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President’s Address

On behalf of the Executive Committee of the International Association for Pattern Recog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that we must thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for [ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPR Prize Lectures at ICPR 2024. This year we honor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of Pattern Recognition and whose past contributions,
current research activity and future potential may be regarded as a model to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in TAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer—Rao bound, and Fisher—
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IICPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image, Video, Speech, and Signal Analysis; Biometrics and Human-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2-5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in four meeting rooms with a total of 40 oral sessions. In total 24 workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork Al,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conference would not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, Rama Chellappa and Cheng-Lin Liu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-Marc Ogier and Prabir Bhattacharya) and Tutorial Chairs (B.B. Chaudhuri, Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium. We would like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the Track Chairs and the meta reviewers who devoted significant time to
the review process and preparation of the program. We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

We hope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler
Anil Jain
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Abstract. We introduce the LS3DS dataset, a novel collection of large
3D CAD models, meshes, and point clouds of industrial sites. Addi-
tionally, the proposed dataset provides a processing pipeline to generate
synthetic meshes and point clouds from the CAD models. The open-
source pipeline makes the proposed dataset easily applicable to different
scenarios, such as the construction industry. The ground truth values
can be effortlessly generated to tackle problems such as geometric primi-
tive fitting, a meaningful challenge strongly related to segmentation and
shape fitting problems. Furthermore, we present a benchmark address-
ing the problem of large-scale point cloud geometric primitive fitting. We
adapted state-of-the-art deep learning-based methods for the benchmark
to process large-scale point clouds. We compared them to a baseline clas-
sical approach, which shows challenges in complex, large-scale industrial
environments defined by dense and varied geometric distributions. Our
paper demonstrates the meaningful contribution of the proposed dataset
with a case study presented in the benchmark, opening opportunities
for dealing with relevant problems of 3D geometric understanding using
learning approaches. The generation pipeline, LS3DS dataset and the
weights of the models trained in the benchmark are openly available to
use (LS3DS Repository: https://github.com/igormaurell/LS3DS).

Keywords: Large-Scale 3D Dataset - Geometric Deep Learning -
Industrial Environments - Point Clouds

1 Introduction

Over the past few decades, the importance of data has increased, driven in
part by the growing application of supervised machine learning methods for 3D
data [26]. Therefore, a significant challenge in supervised learning is the need for
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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a large amount of labeled data [39]. In this sense, it is crucial to understand how
difficult and time-consuming the manual labeling process is regarding different
data domains [7]. Regarding 3D data such as point clouds and meshes, manual
labeling is often more laborious and complex [10]. It occurs due to the sparsity
and difficulty of visualizing and defining masks or bounding boxes using only
multiple 2D views of the complete three-dimensional dataset [11].

Another aspect that can increase the complexity of the labeling process is the
type of ground truth to be annotated. When considering the need for geomet-
ric ground truth, including the parametrization of geometric primitive patches,
surface normal vectors, local curvature, and similar attributes [29], the labeling
process is much more challenging for human data annotators, especially when
seeking high precision [22]. In this context, manually designed 3D CAD mod-
els can be a solution to generate synthetic data with highly detailed geometric
annotation, as presented by the Koch et al. [22] in small-scale environments,
improving the generalization capacity of supervised deep learning methods. In
the industrial context, the data acquisition process is also challenging due to
problems related to manufacturing productivity, security during data collection,
or even confidentiality agreement violations [8,18].

This work introduces LS3DS, the first large-scale industrial synthetic dataset
with CAD models, meshes, point clouds, and geometric ground truth for the geo-
metric deep learning process. Large-scale can mean that the models of the dataset
are large or that the dataset has a lot of models. The present paper considers
the first definition, which means that the CAD models, point clouds, and meshes
are large, representing huge industrial sites with many internal structures of dif-
ferent shapes and sizes. Although datasets such as ShapeNet [5] and ABC [22]
have a lot of models, it is also considered small-scale since the models are single
parts or individual objects and do not represent large scenes with a bunch of
other structures inside. Instead, LS3DS is in a similar scale of datasets applied
for autonomous driving tasks, such as KITTI [9] and nuScenes [4], as well as
datasets for indoor scene understanding such as SceneNN [18] and S3DIS [2].

This work contains the following main contributions:

1. Large-Scale Industrial 3D Dataset: we propose the LS3DS, the first
large-scale synthetic dataset of 3D CAD models, meshes, and point clouds
of industrial scenes, richly annotated with ground truth normals and geomet-
ric primitive surfaces and curves.

2. Open-Source CAD Processing Pipeline: We provide the LS3DS gener-
ation tool, a pipeline for creating point clouds and meshes with ground truth
for geometric deep learning tasks from CAD models.

3. Benchmark in Point Cloud Geometric Primitive Fitting: We present
a benchmark using the LS3DS dataset composed of state-of-the-art methods
as a quantitative metric to evaluate the performance of different algorithms
and the effectiveness of the proposed dataset.
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2 Related Works

In 3D geometry processing, datasets are crucial assets for algorithmic develop-
ment, training, and validation. Table 1 shows the main datasets with 3D data
available in the literature, presenting some important characteristics that differ-
entiate them from the proposed dataset.

Context. We proposed a large-scale dataset, meaning that the models making
part of it are large and from industrial environments. In the literature, many
large-scale datasets are composed of urban scenes; some focused on autonomous
driving [4,9] and some on urban scene understanding for augmented reality,
robotics navigation and urban planning [6,15]. Some datasets of indoor scene
understanding are also available, focused on household environments [8,18] and
large offices with multiple rooms and the connections between them [2].

Despite the existence of these datasets, they are not focused on industrial
structures, which have different requirements and constructive aspects. In this
context, the availability of a dataset plays a crucial role in the industry’s digital
transformation. Although the ABC dataset [22] comprises industrial context
models, they present a small scale, where each model is an object of a single
context and not a large scene with multiple parts.

Data Representations. Table1 specifies three data representations (CAD
models, meshes, and point clouds) that are considered important as 3D digital
depiction of real-world structures. Among them, the most unusual representa-
tion of datasets is the CAD models, in which the structures are represented
concerning their proposed design. Regarding meshes, in indoor environments,
the RGBD reconstruction methods that were used to generate SceneNN [18§]
and S3DIS [2] can generate a surface representation of the observed structures
as triangular meshes. Point clouds are generated directly from LiDAR sensors
without a reconstruction method in urban environments. Thus, datasets of this
context are not normally composed of meshes [4,6,9,15]. In Table1, datasets
such as ABC [22] and ShapeNet [5] are synthetic small-scale collections in which
the available meshes are 3D designs and not data representing real worlds sce-
narios.

Regarding point clouds, datasets containing meshes can generate point clouds
using mesh vertices or sampling strategies. However, these methods often pro-
duce point clouds that deviate from real-world data acquisition. The LS3DS
dataset generates point clouds by simulating real-world drone LiDAR acquisi-
tion, accurately capturing effects like occlusion and local sparsity.

Ground Truth. Commonly, datasets of large-scale scenes are in urban context
whether indoor or outdoor environments [2,4,9,15,18]. They provide semantic
ground truth since the geometric ground truth is not the main important infor-
mation. That is feasible since the relation between object shapes and geomet-
ric primitives is not straightforward, mainly considering scenarios in which the
objects are not industrially manufactured or not even human-made. Therefore,
the structures in the urban context data are hard to represent as a collection
of primitive patches of parametric types, e.g., planes, spheres, cylinders, and
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cones. However, human-made environments such as industrial sites are mostly
composed of previously CAD-designed objects and structures with a more para-
metrically geometric shape. On these scenarios, another fact that brings closer
the relation between the geometric primitives and object shape is that the indus-
trial components are also most often manufactured by machines that guarantee
greater precision and, as a consequence, structures more similar to what was
designed. Despite the higher constructive quality of urban buildings, the indus-
try still requires the As-Built process, also known as CAD reconstruction. In
this context, geometric primitive detection and shape fitting are important aux-
iliary tasks to dealing with this problem [33]. More recently, in the small-scale
industrial context, Romanengo et al. [35] proposed a benchmark in point cloud
geometric primitive fitting representing CAD models. Seeking to contribute to
the automatic As-Built problem, datasets such as the LS3DS with geometric
ground truth in large-scale context are essential.

Table 1. Overview of public datasets detailing real and synthetic ones with corre-
sponding context, 3D data representations, and type of ground truth that each one
has. Indust refers to industrial context, Geom is Geometric, and Sem is Semantic
ground truths.

Name Context Data Representations Ground Truth
Dataset Large-Scale|Indust. CAD Models/Point CloudsMeshes Geom.|Sem.
Real Semantic3D [15]
S3DIS [2]
KITTI [9]
nuScenes [4]
SceneNN (18]
Synthetic ABC [22]
ShapeNet [5]
STPLS3D [6]
Front3D (8]
LS3DS

X

SN NS X XISSNS S SN
N X X X SN[X X X X

N X X X SN/X X X x x
NSNS X XISNSSKS S
NN X NSNS X x SN X
N X X X SN|/X X X X X
X NN SO XSS S

3 3D Data Generation from CAD Models

Most point cloud datasets used for deep learning are composed of real data
captured in specific scenarios and manually annotated using point cloud anno-
tation software. Although manually annotated data is common in segmentation,
detection, and classification tasks, this annotation approach cannot be easily
employed for geometric problems [22], such as geometric primitive fitting. In
addition, especially in industrial scenarios, most companies are not interested
in making 3D scans of their industrial sites openly available. Thus, it is hard
to build a real-world 3D industrial dataset with sufficient models to produce
generalization while training deep learning methods. To address the mentioned
limitation, we present the proposed 3D data synthetic generation process.
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——————— BRep CAD Processing Point Cloud Generation

Prim. Instances GT

LiDAR Simulation Process

L

PC Ground Truth Generation

Topological Exploration

Fig. 1. 3D data generation from CAD models pipeline. First, in green, the BRep CAD
Processing module is responsible for reading the CAD file (1) in STEP format, gener-
ating a mesh (2) and generating a features file (3), with the geometric primitive curve
and surfaces from the input model. Second, in yellow, the Point Cloud Generation
module applies a multi-view LiDAR simulation (A) approach to take the mesh and
generate a point cloud (4). After that, in the same module, the point cloud (4) is
associated with the geometric features (3) to produce the segmentation ground truth,
showed instances (6) and as types (6). (Color figure online)

Our CAD processing pipeline is divided into two main steps: ) BRep CAD
Processing and i7) Point Cloud Generation. The first uses a CAD model as input,
generating three outputs: ) a mesh representing the structure; ii) a feature file
containing the model’s geometric primitives; and #ii) a statistics file are also
recorded. The second step is dedicated to point cloud generation, receiving the
mesh as input, correlating the points to its geometry, and obtaining the geometric
ground truth data. The methodology is shown in the diagram of Fig. 1.

BRep CAD Processing. We start from a 3D BRep CAD model in STEP [20]
format, i.e., a tree data structure of geometrical entities detailed in [1]. First,
a topological exploration is applied to collect the geometric curves, surfaces,
and corresponding parameters. Each geometric primitive in the tree structure is
explored and included in a hash table. The separate chaining approach is adopted
in [23] to solve collision problems in hashing data structure. They use linked lists
of geometric primitives in each hash table line. Thereby, the geometric primitives
in the tree data structure of the BRep CAD model are annotated and saved into
a features file, following similar patterns of ABC dataset [22]. We highlight that
the choice of hashing data structure with separate chaining is due to its efficient
performance, with the computational complexity of O(1).

The BRep CAD processing also carried out a stage to create a mesh from
a 3D CAD model. For this, the incremental triangulation process is performed.
The triangular meshes of each component are aggregated into a single mesh
representing the entire CAD model. During this aggregation process, the vertices
and edges in more than one geometric component local mesh are referenced with
the same index in the result, preserving the watertightness property of the final
mesh. Also, we keep track of the relation between the mesh and the geometric
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primitives based on the knowledge of the mesh associated with each vertex and
face. In this way, a list of vertices and face indexes are added to the parameters
of each geometric primitive in the features file.

Point Cloud Generation. A widely used approach for point cloud generation
involves sampling points on a mesh model. This method is particularly suitable
for study cases as it accurately reconstructs all components and geometries in
the 3D model. The resulting synthetic point cloud is comprehensive, capturing
even hidden parts such as the interior of closed geometry structures, in which
these parts should be inherently occluded. The sampling process is based on
uniformly distributing a set of N points along the mesh surface. For this, each
triangle with index k in the mesh receives a weight wj according to the ratio
of its area to the total mesh surface area. Thus, the number of points nj; to
be sampled in each triangle is calculated from the product between the weight
and the total amount of points (V) initially chosen, following the mathematical
formulation: ny = wy x N. Finally, each triangle receives nj points following a
uniform random distribution on its surface.

We propose a synthetic point cloud generation method in our pipeline by
simulating LiDAR data acquisition using a multi-view scheme around the struc-
ture mesh. In this simulation, we employ a semi-ellipsoidal fitting surrounding
the model with an offset distance in which the generated points. The LIDARs are
strategically positioned within this ellipsoid surface to observe the structure from
multiple points of view. This approach is innovative in this context and enables
the generation of point clouds that reproduce some effects in a real-world LiDAR
data collection scenario. In contrast to sampling approaches, the LIDAR simula-
tion method mimics local sparsity, with fewer points in regions such as the ones
far away from the simulated sensor. In addition, the most important real-world
reproduced effect is the occlusion, in which regions of the structure that could
not be observed from any point of view do not receive any points. With point
clouds close to the real world, the methods to be trained using these synthetic
data should be more easily transposed to real application contexts, reducing the
sim-to-real gap.

Figure2 presents a comparative analysis of the previously mentioned
approaches. As the LiDAR simulation method has generated 2.8 million points
in this structure, the same amount is used in the sampling generation. In Fig. 2a,
the widely used uniform sampling method was employed to generate points in
the input mesh. Meanwhile, in Fig. 2b, the point cloud was generated using the
LiDAR simulation method, in which it is possible to observe regions entirely
white, i.e., with nos points (occluded) and regions with a fainter color, i.e., with
fewer points (sparse).

4 LS3DS Dataset

The LS3DS dataset is generated using the proposed 3D data generation pipeline,
and it is composed of 77 free-to-use CAD models available online in STEP for-
mat. Although 77 models may seem small to generalize the learning process, it
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Fig. 2. Point clouds generated from a triangular mesh of a 3D CAD model of LS3DS
dataset, both with 2.8 million points. Figure 2a corresponds to a uniform sampling-
based point cloud. Figure 2b corresponds to a point cloud generated from LiDAR sim-
ulation.

is important to highlight that the models will be decomposed into thousands of
parts to the learning-based methods to be trained in. Section 5 provides more
details about the model decomposition. The notion of large-scale used here con-
siders the following characteristics: wider cross-section area, total volume, and
geometric primitives density, resulting in complex scenes of industrial environ-
ments. Total volume and visual analysis were used as metrics to select 3D models
of industrial scenes that satisfy the geometric density characteristics and com-
plexity of the scenes, with total volume empirically defined as 20 m3.

Another important feature of the dataset is that it is composed of industrial
models, representing complex industrial scenes containing different objects, with
many geometries of different types. Heading in the same direction of the dataset
diversity, LS3DS has a wide scale range, going from 5 m? up to 2000 m? of
cross-section area, as illustrated respectively in Fig. 3.

The meshes of LS3DS are used just as an intermediary representation to
obtain the point clouds. Our modified Open CASCADE Technology (OCCT)
library version generates the meshes. Focusing on the point clouds, the gener-
ation process uses the LiDAR simulation technique previously described. Con-
cerning the geometries, the chart shown in Fig. 4 quantifies the average amount
of each geometry type in dataset models. Figure 4b shows the planes and cylin-
ders are the most frequent surfaces in the LS3DS Dataset, by a large margin,
being 88.6%. The third most frequent type is the b-splines. Following up are
the cones, torus, and spheres, summing up 7.64% of all surface entities of the
dataset.

Although the charts in Fig.4 show valuable information, the average num-
ber of instances is not the only metric to understand the distribution of LS3DS
geometries. Analyzing the average surface area occupied by each type contributes
to understanding what geometry types receive more points and are more impor-
tant in the large-scale industrial context.

5 Benchmark in Geometric Primitive Fitting

The proposed dataset presents a challenging scenario of industrial sites with
high geometry density and large-scale structures. In this context, although the
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(b)

Fig. 3. Scale diversity in LS3DS Dataset. Figure 3a shows the model with the smallest
cross-section area model (5 m?). Figure3b shows the model with the largest cross-
section area model (2000 m?).

point clouds are synthetic, their generation method intentionally produces hard-
to-handle effects, such as occlusion and local sparsity, which leads to incomplete
and under-sampled structures in the data. In addition to these challenges, the
number of points in the clouds that represent large-scale industrial scenes is
huge, as is the case with well-collected data by physical sensors. Therefore, it
increases the difficulty of solving the problems established in the dataset and the
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Fig. 4. Amount of geometric entities of each type in the LS3DS dataset. Figure 4a shows
the distribution of the number of curves by type. Figure 4b shows the distribution of
the number of surfaces by type. Figure 4c shows the distribution of the mean area of
surfaces by type.

similarity with real-world scenarios even more. Because the generation pipeline
already produces geometric ground truth, the LS3DS dataset can be used to
train and validate methods on various 3D scene geometry understanding tasks.

In industrial scenes, which present high precision in the building process,
the geometries used to design the structures are mostly well-represented in the
real buildings. In addition, a proper 3D digital representation of the industrial
structure as it was built is fundamental to the industry’s digital transformation.
As commented in [33], geometric primitive detection and fitting are key tasks
to detect the building elements and generate a parametric representation, which
can be used to produce As-Built models. After being exploited by deep learning
methods in small-scale structures [19,24,26,28,38,41,42], the lack of a proper
dataset with large-scale models is brought in PrimitiveNet [19] as an important
restriction to enable the development of methods to face the problem in this
context. In addition to making this data available, the present paper provides a
benchmark in the problem of point cloud geometric primitive fitting applied to
large-scale industrial structures.

Point Cloud Geometric Primitive Fitting Problem. Geometric primitives
are a lightweight and concise representation for real-world manufactured objects
or even scenes, being directly used for As-Built of large environments [30], CAD
reverse engineering [14,27], point cloud simplification [13,36] or just as a regular
way to represent some object parts [40]. These methods that use geometric
primitives detected on point clouds for specific applications need some support
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approach to segment and fit those geometries that are implicitly in the points
with the highest possible precision.

Point cloud geometric primitive fitting is finding a set of geometries of primi-
tive types in the input point cloud. The mentioned problem is composed of prim-
itive instance segmentation and parameter fitting sub-problems. This problem
can be defined as a chicken-and-egg problem [25] since if the primitive parame-
ters are known; the nearest point-to-primitive distance can be used to determine
the membership between point and primitives. Additionally, robust parameter
fitting methods can be used to compute the set of parameters for each primitive,
considering points segmentation in geometry instances as known. This approach
is adopted in the model estimation module of SPFN [26] or in RANSAC-based
approaches used in Efficient RANSAC (ERANSAC) [36].

As shown by Kaiser et al. [21], the classical methods (i.e., non-learning-
based) to solve the problem is mostly based on theoretical foundations such
as RANSAC, parameter space, and primitive growing. Among them, the
ERANSAC [36] is the most widely used approach. However, after SPFN [25],
various learning-based methods have been proposed. SPFN used a PointNet++
[34] first to predict per-point properties and after fit geometric primitives using
a differentiable module. CPFN [24] improved the SPFN results, mainly in high-
resolution point clouds, using a cascade network with a global and a local SPFN.
ParseNet [38], HPNet [42] and QuadricsNet [41] used backbone to build an
embedding space of higher dimension and applied a mean-shift algorithm to clus-
ter the point cloud into geometric primitive instances. PrimitiveNet [19] used a
local-based approach to receive not just the points but the neighboring edges
between them as input. SED-Net [28] and ComplexGen [14] have improved the
quality of their results by predicting geometric surfaces and curves.

Geometric primitive fitting is a problem similar to the widely explored
point cloud instance segmentation research field [31,37,43]. The problem can
be defined as identifying and separating individual parts in the input point
cloud [16]. However, the instance segmentation problem of geometric primi-
tive fitting demands each instance to receive class labels of geometric primitive
types, unlike the semantic classes such as road, building, and car from urban
datasets [4,9] or such as wall, ceiling, and chair from indoor datasets [2,18].
Although methods like ParseNet [38] and HPNet [42] segment and fit B-Splines,
the typical subset of types covered by geometric primitive fitting methods are
plane, sphere, cylinder, and cone. Using LS3DS as a reference, Fig.4c shows
that just these four types cover 92.4% of the total area of the dataset structures,
stating that, although not ideal, it is a suitable subset of types to represent these
industrial sites.

Metrics. To evaluate the methods in the task using the ground truth dataset,
the same metrics defined by SPFN [25] are used, which are:

— Segmentation Mean Intersection over Union (SIoU): mean corre-
spondence between detected primitive instances and the same ground truth
instances.
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— Mean Primitive Type Accuracy (TAcc): mean accuracy of primitive
instances type attribution.

— Residual Error (Res): mean point-to-primitive (P2P) error, in which the
distance of each point that belongs to a primitive on the ground truth instance
mask is measured to the predicted primitive.

— P Coverage (PCov)': mean percentage of points from predicted instance
mask that is closer than a pre-defined e threshold to its primitives.

Problem of Learning in Large-scale Environments. Although the geomet-
ric primitive fitting problem is faced by deep learning techniques in small-scale
contexts, the problem’s difficulty increases as the scale of the input structures
increases. In large-scale contexts, mainly in industrial sites, the construction
aspects differ greatly from small-scale individual objects, where state-of-the-art
deep learning-based methods are normally trained and validated. This aspect can
be explained by understanding the differences in the interconnection of internal
structures in small-scale versus large-scale models. In small-scale, such as ABC
Dataset [22] models, the internal parts of the objects are geared more towards
the complete connectivity, where the geometries are recursively related to each
other in a fully connected graph topology. On the other hand, scenes are more
complex in large-scale models, considering that many individual objects inside
them are unrelated to all the others. In this way, it is possible to understand
that while small-scale structures are normally single-context objects, large-scale
ones are multi-context models with many small parts that are not necessarily
related to each other. In addition to the diversity of contexts, the scale of each
part can be a lot different since at the same time, a large-scale structure can
have large floor or wall planes and small valves or motors, making learning in
large-scale environments even more difficult.

Beyond the fact that solving problems in large-scale environments is harder
than in small-scale environments because of many structural composition fac-
tors, The point clouds that represent a large model in a good resolution have
a greater amount of points. In this way, considering the higher dimension of
the raw data, the learning process becomes even harder since the neural net-
work architectures must compute features for more input points, heading in the
direction of the curse of dimensionality, explicated in the field of geometric deep
learning [?]. In this sense, semantic and instance segmentation methods prioritize
the memory and computational efficiency of the methods for them to be used
in large-scale contexts. RandLA-Net [17] is an efficient example of a semantic
segmentation problem in which the lightweight network architecture enables the
process of 1 million points in a single pass. Other approaches use voxelization
and sparse convolutions [12] to process the point cloud as a voxel grid 3D to
do semantic segmentation efficiently. Although methods for large-scale contexts
must be computationally efficient, some datasets are huger, and their scenes
are too large to process each point cloud in a single pass. Thus, the split and
merge approach is used to process then [3,37]. Inspired by this, this benchmark
will adapt the deep learning-based methods using a grid-based split and merge

! For this benchmark, we consider &€ = 0.05.
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approach, making each large point cloud a bunch of small ones to be processed
separately to generate the results to be merged afterward.

The split step uses a cuboid-based approach to split each dataset model into
regions of size 2 x 2 x 2m. Thereby, the number of models for the learning pro-
cess increases with thousands of models in the training and validation stages,
improving the generalization, as seen in Table 2. Additionally, it is worth men-
tioning that the split and merge approach can produce a loss of context, due to
dividing the model into parts. However, when dividing geometric primitives into
two or more parts, the parts remain surfaces described by the type of original
geometric primitive and the respective equation. In this sense, the geometric
primitive fitting task is less impacted than other tasks, such as semantic and
instance segmentation.

Table 2. Number of models in the dataset without splitting and splitting it. The size
used in the paper benchmark for the cuboid split was 2 x 2 x 2.

Dataset Mean Vol. (m®)/Train SizeVal. Size
Complete Data ~ 47376 52 25

Split w/ 8 x 8 x 8 512 1124 755
Split w/ 4 x 4 x 4 |64 8731 2753
Split w/ 2 x 2 x 28 69626 6908

Baseline for Comparisons. ERANSAC [36] is the most adopted method to
detect and fit parameters of multiple types of geometric primitives to point
clouds since it is used as baseline by the small-scale methods [14,19,26,28,38,42].
Although Kaiser et al. [21] classify ERANSAC as a method for individual objects
context, this approach has no explicit points limitation, and it is evaluated with
point clouds of about 2 million points in [36]. In this way, the present bench-
mark considered ERANSAC as the baseline for comparing deep learning-based
strategies. To be fair and study the impact of the split and merge procedure in
the results, a modified version of ERANSAC was also evaluated.

Geometric Deep Learning Methods. Relating to the deep learning-based
methods, the split and merge adaptation is applied to make them able to process
large-scale point clouds. Even with this approach, some methods are not suitable
for the benchmark . SPFN [25] was not used because of the inflation of the
memory consumption when increasing the hyper-parameter K, and because of
some other constraints that hindered the large-scale adaptation of the official
code?. CPFN [24] uses two SPFN networks inside its architecture, holding the

2 The SPFN [25] official code assumes that all the geometric primitive instances in a
model must have the same number of points.
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same challenges in the K hyper-parameter setting and memory consumption.
PrimitiveNet [19] demands a mesh directly transformed to a point cloud as input,
which is not possible given the fact that the LS3DS point clouds were generated
using a LiDAR simulation approach®. ComplexGen [14] was not used because
the main subject of the method is to directly reconstruct the CAD model using
a B-Rep Chain Complex Generation and not just fit geometric primitives to
point clouds, requiring additional ground truth. Despite that, the ComplexGen
is already heavy? to be trained in small-scale and it predicts the wireframe
of the objects, which may have conflicts split-and-merge approach adopted in
this benchmark. SED-Net [28] did not a pubnovailable code at the time of this
benchmark’s development. Thus, the deep learning-based approaches compared
with the classical baseline are ParseNet [38] and HPNet [42].

Despite the split and merge adaptation, the original methods are focused on
small-scale structures, which means that the methods do not aim to process many
points in a single pass. The subset of ABC dataset [22] adopted by ParseNet [38]
has 10K points for each model, and that is the amount that the method can
process. Even though HPNet [42] uses the same subset, an additional random
sample filter is used to reduce this amount to 7K points. Thus, aiming at a fair
comparison, every method was trained and validated in a dataset where each set
has 7K points, which is the least amount that every method of this benchmark
can directly take in a single pass.

Benchmark Discussion. Table 3 shows the quantitative results of the proposed
benchmark. The methods with * are the versions adapted to large-scale using the
split and merge methodology and some other specific required modifications for
each method. After the split, the generated dataset is merged again to produce a
version to be processed by the non-modified version of ERANSAC [36], making
the baseline run in the same points with the same primitives on the ground
truth as the divided version. All deep learning-based methods on this benchmark
were used with the default parameters of their official implementations. For the
baseline, the implementation of ERANSAC on CGAL [32] library was used,
using the default parameters as well.

Comparing ParseNet* [38] and HPNet* [42] with ERANSAC and
ERANSAC*, it is possible to note that the deep learning-based methods have
better results in almost every metric. Concerning the SIoU, which evaluates the
quality of instance segmentation, the methods modified by the split and merge
approach have taken advantage. Looking at the qualitative results in Fig. 5, it is
possible to understand that processing small parts separately improves finding
small details that divide similar primitives. This fact can be observed by com-

3 The PrimitiveNet [19] authors suggestion of using a KNN to generate the neighbor
graph between point did no produce feasible results.

* The ComplexGen [14] method takes three days o 8 NVIDIA V100 GPUs to be
trained for small-scale context.
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Table 3. Quantitative results of the methods ERANSAC, ERANSAC”, ParseNet”
and HPNet™ in point cloud geometric primitive fitting on LS3DS dataset. We used the
metrics SloU, TAcc, Res, and PCov for this.

Method 1 SIoU |1 TAcc|| Res |1 PCov
ERANSAC [36] 0.2150 |0.3627 |0.0424 |0.5340
ERANSAC™ [36]/0.5528 |0.4625 |0.0111 |0.9917
ParseNet™ [38] 10.5633 0.9229 |0.0127 0.9461
HPNet™ [42] 0.5774/0.9233/0.0070|0.9886

paring ERANSAC and ERANSAC* results. Even though a significant part of
the improvements in SIoU are from the split approach, the deep learning-based
methods can produce better results with relation to the quality of instance seg-
mentation, with emphasis on the HPNet* [42], which achieved the best quanti-
tative and qualitative results.

Regarding accuracy in type attribution for each instance, the metric TAcc
presents the most different results between the baseline and the deep learning-
based methods. On this metric, which evaluates the percentage of instances with
the right attributed type, the learning-based methods achieved two times better
results than the classical approaches. This can be explained by the fact that the
only heuristic that RANSAC-based approaches use to evaluate if a primitive is
suitable for a set of points is by looking at the percentage of them covered by that
primitive. On the other hand, learning-based methods extract information from
the training set of dataset LS3DS. Thus, as there is no restriction, extremely
large cones and cylinders are constantly fitted to represent plane surfaces.

Through the proposed benchmark, mainly because of better results of deep
learning-based methods, it is possible to state that the LS3DS dataset is useful
and important for the large-scale geometric deep learning research. In addition,
some limitations of the state-of-the-art techniques can be disclosed since its net-
work architectures’ computational and memory non-efficiency lead to a stronger
use of split and merge approaches. This characteristic leads to the need to use
fewer points in each divided part and, as a consequence, the split of the input
cloud in more parts to keep a good resolution in the points. Although the results
are promising, it is expected that, through the use of the LS3DS dataset, new
techniques for geometric deep learning on large-scale 3D data will be developed
using the knowledge of other research fields, such as 3D semantic segmentation
and 3D instance segmentation.
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GT

ParseNet* ERANSAC* ERANSAC

HPNet™

Fig. 5. Qualitative primitive instance segmentation results of the methods on
three models of LS3DS dataset. In the qualitative analysis were used ERANSAC,
ERANSAC*, ParseNet” and HPNet* methods. In the results, each color represent
a different predicted primitive patch of the types plane, cylinder, sphere and cone. The
first row shows the LS3DS ground truth and the following rows show the results of
each evaluated method.
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6 Conclusion

We present the LS3DS, a dataset of large-scale industrial scenes with 3D data as
CAD models, meshes, and point clouds with ground truth that can be used in
many geometric deep-learning tasks. The LS3DS generation tool is provided with
the dataset, enabling the dataset expansion or switching of the context of the
input CAD models to generate other datasets. It is important to highlight that
the point clouds are generated through a multi-view LiDAR simulation method,
which reproduces effects such as occlusion and local sparsity in the produced
data, closing the gap between the generated synthetic data and the real-world
ones.

To validate the dataset’s importance, a benchmark in large-scale point cloud
geometric primitive fitting is provided. In this context, the deep learning-based
methods have reached the best results, emphasizing the HPNet [42], the best
method of this benchmark. Although the results are promising, the adaptations
of the deep learning-based methods to make them able to run on a large scale
lead to a high information loss, which keeps the problem open for proposing new
and more scalable methods. Beyond the benchmark, LS3DS can be used in other
3D scene understanding problems in which its robustness, quality, and efficiency
are required. Finally, the LS3DS can be easily expanded to another context or
fitted to a more specific one, where not only will the dataset be made openly
available, but the code of the processing pipeline is available. Thereby, anyone
can generate an expanded version of LS3DS or a new version in another context
just by changing the CAD models in the input of the data generation pipeline.
Future works will focus on working with industrial partners to make available
real-world scans and their associated 3D CAD.
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Abstract. Recent advancements in Visual Question Answering (VQA)
have been driven by the integration of complex attention mechanisms.
This work introduces a novel approach aimed at enhancing multi-modal
representations through dense interactions between visual and textual
inputs in an alternating fashion. The proposed model features an atten-
tion framework that incorporates both self-attention and co-attention
mechanisms, strategically applied to image and text modalities. Self-
attention modules capture contextual dependencies among objects in
images and words in questions, crucial for accurate inference of answers.
Meanwhile, co-attention mechanisms facilitate effective cross-modal inter-
actions between images and text. To extract fine-grained information
from both modalities, we introduce a Cascade of Self- and Co-Attention
blocks (CSCA). This architecture is evaluated extensively on prominent
benchmarks including VQA2.0, TDIUC, and GQA datasets. Experimen-
tal results, including comprehensive ablation studies, highlight the effec-
tiveness of the model’s key components and the cascading nature of atten-
tion mechanisms in enhancing performance across diverse VQA tasks.

Keywords: VQA - Attention * Self-Attention - Co-attention -
Multi-modal Fusion - Classification Networks

1 Introduction

Visual Question Answering [1,2,10] is a challenging multimodal AT task that
aims to answer a natural language question about an image context. VQA task
has captured considerable interest within the vision and language research com-
munity due to its extensive practical applications, including assisting the visually
impaired, advancing autonomous vehicles, refining visual chatbots etc. Simulta-
neously, VQA is a challenging multimodal task that requires a deep semantic
understanding of images to predict answers accurately. Achieving this requires
seamlessly integrating visual and linguistic information, leveraging intricate rea-
soning capabilities, and deploying advanced attention mechanisms for effective
question-answering.

Since seminal works such as [2], significant efforts have been directed towards
enriching the representation of text and image modalities. These efforts have pri-
marily focused on advancing beyond simple fusion-based features to more sophis-
ticated attention-based approaches [1,7,8,30,31,38,39]. Early attention-based
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Fig. 1. An example to illustrate the relevance of proposed module.[Top] An example
to illustrate the relevance of attention to dual modality through the cascaded SCA
module. [Bottom Left] Without cascaded attention, it is not getting refined and hence
is unable to give better attention. [Bottom Right] Overview of the proposed model. An
attention block, referred to as SCA, comprises of self-attention (SA) and co-attention
(CA) modules. Multiple such attention blocks are cascaded, where the outputs of (¢ —
1)" block (E;(t — 1) and Eq(t — 1)) are presented as input to the (¢)*" block.

methods [1,38,39] initially concentrated on identifying salient regions within
images based on the textual content of questions. This approach, termed visual
attention, aimed to highlight relevant image regions. Subsequent advancements
introduced co-attention methods [3], which extended this concept by integrating
textual attention with visual attention. Co-attention methods proved effective
in enhancing the performance of VQA systems by jointly attending to both the
textual and visual modalities, focusing on relevant words within the context of
the image.

A single site on image and question is insufficient to grasp the image’s intrica-
cies in the context of the question. It requires a consecutive focus on the image
and multiple reads of questions to answer. Along with these requirements, if
within modality, information is encoded and refined before the interaction, it will
give an improved representation of context and cues. To accomplish it, this work
proposes an end-to-end network with cascaded self- and co-attention blocks. This
helps obtain enriched representations, leading to improved performance. Based
on the advantages of each of the following modules: self-attention (SA), co-
attention (CA) and a cascade of attention mechanisms, this work proposes com-
bining them systematically. Towards this objective, the proposed model builds
one self- and co-attention-based attention block (SCA) that combines both SA
and CA in a specific way. For both text and image modalities, a specific SA
module obtains a feature representation for the respective modality. Then, the
co-attention module uses a self-attended representation of one modality and
attends (takes attention) to the self-attended representation of the other modal-



22 A. Mishra et al.

ity to obtain a cross-modality contextual representation for the second modality.
Thus, there are two SA modules (one for each text and image modalities) and
two co-attention modules within a single SCA block (Figurel, bottom-right).
In one complex attention block of SCA, both modalities guide themselves to
capture internal correlation and each other to learn the robust representation of
each of the visual and textual domains.

Figure 1 (top) serves as an illustrative example to highlight the impact of the
cascaded Self and Cross-Attention (SCA) module within the model to obtain
an enriched representation. In the initial SCA block, the model’s attention is
directed towards a broad range of image regions, encompassing various objects
such as ‘cat,” ‘women,” ‘window,” and others. Additionally, it focuses on specific
words like ‘color’ and ‘t-shirt,” as indicated by their attention scores. With the
inclusion of multiple SCA blocks, notably after the ¢! block, the model’s atten-
tion gradually refines, shifting towards more concentrated image regions. This
transition is accompanied by changes in word attention scores. Ultimately, in the
final SCA block, the model’s attention is concentrated on the most salient image
region within the context of the given question. Simultaneously, the attention
mechanism for the question becomes finely tuned to the most pertinent words
that enable accurate responses.

When contrasting the results with and without the SCA module in Fig.1
(top), it becomes evident that more than a single round of attention may be
needed to capture all the relevant image regions and question words effectively.
The cascaded SCA module contributes to a progressive and refined attention pro-
cess, enhancing the model’s ability to grasp contextual information and produce
more accurate answers. The contribution of proposed framework are summa-
rized:

— Proposed a VQA framework that employs a dense alternate attention mech-
anism. This framework comprises cascaded attention blocks strategically
designed to refine the features extracted from visual and textual inputs iter-
atively.

— The iterative refinement process through a cascade of attention blocks
enhances the model’s ability to capture intricate details and relationships
between the visual and textual data, ultimately improving its performance in
answering complex questions about images.

— The core of each attention block consists of self-attention and co-attention so
that the two modalities guide each other to obtain an enriched representation.

— Extensive performance evaluation along with ablation analysis of the pro-
posed model on the three benchmark datasets — VQA2.0 [10], TDIUC [15]
and GQA [13].

2 Related Work

VQA, being a multimodal task, requires an unified representation of the text and
image modalities. Initial VQA models [2,10,11,32] adopted simple fusion based
approaches. These models first obtained feature representations of individual
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modality using corresponding pre-trained networks and then combined them
to obtain a joint representation using a fusion schema. Simple fusion schemes
include concatenation or element-wise summation or multiplication. Fukui et
al. [6] proposed bi-linear pooling to capture interaction of components of the two
modalities in a better way. Seeing the advantage of the bilinear pooling based
fusion methods, further variants of bilinear pooling with lesser complexity or
faster convergence were proposed. MFB [42], MLB [17], MFH [43] were proposed
to obtain a representation providing better interaction of the two modalities.

Introduction of attention mechanism in equipped neural models with a sys-
tematic procedure to assign relative weights of importance to sequential inputs.
Shi et al. [30] have introduced image attention guided by question to focus on
salient image regions relevant to the given question. This helped in obtaining
improved feature representations. This led to the development of several atten-
tion based approaches for VQA [1,16,22,36,38,39]. Studies in [22,36,39] have
shown that applying attention multiple times helps in obtaining enriched repre-
sentation embedded with fine-grained information.

Yu et al. [42] have proposed that attention on textual features in context of
visual features along with visual attention plays a key role in VQA models. Such
two way attention mechanism is referred to as dual attention or co-attention or
cross-modality attention in the literature. We have also used these terms inter-
changeably. Kim et al. [16] have proposed bilinear interaction based attention
for dual modality.

Another class of attention mechanism [7,8,18,21,23,35] uses intra-modal
attention (self-attention) along with cross-modal attention (co-attention) to
learn better feature representation. Gao et.al. [7] have proposed DFAF that
uses dynamic intra-modality attention flow. Dynamical flow allows for adaptive
modulation of the target modality’s attention and helps in obtaining improved
fusion of multimodal features. Multi-modal Latent Interaction (MLIN) [8] used
multi-modal reasoning through summarization, interaction, and aggregation. Yu
et al. [41] have proposed an encoder-decoder based dense attention mechanism.
These models are relatively dense than the previous approaches and hence, are
referred to as dense attention based models. Authors in [20,33] have proposed
transformer based attention models for multimodality tasks. These models are
pretrained for multiple tasks on huge datasets, that could be further exploited
for downstream tasks.

Graph-based approaches, such as NSM [12,45] and XNM [28] leverage the
structure of the connections between visual elements along with text data to
facilitate reasoning in image analysis. These methods exploit the inherent rela-
tionships to enable more effective and meaningful reasoning. XKI [44] takes
a step further by incorporating external knowledge and by integrating high-
order relational attention, thereby leading to improved reasoning capabilities.
OCCAM [35] specifically focused on concept induction, aiming to identify and
understand concepts and their hierarchical relationships in visual reasoning
tasks. Recently, Zhu et al. [46] proposed a concise and efficient dual-decoder
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Fig. 2. Functional block diagram of the proposed approach. Initial feature extraction
stage is followed by a cascade of self-attention and co-attention mechanisms. Final
attended features are fused through element-wise multiplication and are fed to a fully
connected network for answer classification.

Transformer network that predicts answers and provides visualized evidence,
combining both linguistic and visual features.

The proposed model falls under the category of dense attention-based meth-
ods. Most inter- and intra-modal attention-based methods primarily focus on
applying self-attention to the text modality only [7,8,41]. Subsequently, cross-
attention is applied to the visual modality based on the self-attended text
representation. However, in the proposed CSCA method, cross-modal atten-
tion is applied alternately on both modalities after the self-attention stage on
dual-modality. Here, each attention block comprises intra-modality and cross-
modality interactions. Unlike some existing inter- and intra-modal attention-
based models, which are trained on a massive amount of data for multiple tasks,
CSCA is trained from scratch and still persists in competitive performance. The
proposed method is described next.

3 Proposed Method

The proposed framework treats VQA as an answer classification task following
existing works like [1,2,7,8,10]. The input image I (I € Z) and the associ-
ated natural language question ¢ (¢ € Q) are first subjected to feature extrac-
tion (Subsect. 3.1). Pretrained deep networks [1] are used to extract features
from a few salient image regions. The network embeddings are used to repre-
sent the input image. Similarly, a pretrained network is used to obtain the word
embeddings of the associated input question. These word embeddings collectively
represent the input question. The feature embeddings of both image and text
modalities are subjected to self-attention mechanism (Subsect. 3.2) for capturing
the relationships among different regions of I and words of gq. The self-attended
representations of these two modalities are further processed by co-attention
modules (Subsect. 3.3). This single stage of Self and Co-Attention mechanism
cascade forms a single SCA block (Fig.1, bottom left). Multiple SCA blocks
are cascaded to obtain further fine grained representations of both modalities.
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The embeddings obtained from the final SCA block are fused (Subsect. 3.4) and
fed to the answer classification network (Subsect. 3.5) to predict the answer a
(a € A). Proposed framework is depicted in Fig. 2.

3.1 Feature Extraction

A pretrained deep network based object detection model (Faster R-CNN, [27]) is
used to identify the top-n, salient regions from the input image I. The pretrained
ResNet-101 [11] network is used to compute the visual feature of each region as
an embedding r € R% . Thus, the input image I is represented as rI € R%*xnv
by using n,, number of d,, dimensional ResNet-101 embeddings.

rI=[r,...r, ;T € R® (1)

The input natural language question ¢ is first padded and trimmed to a
length of n,, words. The word features are further extracted as pretrained GloVe
embeddings [26] eq € R% [26]. Thus, the question ¢ is represented as Eq €
R Xnw by using n,, number of d,, dimensional embeddings.

Eq=[eq;,...eq, |;eq € Réw (2)

All feature embeddings in rI and Eq are projected to a common d dimensional
space to obtain the respective initial feature embedding matrices as rI(0) and
Eq4(0).

rI(0) = W/rI (3)
Eq(0) = WZEq 4)

Here, W! € R¥% and W2 € R¥*9dv are the transformation matrices. These
representations are provided as input to the self- and co-attention modules.

3.2 Self-Attention

The self-attention (SA) mechanism is one of the key components of the proposed
model. It is incorporated for both textual (question as collection of words) and
visual (image as top-n,, salient regions) modalities. At the ¢ (¢ = 1,...7) block,
the input to SA are rI(¢t — 1) and Eq (¢t —1). Following [34], the SA uses keys and
queries, both of dimension dx¢g and values of dimension dy g respectively. The
Multi-Head Attention [34] is incorporated to capture the attention from different
aspects. For this, n, parallel heads are added, where each head is considered to
learn the relationships from different view (for image) and context (for question).

Let Epp = {em; ...em;} be a matrix of feature embeddings, where em €
R and Epy € R4 X!, For visual features, Eny = rI(t — 1), | = n, and d,, = d.
Similarly, for question features, Eng = Eq(t — 1), { = ny, and d,,, = d.

The query (Qg)), key (Kg)) and value (V(l)) matrices for the i*" head can
be respectively expressed as follows

Qg) _ (WiQS)T EM,K(Si) _ (WiKS)T Em, VS@ _ (WiVS)T Ent (5)
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where, WiQS € Rimxdxq JYKS ¢ Ridmxdrq and WYS € RIm*4vs are trans-
formation matrices. Using {Qg), K g), Vél)}, the inner product of query is per-
formed with all the keys and is divided by+/dj for more stable gradients [34].
The SoftMax function is applied on the inner product to obtain the attention
weights for question words and image salient regions. A scaled inner product

based attention is computed for all the heads in the following manner.

() ()

. K

H; — (VSZ)) SoftMax QS\/CTS (6)
K

MH(EM) =W H (7)

Here, W,,, € R&n»x(mnxdvs) jg the transformation matrix. The output (
MH(En) ) of multi-head attention module is passed through fully connected feed
forward layers with ReLLU activation and dropout to prevent overfitting. Further,
residual connections [11] followed by layer normalization are applied on top of
fully connected layers for faster and more accurate training. The layer normal-
ization is applied over the embedding dimension only. Finally, the self-attended
embeddings of the input feature Epy are obtained as SEy = {sem; ...sem;}
where sem € Rém and SEp € Rém*!,

3.3 Co-Attention
For cross-modal interactions, the co-attention module intakes the representations
of two modalities and generates attention in context of each other. To facilitate

this, the self-attended embeddings E;(t —1) and rI(t — 1) are taken as input.
For generating image attention in context of question words, keys and values
are generated from self-attended intermediate question representation while the
query is obtained from the image itself (following Eq. 6). Thus, the query (Q(é)),

key (Kg)) and value (Vc(i)) are respectively computed as follows.

QYW = (W?C)T Eq(t—1), K% = (WiKC)T it —1), v = (WiYC)T Bq(t—1) (8)

Here, WZ-QC € Rinxdrq WEC ¢ Rinxdxq and WYC € RImXdkv are trans-
formation matrices. Similarly, for cross-modal question attention, the query is
obtained from self-attended question embeddings. While the keys and values are
obtained from self-attended image embeddings. These queries, keys and values
are similarly processed following Eqgs. 6 and 7 to obtain the multi-head attention.
This is fed to fully connected layers with ReLLU, dropout, skip connections and
layer normalization. The output of this network provides the final output of the
co-attention module.
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3.4 Cascading and Fusion

A single SCA block comprising of self-attention (intra-modality interaction) and
co-attention (inter-modality interaction) generates an enriched representation
(rI(t), Eq(t)) of its input visual and textual features.

First block takes rI(0) and Eq(0) as input to respective SA module. Output
of each visual and textual self attended features serves as the input to cross
attention modules (text-to-image, image-to-text) for further refining the contex-
tual information. This flow of feature refinement is cascaded for multiple SCA
block to T steps. Let rI(T) € R¥™ and Eq(T) € R?*™ be the respective
visual and question representations obtained from the final (T“‘) SCA block.

The feature representations are obtained by averaging the attended embed-
dings of two modalities. So, the final visual embedding, say Iy is obtained as
follows.

1 & ,
L=+ > eI )
j=1
Similarly, the question encoding, say Qy is evaluated in the following manner.
1 & )
Qs = > Eq(D)k: ] (10)

The unified multi-modal representation, say F € R? is obtained by fusing I
and Qy through element-wise multiplication (®).

F=1I;0Q, (1)

The fused embedding F is fed to a fully connected network for answer pre-
diction.

3.5 Answer Prediction

The fused embedding F is fed to fully connected network with single hidden layer
of dimension dpp. The number of labels at the output layer is n. (n. =| A |).
The output answer vector, say a is predicted as follows.

a4 = FCNet (F; dpp; ne) (12)

3.6 Model Learning

Let the respective ground truth and predicted answer be a and a (a,a € A) for
input image I and question (). This model uses cross-entropy loss for answer
prediction and is defined as

Nec

Le=="_aljllog(al5]) (13)

j=1
The combined set of parameters for proposed model includes the ones for feature
extraction, block of dense attention and fusion mechanism.
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4 Experiment Design

This section discusses the datasets used to benchmark the proposed model, the
three evaluation metrics and the necessary implementation details.

4.1 Dataset

The proposed model is evaluated through experiments performed on the datasets
VQAZ2.0 [10], TDIUC [15] and GQA [13]. The VQA2.0 [10] dataset is one of
the most commonly used for the VQA task. The dataset is divided into train,
validation and test sets with 443757, 214354 and 447793 image, question and
answer triplets respectively. The Task-Directed Image Understanding Challenge
(TDIUC) [15] is another large VQA dataset of real images. Questions are cate-
gorized into 12 types.

Total 1.6 million question, image and answer triplets are split into train and
validation sets. The train set consists of 1.1 million triplets and 0.5 million
triplets are in the validation split. To deal with language prior issues, TDIUC
consists of a special category ‘Absurd’, where an input question is not related
to the visual content of a given image. GQA [13] is the largest VQA dataset
consisting of compositional questions based on real-world images. “Balanced
split” set of the GQA dataset consists of 1M questions and ensures a better
equitable distribution of answers.

4.2 Evaluation Metrics

For evaluation of the TDIUC dataset, Arithmetic-Mean Per Type (AMPT) and
Harmonic-Mean Per Type (HMPT) are proposed in [15] as fair evaluation met-
rics along with Overall Accuracy. The AMPT is the average of question category-
wise accuracies with uniform weight to each category. On the other hand, HMPT
measures the ability of the model to have a high score across all question types.

The VQA2.0 dataset evaluation is performed using the following metric
defined in [2].

#humans that said é, 1} (14)

3
Each question in the VQA2.0 dataset was answered by 10 annotators. The
above evaluation metric considers a predicted answer correct if it matches the
answers given by at least 3 annotators.
For GQA dataset, standard accuracy is used, where 1 point is given if the
predicted answer d matches the ground truth answer a and 0 otherwise. The
final results are described as average over all questions in the dataset.

Accuracy(a) = min{

5 Results and Discussion

5.1 Quantitative Results

Overall Performance & Category-Wise Performance Comparison on
TDIUC Dataset — Table 1 and 3 present the respective class-wise and overall



Visual Question Answering with Cascade of Self- and Co-Attention Blocks 29

performance for the TDIUC dataset. In terms of the overall accuracy, Arithmetic-
MPT (AMPT) and Harmonic-MPT (HMPT) measures, the proposed model
CSCA exhibits better performance compared to most of the baseline methods.
Also, in terms of class-wise accuracy, CSCA leads in all except one class. A sig-
nificant relative gain of 12.6% is observed compared to the next best performing
model for the ‘Counting’ category of questions. Table4 presents the results for
different models trained ‘Without Absurd’ category of questions. It is observed
that CSCA performs better than the existing ones for all three defined metrics.

Table 1. Category-wise comparison of CSCA with previous state-of-the-art methods
on the TDIUC dataset

Question Type SAN [39]RAU [15]MCB [9]|QTA [29] BAN [16]/CSCA
Scene Recognition [92.3 93.96 93.06 93.80 93.1 94.48
Sport Recognition [95.5 93.47 92.77 95.55 95.7 95.85
Color Attributes 60.9 66.86 68.54 60.16 67.5 75.51
Other Attributes 46.2 56.49 56.72 54.36 53.2 60.89
Activity Recognition |51.40 51.60 52.35 60.10 54.0 61.00
Positional Reasoning|27.9 35.26 35.40 34.71 27.9 42.14
Object Recognition [87.50 86.11 85.54 86.98 87.5 89.11
Absurd 93.4 96.08 84.82 100.0 94.47 97.28
Utility & Affordance|26.3 31.58 35.09 31.48 24.0 40.35
Object Presence 92.4 94.38 93.64 94.55 95.1 96.34
Counting 52.1 48.43 51.01 53.25 53.9 60.70
Sentiment Und. 53.6 60.09 66.25 64.38 58.7 67.19
Overall Accuracy [82.0 84.26 81.86 85.03 85.5 88.12
Harmonic Mean |53.7 59.00 60.47 60.08 54.9 67.05
Arithmetic Mean [65.0 67.81 67.90 69.11 67.4 73.34

Overall Performance and Category-Wise Performance Comparison on
VQA2.0 Dataset — Table 2 demonstrates the results on test-dev and test-std
splits of the VQA2.0 dataset. Performance of the proposed model CSCA is com-
parable with that of the best among the existing methods. The models LXMERT
[33], VILBERT [20] are pre-trained for multiple vision and language based tasks
and are fine-tuned for VQA. Here, CSCA has obtained 67.36% accuracy on the
validation set. This is around 1% improvement over the best performance among
the existing methods.

Overall Performance Comparison on GQA Dataset — Table 6 presents the
results for the “balanced split” of the GQA dataset. For a fair comparison and as
per the availability of results from respective papers, the results are reported in
terms of overall accuracy. The GQA dataset emphasizes the need for multi-hop
reasoning for evaluating the reasoning abilities of model proposals.

It is observed that the competitive methods either rely on graph-based struc-
tures or incorporate information from external knowledge base to enhance visual
reasoning capability [12,28,35,44-46]. However, CSCA achieves a performance
without relying on graph-based structures or external knowledge. Specifically,
CSCA demonstrates a better performance (an improvement of 0.8%) compared
to NSM [12] (best among all).
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Table 2. Model performance on VQA 2.0 dataset: Validation, Test-Dev & Test-Std
splits. CSCA is compared with several state-of-the-art methods including Fusion based,
Visual Attention, Dense Attention based methods

Methods Val Test-Dev Test-Std
Overall|Yes/No|Number|Other|Overall|Overall
MCB [6] 59.14 |78.46 |38.28 57.80 [62.27 |53.36
MLB [17] 62.98 [83.58 |44.92 56.34 66.27 [66.62
MUTAN [3] [62.71 [82.88 |44.54 |56.50 |66.01 [66.38
MFH [43] 62.98 |84.27 |49.56 59.89 68.76 |-
BLOCK [4] 64.91 |83.14 |51.62 58.97 |68.09 [68.41
SAN [39] 61.70 |78.40 |40.71 54.36 [61.70 |-
BTUP [1] 63.20 [81.82 |44.21 56.05 [65.32 |65.67
BAN [16] 65.81 [82.16 45.45 55.70 |64.30 |-
v-VRANet [40]|— 83.31 |45.51 58.41 |67.20 |67.34
ALMA [19] — 84.62 |47.08 58.24 |68.12 66.62
ODA [47] 64.23 |83.73 |47.02 56.57 [66.67 |66.87
BAN2-CTI [5] 66.00 |- — — — 67.4
CRANet [25] |- 83.31 [45.51 58.41 |67.20 |67.34
CoR [36] 65.14 |84.98 |47.19 58.64 |68.19 |68.59
DFAF [7] 66.66 [86.09 53.32 60.49 70.22 |70.34
MLIN [8] 66.53 [85.96 52.93 60.40 70.18 |70.28
LXMERT [33] |- - - - - 72.5
ViLBERT [20] |- 70.55 |70.92
VSDC [35] 65.39 [83.79 |48.16 59.31 |68.55 |68.67
RSL [37] 66.77 |86.94 |51.37 [61.09 |70.64 |71.06
VQA-BC [18] [61.74
BCO [14] 63.80 |- - - - -
EDC [23] — 83.98 48.15 58.74 167.94 |68.14
CSCA 67.36 (86.57 |53.58 [61.06|70.72 |71.04

Table 3. Comparing Overall Accuracy Table 4. Performance of CSCA on

for TDIUC dataset TDIUC data (except Absurd category
samples) trained without ‘Absurd’ Cat-
Model Overall |Arithmetic egory samples
Accuracy | Mean
BTUP [1] 82.91 68.82 Metrics |Overall | ArithmeticHarmonic
Accu- MPT MPT

QCG [24]  |82.05  |65.67
CTI [5] 87.00 725
DFAF [7] 8555 |NA
RAMEN [31] 86.86  |72.52
MLIN [8]  |87.60 |NA
CSCA 88.12 73.34

racy
MCB [9] 78.06 |66.07  55.43
QTA [29] 80.95  |66.88 58.82
BAN [16] 81.9 64.6 52.8
CTI[5] |85.0 70.6 63.8
CSCA  85.30 |71.21  |65.40
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5.2 Ablation Analysis

The proposed model performs self-attention on the two modalities to obtain
intra-modality correlated features. Then the co-attention module uses respec-
tive representations of the two modalities to obtain cross-modality correlated
features by performing attention for one modality in the context of another. In
this ablation analysis, we examine the impact of individual attention module in
various combinations to understand their importance. We also analyze the set
of correct predictions obtained in these settings.

Table 5. Evaluating model performance on VQA2.0, TDIUC & GQA dataset to inves-
tigate the effect of different basic attention modules of the proposed model

SA/CAVQA2.0 TDIUC GQA
Overall Accuracy Parameter (in Millions)|Overall Accuracy Parameter/Overall (in Millions)Parameter (in Millions)
X X 155.80 15 69.18 7 49.11 4.47
X WV 159.69 22 70.46 21 53.58 20.08
v X 164.13 25 87.42 25 57.82 23.24
v v/ 67.36 42 88.12 36 63.60 35.85

Effect of Different Modules in SCA Block — In the Table-5 we present the
results of ablation analysis experiments in terms of performance and complexity.
The complexity is expressed in terms of the number of model parameters.

The first row of the table shows
the model performance when neither Table 6. Comparing Overall Accuracy of
of the attention is incorporated. The CSCA for GQA
features for both modalities are fused
directly via element-wise multiplica- Model Overall Accuracy
tion without applying self- or co- NSM [12] 63.17
attention. Second row shows the per- XNM [28] 62.04
formance when only self-attention (SA OCCAM ([35]/63.10
only) is incorporated on both modal- XKI [44] 62.38
ities and answer prediction is based QAA [45] 63.07
on the fused embedding of the self- DDTN [46] 58.54
attended representations of the indi- CSCA 63.60
vidual modalities. Here, the fused rep-
resentation is obtained via element-
wise multiplication. Third row shows the results when only co-attention (CA
only) is incorporated on image and question in the context of the other. The
last row shows the results from the proposed model that comprises of both self-
attention and co-attention in cascade (SCA).

As per expectation, the model without any attention mechanism provides
the lowest performance (first row). The “SA only” model provides lower per-
formance as it lacks the interaction of two modalities and learns a compara-
tively poor representation (second row). Co-attention is the crucial component
for multi-modality that is found to perform better than self-attention. In terms
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of computational complexity, a simple fusion-based model uses the least number
of parameters, while the proposed model (SCA) requires the highest number
of parameters. However, the performance improvement, especially for VQA2.0
dataset, overcomes the complexity issue. We observe that the change in model
performance is similar for all three datasets in this analysis.

Effect of Number of SCA Blocks — It is difficult for a model to grasp
all relevant information through a representation in one pass. Thus, attention
blocks in cascade extract the fine-grained information and pass it on to the
next one for further refinement. We perform experiments to identify the optimal
number of blocks in the cascade. The effect of different independent attention
mechanisms (SA only, CA only, SCA) for answer prediction is also analyzed.
In Fig.3 (left), the overall performance for the validation split of the VQA2.0
dataset is given concerning varying numbers of blocks. Figure3 (right) shows
the parameter counts with respect to the number of blocks. As per expectation,
we can observe that the models perform poorly with single attention blocks
(SA only, CA only, SCA). However, the performance is observed to rise only up
to four blocks. Increasing the number of blocks beyond four does not lead to
any further performance improvement. Adding more blocks also increases the
number of model parameters (Fig.3). Furthermore, one can observe that only
the CA module can perform better than using only the SA module. This is as
per the expectation. Similarly, Fig.4 (left) shows that the model performance
keeps improving until the fourth SCA block for the TDIUC dataset. The model
performance starts deteriorating with a further increase in blocks. For the GQA
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dataset, Fig.4 demonstrates a similar observation. It is worth noting that the
performance steadily improves until the fifth block of the SCA. However, a drop
of approximately 2% in performance is observed on the sixth block. After this
point, the performance continues to degrade.

6 Conclusion

This work proposes a dense attention mechanism-based VQA model. Dense
attention is incorporated by exploiting both self-attention and co-attention. The
self-attention mechanism helps in obtaining improved representation within a
single modality. With self-attention, a salient region (in the case of image) inter-
acts with every other region. The final representation inherits the contextual
information for all regions. Similarly, for the input questions, self-attention pro-
vides the representation of every single word that captures the contextual infor-
mation for other words as well. The proposed model also exploits the cross-modal
interaction of two modalities which is further strengthened by self-attention of
two modalities. Attention blocks are cascaded multiple times to facilitate refined
cues of visual and textual features. The model’s capability is justified by detailed
experiments and analysis performed on the three benchmark VQA datasets.
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Abstract. Multimodal generative models have demonstrated promis-
ing capabilities for bridging the semantic gap between visual and textual
modalities, especially in the context of multimodal summarization. Most
of the existing methods align the visual and textual information by self-
attention mechanism. However, those approaches will cause imbalances
or discrepancies between different modalities when processing such text-
heavy tasks. To address this challenge, our method introduces an inno-
vative multimodal summarization method. We first propose a novel text-
caption alignment mechanism, which considers the semantic association
across modalities while maintaining the semantic information. Then, we
introduce a document segmentation module with a salient information
retrieval strategy to integrate the inherent semantic information across
facet-aware semantic blocks, obtaining a more informative and readable
textual output. Additionally, we leverage the generated text summary to
optimize image selection, enhancing the consistency of the multimodal
output. By incorporating the textual information in the image selection
process, our method selects more relevant and representative visual con-
tent, further enhancing the quality of the multimodal summarization.
Experimental results illustrate that our method outperforms existing
methods by utilizing visual information to generate a better text-image
summary and achieves higher ROUGE scores.

Keywords: Multimedia analysis - Document understanding -
Semantic technology + Summarization

1 Introduction

Multimodal summarization aims to generate a concise and informative summary
by jointly analyzing and fusing information from multiple modalities, such as
text and images [6,10,16]. In contrast to text summarization, which relies on
a single data type, multimodal summarization requires advanced neural models
to encode multimodal data, capture inter-modal interactions, and generate an
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Two men kicking a soccer ball on a field. Scott McTo
minay and Axel Tuanzebe - who were making their thi
rd and first appearances of the season - both played the
entire game at the Liberty Stadium and Mourinho was
pleased with what he saw. manchester's paul o'connor
Scott McTominay did very well, strong in the midfield.
Axel Tuanzebe started maybe a little shaky, but then w
e got stability and he came into it,' Mourinho said. jose
mourinho looking on from the sidelines. Mourinho add
ed: 'We were in the game from the first minutes, pressi
ng and forcing things, the attitude was good. There we
re no injuries either, so it is a good day. ..

Abstractive | | Summarization

manchester united progress to quarter-finals after beating swansea .
jose mourinho chose to single out two of the youngsters who starte
d . scott mctominay and axel tuanzebe both played the full game for
united . mourinho said he was impressed with the performances of b
oth players .

Pictorial Summary

Fig. 1. The illustration of our proposed task Multimodal Summarization with Multi-
modal Output (MSMO). Image and text assistance can generate a richer summary for
easy understanding.

integrated text summary. This paper focuses on the Text-Image Summarization
(TIS) task [6,10,27], which considers both image and text modalities (Fig. 1).

Current multimodal summarization methods typically involve three stages:
1) feature extraction, 2) modality fusion, and 3) summary generation [2,17,24].
Most approaches separately extract textual and visual features using techniques
such as Convolutional Neural Networks (CNN) [1] for visual encoding and Recur-
rent Neural Networks (RNN) [20] for natural language processing and generation
[11,14,23,25]. Subsequently, cross-modal attention mechanisms are employed to
fuse the multimodal semantic information [24]. However, traditional multimodal
summarization methods often struggle to effectively leverage visual information
to improve the text summary, and in some cases, the visual information may
even hinder the summarization performance.

Previous multimodal works transform multiple modalities into a single
modality to improve the performance of multimodal tasks [5,8,21,22]. For exam-
ple, image captioning [8,21] can automatically generate descriptive text for a
given image called image caption, providing a comprehensive understanding of
its content. Inspired by the image caption (e.g. CLIP [18] and BLIP [12]), we
observed that it could naturally transform the visual modality into text modality,
thereby translating the multimodal summarization task into the text summariza-
tion task. However, upon transforming the multimodal summarization into the
text summarization through image captioning, we face the problem that a single
document often encompasses multiple themes or facets [19,26]. Also, we found
that the summary generated from text augmented with image captions contained
irrelevant information, necessitating the filtering of irrelevant content from the
text to enhance summary quality.
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Based on our observations, we propose a novel multimodal summarization
method, involving four modules: Text-Caption Alignment, Facet-Aware Docu-
ment Segmentation, Salient Information Retrieval strategy, and Image Selection.
Extensive experiments on the existing dataset demonstrate that our method not
only fully exploits visual information to generate a more comprehensive multi-
modal summary, but also ensures the reduction of irrelevant information without
the removal of useful data and generates an accurate summary. Our contribu-
tions are as follows:

— First, we introduce a strategy for Text-Caption Alignment based on seman-
tic localization, which can integrate visual information into textual content,
avoiding issues such as an illogical summary caused by inserting the captions
directly and enabling the generation of a more comprehensive and fluent text
summary.

— Second, we propose a sentence-level information filtering technique, capa-
ble of filtering extraneous information within the text. Which enhances the
informativeness and precision of the generated summary, ultimately achieving
state-of-the-art performance as measured by the ROUGE metric.

— Third, we propose a straightforward yet effective Image Selection strategy. By
projecting the generated summary and images into a joint textual semantic
space, we can select images with a higher degree of relevance to the generated
text summary.

2 Related Work

Multimodal summarization processes data from diverse modalities to generate
more concise information, improving the quality of the summary. For multi-
modal output with multimodal input [24,27,28], Zhu et al. [27] constructed a
large-scale dataset for TIS task, which takes the images and text as input and
outputs a pictorial summary. They also proposed a multimodal attention model
to jointly generate text and select the most relevant image from the multimodal
input. Based on previous research, Zhu et al. [28] proposed a multimodal objec-
tive function with the guidance of multimodal reference to use the loss from the
summary generation and the image selection. Zhang et al. [24] introduced a uni-
fied framework for multimodal summarization, called UniMS, which integrates
extractive and abstractive objectives, as well as selecting the image output.
However, exploiting the multimodal information is difficult because of the
semantic bias during multimodal fusion. To address the challenge, some works
align the multimodal information into a shared space. For instance, Ding et al.
[5] introduce a contrastive loss to align the image and audio representations
before fusing them through cross-modal attention. Pereira et al. [22] focuses on
capturing visual sentiment information through facial expressions in text and
selectively matching and fusing with the target aspect in textual modality. Wu
et al. [21] proposed a method to insert external knowledge into the CNN-RNN
for visual question answering, transforming the images into image captions. La
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et al. [8] utilized image captioning to extract the correlation between different
modalities to solve multimodal tasks. Inspired by converting the multimodal
task into the unimodal task, we transform multimodal summarization into text
summarization, which can reduce the complexity of data fusion and improve the
performance of multimodal summarization.

3 Proposed Method

3.1 Method Overview

1. Text-Caption 2. Facet-aware 3. Salient Information
Alignment Strategy Segmentation Retrieve Strategy

Input Facet | Facet |

77777 Final
i, R Output
: Facet 2 Facet 2 ' i Summarize
—> ==
—) — - - | : I
I- BN — i }
| H \

et Facet 3 Facet3

- @ @ i |

4. Image Selection

BLIPiBa.sed. —_— —_—
Image Captioning

Visual Coverage Image Select

Visual
Modality

Fig. 2. Overview of our work. Specifically, we mainly divide it into four parts: (1) After
generating image captions, the image is inserted into the text based on semantic simi-
larity (2) Then, the document is segmented using a document segmentation algorithm,
which is called the Facet-Aware Segmentation. (3) By filtering out the irrelevant sen-
tences in each block, we select the most relevant sentences for summarization. (4) We
select the image with the highest semantic similarity between the image description
and the text summary as the image summary.

In our paper, we propose a novel multimodal summarization approach, where
the input is a sequence of text and a set of images; the output contains a text and
an image. As shown in Fig. 2, our method mainly consists of four modules: (1)
Text-Caption Alignment, (2) Facet-Aware Document Segmentation,
(3) Salient Information Retrieval Strategy, and (4) Immage Selection.

Image captions are the textual representation of visual knowledge obtained
from images and inserted into the optimal position in the original text document
based on semantic similarity between images and text, as detailed in Sect. 3.2.
As described in Sect. 3.3, we utilize a document segmentation strategy, which
divides the document into facet-aware semantic blocks to keep semantic relevance
between sentences within each block. Then, we filter out the irrelevant sentences
from each block according to a hypermeter 6 and generate the text summary
from the filtered sentences, as described in Sect. 3.4. Finally, for image selection,
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we project the generated text summary and all image captions into the same
textual semantic space and select the most relevant image compared with the
text summary, as described in Sect. 3.5.

3.2 Text-Caption Alignment

Given the multimodal document {7, I}, we first transform multiple image modal
I ={L1>,....Ij....I,} into text modality I= {fl, L,..., fj,. I:n} by a pre-
trained BLIP [12] model, where I~] represents the corresponding image caption
of the j-th image. Basically, it reduces the modality-bias problem in such text-
heavy multimodal summarization task and thereby improve the performance of
multimodal summarization.

We sequentially process each image caption generated by the BLIP model
{fl, fg,. . fi,. . I;n}, and calculate the semantic similarity with all paragraphs
in the document {p1, p2,..., Pj,--., Pn}. In detail, we first obtain embedding
vectors I; and p; of the image caption and each paragraph in the text document
through a pre-trained model. Then, the similarity of both sides of the potential
insert point is measured by cosine similarity. The equation is as follows:

i Pl

Oé(fupj) = (1)
2|51

g

where I; and p; represent the i-th image caption and the j-th paragraph respec-
tively. The purpose of calculating cosine similarity is to measure the directional
similarity between two vectors, with the value range spanning from -1 to 1. The
cosine similarity value closer to 1 indicates higher semantic similarity between
the two sentences.

Upon obtaining the similarity scores between image descriptions and textual
paragraphs, we average similarity scores on both sides of the potential insert
point, serving as the matching score for that insertion point. Finally, the image
captions are inserted into the text based on the maximum matching score.

3.3 Facet-Aware Document Segmentation

By employing a document segmentation algorithm to partition the document
into k facet-aware semantic blocks, each block comprises distinct facets. Our
approach is grounded in the assumption proposed by Skorokhod’ko [13] that
when adjacent sentences exhibit semantic similarity, they converge on the same
aspect. Building upon this aforementioned assumption, we predefine potential
segmentation points (g1, 92, - ., gn—1) at the breakpoints between every two sen-
tences, where n is the number of sentences.

To determine whether a potential segmentation point is a true breakpoint,
we calculate a score for each potential segmentation point based on the seman-
tic similarity of the sentences surrounding it. Specifically, we first compute the
features of the w sentences to the left and right of each segmentation point,
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and then calculate their similarity as the score for that segmentation point. As
shown in Eq.2, g} and g7 respectively denote the left and right features at the
segmentation point g;. The similarity of the segmentation point g; is computed

L r .
using cosine similarity sim; = Hgﬁl Ifgi’»”\l . It’s noted that the default value for w is
set to 2. o

1 i 1 i+w
1
9= Z xj,giT:E Z Zj (2)
j=i—w+1 j=i+1

Inspired by TextTiling [7], we transform the similarity score into a depth
score through the following equation:

d; = max{(sim;_1 — sim;),0} 3)
+ max{(sim;11 — sim;),0}
When the similarity of the potential segmentation point is the local minimum
value, the facets in the left and right blocks are different, and the corresponding
depth score is high. Thus, if d; surpasses a threshold ¢ determined by the mean
and standard deviation of the depth score sequence, the original predefined seg-
mentation point g; is chosen. The threshold § controls the degree of document
segmentation, where a higher ¢ results in more sentences per segmented block.
Finally, we obtain the facet-aware blocks (by, ba, ..., bg).

3.4 Salient Information Retrieval Strategy

Following the segmentation of the document, sentences within each block are
related to a distinct facet. In this section, we detail how to filter out the irrelevant
information within each block based on the importance of the block. At first, we
calculate the semantic vector representation (t1,...,%;,...,t;) for each block as
the Eq. 4:

1
ti = o] Z Zj (4)

z;€b;

where |b;| represents the number of sentences in the segmented block b;. Fol-
lowing Zheng et al. [26], we employ directed centrality to score each block, as
shown in Eq.5. Specifically, we obtain the centrality score p(b;) for each block
by computing the sum of pair-wise dot product with other blocks. Noted that a
high centrality score for a block indicates that the block is highly relevant and
connected to other blocks within the document.

k
p(bi) =D ti-t; (5)

J#i
To filter out irrelevant sentences, we calculate the proportion of sentences to
be retain within each block, denoted as 7;:
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(6)

As shown in Eq. 6, p* represents the highest centrality score in the semantic
block, and p(b;) represents the centrality score of semantic block b;. After calcu-
lating the retention ratio n for each block, we use BERTSum [15] to score each
sentence within the block and retain the top 7 sentences. Blocks with higher
centrality scores retain more sentences. Finally, the selected sentences xz; are
concatenated, and a fine-tuned BART [9] model generates the text summary

S:{yla"'ayt7"'7yl}-

3.5 Image Selection

In order to more accurately select the image that is closely related to the gener-
ated text summary, we first use the pre-trained BERT [4] model to encode the
image captions and the generated text summary. The result of this projection is
that we obtain the feature vector representations of the text summary and the
image features, which align them in the same textual semantic space. Next, we
use the cosine similarity to calculate the semantic similarity score for each pair
of caption-text vectors, which characterizes their relative position and similarity
in the semantic space. This process enables us to accurately judge the degree of
similarity between each image and the generated text summary, thereby selecting
the most relevant image for the multimodal summarization task (Fig. 3).

Correlated
Subspaces

~< Nick Buoniconti, 76, was a legend with the Miami Dolphins. He
e was diagnosed with dementia in May, and his doctors now believe

~~ he also suffers CTE. On Friday, Buoniconti announced he is leaving
his brain with Boston University. The famed brain research team
Closest the Image diagnosed CT posthumously in the late Patriots star Aaron

to the Text Hernandez. Last month, Buoniconti's son Marc, who was left

paralyzed for life after a clash in a college football game 32 years
ago, said youth football should be banned.

Fig. 3. Image Selection Strategy

4 Experimental Settings

4.1 Dataset

During the experimental process, the data was referenced to the dataset MSMO
[27], which included 293,965 training data, 10,355 validation pairs, and 10,261
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test pairs. The MSMO dataset is constructed using a corpus from the Daily Mail
website paired with multiple images and utilizes the manually written highlights
provided by the Daily Mail as reference text summaries. To obtain the pictorial
references for the test set, MSMO employs 10 graduate students to select relevant
images from the articles corresponding to each reference text summary.

4.2 Evaluation Metrics

We choose the following evaluation metrics:

ROUGE-{1,2,L} is used as the standard evaluation metric for automatic
summarization. It measures the similarity between two text passages, typically
focusing on the overlap of n-grams, word sequences, and word pairs.

Image Precision (IP) is a commonly used metric for evaluating image selec-
tion performance. It defines image accuracy by calculating the ratio between
the properly recommended images and the reference ones. Used to measure the
ability to accurately select images with high correlation when given a reference
image.

Mygim, as a metric for evaluating the correlation between images and texts,
is achieved by calculating the maximum similarity between each sentence in the
final summary and the image.

4.3 Baselines

To demonstrate the effectiveness of our proposed method, we compared it with
various summarization methods.

BERTSum [15] is a unimodel for extractive and abstractive text summariza-
tion based on BERT, with two variants of BertAbs (abstractive) and BertExtAbs
(hybrid).

BART [9] is a pre-trained model composed of a bidirectional encoder and
an autoregressive decoder that can better understand the complex context rela-
tionship.

ATG/ATL/HAN [27] uses the global, local and hierarchical image features,
respectively, for the multimodal abstractive summarization task.

MOF [28] incorporate a multimodal objective function into ATG. Out of
the four variants of the multimodal objective function, we select the two that
exhibit better performance we utilized.

UniMS [24] propose a unified framework for multimodal summarization,
which introduces a visual guided decoder to better integrate textual and visual
modalities.

ViL-Sum [3] model paragraph-level vision-language semantic alignment for
better learning multi-modal semantics.
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5 Experimental Results

5.1 Automatic Evaluation

We split the performance experiments into automatic evaluation and human
evaluation to better analyze the detailed impact of our method. Table 1 summa-
rizes the automatic evaluation results on abstractive summarization and image
selection subtasks. The first block in the table includes abstractive summariza-
tion methods with text-only input, while the second block includes abstractive
methods with multimodal input. By investigating the results, we make the fol-
lowing observations:

Table 1. Main results of different metrics. R-1, 2, L refers to ROUGE-1, 2, L, IP
refers to Image Precision. Noted that the experimental results of other methods are
taken from UniMS [24].

Model R-1
Text Abstractive

BertAbs [15] 39.02 118.17 33.20 |- —
BertExtAbs [15)39.88 18.77 38.36 —

R-2

RL [P Mm

BART [9] 41.83 119.83 [39.74 |- —
Multimodal Abstractive

ATG [27] 40.63 |18.12 37.53 |59.28 |25.82
ATL [27] 40.86 |18.27 |37.75 62.44 |13.26
HAN [27] 40.82 (18.30 |37.70 61.83 (12.22

MOFER 28] 41.05 |18.29 37.74 |62.63 26.23
MOFER [28]  |41.20 [18.33 [37.80 65.45 [26.38
UniMS$ [24] 42.94 20.50 40.96 69.38 [29.72
ViL-Sum [3]  |44.29 [20.96/41.34 66.27 32.17
Our Method ~ |44.8020.32 41.4674.1932.35

We achieve the best IP and My;,,, compared with other methods due to the
implementation of an Image Selection strategy (i.e., our method outperforms
UniMS by achieving 6.9% and 8.8% higher scores on the IP and M,;,, metrics,
respectively). Compared with existing methods that directly select the image in
the model, our method projects both image captions and text summary gener-
ated from the document into the same textual semantic space for comparison
and then selects the most relevant image caption compared with the generated
text summary, where the corresponding image is selected as the image summary.
The results illustrate that the image selection strategy enhances the coherence
between the textual and visual information to achieve higher performance than
existing methods.
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In the first block of text-only models, we find that the fine-tuned pre-trained
BART model exhibits up to 9.7% higher ROUGE-L score than MOFRR ' which
indicates the powerful summarization capabilities of BART. Compared with
UniMS, BART also achieves competitive results, which only decrease by 1.11,
0.67, and 1.22 under ROUGE-{1,2,L} scores, respectively.

In the second block, previous multimodal methods (such as ATL [27] and
MOF [28]) demonstrate no capability over the single-modal text summarization
model as mentioned. These results concluded that too many images could bring
noise, and the long document contains enough information for text generation.
By using a more powerful unified model, UniMS improves the ROUGE-L score
and IP score by 3.16 and 3.39 over MOFER respectively. ViL-Sum, on the other
size, models paragraph-level vision-language alignment for summarization. In
contrast, our method utilizes a sentence-level filtering strategy capable of filtering
irrelevant information within the facet-aware semantic blocks. By employing our
designed modules, we capture useful information and generate more accurate
summaries. As a result, our method achieves higher ROUGE scores compared to
other methods. Meanwhile, the proposed strategy for text-caption alignment can
integrate visual information into the same textual semantic space and thereby
accurately select the image, achieving up to 11.9% over ViL-Sum under IP score.

M is used to check the text-image relevance of the pictorial summary. Our
method projects both image captions and the generated text summary into the
same textual semantic space for comparison. The results show that we achieve
32.35 under Mg;,, which is higher than 29.72 obtained by UniMS. Thus, we
conclude that the text-image relevance is much higher than the state-of-the-art
UniMS model as we expected, which demonstrates the effectiveness of the image
selection strategy.

5.2 Human Evaluation

We present the human evaluation results of the method we proposed. For
this purpose, we engaged three part-time graduate students from the Alibaba
Crowdsourcing platform to assess the multimodal summaries generated by our
best-performing model. We selected the most representative models, ATG and
UniMS, for comparison with our approach. We randomly selected 200 samples
from the test dataset for evaluation and instructed them to judge the multimodal
summary based on the following criteria:

— Coverage (Cov): Compare the model-generated text summary with the actual
text summary to check if the main points are adequately covered.

— Grammar (Gra): Examine whether the model-generated text summary is
grammatically correct.

— Consistency (Con): Measure the factual alignment between the summary and
the source document.

— Image-Relevance (IR): Indicate the text-image relevance of multimodal out-
puts.
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The evaluators rated the selected samples on a scale from 1 (the worst) to
5 (the best) for each of the four dimensions. The average results are presented
in Table2. Our approach outperforms the comparative systems in all metrics,
with the lowest score exceeding 0.34. The voters generally agreed that our sys-
tem’s summary exhibit higher Cov and Con scores, reflecting factual consis-
tency between the summary and the original article. Furthermore, we achieved
the highest IR score, indicating a strong correlation between the images and
the generated text summary. Additionally, the text summary is predominantly
grammatically and semantically correct. These results provide further validation
of the effectiveness of our proposed method.

Table 2. Human evaluation results.

Model Cov |Gra |Con IR

ATG [27] 3.64 |4.14 |3.87 |3.72
UniMS [24] (3.91 4.25 |4.09 |4.14
Our Method|4.23/4.36/4.28/4.32

5.3 Ablation Experiment

We set up an ablation study to validate the effectiveness of our method, inves-
tigating the impact of three key modules, including Text-Caption Alignment
(TCA), Facet-Aware Document Segmentation (FADS) and Salient Information
Retrieval (SIR). Our experimental setup is described as follows, with the results
shown in Table 3.

Table 3. Ablation study.

Approaches R-1 R-2 |R-L [IP Msim
Our method|44.8020.32{41.46/74.1932.35
w/o TCA |43.76 [19.40 40.43 |74.01 [32.27
w/o FADS |44.55 20.15 41.20 [74.12 (32.34
w/o SIR 44.73 120.28 41.36 |74.15 |32.40

Impact Analysis of TCA. Our TCA strategy significantly outperforms exist-
ing methods, as shown in Table 3. TCA is crucial for enhancing information amal-
gamation and cohesiveness between textual and visual elements. Without TCA,
the lower ROUGE scores and reduced Mj;,, metric indicate inferior congruence
between the generated summary and the reference text, as well as weakened
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semantic alignment between textual and visual components. Inappropriately
appending image captions to the text may lead to redundancy or incoherence in
the generated summary. Therefore, our TCA strategy is essential for selecting
the optimal position for visual information insertion.

Impact Analysis of FADS. Under the condition without the FADS mod-
ule, we select n sentences as a block, where n represents the average num-
ber of sentences per paragraph. The results show that incorporating FADS
significantly improves summarization performance, with notable advantages in
ROUGE scores, IP metric, and M;,,, metric. This highlights the crucial role of
the FADS module in shaping the summarization process. The substantial dif-
ferences in ROUGE scores indicate that FADS has a significant impact on the
informativeness and coherence of the generated summary. The decrease in the IP
value suggests that the SIR module, under the influence of FADS, contributes
to selecting more relevant sentences for summarization. Moreover, the slight
improvement in the My;,,, metric implies that FADS helps maintain the align-
ment between visual and textual elements, even when the optimal text summary
is not selected.

Impact Analysis of SIR. Removing the SIR module means that no sentence
filtering is performed on the blocks, and the text obtained after the TCA strat-
egy is directly fed into the summarization model. As shown in Table3, this
leads to lower ROUGE scores, indicating that the noise in the input document
negatively affects the summarization quality. However, the minor changes in IP
and Mg;,, suggest that our image selection remains accurate, demonstrating the
effectiveness of our method in matching visual and textual information. The SIR
strategy plays a crucial role in our approach by reducing noise and enhancing
information fusion, ultimately improving multimodal text summarization.

5.4 Case Study

Figure 4 presents a randomly selected sample consisting of multiple paragraphs
of text and images. The blue-marked part of the figure represents the results
obtained after processing the sample with the alignment module. These results
clearly demonstrate our strategy is capable of completing the cross-modal data
fusion by locating the image captions in the suitable insertion position. For
example, adding “Jose Mourinho looking on from the sidelines.” before “Mour-
inho added ...” provides extra context. Observing the results, comparing with
the other approaches, our method incorporates all the key aspects, which are
shown in the left corner as the Gold Summary marked with three different col-
ors. Specifically, our method can generate the highlighted blue sections, while
comparison systems do not. Our method and the without-all-modules method
select the same image as the gold summary and achieve better ROUGE scores
than Text-Only BART. Moreover, as shown in the Fig. 4, text-only input led to
incorrect image selection, which demostrates that incorporating image captions
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Multimodal Input

Text-Caption Alignment

Our Method

Without All Modules

Text-Only BART

Two men kicking a soccer ball on a
field. Scott McTominay and Axel
Tuanzebe - who were making their
third and first appearances of the
season - both played the entire game
at the Liberty Stadium and Mourinho
was pleased with what he saw.

manchester united beat
swansea 2-0 in the
carabao cup last-16. jose
mourinho was pleased
with the performance of

manchester united beat
swansea 2-0 in the
carabao cup last-16 in
wales.

manchester united beat
swansea 2-0 in the
carabao cup last-16 in
wales. he singled out
scott mctominay and
axel tuanzebe in the

scott and entire game. fHENpaIR
manchester's paul o'connor Scott axel tuanzebe. - _
McTominay did very well, strong in youngsters played the and first appearances of
the midfield. Axel Tuanzebe started entire game in their B the win was o]
maybe a little shaky, but then we got | {hiirdand first jose's 400th match in
stability and he came into it,' appearances of the english football for the
Mourinho said. - club.
jose mourinho looking on from the
sidelines. Mourinho added: 'We were ( (

in the game from the first minutes,
pressing and forcing things, the
attitude was good. There were no

R-1 with Gold Sum:0.449
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(

R-1 with Gold Sum:0.426
R-2 with Gold Sum:0.189
R-L with Gold Sum:0.426

~

R-1 with Gold Sum:0.410
R-2 with Gold Sum:0.197
R-L with Gold Sum:0.409
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injuries either, so it is a good day.'

Gold Summary
report : manchester united progress to
quarter-finals after beating swansea . josel

Image Selection

and axel tuanzebe both played the full game.
for united . mourinho said he was impressed
with the performances of both players . SR

Fig. 4. A Case Study of our work. The blue text in the Text Caption Alignment section
refers to the corresponding image captions generated. The highlighted text in yellow,
green, and blue is the content part covered in the Gold Summary, and the corresponding
color on the right is the comparison between the three methods and the Gold Summary.
(Color figure online)

is crucial for accurate image selection by addressing information imbalance in
multimodal summarization.

6 Conclusion

In this paper, we propose a novel multimodal summarization method that utilizes
image captions to fusion the semantic information between visual and textual
modalities. Our method segments the document into various facet-aware blocks
and meticulously filters out irrelevant content within each block to reduce the loss
of key information and generate a more precise summary. Additionally, we also
propose a straightforward yet effective image selection strategy, which largely
bridges the gap between the pictorial summary. The experimental results demon-
strate that the proposed model outperforms existing methods on both automatic
metrics and manual evaluation. However, our method suffers from handling the
long document, which is also a challenge in existing multimodal summarization.
In future work, we will focus on improving the performance of processing a long
document in the context of multimodal summarization. Moreover, we will also
devote ourselves to refining these techniques, compressing the model, or creating
a broader applicable dataset.
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Abstract. Generating realistic handwritten word images that closely
resemble a target style remains a challenging task in document image
analysis. In recent years, deep learning techniques, such as Latent Diffu-
sion Models (LDM), have shown promise in generating styled handwrit-
ten text. However, these models face significant challenges when creating
images for ‘Out of Vocabulary’ (OOV) words, impacting their overall
effectiveness. In this paper, we introduce an extended diffusion-based
Handwritten generation method that incorporates a novel conditioning
mechanism. It is based on the Pyramidal Histogram of Shapes (PHOS)
representation, which takes into account the spatial and structural char-
acteristics of the target handwriting style. By conditioning the diffusion
model on input text, PHOS vector, and writer ID, our approach enables
the generation of handwritten word images. Notably, our approach out-
performs the original diffusion model, which only uses text and writer
ID as conditions, in generating both in-sample and out-of-sample. Fur-
thermore, we have developed a faster inference method that significantly
reduces the number of steps required for generating the output. Through
qualitative and quantitative evaluations, we demonstrate the effective-
ness of our proposed method.

Keywords: Denoising diffusion probabilistic model - Handwritten
Text Recognition - Synthetic Handwritten Data

1 Introduction

Handwritten text generation has emerged as a prominent research area within
the field of document image analysis. Its applications are wide-ranging, encom-
passing data augmentation for handwriting recognition systems and the creation
of personalized digital content. Deep learning (DL) techniques have achieved
remarkable performance in many domains, including handwriting recognition.
However, to fully realize their potential, these techniques demand extremely
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large volumes of high-quality annotated data. DL methods rely heavily on learn-
ing from large quantities of data to effectively discern patterns and generalize
capabilities, thereby enhancing their generalization and performance. Acquiring
a large annotated dataset, however, can be challenging and resource-intensive,
presenting a significant obstacle in practice. Without access to sufficient anno-
tated data for training, these approaches often struggle to attain top accuracy
levels. Data generation techniques offer a solution to this critical need. They
enable the automatic synthesis of high-quality additional training examples at
scale, supplementing limited real data. Our research focuses on generating hand-
written text data, with a specific emphasis on two key aspects: maintaining the
style of known writers and generating both known and unknown words that the
synthetic data generation system has never encountered. This sets our approach
apart by enabling us to generate text that not only preserves the desired style
of a known writer but also extends the system’s capability to generate novel
words it has never encountered. By pursuing this direction, we aim to provide a
comprehensive solution that combines style preservation with the generation of
contextually diverse and stylistically consistent text. This ultimately enhances
the practicality and versatility of data generation techniques in the field of hand-
written text generation.

Recent advancements in deep learning, particularly with the introduction of
Generative Adversarial Networks (GANs) [2,9] and LDMs like WordStylist [18],
have paved the way for generating realistic and stylized handwritten text images.
Current state-of-the-art methods for handwritten text generation, such as GAN-
writer [13], SmartPatch [17] and WordStylist [18], has demonstrated impressive
results in generating visually appealing handwritten words conditioned on both
text content and style information. However, the performance current state-of-
the-art methods in generating OOV word images have not been quantitatively
evaluated. OOV word images refer to the ability to generate handwritten words
that were not included in the training dataset. While current state-of-the-art
methods excel at replicating known words and maintaining the style, their per-
formance in generating novel, previously unseen words is not promising. This
limitation hinders the practical applicability of these methods in scenarios where
only a few word classes are represented in the dataset. GANwriter [13] employs a
conditional GAN architecture to generate handwritten word images. In contrast,
WordStylist [18] leverages the power of LDMs to generate styled handwritten
text by conditioning the model on both text content and style vectors. While
both approaches have shown promising results, WordStylist [18] has demon-
strated superior performance in terms of accuracy while maintaining the writing
style. The exceptional performance of LDM has been observed in other domains
[6]. To improve in performance metrics, it is essential to generate high-quality
synthetic data using a framework and integrate it into the recognition system
alongside the original data. However, it is crucial to ensure that the generated
data is contextually accurate to avoid any degradation in the performance of
the recognition system. When incorporating synthetic data into the recognition
system, it is crucial to ensure that the generated samples closely resemble the
characteristics and variations present in the real data. This includes accurately
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capturing the textual content, handwriting style, and other relevant features. If
the synthetic data deviates significantly from the contextually accurate represen-
tation, it may negatively impact the performance of the recognition system. We
observed several such cases with WordStylist [18]. Figure la illustrates training
data samples generated using the officially provided WordStylist weights. In the
first row, the framework attempts to generate the words “Higher” and “that”
exhibiting a partial resemblance to the expected text. Similarly, in the second
row of the first case, the generated word “bring” also bears partial similarity to
the expected text. However, these generated words are difficult for humans to
read due to their lack of clarity. Notably, the framework fails to generate the
second word in the second row, where the expected text is “but” The generated
output does not resemble the intended text at all, resulting in a complete fail-
ure of the framework in this case. The third row of the diagram showcases the
generation of unreadable words by the framework. The expected text in this row
includes the words “it” and “by” However, the generated words do not exhibit
any clear resemblance to the expected text, making them illegible. These fail-
ure cases highlight the limitations and challenges faced by the WordStylist [18]
framework in accurately generating desired word images, particularly in terms
of readability and reliable generation of the expected text. Similar types of sam-
ples generated by the diffusion model may hamper the performance metric when
used alongside the original training data.
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(a) WordStylist generated images (b) DiffWord generated images

Fig. 1. Images generated by Wordstylist and DiffWord framework

To address this limitation, we propose an extension to the WordStylist [18]
model, which we refer to as “DiffWord”. We incorporate a novel conditioning
mechanism based on the PHOS representation [1] along with text and writer
ID. The PHOS is a compact and discriminative representation that encodes the
spatial distribution of characters and shapes within the handwritten text image.
By conditioning the diffusion model on both the text content and the PHOS rep-
resentation, we aim to capture the spatial and structural characteristics of the
target handwriting style more effectively. In Fig. 1b, we present the same word
examples as shown in Fig. 1a, generated using the DiffWord method. The images
generated by DiffWord in Fig. 1b and 2 exhibit improved clarity, readability, and
accuracy compared to those generated by the WordStylist [18] method (Fig. 1a).
These differences are evident in the finer details, enhanced legibility, and overall
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visual quality of the Diff Word-generated word examples, making them clearer
and more visually appealing. Our proposed approach leverages the U-Net archi-
tecture [21] as the backbone of the diffusion model, similar to WordStylist [18].

The performance of the recognition [20] system also depends on the amount
of quality data provided. Therefore, the frameworks must generate high-quality
synthetic data in a timely manner. The method “WordStylist” [18] is based on
LDM approach that takes 600 to 1000 steps during the generative sampling pro-
cedure, which is computationally expensive and time-consuming. To address the
computational cost and time required, we introduce an early-sampling technique
that significantly reduces the number of steps needed. Our proposed method gen-
erates high-quality synthetic handwritten text data in just 120 steps for IAM
[16] dataset and in 200 steps for the CVL dataset [14], which is a significant
improvement over the 600 to 1000 steps required by the “WordStylist” [18]
method. This technique enables us to generate a large amount of data with
fewer steps, thus greatly enhancing the efficiency of the generation process. We
have also developed a validation framework that utilizes a recognition model to
verify the accuracy of the generated images in terms of their textual content. If
the generated images pass the validation, they are considered correct and added
to the synthetic data.

The main contributions of our work are as follows:

1. We extend the WordStylist [18] model by incorporating the PHOS condition-
ing branch, enabling the generation of handwritten word images that better
capture the spatial and structural characteristics of the target style.

2. We propose an early sampling technique that significantly reduces the number

of steps required during the generative diffusion sampling procedure from 600
to just 120 steps for IAM [16] dataset and 1000 to 200 for CVL [14] dataset.
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Fig. 2. Words generated by Diff Word framework
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3. We conduct a quantitative evaluation of OOV word generation, providing
insights through detailed metrics, This analysis establishes a baseline for OOV
word performance, highlighting our model’s ability to effectively generate and
assess handwriting styles for words not present in the training dataset.

The structure of this paper is as follows: Sect.2 reviews pertinent literature
in handwritten text generation. Section 3 provides an overview. Our proposed
methodology is detailed in Sect.4. Section outlines the experimental frame-
work, datasets, and evaluation criteria, and offers a discussion of the findings.
Limitations and challenges are discussed in Sect. 5.6. The paper is concluded in
Sect. 6.
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Fig. 3. Diff Word Architecture

2 Related Work

In recent years, several techniques have been proposed for synthetic text gen-
eration, specifically in the domain of word-level generation. In this section, we
discuss the relevant works related to handwritten word generation. Graves [10]
investigated synthesizing online handwriting trajectories of English texts using
RNN. The authors of [27] extended the [11] approach for online handwriting
synthesis. Several recent works have explored the use of GANs [24,28] for syn-
thetic handwritten text generation. GAN-based approaches, such as GANwrit-
ing [13] and HIGAN+ [9], have shown promising results in generating diverse
and authentic word images. GANwriting [13] leverages calligraphic style fea-
tures and textual content to intricately condition the generative process. The
HiGAN+ model introduced in [9] improved upon prior work by conditioning
generative image synthesis on both disentangled representations of calligraphic
style and textual content, employing contextual and local patch losses to enhance
style consistency and image quality, and leveraging a more compact architecture
based on reusing early writer identification layers. In TS-GAN [4], the ability
to extract styles from images via pixel-level reconstruction was demonstrated.
While ScrabbleGAN presented in [7] had the ability to synthesize handwritten
text of arbitrary length by concatenating individual letter images, it was lim-
ited in its ability to accurately mimic the calligraphic styles. In [26], JokerGAN
was introduced, a memory-efficient model for generating handwritten text with



58 A. Gurav et al.

awareness of the text line structure. These methods utilize adversarial training
frameworks and conditioning on input text and style features to produce coherent
word sequences. However, challenges persist in achieving perfect stylistic coher-
ence and inter-character spacing. Diffusion models like WordStylist [18] have
also demonstrated potential for word generation conditioned on text, but do not
explicitly model global stylistic cues. Transformer-based models, such as Hand-
writing Transformers (HWT) [2] and VATY [19], have also been proposed for styl-
ized word generation. These models employ transformer encoders and decoders
to capture global and local handwriting styles and enable style-content entangle-
ment at the character level. However, they do not integrate representations cap-
turing the intrinsic hierarchical structure of handwriting. HIGAN [8] introduced
an improved GAN architecture for disentangled handwriting style generation
conditioned on text. It achieved state-of-the-art performance but relied on an
unstable GAN training framework and limited style representations, constrain-
ing generalization. SLOGAN [15] proposed a method for synthesizing parame-
terized and controllable handwriting styles for arbitrary-length text, including
out-of-vocabulary words. While it demonstrated strong stylistic control, ensuring
perfect coherence when varying generation parameters posed difficulties. These
works made progress in synthesizing longer handwritten sequences, with Scrab-
bleGAN [7] achieving sentences and HiGAN/SLOGAN extending to arbitrary
lengths. However, challenges remained in maintaining perfect spatial characteris-
tics and coherence over long sequences, motivating our exploration of leveraging
holistic PHOS representations to better capture these global style cues during
word generation. The GlyphControl [25] technique utilizes diffusion models to
digitally render text guided by glyph maps. Conditioning on glyph templates
during inference enables consistent custom text synthesis. However, the gener-
ated text is not handwritten. In our work, we propose leveraging the PHOS [1]
technique, which extracts multi-scale histograms encoding the statistical distri-
bution of shape and character features. By analyzing this hierarchical represen-
tation, our model aims to capture fine-grained stylistic details and variations in
handwriting for improved word generation. To the best of our knowledge, our
work is the first to explore word-level generation using the PHOS technique in
the context of synthetic text generation.

3 Overview

Denoising Diffusion Probabilistic Models (DDPMs) aim to reconstruct the orig-
inal data inputs. They accomplish this by learning the inverse operation of
gradually adding noise onto data instances across multiple time periods. The
methodology is founded upon concepts from the field of thermodynamics, which
studies the transfer of heat and energy in systems [12,22]. DDPMs utilize a
process of incremental noising via a Markov chain. The models are trained to
minimize the effects of noise contamination by optimizing the reverse mecha-
nism. Once completed, this enables the generation of novel data representations
through chained synthesis from noise components and recovering the underlying



Word-Diffusion: Diffusion-Based Handwritten Text Word Image Generation 59

uniformities across many iterations of noise subtraction. The goal of this mod-
eling approach is to reconstruct source data inputs from corrupted latent rep-
resentations produced during a forward diffusion phase. In the forward process,
the original data undergoes a stepwise transformation. At sequential intervals
numbered 1 through 7', random perturbations in the form of Gaussian noise
are systematically added to and combined with the data. This incorporation of
noise leads to the derivation of a chain of latent representations x1, s, ..., z7.
The magnitude of noise included at each interval is governed by a designated
noise parameter scale, 3;, where J; can scale between 0 and 1. These derived
latents are interconnected by transitional rules that bridge adjacent time lapses,
facilitating a progressive evolution from the original data z( into the ultimate
latent zp through the sequential introduction of varying noise as shown in Eq. 1.

T

q(x¢|xe-1) = N(xe; /1 = Bixe—1, BI)  q(x1.7]%0) = HQ(Xt‘thl) (1)
=1

DDPMs learn to recover the original information zy by removing the extra
noise added earlier. A neural network is trained for this task. It starts with
the hidden version that has changed the most over time. The network repeats
undoing changes step-by-step from t = T to t = 1. First, it guesses what the
version looked like before more noise was added, pg(z:—1|z¢) as shown in Eq. 2.
Then it uses this guess to help undo the next step. This process takes it back
one small change at a time. It keeps fixing previous versions z;_; based on later
ones x;. After many repeats of pg(xi—1|z¢), the network learns by making its
guesses py closer to the real previous versions.

T

po(Xo:7) = Hpe Xe—1]xe)  po(xe—1lxe) = N(xi—1; pg(x,1), 1)) (2)
t=1

L = By r.ellle = eo, 1)) (3)

During the training process, the loss function, defined in Eq. 3, quantifies the
mean squared error between the actual noise € introduced at time step t and the
noise estimated by the model €.

4 Methodology

This section describes our proposed methodology for generative diffusion mod-
els of handwritten text images. The training procedure of a conditional genera-
tive diffusion model is discussed first. We then discuss two approaches for sam-
pling from the trained model: (a) a conventional method following the complete
reverse process, and (b) an efficient early sampling technique. In the conventional
method, an exact copy of the data used for training a diffusion model is gen-
erated, preserving the same writer ID and text associated with each image ID.
However, with early sampling, a different strategy is employed. The same train-
ing split is generated, but the writer IDs associated with each image ID change
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while keeping the text unchanged. Finally, we present a validation framework
for assessing the quality of images generated with early sampling by performing
text recognition from the images.

4.1 Training

Figure 3 illustrates the architecture of DiffWord. Our proposed method builds
upon the LDM architecture introduced in the WordStylist paper [18]. The input
image initially passes through a pre-trained Variational Encoder (VE), generat-
ing a low-dimensional latent representation of the image. This latent encoding
reduces the image’s dimensionality while retaining important semantic informa-
tion. The forward diffusion process gradually corrupts the image’s latent rep-
resentation by adding Gaussian noise at each timestep. A noise scheduler is
employed to gradually increase the level of noise. The noise level is linearly incre-
mented from an initial value of 31 = 10™% to a final value of Bgo0 = 0.02 over a
total of T' = 600 timesteps for IAM [16] data and T' = 1000 for CVL [14] dataset.
This incremental increase ensures that the diffusion process effectively spreads
and incorporates noise throughout the image’s latent representation. Our diffu-
sion model employs a U-Net [21] architecture as its backbone. The U-Net receives
several inputs, including the noisy image latents, the corresponding timestep,
and the desired conditions. These conditions consist of the writer ID, the con-
tent text, and PHOS [1] representation derived from the content text. These
inputs collectively provide the necessary information for the network to gen-
erate the desired output representations, encoding the spatial distribution and
relationships of characters and sub-characters within handwritten text images.
By incorporating PHOS as a conditioning variable, the model gains an enhanced
ability to capture and replicate the structural characteristics and style of the tar-
get domain, even for previously unseen character styles and distributions it was
not explicitly trained. The PHOS technique plays a crucial role in the condi-
tioning process of our diffusion model. PHOS extracts multi-scale histograms
encoding the statistical distribution of shape and character features. By ana-
lyzing this hierarchical representation, our model captures fine-grained stylistic
details and variations in handwriting. This enhances the diffusion model’s ability
to model the intricate stylistic nuances of handwriting, leading to more faithful
style modeling compared to text conditioning alone. The PHOS representation
is computed from the input word text and passed through an embedding layer
to obtain a dense vector representation. This embedded PHOS vector is then
concatenated with the embedded text representation and fed into the U-Net at
each timestep, as illustrated in Fig.3. The additional information provided by
PHOS includes the geometric and spatial relationships between different char-
acter components, which are crucial for replicating the natural variation found
in human handwriting. This joint conditioning on both text and PHOS enables
our model to generate images that closely match the desired content and style,
ensuring that the synthetic handwriting exhibits realistic variations and stylis-
tic consistency. By incorporating PHOS, the model benefits from a richer, more
detailed conditioning input that goes beyond simple text features, allowing it to
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more accurately capture the complexities of handwritten text generation. This
integration significantly improves the model’s performance in generating high-
quality, stylized handwritten text. It also enhances the overall robustness of the
generated images, making them suitable for a wider range of applications. Ulti-
mately, PHOS-based conditioning sets a new standard in the field of synthetic
handwriting generation.

The diffusion model is trained to estimate the noise €y(xt,t), as shown in
Eq. 3. The objective is to model the conditional probability pe(x:—1|x:), where
X;_1 represents the clean latent representation at timestep ¢t —1 given the current
prediction x;. This probability distribution guides the iterative reverse sampling
process, which aims to gradually refine the noisy image by removing noise at each
timestep. To provide temporal information to the model, timesteps are integrated
using a sinusoidal position embedding technique. This encoding method, inspired
by [23], allows the model to differentiate and be aware of the specific timestep it is
processing. During training, the model learns to denoise the corrupted latents by
minimizing the reconstruction error between the predicted noise and the actual
noise added to the latent, as Eq. 3 depicts the formulation of the diffusion loss
function.

4.2 Sampling

We employ two different iterative sampling techniques for handwriting genera-
tion. The first approach is the conventional method that precisely follows the
reverse denoising process across all 600 timesteps to yield high-fidelity samples
xo.7 resembling the distribution pp(xo.7). It takes a long time to generate data
samples using this method as it involves sampling sequentially from the full con-
ditional distribution pg(x;—1|x;) across all timesteps ¢. To handle this issue, we
propose an early sampling technique that modifies the conventional method to
predict noise values only every 5 timesteps, effectively sampling from an initial
portion of py(x:—1|x¢) over only one-fifth of the original timesteps. This reduces
the number of steps required per sample by a factor of 5x. The following sub-
section explains these methods in detail.

Po(Xe mlKe i) Po(xe alx: 3) Polxe s|x: 2) Ppolxe 2|%: 1) po(xe 1]xe)

Fig. 4. Sampling steps
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Iterative Reverse Sampling via the Complete Process To generate syn-
thetic images resembling the training data distribution, we utilize the reverse
denoising process. Specifically, we use the trained model to initiate the genera-
tion from Gaussian noise, unfolding the procedure across 600 timesteps as shown
in Fig. 4. The reverse steps are shown by black arrows. At each step, the model
removes a part of the noise from the noisy image produced in the previous step
according to the probability distribution pg(x:—1|x¢), where x;_; represents the
clean latent representation at timestep ¢t — 1 and x; represents the noisy image
at timestep ¢, which varies from 600 to 1.

This captures the model’s ability to predict the clean latent representation
X:—1 given the current prediction x;. The generation is guided using the same
conditioning inputs: text, writer ID, and PHOS vector specific to image ID. This
ensures the generated images not only depict the given text but also exhibit
styling consistent with the training writer. Initially starting from a randomly
noisy sample, denoising is sequentially performed at each timestep in reverse
order, with the network predicting and subtracting the noise level guided by
this probability distribution. This iterative process gradually reconstructs the
clean latent representation by timestep 0. Finally, decoding this denoised latent
using the decoder yields the synthetic pixel-space image resembling the style and
content of the training data. In WordStylist [18], the same sampling procedure
is employed to generate a new split of the training data, with the exception of
the addition of the PHOS vector.

Generating Diffusion Samples Using Early sampling The conventional
sampling technique utilized in WordStylist [18] involves a minimum of 600 to
1000 timesteps to generate each sample, sampling sequentially from the full
conditional distribution pg(x;—1|x:). However, when the goal is to generate many
examples with varied writer IDs, this approach is prohibitively computationally
expensive due to the large number of timesteps required per sample.

To address this challenge, we propose an efficient early-sampling technique.
Rather than predicting noise using a trained diffusion model for each step we
predict it after an interval of 5 steps, skipping the prediction for the remaining
4 steps in that interval, for these steps between intervals earlier predicted noise
is used for denoised image estimate at step t. Below Eq.4, represents image
denoising.

1 1-—
Xi—1 = —= Xt—ia'HOiset 5/x5 | (4)
o A 14/5]

where noise|; /5| x5 denotes the noise term calculated at the last multiple of 5 not
exceeding t.

Figure 4 summarises the procedure with only a green color arrow. The algo-
rithm with the Pseudo-code given below follows a modified approach, where the
prediction of noise is done only after every 5 steps. Prior to predicting the noise,
the noise values remain constant from the previous prediction for the preceding
5 steps. The algorithm takes as inputs the trained diffusion model, the number



Word-Diffusion: Diffusion-Based Handwritten Text Word Image Generation 63

of timesteps N (set to 600 for IAM and 1000 for CVL), and the value o (which
is calculated as 1 — ().

Pseudo-Code for Early-Sampling Technique. The algorithm begins by
initializing the latent representation x as random noise. It then iterates through
the timesteps from N to 1. Suppose the current timestep t is a multiple of
5 (t mod 5 = 0). In that case, the algorithm predicts the noise pp(x:—1|xt)
for that timestep using the trained diffusion model, The input to model is x;
which is conditioned on writer ID, text string, PHOS representation of the text
string. The predicted noise for timestep ¢ is denoted as noise;. Next, the latent
representation x; is updated using the Eq.4 to x;_1.

Algorithm 1: Early-Sampling Technique

Data: Trained diffusion model, number of timesteps N = 600, a =1 — 3
Result: Final image xo as generated sample

1 z « random noise;

2 for t — N to 1 do

3 if t mod 5 == 0 then

4 L noise; < prediction using diffusion model;
5 L1 — %& (act — \(/11:7(;)* ~noiset>;

6 return xzo;

4.3 Validation Framework for Data Generated Using Early
Sampling

To ensure the quality and correctness of the synthetically generated images using
the early sampling technique, we have implemented a robust validation frame-
work. This framework incorporates a state-of-the-art Handwritten Text Recog-
nition (HTR) model that assesses the generated images based on their textual
content. It is important to note that this validation framework is particularly per-
tinent when the early sampling approach is used. By comparing the recognized
text from the generated images with the intended text, the validation framework
determines whether the images meet the expected standards. The validation pro-
cess is an essential step in the synthetic data generation pipeline. It acts as a
safeguard to maintain the integrity and reliability of the generated images. The
HTR model employed in the validation framework is trained on the original
TAM training split. During the validation phase, each diffusion-generated image
undergoes a thorough evaluation. The recognition model processes the image and
extracts the textual content. This recognized text is then compared against the
ground truth text associated with the image. If the recognized text matches the
ground truth, the generated image is considered correct and validated. Only the
generated images that successfully pass the validation framework are included
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in the final synthetic dataset. This selective inclusion ensures that the synthetic
data is of high quality and aligns with the expected textual content. By filtering
out any generated images that do not meet the validation criteria, we maintain
the integrity and usefulness of the synthetic data for downstream tasks such as
training HTR models.

5 Experiment and Result Discussions

5.1 Experiment Setup

The evaluation of the proposed DiffWord framework involved two main cat-
egories of experiments. The first category focused on training generative diffu-
sion models. The second category encompassed assessing the framework’s perfor-
mance in downstream tasks, such as HTR, writer classification, and calculating
FID and KID scores. For all the experiments, we utilized the TAM Handwrit-
ten Dataset [16] and CVL [14] dataset, which are well-established benchmark
datasets in the field of HTR. The dataset consists of a diverse collection of
handwritten English text, including various writing styles and multiple writers.
This dataset provides a suitable foundation for training our model to generate
styled handwritten text images.

To ensure a fair comparison with WordStylist [18], we adopted the same IAM
data split as that of WordStylist for diffusion training. For the CVL dataset, we
used the officially provided split for train and test. It has around 87K train and
12K test words. The WordStylist model [18] is capable of generating only alpha-
betic characters. Consequently, when using both datasets [16] for downstream
tasks, we preprocessed the official data split by discarding words that contain
only non-alphabetic characters. For words that partially contain non-alphabetic
characters, we replaced those characters with whitespace.

The diffusion model training follows a similar approach to [18]. We trained
two separate models on the training set of the respective datasets, utilizing
the text content and the corresponding PHOS representations and writer-ID as
conditioning variables. The model was optimized using the same loss function
and training hyperparameters as specified in WordStylist [18] until the loss value
converged.

5.2 HTR Results

The Tables 1 and 2 compares the HTR accuracy achieved when training on
datasets containing original training data augmented with synthetic samples gen-
erated by either the proposed DiffWord framework or the existing WordStylist
[18] method. The evaluation is conducted on test data using the Character Error
Rate (CER) and Word Error Rate (WER) metrics, where lower values indicate
better performance. It is important to note that HTR framework is trained using
a combination of original images from the training split of respective datasets
and synthetic images generated by the same training image ID’s by respective
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Table 1. HTR comparison with Wordstylist on IAM dataset colour codes black: full
denoising, green: early sampling, blue: the combined approach, pink: without Validation
FrameWork

Generation Framework Dataset No of images CER % | WER %/}|CER % | WER %]
with Validation |without Validation
Real IAM Original 44K 5.53 15.93
Wordstylist [18] Original + Synthetic 86K 5.41 15.87
Wordstylist [18] Original - 86K 6.93 15.94 6.96 15.98
Wordstylist [18] Original + 128K 6.69 15.25
DiffWord Original + Synthetic 86K 4.39 12.89
DiffWord Original + 86K 5.15 14.83 5.33 14.98
DiffWord Original + 128K 4.38 12.83 5.98 13.80
DiffWord Original + Synthetic 171K 4.36 12.81
DiffWord Original + Synthetic 214K 4.22 12.25

frameworks. The term ‘Original’ in Table1 and 2 corresponds to images from
the train-split of the respective ITAM or CVL dataset. On the other hand, ‘Syn-
thetic’ represents images generated using the diffusion framework. In contrast to
WordStylist [18], which exclusively employs the full denoising process described
in Sect. 4.2 for image generation, DiffWord produces synthetic data through a
flexible approach. It leverages either the full denoising process, early sampling,
or a hybrid of both. Table1 and 2 employs a color-coding scheme to delineate
the methods used: black for full denoising, green for early sampling, blue for the
combined approach, and pink to show without using validation framework. It
is crucial to acknowledge that the validation framework is exclusively employed
when synthetic data is produced via early sampling or the combined approach,
specifically when data is generated with fewer steps. It is not utilized in the
context of full denoising.

Table 2. HTR comparison with Wordstylist on CVL dataset. Colour codes black: full
denoising, blue: the combined approach , pink: without Validation FrameWork

Generation Framework Dataset No of images CER % | WER %/|CER % | WER %]
with Validation |without Validation
Real CVL Original 86K 15.983 22.503
Wordstylist [18] Original + Synthetic 86K 15.94 22.403
DiffWord Original + Synthetic 164K 15.517 21.604
DiffWord Original + Synthetic 250K 15.45 21.304 15.491 21.47
DiffWord Original + Synthetic 339K 14.98 21.28 15.13 21.293

In Table1, 1st row indicates the result on the original TAM data. The next
3 rows show a performance of the WordStylist [18]. 2nd row shows performance
of the WordStylist [18] with CER 5.41% and WER 15.87%. DiffWord uses early
sampling with validation and gets a CER of 5.15% and a WER of 14.8% (row 6)
with the same number of samples of train data. This result is improved to a CER
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of 4.39% and a WER of 12.89% (row 5) when the complete denoising process
is used but this process is difficult to scale up. The recognition accuracy consis-
tently improves with the inclusion of additional synthetic samples produced by
the proposed scalable early sampling technique, as demonstrated in rows 7, 8,
and 9 of columns 4 and 5 in Table 1. This demonstrates that the images produced
via early sampling are as effective as those from the complete denoising process
for improving performance when augmenting training data. A similar pattern is
also observed in Table 2. Where adding the augmented data with the original
improves HTR performance and Diff Word framework outperforms WordStylist
[18]. The consistent accuracy gains highlight Diff Word’s ability to harness useful
information from both generation methods to further reduce error rates with
increased data.

The Tables 1 and 2 reveal that the DiffWord framework consistently outper-
forms, demonstrating improved recognition accuracy. The validation framework,
while important for ensuring the quality and correctness of the generated images,
plays a secondary role compared to the main contributions of the early sampling
algorithm and the PHOS representation. The results in columns 4 and 5 of Table
1 and 2, which include the validation framework, show marginal improvements
over those without it (highlighted in pink), underscoring its supportive role. The
relevant rows for Table 1 are 6,7 and for 2 are 4,5. Where we can compare CER
and WER with and without validation. However, the principal improvements in
recognition accuracy are attributed to the effective combination of early sam-
pling and PHOS representation, as evidenced by the significant gains in CER and
WER metrics. Overall, the early sampling technique and PHOS representation
are the critical components driving the superior performance of the Diff Word
framework. The validation framework enhances the reliability of the generated
data, ensuring it meets the expected standards, but the core advancements stem
from the primary methodologies employed. The experimental results validate
that integrating these techniques leads to more accurate and effective handwrit-
ing recognition systems.

5.3 HTR Training on OOV Data

In this section, we explore the capabilities of the diffusion model in generating
OOV data, and the subsequent training of a HTR model on this data. The focus
lies on contrasting the proficiency of Diff Word with that of the WordStylist [18]
model in producing OOV handwritten words. Figure 5 compares the handwritten
words generated with the same text and writer ID. It is qualitatively clear that
in the DiffWord-generated handwritten images, the overall handwriting quality
appears more refined, exhibiting smoother and more consistent letterforms from
the Fig. 5. This consistency contributes to enhanced readability and reduces
potential ambiguities in character recognition. It is clear that Diff Word excels
in capturing the fine details of handwriting, including subtle variations in stroke
thickness, letter spacing, and individual character shapes. These precise details
contribute to a more authentic and realistic representation of handwritten text.
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Table 3 presents the outcomes of the HTR model’s learning efficacy when
trained on the OOV data crafted by both diffusion models trained on the
TAM split. To generate OOV data, we considered the set of 1736 OOV word
classes(those word classes are not present in the IAM dataset) and generated
OOV class images by using all the writers present in the IAM dataset and each
generating 5 samples of a particular word class. This generated data is then
passed through a five-fold validation framework The test split in each fold was
carefully curated to ensure that if a writer’s style appeared in the test set for a
particular word, that writer was not included for that same word in the respec-
tive training split of that fold. This approach simulates a more challenging and
realistic scenario where the model is tested on completely unseen handwriting
styles. By repeating this process across all splits, we aim to provide a robust
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Fig. 5. Out-of-Vocabulary Comparison

Table 3. CER and WER scores on OOV data for Diff Word and WordStylist using a
Five-fold validation framework

Fold | Diff Word WordStylist
CER (%) WER (%) | CER (%) | WER (%)
1 2.9 6.7 3.8 8.1
2 2.8 6.3 3.41 7.4
3 2.8 6.4 3.4 7.43
4 2.8 6.9 3.5 7.4
5 2.5 5.6 3.1 6.76
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assessment of the model’s ability to generalize to writers and validate its perfor-
mance consistency.

To further scrutinize our model’s performance on OOV words, we segmented
the analysis based on the word length of the above-generated OOV data. Our
objective was to determine how the DiffWord model’s proficiency varies with the
length of the words it generates. We divided the words into three bins: words
with lengths from 0 to 3 characters, from 4 to 6 characters, and more than 6
characters. The analysis provides insight into the model’s effectiveness in dealing
with short, medium, and long words, which are often differently challenged by
the intricacies of handwriting styles. For each bin, we computed the WER, The
results are shown in the Table 4 The table shows the WER by word length
bins across 5 folds of data, with the number of samples in each bin indicated in
parentheses.

5.4 Writer Classification

Writer classification is essential for understanding and validating the effective-
ness of synthetically generated handwritten text images that are not only realistic
but also stylistically accurate. It serves as a means to assess whether the gen-
erated synthetic data maintains the unique styles of different writers, which is
crucial for applications such as authorship verification, forensic analysis, and per-
sonalized digital content creation. To evaluate the style preservation capability
of our proposed Diff Word framework, we conducted experiments on word-level
writer classification. For this, the original training splits of both datasets (IAM
and CVL) are used as training data, and separate writer identification mod-
els are created for IAM and CVL data. We synthetically generated train split
images of both datasets using conventional full-sampling. This generated data is
used as test data for writer classification. If the synthetic data matches the style
distribution of the original data, then it will be reflected in test accuracy. In our
approach, we employ a Convolutional Neural Network (CNN) with pre-trained

Table 4. Word Error Rate (WER) with respect to Word Length, numbers inside
bracket denotes the number of samples.

Word Length | W