS includes the geometric and spatial relationships between different char-
acter components, which are crucial for replicating the natural variation found
in human handwriting. This joint conditioning on both text and PHOS enables
our model to generate images that closely match the desired content and style,
ensuring that the synthetic handwriting exhibits realistic variations and stylis-
tic consistency. By incorporating PHOS, the model benefits from a richer, more
detailed conditioning input that goes beyond simple text features, allowing it to
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more accurately capture the complexities of handwritten text generation. This
integration significantly improves the model’s performance in generating high-
quality, stylized handwritten text. It also enhances the overall robustness of the
generated images, making them suitable for a wider range of applications. Ulti-
mately, PHOS-based conditioning sets a new standard in the field of synthetic
handwriting generation.

The diffusion model is trained to estimate the noise εθ(xt, t), as shown in
Eq. 3. The objective is to model the conditional probability pθ(xt−1|xt), where
xt−1 represents the clean latent representation at timestep t−1 given the current
prediction xt. This probability distribution guides the iterative reverse sampling
process, which aims to gradually refine the noisy image by removing noise at each
timestep. To provide temporal information to the model, timesteps are integrated
using a sinusoidal position embedding technique. This encoding method, inspired
by [23], allows the model to differentiate and be aware of the specific timestep it is
processing. During training, the model learns to denoise the corrupted latents by
minimizing the reconstruction error between the predicted noise and the actual
noise added to the latent, as Eq. 3 depicts the formulation of the diffusion loss
function.

4.2 Sampling

We employ two different iterative sampling techniques for handwriting genera-
tion. The first approach is the conventional method that precisely follows the
reverse denoising process across all 600 timesteps to yield high-fidelity samples
x0:T resembling the distribution pθ(x0:T ). It takes a long time to generate data
samples using this method as it involves sampling sequentially from the full con-
ditional distribution pθ(xt−1|xt) across all timesteps t. To handle this issue, we
propose an early sampling technique that modifies the conventional method to
predict noise values only every 5 timesteps, effectively sampling from an initial
portion of pθ(xt−1|xt) over only one-fifth of the original timesteps. This reduces
the number of steps required per sample by a factor of 5x. The following sub-
section explains these methods in detail.

Fig. 4. Sampling steps
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Iterative Reverse Sampling via the Complete Process To generate syn-
thetic images resembling the training data distribution, we utilize the reverse
denoising process. Specifically, we use the trained model to initiate the genera-
tion from Gaussian noise, unfolding the procedure across 600 timesteps as shown
in Fig. 4. The reverse steps are shown by black arrows. At each step, the model
removes a part of the noise from the noisy image produced in the previous step
according to the probability distribution pθ(xt−1|xt), where xt−1 represents the
clean latent representation at timestep t − 1 and xt represents the noisy image
at timestep t, which varies from 600 to 1.

This captures the model’s ability to predict the clean latent representation
xt−1 given the current prediction xt. The generation is guided using the same
conditioning inputs: text, writer ID, and PHOS vector specific to image ID. This
ensures the generated images not only depict the given text but also exhibit
styling consistent with the training writer. Initially starting from a randomly
noisy sample, denoising is sequentially performed at each timestep in reverse
order, with the network predicting and subtracting the noise level guided by
this probability distribution. This iterative process gradually reconstructs the
clean latent representation by timestep 0. Finally, decoding this denoised latent
using the decoder yields the synthetic pixel-space image resembling the style and
content of the training data. In WordStylist [18], the same sampling procedure
is employed to generate a new split of the training data, with the exception of
the addition of the PHOS vector.

Generating Diffusion Samples Using Early sampling The conventional
sampling technique utilized in WordStylist [18] involves a minimum of 600 to
1000 timesteps to generate each sample, sampling sequentially from the full
conditional distribution pθ(xt−1|xt). However, when the goal is to generate many
examples with varied writer IDs, this approach is prohibitively computationally
expensive due to the large number of timesteps required per sample.

To address this challenge, we propose an efficient early-sampling technique.
Rather than predicting noise using a trained diffusion model for each step we
predict it after an interval of 5 steps, skipping the prediction for the remaining
4 steps in that interval, for these steps between intervals earlier predicted noise
is used for denoised image estimate at step t. Below Eq. 4, represents image
denoising.

xt−1 =
1√
α

(
xt − 1 − α√

1 − α
· noise�t/5�×5

)
, (4)

where noise�t/5�×5 denotes the noise term calculated at the last multiple of 5 not
exceeding t.

Figure 4 summarises the procedure with only a green color arrow. The algo-
rithm with the Pseudo-code given below follows a modified approach, where the
prediction of noise is done only after every 5 steps. Prior to predicting the noise,
the noise values remain constant from the previous prediction for the preceding
5 steps. The algorithm takes as inputs the trained diffusion model, the number



Word-Diffusion: Diffusion-Based Handwritten Text Word Image Generation 63

of timesteps N (set to 600 for IAM and 1000 for CVL), and the value α (which
is calculated as 1 − β).

Pseudo-Code for Early-Sampling Technique. The algorithm begins by
initializing the latent representation x as random noise. It then iterates through
the timesteps from N to 1. Suppose the current timestep t is a multiple of
5 (t mod 5 = 0). In that case, the algorithm predicts the noise pθ(xt−1|xt)
for that timestep using the trained diffusion model, The input to model is xt

which is conditioned on writer ID, text string, PHOS representation of the text
string. The predicted noise for timestep t is denoted as noiset. Next, the latent
representation xt is updated using the Eq. 4 to xt−1.

Algorithm 1: Early-Sampling Technique
Data: Trained diffusion model, number of timesteps N = 600, α = 1 − β
Result: Final image x0 as generated sample

1 x ← random noise;
2 for t ← N to 1 do
3 if t mod 5 == 0 then
4 noiset ← prediction using diffusion model;

5 xt−1 ← 1√
α

(
xt − (1−α)√

1−α∗ · noiset

)
;

6 return x0;

4.3 Validation Framework for Data Generated Using Early
Sampling

To ensure the quality and correctness of the synthetically generated images using
the early sampling technique, we have implemented a robust validation frame-
work. This framework incorporates a state-of-the-art Handwritten Text Recog-
nition (HTR) model that assesses the generated images based on their textual
content. It is important to note that this validation framework is particularly per-
tinent when the early sampling approach is used. By comparing the recognized
text from the generated images with the intended text, the validation framework
determines whether the images meet the expected standards. The validation pro-
cess is an essential step in the synthetic data generation pipeline. It acts as a
safeguard to maintain the integrity and reliability of the generated images. The
HTR model employed in the validation framework is trained on the original
IAM training split. During the validation phase, each diffusion-generated image
undergoes a thorough evaluation. The recognition model processes the image and
extracts the textual content. This recognized text is then compared against the
ground truth text associated with the image. If the recognized text matches the
ground truth, the generated image is considered correct and validated. Only the
generated images that successfully pass the validation framework are included
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in the final synthetic dataset. This selective inclusion ensures that the synthetic
data is of high quality and aligns with the expected textual content. By filtering
out any generated images that do not meet the validation criteria, we maintain
the integrity and usefulness of the synthetic data for downstream tasks such as
training HTR models.

5 Experiment and Result Discussions

5.1 Experiment Setup

The evaluation of the proposed DiffWord framework involved two main cat-
egories of experiments. The first category focused on training generative diffu-
sion models. The second category encompassed assessing the framework’s perfor-
mance in downstream tasks, such as HTR, writer classification, and calculating
FID and KID scores. For all the experiments, we utilized the IAM Handwrit-
ten Dataset [16] and CVL [14] dataset, which are well-established benchmark
datasets in the field of HTR. The dataset consists of a diverse collection of
handwritten English text, including various writing styles and multiple writers.
This dataset provides a suitable foundation for training our model to generate
styled handwritten text images.

To ensure a fair comparison with WordStylist [18], we adopted the same IAM
data split as that of WordStylist for diffusion training. For the CVL dataset, we
used the officially provided split for train and test. It has around 87K train and
12K test words. The WordStylist model [18] is capable of generating only alpha-
betic characters. Consequently, when using both datasets [16] for downstream
tasks, we preprocessed the official data split by discarding words that contain
only non-alphabetic characters. For words that partially contain non-alphabetic
characters, we replaced those characters with whitespace.

The diffusion model training follows a similar approach to [18]. We trained
two separate models on the training set of the respective datasets, utilizing
the text content and the corresponding PHOS representations and writer-ID as
conditioning variables. The model was optimized using the same loss function
and training hyperparameters as specified in WordStylist [18] until the loss value
converged.

5.2 HTR Results

The Tables 1 and 2 compares the HTR accuracy achieved when training on
datasets containing original training data augmented with synthetic samples gen-
erated by either the proposed DiffWord framework or the existing WordStylist
[18] method. The evaluation is conducted on test data using the Character Error
Rate (CER) and Word Error Rate (WER) metrics, where lower values indicate
better performance. It is important to note that HTR framework is trained using
a combination of original images from the training split of respective datasets
and synthetic images generated by the same training image ID’s by respective
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Table 1. HTR comparison with Wordstylist on IAM dataset colour codes black: full
denoising, green: early sampling, blue: the combined approach, pink: without Validation
FrameWork

frameworks. The term ‘Original’ in Table 1 and 2 corresponds to images from
the train-split of the respective IAM or CVL dataset. On the other hand, ‘Syn-
thetic’ represents images generated using the diffusion framework. In contrast to
WordStylist [18], which exclusively employs the full denoising process described
in Sect. 4.2 for image generation, DiffWord produces synthetic data through a
flexible approach. It leverages either the full denoising process, early sampling,
or a hybrid of both. Table 1 and 2 employs a color-coding scheme to delineate
the methods used: black for full denoising, green for early sampling, blue for the
combined approach, and pink to show without using validation framework. It
is crucial to acknowledge that the validation framework is exclusively employed
when synthetic data is produced via early sampling or the combined approach,
specifically when data is generated with fewer steps. It is not utilized in the
context of full denoising.

Table 2. HTR comparison with Wordstylist on CVL dataset. Colour codes black: full
denoising, blue: the combined approach , pink: without Validation FrameWork

In Table 1, 1st row indicates the result on the original IAM data. The next
3 rows show a performance of the WordStylist [18]. 2nd row shows performance
of the WordStylist [18] with CER 5.41% and WER 15.87%. DiffWord uses early
sampling with validation and gets a CER of 5.15% and a WER of 14.8% (row 6)
with the same number of samples of train data. This result is improved to a CER



66 A. Gurav et al.

of 4.39% and a WER of 12.89% (row 5) when the complete denoising process
is used but this process is difficult to scale up. The recognition accuracy consis-
tently improves with the inclusion of additional synthetic samples produced by
the proposed scalable early sampling technique, as demonstrated in rows 7, 8,
and 9 of columns 4 and 5 in Table 1. This demonstrates that the images produced
via early sampling are as effective as those from the complete denoising process
for improving performance when augmenting training data. A similar pattern is
also observed in Table 2. Where adding the augmented data with the original
improves HTR performance and DiffWord framework outperforms WordStylist
[18]. The consistent accuracy gains highlight DiffWord’s ability to harness useful
information from both generation methods to further reduce error rates with
increased data.

The Tables 1 and 2 reveal that the DiffWord framework consistently outper-
forms, demonstrating improved recognition accuracy. The validation framework,
while important for ensuring the quality and correctness of the generated images,
plays a secondary role compared to the main contributions of the early sampling
algorithm and the PHOS representation. The results in columns 4 and 5 of Table
1 and 2, which include the validation framework, show marginal improvements
over those without it (highlighted in pink), underscoring its supportive role. The
relevant rows for Table 1 are 6,7 and for 2 are 4,5. Where we can compare CER
and WER with and without validation. However, the principal improvements in
recognition accuracy are attributed to the effective combination of early sam-
pling and PHOS representation, as evidenced by the significant gains in CER and
WER metrics. Overall, the early sampling technique and PHOS representation
are the critical components driving the superior performance of the DiffWord
framework. The validation framework enhances the reliability of the generated
data, ensuring it meets the expected standards, but the core advancements stem
from the primary methodologies employed. The experimental results validate
that integrating these techniques leads to more accurate and effective handwrit-
ing recognition systems.

5.3 HTR Training on OOV Data

In this section, we explore the capabilities of the diffusion model in generating
OOV data, and the subsequent training of a HTR model on this data. The focus
lies on contrasting the proficiency of DiffWord with that of the WordStylist [18]
model in producing OOV handwritten words. Figure 5 compares the handwritten
words generated with the same text and writer ID. It is qualitatively clear that
in the DiffWord-generated handwritten images, the overall handwriting quality
appears more refined, exhibiting smoother and more consistent letterforms from
the Fig. 5. This consistency contributes to enhanced readability and reduces
potential ambiguities in character recognition. It is clear that DiffWord excels
in capturing the fine details of handwriting, including subtle variations in stroke
thickness, letter spacing, and individual character shapes. These precise details
contribute to a more authentic and realistic representation of handwritten text.
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Table 3 presents the outcomes of the HTR model’s learning efficacy when
trained on the OOV data crafted by both diffusion models trained on the
IAM split. To generate OOV data, we considered the set of 1736 OOV word
classes(those word classes are not present in the IAM dataset) and generated
OOV class images by using all the writers present in the IAM dataset and each
generating 5 samples of a particular word class. This generated data is then
passed through a five-fold validation framework The test split in each fold was
carefully curated to ensure that if a writer’s style appeared in the test set for a
particular word, that writer was not included for that same word in the respec-
tive training split of that fold. This approach simulates a more challenging and
realistic scenario where the model is tested on completely unseen handwriting
styles. By repeating this process across all splits, we aim to provide a robust

Fig. 5. Out-of-Vocabulary Comparison

Table 3. CER and WER scores on OOV data for DiffWord and WordStylist using a
Five-fold validation framework

Fold DiffWord WordStylist

CER (%) WER (%) CER (%) WER (%)

1 2.9 6.7 3.8 8.1

2 2.8 6.3 3.41 7.4

3 2.8 6.4 3.4 7.43

4 2.8 6.9 3.5 7.4

5 2.5 5.6 3.1 6.76
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assessment of the model’s ability to generalize to writers and validate its perfor-
mance consistency.

To further scrutinize our model’s performance on OOV words, we segmented
the analysis based on the word length of the above-generated OOV data. Our
objective was to determine how the DiffWord model’s proficiency varies with the
length of the words it generates. We divided the words into three bins: words
with lengths from 0 to 3 characters, from 4 to 6 characters, and more than 6
characters. The analysis provides insight into the model’s effectiveness in dealing
with short, medium, and long words, which are often differently challenged by
the intricacies of handwriting styles. For each bin, we computed the WER, The
results are shown in the Table 4 The table shows the WER by word length
bins across 5 folds of data, with the number of samples in each bin indicated in
parentheses.

5.4 Writer Classification

Writer classification is essential for understanding and validating the effective-
ness of synthetically generated handwritten text images that are not only realistic
but also stylistically accurate. It serves as a means to assess whether the gen-
erated synthetic data maintains the unique styles of different writers, which is
crucial for applications such as authorship verification, forensic analysis, and per-
sonalized digital content creation. To evaluate the style preservation capability
of our proposed DiffWord framework, we conducted experiments on word-level
writer classification. For this, the original training splits of both datasets (IAM
and CVL) are used as training data, and separate writer identification mod-
els are created for IAM and CVL data. We synthetically generated train split
images of both datasets using conventional full-sampling. This generated data is
used as test data for writer classification. If the synthetic data matches the style
distribution of the original data, then it will be reflected in test accuracy. In our
approach, we employ a Convolutional Neural Network (CNN) with pre-trained

Table 4. Word Error Rate (WER) with respect to Word Length, numbers inside
bracket denotes the number of samples.

Word Length WER% Fold 1 WER% Fold 2 WER% Fold 3 WER% Fold 4 WER% Fold 5

<3 7(114) 7 (120) 3 (120) 14(110) 21(75)

4–6 6(64270) 6 (64260) 6 (62945) 6(60135) 6(47545)

>6 7(11516) 7 (11520) 7 (11315) 6(10575) 5(7785)

Overall 6.7 6.3 6.4 6.9 5.6

Table 5. Word level Writer Classification Evaluation Results

Method Name Test Data Accuracy % CVL Data Accuracy % ↑
DiffWord 66.5 45.1

WordStylist [18] 63.5 37.3
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ResNet18 [3] as a backbone for writer classification. This ResNet18 is initially
pre-trained on the ImageNet dataset [5] and subsequently fine-tuned using the
respective datasets, specifically tailored for the task of writer classification at
the word level. Notably, the ResNet18 architecture used in our approach is the
same as the one utilized in [18].

The comparison of DiffWord with wordStylist [18] are as shown in Table 5.
Our proposed DiffWord method achieves better word-level writer classification
accuracy compared to the WordStylist on both datasets. We believe this is due
to DiffWord’s use of PHOS representations as an additional conditioning input,
which captures richer structural and spatial information about the writing style
characteristics compared to WordStylist [18] which only conditions on text.

5.5 Comparative Analysis of Image Quality

The Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) are
both crucial metrics used for evaluating the quality of images generated by gener-
ative models. FID measures the similarity between the distributions of generated
images and real images, focusing on capturing both the texture and feature dis-
tribution, where lower scores indicate better quality and higher resemblance to
the real dataset. In conjunction with FID, KID provides an alternative measure
by evaluating the similarity between the feature distributions of real and gen-
erated images using the kernel trick. This metric offers an unbiased estimate of
similarity and is particularly sensitive to mode collapse in generative models.
Lower KID values suggest a closer match between the feature distributions of
generated and real images, indicating higher quality of the generated outputs.
Both metrics together provide a comprehensive assessment of the quality of gen-
erated images, with FID focusing on closeness to real image features and KID
assessing the distributional similarity in a statistically robust way.

Table 6 shows the comparison of both FID and KID scores for the gener-
ated data. From the results, it is clear that DiffWord outperforms Wordstylist
[18]. A lower FID score, as achieved by the DiffWord method, indicates that
this model generates images that have features more similar to the real dataset
than those generated by the Wordstylist model. Moreover, the lower KID score
achieved by DiffWord reinforces this outcome by suggesting that the distribution
of the generated images is closer to that of the real images. This dual superiority
in FID and KID scores demonstrates that DiffWord can create more realistic

Table 6. FID and KID Comparison for IAM and CVL Datasets

Dataset Method Name FID ↓ KID ↓
IAM DiffWord 67 0.0118

Wordstylist [18] 90 0.0175

CVL DiffWord 14.0916 0.0059

Wordstylist [18] 14.1391 0.0060
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handwritten text images, potentially reducing the likelihood of mode collapse
and ensuring a diverse output that closely mirrors the true data distribution.

5.6 Potential Limitations and Challenges

The diffusion process and PHOS conditioning increase computational complex-
ity, leading to longer training times and higher resource requirements. Balancing
efficient computation with high-quality handwriting generation remains a criti-
cal challenge. Additionally, it is vital that synthetic data accurately captures the
variability of real handwriting to be effective in downstream tasks. To address
this, we have implemented a validation framework. However, the generation of
synthetic handwriting data also raises ethical and privacy concerns, making it
essential to ensure that the generated data does not inadvertently reproduce
sensitive information.

6 Conclusion

Our research introduces WordDiff novel method for handwritten word image gen-
eration, which outperforms existing WordStylist [18] model in generating both
in-vocabulary and out-of-vocabulary words, as evidenced by superior image qual-
ity assessment and writer classification results. The integration of PHOS into the
conditioning process allows our model to more accurately capture the distinct
handwriting styles of individual writers, leading to more realistic and stylistically
consistent text generation. Furthermore, the early sampling technique we intro-
duced helps in reducing the computational resources and time required for data
generation, without compromising on quality. These improvements are quanti-
tatively supported by enhanced recognition and writer classification accuracy,
FID scores, indicating higher quality of the generated images. While our model
demonstrates improvements over existing methods, it represents a promising
step towards enriching synthetic data resources and potentially aiding in the
refinement of HTR systems.
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Abstract. This paper presents a character-based approach for enhanc-
ing writer retrieval performance in the context of Greek papyri. Our
contribution lies in introducing character-level annotations for frequently
used characters, in our case the trigram kai and four additional letters
(ε, κ, μ, ω), in Greek texts. We use a state-of-the-art writer retrieval app-
roach based on NetVLAD and compare a character-level-based feature
aggregation method against the current default baseline of using small
patches located at SIFT keypoint locations for building the page descrip-
tors. We demonstrate that by using only about 15 characters per page, we
are able to boost the performance up to 4% mAP (a relative improve-
ment of 11%) on the GRK-120 dataset. Additionally, our qualitative
analysis offers insights into the similarity scores of SIFT patches and
specific characters. We publish the dataset with character-level anno-
tations, including a quality label and our binarized images for further
research.

Keywords: Greek Papyri · Writer Retrieval · Historical Documents ·
Document Analysis

1 Introduction

Writer Retrieval (WR) describes the task of finding documents penned by
the same writer as a given query document. Typical applications include foren-
sics or digital humanities, in particular WR for historical documents, which
also includes papyrology, the study of ancient texts on papyri [9]. Scholars face
difficulties in assigning writers due to degradation in papyri and variations in
handwriting over time. By tracing handwriting evolutions based on solid evi-
dence, WR is a possibility to organize papyrological documentation coherently,
that is then used for further tasks, e.g., reconstructing ancient archives, refining
the accuracy of writer identification or papyri dating [5]. To aid papyrologists
through computerized and automated WR, deep-learning-based methods have
emerged as a promising technique in the field of papyrology [3–5,16,17].
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Fig. 1. Overview of our approach. Contrary to state of the art, we do not aggregate deep
features of SIFT patches that usually contain a few strokes of handwriting. Instead,
we aggregate features of specific characters, in our case the trigram kai, to form the
global page descriptor.

WR methods usually rely on a multi-stage approach: Sampling patches of
handwriting (e.g. via SIFT keypoint detection [2,15]) combined with prepro-
cessing, such as binarization, feature extraction via a neural network and an
encoding stage where the statistics of the features are calculated (e.g., Vector
of Locally Aggregated Descriptors (VLAD) [2] or NetVLAD [14,15,19]) and
aggregated. In our paper, we want to extend the current state of the art and
investigate the sampling and aggregation step by using character-level annota-
tions of the handwriting to aggregate the NetVLAD-encoded features of specific
characters. More specifically, we keep the unsupervised training step, where we
cluster SIFT descriptors and use the cluster assignment as a target label of the
32×32 patch extracted at the keypoint, but use only features of specific charac-
ters for aggregation during inference for the global page descriptor. An overview
of our methodology is given in Fig. 1. While current approaches rely on thou-
sands of local features, extracted by a neural network at SIFT keypoint locations
(which we refer to as SIFT patches), we investigate the aggregation of the fea-
tures of specific characters, in our case kai, a trigram usually standing for the
most frequent word in Greek texts, the conjunction meaning “and”. It is also
used by scholars to determine authorship of Greek texts [7,10]. In our work, we
concentrate on Greek papyri since this domain still lacks performance for WR or
writer identification [3,16], with Mean Average Precision (mAP) of only about
40%. Additionally to our evaluation, we publish the dataset1 of the full images
of the GRK-120 dataset - that was until now only available as segmented rows in
[5] along with the annotated characters (bounding boxes and character images
in color and binarized) - and we compare performances for other characters
(epsilon ε, kappa κ, mu μ, and omega ω).

We show that by using character-level annotations and aggregating only spe-
cific characters, we 1) boost the retrieval performance in terms of mAP, even
when the quality of the letters is low, and 2) reduce the amount of handwriting

1 Dataset: https://d-scribes.philhist.unibas.ch/en/case-studies/dioscorus/kairacters/.

https://d-scribes.philhist.unibas.ch/en/case-studies/dioscorus/kairacters/
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needed to obtain a discriminate global page descriptor (11 kai -s per page vs.
2600 SIFT patches). Our evaluation is thoroughly conducted on subsets of the
GRK-120 dataset, ensuring fair comparisons on the WR performance. Further-
more, our qualitative studies show that the use of characters detects comple-
mentary similarities of the writers, rather than only improving it.

To summarize, our contributions are:

– We release our dataset - the full images as well as the images and annotations
of all of our characters used and of the remaining 20 letters - in color and
binarized version. For the kai -s, quality labels are included.

– We evaluate character-level-based feature aggregation with a state-of-the-art
WR approach [15] and show that this outperforms the currently dominating
methodology of aggregating features of SIFT patches.

– Our approach does only need a few samples to achieve similar performances
as the baseline using SIFT patches. With only 11 kai -s, the performance is
on par or even better compared to 2.6k SIFT patches per sample.

– We qualitatively evaluate the similarity of SIFT patches as well as the kai-s,
providing insights for scholars and further research.

Our paper is structured as follows: Sect. 2 describes related work in the field of
WR for Greek Papyri. In Sect. 3, details on the data used and the WR approach
are given. The evaluation protocol is described in Sect. 4, and our results are
presented in Sect. 5. We conclude our paper in Sect. 6.

2 Related Work

In the following, we provide a brief overview of previous work on WR and writer
identification in the domain of papyri.

Pirrone et al. [17] explore a self-supervised method for retrieving papyri
fragments utilizing a Siamese network with contrastive loss. Their evaluation
includes the Michigan Papyrus Collection and a subset of HisFragIR20. Similar
to our work, Christlein et al. [3] implement a previously established algorithm [1],
training a network on clustered SIFT descriptors with the initial, 50 image-large
GRK-Papyri dataset [9]. They rely on a U-Net-based binarization technique for
papyri and demonstrate that eliminating degradation and background artifacts
notably enhances the retrieval performance. The GRK-Papyri authors present
baseline outcomes utilizing local NBNN [8], a learning-free algorithm based on
SIFT descriptors, but struggle with document degradation issues. Nasir et al.
[12] concentrate on binarization via Deep Otsu and train a neural network for
writer identification using 512×512 patches. In [5], Cilia et al. introduced Papy-
Row, an extension of GRK-Papyri from 50 to 120 images released as fragments
via line segmentation. In our previous work, we proposed a feature mixing net-
work for the retrieval and identification of fragments [16], and show that the
learned descriptors still rely on patterns included in the background. Another
work of Cilia et al. [4] focuses on the writer identification of patches on a slightly
extended dataset compared to the initial GRK-papyri (of 50 images from 10
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writers to which they added one writer, Dios, and its 15 writing samples from
GRK-120) with different convolutional backbones. In this work, our WR app-
roach relies on a similar binarization technique as Christlein et al. [3] who use a
U-Net and a manually designed augmentation pipeline for degradation usually
found in papyri. Regarding the deep feature extraction of patches, we use a
residual network and NetRVLAD as proposed in our previous work [15].

Greek papyri have been also involved in two recent competitions: the bina-
rization competition DIBCO2019 [18] and the competition organized by Seuret
et al. [21] at ICDAR2023, with the latter one primarily focusing on the localiza-
tion and classification of characters, resulting in promising recognition outcomes.
Our paper’s contributions build upon those results. Although the characters we
used were manually annotated by expert papyrologists, with the advance in
character detection and classification in Greek papyri, our method can in the
future be applied to further enhance WR performance and eliminate the need
for manual annotation by scholars. Another recent task on Greek papyri is their
chronological attribution, or estimating their date, where, e.g., Pavlopoulos et
al. [13] apply a method based on Convolutional Neural Networks (CNNs).

3 Methodology

In this section, we describe the main parts of our methodology. We start with
the description of the data, in particular the statistics including the characters,
followed by the WR pipeline.

3.1 Data

The dataset used in this paper is based on the GRK-120 dataset, consisting
of 120 documents belonging to 23 different writers that have been identified
so far in the course of the D-Scribes2 project. One of the aims of this project
is the computer-assisted identification of scribes of the archive of Dioscorus of
Aphrodito, the richest papyrus archive of the Byzantine period [9]. Secondly,
the characters of the texts are annotated as two distinct subsets - 1300 kai-s
and 9511 individual characters representing one of the 24 letters of the Greek
alphabet. For our work described below, we only use part of it, but make the
full data available for further research.

Annotations. The annotations of the characters of the texts in GRK-120 are done
with the READ software3. We follow the workflow described in our previous work
[20] and define two different sets of annotations, indicated in Table 1, which are
publicly available:

– The first set consists of letters, usually of the best-preserved three lines of text.
Since the annotations are not entirely complete, we provide only preliminary

2 https://d-scribes.philhist.unibas.ch/en/.
3 https://github.com/readsoftware/read.

https://d-scribes.philhist.unibas.ch/en/
https://github.com/readsoftware/read


KaiRacters: Character-Level-Based Writer Retrieval for Greek Papyri 77

Table 1. Statistics of the annotations for the characters and kai-s (BTx describes the
quality label). We also show randomly sampled examples of the annotated characters.

ExamplesCharacter Samples

ε 504

κ 353

μ 287

ω 318

BT1 720

kai BT2 380

BT3 51

results using four of those characters (ε, κ, μ, ω). They are chosen by us since
they are assumed to be discriminative for the handwriting of the scribes [6].

– The second set includes only kai-s, a trigram formed of kappa κ, alpha α and
iota ι that in most of the cases stands for the most frequent word in the Greek
language (corresponding to the English “and”) but occasionally also occurs
as part of a word (for instance dikaios, “just, fair”). This trigram was chosen
not only because of its very high frequency that makes it likely to appear
even in small papyri, but also because its shape is usually not affected by the
previous or following character (no ligature before κ nor after ι). The quality
label of each kai is additionally provided.

Quality Labeling. The kai-s are tagged according to their preservation state. We
provide three labels (BT{1,2,3}), where BT1 indicates best quality (no degra-
dation), annotations tagged with BT2 are partly damaged, and unreadable kai-s
are assigned with BT3, where the kai is only identifiable given the context of the
text. Examples and the quantity of each label are given in Table 1.

Final Dataset. The final dataset consists of kai-s and the characters ε, κ, μ and ω,
and those are assigned to a writing sample (an image containing only one writer’s
handwriting) from the GRK-120 dataset. Note that both set of annotations are
independent, e.g., the κ-s used for aggregation might be part of the kai-s. This
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Fig. 2. Distribution of the characters used per writer

assignment allows us to compare the traditional WR approaches to our proposed
character-based aggregation scheme. We provide kai-s for each of the 23 writers
in the dataset. Since the number of pages the writers contributed in the GRK-120
dataset are highly imbalanced (e.g. Abraamios has 21 writing samples from 18
papyri), we also observe an uneven distribution of characters per writer, which
increases the difficulty of WR by having only a small amount of handwriting
for some writers, e.g. Kyros1 or Victor2. The distribution of the characters is
also shown in Fig. 2. Due to the presence in the GRK-120 dataset of short and
damaged writing samples, and a limited time for manual annotation, we are not
able to provide kai-s or letters for each document. We provide more details on
the subsets we evaluate our approach on in Sect. 4.

3.2 Writer Retrieval

In this section, we describe our method for WR. We start with preprocessing,
which mainly consists of binarization, followed by the feature extraction and
aggregation part.

Binarization. Given that our method is tailored for binarized handwriting and
that Greek papyri typically exhibit severe degradation, such as artifacts, holes,
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Fig. 3. Example page with annotated kai-s (green) in color and binarized. Note that
we use a separate U-Net for binarizing characters and full pages (ID: Isak 5). (Color
figure online)

or background patterns, we employ binarization as a preprocessing step to iso-
late the handwriting. Following the approach of Christlein et al. [3], we utilize
a U-Net-based binarization technique, which has been demonstrated to outper-
form traditional methods for papyri. To address the binarization of full pages as
well as crops of the annotated characters - parts of the characters might suffer
from poor binarization, e.g. as shown in Fig. 3 - we apply two training strategies,
both trained on grayscale images from the DIBCO2019 dataset [18], subset II
that contains ten papyri:

1. For full pages, the binarized output may contain entirely white regions with-
out any handwriting. We train a U-Net on randomly sampled 128 × 128
patches.

2. For images of characters, we assume accurate annotations and, therefore, no
empty patches. Consequently, we focus our patch sampling exclusively on
regions containing handwriting. Moreover, we train on patch sizes ranging
from 32 to 128.

Examples of the two binarization methods, as well as the binarized kai-s, are
shown in Fig. 3. Both networks are able to segment the handwriting and remove
most of the artifacts from the papyri.

Feature Extraction. The retrieval method we use is based on the work pro-
posed in [15]. It consists of a ResNet20 for feature extraction and NetRVLAD
to encode the features. The network is trained in an unsupervised manner by a
two-step approach: SIFT keypoints are detected, and the corresponding descrip-
tors are clustered. We then use the cluster assignment as a surrogate label for
training, where a 32 × 32 patch serves as input to the network.

Aggregation. We calculate the global page descriptor X, of a page consisting of
N samples of the NetRVLAD-encoded set of features F = {x0,x1, · · · ,xN−1}
by sum-pooling X =

∑N−1
i=0 xi followed by element-wise power normalization
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Fig. 4. Timeline of the documents included in GRK-120. The time of origin of some
documents is still unknown.

f(x) = sign(x)|x|α with α = 0.4. Finally, we whiten the page descriptors and
l2-normalize again.

The key idea of our paper is that instead of following state-of-the-art
approaches and performing inference using 32 × 32 patches extracted at SIFT
keypoints, we aggregate a feature set F of previously defined characters for WR.
Although our work relies on manual annotation, automated approaches, e.g.,
character classification, are an active field of research [21] and could be inte-
grated into our pipeline to eliminate the need for human annotations.

In contrast to SIFT patches, which only contain a few strokes, we investigate
the use of larger parts of handwriting, such as characters or trigrams (kai-s),
since our network is not restricted to a specific image sizes. Since the annotated
characters are usually larger than the strokes in the SIFT patches, we use a
slightly higher image size (64× 64) for the characters, compared to size 32× 32
of the SIFT patches. We also conducted experiments for SIFT patches using
higher image sizes, but this did not yield significant differences in performance.

4 Evaluation

Dataset. The GRK-1204 dataset consists of 120 writing samples penned by 23
writers, with the number of documents per writer being highly unbalanced. Since
the documents are contracts, the authorship of these samples is verified by
experts’ examination of scribes’ signatures. Furthermore, the documents vary
regarding their date, a timeline is shown in Fig. 4. The corpus dates from the
6th and 7th century CE, where the date of some papyri, e.g. written by Theo-
dosius or Kollouthos, is still only an estimate.

We report our results on the GRK-120 dataset and, due to the limited avail-
ability of letters on specific pages, subsets of GRK-120, as shown in Table 2.
We use the GRK-69 subset for the evaluation of combinations of letters and the
GRK-110 version to evaluate the kai-s. Kai-s are more numerous because they
have been carefully looked for and exhaustively annotated .

4 https://d-scribes.philhist.unibas.ch/en/case-studies/dioscorus/.

https://d-scribes.philhist.unibas.ch/en/case-studies/dioscorus/
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Table 2. Variants of GRK-Papyri dataset used in our evaluation.

Set Writers

GRK-50 10 Baseline dataset for comparison with state of the art [9]

GRK-69 23 Evaluation of characters ε, μ, κ, ω

GRK-110 23 Evaluation of kai-s

GRK-120 23 Full dataset, extension of GRK-50

Training. We mainly follow the approach in [15]: We use ResNet20 and append
NetRVLAD with 32 clusters as a feature extractor. Our networks are trained
in an unsupervised manner by applying Cl-S [1] with 5000 clusters, hence we do
not need any writer labels. For training, we use Adam optimizer for 30 epochs
with a learning rate of 10−4 and a batch size of 1024.

Evaluation Protocol. Our approach is evaluated by using leave-one-image-out
cross validation. Each document of the dataset is once used as a query, and the
remaining documents are ranked according to the cosine similarity of the page
descriptors. Our main metric used is mAP that considers the full ranked list.
Furthermore, similar to [3], we report (soft) Top-1, Top-5, Top-10 scores. Top-x
indicates if at least one document written by the same writer is included in the
first x documents of the ranked list. Finally, we also calculate the precision at k
(Pr@k), which describes the ratio of correct documents in the first k elements.
All of our results are reported on an average of five runs with different seeds.

5 Results

In this section, we provide our main results. First, we start by comparing our
method to state of the art, and follow with a description of results when using
only predefined characters for WR. Finally, we also show qualitative results of
the retrieval.

5.1 Baseline Performance

GRK-50. Firstly, to show the effectiveness of our method, we provide results
when aggregating SIFT patches (referred to as baseline) on the GRK-50 [9]
dataset. The state-of-the-art method is proposed by Christlein et al. [3], using
Cl-S training as well as SIFT descriptors, both encoded by mVLAD. As shown in
Table 3, our approach has a slightly lower mAP, but outperforms [3] regarding
Top-1 accuracy. Additionally, we check if training on more data helps our network
by training on the GRK-120 dataset. Interestingly, we observe a drop in perfor-
mance on each metric reported which might be a result of complexity added
to the training process, e.g. an increased amount of variety in handwriting by
including more writers.
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Table 3. GRK-50: Comparison to state of the art.

Method Top-1 Top-5 Top-10 mAP

Cl-S + ResNet20 + NetRVLAD 58.0 74.0 94.0 39.1

Cl-S + ResNet20 + NetRVLAD (trained on GRK-120) 52.0 74.0 90.0 38.2

R-SIFT + mVLAD [3] 48.0 84.0 92.0 42.8

Cl-S + ResNet20 + mVLAD [3] 52.0 82.0 94.0 42.2

GRK-120 and Subsets. Next, we report the performance of the baseline on the
subsets we subsequently use to evaluate our character-based approach. Results
are presented in Table 4. The GRK-69 dataset achieves the lowest mAP value in
our experiments (32.4%). The decreased number of documents seems to increase
the difficulty of the retrieval. The mAP for GRK-110 is slightly better than
GRK-120 (39.5% vs 39.4%), indicating that we remove pages that are hard to
retrieve or contain less handwriting - with an increase of 6% with respect to
Top-1 accuracy. The difference in performance for both subsets when training
on the full dataset is less than 1% mAP.

Table 4. Baseline results on GRK-69, GRK-110 and GRK-120.

Test set Train set Top-1 Top-5 Top-10 mAP

GRK-69 GRK-69 50.0 59.4 71.0 32.4

GRK-120 48.3 60.9 71.0 32.3

GRK-110 GRK-110 62.5 79.1 81.0 39.5

GRK-120 61.5 78.2 84.5 40.0

GRK-120 GRK-120 56.5 74.2 80.0 39.4

5.2 Character-based Aggregation

The method proposed in this paper is character-based aggregation instead of
using SIFT patches. We use the same networks for aggregating the features of
the respective samples.

Kai-s. Firstly, we evaluate the annotated kai-s, provided with a quality label
(BTx), and present the retrieval results in Table 5. We observe a performance
gain of +2.4% with respect to the main metric, mAP, on the GRK-110 dataset.
However, the Top-x accuracies still trail. Therefore, we also check the precision
of the first five/ten documents, where the kai-s outperform the SIFT approach,
which shows that we have more documents retrieved on top of the list. Secondly,
considering the amount of data used to calculate the global page descriptor for
each document - about 2.6k per page for random SIFT patches vs. 11 kai-s -
our experiment shows that the actual text influences the performance. By using
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pre-defined characters as input, in our case kai-s, we improve the retrieval while
also reducing the amount of data needed. Finally, we find that the retrieval is
able to benefit even from kai-s of lower quality (e.g. damaged ones), where we
achieve the highest mAP for considering all samples (BT{1,2,3}). We argue that
this might be due to pages containing a small amount of samples, and adding
data might be beneficial, even if parts of the character are not fully available.

Table 5. Retrieval results on GRK-110 for using kai-s or SIFT patches (Baseline).

Kais Top-1 Top-5 Top-10 Pr@5 Pr@10 mAP Samples per page

BT1 47.0 67.3 75.0 31.7 24.8 38.6 6.5

BT{1,2} 49.0 70.0 79.0 36.0 29.4 41.1 11.0

BT{1,2,3} 50.0 67.3 76.4 35.8 29.8 41.9 11.5

Baseline 62.5 79.1 81.0 35.8 26.2 39.5 2614.8

Baselines for Kai-s. Secondly, we evaluate our character-based approach on
other baseline methods as well, namely different encodings and aggregations.
Since there is no independent training set available, we rely on ResNet56 trained
via Cl-S [1] as an unsupervised feature extractor. The results for NetVLAD,
SumPooling, Generalized Max Pooling (GMP) [11] and VLAD are shown in
Table 6. They show that the aggregation of kai -s performs on par or slightly out-
performs the SIFT patches in terms of mAP, with VLAD being the only method
where the SIFT patches work better. We assume that this is mainly because the
training set used for the vocabulary only consists of the random SIFT patches,
with no training set for the kai -s available. This also demonstrates the benefit of
the integrated codebook learned during training of NetVLAD, which seems to
generalize better than the codebook of VLAD, generated by k-means. However,
for Greek papyri, advanced encoding strategies such as NetVLAD or VLAD are
not significantly better than just SumPooling. Furthermore, the results show
that kai -s are able to eliminate the need for data, with only 11 kai -s performing
similarly to 2.6k SIFT patches per page.

Kai-s and Other Characters. Additionally to the study of the kai-s, we provide
preliminary results for combining the kai-s with the letters mentioned in the
methodology: ε, κ, μ, ω. The dataset used is the GRK-69 subset. We experiment
with aggregating all possible permutations of the five characters and report sin-
gle character performances as well as the best/worst five combinations of the
characters in Table 7. Firstly, as shown in Table 7a, the use of the kai-s also out-
performs the baseline of using SIFT patches by 3.2%. Other characters perform
worse, which we assign to the lack of data or the fact that they are easily distorted
by the previous or following character (due to the cursivity of the handwriting).
However, evaluating combinations of different letters, we find that we are able
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Table 6. Other baseline results on GRK-110 for using kai-s or SIFT patches.

Baseline Kais

Top-1 mAP Top-1 mAP

NetVLAD 62.5 39.5 50.0 41.9

SumPooling 56.7 42.9 61.5 43.0

GMP 56.7 42.8 61.5 42.8

VLAD 56.8 42.1 39.4 31.0

to boost the retrieval performance, with the combination of kai-s and κ per-
forming the best (36.2% mAP, Table 7b). For a fair overview, we also give the
five worst combinations, for which none of them includes the kai-s. We conclude
that the kai-s contain the most discriminating power for WR, but annotating or
automatically detecting specific characters for aggregation improves the perfor-
mance, even if we have less data available, e.g., our dataset only includes 287
samples of μ, averaging only four samples per document.

Table 7. Retrieval results on GRK-69 for using different characters or SIFT patches
(Baseline). (a) Performance when only using one type of character. (b) Combinations
with best performance. (c) Combinations with worst performance.

5.3 Qualitative Analysis

We conclude the evaluation of our paper by providing two qualitative studies,
both concerning the performance of the kai-s. Firstly, we qualitatively compare
the writer similarity for SIFT patches and the kai-s. We average the pairwise
similarity of all documents (excluding pairs for the same documents), and provide
a heatmap in Fig. 5. By comparing the matrices, we observe that some writers
have high similarities in both, e.g. Theodosius, where in particular the kai-s are
highlighted, or Apa Rhasios. However, the intra-class similarity of the kai-s is
higher for writers like Andreas or Victor than aggregating SIFT patches. This
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Fig. 5. Similarity matrices per writer (pairwise document similarity averaged) when
using (a) SIFT patches and (b) only kai-s for calculating the global page descriptor.
The darker the square, the higher the similarity.

observation is of interest for specialists of ancient handwritings (paleographers)
because it illustrates the potential of our approach to contribute characterizing
intra- and inter- writer variations in human understandable terms. In general,
we also observe multiple instances of similarities across writers in both matrices,
which invites papyrologists to examine if indeed those writers have similar styles.
It might also be due to a lack of data for the kai-s and the general performance
in terms of mAP, that is only about 40%. We find that the aggregation of kai-
s leads to additional similarities in the feature space for some writers rather
than just higher similarities compared to the SIFT patches, indicating that an
extension of our approach might consider both aggregation schemes for better
performance.

Secondly, we provide a confusion matrix of the WR performance of the kai-s
where the “predicted label” is the writer of the most similar writing sample,
as shown in Fig. 6. With this, we can identify high similarities between pairs
of writing samples. In GRK-120, 10 writers have only one document, but some
are long enough to be split into several images or writing samples (from 2 to
15). Interestingly, the writers who have the highest scores, e.g. all their writing
samples correctly attributed, are writers attested in one single document of large
size (Dios and Theodosios with respectively 15 and 4 writing samples). The five
writers that are attested in one single but short papyrus, Amais, Anouphis,
Daueit, Kyros2, Victor2, are not correctly recognized (see also Fig. 2 for the
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Fig. 6. Confusion matrix of the writers for each document considering Top-1 accuracy
when aggregating the kai features.

amount of annotations per writer). At the opposite, some writers attested on
many documents over a long period of time, like Abraamios and Victor1, are
not well recognized either. Thus the method seems to work very well when there
is enough data to grasp the original features of one document but does not
manage to recognize correctly a hand that probably changes over time (and
possibly writing implements). We also note that while some confusions can be
explained by chronology such as Apa Rhasios being incorrectly classified three
times as Andreas, a coeval notary, some others are with much older or later
writers. For instance Dioscorus, who is supposed to have an easy-to-distinguish
handwriting, is correctly recognized 3 times but confused once with Victor1
and another time with Psates, who are much earlier. It could be a way for
paleographers to spot writers using “archaic” or “innovative” styles.

6 Conclusion

This study tackles the challenges of identifying writers in Greek papyri, for which
we introduced a new method that focuses on individual characters and found
it improves the WR performance while reducing also the need of data. We find
that the kai-s are the most discriminative resource used for feature aggrega-
tion, but the WR can further be boosted by using other letters (κ or μ). Our
dataset is publicly available, and we also provided qualitative studies on our
approach compared to SIFT patches, the current methodology widely used for
WR. One drawback of our method, the need for a scholar to annotate characters
necessary for aggregation, could be overcome by further investigating character
localization and classification, which is already an active field of research [21].
We think combining our pipeline with a detector is the next step to aggregate all
characters of a document for aggregation. It is also worth investigating the aggre-
gation of other n-grams, not just kai -s. Additionally, this paper only considered
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simple aggregation techniques, but for future work, our paper opens the field
of advanced schemes for aggregating the features of the characters, for exam-
ple, using graph- or cluster-based methods. In the field of papyrology, WR, in
particular our character-based approach, is a promising tool to find similarities
between documents that have lost information about their context of produc-
tion (writers but also schools of writers, places and periods), thus allowing major
improvements in our understanding of Greco-Roman Egypt.
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Abstract. Query-focused summarization (QFS) is a fundamental task
in natural language processing with broad applications, including search
engines and report generation. However, traditional approaches assume
the availability of relevant documents, which may not always hold in
practical scenarios, especially in highly specialized topics. To address
this limitation, we propose a novel knowledge-intensive approach that
reframes QFS as a knowledge-intensive task setup. This approach com-
prises two main components: a retrieval module and a summarization
controller. The retrieval module efficiently retrieves potentially relevant
documents from a large-scale knowledge corpus based on the given tex-
tual query, eliminating the dependence on pre-existing document sets.
The summarization controller seamlessly integrates a powerful large lan-
guage model (LLM)-based summarizer with a carefully tailored prompt,
ensuring the generated summary is comprehensive and relevant to the
query. To assess the effectiveness of our approach, we create a new
dataset, along with human-annotated relevance labels, to facilitate com-
prehensive evaluation covering both retrieval and summarization per-
formance. Extensive experiments demonstrate the superior performance
of our approach, particularly its ability to generate accurate summaries
without relying on the availability of relevant documents initially. This
underscores our method’s versatility and practical applicability across
diverse query scenarios.

Keywords: Query-focused summarization · Knowledge-intensive
tasks · Large language models

1 Introduction

Query-focused summarization (QFS) is a pivotal task with wide-ranging appli-
cations, spanning fields such as search engines and report generation [25]. It
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Fig. 1. The Comparison between (a) the conventional approach and (b) our knowledge-
intensive approach. The conventional one assumes relevant documents are available. We
aim to retrieve such documents from a large knowledge corpus.

involves analyzing a textual query alongside a collection of relevant docu-
ments to automatically produce a textual summary closely aligned with the
query [5,24,34,35]. This process aims to offer users relevant insights in a con-
densed format by applying information compression techniques to the provided
document set [17,20,35]. The conventional approach to this task assumes the
availability of a set of relevant documents and creates the summary based
on the information within this document set. However, in practical scenarios,
this assumption may not always hold.

Consider highly specialized or niche topics as an illustration. In fields such
as advanced scientific research, specialized technology, or obscure hobbies, doc-
umentation may be limited or fragmented, particularly for cutting-edge or eso-
teric subjects. Similarly, think about future predictions or speculations. Queries
related to future events, trends, or predictions may lack existing documents
as they entail speculation or anticipation of events yet to unfold. For instance,
questions about the outcome of upcoming elections, the impact of emerging tech-
nologies, or the trajectory of financial markets might not be documented until
after these events have occurred. In the aforementioned practical scenarios, the
traditional setup of QFS with compression techniques may not work well due to
the scarcity or absence of relevant documents.

To tackle this challenge, our approach reframes QFS as a knowledge-intensive
(KI) task setup [28]. Unlike the traditional setup where relevant documents are
assumed to be readily available, our knowledge-intensive approach only assumes
access to a large-scale knowledge corpus. Our proposed approach comprises a
retrieval module and a summarization controller. Given a textual query as the
initial input, the retrieval module returns potentially relevant documents from
the knowledge corpus, eliminating the dependence on pre-existing document sets.
These retrieved documents, along with the query, are then forwarded to the sum-
marization controller. The summarization controller harmoniously merges an
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advanced large language model (LLM)-powered summarizer with a carefully
designed prompt, guaranteeing the produced summary is both comprehensive
and directly addresses the query. To illustrate the aforementioned process, we
make a comparison between the conventional approach and our proposed app-
roach in Fig. 1.

To validate the effectiveness of our proposed approach within the KI setup,
we have introduced a specialized dataset by combining existing QFS datasets [5]
with three various knowledge corpora. We also enhance the dataset with
human-annotated relevance labels to facilitate comprehensive evaluation for both
retrieval and summarization performance. This dataset serves as the foundation
for a fair evaluation of our approach and baseline models. Extensive experi-
ments conducted in this work confirm the effectiveness of our proposed method,
surpassing baseline models and showcasing its superiority in generating query-
focused summaries. Notably, our approach stands out for its ability to generate
accurate summaries without relying on the availability of relevant documents at
the initial input stage. This underscores the versatility of our method in address-
ing diverse query scenarios, further validating its practical applicability.
The primary contributions of this work can be summarized as follows:

1) Introduction of a Knowledge-Intensive Approach: We introduce a
new knowledge-intensive approach for QFS, departing from the conventional
paradigm that relies on the availability of relevant documents in the initial
input stage. This innovative method involves the direct retrieval of perti-
nent documents from an extensive knowledge corpus, leveraging the provided
textual query as the basis.

2) Development of a Summarization Controller: We propose a summa-
rization controller that orchestrates the process of generating query-focused
textual summaries using an integrated LLM-based summarizer with a spe-
cially designed prompt. This controller streamlines the summarization pro-
cess, ensuring alignment with the query intent.

3) Creation of a Specialized Dataset: To assess the effectiveness of the pro-
posed approach, we introduce a new dataset explicitly designed for knowledge-
intensive QFS. This dataset, along with human-annotated relevance labels,
serves as a standardized benchmark for evaluating both retrieval and sum-
marization performance.

4) Demonstration of Superior Performance: We present extensive experi-
mental results showcasing the superior performance of the proposed approach
compared to baseline models. Particularly noteworthy is the approach’s capa-
bility to generate accurate summaries without the prerequisite of available
relevant documents at the initial input stage. This feature underscores the
method’s versatility and practical utility across a range of query scenarios.
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2 Related Work

In this section, we cover three lines of research: query-focused summarization,
knowledge-intensive language tasks, and open-domain summarization, all related
to our study.

Query-Focused Summarization. Query-focused summarization aims to gen-
erate a summary tailored to a given query from a set of topic-related con-
texts [5,24,40]. Conventional QFS methods primarily focused on sentence-level
extraction techniques to eliminate redundant information [17,34,35]. However,
they heavily rely on pre-existing relevant documents and are typically developed
for a limited set of closed-domain documents (∼50 documents). In contrast to
all previous work, our work does not assume the existence of relevant documents
to the given query. Instead, our approach handles open-domain document-level
retrieval, aiming to identify a small set of relevant documents from a pool of mil-
lions of candidates, accommodating more diverse topics and contexts. Another
line of research aims to create larger QFS datasets to alleviate data scarcity auto-
matically, utilizing information retrieval or clustering methods [15,24]. However,
these datasets lack a standardized benchmark to assess the retrieval perfor-
mance, as they lack relevance annotations for retrieved documents. In contrast,
our dataset includes human annotations for the relevance of retrieved documents.
This facilitates retrieval evaluation and provides insights into understanding the
effects of retrieval errors on summarization performance.

Knowledge-Intensive Tasks. Knowledge-intensive language tasks [3,28]
involve addressing user needs by leveraging a large-scale knowledge corpus.
One of the most related KI tasks is the long-form question answering task
(LFQA) [7,32], where the goal is to provide comprehensive answers to given
questions. Compared to QFS, the key difference between LFQA and QFS lies
in their objectives and the role of input documents. LFQA provides detailed
answers to complex questions, whereas documents are optional external sources
to enhance answer quality [38,39]. In contrast, QFS requires a concise sum-
mary from multiple documents, tailored to a specific query. In this case, the
relevant documents are essential inputs to generate the summary. Furthermore,
existing LFQA tasks either struggle with accurately grounding their answers
in the provided documents [14] or they heavily rely on the inherent ambiguity
present in questions [26]. In comparison, our work has two significant advan-
tages: 1) Our approach ensures generated query-focused summaries are firmly
based on the content of the retrieved documents; and 2) The queries are unam-
biguous and accurately reflect complex information needs in QFS, resulting in
naturally longer summaries to address various information needs adequately.

Open-Domain Summarization. Preliminary studies [41,42] mark the ini-
tial phase of investigating the complexities of open-domain QFS. Building upon
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these, recent studies [10,45] have embarked on similar investigations. They either
leverage multi-document summarization (MDS) datasets [6] or adapt query-
based single-document summarization datasets [33,44]. In comparison, this work
has two significant differences: 1) Previous studies do not include human annota-
tions to judge the relevance of retrieved documents, making their evaluations less
reliable. We add human annotations to improve the accuracy of these evalua-
tions. 2) Previous studies mostly analyze documents from specific areas like news
or medicine, limiting their scope. Our study expands this by including both inter-
nal documents and a larger external knowledge base like Wikipedia, making our
findings more applicable to real-world situations.

3 Knowledge-Intensive Approach

In this section, we formulate our knowledge-intensive task setup and detail our
proposed approach.

3.1 Task Formulation

To better understand the difference between traditional QFS and our knowledge-
intensive setup, we first describe the traditional QFS and then formulate our
proposed knowledge-intensive setup.

Traditional QFS. Let the tuple (q,D, s) denotes an example in the traditional
QFS task, where q is a given query, D = {d1, . . . , dm} is a set of relevant docu-
ments and s is the gold summary for the document set D and the query q. The
goal of QFS is to produce the query-focused summary given the documents and
the query as input: (q,D) → s. It is worth noting that D is collected manually
by human annotators and usually includes tens of documents.

Knowledge-Intensive QFS. In this work, we reframe the QFS task to a
knowledge-intensive task setup as q → s. As shown in Fig. 1, we do not rely
on the relevant document set D. Instead, we assume the access to a large-scale
knowledge corpus: K = {d1, . . . dn}. In practice, K consists of millions of doc-
uments, i.e., n � m. It is worth noting that our goal remains to generate the
query-focused summary s with respect to the query q. However, different from the
traditional setup, there is no guarantee that the provided documents are relevant
to the query. Instead, there are millions of irrelevant documents in the knowledge
corpus. Thus, an effective information retrieval model is necessary to supplement
the extended setup, which is described below.

3.2 Methodology

Our approach includes two components: a retrieval module and a summarization
controller, as illustrated in Fig. 1. The retrieval module returns top-k documents
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from the knowledge corpus based on the given query. Then the summarization
controller takes the query and retrieved documents as the inputs to generate a
query-focused summary.

Prompt 3.1: Summarization Controller

Instruction: You will be given a query and a set of documents. Your task is to
generate an informative, fluent, and accurate query-focused summary. To do so,
you should obtain a query-focused summary step by step.

Step 1: Query-Relevant Information Identification
In this step, you will be given a query and a set of documents. Your task is to
find and identify query-relevant information from each document. This relevant
information can be at any level, such as phrases, sentences, or paragraphs.

Step 2: Controllable Summarization
In this step, you should take the query and query-relevant information obtained
from Step 1 as the inputs. Your task is to summarize this information. The
summary should be concise, include only non-redundant, query-relevant evidence,
and be approximately 250 words long.

Demonstrations:
Few-shot human-written demonstrations.

Query: {Input query}
Documents: {Retrieved documents}

Retrieval Module. Given a query q and a document di from the knowledge
corpus K, the retrieval module first estimates the relevance Rel(q, di) between q
and di and then ranks all documents based on their relevance scores. Typically,
we only consider top-k retrieved documents. There are two main categories of
retrieval models: sparse and dense models [43]. The former estimates relevance
between the query and the document using weighted counts of their overlapping
terms. The latter first transforms both the query and the document into vec-
tors within an embedding space. The relevance is then computed using the dot
product of their respective vectors. In this work, we explore representative sparse
and dense models, which are BM25 [30] and Dense Passage Retrieval (DPR) [13],
respectively.

Summarization Controller. After we obtain top-k retrieved documents from
the retrieval module, we feed the query and the documents into the summariza-
tion controller to generate a query-focused summary. As large language models
(LLMs), such as GPT-3.5 [27], have exhibited remarkable generation ability in
many text generation tasks [16], we introduce a summarization controller by
prompting a LLM to generate the summary. As shown in Prompt 3.1, the con-
troller involves two primary steps: identifying query-relevant information and
generating a controllable summary. First, to ensure the summary’s relevance
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to the query, we explicitly instruct the LLM to identify query-relevant infor-
mation within the documents. It is worth noting that the LLM can determine
information at various levels, including phrases, sentences, and paragraphs. Sub-
sequently, we instruct the LLM to write a controllable summary that meets
the length limit of 250 words based on the query-relevant information. This
ensures the summary is sufficiently comprehensive and relevant to the query.
Moreover, we include few-shot demonstrations in the prompt to enable in-context
learning for the LLM, which has been proven to be effective in many natural
language processing tasks [2].

4 KI-QFS Dataset

In this section, we describe dataset collection and relevance annotation process
for our knowledge-intensive setup. The dataset includes a collection of query-
summary pairs and three alternatives of knowledge corpora. The relevance anno-
tation aims to facilitate retrieval evaluation.

4.1 Dataset Collection

Collecting Query-Summary Pairs. We build our dataset on the top of query-
summary pairs (q, s) on existing QFS resources. Specifically, we adopt DUC
2005–07 [5], three standard QFS benchmark datasets.1 The DUC datasets consist
of three subsets collected for the Document Understanding Conferences (DUC)
from 2005 to 2007. Each subset contains 45–50 clusters. Each cluster (or a
topic) contains a query, a set of topic-related documents, and multiple refer-
ence summaries. As relevant documents are inaccessible in our dataset, we only
collect query-summary pairs first. The relevant documents will be used to build
a knowledge corpus, which is described below. For data split, we follow previous
work [17,21] to use the pairs of the first two years (2005–2006) as the training
set and randomly select 10% from the training set as the validation set. We leave
the third subset (2007) as the test set. Finally, the training set, validation set,
and test set contain 90, 10, and 45 examples, respectively.

Building Knowledge Corpora. We explore three alternatives of knowledge
corpora Corpus for the query-summary pairs above. Specifically, we first fol-
low the standard data processing for large-scale knowledge sources [13] to collect
documents, where we split each origin document into non-overlapping context
documents with 100 words maximum.2 The knowledge corpora are as follows:
1) The first knowledge corpus, CorpusInt, is an internal collection, where we
take all clusters of DUC documents from the three years to form this collec-
tion, which results in about 32K documents in total. As the queries have an

1 We take DUC as an example, but nothing prohibits exploring other QFS resources.
2 Some studies [13] also use passages to name the processed text chunks, but we adhere

to the term “documents” to maintain the coherence of the paper.
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explicit connection with the documents, this collection can be considered an
in-domain knowledge corpus, where relevant documents are relatively easy to
find. 2) However, as our main goal is to explore knowledge-intensive QFS on the
large-scale knowledge corpus, we consider the second external knowledge corpus
named CorpusExt. We use the Wikipedia dump in the KILT benchmark [28] to
form this corpus, resulting in about 21 million documents in total. 3) However,
as CorpusExt is a Wiki-based corpus, there is no guarantee that the collection
contains sufficient evidence to answer the query since the reference summary is
derived from the content of the original DUC documents. To this end, we build an
augmented knowledge corpus called CorpusAug by combining the previous two
collections. We merge all the documents of CorpusInt and CorpusExt into this
collection ensuring that summaries can be grounded in the collection and that
the collection is large-scale to make the task challenging.

4.2 Relevance Annotation

As the retrieval process is necessary for our setup, it is important to evalu-
ate the performance of retrieval models so we can better analyze their effect
on summarization. However, the DUC datasets do not come with relevance
labels to designate which document provides evidence for the final summary.
A possible solution to that would be to do a lexical match between the indi-
vidual summary sentences and the available document collection, however, such
an automatic evaluation has its disadvantages (e.g. a summary sentence may
appear in a document but outside the right context, lexical overlap may pay
attention to insignificant words in the summary, and there may be a lexical gap
between semantically similar sentences). Therefore, we collect human annota-
tions through Amazon Mechanical Turk (MTurk) to create our evaluation set.

As the main goal of the annotation process is to obtain relevant documents
that support the summary, we begin with filtering out irrelevant documents,
which are the majority of millions of candidate documents in the knowledge cor-
pus. Following the TREC document retrieval task [4], we apply retrieval models
to choose top-ranked documents, as discussed in Subsect. 3.2. We first perform
both BM25 and DPR on CorpusInt and CorpusExt, and construct top-50
pools, which result in a maximum of 200 candidate documents for each query. As
there are 45 queries in our test set, we end up with 7761 query-document pairs
to be annotated. We then design a web annotation interface shown to MTurk
workers, which contains a query, a reference summary, and at most five docu-
ments. We ask workers to label whether a document contains either part of the
summary or evidence to a query, adapting the annotation instructions in [4].
The judgments are on a 4-point scale from 0 to 3: (i) 0-irrelevant: the docu-
ment has nothing to do with the query; (ii) 1-weakly related: the document
seems related to the query but fails to contain any evidence in the summary;
(iii) 2-related: the document provides unclear information related to the query,
but human inference may be needed; and (iv) 3-relevant: the document explic-
itly contains evidence that is part of the summary. Prior to the collection of
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the annotations we performed two pilot studies to improve our annotation inter-
face and the instructions. We collect three annotations per document and use a
majority vote to determine the final relevance label. The distribution of relevance
labels is 837 relevant, 5811 related, 1097 weakly related, and 16 irrelevant doc-
uments. We also measure inter-annotator agreement (IAA) using Fleiss Kappa
[8]. A Fleiss Kappa score of 0.42 was obtained, which indicates a moderate agree-
ment.

5 Evaluation Metrics

In this section, we describe evaluation metrics. As our approach includes a
retrieval module and a summarization controller, we evaluate both components
using suitable evaluation metrics.

5.1 Retrieval Evaluation

To evaluate retrieval effectiveness, i.e., the ability of the retrieval module to
identify and retrieve evidence to be used to compose the summary, we use stan-
dard information retrieval (IR) metrics, and in particular precision@k (P@k)
and recall@k (R@k) where k denotes the cut-off. For P@k and R@k, we map
the human-annotated judgment level 3 to positive and judgment levels 0–2 to
negative and report the corresponding results for k ∈ {10, 50}.

5.2 Summarization Evaluation

Lexical Metrics. In our experiments, we measure the accuracy of gener-
ated summaries against reference summaries. Following previous work [17,35],
we employ the commonly-used standard ROUGE-1, ROUGE-2, and ROUGE-
SU4 [22], which evaluate the accuracy on uni-grams, on bi-grams, and on bi-
grams with a maximum skip distance of 4, respectively. We report the F1

score with a maximum length of 250 words for the metrics. It is worth not-
ing that there are multiple reference summaries on our dataset, we take the
average of the ROUGE scores for all summaries as the final reported ROUGE
score.

Semantic Metrics. However, ROUGE-based metrics only measure lexical over-
lap between generated summaries and reference summaries, failing to capture
their semantic similarities. Recent semantic metrics, such as BERTScore [37] and
BARTScore [36], have been shown to be effectively correlated with human judg-
ments [11]. Therefore, we also report them in our experiments. Specifically, we
report the F1 score of BERTscore and use recommended deberta-xlarge-mnli
as the backbone. For BARTScore, we use the recall version of BARTScore as
it shows more effective performance in summarization tasks [36], where we use
bart-large-cnn as the backbone. It is worth noting that the raw scores of
BARTScore are negative log probabilities that are difficult to explain, we fol-
low previous work [31] to normalize them to positive scores with an exponential
function.
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6 Experimental Setup

In this section, we describe the baseline models for comparison in our experi-
ments. We then discuss the implementation details.

6.1 Baselines

We compare our proposed method with the following two families of baseline
models:

Weakly Supervised QFS Models. To illustrate new challenges brought by
our knowledge-intensive setup, we first include two weakly supervised mod-
els designed for traditional QFS tasks: 1) QuerySum [34]: an extractive QFS
model leveraging distant supervision signals from trained question answering
(QA) models to select salient sentences as the summary. 2) MargeSum [35]: an
abstractive QFS model that employs generative models trained on generic sum-
marization resources to boost sentence ranking and summary generation, achiev-
ing competitive performance in the weakly supervised setup. We discuss the
adaption of two models to our knowledge-intensive setup in Subsect. 6.2.

Supervised Retrieval-Augmented Models. We employ supervised
Retrieval-Augmented Generation (RAG) models below: 1) RAG-Sequence [19]:
a generative model in which document retrieval and summary generation are
learned jointly. As RAG models have two variants including RAG-Token and
RAG-Sequence, we mainly report the results of RAG-Sequence as it shows better
performance in knowledge-intensive tasks. Specifically, the RAG-Sequence model
employs DPR [13] for retrieval and BARTlarge [18] for generation. 2) Fusion-in-
Decoder (FiD) [12]: an encoder-decoder architecture which has achieved state-
of-art performance in knowledge-intensive tasks [1]. In this model, encoded rep-
resentations for retrieved documents are first concatenated and then fed into the
decoder to generate the output. Following the origin paper, we use T5base [29]
as the base model.

LLM-Based RAG Models. In addition to supervised RAG models, we com-
pare our approach with LLM-based RAG models [9]. Specifically, we employ
BM25 or DPR for retrieval and GPT-3.5 for generation, referring to this base-
line as NaiveRAG. Following the prompting strategy from Gao et al. [9], we
instruct GPT-3.5 to answer a given query based on the associated retrieved
documents. Notably, NaiveRAG does not require fine-tuning.

6.2 Implementation Details

For retrieval models, we use the library Pyserini [23] to implement BM25 and
DPR.3 For the summarization controller, we employ GPT-3.5 using the Ope-
3 https://github.com/castorini/pyserini.

https://github.com/castorini/pyserini
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Table 1. Retrieval evaluation of different models on the test set of our dataset over
three knowledge corpora. P@k and R@k denote precision and recall regarding cutoff k.
The best results are in bold. ∗means that the improvement is statistically significant
(a two-paired t-test with p-value < 0.01).

Corpus Model P@10 P@50 R@10 R@50

CorpusInt BM25 16.0∗ 12.0 8.2∗ 30.2∗

DPR 11.6 11.5 6.0 27.8

CorpusExt BM25 12.7 8.6 7.0 22.2

DPR 13.8∗ 12.6∗ 6.9 29.7∗

CorpusAug BM25 12.2 8.9 6.8 23.2

DPR 14.4∗ 12.5∗ 7.4 30.3∗

nAI API service, where we use long-context version gpt-3.5-turbo-0613.4 We
utilize 3-shot demonstrations in few-shot settings and present results for both
zero-shot and few-shot settings. The temperature and top-p are set to 0.1 and
0.95, respectively, with a maximum output length of 400 tokens. The number of
top-k retrieved documents is fixed at 50. Notably, we employed the long-context
version of GPT-3.5, which supports a maximum context window of 16,385 tokens.
Given that each retrieved document contains up to 100 words, when we concate-
nate 50 documents into a prompt, the total length of the prompt is roughly
7, 118 tokens on average, which is comfortably below the maximum limit.

For QFS models, as they have achieved competitive performance on the QFS
datasets in a weak supervision manner, we do not fine-tune them on our dataset.
For inference, although they include a retrieval module that performs in-domain
evidence estimation, their retrieval models are not designed to handle large-
scale, open-domain knowledge bases, such as CorpusExt. Therefore, we first
retrieve top-1000 documents using BM25 for each query and then feed them as
inputs to their customized sentence extraction modules. We follow the original
papers [34,35] to set their hyper-parameters.

For retrieval-augmented models, as they are originally designed for short-form
open-domain QA [3]. For fair comparisons, we fine-tune them on our training
set. We follow the original papers [12,19] to set their associated hyper-parameters
and training setups. For inference, we set the maximum decoded length and beam
size to 250 and 5, respectively. All experiments were conducted on a single A6000
GPU.

7 Results and Analyses

Our experimental results primarily address the following research questions
(RQs):

RQ1 What is the retrieval effectiveness of different retrieval models in the
knowledge-intensive setup?

4 https://platform.openai.com.

https://platform.openai.com


100 W. Zhang et al.

RQ2 How does our approach compare to baseline models in the knowledge-
intensive setup?

RQ3 What is the effect of our knowledge-intensive setup compared to the tra-
ditional QFS?

7.1 Retrieval Results

To answer RQ1, we evaluate the retrieval effectiveness of BM25 and DPR on
the test set of our dataset among three different knowledge corpora. The results
are shown in Table 1. We find that BM25 outperforms DPR on CorpusInt.
One plausible explanation is that the internal knowledge corpus (CorpusInt)
comprises documents sourced from human-curated DUC datasets, potentially
containing more relevant keywords. These keywords can be easily retrieved by
BM25 which is a term-based IR method. Conversely, DPR exhibits better perfor-
mance on CorpusExt. This is because it is pre-trained on Wikipedia data dumps,
allowing it to better capture semantic representations of Wikipedia documents,
thus enhancing retrieval performance. Moreover, we observe DPR’s superior per-
formance over BM25 on CorpusAug. This could be due to the high similar-
ity between CorpusAug and CorpusExt, as CorpusAug only contains a small
fraction of documents from DUC datasets and both predominantly consist of
Wikipedia documents. However, the fairly low precision and recall scores across
all three collections underscore challenges in such large-scale knowledge retrieval.
Addressing these challenges requires more research efforts to enhance retrieval
performance.

7.2 Summarization Results

To answer RQ2, we make a comparison between our approach and baseline
models, including weakly-supervised QFS, supervised RAG models, and LLM-
based RAG models. The results are shown in Table 2. Interestingly, we find our
few-shot prompted approach variant surpasses all baseline models across all eval-
uation metrics, especially in terms of semantic metrics. For instance, our best
approach variant achieved a BERTScore of 29.2, surpassing the best-performing
NaiveRAG, which had a BERTScore of 25.1. This result underscores the supe-
riority of our proposed approach. Additionally, our approach consistently out-
performs baselines across three different knowledge corpora and demonstrates
robustness across various retrieval models. Furthermore, when comparing zero-
shot and few-shot settings, we find that the performance of our approach in the
few-shot setting significantly exceeds that in the zero-shot setting. This indicates
that few-shot demonstrations have a highly positive effect on model performance.
Lastly, our results reveal that fine-tuned FiD models outperform QFS models,
indicating the advantages of fine-tuning on our training data. However, we also
observe that the performance of the supervised RAG-Sequence model was com-
paratively lower, potentially due to the limited size of the training data.
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Table 2. Summarization evaluation of our approach and baseline models over the
three knowledge corpora. R1, R2, RS, BE, and BA stand for ROUGE-1, ROUGE-2,
ROUGE-SU4, BERTScore, and BARTScore, respectively. The best results are in bold.
∗indicates that the improvement to the best baseline model is statistically significant
(a two-paired t-test with p-value < 0.01).

CorpusInt CorpusExt CorpusAug

Model R1 R2 RS BE BA R1 R2 RS BE BA R1 R2 RS BE BA

Weakly Supervised

QuerySum [34] 36.1 7.5 12.7 8.5 32.3 31.1 4.5 10.2 2.0 28.9 32.6 5.5 11.1 3.0 29.8

MargeSum [35] 38.0 9.1 14.3 11.5 32.8 34.4 6.5 12.2 5.9 30.3 36.7 8.1 13.5 8.7 32.1

Supervised

RAG-Sequence [19]28.9 5.7 10.1 12.6 4.1 32.3 5.2 10.8 8.0 3.9 27.1 4.6 9.0 8.3 3.9

FiD [12]

- BM25 42.4 11.3 16.5 21.4 38.1 38.8 8.4 14.2 15.7 35.0 41.4 10.8 16.1 20.0 36.8

- DPR 41.5 10.7 15.9 21.4 39.0 38.6 8.0 14.1 15.5 34.1 40.0 9.4 15.1 18.0 36.7

Zero-Shot Prompted

NaiveRAG [9]

- BM25 36.4 10.5 14.4 26.8 39.5 31.3 7.0 11.4 19.6 34.9 32.8 8.1 12.4 23.4 37.2

- DPR 37.1 10.4 14.7 27.3 39.5 31.7 7.1 11.4 18.3 34.8 33.7 8.4 12.6 21.8 37.1

Ours

- BM25 43.1 11.0 16.5 25.9 40.7 37.9 7.3 13.1 19.9 34.5 39.4 8.8 14.3 22.1 37.2

- DPR 42.8 11.0 16.3 25.5 40.6 36.7 7.0 12.5 17.7 33.8 39.2 8.6 14.0 21.5 37.2

Few-Shot Prompted

NaiveRAG [9]

- BM25 41.7 11.9 16.5 24.4 41.7 35.2 7.8 12.8 17.1 35.5 37.5 9.1 14.2 20.2 37.7

- DPR 42.3 11.7 16.5 25.1 41.6 34.3 7.5 12.3 16.7 35.1 36.9 9.1 13.9 19.1 37.9

Ours

- BM25 45.8∗ 13.4∗ 18.6∗ 29.2∗ 44.7 41.7∗ 9.615.6∗ 22.5 37.3∗ 43.6∗ 11.316.726.1∗ 40.8

- DPR 45.1 12.9 18.3 28.6 44.8∗ 41.1 9.4 15.2 22.7∗ 36.8 42.9 10.7 16.2 24.7 41.7∗

7.3 Effect of Knowledge-Intensive Setup

To answer RQ3, we compare the performance of our best approach variant,
which utilizes BM25, across original document sets (Origin) and our three
knowledge corpora. It is worth noting that the primary difference lies in the
fact that Origin contains only a limited set of manually curated relevant docu-
ments (around 40 documents) from original DUC datasets, whereas our knowl-
edge corpora, such as CorpusExt and CorpusAug, consists of millions of can-
didate documents. The results are shown in Table 3. We observe a significant
decline in model performance when applied in the knowledge-intensive setup. For
instance, when comparing Origin and CorpusAug, ROUGE-1 scores decrease
by about 6 points, dropping from 49.8 to 43.6, and BERTScore scores decrease
by about 6 points, dropping from 32.5 to 26.1. One possible explanation is that
although both knowledge corpora offer substantial evidence for summarization,
CorpusAug contains a considerable number of irrelevant documents. Conse-
quently, retrieval models struggle to sift through this larger pool to identify the
relatively small amount of relevant documents. This discrepancy underscores the
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Table 3. Performance comparison of our approach variant with BM25 over the original
document sets (Origin) and our three knowledge corpora.

Corpus ROUGE-1 ROUGE-2 ROUGE-SU4 BERTScore BARTScore

Origin 49.8 17.3 21.9 32.5 47.6

CorpusInt 45.8 13.4 18.6 29.2 44.7

CorpusExt 41.7 9.6 15.6 22.5 37.3

CorpusAug 43.6 11.3 16.7 26.1 40.8

significantly greater challenge posed by the knowledge-intensive setups compared
to the traditional QFS, indicating a need for further research efforts to adapt
retrieval models to these realistic scenarios.

8 Conclusion

This paper introduces a novel knowledge-intensive approach to QFS, aiming to
address the limitations of traditional QFS setup that relies on the availability of
relevant documents. This approach is tailored for practical scenarios involving
highly specialized topics, eliminating the dependence on pre-existing document
sets. The approach efficiently retrieves potentially relevant documents from a
large-scale knowledge corpus based on the query. The summarization controller
combines an LLM-based summarizer with a carefully tailored prompt, ensuring
the quality of the generated summary. To assess the effectiveness of our pro-
posed approach compared to strong baseline models, we introduce a specialized
dataset, along with human-annotated relevance labels, to facilitate comprehen-
sive retrieval and summarization evaluation. Extensive experiments demonstrate
the superior performance of our method, particularly its ability to generate
accurate summaries without relying on the availability of relevant documents
initially. This underscores the versatility and practical applicability of our app-
roach across diverse query scenarios, thereby contributing to advancements in
QFS research.
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Abstract. Scene text editing is widely used in various fields, such as
poster design and correcting spelling mistakes in the image. Editing text
in images is a challenging task that requires accurately and naturally inte-
grating text within complex backgrounds. Existing methods have achieved
changing the text content with the target text without altering the style of
text and the background of the image. However, arbitrary style transfor-
mation of the text region in the image has not been achieved. To address
this issue, we propose a new framework named FontCLIPstyler, which
enables the style transformation of text in scene text images using prompts.
The proposed method mainly comprises two networks: MaskNet, which
extracts mask images of the text region in images, and StyleNet, which per-
forms the generation of stylized images. In addition, we also propose a new
loss function named Text-aware Loss, which can guide the StyleNet net-
work in transferring style features to the text region without changing the
background. Through extensive experiments and ablation studies, we have
demonstrated the effectiveness of our method in scene text style transfor-
mation. The experimental results show that our approach can successfully
transfer the semantic style from the input prompt to the text region of the
image, and create naturally stylized scene text while keeping the readabil-
ity of the text and the background invariant.

Keywords: Image style transfer · Font translation · Scene text
images · Arbitrary style · CLIPstyler

1 Introduction

In recent years, the development of deep learning has significantly enhanced the
convenience of image editing. Many studies have achieved significant results on
scene text editing using GAN(Generative Adversarial Networks) [9] and the diffu-
sion model [26]. The previous methods of scene text editing focused on replacing
the text content within the image while preserving the background and the text
style (color, texture, font, etc.). However, these methods are limited to text con-
tent replacement and cannot transform text style arbitrarily. Therefore, as shown
in Fig. 1, we propose a task focused on scene text style transformation, aiming to
translate the style of the text region without modifying the text content and the
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Fig. 1. The proposed method can transfer the style of text regions in images with
prompts.

background in the image. In general, scene text editing is divided into three sub-
tasks including background restoration, text conversion, and image re-synthesize.
However, this process relies on using the original image as a style reference, ensur-
ing that the generated image maintains the same text style and background as the
original image. Recently, with the advance of the diffusion [26] model, many meth-
ods based on the diffusion model can generate natural and high-quality scene text
images. However, when dealing with editing the text region of the image, these
models could only transfer text style based on the style of other text in the same
image, thus lacking arbitrary style transformation ability.

Image style transformation usually refers to generating new images by inte-
grating the content of one image with the style of another image. A lot of
methods [5,38] have successfully generated attractive results with the GAN and
transformer [32] models. However, sometimes it is hard to find the desired style
images as the style reference image of style transfer. Recently, the CLIP [25]
model, a multi-modal model of language and images, has been utilized to guide
image generation through prompts. CLIPstyler [20] utilizes a lightweight CNN
network and the CLIP model to achieve the image style transformation through
the simple text description, without the need for style reference images. Also,
the main content of the original image can be effectively maintained unchanged
while applying the style transformation. Different from the style transforma-
tion of normal images, the style transformation of text images is more complex
because it is necessary to ensure the readability of the text while transferring
the style features to the text. Many studies [34,37] have focused on the style
transformation of text images, which usually utilize the network that uses text
images to learn the text structure so that the content of the text will be main-
tained. However, these studies are usually limited to images of single characters,
and cannot handle images of multiple characters such as words.

Therefore, we propose a new framework based on CLIPstyler [20] named
FontCLIPstyler, to achieve the style transformation of text region in the scene
text image without changing the image background and text content. The pro-
posed method enables style transformation using prompts and enables arbitrary
style transfer. Our main contributions are as follows:
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1. We propose a style transfer framework for scene text images that can effec-
tively transfer the style of the text region in the image while keeping the
background and text content unchanged.

2. Our method uses prompts to control the style without the style reference
image, achieving arbitrary style transformation of the scene text image.

3. The experiments have proved that our method can generate visually attractive
styled scene text and successfully achieve the scene text style transfer task.

2 Related Work

2.1 Scene Text Editing

Scene text editing has made significant progress in replacing text in the original
image with another text while preserving the style of the text. STEFANN [28]
designed two networks for font structure transformation and color transforma-
tion. However, it is replacing one character of text at a time and is unable to vary
the number of characters different from the original text. SRNet [36] achieved
text replacement using three sub-networks: background restoration, text con-
version, and image re-synthesis. SwapText [39] incorporates a TPS(Thin-Plate-
Spline) module and utilizes spatial points to geometrically transform text based
on SRNet. SimAN [22] implemented similarity-aware normalization and uses a
self-supervised learning method to train the network. Based on StyleGAN [18],
TextStyleBrush [19] integrates style vectors of the text image into the generator
to guide the generation of final images. Mostel [24] added additional stroke-level
information to the network and used synthetic and real-world data to signifi-
cantly improve scene text editing performance. However, these methods require
the style reference image to achieve style transformation of text. Recently, the
diffusion model [26] had great success in image generation and editing. Diff-
STE [16], DiffUTE [3], GlyphDraw [23] GlyphControl [42], TextDiffuser [4], and
some other methods based on the diffusion model have achieved high-quality
scene text generation and editing. However, they do not offer control over the
style of the text. Different from the methods mentioned above, our method does
not require the style reference image for style transfer and allows users to specify
the scene text style by prompts.

2.2 Style Transfer

Image style transformation aims to transfer the style from a reference image to
a target image. Neural image style transfer [8] utilizes a CNN-based network to
achieve image style transfer based on style images. AdaIN [13] using adaptive
instance normalization to align the mean and variance of the content image’s
features with those of the style image, enabling arbitrary style transformations.
In recent years, based on GAN [9] and Tansformer [32], methods such as Style-
GAN [18], StyTr2 [5] have achieved significant success in generating high-quality
style images. However, these methods require the style reference image to get the
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Fig. 2. Overview of CLIPstyler.

style features. By learning models from a dataset consisting of 4 billion pairs of
images and text, Recent research CLIP [25] can improve zero-shot performance
for many downstream tasks. As shown in Fig. 2, Based on the CLIP [25] model,
CLIPstyler [20] has solved the problem that needs the reference style image to
transfer the style of images and allowing arbitrary style transformations with
prompts. Sem-CS [17] and Gen-Art [43] used semantic segmentation to solve the
over-stylization problem of the foreground portion in CLIPstyler [20]. However,
these methods perform style transformations on the entire image and are unable
to transfer the style to specific parts of the image.

Text image style transformation methods have been widely researched due to
the success of image style transfer. MCGAN [2] focused on the English alphabet,
generating the remaining alphabet in the same style based on a few alphabet
examples. TETGAN [40] enables style transfer from one character to others via
a stylization subnetwork and a de-stylization subnetwork. FETGAN [21] enables
the generation of new characters in the same style with only a few artistic char-
acters, supporting both the English alphabet and more complex Chinese char-
acters. Typography with Decor [35] proposed a novel deep-learning network to
achieve the style transfer of characters that include decoration. Shape Matching-
GAN [41] allows converting text styles by using just one style reference image.
Multi-Style Shape Matching GAN [12] used a single model to achieve multi-
ple styles generation of text images based on Shape MatchingGAN. However,
these methods depend on style images or other text images as the style reference
images. More recently, Word as Image [14], CLIPFont [29], DS-Fusion [31], Zero-
shot Font Style Transfer [15] has achieved font style transfer using the prompt
without the need for style images. However, these methods are limited to single-
character images and struggle with generating satisfactory results for multiple
characters, such as words. Our method is capable of transferring the style of text
regions in scene text images through prompts and can preserve the readability
of text unrestricted to the number of characters.
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Fig. 3. The framework of our method FontCLIPstyler.

3 Methodology

In this study, we propose a new framework based on CLIPstyler [20] named
FontCLIPstyler to achieve style transformation of the text region in scene images.
An overview of our proposed method is shown in Fig. 3. The network mainly
consists of two networks, the MaskNet network (MN) that extracts the mask
image of the text region in the scene text image, and the StyleNet network(SN)
that conducts style transformation of the input image. By using the pre-trained
text-image embedding model CLIP [25] and the Text-aware Loss proposed in this
study, the parameters of the network SN are optimized to transfer the semantic
style from input prompts to the generated image.

3.1 Basic Framework CLIPstyler

Firstly, we will start with an introduction to CLIPstyler, which has been used as
the base model for our method. As shown in Fig. 2, CLIPstyler aims to transfer
the semantic style features from the input prompt to the input image. Since the
style is expressed in the form of natural language, it does not require the style
image as a reference to get style features. Without the constraints of reference
style images, which are sometimes difficult to obtain, arbitrary style transforma-
tions can be realized through imaginative prompts. Specifically, the input image
Ic is fed into StyleNet f which is the encoder-decoder CNN, and the parame-
ters of f are optimized by Patchwise CLIPLoss to transfer style features from
prompts to the image and generate the stylized image Ics. When calculating
the loss function, the generated images are randomly cropped and augmented to
achieve more vivid and diverse textures. The loss function used in the CLIPstyler
can be formed as follows.

Ltotal = λdLdir + λpLpatch + λcLc + λtvLtv (1)

The Directional CLIPLoss(Ldir) proposed by StyleGAN-NADA [7] be
applied to guide the output image rendering with the semantic style of the tar-
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get prompt. As follows, Directional CLIPLoss encodes the input image Ic, input
prompt tstyle, output image f(Ic) and content prompt tsrc by CLIP Encoder.
By aligning the direction between these features, the generated images have the
same semantic style as the input prompts.

ΔT = ET (tstyle) − ET (tsrc),
ΔI = EI(f(Ic)) − EI(Ic),

Ldir = 1 − ΔI · ΔT

|ΔI| |ΔT |

(2)

Patch CLIPLoss(Lpatch) proposed by CLIPstyler [20] using the randomly
cropped patches Îics to calculate Directional CLIPLoss instead of the entire gen-
erated image to get more high-quality images. In addition, random geometrical
augmentation was applied to the cropped patches before calculating the Direc-
tional CLIPLoss and achieved more vivid and diverse textures. Furthermore, to
prevent over-stylization of the image, a specific threshold τ is set to reject patches
that are below this threshold. To retain the content of the original image in the
generated image, use the VGG-19 network to calculate the content loss Lc. Fur-
thermore, CLIPstyler also utilized total variation regularization loss (Ltv), which
reduces the side artifacts caused by irregular pixels in the image. The calculation
of Patch CLIPLoss is as follows.

ΔT = ET (tstyle) − ET (tsrc),

ΔI = EI(aug(Îics)) − EI(Ic),

Li
patch = 1 − ΔI · ΔT

|ΔI| |ΔT | ,

Lpatch =
1
N

n∑

i

R(lipatch, τ)

where R(s, τ) =

{
0, if s ≤ τ

s, otherwise

(3)

The calculation of the total variation regularization loss Ltv is as follows. This
function calculates the sum of squared gradient differences of the pixel values
in horizontal, vertical, and two diagonal directions for the input image x of size
H ∗ W across the three channels c.

Ltv =
3∑

c=1

H∑

i=1

W−1∑

j=1

(xi,j,c − xi,j+1,c)
2 +

3∑

c=1

H−1∑

i=1

W∑

j=1

(xi,j,c − xi+1,j,c)
2.

+
3∑

c=1

H−1∑

i=1

W−1∑

j=1

(xi+1,j,c − xi,j+1,c)
2 +

3∑

c=1

H−1∑

i=1

W−1∑

j=1

(xi,j,c − xi+1,j+1,c)
2

(4)

3.2 FontCLIPstyler

CLIPstyler [20] addresses the problem that needs style images as references
in image style transformation, making the process more convenient. By using
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prompts as guidance, the model has enabled arbitrary style transformations.
However, CLIPstyler applies style transformations to the entire image and can-
not target specific regions within the image for style transformation. To overcome
this limitation, we propose the FontCLIPstyler framework based on CLIPstyler,
which focuses on the style transformation of text region in the scene text image.
In the following, we will provide a detailed description of the proposed framework
and the loss function.

MaskNet and StyleNet. Our framework is mainly composed of two networks:
MaskNet and StyleNet. For editing an image in a specific area without impacting
other regions, a straightforward and effective approach is to employ the mask
image to delineate the targeted area. Thus, we introduce the MaskNet network
designed to extract the mask image of the text region in scene images. The mask
image serves as guidance for the method, enabling the style transfer to the text
region of a scene text image while keeping the image background and text con-
tent unchanged. Specifically, because of the high computational efficiency and
real-time image processing capability of U-Net [27], it is used as the backbone of
the proposed MaskNet network. We train the MaskNet with real-world scene text
images, and during the style transfer process, it is frozen to generate the mask
image of the specified text region. In addition, with reference to CLIPStyler, we
employ a CNN encoder-decoder network StyleNet for the style transfer. Dur-
ing training, the parameters of StyleNet are optimized with our proposed loss
function Text-aware Loss, allowing for the generation of styled scene text images
with the input prompt.

Text-Aware Loss. We propose a new loss function named Text-aware Loss
that could control the StyleNet network to realize style transformation into the
text region in the image while maintaining the background invariably and the
readability of the text. Our proposed loss is mainly composed of three parts: Dis-
tance loss, TextPatch CLIPLoss, and Background reconstruction loss. Distance
Transform loss [1] allows style transformation within a limited region based on
distance transformation of the input image. Therefore, to transform the style in
the text region of the scene text image, we utilize Distance Transform loss in
this study. The loss function can be defined as follows. Specifically, a distance
transform map Id is created using the mask image obtained from the proposed
MaskNet network. The distance transform assigns to each pixel I

(i,j)
d a value that

represents the distance to the nearest target region pixel. Using the Euclidean
distance metric, this transformation calculates the distance between each pixel
of the distance transform map pi,j and the pixel of mask image px,y. Pixels that
are part of the target region are assigned a value of zero. As the pixels get fur-
ther from the target, their assigned values, which represent their distance from
the nearest target pixel, increase. Then, the input image Ic and stylized out-
put image Isty from StyleNet will multiplied by Id respectively, and the mean
squared error is calculated.

I
(i,j)
d = min

x,y∈mask
||pi,j − px,y||2 (5)
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Ldistance =
1
2

∑

i,j

(I(i,j)c · I
(i,j)
d − I

(i,j)
sty · I

(i,j)
d )2 (6)

When utilizing prompts to control the style transfer, it is necessary to use
Patch CLIPLoss to reflect the semantic style of the input prompt into the image.
However, in CLIPstyler, Patch CLIPLoss randomly crops patches from the image
to be stylized and tends to include background areas that do not require style
transformation for our task. As a result, style features are reflected in the back-
ground resulting in background changes. To solve this problem, we propose a new
loss function, TextPatch CLIPLoss. Specifically, the patches of the background
region Iib_patch for the input image Ic are cropped using the mask image(Mask)
obtained from MaskNet(MN). The cosine similarity (sim) with the patches of
the generated image and background region image Iib_patch is calculated, as a
standard for determining the regions. Specifically, we utilize the image encoder of
CLIP(EI) to encode the generated image Îisty and the background region image
Iib_patch of N patches. Then, we set a threshold μ to determine whether the
generated image belongs to the background or text region. Patches with signif-
icantly different similarities are determined to belong to the text region Îisty_t.
Then Patch CLIPLoss is calculated as CLIPstyler for patches belonging to the
text region to render the style features using CLIP text encoder (ET ) and CLIP
image encoder (EI). In addition, when calculating Patch CLIPLoss, CLIPstyler
sets a threshold τ to prevent the image from being over-stylization and get a
better result in preserving the main content of images. However, it is more dif-
ficult to render style features into text regions in scene text images than usual
images because the font typically consists of elongated structures, and showing
visible and attractive style features is more difficult. Therefore, the threshold
used to avoid over-stylization makes it difficult to reflect style features into the
text region in scene images. To better render the style features into the text, we
used all the patches in our loss function. Lpatch is calculated as follows:

Mask = MN(Ic),

Iib_patch = crop((1 − Mask) � Ic),

sim = 1 −
EI(Îisty) · ( 1

N

∑n
i EI(Iib_patch))∣∣∣EI(Îisty)

∣∣∣
∣∣∣ 1
N

∑n
i EI(Iib_patch)

∣∣∣
,

Îisty =

{
Îisty_b if sim < μ

Îisty_t otherwise

(7)

ΔT = ET (tstyle) − ET (tsrc),

ΔI = EI(aug(Îisty_t)) − EI(Ic),

Li
patch = 1 − ΔI · ΔT

|ΔI| |ΔT | ,

Lpatch =
1
N

n∑

i

lipatch

(8)
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The content loss Lc is used in CLIPStyler to retain the main contents of the
generated image unchanged from the original image. However, it will lead to the
text style of the original image being reflected in the generated image. Therefore,
to reduce the influence of the text style from the original image and make sure
the content of the background is unchanged, instead of using the content loss Lc,
we utilized a background reconstruction loss Lrecon. Specifically, VGG19 loss is
calculated as follows between the N patches of the generated image belonging
to the background region Îisty_b and the cropped patches from the input image
Iic. Here F4_2 and F5_2 represent the convolution layer conv4_2 and conv5_2
of the VGG19 network, respectively.

Li
recon =

∥∥∥F4_2(Îisty_b) − F4_2(Iic)
∥∥∥
2

2

+
∥∥∥F5_2(Îisty_b) − F5_2(Iic)

∥∥∥
2

2

Lrecon =
1
N

n∑

i

lirecon

(9)

The loss function of the proposed Text-aware Loss Lta is as follows:

Lta = λdLdistance + λpLpatch + λrLrecon (10)

where λ represents the weight of each loss function.
We also utilized the total variation regularization loss Ltv to reduce the side

artifacts caused by irregular pixels in the image as CLIPstyler. Thus, the total
loss function is as follows:

Ltotal = Lta + λtvLtv (11)

Fig. 4. The results of different style transformations on the same scene text images
using the proposed method.
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4 Experiment

Implementation Details. The proposed MaskNet network was trained using
2000 real-world scene text images collected from Mostel [24] and we randomly
selected 200 other synthetic and real-world images to test the MaskNet. The
network of MaskNet consists of four downsample and upsample layers, with 64,
128, 256, and 512 channels respectively, followed by max-pooling. And two bot-
tleneck layers with 1024 channels, the final layer is a sigmoid function. When
conducting style transformation, MaskNet is frozen and the StyleNet network
is optimized with the loss function without training. We conducted experiments
with real scene text images that were randomly selected from the COCOText
V2.0 dataset [33]. As for the network of StyleNet, We utilize a lightweight U-
net [27] architecture featuring three down-sampling and three up-sampling lay-
ers. The channel sizes for each down-sampling layer are 16, 32, and 64, and the
sigmoid function at the last layer. The input scene text images are converted to
512× 512 size and the final output result will be resized to the original size. We
set λd, λp, λr and λtv to 1×102, 9×103, 150 and 2×10−3. The model is trained
using a learning rate of 5 × 10−4 and Adam optimizer. Training iteration is set
to 500 and the learning rate is halved every 100 iterations. We used a single
NVIDIA TITAN RTX to train the model, and the training time per image was
approximately 90 to 120 s.

Fig. 5. The results of the proposed method with various prompts and different scene
text images.

4.1 Evaluation

We conducted experiments under various conditions to verify the effectiveness
of the proposed method in generating stylized scene text images. Specifically, we
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Fig. 6. The results of style transformation using the proposed method for synthesized
scene text images.

Fig. 7. The results of mask images using the proposed MaskNet.

have experimented with our method in various prompts and different scene text
images. As shown in Fig. 4, we confirm the ability of our method in scene text
style transfer by using the same image with different prompts. The proposed
method successfully reflects the semantic style specified by the prompt to the
text region, without changing the background and maintaining the readability
of the original text content. Additionally, Fig. 5 shows more results from our
experiments. Regardless of the length as well as the size of the text, our method
effectively rendered the style features into the text. These results demonstrate
the effectiveness of our proposed method in arbitrary style transformation of
scene text images using prompts. To confirm that the proposed method can
achieve style transformation of text even on complex backgrounds, experiments
were conducted using high-resolution synthetic scene text images. As shown in
Fig. 6, our method generated high-quality stylized text while preserving the fine
texture of the background. Figure 7 shows the test results of our MaskNet. The
results demonstrate that our network can effectively extract the masks of the
text parts in various scenes.

4.2 Ablation Studies

We conducted ablation studies to verify the effectiveness of each component of
the proposed Text-aware Loss. As shown in Fig. 8, without Distance Transform
loss, the style features render over the entire image, and the text content is
unidentifiable. The result has failed in the style transformation to the text area.
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If TextPatch CLIPLoss is not applied, the semantic style from the input prompts
is not reflected well in the image. When background reconstruction loss is not
utilized, the featuress of the background will affect the text causing the boundary
between text and background regions to become unclear and making text content
difficult to identify. The model with all loss functions was able to transfer style
features in the text region while preserving the background and text content.
The quantitative evaluation results are shown in Table 1. Without the Ldistance

and Lrecon results in a decrease in each score, and without Lpatch leads to poor
qualitative results. Our full model achieves the highest scores in both NIMA [30]
and CLIP scores [10], with the remaining scores being in second place. This
demonstrates the effectiveness of each component of our model in generating
aesthetic images and images that are consistent with the given prompts.

Table 1. Quantitative evaluation results for ablation studies.

DISTS↓ NIMA↑ LPIPS↓ FID↓ CLIP SCORE↑
w/o Ldistance 0.4997 4.5776 0.6082 910.50 0.2428
w/o Lpatch 0.3132 4.4650 0.5489 318.72 0.2149
w/o Lrecon 0.4196 4.7785 0.5950 713.20 0.2536
Full model 0.4075 4.9550 0.5846 485.00 0.2583

Fig. 8. Results of ablation studies.

Table 2. Quantitative evaluation between our method and previous methods.

DISTS↓ NIMA↑ LPIPS↓ FID↓ CLIP SCORE↑
CLIPstyler 0.3901 4.6776 0.7171 372.40 0.1848
Sem-CS 0.3838 4.7322 0.6984 460.79 0.2065
Ours 0.3324 4.8632 0.6667 445.55 0.2101
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Fig. 9. The comparison results with other methods.

4.3 Comparisons with Previous Methods

Existing methods of scene text editing address the conversion of text content
and do not allow arbitrary style transformations of text. Therefore, in addition
to the base method CLIPstyler, we compare our method with the style transfer
methods that are closer to the purpose of our study. Sem-CS [17] and Control-
Net [44] achieved image style transformation using prompts and more focus on
the main part of the image rather than the whole image. The results of the com-
parison are shown in Fig. 9. The results of CLIPstyler show that the style features
were reflected throughout the entire image, resulting in the whole image change.
Even though the results of Sem-CS reflect the style mainly on the text parts,
style features tend to be around the text not inside the text, and make the style
features not noticeable. The results of ControlNet reflected a noticeable style
transformation, but the background changed significantly and the readability
of the text declined. All these methods changed the background while achiev-
ing style transformation. Compared to previous methods, the proposed method
achieved the best results and is successful in transforming the style into the text
region without changing the background and readability of the text.

Regarding qualitative evaluation, we used DISTS [6] and NIMA [30] scores
to evaluate our method and compare it with previous methods. DISTS utilizes
a texture resampling full-reference image quality model that matches human
evaluations of image quality. NIMA proposes a deep CNN that can predict the
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distribution of image evaluation on human opinions from a direct view (technical
perspective) and attractiveness (aesthetic perspective), thereby evaluating the
images in terms of human perception. We evaluated 100 images of scene text style
transformations obtained from our model and other methods. The results are
shown in Table 2. We achieved the best score in DISTS and demonstrated that
our method realized style transformation in the text region while the generated
image maintained the consistency of structure and texture information with the
original image. We also obtained a better score in NIMA. Previous methods
modified the entire image which could ensure the integrity of the image, under
the condition of only changing a part of the image, our approach is still capable
of generating naturally stylized scene text images with an aesthetic perspective.
We also evaluate the LPIPS and FID [11] to value the similarity of the generated
stylized image with the style image obtained by stable-diffusion-2-1-base with
the same prompt. Moreover, We utilize the CLIP score to measure the similarity
between generated images and prompts. Although our method only stylized the
text region, while the other methods stylized the entire image, we achieved the
best score in LPIPS, second only to CLIPstyler in FID. We obtained the best
score in CLIP score, proving that our results were closest to the prompts.

5 Conclusion

In this paper, we proposed a new framework FontCLIPstyler to achieve the style
transformation of scene text images. The proposed method does not require the
style reference images and achieves arbitrary style transformation of text regions
in the scene image using prompts. With the Text-aware Loss and MaskNet net-
work, the proposed method solved the problem of CLIPstyler’s inability to trans-
form the style to a specific region in the image. The experimental results con-
firmed that our method could generate visually attractive stylized scene text
while preserving the image background and text content. Our work could offer
assistance in editing images like posters and designing more attractive artwork.
Although this research realized the scene text style transformation, it is currently
applicable only to the English alphabet, and can not transfer with more compli-
cated text like Chinese characters or Japanese Kanji letters, since the MaskNet
network only supports alphabet characters. In the future, we will continue to
work on the realization of scene text style transformation in other languages.
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Abstract. In this paper, the usability of synthetic handwritten text to
improve machine learning models is examined for the domain of hand-
written text detection. We generate synthetic handwritten text by using
an existing model based on a style conditioned GAN, and add those texts
to scanned documents to mimic handwritten annotations. Object detec-
tion models (YOLOv5 and YOLOv8) are trained using synthetic data as
a baseline to distinguish handwritten text from remaining content. We
study different granularity labels (word-, line- and paragraph-level) and
model sizes in our evaluation and show that applying those models to
real data results in a mAP@50 of 0.88 and a pixel-level F1@50 of 0.96 for
the CVL dataset, and a mAP@50 of 0.72 and F1@50 of 0.89 for SCAN,
a custom dataset, created by adding real handwritten annotations to a
scientific paper.

Keywords: Handwritten Text Detection · Synthetic Data · Deep
Learning

1 Introduction

Handwritten Text (HWT) holds relevance across multiple domains, including gift
cards, personal letters, and study materials. Its applications span from verifying
signatures to conducting searches within handwritten documents [14,19]. While
the main task for HWT is usually Handwritten Text Recognition (HTR), further
tasks of HWT include e.g. writer identification, where factors like choice of pens
or external distractions during writing are posing challenges [5,17].

However, for tasks mentioned above, preprocessing steps, e.g. layout analysis,
including text detection, are necessary, to obtain HWT from the available docu-
ments. Traditionally, transcription approaches also rely on post-processing steps
to extract segmented objects, such as lines or words, which significantly improve
recognition accuracy [3]. While current HTR approaches massively rely on plenty
of data, e.g. Fogel et al.’s ScrabbleGAN [6] uses a dataset of 100k images for
word recognition, related work in the field of segmentation of HWT and printed
text is sparse, for example Gholamian et al. [7] focus only on segmentation of
signatures in machine printed documents.
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Fig. 1. Overview of our approach. First, we use the PRImA-LAD dataset and augment
its images by our synthetic text to train YOLO. Our evaluation is then performed on
real datasets, such as CVL or our own dataset, SCAN.

Therefore, in this paper, we want to close that gap in research and investigate
the general application of synthetic data for the training of object detection
models, in our case YOLO, for the detection of HWT in mixed-text scenarios -
document with printed text and HWT, but might even include graphics, tables or
other types of elements. Our approach does not rely on specific models or type
of documents, and we use two different datasets for evaluation: CVL [13], a
dataset with reduced variety in style, and SCAN, our own dataset, consisting of
ten pages of the ScrabbleGAN paper printed with manually added HWT. An
overview of our approach is shown in Fig. 1. For generation of synthetic text, we
use the PRImA-LAD dataset as base images and train YOLO models, followed
by evaluation on our two benchmark datasets.

Our results show that first of all, by only training on synthetic data, a
mAP@50 of 0.88 on the CVL dataset is achieved. For the more complex SCAN
dataset, we are able to outperform training on real data by using our data gen-
eration pipeline. Secondly, we study the influence of the granularity label (word,
line or paragraph), and observe that line-level training works best for detecting
HWT. Finally, our evaluation also includes using different model sizes, for which
we do not find any significant influences, indicating that the data is the key
factor for successful HWT detection.

In summary, our contributions are:

– we present a data synthesis pipeline for training HWT detection models,
– we provide a thorough evaluation of our approach on two datasets, CVL and

our own created dataset called SCAN,
– and we show that with synthetic data, we achieve competitive results, reduc-

ing the need for manually annotated data.

The remainder of our paper is structured as follows: Sect. 2 describes related
work in the domain of HWT generation/detection and synthetic HWT. In Sect. 3,
our methodology is presented. The evaluation protocol is given in Sect. 4, and
we provide results in Sect. 5. We conclude our paper in Sect. 6.
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2 Related Work

This section gives a brief overview of HWT generation and HTD.

Handwritten Text Generation. Graves [8] combined LSTM and Gaussian mix-
ture models to generate online HWT, predicting coordinates and stroke end indi-
cators. Kang et al. [12] utilized GANs with style and textual feature encoders,
optimizing for discriminative loss, style variety, and content accuracy. Fogel et al.
[6] overcame string length limitations with ScrabbleGAN, generating character-
conditioned patches. Davis et al. [4] employed a space predictor network for
varying character widths, while Bhunia et al. [2] introduced a cycle loss for fine-
grained style learning.

These models were trained on the IAM Handwriting Database [16], with
Fogel et al. achieving a Fréchet Inception Distance (FID) of 23.78 and a Geom-
etry Score (GS) of 0.00076, Davis et al. a FID of 20.65, and Bhunia et al. a
FID of 19.40. Davis et al.’s model was selected for its ability to handle varying
content lengths, with a human evaluation indicating 31.9% correct identification
of synthetic images.

Handwritten Text Detection. Jo et al. [9] employed a CNN for pixel-level HWT
segmentation on synthetic data, achieving a 92.5% accuracy. YOLOv5 and
YOLOv8 object detection models are adopted as a baseline in this research,
attaining mAP@50–95 of 34.3% and 37.3% on COCO data, respectively. Their
adaptability and state-of-the-art performance make them suitable for Handwrit-
ten Text Detection (HTD).

Using Synthetic Handwritten Text. Jo et al. [9] augmented base images with ran-
dom synthetic HWT for segmentation, resulting in annotations deemed less real-
istic. Fogel et al. [6] demonstrated the efficacy of their GAN-based image genera-
tion model by using synthetic images to improve HTR on the IAM Database. The
augmentation with 100,000 synthetic images reduced the word error rate from
25.10% to 23.61%. This approach proves valuable for enhancing model perfor-
mance on real datasets.

Figure 2 displays synthetic HWT images generated by the model developed
by Davis et al. [4], showcasing the text “The quick brown fox jumps over the
lazy dog.” in four different styles. The visual representation highlights variations
in character appearance, slant, and width, underscoring the model’s versatility
in generating diverse synthetic handwritten text.
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Fig. 2. Synthetic HWT images generated by the model developed by Davis et al. [4]
with four different styles. Notable are varying appearances of the text in (a) (e.g., the
letter “T” is written differently, the character slants or character widths are different).
In (b) an image with a quite narrow font is shown – the smaller the character widths,
the less legible the text tends to become.

3 Methodology

For the generation of synthetic handwritten text the method of Davis et al. [4],
as described in Sect. 2, is used. The main reason is its ability to mimic varying
pen pressures, represented by varying color intensities of the generated text.
In the following, we highlight each step of the data generation pipeline, ending
with describing the final synthetic datasets used for training an object detection
model.

3.1 Synthetic Text Generation

The GAN proposed by Davis et al. [4] requires two inputs for generating images
of handwritten text: the input text and a style vector. The character set of the
input string must not deviate from the trained model. In this work, we use a
pre-trained model on the IAM dataset [16] (all alphanumerical characters from
the English alphabet (a–z, A–Z, 0–9), the characters !"#&’()*+,-./:;?, and
the space character). The style vector v ∼ N (0128,1128) uses a multivariate
normal distributed latent space with 128 dimensions to represent the style of
the handwritten text to mimic. To mimic different styles of HWT, multiple style
vectors are drawn from a random distribution, which is the multivariate standard
normal distribution for most datasets. However, although the generative model
is trained to have a normally distributed latent space, using vectors with extreme
values still provides meaningful output. Hence, style vectors following a uniform
distribution over the interval [−4, 4] are also used.

As shown in Fig. 2, the model from Davis et al. [4] generates images that
already mimic different HWT font styles. However, all images mimic roughly the
same stroke width, and the model can only generate grayscale images. Hence, the
stroke width and stroke color are additionally modified to increase the diversity
of styles image dilation is applied to increase the stroke width. Additionally, the
foreground of the generated images is computed and applied as fully transpar-
ent alpha channel on randomly colored images to mimic different colors.
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As text input for the generative model, random strings with the same charac-
ter set and varying length (uniformly distributed with dataset dependent bound-
aries, e.g. between 1 and 90 characters) are extracted from the following text
corpora:

LOTR The Fellowship Of The Ring novel by J. R. R. Tolkien, published in
1954.

LOB The Lancaster-Oslo/Bergen Corpus of British English [20], which is a
collection of various British texts published in 1961. The IAM dataset [16] is
based on this text collection.

GUT Alice’s Adventures in Wonderland by Lewis Carroll, published in 1865,
and The Tragedie of Hamlet by William Shakespeare, published in 1599.

3.2 Methodology to Generate Synthetic Datasets

The synthetic datasets for HTD are generated by adding synthetic images of
HWT to “base images”, which are scans of newspapers, magazines, or other
documents. The HWT images are placed to mimic actual annotations, i.e., on
areas where they do not overlap with any content (text, tables, images, separa-
tors, etc.) of the base images. A heuristic algorithm is applied for this purpose as
follows:

1. Image selection: A base image is randomly selected from the set of all possible
base images.

2. Background area selection: A rectangular area within the base image, which
only contains background, is randomly selected.

3. HWT paragraph creation: Sythetically generated HWT lines are vertically
stacked to form a paragraph that fits into the selected background area. Before
stacking, the text is augmented regarding stroke color and stroke width, or
image rotation.

4. A paragraph is placed on a random location within the selected background
area. Properties of the paragraph:

– Random number of lines up to 10, same style vector/paragraph, randomly
rotated by ±1◦1

– Rotation by α = (a + b)◦, where a ∈ {0, 90, 180, 270}, and b ∈ [−3, 3]
– Random dilation with quadratic kernels k of shape 1, 2, 3, 5 or 10.
– Inking: randomly fill with selected colors from a certain color shade (i.e.

various shades of red, blue, green, or dark gray) based on the foreground
mask. One paragraph has the same color.

– Resize: Mimic varying font sizes by resizing lines from 40–200 pixels
(equals font size of 12–50 pt at 300 dpi).

1 The value of ±1◦ is empirically defined to keep a balance between clearly visible line
rotations and extreme line spacings for paragraphs with long lines.



Synthetic Data for Training of HTD 127

5. Repeat Steps 2.–4. until a randomly chosen upper limit of paragraphs has
been added or no suitable background area is found2.

6. Apply data-set dependent post-processing on the image: This is either a color-
scale conversion (from RGB to gray-scale or binarized black-white images
using Otsu), or creation of cutouts of size 640× 640 pixels to meet the require-
ments on the size of input images for YOLOv5, or both, or none of them.

7. Start again at Step 1. Until the desired number of synthetically annotated
documents has been created.

The base images are taken from the PRImA-LAD dataset [1], a layout anal-
ysis dataset containing scans of over 400 pages from magazines or technical arti-
cles. Each scan is accompanied by a detailed description of the layout of the page
(e.g. information about regions containing charts, images, noise, separators, text,
or other content), allowing to distinguish foreground and background areas. 382
images with a width from 2080–4808 pixels, a height from 2858–3533 pixels, and
a resolution of 300 dpi remain after sorting out the images with an incomplete
layout description or containing areas with HWT. Those 382 scans are the base
images for the synthetic HTD datasets; one such base image is possibly used
multiple times to generate synthetic images with more than 382 pages, but the
synthetic annotations are added with a different random seed.

Label Granularity: The synthetic HTD dataset labels are the bounding boxes of
areas containing HWT for different label categories: entire paragraphs (PAR),
lines (LINE), or single words (WORD).

Since real annotations are always found in empty spaces on a page, we assume
that the artificially generated data set matches real data.

3.3 Parameters of Generated Synthetic Datasets

Different datasets are generated to control for various aspects of their properties,
especially color scales, HWT stroke width, and label granularity. The following
list shows the synthetic HWT datasets with the according number of training,
validation, and test images (train/val/test):

– COLSCALES-RGB-CUT-PAR (32,814/7,380/6,335)
– COLSCALES-GRAY-CUT-PAR (32,814/7,380/6,335)
– COLSCALES-BW-CUT-PAR (32,814/7,380/6,335)
– COLSCALES-STROKE-BW-CUT-PAR (32,946/7,353/6,398)
– FULLSIZE-STROKE-BW-PAR (1,412/312/276)
– GRANULARITY-STROKE-BW-PAR (1,401/309/275)
– GRANULARITY-STROKE-BW-LINE (1,401/309/275)
– GRANULARITY-STROKE-BW-WORD (1,401/309/275)
– CWT-STROKE-BW-PAR (2,401/309/275)
2 Each document has a randomly chosen number of 1 .. 12 paragraphs (those bound-

aries are empirically defined). The algorithm stops after 1000 iterations (also empir-
ically defined), hence less paragraphs than this randomly chosen upper limit are
possible as well.
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– CWT-STROKE-BW-LINE (2,401/309/275)
– CWT-STROKE-BW-WORD (2,401/309/275)

The COLSCALES-* datasets are all based on 2,000 synthetically annotated
documents, hence the base images from the PRImA-LAD dataset occur on aver-
age more than five times. The actual training data is based on cutouts (CUT)
of the images with size 640 × 640 pixels and a stride of 160 pixels. The images
are downscaled by 50% before creating the cutouts to reduce the total num-
ber of images. The training, validation and test sets contain 32,814, 7,380 and
6,335 images, respectively. Color augmentation is applied to the HWT before
adding it to the base images. -RGB- contains RGB images, -GRAY- contains
only grayscale images, and -BW- only binarized data. All labels are on para-
graph (PAR) level.

Further analyzing the synthetic images reveals that the stroke width of HWT
text is generally relatively thin compared to real-world images, e.g., from the
CVL dataset [13]. Hence, stroke width augmentation is introduced for the dataset
-STROKE-, which is equal to COLSCALES-RGB-CUT-PAR with all other
parameters.

Dataset FULLSIZE-STROKE-BW-PAR contains the full size images (used
for YOLOv8), a stroke width augmentation, binarized images and labels on
paragraph (PAR) level.

Generating synthetically annotated documents allows full control over the
granularity of the ground truth, i.e., about the position of paragraphs, lines, or
single words. The datasets GRANULARITY-STROKE-PAR, GRANULARITY-
STROKE-LINE, and GRANULARITY-STROKE-WORD all have equal config-
uration, but labels on paragraph (PAR), line (LINE), and word (WORD) level,
respectively.

The base images from the PRImA-LAD collection usually have the content
centered within the image - often using a two-column layout. Hence, the gener-
ated images have most of the HWT content towards the border of the documents.
To generate additional images with a more diverse distribution of HWT con-
tent, different kinds of synthetic documents (CWT-, Computer Written Text)
are added to the dataset: Paragraphs based on the LOTR corpus using com-
puter fonts, and synthetic HWT text paragraphs, are randomly placed on empty
images, which have a width and height randomly chosen and limited by the min-
imum and maximum width and height of the images from the PRImA-LAD
dataset. The datasets CWT-STROKE-BW-PAR, CWT-STROKE-BW-LINE,
and CWT-STROKE-BW-WORD are equal to GRANULARITY-STROKE-BW-
*, except their training data is extended with 1000 of such synthetic images.

4 Evaluation

HTD is approached by training object detection models on the synthetic data
and assessing their performance using evaluation datasets with real handwritten
text. The deep learning models YOLOv5 [10] and YOLOv8 [11] by Ultralytics
are used for this purpose. All models are trained on computers of the Vienna
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Scientific Cluster, more precisely the VSC-5, which offers two different GPU-
enabled nodes containing either 2x NVIDIA A40 or 2x NVIDIA A10 GPUs.

4.1 Evaluation Datasets

To evaluate the performance, the following two document image analysis datasets
are used: the first one is the CVL-Database [13], which contains in total 1604
scanned pages with CWT and HWT. The images contain an area of CWT on the
top, which are transcribed by, in total, 310 participants beneath this area. Seven
different texts are transcribed, of which one was in German, the others in English.
Due to the limitation of the character set of the trained HWT model, texts
with German umlauts have been excluded. The dataset is split into 189 training
images and 1415 test images. All images are accompanied by a ground truth con-
taining the bounding boxes and content of the entire HWT area, single lines, and
individual words. The scans are available in RGB, but most HWT was written
with a blue pen. Further summary of the properties of the CVL dataset are
shown in Table 1.

The second dataset, called SCAN dataset, contains a scan of the paper
“ScrabbleGAN: Semi-Supervised Varying Length Handwritten Text Generation”
[6], which was manually annotated by two persons with random text lines from
[21]. Ten images are available in total. The annotations are made with different
pens and pen colors. Each image contains various annotations, most of which
contain multiple lines. Labels are created manually for paragraph-, line- and
word-level by one person using the web-based image annotation software Data-
Torch3. Figure 3 shows an example image of this dataset. Further details can be
found in Table 1.

4.2 Experimental Setup

For the evaluation the model architectures YOLOv5n (5n) [10], YOLOv8n (8n
- nano), and YOLOv8m (8 m - medium) [11] are used. If not stated otherwise,
models are pre-trained on the COCO dataset [15]. All models are trained with
the implementations’ default optimizer, stochastic gradient descent with Nes-
terov momentum, with learning rate γ = 0.1 and momentum μ = 0.937. Early
stopping is enabled, with the default patience of 100 iterations for YOLOv5
models and 50 iterations for YOLOv8 models. The maximum epochs per train-
ing run is limited to 1000. The models are trained with the implementations’
default hyperparameters.

4.3 Metrics

As metric, the Mean Average Precision (mAP), which is the mean of all Average
Precisions (AP) for all classes is used. Since the HTD tasks have one class only,
this is equal to the average precision of this class. The mAP is often interpreted
3 https://datatorch.io, last accessed on 2023-07-16.

https://datatorch.io
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Fig. 3. A sample image from the
SCAN dataset with manual anno-
tations from [21].

Table 1. Summary of the evaluation datasets for
HTD. If multiple values are listed in a table cell,
then they refer to the paragraph-, line- and word-
level datasets, respectively.

Property CVL SCAN

Image width 2,480–2,663 px 2,473 px

Image height 3,507–3,634 px 3,495 px

#images 1,411 10

#objects 1,409/11,849/
88,825

65/228/877

#objects/image
(average)

1/8/63 6/23/88

at a certain threshold of the Intersection Over Union (IoU), which indicates how
much a predicted bounding box overlaps with a bounding box from the ground
truth. The typical threshold of 0.5 is used in this work (mAP@50), meaning that
the IoU must be at least 50%.

The remaining metrics reported are based on pixel-level comparisons of the
predictions vs. ground truth using precision (P), recall (R), and F1 score (F1).
Only predictions with a confidence level of at least 0.5 are considered. Therefore,
the metrics P@50, R@50, and F1@50 are the averages of the pixel-level precision,
recall, and F1 score of all images considering predictions with a confidence of at
least 0.5. The results are reported using the test set of the synthetic data, as
well as the CVL and SCAN datasets.

5 Results

In this section, we report the main findings of our studies. Additionally, we
evaluate the influence of different setting on our approach, such as color scale,
data augmentation and label granularity.

5.1 Color Scale and Data Augmentation

Table 2a lists results for models trained on two different kinds of datasets:
COLSCALES-*-CUT-PAR with images in different color scales (RGB, grayscale
and binarized images), and COLSCALES-STROKE-BW-CUT-PAR with bina-
rized images and stroke width augmentation. Images with RGB color scale pro-
vide the best results considering the synthetic data only: the mAP@50 is 0.86,
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the F1@50 is 0.89. Introducing stroke width augmentation has no further effect
for the synthetic data but increases the results on the CVL and SCAN dataset.

Using grayscale or binarized data yields strictly better results when evaluat-
ing on real data, likely due to less details the model has to filter out. Grayscale vs.
binarized images do not have a significant difference. However, using binarized
images provides the best results for the SCAN datasets although stroke width
augmentation has different effects on F1@50 and mAP@50, but image binariza-
tion together with stroke width augmentation provides the best results for the
CVL data. Hence, all following experiements are done one binarized images with
stroke width augmentation.

Table 2. Description and metrics for HTD models trained on (a) different datasets
(model architecture 5n, image size 640, and dataset (COLSCALES-*-CUT-PAR)
and (b) using different model architectures and image sizes on dataset FULLSIZE-
STROKE-BW-PAR.

(a) Dataset Evaluation

Test SetModel P@50 R@50 F1@50 mAP@50

SYN RGB 0.83 0.97 0.89 0.86

GRAY 0.82 0.97 0.89 0.84

BW 0.83 0.96 0.89 0.82

STROKE-BW 0.82 0.96 0.89 0.82

CVL RGB 0.91 0.85 0.88 0.27

GRAY 0.90 0.88 0.89 0.35

BW 0.91 0.80 0.85 0.42

STROKE-BW 0.89 0.90 0.90 0.47

SCAN RGB 0.60 0.35 0.44 0.17

GRAY 0.76 0.82 0.79 0.55

BW 0.83 0.80 0.81 0.52

STROKE-BW 0.65 0.74 0.69 0.56

(b) Model Architecture Evaluation

Test SetModel P@50 R@50 F1@50 mAP@50

SYN 5n, 1280 0.95 0.93 0.94 0.95

8n, 640 0.95 0.94 0.95 0.87

8n, 1280 0.97 0.95 0.96 0.94

8m, 1280 0.98 0.97 0.97 0.96

CVL 5n, 1280 0.94 0.14 0.24 0.02

8n, 640 0.96 0.84 0.90 0.78

8n, 1280 0.95 0.76 0.85 0.48

8m, 1280 0.95 0.77 0.85 0.38

SCAN 5n, 1280 0.84 0.80 0.82 0.51

8n, 640, 0.87 0.67 0.75 0.53

8n, 1280 0.89 0.76 0.82 0.44

8m, 1280 0.89 0.69 0.78 0.41

5.2 Model Architecture and Image Size

It can be seen that YOLOv8 outperforms YOLOv5, as shown in Table 2b. The
best results on synthetic data are achieved using a YOLOv8m model with train-
ing data sized 1280× 1280 pixels; the mAP@50 is 0.96, the F1@50 is 0.97.

The best model regarding the CVL data is a YOLOv8n model trained on
cutouts of 640 × 640 pixels: the mAP@50 is 0.78, the F1@50 is 0.90. However,
the mAP@50 for the other models is significantly lower, and has with 0.02 its
minimum; but the best performing model on the synthetic data (YOLOv8m
with image sizes pf 1280 × 1280 pixels) still yields a F1@50 of 0.85, whereas
the mAP@50 is 0.38. The precision of 0.95 indicates that HWT was correctly
identified in the sense that if the model predicted an HWT bounding box, it
contained HWT to a large extent. But since the paragraphs for the CVL data
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are relatively large compared to the synthetic images (due to the layout of the
CVL dataset), the predicted bounding boxes also need to be larger, otherwise the
predictions would be too small. This would result in a low recall, a low F1, a low
IoU, many false positives, and finally a low mAP@50. Using cutouts mitigates
this problem, as the distribution of bounding box sizes is more equal for synthetic
and CVL data.

Table 3. Description and metrics for HTD models trained for (a) different label gran-
ularities (dataset GRANULARITY-STROKE-BW-; model architecture 8n, image size
1280) and (b) with datasets containing synthetic CWT (trained on CWT-STROKE-
BW-; image size 1280).

(a) Label Granularity Evaluation

Test SetModel P@50 R@50 F1@50 mAP@50

SYN PAR 0.97 0.96 0.97 0.94

LINE 0.97 0.97 0.97 0.97

WORD 0.96 0.96 0.96 0.89

CVL PAR 0.98 0.76 0.85 0.13

LINE 0.94 0.92 0.93 0.79

WORD 0.88 0.86 0.87 0.76

SCAN PAR 0.96 0.74 0.84 0.30

LINE 0.96 0.81 0.88 0.56

WORD 0.95 0.69 0.80 0.67

(b) Synthetic CWT Evaluation

Test SetModel P@50 R@50 F1@50 mAP@50

SYN 8n, PAR 0.97 0.97 0.97 0.94

8n, LINE 0.98 0.97 0.97 0.97

8n, WORD 0.95 0.97 0.96 0.90

8m, PAR 0.98 0.98 0.98 0.96

8m, LINE 0.98 0.98 0.98 0.97

CVL 8n, PAR 0.98 0.93 0.95 0.84

8n, LINE 0.94 0.93 0.93 0.82

8n, WORD 0.88 0.88 0.88 0.78

8m, PAR 0.99 0.93 0.96 0.88

8m, LINE 0.95 0.93 0.94 0.84

SCAN 8n, PAR 0.98 0.80 0.88 0.37

8n, LINE 0.96 0.83 0.89 0.62

8n, WORD 0.95 0.77 0.85 0.72

8m, PAR 0.96 0.75 0.84 0.48

8m, LINE 0.97 0.83 0.89 0.59

5.3 Label Granularity

Table 3a summarizes the results for models trained with equal data with respect
to the granularity, but different labels.

Notably is, again, that using labels on paragraph level yields the lowest
mAP@50 (0.13 for the CVL data, 0.30 for the SCAN data), while the precision is
at 0.98 for the CVL data and 0.96 for the SCAN data. Reducing the label gran-
ularity increases both the F1@50 and the mAP@50 for both real datasets. Using
labels on line-level provides the best results for the synthetic data (mAP@50
and F1@50 are both 0.97) and for the CVL data (mAP@50 is 0.79, F1@50 is
0.93). Although the F1@50 using line-level labels is with 0.88 the highest for the
SCAN data, the highest mAP@50 of 0.67 is achieved using labels on word-level.
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5.4 Diverse Synthetic Layout Datasets

Another approach to align the bounding box distributions is to add bigger HWT
paragraphs, as done with the CWT-STROKE-BW-* datasets, which are equal
to the GRANULARITY-STROKE-BW-* datasets but with additional 1,000
fully synthetic images. The results for models trained on this data are listed in
Table 3b.

Notably is the mAP@50 for the CVL and SCAN data when trained on the
YOLOv8 model compared with the results of the same model architecture shown
in Table 3a. Adding fully synthetic data with bigger paragraphs increased the
mAP@50 from 0.13 to 0.84 for the CVL data, and from 0.30 to 0.37 for the
SCAN data.

The main motivation for using this dataset is to allow a more diverse place-
ment of HWT. Magazines or papers tend to have most of the content centered in
the page, with only limited space between paragraphs or columns. Hence, most
of the HWT must be placed towards the borders of the image; using completely
synthetic data, where CWT and HWT are randomly placed, allows to break up
this structure.

However, this approach yields little improvement using labels on line and
word level compared to labels on paragraph level. For the synthetic data, the
mAP@50 increased only for labels on word-level, from 0.89 (in Table 3a) to 0.90.
Using the CVL dataset and labels on line-level, the mAP@50 increased from
0.79 to 0.82, the F1@50 is unchanged; using labels on word-level increases the
mAP@50 from 0.76 to 0.78, the F1@50 from 0.87 to 0.88. A stronger effect is
observed on the SCAN data: on line level, the mAP@50 is increased from 0.56
to 0.62, the F1@50 from 0.88 to 0.89; on word level, the mAP@50 is increased
from 0.67 to 0.72, the F1@50 from 0.80 to 0.84.

Using YOLOv8m models instead of YOLOv8n further increases the perfor-
mance when evaluated on synthetic or CVL data. The best results for those
datasets are achieved with labels on line level.

5.5 HTD Baseline

Table 4 shows the results of HTD if trained on the CVL train set (real HWT).
The results show that almost perfect results are achieved on the CVL test set
(due to its simple layout). However, the CVL trained HTD drops to a mAP@50 of
almost 0 for the SCAN dataset which represents realistic annotated documents.



134 M. Muth et al.

Table 4. Description and metrics for HTD models trained for different label granular-
ities on the CVL train set (real data, model architecture 8n, image size 1280).

Test Set Model P@50 R@50 F1@50 mAP@50

CVL PAR 1 1 0.99 0.99

LINE 0.97 0.988 0.97 0.987

WORD 0.90 0.869 0.88 0.90

SCAN PAR 0.01 0.17 0.02 0.01

LINE 0.25 0.04 0.07 0.04

WORD 0.41 0.24 0.30 0.24

6 Conclusion

The potential of using synthetic datasets is examined for the domain of hand-
written text detection. Synthetic HWT is added to scans of documents to
mimic human annotations. Object detection models (YOLOv5 and YOLOv8)
are trained on this data to distinguish HWT from remaining content in the
documents. The suitability of using synthetic data is evaluated by assessing the
performance of those models on two datasets containing real HWT: the CVL
dataset [13], and a new SCAN dataset, where handwritten text is manually
added to a scientific paper.

The models are trained with different granularity of the labels: paragraphs,
lines, and single words. The best models on the CVL dataset achieved a mAP@50
of 0.88 and a F1@50 of 0.96 on paragraph level, a mAP@50 of 0.84 and F1@50
of 0.94 on line level, and a mAP@50 of 0.78 and F1@50 of 0.88 on word level;
For the SCAN dataset, a mAP@50 of 0.48 and a F1@50 of 0.84 are achieved
on paragraph level, a mAP@50 of 0.62 and F1@50 of 0.89 on line level, and a
mAP@50 of 0.72 and F1@50 of 0.85 on word level. The best result is usually
achieved on the synthetic data, as this corresponds to the training set. How-
ever, it is shown that comparable results can be achieved on real data. Detailed
discussions are presented in Muth [18].

Summarized, synthetic HWT allows the generation of images tailored to the
target data based on text size, stroke width, layout, color, and text granularity
(line, word and paragraph based annotation). Thus, using synthetic data allows
full control over the properties of the training data and can be used in the domain
of HTD to achieve comparable results to real data.
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Abstract. The goal of this paper is to propose an unsupervised
learning-based framework in order to deal with any kind of one-shot
object detection scenario, focusing on the tasks of sub-image retrieval
and pattern spotting in historical document images. Taking in an arbi-
trary object/pattern query from users, the proposed framework should
be able to retrieve images containing it, as well as localising each occur-
rence within the images. A major difficulty is the lack of any training
data. Three contributions are thus presented: (1) a novel model architec-
ture dubbed OS-DETR, capable of adapting to various tasks by simply
swapping training data, (2) a completely unsupervised synthetic data
generation process, easily applicable to many data-limited domains, and
(3) a set of training strategies catered to boost the model’s generalisation
capabilities. The result is a framework that yields a strong baseline for
learning-based approaches applied to sub-image retrieval and pattern
spotting.

Keywords: Sub-Image Retrieval · Pattern Spotting · Image
Retrieval · One-Shot Object Detection · Historical Document Images

1 Introduction

Finding occurrences of a specific object instance in a collection of images is a
core task in computer vision with a plethora of applications. Either be it finding
a specific logo in a collection of product images, a specific stamp on parcels, or a
specific pattern in a collection of historical document images. In fact, the latter
could become a primordial tool for historians that significantly upgrades their
analysis capabilities when studying relationships, circulation and provenance of
specific patterns. Most works approaching this problematic in the vision domain
belong to the sub-field of one-shot object detection, which deals with natural
world images, treating objects at a semantic level as well as benefiting from a
large training corpus from the same distribution [10].

In this work we address the tasks of sub-image retrieval and pattern spotting
in historical document images (Fig. 1). Whereas image retrieval is traditionally
defined as the task of retrieving (from a collection of images) images similar
to an input image, here we define sub-image retrieval as the task of retrieving
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images that contain an input sub-image (usually a cropped sub-image of an
object/pattern). As multiple occurrences of a given sub-image can be found
within a single retrieved image, and as localization information can be utilised in
a multitude of down-stream tasks (e.g., explainability, document layout analysis,
etc.), pattern spotting is defined as the task of retrieving all occurrences (i.e.,
with localization information) of a given queried sub-image in a collection of
images. The challenges in these tasks are two-fold. (1) Users (such as historians)
could choose to query any kind of pattern when using the system, as it is not
possible to know what could interest them during their analyses in advance.
Thus, training a standard detection model specific for a predefined set of N
classes is unfeasible. Also, the word class does not really fit in this context, as
we are aiming to retrieve occurrences of the same object instance portrayed in
the query image, at an almost near-duplicate level. (2) We do not have access to
any labelled training data to use in our work. This fact has led all previous works
[4,7,19] to propose learning-free approaches, by essentially pre-computing image
features (using hand-crafted representations or pre-trained deep architectures)
in an offline phase and measuring distances with the query features in an online
phase.

Fig. 1. Given an input query image, Sub-Image Retrieval (top) returns a ranked list
of images that contain the query, and Pattern Spotting (bottom) returns a ranked list
of occurrences of the query within images. All data shown are from the DocExplore
dataset [6].

In this work, we aim to present a learning-based framework in order to deal
with any kind of one-shot object detection scenario, focusing on the tasks of sub-
image retrieval and pattern spotting in historical document images. After pre-
senting relevant state of the art in Sect. 2, we will present our flexible model archi-
tecture in Sect. 3 whose components can be swapped easily for future improve-
ments, a synthetic data generation process that can easily be replicated/tuned
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for other domains in Sect. 4, a set of training strategies that boost generalisa-
tion and are catered for the challenges faced in sub-image retrieval and pattern
spotting in Sect. 5. Finally, we will see how the training objective can be easily
modified and refined based only on the training data as shown in both the pre-
liminary results and in Sect. 6, in which results on a synthetic test set and the
DocExplore dataset prove the efficacy of the proposed approach.

2 State of the Art

An object detector takes as input an image, and aims to detect occurrences
of predefined classes within the input image. For each class we aim to detect,
an adequately large sample of labelled examples is expected to be provided to
the model in the training stage. Object detectors can be categorised into 2 cat-
egories, CNN-based object detectors and Transformer-based object detectors.
CNN-based object detectors, such as Faster R-CNN [15], have been dominating
benchmarks for the better part of the last decade, that was until the emergence of
transformer-based object detectors, and more specifically DETR [2] and its vari-
ants [5,13]. On top of its remarkable performance, DETR differentiates itself
from other CNN-based approaches by the fact that it is a completely end-to-end
architecture. For instance, there is no explicit region proposal or anchor-based
predictions in the model, and there is not even the need for any post-processing
of the output bounding boxes, due to its set-based global loss that forces unique
predictions via bipartite matching.

On the other hand, one-shot object detection aims to generalise the task
of object detection to any class queried at test time, and not only having the
model limited to detecting a predefined set of classes seen during training. As
defined in the literature [10], it is the task of taking in a pair of images, a query
patch and a target image, and to detect occurrences of the query class within
the target image. The term one-shot refers to the fact that the model has only
access to a single example (a single cropped image) of the class we are aiming
to detect, implying the absence of such a class during training. That being said,
and even though classes reserved for testing are hidden during training, these
approaches still have access to a large corpus of training data from the same
domain/distribution. So learned characteristics and semantics can still be very
useful when addressing the task even on unseen data.

Many one-shot object detection proposals are FRCNN-based [3,10]. Meaning
they alter the FRCNN architecture such that it becomes capable of performing
the one-shot task. One key limitation in these approaches however is the region
proposal network, which once trained on seen classes, has difficulties in pre-
dicting reasonable regions for unseen classes, which in turn translates into a
bottleneck in the whole architecture. For our work we opted to build a DETR-
based architecture, being a completely end-to-end architecture making it more
attractive for us to adapt for our task. In fact, a handful of works also opted
to adapt DETR to one-shot [5] or few-shot [18] scenarios for object detection,
however all these efforts remain focused on the natural world domain, and more
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specifically on the COCO dataset. To the best of our knowledge, our work is the
first attempt to apply such a one-shot task to historical documents.

In this work we address the tasks of sub-image retrieval and pattern spotting
in historical document images. As mentioned earlier, one of the key limitations
and differentiation between the tasks we are tackling and standard one-shot
object detection, is that there is no labelled data that could be utilised for train-
ing purposes. In fact, the only effort of annotation for these tasks that we are
aware of in the historical document domain is the DocExplore dataset [6]. That
being said, and given the relatively small scale of this dataset, it is generally
reserved exclusively for testing purposes. This makes these tasks automatically
harder to tackle, especially for learning-based approaches. This is why, all previ-
ous efforts on these tasks avoided learning-based approaches and instead limited
themselves to only make use of pre-trained networks in order to extract image
features and compute correlations between query and target images. En et al.
[7] relied on hand-crafted representations in order to generically encode informa-
tion from image data. Ubeda et al. [19] on the other hand utilised deep features
generated by a pre-trained feature pyramid network (FPN) without any fine-
tuning, and computed cross-correlation between extracted embeddings. More
recently, Curi et al. [4] significantly improved performance by utilising fully con-
volutional networks to be able to process queries and documents of various sizes
with no need for preprocessing such as resizing, further pushing the state of
the art on the DocExplore dataset.

All mentioned approaches suffer from the same limitations: (i) Purely rely-
ing on the features provided by pre-trained networks, with no further processing
other than correlation computation, leading to having semantics limited by what
has been learned in pre-training, and no adaptation to the current domain/task.
(ii) By computing cross-correlation between query and target images these
approaches are effectively limited to only detecting same-sized occurrences of
the query image. This is unfortunately not punished in the DocExplore testing
dataset, as even though different patterns in the dataset vary in size, the occur-
rences of a given pattern generally have the same size. In contrast, our approach,
as will be seen in the following sections, does overcome both of these limitations.

3 Proposed Architecture

In order to solve the aforementioned tasks, we propose the first learning-based
approach that aims to pave the way to better and more flexible solutions down
the road. We will start by presenting our simple yet efficient model architecture
visualised in Fig. 2.

3.1 Model Architecture

We decided to base our work on the DETR [2] architecture given its end-to-
end nature. The absence of many hand-crafted modules in this detection system
especially attracted us. So our architecture will effectively modify the DETR
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architecture in order to adapt to one-shot scenarios. Firstly, and as it is the norm
in one-shot object detection, our architecture will take 2 images as input, the
target image and the query image. We will adopt the usage of a CNN backbone
in conjunction with the transformer-based rest of the architecture. A plethora of
backbone choices are present to us, and in this work we opt to use an ImageNet
pretrained ResNet50 as our CNN backbone. This is similar to what is done in the
original DETR as well as in many newer DETR versions [5,13]. Most notably,
this will help both in terms of reducing the computational complexity of our
architecture as well as reducing the reliance on a huge volume of pre-training data
(an avenue we are planning to explore in future works). Also, the hierarchical
design of CNNs and the fully convolutional aspect of the ResNet50 we adopt
allows for efficient processing of large image sizes and supporting variable image
sizes/ratios respectively. That being said, many recent vision transformers aim to
close these gaps by either incorporating hierarchical priors into their architecture
[12] or by directly adapting flat vision transformers for detection tasks [11]. Thus
the specific choice of the backbone model could be altered in a future ablation
study.

Secondly, and in order to feed in appropriate embeddings to the decoders,
that should be able to condition their output based on the current target/query
pair, we opt to use a series of cross-attention transformer blocks in order to
integrate query features into the target embedding and vice versa. This choice
is motivated by the fact that we want the embeddings that are being fed to the
decoders to incorporate information from both the target and query embeddings.
This differs from the original DETR architecture, that uses simple self-attention
blocks for its single input image, as it is trained to detect the same predefined
set of classes for all input images.

Finally, after going through a series of cross attention layers, two branches
follow. Given that our goal is to perform detection within the target image, we
forward the transformed embedding of the target image to a pattern spotting
decoder that outputs a fixed-size set of predictions (this block is mostly similar
to DETR decoder). Note that the pattern spotting decoder classification head
only has two classes, as we only care for our model to predict if a particular detec-
tion corresponds to our current pattern of interest or not. The second branch
forwards the transformed embedding of the query image to a sub-image retrieval
decoder that outputs a global binary score of whether the query is found within
the target image or not.

Thus, our goal with this architecture, named One-Shot DETR or OS-DETR,
would now be to train a model that is capable of detecting any query pattern
within any target image in a generic fashion, by taking in their images as input
and directly predicting the bounding box location of the various occurrences of
the query image within the target image, as well as a global confidence score
of the presence of the query in the image, the whole in a completely end-to-end
fashion. A natural question that arises here, is on what basis will the model detect
occurrences? As what constitutes a particular class is very task-dependent. Here
we argue that our architecture is flexible enough to learn various class definitions,
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Fig. 2. Taking as input a target/query image pair, both are fed to the same backbone to
extract their features. Both embeddings are then fed to a series of cross-attention blocks
to compute similarities. The “transformed” target embedding is fed to the pattern
spotting decoder that outputs a fixed-size set of detections, whereas the “transformed”
query embedding is fed to the sub-image retrieval decoder that outputs a binary class.

which will be implicitly modelled in the training data that is fed to the model.
In fact we will show how the same architecture can detect objects either at a
semantic level, as required by COCO, or at an instance level, as required by
DocExplore, simply by altering the training data.

Loss Term. The loss term for our architecture is essentially the same as the
set prediction loss defined in DETR [2], with the addition of a binary cross
entropy loss for the sub-image retrieval branch. Our OS-DETR model outputs
a fixed-size set of N predictions ŷ = {ŷi}Ni=1 from its pattern spotting branch,
on which the Hungarian loss proposed in [2] is computed, and a scalar value
r̂ ∈ [0, 1] from its sub-image retrieval branch, on which a binary cross entropy
loss is computed. Thus our global loss term is a linear combination between these
two loss terms with λHungarian, λBCE ∈ R and set to 1 in our experiments:

L({y, r}, {ŷ, r̂}) = λHungarianLHungarian(y, ŷ) + λBCELBCE(r, r̂) (1)

3.2 Preliminary Experiments

Preliminary experiments were first conducted on the COCO dataset for the
one-shot object detection task in order to assert the validity of our model archi-
tecture, before running tests on the sub-image retrieval and pattern spotting
tasks on DocExplore dataset, tasks for which we do not have any comparison
point in terms of learning-based approaches. This experiment used only the pat-
tern spotting decoder branch of the architecture, as sub-image retrieval is not
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taken into account in the followed benchmark. The goal of this experiment is to
verify that our model architecture proposal stands justified, thus no particular
optimization was made for this task.

Implementation Details. As is done in DETR, we use the 4th layer output
from the backbone ResNet50. Through testing, 8 cross-attention blocks are used
in the encoder and 4 decoder blocks. All transformers have a channel width of
256, a feed forward dimension of 2048, 8 heads as well as a dropout value of
0.1. We train OS-DETR on 4 A100 GPUs, using AdamW optimizer with the
learning rate as well as the weight decay set to 10−4. Batch size is set to 16.
These same hyper-parameters will be used in all presented experiments.

We follow the same training/evaluation protocol used by other approaches
and described in [10] to test our model on the split1 of the COCO dataset. Table 1
shows the result of our model compared to other state of the art approaches on
the MS-COCO one-shot object detection benchmark.

Table 1. One-shot object detection performance comparison on the MS-COCO val
2017 dataset (only on split1) in terms of mAP50 score (%).

Method Seen Unseen

SiamMask (Arxiv 2018) [14] 38.9 15.3

CoAE (NIPS 2019) [10] 42.2 23.4

AIT (CVPR 2021) [3] 50.1 26.0

OS-DETR (ours) 39.4 20.1

While our performance is not at the state of the art, it is nevertheless in
the neighbourhood of good performances on this task, which validates our model
architecture and proves that our model is capable of learning useful represen-
tations that could be used in the pattern spotting context. Thus, we move to
sub-image retrieval and pattern spotting experiments, but before that, we must
determine the appropriate data for training our model and better adapt the
training to the challenges faced in these tasks. In fact, if we try to directly test
this model, trained on COCO for one-shot object detection, on the DocExplore
test set following the protocol described in Sect. 6.1, we only achieve ≈3% mAP
and ≈0% mAP on sub-image retrieval and pattern spotting respectively, further
highlighting the domain and task gaps that needs addressing moving forward.

4 Synthetic Data Generation

As mentioned above, one of the key challenges in this work is the lack of any
sort of labelled data that can be used during training. One solution would be to
spend time and effort on labelling data for training. This is however much eas-
ier said than done, as the manual labelling of pattern spotting data is especially
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challenging given that, for each pattern, it requires not only annotating its local-
isation in all images containing it (or more precisely, a near-duplicate occurrence
of it), but also be certain of its absence in all other images. And with the large
data volume needed for a deep architecture to learn, this approach becomes more
unfeasible.

This is why we chose in this work to generate training and validation data
synthetically, both as a way to overcome our limitation in this work and to pave
the way for other domains that also do not have access to any real training
data. Our pattern spotting data synthesis is inspired from [17] that generates
synthetic data for the task of co-segmentation in artwork, and from [8] that
shows that simple copy/paste is an effective data augmentation for instance seg-
mentation. The basic idea is simple: having access to a collection of background
images, as well as to object images, we would randomly sample object images and
background images, and paste object images onto background images. This way,
we can automatically generate all ground truth data required for training both
the pattern spotting as well as the sub-image retrieval branches of our model.
For this work, background images were sampled from the historical documents
dataset: HORAE [1]. However for object images, and as we do not have access
to enough ground-truth labels to extract a meaningful number of diverse query
patches from document images, we opted to utilise logo images from LLD [16].
This decision also helps in keeping our proposed approach completely unsuper-
vised. For context, background images have dimensions in the neighbourhood of
1, 000px whereas pasted logos have dimensions spanning from 25 px all the way
up to 300 px, with the majority of the distribution skewed towards the smaller
size. Figure 3 presents a visualisation of the synthetic data generation process.

Fig. 3. Visualisation of the synthetic data generation process. Starting with a randomly
selected logo (from the object collection), AdaIn applies style transfer and generates a
stylized logo, whereas GrabCut generates a binary mask. These two outputs are stacked
to generate a masked stylized logo which is then pasted in a random location and scale
in a sampled background image (from the image collection).
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Synthetic Testing Dataset. Technically speaking, during training, our model
is learning tasks of detection and classification from its two branches, however the
tasks we are aiming to solve are pattern spotting and sub-image retrieval. The
most obvious difference between these two task pairs is the notion of and the
importance of ranking in pattern spotting and sub-image retrieval, whereas
detection and classification are only concerned with independent input sam-
ples. Another big difference is that in pattern spotting there is a high level of
negative samples, i.e., the query is not present in the target image, which is not
the case in detection training, and certainly not the case in standard one-shot
object detection. In fact, the one-shot object detection definition, as stated in
the literature by [10] (and adopted by follow-up works), assumes that “each fea-
sible target image includes at least one object instance with respect to the class
label of the one-shot query”, making our tasks more challenging to tackle. For
all these reasons, and on top of our synthetic validation set (generated in the
same fashion as our training set), we found the need to create a synthetic test-
ing set specifically curated to test the tasks of pattern spotting and sub-image
retrieval.

For that, a diverse set of 50 queries were randomly selected along with 1, 500
background images, specifically reserved for testing purposes. For each query,
up to 75 background images were randomly selected to paste the query in,
with a limit of 10 distinct queries per background and 7 pasted occurrences per
query per background (most values are below these limits). This resulted in a
diverse and challenging testing set, with over 8, 300 total annotated occurrences
distributed in 1, 500 images, that will be crucial for testing our architecture.

5 Training Strategies

Many tricks were implemented in the training of this architecture in order to
improve its generalisation capabilities and adaptability to the target tasks.

Negative Query Sampling. As mentioned in the previous section, a big chal-
lenge in pattern spotting and sub-image retrieval is the high likelihood of neg-
ative samples, i.e., target images that do not contain a given query. For this
reason, we decided to implement a negative query sampling probability dur-
ing training. This is done via a hyperparameter pneg ∈ [0, 1], and each time
an (positive) image pair is selected during training, there is a pneg probabil-
ity of discarding the query in the current pair, and randomly sampling another
query not present in the target image. This teaches the model that not all input
pairs will result in a non-empty set of predictions from the pattern spotting
branch (greatly reducing false positive predictions), as well as providing samples
with r = 0 for the proper training of the sub-image retrieval branch.

Random Patch Cropping. One issue with generalisation is that, even though
we use historical document images as background images, we still are detecting
at the end of the day logos every time a positive pair is fed to the model. So in
order to improve generalisation and avoid having the model only detecting logos,
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or even try and learn to detect only pasted objects, we implement a random
patch cropping probability during training. This is done via a hyperparameter
prand ∈ [0, 1], and each time an image pair is selected during training, there is a
prand probability of discarding the query in the current pair, randomly selecting
and cropping an area from the target image, and use that as our query instead.
The output goal would then be to detect the area from which the query has been
extracted from. The benefits here are two-fold, as (i) this will help in training the
model on more diverse data, which is always beneficial, and (ii) this will show
samples to the model where the goal is to detect something other than pasted
logos, helping in reducing bias in that regard.

Multi-query Approach. In our initial experiments, a single positive logo was
pasted (multiple times) on a background image, along with some random noise
logos. Then a random pasted instance of the positive logo is cropped and used as
query to form a positive pair during training. This was replaced with an approach
dubbed multi-query. The idea is to select multiple distinct logos and paste each
multiple times on the same target image. Then, at training time, any one of these
pasted logos can be used as query to form a pair with the target image. Also, and
instead of cropping an instance from that target image to use as query, a random
instance of that same logo is selected from another target image and cropped
from there to be used as query. Beside further enriching and diversifying training
data (making the model more robust to background variations in the query), this
approach also helped in further conditioning model predictions on current query,
as the same target image can now be fed to the model with multiple positive
queries. This greatly reduced model bias of recognizing pasted objects.

Re-ranking. As mentioned above, another key difference between the tasks the
model is trained on (detection/classification) and the tasks the model is tested
on, is the importance of ranking in pattern spotting/sub-image retrieval. The
model, as it is trained, only concerns itself with each input pair individually,
and does not have any concept of actually ranking each prediction with respect
to other predictions. That is why we implement a re-ranking step that takes in
the predicted boxes of the model, and re-rank them based on similarity with the
query, using distance between the embeddings of a very light and fast ImageNet
pre-trained MobileNet [9]. This allows for better task adaptation, and allows us
to better rank exact matches and bring down the slightly more different matches
that the model had given a high score to begin with, which is not necessarily a
wrong behaviour, it is just that other matches are closer to the query.

Figure 4 showcases the different ways in which a single target image can be
matched to form training pairs.

6 Experimental Results

6.1 DocExplore Benchmark Protocol

We use the DocExplore dataset [6] in order to evaluate and compare our app-
roach to other proposals in the domain. With 1, 500 historical document images
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Fig. 4. Possible training pairs for a given target image. Pairs (1) through (4) show-
case standard pairing for the 4 unique queries present in the target. Pairs (5) and
(6) showcase respectively an example pair for the negative query sampling and
random patch cropping. Green boxes represent the output objective for each pair.

and 1, 447 annotated pattern occurrences spanning across 35 unique pattern
categories, DocExplore is a unique dataset that allows us to evaluate pattern
spotting and sub-image retrieval in the context of mediaeval manuscripts. The
metric of choice for both of these tasks is the mean average precision, or mAP,
which efficiently compresses ranked lists of predictions into a single scalar value.
While for sub-image retrieval counting true positives is straightforward, for pat-
tern spotting an extra step is needed. We employ IoU (Intersection over Union)
in order to calculate overlap between predictions and ground-truths. Only pre-
dictions with IoU > 0.5 with a ground-truth occurrence are considered true
positive, as imposed by [6]. It is worth noting that the majority of pattern
occurrences have small dimensions (as small as (20 px, 10 px)), which in turn
become relatively tiny areas (as small as 0.03%) of the document images that
have an average dimension of (600 px, 930 px).

6.2 Pattern Spotting and Sub-image Retrieval

For pattern spotting and sub-image retrieval training/evaluation, more than
220K synthetic target images were created, each having multiple possible pair
matching during training as showcased in Fig. 4. Due to the high volume of
synthetic data generated, our model only needs 20 epochs of training before
converging and gaining marginal improvements in the following epochs. After
extensive testing, the final model used prand = 0.1 and pneg = 0.5, leaving
pstandard = 0.4 for standard target/query pair matching. Also, during train-
ing, the ImageNet pre-trained ResNet50 backbone is frozen, as any amount of
learning of this backbone led to severe over-fitting on synthetic data.

Table 2 presents an overview of the model performance on the synthetic test
set generated following Sect. 4. We can observe how the addition of various strate-
gies significantly boost the model performance, going from 26% mAP and 20%
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Table 2. Sub-image retrieval and pattern spotting performance comparison on the
synthetic test set (mAP score).

Data Synthetic Test Set

Task Sub-Image Retrieval Pattern Spotting

Baseline OS-DETR 26.8 20.7

+ prand 31.7 24.6

+ pneg 75.8 59.3

+ Multi-Query Approach 89.8 71.5

+ Re-Ranking 97.0 80.2

mAP respectively in sub-image retrieval and pattern spotting, all the way up to
97% mAP and 80% mAP with the inclusion of all improvements. This showcases
our success in approaching both the training and testing tasks, having created a
suitable framework for training a sub-image retrieval and pattern spotting sys-
tem. It is also interesting to notice how much the addition of pneg helped in
improving performance, as including negative samples in standard object detec-
tion training is generally not useful, due to the fact that negative boxes them-
selves act as negative samples while training. We analysed that this is most likely
due to the transformer nature of the DETR decoder, where all object queries
first communicate (via self-attention) before providing the final output. If every
input pair results in at least one output box during training, this self-attention
between object queries could lead to always having at least one object query that
should predict with high confidence the most probable occurrence, even when
there is none to be found.

Initial testing on the DocExplore benchmark scored 58% mAP in sub-image
retrieval and 22% mAP in pattern spotting, which is a huge improvement when
compared to the starting points of 3% mAP and 0% mAP saw in Sect. 3.2. Upon
inspection however, we noticed that a large portion of false positives are due to
localization imprecision, which is to be expected from such a domain shift. This
in turn impacts our re-ranking stage, as we will be computing distances using
imprecise crops of patterns. For this reason, and when testing on DocExplore,
we opted to adopt a sped-up version of the box re-centering technique used in
[7]. This allowed our model performance to go up to an impressive 67% mAP in
sub-image retrieval and 38% mAP in pattern spotting, surpassing all previous
learning-free approaches with the exception of the recently proposed work of Curi
et al. [4]. A comparison between our model and other state of the art models is
given in Table 3.

Those results are promising for a multitude of reasons, all revolving around
the fact that our approach is learning-based. (i) Being learning-based, our app-
roach opens up a plethora of possible future improvements and refinement
both for this specific task, as well as for any other task suffering from scarce
to no labelled data. Also, on DocExplore we are competing with learning-free
approaches that have been refined and optimised for the past decade on this task.
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Table 3. Pattern spotting and sub-image retrieval performance comparison on the
DocExplore test set (mAP score). An asterisk (*) denotes a learning-free approach.

Method Sub-Image Retrieval Pattern Spotting

En et al. (PR 2016)* [7] 58.0 15.7

Ubeda et al. (PRL 2020)* [19] 57.7 27.2

Curi et al. (ICPR 2022)* [4] 80.3 63.8

OS-DETR (ours) 67.2 38.1

Fig. 5. Top 4 pattern spotting predictions on three DocExplore queries. Rows (1)
and (2) showcasing a relatively large (150 px, 160 px) and relatively small (40 px,
20 px) query respectively, whereas row (3) showcases the ability of the model to detect
various scales of the same query; a capability not attainable for previous learning-free
works.

So it would be reasonable to predict a similar, if not more important, improve-
ment in following versions of our first of a kind approach. (ii) These experiments
highlight the flexibility of our proposed framework, as the same model is able to
both perform one-shot object detection on MS-COCO benchmark when trained
on COCO data, while also being able to perform pattern spotting on DocExplore
benchmark when trained on synthetically generated data. This point is crucial,
as user-intent and task-objective can change drastically in real world applica-
tions. Being able to control the final behaviour of the model by modelling the
distribution of synthetic training data is a very promising prospective. (iii) Our
approach can perform tasks that are simply not possible with other learning-free
approaches, such as detecting occurrences of patterns with a high scale variabil-
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ity. An example of that can be seen in Fig. 5 at row (3). (iv) Finally, our proposed
framework is very flexible and can most definitely be improved in upcoming iter-
ations, with the possibility to swap the backbone for more expressive or even
more task-adequate backbones, to improve the synthetic data generation pro-
cess, mainly improving the pasting process of the queries, and many other aspects
that can be easily swapped to improve performance.

7 Conclusion

We have demonstrated the feasibility of a learning-based approach to solve
sub-image retrieval and pattern spotting tasks, whose performance closely
approaches the decade-long optimised learning-free methods on the DocEx-
plore benchmark. A novel architecture, OS-DETR, has been proposed that
is capable of adapting to various task-definitions. A flexible and parameteriz-
able synthetic data generation process has been described, showing promising
prospective for domains with scarce to no labelled data. Finally, a set of training
strategies have been proposed that significantly close the gap between classical
detection/classification training and sub-image retrieval/pattern spotting test-
ing. Future work will focus on improving the generalisation capability of our
framework, the synthetic data generation process, as well as establishing better
benchmarks to evaluate said improvements.
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Buc, F.d., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing
Systems, vol. 32. Curran Associates, Inc. (2019). https://doi.org/10.48550/arXiv.
1911.12529

11. Li, Y., Mao, H., Girshick, R., He, K.: Exploring plain vision transformer backbones
for object detection (2022). https://doi.org/10.48550/ARXIV.2203.16527. arXiv
Version Number: 2

12. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted win-
dows. In: ICCV 2021, pp. 10012–10022 (2021). https://doi.org/10.1109/iccv48922.
2021.00986

13. Lv, W., et al.: DETRs beat YOLOs on real-time object detection (2023). https://
doi.org/10.48550/ARXIV.2304.08069. arXiv Version Number: 2

14. Michaelis, C., Ustyuzhaninov, I., Bethge, M., Ecker, A.S.: One-shot instance seg-
mentation. CoRR abs/1811.11507 (2018). https://doi.org/10.48550/arXiv.1811.
11507

15. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

16. Sage, A., Timofte, R., Agustsson, E., Gool, L.V.: Logo synthesis and manipulation
with clustered generative adversarial networks. In: CVPR 2018, pp. 5879–5888.
IEEE, Salt Lake City (2018). https://doi.org/10.1109/CVPR.2018.00616

17. Shen, X., Efros, A.A., Joulin, A., Aubry, M.: Learning co-segmentation by seg-
ment swapping for retrieval and discovery. arXiv (2021). https://doi.org/10.48550/
arXiv.2110.15904

18. Zhang, G., Luo, Z., Cui, K., Lu, S., Xing, E.P.: Meta-DETR: image-level few-
shot detection with inter-class correlation exploitation. IEEE Trans. Pattern Anal.
Mach. Intell. 1–12 (2022). https://doi.org/10.1109/TPAMI.2022.3195735
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Abstract. Classifying scanned documents is a challenging problem that
involves image, layout, and text analysis for document understanding.
Nevertheless, for certain benchmark datasets, notably RVL-CDIP, the
state of the art is closing in to near-perfect performance when consid-
ering hundreds of thousands of training samples. With the advent of
large language models (LLMs), which are excellent few-shot learners,
the question arises to what extent the document classification problem
can be addressed with only a few training samples, or even none at all.
In this paper, we investigate this question in the context of zero-shot
prompting and few-shot model fine-tuning, with the aim of reducing the
need for human-annotated training samples as much as possible.

Keywords: Document Image Classification · OCR · Deep Learning ·
Transformers · Large Language Models · Few-Shot Learning ·
Prompting

1 Introduction

The RVL-CDIP dataset, introduced by Harley et al. [6], is a subset of 400 000
labeled document images derived from the IIT-CDIP collection, originating from
a litigation against the tobacco industry [11], which has significantly boosted
the exploration of deep learning methods for document image classification in
the last decade. Notable advancements include the application of convolutional
neural networks [18], the integration of text, image, and layout embeddings as
demonstrated by LayoutLM [20], OCR-free document understanding through
Transformers (Donut) [10], and cross-modal strategies that fuse image and tex-
tual analysis techniques [2]. The cross-modal strategies stand out by achieving an
impressive classification accuracy of 97.05% across 16 distinct document types,
including letters, forms, and emails.
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Nevertheless, neural network models with a rising number of trainable param-
eters require a large training set of labeled documents to perform satisfactorily.
For example, the RVL-CDIP benchmark needs a training set of 320 000 labeled
documents to distinguish between 16 document classes. If the document cate-
gories change, or for a new dataset, the training set must be relabeled accord-
ingly, which leads to a costly and time-consuming human effort.

The recent advent of large language models (LLMs) has impressively shown
that large networks with billions, or even more than a trillion, parameters, only
need very few training samples, if any, to solve challenging tasks in natural
language processing, including closed-book question answering, translation, and
reading comprehension [3]. LLMs typically rely on unsupervised pre-training of
decoder-only transformer architectures on a large body of texts from the internet,
such as the Common Crawl dataset [17], followed by reinforcement learning from
human feedback, to achieve astounding generalization capabilities.

With respect to the task of document classification, the question arises to
what extent LLMs may be capable of solving the task without the need of
hundreds of thousands of learning samples, relying on their text understanding
capabilities of the document texts, which are extracted by means of optical
character recognition (OCR).

In the present paper, we explore this question in a comprehensive benchmark
evaluation that takes into account several state-of-the art LLMs for text analysis
(Mistral [8], GPT-3 [3], GPT-4 [1]), defines different training scenarios, and puts
the LLM results into a broader context by including also a selection of smaller
language models (RoBERTa [12]), text embedding models (Jina [5]), OCR-free
image-based models (Donut [10]), and multi-modal LLMs (GPT-4-Vision [1]) in
the comparison. The aim of the benchmark evaluation is to investigate the doc-
ument classification performance for an increasing number of learning samples,
starting with zero-shot prompting, where only a textual description of the task
is provided to the model, and ending with few-shot model fine-tuning using 100
samples per class. Note that fine-tuning of LLMs is a challenging task on stan-
dard hardware. We rely on Low-Rank Adaptation (LoRA) [7] to fine-tune one of
the smaller open source LLMs, Mistral-7B [8], for the purpose of our benchmark.

No new method is proposed in this paper. Instead, our contributions are:

– A comprehensive benchmark1 for evaluating document classification in a few-
shot training scenario.

– Comparing LLM prompting vs LLM fine-tuning for document classification.
– Comparing generative vs embedding-based document classification.
– Comparing text-based vs image-based document classification.

With this benchmark evaluation and comparisons of current interest, we aim to
inspire and support further research on few-shot document classification.

The paper is structured as follows: An introduction of the dataset is given in
Sect. 2, a description of the methods in Sect. 3, and in Sect. 4 the experimental
results are presented. Lastly, we draw some conclusions and discuss future work.

1 Available at: https://github.com/asciusb/LLM-CDIP.

https://github.com/asciusb/LLM-CDIP
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2 Data

The RVL-CDIP dataset [6] contains 25 000 scanned grayscale images per docu-
ment class for 16 classes: letter, form, email, handwritten, advertisement, scien-
tific report, scientific publication, specification, file folder, news article, budget,
invoice, presentation, questionnaire, resume, and memo. Several examples from
different categories are shown in Fig. 1.

Fig. 1. Example document images from the RVL-CDIP dataset.

Many document classification and understanding methods require the text
contained in the images, which can be obtained with any OCR engine. No matter
how good the OCR engines have become, there are still difficulties to obtain a
perfect textual representation of the documents. Most notably, parts of some
images are illegible due to degradation or any other quality issues. This makes
purely text-based methods more difficult, as they also need to deal with the noise
created by the OCR.

Furthermore, several categories contain images with very little textual infor-
mation, making it potentially more difficult to distinguish between them as file
folders or advertisements shown in Fig. 1. There is also a mix between handwrit-
ing and printed text in the documents, which could cause issues for the OCR. In
any case, the visual information that is attached to the different types of writ-
ing is lost in the process. Therefore, any OCR-based method relies much more
heavily on the meaning of the content, rather than its structure, although the
grammatical structure remains a significant part of the textual representation.

3 Methods

In the following, we describe the different methods used in the benchmark: Text-
based classification using generative LLMs, text embedding classification, image-
based document classification, and multi-modal LLMs.
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3.1 Text-Based Classification

OCR. For OCR, we use Amazon’s Textract, which performed reasonably well
on a few example images from the RVL-CDIP dataset, especially with respect
to low-resolution, skewed documents, and handwritten elements. The resulting
machine-readable text follows a natural reading order and the text lines are
delimited by line-break characters.

LLMs. We focus on some of the best-performing LLMs from the current state
of the art, including the GPT models from OpenAI [1,3,15,16] and the models
from Mistral AI [8]. The transformer-based models have been pretrained on
texts from the internet and fine-tuned to follow instructions, as well as using
reinforcement learning from human feedback.

Table 1. LLM versions.

Model Version

Mistral-7B Open source [8]

Mixtral-8x7B Open source [9]

Mistral-Medium mistral-medium-2312

Mistral-Large mistral-large-2402

GPT-3.5 gpt-3.5-turbo-0125

GPT-4 gpt-4-turbo-2024-04-09

Table 1 lists the specific versions used. Mistral-7B has 7×109 parameters [8],
Mixtral-8x7B has 47 × 109 [9], and GPT-3 has 175 × 109 [3]. To the best of
our knowledge, no official information is available at the moment for the larger
models.

LLM Prompts. The LLMs are used in chat completion mode with a system
prompt that specifies the classification task in natural language. The prompt
was first formulated by a human. Afterwards, we used GPT-4 in chat completion
mode to refine the original prompt and used it again to further tweak the refined
prompt. The three resulting prompts are shown in Fig. 2.

Zero-Shot Prompting: Only the system prompt is used, relying on the semantics
of the category names for classification.

One-Shot Prompting: We provide context to the LLM by including 16 additional
pairs of prompts (useri, assistanti) after the system prompt, one for each cat-
egory, where useri is an OCR text from the training set and assistanti is its
category name.
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Fig. 2. Three system prompts considered for document classification. Note that the
list of 16 categories has been shortened in the figure, indicated by [. . . ], to save space.

Fine-Tuning LLMs. LLMs have learned a deep understanding of text through
an extensive pretraining. Even though their primary appeal is to use them gen-
eratively, which makes them extremely flexible, it would stand to reason that
their capabilities can also serve as a base for a classification model. In particular,
understanding documents in a low-resource context could benefit from their vast
knowledge of all kinds of texts, including a large variety of documents. Hence, we
explore the task of document classification by adding a classifier on top of an
LLM. In order to fine-tune the LLM, we further employ Low-Rank Adaptation
(LoRA) [7], to adapt it to the specific documents at hand.

As a comparison, to evaluate the effectiveness of using an LLM as the base
model, we also fine-tune the largest available pretrained RoBERTa [12], which
only has 355M parameters. Because of its comparatively small size, the model
is fine-tuned fully instead of having to resort to LoRA adapters.

Finally, to see whether adding a classifier head is really necessary, we also
fine-tune the same model in a generative manner, where at the end of each
document, a classification instruction is added. With the generative approach,
the model maintains the ability to be adapted to any kind of output, as opposed
to the classifier, where the output is limited to the classes it has been trained for.
There are a few disadvantages that come with this flexibility, most notably that
the output is no longer guaranteed to be exactly the class that was asked for,
and an increase in compute, as the model now needs to predict multiple tokens.
Even when the class name consists of a single token, the generative model needs
to predict at least an end-of-sequence token in addition to the class name, which
requires multiple forward passes.
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3.2 Embedding-Based Methods

In addition to generative approaches for classifying OCR texts, we also consider a
standard classification setup based on feature vector representations of the OCR
texts in an embedding space with a k-nearest neighbor classification (KNN). We
also conducted preliminary experiments with multi-layer perceptions (MLP), the
results of which were close to the KNN but never outperformed it.

We focus on some of the best-performing text embedding models from the
current state of the art, specifically a selection of models proposed by Jina AI [5],
Mistral AI, and OpenAI [13]. The versions used are listed in Table 2.

Table 2. Embedding model versions.

Model Version Embedding size

Jina-v2 jina-embeddings-v2-base-en 768

Mistral-embed mistral-embed 1024

OpenAI-small text-embedding-3-small 1536

OpenAI-large text-embedding-3-large 3072

3.3 Image-Based Methods

Donut. Donut is a Transformer-based model for Visual Document Understand-
ing (VDU) that operates entirely on images, without having to rely on the OCR.
Besides a large number of synthetic documents, the pretraining also included
the full IIT-CDIP dataset, which makes it particularly well-suited for classifying
documents from the RVL-CDIP subset.

In [10], they already fined-tuned Donut on various downstream tasks, includ-
ing the classification of RVL-CDIP, which showed excellent results. However,
this was conducted on the complete RVl-CDIP dataset with 320K images in the
training set, whereas we are investigating whether it also performs well when the
training data is severely limited.

3.4 Multi-modal Methods

GPT-4-Vision. Recently, GPT-4-Vision was introduced as a multi-modal
extension of GPT-4, which accepts a combination of text and/or image inputs
from the user [1] (with the same model version as indicated in Table 1).

Image-Based Zero-Shot Prompting. The first sentence of the system prompts
listed in Fig. 2 is changed to “Your task is to classify a document.” without
mentioning the OCR text. Only the document image is provided as input.
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Bimodal Zero-Shot Prompting. The first sentence of the system prompts is
changed to “Your task is to classify a document based on its OCR text and
scanned image, which are both provided by the user.” Afterwards, both the
OCR text and the document image are provided as input.

4 Experimental Evaluation

In this section, we first describe the experimental setup of the benchmark, fol-
lowed by results obtained for prompting, embedding, and fine-tuning, respec-
tively. At the end, all results are summarized and put into context with other
results from the current state of the art.

4.1 Setup

Training. For zero-shot and one-shot prompting, we consider zero samples and
16 samples (one per class), respectively. For few-shot fine-tuning, we investigate
an increasing number of 160 samples (ten per class), 800 samples (50 per class),
and 1 600 samples (100 per class), which are randomly chosen from the original
RVL-CDIP training set. Note that the smaller training sets are included in the
larger ones.

Validation. For optimizing hyperparameters, we consider a validation set of
an additional 160 samples (ten per class), which are randomly chosen from the
original RVL-CDIP validation set.

Testing. We define a test scenario RVL-CDIP-160x5, which consists of five
random selections (without overlap) of 160 samples (ten per class) from the
original test set, for which we obtain a high-quality OCR. We report the mean
accuracy and standard deviation over the five test sets. As demonstrated in the
experiments (see Sect. 4.4), this selection results in a representative subset, which
reduces the cost of testing significantly when using the APIs of Mistral AI and
OpenAI for their LLMs, as they are not freely available.

Additionally, the original RVL-CDIP-40K test set, which contains 40 000
samples, is also included in the evaluation, whenever possible. Having this large
test set available, increases the confidence in the perceived evaluation and serves
as a reference to existing results from the literature.

OCR. For the training sets, validation set, and the RVL-CDIP-160x5 test sets,
we extract the text from the images by using Amazon’s Textract. As running the
OCR on the full RVL-CDIP-40K test set goes beyond the scope of this research,
we fall back to the original OCR texts from the IIT-CDIP collection [11]. The
original OCR was performed with a 90 s-era OCR engine, which unquestionable
produced a lower quality output. Nevertheless, we include it to judge how rep-
resentative our randomly selected subsets are with respect to an established test
set of considerable size.
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Models Setup. For zero-shot and one-shot prompting, we rely on the APIs of
Mistral AI and OpenAI respectively, specifying a temperature of 0 to encourage
precise, non-creative answers. The LLM versions used are indicated in Table 1.

For KNN-based classification of OCR embeddings, we use the APIs of Jina
AI, Mistral AI, and OpenAI to extract the embedding vectors. The embedding
models considered are indicated in Table 2. The parameter k ∈ {1, 3, 5, 7, 9} and
the metric (Euclidean or cosine) are optimized with respect to the classification
accuracy on the validation set.

Fine-tuning Donut is performed by using the official implementation2 and
with the suggested configuration of the CORD dataset [14]. In particular, the
image size is fixed to 1280 × 960 pixels, which provides a good compromise
between readability for the human eye and computational effort for the GPU.

Mistral-7B [8] is used as the base model for all experiments for the LLM
fine-tuning. As proposed in QLoRA [4], the base model is quantized into 4-bit
weights and trainable LoRA adapters are added to all linear layers. We chose
rank r = 8 with alpha = 16 based on preliminary experiments on the validation
set. On the other hand, for RoBERTa, all parameters are fine-tuned, since the
model is small enough to be trained fully in a reasonable time on the available
hardware.

The generative fine-tuning adds a classification directive at the end of each
document, specifically “### Classification:” followed by the class name to
be predicted. Solely the tokens after the classification directive contribute to the
loss and therefore the weight updates. This is not an instruction tuning, meaning
that the model does not receive the instructions that were used for the one-shot
prompting.

RoBERTa and Mistral-7B are both implemented and trained with Hugging-
Face’s transformers [19] library and bitsandbytes3 to support QLoRA.

4.2 Prompting Results

In a preliminary experiment on the validation set, we optimized the LLM system
prompt (see Fig. 2): Written by a human (P1), enhanced by GPT-4 (P2), and
enhanced twice by GPT-4 (P3). For a few-shot learning task with GPT-3.5 using
32 training samples (two per class) and evaluating on 48 validation samples
(three per class), the system prompt P2 achieved the best accuracy (60.4%),
outperforming P1 (58.3%) and P3 (56.2%). That is, an enhancement of the
human prompt by GPT-4 was beneficial and P2 was selected for all subsequent
experiments.

Table 3 shows the prompting results on the test sets of RVL-CDIP-160x5.
For zero-shot prompting, the mean classification accuracy ranges from 25.0%
(Mixtral-8x7B) to 69.9% (GPT-4-Vision), highlighting a large variability among
the models.

2 https://github.com/clovaai/donut.
3 https://github.com/TimDettmers/bitsandbytes.

https://github.com/clovaai/donut
https://github.com/TimDettmers/bitsandbytes
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Table 3. Zero-shot and one-shot prompting. Document classification results on
the RVL-CDIP-160x5 test sets, indicating the number of training samples (#Train), as
well as the mean and standard deviation of the classification accuracy (%) and invalid
answers (%) across the five subsets. The best results per training scenario are marked
in bold.

#Train Input Model Accuracy Invalid

0 OCR Mistral-7B 45.4 ± 2.8 17.0 ± 2.9

0 OCR Mixtral-8x7B 25.0 ± 2.9 56.2 ± 1.7

0 OCR Mistral-Medium 54.6 ± 4.1 6.4 ± 3.1

0 OCR Mistral-Large 54.4 ± 4.1 14.6 ± 1.6

0 OCR GPT-3.5 36.9 ± 1.1 32.1 ± 1.5

0 OCR GPT-4 61.8 ± 2.0 2.1 ± 1.2

0 Image GPT-4-Vision 69.9 ± 2.0 0.5 ± 0.5

0 OCR+Image GPT-4-Vision 69.4 ± 1.7 0.8 ± 0.7

16 OCR Mistral-7B 47.1 ± 3.7 22.9 ± 2.8

16 OCR Mixtral-8x7B 48.2 ± 5.9 13.4 ± 3.3

16 OCR GPT-3.5 58.8 ± 2.1 4.6 ± 1.8

GPT-4-Vision significantly outperforms GPT-4, highlighting the importance
of the document image for classification. Bimodal prompting with both OCR text
and image did not further improve the results when compared with image-only
prompting. Note, however, that GPT-4-Vision is capable of performing OCR, at
least implicitly, when the input consists only of the document image.

One of the main limitations of the smaller models (Mistral-7B, Mixtral-8x7B,
GPT-3.5) are invalid answers. Instead of only responding with a category name,
as requested in the prompt, the models tend to produce longer responses, e.g.
“The text provided appears to be a notice for a membership investment in
the Florida Retail Political Action Committee”. We do not post-process the
responses, thus any deviation from valid category names is considered invalid.

The one-shot prompting results show that the mean accuracy can be
improved for the smaller models (Mistral-7B, Mixtral-8x7B, GPT-3.5) by pro-
viding one example per class, in particular Mixtral-8x7B is improved from 25.0%
to 48.2% while reducing the number of invalid answers from 56.2% to 13.4%.

We did not test one-shot prompting for the larger models due to the large
number of tokens that are added to the prompt (16 OCR texts or images, respec-
tively), which significantly increases the costs of using the commercial APIs.
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4.3 Embedding Results

The results for KNN-based classification of OCR text embeddings are shown
in Table 4. The mean accuracy achieved by Mistral-embed, OpenAI-small, and
OpenAI-large are fairly similar and outperform most of the LLM prompting
results when 800 or more training samples are considered, demonstrating that
embeddings are a promising strategy for a few-shot learning scenario.

Table 4. KNN classification of OCR text embeddings. Document classifica-
tion results on the RVL-CDIP-160x5 test sets, indicating the number of training sam-
ples (#Train), as well as the mean and standard deviation of the classification accu-
racy (%) across the five subsets. The best results per training scenario are marked in
bold.

#Train Input Embedding Accuracy

160 OCR Jina-v2 41.9 ± 1.6

160 OCR Mistral-embed 56.4 ± 3.0

160 OCR OpenAI-small 53.9 ± 2.9

160 OCR OpenAI-large 54.4 ± 1.2

800 OCR Jina-v2 52.9 ± 4.0

800 OCR Mistral-embed 63.5 ± 2.0

800 OCR OpenAI-small 62.4 ± 3.2

800 OCR OpenAI-large 64.8 ± 3.1

1 600 OCR Jina-v2 57.1 ± 4.5

1 600 OCR Mistral-embed 66.8 ± 2.7

1 600 OCR OpenAI-small 65.8 ± 3.4

1 600 OCR OpenAI-large 67.8 ± 3.8

There is one exception: Zero-shot prompting using GPT-4-Vision (69.9%
mean accuracy) outperforms all embedding models tested, even when using 1 600
training samples.

A visualization of the OpenAI-large embeddings using t-SNE dimensionality
reduction is depicted in Fig. 3, illustrating the capability of the embedding model
to form class-wise clusters based on the OCR text.

4.4 Fine-Tuning Results

Table 5 reports the results for fine-tuning RoBERTa, Mistral-7B, and Donut
in the different few-shot training scenarios. All fine-tuned models outperform
LLM prompting and embedding strategies from the previous sections when 800
training samples or more are used. The results also indicate that almost no
invalid responses are generated by the fine-tuned models.

One model stands out with an excellent performance for few-shot learning:
Generative fine-tuning of Mistral-7B. Even when providing only 160 training
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Fig. 3. Embedding of the 1 600 training samples using the OpenAI-large model, visu-
alized with t-SNE.

samples (10 samples per class), the LLM achieves a promising mean accuracy of
72.5% on the RVL-CDIP-160x5 test sets, creating a noticeable gap to the next
best model (RoBERTa, 59.8%). Classification fine-tuning is less successful when
considering only 160 training samples but catches up for 800 and more, achieving
the overall best result of 83.4% for 1 600 training samples.

Besides the aforementioned results, Table 5 also contains the results for the
original RVL-CDIP-40K test set. Regarding the OCR-based models, the results
show a systematic decrease in accuracy for RVL-CDIP-40K when compared to
RVL-CDIP-160x5. This is most likely due to the rather low OCR quality of the
original dataset. In contrast, we are considering state-of-the-art OCR results for
RVL-CDIP-160x5.

This hypothesis is further strengthened when taking the OCR-free (Donut)
results into account, which exhibit a much smaller difference between the two test
scenarios. Concretely, for image-based classification with Donut the RVL-CDIP-
40K test results are within one or two standard deviations of the RVL-CDIP-
160x5 test results for all three training scenarios (160, 800, 1 600). Therefore, we
conclude that the five-fold selection of 160 test samples is, indeed, representative
for evaluating the RVL-CDIP classification challenge.

Even though the Mistral-7B-Class achieved the single highest result on the
RVL-CDIP-160x5 test sets, the generative model (Mistral-7B-Gen) is much more
consistent across multiple scenarios. Given that the generative model retains its
flexibility, it makes it even more appealing than using a model with a classifier
head.
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Table 5. Few-shot model fine-tuning. Document classification results on the RVL-
CDIP-160x5 and RVL-CDIP-40K test sets, indicating the number of training sam-
ples (#Train) and the classification accuracy (%) across the five subsets. The best
results per training scenario are marked in bold.

#Train Input Model RVL-CDIP-160x5 RVL-CDIP-40K

Accuracy Invalid Accuracy Invalid

160 OCR RoBERTa 59.8 ± 3.8 0.0 ± 0.0 50.2 0.0

160 OCR Mistral-7B-Class 51.1 ± 4.0 0.0 ± 0.0 23.4 0.0

160 OCR Mistral-7B-Gen 72.5 ± 3.9 0.4 ± 0.3 66.7 0.2

160 Image Donut 42.8 ± 3.0 0.8 ± 0.7 44.2 1.2

800 OCR RoBERTa 74.9 ± 4.9 0.0 ± 0.0 66.8 0.0

800 OCR Mistral-7B-Class 78.3 ± 2.4 0.0 ± 0.0 58.7 0.0

800 OCR Mistral-7B-Gen 79.5 ± 3.3 0.5 ± 0.5 72.8 0.2

800 Image Donut 70.1 ± 2.6 0.1 ± 0.2 71.4 0.2

1 600 OCR RoBERTa 78.0 ± 2.0 0.0 ± 0.0 69.3 0.0

1 600 OCR Mistral-7B-Class 83.4 ± 4.3 0.0 ± 0.0 66.6 0.0

1 600 OCR Mistral-7B-Gen 82.4 ± 2.1 0.5 ± 0.3 74.7 0.3

1 600 Image Donut 73.8 ± 1.9 0.0 ± 0.0 76.4 0.1

4.5 Results Summary

A summary of the classification results is given in Table 6 with the best models
for each training scenario (zero-shot prompting or few-shot learning) and input
modality (OCR text and/or image). In the case of OCR text, we include both
the embedding approach and end-to-end models. The results achieved on the
RVL-CDIP-160x5 test sets are put into context with the results reported in
the literature on RVL-CDIP-40K that use the full 320 000 documents for the
training.

For zero-shot prompting, the largest LLMs from OpenAI, in particular the
multi-modal GPT-4-Vision model, demonstrate an impressive generalization
capability with a mean accuracy of 69.9% on the test sets, considering the fact
that in this scenario the document classes can be changed on the fly, without
the need to annotate learning samples.

Regarding the fine-tuning, the smaller Mistral-7B model stands out in its
capability to rapidly adapt to the classification task with only very few training
samples when using the generative fine-tuning based on LoRA. Fine-tuning with
ten samples per class leads to a mean accuracy of 72.5%.

When fine-tuning with 100 samples per class, which is still considered to be
a small amount of training data for the document classification task, the fine-
tuned Mistral-7B model with a classifier head achieves the overall best mean
accuracy of 83.4%. This is a notable achievement when compared to the 85.0%
accuracy reported in [2] for a fully trained BERT model using 320 000 training
samples. Admittedly, Mistral-7B is an order of magnitude larger than BERT in
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Table 6. Summary of document classification results. The best-performing app-
roach is listed for each zero-shot to few-shot training scenario evaluated on the RVL-
CDIP-160x5 test sets. The results are put into context with fully trained models eval-
uated on the RVL-CDIP-40K test set.

#Train Input Model Accuracy

0 OCR GPT-4 61.8 ± 2.0

0 Image GPT-4-Vision 69.9 ± 2.0

0 OCR+Image GPT-4-Vision 69.4 ± 1.7

160 OCR Mistral-embed+KNN 56.4 ± 3.0

160 OCR Mistral-7B-Gen 72.5 ± 3.9

160 Image Donut 42.8 ± 3.0

800 OCR OpenAI-large+KNN 64.8 ± 3.1

800 OCR Mistral-7B-Gen 79.5 ± 3.3

800 Image Donut 70.1 ± 2.6

1 600 OCR OpenAI-large+KNN 67.8 ± 3.8

1 600 OCR Mistral-7B-Class 83.4 ± 4.3

1 600 Image Donut 73.8 ± 1.9

320 000 OCR BERT [2] 85.0

320 000 Image Donut [10] 95.3

320 000 OCR+Image BERT+NasNet [2] 97.1

terms of parameters, nevertheless, it indicates that very promising results can be
achieved with much less training data.

5 Conclusion

The RVL-CDIP dataset was originally proposed as a document classification
challenge using hundreds of thousands of training samples. Under these condi-
tions, the state of the art has gradually achieved near-perfect performance. By
revisiting the question of document classification under the perspective of con-
sidering only very few training samples (or none at all), this paper investigates
the capacity of current document models to rapidly generalize to new tasks.

We contribute a comprehensive set of benchmark results that explore the
question with prompts, embeddings, and model fine-tuning using methods from
the current state of the art for image and text analysis. We demonstrate the fea-
sibility of zero-shot and few-shot document classification using LLMs, achieving
results that, although promising between 69.9% and 83.4% mean accuracy, leave
significant room for improvement.

An important line of future research is related to document foundation
models. The strongest few-shot fine-tuning results reported in this paper were
achieved with large text-based models (Mistral-7B). However, the state of the
art clearly demonstrates that combining image and text leads to significantly
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better results for fully trained models. Therefore, integrating more visual infor-
mation into document foundation models is expected to significantly improve
few-shot document classification. There is an increasing number of multi-modal
LLMs [21] that may be investigated in this context.

Other lines of research include improvements of the prompts, e.g. by pro-
viding additional semantics to the LLM that go beyond only the name of the
category. Finally, it would be beneficial to explore different learning strategies
for unlabeled data, including self-training and unsupervised contrastive learning,
to further improve the results of few-shot fine-tuning.
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Abstract. The difficulty of reliably extracting characters had delayed
the character recognition solutions (or OCRs) in Indian languages.
Contemporary research in Indian language text recognition has shifted
towards recognizing text in word or line images without requiring sub-
word segmentation, leveraging Connectionist Temporal Classification
(CTC) for modeling unsegmented sequences. The next challenge is the
lack of public data for all these languages. And there is an immediate
need to lower the entry barrier for startups or solution providers. With
this in mind, (i) we introduce Mozhi dataset, a novel public dataset com-
prising over 1.2 million annotated word images (equivalent to approxi-
mately 120 thousand text line images) across 13 languages. (ii) We con-
duct a comprehensive empirical analysis of various neural network models
employing CTC across 13 Indian languages. (iii) We also provide APIs
for our OCR models and web-based applications that integrate these
APIs to digitize Indic printed documents. We compare our model’s per-
formance with popular publicly available OCR tools for end-to-end doc-
ument image recognition. Our model outperform these OCR engines on 8
out of 13 languages. The code, trained models, and dataset are available
at https://cvit.iiit.ac.in/usodi/tdocrmil.php.

Keywords: Printed text · Indic OCR · Indian languages · CRNN ·
CTC · text recognition · APIs · web-based application

1 Introduction

Text recognition faces challenges related to language/script, text rendering, and
imaging methods. This study concentrates on recognizing printed text in Indian
languages, particularly on text recognition alone, assuming cropped word or line
images are provided. The 2011 official census of India [1] lists 30 Indian lan-
guages with over a million native speakers, 22 of which are recognized as official
languages. These languages belong to three language families: Indo-European,
Dravidian, and Sino-Tibetan. Our focus is on text recognition in 13 official lan-
guages: Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Manipuri,
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Fig. 1. We explore printed text recognition across 13 Indian languages, covering ten
unique scripts. Although many languages share a common alphabet, their scripts
vary, with exceptions like Hindi and Marathi. The last column shows the name
“Gandhi” in all ten scripts.

Fig. 2. Shows a few sample of cropped images of each of 13 languages from our Mozhi
dataset.

Marathi, Oriya, Punjabi, Tamil, Telugu, and Urdu. While some share linguistic
similarities, their scripts are distinct, with Devanagari script used in Hindi and
Marathi and Bengali script in Bengali, Assamese, and Manipuri, among others.
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Our study explores printed text recognition across 13 Indian languages, repre-
senting ten scripts. Figure 1 illustrates “Gandhi” written in these ten scripts.
At the same time, Fig. 2 depicts a sample of cropped images from 13 languages
from our newly created Mozhi dataset. The APIs corresponding to our developed
models are integrated into Bhashini1 for public use. However, we are continu-
ously working on including the remaining low-resource languages—Bodo, Dogri,
Kashmiri, Konkani, Maithili, Nepali, Sanskrit, Santali, and Sindhi—to cover all
twenty-two languages of India.

Efforts to develop OCRs for Indian scripts began in the 1970s but faced
challenges in scaling across languages and achieving satisfactory results across
diverse document types until recently [4,6,29]. Challenges such as script intrica-
cies, linguistic diversity, and limited annotated data hindered progress in Indian
language OCR. The adoption of Connectionist Temporal Classification (CTC),
initially successful in speech transcription, revolutionized text recognition across
various forms, including handwritten [11], printed [26,31], and scene text [28,30].
Popular open-source OCR tools like Tesseract [2], EasyOCR [15], and ocropy [20]
now leverage CTC-based models, enabling recognition of word or line images
without sub-word segmentation.

Segmenting words into sub-word units presents a significant challenge for
Indian languages compared to English [25]. Developing Indian language recog-
nizers is further complicated by the intricate relationships between script glyphs,
language text, and machine representation. In the script, the atomic unit is an
isolated symbol (glyph), while in the language, it’s an Akshara or an ortho-
graphic syllable. Machine text representation uses Unicode points. An Akshara
can comprise multiple glyphs, and a sequence of multiple Unicode points can
represent an Akshara. Splitting text at Aksharas and mapping them to Unicode
sequences necessitates language and script knowledge [19,25]. Therefore, adopt-
ing CTC-based sequence modeling has become the standard approach for Indian
language OCR [3,17,25]. This approach directly maps features from word or line
images to target Unicode sequences, eliminating the need for explicit alignment
during training. Our study offers a comprehensive empirical analysis of various
design considerations in developing a CTC-based printed text recognition model
for Indian languages.

Our contributions are the following:

– We introduce a new public dataset Mozhi for text recognition in 13 Indian
languages, comprising cropped line and word segments with corresponding
ground truth for all languages except Urdu. With over 1.2 million annotated
word images, this dataset is the largest for text recognition in Indian lan-
guages (refer Table 1 and Fig. 3).

– We empirically compare the performance of four types of CTC-based text
recognition methods across 13 official languages of India, varying in feature
extraction and sequence encoding. Additionally, we assess word level and line
level recognition models.

1 https://bhashini.gov.in/.

https://bhashini.gov.in/


170 M. Mathew et al.

– We develop end-to-end page level OCR systems by integrating our best text
recognition models with existing line and word segmentation tools. These
systems outperform Tesseract5 [2] and Google Cloud Vision OCR [9] for 8
out of 13 languages (refer Table 4).

– Offer APIs for our OCR models and web-based applications that seamlessly
integrate these APIs to digitize Indic printed documents.

2 Related Work

Current OCRs for Indian scripts mainly rely on segmentation-free approaches,
which directly produce a label sequence from word or line images. Sankaran et
al. [26] introduced CTC-based sequence modeling for printed text recognition in
Indian languages. Their method utilizes an RNN encoder and CTC transcription
to map features extracted from Devanagari word images to class labels. Profile-
based features [32] extracted using a 25 × 1 sliding window are employed. Ini-
tially, the model maps Aksharas to class labels and uses rule-based mapping to
Unicode. In a subsequent work [25], they directly map feature sequences from
word images to Unicode sequences, eliminating the need for rule-based Akshara
to Unicode mapping.

The introduction of the CTC-based transcription method marked a signifi-
cant advancement in Indic scripts, particularly by overcoming the challenge of
sub-word segmentation. Directly transcribing word images into machine-readable
Unicode sequences also eliminated the need for language-specific rules to map
latent output classes to valid Unicode sequences. Krishnan et al. [17] utilized
profile-based features and a CTC-based model similar to [25] for recognizing
seven Indian languages. Their evaluation on a large test set per language demon-
strated the effectiveness of a unified framework employing CTC transcription for
multilingual text recognition, eliminating the necessity for language or script-
specific modules.

Hasan et al. [3] proposed an RNN+CTC model for printed Urdu text recog-
nition, directly generating Unicode sequences from text line images. Utilizing
a 30 × 1 sliding window for raw pixel feature extraction, their method yielded
promising outcomes. Similarly, our prior work [19] centered on multilingual OCR
for 12 Indian languages and English, employing a two-stage system with a script
identification module and a recognition module. Chavan et al. [7] compared RNN
and multidimensional RNN (MDRNN) encoders with CTC transcription. They
found the MDRNN encoder outperformed the RNN encoder, using HOG fea-
tures with the former and raw pixels with the latter. Another study achieved
over 99% character/symbol accuracy for Bengali script recognition [22] using an
RNN+CTC model. Kundaikar and Pawar [18] explored the robustness of CTC-
based Devanagari OCR to font and size variations. At the same time, Dwivedi
et al. [8] achieved a character/symbol error rate under 3% for Sanskrit recogni-
tion using an encoder-decoder model. These findings, particularly the reliance on
CTC transcription, motivate our comprehensive empirical study comparing var-
ious encoder types and features for both line and word recognition in Indian
languages.
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3 Mozhi Dataset

To our knowledge, no extensive public datasets are available for printed text
recognition in Indian languages. Early studies often utilized datasets with
cropped characters or isolated symbols for character classification [5,24]. Later
research relied on either internal datasets or large-scale synthetically generated
samples for word or line level annotations [3,7,8,16–19,26]. While recent efforts
have introduced public datasets for Hindi and Urdu, they typically contain a lim-
ited number of samples intended solely for model evaluation [16,19]. However,
due to variations in training data among these studies, comparing methods can
be challenging. To address the scarcity of annotated data for training printed
text recognition models in Indian languages, we introduce the Mozhi dataset.
This public dataset encompasses both line and word level annotations for all 13
languages examined in this study. It includes cropped line images, corresponding
ground truth text annotations for all languages, and word images and ground
truths for all languages except Urdu. With 1.2 million word annotations (approx-
imately 100,000 words per language), it is the largest public dataset of real word
images for text recognition in Indian languages. For each language, the line level
data is divided randomly into training, validation, and test splits in an 80:10:10
ratio, with words cropped from line images forming corresponding splits for
training, validation, and testing. Table 1 shows statistics of Mozhi.

Table 1. Statistics for the new Mozhi dataset, a public resource for recognizing printed
text in cropped words and lines, reveal over 1.2 million annotated words in total.
Notably, only cropped lines are annotated for Urdu.

Script Language Train Validation Test

Lines Words Lines Words Lines Words

Bengali Assamese 9566 79959 1196 9945 1196 10146

Bengali Bengali 7579 80113 948 9787 947 10113

Gujarati Gujarati 8632 79910 1080 10016 1079 10090

Devanagari Hindi 6525 79762 816 10114 816 10173

Kannada Kannada 3462 80085 1683 10088 1683 9838

Malayalam Malayalam 15112 80146 1889 9893 1889 9980

Bengali Manipuri 9765 79691 1221 10254 1221 10061

Devanagari Marathi 8380 80151 1048 10005 1048 9855

Oriya Oriya 8260 79945 1033 10089 1033 9994

Gurumukhi Punjabi 6726 79931 841 10036 841 10038

Tamil Tamil 16074 80022 2010 10021 2009 9974

Telugu Telugu 12722 80337 1591 9811 1590 9876

Nastaliq Urdu 9100 – 1138 – 1137 –
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Fig. 3. A few sample of word level images from our Mozhi dataset.

Fig. 4. Shows screen shot of our web-based APIs to digitize Indic printed documents.

4 APIs and Web-Based Applications

We develop APIs for page level recognition models across 13 languages and built
a web-based application available at https://ilocr.iiit.ac.in/fastocr/ that inte-
grates these APIs for digitizing printed documents in Indic languages. Figure 4
illustrates the steps for utilizing our web-based APIs to digitize Indic printed doc-

https://ilocr.iiit.ac.in/fastocr/
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uments. Users can upload a document image, select the language, OCR model
version, layout version, and execute to obtain OCR output.

5 Text Recognition Using CTC Transcription

Fig. 5. We examine four CTC-based text recognition methods—Col RNN, Win RNN,
CNN only, and CRNN, distinguished by their feature extraction and sequence encod-
ing. W and H represent the width and height of the input image I, respectively. |L′|
indicates the number of class labels, including the blank label. Hidj signifies the num-
ber of hidden units in the last RNN layer. In the case of Win RNN, WW , and SW

denote the width and step size of the sliding window, respectively.

Given an input image I containing a word or a line, text recognition involves
converting the text on the image into a machine-readable format. We frame
this task as a sequence modeling problem utilizing CTC. The input comprises
a sequence of features x = x1, x2, ..., xT , where xt ∈ R

D is extracted from the
image I. The output is a sequence of class labels l = l1, l2, ..., lN , where ln ∈ L
and L represents the output alphabet, i.e., the set of unique class labels. In our
scenario, L corresponds to all Unicode code points we aim to recognize. We adopt
an encoder-decoder interpretation of the CTC framework, as described in [12]
(Fig. 5).

5.1 Extracting Feature Sequence

Graves et al. [10] introduced CTC for speech-to-text transcription, employing a
sliding window method to extract features from the time axis of the speech signal.
They used a window size of 10 milliseconds (ms) and a step size of 5 ms, extract-
ing a fixed-size feature vector termed a time-step or a frame at each instance
of the sliding window. However, grey-scale images represent 2D scalar-valued
spatial signals in contrast to speech signals. Thus, approaches employing CTC
for text transcription from images typically extract features along the horizontal
axis of the image [3,25,28]. We follow a methodology similar to that outlined
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in [3,25,28], where feature vectors in the input sequence x represent horizontal
segments of the image. Each instance of the input sequence is referred to as a
time-step or a frame, consistent with the original approach [10]. The horizontal
span of a frame varies depending on the feature extraction method. The feature
sequence, x, is extracted in alignment with the script direction. Specifically, for
languages other than Urdu, features are extracted from left to right, whereas
they are extracted in the opposite direction for Urdu. In summary, given a doc-
ument image I ∈ R

W×H (grey-scale), the feature sequence is obtained as follows:

x ∈ R
T×D = FeatureExtract(I). (1)

Encoder: The sequence encoder’s task is to transform the input sequence x
into an encoded representation x′ ∈ R

T×D′
, where D′ represents the encoding

size—i.e., the fixed dimensional to which each feature vector is encoded.

x′ ∈ R
T×D′

= Encoder(x). (2)

In this work, we explore several encoder configurations—Col RNN, Win RNN,
CNN only, and CRNN for feature extraction2.

Decoder: The encoded features x′ undergo a linear projection layer followed by
Softmax normalization, aligning their size with the number of output classes.
This procedure, resembling the decoding phase of CTC as interpreted in [12],
extends the original output alphabet L with an extra label for blank, denoted as
∼. The blank label signifies instances where no label is assigned to an input. Soft-
max normalization at each time step yields class conditional probabilities, form-
ing the posterior distribution over the classes. Essentially, given the sequence of
encoded features,

y ∈ R
T×L′

= Decoder(x′), (3)

where each yt ∈ RL′
represent activations at time step t. Thus yk

t is a score
indicating the probability of kth label at time step t.

We utilize CTC transcription3 to determine the most likely sequence of class
labels given y.

5.2 Training

Let the training dataset be denoted as S = Ii, li, where Ii represents a word or
line image and li represents its corresponding ground truth labeling. The objec-
tive function for training the encoder-decoder neural network for CTC transcrip-
tion is derived from Maximum Likelihood principles. The aim is to minimize this
objective function to maximize the log-likelihoods of the ground truth labeling.
Therefore, the objective function utilized is:

O = −
∑

Ii,li∈S

log p(li|yi), (4)

2 Details of them are presented in the supplementary material.
3 Additional information regarding CTC transcription can be found in the supplemen-

tary material.
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where yi is the decoder output for the ith sample. The above objective function
can be optimized using gradient descent and back-propagation.

5.3 Inference

During inference, the CTC-based classifier aims to output the labeling l∗ with
the highest probability, as defined in Eq. (5).

p(l|x) =
∑

π∈B−1(l)

p(π|x). (5)

6 Experimental Setup

6.1 Implementation Details

In all experiments, cropped word or line images are resized to a height of 32 pixels
and converted to grayscale, maintaining the original aspect ratio. To establish
a validation split, we randomly select 5% of pages from each book in the train
split for all languages. It ensures that the validation split reflects the pages in
the train split while the test split comprises pages from different sets of books. In
Win RNN, the sliding window width WW is set to 20, and the step size WS is set
to 5. For Col RNN, Win RNN, and CRNN, we utilize a bi-directional LSTM with
256 hidden units per direction across two layers, resulting in an output size of 2×
256 at each time step. The CNN architecture in CNN only and CRNN follows the
original CRNN paper [28]. Our models are implemented using PyTorch [21]. We
utilize an existing CRNN implementation [14] for our experiments, conducting
training on a single Nvidia GeForce 1080 Ti GPU. Training is set for 30 epochs.
Word recognition models have a batch size of 64, while line recognition models
use a batch size of 16. RMSProp [13] is employed as the optimizer. Col RNN and
Win RNN are assigned a learning rate of 10e − 03, while CNN only and CRNN
variants converge faster with a lower learning rate of 10e − 04.

6.2 Evaluation

We need to assess text recognition in three scenarios: (i) word OCR: recogniz-
ing cropped word images, (ii) line OCR: recognizing cropped line images, and
(iii) page OCR: end-to-end text recognition from document images. Our main
evaluation metric in all cases is Character Accuracy (CA), determined by the
Levenshtein distance between predicted and ground truth strings. For a formal
definition of CA, let us denote the predicted text for a word/line/page as li
and the corresponding ground truth as gi. If there are N such samples, CA is
defined as

CA =
∑

i len(gi) − ∑
i LD(li, gi)∑

i len(gi)
× 100, (6)

where len is a function that returns the length of the given string, and LD is
a function that computes the Levenshtein distance between the given pair of
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strings. Note that Character Error Rate (CER), another commonly used metric
for OCR evaluation, is essentially 100 − CA. We also include Sequence Accu-
racy (SA) alongside CA for word OCR and line OCR. SA represents the per-
centage of samples where the prediction is entirely correct (i.e., LD(li, gi) = 0).
In the context of word recognition models, SA is equivalent to ‘word accuracy’
and is commonly used in scene text recognition literature.

Table 2. Results for recognition-only tasks are presented for each language individually
on validation set of Mozhi dataset. Each model configuration (Col RNN, Win RNN,
CNN only, and CRNN) is trained separately for each language. Character Accuracy
(CA) and Sequence Accuracy (SA) are reported for word recognition. The highest CA
and SA values among the four encoder configurations are highlighted in bold.

Language Word Recognition

Col RNN Win RNN CNN only CRNN

CA SA CA SA CA SA CA SA

Assamese 98.6 95.4 97.6 92.9 98.3 96.0 99.0 96.5

Bengali 99.1 97.0 98.3 94.5 99.2 97.3 99.4 97.9

Guajrati 96.2 92.4 95.1 89.5 96.2 90.9 96.5 93.9

Hindi 97.6 95.1 96.3 92.3 97.4 94.2 98.2 96.3

Kannada 97.4 88.9 96.4 84.7 96.7 85.8 97.7 90.7

Malayalam 99.5 96.6 99.3 95.6 98.0 83.7 99.7 97.7

Manipuri 98.6 95.4 97.8 92.8 98.2 93.1 99.0 96.9

Marathi 99.0 96.2 98.5 94.2 98.9 95.0 99.2 96.9

Odia 96.8 93.5 95.7 90.8 96.9 93.7 97.2 94.8

Punjabi 99.1 97.7 98.4 96.4 99.2 97.8 99.5 98.7

Tamil 97.9 91.0 97.4 88.4 97.3 87.2 98.0 91.8

Telugu 96.3 91.4 95.3 86.8 96.4 92.0 96.8 93.6

Urdu – – – – – – – –

We employ a standard OCR evaluation toolkit for page OCR, where the
input is a document image. Specifically, we utilize a modern adaptation [27] of
the original ISRI Analytic Tools for OCR Evaluation [23]. Using this toolkit, we
compute Character Accuracy (CA) and Word Accuracy (WA). CA is calculated
following the method described in Eq. (6). Word accuracy is determined by
aligning the sequences of words in the prediction li with those in the ground truth
gi and identifying the Longest Common Sub-sequence (LCS) between them. For
a set of pages,

WA =
∑

i len(LCS(li, gi))∑
i len(gi)

× 100 (7)

where len returns the number of words in a given sequence of words.
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7 Experiments and Results4

7.1 Comparing Different Encoder Configurations

We assess the performance of four encoder configurations on the validation set of
Mozhi dataset for word recognition. Results are presented in Table 2. Each CA
and SA pair in the table corresponds to a CTC-based network trained sep-
arately for a specific combination of language, recognition unit (word), and
encoder configuration (Col RNN, Win RNN, CNN only, and CRNN). Across
all cases except for Urdu word recognition, CRNN emerges as the top performer
among the four configurations. The superior performance of CRNN over the
CNN configuration highlights the necessity of capturing long-term dependen-
cies in word or line images. Unlike fully connected networks, CNN layers have
limited receptive fields, necessitating numerous layers to cover the entire input.
Our seven-layer CNN lacks the depth to model extensive horizontal dependen-
cies adequately. This deficiency is mitigated by employing a sequence encoder
(bi-directional LSTM) that proficiently captures long-term dependencies in both
directions.

Table 3. CRNN evaluation on test set of Mozhi dataset. For each language, we train
both word and line level CRNN models on the respective train split of the Mozhi
dataset.

Language Test

Word Line

CA SA CA SA

Assamese 98.9 96.2 99.2 76.8

Bengali 99.0 96.9 98.1 68.4

Gujarati 98.0 94.9 97.4 63.1

Hindi 98.1 95.5 98.8 63.5

Kannada 97.1 88.7 97.5 53.9

Malayalam 99.5 97.3 99.5 87.3

Manipuri 98.4 95.9 99.2 79.4

Marathi 99.3 97.0 99.3 73.8

Oriya 97.5 94.3 98.8 73.1

Punjabi 99.2 98.2 99.3 79.7

Tamil 98.0 91.6 98.3 68.1

Telugu 99.1 95.4 98.9 71.7

Urdu – – 93.8 24.2

7.2 Evaluating CRNN on Test Set of Mozhi

Table 2 highlights that among four different models—Col RNN, Win RNN,
CNN only, and RCNN, RCNN obtained the best results for all languages on

4 Additional results can be found in the supplementary material.
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Table 4. Performance of our page OCR pipelines compared to other public OCR
tools. In this setting, we evaluate text recognition in an end-to-end manner on the test
split of our dataset. Since the focus of this work is on text recognition, for end-to-end
settings, for text detection, gold standard word/line bounding boxes are used. Under
‘End-to-End OCR’ we show results of Tesseract [2] and Google Cloud Vision OCR [9].
Given a document image, these tools output a transcription of the page along with the
bounding boxes of the lines and words detected. Under ‘GT Detection+CRNN’, we
show results of an end-to-end pipeline where gold standard word and line detection are
used. For instance, ‘GT Word’ means we used ground truth (GT) word bounding boxes
and the CRNN model trained for recognizing words, for that particular language. Bold
value indicates the best result.

Language End-to-End OCR GT Detection+CRNN

Tesseract Google GT word GT line

CA SA CA SA CA SA CA SA

Assamese 92.7 91.2 90.0 86.0 99.3 97.0 99.4 97.2

Bengali 93.5 96.2 84.0 91.3 99.1 97.3 99.0 96.8

Gujarati 96.9 92.4 93.0 95.2 98.0 93.7 97.7 91.9

Hindi 95.0 93.3 95.2 97.3 98.1 96.0 98.0 95.6

Kannada 94.9 85.1 85.7 84.6 95.6 89.2 95.9 86.4

Malayalam 96.2 78.7 88.0 74.8 99.4 98.0 99.3 97.9

Manipuri 90.9 80.6 85.7 77.4 98.4 94.7 98.7 94.9

Marathi 97.9 97.4 98.3 98.4 99.6 98.2 99.5 98.0

Oriya 94.0 83.6 92.6 90.0 98.6 95.4 98.0 94.5

Punjabi 93.2 89.8 92.7 96.7 99.2 98.3 99.3 97.9

Tamil 79.3 42.4 92.5 93.1 96.1 85.6 96.5 85.4

Telugu 93.7 79.3 94.2 89.2 99.1 95.1 98.9 94.0

Urdu 68.3 26.2 92.7 85.7 – – 94.7 81.5

validation set of Mozhi dataset with respect to CA and SA metrices for word
recognition task. Since RCNN, highest performing model for validation set, we
evaluated these models on test set of the same dataset. Table 3 presents obtained
results for word and line recognition on test set.

7.3 Page Level OCR Evaluation

In page level OCR, the goal is to transcribe the text within a document image
by segmenting it into lines or words and then recognizing the text at the word or
line level. Our focus lies solely on text recognition, excluding layout analysis and
reading order identification. To construct an end-to-end page OCR pipeline, we
combine existing text detection methods with our CRNN models for recognition.
Transcriptions from individual segments are arranged in the detected reading
order. We evaluate the end-to-end pipeline by using gold standard detection to
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establish an upper bound on our CRNN model’s performance. Additionally, we
compare our OCR results with two public OCR tools: Tesseract and Google
Cloud Vision OCR. Results from all end-to-end evaluations are summarized in
Table 4.

Fig. 6. Displays qualitative results at the page level using Tesseract, Google OCR, and
our method on a Hindi document image. For optimal viewing, zoom in. (a) original doc-
ument image, (b) ground truth textual transcription, (c) predicted text by Tesseract,
(d) predicted text by Google OCR, and (e) predicted text by our approach.

In Fig. 6, visual results at the page level using Tesseract, Google OCR, and
our approach are depicted. Panel (a) presents the original document image, while
panels (b) to (e) display the ground truth and the predicted text by Tesseract,
Google OCR, and our approach, respectively. Wrongly recognized texts are high-
lighted in red. This figure emphasizes that our approach outperforms existing
OCR tools in producing accurate text outputs.
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7.4 Use Cases

We leverage our OCR APIs for various significant applications. Notable exam-
ples include the pages of the Punjab Vidhan Sabha, Loksabha records, and Tel-
ugu Upanishads. These digitization efforts enable easier access, preservation, and
analysis of these valuable texts. The output and effectiveness of our OCR tech-
nology in these diverse use cases are illustrated in Fig. 7. These applications
showcase the versatility and reliability of our OCR APIs in handling different
scripts and document types, ensuring high accuracy and efficiency.

Fig. 7. Illustrates use cases for the digitization of Loksabha records and Telugu Upan-
ishad pages. (a) and (b) display cropped regions from the original images of Loksabha
and Upanishad documents, respectively. Panels (c) and (d) present the corresponding
text outputs generated using our OCR APIs.

7.5 Discussion

Our method performs better in page level recognition than Tesseract across
all 13 languages, as evidenced by the results in Table 4. Specifically, our app-
roach surpasses Google for eight languages, as indicated in the same table when
considering ground truth bounding boxes. However, our dataset predominantly
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comprises pages from books, resulting in limited font, style, layout, and dis-
tortion diversity. Nevertheless, this dataset can serve as valuable pre-training
data. Moving forward, we aim to enrich the dataset by gathering diverse docu-
ments with varying layouts, content, fonts, styles, and distortions, enhancing its
comprehensiveness and utility for developing robust recognition models.

8 Conclusions

We empirically study different CTC-based word and line recognition models in
13 Indian languages. Our study concludes that CRNN, which uses a CNN for
feature representation and a dedicated RNN-based sequential encoder, works
best. Using existing text detection tools and our recognition models, we build
page level OCR pipeline and show that our approach works better than two
popular OCR tools for most of the languages. We also introduce a new public
Mozhi dataset for cropped word/line recognition in 13 Indian languages with
more than 1.2 million annotated words. Additionally, we provide APIs for our
page level OCR models and web-based applications that integrate these APIs to
digitize Indic printed documents. We believe our study, the Mozhi dataset, and
available APIs will encourage research on OCR of Indian languages.

Acknowledgment. This work is supported by MeitY, Government of India, through
the NLTM-Bhashini project.
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Abstract. Script identification of text in natural scene images is challenging due
to complex backgrounds, arbitrary orientations, different-sized characters, varying
fonts, and multiple styles. Most existing methods are not effective in the presence
of the above challenges. This paper introduces a new approach based on the Xcep-
tion architecture and employing the log-polar transformed original image as an
additional input, enabling the extraction of cues that are invariant to rotation, scal-
ing, but are sensitive to script. The rationale behind the proposed work is that
the combination of global features with text style features makes a significant
difference in discriminating between different scripts. To combine the features
extracted by Xception from the input image and log the polar transform of the
input image, the proposed method introduces a style-enhanced fusion block. In
addition, to further improve the performance of script identification, the proposed
approach uses a new receptive channel selective focal attentionmodule. Compara-
tive evaluation results on three benchmark datasets, namely CVSI 2015, SIW-13,
and MLe2e show that the proposed method outperforms the state-of-the-art in
terms of classification rate.

Keywords: Deep learning · Xception architecture · Log polar transform ·
Attention model · Scene text · Script identification

1 Introduction

Developing a universal Optical Character Recognizer for multiple scripts is not feasible
nor advisable. The key reason is that the shape and characteristics of characters are not
shared among multiple scripts. While, for instance, Kannada-Telugu, and Devanagari-
Bengali characters share similar characteristics pairwise. Therefore, although there are
successful OCR systems for recognizing documents in English and other Latin scripts,
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developing a single OCR for multiple scripts is very difficult without losing accuracy.
Thus, to recognize multiple scripts in natural scenes or in a document collection, it is
essential for a script identification step to take place before an appropriate OCR can be
selected for each particular script/language. Script identification is not a new problem in
the field of document image analysis. While there are several methods in the literature,
most are not effective for arbitrary rotations and scaling [1, 2]. Therefore, addressing the
challenge of arbitrary orientation and scaling remains an open challenge. It is evident
from the sample results of the proposed and existing methods, illustrated in Fig. 1, that
the most prominent state-of-the-art approach [1] fails to recognize the script of Kannada,
Korean, and Chinese. On the other hand, the proposed method identifies all the scripts
shown in Fig. 1 accurately.

Fig. 1. Sample images where FAS-Res2net [1] fails to predict correctly, whereas our model
performs well.

The existing FAS-Res2net [1] method effectively captures deep semantic spatial
global and local features for script identification by leveraging features of diverse depth
and scale. However, it is still not sufficient to identify some of the scripts that share almost
the same characteristics. This is due to the fact that the method is not robust to orien-
tation and scaling. To address this challenge, the proposed approach integrates features
from log-polar transformed images. This integration enables the model to capture scale
and rotational variations as alterations in the x and y directions, which are effectively
accommodated by convolutional layers. Thus, the proposed method offers a solution to
the inherent limitations of Convolutional Neural Networks (CNNs) in handling scale
and rotational variations, enhancing its robustness in script identification.
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The key contributions of thework described in this paper are as follows. (i) Proposing
the Xception architecture for global feature extraction is new compared to the state-of-
the-art methods. (ii) Exploring the log-polar transform to make the proposed model
invariant to rotation and scaling is new. (iii) The way the proposed work fuses the global
features with the features extracted from log-polar transformed images using a style-
enhanced fusion block and a receptive channel selective focal attention module is also a
novel idea.

In the remainder of this paper, a review of script identification methods is presented
in Sect. 2. The Xception architecture and the other steps of the proposed method are
described in Sect. 3. Section 4 presents and discusses experimental results, while Sect. 5
offers concluding remarks.

2 Related Work

Significant advancements have been made in script identification within scene images,
leading to the development of several methods. Bunia et al. [3] proposed a model specif-
ically for Indian handwritten script identification, focusing on character-level feature
extraction. However, this work is confined to Indian handwritten scripts and does not
address scripts within scene images. Gomez et al. [2] developed a scene script identifica-
tion model based on patch-based analysis, dividing input images into patches and calcu-
lating global loss using multiple patches rather than individual images. Cheng et al. [4]
concentrated on combining CNNs and a Patch Aggregator (PA) for script identification,
utilizing prediction scores from local patches.

Cheikhrouhou et al. [5] aimed to build an end-to-end multi-task deep neural net-
work for script identification and spotting in document images, limited to handwritten
document images, not scene images. Dutta et al. [6] explored the inception network for
extracting global and local features for script identification within scene images. Khalil
et al. [7] introduced an end-to-end model for text detection and script identification
in scenes, with performance dependent on successful text detection. Bhunia et al. [8]
focused on both scene and video script identification, leveraging CNNs and LSTMs for
local and global feature extraction.

Guo et al. [9] proposed a combination of deep convolutional neural networks and
spatial pyramid pooling for identifying scripts in ancient books. Li et al. [10] introduced
a self-attention network for scene script identification, while Shivakumara et al. [11]
used conventional features to address video script challenges. Udupa et al. [12] explored
YOLOv5 for text localization and script identification and tested it on custom datasets.
Shi et al. [13] proposed CNNs for deep and mid-level feature extraction, and Lu et al.
[14] utilized CNNs and attention CNNs for discriminative patch mining.

Mahajan et al. [15] concentrated on Indian script identification using CNN enhance-
ment, whilstMei et al. [16] explored CNNs and RNNs for scene script identification, and
Ma et al. [17] developed hierarchical feature fusion blocks and attention mechanisms.
Shivakumara et al. [18] explored conventional gradient angular features for script iden-
tification, while Zhang et al. [1]] proposed Res2net for scene script identification. Yang
et al. [19] developed end-to-end models for detection and identification, combining
visual and textual features.
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In summary, while most methods combine local and global features for script iden-
tification, they often lack robustness against arbitrary orientation and scaling, common
in scene text. The proposed work utilizes of log-polar transform to enhance robustness
to rotation and scaling, setting it apart from existing state-of-the-art script identification
approaches.

3 Proposed Method

The proposed architecture leverages a customized adaptation of the Xception architec-
ture, designed to enhance its performance in handling images. The model receives two
inputs: the original image with dimensions 256 × 256 × 3 and its log-polar transformed
counterpart. This log-polar transformation plays a pivotal role in addressing the inherent
challenges of convolutional neural networks (CNNs) regarding rotation and scale varia-
tions. The model’s initial layers extract features from both the input image in rectangular
coordinates and the log-polar transformed image.

Fig. 2. The proposed architecture.

These features are subsequently fused using the Style Enhanced Fusion Block
(SEFB). By combining information from both representations, the model gains robust-
ness in dealing with diverse spatial transformations. To further improve the model’s
ability to discern important features, the Receptive Channel Selective Focal Attention
Module (RCSFAM) is introduced. This module selectively emphasizes relevant chan-
nels while discarding others, enhancing the network’s focus on crucial information. This
attention mechanism proves crucial in addressing the challenges posed by variations in
rotation and scale. The complete framework of the proposed method is presented in
Fig. 2.
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3.1 Log Polar Transform Feature and Style Enhanced Feature Block (SEFB)

The log-polar transform stands as a potent image processing technique that converts
Cartesian coordinates (x, y) to polar coordinates (ρ, θ), creating a distinctive rep-
resentation of visual information. The transformation is mathematically articulated

as ρ = log 2
√

(x − xc)2 + (y − yc)
2, encapsulating details of radial distances, while

arctan2(y − yc, x − xc) captures angular intricacies ((xc, yc) are the coordinates of
the image center). This duality imparts to the network the capacity to discern and cat-
egorize scripts not just based on their shapes but also their orientation. In the realm of
CNNs, particularly sensitive to translation but less so to rotation and scale, the log-polar
transform emerges as an invaluable asset. It adeptly navigates the hurdles presented by
variations in script orientation and size by furnishing a more equivariant representation.
As a result, the log-polar transform elevates the CNN’s proficiency in recognizing and
classifying scripts across diverse rotations and scales, establishing itself as a very effec-
tive preprocessing step in the script identification landscape. This transformation process
enables the network to represent features in a robust and invariant way, contributing to
higher accuracy and generalization in script identification.

The effectiveness of the Log-Polar transform can be observed in Fig. 3, where one
can see the output of the inverse log-polar transform is almost the same as the input image
for all the scripts listed in Fig. 3(a). This infers that the angle and radial information are
capable of preserving the finer details of the content with additional rotation and scaling
invariance features.

The Style Enhanced Fusion Block (SEFB) fuses the rectangular features and the fea-
tures from the log-polar transformed image. FR of dimensionH×W×C are the features
of the original image (in a rectangular coordinate system) whereas FLP of dimension H
W × C is the extracted feature from the log-polar transformed image. FLP is converted
to the Cartesian coordinate system (by applying the inverse log-polar transform).

This converted FLP is then concatenated with FR to generate a feature map of dimen-
sion H×W× 2C and convolved by a separable convolutional layer (C number of filters
and kernel size of 1) to produce FILPR of dimension H × W × C. An overview of the
SFEBmodule can be seen in Fig. 3(b) where one can see two key components: style inte-
gration and style pooling. In the style pooling part, channel-wise statistics are utilized,
inspired by [20]. The proposed model calculates the statistical average value μbc and
standard deviation μbc of each channel of FILPR which are represented as StdPool and
AvgPool in Fig. 3(b). They are concatenated together to produce a style pooled feature
of dimension H × W × 2. The style integration part comprises a channel-wise fully
connected Dense layer, followed by a batch normalization (BN) layer, and a sigmoid
activation function. By a style integration unit, the style pooled features can automat-
ically learn style weights at the channel level. Finally, this style integrated feature of
dimension H × W × 1 is then multiplied with FILPR to produce FSEFB of dimension H
× W × C.
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Fig. 3. Log polar transform and the SEFB module.

3.2 Receptive Channel Selective Focal Attention Module (RCSFAM)

The Receptive Channel Selective Focal Attention Module (RCSFAM) is a modified
version of the Focal AttentionModule [21], which utilizes the information of the various
receptive fields as shown in Fig. 4. It focuses on the relevant and important feature
channels to enrich the middle flow of the Xception architecture with attention-aided
useful features. FocalModulation offers several advantages over traditional self-attention
mechanisms, particularly in the context of script identification tasks using CNNs. The
advantages are:

Computational Efficiency: FocalModulation yi = T2(M2(i; X); xi) involves an early
aggregation procedure where the context features are first aggregated using M2 at each
location i, and then the query interacts with the aggregated feature based on T2 to form yi.
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In contrast, self-attention requires summing over non-shareable attention scores for dif-
ferent queries, resulting in a computationally expensive process yi = T1(M1(xi; X); X).
The interaction T2 in Focal Modulation is a lightweight operator between a token and its
context, while T1 in self-attention involves computing token-to-token attention scores,
which have quadratic complexity.

Spatial and Channel-Specific Modulation: Focal Modulation allows for spatial and
channel-specific modulation, enhancing the model’s ability to discern relevant features
yi = q(xi) � m(i; X). This spatial and channel specificity is achieved through the
element-wise multiplication operation, enabling selective modulation of token features.

Translation Invariance: Focal Modulation is inherently translation invariant due to its
centering at the query token i and the absence of positional embeddings in the modula-
tion process. This translation invariance ensures consistent performance across different
spatial shifts, a crucial aspect in script identification tasks.

Explicit Input Dependency: Focal Modulation explicitly depends on the input con-
text features X by aggregating local features around the target location i. This input
dependency enables Focal Modulation to capture fine-grained spatial and semantic
information, contributing to improved script identification accuracy.

Thus, the Focal Modulation’s efficiency, reduced complexity, spatial and channel
specificity, translation invariance, and explicit input dependencymake it a superior choice
over self-attention for script identification tasks using CNNs. These advantages facilitate
more effective feature refinement and context integration, leading to enhanced model
performance and robustness in identifying and classifying scripts.

The Aggregation module of the Focal Attention Module shown in Fig. 4(a)-(b)
is modified to further select the relevant channels to be multiplied using the gates of
the gated aggregation. The Receptive Channel Selective Attention Module (RCSAM)
is applied to the features of levels 1 and 2 (l = 1 and l = 2) as shown in Fig. 4(b).
The features from l = 1 and 2 are convolved using layers of dilations = 1,2, and 4.
These dilated features are concatenated to generate Fdil. These dilated features capture
information from a wider range of receptive fields. The most important component of
RCSAM, i.e. the Channel Attention Module (CAM), aims to assign weights (α) to the
channels of concatenated feature maps to amplify those channels that contribute most
significantly to enhancing model performance. The resulting output channel weights,
denoted as α, have dimensions C × 1 × 1, where C represents the number of channels.
α is a composite of two distinct features, Fexavg and Fexmax, which are defined in Eq. (1)
and Eq. (2).

Fexavg = D2(ReLU(D1(GAP(Fdil)))) (1)

Fexmax = D2(ReLU(D1(GMP(Fdil)))) (2)

Here, D1 and D2 denote Dense layers with units C/r and C, respectively. The parameter
r signifies the extent to which the features are compressed to C/r from C before being
expanded back to their original dimension of C. This compression and expansion process
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Fig. 4. Illustration of the RCSFAM module and its components.

is commonly referred to as squeeze and excitation attention. The weights α can be
computed using Fexavg and Fexmax according to the following Eq. (3).

α = 6
(
Fexmax + Fexavg

)
(3)

Here, 6 represents the sigmoid activation function, and+ denotes element-wise addition.
The combination of Fexmax and Fexavg facilitates the identification and amplification of
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channels that are most influential in enhancing model performance. Thus, the channels
of Fdil are sorted according to the values of the corresponding α(α1, α2, …). The top
k% channels from Fdil are selected to generate FRCSAM of dimensions H × W × kC.
The effectiveness of RCSFAM is shown in Fig. 5(a)–(c) where it is noted that the heat
maps of different scripts of three datasets highlight the vital region in the input image
for extracting distinct features for identification of scripts.

4 Experimental Results

Benchmark datasets have been used for experimentation, namely CVSI2015, SIW-13,
and MLe2e. The details of these datasets, including the number of samples used for
training, validation, and testing are summarized in Table 1.

CVSI2015 Dataset [22]: This dataset comprises word images from various scripts
extracted from videos, designed for script identification. It includes words from ten dis-
tinct scripts: English, Hindi, Bengali, Oriya, Gujarati, Punjabi, Kannada, Tamil, Telugu,
and Arabic. SIW-13 dataset [23]: The SIW-13 dataset offers word-level images repre-
senting 13 different scripts. The scripts included in this dataset are Arabic, Cambodian,
Chinese, English, Greek, Hebrew, Japanese, Kannada, Korean, Mongolian, Russian,
Thai, and Tibetan. MLe2e dataset [2]: MLe2e is a popular and standard script identi-
fication dataset comprising a total of 711 scene images covering four different scripts
(Latin, Chinese, Kannada, and Hangul).

To measure the performance of the proposed method against the state-of-the-art, the
standard measures of Accuracy, Precision, Recall, and F1-score are used.

Implementation Details: The model is trained for 50 epochs, with augmentation of
contrast enhancement by a factor of 1.5. The Learning rate was set to 0.01 with an Adam
optimizer [24]. The TensorFlow-wavelets library was used for wavelet transformation.
A system with an Intel Core i7 processor, with 8GB RAM was used for training and a
system with an NVIDIA P100 GPU. Python version 3.7.4 is used for implementation.
Cross entropy loss [24] is used for the training of all the branches.

4.1 Ablation Study

To individually evaluate the contributions of the key steps of the proposed method,
namely, the Xception architecture, the log-polar transform and the optimal value of k, a
series of ablation experiments were conducted on the CVSI2015 dataset, as presented in
Table 2. The experiments (i) and (ii) show that Xception alone does not achieve the best
results when it is compared with the Xception + Log-Polar Transform. This infers that
leveraging features from log-polar transformed images significantly improves the per-
formance of the proposedmethod. Introducing the Style Enhanced Fusion Block (SEFB)
to effectively fuse rectangular and log-polar features further elevates the model’s per-
formance as reported in experiment (iii). Subsequently, integrating the Focal Attention
Module (FAM) leads to additional performance gains as reported in experiment (iv).
Experiment (v) shows that the proposed model achieves the best accuracy compared
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Fig. 5. Heatmaps of RCSFAM.

to all the experiments on individual steps. Therefore, one can conclude that all the key
steps are effective for achieving the best performance of the proposed method.
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Table 1. Details of training, testing, and validation images from all three datasets

Dataset Class Training Testing Validation

CVSI2015 10 6412 3234 1069

SIW-13 13 9103 3299 3889

MLe2e 4 826 642 351

To delve deeper into the RCSFAM architecture, experiments were conducted to
determine the optimal value of k. As depicted in Table 3, the model achieves its peak
performance with k = 40%. Therefore, the proposed method sets the value of k as
40%. Moreover, the impact of log-polar features across different classes is evident from
Table 4. To validate the contribution of the log-polar transform, we conducted additional
experiments for all the classes of the CVSI2015 dataset as reported in Table 4. It is
noted from Table 4, for all the classes, the results of the proposed method with log-
polar transform are better than the results of the proposed method without log-polar
transform. It should be noted that for all the ablation experiments, the CVSI2015 dataset
has been used as it is the most widely used and the images are collected from video
(rather than being still images), and those video images indeed have variations in terms
of low contrast, quality and background compared to other datasets.

Table 2. Analyzing the effect of different components of the proposed model on its performance
on the CVSI2015 dataset

# Method Accuracy Precision Recall F-score

(i) Xception 93.97 94.25 93.58 93.91

(ii) Xception + Log Polar images 96.30 97.12 94.99 95.88

(iii) Xception + Log Polar images + SEFB 96.83 97.16 95.12 96.17

(iv) Xception + FAM 98.18 98.51 98.49 98.43

(v) Xception + RCSFAM (k = 40%) 98.48 98.55 98.78 98.49

4.2 Comparison with the State-of-the-Art

The confusion matrices of the proposed method for the classification on all the three
datasets are shown in Fig. 6, where it is noted that for all the classes, our method
achieves promising performance. This indicates that the proposed method is stable and
reliable across classes and datasets. To validate the usefulness of the proposed method,
quantitative results of the proposed and state-of-the-art methods on all three datasets are
reported in Table 5, where one can see that the proposed method is superior compared
to the state-of-the-art. The key reason for the poor results of the existing methods is that,
as discussed in the proposed methodology section, those methods are not effective in
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Table 3. Analyzing the effect of k in RCSFAM on the CVSI2015 dataset

Method Accuracy Precision Recall F1-score

k = 30% 98.56 98.51 97.19 96.92

k = 40% 98.99 98.75 98.37 98.83

k = 50% 98.48 98.55 98.78 98.49

k = 60% 98.16 98.35 98.23 98.15

k = 70% 98.05 98.17 98.01 97.99

Table 4. Studying the effect of the log-polar transform on the CVSI2015 dataset.

Scripts Without log-polar transformed image With log-polar transformed image

Arabic 92.09 96.28

Bengali 83.10 86.33

English 88.61 89.20

Gujarati 89.33 94.46

Hindi 91.29 94.48

Kannada 79.34 81.76

Oriya 91.67 93.49

Punjabi 91.51 94.30

Tamil 83.12 85.39

Telugu 81.22 81.74

the presence of arbitrary orientations and scaling. But in the case of scene text, arbitrary
orientation and scaling are common and therefore, it is essential to address these two
challenges to improve the performance of script identification.As noted from the ablation
study, introducing the log-polar transform makes a significant impact on improving the
performance of the proposed method for script identification on all three datasets.

To test the robustness of the proposed method and to show the proposed method is
invariant to rotation and scaling, the accuracy of the method was calculated for randomly
rotated and scaled images of the CVSI2015 dataset, as reported in Table 6. The results
show that the performance of the proposed method is better than the state-of-the-art on
both rotated and scaled images. It is also noted that the results obtained by the proposed
method for different rotations and scaling are almost similar to the results for normal
images. Thus, one can assert that the proposed method is robust to rotations and scaling.
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Fig. 6. Confusion matrix of the proposed model on CVSI2015, Mle2e, and SIW-13.

Table 5. Comparison of the proposed model with the SOTA models on the CVSI2015, ML22e,
and SIW-13 datasets

Method Accuracy (%)

CVSI2015 SIW-13 MLe2e

Mei [16] 94.20 92.75 –

Shi [13] 94.30 89.40 –

Gomez [2] 97.20 94.80 94.40

Bhunia [8] 97.75 – 96.70

Cheng [4] 98.60 96.50 –

Ma [17] 98.78 97.30 97.20

Lu [14] 97.90 96.11 89.42

Dutta [6] 98.97 95.70 95.01

Mahajan [15] 97.40 – –

Guo [9] 93.50 – 98.74

FAS-Res2net [1] 96.00 94.70 –

Proposed 98.99 97.83 98.75

Table 6. Performance of the proposed method and existing method [1] on randomly rotated and
scaled images from the CVSI2015 dataset

Method Rotation (–40 to +40) Scaling (–1.5 to +1.5)

Proposed 94.26 97.03

FAS-Res2net [1] 89.98 94.67
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4.3 Limitations

While the proposed model demonstrates robustness against scale and rotational vari-
ations, it encounters challenges in accurately classifying instances where the scripts
appear exceedingly hazy or blurred against the background, resulting in unclear script
visibility. The example images illustrated in Fig. 7 and the accompanying heatmaps
indicate that the model has difficulty in scenarios characterized by hazy or unclear script
images. This shows that there is scope for improvement, albeit this is not a straight-
forward problem by normal standards. To overcome this problem, the authors plan to
explore the integration of language models in the proposed approach.

Fig. 7. The error cases where the proposed model misclassifies a script.

5 Conclusions and Future Work

A novel method for script identification in natural scene images has been proposed in
this paper. Unlike state-of-the-art approaches, which do not deal with the challenges
of arbitrary orientation and scaling, the proposed work introduces the use of the log-
polar transform to make the method robust to rotation and scaling to improve script
identification performance. In addition, the proposed work makes use of the Xception
architecture for feature extraction from both the input image and the log-polar trans-
form of the input image. To strengthen the features, a style-enhanced fusion block and a
receptive channel selective focal attention module are proposed. Comprehensive exper-
iments were conducted to evaluate the proposed approach, including an ablation study
to validate the key steps and the proposed method. The results of comparative evaluation
reveal that the proposed method outperforms the state-of-the-art on all three benchmark
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datasets. However, when the images suffer from severe blur and haze, the performance
of the method degrades. This could be addressed by integrating language models in the
proposed model, a future work direction planned by the authors.
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Abstract. Text spotting in diverse domains, such as drone-captured images,
underwater scenes, and natural scene images, presents unique challenges due
to variations in image quality, contrast, text appearance, background complex-
ity, and external factors like water surface reflections and weather conditions.
While most existing approaches focus on text spotting in natural scene images,
we propose a Domain-Independent Text Spotter (DITS) that effectively handles
multiple domains. We innovatively combine the Real-ESRGAN, developed for
regular image enhancement, with the DeepSolo, developed for scene text spot-
ting, in an end-to-end fashion for text detection and spotting on images of differ-
ent domains. The key idea behind our approach is that improving image quality
and text-spotting accuracy are complementary goals. Real-ESRGAN enhances
image quality, making the text more discernible, while DeepSolo, a state-of-the-
art text spotting model, accurately localizes and recognizes text in the enhanced
images. We validate the superiority of our proposed model by evaluating it on
datasets from drone, underwater, and scene domains (ICDAR 2015, CTW1500,
and Total-Text). Furthermore, we demonstrate the domain independence of our
model through cross-domain validation, where we train on one domain and test
on others. Our dataset and code will be publicly available on GitHub.

Keywords: Scene text detection · Scene text recognition · DeepSolo · Super
resolution · Domain independent · Text spotting

1 Introduction

Addressing the problem of multiple domains is essential when we look at real-time and
real-world applications. For example, we can see many activities, such as dining, games,
capturingmarriagemoments, creating awareness, scuba diving, etc. [1]. Similarly, drones
are popular for surveillance applications such asmarathons, sports, exhibitions, and other
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social events [2]. Scene images are helpful for automatically driving vehicles, locating
exact places in the city, answering visual questions, etc. [3]. Therefore, it is evident
that input images can be of any domain rather than from one domain. However, most
existing methods developed so far focus on one domain or particular dataset [1–3]. For
instance, some methods focus mainly on the scene, drone, or underwater images for text
detection. Therefore, the methods developed for a particular dataset and domain may not
be effective formultiple domain datasets. The critical problem for the inability towork on
images of multiple domains is that each domain poses different challenges. For example,
underwater images suffer from poor quality, visibility, low contrast, and illumination
effect, while drone images suffer from tiny text because of the height distance of the
drone, loss of information due to occlusion, and scene images suffer from arbitrarily
oriented/shaped text as shown in Fig. 1.

It is evident from the results presented in Fig. 1 that the existing method, which is a
state-of-the-art method for text spotting, does not work well for underwater and drone
images, but it works well for scene images [3]. This shows that the developed scene text
method works for particular types of images. On the other hand, the proposed method
detects and recognizes well for the images of three domains.

Fig. 1. Illustrating challenges of text spotting in underwater and drone images where the first
row’s images are the Performance of a latest state-of-the-art model [3] on images of different
domains (Left column: underwater; Middle column: drone; Right column: scene). And the second
row’s images are the performance of the proposed method on multiple domains.

Therefore, thiswork proposes a novelmodel for text spotting across various domains,
such as underwater, drone, and scene images. Drawing inspiration from Real-ESRGAN
[4] and its effectiveness on images of varying quality, we propose to enhance the poor-
quality images while maintaining the fine details of the text information. Similarly, the
success of transformers in text spotting [3] has led us to explore DeepSolo, utilizing
ResNet-50 as the backbone of our work.

It is true that Real-ESRGAN and DeepSolo are not new for image enhancement
and text spotting. However, the scope of the Real-ESRGAN model is limited to general
images, while the DeepSolo is limited to scene images. In addition, it is unclear whether
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these models can handle different domains, where one can expect different nature and
complexity of the problems. It is evident from the results presented in Fig. 1 that the
DeepSolo does not perform well for underwater and drone images compared to scene
images. Therefore, the question is how to make those models work well for images of
different domains, including poor quality images caused by underwater and drones and
good quality scene images. Thus, the contribution lies in adapting Real-ESRGAN and
DeepSolo as an end-to-end model to make it domain independent, which is challenging.
Thus, the key contributions to address this challenge are as follows.

(i) Exploring Real-ESRGAN to improve the visual quality of poor-quality images
before text spotting without affecting high-quality images. (ii) Adopting DeepSolo for
text spotting in multiple domains is compared to other state-of-the-art methods. (iii)The
way this proposed work integrates the enhancement and text spotting model as an end-
to-end model is novel.

The rest of the paper is organized as follows. The existing methods of text spotting
in natural scene images are reviewed in Sect. 2. In Sect. 3, the architectures of the
proposed model are presented. Experimental analyses are discussed in Sect. 4. Section 5
summarizes the outcome of the proposed method and discusses future work.

2 Related Work

Here, we review the methods related to image enhancement, text detection, recognition,
and text spotting in natural scene images.

There are models for enhancing image quality such that the performance of text
detection, recognition, and spotting improves, especially for low-quality and distorted
images. For example, Jianqi Ma et al. [5] proposed an architecture that enhances text
super-resolution by incorporating a recognition module and text prior interpreter for
better coherence between text and image features. Minglong Xue et al. [6] introduced
the Attention Enhanced Residual-in-Residual Dense Network (AERRDN), which com-
bines channel and spatial attention modules and uses gradient loss for improved edge
restoration in text images. The review of image enhancement methods reveals that none
of the techniques address underwater and drone images.

Similarly, several elegant models were proposed for text detection and recognition
in natural scene images. For instance, Palaiahnakote Shivakumara et al. [7] developed
a model for text detection and style transfer in social media images, using EffiUNet++
and TESP-Net to tackle challenges like low contrast. SPTSv2 [8] features a model for
simultaneous text location and recognition with specialized decoders. Ayan Banerjee
et al. [9] introduced a multi-view image text recognition model, integrating NLP and
genetic algorithms. Jianqi Ma et al. [10] developed a method integrating text recognition
priors into the super-resolution process, enhancing text clarity. These methods focus on
natural scene images and do not cover complex underwater and drone images.

In the same way, many models are introduced for text spotting in natural scene
images. Themethod called ABINet++ [11] uses a novel approach for scene text spotting,
introducing Bezier curve detection for shape flexibility. Xixuan Hao et al. [12] intro-
duced ARText, a unique Chinese text dataset emphasizing font and shape diversity, and
presented Deformation Robust TextSpotter. ADATS [13] proposed a Transformer based
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on Adaptive RoI-Align for aspect-ratio-preserving text feature extraction, an attention-
based segmentation head for accurate arbitrary-shaped text location. Taeho Kil et al. [14]
introduced a unified approach for spotting arbitrary-shaped texts by integrating multiple
detection formats into a single framework.

DSText V2 [15] enhances video text spotting research with dataset insights. Deep-
Solo [3] introduces a simplified DETR-like model with a single Transformer decoder for
text spotting. IAST [16] proposes a framework for spotting various text types by inte-
grating modules for reading order and dynamic sampling. FlowText [17] offers a novel
approach to video text synthesis, addressingmotion blur and occlusion. SwinTextSpotter
[18] showcases the effectiveness of Transformer models in scene text spotting. ABC-
Netv2 [19] presents a breakthrough with its Bezier curve-based text representation and
alignment for improved text spotting. GLASS [20] sets new benchmarks with its atten-
tion module and orientation loss. TESTR [21], inspired by DETR, employs a Trans-
former framework for text spotting. SPTS [22] uses single-point annotations for training
text spotters, while DA-TextSpotter [23] excels in various environments with enhanced
features for noisy images.

Recently, Banerjee et al. [1] pioneered text detection in underwater images using
DCT, DWT, and FFT combined with a modified CRAFT model, enhancing text clarity
and setting a new standard in underwater and natural scenes. Mokayed et al. [2, 24]
developed a method for detecting license plate numbers in drone images using a discrete
cosine transform and a phase congruency model with low contrast and quality enhance-
ments. Pal et al. [25] utilized the Swin transformer for similar purposes in drone images,
incorporating maximally stable external region analysis to reduce false positives. The
above analysis shows that most models focus on a particular domain or dataset rather
thanmultiple domains. Therefore, text spotting inmultiple domains is an open challenge.

Fig. 2. Overall architecture of our proposed model. The architecture consists of an enhancement
unit consisting of pixel unshuffled, convolution, RRDBNet and Upsampling operations further
concatenated with a text spotting unit consisting of a feature extraction backbone followed by a
Transformer Encoder and Decoderations.
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3 Proposed Methodology

Our work strives to develop a domain-independent end-to-end text-spotting model for
natural scenes, underwater, and drone images. It is noted from the previous section that
each domain has its complexity and exhibits challenges. Inspired by the Real-ESRGAN
(Enhanced Super-Resolution Generative Adversarial Network) [4], which is designed to
improve the texture and edge details in low-contrast images, we use a similar approach to
enhance the fine details specifically in underwater and drone imageswithout affecting the
fine details in high-quality images. In the sameway, the accomplishments of transformers
for text spotting in natural scene images motivated us to explore DeepSolo for text
spotting in multiple domains in this work. Additionally, the proposed work integrates
enhancement, detection, and recognition processes into a single end-to-end model. The
full architecture of this model is illustrated in Fig. 2, showcasing the seamless integration
of the enhancement model with text spotting model.

3.1 Enhancement Unit

The pixel unshuffle layer in the enhancement unit plays an essential role in the network’s
performance by reducing computational complexity, increasing the channel size, and
improving the handling of real-world blind super-resolution tasks.

Pixel-unshuffle is an operation that does the inverse of pixel shuffle. In pixel shuffling,
spatial resolution is increased by reorganizing the elements of the channel dimension
into the spatial dimensions. Conversely, pixel-unshuffle reduces spatial dimensions by
redistributing pixels into the channel dimension. This operation effectively decreases the
height andwidth of the imagewhile increasing the number of channels, thereby preparing
the image for further processing. This process allows the network to upsample the feature
map efficiently since most of the calculations are carried out at a lower resolution, which
helps to decrease the consumption of GPU memory and computational resources. By
employing the pixel unshuffle layer, Real-ESRGAN can gradually increase the spatial
resolution of the feature maps as they pass through the network, ultimately resulting
in a high-resolution output image. This operation benefits image super-resolution by
generating a high-quality/resolution image from a low-resolution input.

This layer is added explicitly before the RRDBNet. It is essential when the scale is set
to 2, as it helps rearrange information to the channel dimension and capturemore features
and details from the input image, ultimately contributing to generating high-quality
output images with minimal artifacts. Convolutional layers here are solely responsible
for the task of feature extraction along with learning the spatial patterns present on the
input image of all the domains.

The Residual-in-Residual Dense Blocks (RRDB), depicted in Fig. 3, process and
enhance features from the input image by integrating multilevel residual learning with
dense network connections. Each RRDB block consists of several densely intercon-
nected convolutional layers that capture considerable local features, thus boosting the
network’s capacity and expressiveness. Following each convolutional layer, its output
merges with the initial input of the block and is fed into the subsequent layer. This struc-
ture ensures continuous connections from the previous RRDB state to all layers in the
current block, creating a seamless memory mechanism that supports efficient gradient
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Fig. 3. Detailed architecture of a Residual-in-Residual Dense Block (RRDB) where α is the
residual scaling parameter.

flow and information transfer. The RRDB blocks significantly enhance the perceptual
quality of super-resolved images by producing more defined edges and lifelike textures,
making them particularly effective for improving text clarity in images. The advantages
of RRDB block are: i) RRDB block can extract abundant local features via densely con-
nected convolutional layers, which increase the network capacity and expressiveness.
ii) RRDB block allows direct connections from the state of the preceding RRDB to all
the layers of the current RRDB, leading to a contiguous memory mechanism that facil-
itates the information flow and gradient propagation. iii) RRDB block helps to improve
the perceptual quality of super-resolved images by producing sharper edges and more
realistic textures, as shown in the experiments.

Fig. 4. The effectiveness of the enhancement unit for the degraded region in the underwater, drone
and scene images.

In the enhancement unit, upsampling layers use a kernel to expand the spatial res-
olution of the input image, ensuring key features are retained. The network achieves
upsampling through the use of pixel unshuffle and convolutional layers. Sinc filters are
employed to generate ringing and overshoot artifacts in training pairs. These filters are
utilized during both the blurring stage and the final phase of synthesis. To enhance the
discriminator’s effectiveness and stabilize the training process, the network incorporates
a U-Net discriminator with spectral normalization. This discriminator is responsible for
differentiating real images from synthesized ones.

Thus, measuring and quantifying the gap between the predicted variables versus the
actual target variables by employing adversarial loss, content loss, and perceptual loss
aids the network in learning the mapping from input features to its output targets. We
can derive the enhancement function to be applied on an image I as defined in Eq. (1).

E = Fenhance(I) (1)



DITS: A New Domain Independent Text Spotter 205

Here, Fenhance includes operations of pixel unshuffle, convolution, Residual-in-
Residual Dense Block processing, and upsampling which are integral parts of the
enhancement unit architecture. The final output of the enhancement unit, E, is passed
down to the text spotting unit. The effectiveness of the enhancement module is illustrated
in Fig. 4, where it is noted that text in the underwater and drone images is significantly
enhanced when compared to scene image.

3.2 Text Spotting Unit

The input image is run through the ResNet-50 network, chosen as the backbone due to its
residual connections that enable deeper networks and better feature propagation, leading
to improved performance even with small datasets. Moreover, ResNet-50 has fewer
parameters than other state-of-the-art transfer learning methods like VGG16, making
it less prone to overfitting and more computationally efficient, which is particularly
beneficial when working with limited data. Unlike the box proposal adopted in previous
works, from the perspective of the text center line, a straightforward Bezier center curve
proposal scheme is employed. Utilizing the image features the encoder provides, a 3-
layerMLP predicts offsets at each pixel of the feature maps to four Bezier control points.
This setup defines a curve that represents a single text instance as shown in Fig. 5, where
we can see Bezier curve finds points for fixing the tight bounding box for any oriented
text lines. The top-K scored curves are selected as the proposal.

Fig. 5. Visualization of sampled on-curve points on images from Underwater, Drone and Natural
Scene domains.

A set of control points generates Bezier points that define a curve formed by the
collection of control points through weight summation, with weights given by Bernstein
polynomials. Sample points from a defined parametric curve using a set of control
points generate Bezier points. The mathematical equation for a Bezier curve of degree
n is defined as in Eq. (2)

P(t) =
n∑

i=0

BiJn,i(t) (2)

where P(t) is the point on the curve at parameter t, Bi is the i-th control point, and Jn,i(t)
is the i-th Bernstein polynomial of degree n, is defined in Eq. (3).

Jn,i(t) = C(n, i)ti(1 − t)n−i (3)
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where C(n, i) is the binomial coefficient, a cubic Bezier curve has four control points as
defined in Eq. (4).

P(t) = B0(1 − t)3 + B13t(1 − t)2 + B23t
2(1 − t) + B3t

3 (4)

The sample points are taken from the Bezier curve and used as explicit point queries
to encode the position, shape, and semantics of text. This representation simplifies the
text spotting pipeline and improves the performance and efficiency of the model.

After being flattened, the multi-scale features undergo the positional embedding
layer. This step helps to maintain fluidity and engagement in the sequence. Each curve
proposal, defined by four Bezier control points, has N points uniformly sampled from
its center, top, and bottom curves to serve as ground truth. These points’ coordinates are
transformed into positional queries, combined with learnable content queries to create
composite queries. These are then input into a single Transformer decoder that utilizes
deformable cross-attention to extract relevant text features. After passing through the
decoder, the point queries embody essential text semantics and locations. This enables
further decoding into the central line, boundary, center curve points, and text confidence
through four straightforward, parallel prediction heads. Four simple parallel heads are
adopted, each responsible for solving a specific task. The instance head predicts the
instance class and boundary points. The character head predicts the character’s class and
center points. The center curve point head predicts the coordinate offsets from reference
points to ground truth. The confidence head predicts the confidence score of the text.

Fig. 6. The effectiveness of our text spotting. The images in the first row indicate result images
of text spotting without enhancement (DeepSolo alone), while the second row indicates the result
images of the proposed method after enhancement.

After the enhanced component is passed down to the spotting unit, the final output
of the spotting unit can be represented by the Eqs. (5).

T = S(E) (5)

Here, T is the final output of the entire proposed architecture. The function S is
derived from all the operations being performed in the text spotting unit.
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The spotting function, S can be defined as in Eq. (6).

S(E) = H (De(PE(Be(R(E))))) (6)

In the above equation, R(E) denotes the extracted features of the enhanced image
using the feature extraction backbone. The operation Be represents the extraction of
Bezier points from the features. The PE function denotes the positional embedding
applied to the multi-scale features. De represents the processing through a single Trans-
former decoder. Finally, H is the decoding step to extract the center line, boundary,
center curve points, and confidence of text.

The effectiveness of the text spotting is presented in Fig. 6, where it is noted that the
text spotting improves significantly after enhancement (second row) compared to the
before enhancement (first row), especially for underwater and drone images. However,
there is no change for scene images because text spotting results are the same for both
before and after enhancement. Figure 6 also infers that before image enhancement (the
results of the first row), the DeepSolo alone is insufficient to tackle the challenges of
underwater and drone images. At the same time, the results after enhancement (the
second row) infer the combination of Real-ESRGAN and DeepSolo is capable. It is
evident from the results in the second row of Fig. 6 that the number of text instances
detected by the proposedmodel is greater than the total number of text instances detected
by the DeepSolo alone. This concludes that the combination is essential to achieve the
best results for images of different domains.

4 Experimental Results

To evaluate the performance of the proposedmethod,we consider three domains, namely,
underwater, drone and scene images.

4.1 Datasets of Multiple Domains

Natural Scene Domain: Scene Domain is represented by the CTW1500 [26],
ICDAR2015 [27], and Total-Text [28] datasets for the purpose of our experimenta-
tions, each offering unique challenges and features. The CTW1500 dataset, comprising
1,500 images with a split of 1,000 for training and 500 for testing. ICDAR2015, another
pivotal dataset in this domain, consists of 1,500 images captured from wearable cam-
eras, featuring around 2,077 cropped text instances annotated at different levels. Finally,
the Total-Text dataset, with its 1,555 images featuring horizontal, multi-oriented, and
curved text.

Underwater Domain: The Underwater domain presents unique challenges for text
spotting, created at the Indian Statistical Institute, Kolkata. This domain comprises 260
word-based annotated images, with 200 designated for training and 60 for testing. The
challenges of this domain are deterioration of image quality, small objects etc.

Drone Domain: In the Drone domain, the challenges associated with text spotting
are distinct and are encapsulated in the domain. This domain comprises a total of 500
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line-based annotated images, with 400 allocated for training and 100 for testing. The
emphasis here is on scenarios encountered in aerial imaging, with considerations for
crowded cars, multiple license plates, distortions, and changes in the angle of view
resulting from variations in the drone’s altitude.

We use standardmeasures for evaluating the performance of the proposedmethod on
image enhancement, detection and end-to-end recognition (spotting). For enhancement,
BRISQUE measure and for detection, measures like Precision, Recall and F1-score are
used. For recognition, None, Full, S, W and G are considered. A lower BRISQUE score
is indicative of higher image quality, meaning that the best-quality images receive the
lowest scores within this evaluation framework.

Implementation: For enhancement, we have trained the enhancement unit withDIV2K
[29], Flickr2K [30], and OutdoorSceneTraining [31] datasets. HR patch size for training
is 265, with Adam as the optimizer. We train it for 400K iterations with a learning rate
of 2 × 10−4. The training process is performed on one RTX 2080Ti with batch size one.
The spotting unit is pretrained on Synth150K [32], Total-Text [28], MLT17 [33], IC13
[34] and IC15 [35] datasets. We have fine-tuned the combined model (i.e., enhancement
+ spotting unit) on RTX 2080Ti (with 12GB VRAM) and 16GB memory for 7 h with
12000 iterations on all the discussed domains.

4.2 Ablation Study

In this work, there are two key steps, namely, image enhancement using Real-ESRGAN
and text spotting using DeepSolo models. To validate how effective the enhancement
is, we conducted detection and spotting experiments before enhancement and after
enhancement on all three domains. We can note from the results reported in Table 1
that there is a significant improvement for underwater and drone domains with and with-
out enhancement in terms of detection and spotting. Therefore, one can infer that the
proposed enhancement is necessary and contributes immensely to degraded and poor-
quality images. However, interestingly, for the scene domain, the results before and after
enhancement are almost similar for both detection and spotting. This indicates that the
proposed enhancement step enhances only low-contrast and poor-quality images with-
out affecting high-quality images. This makes sense because the scene images are good
quality images compared to underwater and drone images.

As mentioned in the proposed methodology section, determining patch size is also
one of the parameters to improve the performance of the proposed method. To obtain
optimal patch size for the different domains, we conducted experiments on the various
HR patch sizes for the enhancement module, such as 128, 144, 192, 224, 256, and 265,
and the results are reported in Table 2. The images of underwater and drone domains
contain only one dataset,while the images of the scene text domain contain three datasets.
Therefore, training and tunning of the proposed method are as good as training on
individual datasets except for the scene text domain. Consequently, the same patch size
for underwater and drone datasets is expected during a different patch size for the scene
text domain. This is evident from the results reported in Table 2, where the patch size
of 265 is the best for all the datasets regarding detection and spotting, while for scene
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Table 1. Detailed comparison of the proposed method with and without the use of enhancement
module for Natural Scene domain, Underwater domain and Drone domain. “None” refers to
recognition without lexicon

Domains Detection Spotting

With Enhancement Without
Enhancement

With
Enhancement

Without
Enhancement

P R F1 P R F1 None None

Scene 92.3 86.2 89.1 92.0 85.0 88.7 72.9 71.95

Underwater 88.9 71.5 79.3 86.8 50.0 63.5 68.24 30.5

Drone 93.32 72.14 81.37 86.8 42.45 51.0 77.8 47.0

Table 2. Studying the effectiveness of different patch size for detection and spotting on datasets
of different domains. “None” refers to recognition without lexicon

HR
patch
size

Detection Spotting - None E2E

Scene Underwater Drone Scene Underwater Drone

P R F P R F P R F

128 91.2 85.7 88.4 84.0 69.7 76.2 90.3 68.9 78.2 71.7 66.9 75.2

144 90.0 84.2 87.0 83.2 71.3 76.8 89.7 71.5 79.5 71.2 67.2 75.9

192 90.4 87.7 89.0 84.7 70.8 77.1 91.3 72.3 80.7 72.1 68.1 76.7

224 89.2 84.5 86.8 84.3 70.2 76.6 88.2 69.1 77.5 71.9 67.5 75.3

256 90.7 85.3 87.9 85.2 71.5 77.7 89.6 70.8 79.1 71.5 67.9 76.1

265 92.3 86.2 89.1 88.9 71.5 79.3 93.3 72.1 81.4 72.88 68.2 77.8

text, the patch size of 192 is the best at Recall. However, the patch size 265 is the best at
precision and F-measure. Therefore, 265 is the optimal patch size for all our experiments.

4.3 Experiments on Enhancement

Qualitative results of the proposed method on samples of three different domains are
shown in Fig. 7, where it can be seen that the text in underwater and drone images
is enhanced (improved visual quality) compared to the text in input images. However,
there is little change for the text in the scene image before and after enhancement. This
validates the proposed enhancement works well for both poor-quality and high-quality
photos. The same conclusions can be drawn from the quantitative results (BRISQUE
score) reported in Table 3, where the BRISQUE score value is small compared to the
value of input images for the enhanced images of the respective three domains. However,
we can notice amarginal difference between the BRISQUE input score and the enhanced
image for the scene domain. This justifies there is no effect of enhancement over scene
images.
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Fig. 7. Sample qualitative results of the proposed enhancement step for three domains. The first
row represents the results on input images while the second row represents the results after
enhancement.

Table 3. Comparative analysis of BRISQUE scores across different domains. (Lower BRISQUE
value means higher image quality)

Scene Underwater Drone

Original Enhanced Original Enhanced Original Enhanced

28.4 27.9 39.6 33.44 19.38 14.44

4.4 Experiments on Detection and Spotting

Sample qualitative results of the proposed method for text spotting can be seen in Fig. 8,
where our method works well for the samples of three domains. Therefore, the pro-
posed method can tackle poor-quality images of underwater, drone, and arbitrarily ori-
ented/shaped text lines of scene images. While the primary aim of the proposed work is
to spot text across multiple domains, we demonstrated the superiority of our method by
comparing its performance to existing methods on individual datasets as well. This is
because none of the existing methods reports results on three domains in the literature. A
comparative study is reported in Table 4, 5 and Table 6 for respective CTW1500, Total-
Text, ICDAR 2015, Underwater, and Drone datasets. For the Total-Text, the F1-score
for detection and Full are higher than the existing methods.

However, the methods [3, 20] are the best at precision and recall, respectively, for
detection. However, the same methods [3, 20] report poor performance in Full-spotting
tasks compared to our proposed method. For the CTW1500 dataset, our method outper-
forms others in terms of precision, recall, and F1-score for detection, as well as overall
spotting. While certain existing methods do surpass ours in detection and spotting, this
is expected since they were specifically designed for scene text detection and spotting.
Nevertheless, when evaluating comprehensive performance that includes both detection
and spotting, our method proves to be superior to the existing approaches.
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Fig. 8. Qualitative text spotting results of our proposedmethod onUnderwater, Drone andNatural
Scene domains.

Table 4. Detection and Spotting results of different methods on Total-Text and CTW1500
datasets. “None” refers to recognition without lexicon. “Full” refers to the usage of lexicon that
includes every word present in the test set.

Methods Detection Spotting

Total-Text CTW1500 Total-Text CTW1500

P R F P R F Full None Full None

SwinTextSpotter
[18]

- - 88.0 - - 88.0 84.1 74.3 77.0 51.8

ABCNet v2 [19] 90.2 84.1 87.0 85.6 83.8 84.7 78.1 70.4 77.2 57.5

GLASS [20] 90.8 85.8 88.1 - - - 86.2 79.9 - -

TESTR [21] 93.4 81.4 86.9 89.7 83.1 86.3 71.6 83.3 79.0 53.3

DeepSolo [3] 93.9 82.1 87.6 91.45 85.6 88.43 87.0 79.7 81.40 64.20

Proposed
method

93.36 84.51 88.72 92.00 86.38 89.1 88.05 81.79 81.44 63.97

For the ICDAR 2015 dataset, our proposed method achieves the highest precision
in detection and excels in the S for spotting, outperforming other leading methods. This
indicates that ourmethod is versatile, effectively handling both simple and complex scene
datasets. In contrast, for the ICDAR2015 dataset, method [3] secures the top F-score in
detection and leads in the W and G metrics for spotting. This discrepancy is likely due
to the reduced complexity encountered when focusing on individual datasets rather than
multiple domains. Regarding the underwater dataset, our method stands out in recall, F-
score, and None metrics. Similarly, it achieves the best precision and None for the drone
dataset. However, method [23] records the highest precision for underwater scenarios
and [2] tops in recall and F-score for drone imagery. This is because the method [23]
was developed to address the challenges of poor-quality images like underwater images
through enhancement. Therefore, the scope of existing methods is limited to a particular
domain but not multiple domains. Overall, when we analyze the performance of the
proposed method on all the datasets, our method is superior to existing methods in terms
of detection and spotting.
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Table 5. Text spotting performance of the proposed and the state-of-the-art systems on the
ICDAR-15 datasets. Here “S”, “W”, “G” represent recognitionwith “Strong”, “Weak”, “Generic”,
lexica, respectively

Methods Detection Spotting

P R F S W G

ABCNet v2 [19] 90.4 86.0 88.1 82.7 78.5 73.0

TESTR [21] 90.3 89.7 90.0 85.2 79.4 73.6

SwinTextSpotter [18] - - - 83.9 77.3 70.5

SPTS [22] - - - 77.5 70.2 65.8

DeepSolo [3] 90.68 87.4 90.0 86.8 81.9 76.9

Proposed method 91.41 87.8 89.57 87.12 80.53 72.6

Table 6. Low quality image text spotting results on Underwater and Drone datasets. “None”
refers to recognition without a lexicon.

Underwater Dataset Drone Dataset

Methods P R F None Methods P R F None

Banerjee et al.
[1]

90.25 45.37 60.38 - TESTR [21] 54.0 40.6 46.4 13.1

DA-TextSpotter
[23]

95.65 48.73 64.57 64.15 Hamam
Mokayed et al.
[2]

83.2 86.2 83.9 -

TESTR [21] 92.2 33.8 49.54 29.63 DeepSolo [3] 86.76 42.45 51.0 47.0

SwinTextSpotter
[18]

83.2 34.4 29.0 29.08 - - - -

DeepSolo [3] 86.81 50.0 63.45 30.52 - - - - -

Proposed
method

88.9 71.5 79.3 68.24 Proposed
method

93.32 72.14 81.37 77.8

To test the performance of the proposed and existing methods on different domains,
we calculated measures for each domain separately, and the results are reported in
Table 7. We emphasize domain-based comparisons with other models rather than using
individual datasets within the domain. It is observed from Table 7 that the existing
models, including DeepSolo, do not perform well for underwater and drone images
compared to the proposed method. Therefore, one can infer that the existing models
lack generalization ability and domain independence. On the other hand, the proposed
model works well for different domains and individual datasets.

Whenwe compare the performance of the proposed and existingmethods on individ-
ual datasets and domain datasets, the performance of the proposed method is consistent
for the three domains compared to state-of-the-art methods. However, the performance
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of the proposed method is competitive and promising for the individual datasets com-
pared to the state-of-the-art methods. The reason is as follows. The main objective of
the proposed work is to develop a model that can work well for different domains irre-
spective of degradations caused by underwater, drone, and quality variations in scene
images. At the same time, the key objective of the existing models is to achieve the best
result for a particular type of images.

Table 7. Performance of the proposed and existing methods on different domains

Method Detection Spotting

Scene Underwater Drone Scene Underwater Drone

P R F1 P R F1 P R F1 None None None

ABCNet
v2 [19]

88.7 84.6 86.6 - - - - - - 64.0 - -

TESTR
[21]

91.1 84.7 87.7 92.2 33.8 49.5 54.0 40.6 46.4 68.3 29.6 13.1

DeepSolo
[3]

92.0 85.0 88.7 86.8 50.0 63.5 86.8 42.45 51.0 71.95 30.5 47.0

Proposed 92.3 86.2 89.1 88.9 71.5 79.3 93.3 72.1 81.4 72.88 68.2 77.8

4.5 Cross Domain Validation

We conducted cross-domain experiments to validate the proposed method’s domain
independence. In this case, the method uses samples from different domains for train-
ing/testing. Consistent results are expected when themethod uses the training and testing
samples chosen from two domains. The results reported in Table 8 show that our pro-
posed model shows consistent performance across domains. However, we can observe
a deterioration in the performance of the drone dataset in the cross-validation experi-
ments. The main reason is the inherent complexity of the dataset. The images in the
drone dataset are low-resolution license plate images, with various challenges such as
image distortion, higher altitude, extreme angle changes, and varying orientations of
the license plates. Another important reason is that the license plate number does not
provide semantic information to correct the text for deep learning models. Therefore,
when we train on these samples, the models do not learn at a high level to spot text in
other images, and hence mismatch may occur at semantic level for achieving consistent
results for the drone domain. This is beyond the scope of the proposed work.

Although the proposed method is domain-independent, when the text is not visible
and readable fromour naked eyes due to tiny text blur, the proposedmethod fails to detect
and spot the text, as shown in sample cases in Fig. 9, where our method does not detect
text. The images shown in Fig. 9 are the output of the entire proposed architecture, which
indicates that tiny, unreadable text in an image can go undetected by the model even after
being enhanced. Therefore, this has been marked as a limitation of this work and our
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Table 8. Detailed cross-domain validation results where (i) and (ii) represent the results of our
proposedmethod trained and tested online-based annotated domain,whereas (iii) and (iv) represent
the results of our proposed method trained and tested on word-based annotated domains.

# Cross-Domains Validation P R F1 None

(i) Drone → Natural Scene (CTW1500) 94.2 82.85 88.16 64.37

(ii) Natural Scene (CTW1500) → Drone 89.84 41.37 56.67 19.00

(iii) Natural Scene (TotalText+ICDAR2015) → Underwater 96.59 72.8 82.57 55.89

(iv) Underwater → Natural Scene (TotalText + ICDAR2015) 92.32 77.08 83.94 72.46

Fig. 9. Examples of images where text is barely visible in all the three cases.

future work. To overcome this problem, we plan to implement feedback mechanisms to
improve the visual quality of the images through an end-to-end approach. This is our
future work.

5 Conclusion and Future Work

Wehaveproposed anewmodel for text spotting inmultiple domains, namely, underwater,
drone, and scene images. Unlike most existing methods that focus on natural scene
images or particular types of datasets, the proposed work focuses on multiple domains;
each domain has its challenges. To address such complex problems, we have explored
the combination of Real-ESRGAN and DeepSolo, which integrate enhancement and
spotting in a novel way to make the model domain independent. We have done several
experiments, such as ablation study, calculating quality measures, detection, spotting,
and cross-domain validation, to show that the proposed method is superior to existing
methods. However, as discussed in the experimental section, the proposed method does
not work well when the images consist of tiny text and lose visibility due to blur and
other distortion. To overcome this challenge, one can think of a feedback mechanism
based on the quality of the images through an end-to-end approach. This will be our
future target.
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Abstract. The dense and unstructured text in historical manuscripts
presents significant challenges for precise line segmentation due to large
diversity in sizes, scripts and appearances of the documents. Existing
approaches tackle this complexity either by performing dataset-specific
processing or training per-dataset models. This strategy hampers main-
tainability and scalability as newer manuscript collections get digitized
and annotated. In this paper, we propose LineTR, a novel two-stage line
segmentation approach which can process a diverse variety of challenging
handwritten documents in a unified, dataset-agnostic manner. LineTR’s
first stage processes context-adaptive image patches. It consists of a novel
DETR-style network which generates parametric representations of text
strike-through lines (scribbles) and a novel hybrid CNN-transformer net-
work which generates a text energy map. A dataset-agnostic and robust
post-processing procedure is applied on first-stage outputs to obtain
document-level scribbles. In the second stage, these scribbles and the
text energy map are used within a seam generation framework to obtain
highly precise polygons enclosing the manuscript text lines. We also
introduce three new diverse text line segmentation datasets comprising
challenging Indic and South-East Asian manuscripts. Through experi-
ments, ablations and evaluations, we show that LineTR generates signif-
icantly superior line segmentations - all with a single model. Our results
also highlight the effectiveness of our unified model for good quality zero-
shot inference on the newly introduced datasets. Project page: https://
ihdia.iiit.ac.in/LineTR/.

Keywords: Text Line Segmentation · Historical Manuscripts · Deep
Learning · Zero-Shot · Transformers

1 Introduction

Many approaches have been proposed in recent years to improve the quality
of text line segmentation in challenging historical manuscripts [6,21,27,30,31].
Despite their successes, fundamental challenges remain. For instance, manuscript
attributes such as size, aspect ratio, text line density, script, diacritics often
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change dramatically across datasets. For existing approaches, this diversity of
attributes is not easy to handle in a unified manner. As a compromise, dataset-
specific hyperparameters are used in some cases. In other cases, dataset-specific
models are trained. However, as new manuscript collections get digitized and
annotated, the current strategies are not practical from maintenance and scal-
ability point of view. Consequently, there is a practical need for an approach
which can process a diverse variety of manuscripts in a unified, dataset-agnostic
manner while delivering good line segmentation performance.

Motivated by this need, we propose LineTR, a unified, highly adaptive
and precise text segmentation approach for challenging historical manuscripts.
LineTR is designed as a two-stage pipeline [31]. To begin with, overlapping
patches are sampled from input image in a context-adaptive manner. The first
stage consists of [i] a novel DETR-style [8] deep network which generates para-
metric representations of text strike-through lines (scribbles) and [ii] a novel
hybrid CNN-transformer network which generates a text energy map. A dataset-
agnostic and robust post-processing procedure is applied on patch-level predic-
tions from the first stage to obtain document-level scribbles. The scribbles and
text energy map are used within an enhanced seam generation framework (the
second stage) to obtain highly precise polygons enclosing the manuscript text
lines.

Our first insight is that documents occur in various resolutions and aspect
ratios, and resizing them to a fixed size causes problems. If the patch size is too
large, then the number of learnable parameters as well as the memory and time
complexity increase dramatically, and otherwise if the patch size is too small,
then a lot of information in the image, such as the separation between the text
lines is gone. This motivates a patch-based approach, similar to [31]. However,
SeamFormer [31] samples patches of a fixed size (256×256), which brings in the
issue of bad context. A patch of a fixed size can contain vastly varying amounts of
information or context, depending on the resolution of the original document (see
Fig. 1), which is not desirable for a system which works generally across datasets.
Therefore, an adaptive patching mechanism is required which can find the right
patch size for a given document. We have shown in our experiments that this is
a crucial design decision.

Our second insight is that a text line is a geometric structure (a curve),
and this can serve as an excellent prior for the task of text-line detection [9,
11,15,22,23,35]. Segmentation based approaches [5,7,16,17,19,20,25,27,31] do
not utilize this prior, and instead predict a blob of pixels as the representation
of a text-line, which leads to unwanted artifacts such as merging of adjacent
blobs (see Fig. 2). We approximate a text line within a patch using a straight
line (see Fig. 3), and this approach has clear benefits over segmentation based
approaches, as indicated by our results.

Finally, we also introduce three new diverse text line segmentation datasets
consisting of challenging Indic and South-East Asian manuscripts. Through
experiments, ablations and evaluations on new and existing palm leaf manuscript
datasets, we show that LineTR generates significantly superior line segmenta-



LineTR 219

Fig. 1. Fixed size patches (256×256, as used in [31]) sampled from different documents
can result in poor context.

tions compared to other competing approaches (Sect. 7) - all with a single unified
model. Additionally, we highlight the effectiveness of our unified model for good
quality zero-shot inference on the newly introduced datasets (Sect. 7). Additional
diagrams, zero-shot results and other details can be found on the project page.

2 Related Work

For an overview of methods ranging from classical image processing to deep
learning techniques, refer to Vadlamudi et al. [31]. In some approaches, the doc-
ument is fed to a neural network which directly predicts the text line polygonal
instances or regions [5,7,12,16,17,19,20,24,25,27]. These one-shot approaches
typically involve downsampling the image to a fixed input dimension. Therefore,
they do not work well for high-aspect ratio palm leaf manuscripts containing
closely spaced lines. Despite promising results on other historical manuscripts,
these approaches predict imprecise text-line polygons and exclude vital textual
components (e.g. diacritics).

A popular alternative is to predict 1-D geometric structures related to the
text line. These structures are often represented as underlines (baselines) [9,11,
22] or strike-throughs [23,35]. Instead of a pixel-based representation, Kiessling
et al. [15] propose an approach which predicts the Bezier coefficients of the
baseline.

While some approaches treat the gap between adjacent baselines as text
lines [2], others employ heuristics to obtain text-line polygons [26]. Since these
approaches also involve input downsampling, they inherit the shortcomings of
one-shot approaches mentioned earlier. In contrast, our approach for LineTR
does not involve manuscript image downsampling.

Another popular line of research employs seam generation techniques for
delineating text-line polygons or combining seams to form text line poly-
gons [1]. These methods employ the conventional seam carving algorithm [4] on
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Fig. 2. Issues with SeamFormer’s [31] raw scribble map output on a dense Indic
manuscript [27]. SeamFormer formulates scribble prediction as a per-pixel binary clas-
sification task, leading to extremely noisy predictions. Highlighted regions in the image
cannot be post-processed to obtain distinct scribbles because of extreme merging.

curated energy maps to detect baselines or to generate separators for text-
line regions. The novelty in these approaches often originates from the pro-
posed energy map. This is exemplified by Signed Distance Transform (SDT)
for Arabic manuscripts [26], geodesic distance transform energy map [3], a
global energy map that incorporates diacritics [31]. These methodologies often
rely on classical image processing techniques. Vadlamudi et al. [31] propose a
hybrid two-stage approach in which strike-through regions predicted by a first
stage network are used along with multiple energy maps to generate medial,
upper and lower seams associated with the line polygon. While these approaches
show promise, they necessitate intensive hyper-parameter tuning for the energy
maps for every new dataset. While our approach uses seam generation, we intro-
duce a hybrid CNN-transformer module which produces a single energy map
and generalizes across diverse document styles and languages.

To avoid the drawbacks associated with image downsampling, some
approaches partition the image into smaller patches and predict the text-line
fragments [6]. The fragments are typically merged into document-level poly-
gons using heuristic post-processing methods [31] or seam generation [6]. How-
ever, the post-processing is fragile and not viable when the lines have dense and
uneven geometry as found in palm leaf manuscripts. Although SeamFormer [31]
reduces the fragility by predicting text strike-through scribbles at patch level, the
reliance on dataset-specific post-processing is not fully resolved due to noisy
pixel-based representation of the scribbles. Often, the predictions merge into
each other, as shown in Fig. 2. In contrast, we employ a parametric line rep-
resentation for scribbles which enables dataset-agnostic post-processing. Unlike
existing works which use fixed size patches, LineTR uses variable-sized patches
which aids generalization.

As a rule, existing approaches train separate models and employ heuristics
which are dataset-specific [6,31,35]. As emphasized earlier, ours is the first app-
roach for text-line segmentation which works across multiple diverse datasets
without requiring dataset-specific processing. As we have shown, this ability
also enables LineTR to exhibit good zero-shot performance on unseen datasets.
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Fig. 3. Stage-1 pipeline (Sect. 3.1). Scribbles lines are overlaid on the input patch for
clarity.

3 The Proposed Approach: LineTR

We adopt a two stage approach to predict text line polygons. In Stage-1 (see
Fig. 3), the input image is first split into overlapping contextual patches of
various sizes (Sect. 3.4.1). Each patch is processed by a deep network which
predicts (a) parametric representations of text strike-through lines (scribbles)
and (b) a continuous binary energy map (Sect. 3.1). The per-patch outputs are
merged using an adaptive, data-agnostic post-processing module to obtain a
global scribble map and a global binary energy map (Sect. 3.4.2). Stage-2: The
global maps from Stage-1 are processed using a seam generation algorithm to
obtain tight-fitting polygons enclosing the text lines in the image (Sect. 3.5).

3.1 Stage-1

In this stage, the input patch is first processed by a shared encoder (see Fig. 3).
The encoder’s representations (M in Fig. 3, 4) are fed to the Line-Parameter
Generator which outputs parametric representations of scribble segments in the
patch. The encoder representations are also fed to the Text-Energy Map Gener-
ator which outputs a continuous ([0, 1]) binary energy map. Next, we describe
the individual components of Stage-1 pipeline.

3.1.1 The Encoder
This is comprised of a Vision Transformer (ViT) [10] which outputs feature map
M – the encoder representation.

3.2 Line-Parameter Generator

3.2.1 Scribble Representation
We represent each scribble line using three parameters (Fig. 4)– μx, μy and m
where (μx, μy) represents the mid-point of the scribble segment and m represents
the slope (see Fig. 5). μx and μy are normalized wrt patch dimensions by dividing
with image width and height respectively so that μx, μy ∈ [0, 1].
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Fig. 4. Line-Parameter Generator

3.2.2 Architectural Details
We introduce a novel DETR-style [8] framework to predict parametric represen-
tations for each scribble line. A set of N learnable embeddings, which we call
‘Line Queries’ are fed to a transformer decoder (see Fig. 4). Within the decoder,
these line queries are processed along with encoder representations M to obtain
latent representations for the scribble lines (‘Output Embeddings’ in Fig. 4).
These latent representations are transformed via lightweight feed-forward net-
works (FFN) to obtain scribble line parameters μx, μy,m and associated proba-
bilities p (see top-right in Fig. 4). Next, we describe some key components of the
transformer decoder.

Line Queries: We first define ‘Line Priors’. These are N horizontal lines dis-
tributed uniformly throughout the image (see bottom right corner of Fig. 4).
Formally, the i-th line prior A(i) is parameterized as μx = 0.5, μy = i/N,m = 0.
We define positional query Q

(i)
p as the positionally encoded and transformed

version of A(i). Each line query Q(i) is first initialized to zero. We add the posi-
tional query Q

(i)
p at the inputs of the attention layers (see Fig. 4).

Self Attention: There are two types of attention in the transformer decoder –
self attention and cross attention [33]. The self attention is applied within the
Line Queries Q (defined previously). Note that the positional queries are added
to the line queries before computing the attention scores.

Cross Attention: The outputs of Self Attention are fed to the cross attention
module. Due to the large size of the encoder feature representation M , the
number of attention weights is quite large, which leads to slow convergence
in DETR-style frameworks [8,34,37]. To counter this, we adopt a decoupled
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Fig. 5. Our proposed loss function for penalizing the misalignment between two lines.
If the scribble line touches the top or the bottom patch boundary, then we use inter-
polation to calculate the loss as shown in the figure on the right.

row-column-based attention proposed by Wang et al. [34] which leads to faster
convergence.

Final Predictions: The line queries undergo successive layers of self-attention
and cross-attention with the encoder representations. Ultimately, each query
Q(i) is transformed into an output embedding E(i) - see Fig. 4. Each E(i) either
represents a scribble or φ (the empty class). We obtain the scribble-line param-
eters μx, μy,m along with line probability score p for each embedding using
feed-forward networks (see Fig. 4).

3.2.3 Optimization
Having obtained the predicted parameters and line probability scores for each
query, we match each ground truth line to a query such that the assignment is
one-to-one and optimal using the Hungarian Algorithm.

Let {li}N0
i=1 be the set of ground truth lines sorted by their μy values. We

define the median vertical gap δ between the sorted lines as δ =median{μy2 −
μy1 , μy3 − μy2 , ..., μyN0

− μyN0−1}. Let l̂(μ̂x, μ̂y, m̂) be a predicted line with asso-
ciated probability p and l (μx, μy,m) be a ground truth line. We propose a
geometry-based loss function for penalizing the misalignment between the pre-
dicted line l̂ and the ground truth line l. Let dleft and dright be the vertical
distances between the lines at the left and the right patch boundary respectively
(see Fig. 5). We define the geometric loss Lgeom as: Lgeom(l̂, l) = d2left + d2right.

Finally, we define the matching cost function Cmatch as follows:

Cmatch(l̂, l) = λgeom · Lgeom(l̂, l)
δ

− λp · p

where λgeom, λp ∈ R are hyperparameters. After the matching, some queries
would be assigned to a line. The rest of the queries would be assigned φ (the
empty class). Let g : Z+ → {Z+, φ} be the obtained matching, such that g(i) = j
if the ith prediction is matched to the jth ground truth line, and g(i) = φ if it is
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assigned φ. We define the optimization loss Lopt as follows:

Lopt = L1 + L2

L1 =
N∑

i=1;g(i)=φ

[
λ1Lfocal(pi,−)

]

L2 =
N∑

i=1;g(i) �=φ

[
λ2Lfocal(pi,+) + λgeom

Lgeom(l̂, l)
δ2

]

where λgeom, λ1, λ2 ∈ R are hyperparameters, and Lfocal stands for the focal
loss [18]:

Lfocal(pi,+) = −(1 − pi)γ log(pi)
Lfocal(pi,−) = −(pi)γ log(1 − pi)

where γ is a hyperparameter. This completes the description of ‘Line-Parameter
Generator’ module in Stage-1. Next, we describe the ‘Text-Energy Map Gener-
ator’ (see Fig. 3).

3.3 Text-Energy Map Generator

The text-energy map generator is used to generate a continuous binary ([0, 1])
map to be used as an input to the seam generation algorithm in Stage-2. It uses
a hybrid CNN-transformer architecture (see Fig. 6). The input patch is fed to a
CNN encoder which outputs a feature map P . This feature map and representa-
tion M from the backbone encoder are fed to a transformer decoder. Within the
decoder, self attention is applied to M and the result is processed along with P
via a standard cross attention mechanism [33]. The resulting output is decoded
to the target binary map via a CNN decoder containing skip connections with
intermediate feature maps of the CNN encoder.

For optimization, we use the focal loss [18]:

L = −α · y · (1 − ŷ)γ logŷ − (1 − α) · (1 − y) · ŷγ log(1 − ŷ)

where ŷ represents the sigmoid activation layer’s output (shaded blue in Fig. 6),
y ∈ {0, 1} represents the ground truth, and α, γ are hyperparameters.

3.4 Stage-1 Inference and Post-Processing

In this section, we describe the mechanism by which global document-level strike-
through scribbles and Text-Energy map are obtained during test time (infer-
ence). The exact algorithms and visual explanations of the mechanisms can be
found on the project page.
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Fig. 6. Text-Energy Map Generator (Color figure online)

3.4.1 Context-Adaptive Patching
Documents occur in various sizes. To ensure that the patches contain enough
contextual information for effective scribble line prediction, we introduce an
adaptive patching mechanism. Given the input image, we sample patches of var-
ious sizes, and perform inference to obtain initial scribble line outputs. These
are used to estimate the average spacing between text lines. A patch size t is
calculated, such that the patches capture suitable context in the document. We
then sample patches of size t and perform inference to obtain scribble-line pre-
dictions. These predictions tend to be more accurate because the patches are
context-adapted. See Fig. 7 for a visual description. Refer to the project page for
more details.

3.4.2 Combining Patch-Level Outputs
After obtaining context adapted patches (Sect. 3.4.1) and patch-level scribble-
line predictions (Sect. 3.2), we construct the global scribble map S using an iter-
ative Projection-Merging Algorithm. Roughly, the algorithm involves rendering
each patch’s line predictions on the original document, which are then clustered
based on distance between them. Each cluster so formed represents a text line
in the document. The exact algorithm along with a visual explanation can be
found on the project page.

To obtain the global Text-Energy Outputs, we sample the original image into
non-overlapping patches and pass them through the Text-Energy Map generator
(Sect. 3.3) to obtain patch-level outputs. These are then combined to form the
global Text-Energy map B. See the project page for more details.
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Fig. 7. First, candidate patches of various sizes m = {64, 128, . . . 512} are sampled from
the document. Line-parameter predictions are made for each patch by resizing them
to the input shape expected by the model (s = 256) and then passing them through
the Line-Parameter Generator (Sect. 3.2). An interline-gap value δ for each patch is
calculated using the line predictions for the patch. These patch-level interline gap
predictions are then scaled to the size of the original document (δ := δ· m

s
) and averaged

to obtain an estimate of the average interline gap value for the whole document. This
averaged value is multipled by a scaling factor ζ, which roughly represents the expected
number of text lines seen in a patch to obtain the final context-adapted patch size (t).
Patches of size t are then sampled from the original document, and are fed to the
Line-Parameter Generator to get the final predictions.

3.5 Stage-2

The outputs of Stage-1 are a list of global scribbles S and a continuous Text-
Energy binary map B of the complete input image. These are processed by the
seam generation pipeline from SeamFormer [31] to obtain tight fitting polygons
enclosing the text lines.

We introduce two crucial modifications to the default approach in Seam-
Former [31]. Instead of thresholding the binary map, we use output from Stage-
1 as it is, i.e. B contains floating point values in the range [0, 1]. This avoids loss
of crucial text presence information caused by thresholding. The second mod-
ification is to discard other energy maps used in SeamFormer [31] (smoothing
map, diacritic map and sobel map). This eliminates the need for determining
energy map weight coefficients. As shown via experiments (Table 3), the quality
of our Text-Energy map makes other maps redundant in practice.

4 Implementation Details

Architectural Details: The reference input shape for Stage-1 model is H0×W0×3,
where H0 = 256, W0 = 256. The ViT backbone (see Fig. 3) uses a patch size of
16×16, and the output feature map M is of dimension H×W ×C, where H = 16,
W = 16 and C = 256, where C is the model’s embedding dimension. The encoder
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consists of 8 encoder layers. Learnable position embeddings are used. The Line-
Parameter Generator (Fig. 4) uses N = 200 line queries. The transformer decoder
consists of L = 8 decoder layers. The probability threshold p0 for line-prediction
is set to 0.9. The CNN encoder for Text-Energy Map Generator (Fig. 6) has 4
convolutional layers, each of which reduces the spatial dimensions of the input
image by half. The output of this encoder (P ) has the same shape as the output
of the backbone (M). The transformer decoder consists of R = 3 decoder layers.
The CNN decoder consists of 4 layers. Each layer consists of a convolutional
layer followed by upsampling. In the loss function, we use α = 0.25.

Training Details: We perform Stage-1 training in two phases. In the first phase,
we train only the ViT backbone and the Line-Parameter Generator. In the second
phase, we freeze both of them, and train only the Text-Energy Map Generator.
In the first phase, we use a learning rate of 5 × 10−5, and train for 60 epochs.
We then reduce the learning rate to 10−5 and train for another 20 epochs. In
the second phase, we train only the energy map generator with a learning rate
of 10−4 for 50 epochs. We use the AdamW optimizer, with the coefficients set to
PyTorch’s defaults. Our implementation is based on the distributed PyTorch
Lightning framework. We trained our model on 4 NVIDIA RTX 2080Ti GPUs,
with 24 images on each GPU. The first phase of training took around 32 hours,
and the second phase took around 7 hours.

5 Datasets

To evaluate the proposed model and baselines, we use palm leaf manuscript
datasets introduced in earlier works [13,28,31,32] - see Table 1 (shaded blue).
In addition, we annotate three new challenging manuscript datasets (WM, UB,
SM) for zero-shot evaluation (shaded pink). The diversity in terms of scripts,
image aspect ratios, image dimension ranges, number of lines seen in Table 1
underscores the challenge involved in palm-leaf manuscript text line segmenta-
tion. The new datasets were annotated using the HInDoLA document image
annotation tool [29]. Instead of annotating polygons from scratch, a semi-
automatic approach was implemented and integrated into the tool. The anno-
tators added strike-through scribbles for text lines. These scribbles and a bina-
rized version of input image were processed by seam generation module from
SeamFormer [31] to obtain text line polygon predictions. The predicted polygon
boundaries were adjusted to accommodate missing diacritics and ensure correct
enclosure of text lines. Empirically, this semi-automatic approach provided a
75% reduction in annotation time compared to the purely manual variant.

6 Experiments

We compare LineTR against various state-of-the-art approaches developed
for handwritten historical manuscripts. For fair and consistent comparison, we
train all the models (ours, existing approaches) on a single large-scale dataset
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Table 1. Dataset Statistics (Sect. 5). Languages: hin - Hindi, tel - Telugu, tam -
Telugu, sun - Sundanese, ban - Balinese, khm - Khmer, mal - Malayalam, jav - Javanese.
Newly introduced datasets are shaded pink.

I2 SD BL KH KG WM UB SM

Name Indiscapes2 Sundanese Balinese Khmer KgathaMWikimediaUpamiti Bori SVMP

Train Images 907 31 47 50 313 0 0 0

Test Images 229 30 49 200 79 60 30 30

Avg Lines 11 4 4 5 9 6 5 11

Min Size 442x207 2530x333 2505x6372244x322 2636x410 2042x1440 2592x1728 4567x1331

Max Size 9184x1064 3159x352 5759x5618224x696 3404x501 2324x1814 2592x1728 10277x3281

Aspect Ratio 3 9 10 11 7 3.5 1.5 2

Languagehin,tel,tam sun ban khm mal ban,jav hin tel

Source [27] [28] [13] [32] [31] Wikimedia Private Private

obtained by combining the training sets of existing palm leaf manuscript datasets
- Indiscapes2 [27] [I2], KGatham [31] [KG], and Challenge B dataset of ICFHR
2018 Competition On Document Image Analysis Tasks for Southeast Asian Palm
Leaf Manuscripts [14] containing manuscripts from Balinese [13] [BL], Khmer [32]
[KH], and Sundanese [28] [SD] languages. We report the performance metrics on
the respective test sets of these datasets. For existing approaches, we follow the
training instructions mentioned in their corresponding papers.

Trivedi et al. [30] demonstrate that Average Hausdorff Distance (AvgHD) is a
better measure of prediction performance for line polygon boundaries. Therefore,
we report AvgHD in addition to the standard Intersection over Union (IoU)
metric. To assess the zero-shot generalizability performance, we report these
metrics on three newly introduced datasets unseen during training - WM, UB,
and SM - see Table 1 for an overview of the datasets.

7 Results

As Table 2 shows, LineTR clearly outperforms other models by a significant
margin across all datasets. The consistently poor scores among other baselines
is an outcome of loose fit predicted text regions, often missing crucial textual
elements such as diacritics. Also, baseline methods [7,20,27] typically approach
text line segmentation as a per-pixel classification task, resizing images with
large aspect ratios to a fixed lower size. This resizing tends to merge adjacent
predicted text, particularly in dense text documents. In other baselines [1,22,31],
the suboptimal results are due to excessive dataset-specific decisions. LineTR’s
numbers on unseen datasets are on par with ones encountered during training.
This shows its zero-shot generalization ability.

7.1 Ablations

For ablation experiments, we report metrics on the combined test sets of the
seen benchmark datasets - see Table 3. The results suggest that a fine balance
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Table 2. Comparative evaluation of LineTR using benchmark datasets. All the base-
line models are trained on the pooled dataset (Sect. 6) using default settings men-
tioned in respective works to assess their adaptability. The results are reported on test
set of each dataset and three additional unseen datasets (zero-shot).

I2[27]SD[28]BL[13]KH[32]KG[31] WM* UB* SM*

AvgHD ↓
Doc-UFCN [7] 68.60 71.17 74.52 95.90 38.79 41.39 71.10 174.14

SeamFormer [31] 11.82 8.92 104.75 49.03 7.83 11.54 9.46 130.98

Palmira [27] 15.81 6.50 301.21 203.59 7.50 24.11 18.88 15.78

LCG [1] 16.82 39.65 95.18 44.50 29.72 317.98481.141034.88

dhSegment [22] 60.33 66.77 415.24 43.60 319.57 150.43213.32 414.63

docExtractor [20] 77.25 33.86 43.16 48.36 40.24 87.75 95.51 260.70

LineTR 1.86 1.30 22.62 14.97 2.09 0.94 1.01 3.04

IoU ↑
Doc-UFCN [7] 0.23 0.10 0.08 0.11 0.12 0.15 0.10 0.16

SeamFormer [31] 0.51 0.53 0.32 0.37 0.49 0.49 0.76 0.43

Palmira [27] 0.72 0.66 0.39 0.41 0.62 0.53 0.54 0.69

LCG [1] 0.37 0.12 0.12 0.18 0.20 0.02 0.01 0.07

dhSegment [22] 0.34 0.12 0.03 0.08 0.12 0.10 0.13 0.09

docExtractor [20] 0.03 0.01 0.00 0.02 0.12 0.03 0.03 0.02

LineTR 0.80 0.73 0.62 0.69 0.81 0.66 0.82 0.82

* Newly introduced datasets with zero-shot baseline testing

is required so that number of Line Queries (N) in ‘Line-Parameter Generator’
(Sect. 3.2) is neither too many nor too few. Compared to using an arbitrarily
threshold binary map similar to SeamFormer [31]’s approach, our unthresholded
text energy map (Sect. 3.3) is a noticeably better choice. This is due to the
loss of text-information caused due to a fixed threshold value. To demonstrate
the importance of context-adaptive patching (Sect. 3.4.1) for generating training
data, we considered patches of fixed-size, similar to SeamFormer [31]. However,
we found that the combined dataset training is extremely unstable. In fact, the
optimization did not even converge. Finally, we replace Lgeom (Sect. 3.2.3) by the
EA-loss [36]. This setting also caused the network to not converge.

7.2 Qualitative Results

As Fig. 8 shows, both of LineTR’s closest competitors – Palmira [27] and Seam-
Former [31] – fail when the text-lines have a curvature spread across the docu-
ment width. But LineTR is able to detect all the text-lines accurately. Similarly,
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Table 3. Performance scores for LineTR ablative variants. (Sect. 7.1). DNC = Did not
converge

Ablation Type Pipeline Component Ablation Details IoU ↑ Avg HD ↓
Architectural Line-Parameter Generator N = 100 0.45 145.39

N = 300 0.61 85.33

N = 400 0.62 28.72

Text-Energy Map Generator Threshold the energy map [31] 0.53 8.14

Optimization Line-Parameter Generator Replace Lgeom by EA-loss [36] DNC DNC

Dataset Data-Preparation Sample patches of fixed size DNC DNC

LineTR 0.74 7.13

Fig. 8. Performance comparison on a challenging image with curved text-lines

Fig. 9. Performance comparison on a challenging image with very dense text

LineTR outperforms Palmira and SeamFormer on images where the density of
text is very high (see Fig. 9). Figure 10 shows the zero-shot outputs of LineTR
on the newly introduced datasets.
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Fig. 10. Zero-shot outputs of LineTR on the newly introduced datasets

8 Conclusion

LineTR is a novel dataset-agnostic approach for robust text line segmentation
in diverse and challenging historical manuscripts. Similar to recent successful
approaches, we use a two stage approach - scribble generation and scribble-
conditioned polygon generation. However, our unique and novel design choices
make a significant difference. The choice of predicting per-patch scribble line
parameters in the first stage helps avoid the difficulties of pixel-based scribble
representation. Our adaptive patch extraction ensures sufficient context capture
for predicting scribble line parameters. A sensible design for Text-Energy Map
Generator not only simplifies second stage processing, it also improves overall
results.

Unlike existing approaches, LineTR’s methodology does not require dataset-
specific fine-tuning. Another distinction is that the training process results in a
single model and does not require dataset-specific models. These features make
LineTR advantageous from a maintainability and scalability point of view.
LineTR not only outperforms strong baselines but also exhibits good zero-shot
performance on unseen datasets. This showcases its generalizability and utility
for the community.
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Abstract. Multimodal pre-trained models have made significant
advancements in the field of visual information extraction by jointly
modeling textual, layout, and visual modalities, among which the layout
information plays a key role in modeling document inherent structures.
However, due to the diversity and complexity of document types and
typography styles, it is still not fully studied on how to better model
various document layouts comprehensively and hierarchically. Compared
with single-level layout adopted by most previous works, multi-level lay-
outs including word-level, segment-level, and region-level layouts can pro-
vide a more scientifically modeling of complex document structures. Con-
sidering that most existing OCR tools lack region-level layout outputs of
high quality, which poses challenges for the utilization of multi-level lay-
out information, we thus propose a region-level layout generation method
named ReMe based on hierarchical clustering. By iteratively clustering
and merging segment-level bounding boxes, ReMe aims to ensure that
semantically related segments with strong correlations share the same
region-level bounding boxes. ReMe can be seamlessly integrated into the
existing multi-level layout information modeling methods with negligible
cost. Experimental results show that after pretrained with only 2 million
documents from the IIT-CDIP dataset, the model can achieve new state
of the art results on downstream visual information extraction datasets,
and the region-level layout information generated by ReMe can sig-
nificantly enhance the model’s understanding of structured documents,
especially the performance on the Relation Extraction task.

Keywords: visual information extraction · multimodal · region level ·
text-layout

1 Introduction

Visual Information Extraction(VIE) is a critical document understanding topic
that aims at reading and analyzing the scanned or digital-born documents,
and extracts text information of specified categories. In recent years, with the
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advancement of deep learning techniques, particularly the Transformer architec-
ture [22], VIE has entered a new stage of development [4,5,11,16,18,23]. Most of
these works can be traced back to BERT [9], which introduces a “Masked Lan-
guage Modeling(MLM)” task based on the Transformer encoder [22] structure.
It effectively explores deep semantic features, achieving outstanding results in
the field of Natural Language Processing(NLP). Unlike natural language, the
diversity in document layouts and formats has always been a significant chal-
lenge in the VIE. How to better model the multimodal information involved in
documents has thus become a key research direction.

Based on BERT [9], many models including LayoutLMs [7,26,27], Doc-
Former [1], and others [14,20,30] incorporate textual with visual features and
layout information. However, the incorporation of visual information signifi-
cantly increases the training cost, implying that the model requires more training
data and larger memory. Nonetheless, when dealing with text-centric documents,
such as forms, contracts, receipts, and invoices, visual features are not always
essential. Consequently, some researchers contemplate modeling such documents
solely using textual and layout information.

The layout information in text-centric structured documents can be divided
into word-level, segment-level, and region-level from fine-grained to coarse-
grained [25]. Models such as StructuralLM [13], Bros [6], and others [21,24] model
text-centered structured documents using textual and layout information, avoid-
ing a dramatic increase in computational complexity caused by the introduction
of visual features. These models have demonstrated competitive performance in
downstream tasks. Actually, these models only utilize single-level layout infor-
mation in practice.

In the absence of visual features, multi-level layout information should be
utilized even more fully. As described in ERNIE-mmLayout [25], the lack of nat-
ural region-level layout information in raw data or OCR tool results poses chal-
lenges for the utilization of multi-level layout information. Although the recent
GraphMLLM [3] has achieved promising results by modeling text and multi-level
layout information, it oversimplifies the process by merging all segment-level lay-
out information in the document into a single region-level layout bounding box.
Such an approach is overly simplistic, and the resulting region provides limited
assistance for intelligent VIE.

In this paper, we propose ReMe, a method to generate high quality region
layout information based on a modified hierarchical clustering algorithm. Ini-
tially, segment-level layout provided by the OCR engine information is clustered
using a low distance threshold to generate primary region-level bounding boxes.
Subsequently, these primary regions are merged according to specific heuristic
rules to produce the final region-level layout information. This approach ensures
that semantically related entities are grouped within the same region as much
as possible, thus providing support for modeling complex document structures
using text and multi-level layout information. To validate the effectiveness of the
region-level layout information, we combine ReMe with GraphMLLM [3] and
perform Semantic Entity Recognition(SER) and Relationship Extraction(RE)
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tasks on the FUNSD [8], XFUND [29], and CORD [19] datasets. Experi-
ments show that the incorporation of region-level layout information signifi-
cantly improves the performance of GraphMLLM on the FUNSD, XFUND, and
CORD datasets, especially in the RE task. Specifically, under Language-specific
fine-tuning conditions, the average F1 score improved by 3.87. Under Multi-
task fine-tuning conditions, the average F1 score improved by 1.67. And under
Cross-lingual zero-shot conditions, the average F1 score improved by 3.41.

The contributions of this paper are summarized as follows:

• We propose a region-level layout information generation method ReMe based
on the modified hierarchical clustering algorithm, which effectively alleviates
the problem of lacking region-level layout information in manual annotations
or OCR results, and provides support for subsequent multi-level layout infor-
mation modeling.

• ReMe significantly improves the ability of the multi-level pre-trained model
to understand document layout information, thereby enhancing the model’s
cross-language understanding capability. Using only layout and textual infor-
mation, it achieves new state-of-the-art results in SER and RE results on
FUNSD, XFUND and CORD datasets.

2 Related Work

Since documents usually have complex hierarchical layout structures, existing
pre-trained models can be roughly classified into two types based on the layout
information they adopt: single-level layout based model and multi-level layout
based model.

2.1 Single-Level Layout Based Model

Based on LayoutLM [27], StructuralLM [13] replaces word-level spatial lay-
out information with segment-level, meaning that words belonging to the same
semantic entity share the same layout information. This makes StructuralLM
aware of which words are from the same semantic entity, and thus enables the
model to capture not only the semantic representation of individual entities but
also the spatial relationship between entities. Bros [6] modifies LayoutLM by
replacing absolute position encoding with relative position encoding, effectively
incorporating the relative positional relationships between word-level bounding
boxes into the self-attention mechanism. This enhancement improves the model’s
capability to capture and utilize text position information. LiLT [24] proposes a
two-stream architecture where text and segment-level layout information are pro-
cessed separately through the text flow and layout flow, respectively. This allows
the model to learn layout knowledge from single-language documents and gener-
alize it to multi-language document downstream tasks. LayoutMask [21] adopts
local 1D position and segment-level bounding boxes as layout input and can
enhance text-layout interactions and layout representation learning during pre-
training.
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Although these models have achieved outstanding performance using only
text and single-level layout information, the relationship between different levels
of layout information still needs further exploration.

Fig. 1. The overall architecture of GraphMLLM [3].

2.2 Multi-level Layout Based Model

StrucTexT [15] incorporates text and word-level layout bounding boxes as the
initial language token embeddings, and combines visual features with segment-
level layout bounding boxes to form the initial visual token embeddings. By
employing this approach, the integration and exploitation of multi-level layout
information are successfully attained. ERINE-mmLayout [25] uses a clustering-
based method to detect region-level layout information, and then incorporates
the segment-level and region-level information into a LayoutLMv2-based model.
This enables the model to capture multi-level layout information, effectively
boosting its performance in both Information Extraction and Document Ques-
tion Answering tasks.

GraphMLLM [3] is a recently introduced model that is graph-based, incor-
porates multi-level layout information, and is language-independent. Unlike
StrucTexT [15] and ERNIE-mmLayout [25], it solely relies on textual and
layout modality information for document modeling. As depicted in Fig. 1,
GraphMLLM employs a dual-stream structure to separately encode text and
layout features. Information is then interacted between these two modalities
via an attention-based hierarchical interaction mechanism. The word-level and
segment-level layout information is derived from ground truth annotations or
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OCR results, while the region-level layout information originates from a bound-
ing box covering all segment-level bounding boxes. However, representing region-
level layout information of a document through a single bounding box is overly
simplistic. Experimental results also indicate minimal improvement from incor-
porating this region-level layout information.

3 Methodology

ReMe is a hierarchical clustering method. Firstly, we cluster the segment-level
bounding boxes with a low threshold to generate preliminary regions. Then,
according to specific rules, these preliminary regions are merged to produce the
final region-level bounding boxes.

3.1 Preliminary Clustering

The layout information at the word-level and segment-level is represented in
the form of 2D bounding boxes with coordinates (x0, y0, x1, y1), where (x0, y0)
corresponds to the position of the upper left corner of the bounding box, and
(x1, y1) represents the position of the lower right corner.

Fig. 2. (a) word-level and (b) segment-level layout bounding boxes. The document is
sourced from the FUNSD [8] dataset.

As illustrated in Fig. 2, segment-level layout information enables models to be
aware of which words belong to the same semantic entity. Consider the example
of the words “Brown”, “Rudnick”, “Freed”, “&”, and “Gesmer” that constitute a
company’s name. Without segment-level information, it would be challenging to
recognize that these individual words collectively form part of the company’s
name. With the segment-level layout information, models can more easily com-
prehend this association.
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It is clear that there exists a certain correlation or similarity among various
semantic entities. Analogous to the relationship between word-level and segment-
level information, allowing semantically correlated or similar entities to share
the same region-level layout information will enable the model to learn richer
semantic information. Inspired by mmLayout [25], we apply a density-based
clustering method DBSCAN [10] to generate region-level layout information.
Given two segment-level bounding boxes (x0
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0
0 , x

1
0, y

1
0) and (x0

1, y
0
1 , x

1
1, y

1
1), the

distance of their bounding boxes can be defined as follows:
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√
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i , x

0
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1
j ), 0), (2)

and

disty(i, j) = max(max(y0i , y
0
j ) − min(y1i , y

1
j ), 0). (3)

distx and disty represent the horizontal and vertical distance between the two
boxes. When dist < r, where r is a hyperparameter, two segment-level bounding
boxes can be clustered into a region-level bounding box.

Fig. 3. Region-level layout bounding boxes (red) generated by preliminary clustering
with different values of r in FUNSD. The green means the original segment-level layout
bounding boxes. (Color figure online)

As demonstrated in Fig. 3, when r is too small, the resulting regions tend to
be excessively fragmented, causing many semantic entities that ought to belong
to the same region to be divided into separate regions. Conversely, a large value of
r leads to oversized regions, where many semantically weakly associated entities
are grouped together within the same region. More importantly, the existence of
overlapping and covering among regions can easily cause semantic confusion.

For a particular document image, there may exist an appropriate hyperpa-
rameter r that yields the most reasonable regions. However, this value of r may
not be suitable for all document images. As demonstrated in Fig. 4, when r =



240 S. Li et al.

30, the resulting regions appear more reasonable for the document on the right,
which is consistent with the illustrations presented in mmLayout [25]. However,
for the document on the left, it may not be an optimal choice. When conducting
pre-training on large number of documents, it is impractical to find an appro-
priate hyperparameter r for all individual document images.

Fig. 4. Region-level layout bounding boxes (red) of different documents generated by
preliminary clustering with r = 30 in FUNSD. The green means the original segment-
level layout bounding boxes. (Color figure online)

3.2 Regions Merging

As mentioned above, single-level clustering alone cannot provide high-quality
region-level layout information. When clustering is performed using a low thresh-
old r, spatially adjacent entities are grouped into the same region, resulting in
minimal overlap or crossover among regions. However, the resulting regions are
often too fragmented, and such fragmented regions provide limited assistance in
modeling high-level layout information.

To obtain higher-quality region-level information, small regions can be
merged according to certain rules. To avoid semantic confusion during the
merging process, it is essential to ensure that there are no overlaps or inter-
sections among the newly generated region-level information. For highly struc-
tured documents such as forms, invoices, and contracts, the correlation between
two entities is generally proportional to their spatial distance, and the reading
order typically follows a left-to-right and top-to-bottom sequence. When merg-
ing small regions generated by low-threshold clustering, the merging process
can also be performed based on spatial distance, following the left-to-right and
top-to-bottom order.
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After preliminary clustering, a sequence of bounding boxes representing small
regions can be obtained. Ordered from left-to-right and top-to-bottom according
to the coordinates of the top left corner, they are denoted as {b1, . . . , bn}. The
merging process can be described as follows:

(1) ReMe starts with b1. According to Eq. (1), we calculate the spatial distances
between b1 and the remaining bounding boxes. These distances are then
sorted in ascending order, with the corresponding bounding boxes denoted
as {d2, . . . , dn};

(2) Merge b1 and d2 to form a new bounding box, denoted as R1;
(3) Sequentially calculate the spatial positional relationship between R1 and

{d3, . . . , dn}. If there is no intersection or overlap between R1 and
{d3, . . . , dn}, the merging is considered successful. If there is any intersec-
tion or overlap, the merging is deemed unsuccessful, and in this unsuccessful
case, the value of b1 is assigned to R1;

(4) Update the bounding boxes sequence to {R1, d3, . . . , dn};
(5) Iteratively repeat steps (2), (3), and (4), progressively merging bounding

boxes until the sequence is updated to only {R1}, which represents the final
region-level bounding box generated by ReMe;

(6) Update the original sequence {b1, . . . , bn} by replacing b1 with R1, result-
ing in the new sequence {R1, b2, . . . , bn}. Subsequently, employ Eq. (1) to
ascertain whether each bi (i = 2, 3, . . . , n) is contained within R1. In the
event that any bi is determined to be enclosed by R1, it shall be eliminated
from the sequence;

Repeat steps (1) to (6) until all bi (i = 2, 3, . . . , n) are removed. At this point,
the sequence {R1, R2, . . . , Rm} represents the region-level bounding boxes. The
pseudo-code is shown in Algorithm 1. In the preliminary clustering phase, we
set the hyperparameter r to 10. After applying ReMe to Fig. 2(b), the resulting
region-level bounding boxes are illustrated in Fig. 5. The semantic entities in
Boxes A, B, C, and D all follow the logic of “To”, “Fax Number”, “Company”,
and “Recipient Phone Number”. Compared to Fig. 3 and Fig. 4, region-level
bounding boxes generated by ReMe are more reasonable.

ReMe can be regarded as an improvement of the single-level clustering algo-
rithm and becomes a hierarchical clustering method. In single-level clustering
algorithms, the spatial distance is used as a constraint to determine whether two
segment-level bounding boxes can be merged into one. Contrastively, algorithms
based on hierarchical merging rules only rely on spatial distance to determine the
merging order, and whether two bounding boxes can be successfully merged does
not directly depend on the distance between them. Only when the new region
generated after merging does not overlap or intersect with other bounding boxes,
the merging of the two boxes is allowed.
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Fig. 5. region-level bounding boxes(red) generated by ReMe. (Color figure online)

Algorithm 1. ReMe Algorithm
Require: A sequence of segment-level bounding boxes {s1, . . . , sk}, low threshold r
Ensure: Region-level bounding boxes {R1, . . . , Rm}
1: Cluster {s1, . . . , sk} to obtain B = {b1, . . . , bn} {low threshold r}
2: for i = 1 to n do
3: Calculate distances between b1 and {b2, . . . , bn} to obtain

{d2, . . . , dn}{Equation(1)}
4: Merge b1 and d2 to form R1

5: for j = 3 to n do
6: if No intersection or overlap between R1 and dj then
7: Continue
8: else
9: R1 ← b1

10: break
11: end if
12: end for
13: Update bounding boxes sequence to {R1, d3, . . . , dn}
14: end for
15: Continue merging until the sequence is updated to only {R1}
16: for i = 2 to n do
17: if bi is enclosed by R1 then
18: Remove bi from sequence B
19: end if
20: end for
21: Repeat steps2 to steps20 until all bi are removed from the sequence.
22: return {R1, R2, . . . , Rm} as region-level bounding boxes



Region-Level Layout Generation for Multi-level PTM Based VIE 243

4 Experiments

4.1 Datasets and Evaluation

The experiments in this work involve two tasks, namely Semantic Entity Recog-
nition(SER) and Relationship Extraction(RE). All experiments are conducted
on the FUNSD [8], XFUND [29] and CORD [19] datasets. The SER aims to
assign each semantic entity a label among “question”, “answer”, “header” or
“other” and RE is the task of extracting the relationship between entities.

The performance of the pre-trained model is measured by entity-level F1 in
three main settings: (1)Language-specific fine-tuning, which means fine-tuning
and testing on a specific language; (2)Zero-shot transfer learning, which means
fine-tuning on English data only and testing on multilingual dataset; (3)Multi-
task fine-tuning, which means fine-tuning on multilingual dataset and testing on
individual language data.

4.2 Settings

We adopt the recently proposed GraphMLLM [3] as the backbone to integrate
with ReMe. To more fairly demonstrate the effectiveness of ReMe, we also use
the same pre-training tasks and hyperparameters described in GraphMLLM.
We set the batch size of 48 and train the model for 2 epochs on 2M documents
randomly selected from the IIT-CDIP dataset [12] using 2 NVIDIA A800 80GB
GPUs. Adam optimizer with the learning rate 2e−5, weight decay 1e−2, and
(beta1, bata2) = (0.9, 0.999) are also used in pre-training.

4.3 Main Results

Language-Specific Fine-Tuning. We first evaluate ReMe on FUNSD and
CORD, and the results are shown in Table 1. It is concluded that ReMe is effec-
tive as an independent region-level layout generator. By utilizing high-quality
region-level layout information generated by ReMe, GraphMLLM [3] surpasses
its original performance in the SER task across two datasets.

Similar to LiLT [24], GraphMLLM initializes the text flow from the existing
pre-trained English RoBERTabase [17] for pre-training. To fine-tune on non-
English document data, RoBERTabase should be replaced with InfoXLMbase [2].

Then we evaluate ReMe on language-specific fine-tuning tasks(fine-tuning on
X, testing on X) of FUNSD and XFUND. The results are shown in Table 2, by
utilizing ReMe, GraphMLLM [3] has achieved the highest F1 scores on both the
SER and RE tasks of each language. This significant improvement demonstrates
that high-quality region-level layout information can aid models in acquiring a
greater amount of language-independent knowledge, which can then be trans-
ferred from pre-training to downstream tasks.
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Table 1. English dataset fine-tuning results. “Doc” represents the total number of doc-
uments images utilized in pre-training, measured in millions(M). “GraphMLLM+R”
indicates that the model employs region-level layout information generated by ReMe.
Bold indicates the SOTA and underline indicates the second best. “+/−” represents
the improvement of GraphMLLM [3] performance by combining with Reme.

model Docs FUNSD CORD

Precision Recall F1 Precision Recall F1

RERTbase [9] – 54.96 67.1 60.26 88.33 91.07 89.68

RoBERTabase [17] – 63.49 69.75 66.48 – – –

LayoutLMbase [27] 11M 75.97 81.55 78.66 94.37 95.08 94.72

LayoutLMv3base [7] 11M – – 90.29 – – 96.56

GraphDocbase [30] 0.32M – – 87.95 – – 96.93

LayoutXLMbase [28] 30M – – 79.40 – – –

LiLTbase [24] 11M 87.21 89.65 88.41 95.98 96.16 96.07

GraphMLLM [3] 2M 86.16 88.40 87.27 95.37 95.58 95.48

GraphMLLM+R 2M 88.00 88.70 88.35 96.19 96.33 96.26

+/− – 1.84 0.3 1.08 0.82 0.75 0.78

Table 2. language-specific fine-tuning F1 accuracy on FUNSD and XFUND.

task Model Pretrain Docs FUNSD XFUND Avg.

Language Size EN ZH JA ES FR IT DE PT

SER LayoutXLM [28] Multilingual 30M 79.40 89.24 79.21 75.50 79.02 80.80 82.22 79.03 80.56

LiLT [24] English only 11M 84.15 89.38 79.64 79.11 79.53 83.76 82.31 82.20 82.51

GraphMLLM [3] English only 2M 84.03 90.80 80.34 79.54 83.74 84.58 84.81 83.01 83.86

GraphMLLM+R English only 2M 85.38 91.36 80.40 81.79 84.36 86.43 86.30 84.15 85.15

+/− – – 1.35 0.56 0.06 2.25 0.65 1.85 1.49 1.14 1.17

RE LayoutXLM [28] Multilingual 30M 54.83 70.73 69.63 68.96 63.53 64.15 65.51 57.18 64.32

LiLT [24] English only 11M 62.76 72.97 70.37 71.95 69.65 70.43 65.58 58.74 67.81

GraphMLLM [3] English only 2M 64.62 77.34 71.78 68.32 67.81 71.72 67.44 58.88 68.49

GraphMLLM+R English only 2M 67.33 81.46 75.37 73.52 74.04 74.20 70.17 62.30 72.30

+/− – – 2.71 4.12 3.59 5.20 6.23 2.48 2.73 3.42 3.81

Zero-Shot Transfer Learning. Table 3 presents the results of cross-language
zero-shot transfer learning(fine-tuning on FUNSD, testing on X). Neither during
the pre-training nor the fine-tuning phases did GraphMLLM [3] encounter non-
English documents. Clearly, by combining with ReMe, the GraphMLLM model
transfers the most language-independent knowledge from English to other lan-
guages. However, when evaluating documents in Spanish (ES) and Portuguese
(PT), ReMe led to a performance degradation on the SER task. This observa-
tion suggests that language-independent knowledge gained through a specialized
task on a particular corpus might not universally be applicable to all datasets.
Nonetheless, considering the average results, ReMe significantly improved the
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model’s performance. Hence, despite isolated instances of performance deterio-
ration, the utility of ReMe cannot be discounted.

Table 3. Cross-lingual zero-shot transfer F1 accuracy on FUNSD and XFUND.

task Model Pretrain Docs FUNSD XFUND Avg.

Language Size EN ZH JA ES FR IT DE PT

SER LayoutXLM [28] Multilingual 30M 79.40 60.19 47.15 45.65 57.57 48.46 52.52 53.90 55.61

LiLT [24] English only 11M 84.15 61.52 51.84 51.01 59.23 53.71 60.13 63.25 60.61

GraphMLLM [3] English only 2M 84.03 61.02 51.18 51.04 60.30 54.46 58.54 63.87 60.56

GraphMLLM+R English only 2M 85.38 66.02 52.23 50.26 61.90 58.87 59.26 61.56 61.94

+/− – – 1.35 5.00 1.05 -0.78 1.60 4.41 0.72 -2.31 1.38

RE LayoutXLM [28] Multilingual 30M 54.83 44.94 44.08 47.08 44.16 40.90 38.20 36.85 43.88

LiLT [24] English only 11M 62.76 47.64 50.81 49.68 52.09 46.97 41.69 42.72 49.30

GraphMLLM [3] English only 2M 64.62 56.67 58.11 54.53 58.52 50.22 49.12 43.30 54.39

GraphMLLM+R English only 2M 67.33 61.23 58.62 57.69 61.92 55.76 50.35 49.48 57.80

+/− – – 2.71 4.56 0.51 3.16 3.40 5.54 1.23 6.18 3.41

Multi-task Fine-Tuning. Table 4 shows the results of multi-task fine-
tuning(fine-tuning on 8 languages all, testing on X). Specifically, it demonstrates
the performance of GraphMLLM that was pre-trained solely on an English
dataset and subsequently fine-tuned concurrently on datasets derived from eight
distinct languages. The model was then evaluated using datasets from each cor-
responding language. The results reveal that when the model handles documents
in multiple languages simultaneously, it can also reap the benefits of incorporat-
ing ReMe.

4.4 Ablation Studies

For better understanding the performance of ReMe, we conduct ablation studies
to determine how region-level layout information of varying quality affects the
performance of GraphMLLM. The experiments were conducted on FUNSD and
XFUND datasets, using the language-specific task setting.

As demonstrated in Table 5 and Table 6, the region-level layout information
generated by ReMe proves to be more efficacious in enhancing model perfor-
mance. That is due to the fact that the granularity of regions generated by pre-
liminary clustering is too small to capture the high-level layout information of
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Table 4. Multitask fine-tuning F1 accuracy on FUNSD and XFUND.

task Model Pretrain Docs FUNSD XFUND Avg.

Language Size EN ZH JA ES FR IT DE PT

SER LayoutXLM [28] Multilingual 30M 79.24 87.55 79.64 77.98 81.73 82.10 83.22 82.41 82.01

LiLT [24] English only 11M 85.74 90.47 80.88 83.40 85.77 87.92 87.69 84.93 85.85

GraphMLLM [3] English only 2M 87.37 91.13 80.79 85.23 88.54 88.06 88.81 86.03 87.00

GraphMLLM+R English only 2M 87.94 92.49 81.40 86.53 86.92 89.15 88.80 86.45 87.46

+/− – – 0.57 1.36 0.61 1.30 -1.62 1.09 -0.01 0.42 0.46

RE LayoutXLM [28] Multilingual 30M 66.71 82.41 81.42 81.04 82.21 83.10 78.54 70.44 78.23

LiLT [24] English only 11M 74.07 82.41 83.45 83.35 84.66 84.58 78.78 76.43 81.25

GraphMLLM [3] English only 2M 82.98 89.46 84.56 85.33 88.60 86.41 83.15 78.36 84.86

GraphMLLM+R English only 2M 87.73 90.41 85.29 86.04 90.33 88.52 83.38 80.50 86.53

+/− – – 2.71 4.56 0.51 3.16 3.40 5.54 1.23 6.18 1.67

documents. The original GraphMLLM utilizes bounding boxes encompassing all
text to furnish region-level layout information for the entirety of the document.
This larger granularity impairs the effective conveyance of structural information
pertaining to the document.

Table 5. Comparison on the SER task of FUNSD dataset. “original” means the original
region-level layout information(a box covering all segment-level bounding boxes [3]);
“clustering” means the region-level layout information generated by Preliminary Clus-
tering (Sect. 3.1); “ReMe” means the region-level layout information generated by ours
ReMe.

Task Regions Precision Recall F1

SER original 86.16 88.40 87.27

clustering 87.08 88.60 87.83

ReMe 88.00 88.70 88.35

Table 6. Comparison F1 accuracy on FUNSD and XFUND.

Task Regions EN ZH JA ES FR IT DE PT Avg.

RE original 64.62 77.34 71.78 68.32 67.81 71.72 67.44 58.88 68.49

clustering 65.26 73.20 68.47 70.62 72.77 71.15 63.75 59.87 68.14

ReMe 67.33 81.46 75.37 73.52 74.04 74.20 70.17 62.30 72.30
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5 Conclusion

The lack of natural region-level layout information in manual annotations or
results of OCR tools poses challenges for the utilization of multi-level layout
information. To address this issue, we propose ReMe, a region-level layout
generator based on hierarchical clustering. It aims to ensure that semantically
related segments with strong correlations share the same region-level bounding
boxes. We conduct extensive experiments on the FUNSD, XFUND, and CORD
datasets, with a focus on Semantic Entity Recognition and Relation Extrac-
tion tasks, to verity the effectiveness of ReMe. Experimental results under three
settings (language-specific, cross-lingual zero-shot transfer, and multi-task fine-
tuning) clearly demonstrate that ReMe helps the model to more fully explore
multi-level layout information within documents, thereby achieving better per-
formance on various visual information extraction tasks. In the future, we will
explore how to introduce more semantic information into the generation of
region-level layout information, rather than only the segment-level layout infor-
mation used in this paper.
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Abstract. Due to irregular spacing, character overlap, and varying ori-
entations, text line detection is especially challenging for unconstrained
handwritten and historical documents. These complexities make tradi-
tional methods, designed for straight lines, insufficient for detecting spiral
text lines from Aramaic incantation bowls used in Sasanian Mesopotamia
between the 4th and 7th centuries CE. We introduce a novel learning-
based method for extracting spiral text lines inscribed on the surfaces
of Aramaic incantation bowls. Our model utilizes an encoder-decoder
architecture while leveraging connections among corresponding layers,
similar to UNet. It combines high-level and low-level features, enabling
precise localization and segmenting spiral text lines.

Furthermore, we propose a novel metric to evaluate the dissimilarity
between predicted and ground-truth lines. Inspired by the Intersection-
over-Union (IoU) metric, We compare our model with the state-of-the-
art methods and show that our approach outperforms these methods in
terms of the introduced metric.
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1 Introduction

Text Line Detection (TLD) is a fundamental task in the field of historical docu-
ments. It remains an active research area in historical document image analysis
and handwritten texts, particularly those with irregular spacing, overlapping
characters, and diverse orientations. The growing interest is due to the signifi-
cant impact of text line detection on various tasks, such as text recognition and
document categorization. However, TLD can be highly challenging due to the
unconstrained nature of handwritten documents, which often feature complex
and variable text line layouts, degradation, multiple handwriting styles, scripts,
fonts, and other irregularities. These challenges complicate accurately detect-
ing and extracting text lines, requiring sophisticated techniques to handle such
documents’ diverse and intricate patterns.

During the last decades, numerous methods have been proposed for text
line detection and extraction in handwritten documents [2,5,7,10,16]. Existing
methods for text line detection, such as [2,18] achieve promising results for hori-
zontal, vertical, and slightly curved lines, they often struggle with more complex
patterns like spiral lines, as shown in Fig. 1.

Fig. 1. The performance of our approach compared to two leading methods for detect-
ing spiral text lines on Aramaic incantation bowls. The first and the second images show
an input patch and its corresponding ground truth, respectively. The third image shows
the results of applying FCN8 [2], where the detecting lines appear in yellow blobs. The
result of running Seamformer [18] is presented in the fourth image, where the detect-
ing lines are in green blobs. Seamformer detects blobs and applies post-processing to
connect them into polylines. The last image shows the results of our model.

In this paper, we introduce a novel learning-based method for extracting spi-
ral text lines inscribed on the surfaces of Aramaic incantation bowls. These text
lines often exhibit perspective distortion in the bowl images. Our model utilizes
an encoder-decoder architecture while incorporating connections among corre-
sponding layers, similar to UNet. It combines high-level and low-level features,
enabling precise localization and segmentation of text lines. We compare the
proposed approach with the state-of-the-art methods and show that it achieved
superior accuracy scores.

Our contributions can be summarized as follows:
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1. We present a new dataset that includes images of Aramaic incantation bowls
and artifacts used in Sasanian Mesopotamia between the 4th and 7th centuries
CE [12], and their corresponding ground truth spiral text line annotations,
as shown in Fig. 5. These bowls present a unique set of challenges for TLD
since they bear inscriptions in various script styles arranged in spiral patterns,
reflecting the magical nature of their contents. The images were downloaded
from the British Museum collection, and our research team performed the
annotation using a specially developed GUI-based annotator, which is freely
available to the research community.1

2. We develop a novel approach for extracting spiral text lines from Aramaic
incantation bowls. Our learning model adopts the encoder-decoder methodol-
ogy. In addition, we explored various encoder backbones, such as ResNet-18,
ResNet-34, ResNet-101, and ResNet-152, as well as advanced residual archi-
tectures, such as ResNeXt and WideResNet.

3. We propose two new metrics to evaluate the performance of the models and
overcome the sensitivity of Intersection Over Union (IoU) for small and thin
objects, named Fuzzy IoU.

The remainder of this paper is organized as follows. Section 2 overviews
recent studies and methodologies for text line extraction and detection. Section 3
presents the new dataset and the annotations facilitated by the GUI developed
by our team. In Sect. 4, we detail our approach for text-line detection, which
utilizes the L-UNet architecture. We present the results of our experiments in
Sect. 5, providing quantitative metrics and qualitative analysis of the detection
outputs. Finally, in Sect. 6, we conclude with a summary of our findings.

2 Related Work

Text line detection and extraction have long been recognized as a preprocessing
step in analyzing handwritten document images. Various methods have been
proposed to address this task, primarily focusing on detecting and segmenting
horizontal or straight text lines [4,11,17,18]. However, the challenge escalates
when dealing with historical documents characterized by irregularities and intri-
cate layouts, such as those found in Aramaic incantation bowls featuring spiral
text lines (see Fig. 4). In this section, we review existing methodologies for text
line detection and extraction in historical documents, highlighting their rele-
vance and limitations in addressing the unique challenges posed by spiral text
patterns.

Droby et al. [4] utilize Mask R-CNN for holistic text line extraction. By
training a Mask R-CNN model on document patches, this method effectively
detects and segments text lines, achieving state-of-the-art results on well-known
datasets of historical documents.

Alaql [1] proposes an approach based on local connectivity maps for text line
extraction in historical documents. By utilizing dynamic steerable directional

1 https://github.com/SaeedYNaa/GUI-For-TLE-data-labeling.

https://drive.google.com/drive/folders/13f8tZRogNd44MrPMAuEsloqgOolM2oSF?usp=sharing
https://github.com/SaeedYNaa/GUI-For-TLE-data-labeling
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filters, this method effectively estimates the orientation angles of text lines,
facilitating accurate segmentation. Furthermore, it introduces adaptive local
connectivity maps to address document complexity and low-quality challenges.
Rahal et al. [13] presents an approach based on background and foreground infor-
mation for text line extraction in graphical documents. This method, inspired
by the concepts of local connectivity maps, effectively segments text lines while
addressing document quality and complexity challenges.

Recent developments in deep learning-based document segmentation have
shown promising results in simultaneously addressing various document pro-
cessing tasks. Oliveira et al. [17] introduce dhSegment, a generic deep-learning
approach designed to handle multiple document processing tasks, including page
extraction, baseline extraction, layout analysis, and extraction of illustrations
and photographs. By employing a CNN-based pixel-wise predictor coupled with
task-dependent post-processing blocks, dhSegment offers a flexible and efficient
solution capable of handling the diversity of historical document series.

Ronneberge et al. [15] present a language-independent global method for
automatic text line extraction from historical document images. The proposed
approach computes an energy map of the text image and determines seams that
pass across and between text lines. Two algorithms are developed based on
this concept, catering to binary and grayscale document images. The algorithms
utilize different techniques, such as component extraction and distance trans-
form, to segment text lines accurately. A benchmark dataset containing histor-
ical document images with various challenges, including different languages, is
also introduced for evaluation purposes.

Next, we provide a detailed overview of fully convolutional deep learning
methods categorized as linear-based and UNet-based approaches for text line
detection. The approaches represented by architectures such as FCN [2] and
Fast and Lightweigh [11] are considered linear-based methods, while dhSeg-
ments [17] and L-UNet [14] architectures exhibit of UNet-based architecture.
Each of these architectures, belonging to both categories, offers unique advan-
tages tailored to various aspects of text line detection, including capturing con-
textual information and mapping low-resolution feature maps.

Fig. 2. An illustrative diagram of the UNet architecture, renowned for its skip connec-
tions facilitating high-resolution feature maps reconstruction, alongside its contracting
(encoder) and expanding (decoder) pathways designed for efficient image segmentation.
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2.1 Linear-Based Fully Convolutional Network

This section overviews the linear-based, fully convolutional FCN and Fast and
Lightweigh networks that we utilized for this study.

FCN Architecture. The Fully Convolutional Network (FCN) architecture,
depicted in Fig. 3, is based on the FCN proposed for semantic segmentation [2,9].
We experimented with two configurations, FCN8 and FCN32, which comprise
an encoder and a decoder. These configurations were selected for their success
in page layout analysis of handwritten documents [2]. The encoder downsamples
the input image, enabling the filters to capture broader information with a larger
receptive field. The decoder combines the final layer of the encoder with lower
layers containing finer information and then upsamples the combined layer back
to the input size using transpose convolution, where upsampling with a factor f
involves applying a convolution filter with a stride equal to 1

f .
The main difference between FCN8 and FCN32 lies in their levels of upsam-

pling. While FCN32 directly upsamples the final layer of the encoder to the
input size, FCN8 integrates the final layer with lower layers and subsequently
upsamples the combined layer back to the input size.

Fast and Lightweight Architecture. The proposed network architecture [11]
is based on previous research [19], but with modifications to enhance text line
detection. It utilizes standard convolutions instead of separable convolutions in
early layers and adjusts certain layers while maintaining robust performance.
The compact design ensures efficiency with a few trainable parameters and is
called from herein as FastSmall. The ReLU activation function was employed
throughout the network, with sigmoid used in the final layer. An expanded model
with small residual connections and extra layers is proposed, referred to here as
FastLarge.

2.2 UNet-Based Fully Convolutional Network

This section overviews the U-Net-based fully convolutional networks explored in
this study.

The L-UNet [14] is UNet-based architecture for page layout semantic seg-
mentation and text line segmentation of historical document images. This archi-
tecture draws inspiration from the UNet model, particularly Doc-UFCN [3], for
its utilization of dilated convolutions, as depicted in Fig. 2. A notable aspect of
this architecture is the reduced number of filters, especially in the encoder blocks
operating at lower resolutions. In contrast to other architectures that typically
double the number of filters at each block level, the L-U-Net architecture argues
for a consistent number of filters across all levels, contending that it effectively
captures the characteristics necessary for document layout analysis.

The dhSegment architecture comprises two main components: an encod-
ing path and a decoding path [17]. Following the ResNet-50 [6] architecture, the
encoding path includes five convolutional blocks and progressively reduces the
size of feature maps through each step, halving the size at each step. Pretrained
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weights from ImageNet are utilized to enhance robustness and generalization.
The decoding path comprises five blocks and a final convolutional layer, assigning
a class to each pixel. Each deconvolutional step involves upscaling the previous
block’s feature map, concatenating it with the corresponding encoding feature
map, and applying a 3 × 3 convolutional layer followed by a ReLU activation.
Finally, the output prediction has the same size as the input image, and the
number of feature channels constitutes the desired number of classes.

Fig. 3. A Fully Convolutional Network (FCN) architecture. In this example, 32×
upsampling is applied to obtain output of the same size as the input, referred as
FCN32.

3 Dataset

This paper introduces a new dataset to train and evaluate our approach. It
contains images of Aramaic incantation bowls downloaded from the British
Museum collection. These artifacts, dating back to the Sasanian era (4th to 7th-
centuries CE), bear inscriptions characterized by a mixture of Jewish, Zoroas-
trian, and pagan elements, often arranged in spiral patterns surrounding sym-
bolic images, as shown in Fig. 4. The inscriptions typically consist of incantations,
prayers, and curses, reflecting the syncretic religious practices prevalent.

To facilitate the extraction of spiral text lines from the bowl images, we
annotate the dataset using a specially developed annotation tool that includes
an intuitive graphical user interface (GUI). It enables marking the location of
text lines within the bowl images.

We generate a polyline list and a mask for each image in the dataset. The
polyline list indicates the center of the text lines, and the mask image delineates
the text line regions using white spiral lines against a black background. This
annotated dataset is of great value for developing and evaluating methodologies
aimed at extracting text lines from spiral patterns.

Figure 5 illustrates the data labeling and clarifies converting the raw image
into a labeled data tuple containing the original image and the corresponding
labeled mask.
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Fig. 4. Samples of the Aramaic incantation bowls images.

Fig. 5. The image on the left shows the original bowl image and the annotation (over-
lay) as it is displayed in our annotation tool. The two images on the right show the
original image and the annotated mask, displayed in greyscale, which delimits the
lines of text in the original image.

4 Method

We present a novel learning-based approach for extracting spiral text lines
inscribed on Aramaic incantation bowls’ surfaces. These text lines are also sub-
ject to perspective distortion as we process images of these bowls. Our model
follows the encoder-decoder methodology, which includes Fully Convolutional
Networks and U-Net.

The encoder-decoder architecture consists of an encoder that compresses the
input image into a lower-dimensional representation through a series of convo-
lutional layers and downsampling operations, capturing essential features while
reducing spatial dimensions. The decoder reconstructs the compressed repre-
sentation into the original spatial dimensions using upsampling operations and
convolutional layers, restoring image details and resolution.

UNet, a type of encoder-decoder architecture specifically designed for image
segmentation tasks, features a symmetric structure with a contracting path
(encoder) and an expansive path (decoder), incorporating skip connections
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between corresponding layers to retain fine-grained spatial information, as shown
in Fig. 2.

Our model is used for pixel-wise predictions, classifying each pixel in the input
image into categories such as background or text. It incorporates connections
among corresponding layers, similar to U-Net, and combines high-level and low-
level features, enabling precise localization and segmentation of the text lines,
even with perspective distortions. Our model adopts the ResNeXt as a backbone
for encoding.

The encoding path starts with the initial layer, including the 7 × 7 convolu-
tional layer, followed by BatchNorm, ReLU activation, and Max pooling; then,
it consists of 4 layers whose content varies according to the backbone. Each layer
includes multiple convolutional layers, batch norms, and activation functions but
excludes max pooling layers. It is structured to progressively reduce the spatial
dimensions of the input while increasing the depth (number of filters), allow-
ing the network to capture complex features at multiple scales. These features
typically include edges, textures, and complex patterns essential for accurately
detecting and extracting text lines.

The decoding path comprises five blocks and a final convolutional layer, which
assigns a class to each pixel. During each step in the decoding path, the feature
map from the previous block is upscaled, concatenated with the corresponding
feature map from the encoding path, and processed through a 3 × 3 convo-
lutional layer followed by a ReLU activation. This concatenation ensures that
spatial information from the encoding path is preserved and utilized effectively.
The output prediction retains the same dimensions as the input image, with
the number of channels corresponding to the desired number of classes, allowing
for precise segmentation of the spiral text lines from the background and other
elements in the bowls.

4.1 Fuzzy IOU

Intersection over Union (IoU) is an evaluation metric extensively employed across
computer vision tasks to assess the precision of object detection algorithms. It
was initially introduced to compare bounding boxes, but it has been applied
to evaluate mask segments, particularly in semantic and instance segmenta-
tion tasks. Its effectiveness dwindles when applied to small objects such as text
lines, primarily due to their diminutive size. Though seemingly insignificant at
first glance, factors like subtle translations, rotations, or resizing of predicted
text lines can unexpectedly wield a disproportionate influence on resulting IoU
scores. These minor alterations may not appear critical to the overall outcome,
and they might be deemed acceptable in the results, as shown in Fig. 6. However,
when considering IoU values, they fail to reflect this lack of criticality, potentially
leading to significant distortions in assessing model performance.

To address the limitation of IoU, we augment the thickness of text line anno-
tations (the polylines) to diminish the metric’s vulnerability to minor alterations
like small translations and adjustments. This augmentation enhances the evalu-
ation process’s resilience.
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Fig. 6. Results of text line detection. The red and blue lines represent the model pre-
dictions and the ground truth, respectively. Despite the noticeable visual disparity, the
difference between the blue (ground truth) and red (prediction) lines is not critical. In
(a), there is an average translation of 5 pixels in the x-direction, whereas in (b), the
translation is 5 pixels in the y-direction. (Color figure online)

We propose two approaches for augmenting the thickness of text line annota-
tions (polylines). The first one avoids penalization for small translations and is
considered fully correct results. It extends the annotation boundaries by t pixels
on each side, making the lines more thicker, as shown in Fig. 7b. This is achieved
by applying a kernel of size t × t using morphological dilation operations.

The second aims to handle minor translations and adjustments based on a
fuzzy evaluation. It involves augmenting the polylines with weights that vary
as we move away from the center, as depicted in Fig. 7c. These weights are
calculated based on the Distance Transform with Euclidean distance, normalized
between 1 at the center of the text line and 0 at the outer edges.

Let’s define P as the set of predicted text lines and G as the set of ground
truth text lines (polylines). Additionally, Gt denotes the ground truth after aug-
mentation with t pixels using the dilation operator, where t represents the expan-
sion parameter. We calculate the fuzzy Intersection over Union (IoUt) as the
intersection of P with Gt, divided by the union of P and G, as shown in Eq. 1.

IoUt =
P ∩ Gt

P ∪ G
(1)

Gd represents the ground truth after augmentation with the Distance Trans-
form and using Euclidean distance. Similar to Eq. 1, we define the IoU metric
(IoUd) to be the intersection of P with Gd, divided by the union of P and G.
This approach comprehensively assesses text line detection performance under
different augmentation techniques.

IoUd =
P ∩ Gd

P ∪ G
(2)

The modified IoU metrics, IoUt and IoUd, offer a nuanced assessment of text
line detection systems by accounting for text line thickness augmentations vari-
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Fig. 7. (a) Ground Truth of Text Lines: Displays the true representation of text lines.
(b) Expansion Using Dilation: Shows dilation-based expansion, with minor alterations
considered correct. Thickness increases by t pixels on each side. (c) Weighted Results:
Illustrates weighted augmentation of text lines, with weights varying gradually from 1
at the center to 0 at the edges, calculated using Distance Transform with Euclidean
distance normalization.

ations. They evaluate how accurately detected text lines align with the ground
truth under the specified augmentation technique. Our choice of the thickening
augmentation technique aims to balance sensitivity to variations in text line pre-
dictions with resilience against minor perturbations. This enhances the stability
and reliability of model evaluations, providing clearer insights into its perfor-
mance in text line detection tasks.

5 Experimental Evaluation

We have experimentally evaluated our model and compared its performance
with the state-of-the-art methods. Initially, we employed linear FCN models,
including FCN8, FCN32, FastSmall and FastLarge [11] to detect spiral text
lines. However, these models struggled to grasp the complexity of spiral text line
detection, leading to unsatisfactory results, as shown in Fig. 1.

Therefore, our evaluation focused on U-Net-based models, which can effec-
tively capture the low-level and semantic features. The L-UNet, which is
a lightweight yet robust model equipped with dilatation convolution blocks,
exhibits notable improvements over linear models, attributing its success to the
integration of residual/skip connections between encoder and decoder blocks,
facilitating the fusion of features essential for accurate text line detection.

The dhSegment, an UNet-based model fortified with residual dilatation con-
volution blocks and adopts ResNet50 as its encoder, demonstrates superior capa-
bilities compared to L-UNet. Still it does not output accurate results compared
to our model, as shown in Table 1.

We explore various UNet architecture encoding path backbones, including
ResNet-18, ResNet-34, ResNet-101, and ResNet-152. In addition, we examined
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advanced residual techniques such as WideResNet and compared their perfor-
mance with our model (See Sect. 4).

5.1 Dataset Preparation

The dataset preparation involves extracting patches of size 512 × 512 that cap-
ture a significant portion of a bowl image. We ensure that each patch contains
multiple lines of text to provide enough spatial information for the model to
learn the intricate patterns and variations present in the text lines.

To generate patches, we apply a sliding window to the original images using
a stride of 256 pixel in both X and Y directions, creating an overlap among
consecutive windows. This approach ensures comprehensive coverage of the bowl
images while maintaining contextual information across adjacent patches.

We avoid generating patches that do not include text lines by utilizing the
annotated text lines to guide the calculation of tight bounding boxes (include
text) and applying the sliding window within these boxes. Similarly, the anno-
tated data (the corresponding masks) undergoes the same bounding process,
ensuring that each patch of the bowl image corresponds to its respective patch
label as illustrated in Fig. 8.

The original bowl images are split into three sets with a ratio of 70%, 15%,
and 15% for the train, validation, and test subsets, respectively. We allow an
overlap of bowls between the train and validation sets.

5.2 Training

Throughout the training process, for all the models, we utilize the Adam opti-
mizer [8], alongside a batch size of 8 for a duration of 30 epochs, training each
model from scratch with a learning rate of 0.002. The training used patches
of size 512 × 512, where 0 denoted the background and 1 denoted the text line
region. Additionally, binary Cross Entropy was employed as the loss function to
minimize the loss during the training.

5.3 Results and Analysis

The overlapping patches of size 512× 512 are extracted from the test set images
during the inference stage. We assessed the results using the two approaches
outlined in Sect. 4.1. For the IoUt metric, we varied the expansion parameter t,
considering values of 2, 3, 4, and 5 as detailed in Table 1. These variations are
labeled as IoU2, IoU3, IoU4, and IoU5, respectively. Additionally, we conducted
another evaluation to calculate the models’ performance using the IoUd metric,
as presented in Table 1.

Table 1 shows varying performance metrics across different models and eval-
uation techniques. For instance, models FCN32 and FCN8 exhibit lower scores
than the ResNet101, ResNet18, ResNet34, and ResNet50 models. Among these,
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Fig. 8. The result of the patching techniques applied to the original image, where the
leftmost panel illustrates the annotated image alongside the bounding box encapsulat-
ing the annotated region and three overlapping sliding windows {wi}3i=1 applied to the
image. Morphological operations, specifically dilation, ensure a slight margin between
the bounding box and the outermost spiral line. This operation increases the annota-
tion lines’ thickness, creating space between the original annotation lines (text) and
the bounding box covering the largest contours of the dilated annotation image. The
right part illustrates the resulting extracted patch images pwi and their corresponding
annotation patch labels Lwi .

our method with ResNext101 32x8d and ResNext50 32x4d as the encoding back-
bone, as shown in Fig. 9, stand out with the highest scores among other models,
respectively, for the IoUt and IoUd metrics.

ResNext models demonstrate superior performance to WideResNet and stan-
dard ResNet due to their enhanced architecture, incorporating a more efficient
feature extraction and representation learning design. This enhanced architec-
ture allows ResNext models to capture more diverse and complex patterns within
the data, leading to improved accuracy and performance in various tasks.

The lower values of IoUd compared to the IoUt reflect the differences in the
way the two methods handle augmentation of text line annotations(polylines).
While dilation uniformly expands the predicted text lines, the distance transform
method assigns varying weights to pixels based on their distance from the text
line center. This nuanced approach may result in some predicted pixels being
assigned lower weights, particularly those farther away from the boundary.

6 Conclusions

In this study, we have introduced a novel method for detecting and extracting
spiral text lines by utilizing an encoder-decoder similar to UNet architecture,
which combines high-level and low-level features for precise segmentation. To
facilitate the experiments, we created a GUI-based annotator to annotate the
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Table 1. Model Results: Performance metrics of different models using IoUt and IoUd

techniques.

Model IoU2 IoU3 IoU4 IoU5 IoUd

FCN32 17.97 19.40 20.84 22.22 19.12

FCN8 17.92 19.35 20.77 22.15 12.86

L-UNet 70.40 72.81 74.4 74.74 51.12

ResNet101 88.45 90.75 92.04 91.48 71.18

ResNet18 72.38 74.44 75.78 76.80 58.54

ResNet34 82.93 84.33 85.25 85.60 67.18

dhsegment 74.93 76.24 77.94 78.37 59.88

Ours w/ResNext101 89.95 90.41 91.39 91.53 75.24

Ours w/ResNext50 89.81 91.20 92.22 92.41 74.69

WideResNet101 89.44 91.09 92.11 92.34 73.86

WideResNet50 87.35 88.42 89.18 89.30 72.88

Fig. 9. Series of images showing the ground truth alongside predictions from two dif-
ferent architectures in our experiment: ResNext50, and ResNext101.
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dataset, easily creating plenty of datasets for the learning process. In addition,
we have shown that training linear-based FCN and U-Net-based architectures
for detecting spiral text lines on Aramaic incantation bowls is possible. We also
showed that the UNet-based models show superior performance compared to
linear-based models.

We have demonstrated that the Intersection over Union (IoU) metric has
limitations when used for spiral line detection. To address these limitations, we
introduced the fuzzy IoU metric that avoids penalization for small translations
between the ground truth and the predicted polylines by applying morpholog-
ical operation and calculating the distance transform map of the ground truth
polylines.

The scope of future work focuses on exploring the applicability of our app-
roach to other datasets that include highly curved or circular text lines.
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Abstract. Legal cases can be lengthy and complex, often containing
much information, evidence, and legal arguments. On the contrary, attor-
neys, judges, and legal researchers must review multiple cases to build
arguments, make decisions, or conduct legal research. Summarizing cases
can help legal professionals and researchers quickly grasp the essential
details without reading through every word of the original documents.
While various legal case summarization algorithms exist in the litera-
ture, they lack a systematic integration of the various summary quality
factors necessary to create comprehensive and concise legal summaries.
To address this gap, the present paper proposes an innovative extractive
summarization approach by leveraging the use of legal-domain knowl-
edge in the multi-objective optimization-based evolutionary framework.
Our method simultaneously optimizes different objectives, including legal
domain knowledge, tf-idf scores, and diversity, to get good-quality sum-
maries. As per our knowledge, this work is the first of its kind in utiliz-
ing the efficacy of a multi-objective evolutionary algorithm for generating
legal document summaries. For evaluation, we thoroughly conduct exper-
iments on legal case documents from the Indian Supreme Court, accom-
panied by gold-standard summaries created by legal experts. The results
obtained reveal that our algorithm demonstrates significant improve-
ments of 16.00%, 12.91%, 13.65%, and 0.18%, over the state-of-the-art
technique, in terms of ROUGE-2 F1, ROUGE-L F1, ROUGE-2 Recall,
and ROUGE-L Recall, respectively. Further, the statistical significance
of the results is also validated.

Keywords: Legal Document · Summarization · Multi-objective
Optimization · Evolutionary Algorithm · Domain Knowledge

1 Introduction

Long and complicated court cases can involve an extensive amount of data,
supporting documentation, and legal reasoning. Quite the opposite; in order to
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figure out their points of view, reach judgments, or carry out legal study, lawyers,
judges, and legal researchers must investigate a number of instances. In these
scnerio, legal case summarization significantly enhances the efficiency and acces-
sibility of the legal system. By distilling intricate case details into key points,
these summaries save time for legal professionals, such as lawyers, judges, and
researchers, who need to grasp case complexities quickly. They also democratize
legal information, making it accessible to non-lawyers, including clients and the
general public. Summaries serve as quick reference guides for professionals man-
aging multiple cases and simplify legal research by highlighting precedent-setting
cases. In legal education, they aid in teaching significant cases and principles.
Additionally, summaries expedite decision-making processes by providing a clear
overview of cases, facilitating informed choices about legal strategies and resource
allocation. Document summarization is commonly divided into two main cate-
gories: abstractive and extractive. The first one involves rephrasing and synthe-
sizing information as shown by studies conducted by Liu et al. [12] and Nallapati
et al. [18]. On the other hand, in extractive Summarization, key sentences are
chosen from the original document and incorporated into the summary. Exam-
ples of extractive approach include works such as LexRank [7], Gist [11], and
Luhn [13]. This paper focuses primarily on extractive summarization, given its
prevalent use in the context of legal case documents [1].

Challenges: In the legal field, understanding and summarizing complex legal
documents pose significant challenges. These documents often contain difficult
language and specific legal terms, requiring expertise in law to interpret accu-
rately. Additionally, legal case files can be lengthy, spanning many pages, making
manual review time-consuming and resource-intensive. Furthermore, the struc-
tures of legal cases vary widely, making it hard to identify essential points for
summarization. Ensuring that summaries accurately capture the legal context,
including facts, arguments, and court decisions, is crucial to avoid misunder-
standings. Summarization also involves subjective choices, which can introduce
bias if not carefully managed. Despite these challenges, the development of auto-
matic summarization systems for legal documents continues to be a practical and
valuable pursuit.

Objective of the Paper: This paper aims to introduce an innovative method
for summarizing Indian Legal Case documents. It addresses the need for
enhanced summarization techniques in the legal domain, especially concern-
ing cases from the Indian Supreme Court. The central objective is to present
a multi-objective optimization algorithm capable of effectively considering and
integrating various factors to produce summaries of superior quality. Through
a series of comprehensive experiments conducted on Indian case documents
sourced directly from the Indian Supreme Court, this study endeavors to show-
case the efficacy of the proposed algorithm. Furthermore, it seeks to conduct
a thorough comparison between the performance of proposed algorithm and
existing benchmarks. By tackling the inherent challenges associated with legal
document summarization, including intricate language and diverse document
structures, the paper endeavors to make a significant contribution to enhanc-
ing the efficiency and accessibility of the legal system. Thereby, benefiting legal
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professionals and researchers alike. Various scoring features/objective functions
such as the presence of legal terminology, highest tf-idf score per sentence, and
anti-redundancy measures are concurrently optimized utilizing the multiobjec-
tive binary differential evolution algorithm [22]. The first objective is achieved by
incorporating domain knowledge related to legal domain which consist of a dic-
tionary of legal catchphrases. The second objective is based on well-known term
frequency and inverse document frequency concept in the information retrieval,
while third objective is based on maintaining diversity among sentences in the
summary.

Major Contributions: This paper’s primary contributions include: (a) Devel-
opment of a multi-objective evolutionary optimization framework capable of
integrating various factors to produce high-quality summaries for Indian Legal
Cases; (b) Along with tf-idf score and anti-redundancy measure, using Indian
Legal Catchphrases (Catchwords1) as one of the objectives for creating legal
summaries which helps in incorporating domain knowledge; (c) Demonstration
of the efficacy of the proposed algorithm through experiments which are con-
ducted comprehensively on Indian Supreme Court case documents, providing
empirical evidence of its effectiveness; (d) Conducting a thorough comparison
with existing benchmarks, including supervised and unsupervised summariza-
tion models.

For experimentation, we will utilize the dataset employed by DELSumm [2].
The dataset comprises 50 legal case documents from the Indian Supreme Court.
For evaluation, we rely on gold standard summaries provided by two experienced
law scholars, each corresponding to a document within the dataset. The results
are evaluated using well-known ROUGE scores.

This paper is organized as follows: The literature survey is described in
Sect. 2. Section 3 states the problem statement. Section 4 explains the details
of the method that is proposed. Section 5 has the experimental setup and Sect. 6
has the discussion on the results obtained. Lastly, the conclusion is presented in
Sect. 7.

2 Related Works

Extractive text summarization techniques are aimed at identifying crucial sen-
tences from a document to form a summary. In literature, various methods have
been developed for legal document summarization which falls into four main
categories: (a) Supervised domain-specific; (b) Unsupervised domain-specific;
(c) Supervised domain-independent; (d) Unsupervised domain-independent. An
example of supervised domain-specific methods is Gist by Liu et al. [11]. Gist
extract sentences using features such as word count and sentence position. It
applies machine learning classifiers such as Decision Tree, MLP, and LSTM to
obtain the final summary. However, it was designed and tested for Chinese legal
case documents, thus limiting its applicability to other contexts. Unsupervised

1 For more information, see https://irwinlaw.com/cold/catchwords.

https://irwinlaw.com/cold/catchwords
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domain-specific methods include tailored approaches for legal case documents.
For instance, LetSum [8] considers rhetorical structure and cue-phrases to assign
roles to sentences, while in [24], Saravanan et al. use a K-Mixture Model. Another
method, CaseSummarizer [20] evaluates sentence importance based on factors
like TF-IDF values and presence of dates or named entities. Zhong et al. [26]
utilized Maximum Margin Relevance (MMR) to select sentences from the legal
document. While CaseSummarizer does not consider rhetorical roles, but Let-
Sum, KMM, and MMR incorporate them post-summarization.

Supervised domain-independent methods treat extractive text summarization
as a problem of binary categorization, with sentence representations learned
using a hierarchical encoding method. Methods like NeuralSum [3] and Sum-
maRunner [18] employ Recurrent Neural Network (RNN) encoders to understand
sentence representations and select sentences for inclusion in the summary based
on factors like content, salience, novelty, and position importance. Recently, pre-
trained encoders like BERT [5] have gained popularity for their ability to directly
output sentence representations, which can be fine-tuned on domain-specific
data for supervised summarization tasks. In unsupervised domain-independent
approaches, the commonly used algorithms employ Frequency-based methods
such as Luhn [13], graph-based methods such as LexRank [7], to identify impor-
tant sentences where the summary comprises of the best-ranked sentences.

Findings from Literature: From the literature, we have found that multi-
objective evolutionary algorithm (MEA) [27] have shown their advancement over
different summarization tasks like microblog summarization [22], figure summa-
rization [23], bug report summarization [17], bio-medical article summarization
[14]. But the same has not been adopted legal document summarization. Moti-
vated by this, we have adopted the same in our proposed framework. The concept
of Multi-objective optimization (MOO) aims at concurrently optimizing multi-
ple objective functions, while evolutionary algorithm is inspired by biological
phenomenon of the human beings. At the end of execution, MEA presents a col-
lection of alternative solutions known as the Pareto optimal set to the decision
maker. In essence, an MOO problem can be represented as:

maximize {f1(ṽ), f2(ṽ), . . . , fm(ṽ)} such that ṽ ∈ V (1)

V = {ṽ1, ṽ2, . . . , ṽn} represents a feasible set of decision vectors in an n-
dimensional space. Here, m ≥ 2 denotes the number of objective functions to be
maximized. Constraints may also be incorporated into the optimization process
to address specific requirements or limitations.

In [22], Saini et al. applies multi-objective optimization in the context of
microblog/tweet summarization, aiming to generate summaries of good quality.
Authors employs various statistical quality measures such as tf-idf score, tweet
length, and anti-redundancy, which are concurrently optimized using a multi-
objective differential evolution technique. However, in our investigation, we will
focus on utilizing tf-idf score, the frequency of Indian Legal catchphrases, and
anti-redundancy as our objectives to produce high-quality Indian legal sum-
maries. For incorporating domain knowledge in our framework, we have exper-
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imented by incorporating the presence of legal catchphrases while creating the
summaries and thus, serving as one of the objectives. The work done in [15] is
used to automatically identify catchphrases from legal court case documents. It
mainly focuses on legal terms and noun phrases. In this method, legal catch-
words/catchphrases are generated for each document; therefore, it provides an
extensive list of all the legal terms and noun phrases specifically present in each
legal document. Word Mover Distance (WMD) [10] is employed to assess the
dissimilarity between two sentences. It does so by quantifying the distance that
the embedded words [16] of one sentence must traverse to match those of another
sentence [10]. In our methodology, each text represents a sentence. Word embed-
dings for various words are derived using InLegalBERT and InCaseLawBERT
[19] models. When two sentences demonstrate similarity, their associated WMD
value tends to approach 0. With the help of WMD, we have tried to achieve
anti-redundancy which is considered as another objective in our approach. Term
Frequency-Inverse Document Frequency (TF-IDF) [25] is a technique for assess-
ing the importance of a term in a document with respect to a collection of doc-
uments. It aims to emphasize on terms that are both frequently present within
a document and are rare across a collection of documents. This helps in captur-
ing the significance of a term in a specific context. For our case, we have taken
maximum tf-idf scores as one of our objectives.

3 Problem Definition

Consider an Indian Legal Case Document D consisting of N sentences, repre-
sented as D = {s1, s2, . . . , sN}. Our objective is to identify a subset of sen-
tences within a maximum and minimum word count, comprising one-third of D,
denoted as T ⊆ D, that satisfies the following constraints:

∑N
i=1 wordCounti

3
≤

N∑

i=1

Bi ≤
∑N

i=1 wordCounti
2

(2)

where,
∑N

i=1 wordCounti represents the total word count of the document, and
N denotes the total number of sentences in D, Bi represents a binary variable
indicating whether sentence si is included in the summary T with Bi = 1 if
si ∈ T ; otherwise Bi = 0. Our goal is to maximize the following set of objec-
tive functions: max{ϑ1(T ), ϑ2(T ), ϑ3(T )}, where ϑ1, ϑ2, and ϑ3 are the objective
functions described in the forthcoming sections. The optimization problem can
involve either two or three objective functions, depending on the specific require-
ments. These objective functions quantify different aspects of the summaries, col-
lectively enhancing the quality of the generated summary. This multi-objective
optimization concept is integrated with the evolutionary framework which starts
from a set of candidate solutions, each representing a summary. In other words,
each solution in the population represents a subset of sentences which is evalu-
ated based on the mentioned objective functions within a multi-objective opti-
mization (MOO) framework and continuously optimized using the iterative pro-
cedure of evolutionary algorithm. For our purpose, we have utilized the efficacy
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of multi-objective binary differential evolution algorithm [22]. The description
of the objectives functions used in the proposed algorithm, is discussed below:

3.1 Maximum TF-IDF Score of the Sentences (ϑ1)

The term frequency-inverse document frequency (TF-IDF) measure is utilized
to allocate weights to different words in the sentences and should be maximized.
It is expressed as:

ϑ1 =
1

|T |
|T |∑

i=1

∑

wordk∈si,si∈T

wk, si (3)

where wk,si represents the TF-IDF score of the k-th word (wordk) present in the
i-th sentence si of summary T , and |T | is the total number of sentences in the
summary.

3.2 Maximum Number of Legal Catchphrases (ϑ2)

Objective function ϑ2 considers the maximum count of legal catchphrases in the
summary. Increasing the number of legal catchphrases means including more
legal information, which is often important. It is expressed as:

ϑ2 =
|T |∑

i=1

numberOfLegalCatchphrases(si) (4)

where numberOfLegalCatchphrases(si) denotes the number of legal catchphrases
in the i-th sentence in the summary T after removing stop words. To get the list
of catchphrases, the work done in [15] is utilized which automatically identify
catchphrases from legal court case documents.

3.3 Anti-redundancy (ϑ3)

To minimize redundancy in the summary, we introduce the objective function
ϑ3. Each sentence is compared with every other sentence. It is calculated as the
sum of WMD between each pair of sentences. It is expressed as:

ϑ3 =
1

|T |
|T |∑

i,j=1,i �=j

wordMoverDistance(si, sj) (5)

where si and sj represent the i-th and j-th sentences in the summary T respec-
tively, and |T | is the total number of sentences in the summary.

4 Proposed Methodology

This paper introduces an extractive Indian Legal Case summarization system.
It employs a binary differential evolution technique in integratiin with multi-
objective optimization. It has the following phases:
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4.1 Solution Representation and Population Initialization

In evolutionary algorithms, a population of solutions, denoted as P , com-
prises solutions (also known as chromosomes), represented by binary vectors
{ṽ1, ṽ2, ṽ3, ṽ4, . . . , ṽ|P |}. Each solution corresponds to a set of sentences in the
dataset being summarized which in turn should contain a certain number of
words. If the dataset contains N sentences, each with an average of n

N words
per sentence, then the length of each solution vector is N . For example, if an
event/document comprises 6 sentences, an acceptable solution could be repre-
sented as [1, 0, 1, 0, 0, 1], indicating that the first, third, and sixth sentences from
the original event are included in the summary. After selecting the sentences, we
also check whether it falls within the maximum and the minimum words range
to satisfy the summary length constraint. The initial population is generated by
shuffling the sentences randomly and considering the number of words in each
solution varying between a minimum (Smin) and maximum (Smax) threshold.
Here, Smin and Smax represents minimum and the maximum number of words
that should be present in a summary. According to [2], the preferred length
of legal document summaries should be one-third the length of the document.
Thus, the word count of our summaries should be approximately one-third of
the word count of the document.

4.2 The Objective Functions Calculation

To craft a high-quality summary, identifying appropriate objective functions or
quality metrics is imperative. These functions assess the content of the subset
of sentences included in a solution. This helps in attaining summaries which
are comprehensive and yet concise. All such objective functions have been thor-
oughly elaborated in Sect. 3 and are uniformly oriented towards maximization.

4.3 The Genetic Operators

The process of generating new solutions from existing ones in the differential
evolutionary framework involves three important steps: mating pool generation,
crossover, and mutation. These steps collectively contribute to the creation of a
new population denoted as P ′. The steps are detailed below:

(a) Generation of Mating Pool: The mating pool consists of solutions capa-
ble of producing offspring through mating. To construct the mating pool for a
given solution (called as current solution), we consider only neighboring solutions
identified through a neighborhood mechanism. Both exploration and exploita-
tion behaviors are taken into account during the pool generation. The steps are
as follows:

1. Identify the solutions in the vicinity of the current solution.
2. Generate a random probability p.
3. If p < β, include a subset of neighboring solutions in the mating pool to

encourage exploitation.
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4. If p ≥ β, include all neighboring solutions in the mating pool to encourage
exploration.

(b) Mutation: For mutation, first probability estimation operator (PEO) is
applied between the randomly selection solutions from the mating pool and the
current solutions. Thereafter, the obtained probability values corresponding to
the different components of the current solution are converted to binary values
based on some heuristic. PEO is defined as:

P (vj
t ) =

1

1 + e− 2b×[vp1,j
t +F×(vp2,j

t −v
p3,j
t )−0.5]

1+2F

where, vp1, vp2, vp3 are the three randomly selected solutions, vpi,j represents the
j-th component of i-th random solution, b and F are the real positive constant
and scaling factor in differential evolutionary procedure, t denote the generation
number. For more detail about it and its conversion to binary vectore, reader
can refer to [21].

(c) Crossover: The crossover operation involves exchanging components
between the current solution and the binary vector obtained in the mutation.
This results in the generation of a new solution. For Eq. involved, refer to [21].

4.4 Selection and Termination

The previous population P is merged with the newly generated population P ′.
Subsequently, the best solutions (top |P |) are selected for the next generation
based on non-dominated sorting and crowding distance operators of NSGA-II [4]
algorithm. This process continues until a maximum number of generations, gmax,
is reached. Once the final set of solutions is generated, a set of Pareto Optimal
solutions is obtained where each solution represent a optimized summary. Note
that the sentences in the generated summary follow the same order as the original
document.

5 Experimental Setup

This section includes the discussion about the dataset, the evaluation metrics
used, the parameter settings and the comparative methods.

5.1 Dataset

A collection of original documents along with their reference summaries are
necessary for assessing summarization algorithms. To evaluate, we have used a
corpus of 50 Indian legal case documents from the Indian Supreme Court. This
was provided by Bhattacharya et al. in their work [3]. The dataset was available
with gold standard summaries which was annotated by two senior law students
from the Rajiv Gandhi School of Intellectual Property Law. This institution is
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renowned for its excellence in legal education in India. These summaries are
extractive in nature and approximately one-third the length of the documents
and thus, served as the reference summaries for our obtained summaries evalu-
ation purpose.

5.2 Metrics For Evaluation

To assess the performance and similarity of the generated summaries with the
actual/gold summaries, we have used the ROUGE-N measure. This metric helps
in measuring the overlap between the gold summary and the generated summary.
A higher ROUGE score indicates a closer alignment between the two summaries.
In our study, we considered values of N as 2, and L for ROUGE-2, and ROUGE-
L, respectively, and uses ROUGE-2 Recall, ROUGE-2 F1, ROUGE-L Recall,
and ROUGE-L F1-scores. For ROUGE mathematical definition, please refer to
[22].

5.3 Parameter Settings

In our proposed framework, we utilized specific parameter values, such as a
population size of 25 for the Differential Evolution (DE) algorithm, a mating
pool size of 5, a mating pool construction threshold probability (β) of 0.8, a
maximum of 25 generations (gmax), a crossover probability (CR) of 0.8, b = 6,
and F = 0.8. Additionally, we defined minimum (Smin) and maximum (Smax)
thresholds for the number of words in a summary. The Word Mover Distance
employs pre-trained InLegalBERT and InCaseBERT [19] models to compute
sentence distances. We averaged results over 5 algorithm runs for each legal
document. Generally, in evolutionary-based optimization algorithms, the number
of fitness function evaluations (NFE) is used as a stopping criterion. In our case,
NFE equaled 625. This is computed as the product of the population size and
the maximum number of generations (|P | × gmax).

5.4 Comparative Methods

For the purpose of comparative study, we have only used extractive methods
which belongs to different categories such as unsupervised, supervised, domain-
specific, domain-independent and neural network-based methods. These include
LexRank [7], LSA [6], Luhn [13], Reduction [9], LetSum [8], KMM [24], Cas-
eSummarizer [20], MMR [26], DELSumm [2], SummaRuNNer [18], BERTSUM
[12] and Gist [11]. Among these, DELSumm is the most recent. It is an extrac-
tive summarization technique which incorporates domain knowledge to create
summaries from Indian legal case documents. Apart from these, we have also
developed the single-objective version of our proposed algorithm.
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Table 1. ROUGE scores for various methods

Type of Method ROUGE-2 ROUGE-L

F1 Recall F1 Recall

ϑ1+ϑ2+ϑ3 (proposed) 0.4892 0.4913 0.6794 0.6843

LexRank [7] 0.3719 0.3662 0.5392 0.5068

LSA [6] 0.3646 0.3644 0.5483 0.5632

Luhn [13] 0.3873 0.3907 0.5521 0.5424

Reduction [9] 0.3814 0.3778 0.5420 0.5194

LetSum [8] 0.4137 0.4030 0.5846 0.5898

KMM [24] 0.3546 0.3540 0.5385 0.5407

CaseSummarizer [20] 0.3765 0.3699 0.5349 0.4925

MMR [26] 0.3729 0.3733 0.5680 0.6064

DELSumm [2] 0.4217 0.4323 0.6017 0.6831

SummaRuNNer [18] 0.4149 0.4104 0.5821 0.5835

BERTSUM [12] 0.4048 0.4044 0.5529 0.5600

Gist [11] 0.3593 0.3567 0.5501 0.5712

6 Experimental Results and Discussions

This section discusses the results obtained using our single and multi-objective
optimizatioon framework. The relevance of using different objective functions
is also provided. We will consider (ϑ1) as the tf-idf scores, (ϑ2) as the number
of Indian Legal Catchphrases, and (ϑ3) as the anti-redundancy measures. The
results obtained using single objective function and multi-objective functions are
illustrated in Fig. 1. The comparative results with existing methods are shown
in Table 1.

6.1 Quantitative Analysis Using Different Objective Functions

Initially, we consider single objective functions, where the inclusion of (ϑ2) out-
performs (ϑ1). This suggests that emphasizing legal terminology contributes
more significantly to summary quality compared to solely relying on term
frequency-inverse document frequency. Expanding to two-objective functions,
combining ϑ1 with ϑ2 yields substantial improvements over individual methods.
This indicates that integrating both leads to more informative and contextu-
ally relevant summaries. Similarly, when ϑ1 is optimized along with ϑ3, further
enhancements are observed. This highlights the importance of reducing redun-
dancy in legal summaries. Moreover, the three-objective approach (ϑ1, ϑ2, ϑ3)
achieves a harmonious balance between coherence, informativeness, and cover-
age. By incorporating diverse linguistic aspects, including legal terminology, term
importance, and sentence uniqueness, our method ensures comprehensive and
contextually accurate summaries. Overall, the qualitative analysis underscores
the importance of considering multiple criteria in the summarization process to
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optimize summary quality and relevance. Through a systematic comparison of
objective functions, our approach demonstrates its effectiveness in generating
concise yet informative legal summaries. More details are provided below:

Using Single Objective Function. From Fig. 1, its clear that the results
obtained by ϑ1 and ϑ2. Comparing the two objectives, ϑ2 shows a 7.67% improve-
ment in ROUGE-2 F1 score and 1.43% enhancement in ROUGE-L F1 score over
ϑ1. Similarly, based on ROUGE-2 Recall and ROUGE-L Recall scores, ϑ2 out-
performs ϑ1 by 2.05% and 1.24%, respectively. This suggests that prioritizing the
inclusion of legal catchphrases leads to better summarization results than rely-
ing solely on tf-idf scores. The higher performance of ϑ2 may indicate that legal
catchphrases contribute more significantly to the overall quality and relevance
of the summary.

Fig. 1. Variation of different evaluation metrics using different combinations of objec-
tive functions ϑ1, ϑ2, and ϑ3.

Using Multi-objective Functions. When employing multi-objective func-
tions, the summarization process considers multiple criteria simultaneously to
optimize the summary quality. This approach offers a more comprehensive assess-
ment by balancing various aspects such as the tf-idf score, the number of legal
catchphrases and anti-redundancy. From Fig. 1, we observe that the 2-objective
functions combination outperforms individual (single objective) methods by sig-
nificant margins. This is evidenced by the percentage increases in ROUGE-2 and
ROUGE-L scores. Compared to ϑ1 alone, (ϑ1, ϑ2) demonstrate a 11.06% increase
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in ROUGE-2 F1 score, 4.46% increase in ROUGE-2 recall, 7.23% increase in
ROUGE-L F1 score and 5.41% increase in ROUGE-L recall. Similarly, when
compared to ϑ2, (ϑ1, ϑ2) exhibits improvements, with a 3.14% increase in
ROUGE-2 F1 score and 2.37% increase in recall along with 5.72% increase in
ROUGE-L F1 score and a 4.12% increase in ROUGE-L recall. In the same
way, when compared to using ϑ1, (ϑ1, ϑ3) achieves improvements, showing an
improvement of 5.92% and 4.34% in terms of ROUGE-2 F1 score and ROUGE-L
F1 score. Likewise, contrasted with ϑ2, the combination of (ϑ2, ϑ3) demonstrates
enhancements, showing a 3.25%, 2.05%, 4.17% and 2.58% surge in ROUGE-2 F1
score, ROUGE-2 recall, ROUGE-L F1 score and ROUGE-L recall, respectively.

When comparing the performance of different methods by taking two objec-
tive functions such as (ϑ1, ϑ2), (ϑ2, ϑ3), (ϑ3, ϑ1), (ϑ1, ϑ2) exhibits better per-
formance. (ϑ1, ϑ2) exhibits superior performance over (ϑ1, ϑ3), showcasing sig-
nificant percentage increases in ROUGE-2 F1 score (4.85%), ROUGE-2 Recall
(4.96%), ROUGE-L F1 score (2.77%), and ROUGE-L Recall (1.81%). Addition-
ally, while the percentage increases over (ϑ3, ϑ2) are relatively smaller, (ϑ1, ϑ2)
maintains a slight edge, displaying improvements in ROUGE-2 Recall (0.31%),
ROUGE-L F1 score (1.48%), and ROUGE-L Recall (1.50%). These findings
underscore (ϑ1, ϑ2) efficacy in enhancing summarization quality, particularly
in capturing relevance of the content and legal term coverage. This enables in
creating complete, concise and informative legal summaries.

When comparing the three-objective method (ϑ1, ϑ2, ϑ3) to the two-objective
methods (ϑ1, ϑ2), (ϑ1, ϑ3), and (ϑ2, ϑ3), the superiority of the three-objective
approach in summarization quality becomes evident. With respect to Rouge-2
F1 scores, there is an enhancement of 10.69% over (ϑ2, ϑ3), 12.44% over (ϑ1,
ϑ2), and 3.19% over (ϑ1, ϑ3). Similarly, Rouge-L F1 scores show an enhance-
ment of 7.44%, 4.57%, and 2.93%, respectively. By integrating ϑ1, ϑ2, and ϑ3,
the three-objective approach achieves a harmonious balance between coherence,
informativeness, and coverage by leveraging different linguistic and semantic
aspects of the Indian Legal Case document. This helps in creating more compre-
hensive and informative summaries. It incorporates anti-redundancy to include
legal sentences which are dissimilar or unique, it incorporates Indian Legal Case
catchphrases to capture the essence of legal information contained in the Case
documents and tf-idf scores to capture the important words in the document.
Thus, the three-objective method emerges as the preferred choice.

The outcomes achieved through the simultaneous optimization of objective
functions, denoted as ϑ1, ϑ2, and ϑ3, demonstrate notable advancements com-
pared to the DELSumm model for summarizing a dataset comprising 50 Indian
Legal Case documents. For benchmarking, we have employed the DELSumm
model, recognized for its efficacy in extractive Indian Legal Case summariza-
tion by leveraging domain expertise. The results reveal a clear superiority of
our approach across all evaluation metrics. Specifically, our method showcases
improvements of 16.00%, 12.91%, 13.65%, and 0.18% over the DELSumm model
in terms of ROUGE-2 F1, ROUGE-L F1, ROUGE-2 Recall, and ROUGE-L
Recall, respectively. This substantiates the efficacy of incorporating sentences
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Table 2. Comparison of Actual/Reference Summaries with the Generated Summary

Actual/Reference Summary
(Annotator 1)

Actual/Reference Summary
(Annotator 2)

Generated Summary

this appeal is by special
leave against the judgment
of the high court of punjab
and haryana confirming the
conviction of the accused.
the facts of the case in brief
are that in view of the
chinese invasion air field at
sirsa required to be extended
for which purpose the
ministry of defence, govt. of
india took steps to acquire
some lands of agriculturists
pursuant to which a
notification dated november
27, 1962 was issued under
section 4 of the land
acquisition act 1894 for
acquiring 51.79 acres of land
situated in the state of
ahmedpur

this appeal is by special
leave against the judgment
of the high court of punjab
and haryana confirming the
conviction of the accused. in
view of the chinese invasion
air field at sirsa required to
be extended for which
purpose the ministry of
defence, govt. of india took
steps to acquire some lands
of agriculturists pursuant to
which a notification dated
november 27, 1962 was
issued under section 4 of the
land acquisition act 1894 for
acquiring 51.79 acres of land
situated in the state of
ahmedpur

this appeal is by special
leave against the judgment
of the high court of punjab
and haryana confirming the
conviction of the accused
under section 51c of the
prevention of corruption act
1947. the facts of the case in
brief are that in view of the
chinese invasion air field at
sirsa required to be extended
for which purpose the
ministry of defence govt. of
india took steps to acquire
some lands of agriculturists
pursuant to which a
notification dated november
27 1962 was issued under
section 4 of the land
acquisition act 1894 for
acquiring 51 79 acres of land
situated in the state of
ahmedpur

enriched with maximum legal catchphrases, tf-idf scores, and anti-redundancy
measures. This yields to more succinct yet comprehensive legal summaries. By
integrating these diverse objective functions, our approach ensures that the gen-
erated summaries are not only contextually accurate but also comprehensive
and informative. Thus, it caters to the nuanced requirements of legal practi-
tioners and stakeholders. Furthermore, we have rigorously verified the statistical
significance of the enhancements realized by our proposed methodology. It is
quite notable that the best result obtained (reported in Table 1 is found to be
statistically significant at 5% significance level.

Table 2 gives an example of the best summary generated by our method. We
compare it with the reference/actual summaries provide by annotators 1 and 2
in the used dataset. The highest-scoring summary achieves average maximum
scores of 0.8358 and 0.5488 for ROUGE-2 Recall and F1 scores, 0.9187 and 0.7217
for ROUGE-L Recall and F1 scores, respectively. It presents a clear and concise
summary of the case with relevant details. As clearly visible, the information is
in a structured manner and it stays focused on the main points of the case.

7 Conclusion and Future Works

This research presents an innovative unsupervised technique for generating
extractive summaries of Indian legal case documents, utilizing a sophisticated
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Multi- Objective Optimization (MOO) framework. Our approach redefines the
summarization problem by framing it as a binary optimization task. The pri-
mary goal is to select the most pertinent sentences from a vast corpus of legal
text while adhering to a defined word count limit, thus ensuring concise and
relevant summaries. The core of our methodology lies in leveraging a multi-
objective evolutionary algorithm, which allows for the concurrent optimization
of several objective functions namely, tf-idf score, legal catchphrases, and anti-
redundancy. For experimental purpose, we used legal case documents sourced
from the Indian Supreme Court for evaluation. The results are validated using
standard ROUGE scores, including ROUGE-2 F1, ROUGE-L F1, ROUGE-2
Recall, and ROUGE-L Recall. The results obtained reveals that our proposed
algorithm significantly outperforms current state-of-the-art methods in gener-
ating extractive summaries. This is evident from the substantial improvements
observed in various ROUGE scores, which are standard metrics for evaluat-
ing summarization quality. The ROUGE-2 F1 score, which measures the over-
lap of bigrams between the generated summary and the reference summary,
showed an improvement of 16.00%. On the other hand, ROUGE-L F1 score,
which assesses the longest common subsequence between the generated sum-
mary and the reference summary, showed an improvement of 12.91%. The overall
improvements across multiple ROUGE metrics demonstrate the effectiveness of
our multi-objective optimization framework in balancing various criteria such as
term importance, presence of legal catchphrases, and anti-redundancy measures.

Despite the promising results, there are several avenues for future research
that could further enhance the capabilities of our summarization system: (a)
Expansion to Multi-Lingual and Cross-Jurisdictional Summarization: While our
approach focuses on Indian legal documents, extending the methodology to
encompass legal texts from multiple languages and jurisdictions could signifi-
cantly broaden its applicability. Incorporating legal terminology and structures
from different legal systems would enhance its versatility and utility; (b)User
Feedback Incorporation: Incorporating user feedback into the optimization pro-
cess could help tailor summaries to specific legal professionals’ needs. Imple-
menting interactive systems where users can refine or adjust summaries based
on their preferences could further enhance the system’s usability and accuracy.
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Abstract. Emotion recognition in images have bean widely studied on
captured data of real people but few works have been realized on drawn
data. Among this category, comic books have become an important part
of the of the popular culture. Whether realistic drawings or oversimpli-
fied designs, characters have to depict credible and understandable reac-
tions to the events of the story they are included in. While human-like
characters designs are often inspired by real face mechanisms, authors
may include various graphic elements to emphasize those reactions to
the events they undergo. In this paper, we propose VisEmoComic, an
image-based dataset for emotion recognition on comics. Several annota-
tors were invited to give their interpretation of the character emotions
represented in given scenes. The image data comes from existing comic
book datasets, dedicated to other tasks and from various origins, allowing
to include cultural specificities. Additionally, for each sample, the face of
the character of interest, its body and the frame where it was drawn are
given to allow the use of the immediate spatial context for prediction.
Collected samples were annotated by multiple annotators. Consequently,
we proposed two schemes to generate labels that sum up the man-made
labels and defined baselines using the built dataset.

Keywords: Emotion Recognition · Manga · Comics Analysis ·
Document Analysis

1 Introduction

Non verbal communication is a key element to understand all the nuances a
discourse can bring. When it comes to direct communication between persons,
cues such as posture, gestures, voice intonation, gaze, or facial expressions allow
to interpret details in the told speeches. Consequently the field of affective com-
puting has explored the exploitation of these hints for various application top-
ics such as behavioural analysis in crowds, human-machine interfaces or cus-
tomers/testers satisfaction evaluation.

One subtopic of affective computing concerns the perception of the human
agent’s emotional state. While studies on captured data (acquired through sen-
sors) have been widely investigated, with numerous methods and datasets [1,18],
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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pictorial images have drawn less attention. Among the various forms of visual
arts, comics, also known as “sequential art” is a major part of the popular cul-
ture. They illustrate characters acting in a story told through successions of static
panels. The design of drawn characters is often inspired by how real bodies look
like and work, so we might suppose that techniques developed for captured data
may also be applied to drawn characters. Moreover, besides the body related
cues, comic artists have produced visual tools specific to the medium such as
symbols or background effects in order to accentuate various aspects of the nar-
ration.

Comics analysis community have grown over the last decade. Detection of
structural elements inside pages such as panels [16], characters [8,27], speech
bubble and text lines [9] and even onomatopoeia [24] have been heavily inves-
tigated. Understanding what is described inside panels depends on the compre-
hension of social and cultural factors that may greatly vary between authors and
between readers. In that direction, understanding the character’s behaviour is a
crucial topic to extract insights for higher goals such as the development of more
efficient translation tools or for accessibility purposes.

In this paper, we introduce VisEmoComic, a new dataset for visual emotion
recognition in comics.

Building on the foundation established by the Kangaiset dataset, this work
continues the development of resources specifically for emotion analysis in comic
media.

The interpretation of emotions remains a highly subjective topic, dependant
on numerous components such as reader’s cultural background. Consequently,
the dataset was annotated by multiple annotators in order to gather possibly
different opinions on the same data.

Moreover, we trained different networks on the built in order to create base-
lines. Multiple annotators were involved. One approach would be to train one
model on each annotator’s label. However, this approach is hardly scalable and
can potentially overfit the biases of this annotator. Instead, we proposed to gen-
erate intermediate labels that attempt to summarize the “human” labels. The
networks trained on generated labels are also evaluated on the original ones to
analyze the proximity of the produced annotations with the man-made refer-
ences. EmoRecCom challenge [29] have realized similar task by estimating the
displayed emotions in the whole panel through the combination of text in bub-
bles and image. Most of the proposed methods combined image processing and
language models. In this paper, we restrict to visual modality as we aim at study-
ing the influence of graphical cues on methods initially developed for processing
photos. Our contributions are:

– We have built an image-based dataset for emotion recognition on comics from
various countries that provides boxes for face and body of the characters of
interest;

– We trained and evaluated multiple models, initially designed for processing
real captured data on this new dataset using two training strategies that
consider the varying opinions of different annotators.
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2 Related Work

In this section, we first review existing datasets used in general comic analy-
sis. Then we introduce several existing methods for emotion recognition based
on real captured data, with a particular emphasis on methods that prioritize
image-based analysis.

2.1 Emotion Recognition

Emotion Recognition has been heavily investigated on various types of data.
About image data, face images were considered to provide the most critical

information for emotion recognition. When only face data is used, the acronym
FER for Facial Expression/Emotion Recognition is often employed in the liter-
ature. Prior works used handcrafted features such as Local Binary Patterns [33]
before exploring deep learning techniques [22]. While the task is related to
object classification, specific techniques have been developed to better address
its unique challenges. These techniques include new architectures such as Res-
Masking [30] that integrates U-Nets into ResNet blocks to generate attention
maps, as well as various loss functions [6,11,12], and ensemble networks [5] etc.

However, various works on psychology research [4] suggested the importance
of contextual information for the realization of the task.

Following that assumption, research on (spatial) context aware emotion
recognition (often abbreviated CAER) started to develop. Those methods tend
to employ simultaneously multiple images. EMOTIC [19,20] is currently one of
the largest public dataset on CAER. The authors of the dataset proposed a
two-branch network, one branch focusing on extracting features related to the
character of interest while the second branch deals with the whole image. A final
fusion subnetwork is in charge of merging the extracted features to generate a
prediction. CAER-Net [21] adopts a similar two-branch while estimating and
applying weights to each branch before merging the weighted features. Mittal et
al. [26] extends the multiple branch approach with EmotiCon by adding modal-
ities other than image data such as character pose estimated by systems such as
OpenPose [7] and depth image to better deal with spatial relationships in the
scene. Context-Dependent Net (CD-Net) [35] computes global shared features
from the entire image and use a transformer to aggregate face, body and scene
information.

2.2 General Comics Databases

The most well-known public datasets for comics analysis and understanding
mainly focus on detecting structural elements of pages, such as panels, char-
acters, text, and speech bubbles. eBDThèque [13] was one of the earliest pub-
lished dataset on the topic. It contains 100 pages from American, European
and Japanese comics. By the same team, a dataset named DCM77 [28] focuses
on American Golden Age comics available in the public domain in the Digital
Comic Museum. Manga109 [2] is currently, to our knowledge, the largest dataset
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on the task. It focuses on the japanese untranslated mangas. Multiple extensions
were developed around this dataset in order to study other comic related tasks.
For example, COO dataset [3] focused on the detection of onomatopoeia and
Manga109Dialog [23] provides label data for comic speaker detection. IMCDB
(Indian Mythological Comic Database) [14] is a collection of Indian comics trans-
lated in English that contains data for panel, speech bubbles and transcriptions
of text lines. However, none of these datasets are specifically designed for the
task of emotion recognition.

Fig. 1. Unprocessed data from the studied datasets, Manga109 are double pages,
EmoRecCom images are panels, IMCDB images are single pages.

3 Dataset

In this section, we describe the construction process of the VisEmoComic dataset
and provide statistical information on the aggregated data.

3.1 Data Construction

Data Sources. The dataset was created under the assumption that facial expres-
sions of emotions are universal across cultures, even though psychologists are
still debating about this topic [17]. Moreover, drawn representations may also
greatly vary according the cultural background of the artists. For this reason,
we extracted images from the Japanese mangas in Manga109 dataset [2,25],
American Golden Age comics from the EmoRecCom Challenge dataset [29] and
Indian comics from IMCDB dataset [14] into a single dataset for emotion recogni-
tion Fig. 1. The Manga109 and IMCDB datasets do not include emotion labels, as
they were not created for the purpose of emotion recognition. The EmoRecCom
challenge was created specifically for emotion recognition on comics. However,
the provided labels consider the overall mood of the scene rather than emotions
assigned to individual characters. Consequently, there are no specific emotion
labels assigned to each character separately.
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Dataset Structure. In this paper, we call “character image” the image related to
the character of interest, either the face image or the body image, in opposition to
panel image. as illustrated in Fig. 2. Each entry of the dataset represents a specific
character of interest in a given situation represented by the panel. One sample
then contains the panel, the location of the face and the body of the character
of interest inside this panel. Manga109 dataset already provides the whole pages
and for each panel, face and body boxes are given with the identifier of the
represented character. For EmoRecCom, we used some of the panels extracted
by the authors of the challenge. However, as aforementioned, neither face nor
body boxes are available so we used a YOLOv5 network trained on Manga109
boxes to produce characters’ boxes. The associations between face and body
boxes were done manually. In IMCDB dataset, pages are available, but not all of
them have panel boxes. Thus, the available panels were extracted and processed
with the same approach as the one used for EmoRecCom panels. We built this
dataset with the assumption that faces are required for the emotion estimation
on a visual standpoint. Characters seen from the back were not integrated.

Fig. 2. Illustration of the different scales of study, rows: face, body and panel. Data
extracted from Manga109 dataset. Columns in order: Appare Kappore c©Kanno
Hiroshi, Hanzai Kousyounin Minegishi Eitarou c©Ki Takashi, Jiji Baba Fight
c©Nishikawa Shinji, Karappo Highschool c©Takaguchi Satosumi

Emotion Model. Literature has modeled the concept of emotion in various ways.
Methods such as Plutchik model [31] define a discrete and finite set while others
such as the Russell’s circumplex model [32] tend to represent emotions as points
in multidimensional space. For the dataset, we use the Ekman model [10] that
divide the emotion spectrum into 6 classes besides the neutral expression: anger,
disgust, fear, joy, sadness and surprise. The inclusion of a “neutral” class is
subject to debate since it could be perceived as the absence of a strong reaction,
and therefore, not strictly classified as an emotion. While more complex models
such as the aforementioned ones exist, we wanted a set that are simple enough
to be accessible to non expert annotators.
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Annotation. For each dataset, 3 annotators were chosen. The three datasets
were not necessarily processed by the same group because the annotators had
to master the language of their assigned sub-dataset. Even if we didn’t planned,
at this stage, to use textual information, we considered that reading what was
said by the characters could provide additional information on the events and
help the annotators in their decision. Annotators received the panels showing
the character of interest framed in a colored rectangle and were asked to choose
between the given emotions. Multilabel classification was authorized meaning
that annotators could select multiple choices. This decision was made in order
to mitigate the smaller representation capability of a single label Ekman-based
classification. Moreover, situations that the characters undergo induce complex
reactions, so multilabel classification reduces the number of constraints imposed
on the annotators who do not have to select a single most “predominant” emo-
tion. Annotators were asked to select one or two classes, three in the most
extreme cases.

3.2 Data Statistics

Table 1 shows the composition of each sub-datasets per annotator. The first
observation is the large class imbalance. Data is extracted directly from comic
books meaning that characters are integrated inside a story and their actions
and reactions have to be coherent with the events. For all annotators and all
subsets, the “disgust” class is poorly represented while “neutral” and “joy” are
the most dominant emotions.

Table 2 compares the Kangaiset dataset [34] with our VisEmoComic dataset,
highlighting two main differences.

Firstly, Kangaiset confines its data to Manga109 pages, whereas we expanded
our dataset to include images from the EmoRecCom and IMCDB datasets,
resulting in greater diversity in graphic style representations.

Secondly, there is a distinction in the annotation process. The creators of
Kangaiset used a single annotator for label creation, whereas our annotation
process involved three specialized annotators.

3.3 Agreement Between Annotators

As the topic remains subjective, it is interesting to measure how similar are the
labels produced by the different annotators. Several metrics exists to measure
this similarity. Here, we use the Cohen’s kappa and the Fleiss’ kappa, two chance-
corrected coefficients. Both produce a score between −1 and 1, −1 meaning a
complete disagreement between annotators, 0 means that the labels were pro-
duced randomly and 1 a complete agreement. However, the interpretation of the
intermediate values may vary between specialists. Cohen’s kappa can be com-
puted only between two annotators while Fleiss’ kappa allows to compute a score
between two or more annotators. The computed scores are displayed in Table 3.
For all classes, Manga109 images seem to be more consensual than EmoRec-
Com and IMCDB data. One assumption could be the design and scenography
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Table 1. Emotion count for the three datasets. Due to the multilabel setup, the sum of
each row may not match the number of samples. Manga109: 12616 samples; EmoRec-
Com: 3609 samples; IMCDB: 1036 samples

Dataset AnnID Anger Disgust Fear Joy Neutral Sadness Surprise

Manga109 1 2335 186 1483 3175 1625 1451 3113

2 2616 60 1185 3117 1116 1924 3364

3 2597 150 1397 3404 1758 1662 3258

EmoRecCom 1 817 174 787 849 311 190 783

2 988 225 597 709 488 175 785

3 815 176 639 970 628 272 425

IMCDB 1 164 11 61 324 231 45 267

2 185 17 42 228 245 89 293

3 155 7 67 303 325 91 123

Table 2. Comparison between Kangaiset and VisEmoComic. The three last columns
represent the number of samples extracted from each datasets.

Dataset Annotator Number Manga109 EmoRecCom IMCDB

Kangaiset 1 9387 / /

VisEmoComic 3 12616 3609 1036

trends. As illustrated in Fig. 3 that display the histogram of the ratios face box
size/panel size for the three subsets, Japanese mangas tend to prefer close shots
with more refined faces meaning that characters are more easily recognizable.
EmoRecCom and IMCDB images often include large shots meaning that actions
and scenes tend to predominates over the characters themselves, at least on the
visual aspect and for the selected data. Moreover, we can observe that the scores
for the “disgust” class are consistently close to 0. This indicates a scarcity of
annotations across all raters, making it challenging to discern a definitive trend.
Consequently, the metrics suggest that these annotations are more likely to have
been assigned randomly.

4 Experiments

4.1 Tested Networks

In this paper, multiple methods were evaluated. First, we assessed FER methods
that use only face images. We evaluated a Resnet34 [15], a Resnet34 with spatial
and channel attention (CBAM) [36] and a ResnetMasking34 [30]. Then, we eval-
uated three CAER methods, which simultaneously use the image of a character
(face or body) as well as data from its spatial context. This category includes
the CAER-S network [21], the EMOTIC network [20], and the CD-Net [35].
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Table 3. Agreement scores on the different datasets. “Cohen 1v2” is the Cohen’s kappa
computed with the labels of annotator n◦1 and n◦2

Dataset Metric Anger Disgust Fear Joy Neutral Sadness Surprise

Manga109 Cohen 1v2 0.7597 0.2876 0.4836 0.8916 0.517 0.6511 0.6049

Cohen 1v3 0.7456 0.1073 0.4811 0.8892 0.5662 0.6971 0.5656

Cohen 2v3 0.7043 0.08905 0.4232 0.8634 0.4397 0.6233 0.541

Fleiss 0.736 0.1579 0.4631 0.8813 0.5091 0.6553 0.5703

EmoRecCom Cohen 1v2 0.6575 0.2393 0.5354 0.773 0.4699 0.5528 0.5666

Cohen 1v3 0.5091 0.1532 0.4823 0.6969 0.2742 0.3954 0.3591

Cohen 2v3 0.5172 0.227 0.5686 0.7126 0.3912 0.3462 0.4459

Fleiss 0.5619 0.2084 0.5264 0.7255 0.3712 0.4229 0.4601

IMCDB Cohen 1v2 0.7555 0.204 0.3371 0.7118 0.6346 0.4931 0.6137

Cohen 1v3 0.6999 0.1037 0.5005 0.7783 0.5475 0.4067 0.4672

Cohen 2v3 0.6838 -0.009665 0.411 0.7158 0.5532 0.4524 0.4169

Fleiss 0.7135 0.1042 0.4213 0.7354 0.5745 0.449 0.499

Fig. 3. Histograms of ratios face/panels for each dataset, x-axes represent the computed
ratios, y-axes represent densities.

4.2 Training and Testing Setups

Manga109 and IMCDB provides information on the books where pages come
from. EmoRecCom panels are not linked to any book information but the file
naming convention provides hints on the original sources. The three subsets are
split into a train and a test set. However, instead of splitting the whole batch
of images, we split the books. As authors have their own specific art styles,
splitting the books allows to reproduce the cases when new and unknown books
are processed. In this experiment, we opted for a 7:3 ratio for train:test set.

Each sample have been annotated by multiple annotators. However, for the
training, a label has to be defined. We planned two different training schemes.
The first one, named Perm for “Permissive” consider that if a class is selected
by at least one annotator, it is included in the training label. For the second
one named Maj for “Majority”, an emotion is included in the training label if
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at least two out of three annotators have selected the same emotion. Figure 4
provides examples of those generated labels according to the annotators’ labels.

Fig. 4. (top): Human annotations; (bottom): generated labels under the two schemes.
Left: Unanimity case; Middle: Slight differences between annotators; Right: Complete
disagreement

Figure 5 illustrates our training and testing processes. For the training phase
(Fig. 5a), the annotation answers from each subset (Manga109, EmoRecCom,
IMCDB) are merged into either majority or permissive labels then concate-
nated to create a complete training set. For the evaluation phase (Fig. 5b), the
trained network is evaluated separately on each test subset using manual labels.
We define A = {1, 2, 3} the set of annotators, D = {Manga109, EmoRecCom,
IMCDB} the set of studied subsets and E the emotion classes (in our case, 6
emotions of the Ekman model + neutral). We note Sa,d,e the test score for the
annotator a ∈ A, on the dataset d ∈ D, and the emotion e ∈ E.

The metric used is the F1 score. Since the networks were trained for multil-
abel classification, we computed macro F1 scores (unweighted mean between F1
scores for positive and negative samples) for each emotion, consequently each
category is processed independently as a binary classification.

Images related to characters are resized to 256 × 256 pixels. However, for
panel images, since a scene can include multiple characters, maintaining the
same size could compromise the visibility of smaller characters within the panel.
Therefore, panel images are resized to 512 × 512 pixels. All networks were trained
with the same hyperparameters: training lasted for 80 epochs using the focal loss
function and the Adam optimizer, coupled with a one-cycle learning scheduler
and a maximum learning rate set to 1e-4.

4.3 Global Results

In this section, we first evaluate global mean on the tested networks. The average
score for one emotion is computed with Se = 1

#D#A

∑
d∈D

∑
a∈A Sa,d,e and the

average on all emotions S = 1
#E

∑
e∈E Se. Table 4 summarizes the initial input

configuration of all the tested networks. For ResMasking and the three CAER
methods, the inputs setups match the one introduced in the original papers. All
the macro F1 scores are listed in Table 5.
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Fig. 5. Our proposed training and testing processes.

Table 4. Base Input Configuration for each experiment

Model Face Body Panel

Resnet34 �
Resnet34CBAM �
ResMasking34 �
CAER-S Net � �
EMOTIC Net � �
CD-Net � � �

As expected, minor classes such as “disgust” and “fear” exhibit lower detec-
tion rates while major emotions such as “joy” and “anger” illustrate good per-
formances for the all the tested networks. However, the “neutral” class yields
comparatively lower results. Given that emotions are typically associated with
facial expressions, the “neutral” class represents a challenge as it corresponds
to the default facial expression without any emotional marker. Depending on
one’s perspective on the “neutral” class, finding positive examples for “neutral”
emotions and negative examples for the other six basic emotions can be consid-
ered analogous tasks. Consequently, trying to separate the “neutral” class could
potentially complicate the training process. Interestingly, similar dynamics can
be observed between agreement scores and F1 scores for each emotion. Kappa
scores indicate the level of consensus among classes, with low agreement scores
suggesting greater classification difficulty. For the “disgust” class, the scores also
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Table 5. Global Macro F1 scores for each emotion Se and average S.

Method Anger Disgust Fear Joy Neutral Sadness Surprise Mean

Resnet Perm 68.89 52.47 61.94 79.25 63.97 62.55 64.67 64.82

Resnet Maj 69.32 49.25 59.23 77.01 61.32 59.71 64.47 62.90

CBAM Perm 69.14 52.20 60.48 78.41 64.14 60.12 63.58 64.01

CBAM Maj 66.87 49.32 60.15 76.81 62.48 59.10 62.64 62.48

ResMasking Perm 69.05 49.32 60.40 77.19 62.45 60.65 64.44 63.36

ResMasking Maj 66.02 49.32 56.86 75.38 60.74 58.91 61.89 61.30

CAER-S Perm 70.34 50.31 61.30 78.52 64.40 61.49 64.30 64.38

CAER-S Maj 65.54 49.32 58.92 74.96 60.76 59.40 63.79 61.81

EMOTIC Perm 64.44 50.95 59.36 70.10 61.24 60.01 61.47 61.08

EMOTIC Maj 62.29 49.32 56.20 68.71 57.35 54.22 60.05 58.31

CDNet Perm 64.69 53.81 58.77 72.94 61.90 57.63 62.87 61.80

CDNet Maj 60.31 49.47 54.85 69.46 59.23 52.51 60.90 58.11

Table 6. F1 scores for positive and negative samples for the ResNet34 trained on
permissive labels.

Metric Anger Disgust Fear Joy Neutral Sadness Surprise Mean

Neg F1 85.60 97.73 88.80 89.02 84.67 93.54 82.60 88.85

Pos F1 52.17 7.21 35.08 69.48 43.27 31.55 46.75 40.79

Macro F1 68.89 52.47 61.94 79.25 63.97 62.55 64.67 64.82

depends on the quantity of positive samples, but for the “neutral” class which is
one of the major class, the F1 scores show that it was not the easiest “emotion”
to classify.

Although the ResNet34 network is considerably simpler compared to the
others, it demonstrates comparable performance on the task. This suggests that
the image of the character alone conveys the most crucial emotional informa-
tion. The addition of contextual information appears to have a minor impact
on performance. However, these results should be interpreted with caution due
to the chosen training conditions. The same hyperparameters were applied to
all networks, without taking into account the conditions presented in the orig-
inal papers or the inherent complexity of each network. While all experiments
converged, the simplicity of the ResNet34 compared to the others may have
contributed to its generally better performance.

While we displayed the macro F1, it is interesting to also analyze the gap
between positive and negative F1 scores, displayed in Table 6. Negative samples
are much more abundant, making it easier to sets predictions to zero. Figure 6
illustrates some predictions on the test sets. Even if they were trained under the
same conditions, network predictions can vary significantly when major cues are
not visible.
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Fig. 6. Predictions from the three networks. Column 1–2: Manga109 data; Column
3–4: EmoRecCom data; Column 5–6: IMCDB data. Row 1: Face Image; Row 2: Panel
image, the face is masked; Row 3–5: outputs from ResNet, CAER-S Net and EMOTIC
Net in that order.

4.4 Results on Individual Annotators’ Labels

In this section, we conduct a detailed analysis to examine the impact of the
generated labels in relation to the individual annotators’ labels across the dif-
ferent datasets. Given that ResNet34 produced the best overall performance in
the previous section, our focus remains on this network. Table 7 presents the F1
scores for each dataset, annotator and emotion. (Sa,d,e defined earlier).

We first observe that, for the same experiment, results tend to be better
on Manga109 compared to EmoRecCom and IMCDB. This is likely due to the
larger size of the Manga109 dataset used for training, which allows the network
to specialize more effectively in this type of data. Additionally, faces in the
EmoRecCom and IMCDB datasets are often less prominent, making it more
challenging to analyze facial expressions when characters are not depicted in
close-up shots.

For the three datasets, networks trained on “Permissive” labels demonstrate
better alignment with individual opinions. In fact, a label set to “positive” by
the “Majority” scheme indicates the number of annotators who have chosen this
emotion, suggesting a higher level of consensus and thus easier fitting. How-
ever, this approach can also ignore the opinions expressed by the minority. If
we consider the annotated emotions as sets, the “permissive” set encompasses
the “majority” set for each image. One can suppose that permissive labels, by
adapting to marginal judgments, may increase the risk of classification error for
certain annotators. However, under the given training and testing conditions,
the inclusion of all opinions seems to overtake the effects of potential noise.
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Table 7. Macro F1 scores Sa,d,e of ResNet34 on each subset and each annoator
separately. “Dset”: Dataset; “AnnID”: Annotator ID; “M109”: Manga109; “ERC”:
EmoRecCom

Dset AnnID Label Anger Disgust Fear Joy Neutral Sadness Surprise Mean

M109 1 Perm 78.02 53.41 65.70 89.27 73.96 73.12 75.07 72.65

Maj 78.29 49.58 60.98 89.38 68.13 74.82 73.88 70.72

2 Perm 78.20 49.78 63.65 88.50 66.23 72.04 74.45 70.41

Maj 77.00 49.88 59.00 88.32 65.29 70.20 73.23 68.99

3 Perm 77.70 49.60 63.58 88.98 71.45 74.76 72.76 71.26

Maj 76.99 49.71 60.20 88.08 65.47 72.30 70.76 69.07

ERC 1 Perm 60.81 54.03 62.63 71.24 54.69 54.89 58.67 59.57

Maj 62.73 48.47 59.06 71.39 59.25 49.58 56.90 58.20

2 Perm 63.21 51.90 60.56 71.43 61.17 52.41 60.30 60.14

Maj 62.83 48.10 62.78 72.65 55.43 50.13 55.47 58.20

3 Perm 63.20 53.53 63.59 75.15 65.32 54.68 54.21 61.38

Maj 64.20 48.64 63.94 71.91 55.66 49.09 56.84 58.61

IMCDB 1 Perm 65.39 49.18 60.34 74.82 59.21 60.97 65.83 62.25

Maj 67.10 49.76 57.46 69.04 59.06 59.06 67.56 61.29

2 Perm 66.67 61.63 57.51 75.90 61.53 58.62 63.41 63.61

Maj 65.94 49.43 55.68 73.40 63.39 56.00 63.75 61.08

3 Perm 66.80 49.13 59.92 77.97 62.21 61.43 57.37 62.12

Maj 68.80 49.71 53.99 68.89 60.25 56.18 61.85 59.95

4.5 Difference Between Face and Body Images

Historically, facial features were considered as the main features for emotion
recognition, leading to the development of the “FER” terminology for methods
centered on this modality. However more recent context-aware and multimodal
methods integrate bodily features such as pose or gait. In this section, we com-
pare the impact of face and body images on prediction results. All the tested
networks, except CD-Net which already use both, were trained on either face or
body images, with permissive labels. Table 8 shows the global F1-scores Se for
each experiment.

In most cases, using body images instead of face images results in poorer
performance.

While character poses may convey emotional cues, they are often more indica-
tive of actions rather than emotions relevant to the task. When body images
lack close-ups, crucial facial information becomes diluted in the “body” context,
making the input data less relevant for the emotion recognition.
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Table 8. F1 scores comparison between face and body inputs.

Method Anger Disgust Fear Joy Neutral Sadness Surprise Mean

Resnet Face 68.89 52.47 61.94 79.25 63.97 62.55 64.67 64.82

Resnet Body 65.57 50.65 60.91 71.85 61.16 59.63 62.92 61.81

CBAM Face 69.14 52.20 60.48 78.41 64.14 60.12 63.58 64.01

CBAM Body 60.99 50.19 56.89 71.25 59.73 59.01 62.30 60.05

ResMasking Face 69.05 49.32 60.40 77.19 62.45 60.65 64.44 63.36

ResMasking Body 56.98 49.32 55.36 69.75 57.92 52.74 59.05 57.30

CAER-S Face 70.34 50.31 61.30 78.52 64.40 61.49 64.30 64.38

CAER-S Body 64.88 49.78 59.21 71.52 60.93 60.15 61.46 61.13

EMOTIC Face 70.62 52.91 60.71 79.09 63.34 61.02 63.61 64.47

EMOTIC Body 64.44 50.95 59.36 70.10 61.24 60.01 61.47 61.08

5 Conclusion

In this paper, we introduce VisEmoComic, a novel dataset designed for visual
emotion recognition in comics. The data collection process was curated from
various sources to examine how emotions are represented across different cul-
tures. Each character is analyzed at three levels, face, body and panel, in order
to evaluate its emotional state. Given the subjectivity inherent in emotion recog-
nition, we requested the opinion of multiple annotators to build the dataset and
proposed schemes to train a system based on the “median” annotator’s perspec-
tive rather than fitting it to a specific annotator’s style. We established initial
baselines using various networks, some of which incorporate the spatial context
of the character of interest. While annotators were strongly encouraged to con-
sider all panel elements, including text in speech bubbles, for labeling decisions,
our primary aim is to explore what can be inferred solely from the image for
emotion recognition. Future research may explore approaches that combine text
and image processing to harness insights from both modalities.
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Abstract. Charts are tools for data communication used in a wide range
of documents. Recently, the pattern recognition community has shown
interest in developing methods for automatically processing charts found
in the wild. Following previous efforts on ICPR’s CHART-Infographics
competitions, here we propose a newer, larger dataset and benchmark for
analyzing and recognizing charts. Inspired by the steps required to make
sense of a chart image, the benchmark is divided into 7 different tasks:
chart image classification, chart text detection and recognition, text role
classification, axis analysis, legend analysis, data extraction, and end-to-
end data extraction. We also show the performance of different baselines
for the first five tasks. We expect that the increased scale of the proposed
dataset will enable the development of better chart recognition systems.

Keywords: Charts · Dataset · Graphic Recognition

1 Introduction

Charts are tools for data communication used in a wide range of documents. The
pattern recognition community has displayed a significant interest in methods
for analyzing and recognizing charts in the wild [8]. There are rules and regular
patterns that define how data can be converted into charts of different types.
Yet, current models still struggle with complex graphics, especially when these
do not adhere strictly to these rules and conventions. In contrast, humans can
still successfully interpret the data encoded in these images.

Recent years have seen the development of very deep networks which can
solve a variety of tasks as long as they are trained with enough data. For chart
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recognition, most available large-scale datasets are synthetic, often created using
an artificial process to generate charts based on data from real sources [10,32].
However, users can employ many tools to create charts with diverse visual styles.
Often, they do not just convert data tables arbitrarily into charts, but instead
use domain knowledge to choose appropriate chart types and conventions and
carefully communicate their message [8]. Therefore, using a single tool to create
large synthetic datasets does little to capture the diversity of charts in the wild.

Large-scale datasets are also needed to evaluate chart recognition systems.
The CHART-Infographics competitions [9–11] were proposed with the goal of
becoming the go-to chart recognition benchmark. Earlier editions included syn-
thetic datasets, but systems trained only on synthetic charts performed very
poorly on real charts seen in documents in the wild. Therefore, recent editions
of CHART-Info have focused on providing large chart datasets based on real
charts. This work presents the next iteration of this effort, the CHART-Info
2024 dataset, which provides a major increase in the amount of training data
facilitating training of larger models. At the same time, we provide a brand new
test set with non-disjoint splits to evaluate each task using far more images.

CHART-Info defines six functional tasks critical to the chart recognition pro-
cess: Chart Image Classification (Task 1), Text Detection and Recognition (Task
2), Text Role Classification (Task 3), Axis Analysis (Task 4), Legend Analysis
(Task 5), and Data Extraction (Task 6). To facilitate the development of task-
specific models, each task receives as input the ideal outputs from some of the
previous tasks. An additional task is formulated for end-to-end data extraction
(Task 7), where only the chart image is provided. Tasks 6 and 7 must produce
an approximation of the data table used to create the chart. In this work, we
provide baselines for all tasks except 6 and 7. These baselines are based on open-
source models, but multiple domain adaptations and heuristic rules have been
used to make them work well on chart-specific tasks. The chart images, anno-
tations, evaluation tools and custom baseline code can be found here: https://
github.com/kdavila/CHART Info 2024.

2 Related Works

Multiple datasets have been created for different chart-related tasks. Earlier
datasets were created by collecting chart images using web engines and manual
filtering [5,34]. In this category we find the Revision dataset [34] (2,500 images
of 10 chart types) and the dataset by Chagas et al. [5] (4,837 images of 10 chart
types). However, web images are often available under restrictive licenses.

Other works have collected charts directly from data-oriented web sources.
ExcelChart400k [30] was created by collecting Excel spreadsheets from the web.
The dataset contains a total of 386,966 charts extracted from these spread-
sheets along with the tabular data used to create them (no manual annota-
tion required). Nevertheless, all charts are created using a single tool, thus they
lack visual diversity. The chart text was also replaced with random characters,
affecting the ability to incorporate multi-modal methods that use text. Another

https://github.com/kdavila/CHART_Info_2024
https://github.com/kdavila/CHART_Info_2024
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example is the ChartQA [31] dataset which has 21,945 charts (mostly in vector
format) of 3 types (bar, line and pie), extracted from 4 websites. Annotations
for visual question answering (VQA) tasks were collected via crowdsourcing.

Some synthetic chart datasets have been proposed for tasks such as data
extraction [3,10] and VQA [22,32]. Some important advantages of generating
synthetic data include: better scalability, cleaner and more detailed annotations,
and relatively low cost. The AdobeSynth dataset [10] has 202,550 chart images
(10 classes) generated with Matplotlib using data from multiple web sources.
Bajić and Job [3] used Plotly to create a dataset with over 120K images from
20 chart classes. The DVQA [22] dataset contains 300K images of synthetic
bar charts generated with the matplotlib library. The PlotQA [32] dataset has
224,377 images (bar, scatter, and line plots) generated using an unspecified tool.
DVQA and PlotQA provide millions of question-answer pairs.

Some recent efforts, including this work, have extracted and manually anno-
tated images from scientific literature to create large-scale datasets. These have
the advantage of being more reliably available than random images from the
web, and many of them are available under licenses that allow their redistribu-
tion and even commercial usage. Two examples are the FigureSeer [36] dataset
(60K images from 20K papers) and the DocFigure [20] dataset (33K images), but
these are mostly designed for figure type classification (including many charts).
The CHART-Infographics competitions have led to the creation of datasets with
increasing scales. The dataset presented here is an major extension of our pre-
vious dataset from ICPR CHART-Info 2022 [11], which is based on real charts
extracted from PubMed Central (PMC).

3 The CHART-Info 2024 Dataset

This work extends previous efforts from the CHART-Infographics competitions
[9–11]. Every edition has provided a novel test dataset based on real charts.
While the first edition provided AdobeSynth for training, the second edition [9]
expanded the previous test dataset to create the first training dataset based on
real charts. The third [11] merged previous datasets to form the new training
dataset. The training dataset of CHART-Info 2024 merges previous [11] training
and testing datasets, and provides the largest test dataset so far (See Table 1).

The novel test dataset was created using a similar methodology to the pre-
vious edition [11]. We selected papers added to the Open Access Section of the
PMC between Dec. 2017 and Oct. 2021. We only considered papers released
under CC BY or CC-0 licenses containing the keywords “chart” or “plot” in
their main text. Out of 241,396 papers matching these filters, we randomly
selected 20K papers that were not already included in earlier versions of our
dataset.

A binary image classifier was used to identify chart candidates from all the
figures in these papers. Then, these candidates were manually classified by chart
type. Note that all images in our dataset are in JPEG format, just as provided by
the PubMed Central. As a result, our dataset has the limitation of not including
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Table 1. Distribution of chart types on the training and testing datasets. Values are
compared against earlier versions of the dataset.

Chart Type ICPR 2020 [9] ICPR 2022 [11] ICPR 2024

Train Test Train Test Train Test

Area 120 52 172 136 308 229

Line 7,401 3,155 10,556 3,400 13,955 5,142

Manhattan 123 53 176 80 256 68

Scatter 875 475 1,350 1,247 2,597 1,311

Scatter-Line 1,260 558 1,818 1,628 3,446 1,684

Pie 170 72 242 191 433 213

Vertical Box 316 447 763 775 1,538 802

Horizontal Bar 429 358 787 634 1,421 636

Vertical Bar 3,818 1,636 5,454 3,745 9,199 3,692

Horizontal Interval 109 47 156 430 586 326

Vertical Interval 342 147 489 182 671 202

Map 373 160 533 373 906 363

Heatmap 138 59 197 180 377 177

Surface 110 45 155 128 283 127

Venn 52 23 75 131 206 121

Total 15,636 7,287 22,923 13,260 36,182 15,093

Table 2. Statistics (min., median, max.) for different image attributes in our dataset.

Dataset Image Width Image Height Image DPI File Size

Min Med Max Min Med Max Min Med Max Min Med Max

Training 76 709 10,800 24 486 6,000 28 600 2,400 2,577 49,999 7,986,057

Testing 118 714 6,299 66 490 7016 72 300 2400 3,036 54,506 2,859,605

any images in vector formats. However, we note that all images in vector format
can be easily rasterized to be recognized using models trained with raster images.

The original creators of the images in our dataset used a variety of tools to
make them leading to diverse quality and sizes as shown in Table 2. Training set
images go from 76×75 to 10, 800×6, 000 pixels, while testing set images go from
120 × 66 to 6, 299 × 6, 299 pixels. This is a challenge for vision models expecting
fixed resolutions. For tasks such as image classification, it might be better to
downsize large images, but details that help to differentiate between challenging
pairs (e.g. line vs. scatter-line) might be lost when the images are shrunk (see
Fig. 2.b.). For other task such as text recognition, higher resolution images are
better because the text is more readable. However, the variability in the relative
scales of text and other chart objects can make detection tasks harder.
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Table 3. Available charts for training and testing per task.

Dataset Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

Training 36,182 8,343 8,343 6,965 7,065 5,427 5,427

Testing 15,093 3,280 3,280 3,128 3,128 2,676 2,676

Data annotation was a collaborative effort between teams at 3 universities:
University at Buffalo (USA), IIIT-Hyderabad (India), and UNITEC (Honduras).
At each location, the annotators collected the ground truth (GT) in 3 sequen-
tial stages: Image class annotation, Text annotation, and legend, axes and data
annotation. At every stage, annotators were assigned images in batches, and
used our publicly available tools1 to annotate them. The first two stages were
semi-automatic, because recognition systems were used to generate initial labels.
Then, the annotators had to verify and correct these labels, effectively cutting
down the annotation time in half compared to previous years. For quality con-
trol, every annotation at every stage had to be approved by one validator who
enforced different rules to achieve consistent annotations.

Table 3 shows the number of charts available for training/testing per task.
Because of the competition context, previous CHART-Info testing datasets used
5 disjoint splits to evaluate different tasks [9,11]. However, CHART-Info 2024
is an offline evaluation benchmark, eliminating the need for disjoint splits, pro-
viding far more data to evaluate each task. Based on the availability of GT per
chart, we propose 4 non-disjoint splits for training and testing specific tasks:
DS1, DS2, DS3 and DS4. Split DS1 is basically the entire dataset (column Task
1 in Table 3), which can only be used for Task 1. Split DS2 represents all charts
that have GT for task 2 (column Task 2 in Table 3), used for task 2 only. Tasks
3, 4 and 5 share the same inputs, and Split DS3 only considers the charts that
have GT for the three tasks: 6,957 for training and 3,128 for testing. Finally,
Split DS4 includes all fully annotated charts that can be used to evaluate Tasks
6 and 7 (column Task 6 in Table 3). All results presented in Sect. 4 are based on
the following protocol: The training portion of each data split is further divided
into 80% for training and 20% for validation. Then, the test portion of the same
data split is used for evaluation.

4 Tasks and Baselines

In this section, we will describe the inputs, outputs, evaluation metrics and
baselines for each task supported by CHART-Info 2024. Based on existing chart
recognition systems [8], these tasks are defined in a sequence: chart image classi-
fication (Sect. 4.1), detection and recognition of text (Sect. 4.2), text role classifi-
cation (Sect. 4.3), axes analysis (Sect. 4.4), legend analysis (Sect. 4.5), and chart
data extraction (Sect. 4.6). Alternatively, one can design systems that handle the
whole process in a end-to-end manner (Sect. 4.7).
1 https://github.com/kdavila/ChartInfo annotation tools.

https://github.com/kdavila/ChartInfo_annotation_tools
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4.1 Task 1. Chart Image Classification

Task Description. The type of the chart in an image determines the rules used
to interpret the data encoded in its graphical elements. Therefore, the first task
is chart image classification, where every image in the dataset belongs to one of
the classes listed in Table 1. We focus on chart types that are well represented
in our data source, and some of these might be known under different names.

Inputs, Outputs and Metrics. The input is an image, and the output is a
chart class. Evaluation is based on standard classification metrics such as the
per-class recall, precision and F1 score. Table 1 shows that this is an unbalanced
dataset, therefore we use the macro-average of the F1 scores for all classes as
the final score to emphasizes the importance of correctly identifying all classes.

Baselines. We used image classification methods which have achieved good
results on chart images in the past. We obtained the following results: ResNet-
18 [16] (91.20%), ResNet-32 [16] (91.17%), ResNet-50 [16] (92.37%), Inception
V3 [37] (92.07%), Xception [7] (92.98%), MobileNet-V3-Small [18] (89.30%),
MobileNet-V3-Large [18] (91.40%), EfficientNet-B0 [38] (91.59%), EfficientNet-
B1 [38] (92.14%), Swin-Tiny [29] (91.02%), and Swin-Base [29] (93.60%). The
highest score is achieved by the more recent model based on transformers [29].
Nevertheless, earlier models such as ResNet-50 [16] still achieve competitive
results, with F1 scores only 1.23% lower than the best model. This task can
be hard for many reasons [39], and these numbers show that better models are
still needed. Some images are hard to classify even for human annotators, like
the scatter-line shown in Fig. 2.b which can be easily confused with a line chart.

4.2 Task 2. Chart Text Detection and Recognition

Task Description. Text is an important component of the semantics of a chart
image. The goal of this task is to detect and recognize individual text blocks in
the image. Unlike many scene text detection benchmarks, we are not interested
in detecting isolated words, but rather we need to identify text blocks meant to
be interpreted as a single unit (e.g. an axis title, a legend entry, etc.).

Inputs, Outputs and Metrics. The inputs are the chart image and its
classification. The output is a list of text regions (detection), represented by
quadrilaterals, and their corresponding transcriptions (recognition), represented
by strings which might include LATEX notation to handle special symbols
and formulas found in charts. For each image, the predicted texts are matched
against the GT texts if their IoU ≥ 0.5, but a 1-to-1 matching constraint is
enforced. The IoU values of matching texts are summed and the total is divided
by max(|predicted texts|, |GT texts|) to produce the per-image IoU score. For
every GT text, we compute the normalized character error rate (NCER) between
its transcriptions and the text of its corresponding prediction. Unmatched GT
texts receive a NCER score of 0. All NCER values are summed and divided
by |GT texts| to produce the per-image NCER score. Detection and Recogni-
tion results are evaluated using the average of the per-image IoU and per-image
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NCER scores, respectively. The final metric for Task 2 is the harmonic mean
(f-score) of the detection and recognition scores.

Baselines for Detection. On average, charts have simpler backgrounds than
natural scenes, but text regions can be really small, and they can overlap other
graphical elements. One missing text region can have a huge impact in the overall
accuracy of the whole chart recognition process. While scene text detectors often
target isolated words, text in charts is better analyzed using coherent text regions
(e.g. a complete data series name). This is hard considering that text regions in
charts can go from one symbol to multiple lines of text.

We first considered two out-of-the-box baselines, Tesseract OCR engine
v5.3.1 [1] and PaddleOCR engine v3 (PPv3) [24], which achieved average IoU
scores of 0.3035 and 0.6022, respectively. These results show that, out of the box,
they do not work well on charts probably because our target is text blocks which
is not what these methods produce by default. These results already include some
post-processing rules that helped but by only so much.

We then considered multiple baselines retrained with our data (DS2 ). Some
of these models are based on the PPv3 framework [24], and these are pretrained
on the ICDAR 2015 Scene Text Detection dataset [23]. We also considered mod-
els from the MMRotate framework [45], which were designed for rotated object
detection in aerial images, and are pretrained on ImageNet-1k. We acknowledge
that the accuracy of third-party re-implementations might be slightly differ-
ent to the original models. Table 4 shows results for text detection baselines
retrained on our dataset. In the case of PPv3 [24], configurations using the
larger ResNet-50 [16] backbone achieved better results than their counterparts
using MobileNet-V3 [18], although by a small margin in many cases. Surpris-
ingly, while DB++ [27] has produced better results than EAST [44] on natural
scenes, EAST achieved better results here. Nevertheless, the best results were
obtained using RoI Transformer [12] with Swin-Tiny [29] backbone, from the
MMrotate framework [45]. This model might be the best in handling rotated
text.

Baselines for Recognition. To make a fair comparison between text recog-
nition baselines, we apply each recognition algorithm over text detection GT.
During training and evaluation, the unicodeit Python library is used to convert
the special LATEX annotations into Unicode symbols. This library cannot han-
dle all special symbols and formulas, but is appropriate for the vast majority of
alphanumeric strings. We created a custom dictionary based on the 250 most
common Unicode symbols in the training set to retrain some of our baselines.

Text recognition models often expect the inputs to contain a single horizontal
line of text with at most so many characters. They do not work well with images
of texts that are very long, rotated and/or multi-line. Multi-line text blocks
are rare in our dataset, but long texts are very common. We use simple rules to
identify long and/or multi-line text candidates, and then apply greedy algorithms
to cut the image horizontally and/or vertically as required. The recognizer is used
over each partition, and the results are concatenated.
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Table 4. Baselines for Chart
Text Detection. Backbones include
MobileNetv3 [18] (MN3), ResNet-
50 [16] (RN50), ReResNet-50 [15]
(RRN50) and Swin Tiny [29] (ST).

Method IoU

DB [26] - MN3 0.7809

DB [26] - RN50 0.7866

PSENet [40] - MN3 0.8242

PSENet [40] - RN50 0.8263

DB++ [27] - RN50 0.7996

EAST [44] - MN3 0.8036

EAST [44] - RN50 0.8396

ReDet [15] - RRN50 0.8875

RoI Trans. [12] - RN50 0.8828

RoI Trans. [12] - ST 0.8890

Table 5. Baselines for Chart Text
Recognition. These baselines are based
on the PPv3 framework, were pre-
trained on ICDAR 2015 [23] and
retrained on our dataset. Results are
provided using Line Splitting (w LS)
and Without Line Splitting (w/o LS).

Method w/o LS NCER w LS NCER

SAR [25] 0.9064 0.9202

SRN [42] 0.9098 0.9267

RobustScanner [43] 0.9133 0.9312

VisionLAN [41] 0.9132 0.9316

CRNN [35] 0.9480 0.9477

StarNet [28] 0.9293 0.9480

RFL [19] 0.9329 0.9506

ABINet [14] 0.9360 0.9528

SVTR [13] 0.9323 0.9549

Table 6. Baselines for Chart Text Detection and Recognition. We consider some Out-
of-the-box (OOB) configurations, and the best configurations reported earlier.

Detection Method Recognition Method OOB IoU NCER H-Mean

Tesseract [1] Tesseract [1] Yes 0.3035 0.3663 0.3320

PPv2 [24] DB [26] PPv2 [24] CRNN [35] Yes 0.5688 0.7074 0.6305

PPv3 [24] DB [26] PPv3 [24] SVTR [13] Yes 0.6022 0.7866 0.6821

RoI Trans. [12] Swin Tiny [29] PPv3 SVTR [13] No 0.8890 0.9264 0.9073

Rotated text is common in charts, specially on axis titles and tick labels, and
can be long and/or multi-line as well. All text regions (any rotation) are always
projected into axis-aligned rectangular regions, which can only have 0, +90, +180
or −90 degree rotations. The PPv3 framework includes an angle classifier but it
did not perform well on chart text. Because of this, we used simple rules based
on recognition confidence scores to simultaneously handle rotated text and long
and/or multi-line text. When needed, this method tests multiple combinations
of rotations with image splitting, and keeps the most confident transcription.

We considered three out-of-the-box baselines, Tesseract OCR [1], PPv2 [24]
with CRNN [35], and PPv3 [24] with SVTR [13], which achieved NCER scores
of 0.8483, 0.8226 and 0.8921, respectively. These baselines do not use any of
our rules to handle special cases. We then experimented using our dataset to
retrain multiple models from the PPv3 framework, and applying our rules to
handle multi-line and rotated text. Table 5 shows the results for these models,
considering whether the horizontal line splitting algorithm (LS) was used to deal
with long text candidates or not. We found CRNN [35] to be the most robust in
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terms of handling long texts on its own. However, by using our horizontal line
splitting algorithm, other methods achieved higher recognition results. The best
recognition method was SVTR [13].

Complete Baselines. Table 6 shows the results for end-to-end chart text detec-
tion and recognition. Here, recognition results are affected by errors made by the
detection model. We only consider out-of-the-box baselines, and the combina-
tion of the best models for detection (ROI Trans [12] with Swin-Tiny [29]) and
recognition (PPv3 with SVTR [13]). This combined model is also using all of
the intermediate rules used for handling rotated, multi-line and/or long texts.

4.3 Task 3. Chart Text Role Classification

Task Description. This task aims to determine the role or function that each
text region has on the chart. Our dataset considers 9 roles: chart title, axis title,
tick label, tick grouping, legend title, legend label, value label, marker label, and
other. This covers the categories needed to make sense of a chart image. The
other category is used to group additional less common roles. These roles are
illustrated in Fig. 1.

Fig. 1. Targets for multiple tasks. Different text colors are used to illustrate our text
roles in two charts (Task 3). We also show the expected ticks using stars (Task 4), and
red rectangles define the legend symbols (Task 5). Best seen in digital format. (Color
figure online)

Inputs, Outputs and Metrics. The inputs include the chart image and the
GT outputs for Tasks 1 and 2. The expected output is a list of the roles for each
GT text region. Like Task 1, evaluation is based on classification metrics.

Baselines. This task is similar to general object classification on images. How-
ever, two identical objects (text regions) can have different classes (roles) based
on their position within the chart layout. Class imbalance also makes this task
challenging, where tick labels make about 70.11% of all text regions in the train-
ing dataset, while legend title, chart title, and tick grouping are so rare that even
combined represent just 1.15% of all text regions. However, all classes have the
same impact on the final metrics.
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Table 7. Baselines for Text Role Classification. Columns are F1 scores (%) for tick
label (TL), axis title (AT), legend label (LL), value label (VL), legend title (LT), mark
label (ML), tick grouping (TG), other (O), Chart Title (CT) and their macro average.
For each baseline, we consider the V35 (†) and V345 (‡) variations.

Method TL AT LL VL LT ML TG O CT AVG

†ReDet [15] (R50 [16]) 98.8 97.1 97.9 81.2 79.1 54.4 55.7 71.1 83.2 79.85

†RoI Trans [12] (R50 [16]) 98.6 97.3 97.8 81.3 78.0 60.5 54.4 71.0 82.6 80.18

†RoI Trans [12] (Swin Tiny [29]) 98.9 98.0 98.1 84.2 79.6 62.1 60.7 74.9 87.9 82.72

†YOLO-V8x [21] 98.8 98.1 97.3 84.7 85.3 63.0 70.7 74.5 89.9 84.71

†Deformable DETR [46] 99.4 98.6 98.6 83.8 87.1 63.8 70.6 75.9 91.3 85.45

†C. Mask R-CNN (Swin Base) [29] 99.2 98.7 98.6 85.4 89.6 68.7 70.9 77.3 92.6 86.78

‡ReDet [15] (R50 [16]) 98.9 96.7 98.0 81.3 79.6 56.2 57.5 72.2 83.1 80.40

‡RoI Trans [12] (R50 [16]) 98.7 97.4 98.1 81.3 75.7 60.2 56.3 71.8 82.6 80.22

‡RoI Trans [12] (Swin Tiny [29]) 99.0 98.0 98.1 83.7 81.5 63.4 61.2 74.5 88.5 83.10

‡YOLO-V8x [21] 98.5 96.8 96.8 79.3 76.0 51.9 59.9 67.7 72.7 77.76

‡Deformable DETR [46] 99.4 98.6 98.8 84.2 87.4 66.3 74.9 75.9 92.1 86.40

‡C. Mask R-CNN (Swin Base) [29] 99.2 98.7 99.0 85.2 89.6 69.4 69.8 77.5 90.8 86.57

We created our baselines for task 3 by training different object detector
models using the role of each text region as their target class. We create variations
of these models to simultaneously deal with multiple tasks. The first, V35, deals
with tasks 3 and 5, and uses the original 9 text roles. The second, V345, deals
with tasks 3, 4 and 5, and needs 12 roles for text. This is because it replaces the
tick label class with 4 per-axis classes (more details in Sect. 4.4).

Task 3 requires assigning classes to text regions in the GT, but the predictions
made by the object detectors might not align with the GT. Overlapping pairs
of GT text regions and predictions are scored using the harmonic mean of their
IoU and prediction confidence. We then greedily pick the highest scoring matches
while enforcing a 1-to-1 matching constraint. The class of the prediction is finally
assigned to each of the matched GT text regions. Unmatched predictions are
simply ignored, and unmatched GT text regions are omitted.

Table 7 shows the results for Task 3. The tick label, legend label and axis title
classes, which represent 87.16% of the training dataset, have very high F1 scores.
Meanwhile, the mark label and tick grouping classes, which represent only 1.98%
of the training dataset, have the lowest F1 scores. Except for YOLO-V8 [21],
most models have very similar results for both variations. The Cascade Mask
R-CNN model with Swin-Base transformer [29] and Deformable DETR [46] are
consistently the strongest model from this set.

4.4 Task 4. Chart Axis Analysis

Task description. Axes in charts define the space of the chart data. The goal
of this task is to locate the main chart axes (horizontal and vertical), and then
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Table 8. Baselines for Axes Analysis. All of them are based on Variation 345

Method Rec. (%) Prec. (%) F1 (%)

ReDet [15] (R50 [16]) 83.89 85.72 84.79

RoI Trans [12] (R50 [16]) 84.09 85.27 84.67

RoI Trans [12] (Swin Tiny [29]) 84.56 86.08 85.31

YOLO-V8x [21] 54.35 56.64 55.47

Deformable DETR [46] 85.38 85.18 85.28

Cascade Mask R-CNN (Swin Base) [29] 77.32 86.46 81.63

link specific points in the axes (ticks) with text (tick labels). This location should
be independent of the existence of visual tick marks.

Inputs, Outputs and Metrics. Inputs are the same as Task 3. The output is
a dictionary organizing the tick positions by axis. Then, per axis, a set of pairs
(text id, point) is expected. Each pair represents a tick label by their unique id
in the GT, and the point represents the tick position.

Evaluation considers precision and recall of predicted ticks on the main axes
(x-axis at the bottom and y-axis at the left). Secondary axes (top or right)
are ignored. Predicted and GT ticks are matched by text id, and each match
is weighted based on the distance between the GT location and the predicted
location. First, the distances are normalized by the length of the image diagonal,
and matches with distance ≥0.02 receive a weight of 0, and distance ≤0.01 receive
a weight of 1. For 0.01 < distance < 0.02, an interpolated weight between 1 and
0 is used. Missing ticks and ticks associated with the wrong axis have weights
of 0. The total weight of all matches is divided by the number of GT ticks to
compute recall and by the number of predicted ticks to compute precision. Then,
the overall recall and precision metrics are the macro averages of the per-axis
values. Finally, we compute F1 score as the final per-chart score, and the average
of the per-chart scores are computed for the entire evaluation set.

Baselines. While the GT text regions are known for this task, their corre-
sponding roles are unknown. Because of this, our baselines work in combination
with role predictions from Task 3, to identify all tick labels. The next challenge
is to associate these to their corresponding axes. We use Variation V345 (see
Task 4.3) which refines the tick label class by directly predicting if the region is
a tick label of: x-axis (bottom), y-axis (left), x2-axis (top) or y2-axis (right).

The next step is to associate the tick labels to specific image locations. A
common idea is to detect tick marks and use rules to match these to tick labels,
but in many cases the tick marks are not visible or do not correspond to positions
that should be associated with tick labels. To solve this problem, we add an axes
corner object, which is a box of 10-by-10 pixels, centered at the origin of both
x and y axes (bottom-left corner). The center of this box, (cx, cy), provides the
coordinates shared by all ticks in a given axis (cx for y axis, cy for x axis). We use
rules to determine the other coordinate using the rotated bounding box of the
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corresponding tick label. In most cases we simply use the center of the tick label
bounding box: vertical center for y axis, horizontal center for x axis. Rotated
tick labels, commonly found in the x axis, are the exception to this, and we use
the x coordinate of the top-most point in their rotated bounding box.

Table 8 shows the results for this task. The performance for most object
detectors is reasonably good considering that they do not detect visual tick
marks. The baselines will fail when the axes corner box is incorrectly detected,
or not detected at all. If multiple boxes are detected, the most confident is
picked, but that can also produce incorrect outputs. Errors made in Task 3
(e.g., false positives/negatives for tick labels) are also propagated here. Also,
tick labels associated with the wrong axis reduce precision for one axis, and
recall for the other. Here, the ROI Trans model [12] achieved the highest score,
with more consistent recall and precision levels than other models. The second
best is Deformable DETR [46].

4.5 Task 5. Chart Legend Analysis

Task Description. A legend is made by a set of legend entries, which are
(legend label, legend symbol) pairs. Each legend label usually corresponds to one
specific data series in the chart. The legend symbol exemplifies the appearance
of the corresponding data marks. An example is shown in the left side of Fig. 1.
The goal of this task is to identify the legend entry pairs in the image.

Inputs, Outputs and Metrics. Inputs are the same as task 3. The output is
a list of legend entry pairs (text id, bounding box), where the text id represents
a legend label, and bounding box represents the associated symbol.

The evaluation of this tasks requires correct pairings between legend labels
and legend symbols. For a given chart, predicted legend entries are initially
matched to GT by the id of the legend labels. For each matching pair, the area of
intersection between the GT legend symbol and the predicted one is computed
and used to get two metrics: an IoU-based score (divide by the area of the union)
and a recall-based score (divide by the area of the GT bounding box). The sum
over all legend entries is computed for both scores, and then they are divided by
the maximum between the number of GT legend entries and predicted legend
entries. Finally, the average over the evaluation set is computed for both metrics.

Many charts have rather small and thin legend symbols (e.g., height of 2
pixels). IoU-score can be over-punishing on bounding boxes that correctly cap-
ture the legend symbol, but are slightly thicker. The recall-based score is also
considered here because of this.

Baselines. Similar to Task 4, this task has access to the GT text regions, but
the roles are unknown. All legend labels and legend symbols candidates need to be
identified, and these need to be combined into legend entry pairs. As described
before, we consider object detection baselines that combine multiple tasks on the
same network. For task 5, we simply add the legend symbol objects. The same
network will produce all legend label and legend symbol candidates.
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Table 9. Baselines for Legend Analysis. We consider variations V35 (†) and V345 (‡).

Method Average BBox

IoU (%) Recall (%)

†ReDet [15] (R50 [16]) 83.09 95.33

†RoI Trans [12] (R50 [16]) 83.41 95.62

†RoI Trans [12] (Swin Tiny [29]) 84.31 95.56

†YOLO-V8x [21] 43.86 49.53

†Deformable DETR [46] 80.52 88.53

†Cascade Mask R-CNN (Swin Base) [29] 84.23 93.56

‡ReDet [15] (R50 [16]) 83.66 95.57

‡RoI Trans [12] (R50 [16]) 83.26 95.69

‡RoI Trans [12] (Swin Tiny [29]) 83.84 95.42

‡YOLO-V8x [21] 43.42 49.31

‡Deformable DETR [46] 82.86 91.81

‡Cascade Mask R-CNN (Swin Base) [29] 84.12 93.62

The next challenge is to pair the candidates while considering false positives
and negatives for both classes. Algorithms typically used for 1-to-1 matching in
bipartite graphs will fail due to the noisy predictions. A simple approach is to pair
each legend symbol with its closest legend label, but the way in which the distances
are measured determines the quality of results. Based on the observation that
for most charts, all legend entries have their symbols on the same side, we first
estimate if all legend symbols in the image are left, right, above or below their
labels. This direction is used to pick the corresponding edges of the bounding
boxes of the legend labels, and their middle points are used as reference points
for the labels. We then measure the distances between the reference points and
the centers of the bounding boxes of the symbols. Matches are then sorted by
increasing distance, and they are greedily picked in that order. Only matches
between previously unmatched elements are accepted, and the process stops as
soon as the first match involving a symbol or label previously matched appears.
We do this to prevent spurious matches involving false positives/negatives based
on the observation that valid legend entries in the same chart usually have similar
edge distances between their symbols and labels.

Table 9 shows the results for this task. The recall-based scores show that
most legend symbols are being detected and matched correctly, and that pre-
dicted boxes greatly overlap the symbol regions. It is possible that many of these
predictions have the wrong thickness, leading to a much lower IoU-based scores
in comparison. Errors can come from false positives/negatives of legend symbols
and legend label. The method with the highest average F1 score for role classifi-
cation achieves 98.6 F1 score for the legend label class (see Table 7). Therefore,
it is likely that most errors come from failures to correctly detect the legend
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symbols. The baselines based on RoI Trans [12] consistently achieve some of the
best scores for this task.

4.6 Task 6. Chart Data Extraction

Task Description. This task approximates the data table used to create a
chart image. It is divided into two sub-tasks: Plot element detection and extrac-
tion (Task 6.a), and raw data extraction (Task 6.b). The first sub-task aims at
correctly locating the data marks in the chart (e.g., lines in line charts, bars
in bar charts, etc.). The second sub-task puts everything together (text, axes,
legends, and data marks) to reconstruct the data encoded in the chart image.
The chart type might be used to determine the right approach for this task.

Inputs, Outputs and Metrics. The inputs for this task are the outputs
from all previous tasks (1–5). The outputs for Task 6.a depend on the chart
type. Bar charts require a list of bounding boxes per bar. Line and Scatter plots
require a list of points for each data series. Box plots require a tuple with the
position of the components of each box (box top, box bottom, box median, top
whisker, bottom whisker). For task 6.b, the output is a set of data series with
name, and the list of data points (x, y) that make that data series, where x is
the independent variable, and y is the dependent variable. Multiple metrics are
considered depending on the type of chart (See [9,11] for details).

Baselines. The baselines for this task are complex, requiring combination of
results from previous tasks. Existing works on chart recognition typically focus
on a single chart type [8]. Meanwhile, our dataset provides data annotations for:
horizontal/vertical bar charts, vertical box plots, scatter plots and line charts.
Providing baselines for each of these chart types is out of the scope of this work.
However, we briefly discuss the implications and complexities of creating data
extraction models for these chart types.

Horizontal/Vertical Bar Charts. This is arguably the simplest chart type
for data extraction. Standard object detectors often work with anchors of pre-
defined aspect ratios, and bars in some charts can be extremely narrow or long.
Most charts use bars of solid colors, but some charts use complex texture patterns
instead. After detecting the bars, the next challenge is to infer the values rep-
resented by them. Every bar must be correctly mapped to a category (x value),
a data series (e.g., “legend entry”), and an absolute value (y value). The orien-
tation of the chart defines which axis is the x value (independent variable) and
which one is the y value (dependent variable). Many charts use stacked and/or
grouped bars, which require associating multiple bars to a single category (e.g.,
by proximity). Bars are usually associated to particular data series using leg-
end analysis and their appearance. Finally, the y values of the bars are inferred
through axes analysis and their spatial location. This process gets slightly more
complicated for stacked bars where two extreme points are required to infer the
value of each bar. Also, data points with y=0 often lead to invisible bars, but
their existence might be inferred by analyzing the chart layout. Figure 2.e shows
an example of a complex stacked vertical bar chart included in our dataset.
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Fig. 2. Examples of challenging charts in our dataset. (a) Scatter chart, extracted from
[33]. (b) Scatter-line, extracted from [6]. (c) Line chart, extracted from [2]. (d) Vertical
Box plot, extracted from [4]. (e) Stacked bar chart, extracted from [17].

Vertical Box Plots. The first step is to detect the boxes and their corre-
sponding whiskers and median lines. Object detectors can be used to locate
the boxes, but extreme aspect ratios can be a challenge. Whiskers and median
lines might not be visible when their values are too close to the values repre-
sented by the top and/or bottom of the boxes. Similar to bar charts, we can find
grouped box plots, where multiple boxes share a single category and each box
needs to be linked to a particular legend entry. There are five points of interest
in each box that need to be correctly mapped to their corresponding values in
the y-axis. Figure 2.d shows a complex grouped vertical box plot included in our
dataset. Note that horizontal box plots can be processed in a similar way, but
we excluded them from our dataset because they are quite rare in practice. Also,
many box plots include outliers represented by scatter marks, but we decided
to currently exclude these from our benchmark because even human annotators
often struggle to distinguish and recognize all individual points.

Scatter Plots. First, each data mark representing a data point must be
detected. This might be easy when there are only a few large data marks, and
extremely difficult when the plot region is cluttered with many small data marks.
In the worst case scenario, we might only approximate the distribution of the
original data used to create the plot. While our dataset includes all kinds of
scatter plots, we only annotated data in cases where human annotators could
accurately identify all individual data points. Data marks can be generated using
all sorts of shapes, colors and sizes, making their automatic detection very chal-
lenging. After detection, each data mark needs to be mapped to a 2D point
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using their location and axis analysis. Legend analysis and the appearance of
the data marks must be used to correctly map them to their corresponding data
series. If no legend is present, then the appearance alone must be used to infer
the existence of multiple data series. Figure 2.a shows an example of a complex
scatter in our dataset where the colors on the legend do not match the colors
in the plot region, and matching needs to be done using shapes, but this is also
hard due to overlaps between data marks.

Line Plots. This is arguably the most challenging type here. Identifying the
pixels of a given line is a segmentation problem which cannot be approached with
basic object detectors. Some charts have solid colored lines which can be easily
traced by basic segmentation algorithms. However, we find many charts with
dashed lines and repeated line colors, where the thickness and/or dash patterns
must be considered to differentiate them. Lines can also intersect and signifi-
cantly occlude each other. Same as other chart types, lines must be associated
with data series using legend analysis, but this can be difficult when the asso-
ciated legend entries are very thin. Figure 2.c shows a line chart in our dataset
which displays many of these issues. Some charts do not use legends, and instead
directly provide names for each line using colored text within the plot region (e.g.
data mark label) as illustrated on the right side of Fig. 1.

4.7 Task 7. End-to-End Data Extraction

The end-to-end data extraction task has the same goals, outputs and metrics as
sub-task 6.b (Sect. 4.6). However, the only input is the image of a chart. This
task was designed for systems that can handle the chart recognition process as
a whole, removing the need to produce and evaluate intermediate outputs.

It is also possible to create a modular system which handles the recognition
process using the individual tasks suggested in this benchmark. Not having any
ground truth means that the real outputs from each module in the pipeline
must be used. Any errors made in the earlier tasks will propagate to later tasks,
affecting the overall recognition results.

Similar to Task 6, baselines for this complex task are out of the scope of this
work.

5 Conclusion

In this paper, we have introduced the CHART-Info 2024 dataset, a natural
extension to the existing ICPR 2022 CHART-Info datasets [11]. Apart from a
brand new test dataset, we have also provided a considerable number of baselines
for the first 5 tasks defined in our dataset. These baselines provide a starting
point for researchers interested in chart recognition. We believe that our dataset
will enable the development of better chart recognition systems which will be
capable of dealing with complexities found on charts in the wild.
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Abstract. Document Recognition and Analysis is a long-standing area
of study that has been actively investigated for many decades. Handwrit-
ten text recognition (HTR) in Indian scripts is still in its early stages
since the lack of publicly available datasets hampers the development of
offline text recognition algorithms. Comparisons become tiresome due to
the intricate structure of scripts, variances in depiction, and the presence
of cursive writing. Hindi is the fourth most prevalent spoken language
in the world, spoken by 615 million people, whereas Bengali is the sixth
most popular, spoken by 265 million people [Source]. Both are read in
a left-to-right direction. The accessible datasets of both languages are
limited in size, have a limited number of writer’s samples, and use lim-
ited annotations, which poses challenges in developing resilient solutions
utilising contemporary machine learning methods. Here, we have pre-
pared Hindi and Bengali text scripts, each covering all the letters of
Hindi and Bengali literature, named AIO-HB(All in one Hindi-Bengali
Dataset). The dataset, which can be accessed at https://sites.google.
com/view/aio-hb-dataset, has also been made public for the benefit of
the researchers. These handwritten scripts have been written by 202
different writers multiple times. These scripts are considered from indi-
viduals of different professions, including diverse ages and genders. The
AIO-HB dataset is benchmarked using conventional deep-learning mod-
els for Handwritten Text Recognition (HTR). It can be used for various
document image analysis applications, such as recognising script sen-
tences, segmenting text lines, segmenting words, detecting words, and
identifying writers. This article explores the reasons for improvements in
HTR performance across scripts and the utility of annotation for Indian
HTRs.

Keywords: Handwritten Dataset · Hindi and Bengali scripts ·
Handwritten Text Recognition · Benchmarking

1 Introduction

Since the beginning of the twentieth century, massive digitization initiatives have
transformed paper documents and ancient historical manuscripts into digital
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formats. Handwritten document image recognition is a demanding field within
document image analysis, including tasks like text segmentation, written lan-
guage recognition, writer identification, etc. Automatic language identification of
paper-printed text pictures has obtained great success in this field with the help
of the script-specific Optical Character Recognition model; however, the perfor-
mance of recognising handwritten documents or text is hindered by variations in
letters, cursive writing shapes, symbolic differences, and individual writing styles.
Handwritten text recognition is an essential field in modern document analysis
systems. It has been a prominent research area due to its wide range of possi-
ble applications, including postal automation, bank cheque processing, artificial
information gathering, etc. Recent progress in text recognition systems has been
propelled by the effectiveness of deep neural networks and annotated datasets.
Standard datasets are essential for evaluating script recognition algorithms and
enabling comparisons of results. Printed datasets are often used because of their
ease of acquisition via newspapers, books, and the Internet. The fundamental
challenge in creating a handwriting identification model is the wide range of
handwriting styles and complex letter patterns within words. Another issue is
the lack of standardised handwritten datasets in the public domain. The earlier
maximum research was focused on recognising handwritten words in Latin [16],
Arabic [15], Japanese, and Chinese [11] scripts. The IAM Handwritten Dataset
[16], released more than 20 years ago, with the historic George Washington
[23] and Botany Datasets [22], is well-known for handwritten text recognition
in the Latin language. Currently, using these handwritten datasets, deep neu-
ral networks effectively provide significant analysis results through conventional
feature-based approaches.

The Indian handwritten text recognition system is less explored than the
above language-based handwritten text recognition model because of similar
forms and traits resulting from their shared origin. Unlike many other regions
globally, India uses diverse languages and scripts. Generally, deep neural net-
works need substantial training data to acquire new characteristics, making them
suitable for swiftly processing a small number of handwritten texts. However, in
the current scenario, the annotated datasets for Indian handwriting text recog-
nition are small and narrow in focus. There are only a few publicly accessible
datasets specifically dedicated to handwritten manuscripts. Thus, accumulating
substantial handwritten datasets for various Indian scripts poses difficulties and
high costs.

Hindi and Bengali are two of the most widely used languages in India.
Approximately 530 million people in northern India use the Hindi alphabet,
making it the most commonly used Indian script. Bengali ranks as the 2nd

most widely spoken language in eastern India. West Bengal, Assam, Tripura,
and Manipur states use Bengali scripts for writing [4]. Approximately 100 mil-
lion individuals in eastern India use the Bengali alphabet for communication.
Figure 1 shows samples of our handwritten documents in Hindi and Bengali.
Acquiring handwritten datasets is difficult due to the dependence on accessible
writers, which might be bothersome. There is a shortage of publicly available
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Indian handwritten datasets; here, we have created a dataset AIO-HB(All in one
- Hindi-Bengali Dataset), including official Hindi and Bengali Indian scripts. The
AIO-HB(All in one - Hindi-Bengali Dataset) has significant text pages, lines, and
words/sub-words for each script. These datasets can potentially advance auto-
matic script recognition ability in multi-script texts within the research com-
munity. These datasets can be utilised for various applications in Document
Image Analysis, including script sentence recognition/understanding, text-line
segmentation, word segmentation/recognition, word spotting, handwritten and
machine-printed text separation, and writer identification, in addition to script
identification.

Fig. 1. a) Hindi Sample image, and b) Bengali Sample image

The present research explores the evolution of Hindi and Bengali scripts,
as outlined in Sect. 2. Section 3 provides a thorough analysis that compares the
found characteristics in both languages. Section 4 concisely summarises the AIO-
HB dataset, including a comparison with conventional surveys, the methodology
and criteria used for data collection, and the tools utilised for raw data prepa-
ration. This study analyses the methods of feature extraction and classification
for handwritten text documents. It also addresses the problems associated with
this field, gives potential avenues for future research, and provides a compara-
tive analysis with existing state-of-the-art works in Sect. 5. At last, the paper
concludes in Sect. 6.

2 Origin of Hindi and Bengali Scripts

The evolution of the Hindi [14] and Bengali [3] language is an intricate process
shaped by historical, cultural, and social influences. Hindi and Bengali, both
Indo-European languages, are believed to have originated from Sanskrit, Mag-
adhi Prakrit, and Pali, with ancient Sanskrit serving as the foundation for sev-
eral contemporary Indian languages. Ancient Prakrits, local languages, gradually
transformed into Apabhramsa, the forerunner of contemporary Indo-Aryan lan-
guages, shown in Fig. 2 the periodic diagram of language evolution.
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Fig. 2. The evolution of Hindi and Bengali language throughout history

Due to invasions and cultural interactions, Hindi evolved as a unique lan-
guage throughout the mediaeval era. The Bhakti and Sufi movements profoundly
impacted Hindi literature and language throughout mediaeval India. Esteemed
poets such as Kabir, Surdas, and Tulsidas contributed to developing devotional
poetry in local languages. The advent of European colonisers, namely the British,
brought forth novel linguistic impacts, notably an influx of English vocabulary.
During the 19th century, there were attempts to establish a standard form of
Hindi and encourage its use as a language for literature and administration.
This led to modern Hindi grammar, spelling, and vocabulary creation.

The Bengali language has developed into three stages: Old Bengali, Mid-
dle Bengali, and Modern Bengali. Old Bengali, originating from 650 A.D., was
often used by clergy and intellectuals in Bengali literary compositions. The ear-
liest known literature is Charyapada, a compilation of mystical poetry rooted in
Buddhism. In the 14th century, the Sultanate of Bengal established Bengali as
the official court language, which later became vernacular. Middle Bengali was
affected by Persian imported by the Mughals in the 16th century. Modern Ben-
gali, a dialect spoken in the Nadia area of Bengal, emerged around the Battle
of Plassey in 1757. The language is divided into formal and informal forms,
known as “ShuddhoBhasha” and “CholitoBhasha”. It primarily incorporates
vocabulary from Magadhi Prakrit and Pali and loanwords from many other lan-
guages.

Hindi and Bengali writings are formed from Brahmic scripts used in India,
Nepal, Tibet, and Southeast Asia. It is derived from the Gupta script, Siddham,
and Sharada. Eastern versions of Gupta script were documented in the 7th cen-
tury CE and eventually supplanted Siddham and Sharada scripts. The Kutila
inscription of Bareilly, dating back to 992 CE, displays an early form of Devana-
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Fig. 3. The evolution of Hindi and Bengali script writing styles

gari. The Sanskrit term Nagari is feminine and signifies “About a town or City,”
perhaps derived from its association with urban areas shown in Fig. 3. During the
mediaeval era, both languages saw substantial changes due to their exchanges
with Persian, Arabic, and Turkic languages, which Muslim monarchs influenced.
The Persian vocabulary and grammatical structures were incorporated into the
language, enhancing its lexicon. Both languages are intricately interwoven with
the area’s cultural, historical, and linguistic advancements.

3 Characteristics of Bengali and Hindi Scripts

Writing various scripts would result in distinct writing styles, a commonly held
assumption; however, it is not universally accurate. The writing style of a screen-
play is mostly determined by its structure, which we often refer to as characteri−
stics. In this part, we are examining methods for determining the distinc-
tions and resemblances between them. Regarding script identification, the dif-
ferences and similarities may be assessed by examining the characteristics. Fea-
tures may include elements such as ‘shirorekha’ or ‘matra’, ‘loops’, ‘circularity’,
‘rectang− ularit’y, and ‘tinycomponents’. Various script-specific intrinsic traits
may be used to differentiate one script from another. Most letters in Hindi and
Bengali scripts have a horizontal line, known as ‘Matra/Shirorekha’, located at
the top section along with a baseline. When two or more letters are arranged hor-
izontally to create a word, the horizontal lines often make contact and produce
a continuous line, as shown in Fig. 4.

The Hindi and Bengali scripts consist of 51 fundamental letters, whereas
Hindi has 14 vowels and 37 consonants. The contemporary Bengali script has
11 vowels and 40 consonants in its alphabet. Figure 5 displays the fundamental
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Fig. 4. The Hindi and Bengali words include a horizontal line

letters of the Bengali and Hindi scripts. Indian scripts are written from left to
right; however, some pair glyphs may be positioned to the left of their source
character for visual representation. Both the Hindi and Bengali scripts use a
modified form of a vowel when it follows a consonant. This modified vowel is
positioned to the left, right, both left and right, or bottom of the consonant.
These altered forms are referred to as modified letters. Due to their topological
placement, these modifiers complicate the character segmentation process in
Hindi and Bengali scripts. A consonant or vowel that follows a consonant may
occasionally take on a compound orthographic form, referred to as a compound
character. To get comprehensive information on the Hindi and Bengali scripts,
please see reference [2].

Fig. 5. The letters of Hindi and Bengali languages
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4 A Brief Overview of Our AIO-HB(All in One Hindi
Bengali) Dataset

Collecting data is an intensive and monotonous operation in pattern recognition
work. Data sample preparation has maintained specific guidelines and method-
ologies. Sample annotations would be collected so that the specific machine-
learning techniques work well. Finally, our dataset is compared with several
publicly available benchmark datasets.

4.1 Methodology and Guidelines for Collecting Data

Collecting data gets more difficult when there is a large range of demographic
variables. Gathering handwritten data from several authors in different regions is
difficult. Handwritten papers are composed in an organised way, such as in pre-
formatted forms. The technique was used in our situation as one sheet required
volunteers to write the supplied text in the designated place. Each writer received
a pre-formatted form. The next paragraph will cover the preparation and norms
for creating a data-gathering form.

The first stage included creating a standardised format for sample data collec-
tion for both languages. These sample formats were developed at our laboratory,
as seen in Fig. 6. The format consists of a header and content. The header field,
positioned at the topmost position, includes the writer’s name, gender, age, and
occupation. To simplify the process, we have included specific information such
as ‘Male’ or ‘Female’ in sex tags and put jobs in occupation tags. This allows
the writer to indicate the proper decision easily. The text of the sample paper

Fig. 6. a) Bengali Sample Form image, and b) Hindi Sample Form image
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Fig. 7. The page level Hindi sample

Fig. 8. The page level Bengali sample

was partitioned into two distinct pieces - the higher and lower regions. The
higher part had the writer’s information on the sample text. The texts’ selection
was based on consultation with linguistics experts to ensure the inclusion of all
letters, including independent and dependent vowels, from both scripts shown
in Fig. 7 for the Hindi sample and Fig. 8. for the Bengali sample. For sample
collecting, several sources such as news articles, novels, tales, and state board
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and university curriculum materials were included. This allows us to include
a wide range of content and ensure maximum flexibility within the samples.
The bottom portion of the sample paper was intentionally left empty, requiring
the writer to transcribe the provided material using their own handwriting. The
participants were instructed to fill in the empty section of the form with the pro-
vided material without any limitations or limits on the choice of pen, ink colour,
or writing style. We deliberately tried to gather data from people of varying
ages and occupations. In addition, we have gathered data from various locations
such as offices, homes, colleges, and schools to guarantee a wide range of writ-
ing styles. Most of the scripts, with a few exceptions, were authored by native
authors, ensuring they handled over 95% of the instances. Upon receiving the
sample sheets, the text sheets were digitised using one HP Laser MFP scanner
at 600 dots per inch (dpi) resolution and saved in RGB scales. The final photos
were saved to allow users to manipulate them according to their requirements.

Each picture file has been given a name as < Unique language id > < 4
digits unique writer id > < 2 digit sample no. >. For example, a Hindi sample
file is named ‘40001 01’, where ‘4’ stands for Hindi language id, ‘0001’ stands
for Writer id and ‘01’ stands for sample image serial number. As the ‘jpg ’ file
format is selected, the first Hindi sample picture file is saved as ‘40001 00.jpg’.

Table 1. Age and Gender statistics on AIO-HB (All in one Hindi-Bengali Dataset)

Hindi Bengali

Male Female Total Male Female Total

10–20 12 4 16 84 19 103

21–30 14 8 22 25 7 32

31–40 5 3 8 5 5 10

40–50 4 2 6 6 1 7

Total 35 17 52 120 32 152

4.2 Statistics of Indian Scripts: Hindi and Bengali

Hindi and Bengali are the most widely used scripts in North and Eastern India.
We have chosen three distinct categories of textual material for Bengali text
pages. This text includes both the fundamental Bengali characters and com-
plex characters. The aforementioned texts were distributed to 150 participants,
including diverse ages, genders, and occupations. Statistical information is shown
in the Table 1. Ultimately, we successfully gathered a total of 1278 handwrit-
ten text pages, which now constitute the Bengali part of AIO-BD dataset. The
Bengali dataset consists of about 17k lines of text, totalling 162K words or sub-
words. A Bengali text page typically comprises around 13.22 lines of text and
127.42 words or subwords. Two examples of pictures of Bengali handwritten text
are shown in Fig. 8. The first Bengali text page was stored under the filename
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‘50001 00.jpg’. The same methodology is used for the Hindi script as prepar-
ing the Bengali text. Initially, we generated a paragraph text utilizing various
domains. The writings were then sent to a group of 52 persons of different ages,
genders, and occupations. The same methodology was used before, accumulating
sentences that were ultimately stored in grayscale. The whole quantity of 520
handwritten Hindi text pages was collected, including 4680 lines of text and a
total of 51k words/sub-words. On average, each page of Hindi text has 8.89 lines
of text and 98.7 words or sub-words. The first Hindi sample sheet was stored
under the filename ‘40001 00.jpg’. Figure 7 displays the example of handwritten
text graphics in the Hindi text.

4.3 Synopsis of Our Dataset

The AIO-HB dataset consists of handwritten page-level text pictures comprising
many text pages, lines, and words/sub-words in both Hindi and Bengali scripts.
Notably, our dataset has a substantial number of authors, namely 202 distinct
writers from various regions of India, including diverse age groups, genders, and
occupations. The purpose of this dataset is to be used as a standard for identify-
ing handwritten scripts, a growing research challenge in a nation like India that
uses several scripts. In addition to various document image analysis applications
such as recognising script sentences, segmenting text lines, segmenting words,
detecting words, and separating handwritten and machine-printed texts. Fur-
thermore, it can also be used to identify writers across a diverse range of Indian
scripts. Our AIO-HB dataset in Table 2 is distinct in its script coverage, larger
volume, and huge number of writers and variants, making them distinctive for
document analysis.

Table 2. The statistical data of our proposed AIO-HB dataset is compared to other
widely accessible datasets at the page and word level

Name of Dataset Language No. of Writers No. of Pages No. of Lines No. of Words Avg. no. of Lines/Page Avg. no. of Words/Page

CMATERdb1 [27] Bengali 40 150 30k 21.63 177.3

PBOK [1] Bengali 199 199 2820 21k 14.17 106.81

PHDIndic 11 [19] Bengali 42 161 1820 12k 11.3 77.31

Hindi 60 220 2457 23k 11.16 105.74

RoyDB [24] Bengali 60 17k

Hindi 60 16k

LAW [12] Hindi 10 27k

IIIT-HW-DEV [7] Hindi 12 95k

IIIT-INDIC- HW-WORDS [8] Bengali 24 113k

AIO-HB [Proposed] Bengali 150 1278 16906 162k 13.22 127.42

Hindi 52 520 4680 51k 8.89 98.7

Additionally, we made our AIO-HB dataset into a word-level dataset. Here,
we annotated each word image with the following sequences.

Order of Annotation: One digit unique language id & four digits unique writer id
- sample no - line no - word no - x axis - y axis - width - height.png shown in
the Fig. 9.
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Fig. 9. List of handwritten annotated words

For an annotated handwritten Hindi word Example: 40001-00-0-90-112-352-
224.png. Table 3 showing the collection of handwritten annotated words to per-
form a written identification approach inspired by Sheng He et al. [10] with their
CERUG-EN dataset [11]. Sometimes, we attempt to generate synthetic hand-
written data [25]; however, this data lacks the precise characteristics of genuine
handwriting.

Table 3. The collection of our handwritten text word datasets ready to evaluate with
standard Deep learning models

Language Training DS Testing DS Validation DS Total DS

Hindi 28k 10k 13k 51k

Bengali 91k 30k 41k 162k

Fig. 10. Flowchart of Handwritten text identification system
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5 Analysis of Handwritten Script

Handwritten text identification entails acquiring a scanned picture from an exter-
nal source for the offline recognition technique. After the first scanning, further
pre-processing is carried out on the digital picture to improve its quality and
prepare it for segmentation. This pre-processing procedure includes erosion, dila-
tion, opening, closure, and smoothing. The grayscale picture undergoes binariza-
tion, which uses the global thresholding approach to transform it into a binary
image. The next processes provide the pre-processed picture for segmentation.
The process includes fixing holes, expanding the picture, and identifying edges
using the Sobel approach.

5.1 Learning Models

Figure 10 illustrates the flowchart of the standard handwritten text identifica-
tion system. To maintain consistency throughout our dataset, the system resizes
collected photos, which may have different sizes, to a standardised scale of 1024
* 1024. The flowchart consists of two sections: training and testing data sets for
each language.

5.2 Picture Segmentation

The picture processing procedure entails examining the background and seg-
menting the handwritten texts using a thresholding technique [26]. This tech-
nique distinguishes the main subject from the surrounding elements by trans-
forming the picture into a binary format. The ideal threshold divides pixels
based on intensity levels, allowing for the detection of the area of interest [5],
here the words/letters. Next, the words divided into segments are separated from
any distracting elements in the backdrop. They are then trimmed and saved for
further examination and evaluation. This step improves the legibility and per-
ceptibility of texts for sophisticated text identification and feature extraction.

The distinctive characteristics of Bengali and Hindi scripts provide particular
challenges and potential for using state-of-the-art deep learning models such as
ResNet152, InceptionV3 and Xception in classifying handwritten text.

ResNet152 [9] is an advanced version of the ResNet architecture, consisting
of 152 layers, which enables the detection of more complex and detailed char-
acteristics in data. ResNet152 has shown exceptional performance in task cate-
gorising images, attaining the most advanced results on our standardised dataset.
Due to its significant depth, this model successfully learns hierarchical character-
istics, making it well-suited for the task of handwritten text detection. The text
identification architecture using ResNet152 comprises building blocks and layers
specifically engineered to extract hierarchical characteristics from our handwrit-
ten dataset samples.

InceptionV3 [29] , a very efficient architecture of a convolutional neural net-
work, is well-suited for accurately identifying handwritten text. The multi-scale
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feature representation of this technology enables the detection and analysis of
differences in the size, orientation, and style of handwritten texts. Utilising data
augmentation methods such as rotation, scaling, and noise may enhance the vari-
ety of the training dataset. Text recognition algorithms and sequence modelling
are post-processing approaches that may enhance the precision of identifying
handwritten text. Nevertheless, it is essential to consider the dataset’s precise
needs and distinctive features so that our dataset can be easily used to explore
this sophisticated CNN architecture.

Xception [6] is a neural network architecture created by François Chollet in
2017. It uses depthwise separable convolutions to capture spatial connections
effectively. Its capacity to extract hierarchical elements from handwritten text
pictures, such as strokes, forms, and textures, makes it especially valuable
for handwritten text recognition tasks. Additionally, Xception may be used
with data augmentation methods to enhance the variety of the training dataset.
Post-processing methods such as text recognition algorithms or sequence mod-
elling may enhance the precision of identifying handwritten text. Nevertheless,
the efficacy of Xception in recognising handwritten text necessitates exploring
various topologies, hyperparameters, and training methodologies using our pre-
sized dataset.

5.3 Evaluation and Results

The system in issue was implemented using the Python programming language.
The dataset was trained using the Resnet152, InceptionV3, and Xception algo-
rithms using the capabilities of the Google Colab platform.

Word error rate (WER) is a metric used to measure the accuracy of a Hand-
written Text Recognition (HTR) system in recognizing handwritten text. The
metric quantifies the degree of deviation between the recognized text and the
ground truth, which is the real handwritten text. WER is computed using the

Table 4. HTR Evaluation Table of the Hindi script using standard Deep Learning
approaches

DL Algos Training Validation Testing

Accuracy Rate(%) Word Error Rate(%) Accuracy Rate (%) Word Error Rate(%) Accuracy Rate (%) Word Error Rate(%)

Resnet152 91.06 8.94 84.21 15.79 89.79 10.21

Inception V3 92.98 7.02 86.78 13.22 93.14 6.86

Xception 88.49 11.51 89.49 10.51 95.45 4.55

Table 5. HTR Evaluation Table of the Bengali script using standard Deep Learning
approaches

DL Algos Training Validation Testing

Accuracy Rate(%) Word Error Rate(%) Accuracy Rate (%) Word Error Rate(%) Accuracy Rate (%) Word Error Rate(%)

Resnet152 85.07 14.93 92.61 7.39 91.47 8.53

Inception V3 88.72 11.28 89.62 10.38 92.89 7.11

Xception 95.62 4.38 94.51 5.49 94.59 5.41
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following equation:

WER =
Subs + Ins + Del

Total no. of words in theDocument Image

where Subs stands for differing word count, Ins stands for additional word count,
and Del stands for missing word count from the HTR system’s output.

The data table presented the performance metrics of three different algo-
rithms, ResNet152, InceptionV3, and Xception, when applied to a given task.
The metrics are supplied during the training, validation & testing stages, specif-
ically comprising the accuracy and error rates shown in Table 4 and Table 5
respectively for both languages.

These data allow for analyzing and comparing the model’s performance in
Hindi and Bengali HTR. The Bengali HTR model demonstrates marginally bet-
ter precision, recall, and F1 score compared to the Hindi HTR model, suggesting
improved overall performance in recognizing Bengali text shown in Table 6.

Table 6. Analysis of Deep learning Algorithms for Hindi and Bengali HTR.

DL Algos Precision Recall F1-score

Hindi Bengali Hindi Bengali Hindi Bengali

Resnet152 0.857 0.862 0.909 0.926 0.882 0.893

InceptionV3 0.889 0.917 0.923 0.932 0.906 0.924

Xception 0.888 0.893 0.922 0.929 0.905 0.911

Fig. 11. Confusion matrix: the top three matrices for Hindi HTR utilising ResNet152,
InceptionV3, and Xception, respectively, while the bottom matrix represents Bengali
HTR.
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Based on the evaluation metrics such as precision, recall and F1 score, we
generated a confusion matrix where the number of true positives and the num-
ber of true negatives are 30 and 50, respectively. Figure 11 presents the confu-
sion matrix of both languages along with three different algorithms, ResNet152,
InceptionV3, and Xception.

This analysis facilitates comprehension of the deep learning model’s per-
formance in recognising handwritten text across several languages. It can pro-
vide information for enhancing or modifying the model’s architecture or training
procedure. These metrics provide a complete assessment of how well each algo-
rithm learns from the training data and how well they can apply that knowledge
to fresh data during the validation and testing phase. The data in the table
are used as quantitative benchmarks to evaluate the relative performance of
ResNet152, InceptionV3, and Xception in the defined task. Also, a few litera-
ture analyses show that script categorization for handwritten documents focuses
on various input levels, such as page-level [20], block-level [18], text-line level
[17,28], or word-level [13,21].

6 Conclusion

We provide a novel collective handwriting dataset, namely the AIO-HB dataset,
which encompasses two prominent spoken Indian languages: Hindi and Bengali.
We anticipate that our dataset’s extensive size and varied composition, including
key Indian languages, will stimulate research efforts to improve and construct
resilient systems for recognising handwritten text. Continued enhancement of
Indian datasets is crucial for advancing Indian HTR development. Another
important objective is to build our handwritten dataset, including annotations
at line, paragraph, and page levels. Consequently, future efforts will focus on
augmenting the dataset with more authors and incorporating natural variances.
We evaluate the performance of a few conventional deep-learning methodolo-
gies using our dataset. In the future, we want to expand our efforts to include
additional Indian scripts.
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Abstract. This paper presents a diverse compilation of Indic offline
handwritten documents. Our dataset comprises 91K handwritten doc-
ument images captured through unconstrained camera across thirteen
Indic languages: Assamese, Bengali, Gujarati, Hindi, Kannada, Malay-
alam, Manipuri, Marathi, Oriya, Punjabi, Tamil, Telugu, and Urdu, con-
tributed by 1,220 writers. This dataset encompasses 2600K words and
includes 566,187 unique words featuring diverse content types, such as
alphabetic and numeric. Additionally, we establish a high baseline for the
proposed dataset, facilitating evaluation, benchmarking and explicitly
focusing on word recognition tasks. Our findings indicate that our dataset
is an effective training source for enhancing performance on respective
datasets. The code, trained model, dataset, and benchmark results are
available at https://cvit.iiit.ac.in/usodi/ucciohd.php.

Keywords: Handwritten text recognition · Indic language · Indic
script · Camera captured · Unconstrained · Word recognition ·
Benchmark

1 Introduction

Advancements in Handwritten Text Recognition (HTR) models underscore the
necessity for extensive and meticulously annotated handwritten text recognition
datasets. These datasets must exhibit diversity in writing and robust annotation
to facilitate reliable performance across real-world applications. While English
benefits from established datasets like IAM [16,23] and GNHK [14], which are
specifically tailored for offline handwritten text recognition, such comprehensive
resources are relatively scarce.

Compared to Latin HTR, the exploration of Indic HTR lags due to the
scarcity of annotated resources. India’s linguistic diversity presents a unique
challenge, with numerous languages and scripts in use [1]. Consequently, amass-
ing substantial handwritten datasets across multiple Indic scripts proves to be
arduous and costly. Existing annotated datasets [3,7,12,18] for Indic HTR are
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Table 1. Illustrates comparison of our proposed dataset with existing Indic handwrit-
ten text recognition datasets. #W: indicates the number of writers. #Word: indicates
the number of words in the dataset. #UW: indicates the number of unique words. IT:
indicates imaging type, either flatbed scanner or camera capture.

Script Language Dataset #W IT #Word #UW

Bengali Assamese IIIT-INDIC-HW-WORDS – – – –

IIIT-Indic-HW-UC 80 camera captured 200K 53049

Bengali Bengali PBOK [3] 199 flatbed scanner 21K 925

ROYDB [18] 60 flatbed scanner 17K 525

CMATERDB2.1 [7] 300 flatbed scanner 18K 120

IIIT-INDIC-HW-WORDS 24 flatbed scanner 113K 11295

IIIT-Indic-HW-UC 158 camera captured 200K 34042

Gujarati Gujarati IIIT-INDIC-HW-WORDS 17 flatbed scanner 116K 10963

IIIT-Indic-HW-UC 47 camera captured 200K 45492

Devanagari Hindi ROYDB [18] 60 flatbed scanner 16K 1030

LAW [12] 10 flatbed scanner 27K 220

IIIT-INDIC-HW-WORDS 12 flatbed scanner 95K 11030

IIIT-Indic-HW-UC 118 camera captured 200K 31237

Kannada Kannada PBOK [3] 57 flatbed scanner 29K 889

IIIT-INDIC-HW-WORDS 11 flatbed scanner 103K 11766

IIIT-Indic-HW-UC 71 camera captured 200K 57474

Malayalam Malayalam IIIT-INDIC-HW-WORDS 27 flatbed scanner 116K 13401

IIIT-Indic-HW-UC 137 camera captured 200K 70230

Bengali Manipuri IIIT-INDIC-HW-WORDS – – – –

IIIT-Indic-HW-UC 101 camera captured 200K 75531

Devanagari Marathi IIIT-INDIC-HW-WORDS – – – –

IIIT-Indic-HW-UC 95 camera captured 200K 32038

Oriya Oriya PBOK [3] 140 flatbed scanner 27K 1040

IIIT-INDIC-HW-WORDS 10 flatbed scanner 101K 13314

IIIT-Indic-HW-UC 75 camera captured 200K 34074

Gurmukhi Punjabi IIIT-INDIC-HW-WORDS 22 flatbed scanner 112K 11093

IIIT-Indic-HW-UC 67 camera captured 200K 18264

Tamil Tamil TAMIL-DB [20] 50 flatbed scanner 25K 265

IIIT-INDIC-HW-WORDS 16 flatbed scanner 103K 13292

IIIT-Indic-HW-UC 78 camera captured 200K 82052

Telugu Telugu IIIT-INDIC-HW-WORDS 16 flatbed scanner 120K 12945

IIIT-Indic-HW-UC 114 camera captured 200K 39514

Nastaliq Urdu CENPARMI-U [19] 51 flatbed scanner 19K 57

IIIT-INDIC-HW-WORDS 8 flatbed scanner 100K 11936

IIIT-Indic-HW-UC 79 camera captured 200K 27264
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Fig. 1. Shows a few examples of handwritten document images in several Indic lan-
guages taken under uncontrolled conditions. This camera- captured images exhibit vari-
ous characteristics, including blurred text, text with overexposed, perspective text, vari-
ation in illumination, unwanted large background, low-resolution text, the text under
shadow, oriented text, and others.

limited both in size and breadth. Several initiatives [9–11] have endeavored to
narrow the disparity between advancements in Latin and Indian languages by
introducing a handwritten dataset spanning ten Indian scripts. However, these
datasets typically involve scanned handwritten images captured via flatbed scan-
ners, with writers providing a single word within a box and 20–25 words per
page.

With the prevalence of cameras, capturing text in real-world scenarios has
become increasingly feasible, allowing us to preserve textual information in pix-
els. Recently, Zhang et al. introduced SCUT-HCCDoc [22], featuring uncon-
strained camera captured Chinese handwritten documents, while Lee et al. [14]
presented GNHK, showcasing unconstrained camera captured English handwrit-
ten documents. However, such datasets are yet to emerge for offline Indic hand-
written documents, highlighting the need for a similar initiative in this domain.

To address this imperative requirement, we present a comprehensive compi-
lation of offline Indic handwritten documents captured in unconstrained settings
to facilitate exploration in this domain. Our contributions include the meticu-
lous creation of an innovative dataset explicitly tailored to meet the demands of
Indic HTR research. It sets itself apart from existing datasets through a range
of key attributes:

– We introduce a dataset, namely IIIT-Indic-HW-UC, designed for camera
capturing offline Indic handwriting documents in real-world settings (refer
Fig. 1). It comprises a wide variety of 91K handwritten documents across
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13 languages—Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam,
Manipuri, Marathi, Oriya, Punjabi, Tamil, Telugu, and Urdu authored by
1,220 distinct writers all over India and captured by mobile camera. To our
knowledge, it is the most extensive and first camera captured dataset for Indic
handwritten text recognition (Table 1).

– We offer a baseline model for camera captured Indic handwritten text recog-
nition task (refer Table 3). We employ the cross-dataset analysis method [21]
to study generalization aspects comprehensively. It entails training a model
on one dataset and assessing its performance on others to gain insights into
its adaptability and effectiveness across diverse datasets.

2 Handwritten Datasets in Indic Languages

2.1 Character Level Datasets

Several Indic handwritten character level datasets: DHCD [2], BanglaLekha-
Isolated Dataset [8], IITG [5], ISI [6], Kannada-MNIST [17], MNIST-MIX [13]
and Urdu [4] are available. The statistics of these datasets are presented in
Table 2. These datasets offer a diverse range of handwritten characters from
Indic scripts, making them valuable resources for training and evaluating mod-
els for character recognition tasks. Researchers and developers can use them
to build and test OCR systems, handwriting recognition algorithms, and other
applications requiring character level recognition in Indic languages.

Table 2. Illustrates statistics of existing character level handwritten datasets in Indic
languages. Script/Lang.: indicates script or language, #Image: indicates the number
of images, #W: indicates the number of writers, and #Char. indicates the number of
characters.

Script/Lang. Dataset #Image #W #Char. Type

Devanagari DHCD 92,000 – 46 character

10 numerals

Bengali BanglaLekha-Isolated 166,105 – 84 50 basic characters

24 compound characters

Assamese IITG 12,000 – 52 characters

Devanagari 22,556 1049 10 numerals

Bengali ISC 12,938 556 10 numerals

Oriya 5970 356 10 numerals

Kannada Kannada-MNIST 60,000 65 10 numerals

Urdu MNIST-MIX 45,000 900 50 characters
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2.2 Word Level Datasets

Several datasets containing word level handwritten samples for various
Indic languages, such as PBOK [3], ROYDB [18], CMATERDB2.1 [7],
CENPARMI-U [19], LAW [12], TAMIL-DB [20], IIIT-HW-DEV [9], IIIT-HW-
TELUGU [10], and IIIIT-INDIC-HW-WORDS [11], are publicly available.
Table 1 presents the statistics of these datasets. The table reveals that PBOK,
ROYDB, CMATERDB2.1, CENPARMI-U, LAW, and TAMIL-DB datasets con-
tain a larger number of writers compared to the IIIT-INDIC-HW-WORDS
dataset. However, the number of words and unique words in the IIIT-INDIC-
HW-WORDS dataset significantly exceeds those in the PBOK, ROYDB, CMA-
TERDB2.1, CENPARMI-U, LAW, and TAMIL-DB datasets. Table 1 presents
the statistics of existing word level handwritten text recognition datasets along-
side our newly created dataset. The table reveals that the existing datasets have
limitations such as a small number of word level images, lack of writer vari-
ations and writing styles, limited linguistic diversity, and samples collected in
constrained environments. Additionally, many of these datasets are not pub-
licly available for research. These limitations make it challenging to generalize
OCR models for high accuracy on real and diverse handwritten documents. To
address these issues, it is necessary to create a dataset with a larger size, diverse
writing styles, samples from unconstrained environments, and greater linguistic
diversity.

3 IIIT-Indic-HW-UC Dataset

We create a larger, more diverse dataset of offline handwritten documents cap-
tured by cameras, known as the IIIT-Indic-HW-UC dataset. Compared to the
previous version, this dataset features increased language coverage, word count,
writer diversity, writing conditions, imaging processes, and ground truth anno-
tation. It includes thirteen major Indic languages: Assamese, Bengali, Gujarati,
Hindi, Kannada, Malayalam, Manipuri, Marathi, Oriya, Punjabi, Tamil, Telugu,
and Urdu. It consists of 200K word images written by more than 50 writers per
language. Writers are required to write corresponding handwritten paragraphs
in A4 size white pages, with no constraints on writing style. Handwritten pages
are captured using a mobile camera instead of a flatbed scanner. Ground truth
annotation is provided at the page level, containing bounding boxes, reading
order, textual transcriptions, and the language of all words on the page1. We
discuss more on it further in the following subsections.

3.1 Data Collection and Annotation

For each language, there are 7K text paragraphs created from the available text
corpus23 covering a wide range of topics. Unique id is associated with a para-
1 However, in this work, we release only individual word level images and their corre-

sponding ground truth transcriptions.
2 https://ufal.mff.cuni.cz/∼majlis/w2c/download.html.
3 https://corpora.uni-leipzig.de/en?corpusId=ben wikipedia 2021.

https://ufal.mff.cuni.cz/~majlis/w2c/download.html
https://corpora.uni-leipzig.de/en?corpusId=ben_wikipedia_2021
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Fig. 2. Illustrates a single Bengali annotated page alongside its standard representa-
tion. In (a), a single annotated page from our dataset is depicted. (b) displays the
actual text sequence considered as the ground truth. (c) represents all cropped word
level images. Lastly, (d) represents textual transcription, bounding box, and sequence of
words in a page encapsulated within the JSON file.

graph. Each paragraph contains at most 50 words. Users from any geographical
area in India have reading and writing capability for any/all 13 Indic languages
to be the authentic writers for the data collection. Any authentic writer can write
at least 100 and at most 200 paragraphs in a language selected by the writer.
The writer must write one paragraph on one A4 sized page. There is no other
constraint on the writing. After writing the paragraph(s), the writer takes a pic-
ture of the handwritten page with a mobile camera and shares it with us. There
are, on average, 50–100 writers for each language to write 7K text paragraphs.
Same paragraphs can be written by multiple writers. With the involvement of
1220 writers, we collect a diverse set of 91K handwritten document images cor-
responding to 91K text paragraphs; each document image is annotated at the
page level. The annotation includes complete text paragraphs and bounding
boxes, reading order, textual transcriptions, and the language of all words on
the page. A sample annotated handwritten document image is depicted in Fig. 2.
Figure 2(a) illustrates the ground truth bounding boxes, Fig. 2(b) shows textual
transcription for complete document image, Fig. 2(c) depicts cropped word level
images, and finally Fig. 2(d) reveals how the ground truth information (textual
transcriptions, bounding boxes, and sequences of words) is stored in JSON for-
mat.

3.2 Feature and Statistics

Diversity: The handwritten documents contributed by individuals reflecting
various age groups, educational backgrounds, and professional experiences across
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Fig. 3. Show several instances of word level images across various languages, written
by multiple writers from our dataset.

India represent a diverse collection. Capturing these handwritten documents
using a mobile camera under unconstrained settings presents numerous chal-
lenges, including blurred text, text with overexposed, perspective text, varia-
tion in illumination, unwanted large background, low-resolution text, the text
under shadow, oriented text, and others. Figure 1 illustrates a few sample hand-
written document images captured under these unconstrained settings. Further-
more, in Fig. 3, we provide several sample word level images of all thirteen lan-
guages written by different writers from our dataset, showcasing a wide range of
words and highlighting variations in style, image quality, and other aspects.

Since documents are written by various writers all over India, there is enough
diversity among documents written by two different writers. Figure 4 shows a few
sample word level images of Hindi written by two different writers: Writer-1 and
Writer-21. It highlights that there is still enough variation in writing style and
imaging quality between the two writers. Since one writer can write at least
100 and at most 200 pages, for a writer, among document images, there are
also enough variations in style and imaging quality because of camera capture.
Figure 5 shows a few sample word level images of Bengali and Hindi languages
written by the same writer.

Document Image Resolution Distribution: Writers employ their smart-
phone cameras to photograph handwritten documents, resulting in variations in
the resolution of the captured images. Acknowledging that high-resolution docu-
ment images offer clear text content, facilitate effective model training, and yield
superior performance during testing is crucial. Incorporating document images
with diverse resolutions ranging from 1600 × 720 to 4608 × 3456 introduces
variability in content visibility, thereby enhancing the robustness of the model.
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Fig. 4. Presents explicitly sample word level images from just two different writers,
namely, writer-1 and writer-21.

Fig. 5. Show word level images from different document images written by the same
writer for Bengali and Hindi languages.

Figure 6(a) highlights the distribution of resolution of handwritten document
images by different writers for the Hindi language in our dataset.

Word Level Image Resolution Distribution: Variations in text content and
individual writers contribute to differences in the resolution of handwritten word
level images. This diversity in word level image resolution improves the model’s
generalization ability. As depicted in Fig. 6(b), the distribution of resolutions
in Hindi word level images highlights the dataset’s variability. Most word level
images have a height-to-width ratio between 0.5 and 1.0, so the dataset encom-
passes word level images of varying resolutions. Including word level images with
diverse resolutions enriches the dataset, enabling the model to accommodate a
broader range of visual attributes and enhance its performance across various
writing styles and conditions.
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Fig. 6. Shows (a) document image resolution distribution, (b) word level image resolu-
tion distribution, (c) varying global contrast among word images, and (d) distribution
of word length for the Hindi language in our dataset.

Contrast of Word Level Images: Word level images are extracted from
handwritten document images captured by various mobile cameras, resulting in
significant variations in intensities and contrast among the images. To evaluate
the recognition ease of each word level image, we adopt the global contrast strat-
egy [15]. Figure 6(c) illustrates the diverse global contrast levels observed among
word level images in Hindi. The figures illustrate contrast levels ranging between
10 and 80. This variability in intensity within word level images adds complexity
to the dataset, contributing to the development of robust HTR models. However,
comprehending and utilizing these variations can enhance the adaptability and
effectiveness of HTR algorithms across diverse linguistic contexts.

Text Distribution: We compile a dataset of 7K document images for each lan-
guage, totaling 91K. Additionally, there are 200K word level images per language,
resulting in 2600K word level images encompassing unique 566,187 alphabetic
and numeric words. Table 1 presents the unique words for each language in our
dataset, denoted by the 7th column. For the Hindi language, we include a plot
in Fig. 7 that shows the occurrence of unique words in the dataset. The x-axis
shows unique words, and the y-axis shows the occurrence of a particular word on
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a logarithmic scale. This plot demonstrates a long-tail distribution, confirming
the diversity of the dataset4.

Writer Characteristics: Across India, 1,220 individuals have actively con-
tributed to curating handwritten document images, resulting in a diverse dataset
encompassing various handwriting styles, camera specifications, scanning meth-
ods, and more. Among these contributors, 70% (854 individuals) are female,
while the remaining 30% (366 individuals) are male. Within the male cohort, 23
individuals are identified as left-handed, with 343 being right-handed. Among the
female contributors, 34 individuals are left-handed, while the majority, specif-
ically 820, are right-handed. Notably, a significant portion of the contributors
falls within the age range between 20 to 40.

Fig. 7. Shows the distribution of unique Hindi words in the dataset.

Dataset Splits: To furnish an extensive training dataset for deep learning mod-
els, our dataset, consisting of 2600K word level images, has been partitioned into
1950K word level images for training, 260K word level images for validation,
and 390K word level images for testing. For each language, the dataset includes
200K word level images, among them 75% (i.e., 150K), 10% (i.e., 20K), and 15%
(i.e., 30K) word images for training, validation, and test sets, respectively.

Comparison with Existing Datasets: Table 1 comprehensively compares our
proposed dataset and existing offline Indic handwritten text recognition datasets,
highlighting significant disparities and advantages. Various factors, such as
dataset size, diversity in handwriting styles, and the inclusion of diverse texts, are
4 Plots of the occurrence of unique words for other languages in the supplementary

material.
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meticulously examined. Our IIIT-Indic-HW-UC dataset is twice as large as IIIT-
INDIC-HW-WORDS regarding the number of word level images, resulting in a
more extensive collection of handwritten document images. In contrast to exist-
ing datasets where images are scanned using flatbed scanners, our dataset com-
prises images captured using mobile cameras under unconstrained environments.
Camera capture introduces various challenges such as blurred text, overexposed
text, perspective distortion, variations in illumination, extensive unwanted back-
grounds, low-resolution text, text under shadow, and oriented text, among oth-
ers, in handwritten document images. Across all languages in our dataset, the
number of writers exceeds that of IIIT-INDIC-HW-WORDS, indicating a more
diverse range of writing styles. For instance, in the Bengali language, the PBOK
and CMATERDB2.1 datasets boast more writers (199 and 300, respectively)
compared to our dataset, with 158 writers. However, our dataset contains a more
significant number of unique words (34042) than the PBOK and CMATERDB2.1
datasets, which have 925 and 25 unique words, respectively. Similarly, in the
Oriya language, while the PBOK dataset has more writers (140) than our dataset
(75), our dataset surpasses PBOK in terms of the number of unique words (34074
versus 1040). These distinguishing characteristics render our dataset larger, cov-
ering major Indic languages and offering diverse word level images compared to
existing datasets.

4 Benchmark Experiments

4.1 Experimental Settings

Baseline: We utilize the network architecture proposed by Gongidi et al. [11],
depicted in Fig. 8, as the baseline for our experiment. This network consists
of four main modules: the Transformation Network (TN), Feature Extractor
(FE), Sequence Modeling (SM), and Predictive Modeling (PM). The Transfor-
mation Network comprises six plain convolutional layers with 16, 32, 64, 128,
128, and 128 channels, each followed by a max-pooling layer of size 2 × 2 and a
stride of 2. The Feature Extractor module adopts the ResNet architecture, while
the Sequence Modeling module employs a 2-layer Bidirectional LSTM (BLSTM)
with 256 hidden neurons in each layer. Finally, the Predictive Modeling module
utilizes Connectionist Temporal Classification (CTC) for character decoding and
recognition by aligning the feature sequence with the target character sequence.
Further details can be found in [11].

Implementation Details: The baseline model is trained using a single
NVIDIA GeForce GTX 1080 Ti GPU. Word level images are resized to dimen-
sions of 96 × 256 during pre-processing. Stochastic Gradient Descent (SGD) is
utilized with the Adadelta optimizer, employing a learning rate of 0.001, a batch
size of 64, and a fixed momentum of 0.09. Upon acceptance of the paper, both
the trained model and dataset will be released to the public.

Training/Testing Details: The baseline model is trained on the training
sets of our IIIT-Indic-HW-UC, IIIT-INDIC-HW-WORDS, and a combination of
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Fig. 8. Shows text recognition through the baseline pipeline.

these two datasets. Following training, we evaluate the performance of the base-
line model on the respective test sets of IIIT-Indic-HW-UC and IIIT-INDIC-
HW-WORDS datasets.
Evaluation Metrics: We utilize two widely recognized evaluation metrics,
namely, Character Recognition Rate (CRR) (alternatively Character Error Rate,
CER) and Word Recognition Rate (WRR) (alternatively Word Error Rate,
WER), to evaluate the performance of the baseline. Error Rate (ER) is defined
as:

ER = (S + D + I)/N, (1)

where S represents the number of substitutions, D denotes the number of dele-
tions, I signifies the number of insertions, and N indicates the total number of
instances in reference text. In the context of CER, Eq. (1) operates at the charac-
ter level, and while of WER, Eq. (1) operates at the word level. The Recognition
Rate (RR) is defined as:

RR = 1 − ER. (2)

For CRR, Eq. (2) operates at the character level, and for WRR, it functions
at the word level.

Fig. 9. Visual results obtained by baseline for Hindi language. Ground truth text
is highlighted in Blue color. Correctly recognized text is highlighted in Black color.
Wrongly recognized text is highlighted in Red color. (Color figure online)
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Table 3. Quantitative results on different Indic handwritten datasets. Bold value indi-
cates the best results.

Language Training Set Test Dataset

IIIT-INDIC-HW-WORDS IIIT-Indic-HW-UC

CRR WRR CRR WRR

Assamese IIIT-Indic-HW-UC – – 90.98 85.15

Bengali IIIT-INDIC-HW-WORDS 95.72 84.29 79.66 51.51

IIIT-Indic-HW-UC 85.99 53.82 96.60 89.10

Both 96.28 84.58 96.69 89.27

Gujarati IIIT-INDIC-HW-WORDS 96.16 81.41 81.64 54.14

IIIT-Indic-HW-UC 85.41 56.96 97.64 88.24

Both 97.39 87.53 98.01 88.74

Hindi IIIT-INDIC-HW-WORDS 96.08 83.09 72.27 40.81

IIIT-Indic-HW-UC 89.66 63.65 93.88 84.69

Both 96.64 85.20 93.96 85.06

Kannada IIIT-INDIC-HW-WORDS 98.69 92.36 84.52 55.36

IIIT-Indic-HW-UC 87.96 61.50 97.90 91.49

Both 98.83 92.41 98.15 91.59

Malayalam IIIT-INDIC-HW-WORDS 98.01 89.78 74.97 32.07

IIIT-Indic-HW-UC 86.77 55.37 96.13 86.74

Both 98.16 89.81 97.05 87.07

Manipuri IIIT-Indic-HW-UC - - 90.99 83.38

Marathi IIIT-Indic-HW-UC - - 96.32 86.67

Oriya IIIT-INDIC-HW-WORDS 96.02 80.82 84.72 52.35

IIIT-Indic-HW-UC 85.64 53.13 94.09 80.43

Both 96.47 82.91 94.89 81.34

Punjabi IIIT-INDIC-HW-WORDS 94.87 81.63 69.66 46.60

IIIT-Indic-HW-UC 83.32 50.11 94.82 87.42

Both 96.59 86.63 94.95 87.54

Tamil IIIT-INDIC-HW-WORDS 98.42 92.19 78.27 41.24

IIIT-Indic-HW-UC 94.65 73.55 95.31 83.93

Both 98.71 92.36 96.29 84.06

Telugu IIIT-INDIC-HW-WORDS 95.42 76.02 76.73 35.05

IIIT-Indic-HW-UC 94.50 71.46 93.43 74.34

Both 97.50 83.60 93.68 74.84

Urdu IIIT-INDIC-HW-WORDS 93.50 75.89 71.25 43.94

IIIT-Indic-HW-UC 75.47 47.07 93.21 82.18

Both 96.11 85.01 94.59 82.93
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Fig. 10. Page level visual results obtained by baseline for Hindi language. Ground truth
text is highlighted in Blue color. Correctly recognized text is highlighted in Black color.
Wrongly recognized text is highlighted in Red color. (Color figure online)

4.2 Benchmark Results on Word Level Text Recognition

The performance evaluation results of our baseline model on offline Indic hand-
written datasets are presented in Table 3. The table illustrates that when
the model is trained on IIIT-INDIC-HW-WORDS and tested on both IIIT-
INDIC-HW-WORDS and IIIT-Indic-HW-UC, it achieves notably higher accu-
racy on IIIT-INDIC-HW-WORDS compared to IIIT-Indic-HW-UC due to the
domain gap (flatbed vs. camera captured and constrained vs. unconstrained)
between these datasets. Similarly, when the model is trained on IIIT-Indic-HW-
UC and tested on both IIIT-INDIC-HW-WORDS and IIIT-Indic-HW-UC, it
achieves better results on IIIT-Indic-HW-UC than IIIT-INDIC-HW-WORDS,
again due to the domain gap between the datasets. We also noticed that when
the model is trained on both IIIT-INDIC-HW-WORDS and IIIT-Indic-HW-UC
and then tested on these two datasets, it achieved the highest performance (indi-
cated by bold values in Table 3) for all languages across both datasets. We noticed
that when the model was trained with IIIT-Indic-HW-UC and tested on IIIT-
INDIC-HW-WORDS, it achieved better WRR and CRR compared to when the
model was trained with IIIT-INDIC-HW-WORDS and tested on IIIT-Indic-
HW-UC. The unique properties of the IIIT-Indic-HW-UC dataset, such as
unconstrained and camera captured images, contribute to the model’s general-
ity, enabling better performance even on the IIIT-INDIC-HW-WORDS dataset,
which comprises images captured by a flatbed scanner in a constrained environ-
ment. This suggests that the IIIT-Indic-HW-UC dataset is more diverse and
makes the model more generic than the IIIT-INDIC-HW-WORDS dataset. Fig-
ures 9 and 10 display visual results for the Hindi language at both word and page
levels, respectively. In these figures, ground truth text is highlighted in blue, cor-
rectly recognized text in black, and wrongly recognized text in red.
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4.3 APIs and Web-Based Applications

We develop APIs for handwritten page recognition models across 13 languages
and create a web-based application that integrates these APIs to digitize hand-
written documents in Indic languages. Figure 11 illustrates the steps for using
our web-based APIs to digitize Indic handwritten documents. Users can upload a
handwritten document image, select the language, choose the OCR model ver-
sion and layout version, and then execute the process to obtain the OCR output.

Fig. 11. Shows screen shot of our web-based APIs to digitize Indic handwritten docu-
ments.

5 Conclusion

We have introduced a large and diverse dataset called IIIT-Indic-HW-UC for
Indic offline handwritten text recognition. This dataset contains camera cap-
tured images of handwritten documents in thirteen Indic languages: Assamese,
Bengali, Gujarati, Hindi, Kannada, Malayalam, Manipuri, Marathi, Oriya, Pun-
jabi, Tamil, Telugu, and Urdu. We gathered these samples from various regions
in India. The dataset includes 91K text paragraphs written by 1,220 writers,
offering a wide range of content. We identified 26K instances of words within
these images, including alphabetic and numeric text. Among these, 566,187
instances are unique. Our paper presents benchmark results for text recog-
nition using established architectures, showing that training models with our
dataset improves performance on existing offline handwritten datasets. We sug-
gest that future research could explore end-to-end approaches integrating local-
ization and recognition. We invite contributions from researchers and developers
to explore new models using our dataset.
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Abstract. Joint extraction of entities and relations from unstructured
text is a crucial task in the construction of knowledge graph and natu-
ral language processing. Current methods simplify the implementation
by breaking down joint extraction into modular stages. Despite their
substantial performance, limitations such as cascading errors and redun-
dancy in relational predictions persist. These issues arise from the over-
sight of the interdependence and inseparability of the three elements
in a triple. In order to tackle these challenges, we introduce a novel
Fine-Grained Triplet Classification Model(FTC) that relies on a score-
based classifier and a tagging strategy for relation-specific upper trian-
gular. The classifier evaluates if a token pair and relation form a fac-
tual triple, while the tagging strategy ensures straightforward and effi-
cient decoding. In comprehensive experiments on four well-established
datasets for relation triple extraction, FTC outperforms state-of-the-
art baselines, consistently achieving performance improvements across
diverse overlapping patterns and complex scenarios involving multiple
triples. Our approach acknowledges the interconnected nature of enti-
ties and relations, mitigating cascading errors and reducing redundancy
in predictions. Through this innovative perspective, the FTC demon-
strates its effectiveness in enhancing the accuracy and efficiency of joint
entity and relation extraction from unstructured text.

Keywords: Joint Relation Extraction · Triple Overlap Problem ·
Error Propagation

1 Introduction

Identifying triples (subject, relation, object) and their relations from unstruc-
tured text is crucial for knowledge graph construction and natural language pro-
cessing. Some previous works have proposed using a pipeline approach to address
this task, comprising two steps: named entity recognition(NER) [16,22] and rela-
tion extraction(RE) [1,15,25,31]. First, entities and their types are identified

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15319, pp. 349–364, 2025.
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from the input text, followed by determining the relation between each entity
pair. Although flexible, the pipeline approach ignores interactions between these
subtasks and is prone to error propagation [10]. As a result, recent research has
focused on developing joint models that capture entities and their relations using
a unified framework.

To simplify complex tasks, existing research often segments joint extraction
into multiple fundamental modules or phases [28,37]. This approach is catego-
rized into two methods: joint decoding [39] and parameter sharing [7,26,30].
The former integrates entity and relation labels, utilizing sequence labels for the
simultaneous identification of both entities and relations. The latter employs a
multi-task learning approach, enabling NER and RE models to share encod-
ing layers and optimize their loss functions together. Traditional joint methods
[10,14,29] necessitate feature engineering and exhibit lower efficiency. However,
with deep learning advancements, several studies [23,26,28,38,39] leveraging
deep neural networks have produced promising outcomes.

Redundant relation computation and limited generalization in entity recogni-
tion are challenges faced by existing models. Most models predict triples for each
relation, resulting in significant computational overhead. Additionally, Overlap-
ping patterns such as Single Entity Overlap (SEO), Entity Pair Overlap (EPO),
and Subject Object Overlap (SOO) further complicate the process. Span-based
recognition methods, which indicate only the start and end positions of entities,
often fail to handle single-character or overlap-based entities. Although some
models use tagging schemes to address overlapping entities, their decoding pro-
cess is complex. Additionally, relying on ground truth hard tags for training can
lead to overconfidence and hinder generalization [40].

The root cause of the aforementioned issues is that decomposition-based
methods overlook a critical attribute of the triple: its subject, relation, and
object are interdependent and inseparable. In other words, extracting one ele-
ment without thoroughly understanding the information from the other two
is not dependable. To address these issues, we attempt to approach the joint
extraction task through the lens of triple classification. For instance, “Poutine”
and “Canada” are two words in the sentence “Poutine is a dish made of fries
and cheese curds from Canada.” and “country” is a predefined relation, all of
which can be observed in the training dataset. Intuitively, by judging its cor-
rectness, the triple (Poutine, Country, Canada) can be directly identified. This
idea has three main advantages. First, subject, relation, and object are simulta-
neously fed into one classification module, fully capturing dependencies among
the triple elements, thus reducing redundant information. Second, the direct
design of a single-module, single-stage framework makes the network simple and
facilitates easier training. Third, utilizing only one classification step effectively
avoids cascading errors.

Motivated by the idea mentioned above, this study presents a novel joint
extraction model, named FTC, adept at deriving all triples from unstructured
text using a unified module and stage. To be specific, for a token pair (xi, xj)
and a predetermined relation rk, the classifier evaluates the validity of the
triple(xi, rk, xj). If valid, it assigns a meaningful tag; otherwise, it is tagged
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“–”. Consequently, for any input sentence, FTC outputs a three-dimensional
matrix, where each element reflects the classification result for the combination
(xi, rk, xj). Experimental results on four commonly referenced public datasets
demonstrate that the method we proposed outperforms earlier techniques and
establishes new benchmark results.

The main contributions of this paper are as follows:

– We proposed a new end-to-end framework that makes it possible to simultane-
ously capture information about the subject, relation, and object, significantly
mitigating the cascading error and relation redundancy issues.

– Aligned with our perspective, we introduce a new relation-specific upper tri-
angular tagging strategy and a score-based classifier. The former ensures effi-
cient decoding, while the latter assesses if a token pair combined with a
relation constitutes a valid triple.

– We conduct extensive experiments on several public datasets. The results
show that our approach surpasses state-of-the-art baselines, particularly in
challenging situations involving overlapping triples.

2 Methodology

This section starts with a principled definition of relation triplet extraction,
followed by a detailed description of each FTC model component. An overview
of FTC is presented in Fig. 1.

2.1 Problem Definition

Given a sentence S = {x1, x2, ..., xL} with L tokens and K predefined relations
R = {r1, r2, ..., rK}. Finding all potential triplets T (S) = {(s, r, o)|s, o ∈ E, r ∈
R} is the goal of joint entity and relation extraction, where E and R represent
the sets of entities and relations. Subjects s and objects o are combinations of
multiple contiguous tokens, that is, entity.span = xp:q, where xp:q denotes the
concatenation of tokens from xp to xq.

2.2 Relation-Specific Upper Triangular Tagging

For any provided sentence, we create a classifier that designates tags for all
potential combinations of (xi, rk, xj) where xi, xj belong to set S and rk is
part of set R. We keep a three-dimensional matrix ML×K×L to house these
classification outcomes. Thus, we need to decode entities and relations from the
matrix during evaluation.

Tagging. We utilize “BE” (Begin, End) symbols to express the details of a
token’s location within entities. Drawing from the understanding that entities
can be identified by pinpointing their boundary tokens [26], our tagging strat-
egy incorporates four types of tags: (1) SB-OB: This tag suggests that the two
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Fig. 1. The overall framework of the FTC. “SB” signifies the beginning token of the
subject, while “OE” indicates the beginning token of the object.
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positions correspond to the beginning tokens of the subject-object pair, given
a definite relation. For example, given the relation “Located in” between “Salt
Lake City” and “the state of Utah”, the combined classification tag (“Salt”,
Located in, “the”) is assigned the tag “SB-OB”. (2) SB-OE: This tag indicates
that the token linked to the row marks the subject’s start, whereas the token
associated with the column signifies the object’s conclusion. For example, “Salt”
is the beginning token of “Salt Lake City”, and “Utah” is the ending token
of “the state of Utah”. Hence, the combination (“Salt”, Located in, “Utah”)
is tagged as “SB-OE”. (3) SE-OE: This tag follows similar logic to “SB-OB”,
implying that the two positions are the ending tokens of the paired subject and
object. The combination (“City”, Located in, “Utah”) would be distribute “SE-
OE”. (4) “–”: Apart from the above three cases, all cells are marked as “–”. As
illustrated in Fig. 1, since the tagging only needs to be done on three corners
of a rectangle, we aptly call this approach Relation-Specific Upper Triangular
Tagging.

Obviously, the tagging matrix M is sparse, and this presents several advan-
tages. First, only using three special tags reduces the potential search space
during classification. Second, the sparsity of M provides ample negative samples
during training and guarantees a streamlined and efficient decoding of triplets.
Moreover, our relation-specific upper triangular tagging naturally addresses sce-
narios with overlapping patterns. In the EPO situation, the entity pairs are
tagged in different submatrices based on their relations. In the case of SEO,
when two triplets have an identical relation, the paired entities will be tagged
differently within the same sub-matrix; otherwise, they are tagged in different
submatrices. For the intricate SOO pattern, the entity pair, such as the triplet
(Salt Lake City, City Name, Salt Lake), is located near the diagonal of its relation
submatrix, allowing for easy decoding.

Decoding. The tagging matrix ML×K×L indicates the boundary tokens of the
subjects and objects paired, along with their intervening relations. Thus, the
decoding of triplets from M becomes straightforward and direct. Specifically,
for each relation, the span of the subject is concatenated from “SB-OE” to “SE-
OE”; the span of the object is concatenated from “SB-OB” to “SB-OE”; and the
two paired entities share the same “SB-OE”.

2.3 Score-Based Classifier

To capture the token embedding h = (e1, e2, ..., eL) for each token in the input
sentence, we use a pre-trained BERT model [4] as the sentence encoder.

h = BERT (x1, x2, ..., xL) (1)

where xi represents each token’s input representation. It represents the total of
the relevant token embedding and positional embedding.

Following this, we list all potential combinations of (ei, rk, ej) and create a
classifier to allocate tags with high confidence. Here, rk represents the repre-
sentation randomly initialized by the relation. In essence, this objective can be
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achieved using an ordinary classification network with the input (ei, rk, ej). But,
this network possesses two shortcomings: First, the simple classifier struggled to
model the fundamental structural information of the triplets and failed to fully
explore the connections between entities and relations. Second, classifying all
combinations requires model to execute at least L× K×L computations, which
is time-consuming when utilizing (ei, rk, ej) as the input.

Drawing from knowledge graph embedding techniques, we adopted ideas from
RotatE [21]. Previous knowledge graph embedding models usually captured only
a subset of the three relation patterns, i.e., symmetric/anti-symmetric, inver-
sion, and composition, whereas RotatE can capture all relation patterns. The
RotatE model characterizes each relation as a rotation from the source entity to
the destination entity in the complex vector space. Here, we redefine the scoring
function as the operation of non-linear concatenated projections:

x = dr(h, t) = φ(W [h; t]T + b) (2)

where W is the trainable weight matrix with dimensions Rde×2d, while b stands
for the trainable bias. Here, de represents the dimension of the entity pair rep-
resentations. The function φ(.) denotes the ReLU activation and [; ] signifies the
concatenation operation. This revised definition presents multiple benefits. First,
our classifier scoring function can seamlessly connect with the sentence encoder’s
output. Second, the matrix W can be used to dynamically train the mapping
function, which switches from entity attributes to the representation of entity
pairs.

To ensure the model converges better during training, we normalize x to
improve the model’s generalization:

Ω =
x − μ[x]

√
σ[x] + ε

× γ + β (3)

where μ and σ denote the mean and standard deviation of the data in that layer
respectively; ε is a constant to ensure the denominator isn’t zero; γ and β are
learnable scaling and bias parameters respectively.

Then, we utilize all relation representations R ∈ R
de×4K to calculate the

salience of token pairs (xi, xj) for all (xi, rk, xj) where k = 1, 2, ...,K and 4
represents the number of classification tags. Consequently, our method’s final
scoring function is defined as:

u(xi, rk, xj)Kk=1 = W × drop(Ω) + b (4)

where W ∈ R
de×3d, b are trainable weights and biases, de indicates the dimension

of entity pair representation, u is the scoring vector, and drop(.) represents the
dropout strategy [19], implemented to mitigate overfitting. Therefore, with only
two fully connected layers, we achieve parallel scoring, reducing the actual pro-
cessing steps to L×1×L, which is even superior to TPLinker [23]. Moreover, the
scoring function aligns with the RotatE philosophy, capturing correlations and
exclusiveness between relations.
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Finally, we apply the softmax function to the scoring vector of (xi, rk, xj) to
predict the associated tags:

P (y(xi, rk, xj)|S) = Softmax(v(xi, rk, xj)) (5)

The objective function for FTC is defined as:

Ltriple = − 1
L×K×L×

∑L
i=1

∑K
k=1

∑L
j=1 log P (y(xi,rk,xj) = g(xi,rk,xj)|S)

(6)

where g(xi, rk, xj) represents the gold tag obtained from annotations.

3 Experiments

3.1 Datasets and Evaluation Metrics

To ensure a fair and thorough comparison, we evaluated our model on the
NYT [17] and WebNLG [6] datasets, following the procedures of [28] and
[23]. These datasets have two different versions, which we represent as NYT*,
NYT, WebNLG*, and WebNLG. It’s important to highlight that NYT* and
WebNLG* mark the final word of the entities, while NYT and WebNLG cap-
ture the full span of the entity span. To further investigate the proposed FTC’s
capability of handling complex scenarios, we additionally partitioned the test set
based on overlap patterns and the number of triples per sentence. The statistics
of the datasets are presented in Table 1.

Table 1. The dataset statistics for our experiments include information on N, which
represents the number of triples in a sentence. A single sentence can simultaneously
exhibit overlapping patterns of SEO, EPO, and SOO.

Dataset Sentences Details of test set

Train Valid Test Relations Normal SEO EPO SOO N = 1 N > 1 Triples

NYT* 56,195 4,999 5,000 24 3,266 1,297 978 45 3,244 1,756 8,110

WebNLG* 5,019 500 703 171 245 457 26 84 266 437 1,591

NYT 56,196 5,000 5,000 24 3,071 1,273 1,168 117 3,089 1,911 8,616

WebNLG 5,019 500 703 216 239 448 6 85 256 447 1,607

Following the previous works mentioned, during evaluation, we adopted par-
tial matching for NYT* and WebNLG*: a triple is correct only if the relation and
the last words of both subject and object are accurate. For NYT and WebNLG,
we used exact matching: a predicted triple is deemed correct only if the entire
spans of both entities and the relation match accurately. At the same time, we
report standard precision (Prec.), recall (Rec.), and F1 scores for all baselines.
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3.2 Implementation Details

Experiments were carried out on a workstation equipped with an Intel Xeon Gold
6240R 2.40 GHz CPU, 256 GB memory, an NVIDIA Tesla A100 40G GPU and
CentOS 7.6 as the operating system. We implemented the model using PyTorch,
optimizing all parameters with Adam [8] at a 1e-5 learning rate. For NYT and
WebNLG, the batch sizes were set at 8 and 6, respectively. We used the pre-
trained BERT base English model from Huggingface1, consisting of 12 Trans-
former blocks with a 768-dimensional hidden size. The hidden layer dimension de
was 3 times d. The maximum sequence length was 100, and dropout probability
in Eq. (4) was set to 0.1.

3.3 Baselines

We evaluated our model against several relational triple extraction models:

(1) RSAN [30] uses relation-based attention mechanisms to create specific tex-
tual representations for every predefined relation, followed by entity recog-
nition.

(2) CasRel [26] is a sequence labeling model employing cascade binary tagging
framework to learn a relation-specific tagger for predefined relation.

(3) TPLinker [23] introduces a handshake marking scheme for simultaneous
extraction of relations and entities during decoding.

(4) CasDE [12] employs a cascade dual decoder approach, beginning with rela-
tion identification within a sentence, followed by entity recognition.

(5) PRGC [38] completes extraction in three steps: predicting potential rela-
tions, extracting corresponding entities, and matching them to generate
triples.

(6) OneRel [18] can directly extract triples from text sentences and then judge
the correctness of the triples, effectively alleviating cascading errors and
redundancy of entities.

(7) SPN [20] considers joint entities and relations extraction as a problem of
predicting a direct set, avoiding the burden of predicting triple order.

(8) RS-TTS [33] uses a relation judgment module, a boundary smoothing mech-
anism, and an efficient tagging and scoring strategy to decode entities.

(9) ERFD-RTE [2] detects potential relations first, then carries out entity
recognition for every relation to address overlapping triples and reduce
redundant calculations.

(10) SOIRP [3] introduces a novel table filling method and decoding strategy to
identify entities and align boundary tokens for every predefined relation,
offering improved accuracy and efficiency.

One should note that RSAN utilize LSTM networks as their sentence
encoders, whereas the other baseline models leverage a pre-trained BERT for
feature representation. To ensure an equitable comparison, all results for these
baselines are sourced directly from their original publications.
1 https://huggingface.co/bert-base-cased.

https://huggingface.co/bert-base-cased
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3.4 Experimental Results and Analysis

Main Results. We compared the performance of our FTC model with 10 other
baselines in the NYT and WebNLG datasets, as shown in Table 2, taking into
account both partial and exact matching metrics. Evidently, FTC surpasses all
10 baselines, securing the top F1 performance for NYT, NYT*, WebNLG, and
WebNLG*. We attribute FTC’s stellar performance to two main advantages:
First, FTC approaches the joint extraction challenge by viewing it as a detailed
triplet classification endeavor. This enables simultaneous combination of entity
and relation information during extraction, reducing redundant information. Sec-
ond, combining the score-based classifier with relation-specific upper triangular
tagging enables straightforward entity and relation extraction, effectively cir-
cumventing cascading errors.

Table 2. Precision, Recall and F1-score (%) of FTC and baselines model. Bold indi-
cates the highest score.

Model NYT* WebNLG* NYT WebNLG

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

CasRel [26] 89.7 89.5 89.6 93.4 90.1 91.8 – – – – – –

RSAN [30] – – – – – – 85.7 83.6 84.6 80.5 83.8 82.1

TPLinker [23] 91.3 92.5 91.9 91.8 92.0 91.9 91.4 92.6 92.0 88.9 84.5 86.7

CasDE [12] 90.2 90.9 90.5 90.3 91.5 90.9 89.9 91.4 90.6 88.0 88.9 88.4

PRGC [38] 93.3 91.9 92.6 94.0 92.1 93.0 93.5 91.9 92.7 89.9 87.2 88.5

OneRel [18] 92.8 92.9 92.8 94.1 94.4 94.3 93.2 92.6 92.9 91.8 90.3 91.0

SPN [20] 93.3 91.7 92.5 93.1 93.6 93.4 92.5 92.2 92.3 – – –

RS-TTS [33] 92.9 92.8 92.8 94.4 93.9 94.1 93.0 92.6 92.8 90.7 89.7 90.2

ERFD-RTE [2] 94.0 91.5 92.7 93.8 92.0 92.9 94.0 91.4 92.7 91.2 87.4 89.3

SOIRP [3] 93.3 92.9 93.1 94.3 94.1 94.2 93.4 92.6 93.0 92.7 89.6 91.2

FTC 93.3 93.1 93.2 94.5 94.6 94.6 93.6 92.8 93.2 92.4 91.2 91.8

Compared to the multi-module multi-stage approach PRGC, FTC secures
absolute F1 score gains of 1.6 and 3.3 on WebNLG* and WebNLG, respectively.
This implies that a unified step for extracting entities and relations can efficiently
mitigate cascading error problems. Moreover, against other multi-module single-
stage model, SOIRP, that uses four distinct tags to identify entities and rela-
tions, FTC surpasses it with absolute gains of 0.1, 0.4, 0.2 and 0.6 across the four
datasets. These results confirm the efficacy of using one module to extract all
triplets. These results verify that employing a single module to extract triplet
elements in single step effectively captures the interplay between entities and
relations elements, hinting that the single-module single-stage paradigm holds
promise for the joint extraction task. Lastly, when compared with the single-
module single-stage model OneRel, FTC outperforms OneRel across all evalua-
tion metrics in every dataset. This suggests that the FTC is capable of recog-
nizing more comprehensive triplets by capturing all three relationship patterns.
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Detailed Results on Complex Scenarios. For validate the ability of FTC
to handle overlapping patterns and multiple triplets, we carried out two yy tests
on distinct subsets of WebNLG* and NYT*. We chose five robust methods as
the baselines, with results showcased in Table 3.

Table 3. F1-score (%) for sentences with various overlapping patterns and numbers
of triples. § denotes results from [38]. Bold marks the highest score.

Model NYT* WebNLG*

Normal SEO EPO SOO N = 1 N = 2 N = 3 N = 4 N ≥ 5 Normal SEO EPO SOO N = 1 N = 2 N = 3 N = 4 N ≥ 5

TPLinker 90.1 94.0 93.4 90.1§ 90.0 92.8 93.1 96.1 90.0 87.9 95.3 92.5 86.0§ 88.0 90.1 94.6 93.3 91.6

CasRel 87.3 92.0 91.4 77.0§ 88.2 90.3 91.9 94.2 83.7 89.4 94.7 92.2 90.4§ 89.3 90.8 94.2 92.4 90.9

OneRel 90.6 95.1 94.8 90.8 90.5 93.4 93.9 96.5 94.2 91.9 95.4 94.7 94.9 91.4 93.0 95.9 95.7 94.5

PRGC 91.0 94.5 94.0 81.8 91.1 93.0 93.5 95.5 93.0 90.4 95.9 93.6 94.6 89.9 91.6 95.0 94.8 92.8

SOIRP 91.2 95.1 94.7 – 91.1 93.7 94.4 96.1 94.1 91.6 95.5 94.7 – 91.4 92.9 96.0 95.2 94.5

FTC 91.2 95.3 95.0 90.9 90.7 93.6 94.1 96.5 94.4 92.2 95.5 94.9 95.1 91.5 93.2 95.7 95.7 94.8

From the results, we can observe that FTC achieves the best F1 scores in
13 out of 18 subsets, especially in the most challenging scenarios: N ≥ 5 and
SOO. The SOO pattern encompasses two scenarios: one involves nested entities
that most previous methods struggle to accurately recognize. Another scenario
is where the subject and object share the same words. Moreover, sentences with
N ≥ 5 might simultaneously involve SEO, EPO, and SOO patterns, posing sig-
nificant challenges to existing methods. However, our FTC manages to achieve
optimal performance in SOO and N ≥ 5 in both NYT* and WebNLG*, fur-
ther attesting to the efficacy of our relation-specific upper triangular tagging.
It inherently addresses the issue of overlapping triplets and proves more robust
than the baselines in handling intricate scenarios.

Ablation Study. To assess the impact of each component on our model’s per-
formance, we conducted ablation experiments by removing specific components.
The results are reported in Table 4.

When we replace the classifier with a simple linear network f(xi, rk, xj) =
W [ei; rk; ej ] + b, we found that the F1 score reduces by about 2.4% on NYT*
and 3.5% on WebNLG*. The results prove that Score-based Classifier signifi-
cantly enhances the model’s overall performance. This mechanism enhances the
classifier’s classification ability by recognizing all three relation patterns and
improves the extraction of relation elements in triples, highlighting the pivotal
role of capturing dependencies between entities and relations during classifier
design.

To compare with the sequence tagging scheme, we follow [26] and [23] by per-
forming binary classification that identifies entity start and end positions using
a span-based approach. In Table 4, when remove the Relation-Specific Upper
Triangular Tagging strategy, the F1 is reduced by approximately 2.6% on NYT
* and 4.1% on WebNLG *, highlighting the enhancement provided by our strat-
egy. As shown in Fig. 2, the case study illustrates that span-based schemes often
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extract long entities and determine accurate subject-object pairs but overlook
their interconnections due to focusing on entity positions rather than seman-
tics. In contrast, the FTC tagging scheme excels in both areas, demonstrating
superior generalizability and robustness.

Fig. 2. Case study for the ablation of Relation-Specific Upper Triangular Tagging,
using examples from the WebNLG* dataset. Correct entities are in bold and correct
relations are highlighted in color.

Table 4. Ablation studies results (%) on NYT* and WebNLG* test datasets. w/o
indicates a removed module. Bold marks the best result.

Model NYT* WebNLG*

Prec. Rec. F1 Prec. Rec. F1

ALL 93.3 93.1 93.2 94.5 94.6 94.6

w/o Classifier 91.3 90.5 90.8 90.8 91.4 91.1

w/o Tagger 90.5 90.7 90.6 89.7 91.3 90.5

Model Efficiency. We evaluated the model’s efficiency by comparing the train-
ing and inference times of our model with the closely related baseline, TPLinker,
on the WebNLG* and NYT* datasets. The results are presented in Table 5. In
this experiment, both models were set with a batch size of 6 for training and 1 for
testing, with the maximum input sentence length fixed at 100. Although both
models have a theoretical complexity of O(KL2), FTC outperforms TPLinker
in terms of parallel processing. Specifically, FTC processes K relations simul-
taneously, whereas TPLinker manages a single relation in each iteration. As a
result, when the number of relations expands from 24 to 171, FTC’s training
time remarkably accelerates, being 1.3 times faster than TPLinker and soaring
up to a whopping 4.1 times as fast. Unlike in training, FTC’s F1 score sig-
nificantly surpasses TPLinker’s, demonstrating the efficiency of our introduced
classifier. Moreover, FTC achieved a 4.6 times speed-up in inference time on
WebNLG*, underscoring the effectiveness and rationale behind our proposed
relation-specific upper triangular tagging.
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Table 5. Efficiency comparison of the models. “Training Time (s)” represents the
duration needed to train for one epoch, while “Inference Time (ms)” indicates the time
taken to predict triples from a single sentence.

Dataset Model Training Time Inference Time F1-Score

NYT* TPLinker 1592 46.2 91.9

FTC 1255 43.5 93.2

WebNLG* TPLinker 599 40.1 91.9

FTC 148 8.7 94.6

4 Related Work

Based on the triple extraction procedure, existing joint procedures may be
loosely classified into three categories:

Multi-module multi-stage modeling methods: These methods use varied mod-
ules and interconnected steps to sequentially extract entities and their corre-
sponding relations. They can be categorized into three types. Entity Domain
to Relation Domain Models: These first extract all entities from the text and
then perform relation classification for each entity pair to finally obtain triples.
Examples include models by [5,9,11]. Relation Domain to Entity Domain Mod-
els: Here, relations are first predicted from the text, and then entities (sub-
ject and object) are extracted on the basis of these relations. Models include
those by [12,30,32,38]. Subject Domain to Relation/Object Domain Models:
This approach extracts the subject and then infers the matched relation and
object through sequence tagging or Q&A frameworks. Examples include mod-
els by [2,26,27] and [36]. Despite their success, these methods still suffer from
cascading error issues as mistakes made in earlier steps can’t be corrected in
subsequent steps.

Multi-module single-stage modeling methods: Such methods simultaneously
extract entities and relations, subsequently merging them to form triples. For
example, the works of [13,23] and [24] interpret entity recognition and relation
classification as a table-filling challenge, with every cell representing the inter-
action between two distinct words. On the other hand, [20] and [35] recast joint
extraction task as a set prediction challenge, bypassing the need to consider the
sequence of predicting multiple triples. However, because the limited interplay
between entities and relations in separate recognition, these approaches strug-
gle to fully grasp the interdependencies among predicted entities and relations,
causing overlap when formulating a triple.

Single-module single-stage modeling methods: These extract triples directly
from sentences. The classic model, Novel-Tagging by [34], devises a sophisti-
cated tagging strategy that creates connections between entities and relations,
and it also recognizes triples in a sentence in a single step. However, this method
cannot manage overlapping scenarios as it assumes that each entity pair retains
only one relation at most. While the model proposed by [18] can handle overlap-
ping entity scenarios, it can only recognize symmetric/anti-symmetric, inversion
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relation patterns and fails to recognize composite relation patterns, thus leading
to incomplete extracted triples.

5 Conclusion

In our paper, we introduce an novel joint model featuring a score-based classi-
fier and a relation-specific upper triangular tagging strategy. This architecture
enables the retrieval of triplets in a single step through a unified module, effec-
tively addressing challenges related to cascading errors and redundant informa-
tion. Our experimental results on public datasets showcase the superior perfor-
mance of our model relative to state-of-the-art methods in diverse scenarios.
Further analysis, in particular, confirms the efficacy of our model in handling
sentences with overlapping and multiple relations. We plan to focus on simplifi-
cation and optimization of the model in future research to improve its feasibility
and scalability in practical applications.
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Abstract. Joint extraction of entities and relations from unstructured
texts is a crucial task in large-scale knowledge graph construction. Recent
methods achieve promising performance but still suffer from some inher-
ent limitations, such as ignorance of the importance of relations in linking
entities, overreliance on alignment between entity pairs, and decoding
inefficiency. To deal with such problems, we propose a novel joint extrac-
tion framework, which is based on (entity, relation) pair linking, a new
perspective to solve joint extraction. The framework is called H2O2Net
since its decoding process is similar to the decomposition of H2O2. Specif-
ically, two identical components are designed to predict (head entity,
relation) and (tail entity, relation) pairs respectively, which is exploited
by a linking strategy to generate triples. Such relation plays a natural
role of connection, which alleviates the dependency of entity pairs align-
ment. Experimental results on benchmarks demonstrate that H2O2Net
achieves state-of-the-art performance with higher efficiency and delivers
consistent performance gain on complex scenarios of different overlapping
patterns and multiple triples.

Keywords: Joint extraction · Relation linking · Triple overlap
problem · Knowledge graph

1 Introduction

In the realm of knowledge graph construction, the extraction of relational triples,
defined as (head entity, relation, tail entity) or (h, r, t), from unstructured texts
is pivotal. According to the role of relation, the main perspectives for handling
relational triple extraction tasks can be divided into two classes: relation as
discrete label and relation as category.

Traditional methodologies often adopt a sequential pipeline strategy [2,25,
31]. It includes two steps: named entity recognition and relation classification.
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Fig. 1. Examples of the Normal, SingleEntityOverlap (SEO), EntityPairOverlap (EPO)
and HeadTailOverlap (HTO1) patterns. The overlapping entities are marked in blue.
(HTO is also called SOO when a triple is represented by (subject, relation, object)).
(Color figure online)

Fig. 2. The main perspectives of existing methods and our method according to the
role of relation. The solid arrow indicates the process of triple extraction and the dotted
arrow explains the purpose of the target step.

The entities are firstly recognized and relation types are assigned for all candidate
entity pairs. Such approaches treat relations as discrete labels that ignore the
interdependence between entities and relations and suffer from error propagation.
Different from pipeline methods, subsequent joint learning methods [5,27,29] aim
to extract relational triples in an end-to-end way, which also regard relations as
discrete labels and fail to solve the overlapping triple problem where multiple
relational triples in a sentence share identical entities, as shown in Fig. 1. Both
methods seldom consider the effect of relations or interaction between entities
and relations (See Fig. 2(a)).
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Recent models try to emphasize the semantics of relations [11,14] or treat rela-
tions as categories [18,20,21,28]. Some works tend to detect the relations in a sen-
tence first, then extract entities for a specific relation so that the relation is similar
to a category that contains associated entities (SeeFig. 2(b)). Thesemodels neglect
the interaction between relations and entities, as well as the link role of relations.
Moreover, most of these models excessively rely on the alignment of entity pairs, so
their performance will decline seriously when the alignment component is removed
or the task of entity pair alignment is hard to learn.

To address the aforementioned problems, we aim to reduce the dependence on
entity alignment through relations, which reduces information redundancy and
improves decoding efficiency. Therefore, we model the relational triple extrac-
tion task as an (entity, relation) pair linking problem from a fresh perspective
instead of treating relations as discrete labels or categories for entity pairs. For
all possible head entities and tail entities in a sentence, all relations associated
with each entity are identified before (head entity, relation) and (tail entity, rela-
tion) pairs are attained respectively. Finally, the two kinds of pairs with identical
relations are connected to generate relational triples (See Fig. 2(c)). The whole
process is just like the decomposition of H2O2 as follows:

2H2O2 = 2H2O+O2 ↑ (1)

where H represents the head entity or tail entity, and O represents the relation.
For this reason, our model is called H2O2Net. Specifically, H2O2Net consists of
a BERT-based encoder module, two entity-relation classification modules, and a
link module. The main contributions of this paper are as follows:

1. We introduce a novel paradigm for relational triple extraction by taking the
task as a problem of (entity, relation) pair linking. This approach enables our
model to capture the nuanced interplay between entities and relations more
effectively than conventional methods, which is facilitated by an innovative
linking mechanism unique to our framework.

2. We present a joint extraction model that leverages (entity, relation) pair link-
ing. This design significantly reduces model complexity, operating with fewer
parameters on average compared to existing models while maintaining com-
parable accuracy.

3. Our experiments reveal that H2O2Net achieves top-tier performance with
fewer parameters and less computational cost, significantly cutting down on
FLOPs and speeding up inference. Across various benchmarks, our model sets
new standards for efficiency and accuracy.

2 Related Work

Relational triple extraction tasks can be classified based on several criteria, such as
extracting manner (pipelined or joint), extracting approach (generative or label-
ing), extracting procedure (multi-stage or one-stage), and so on. Furthermore,
thesemodels can be categorized into two classes based on their conceptualization of
relations:



368 L. Zhang and N. Zheng

The first class is relation as discrete label, which treats relations as discrete
labels of entity pairs or entities. For example, For instance, one approach employs
relation classification (RC) on pairs of extracted entities after named entity
recognition (NER) is done [2,25,30,31]. The pipelined methods usually predict
which relation label the entity pairs may own in the RC stage. The second line
of works extract entities and relations in a joint model via sequence labeling
or triples generating. The former approach acknowledges the role of relations
between entities within the annotations [1,3,23,29], and the latter predicts the
relations of the entity pairs in the entity generation phase [4,5,15,19,26,27].
Despite their successes, methods treating the relation as a discrete label pay
limited attention to the dynamics of relations or the interaction between enti-
ties and relations, which leads to redundancy during sequence decoding or triple
construction. Meanwhile, most of them are susceptible to the problem of error
propagation and low efficiency.

The second class is relation as category, which treats relations as categories
containing related entities. For example, the first line of works extract entities
or entity pairs for each relation which consider all relations in the relation set
[1,12,16,18,20,21,24]. A relation is considered existent if the corresponding enti-
ties or entity pairs are identified, and non-existent if not. The second approach
initially identifies all possible relations conveyed in a sentence rather than pre-
serve all redundant relations, then extract entity pairs according to potential
relations [11,14,28]. Such relation as category methods alleviate the problems of
redundancy relations but still ignore the interaction between relations and enti-
ties as well as the link role of relations. Additionally, certain methods rely heavily
on the alignment of entity pairs, which makes them unsuitable when handling
large texts due to the huge computational complexity of the entity pairs align-
ment module.

Different from existing methods, in this paper, we aim to treat the relational
triple extraction task as an (entity, relation) pair linking problem where the
relation plays a natural role of connection. As a result, this approach efficiently
capitalizes on the interdependence between entities and relations, enhancing effi-
ciency and reducing information redundancy. Because the (entity, relation) pair
linking is executed in a single stage, the aforementioned error propagation and
overdependence of entity pairs alignment can be greatly addressed.

3 Method

In this section, we first start with a principled problem definition, and then
elaborate on each component of H2O2Net. An overview illustration of H2O2Net
is shown in Fig. 3.

3.1 Problem Definition

Given a sentence S = {w1, w2, . . . , wL} with L tokens and K predefined relations
R = {r1, r2, . . . , rK}. The desired output of joint relational triple extraction is
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Fig. 3. An overview of the proposed H2O2Net. Given a sentence, H2O2Net predicts
all (head entity, relation) pairs, i.e. (Jhon van den Brom, club), by the Head Entity-
Relation Tagger and all (tail entity, relation) pairs, i.e. (Vitesse Arnhem, club) and
(Jong Ajax, club), by the Tail Entity-Relation Tagger. Then, for each (head entity,
relation) pair and (tail entity, relation) pair with an identical relation, if the token
pair, consisting of the first tokens of the two entities, e.g. (Jhon, Vitesse) or (Jhon,
Jong), is tagged with 1 in the Link Matrix, the triple will be extracted by connecting
the matched pairs.

to identify all possible triples as T = {(h, r, t) |r ∈ R}, where h, t are the head
entity and tail entity composed of several consecutive tokens, i.e. ent = wi : wj ,
where ent is h or t, wi : wj refers to the concatenation of wi to wj .

3.2 H2O2Net Encoder

The output of H2O2Net Encoder is E = {e1,e2, . . . ,eL|ei ∈ R
d×1}, where

d is the embedding dimension, and L is the number of tokens. A pre-trained
BERT model [8] is applied to encode the input sentence for fair comparison, but
theoretically it can be extended to other encoders, e.g. ALBert [10], for low-cost
devices.
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Fig. 4. One method to solve the multi-label multi-classification problem. In this exam-
ple, to predict the manager and club relation for a token, this method aims to estimate
the probability of the existence for the relation club and manager.

3.3 H2O2Net Decoder

In this section, we describe our instantiation of the entity-relation tagging
scheme.

Entity-Relation Tagger. The Entity-Relation Taggers, which are shown as
the blue and orange boxes in Fig. 3, are designed to recognize all possible (entity,
relation) pairs in the input sentence. Both Head Entity-Relation Tagger (denoted
as Head-ERT) and Tail Entity-Relation Tagger (denoted as Tail-ERT) function
identically, differing only in their learned parameters, thus we will focus on the
mechanics of Head-ERT for clarity.

Head-ERT treats the (head entity, relation) pair extraction as a multi-label
multi-classification task. It adopts two identical multi-label multi-class classifiers
to distinguish all possible relations for each token. Although one classifier is
enough to detect the span of a head entity by tagging consecutive tokens with
an identical relation label, it suffers from the problem of overlapping triples.
Therefore, we adopt two classifiers instead, which detect the start token and the
end token for a head entity in parallel by an identical tagged relation label.

As illustrated in Fig. 4, to solve the multi-label multi-classification problem,
for each token, a set of binary classifiers is adopted to estimate the probability
of existence for each relation, respectively. The corresponding relation will be
assigned with tag 1 if the probability exceeds a certain threshold λ1 or tag 0
otherwise. Each binary classifier is initiated with a one-layer fully connected
network. The detailed operations of Head-ERT on each token and relation are
as follows:

phs
ij = σ

(
W hs

j ei + bhs
j

)
(2)

phe
ij = σ

(
W he

j ei + bhe
j

)
(3)

where phs
ij and phe

ij represent the probability of identifying the i-th token in the
input sentence as the start and end position of a head entity with the j-th
relation existing in the token, respectively. W (·) ∈ R

d×1 is the trainable weight,
b(·) is the bias and σ is the sigmoid activation function.
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Fig. 5. The linking strategy for different overlapping patterns. The h-r pair and t-r pair
represent the (head entity, relation) pair and (tail entity, relation) pair respectively.

Head-ERT optimizes the following likelihood function to identify the span of
head entity h and relation r given a sentence representation s:

pθh

(
(h, r)

∣∣s) =
∏

m∈{hs,he}

L∏
i=1

K∏
j=1

(
pm

ij

)I{ym
ij=1} (

1 − pm
ij

)I{ym
ij=0}

(4)

where L is the length of the tokens and K is the number of the relations.
I{z} = 1 if z is true and 0 otherwise. yhs

ij /yhe
ij is the binary tag of head entity

start/end position for the i-th token in s with j-th relation in R. The parameters
θh = {W hs, bhs,W he, bhe}. Likewise, for the Tail-ERT, we obtain pts

ij , pte
ij and

pθt
((t, r)|s) as follows:

pts
ij = σ

(
W ts

j ei + bts
j

)
(5)

pte
ij = σ

(
W te

j ei + bte
j

)
(6)

pθt

(
(t, r)

∣∣s) =
∏

m∈{ts,te}

L∏
i=1

K∏
j=1

(
pm

ij

)I{ym
ij=1} (

1 − pm
ij

)I{ym
ij=0} (7)

For multiple entities detection, we adopt the nearest start-end pair match
principle to decide the span of any entities. For example, as shown in Fig. 3, for
the relation club, the nearest end token to the start token Vitesse is Arnhem,
hence the detected result of the entity will be Vitesse Arnhem. Meanwhile, the
extracted (entity, relation) pair is (Vitesse Arnhem, club) Note that the end
token can not appear before the given token.

The two Entity-Relation Taggers work in parallel to extract (entity, relation)
pairs expressed by each sentence. The complex scenarios with overlapping pat-
terns are addressed naturally as shown in Fig. 5. For the EPO case, the pairs
with the same relation will be connected. For instance, (Tom, like, fish) and
(Tom, eat, fish) are two EPO triples, thus, they are connected by the like in
purple and eat in cyan in Fig. 5. For the SEO case, the linking strategy is similar
to EPO when the relations of triples are different. Otherwise, the (tail entity,
relation) pair or (head entity, relation) pair, e.g. the (fish, like) pair with the
like in blue, will be reused as shown in Fig. 5. For the HTO scenario, e.g. the
triple (Tom J, like, Tom) in Fig. 5, there is no overlap because the head entity
and tail entity are extracted by different taggers.
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Fig. 6. The triples in red are the unreliable triples that are mismatched by the (head
entity, relation) pair and the (tail entity, relation) pair. (Color figure online)

Table 1. Statistics of datasets. N is the number of triples in a sentence.

Category Dataset Details of Test Set
Train Valid Test Relations Normal SEO EPO HTO N = 1 N = 2 N = 3 N = 4 N > 5 Triples

NYT* 56195 4999 5000 24 3266 1297 978 45 3244 1045 312 291 108 8110
WebNLG* 5019 500 703 171 245 457 26 84 266 171 131 90 45 1591
NYT 56195 5000 5000 24 3222 1273 969 117 3240 1047 314 290 109 8120
WebNLG 5019 500 703 216 239 448 6 85 256 175 138 93 41 1607

However, when there is more than one (h, r) pair shared an identical relation
with more than one (t, r) pair, this method may be confused. For example, as
shown in Fig. 6, two triples (Tom, like, fish) and (Mike, like, rice) tend to be
reconstructed by two (head entity, relation) pairs, i.e. (Tom, like) and (Mike,
like), and two (tail entity, relation) pairs, i.e. (fish, like) and (rice, like), but
these pairs may also generate other unreliable triples, i.e. (Tom, like, rice) and
(Mike, like, fish). To handle such a situation, we introduce an alignment module
of entity pairs, named Link Matrix Module. Note that we can exploit some
heuristic methods to filter out the unreliable triples or just ignore the unreliable
generation problem for the rarity of this situation in an application.

Link Matrix Module. To establish accurate connections between (entity,
relation) pairs, we introduce the Link Matrix, as shown in the green matrix
in Fig. 3. Note that the Link Matrix can be learned simultaneously with the
Entity-Relation Taggers since these two stages are independent of each other.
The detailed process is as follows: first, all possible token pairs in a sentence are
enumerated; then the pair whose link score exceeds a certain threshold λ2 is
selected. The Link Matrix is similar to a digraph, and each token of an entity
can be one vertex of the link edge. Here we choose the first token of the entity,
which means a head entity and a tail entity can be connected if the token pair
constructed by their first tokens is selected.

Given a sentence with L tokens, the size of the link matrix will be R
L×L.

The link score of each element of the matrix is obtained as follows:

pl
ij = σ

(
W l2 φ

(
W l1[ei;ej ] + bl1

)
+ bl2

)
(8)

where [; ] is the concatenation operation. W l1 ∈ R
2d×d and W l2 ∈ R

d×1 are
the trainable weights, b(·) is the bias, σ is the sigmoid activation function and
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φ is the ReLU activation function. The link score will be high if the token pair,
which is constructed by the first tokens, is in a triple.

3.4 Training Strategy

The model is trained jointly and the parameters of the H2O2Net encoder are
shared. The loss of the Entity-Relation Taggers is:

Lmain = −(log pθh
((h, r)|s) + log pθt

((t, r)|s)) (9)

The loss of the link matrix module is:

Llink = −
L∑

i=1

L∑
j=1

(yij log pl
ij + (1 − yij)log (1 − pl

ij)) (10)

where yij is the gold tag for the i-th token and the j-th token which represent
the first token of the head entity and tail entity respectively. The total loss is
the sum of the above two losses:

Ltotal = Lmain + αLlink (11)

where α is the weight of the Link Matrix Module. The model is trained by
minimizing Ltotal through Adam [9] optimizer over shuffled mini-batches.

4 Experiments

4.1 Datasets

Consistent with prior research [18,20,21,28], our model is evaluated on two pub-
lic datasets NYT [17] and WebNLG [7], both of which have two versions: one
version only annotates the last word of entities, and the other version annotates
the whole span of entities. In this paper, the first version datasets are denoted
as NYT* and WebNLG*, and the second version datasets are denoted as NYT
and WebNLG. To further study the capability of H2O2Net in extracting over-
lapping and multiple relations, the test set is split by overlapping patterns and
triple numbers. The detailed statistics are reported in Table 1.

4.2 Evaluation Metrics

Three standard evaluation metrics are used in our experiments, i.e. micro Pre-
cision (Prec.), Recall (Rec.), and F1-score (F1). During the evaluation, we
adopt Partial Match for NYT* and WebNLG*, and Exact Match for NYT
and WebNLG. An extracted triple is regarded as correct only if it is a cor-
rect match with ground truth, which means the last word of entities (for NYT*
and WebNLG*) or the whole entity spans (for NYT and WebNLG) of both head
and tail entities and the relations are all correct.
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Table 2. Precision(%), Recall(%) and F1-score(%) of our proposed H2O2Net and
baselines. Bold marks the highest score and ‡ means the results are produced by us
with the available source code.

Model NYT* WebNLG* NYT WebNLG
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

ETL-span [23] 84.9 72.3 78.1 84.0 91.5 87.6 85.5 71.7 78.0 84.3 82.0 83.1
RSAN [24] – – – – – – 85.7 83.6 84.6 80.5 83.8 82.1
CasRel [21] 89.7 89.5 89.6 93.4 90.1 91.8 – – – – – –
TPLinker [20] 91.3 92.5 91.9 91.8 92.0 91.9 91.4 92.6 92.0 88.9 84.5 86.7
CasDE [14] 90.2 90.9 90.5 90.3 91.5 90.9 89.9 91.4 90.6 88.0 88.9 88.4
PRGC [28] 93.3 91.9 92.6 94.0 92.1 93.0 93.5 91.9 92.7 89.9 87.2 88.5
EmRel [22] 91.7 92.5 92.1 92.7 93.0 92.9 92.6 92.7 92.6 90.2 87.4 88.7
OneRel‡ [18] 91.9 92.3 92.1 93.2 92.9 93.0 91.4 92.2 91.8 90.0 88.0 89.0
SPN [19] 93.3 91.7 92.5 93.1 93.6 93.4 92.5 92.2 92.3 – – –
ERGM [6] 93.3 91.5 92.4 94.2 91.2 92.7 – – – – – –
H2O2Net 93.3 92.3 92.8 94.5 94.1 94.3 93.5 92.3 92.9 92.7 89.7 91.2

4.3 Implementation Details

In our experiments, the entire training process was conducted on a workstation
equipped with an Intel Xeon E5 2.20GHz CPU, 503 GB of memory, a single
NVIDIA Tesla V100-SXM2 GPU, and Ubuntu 18.04. To ensure a fair compari-
son, we utilized the BERT-Base-Cased English model provided by Huggingface1,
setting the maximum input sentence length to 100, in line with previous studies
[21,28].

The model is implemented with PyTorch and the parameters are optimized
by Adam [9] with a batch size of 64/6 for NYT/WebNLG. The encoder learning
rate for BERT is set as 1 × 10−4, and the downstream learning rate is set as
1×10−3. For simplicity, the weight of the Link Matrix Module (α) is set to 1 and
the threshold of the Entity-Relation Taggers (λ1) and the Link Matrix Module
(λ2) are both set to 0.5, but the performance might be better by carefully tuning
α, λ1 and λ2. The model is trained for 100 epochs and the best model is chosen to
output results on the test set. We also conduct weight decay [13] with a rate of
0.01 and adopt an early stopping mechanism to prevent the model from over-
fitting. Other hyper-parameters are determined on the validation set.

4.4 Baseline Models

For comparison, the following ten models are employed as baselines: ETL-span
[23], RSAN [24], CasRel [21], CasDE [14], TPLinker [20], PRGC [28], EmRel [22],
OneRel‡ [18], SPN [19] and ERGM [6]. Note that the sentence encoders used in
ETL-span and RSAN are LSTM networks, while other baselines employ a pre-
trained BERT to obtain feature representations. All the experimental results of
the baseline models are directly taken from the original literature unless specified.

1 https://huggingface.co/bert-base-cased.

https://huggingface.co/bert-base-cased
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Table 3. F1-score(%) on sentences with different overlapping patterns and triple num-
bers. Bold marks the highest score, § marks the results reported by [28] and ‡ means
the results are produced by us with the available source code.

Model NYT* WebNLG*
Normal SEO EPO HTO N = 1 N = 2 N = 3 N = 4 N>5 Normal SEO EPO HTO N = 1 N = 2 N = 3 N = 4 N>5

CasRel 87.3 91.4 92.0 77.0§ 88.2 90.3 91.9 94.2 83.7 89.4 92.2 94.7 90.4§ 89.3 90.8 94.2 92.4 90.9
TPLinker 90.1 93.4 94.0 90.1§ 90.0 92.8 93.1 96.1 90.0 87.9 92.5 95.3 86.0§ 88.0 90.1 94.6 93.3 91.6
PRGC 91.0 94.0 94.5 81.8 91.1 93.0 93.5 95.5 93.0 90.4 93.6 95.9 94.6 89.9 91.6 95.0 94.8 92.8
OneRel‡ 89.9 93.9 94.6 83.9 89.8 93.1 93.8 96.0 91.8 90.5 93.6 95.1 93.6 90.0 92.2 94.8 93.7 94.1
H2O2Net 90.9 94.4 94.8 90.3 90.9 93.4 93.9 96.3 92.4 92.0 94.7 95.9 94.8 91.5 93.2 96.3 95.2 94.6

Table 4. Comparison of model efficiencies on NYT* and WebNLG* datasets. Results
of other methods are obtained by the official implementation with the default con-
figuration. Paramsdecoder are calculated on the decoder. Inference Time (ms) is the
mean time to predict triples for one sentence.

Dataset Model Complexity FLOPs (G) Paramsdecoder Inference Time (1/32) F1-score

NYT* PRGC O(L2) 24.082 3851167 15.6/5.3 92.6
OneRel‡ O(KL2) 300.810 3762528 36.0/62.2 92.1
H2O2Net O(L2 +KL) 23.623 1255009 14.9/5.2 92.8

WebNLG* PRGC O(L2) 24.082 3907762 15.7/6.0 93.0
OneRel‡ O(KL2) 409.190 5117868 35.4/46.2 93.0
H2O2Net O(L2 +KL) 23.713 1707181 14.4/6.0 94.3

4.5 Experimental Results

Overall Results. Table 2 shows the results of our model against baseline mod-
els on NYT and WebNLG in terms of Partial Match and Exact Match. Our
H2O2Net model outperforms them with respect to almost all evaluation met-
rics.

Compared with the representative relation as discrete label method SPN,
H2O2Net obtains 0.3, 0.9, and 0.6 absolute gains in F1-score on three datasets,
respectively. This demonstrates the importance of interaction between entities
and relations. Compared with the relation as category model PRGC, H2O2Net
obtains 0.2, 1.3, 0.2, and 2.7 absolute gains in F1-score on four datasets, respec-
tively. Even if compared with another recent strong relation as category model
OneRel‡, H2O2Net obtains 0.7, 1.3, 0.3, and 2.2 absolute gains in F1-score on
four datasets, respectively. Such results indicate that considering the link role
of relations is important in exploring the interactions between entities and rela-
tions. These all indicate that the relation as link is effective for the joint relational
triple extraction task.

Overall, H2O2Net shows competitive performance with the existing state-of-
the-art models. It outperforms OneRel‡ by 2.2% on WebNLG, which is regarded
as the most difficult dataset to handle [20]. Moreover, H2O2Net achieves higher
Precision scores than Recall scores on four datasets, which means H2O2Net is
capable of extracting accurately and suitable for the scenarios requiring accuracy.
We attribute the high Precision of H2O2Net to its effective Linking Strategy and
Link Matrix Module, which connect the reliable (entity, relation) pairs and filter
out the invalid triples, respectively.
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Table 5. Results (%) on different subtasks. (h, t) denotes the entity pair and r means
the relation. ‡ means the results are produced by us with the available source code.

Model Element NYT* WebNLG*
Prec. Rec. F1 Prec. Rec. F1

CasRel (h, t) 89.2 90.1 89.7 95.3 91.7 93.5
r 96.0 93.8 94.9 96.6 91.5 94.0
(h, r, t) 89.7 89.5 89.6 93.4 90.1 91.8

PRGC (h, t) 94.0 92.3 93.1 96.0 93.4 94.7
r 95.3 96.3 95.8 92.8 96.2 94.5
(h, r, t) 93.3 91.9 92.6 94.0 92.1 93.0

OneRel‡ (h, t) 92.0 92.9 92.4 95.1 94.6 94.9
r 96.2 95.2 95.7 96.2 94.6 95.4
(h, r, t) 91.9 92.3 92.1 93.2 92.9 93.0

H2O2Net (h, t) 93.2 92.8 93.0 96.3 95.8 96.0
r 97.0 95.3 96.1 96.9 95.7 96.3
(h, r, t) 93.3 92.3 92.8 94.5 94.1 94.3

Table 6. Ablation study of H2O2Net.

Dataset Model Complexity Prec. Rec. F1 FLOPs(G) Paramsdecoder Inference Time (1/32)

NYT* H2O2Net O(L2 +KL) 93.3 92.3 92.8 23.623 1255009 14.9/5.2
H2O2Net- O(KL) 89.0 92.4 90.7 0.015 73824 11.7/2.8

WebNLG* H2O2Net O(L2 +KL) 94.5 94.1 94.3 23.713 1707181 14.4/6.0
H2O2Net- O(KL) 93.1 94.2 93.6 0.105 525996 12.3/3.6

Detailed Results on Complex Scenarios. To verify the ability of our method
to handle overlapping patterns and multiple triples, we conduct further experi-
ments on NYT* and WebNLG* datasets. Four powerful models are selected as
baselines and the detailed results are shown in Table 3.

It can be observed that the performance of H2O2Net is better than other
baselines almost in every subset on both datasets, i.e. 15 of the 18 subsets,
especially for most complex scenarios. Compared with PRGC, which is the only
model that outperforms H2O2Net on some subsets of NYT*, our proposed model
still achieves competitive performance. We attribute the slight performance gap
to the fewer number of relations on NYT* than on WebNLG* (24 vs 171) as
shown in Table 1 since H2O2Net is a relation as link model and the relation plays
an important role which means fewer relations may confuse the Linking Strategy.
In general, these further experiments adequately prove the effectiveness of the
relation as link idea and the advantages of our model in complex scenarios.

Results on Different Subtasks. We further explore the performance of
H2O2Net on different subtasks, i.e. entity pair extraction and relation classi-
fication. The detailed results are reported in Table 5. As previous works [19]
pointed out, it can be observed that entity pair recognition and triple formation
are two challenging tasks of the joint extraction task.
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Fig. 7. F1-score in respect to the Training time (ms) on the WebNLG* validation set
of different methods.

As shown in Table 5, H2O2Net outperforms all the baselines on most indi-
cators of NYT* and WebNLG*. We attribute the outstanding performance of
H2O2Net to its two advantages: First, the relation plays the most important
role in a triple for relation as link methods, which empowers our model to pay
more attention to relation classification than the extraction of other elements.
Second, the combination of the Linking Strategy and Link Matrix Module filters
out the invalid triples which are extracted by aligning entity-relation pairs. Thus,
the performance of subtasks and relational triple extraction is higher than most
baselines.

Fig. 8. Case study for the ablation study of H2O2Net. Examples are from WebNLG
and entities are in blue. The red cross marks invalid triples. (Color figure online)

5 Analysis

5.1 Model Efficiency

As shown in Table 4, we evaluate the model efficiency concerning Complex-
ity, FLOPs, parameters of the decoder (Paramsdecoder) and Inference Time2 of
2 The FLOPs and Paramsdecoder are calculated via https://github.com/Lyken17/

pytorch-OpCounter.

https://github.com/Lyken17/pytorch-OpCounter
https://github.com/Lyken17/pytorch-OpCounter
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OneRel, PRGC and H2O2Net on two datasets. All experiments are conducted
with the same hardware configuration. The inference time is measured with the
batch size of 1 and 32 to verify the single-thread decoding speed and parallel pro-
cessing capability, respectively. Note that OneRel is restricted to processing one
sentence at a time in the official implementation, which is improved to handle
data in batch mode. However, it is possible for OneRel to be designed to han-
dle just one sentence at a time so that the inference time of parallel processing
increases.

Results show that the single-thread decoding speed and parallel processing
decoding speed of H2O2Net are almost the same as PRGC. Note that PRGC
decodes triples on the relations detected by its relation prediction module, but
H2O2Net considers all relations, increasing the inference time. Compared with
PRGC, H2O2Net is lower in FLOPs and has 2× fewer parameters, which means
H2O2Net achieves better performance with only half the parameters of PRGC.
Compared with OneRel, H2O2Net has fewer parameters and the FLOPs is even
150 times lower, thus H2O2Net obtains 2× speedup for single-thread decoding
and 10× speedup for parallel processing in the inference stage while the F1-
score is better.

To further verify the convergence rate of H2O2Net, Fig. 7 shows the F1-score
concerning the training time on the WebNLG* validation set of different meth-
ods. Results obtained by the official implementation with default configuration
prove our convergence rate and efficiency advantages.

5.2 Ablation Study

As shown in Table 6, we conduct an ablation test: H2O2Net- is the model
whose Link Matrix Module is removed. Compared with H2O2Net, H2O2Net-
also achieves competitive performance, since the number of unreliable triples
described in Sect. 3.3 is small and the Entity-Relation Taggers are enough to
extract triples excellently. This experiment proves that the alignment between
entity pairs is not the critical module for H2O2Net, which is different from
relation as category methods. It is noteworthy that the original literature indi-
cates the F1-score of PRGC decreases by 12.4 and 23.6 points on the NYT*
and WebNLG* datasets, respectively, when the entity pairs alignment module
is omitted. In contrast, H2O2Net shows a more modest decrease of only 2.1 and
0.7 points, respectively.

Compared with H2O2Net, the parameters of H2O2Net- are 17× fewer on the
NYT* dataset and 3× fewer on the WebNLG* dataset. Moreover, the FLOPs
is even 1602× lower on the NYT* dataset and 226× lower on the WebNLG*
dataset. Note that H2O2Net outperforms PRGC and OneRel in the number
of parameters and FLOPs. These experimental results indicate that when the
computational budget is limited and the precision required is not strict, the Link
Matrix Module of H2O2Net can be removed.

Through the case study shown in Fig. 8, it can be observed that H2O2Net-
tends to connect all possible entity-relation pairs to construct triples, which
results in some invalid triples. That is because the extreme situations described
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in Fig. 6 appear in the examples of Fig. 8. However, these situations are rare
for the complex sentence with more than 3 triples, i.e. only 2 out of 134 in the
subsets of WebNLG. Therefore, all experimental results prove that our relation
as link method are effective.

6 Conclusion

This paper approaches the task of joint relational triple extraction from a novel
perspective, introducing an innovative framework that hinges on (entity, rela-
tion) pair linking, moving away from the traditional approach of categorizing
relations as discrete labels among entity pairs. To our knowledge, H2O2Net
is the pioneering model that considers the linking role of relations, mitigating
issues such as excessive dependence on entity pair alignment and computational
inefficiency. Experimental results on two public datasets demonstrate that our
model surpasses all baseline competitors. Subsequent analyses further validate
the effectiveness and computational efficiency.
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Abstract. Progress in Chinese Named Entity Recognition (CNER) has
highlighted lexicon-based methods that use word information to boost
performance. However, these methods neglect two crucial aspects: the
regularity of word boundary and the characteristics of the NER task.
To address these shortcomings, we introduce BADA-LAT, a Transformer
architecture that incorporates word boundary information and introduce
local attention computation. It can enhance entity boundary recognition
and concentrate the attention weight of the target token on adjacent
characters and matched words. Furthermore, to mitigate the issue of
class imbalance, we augment the original training data using large lan-
guage model (LLM). Our method outperforms other lexicon-based ones,
as shown in experiments on four Chinese datasets.
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Named Entity Recognition (NER) is a fundamental step in natural language
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Fig. 1. The results of Chinese Word Segmentation System (CWS) and Named Entity
Recognition are compared. CWS incorrectly divides ‘北京机场’ into ‘北京’ and ‘机场’,
but this subsequence often represents an entity in the NER task.

including relation extraction [1] and event extraction [2]. The primary focus of
NER is to extract crucial information such as persons, locations, and organiza-
tions from unstructured text.

However, Chinese NER faces challenges due to the absence of natural word
segmentation. An common approach is to first segment sentences using a Chi-
nese Word Segmentation System, then apply sequence labeling. Unfortunately,
errors in word segmentation can significantly impact model performance [3], as
presented in Fig. 1. Consequently, many researchers have shifted their focus to
direct character-level sequence labeling for Chinese NER [4]. These methods have
proven to be more effective than word-level labeling. Obviously, character-level
sequence labeling for Chinese NER often results in the loss of significant word
information. To address this, recent research has proposed lexicon-based model
that utilize word information while avoiding segmentation errors. Motivated by
this, Zhang and Yang [5] proposed Lattice-LSTM, designed to accommodate
lexicon-matched input sequences. However, the complex architecture of Lattice-
LSTM makes it challenging to improve.

Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN)
struggle with modeling long-distance dependency. Due to its excellent global fea-
ture extraction and parallel processing, the Transformer model has gained wide
usage in various NLP tasks. However, a key insight is that vanilla Transformer
inadequately perceive position encoding for critical direction and distance fea-
ture [6], which is crucial for handling NER. Recent Transformer model using rel-
ative position encoding instead of triangular encoding has demonstrated superior
performance on NER task [7]. The Transformer-based FLAT model [8] employs
relative position encoding and lexical augmentation, alleviating the limitations of
vanilla Transformer position encoding and integrating latent words matched to a
lexicon. Thus, FLAT has achieved great success on Chinese NER. However, issue
remain with expressing entity boundary information, potentially requiring the
introduction of new representational space. Additionally, NER exhibits strong
character correlation, making traditional attention computation less adaptable.

Recent works [9] have indicated that incorporating document-level contextual
information can further enhance the accuracy of NER. However, acquiring such
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context is often impractical [10]. It is challenging to find annotators who are well-
versed in specific domains. This often meant tremendous efforts from the staff
to generate very limited samples. The accuracy and diversity of the new samples
remain concerning. Fortunately, large language models like GPT, New Bing, and
Claude enable the efficient generation of more diverse and actual samples [11].

In this paper, we propose BADA-LAT to address the aforementioned issues.
The key idea is to explicitly express the entity boundary and adaptively calcu-
late the attention score. We design an boundary bias coding space to explicitly
represent the boundary deviation term of a candidate entity. To obtain richer
boundary information, we assign a unique embedding to each head of the same
bias term. Considering the uniqueness of the NER task input sequence, we intro-
duce a local attention mechanism. Specifically, we involve a penalty term that
changes linearly with the relative position in the attention calculation. This
allows the target token to give a higher attention score to context tokens and
related words. Furthermore, given that the number of entity-labeled instances is
much less than the number of non-entity-labeled instances in the NER datasets,
we leverage the large language model, Bing AI, to augment the data on four
datasets. Experimental results show that our method has a clear advantage over
FLAT and other lexicon-based models on four Chinese NER datasets.

2 Related Work

2.1 Lexicon-Based NER

Recently, a growing body of research has been dedicated to integrating word
information into the NER task elegantly. A pioneering method, Lattice-LSTM
[5], improved NER performance by encoding lexicon-matched words while mod-
ifying the LSTM structure to accommodate the new input. Gui et al. [12]
proposed LR-CNN, which uses convolutional neural network and a rethinking
mechanism to encode character sequences and potential words under different
windows in parallel. Additionally, Transformer has been leveraged for lexical
enhancement given their parallelization and representational capability, such as
in PLT [7] and FLAT [8]. As Chinese glyph often provide meaningful represen-
tations, Wu et al. [13] proposed MECT, a cross-transformer approach integrat-
ing multi-metadata embedding of Chinese character structures to inject greater
native language knowledge. Gu et al. [14] introduced RICON-NER, premised on
the regularity of Chinese entity mentions.

2.2 Data Augmentation

Data augmentation in Natural Language Processing is a powerful technique
for enhancing data representation. At the word level, data augmentation can
involve swapping combinations, partial deletion [15] and synonym replacement
[16]. Moreover, embedding-space operations are possible but risk introducing
antonyms despite similarity [17]. The improved generative adversarial network
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Fig. 2. The input and output of FLAT.

are also used to generate text and have achieved good results. Lin et al. [18] pro-
posed RankGAN which facilitates the generation of richer sentences. Moreover,
the diffusion model [19] also provide a unique perspective on data augmentation.
Large language models have been leveraged for data augmentation. GPT3Mix
[20] leverages large language model to generate realistic text samples from a mix-
ture of real samples. Dai et al. [11] proposed AugGPT which leverages ChatGPT
for text classification.

3 Background

The Flat-Lattice Transformer (FLAT) model forms the basis of the proposed
approach. Thus, it is necessary to clarify the infrastructure of FLAT model. The
following is a brief introduction to the fundamental aspects of the FLAT model.

3.1 Character-Word Fusion Representation Layer

Figure 2 shows the input and output of FLAT. Given a Chinese character
sequence s = [c1, c2, ..., cn] ∈ ϑc, where ϑc is a character vocabulary. Each char-
acter ci can be represented by a vector:

xc
i = ec(ci), x

c
i ∈ Rdc (1)

where ec represents the lookup table for character embedding, dc is the dimension
of character embedding. Thus, on the character granularity, the input sequence
can be formulated as:

Xc = [xc
1, x

c
2, ..., x

c
n],X ∈ Rn×dc (2)

After that, FLAT merges the matched word from lexicon and flatten it as a
flat counterpart. We use Xw = [ew(w1)

, ew(w2)
, ..., ew(wm)],X ∈ Rm×dw to represent

the set of matched word vectors, where wi and ew are these words and word
embedding lookup, respectively. dw is the dimension of word embedding. Finally,
the representation of the input sequence X is expressed as:

X = [WcX
c;WwXw] (3)

where Wc and Ww are learnable parameters that are used to align dimension.
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Additionally, the relative position coding, Ri−j , is calculated as:

Ri−j = ReLU(Wr(Pd
(bb)
i−j

⊕ P
d
(be)
i−j

⊕ P
d
(eb)
i−j

⊕ P
d
(ee)
i−j

)), (4)

where Wr is a learnable parameter, b and e are the positional index of the first
and last character of the candidate entity, respectively. P is obtained as follows:

P
(2k+1)
i−j = cos(

i − j

100002k/dmodel
) (5)

P
(2k)
i−j = sin(

i − j

100002k/dmodel
) (6)

where i − j represents the relative distance, dmodel is the hidden size. The self-
attention score is calculated using the equation below:

Arel
i,j = xiWQWT

K,ExT
j + xiWQWT

K,RRT
i−j

+uWT
K,ExT

j + vWT
K,RRT

i−j (7)
Att(A, V ) = Softmax(A)XWV (8)

Ai,j = (
Arel

i,j√
dhead

) (9)

where WQ,WK,E ,WK,R,WV , u, v are learnable parameters.

3.2 CRF Layer

To model dependency between successive tag, Conditional Random Field (CRF)
[21] is often used in NER task. CRF can eliminate irrational decoding rules in
the sequence. Given an input sequence s = [c1, c2, ..., cn] and corresponding label
sequence y = [y1, y2, ..., yn], CRF aims to maximize the probability of a predicted
reasonable continuous tag sequence. The probability is computed as follows:

P (y|s) =
exp(

∑n
i=1 Φ(yt−1, yt, xi))

∑
y′ ∈Y (s) exp(

∑n
i=1 Φ(y′

i−1, y
′
i, xi))

(10)

The function Φ(yt−1, yt, xi) calculates the transition score from label yt−1 to
yt as well as the emission score for yt given the input sequence s. Y(s) is the
set of all valid label sequences. P (y|s) represents the conditional probability of
the label sequence y given s. During decoding, the Viterbi algorithm is used to
identify the most probable label path.

4 Approach

This section details our proposed BADA-LAT, as shown in Fig. 3. We first
present the boundary augmentation method for candidate entities, then intro-
duce a local attention mechanism to adapt NER task. Lastly, we leverage the
large language model to balance datasets.
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Fig. 3. The overall architecture of BADA-LAT.

4.1 Boundary-Augmentation FLAT-Lattice

The linear fusion of position is difficult to express boundary information clearly.
Therefore, it is necessary to explicitly provide the model with the boundary
information of matched word. Specifically, we consider character and word in
the lattice as candidate entities, so we get a series of spans. Each span has a
corresponding begin and end position. Since the input sequence contains spans
of different lengths, we use two relative position to calculate Ri−j in a similar
way to FLAT:

d
(bb)
i−j = begin[i] − begin[j] (11)

d
(ee)
i−j = end[i] − end[j] (12)

Ri−j = ReLU(Wr(Pd
(bb)
i−j

⊕ P
d
(ee)
i−j

)) (13)

where i is index of the target token and j is the index of the context token,
Wr is a learnable parameter, begin and end are the position index of the first
and last character of the candidate entity, respectively. d

(bb)
i,j is the relative begin

position offset of the i-th span with respect to the j-th span, and d
(ee)
i,j has similar

meanings.
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Fig. 4. Illustration of boundary offset computation

Indeed, the fusion of position relationship have enhanced its ability to distin-
guish boundary, albeit to a limited extent. However, there are still a lot of spans
with blurred borders due to the lack of representation of boundary information
by position coding. As shown in Fig. 4, we can explicitly indicate the boundary
bias of spans and encode them in the new encoding space. The boundary bias is
calculated as:

Bbias = (d(ee)i−j − d
(bb)
i−j ) (14)

We encode Bbias using a new encoding space eBbias that can be learned. Addi-
tionally, we assign a different embedding to each head of the same bias term to
get richer information. The attention score Arel

i,j is calculated as follows:

Arel∗
i,j = (xiWQ + v)(WT

K,RRT
i−j + tanh(eBbias))

+ (xiWQ + u)WT
K,ExT

j

(15)

where eBbias are learnable parameter, and propose to activate them using a non-
linear function tanh. We replace A in the above formula with A∗ and then the
calculation is the same as FLAT.

4.2 Local Attention Mechanism

In this paper, considering the particularity of NER task including sparse entities
and strong correlation of adjacent characters, we introduce a local attention
mechanism inspired by ALiBi [22]. This mechanism employs a linear function
that adjusts according to changes in relative position, serving as a penalty term.
Then we can calculate the attention score as follows:

A∗
i,j = Arel

i,j − m × |Pdi,j
| (16)

where Pdi,j
is the penalty matrix for attention score, and |Pdi,j

| represents the
absolute value matrix of Pdi,j

. As depicted in Fig. 5, we allocate a penalty value of
0 in d

(bb)
i,j to word segments linked with the target token. This modified penalty

matrix, now referred to as Pdi,j
, allows each token to focus its attention on

neighboring characters or related words.
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Fig. 5. Illustration of the local attention penalty matrix. The penalty factor increases
as the relative position increases. Darker color indicate lower penalty term.

We choose the same parameter setting as ALiBi, where m is the set of scalar
coefficients fixed for each head. It is a geometric sequence with an initial value
of 2− 8

n and a ratio of 2− 8
n , where n is the number of heads.

The model combining the above methods exhibits minimal changes in time
and space complexity. Simultaneously, it gains enhanced boundary resolution
capability for candidate entities and a more suitable local attention mechanism
for NER task.

4.3 Data Augmentation with BingAI

Since the entity-labled data is much less than the non-entity-labled data, there
is a class imbalance problem during training. It is difficult to achieve satisfactory
performance through fine-tuning of embedding, such as BERT, because small-
scale sample training can easily lead to over-fitting and insufficient generaliza-
tion ability. Therefore, it requires more correlation contexts during training to
improve the performance of NER. We resort to use BingAI for data augmenta-
tion. With the help of the ability of LLM, we can easily enhance the context of
the sample data to generate more diverse expressions.

Given a set of token sequences X = [x1, x2, ..., xn] and the corresponding label
L = [l1, l2, ..., ln], both the predefined prompt and the input sequence are fed into
the Bing AI as a question. The prompt can be seen in appendix. The Bing AI
performs context enhancement on the input sequence based on the prompt. As
shown in Fig. 6, it returns multiple sets of token sequences and character anno-
tation. Since we provide the token labels at the time of input, the labels for
the newly generated sequences are nearly error-free, yielding high-quality new
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Fig. 6. The data augmentation process with the assistance of Bing AI and an example.

samples. After preprocessing these new samples, we obtain multiple new samples
that can be used to expand and enhance the original text from various perspec-
tives. Finally, these new samples are randomly inserted into the training set row
by row.

Table 1. Statistics of four benchmarking datasets.

Datasets Types Train Dev Test

OntoNotes Sentences 15.72k 4.30k 4.31k

Entities 4.32k 6.95k 7.70k

MSRA Sentences 46.36k – 4.37k

Entities 74.80k – 6.20k

Resume Sentences 3.82k 0.46k 0.48k

Entities 1.34k 0.16k 0.15k

Weibo Sentences 1.35k 0.27k 0.27k

Entities 1.89k 0.39k 0.42k

5 Experiments

5.1 Experimental Settings

To validate the influence of the approach on the model’s performance, most of
the experiments in this paper follow the FLAT model, such as character and
word vector size, dropout, lexicon, etc. We evaluated the proposed method on
four Chinese NER datasets, including: OntoNotes 4.0 [23], MSRA [24], Resume
[5] and Weibo [25]. Table 1 presents statistic information of these datasets. We
use FLAT as the baseline model, and compare our method with other related
models.
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Table 2. Main results on four Chinese datasets.

Models OntoNotes 4.0 MSRA Resume Weibo

P R F1 P R F1 P R F1 NE NM Overall

Lattice-LSTM 76.35 71.56 73.88 93.57 92.79 93.18 94.81 94.11 94.46 53.04 62.25 58.79

LR-CNN 76.40 72.60 74.45 94.50 92.93 93.71 95.37 94.84 95.11 57.14 66.67 59.92

CAN-NER 75.05 72.29 73.64 93.53 92.42 92.97 95.05 94.82 94.94 55.38 62.98 59.31

LGN 76.13 73.68 74.89 94.19 92.73 93.46 95.28 95.46 95.37 55.34 64.98 60.21

PLT 76.78 72.54 74.60 94.25 92.30 93.26 95.34 95.46 95.40 53.55 64.90 59.76

SoftLexicon 77.28 74.07 75.64 94.63 92.70 93.66 95.30 95.77 95.53 59.08 62.22 61.42

MECT 77.57 76.27 76.92 94.55 94.09 94.32 96.40 95.39 95.89 61.91 62.51 63.30

FLAT(Baseline) – – 76.45 – – 94.12 – – 95.45 – – 60.32

BADA-LAT 78.61 77.32 77.97 95.25 95.52 95.39 96.42 96.10 96.26 61.72 66.22 63.97

With pre-trained Language Model

BERT – – 80.14 – – 94.95 – – 95.53 – – 68.20

BERT + SoftLexicon – – 82.81 – – 95.42 – – 96.11 – – 70.50

BERT + MECT – – 82.57 – – 96.24 – – 95.98 – – 70.43

RICON-NER 81.95 84.78 83.33 95.94 96.33 96.14 – – – – – –

BERT + SSMI 82.46 84.61 83.52 96.15 96.49 96.32 97.48 97.18 97.33 71.53 73.18 72.83

BERT + BADA-LAT – – 83.87 – – 97.33 – – 97.48 – – 72.26

Roberta + BADA-LAT – – 83.95 – – 97.40 – – 97.39 – – 72.52

5.2 Comparison with SOTA Methods

Our method is compared with other lexical augmentation models, including
Lattice-LSTM [5], LR-CNN [12], CAN-NER [26], LGN [27], PLT [7], SoftLexcion
[28], FLAT [8], MECT [13], RICON-NER [14] and SSMI [29].

Table 2 presents the experimental results on the four Chinese datasets. The
table is divided into three blocks. The first section lists the experimental results
of some classical and recently published methods. The second section compares
our method with the baseline method. The third section compares the exper-
imental results integrating the pre-trained language model BERT, released by
[30]. In addition, we also use other latest Chinese pre-trained model, roberta
[31], for comparison in our model. The bold numbers emphasize the best per-
formance in each evaluation metric. Compared to the recent lexicon-enhanced
models based on BERT, our method, with minimal changes to the temporal and
spatial complexity of the model, achieves an considerable improvement in the F1
metric on four Chinese datasets, respectively. At the same time, the pre-training
model is replaced, and it seems that the performance improvement of the model
is not obvious.

5.3 Effectiveness Analysis

In our proposed model, there are two modules directly related to attention
computation: boundary enhancement and local attention. Figure 7 contains two
heatmaps that show the attention weights of the baseline and our model to the
samples, respectively. From the two figures, compared with the baseline, the tar-
get token in our model is easier to focus on the word of suitable length and the
attention weight is more focused by using the boundary perception and local
attention modules than the baseline.
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Fig. 7. Visualization of attention, in which the coordinates 0–32 are used for the char-
acters part and the coordinates 33–55 are for the words part. The two sub-figures show
the baseline and our model’s attention scores respectively.

5.4 Ablation Study

To better evaluate the contribution of each component within our proposed
BADA-LAT architecture, we conduct a ablation study removing individual mod-
ule and evaluating impact across four datasets as shown in Table 3. Tested ele-
ments include boundary bias module, local attention calculation module, and
data augmentation with LLM. Experiments show that ablation of these mod-
ules almost consistently reduces effectiveness on key NER metrics, affirming the
unique role of each component in NER task.

Boundary Bias: Although FLAT used four relative position encoding fusion, it
gives the model limited ability to identify candidate entity boundary. However,
this attempt seems to be difficult for the model, since boundary information may
require different encoding space to be explicitly given. As the Tabel 3 shows,
removing the boundary augmentation component, the F1 score of our model has
decreased in different degree on the four datasets (0.56% ↓ on OntoNotes4.0,
0.35% ↓ on MSRA, 0.36% ↓ on Resume, 1.07% ↓ on Weibo). Experiments indicate
that explicitly giving the boundary bias can enhance the model’s perception of
boundary.

Local Attention: In the attention score calculation of FLAT, the attention
weight between the target token and context tokens are undifferentiated, and
the final weight calculation relies on the model’s own learning of weights. How-
ever, we hold that in NER task, the calculation of attention score should be
differentiated, and the attention weight of characters should be more focused on
their adjacent characters or related words. As the Tabel 3 shows, replacing our
local attention mechanism, the F1 score of our model has decreased in different
degree on the three datasets (0.32% ↓ on OntoNotes4.0, 0.23% ↓ on MSRA,
0.30% ↓ on Resume). Experiments indicate that the local attention calculation
may be more suitable for NER task.
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Data Augmentation with Bing AI: In this study, we removed the data
augmentation with Bing AI module as a reference. As the Tabel 3 shows, the
F1 score of our model has decreased in different degree on the four datasets
(1.34% ↓ on OntoNotes4.0, 1.10% ↓ on MSRA, 1.12% ↓ on Resume, 2.04% ↓
on Weibo). Therefore, data augmentation with LLM can effectively improve the
diversity and generalization of training data. The comparison of training sets
before and after using LLM data augmentation is counted in appendix.

Table 3. An ablation study of the proposed model.

Models OntoNotes MSRA Resume Weibo

BADA-LAT 83.87 97.33 97.48 72.26

- Boundary Aug 83.31 96.98 97.12 71.19

- Local Attention 83.55 97.10 97.18 72.53

- Data Aug 82.53 96.23 96.36 70.22

6 Conclusions

In this paper, we introduce the BADA-LAT model, designed based on the regu-
larity of word boundary and the unique characteristics of the named entity recog-
nition (NER) task. The model comprises three submodules. First, a boundary
bias term is incorporated into the relative position encoding to capture regularity
in candidate entity boundary. Secondly, the attention weight between the tar-
get token and its surrounding tokens, as well as associated words, are adjusted to
tailor the attention calculation to the needs of NER. Lastly, we leverage prompt-
tuning of large language model to perform data augmentation on four Chinese
datasets. Experimental results on the four Chinese named entity recognition
datasets demonstrate that our method can effectively enhance the performance
of Chinese NER.

Acknowledgements. We appreciate the support from the National Key Research
and Development Program of China (2023YFB3308602), National Natural Science
Foundation of China (72071139), Natural Science Foundation of Hebei Province
(G2023105007), and Key Research & Development Program of Sichuan Province
(2022YFWZ0007). Their contribution is crucial to the success of our research.

A Appendix

A.1 Prompt of BingAI for Data Augmentation

After repeated fine-tuning, we obtained a most suitable Chinese named entity
recognition prompt for large language model text generation. This prompt con-
sist of two parts. The first part is to prompt the large language model BingAI
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about our task requirements and generation format. The second part is a feed-
back on the result of the large language model generation, which is used to
encourage the large model to continue to generate high-quality text data. The
original data of the training sets will be processed into a special format and filled
into the prompt. For example, the format of ‘建设’ is ‘建(O)设(O)’. The prompt
are listed in Table 4.

A.2 Statistics of Data Augmentation

Table 5 show the statistical comparison of the data before and after the augmen-
tation.

Table 4. A prompt for data augmentation in LLM, where “{}” means that sentence
will be filled into prompt in a certain format.

prompt #Generate Text

As a tagger specializing in Chinese named entity
recognition data tagging, your task is to generate Chinese
text with character tagging based on the reference to
“#Examples”. The resulting style also should be consistent
with the “#Examples” I have provided

#Requirements for Text generate

You can generate or replace the entities in the “Examples”
with other entities of the same type. The new entities
should be realistic in the real world and may be not
common or famous. The text’s content should always be
coherent and meaningful.

#Examples {}
Upon receiving the Examples, your objective is to generate
Chinese text with character tagging and should not talk
nonsense

feedback Please repeat all my needs and continue generate more
content based on my requirements

Table 5. Statistics before and after data augmentation.

Datasets Types Before After

OntoNotes Sentences 15.72k 21.64k

Entities 4.32k 6.27k

MSRA Sentences 46.36k 57.13k

Entities 74.80k 87.96k

Resume Sentences 3.82k 5.42k

Entities 1.34k 2.21k

Weibo Sentences 1.35k 2.05k

Entities 1.89k 3.11k
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Abstract. The use of LLMs for natural language processing has become a pop-
ular trend in the past two years, driven by their formidable capacity for context
comprehension and learning, which has inspired a wave of research from aca-
demics and industry professionals. However, for certain NLP tasks, such as NER,
the performance of LLMs still falls short when compared to supervised learn-
ing methods. In our research, we developed a NER processing framework called
LTNER (Code is available at https://github.com/YFR718/LTNER) that incorpo-
rates a revolutionary Contextualized Entity Marking Gen Method. By leveraging
the cost-effective GPT-3.5 coupled with context learning that does not require
additional training, we significantly improved the accuracy of LLMs in handling
NER tasks. The F1 score on the CoNLL03 dataset increased from the initial 85.9%
to 91.9%, approaching the performance of supervised fine-tuning. This outcome
has led to a deeper understanding of the potential of LLMs.

Keywords: Natural Language Processing · Named Entity Recognition · Large
Language Models · Prompt Engineering

1 Introduction

Named Entity Recognition (NER) is an essential component of Natural Language Pro-
cessing (NLP), playing a vital role in various fields such as text information extraction,
information retrieval, and construction of knowledge graphs. The objective of NER is
to identify and classify entities in a given text into predefined categories. Although the
advent of Transformer models [1] such as Bert [2] and T5 [3] has considerably enhanced
the processing capabilities of neural networks on certain datasets, the practical appli-
cation cost is relatively high due to the substantial data annotation and model training
required.

Recently, Large Language Models (LLMs) have emerged as a transformative force
in the field of NLP. GPT-3.5 serves as an example of these models’ significant abilities
in understanding and generating context-rich text. Owing to their numerous params and
extensively applied training data [4, 5], these models demonstrate exceptional capacity

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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for capturing contextual information. Moreover, the convenience of using these models
is notable, as they can be easily directed through Prompts to complete an array of
tasks, greatly accelerating the deployment of various NLP applications. However, a
significant gap exists between LLMs and traditional fine-tuning methods when it comes
to NER tasks due to fundamental differences in their output modalities: while NER
emphasizes precise annotation [6], GPT models focus on generation; moreover, the
issue of hallucinations [7] further compounds the challenge.

In this paper, we introduce LTNER, a method employing contextual marking to
leverage the Context-Learning abilities of GPT-3.5 for the improvement of NER tasks
without the need for fine-tuning or large-scale training. Experiments conducted on mul-
tiple datasets show that our method significantly outperforms existing context NER
techniques and closely matches the accuracy of traditional supervised learning methods.

In sum, our contributions are as follows:

1. An innovative NER method. We have proposed a simple yet effective Contex-
tual Entity Marking Generation method for large language models (LTNER), which
achieves an accuracy close to that of mainstream supervised learning without the
necessity for training or fine-tuning.

2. Robustness of the model.We have provided ample empirical evidence of LTNER’s
excellent performance with few contextual examples, limited labeled data, and low
cost.

3. Techniques for optimizing prompt engineering. We have explored various tech-
niques for optimizing prompt engineering, such as prompt format and role designa-
tion, offering valuable insights for future research.

2 LTNER

This chapter provides a detailed exposition of the design principles behind LTNER.
Section 2.1 defines the NER task, Sect. 2.2 elaborates on the design of the token genera-
tion learning method, and Sect. 2.3 describes the operational flow of the overall system
architecture.

2.1 Definition of the NER Task

NER is fundamentally a sequence labeling problem: each token within the text must
be assigned a label, indicating whether and how it constitutes a specified entity cate-
gory. Given a text sequence X = (x1, x2, . . . , xn), where xi represents the i-th token
in the sequence, the objective of the NER task is to produce a set of entity labels
Y = (y1, y2, . . . , yn), with each yi selected from a predetermined label set. This label set
typically includes B−Person (indicating the beginning of a person’s name), I −Person
(the continuation of a person name entity), B−Organization (the beginning of an orga-
nization name), I −Organization (the continuation of an organization name entity), and
other categories such as locations, dates, etc. The O label represents a non-entity.

In traditional supervised learning approaches, a NER model is defined as a con-
ditional probability distribution P(X | Y ) of the entity label sequence given the text
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sequence. The training objective of themodel is tomaximize this conditional probability,
which is usually achieved by maximizing the log-likelihood function:

max
θ

n∑

i=1

logP(yi | X , y1, y2, . . . , yi−1; θ) (1)

Here, θ represents model parameters, and y1, y2, . . . , yi−1 denote the labels for the first
i − 1 tokens in the sequence. In this way, the NER model learns to allocate the most
suitable label for each token, based on the context.

2.2 Contextualized Entity Marking Gen Method

For generativemodels likeGPT, given a prompt sequenceP = (p1, p2, . . . , pm), the goal
shifts to maximizing the conditional probability of the desired entity label sequence Y
given the text sequence X and the prompt sequence P. This can be expressed using
Bayes’ theorem as follows:

P(Y |X ,P; θ) = P(Y ,X ,P|θ)

P(X ,P; θ)
(2)

where P(Y ,X ,P|θ) represents the joint probability of the text sequence X , the prompt
sequence P, and the entity label sequence Y under the model parameters θ , and
P(X ,P; θ) is the marginal probability of the text sequence X and the prompt sequence
P, serving as a normalizing factor to ensure the sum of the probabilities equals 1.

To enhance model performance without altering the model parameters, the primary
strategies include:

Designing a Simplified Output Format. To minimize the differences between NER
annotation tasks and GPT generation tasks, we have devised a special label marking
mechanism. Entities’ start and end positions are marked with ‘##’, and the word fol-
lowing ‘##’ represents the entity category. Text not enclosed by ‘##’ does not belong
to any entity. This annotation method effectively completes the NER marking mapping
while also aligning with GPT’s generative pattern, allowing the model to reproduce the
original text and insert minimal labels in appropriate places, significantly reducing the
interference of extraneous information.

Providing Richer and Utility Context Information. Context learning is a common
method to stimulate the learning capability of large models. When a certain amount of
annotated data is available, leveraging vector-based retrieval to obtain the most relevant
context as the input example and using the annotated results as the output, significantly
enhances the large model’s ability to perform such tasks.
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2.3 Operational Framework

Fig. 1. The LTNER system framework, comprising three parts: data encoding and vector storage,
vector retrieval to construct contextual entity marker learning examples, and result generation and
parsing.

Our system operation is divided into three stages, as shown in Fig. 1. Firstly, we establish
a knowledge base by vectorizing the text of training data; vectors, original texts, and
annotation results are jointly stored in the vector database. Subsequently, for each piece
of test data, the same encoding process is performed to generate the vector, and with
these vectors, we retrieve the most similar N pieces of data from the knowledge base.
These data are processed according to the previously described annotation method to
form context learning examples. Finally, the sentences to be annotated are concatenated
with these examples, and the large-scalemodel generates output results. By parsing these
results according to the annotation rules, we derive the predicted output for the NER
task.



LTNER: Large Language Model Tagging 403

3 Experiment

3.1 Setup

Datasets. For the empirical data of the NER task, we selected the CoNLL-2003 dataset
[8], which is extensively employed in experimental research. The dataset is available in
both English and German versions, and for this study, we utilized the English version.
It encompasses four categories of entities: person (PER), location (LOC), organizations
(ORG), and miscellaneous (MISC). The dataset contains over 20,000 sentences and
more than 3,500 entities. To further showcase the method’s capacity for generalization,
we incorporated an additional dataset, WNUT 2017 [9]. This dataset encompasses six
distinct entity types and presents a notable challenge due to its text rife with diverse
noise patterns. Its intricate nature renders identification more arduous, rendering it an
apt choice for evaluating the efficacy of our approach in managing noisy textual data.

In the data preprocessing phase, we first converted the data from Inside-Outside-
Beginning (IOB) format to an easily manipulable raw-text-to-label Json format for
subsequent use in Prompt construction.

AL-AIN NNP B-NP B-
LOC
, , O O
United NNP B-NP B-
LOC
Arab NNP I-NP I-LOC
Emirates NNPS I-NP 
I-LOC
1996-12-06 CD I-NP O

"sentence": "AL-AIN , 
United Arab Emirates 1996-
12-06",
"label": {

"LOC": [
"AL-AIN",
"United Arab Emir-

ates "
]

}

IBO format Json fomat

3.2 Main Results

Our experiment aims to evaluate the effectiveness of contextual learning in the NER
task using LTNER. Table 1 presents a comparison of various methods including ours.
Notably, the supervised learning and model fine-tuning are represented by InstructUIE
[10] and GPT-NER [6]. InstructUIE uses instruction fine-tuning to infuse knowledge,
whereas GPT-NER enhances adaptability to NER tasks by training a specialized NER
vector encoder. Themethods discussed in themiddle section are those that do not require
fine-tuning, such as CodeIE [11] and Code4UIE [12], which employ a code format out-
put to tightly integrate NER tasks with the powerful code generation capabilities of
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large models. This class of methods, using content generative models, has shown to be
more effective than those using conversational models. The no-fine-tuning version of
GPT-NER uses a conventional encoding model to process sentences, outputting labels.
However, it extracts only one type of entity at a time and introduces optimization steps
like the secondary inspection by large models. The penultimate method employs a Json
format output that is easy to parse and well-structured, widely adopted by many main-
stream applications today. Finally, our research achieves results through a synthesis of
label annotation output and role optimization.

Table 1. Documents the comparison of LTNER with other mainstream methods, including the
model name, learning approaches, backbone networks, and the test results of precision, recall, and
F1 score.

Method Paradigm Backbone CoNLL 2003 WNUT 2017

P (%) R (%) F1 (%) F1 (%)

GoLLIE SFT Code-LLaMA 34B – – 93.10 54.30

InstructUIE SFT Flan-T5-11B – – 92.94 –

GPT-NER SFT + ICL Text-davinci-003 89.76 92.06 90.91 –

GPT-NER ICL Text-davinci-003 83.73 88.07 85.90 40.51

CodeIE ICL Code-davinci-002 – – 82.32 39.67

Code4UIE ICL Text-davinci-003 – – 83.60 41.94

Json ICL GPT-3.5-turbo 86.50 83.57 85.01 40.88

LTNER(ours) ICL GPT-3.5-turbo 92.86 90.98 91.91 49.74

From the data on the right side of the table, it’s apparent that priormethods employing
ICL average around an 85% F1 score, while those that undergo model fine-tuning hover
around 93%. Our context-aware label formatted output method achieves an F1 score of
91.9%, significantly surpassing the existing ICL techniques and closely approaching the
fine-tuned models (only a 1% gap). For the WNUT dataset, although the performance
gap between LTNER and the fine-tuned model widened (4.6%), LTNER still maintains
a significant lead of around 8% over the commonly used ICL method. These findings
indicate that our method possesses significant competitive advantages in ICL scenarios.
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3.3 Ablation Experiment

Table 2. Records the comparison results of the ablation study, which include variables such as
the generation mode, format of the labels, and the role settings for contextual learning. Constants
include the number of context samples, the vector retrieval method, and the underlying model,
among others.

Pattern Shots Tag Combinations Role Setting P (%) R (%) F1 (%)

Json 30 – SUA 84.61 82.96 83.78

Tag 30 @@Entry##Label SUA 91.66 88.33 89.97

Tag 30 ##Entry##Label SUA 91.42 89.48 90.44

Tag 30 @@Entry##Label AAA 91.53 89.23 90.37

Tag 30 ##Entry##Label AAA 91.42 90.54 90.98

In this section of the ablation study, we meticulously investigated the impact of factors
such as generation mode, label formatting, and the role setting in context learning on
the performance of the LTNER model. To ensure the accuracy and comparability of
our experiments, parameters such as the number of context samples, vector retrieval
methods, and the underlying model were held constant, using the CoNLL03 dataset
(Table 2).

In comparing generation modes, standard Json format output was juxtaposed with
label-based output. With the same 30-shot setting, switching to label-based output
resulted in a significant improvement in the F1 score, from 83.7% to 89.9%, indicating
a notable enhancement in model performance. Further analysis of various label formats
revealed that using ‘##’ as both the beginning and ending symbols for tags, despite a
modest decrease in precision (P value), markedly improved the recall rate (R value), and
consequently the F1 score. This label format aligns more closely with the training data
conventions of LLMs and is better adhered to by the model. For the effects of over ten
other label formats, please see Appendix A.1.

For dialogue-based models, assigning appropriate roles when invoking the API is
crucial. Typically, we designate the background information as the ‘System’ role, placed
at the beginning of the conversation, and the context examples’ queries and answers as
the ‘User’ and ‘Assistant’ roles respectively, with the text to be identified also portrayed
by the ‘User’ role. This method is referred to as the SUA mode. Experiments have
demonstrated that setting all roles to ‘Assistant’ (thus the AAA mode) also aids in
enhancing the recall rate. Such role configurations better suit the nature of NER tasks,
given that their inputs and outputs are fixed text and tags, unlike those in a user-machine
dialogue setting. For additional role combination effects, see Appendix A.2.

Ultimately, by integrating the double-pound tag notation with the AAA role control
strategy, an approximate 1% increment in the F1 score was achieved compared to using
the standard label format; as opposed to the conventional Json format output,we observed
a significant 7% increase.
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The findings underscore the superiority of our approach and provide high-quality
empirical evidence for standards set by top-tier conferences in the field of computer
science.

4 Analysis

In this section, we will delve into an in-depth analysis of several key factors that affect
the performance of the LTNER model. This includes the number of different contextual
examples, the quantity of labeled data, and the performance under various levels of
expenditure, further exploring the robustness of the LTNER and its advantages in terms
of low cost. We conducted these analyses using the CoNLL dataset.

4.1 Different Number of Contextual Example

Fig. 2. The Relationship between the
Num-ber of Contextual Examples and F1
Score

Fig. 3. The Relationship between F1 Scores
and Monetary Expenditure

Contextual learning has been proven to be an extremely effective method for improving
the performance of large models [5]. The contextual examples of the LTNER are pre-
sented based on the marked label format. As shown in Fig. 2, the relationship between
the number of examples and the accuracy of the model is apparent. From the figure, we
can observe that, starting from 5 samples, the accuracy of the model begins to increase
significantly and gradually stabilizes when the number of samples is between 50 and 70.
At this point, the accuracies of the Json output format and the LTNERmodel are 91.61%
and 84.59%, respectively. When the number of samples increases to 150, the accuracy
of the LTNER model reaches its highest value of 85.08%, surpassing the Json output
format, with an accuracy improvement of nearly 7%. As the number of samples contin-
ues to rise, there is a slight decline in accuracy, which may be due to the phenomenon
of long-context forgetting.



LTNER: Large Language Model Tagging 407

4.2 Different Monetary Expenditure

Currently, largemodel deployment ismore convenient than any deep learning technology
before, mainly due to its powerful context comprehension capabilities, eliminating the
need for extensive data annotation and model training, as well as separate deployment.
The infrastructure for largemodels is nowverymature, exemplified byOpenAI’s gpt-3.5-
turbo, which has become cost-effective and responsive following several iterations, with
a cost of only $0.5 per million input tokens. This section aims to control the number of
input context examples and test the accuracy distribution of the dataset at varying costs.

As observed from the results in Fig. 3, there is a significant increase in F1 scores
within the cost interval of $0 to $5. With an expenditure of $3, the accuracy reaches
91%, indicating extremely cost-effective performance. At about $5, the F1 score reaches
a turning point at 91.62%. Subsequent improvements in accuracy tend to plateau as the
expenditure increases, consistent with findings from previous sample size experiments.
These results highlight the low-cost advantage of LTNER.

4.3 Different Number of Annotated Data

Fig. 4. The Relationship between the Number of Annotated Data and F1 Score (With the Number
of Contextual Examples Fixed at 30)

Another significant advantage of employing large language models for NLP tasks is that
they do not rely on the vast amounts of annotated data required by traditional supervised
learning. A handful of annotated examples can yield quite impressive outcomes. This
section of the study examines the results of NER tasks under different volumes of
annotated data. To control for variables, we fixed the number of contextual examples at
30 and built a vector retrieval library by randomly selecting a certain amount of annotated
data.

The results depicted inFig. 4 demonstrate thatwith just 30 annotated examples, theF1
scores for Json and LTNER can reach 79.75% (69.43/83.72) and 90.75% (82.56/90.97)
respectively, of the performance attained with full data annotation. Notably, LTNER
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exhibits markedly superior learning efficiency with the same data amount. When the
volume of annotated data increases from 30 to 500, the F1 score rises rapidly, with
LTNER achieving 98.7% (89.86/90.97) of the performance of full data annotation with
only 1/30 of the annotated data. However, as the volume of data continues to expand,
the rate of performance improvement slows down. This experiment vividly illustrates
the potent learning capabilities of large models when presented with a small number of
samples; a modest amount of data annotation can lead to such high output efficacy.

5 Related Work

Generative Named Entity Recognition. In the field of NLP, NER has become an
increasingly studied direction. This method enhances the accuracy of entity recognition
by controlling the format of the model’s output text and performingmulti-step inference.
For instance, CodeIE and Code4UIE, leveraging the powerful code generation capabili-
ties of large models, transform the entity recognition task into a code content generation
task, thus achieving better structured output. GPT-NER employs a concise tagging and
self-checking mechanism, concentrating on extracting entities of a single category. Our
research reveals that named entity recognition fundamentally requires strong context
support. Spreading out the entity recognition process might lead to misclassifications of
the same entity into multiple categories due to a lack of a coherent context.

Multi-stage Named Entity Recognition. Decomposing complex tasks into multiple
steps and solving them individually is considered an effective way to enhance the per-
formance of LLMs. ChatIE [13] is a prime example; it deconstructs the information
extraction task into a multi-turn dialogue process: first identifying the types of entities to
be recognized, then precisely extracting them. The research [14] proposes that by sepa-
rating content generation from the process of structuring, the model can concentrate on
each step independently, thus alleviating the pressure of handling two orthogonal tasks
simultaneously. The quality of task prompts is crucial to the model’s performance; the
zero-sample self-annotation plus checking approach [15] enables the acquisition of a
knowledge base in an unsupervised manner, followed by enhancing the inference based
on these self-annotated examples. C-ICL [16] utilizes the construction of positive and
negative examples for contextual learning demonstrations, thereby strengthening the
LLMs’ ability to extract entities and relationships.

Fine-TunedNamedEntityRecognition. In the realmoffine-tunednamedentity recog-
nition, GPT-NER has developed an entity vector encoder to improve the efficiency and
effectiveness of retrieving examples. GoLLIE [17] explores fine-tuning LLMs to meet
precise instructional requirements, thus enhancing the zero-shot performance of LLMs
in unseen information extraction (IE) tasks. InstructUIE utilizes structured instructions
to fine-tune LLMs, which boosts UIE’s ability to consistently simulate different IE tasks
and capture the dependencies between them. Meanwhile, PaDeLLM-NER [18] signifi-
cantly accelerates the reasoning speed for NER tasks by parallel decoding all mentions.
The study [7] also finds that including negative examples in the training process can
significantly improve the model’s recognition performance for various tasks.
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6 Conclusion

In this study, we introduce an innovative context marking extraction method named
LTNER. By adopting a simple tagging generation format, this method substantially
enhances the performance of large-scale language models on NER tasks. The outcomes
not only surpass existing context-learning based methods but also approach the effects
of model fine-tuning. Significantly, our experimental results demonstrate that LTNER
achieves effective entity extraction with few samples, sparse annotation data, and at a
low cost, thereby offering novel approaches for the rapid deployment and application
of NER tasks. We believe that potential future research directions include exploring
the performance potential of different large-scale models such as GPT-4, improving
LTNER to enhance its recognition capabilities in scenarios involving nested entities,
and integrating the automated entity extraction capabilities of large-scale models with
a broader range of practical applications to promote the extensive application of NLP
technologies.

A. Appendix

A.1. Analyzing the Relationship Between Different Tags and Accuracy

To rapidly ascertain the distinctions among various tags, we conducted experiments
using the first 500 entries of the test set, with the number of context examples set at 30
(Table 3).

Table 3. The Relationship Between Tags and NER Performance

Tag Combinations P (%) R (%) F1 (%)

[“##”, “@@”] 91.71 86.58 89.07

[“@@”, “##”] 91.19 86.28 88.66

[“@@”, “##”] 91.72 86.69 89.13

[“##”, “##”] 91.44 89.02 90.22

[“@@”, “@@”] 89.40 88.40 88.90

[“@”, “#”] 91.92 82.20 86.79

[“@”, “@”] 91.43 87.89 89.63

[“#”, “#”] 91.23 86.78 89.47

[“#”, “@”] 92.38 85.15 88.62

[“[”, “]”] 0 0 0

[“”,“”,“”] 0 0 0

[“<”, “>”] 89.11 88.20 88.65

(continued)
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Table 3. (continued)

Tag Combinations P (%) R (%) F1 (%)

[“(”, “)”] 0 0 0

[“+”, “+”] 0 0 0

[“?”, “?”] 0 0 0

[“%”, “%”] 88.31 87.59 87.95

[“”, “”] 86.93 85.34 86.13

[“{”, “}”] 91.40 88.71 90.04

[“{{”, “}}”] 91.12 88.71 89.90

[“[[”, “]]”] 0 0 0

[“”,“”,“”] 0 0 0

[“<< ”, “>>”] 91.67 89.52 90.58

[“((”, “))”] 0 0 0

[“%%”, “%%”] 89.39 89.12 89.26

[“”, “”] 90.34 89.42 89.87

A.2. Analyzing the Relationship Between Different Roles and Accuracy

To rapidly ascertain the distinctions among different roles, we conducted experiments
using the entire set of test data, with the number of context examples set at 30 (Table 4).

Table 4. The Relationship Between Role Settings and NER Performance

Role Setting P (%) R (%) F1 (%)

UUU 75.13 82.98 78.86

AAA 85.49 84.31 84.90

SUU 60.77 81.57 69.65

SAA 85.04 83.37 84.19

SUA 84.84 83.36 84.10

AUA 85.46 83.18 84.30

UUA 85.00 83.53 84.26
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Abstract. With the rapid development of deep learning methods, there
have been many breakthroughs in the field of text classification. Mod-
els developed for this task have achievedhigh accuracy. However, most
of these models are trained using labeled data from seen domains. It
is difficult for these models to maintain high accuracy in a new chal-
lenging unseen domain, which is directly related to the generalization of
the model. In this paper, we study the multi-source Domain Generaliza-
tion for text classification and propose a framework to use multiple seen
domains to train a model that can achieve high accuracy in an unseen
domain. Specifically, we propose a multi-source meta-learning Domain
Generalization framework to simulate the process of model generaliza-
tion to an unseen domain, so as to extract sufficient domain-related
features. We introduce a memory mechanism to store domain-specific
features, which coordinate with the meta-learning framework. Besides,
we adopt a novel “jury” mechanism that enables the model to learn
sufficient domain-invariant features. Experiments demonstrate that our
meta-learning framework can effectively enhance the ability of the model
to generalize to an unseen domain and can outperform the state-of-the-
art methods on multi-source text classification datasets.

Keywords: Text classification · multi sources · meta-learning ·
memory

1 Introduction

The text classification of social media is crucial not only for conducting surveys
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products or services, but also plays a significant role in national security and
public opinion analysis [17,18]. While recent deep learning models of text classi-
fication [1–3] demonstrate efficacy in a seen domain (i.e., a domain with labeled
data), most of them do not perform well in an unseen domain (i.e., a domain only
with unlabeled data). However, in real life, text classification is inevitably used
in unseen domains. Text classification can be considered as a domain-dependent
task, because a sentence may convey different meanings in various domains. For
instance, the term “short” in the context of “short service time” in an electronic
review is construed as negative, whereas in a restaurant review, “short” in the
context of “short waiting time” is considered positive.

Domain generalization (DG) is a type of transfer learning task. A similar task
is Domain Adaptation, which allows access to both source domain and target
domain data. Unlike Domain Adaptation, Domain Generalization only permits
access to data from the visible domains. The goal of the Domain generalization
approach is to address this problem by training a well-generalized model only
with labeled data from one or more seen source domains and testing on an
unseen domain. Although there has been considerable research on DG in the
field of image classification, there have been few studies address in DG of text
classification. Most studies in DG of text classification are based on Mixture of
Experts (MoE) [4,5]. This approach involves training domain-specific experts
and a domain-shared expert independently, followed by their aggregation using
a score function. However, the effectiveness of these methods is constrained. In
contrast, in real-world scenarios, individuals exhibit a natural ability to swiftly
adapt to texts in unknown domains. We posit that the differentiating factor
between humans and machines lies in humans’ capacity to autonomously cate-
gorize domain knowledge into domain-specific and domain-invariant categories
and form semantic memory. This ability enables humans to enhance their gen-
eralization capacity using prior knowledge. Inspired by this, we contend that
storing domain-specific knowledge and domain-invariant knowledge can enhance
the DG capabilities of the model.

In this paper, we propose a Multi-source Meta-learning framework relying on
a “Jury” mechanism and Memory module (MMJM) to facilitate the learning of
both domain-invariant and domain-specific features. Specifically, we introduce a
meta-learning framework [6] based on the multi-source DG, which simulates how
the model generalizes to an unseen domain. We suppose that the meta-learning
approach aids the model in differentiating domains and learning the way of
classification in an unseen domain by enhancing its ability to capture domain-
related features. Additionally, we incorporate a memory mechanism [6] to more
effectively capture domain-specific features, leveraging domain information com-
prehensively while mitigating the risk of unstable optimization. Furthermore, we
introduce an innovative “Jury” mechanism [7] to exploit domain-invariant fea-
tures. This mechanism promotes features from the same class to be closer and
features from different classes to be further away.

Our contributions are summarized as follows:
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– We propose a novel multi-source meta-learning framework with the memory
and “jury” mechanism, which simulates how the model generalizes to an
unseen domain.

– We are the first to introduce a memory mechanism into DG for text classifica-
tion, aimed at learning both domain-specific and domain-invariant features.

– We demonstrate the effectiveness of our proposed framework through exten-
sive experiments and detailed analyses.

2 Related Work

Domain Generalization (DG). In the DG method, the model can access one
or more source domains only with labeled data and needs to be tested in the tar-
get domain with unlabeled data. Most previous research focuses on extracting
domain-invariant representation. The first widely explored method is domain
adversarial training. Many studies [4,5,8,9] use this to reduce the divergence
between domains. Another method is based on a mixture of experts (MoE). For
example, the work [4] propose a set of parallel domain-specific experts to get
multiple domain-related classification results and use a distance metric compo-
nent to compute the mix score to choose the expert. Recently, with the impres-
sive advancements in large language models, many have demonstrated excellent
generalization capabilities. Models like ChatGPT (OpenAI), ChatGLM [26,27],
Llama [28], Mixtral [29], and others have shown outstanding abilities in domain
generalization. These models exhibit excellent classification performance across
various domains, demonstrating remarkable domain generalization capabilities.

Meta-learning. The concept of meta-learning is “learning to learn” [10]. Its
main idea is to divide the training stage into a meta-train stage and a meta-test
stage, using multi-step gradient descent to learn a good initialization. MLDG
[11] is the first to incorporate meta-learning into DG, innovatively transforming
the meta-train and meta-test process to simulate domain shift situations. This
development catalyzes the integration of various meta-learning methods into
DG. For example, [12] suggests introducing a regularization function for meta-
learning, which is called meta regularizer (MetaReg). What is relevant to us is
[6], which introduces a meta-learning framework with a memory module in DG
for the Re-Identification task. Different from previous methods, we are the first to
introduce the meta-learning method into DG for text classification, combining
it with a memory module and a “jury” module.

Contrastive Learning. Contrastive Learning [13] is commonly employed to
learn the general features by training models to identify similarities and differ-
ences among data points. The representative learning style [14] is to make an
anchor closer to a “positive” sample and further from many “negative” samples
in the representation space. The work [15] first introduces contrastive learn-
ing into text classification. Then, [7] introduces a “jury” mechanism, which can
learn domain-invariant features with a memory module. Recently, [16] introduces
supervised contrastive learning into DG in text classification to help “learn an
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ideal joint hypothesis of the source domains”. Inspired by these methods, we
introduce the “jury” mechanism into DG for text classification.

3 Method

3.1 Problem Definition

The goal of the multi-source DG is to train a model using multiple seen
source domains with labeled data, ensuring its effective performance in previ-
ously unseen target domains. In this paper, we consider D seen source domains
DS = {Dd

S}D
d=1 as the training set and only one unseen target domain DT as the

test set. The data of each source domain is defined as: Dd
S = {(xd,i, yd,i)}Nd

i=1,
where Nd is the number of samples in the d-th source domain; xd,i is a sample
from the d-th source domain; yd,i is the label of xd,i, where yd,i = {c}NC

c=1, NC is
the number of the class.

3.2 Meta-learning Framework

Following [6], we introduce meta-learning to simulate how the model generalizes
to an unseen domain. We divide the training stage into meta-train and meta-test
stages. At the beginning of each training epoch, we randomly select one domain’s
data as the meta-test dataset, and the remaining D − 1 domains’ data as the
meta-train datasets. Our model is shown in Fig. 1.

We update the model with meta-train and meta-test stages together. At first,
we copy the original model. During the meta-train stage, we calculate the meta-
train loss Lmtr with the original model. This loss is composed of three parts: the
classification loss LClass calculated by the classifier C, the similarity loss LMem

calculated by comparing the features extracted by the encoder with those stored
in the memory module, and the LJury calculated by the “jury” mechanism.
Then, we update the copied model with the meta-train loss. During the meta-
test stage, meta-test loss Lmte is calculated in a similar way as in the meta-
train stage. Finally, we update the original model with both the meta-train
and meta-test losses. Therefore, the model parameters are updated through the
combined meta-train stage and meta-test stages. The final model update formula
is shown in Eq. 1:

arg min
θq,C

Lmtr(θq,C) + Lmte(Adam(∇θq,C
Lmtr(θq,C), α)) (1)

where θq,C denotes the parameters of the encoder Eq and the classifier C; Lmtr

is the meta-train loss; Lmte is the meta-test loss; Adam is an optimizer; and α is
the inner loop learning rate.

3.3 Memory Module

The memory module is used in conjunction with meta-learning algorithms to
store domain-specific features for each domain. We maintain a memory module
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Fig. 1. The proposed framework MMJM. Figure 1a shows the overall meta-learning
framework and the Fig. 1b shows the detailed computation procedure of the meta-train
and meta-test stages.

for each domain, denoted as M = {Md}D
d=1, containing features for each class of

that domain, where D is the number of source domains. Each domain’s memory
module contains NC feature slots Md = {Md[c]}NC

c=1, where NC is the number of
classes. The dimension of a slot is equal to the dimension of the encoder Eq. We
calculate the memory-based similarity loss using classification features encoded
by the encoder Eq and the slot Md[c] of each memory.
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Initialization. We initialize all memory modules before the training stage. Dur-
ing initialization, we sequentially initialize all slots in every memory module of
all domains in the same way. Specifically, we use the pre-trained encoder to
sequentially extract the features of all samples from a class in a source domain.
We then initialize the corresponding slot with a domain-specific feature. We cal-
culate the mean of the features of each class and use it as the initialization value
for each slot.

Update. After each iteration, we update the slots of each domain sequentially.
All slots in all domains are updated in the same way. We update a slot by
encoding the features of that class in the current iteration and using a momentum
method to update the corresponding class slot, as shown in Eq. 2:

Md[c] = m · Md[c] + (1 − m) · E[c] (2)

where Md[c] is the slot c of the domain memory d; momentum m is a momentum
parameter; E[c] consists of all the features of the c class, defined as: E[c] =
1
n

∑n
i=1 E(xd,i), where n is the number of samples of the c class in the d domain

for that iteration.

Memory-Based Similarity Loss. We obtain the memory-based similarity loss
by calculating the similarity score between the features encoded by the encoder
Eq and the slots in the memory module. We calculate the similarity between
the feature E(xd,i) and the corresponding slot in memory, and normalize these
values with softmax. The calculation method is shown in Eq. 3:

LMem = −log
exp((Md[c])T E(xd,i)/τ)

∑C
c=1 exp((Md[c])T E(xd,i)/τ)

(3)

where τ is a temperature parameter.

3.4 “Jury” Mechanism

The domain-invariant features are directly related to the semantic features. We
take x+ which is generated by data augmentation, as the semantically identical
sample of input x. We introduce the “jury” mechanism mentioned in [7] to
ensure the semantic similarity of each pair, x and x+. To make the model evolve
smoothly and maintain the consistency of representation over time, we construct
an augmentation-related encoder, Ek, that updates parameters by momentum.

Word Repetition. Following [15], to change the semantics of the text as little
as possible, we choose “word repetition” as our data augmentation method.
We randomly repeat some words in a sentence. Given a text x with words
w1, ..., wn in it, x = {w1, w2, ..., wNtext

}, where Ntext is the length of the
text. We define the maximum word repetition rate as r. Then, the number of
repeated words in a text, k is determined by random sampling within the range
[0,maximum(2, int(r×Ntext))].This parameter is used to expand the text length
during word repetition. In this way, we get the set rep of all repeated words,
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obtained by uniform sampling. If the words w1 and wn are in the set rep, the
text is converted to x+ = {w1, w1, w2, ..., wn, wn, ..., wNtext

}.

Momentum Update. We maintain an augmentation-related encoder Ek.
Unlike the encoder Eq, which updates parameters through back propagation,
the encoder Ek updates parameters using momentum, as shown in Eq. 4:

θk = λ · θk + (1 − λ) · θq (4)

where λ is a momentum parameter; θq and θk denote the parameters of encoders
Eq and Ek, respectively. We believe this update method ensures the smoothness
of the encoder Ek updates, reduces differences between the two encoders, and
maintains temporal consistency.

“Jury” Mechanism Related Loss. We construct domain-independent mem-
ories to store domain-invariant features. We aim for x to have a higher simi-
larity with the semantically identical sample x+

d,i and a lower similarity with
other samples. We build a domain-independent memory for each class to store
the domain-invariant class features. We define NC domain-independent memo-
ries Q = (Q1, ..., Qc, ..., QNC

), where c ∈ [1, NC ] and NC is the total number
of classes. Each domain-independent memory is structured as a queue of size
NQ: [q1c , ..., qj

c , ..., q
NQ
c ], where j ∈ [1, NQ], and qj

c stores the class feature in
position j of the Qc domain-independent memory. We obtain the class features
of each instance x+

d,i through the encoder Ek and input them into the corre-
sponding class’s domain-independent memory sequentially. We do not distin-
guish the domain of x+

d,i, but store all x+
d,i sequentially into the corresponding

class’s domain-independent memory. We place each newest feature at the end
of the domain-independent memory and delete the oldest feature in the memory.

All features in a domain-independent memory participate in calculating the
similarity between xd,i and its augmented sample x+

d,i. Both xd,i and x+
d,i com-

pute the cosine similarity with the domain-independent memory corresponding
to the current sample’s class. We define Sd,i = [s1, ..., sj , ...sNQ

] as the similar-
ity score between xd,i and all class features stored in the corresponding class’s
domain-independent memory. We calculate the similarity score between xd,i

and the corresponding domain-independent memory using the softmax function,
as shown in Eq. 5:

sj =
exp((qj

c)
T Eq(xd,i)/τ)

∑NQ

j=1 exp((qj
c)T Eq(xd,i)/τ)

(5)

Similarly, we define S+
d,i = [s+1 , ..., s+j , ...s+NQ

] as the similarity score between
x+

d,i and all class features stored in the corresponding class’s domain-independent
memory. The method for calculating the similarity score between x+

d,i and the
domain-independent memory is shown in Eq. 6:

s+j =
exp((qj

c)
T Ek(x+

d,i)/τ)
∑NQ

j=1 exp((qj
c)T Ek(x+

d,i)/τ)
(6)
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Then, we penalize cross-entropy loss between the two similarity scores sj and
s+j , as shown in Eq. 7:

LJury = − 1
Nd

Nd∑

i=0

s+j (x+
d,i)log(sj(xd,i)) (7)

where Nd is the number of samples in the d-th source domain.

3.5 Training Procedure

We summarize the overall training process of the model in this section. Before
training, we initialize the memory module and the domain-independent memory
in the “jury” mechanism. During each iteration, the D datasets are randomly
divided into one meta-test dataset and D − 1 meta-train datasets. Then, the
meta-train and meta-test stages work together to optimize the model.

Meta-train. In the meta-train stage, we first extract the same number of train-
ing samples xd,i from each meta-train domain. Then we input these samples
into encoder Eq to extract features Eq(xd,i). The features are subsequently fed
into classifier C to calculate classification losses and memory-based similarity
loss with the slots in the memory module. Besides, we input augmented sam-
ples x+

d,i into encoder Ek to extract augmented features Ek(x+
d,i). The “jury”

mechanism-related loss is calculated with features Eq(xd,i) and augmented fea-
tures Ek(x+

d,i). Finally, we update the domain-independent memory built for the
“jury” mechanism. The meta-train loss comprises the meta-train classification
loss, memory-based similarity loss, and the “jury” mechanism-related loss. The
formula is shown in Eq. 8:

Ld
mtr = LC(Xd; θq; θC) + LMem(Xd;Md; θq)+

LJury(Xd;Q; θk)
(8)

where θq, θC , θk denote parameters of the encoder Eq, the classifier C, the
encoder Ek respectively; Xd and Md denote the samples and the memory module
of domain d; Q denotes the domain-independent memory.

The total meta-train loss is the averaged of the losses from all meta-train
domains:

Lmtr =
1

D − 1

D−1∑

d=1

Ld
mtr (9)

Meta-test. In the meta-test stage, we first copy the encoder Eq and classifier
C. Then, we update them with the meta-train loss Lmtr. We update the encoder
Ek with parameters θ′

q, where θ′
q represents the updated parameters of Eq. The

meta-test loss is calculated in the same way as the meta-train loss. It is composed
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of the meta-test classification loss, the memory-based similarity loss, and the
“jury” mechanism-related loss. The formula is shown in Eq. 9:

Lmte = LC(XT ; θ′
q; θ

′
C) + LMem(XT ;MT ; θ′

q)+

LJury(XT ;Q; θ′
k)

(10)

where θ′
q, θ′

C , and θ′
k denote the optimized parameters of the encoder Eq, the

classifier C, and the encoder Ek, respectively; Xd and Md denote the samples and
the memory module of d domain; Q denotes the domain-independent memory.

Meta Optimization. Finally, we optimize the model as shown in Eq. 1. Our
training procedure is detailed in Algorithm1:

Algorithm 1: Training Procedure of MMJM
Input: D source domains DS = {Dd

S}D
d=1.

Initialize: Eq parameterized by θq; C parameterized by θC ;
Ek parameterized by θk; Batch size B
Inner and outer loop learning rates α and β;

1 Memory Module Initialization:
2 foreach d do
3 Extract all the samples’ features in domain d;
4 Average features according to classes C;
5 Initialize memory slots Md[C] with average values.

6 end
7 Domain-invariant memory Initialization:
8 Random initialize the domain-invariant memory Q.
9 foreach iter do

10 Randomly split D into Dmtr and Dmte;
11 Meta-train:

12 Sample batch B from each domain Xd = {xi}B
i=1

13 Compute meta-train loss Lmtr with Eq. 9;
14 Meta-Test:

15 Sample batch B from meta-test domain XT = {xi}B
i=1;

16 Copy the encoder Eq and classifer C and update θq,C :
θ′

q,C ← Adam(∇θLmtr, θq,C , α);
17 Compute meta-test loss Lmte with Eq. 10;
18 Update the domain-invariant memory Q;
19 Update θk with the Eq. 4
20 Update all domain-specific memory M ;
21 Meta Optimization:
22 Compute gradient: g ← Adam(∇θq,C (Lmtr(θq,C) + Lmte(θ

′
q,C))

23 Update θq,C : θq,C ← Adam(g, θq,C , β)

24 end
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4 Experimental Setup

4.1 Experimental Data and Evaluation Metrics

To verify the effectiveness of this method, we conduct experiments on two
multi-source text classification datasets: the Amazon product review dataset
[17] for the multi-source sentiment analysis, and the multi-source rumor detec-
tion dataset [18]. The Amazon product review dataset contains 8,000 reviews,
evenly distributed across four domains: Books (B), DVDs (D), Kitchens(K),
and Electronics (E). Each domain has 1,000 positive reviews and 1,000 negative
reviews. The multi-source rumor detection dataset consists of 5,802 annotated
tweets from five different events: Charlie Hebdo (CH), Ferguson (F), German-
wings (GW), Ottawa Shooting (OS), and Sydney Siege (SS), labeled as rumors
or non-rumors (1,972 rumors, 3,830 non-rumors).

In the experiments, for each dataset, we alternately select one domain as the
test set while using the remaining domains as the training set. For evaluation,
we use the average accuracy for multi-source sentiment analysis and the average
F1 score for multi-source rumor detection, calculated by averaging the results
from experiments where each domain is used as the test set.

4.2 Baselines

We compare our method with several state-of-the-art approaches. However, pre-
vious methods are mostly based on the Domain Adaptation setting. For fair-
ness, we employ these methods under the Domain Generalization setting.

Basic fine-tunes a model on labeled data from source domains and directly
tests it on the target domain. Gen refers to [5], which proposes a model com-
posed of several domain-specific CNNs to compute private representations and a
shared CNN to compute shared representations, coupled with adversarial train-
ing. The MoE model consists of dedicated models for each source domain and a
global model trained on labeled data from all source domains. During inference,
the ensemble predictions of all models are aggregated. In this context, MoE [9]
refers to a MoE model without a pretrained model, while MoE-Avg [9] refers
to a MoE model with a pretrained model. PCL refers to a proxy-based con-
trastive learning method [19], where the traditional sample-to-sample mecha-
nism is replaced by the proxy-to-sample mechanism. Intra [20,21] refers to cen-
ter loss, which minimizes the distance between each example and its class center.
Adv refers to the well-studied domain adversarial adaptation method [22], which
reverses the gradient calculated by the domain classifier. Agr-Sum [23] refers
to two gradient agreement strategies based on gradient surgery to reduce the
effect of conflicting gradients during domain generalization.

4.3 Implement Details

For all experiments, due to GPU memory constraints, we adapt Distil-Bert-base-
uncased [3] and Bert-base-uncased [24] pretrained models as our encoders. The
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training batch size is set to 8, and we train 15 epochs. We set the token number of
samples to 512. To optimize our model, we use the Adam optimizer with a weight
decay of 5×10−4 to optimize the encoder Eq. The inner loop learning rate α and
the outer loop learning rate β start at 1 × 10−6 and are increased to 1 × 10−5 in
the first epoch. For the memory module, the momentum coefficient m is set to
0.2 and the temperature factor τ is set to 0.05. For the “jury” mechanism, the
momentum coefficient λ is set to 0.999, and the size of the domain-independent
memory is set to 64 × 768.

4.4 Experimental Results

The experimental results of text classification are shown in Table 1. First, in the
multi-source sentiment analysis and rumor detection, our method achieves the
best performance, demonstrating its effectiveness for DG in the text classifica-
tion. Second, compared to the meta-learning baseline MLDG and the contrastive
learning baseline SCL, our method achieves higher accuracy. This success high-
lights the advantage of capturing both domain-invariant and domain-specific fea-

Table 1. Experiments Results Compared with State-of-the-art Approaches.

Method D B E K Avg Acc CH F GW OS S Avg F1

Gen 77.9 77.1 80.9 80.9 79.20 – – – – – –

MoE 87.7 87.9 89.5 90.5 88.90 – – – – – –

DistilBert

MoE-Avg 88.9 90.0 90.6 90.4 89.98 67.9 45.4 74.5 62.6 64.7 63.02

SCL 90.1 90.0 90.3 90.8 90.30 68.1 44.5 75.4 66.5 65.2 63.94

Basic 89.1 89.8 90.1 89.3 89.58 66.1 44.7 71.9 61.0 63.3 61.40

MLDG 89.5 90.3 90.8 90.7 90.33 66.1 52 79.8 69.9 63.1 66.18

PCL 89.2 89.8 90.3 90.5 89.95 60.4 50.1 75.7 70.9 64.5 64.32

Intra 88.5 89.8 90.1 89.2 89.40 64.1 42.9 70.8 61.8 62.4 60.40

Adv 88.4 89.0 89.6 90.0 89.25 64.8 42.2 65.9 61.4 62.8 59.42

Agr-Sum 88.8 89.1 90 90.3 89.55 67.5 52.0 76.9 69.0 64.3 65.94

MMJM 89.8 90.5 90.8 90.8 90.48 66.3 52.3 77.1 73.4 72.7 68.36

Bert

MoE-Avg 90.4 91.4 91.5 92.3 91.4 67.7 46.7 80.8 53.7 60.5 61.88

Basic 90.5 91.2 92.2 91.9 91.45 66.6 46.0 73.7 69.2 61.8 63.46

MLDG 91.1 91.9 91.8 92.5 91.83 67.8 50.3 77.3 71.3 60.5 65.44

PCL 89.5 91.4 92.4 91.8 91.28 64.1 53.9 70.1 70.9 66.2 65.04

Intra 90.4 91.2 91.3 92.1 91.25 63.4 47.9 71.0 67.6 57.7 61.52

Adv 91.1 91.2 91.1 92.0 91.35 66.1 44.4 69.0 70.3 62.2 62.40

Agr-Sum 90.2 91.1 91.2 91.8 91.08 67.9 53.4 77.3 70.5 57.6 65.34

MMJM 91.2 91.7 91.9 92.7 91.88 68.8 52.6 78.3 73.0 70.6 68.66
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tures. Third, our method does not reach peak performance in every domain. We
attribute this to the ambiguous characteristics of data in some areas. Nonethe-
less, our strong performance across domains, as evidenced by average scores,
highlights the method’s adaptability in diverse settings.

4.5 Ablation Studies

To further analyze the effectiveness of each part of our model, we conduct abla-
tion studies. The results are shown in Table 2, where “Meta” indicates training
with the meta-learning framework, “Mem” indicates training with the mem-
ory module, “Jury” indicates training with the “jury” mechanism, “SA” refers
the multi-source sentiment Analysis, and “RD” refers the multi-source rumor
detection. All ablation studies are based on distil-Bert.

Effectiveness of Meta-learning. We conduct the ablation study to investigate
the proposed meta-learning strategy. The model trained with the proposed meta-
learning strategy could improve the results. For sentiment analysis, the model
trained with a meta-learning strategy increases the basic baseline by 1.02% in
the average classification accuracy. For rumor detection, the average F1 score
increases by 7.6%. We believe that the implementation of meta-train and meta-
test processes within the meta-learning framework could help the model adapt
to the training of multi-source domains and learn domain-related features. This
approach potentially reduces the risk of the model overfitting to domain biases,
thereby enhancing the model’s performance in encountering unseen domains.
However, the introduction of the meta-learning approach consumes substantial
computational resources and memory. We believe this is due to the character-
istics of the meta-learning method, which combines data from multiple source
domains and updates parameters in two stages.

Table 2. Ablation Experiments

Meta Mem Jury SA Avg Acc RD Avg F1 RAM usage GPU usage

× × × 89.58 61.40 2711.71 MB 1058.31 MB

� × × 90.6 69.00 2871.52 MB 1816.93 MB

× × � 90.28 66.96 2764.84 MB 1312.36 MB

� � × 90.38 68.30 2941.57 MB 1817.65 MB

� × � 90.33 69.32 2894.88 MB 2072.82 MB

� � � 90.43 68.36 3031.73 MB 2073.60 MB

Effectiveness of the “Jury” Mechanism. The “jury” mechanism related
loss could increase the classification accuracy. For sentiment analysis, compared
with the Distil-Bert baseline, the model trained with the “jury” mechanism
could achieve an average accuracy increase of 0.7%. For rumor detection, the
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average F1 score increases by 5.56%. We believe that this is because the model is
trained with a large number of data-augmented examples, which could help
the model learn to reduce the domain divergence between different domains.
What’s more, it’s obvious that the average F1 score increases by 0.32% for rumor
detection, but the average accuracy reduces by 0.27% for sentiment analysis when
combining the meta-learning method and the “jury” mechanism. We think that
this observation may be attributed to the more apparent similarities among data
from different domains in sentiment analysis. Additionally, we find the ’jury’
mechanism demands relatively fewer computational resources and memory. It
is a low-cost method that can enhance the model’s generalization capabilities.

Effectiveness of Memory Module. Contrary to expectations, the meta-
learning framework with the memory module can’t further increase the accuracy
of classification compared to using meta-learning alone. However, compared to
the model without the memory module, MMJM could increase the average sen-
timent analysis accuracy by 1%. We believe that the memory module is helpful
when combined with the domain-invariant features. Additionally, the memory
module requires minimal computational resources and relatively low memory.
We believe that the introduction of the memory module, despite its low cost,
can significantly enhance the generalization capability of the entire framework.
Thus, the inclusion of the memory module is highly worthwhile.

4.6 Visualization

To better understand the effectiveness of our method, we provide the t-SNE visu-
alizations [25] of our MMJM and some baselines to intuitively assess the perfor-
mance of our model on domain discrepancy, as illustrated in Fig. 2. We observe
that features from the source and target domains of MMJM are much more
compact, which indicates our framework can learn more domain-specific and
domain-invariant features.

Fig. 2. t-SNE visualization of the embeddings from Distil-Bert. We choose models
with source domains D, K, E and target domain B and sample 1,000 examples for each
domain.
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4.7 Comparison with Large Language Model

To ensure the comprehensiveness of our experiments, we also explored the per-
formance of large language models on the datasets. The experimental results are
shown in Table 3. It can be seen that on the sentiment classification dataset,
ChatGPT1 performs well, with an average classification accuracy 2.1% higher
than MMJM. This indicates that large language models have strong senti-
ment perception abilities and can achieve good results across different domains,
demonstrating strong generalization capabilities. However, on the rumor dataset,
its performance is poor, which we believe is due to the lack of relevant knowl-
edge about rumor detection in the language model. Therefore, we believe our
model has research value, as it uses only 1% of the parameters of ChatGPT yet
achieves good classification performance, significantly saving training resources
and time costs for training large models. Additionally, it can still achieve good
results through training on specific topics.

4.8 Case Study

We present a case study to intuitively understand our framework mechanism, as
shown in Table 4. The encoder for both models is distil-Bert. P and N respec-
tively denote the positive and negative predictions. The symbol ✘ indicates a
wrong prediction. Cases from four domains B, D, E, and K. The second sen-
tence shows that both the basic baseline and our model MMJM can make the
correct prediction. We believe that is because the sentence is relatively simple
making it easier to identify key information such as “books” and “stupid”. How-
ever, the performances of the two models in the third sentence are different.
That demonstrates that our MMJM model can address complicated and infor-
mal sentences, but the basic model focuses on the sentiment words “kind” and
“clear”. What’s more, we find both our model and the basic model would make
the wrong answer when the class-related information or sentiment expression is
unclear, like the first and the fourth sentences. Specifically, the fourth sentence
contains class-related words like “rip” and “hard”, which leads to the mistake,
while the first sentence has an unclear sentiment expression. ALL in all, our
method makes the true prediction most of the time, so we make the conclu-
sion that our model MMJM can capture the domain-related and class-related
information, though there is still room for improvement.

Table 3. Experiments Results Compared with ChatGPT.

Method D B E K Avg Acc CH F GW OS S Avg F1

ChatGPT 93.1 93.2 94.4 95.2 93.98 40.9 36.5 52.0 39.3 48.9 43.52

MMJM 91.2 91.7 91.9 92.7 91.88 68.8 52.6 78.3 73.0 70.6 68.66

1 gpt-3.5-turbo.
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Table 4. Case study between the proposed framework and the basic model.

Text Basic MMJM

I saw the scene, where they have lissa chained to the pool table and
gagged in the basement. I didn’t understand most of the movie. I bet kim
possible, Ron Stoppabl, and rufus can deal with them.(D)

N(✘) N(✘)

I really feel stupid about ordering this book. Why did I do it?. The story
is that stacey is moving back to new york.(B)

N N

Very clear image! Probably the best that I saw on this kind devices! No
software availble. Device is useless if you do not have windows media os.
Absolutely no linux support. Good hardware... but useless... you have to
buy software for $70- 120 to be able use it...(E)

P(✘) N

It really does make a difference when some of the chlorine is filtered out
of your coffee (and even more so in your bourbon) water, but these filters
are a rip off price-wise. It’s hard to believe braun wouldn’t make money
selling them at a third of the price.(K)

(✘) N(✘)

5 Conclusion

In this paper, we propose a multi-source meta-learning framework for DG in text
classification. The meta-learning strategy simulates how the model generalizes
to an unseen domain. Additionally, we incorporate a memory-based module and
the “jury” mechanism to extract domain-invariant features and domain-specific
features, further enhancing the model’s performance.
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Abstract. This paper presents a transformer-driven approach for non-
standard word (NSW) normalization in Bengali text-to-speech synthe-
sis (TTS) systems. Our text normalization (TN) approach is realized
over three modules: pre-processing, NSW classification, and token-to-
word expansion. The pre-processing module tokenizes the input sentences
into words. The non-standard words are classified based on their format
and other discriminative features in the next module. Apart from our
proposed transformer-based approach, the present study explored four
baseline TN approaches: rule-based, Conditional Random Field (CRF)-
based, Long Short-Term Memory (LSTM)-based, and biLSTM-based.
Based on the predicted types of the NSWs, standard words (SWs) are
generated through token-to-word expansion using hand-crafted expan-
sion rules. The performance of these five TN approaches is assessed on a
corpus of around 6,000 NSWs, consisting of 6 initial and 14 final NSW
types. The performances of these approaches are assessed using measures
representing (i) direct accuracy and (ii) enhancements in text-to-speech
synthesis systems. Based on direct accuracy, our proposed approach pre-
dicted correct NSW types for about 92% of cases. This performance is
around 2% better than the performance of a rule-based approach. On
the other hand, application-based measures guarantee that the gener-
ated utterances (i) sound natural and (ii) improve the quality of speech
synthesis systems.

Keywords: Text-to-speech synthesis · Bengali · Text normalization ·
Transformer · Non-standard words

1 Introduction

A text-to-speech synthesis (TTS) system is the process of artificially producing
human speech by transforming texts into corresponding speech waveforms [7].
TTS systems are screen-reading tools for individuals with visual impairments,
announcement systems in railway and flight schedules, and customer service
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applications in call centres [9]. The significance of TTS extends far beyond mere
convenience, impacting various aspects of accessibility, human-computer interac-
tion, and entertainment. One of the critical challenges in developing good quality
TTS systems lies in the inherent variations and inconsistencies present in writ-
ten texts [10]. Written texts often deviate from spoken language conventions and
exhibit inconsistent pronunciations when appearing in diverse contexts. Due to
their diverse and ambiguous formats, textual contents comprise a variety of
non-standard words (NSWs) and, therefore, pose challenges for TTS systems
[14]. Text normalization bridges this division between written and spoken forms
and, therefore, helps in generating natural and comprehensible speech in text-
to-speech synthesis (TTS) systems, as its precision and phonetic smoothness
impact the quality of automatic speech recognition (ASR) systems [8,13].

The current work describes the types and occurrences of various non-standard
words (NSWs) within the Bengali text corpus. Non-standard words are those
whose pronunciation deviates from their written form in scripts. Examples
encompass numbers (year, time, ordinal, cardinal, floating point), abbrevia-
tions, acronyms, currency, dates, and URLs. Typographic irregularities such
as digit sequences, acronyms, and letter sequences are predominantly catego-
rized as NSWs [12]. Text normalization detects and converts these non-standard
words into their corresponding standard word (SW) counterparts. The compre-
hensive block diagram depicted in Fig. 1 illustrates the architecture of a text
normalization module utilized in TTS systems.

Fig. 1. Blockdiagram of text normalization system for non-standard words (NSW)

The fundamental structure of a text normalization system remains consistent
across languages, with variations primarily arising from language-specific rules
[6]. The proposed system tailored for Bengali TTS systems focuses on classifying
non-standard words (NSWs) within the text input [1]. The text normalization
process typically involves three key modules: (i) tokenization of the text into
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individual words, (ii) classification of the types of non-standard words, and (iii)
conversion of the classified NSWs based on predefined rules and look-up tables.

2 Literature Review

There has been significant research on text normalization modules for English,
Mandarin, Hindi, and other well-resourced languages [18] unlike Bengali [1,
15]. The text normalization process entails several steps, including tokeniza-
tion, NSW identification, and token-to-word expansion [3,16,17]. For tokeniza-
tion, most of the existing works relied on white spaces, with any leading or trail-
ing standard punctuation being removed as features of the token [19] like they
performed token-to-letter expansion based on manually crafted rules and look-up
tables. Comparatively different approaches have been explored for token classi-
fication, from rule-based to trending deep-learning based approaches.

Determining the category of tokens and resolving homograph ambiguity
poses significant challenges, often addressed through rule-based methodologies or
data-driven approaches. The rule-based classification relies on manually crafted
context-dependent rules, which, while effective, are cumbersome to develop,
maintain, and adapt to new linguistic domains or languages [11,17]. Despite these
challenges, most existing text normalization methods in low-resourced languages
like Bengali [1] adopt rule-based strategies due to the absence of robust text ana-
lyzers and standardized databases for Indian languages. Previous endeavours to
construct Bengali text normalization systems have demonstrated proficiency in
classifying NSWs. However, the performance has been limited due to the limited
coverage of standard databases [1]. Below, we delve into data-driven approaches
for token classification and homograph disambiguation.

1. N-gram based approaches leverage bigram or trigram information tagged
with parts-of-speech (POS) to address classification challenges [22]. Consider-
ing their POS tags, homograph disambiguation for NSWs is also attainable.
However, these approaches need to be revised in capturing information from
distant word associations, rendering them unsuitable for resolving semantic
ambiguities among various NSW classes [21].

2. Conversely, Bayesian classifiers exploit long-distance word associations, irre-
spective of their position, to resolve semantic ambiguities. However, they may
need to pay more attention to local context information and sentence struc-
ture. A comparable methodology is presented in [21], where context infor-
mation is leveraged for classifying NSWs using the Winnow algorithm for
homograph disambiguation.

3. Decision trees can manage intricate conditional dependencies but often strug-
gle with large parameter spaces, particularly when it involves highly lex-
icalized feature sets commonly encountered in homograph resolution [22].
Yarowsky annotated the corpus with collocational distributions (word associ-
ations) occurring at different positions within sentences, collocations of lem-
mas (morphological roots), positional relationships extending beyond adja-
cency, co-occurrence within a window, and parts-of-speech tags. The discrim-
inatory power of each piece of evidence is measured using metrics such as the
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log-likelihood ratio. Panchapagesan et al. used decision tree-based classifica-
tion for the initial classification of NSWs, while unique information regarding
the NSWs was utilized for the final classification process [17].

4. Jia et al. employed finite state automata (FSA) and maximum entropy (ME)
classifiers for classifying NSWs [11]. FSA utilizes NSW formats, employing a
maximum match strategy to manage longer NSWs and effectively eliminate
the necessity for tokenization. However, it requires enhanced performance for
certain compound NSWs comprising elements from different classes. Accord-
ingly, a segmentation process is applied utilizing a secondary suffix list to
manage compound NSWs. In the subsequent step, maximum entropy utilizes
probability estimation to minimize assumptions while adhering to imposed
constraints. It employed a bound-constrained limited-memory variable met-
ric (BLMVM) method for training parameters and the inequality smoothing
algorithm within maximum entropy classifiers. Features like 4-gram sequences
and heuristic indicators, including the presence of digits, whether they begin
with zero, and whether they are preceded or followed by alphabetic charac-
ters, are utilized in this work.

5. In the study by Moattar et al. on Persian text normalization [12], various
machine learning techniques, including CART (Classification And Regres-
sion Tree), SVM (Support Vector Machine), and MLP (Multi-layer Percep-
tron) neural networks were explored. CART, a decision tree-based method,
is straightforward and interpretable. However, its accuracy heavily relies on
selecting features that significantly contribute to uniquely classifying NSWs.
MLP neural networks offer powerful learning capabilities but are challeng-
ing to optimize due to the extensive time required for training. Constructing
the most effective MLP architecture can be complex and resource-intensive.
On the contrary, SVMs typically require less training time and can achieve
optimal performance more efficiently. According to Moattar et al., SVMs
demonstrated superior performance to CART and MLP neural networks.

6. The hybrid approach, as discussed in various studies such as [4,20,22], amal-
gamates the strengths of multiple techniques including Bayesian classifiers,
n-grams, and decision lists. By combining these methods, the hybrid app-
roach enhances the overall performance. One of the key benefits of the hybrid
approach is its ability to capture both local and long-distance contexts. It was
achieved by incorporating features and strategies from different methodolo-
gies, allowing the system to consider various levels of context and linguistic
information. However, their effectiveness depends highly on the availability
of standard databases annotated with discriminative features. Consequently,
further research and development efforts are needed to refine these approaches
and establish standardized datasets to support their implementation and eval-
uation.

3 Implementation

Our proposed text normalization system comprises 3 major modules: (1) pre-
processing, (2) classifying NSWs, and (3) expanding tokens.
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3.1 Pre-processing

Tokenization. In our text normalization system, whitespace serves as the pri-
mary delimiter between words, reflecting the conventional practice in linguistic
tokenization. Additionally, punctuations such as commas (,) and semicolons (;)
are utilized to delineate phrases, while full stops (.) signify the conclusion of an
utterance. These delimiters are instrumental in segmenting the input text into
meaningful units during tokenization. However, certain punctuations, such as
the dash (-), pose unique challenges due to their variability in usage. The dash
(-) is particularly interesting as it can appear within a single token. For instance,
in expressions like “1-10-1974”, denoting a date or “91-033-23456789”, represent-
ing a phone number, the dash is an integral part of a single token. Consequently,
including the dash as a tokenization delimiter may inadvertently split a single
token into multiple segments, potentially introducing ambiguities in subsequent
token classification tasks. Therefore, while whitespace, commas, semicolons, and
full stops are employed as delimiters for tokenization purposes, special consid-
eration is given to treating the dash (-) to ensure accurate segmentation and
mitigate ambiguities in the tokenization process.

Splitting. The splitting process serves as a crucial pre-processing step in our
text normalization system, aimed at enhancing the accuracy of classification and
disambiguation tasks by minimizing ambiguities. This process involves breaking
tokens into smaller units to a granularity level where misclassification risks are
mitigated. Handling the punctuation dash (-) within tokens is central to the split-
ting process. Decisions regarding the dash (-) treatment are based on carefully
crafted criteria to ensure optimal token segmentation. Specifically, the process
considers the following decisions:

– If the token is a phone number, the dash will be deleted.
– If the token is a game score or year, whitespace will replace the dash. This

means that the token is split into two or more tokens.
– If the token is dated or no information is available from the text about the

class of the token, the dash will be kept for further classification.

3.2 NSW Classification

In our text normalization system, the classification module is pivotal in catego-
rizing non-standard words (NSWs) into distinct types or classes. Initially, the
module identifies NSWs and assigns them to one of six preliminary categories.
Subsequently, these preliminary categories are subdivided into 14 final types or
classes through further analysis and refinement, as mentioned below.

– Class 1: year/cardinal number/pin code/date
– Class 2: float/time/version
– Class 3: phone/date
– Class 4: date/fraction
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– Class 5: percentage/acronym/abbreviation/day
– Class 6: email id or URLs

The classification task is accomplished using various baseline and proposed
transformer-based text normalization (TN) approaches. These approaches are
designed to effectively categorize non-standard words (NSWs) into appropri-
ate classes, laying the groundwork for subsequent normalization processes. The
details of these methodologies are expounded upon in the subsequent subsec-
tions, delineating the intricacies of each approach and their respective contribu-
tions to the classification task.

Rule-Based Approach. The rule-based approach is implemented through two
sub-modules: initial classification and homograph disambiguation.

1. Initial Classification
The preliminary classes for non-standard words (NSWs) are determined based
on the following rules:

– Class 1: year/cardinal number/pin code/date: A digit token can repre-
sent various entities like a year, cardinal number, pin code, or date. For
instance, the token “1947” might denote a specific year or serve as an
integer value. Similarly, in Bengali language usage, expressions like “30
baishaakha” (where “baishaakha” signifies a Bengali month) are preva-
lent, with the token “30” indicating a date within the context. These
examples illustrate that a token comprising solely of digits is initially
categorized as belonging to class 1.

– Class 2: float/time/version: A token containing two or more digit
sequences separated by a dot (.) falls into class 2. For instance, consider
the token “1.22”, which typically represents a fraction or version number
unless contextual tokens provide time-related information. In cases where
two consecutive tokens, such as “1.22 pm”, are present, the first token
signifies time, especially if the following token, “pm” (post meridian),
indicates the second half of the day.

– Class 3: phone/date: A token comprising solely of digit sequences sepa-
rated by one or more whitespace or dashes (-) could signify a phone 0
or date. If the context includes words such as “phone”, “call”, “hello”,
“number”, or “mobile” or their derivatives, the token is classified as a
phone number. Alternatively, the token is categorized as a date if the
contextual information pertains to a date, month, or year.

– Class 4: date/fraction: A token with digit sequences separated by a for-
ward slash (/) could represent either a date or a fraction. Typically, a date
comprises two obliques, while a fraction utilizes only one. However, vari-
ations in distribution may occur in actual text. In the case of a date, con-
textual cues should provide information about the year, month, or date.
Otherwise, contextual information would not pertain to year, month, or
date if the token is classified as a fraction.
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– Class 5: percentage/acronym/abbreviation/day: Substitution using a
look-up table is employed to manage these classes due to the require-
ment for increased variability between them.

– Class 6: email ID or URLs: Identifying email IDs or URLs is straight-
forward as they typically include standard contextual information. For
instance, a token containing alphanumeric or character sequences sepa-
rated by “@” is categorized accordingly. Additionally, character sequences
such as “mail”, “com”, or “in” further aid in their classification.

2. Homograph Disambiguation
Homograph disambiguation is necessary to subdivide tokens of similar initial
classes into their final classes.
(a) Year: A class 1 token, with the context information “saal”,

“khr:ist:aabda”, “abda” or “sana”, is considered a year.
(b) Pin code: A class 1 token with context information on “pin” and “zip” is

considered a pin code.
(c) Date: A class 1 token with context information such as a month’s name

after the NSW is considered a year.
(d) Cardinal number: A class 1 token, which is not predicted as year, pin

code or date, is considered a cardinal number.
(e) Time: Class 2 tokens with contexts related to time are considered time.
(f) Version: A class 2 token having the context information to be a version

number is predicted as a version.
(g) Float: A class 2 token, which is not considered as time or version, is

predicted as a float number.
(h) Phone: A class 3 token with context information related to a phone num-

ber is considered a phone number.
(i) Date: A class 3 token, which is not considered a phone number with

context information related to a date, is predicted as a date.
(j) Date: A class 4 token having two obliques and context information related

to date is predicted as a date.
(k) Fraction: A class 4 token not classified as a date is a fraction.
(l) Percentage, acronym, abbreviation and day: Due to similar structures,

these NSWs are handled by substitution method using a look-up table.
(m) Email-ids and URLs: These classes have been achieved in initial classifi-

cation; therefore, further classification is avoided.

Statistical Approach. This section provides details of our proposed CRF-
based statistical approach for classifying NSWs within text-to-speech synthesis
systems.

– CRF-based Approach
Our proposed Conditional Random Field (CRF) based classifier was moti-
vated by its capability to effectively leverage contextual information and
dependencies among neighbouring words for accurate predictions. Conditional
Random Fields (CRFs) are probabilistic models used for structured predic-
tion, which model the conditional probability of hidden (unobserved) state
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Fig. 2. Block diagram of the CRF-based TN system

sequences given observed sequences. They leverage both the observed data
and the dependencies between the hidden states to make accurate predictions
in sequence labeling tasks, as depicted in Fig. 2. In the present task, we con-
sidered the NSW classes, represented in sequences, while their features as the
context information. This classifier was trained using an annotated corpus,
where linguistic experts meticulously labelled each word with its correspond-
ing class types. To capture the intricate details of local context, we extracted
a comprehensive array of lexical, syntactic, and semantic features for each
word. These features encompassed diverse aspects such as word embeddings,
part-of-speech tags, and neighbouring words. With such rich contextual infor-
mation, our classifier modelled a deeper understanding of the linguistic con-
text, enhancing its ability to classify NSWs accurately. To model the sequen-
tial dependencies, we employed a linear-chain CRF architecture that is well-
suited for capturing the probabilistic relationships between adjacent words in
a sequence. We used a gradient-based optimization algorithm to fine-tune the
model parameters to optimize the performance. This iterative optimization
process ensured that the model parameters were adjusted to maximize clas-
sification accuracy and generalization performance across diverse linguistic
contexts.

Deep Learning Based Approach. This section elaborates on different deep-
learning approaches for text normalization in TTS systems.

– LSTM-based Approach
LSTM (Long Short-Term Memory) is a sequence-to-sequence model that
leverages an encoder-decoder architecture. In this methodology, words within
the input text are encoded as sequences of embeddings. These word embed-
dings are then processed sequentially, with LSTM cells tasked with captur-
ing both short-term and long-term dependencies and contextual information
inherent within the text. Our proposed LSTM model was optimized using the
backpropagation through time (BPTT) algorithm [5]. The architecture of the
LSTM model is depicted in Fig. 3.
This algorithm enabled the adjustment of LSTM parameters, ensuring that
the network learns to effectively capture the nuances of the input data and
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Fig. 3. Block diagram of the LSTM-based TN system

make accurate predictions. At the output layer of the LSTM model, the sig-
moid activation function was applied to obtain probabilities for each class.
This activation function allowed the model to output probabilities ranging
from 0 to 1, facilitating the interpretation of the model’s confidence in its
predictions. Furthermore, we utilized binary cross-entropy loss as the objec-
tive function during training. This loss function guided the training process
by measuring the discrepancy between the predicted probabilities and the
actual labels. Minimizing this discrepancy, the model learned to make more
accurate predictions and improve its overall performance.

– biLSTM-based Approach
For this method, we implemented a time-distributed, bi-directional LSTM
hidden layer. The architecture of the biLSTM model is depicted in Fig. 4.
This choice of architecture allowed the LSTM to process input sequences
bidirectionally, capturing both past and future contexts for each word.
During training, we employed the backpropagation through time (BPTT)
algorithm, which enabled the adjustment of LSTM parameters by propagating
gradients through the entire sequence, facilitating the optimization of the

Fig. 4. Block diagram of the biLSTM-based TN system
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network for accurate classification. At the output layer of the LSTM model,
we applied the softmax activation function that normalized the output scores
across all classes, yielding class-wise probabilities. As the objective function,
we used sparse categorical cross-entropy loss that measured the discrepancy
between the predicted probability distributions and the actual labels. By
minimizing this loss, the model learned to make predictions that closely match
the ground truth labels. Overall, the LSTM-based approach leveraged the
bidirectional processing capabilities of LSTM units to capture both past and
future context while utilizing BPTT and softmax activation to optimize the
network for accurate classification.

– Transformer Model
The Transformer Model, renowned for its attention mechanism, significantly
advances traditional sequence-to-sequence models. Figure 5 illustrates the
proposed transformer network architecture, embodying the sophisticated
mechanisms and design principles described above. In this approach, words
from the input text are tokenized and embedded into high-dimensional vec-
tors. Positional encodings are incorporated into the embeddings to maintain
sequential information, preserving the order of words within sentences. The
model architecture comprises multiple encoder layers, each consisting of self-
attention mechanisms and feedforward neural networks. This design enables
the model to capture the input text’s intricate dependencies and contextual
information. During training, the model’s parameters are adjusted via back-

Fig. 5. Block diagram of the proposed Transformer-based TN system
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propagation to minimize a suitable loss function (e.g., cross-entropy), enhanc-
ing its predictive capabilities. The self-attention mechanism allows the model
to dynamically focus on different segments of the input sequence for each
word, facilitating the capture of contextual nuances and dependencies within
Bengali text. Additionally, position-wise feedforward networks within each
transformer encoder layer enable the model to learn complex mappings from
input embeddings to normalized outputs.
Our proposed model applied layer normalization after each sub-layer in the
encoder, while residual connections aided information flow throughout the
network, promoting training stability. The final layer of the transformer model
produced probability scores for standard and non-standard labels. The soft-
max activation function was then applied to obtain normalized probabilities.
Multi-head attention further enhanced the model’s capabilities by simultane-
ously attending to various aspects of the input sequence.

3.3 Token-to-Word Expansion

The token-to-word expansion process generates the pronunciation for a given
token based on its known class. This process relies on a combination of a look-
up table and hand-crafted rules to produce accurate pronunciations.

A look-up table was utilized for straightforward tokens, where a one-to-one
mapping yielded the pronunciation directly. For instance, the percentage sign
“%” is replaced with its corresponding pronunciation “ ”.

In contrast, more complex tokens, such as cardinal numbers, required the
application of rules for expansion, as their pronunciation might vary. For exam-
ple, while the cardinal number “1001” is pronounced as “one thousand and
one”, the pronunciation for “1201” becomes “one thousand two hundreds and
one”. In the latter case, additional hundreds necessitate a different pronuncia-
tion, illustrating the importance of rule-based expansion to represent such tokens
accurately.

4 Database

We developed a corpus by extracting sentences containing at least one NSW from
various sources, including news corpora, storybooks, and textbooks. A total of
4,000 sentences were gathered, encompassing 6,067 NSWs. This dataset was
partitioned into training and testing subsets with 3,000 sentences with 4,585
NSWs and 1,000 sentences with 1,482 NSWs, respectively. The training data
was used to develop classification rules and training. Conversely, the testing
data was employed to evaluate the baseline and proposed text normalization
approaches. The categorical distributions of NSWs are illustrated in Table 1.
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Table 1. Corpus details: NSWs’ categorical distribution

Class Training data Testing data Class Training data Testing data

Year 561 187 Abbreviation 282 86

Cardinal number 1307 456 Acronym 201 64

Pin code 222 51 Percentage 159 53

Float 162 52 Day 308 102

Version 217 75 Date 182 56

Time 181 55 Fraction 241 61

Phone number 176 49 Mail-id or URLs 192 65

5 Evaluation

The present study evaluates the effectiveness of four baseline and one proposed
text normalization (TN) approach using metrics that gauge (i) direct accuracy
and (ii) improvements in text-to-speech synthesis systems.

5.1 Evaluating Direct Accuracy

The performance assessment of our proposed text normalization system has been
conducted using both the training and testing datasets. Table 2 provides a com-
prehensive overview of the proposed model’s overall performance in normalizing
Bengali text. We considered accuracy as the only metric following the existing
approaches [18]. This evaluation encompasses various metrics and analyses, shed-
ding light on the system’s efficacy in accurately handling non-standard words
(NSWs) and enhancing the quality of synthesized Bengali speech.

Table 2. Overall Accuracy of the Proposed Text Normalization Model

Model Accuracy of Training Data Accuracy of Testing Data

Rule-based 93.29% 89.83%

CRF-based 91.72% 83.33%

LSTM-based 94.54% 88.29%

BiLSTM-based 95.66% 90.63%

Transformer-based 97.15% 91.75%

The present rule-based approach uses a set of hand-crafted rules for classify-
ing the NSWs. Only a few optimal rules were introduced that were specifically
poised for the training data. The scope of the rules was kept general to handle
Bengali NSW’s structural variability. As a result, structural variability pertain-
ing to the testing data may not be predicted. Due to that bias, the rule-based
approach performed slightly better for training data. However, these gaps were
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absent for other approaches. Table 2 shows that NSWs with more discrimina-
tive features were accurately classified with minimum examples. As expected,
the proposed transformer-based approach performed better than other baseline
approaches. Such performance differences can be attributed to transformers’ abil-
ity to capture lexical, syntactic, and semantic aspects out of the words from their
distributions and contexts. Due to less data available for training and testing,
statistical and deep-learning models could not perform as per their actual poten-
tials. We also presented the Sankey plot for the proposed approach, showing how
the initial and final NSW classes are associated in Fig. 6.

Fig. 6. Analyzing proposed transformer-based TN approach

From the overall performance, transformer-based model has been the best
performing approach. However, the performance could be better if could have
been trained with more instances. However, the primary focus of our present
study was to compare different classifiers for Bengali text normalization systems
and moreover, introducing a potent domain and language-agnostic classifier that
will remove the issue of extracting language-dependent features.

5.2 Evaluating Enhancements in TTS Systems

In this section, we examine the impact of the proposed text normalization (TN)
approach on the performance of a Text-to-Speech (TTS) system. The baseline
TTS system is an unrestricted unit-selection-based system that employs syllables
as fundamental units, developed within the Festival framework [2]. To evaluate
the effectiveness of our proposed TN approach, we compare it with five baseline
methods and with TTS systems developed without any NSW approach. For each
approach, 20 sentences are synthesized using the respective TTS systems. These
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synthesized sentences are then subjected to subjective evaluation for their nat-
uralness and intelligibility. Listening tests are conducted with 20 native Bengali
speakers, who rate the quality of synthesized speech on a 5-point Likert scale.
Participants assign scores ranging from 1 (very bad) to 5 (very good) for each
synthesized sentence, following the guidelines provided in Table 3. The collected
opinion scores provide valuable insights into the perceived quality of speech syn-
thesis across different approaches [14].

Table 3. Instruction for evaluating the quality of synthesized speech

Point Quality of sentence

1 Poor speech with distortion and low intelligibility

2 Poor speech with distortion but intelligible

3 Good speech with less distortion and intelligible

4 Excellent speech quality with less naturalness

5 As good as natural speech

By aggregating the opinion scores provided by all participants across all
sentences, a Mean Opinion Score (MOS) is computed. The impact of integrating
the proposed text normalization (TN) approach into the TTS system is evaluated
by assessing changes in this MOS value. We compare the mean opinion scores
provided by all evaluators for each sentence before and after incorporating these
approaches, as outlined in Table 4. The results indicate an overall improvement
in MOS values after incorporating the proposed TN approach.

Table 4. MOS comparison of TTS systems with different TN approaches

TTS Systems MOS

TTS system without any TN approach 3.8

TTS system with Rule-based TN approach 4.2

TTS system with CRF-based TN approach 4.1

TTS system with LSTM-based TN approach 4.1

TTS system with BiLSTM-based TN approach 4.2

TTS system with Transformer-based TN approach 4.3

As depicted in Table 4, integrating the proposed approach with TTS systems
yielded higher Mean Opinion Scores (MOS) than other methods, aligning with
our expectations. Furthermore, statistical analysis conducted using paired t-tests
confirmed the significance of these improvements.
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6 Conclusions and Future Work

The text normalization system in this study is crucial for text-to-speech synthe-
sis. Tokenization is essential in the classification process, segmenting text into
tokens and handling compound non-standard words (NSWs). Initial classes are
strategically grouped to maximize classification accuracy. Simple optimal rules
facilitate further token classification, but narrow-scoped rules are avoided due
to structural variability in NSWs.

The proposed text normalization system could be improved through an
exhaustive database, refined rules, and data-driven approaches. Incorporating
n-gram models can enhance the system’s predictive capabilities. Using statisti-
cal and deep-learning-based techniques for automatic Bengali text normalization
can lead to more accurate and robust text normalization.

The transformer-based approach is domain and language agnostic, suitable
for any domain and languages. It can be adapted to other languages with similar
linguistic challenges, particularly those with rich morphological structures and
diverse NSW types. The modular architecture allows for easy adaptation and
customization to suit different language and TTS applications.

Future research should focus on expanding the dataset to include a more
extensive collection of Bengali text, improving the model’s contextual under-
standing, exploring techniques like BERT or GPT-based models, and expanding
the current approach to support multilingual text normalization, including low-
resource Indian languages.
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Abstract. The proliferation of textual data on the Internet presents
a unique opportunity for institutions and companies to monitor public
opinion about their services and products. Given the rapid generation
of such data, the text stream mining setting, which handles sequen-
tially arriving, potentially infinite text streams, is often more suitable
than traditional batch learning. While pre-trained language models are
commonly employed for their high-quality text vectorization capabil-
ities in streaming contexts, they face challenges adapting to concept
drift-the phenomenon where the data distribution changes over time,
adversely affecting model performance. Addressing the issue of concept
drift, this study explores the efficacy of seven text sampling methods
designed to fine-tune language models, thereby mitigating performance
degradation selectively. We precisely assess the impact of these meth-
ods on fine-tuning the SBERT model using four different loss functions.
Our evaluation, focused on Macro F1-score and elapsed time, employs
two text stream datasets and an incremental SVM classifier to bench-
mark performance. Our findings indicate that Softmax loss and Batch
All Triplets loss are particularly effective for text stream classification,
demonstrating that larger sample sizes correlate with improved macro F1
scores. Notably, our proposed WordPieceToken ratio sampling method
significantly enhances performance with the identified loss functions, sur-
passing baseline results.

Keywords: Text stream · Language Model · Concept drift · Sampling
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chat with others, review products and services, and share comments and opin-
ions through social media platforms, frequently working as social sensors [24].
Learning from social media posts can be relevant for institutions and govern-
ments, helping them quickly detect and respond to events [11,19], for example.

Automatically learning from textual data leveraging machine learning mecha-
nisms brings several challenges in batch processing, such as text standardization
and vectorization. Text vectorization is essential since most machine learning
methods expect numeric vectors as input. Traditional vector representations,
such as Bag-of-Words (BOW) [12] and Term Frequency - Inverse of Document
Frequency (TF-IDF) [21], can generate very-high-dimensional vectors, which can
be disadvantageous to the machine learning model, increasing the computational
cost.

In a textual stream scenario, the challenges are augmented. Due to the stream
characteristics, e.g., data arriving on an instance-basis or in small batches and
resource limitations [3,9], generating vector representations through BOW and
TF-IDF is complex. For instance, if the vector representations are generated in
the first batch, new words in subsequent batches will not be represented. On
the other hand, generating the representations as the batches arrive can lead to
variable-dimension representations [10], a challenge since most machine learning
algorithms require a fixed-dimension input.

Therefore, pre-trained language models have become popular in batch and
stream scenarios due to their time-saving characteristics [10,25]. SentenceBERT
(SBERT) [20] is a popular pre-trained language model specific for sentence
embedding generation. Although pre-trained models save time since training a
language model from scratch is costly, adjustments may be necessary for domain
adaptation. In addition, changes in data distribution over time (concept drift)
are frequent phenomena in real-world data and can degrade a machine-learning
model’s performance [9]. In textual data streams, those changes can emerge
from sentiment changes, the appearance of particular words in different contexts,
and so on [10]. Furthermore, computational linguistic studies using diachronic
datasets attest that writing patterns change and word meanings evolve over
time, e.g., semantic shift [4]. This work refers to changes as concept drift since
semantic shifts are generally related to linguistic studies, which use long times-
pan, or diachronic, datasets and investigate those changes on a deeper, linguistic
level. Therefore, to adapt to concept drift or a new domain, for example, it is
important to adapt the language model. The fine-tuning process is a popular
deep-learning-related process and can help adapt the language model [17,22].

Due to the computational cost of the fine-tuning process, selecting representa-
tive instances to fine-tune the language model may provide valuable information
while reducing the time spent [1,23]. In this paper, we score the ability of differ-
ent sampling methods in text selection for fine-tuning purposes. We also propose
a sampling method, i.e., WordPieceToken ratio, whose results were promising in
most scenarios evaluated. Considering the text stream setting, we assessed these
methods intrinsically, i.e., in a downstream task. We also evaluated three ver-
sions of these sampling methods modified to account for the classes, totaling
seven sampling methods.
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The contributions of this paper are four-fold: (a) an extensive comparison
among text sampling methods for fine-tuning purposes; (b) an analysis of the
impact of the sampling methods considering the text stream setting; (c) an eval-
uation of loss functions for fine-tuning SBERT, and (d) a novel textual sampling
method based on the ratio between Wordpieces and tokens of a text. The term
Wordpieces represents a subword partition system present in BERT [8] that
allows handling out-of-vocabulary tokens.

This paper is organized as follows: Sect. 2 presents important concepts for
understanding this paper, including text streams and SentenceBERT. Section 3
presents the text-based sampling methods evaluated in this paper. Section 4
describes the experimental protocol, with datasets, settings, evaluation scenario,
and results. Finally, Sect. 5 concludes this paper.

2 Background

This section presents core concepts for understanding this paper. We introduce
text stream mining, SentenceBERT, and its fine-tuning process.

2.1 Text Stream Mining

According to Bifet et al. [3], data streams are “an abstraction that allows real-
time analytics”. In a data stream, the items arrive individually or in small
sequential batches, and the stream itself can be infinite [3,9]. Different learn-
ing approaches have been developed to learn from data streams, including, for
instance [9], the ability to learn incrementally, single-pass operations, elimina-
tion of input data as soon as possible after learning from it, and consumption of
modest resources, i.e., processing power and time.

Text streams are a specialization of data streams in which texts arrive over
time [10]. The challenges are extended in this scenario, mainly comprising nat-
ural language processing (NLP), such as text standardization, vocabulary, and
representation maintenance. These NLP-related processing are challenging due
to their complexity, which should meet the text stream constraints.

Frequently, text-related approaches leverage pre-trained language models
[10,25]. Using pre-trained models can help save time since training a language
model from scratch is computationally costly in time and resources [23]. In addi-
tion, the language model can easily be reused in different scenarios. However,
an important drawback is that texts generally suffer from concept drift. Con-
cept drift is a phenomenon frequently observed in real-world datasets and corre-
sponds to changes in data distribution over time [9,10]. Leveraging pre-trained
language models without accounting for concept drift can decrease performance
in the downstream task since the texts would be represented using relatively old
representations [10].
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This paper leverages a pre-trained language model and evaluates the use
of fine-tuning for language model updates in text stream settings, a less costly
approach than training from scratch. In this paper, the selected language model
is SentenceBERT [20].

2.2 SentenceBERT

SentenceBERT (SBERT) is an architecture that leverages pre-trained BERT
models [20], such as BERT [8] and RoBERTa [18] models. SBERT leverages
siamese networks to generate semantically meaningful representations that are
compared using cosine similarity. A siamese architecture with a bi-encoder
reduces the computational overhead while improving the quality of representa-
tions, compared to a cross-encoder to determine sentence similarity, as in BERT
[20].

Additionally, SBERT provided significant improvements for semantic text
similarity. Although the authors fine-tuned the SBERT model on natural lan-
guage inference (NLI) data and also applied the model to semantic textual sim-
ilarity (STS) task, SBERT demonstrated competitive results when being used
as a text vectorization method for classification tasks [25].

Fine-Tuning, Data Preparation, and Loss Functions. SBERT allows sev-
eral strategies for the fine-tuning process. Typically, SBERT requires texts and a
label. Due to the siamese characteristic of SBERT, generally, it requires text pairs
(or triplets) and a label. Depending on the strategy, this label can correspond to
a class, relatedness degree between texts, or relatedness class between texts, e.g.,
contradiction, neural, or entailment. The loss functions and respective strategies
allowed by SBERT include:

– Batch All Triplets loss (BATL) [14], which requires single texts and their
respective classes. Internally, same-class texts are treated as positive anchors,
while distinct-class texts are considered negative anchors;

– Cosine Similarity loss (CSL), which expects text pairs and a cosine simi-
larity score as a label. A clear drawback is the demand for a cosine similarity,
which requires an extra method/ground truth;

– Contrastive Tension loss (CTL) [5], which receives single texts without
labels. In this case, exact texts are treated as positive anchors, and all the
texts are randomly mixed to generate negative anchors. It uses a ratio to
define the number of negative anchors for each positive anchor;

– Multiple Negative Ranking loss (MNRL) [13] uses only positive text
pairs (or triplets with a negative anchor appended) without label. In this case,
texts are mixed to generate negative anchors. A noticeable characteristic is
the need for a ground truth to indicate positive texts;

– Online Contrastive loss (OCL) requires text pairs and a label indicating
their relationship. In this case, the loss function is calculated per item;
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– Softmax loss (SL) receives text pairs and a label indicating their relation-
ship. Reimers and Gurevych [20] leveraged this loss function for natural lan-
guage inference, and therefore, the possible labels were contradiction, neutral,
or entailment.

The list above is non-exhaustive. This paper aims to evaluate text-based
sampling methods (see Sect. 3) to gather more useful texts for fine-tuning. Con-
sidering the above loss functions, we selected BATL, CTL, OCL, and SL. We
did not select CSL and MNRL because CSL depends on a similarity measure for
the text pairs and would require extra information for this calculation. MNRL,
on the other hand, requires positive pairs, or triplets, with a negative anchor.
Although we could leverage the classes to generate positive pairs, choosing good-
quality anchors can be challenging and require deeper analysis for an assertive
selection.

The high cost of training language models is well-known [23]. Although fine-
tuning is cheaper than training from scratch, using all new data can also lead to
high costs [1,23]. Thus, resorting to sampling methods can be beneficial in two
aspects: (a) selecting more informative texts and (b) consuming fewer computa-
tional resources than using all new data.

3 Text-Based Sampling Methods

This section presents the sampling methods used in this paper for selecting
texts for fine-tuning purposes. We also propose the WordpieceToken ratio and
later compare it to other text-based sampling methods.

In addition to each sampling method, except for the random sampling, we
evaluate an extra scenario leveraging the text labels (classes). Therefore, the
sampling methods correspond to their original version and the version that
accounts for the class. Algorithm 1 provides the weighted sampling pseudocode.
We highlight that, optionally, the observed classes’ frequencies can be used as
an argument for the WeightedSampling function. These frequencies can also be
calculated directly from the buffer, using the attribute class. The algorithm runs
according to the following steps: (1) the buffer containing the stored items from
the stream is iterated; (2) each item has its weight calculated, depending on the
chosen sampling method; (3) if the classes’ frequencies are considered, then the
items’ probabilities of less frequent classes are increased proportionally; (4) the
weights are normalized; and (5) ns instances are sampled from the buffer.

The text sampling methods employed in this paper are:

– Length-based sampling [1]: it ponders items by their length. This means
we counted the number of tokens in each text and normalized them using the
biggest and the lowest lengths. The main idea is that longer texts have more
chance to encompass useful, novel information for the language model in the
fine-tuning process;

– Random sampling: this sampling method randomly selects a given number
of items from the buffer;
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Algorithm 1. Algorithm of weighted sampling
Require: ns � number of instances to be sampled
Require: classes frequencies � observed classes frequencies
Require: buffer

Ensure: buffer �= ∅
function WeightedSampling(ns, buffer, classes frequencies: Optional)

for each Xi ∈ buffer do
Calculate Xi.weight according to the sampling method
if classes frequencies �= None then

Xi.weight
∗ ← Xi.weight × sum(classes frequencies)

classes frequencies[Xi.class]

end if
end for
Normalize weights
Sample ns instances using the calculated Xi.weight

∗ as probability
end function

– TF-IDF-based sampling: Term Frequency - Inverse of Document Fre-
quency (TF-IDF) [21] is a technique for measuring the importance of a given
word in a document, considering a collection. The term frequency is the count
of a token t in a text d. The inverse of document frequency is generally cal-
culated as idf(t) = log n

document frequency(t) , where document frequency(t) cor-
responds to the number of documents containing t, and n is the total num-
ber of documents. Then, the complete TF-IDF calculation is: TFIDF(t, d) =
term frequency(t, d)× idf(t). Given a text, the TF-IDF is calculated for each
token in the text. Thus, the text’s weight is the sum of the TF-IDF values of
the tokens present in the text. The rationale behind this approach is to select
texts with more important words across the buffer.

In addition to these sampling methods, we propose a novel text sampling
method named WordpieceToken ratio.

3.1 WordpieceToken Ratio Sampling

This paper proposes a novel sampling method based on the ratio between word-
pieces and tokens. Wordpiece is a technique BERT-based models use to handle
out-of-vocabulary (OOV) tokens [8]. For example, the word institutionali-
zation could be partitioned into two wordpieces: [‘institutional’, ‘##iza-
tion’], where ## means that there is a previous partition.

The rationale behind this sampling method is that the bigger the ratio between
wordpieces and tokens, the bigger the number of unknown words (by the lan-
guage model) in the text. The ratio is calculated per instance. For example, let
the text instance be: “Extramedullary toxicity was limited to hypothyroidism”, a
6-token sentence. When applied to a BERT tokenizer, it is split into [‘extra’,
‘##med’, ‘##ulla’, ‘##ry’, ‘toxicity’, ‘was’, ‘limited’, ‘to’, ‘h’,
‘##yp’, ‘##oth’, ‘##yr’, ‘##oid’, ‘##ism’], resulting in 14 wordpieces.
Thus, this instance’s weight is 14

6 = 2.33. After all the text instances from the
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buffer have their weights calculated, several instances are sampled considering the
instances’ weights and class frequencies according to Algorithm 1.

Therefore, we hypothesize that sampling texts by weighting the Wordpiece-
Token ratio may retrieve texts with more useful information for the fine-tuning
process.

4 Experimental Results

This section provides the experimental results, including the experimental pro-
tocol, datasets, proposed scenario, evaluation metrics, and the results.

4.1 Experimental Protocol

Datasets. Two datasets were used: Airbnb and Yelp.

– Airbnb: This dataset was obtained from the Inside Airbnb1, considering data
related to the New York City. Since New York City is one of the most popular
destinations in the United States2, the Airbnb dataset related to New York
City has several reviews, enough for multiple sampling for text stream simu-
lation (see Sect. 4.2). This dataset, by default, is not ready for classification
tasks. Therefore, we leveraged: (a) a pre-trained model for language identifi-
cation is used (lid.176.ftz [15,16]), and (b) a pre-trained model for sentiment
analysis to infer the reviews’ sentiment (Twitter RoBERTa Base Sentiment3

model [2]). Thus, the English reviews were filtered, and their sentiments were
inferred. The sentiments, i.e., positive, negative, and neutral, were used as
labels in the classification task. The processing steps are available on Github4.

– Yelp: This dataset is provided on Yelp Datasets5. Yelp consists of reviews
collected regarding over 130 thousand businesses. These reviews are accom-
panied by a category from a scale of stars between 1 and 5. This category is
used as a label in the text classification task.

An essential characteristic regarding the above datasets is the presence of a
timestamp, which is crucial for text stream simulation. The data distributions
are presented in Fig. 1. Noticeably, the datasets are imbalanced, reflecting the
nature of real-world data.

Other relevant information on the experiments are:

– Sample sizes: we considered four sample sizes: 500, 1000, 2500, and 5000.
Those values were chosen since they represent between 1% and 10% of the
buffer size, which can be considered reasonable values;

1 http://insideairbnb.com/get-the-data.
2 Available at: https://www.cntraveler.com/story/most-visited-american-cities.

Accessed on Jan 20th, 2024.
3 Available at: https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment.
4 https://github.com/cristianomg10/methods-for-generating-drift-in-text-streams.
5 https://www.yelp.com/dataset.

http://insideairbnb.com/get-the-data
https://www.cntraveler.com/story/most-visited-american-cities.
https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment.
https://github.com/cristianomg10/methods-for-generating-drift-in-text-streams
https://www.yelp.com/dataset


452 C. M. Garcia et al.

Fig. 1. Class distribution of the datasets used in this paper

– Classifier: we selected the Incremental Support Vector Machine (ISVM) as
the classifier because it is updated incrementally according to the arrival of
new data. As its batch counterpart [6], ISVM calculates an optimal hyper-
plane between instances of two distinct classes, and the surrounding instances
are assumed as support vectors [7].

– Hardware: the hardware used in the experiments is a 13th Gen Intel(R)
Core(TM) i9-13900K, 128 GB of RAM running Ubuntu 22.04 LTS, and 2 x
GPU GeForce RTX 4090 (24 GB).

4.2 Proposed Scenario

Considering the text stream mining setting, the proposed scenario is run as
follows: (1) a text stream of length 200,000 sampled (stratified by class/label)
from the original datasets; (2) the text stream classification is performed one-
by-one; (3) a buffer accumulates the first 50,000 items of the text stream; (4)
at the moment t = 50, 000, a sampling method, among the methods presented
in this paper, will sample a predefined number of items from those described
in Sect. 4.1; (5) after sampling, the fine-tuning process for the language model,
i.e., the SBERT model, is triggered using the sampled texts and the selected
loss function; and (6) the evaluation metrics are calculated cumulatively in a
test-then-train fashion, i.e., in a prequential manner.

This process was executed five times per sampling method and loss function.
In each run, the entire stream was also sampled from the original dataset in
a stratified manner. We used t = 50, 000 as the effects of the fine-tuning and
sampling methods would be easier to spot than at the end of the stream.

4.3 Loss Functions Settings

Considering the loss functions presented in Sect. 2.2, their inputs for fine-
tuning were defined as follows:
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– BATL: single texts and their respective classes;
– CTL: single texts;
– OCL: text pairs and a label, which we adapted for considering the distance

between classes by calculating: label = 1 − abs(X1.class−X2.class)
|classes| , where Xφ is

a text, | · | is the cardinality, and abs(·) is the absolute value. Thus, label is
one if the classes are the same, indicating the similarity;

– SL: similarly to OCL, SL receives text pairs and a label, which we adapted
to be the absolute distance, calculated as label = abs(X1.class − X2.class),
where Xφ is a text, and abs(·) is the absolute value.

This paper leverages the pre-trained SBERT model paraphrase-MiniLM-L6-
-v2. When fine-tuning, we used 32-sized batches, 10 epochs, and 100 warmup
steps, which are values frequent in the documentation.

4.4 Evaluation Metrics

Given the class imbalance of the datasets used in experimentation, results regard-
ing Macro F1 Score and elapsed time were reported. In particular, the Macro
F1 Score averages the harmonic mean of precision and recall obtained per class.

4.5 Results

Considering the presented scenario, loss functions, and sampling methods, the
results obtained regarding Macro F1-Scores are demonstrated in Fig. 2. For read-
ability issues, we kept different scales on the y-axis. The dashed lines corre-
spond to the maximum and minimum Macro F1-Score values using SBERT
without update and were used as a baseline. The x-axis regards the sampling
methods, while the boxes correspond to the tested sample sizes. The Macro F1-
Scores obtained for the baseline were: (a) 75.13 ± 0.28 (min: 74.86; max: 75.50)
for the Airbnb dataset, and (b) 44.60 ± 0.12 (min: 44.46; max: 44.78) for Yelp
dataset. Regarding the elapsed times, the values obtained were (in seconds): (a)
496.78 ± 0.70 (min: 495.89; max: 497.86) for the Airbnb dataset, and (b) 558.82
± 3.19 (min: 553.36; max: 561.10) for Yelp dataset.

Considering the results obtained for the Airbnb dataset, we can see that
the loss function is crucial for improving the results. CTL and OCL performed
worse than when there were no updates, according to the dashed lines. Consid-
ering OCL and CTL, only the proposed WordPieceToken ratio sampling method
(using class in the sampling, sample size 500, and CTL) performed equivalently
to SBERT without update. Apart from this point, all the combinations for CTL
and OCL performed worse than SBERT without update. Although sometimes
equivalent to the competitors, the proposed WordPieceToken ratio (class) gener-
ally obtains higher averages than its peers with the same sample size, except for
using the OCL. Furthermore, increasing the sample size for these loss functions
degraded the results. We assume that these loss functions, together with the
looseness of anchoring, ease the model to suffer from catastrophic forgetting.
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Fig. 2. Results for Airbnb (left) and Yelp (right). The dashed lines correspond to the
maximum and minimum Macro F1-Score values using SBERT without update. The
numbers in the legend correspond to the sample sizes.

Still analyzing the results for the Airbnb dataset, regarding BATL and SL,
mostly in SL, all sampling methods were equivalent to SBERT without updates.
However, using the Length or TF-IDF sampling method without accounting
for the classes led to smaller Macro F1-Scores. In addition, it is possible to
notice that, in the SL case, accounting for the classes in the sampling method
helped reach a better Macro F1-Score than the same sampling method without
accounting for the class. In the BATL scenario, all methods perform similarly
across the sample sizes, except for the WordPieceToken ratio, which obtained the
highest Macro F1-Score using a sample size of 5000. Therefore, using a sample
size of 5000 improved the performance in these cases.

Similar observations can be made by switching to the results concerning the
Yelp dataset: CTL and OCL led to poorer results than BATL and SL. CTL
provided the worst results for this dataset; the bigger the sample size, the worse
the performance. Again, CTL seems to lead to catastrophic forgetting. It can be
credited to its simple way of generating text pairs for fine-tuning. On the other
hand, OCL obtained equivalent results across sampling methods and sample
sizes, but all were worse than SBERT without updates. In addition, considering
the sample sizes of 2500 and 5000, all methods showed increased performance.

BATL and SL functions led to increased performance for the Yelp dataset
compared to the baseline (dashed lines). For BATL, all sampling methods using
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Fig. 3. Elapsed times for Airbnb (left) and Yelp (right). The dashed lines correspond
to the maximum and minimum Macro F1-Score values using SBERT without update.

the sample size of 500 and 1000 are equivalent to the baseline. From the sam-
ple size of 1000, the At Random and WordPieceToken ratio sample methods
reached Macro F1-Score values superior to the baseline. Regarding SL, most
sampling methods are superior to the baseline from the sample size of 2500.
Smaller samples led to decreased performance compared to the baseline.

Regarding the elapsed times, Fig. 3 shows measured values in each setting.
Again, dashed lines correspond to the baseline, i.e., SBERT without update.
For the Airbnb dataset using the BATL function, we noticed that the proposed
WordPieceToken ratio took longer than the baseline to run, essentially from the
sample size of 2500. For CTL, all methods, except for the length sampling method
in both variations, took longer than the baseline. Specifically for Length (class),
it was unstable, taking a reasonable time when using the sample size of 5000.
It somehow can be expected since longer reviews would be selected, and the
fine-tuning process would take longer. However, this should also be visualized
for the Length sampling method, but it has not happened. We hypothesize that
an anomaly in the GPU may have led to this increased variation. In OCL, all
sampling methods have similar elapsed times: only sampling 5000 items led to
higher run times than the baseline. At last, for SL, the Length- and TF-IDF-
based methods took longer than the baseline from the sample size of 2500. In
addition, Length (class) showed similar behavior to CTL regarding instability.
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Regarding the Yelp dataset, considering the BATL function, random sam-
pling led to shorter elapsed times. Length- and TF-IDF-based (with class) sam-
pling methods led to longer elapsed times. Differently, in CTL, the proposed
WordPieceToken ratio sampling reached the highest run times compared to all
other methods. The same behavior happens in the SL function. For the OCL, the
elapsed times for all methods are equivalent to the ones from SBERT without
update, except for the WordPieceToken ratio sampling method.

Table 1 condenses the results obtained. The bold values are the best per
dataset, sample size, and loss function (LF) combination, i.e., per row. The
values in yellow and green are the best Macro F1 scores and elapsed times per
dataset/sample size. WordPieceToken ratio (class) obtained the best Macro F1-
Scores in 5 out of 8 dataset/sample size pairs, and WordPieceToken ratio in 1
out of 8. Sampling at random was the fastest in 6 out of 8 dataset/sample size
pairs. Furthermore, the best Macro F1-Scores increase with the sample size.

Although elapsed time is important and variations followed similar patterns,
i.e., the higher the sample size, the longer the elapsed time, the differences
between them show that they may not impede fine-tuning in text stream sce-
narios, depending on the hardware. The differences between maximum and min-
imum elapsed times are 187.07 s for Airbnb and 73.54 s for Yelp, which represent
37% and 13% of their respective average elapsed times.

5 Conclusion

Learning from text streams is challenging due to the constraints of text streams,
such as time, resources, and one-pass processing [9,10]. Furthermore, the exis-
tence of concept drifts in texts produced over time is well-known. A way to
overcome textual concept drifts is by updating the language model. Updating
(or fine-tuning) the language model is generally costly if all new data is consid-
ered.

This paper evaluates four different sampling methods, i.e., random sampling,
length sampling, TF-IDF sampling, and WordPieceToken ratio sampling (pro-
posed in this paper), where the latter three had a version that accounted for
instances’ classes, aiming at sampling important, informative texts from the
buffer. Four loss functions were assessed in combination with the text sampling
methods, i.e., Batch All Triplets loss (BATL), Contrastive Tension loss (CTL),
Online Contrastive loss (OCL), and Softmax loss (SL).

We observed that the loss function plays a crucial role in improving the per-
formance of the text classification task. Considering the scenarios assessed, CTL
and OCL functions were insufficient to achieve satisfactory performance levels.
On the other hand, BATL and SL functions aided in maintaining interesting
performance levels, sometimes above the SBERT without update (our baseline),
suggesting the SBERT can benefit from these loss functions. In addition, the
elapsed times were comparable to the baseline. Therefore, BATL and SL were
the most suitable functions for text stream classification among those evalu-
ated in this paper. However, one must be careful when employing this approach
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because fine-tuning can create a bottleneck in real-time applications. Finally,
text sampling methods are also crucial in fine-tuning. Our experiments sug-
gest that the proposed WordPieceToken ratio method, especially leveraging the
instances’ classes, can retrieve more informative texts and favor the machine
learning model’s performance after fine-tuning.

In future works, we intend to (a) extend to different stream mining tasks, (b)
identify proper moments to automatically trigger the fine-tuning, (c) evaluate
the balance between the sampling method and the resources consumption, and
(d) evaluate other pre-trained BERT-based models with the combinations of loss
functions and sampling method used in this paper.
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Abstract. The increasing prevalence of AI-generated content along-
side human-written text underscores the need for reliable discrimina-
tion methods. To address this challenge, we propose a novel framework
with textual embeddings from Pre-trained Language Models (PLMs) to
distinguish AI-generated and human-authored text. Our approach uti-
lizes Embedding Fusion to integrate semantic information from mul-
tiple Language Models, harnessing their complementary strengths to
enhance performance. Through extensive evaluation across publicly
available diverse datasets, our proposed approach demonstrates strong
performance, achieving classification accuracy greater than 96% and a
Matthews Correlation Coefficient (MCC) greater than 0.93. This eval-
uation is conducted on a balanced dataset of texts generated from five
well-known Large Language Models (LLMs), highlighting the effective-
ness and robustness of our novel methodology.

Keywords: Authorship Attribution · Large Language Models ·
Generative AI

1 Introduction

In recent years, the landscape of natural language generation (NLG) technology
has undergone remarkable advancements, revolutionizing the diversity, control,
and quality of texts generated by Large Language Models (LLMs). Notably, Ope-
nAI’s ChatGPT, Google’s Gemini, and Meta’s Llama stand out as prime exam-
ples, showcasing exceptional performance across a myriad of tasks, including
answering questions, composing emails, essays, and even code snippets. How-
ever, while these advancements herald a new era of human-like text genera-
tion at unprecedented efficiency, they also bring to the forefront pressing concerns
regarding the detection and mitigation of potential misuse of LLMs. While there
are many issues with LLMs in terms of their hallucinating responses and toxic
language, the newfound capability of LLMs to emulate human-like text raises
significant apprehensions about their potential misuse in activities in many areas
such as phishing, disinformation campaigns, and academic dishonesty. Instances
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15319, pp. 460–471, 2025.
https://doi.org/10.1007/978-3-031-78495-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78495-8_29&domain=pdf
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abound where educational institutions have resorted to banning ChatGPT due
to apprehensions regarding its potential for facilitating cheating in assignments
[2,20], while media outlets have sounded the alarm over the proliferation of fake
news generated by LLMs [18]. Such concerns surrounding the misuse of LLMs
have cast a shadow over their application in critical domains such as media and
education.

Accurate detection of LLM-generated texts emerges as a pivotal requirement
for realizing the full potential of NLG technology while mitigating the potentially
serious consequences associated with its misuse. From the perspective of end-
users, the ability to discern between human-authored and LLM-generated text
holds the promise of bolstering trust in NLG systems and fostering wider adop-
tion. For developers and researchers in the realm of Machine Learning, effective
text detection mechanisms can aid in tracking generated texts and thwarting
unauthorized usage.

Fig. 1. An overview of our framework to perform authorship attribution between
machine-generated and human-authored texts.

Given the critical significance of accurate LLM-generated text detection,
we propose a novel framework based on representing text as images through
Embedding Fusion as in Fig. 1. Embeddings are low-dimensional representations
of high-dimensional inputs like text, aiming to capture similarities by position-
ing related inputs closely in the embedding space, thereby enabling AI systems
to comprehend inputs akin to human understanding. Inspired by [7], we com-
bine textual representations across Pre-trained Language Models (PLMs) and
leverage their complementary strengths. Additionally, post-concatenation of the
feature vectors, we reshape the fused feature vector into a 2D representation to
capture the inter-embedding relationships better. Amongst the 3 types of PLMs
- Autoregressive Language Models (ALMs), Masked Language Models (MLMs),
and Encoder-Decoder Language Models (EDLMs) [12], our experiments indi-
cate that the combination of the former 2 PLMs works best. We believe this is
because ALMs are trained with a focus on content generation and more empha-
sis is placed on the final tokens. With thorough experimentation using publicly
available datasets, we validate that our framework achieves better results than
the state-of-the-art (SOTA) methods for the task of discerning AI-generated and
human-authored text.
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The rest of the paper is structured as follows. We dive into the past and recent
research contributions in solving the authorship attribution task in Sect. 2. A
detailed overview of the dataset is shown in Sect. 3. Sections 4 and 5 provide the
methodology and results in support of our approach.

2 Related Work

The concept of authorship attribution using BERT embeddings has been effec-
tively demonstrated by many researchers. PART [5] and BertAA [3] shows how
BERT embeddings can be used to grasp authors’ writing styles and generate
stylometric representations. [15] explores Siamese Networks for authorship attri-
bution (AA), comparing their effectiveness with BERT fine-tuning. On the other
hand, our research utilizes 1024-sized BERT embeddings as an image of size
(32,32).

Previous works such as [1,6,9], use traditional Machine Learning algorithms
for classification on datasets of limited scope - comparison between human-
authors or consider just a single LLM. [14] discusses the application of Con-
volutional Neural Networks (CNNs) in character-level signal processing, serving
as a motivation for our work.

The studies [11] and [16] explore the detection and regulation of AI-generated
text, particularly in the context of scientific writing. In [11], a dual approach is
introduced, employing feature-based methods to categorize aspects like writing
style and coherence, alongside neural network-based fine-tuning of a GPT-2 out-
put detector model using RoBERTa, achieving a 94.6% F1 score. Conversely,
[16] provides a broader overview of detection techniques, encompassing black-
box methods relying on API-level access and deep learning approaches involv-
ing fine-tuning LLMs like RoBERTa. The latter study also discusses white box
methods, including post-hoc rule-based and neural-based approaches, as well
as inference-time watermarking techniques for modifying word selection during
text generation. Together, these studies contribute to understanding and regu-
lating AI-generated text in scientific writing, offering insights into both specific
detection methodologies and broader frameworks for control and regulation.

3 Dataset

In this research, we consider two datasets - Human vs LLM text [4] and Deepfake
text detection [8]. In this paper, we are focused on solving a binary classification
task, and a highly imbalanced dataset will produced biased results. Hence,
we balance the dataset by randomly sampling n texts from human-
generated texts, where n is equal to the number of LLM-generated
(GPT/Llama/FLAN/Mistral/OPT) texts in consideration.

The Human vs LLM text dataset is a compilation of texts generated from
63 different LLMs. From the 63 LLMs, we pick texts generated from 5 different
LLMs for our experiments and group variants of each LLM into a single category
as in Table 1. We ensure that our dataset is always balanced.
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Table 1. Distribution of Kaggle’s Human vs Text corpus.

Source Variants No. of Samples Min. word count per
sample

Max. word count
per sample

Human - 347,692 25 71,543

FLAN FLAN-T5-Base 45,608 25 905

FLAN-T5-Large

FLAN-T5-Small

FLAN-T5-XXL

FLAN-T5-XL

GPT GPT-3.5 75,599 25 3,565

GPT-4

GPT-J

GPT-NeoX

Llama Llama-30B 42,623 25 1,770

Llama-65B

Llama-13B

Llama-7B

Llama-2-70B

Llama-2-7B

OPT OPT-1.3B 80,151 25 1,044

OPT-30B

OPT-2.7B

OPT-6.7B

OPT-125M

OPT-350M

OPT-13B

Mistral Mistral-7B 10,813 25 21,734

Mistral-7B-OpenOrca

The Deepfake text detection dataset was created by considering 10 datasets
covering a wide range of writing tasks (e.g., story generation, news writing,
and scientific writing) from diverse sources (e.g., Reddit posts and BBC news).
27 LLMs were employed for the construction of deepfake texts, resulting in a
dataset of 447,674 instances in total. The dataset also comprised of domain-
specific data from various domains, including opinion statements, news article
writing, question answering, story generation, commonsense reasoning, knowl-
edge illustration, and scientific writing.
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For this study, we only considered knowledge illustration generated using
1000 Wikipedia paragraphs from the SQuAD context. Among the 27 LLMs, we
have considered FLAN, GPT, Llama and OPT in this study. We have consol-
idated the text outputs from various sizes of the aforementioned LLMs, such
as Llama 7B, 13B, 30B, and 65B, into a single category labeled “Llama”. The
SQuAD domain consisted of 20,950 human-generated texts and 26,714 machine-
generated texts. We split this into a balanced set with different types of LLMs
and an equal amount of human-authored texts, shown in Table 2.

Table 2. Distribution of Deepfake text Detection for the SQuAD domain.

Source Variants No. of Samples Average Document Length Average Sentence Length Average # Sentences per Document

Human - 6477 232.02 18.90 13.48

FLAN FLAN-T5-Base 3885 279.99 18.80 15.33

FLAN-T5-Large

FLAN-T5-Small

FLAN-T5-XXL

FLAN-T5-XL

GPT GPT-3.5 1830 279.99 18.80 15.33

GPT-J

GPT-NeoX

Llama Llama-7B 3102 279.99 18.80 15.33

Llama-13B

Llama-30B

Llama-65B

OPT OPT-125M 6477 279.99 18.80 15.33

OPT-350M

OPT-1.3B

OPT-2.7B

OPT-6.7B

OPT-13B

OPT-30B

OPT-IML-1.3B

OPT-IML-30B

4 Proposed Methodology

After generating the text embeddings, we reshape the 1D embedding vectors
into a 2D representation before proceeding with the classification task. This
reshaping is aimed at enhancing the capture of inter-embedding relationships.
The neural network architecture comprises of 3 CNN layers followed by 1 fully
connected layer, as depicted in Fig. 2. During training, we employ a batch size
of 256, a learning rate of 0.001, and utilize the Adam optimizer.
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Fig. 2. Architecture of the classification model used in our framework.

4.1 Autoregressive Language Models

An Autoregressive Language Model, as in Fig. 3, is trained to predict the succeed-
ing word xi based on all preceding words x1, x2, ..., xi−1. The training objective
involves maximizing the log-likelihood

∑
i log(P (xi|x1, x2, ..., xi−1; θT )), where

θT represents the model parameters. In Transformer decoders, these parameters
reside across multiple layers of multi-head self-attention modules. Well-known
models that adhere to this architecture include GPT2 [13] and Llama2 [17].
The semantic information captured by GPT2 revolves around the generation
of coherent and contextually appropriate text sequences. Its training involves
learning the relationships between tokens in a given context and leveraging this
knowledge to generate text that follows the expected language patterns.

Fig. 3. Autoregressive Language Models use the provided context to generate relevant
responses. Here, we assume that the token ‘C’ captures the context of the query.
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4.2 Masked Language Models

In contrast to ALMs, Masked Language Models (MLMs) as in Fig. 4 predict a
“masked” word conditioned on all other words in the sequence. During MLM
training, words are randomly selected to be masked, represented by a special
token [MASK], or substituted with a random token. This strategy compels
the model to gather bidirectional context for making predictions. The training
objective is to accurately predict the original tokens at the masked positions,
expressed as

∑
i mi log(P (xi|x1, ..., xi−1, xi+1, ..., xn); θT ), where mi ∈ {0, 1}

denotes whether xi is masked or not, and θT represents the parameters in a
Transformer encoder. Notably, in models like BERT, it’s common practice to
mask multiple words simultaneously to facilitate parallel training. Prominent
examples of MLMs include BERT [5] and RoBERTa [10]. RoBERTa [10], an
enhanced framework of BERT, excels in capturing both semantic meaning and
stylometric features from textual data. These embeddings can be further utilized
in various downstream tasks, such as authorship attribution, by feeding them
into classification models [15].

Fig. 4. Masked Language Models are trained to predict masked tokens (represented as
[MASK]) in a query, which helps the models better understand semantic context.

4.3 Encoder-Decoder Language Models

The Encoder-Decoder model, as in Fig. 5, serves as a versatile “text in,
text out” architecture, proficient in generating a sequence of tokens y1, ..., yn
based on an input sequence x1, ..., xm. When presented with a sequence
pair, the training objective revolves around maximizing the log-likelihood of
log(P (y1, ..., yn|x1, ..., xm); θT ), where θT represents the parameters within a
complete encoder-decoder transformer model. To enrich the dataset for self-
supervised pre-training, researchers explore various methods of sequence manip-
ulation. These techniques involve altering the input token sequence in specific
manners, with the objective of reconstructing the original sequence as the out-
put. Examples of sequence corruption techniques include document rotation,
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Table 3. Experiments on the Human vs LLM dataset assessed the accuracies of various
techniques, discerning LLM (‘Source’) texts solely against human-authored texts.

Source Embedding Model Accuracy (%) TPR FPR MCC

Encoder Decoder Encoder-Decoder

FLAN RoBERTa - - 94.75 0.923 0.033 0.891

- GPT2 - 93.06 0.972 0.111 0.874

- Llama - 96.10 0.983 0.061 0.923

- - FLAN 97.02 0.973 0.032 0.940

RoBERTa GPT2 - 95.55 0.980 0.069 0.912

RoBERTa Llama - 97.09 0.979 0.038 0.942

RoBERTa GPT2 FLAN 97.59 0.986 0.034 0.952

RoBERTa Llama FLAN 97.29 0.968 0.022 0.946

RoBERTa - FLAN 97.77 0.978 0.022 0.955

- GPT2 FLAN 97.40 0.972 0.024 0.948

- Llama FLAN 96.47 0.993 0.064 0.931

GPT RoBERTa - - 93.78 0.934 0.058 0.875

- GPT2 - 93.80 0.919 0.043 0.877

- Llama - 96.51 0.959 0.028 0.930

- - FLAN 98.14 0.980 0.017 0.963

RoBERTa GPT2 - 97.23 0.975 0.031 0.945

RoBERTa Llama - 95.93 0.993 0.075 0.921

RoBERTa GPT2 FLAN 98.23 0.978 0.014 0.965

RoBERTa Llama FLAN 97.87 0.979 0.022 0.957

RoBERTa - FLAN 98.73 0.987 0.012 0.975

- GPT2 FLAN 98.25 0.970 0.005 0.965

- Llama FLAN 97.17 0.956 0.012 0.944

Llama RoBERTa - - 90.68 0.861 0.047 0.817

- GPT2 - 91.40 0.912 0.084 0.828

- Llama - 93.50 0.951 0.082 0.870

- - FLAN 94.92 0.961 0.063 0.899

RoBERTa GPT2 - 94.57 0.944 0.053 0.891

RoBERTa Llama - 95.61 0.952 0.040 0.912

RoBERTa GPT2 FLAN 93.10 0.972 0.111 0.865

RoBERTa Llama FLAN 95.38 0.970 0.062 0.908

RoBERTa - FLAN 96.53 0.949 0.018 0.931

- GPT2 FLAN 95.62 0.973 0.061 0.913

- Llama FLAN 95.22 0.941 0.037 0.905

OPT RoBERTa - - 94.32 0.916 0.030 0.887

- GPT2 - 90.42 0.909 0.104 0.805

- Llama - 95.86 0.970 0.053 0.917

- - FLAN 97.68 0.978 0.024 0.954

RoBERTa GPT2 - 95.59 0.982 0.071 0.913

RoBERTa Llama - 97.13 0.962 0.020 0.943

RoBERTa GPT2 FLAN 97.09 0.979 0.038 0.942

RoBERTa Llama FLAN 97.89 0.976 0.018 0.958

RoBERTa - FLAN 98.20 0.978 0.014 0.964

- GPT2 FLAN 97.70 0.987 0.033 0.954

- Llama FLAN 96.74 0.986 0.052 0.935

Mistral RoBERTa - - 99.33 0.989 0.003 0.986

- GPT2 - 99.42 0.996 0.007 0.988

- Llama - 99.84 0.997 0.001 0.997

- - FLAN 99.72 0.997 0.003 0.994

RoBERTa GPT2 - 99.65 0.999 0.005 0.993

RoBERTa Llama - 99.91 0.999 0.000 0.998

RoBERTa GPT2 FLAN 99.88 0.999 0.001 0.998

RoBERTa Llama FLAN 99.84 0.999 0.002 0.997

RoBERTa - FLAN 99.95 0.999 0.000 0.999

- GPT2 FLAN 99.86 0.997 0.000 0.997

- Llama FLAN 98.84 1.000 0.023 0.977
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sentence permutation, text infilling, and token deletion/masking, among oth-
ers [12]. FLAN [19] demonstrates proficiency in capturing semantic correlations
between input and output sequences, empowering it to generate translations or
summaries that maintain coherence and contextual relevance.

Fig. 5. Encoder-Decoder Language Models transform an input sequence into a fixed-
sized embedding. These embeddings are used by the decoder to generate an output
sequence. Such models are often used in machine translation and sequence-to-sequence
prediction.

5 Observation and Results

From Table 3 and Table 4, we observe that the embedding combination of MLMs
and EDLMs performs the best on the authorship attribution task. In addition
to classification accuracy, we have also documented the performance of our app-
roach through the Matthews Correlation Coefficient (MCC).

The equation for Matthews Correlation Coefficient (MCC) is provided in
Eq. 1. MCC assesses the correlation between the actual and predicted binary
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Table 4. Authorship attribution accuracies with different techniques for Deepfake text
detection Dataset from the SQuAD domain.

Source Embedding Model Accuracy (%) TPR FPR MCC

Encoder Decoder Encoder-Decoder

FLAN RoBERTa - - 94.69 0.934 0.004 0.894

- GPT2 - 94.33 0.929 0.042 0.887

- - FLAN 97.54 0.967 0.020 0.948

- Llama - 98.56 0.978 0.007 0.971

RoBERTa GPT2 - 97.70 0.984 0.030 0.954

RoBERTa Llama - 99.01 0.993 0.013 0.980

RoBERTa - FLAN 99.45 0.995 0.006 0.989

RoBERTa GPT2 FLAN 98.87 0.993 0.017 0.976

RoBERTa Llama FLAN 99.23 0.991 0.006 0.985

- Llama FLAN 99.23 0.998 0.013 0.985

- GPT2 FLAN 99.38 0.998 0.010 0.988

GPT RoBERTa - - 94.69 0.934 0.04 0.894

- GPT2 - 88.88 0.868 0.093 0.776

- - FLAN 95.27 0.943 0.040 0.903

- Llama - 88.88 0.868 0.093 0.776

RoBERTa GPT2 - 95.29 0.948 0.042 0.906

RoBERTa Llama - 97.04 0.975 0.034 0.941

RoBERTa - FLAN 97.48 0.973 0.023 0.949

RoBERTa GPT2 FLAN 96.34 0.964 0.038 0.925

RoBERTa Llama FLAN 97.04 0.959 0.019 0.941

- Llama FLAN 95.83 0.966 0.049 0.917

- GPT2 FLAN 96.71 0.948 0.015 0.935

Llama RoBERTa - - 94.69 0.934 0.04 0.894

- GPT2 - 93.99 0.943 0.065 0.878

- - FLAN 95.86 0.992 0.076 0.918

- Llama - 94.52 0.940 0.050 0.890

RoBERTa GPT2 - 97.61 0.975 0.023 0.952

RoBERTa Llama - 98.25 0.977 0.013 0.965

RoBERTa - FLAN 98.90 0.982 0.004 0.978

RoBERTa GPT2 FLAN 98.79 0.982 0.008 0.974

RoBERTa Llama FLAN 98.79 0.977 0.002 0.976

- Llama FLAN 98.45 0.013 0.982 0.969

- GPT2 FLAN 98.58 0.977 0.005 0.972

OPT RoBERTa - - 94.69 0.934 0.04 0.894

- GPT2 - 91.77 0.900 0.067 0.834

- - FLAN 97.77 0.967 0.017 0.951

- Llama - 97.41 0.976 0.028 0.948

RoBERTa GPT2 - 95.72 0.961 0.047 0.914

RoBERTa Llama - 96.38 0.966 0.038 0.928

RoBERTa - FLAN 98.57 0.975 0.004 0.972

RoBERTa GPT2 FLAN 97.33 0.964 0.019 0.945

RoBERTa Llama FLAN 97.15 0.954 0.013 0.943

- Llama FLAN 97.79 0.975 0.020 0.956

- GPT2 FLAN 98.10 0.977 0.015 0.962

classifications, with values ranging from −1 to +1. A score of +1 indicates perfect
prediction, 0 denotes no correlation, and −1 implies total disagreement between
predictions and actual labels.
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MCC =
TP × TN − FP × FN

√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(1)

TP − True Positives TN − True Negatives
FP − False Positives FN − False Negatives

Although classification accuracy is a common metric for assessing perfor-
mance in binary classification tasks, it can sometimes be misleading. This is
because the train and test split can introduce small biases, even in balanced
datasets. Therefore, the MCC provides a more comprehensive view of perfor-
mance as it accounts for all metrics: true positives, true negatives, false posi-
tives, and false negatives. Consequently, even a 0.01 increase in the MCC scores
indicates a substantial improvement in performance.

As demonstrated in Table 3 and Table 4, we notice that combining embed-
dings does not always enhance performance metrics. Incorporating embeddings
from ALMs leads to a decrease in classification accuracy and MCC scores. This
can be attributed to the nature of ALMs, which prioritise text generation and
consequently assign more significance to the final tokens in the input text.

6 Conclusion and Future Work

This paper presents a pioneering framework that employs Embedding Fusion
to address the longstanding challenge of distinguishing between AI-generated
and human-authored text. Our approach integrates embeddings from Masked
Language Models (MLMs) and Encoder-Decoder Language Models (EDLMs),
concatenating them into a single feature vector. This vector is subsequently
reshaped into a 2D representation to enhance the capture of inter-embedding
relationships. Through extensive experimentation across 2 datasets, we achieve
an accuracy >96% and Matthews Correlation Coefficient (MCC) score >0.93
showcases its effectiveness. Moreover, our findings indicate that incorporating
embeddings from Autoregressive Language Models (ALMs) can degrade the
information within the feature vector. We believe that the embedding fusion
methodology holds significant potential for advancing authorship attribution
tasks, with opportunities for further exploration through attention mechanisms
and interleaving strategies.
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Abstract. Delving into the realm of Bangla text analysis, our study
ventures to unlock the potential of both Large and Tiny Language Mod-
els across a range of classification tasks, from deciphering sentiment to
detecting sarcasm, emotion, hate speech, and fake news. In a linguistic
landscape where resources are scarce, we fill a crucial gap by meticu-
lously evaluating model performance. Our findings unveil Gemma-2B and
Bangla-BERT as top performers, with Gemma-2B excelling in detecting
hate speech and sarcasm, while BanglaBERT shines in sentiment anal-
ysis and emotion detection. Notably, TinyLlama emerges as a stand-
out, showcasing exceptional prowess in fake news detection. We empha-
size the importance of selecting models attuned to the intricacies of
Bangla text, with Gemma-2B, TinyLlama, and BanglaBERT exhibiting
notable accuracy improvements, surpassing other contenders. Further-
more, we uncover performance disparities influenced by dataset origins,
with Bangla Language Models adept at capturing social media senti-
ments, and Large Language Models excelling in identifying misinforma-
tion and abusive language in formal sources. Our comparison with Chat-
GPT’s zero-shot prompting underscores the necessity for advanced NLP
methodologies. By spotlighting TinyLLM, we showcase the potential of
advanced NLP in Bangla text classification, paving the way for broader
advancements in NLP research.

Keywords: Bangla Language Models · Multilingual Language
Models · Tiny Large Language Models

1 Introduction

In the realm of NLP, the landscape of text classification has evolved signifi-
cantly. Traditionally, conventional machine learning algorithms were the go-to
for such tasks. However, the recent surge in transformer-based models, particu-
larly large language models, has reshaped the field [2]. While these models have
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predominantly been prompt-based, their utility in languages such as Bangla
has been limited due to resource constraints, including a scarcity of annotated
datasets, linguistic resources, and computational infrastructure. Bangla, as a
low-resource language, faces challenges in terms of data availability and linguis-
tic resources necessary for effective NLP tasks. These limitations have made fine-
tuning these models challenging in languages like Bangla. Fortunately, strides
have been made with the development of smaller versions of these models, often
termed”tiny” models, to broaden their accessibility and applicability, even across
diverse domains [27]. Despite this progress, the exploration of these models in
Bangla remains relatively under-explored, creating a notable gap in understand-
ing their performance in Bangla text classification tasks [19].

To bridge this gap, our research endeavors to analyze the efficacy of vari-
ous language models, including tiny ones, in the context of Bangla text clas-
sification tasks. Specifically, we target tasks like Sarcasm Detection [3], Hate
Speech Detection [20], Bangla Fake News Detection [16], and others. Prelimi-
nary observations indicate that Tiny Large Language Models (TinyLLMs) con-
sistently outperform existing Bangla language models (BLMs) and multilingual
language models (MLMs) by substantial margins, ranging from 0.1% to 15%
in most cases. By delving into these investigations, we aim to provide valuable
insights into the performance of contemporary NLP models in Bangla, cater-
ing to the academic community’s quest for knowledge in this domain. In this
research endeavor, our contributions will encompass several key aspects:

– Implementation of Tiny Language Models: We implement and fine-
tune tiny language models for different text classification tasks in the Bangla
language. This involves adapting pre-existing models or training new ones
from scratch to suit the specific linguistic nuances of Bangla.

– Analysis of Model Performance: We undertake thorough analyses to
assess the performance of TinyLLMs in comparison to other state-of-the-
art transformer models frequently employed in NLP tasks. Additionally, we
evaluate these models using zero-shot prompting with ChatGPT, a state-of-
the-art large language model.

– Identification of Model Suitability: Through rigorous experimentation
and evaluation, we aim to identify the most suitable models for specific text
classification tasks. This involves assessing factors such as model efficiency,
robustness, and generalization capabilities.

By undertaking these endeavors, we seek to contribute to the advancement
of NLP research in Bangla and facilitate the development of effective solutions
for text classification tasks in this language. Our research outcomes have the
potential to benefit a wide range of applications, including sentiment anal-
ysis, content moderation, and information retrieval, particularly in the con-
text of Bangla-speaking communities. Additionally, the comparison with Chat-
GPT’s relatively mediocre performance underscores the necessity for utilizing
TinyLLMs for improved classification accuracy and effectiveness.
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2 Related Works

In the domain of text classification, researchers have embarked on a journey
to explore various machine and deep learning models, with pre-trained mod-
els gaining significant traction in recent years. Hasan et al. (2023) [12] delved
into sentiment analysis, employing a range of machine learning models alongside
fine-tuned options such as BanglaBERT and XLM-Roberta. Notably, they also
incorporated ChatGPT for sentiment analysis using both zero-shot and multi-
shot approaches. Bhattacharjee et al. (2022) [4] examined different iterations of
BanglaBERT, comparing them with models like XLM-Roberta and mBERT for
Bangla text analysis. However, despite this exploration, the impact of TinyLLMs
has remained largely overlooked in these studies. Dehan et al. [7] investigated
the performance of graph-based models for Bangla text classification. Fahim et
al. [10] proposed a contextual neural stemmer for Bangla and its performance
for Bangla text classification problems.

Alam et al. (2021) [1] conducted a benchmarking exercise on datasets
collected from various platforms for nine NLP tasks using state-of-the-art
transformer-based models. Their comparative analysis extended to monolingual
versus multilingual models of varying sizes. Yet, the inclusion of Tiny LLMs
in their evaluation was notably absent. Our research adopts a novel approach by
broadening the scope of comparison to encompass TinyLLMs across a diverse
array of tasks, including sentiment analysis, sarcasm detection, fake news detec-
tion, hate speech detection, and emotion detection. Additionally, we compare
these models against a prominent large language model like ChatGPT. This
comprehensive analysis aims to provide a deeper understanding of TinyLLMs
performance across various datasets and tasks, while also shedding light on Chat-
GPT’s efficacy in these domains.

In a similar vein, Kabir et al. (2023) [19] explored the application of vari-
ous Large Language Models (LLMs) across a spectrum of tasks, including text
classification. Their investigation incorporated zero-shot evaluation for Chat-
GPT, LLaMA-2, and Claude-2. However, the specific examination of TinyLLMs
and LLMs was lacking, and a comprehensive analysis for each individual task
was not provided. Thus, our research endeavors to fill this gap by focusing on
text classification within the realm of Natural Language Understanding (NLU).
Furthermore, we sought to assess ChatGPT’s performance across these specific
tasks.

Li et al. (2023) [21] addressed the challenges encountered by Large Lan-
guage Models (LLMs) in handling low-resource languages like Bangla. Despite
the potential of LLMs in NLP, their effectiveness in such languages has been
limited. To tackle this issue, the authors proposed an innovative approach that
integrates cross-lingual retrieval with in-context learning. By strategically uti-
lizing prompts from languages with abundant resources that are semantically
similar, they empowered Multilingual Pretrained Language Models (MPLMs),
particularly emphasizing the generative model BLOOMZ, to enhance their per-
formance on Bangla-related tasks. Their comprehensive evaluation showcased
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that incorporating cross-lingual retrieval consistently improves MPLMs beyond
their initial zero-shot performance.

Corrêa et al. (2024) [6], akin to ours, contributes to the trend of developing
LLMs for low-resource contexts, with a focus on Brazilian Portuguese. They
introduce the TeenyTinyLlama (TTL) models, aiming to democratize access
to LLMs and foster open-source development, especially for languages facing
resource constraints. However, no research has yet compared state-of-the-art
transformer models with TinyLLMs. Our study aimed to examine the factors
influencing the performance of these analyzed TinyLLMs and other models, thus
contributing to a deeper understanding of their capabilities in text classification
tasks.

3 Methodology

Our research methodology dives into examining both the esteemed TinyLLMs
and prominent language models (LMs). We refined these models through two dif-
ferent approaches: fine-tuning LMs using conventional methods and fine-tuning
TinyLLMs using LoRA and Peft techniques.

3.1 LM Fine-tuning

In our research, we utilize a LM, which we denote as H = fθ(S), to process input
sentences and extract contextual representations. Upon tokenizing an input sen-
tence S, represented as T = t1, t2, . . . , tn, the LM generates contextual represen-
tations for each token by applying the function fθ(S), resulting in a sequence
denoted as H = h1, h2, . . . , hn. These representations encapsulate the unique
meaning of each token within the context of the entire sentence.

However, for tasks such as classification, where a fixed-size representation
of the entire sentence is required, we employ a two-layer Feed Forward Neural
Network (FFN) on the contextual representation of [CLS] token, hCLS. This
network utilizes weight matrices W1 and W2, bias terms b1 and b2, and the
Rectified Linear Unit (ReLU) activation function to process hCLS and generate
a fixed-size representation z.

z = W2 · (ReLU(W1 · h[CLS] + b1)) + b2 (1)

3.2 TinyLLM Fine-Tuning Using LoRA and FEFT

Traditional fine-tuning of large language models (LLMs) involves significantly
modifying the pre-trained model’s parameters, which can be computationally
expensive and time-consuming. PEFT (Parameter-Efficient Fine-Tuning) [22]
offers a solution by adapting pre-trained models to new tasks with minimal
changes to the original parameters. This significantly reduces training time and
memory usage compared to traditional approaches. LoRA (Low-Rank Adap-
tation) [17] is a specific PEFT technique that introduces a more efficient way
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to capture the adjustments needed for fine-tuning. Instead of directly modify-
ing all the pre-trained parameters, LoRA utilizes a low-rank matrix. This matrix
requires significantly fewer parameters to represent the task-specific adaptations,
leading to substantial efficiency gains.

Let’s denote the original pre-trained model parameters as W which will be
frozen during training. LoRA introduces a low-rank update, denoted by ΔW ,
which captures the task-specific adjustments needed for fine-tuning. This low-
rank update is further decomposed as the product of two trainable matrices, A
and B: ΔW = A×BT . Here, A with a shape of d×r and B with a shape of r×d
have a much lower rank (denoted by r) compared to the original dimension d of
the parameter matrix W . This means they require significantly fewer parameters
to represent the necessary adjustments. The rows of matrix A and the columns
of matrix B can be interpreted as capturing the task-specific adaptations applied
to the original weight matrix W . Finally, the updated weight metrics W ′ with
LoRA is the summation of pretrained frozen metrics W and task-specific fine-
tuned metrics ΔW

W ′ = W + ΔW = W + ABT

In essence, LoRA leverages a more compact representation (the low-rank
matrices A and B) to achieve fine-tuning, resulting in significant efficiency
improvements compared to traditional fine-tuning methods that modify all the
pre-trained parameters directly.

3.3 Experimented Models

Experimented LMs: For fine-tuning, two different types of LM models were
considered i. Bangla LM and Multilingual LM

i. Bangla LM: Our investigation delves into the renowned BanglaBERT
and its variants, acclaimed for their effectiveness in text classification tasks,
utilizing contextual embeddings from meticulous multi-stage training on Bangla
corpora, crucial for our study’s objectives [4,24].

ii. Multilingual LM: We also analyzed the fine-tuning performance of the
multilingual language model for solving Bangla text classification tasks. In this
experiment, we considered, XLM-RoBERTa [5], mBERT [8], mDeBERTa [14],
and mDeBERTa-V3 [13].

Experimented TinyLLMs: In our pursuit of computational efficiency without
compromising performance, we delve into the realm of TinyLLMs, exploring:

i. Gemma-2B: Gemma-2B, Google’s lightweight, decoder-only language
model, derived from Gemini, are versatile for text generation tasks like QA
and summarization, trained on 2B parameters, enabling deployment in resource-
constrained environments [25]. Gemma 2B’s standout feature is its dynamic
sparse attention, which efficiently allocates resources to the most relevant parts
of the input, enhancing overall performance. Its modular architecture also allows
for flexible scaling, adapting to different task complexities seamlessly.
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ii. TinyLlama: TinyLlama, versatile and compact, trained on 1.1B param-
eters, ensures compatibility and ease of adoption for diverse applications [27].
TinyLlama stands out for its incredibly compact design that delivers strong
language understanding while using minimal resources. Its innovative layer nor-
malization techniques ensure that performance remains robust even with limited
computational power.

iii. Falcon-1.3B: Falcon, a series of causal decoder-only models trained on
1.3B parameters, emphasizes computational efficiency with features like multi-
query attention and support for efficient attention variants [23]. The Falcon-1.3B
excels with its efficient use of flash attention, enabling it to achieve high perfor-
mance despite its smaller size. It also integrates advanced gradient checkpointing,
which optimizes memory usage during training and inference.

iv. OPT-1.3B: OPT-1.3B, utilizing causal language modeling and trained
on 1.3B parameters, adeptly captures comprehensive linguistic patterns [28].
OPT-1.3B is remarkable for its open, pre-trained transformer framework,
designed for easy customization and fine-tuning, all while maintaining a lean
and efficient model. Additionally, its adaptive learning rate scheduler helps in
fine-tuning across diverse datasets with improved stability.

4 Experiment Setup

In this study, we deployed multiple model configurations for a thorough analysis
and evaluation.

4.1 Dataset

We employed five unique datasets, each designed for specific tasks including
sentiment analysis, sarcasm detection, fake news detection, hate speech analysis,
and emotion detection.

– SentNoB: A dataset comprising approximately 15k Bengali comments from
diverse social media platforms across 13 domains. These comments are anno-
tated with positive, negative, or neutral sentiments. The dataset is partitioned
into roughly 13k training samples and 1.5k testing and validation samples,
presenting challenges due to its noisy nature [18].

– Bangla Sarcasm Detection Dataset: This dataset consists of over 5k
comments sourced from social media, encompassing 3k non-sarcastic and 2k
sarcastic comments [3].

– BanFakeNews: An annotated dataset of approximately 50,000 news articles,
useful for developing automated fake news detection systems. It consists of
around 48,000 authentic news articles and 1,000 fabricated ones [16].

– Hate Speech Dataset: This dataset contains approximately 3k training
samples and 1k testing samples, covering various forms of hate speech across
different contexts, categorized into political, personal, gender-abusive, geopo-
litical, and religious hate [20].
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– YouTube Comments Emotion: An emotion dataset containing around 3k
samples with 5 classes representing different emotions, such as anger/disgust,
fear/surprise, joy, sadness, and none. These samples are extracted from
Bangla videos on YouTube [26].

4.2 Preprocessing and Experiment Setup

The preprocessing and experiment setup for training are discussed in detail in
this section. Preprocessing steps included normalizing the text using a normal-
izer. We use BUET-NLP normalizer1 in our experiment.

We use the Pytroch deep learning framework for modeling and the Hug-
gingFace library for the pre-trained models. For LM models, we employed the
AdamW optimizer with a learning rate of 1 × 10−5, a number of epochs of 10,
and a batch size of 16. Dropout regularization was applied to prevent overfitting
with dropout rate = 0.1. The hyper-parameters were chosen based on papers
[9,11]

In experiments involving TinyLLMs, we established a computational envi-
ronment using specialized packages like peft, bitsandbytes, and accelerate. We
utilized diverse TinyLLMs variants such as falcon-1.3b, TinyLlama-1.1b, opt-
1.3b and gemma-2b. For these models, we employed the AdamW optimizer
with a learning rate of 2e−5 and a weight decay of 0.01. The value of r = 64,
LoRA ALPHA = 32, and LoRA DROPOUT = 0.1. LoRA was applied to the
all-linear layer of the TinyLLM. In TinyLLM experiment, models were trained
for 5 epochs, with batch sizes of 2, 4, and 8, depending on the dataset size.

Tokenization was performed using Huggingface AutoTokenizer, and fine-
tuning was carried out using the Huggingface Trainer module. All experiments
were conducted on a single Nvidia Tesla P100 GPU.

4.3 Performance Metrics

When assessing the effectiveness of language models, several key performance
metrics are relied upon to provide important insights into their performance. In
our evaluation, we have focused on five widely-used metrics to gain a compre-
hensive understanding of the model’s performance.

Accuracy. Accuracy measures the proportion of correctly classified instances
among all instances. It is calculated by dividing the sum of true positives (cor-
rectly predicted positive instances) and true negatives (correctly predicted neg-
ative instances) by the total number of instances.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

1 https://github.com/csebuetnlp/normalizer.

https://github.com/csebuetnlp/normalizer
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Precision and Recall. Precision measures the proportion of true positive
instances among the instances predicted as positive, and recall measures the
proportion of true positive instances that were correctly predicted out of all
actual positive instances. The calculations are as follows:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(3)

Macro and Weighted F1 Scores. The F1 score is the harmonic mean of
precision and recall. In the macro F1 score, each class is given equal weight, and
the mean of these F1 scores across all classes is calculated. Weighted F1 score,
on the other hand, considers the class distribution by assigning weights to each
class based on their frequency in the dataset.

Macro F1 Score:

F1macro =
1
N

N∑

i=1

F1i (4)

Weighted F1 Score:

F1weighted =
∑N

i=1 wi × F1i∑N
i=1 wi

(5)

where N is the number of classes, wi is the weight for class i, and F1i is the F1
score for class i.

5 Result Analysis

Through rigorous experimentation, we analyzed the performance of diverse lan-
guage models on Bangla text classification datasets, revealing insights into their
strengths and limitations across BLMs, MLMs, TinyLLMs, and ChatGPT, with
efficacy varying based on task and dataset features.

5.1 Bangla Language Models

The performance analysis across different Bangla text classification datasets in
Table 1 indicates variations in model efficacy. BanglaBERT consistently out-
performs BanglaBERT-Large and BanglaBERT (Sagor Sarker) across most
datasets. Notably, BanglaBERT demonstrates superior accuracy and F1 scores
in SentNoB, Sarcasm Detection, Hate Speech Detection, and Emotion Detection
datasets, achieving an average improvement of approximately 1–3% in accuracy
and F1 scores over BanglaBERT-Large.

In Hate Speech Detection, while BanglaBERT-Large surpasses BanglaBERT
in weighted F1 score, accuracy, and macro F1 score by approximately
1–3% respectively. BanglaBERT and BanglaBERT-Large also outperform
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Table 1. Performance Comparison of Bangla Language Models (BLMs) on Bangla Text
Classification Datasets: This table displays performance metrics, including accuracy,
macro F1, and weighted F1 scores, for various Bangla Language Models evaluated
across different Bangla text classification datasets. BanglaBERT emerges as the top
performer across most datasets, surpassing other evaluated models.

Dataset Model Performance Metrics

Accuracy Macro F1 Weighted F1

SentNoB BanglaBERT 74.46 69.55 73.03

BanglaBERT-Large 72.82 68.87 72.05

BanglaBERT (Sagor Sarker) 69.42 64.54 68.01

Sarcasm Detection BanglaBERT 95.67 95.51 95.68

BanglaBERT-Large 94.55 94.23 94.50

BanglaBERT (Sagor Sarker) 90.46 90.13 90.48

HateSpeech Detection BanglaBERT 69.33 41.65 65.41

BanglaBERT-Large 66.11 58.59 66.96

BanglaBERT (Sagor Sarker) 67.11 61.43 66.81

BanFakeNews BanglaBERT 96.65 92.99 96.51

BanglaBERT-Large 97.51 94.69 97.43

BanglaBERT (Sagor Sarker) 96.15 91.76 96.03

Emotion Detection BanglaBERT 70.78 41.26 65.52

BanglaBERT-Large 68.07 42.87 65.08

BanglaBERT (Sagor Sarker) 63.86 40.10 61.09

BanglaBERT (Sagor Sarker) consistently across all datasets. These results sug-
gest that Bangla-BERT offers notable advantages over both BanglaBERT-
Large and BanglaBERT (Sagor Sarker) across various Bangla text classification
tasks, while BanglaBERT-Large outperforms in certain cases. The reason for
BanglaBERT’s superior performance lies in its enhanced ability to grasp both
semantic and syntactic contexts effectively.

5.2 Multilingual Language Models

The performance of various MLMs across different Bangla text classification
datasets is summarized in Table 2. In general, XLM-Roberta consistently out-
performs other MLMs across most datasets. Specifically, in SentNoB, XLM-
Roberta achieves the highest accuracy, macro F1 score, and weighted F1 score,
surpassing other MLMs by approximately 2–9%, indicating a significant mar-
gin of improvement. These results indicate that XLM-Roberta consistently pro-
vides superior performance compared to other Multilingual Language Models
across various Bangla text classification tasks. XLM-RoBERTa exhibits superior
performance compared to other multilingual models due to its advanced archi-
tecture and optimized training methodology, enabling it to capture a broader
range of linguistic nuances across various languages.
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Table 2. Comparative Performance of Multilingual Language Models (MLMs) on Var-
ious Bangla Text Classification Datasets: This table presents performance metrics,
including accuracy, macro F1, and weighted F1 scores, for different Multilingual Lan-
guage Models across several Bangla text classification datasets. The evaluated models
include XLM-Roberta, M-BERT, M-deBerta, and M-deBerta-V3.

Dataset Model Accuracy Macro F1 Weighted F1

SentNoB XLM-Roberta 70.37 67.94 70.67

M-BERT 67.97 65.21 68.13

M-deBerta 60.72 55.23 58.91

M-deBerta-V3 67.28 63.80 66.75

Sarcasm Detection XLM-Roberta 93.60 93.30 93.30

M-BERT 88.68 87.92 88.52

M-deBerta 90.22 89.90 90.25

M-deBerta-V3 90.63 90.01 90.50

Hate Speech Detection XLM-Roberta 69.44 62.19 67.95

M-BERT 66.22 60.65 66.09

M-deBerta 55.22 40.95 53.05

M-deBerta-V3 60.00 41.54 58.21

BanFakeNews XLM-Roberta 97.65 94.96 97.57

M-BERT 89.27 88.81 89.26

M-deBerta 91.95 81.74 91.43

M-deBerta-V3 92.98 86.43 93.12

Emotion Detection XLM-Roberta 67.77 41.39 63.71

M-BERT 59.64 34.04 55.53

M-deBerta 51.20 24.48 44.03

M-deBerta-V3 56.63 29.83 51.74

5.3 Tiny Large Language Models

The performance analysis of TinyLLMs across various Bangla text classification
datasets is presented in Table 3. Each TinyLLM was trained on a minimum of
approximately 21 billion training tokens per 1 billion parameters for Bangla text
[15]. Gemma-2B consistently outperforms other TinyLLMs in terms of accuracy,
macro F1 score, and weighted F1 score across all datasets. In datasets such as
SentNoB, Sarcasm Detection, Hate Speech Detection, and Emotion Detection,
Gemma-2B achieves the highest accuracy, macro F1 score, and weighted F1
score, outperforming TinyLlama by approximately 0.50–9% respectively. Falcon-
1.3B and Opt-1.3B demonstrate comparatively lower performance metrics.

However, for BanFakeNews, both Gemma-2B and TinyLlama demonstrate
comparable accuracy, with TinyLlama outperforming in terms of macro F1 score
and weighted F1 score. Falcon-1.3B and Opt-1.3B again fall behind in perfor-
mance across all metrics. Overall, Gemma-2B consistently demonstrates superior
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Table 3. Comparative Performance of Tiny Large Language Models Across Diverse
Bangla Text Classification Tasks: This table highlights accuracy, macro F1, and
weighted F1 scores of various models, encompassing tasks like sentiment analysis, sar-
casm detection, hate speech identification, fake news detection, and emotion detection.

Dataset Model Performance Metrics

Accuracy Macro F1 Weighted F1

SentNoB Gemma-2B 66.90 63.02 66.06

TinyLlama 66.02 58.93 63.38

Falcon-1.3B 58.83 46.82 52.89

Opt-1.3B 63.18 58.13 61.70

Sarcasm Detection Gemma-2B 96.86 96.72 96.85

TinyLlama 94.13 93.87 94.12

Falcon-1.3B 80.26 77.64 79.14

Opt-1.3B 92.41 92.14 92.43

HateSpeech Detection Gemma-2B 70.89 63.08 70.30

TinyLlama 67.78 54.60 66.13

Falcon-1.3B 53.56 35.43 50.51

Opt-1.3B 56.44 32.21 51.78

BanFakeNews Gemma-2B 97.83 95.50 97.80

TinyLlama 97.83 95.54 97.81

Falcon-1.3B 95.26 90.98 95.39

Opt-1.3B 92.55 84.01 92.31

Emotion Detection Gemma-2B 62.65 36.92 58.62

TinyLlama 57.83 32.50 53.25

Falcon-1.3B 49.10 17.45 36.22

Opt-1.3B 48.49 15.63 34.43

performance across all datasets, highlighting its efficacy as a Large Language
Model for Bangla text classification tasks. The improved efficacy demonstrated
by Gemma-2B and TinyLlama in processing Bangla text could be attributed to
their adept utilization of specialized knowledge tailored to the task at hand.

5.4 Evaluating ChatGPT’s Zero-Shot Prompting Performance

The evaluation of ChatGPT 3.5 Turbo’s zero-shot prompting for Bangla text
classification is outlined in Table 4. For this experiment, we looked at differ-
ent tasks and categories within each dataset. These tasks involved analyzing
sentiment, spotting fake news, detecting hate speech, identifying sarcasm, and
recognizing emotions. The results suggest moderate performance across diverse
classification tasks. Notably, the model demonstrates superior precision and
recall in Sarcasm Detection compared to other tasks. However, a noticeable
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Table 4. The performance of Zero-shot Prompting with ChatGPT across diverse
Bangla text classification datasets is evaluated in the table, comparing test labels
against each label generated by the prompt.

Dataset Precision Recall Macro F1

SentNoB 56.28 49.97 44.85

Sarcasm Detection 62.17 57.59 48.65

Hate Speech Detection 54.65 50.42 46.22

BanFakeNews 46.35 48.92 46.67

Emotion Detection 39.58 37.86 33.09

decrease is evident in Emotion Detection, indicating potential constraints in
grasping nuanced emotional nuances, while showing relatively better compre-
hension of sarcasm. Addressing these challenges may require exploring alterna-
tive prompting techniques and fine-tuning approaches to improve task-specific
performance. We revised the prompt design based on Kabir et al. (2023) [19]
approach to enhance its efficiency. The subsequent illustration exemplifies the
prompts employed within this study:

For the given Input [INPUT]. Now, classify the text for [TASK]. Your
output should be in between class1,class2, . . . ,class n. Write only your

response, nothing else. Don’t add anything before and after your response.

6 Findings

The performance analysis presented in Table 5 underscores the varying effective-
ness of models across Bangla text classification datasets. BanglaBERT showcases
superior performance SentNoB and Emotion Detection tasks, outperforming
other models. Nevertheless, ChatGPT’s performance appears to be notably less
impressive, with accuracies falling behind by substantial margins. Gemma-2B
and TinyLlama exhibits superior performance in Sarcasm Detection, HateSpeech
and BanFakeNews datasets.

In this study, various language models, including Bangla Language Models,
Multilingual Language Models, and Large Language Models, were fine-tuned
and evaluated across distinct datasets sourced from diverse online platforms.
Notably, findings from Tables 1, 2, 3, 4 and 5 reveal that Bangla Language
Models exhibited superior performance when tasked with datasets originating
from social media platforms such as YouTube, particularly those associated with
sentiment analysis and emotion recognition. Conversely, Large Language Models
demonstrated exceptional efficacy when confronted with datasets sourced from
formal sources like newspapers or online articles, notably excelling in tasks such
as sarcasm detection, fake news detection, and hate speech identification.

These findings indicate that different language models have varying strengths
depending on the dataset’s nature and origin. BLMs are sensitive to nuances in
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Table 5. The table presents a performance comparison of top models across various
Bangla text classification datasets, evaluating and contrasting the effectiveness of the
best-performing models from BLM, MLM, TinyLLM, and ChatGPT classifications.

Dataset Model Performance Metrics

Accuracy Macro F1 Weighted F1

SentNoB Gemma-2B 66.90 63.02 66.06

XLM-Roberta 70.37 67.94 70.67

BanglaBERT 74.46 69.55 73.03

ChatGPT (Zero-shot) 56.31 44.85 50.56

Sarcasm Detection Gemma-2B 96.86 96.72 96.85

XLM-Roberta 93.60 93.30 93.30

BanglaBERT 95.67 95.51 95.68

ChatGPT (Zero-shot) 51.10 48.65 46.46

HateSpeech Detection Gemma-2B 70.89 63.08 70.30

XLM-Roberta 69.44 62.19 67.95

BanglaBERT 69.33 41.65 65.41

ChatGPT (Zero-shot) 49.67 46.22 49.27

BanFakeNews TinyLlama 97.83 95.54 97.81

XLM-Roberta 97.65 94.96 97.57

BanglaBERT-Large 97.51 94.69 97.43

ChatGPT (Zero-shot) 82.25 46.67 77.60

Emotion Detection Gemma-2B 62.65 36.92 58.62

XLM-Roberta 67.77 41.39 63.71

BanglaBERT 70.78 41.26 65.52

ChatGPT (Zero-shot) 44.88 33.09 43.06

sentiment, and emotions prevalent in user-generated content on social media.
In contrast, TinyLLMs are proficient in identifying patterns of misinformation
and abusive language in structured, formal sources. The study highlights the
significance of dataset characteristics in influencing model performance. Social
media discourse, with its complex linguistic phenomena, poses challenges for
TinyLLMs, resulting in lower performance compared to models fine-tuned on
datasets tailored to such complexities. Conversely, the structured nature of for-
mal text sources aligns well with the capabilities of TinyLLMs, leading to higher
accuracy in tasks involving misinformation, sarcasm, and hate speech detection.

7 Conclusion

The examination of diverse language models in Bangla text classification tasks
provides valuable insights into their effectiveness and applicability. Gemma-2B
consistently excels in tasks like sarcasm detection and hate speech identification,
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showcasing its reliability and versatility. Conversely, TinyLlama stands out in
fake news detection, underscoring the efficacy of specialized models in capturing
subtle nuances within Bangla text. BanglaBERT demonstrated exceptional per-
formance in the remaining selected tasks. When comparing TinyLLM’s results
with those of multilingual models such as XLM-Roberta and language-specific
models like BanglaBERT, competitive outcomes were observed across various
tasks. BLM’s excel in capturing sentiment and emotions from social media, while
TinyLLM’s demonstrate superior capabilities in detecting sarcasm, hate speech,
and fake news from formal sources.

Selecting the most suitable language model depends on factors like the task,
dataset characteristics, and linguistic nuances. While Gemma-2B and TinyL-
lama demonstrate robust performance, XLM-Roberta, and BanglaBERT also
yield commendable results. These findings offer insights for employing language
models in Bangla text classification, aiding the development of accurate NLP
solutions. Ongoing research is crucial to refine language models for enhanced
performance and applicability in real-world scenarios.

Future Work: In our study on Bangla text classification, we faced challenges
including limited annotated datasets, computational resource constraints, and
potential biases in dataset characteristics. Future research could focus on expand-
ing annotated datasets, optimizing Bangla language models, and exploring new
architectures. Further analysis in specific domains, improvements in evaluation
metrics, and addressing ethical concerns are also crucial. Deploying models in
real-world applications and conducting user studies would provide insights into
usability and effectiveness, driving further progress in the field.
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