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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. Labeling every point in a scene is a laborious journey for
3D understanding. To achieve annotation-free training, existing works
introduce Contrastive Language-Image Pre-training (CLIP) to trans-
fer the pre-trained capability of visual-linguistic correspondence to 3D-
linguistic matching. However, directly adopting this CLIP-driven strat-
egy can inevitably introduce bias: The overrated roles of the color and
texture from an RGB image could overshadow the geometric nature of
the corresponding 3D scene, resulting in a sub-optimal alignment. We
note that different from RGB images, a depth map contains rich geomet-
ric information. Inspired by this, we propose Depth-Enhanced Alignment
(D-EA) for label-free 3D semantic segmentation. D-EA aims to explore
the rich geometric cues in depth maps and mitigate the color and texture
biases rooted in the original CLIP-driven strategy. Specifically, we first
tune a geometry-enhanced CLIP by aligning its depth prediction to the
paired RGB prediction given by the original CLIP. Next, the point cloud
feature space is matched with the RGB-Depth aggregated CLIP space
by aligning point prediction to RGB and depth predictions. Moreover,
to mitigate the semantic ambiguity caused by view-specific noise, we
propose a View-Integrated Pseudo Label Generation paradigm. Experi-
ments demonstrate the effectiveness of the proposed D-EA on the Scan-
Net (indoor) and GraspNet-1Billion (desktop) datasets in the label-free
setting. Our method is also competitive in limited annotation semantic
segmentation.

Keywords: 3D Semantic Segmentation · Label-Free 3D Semantic
Segmentation · RGB-D

1 Introduction

3D semantic segmentation is a key cornerstone for numerous real-world applica-
tions, i.e., autonomous driving [1,2], robotics grapsing [3,4], human-robot inter-
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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https://doi.org/10.1007/978-3-031-78456-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78456-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-78456-9_1


2 S. Xie et al.

action [5]. Thanks to the large amount of high-quality human 3D data anno-
tations, the research on 3D semantic segmentation has achieved an astonishing
performance [6–8]. However, the manual annotation of 3D data is quite cumber-
some and time-consuming, which hinders their real-world application.

Some remarkable works [9,10] have introduced Contrastive Language-Image
Pre-training (CLIP) for label-free 3D semantic segmentation to avoid the tedious
data annotation process. CLIP [11] is a two-stream foundation model trained on
billions of text-RGB paired data from websites by aligning visual and linguistic
feature spaces. The powerful capability to match images with corresponding texts
enables CLIP to generalize to downstream 2D vision tasks in a zero-shot manner.
Based on the visual-linguistic matching ability of CLIP, existing methods [9,
10] aim at adapting this ability to 3D-linguistic matching. This is achieved by
aligning 3D feature space to CLIP visual and linguistic feature spaces1. A naive
way is to take the most matching text of each pixel in an image as the pseudo
label for the corresponding point cloud.

Fig. 1. Visualization of prediction with an RGB image (depth map) given by CLIP
(GE-CLIP). GE-CLIP is a geometry-enhanced CLIP tuned on depth maps described
in Sect. 3.2. While part of the chair is labeled as ‘wall’ probably due to the color and
texture bias in RGB prediction, the tuned GE-CLIP can correct this failure.

However, directly adopting this 2D prior knowledge from CLIP may
inevitably introduce bias to a 3D understanding model. We claim that the over-
rated roles of the color and texture from an RGB image could overshadow the
geometric nature of the corresponding 3D scene, resulting in a sub-optimal align-
ment. As illustrated on the left of Fig. 1, considering an RGB image of an indoor
scene, we can obtain the semantic class of each pixel predicted by CLIP. It can

1 Under the assumption of CLIP, we use ‘text feature space’, ‘linguistic feature space’,
and ‘semantic feature space’ interchangeably.
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be found that part of the chair is labeled as “wall” probably due to the wall-like
color and texture. As a result, the 3D model would tend to ignore geometric cues
if it is only supervised by this RGB-biased pseudo label.

Fig. 2. Overall methodology of Depth-Enhanced Alignment. (Stage 1) We first match
the depth feature space to CLIP space by tuning a geometry-enhanced CLIP (GE-
CLIP) to align depth prediction with RGB prediction. (Stage 2) Then the point cloud
feature space is matched with the RGB-Depth aggregated CLIP space by aligning point
prediction with RGB and depth predictions. In this work, we define the prediction as
the most matching class predicted by the model.

Compared to RGB images, depth maps contain richer geometric information
of 3D scenes. Besides, there exist some remarkable applications [12–14] that
have successfully adapted depth maps to CLIP. To illustrate this, we first tune
a geometry-enhanced CLIP image encoder using depth maps (denoted as GE-
CLIP in the figure) and then conduct a similar visualization on the right of
Fig. 1. Given the fact that CLIP with an RGB image has the bias problem
described above, we observe that with its corresponding depth map, the tuned
GE-CLIP can correctly predict the wrong part. Motivated by this observation,
in this work, we expect to build the depth modality into the CLIP-driven label-
free segmentation strategy for transferring semantic knowledge of CLIP in a
geometry-enhanced manner.

We illustrate the overall idea of this work in Fig. 2. To apply the depth
modality to semantic segmentation, we attempt to match the depth prediction
to the RGB prediction to achieve an implicit alignment of the depth, RGB,
and semantic feature spaces. After the depth feature space is aligned with the
CLIP space, we consider aligning the point prediction with the RGB and depth
predictions as shown on the right of Fig. 2 for achieving an implicit alignment of
the point cloud and RGB-Depth aggregated CLIP space. Moreover, as the same
part of a point cloud would appear in multiple (camera) views and correspond to
multiple regions of images (depth maps), we propose a View-Integrated Pseudo
Label Generation paradigm to reduce the semantic ambiguity caused by view-
specific noise.
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Experimental results for ScanNet [15] show that our method is effective in
indoor scene 3D Semantic Segmentation without any 3D annotation for training.
To adapt to robotic scenarios, we also evaluate our method on GraspNet-1Billion
[16], a desktop-scenario dataset with RGB images, depth maps, object models,
and labeled grasp poses. Our method outperforms the state-of-the-art method.
With limited annotations, our method can also achieve great performance. Our
contributions are summarized as follows:

– To reduce the color and texture bias and discover more geometric cues, we
propose Depth-Enhanced Alignment that matches point cloud feature space
to an RGB-Depth aggregated CLIP space for label-free 3D semantic segmen-
tation.

– To mitigate the multi-view semantic ambiguity, we propose a View-Integrated
Pseudo Label Generation, which integrates the pseudo labels of multiple pix-
els for 3D points.

– Our method achieves state-of-the-art performance on both indoor 3D scene
dataset ScanNet and desktop-scenario dataset GraspNet-1Billion in label-free
tasks. We also achieve great performance in limited annotations semantic
segmentation.

2 Related Work

2.1 CLIP For 2D Zero-Shot Semantic Segmentation

Due to the powerful ability of the pre-trained vision-language model CLIP [11]
in zero-shot learning, a series of works have applied CLIP in zero-shot segmenta-
tion. Zegformer [17] and zsseg [18] use an extra generator to generate proposals
for CLIP to classify, causing inevitable computational cost for each proposal [19].
In contrast, for directly getting pixel-level dense semantic prediction, MaskCLIP
[20] firstly extracts patch-level image features from the image encoder of CLIP,
and then the text encoder of CLIP is used to construct semantic-aware text
features with category names and fixed text prompts which are regarded as a
classifier to predict final semantic masks. SAZS [21] indicates the importance
of shape-awareness, which utilizes the eigenvectors of Laplacian matrices con-
structed from self-supervised pixel-wise features to enhance shape-awareness.
However, this shape-awareness conducted by some edge detectors on RGB images
still lacks the geometric information for 3D tasks. As is well-known, Depth maps
naturally contain geometric and disparity information. Thus, the introduction
of Depth maps in our method could discover meaningful geometric cues more
accurately for label-free 3D semantic segmentation.

2.2 3D Semantic Segmentation

The purpose of 3D semantic segmentation is to divide 3D data into different parts
corresponding to different semantic labels. Recent works utilize point clouds [22–
24] or voxels [25–27] as inputs to train the segmentation models with detailed
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semantic annotation. However, enormous amounts of semantic annotation are
quite cumbersome and time-consuming for 3D data. Inspired by the superior
ability of CLIP in 2D zero-shot and open-vocabulary tasks, CLIP2Scene [9]
firstly leverages pre-trained knowledge of CLIP to 3D scene understanding and
proposes a novel semantic-driven framework for distilling 2D image knowledge.
CLIP-FO3D [10] designs a superpixel-based method to extract dense pixel-level
features from CLIP and trains the 3D scene understanding model with fea-
ture distillation. Although these methods have shown promising performance in
label-free 3D semantic segmentation, this direct CLIP-driven transfer strategy
neglects the geometric information of 3D data and overestimates the importance
of color and texture in RGB images. Thus, we propose introducing depth maps
to enhance the original CLIP knowledge geometrically and transferring semantic
knowledge containing the geometric and color information to the 3D model for
label-free semantic segmentation.

3 Depth-Enhanced Label-Free 3D Segmentation

In this section, we introduce the proposed Depth-Enhanced Alignment frame-
work for exploring the rich geometric cues in depth maps and reducing the color
and texture biases from the original CLIP-driven label-free 3D segmentation
strategy [9,10].

3.1 Preliminary

We focus on training a 3D model to segment the 3D data semantically without
any human annotations. For each scene, we can get the point clouds of the 3D
scene P ∈ R

N×6 with N points represented by 3D coordinates and RGB colors,
where N is the number of points in the point cloud of a scene. A sequence of
RGB images I ∈ R

L×H×W×3 and depth maps D ∈ R
L×H×W are captured by

RGB-D camera in different camera poses T ∈ R
L×4×4, where L is the size of

image sequences, H is the image height, and W is the image width. We notice
that an object in a scene can be captured as images from multiple views. For ease
of introducing our method, we define pixel-point corresponding pair as follows.
Specifically, with the camera pose T and camera intrinsics K, we transform point
clouds of the 3D scene from world coordinate to pixel coordinate and build the
corresponding pairs of pixel-point indexes,

Omultiple = {xi, pi}Mi=1, (1)

where M is the number of the corresponding pairs, xi ∈ {1, 2, · · · , LHW} and
pi ∈ {1, 2, · · · , N} are the pixel index in the scene images and point index in
the scene point cloud of i-th corresponding pair. A point can be associated with
multiple pixels from different views, i.e., a 3D point pi may appear in more than
one pair in Omultiple. To get a set of unique point indexes, we denote a pixel
index set for each point to represent this many-to-one mapping {pk}Mu

k=1, Mu
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is the number of unique point indexes. For each unique point index pk, we can
define the associated pixel indexes set Cpk

= {xj |pj = pk}Mj=1, thus the Omultiple

can be transformed to
Ounique = {Cpi

, pi}Mu
i=1. (2)

Fig. 3. Depth-Enhanced Alignment is a two-stage training method. (Stage 1) We for-
ward the CLIP and use text embedding to obtain the pixel-wise RGB multi-view pre-
dictions. The View-Integrated Pesudo Label Generation will generate the RGB View-
Integrated pseudo labels. We then adopt the above view-integrated pseudo labels to
train the Geometry-Enhanced CLIP. (Stage 2) The point encoder is trained by RGB
and depth predictions in different views. We also integrate the predictions of pixels
associated with the same points to generate the view-integrated pseudo labels. Given
a point with index pi = 3, it can correspond to multiple pixels in multiple images.
Different colors represent different prediction classes. S(·, ·) is the cosine similarity. Mu

is the number of unique point indexes.

Our 2D feature extractor is CLIP, following [20], we use the representation of
the final attention layer for segmentation. Firstly, We use pre-defined templates
to describe the target class names, such as “a photo of a [table]”, and forward the
text encoder to generate class-aware text embeddings t ∈ R

K×d as the classifier,
where K is the number of categories in the dataset and d is the feature dimension.
Then we will encode image features with the visual encoder and calculate the
cosine similarity between the text embeddings and image features as the pixel-
level class logits.

3.2 Align Depth Feature Space to CLIP

Existing methods [9,10] directly distill 2D knowledge of CLIP to 3D modality.
However, this manner could make the 3D model tend to ignore geometric cues
because it is only supervised by the RGB-biased knowledge as we illustrated in
Sect. 1. In this work, we make an attempt to introduce depth maps to mine the
geometric knowledge from the pre-trained CLIP.
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Due to the huge modality gap between the depth maps and RGB images,
directly feeding depth maps into the CLIP encoder could fail to extract meaning-
ful representations that are aligned to CLIP semantic space when dealing with
label-free 3D semantic segmentation. To achieve this, we design a Geometry-
Enhanced CLIP (GE-CLIP) model as shown in Stage 1 of Fig. 3. With the
depth map as the input modality, we attempt to align the depth feature to
the text-RGB feature space. Specifically, we first denote frgb as the clip image
encoder, and the encoder of GE-CLIP can be denoted as fdep. Motivated by
the observation of recent work [20], we combine the fdep with the lightweight
transformer decoder of ZegCLIP [19] as the decoder gdep. The text embedding t
was integrated into the fdep to calculate pixel-level semantic logits. For tuning
the GE-CLIP, frgb and fdep will be loaded with the pre-trained CLIP weights,
and depth decoder gdep is randomly initialized.

With the pre-trained text-RGB pairing knowledge of the CLIP, we can tune
the GE-CLIP to align with the text-RGB feature space. The input of frgb is RGB
images and the input of fdep is depth maps. To adapt the image encoder of CLIP,
we extend the depth map to three identical channels D ∈ R

L×H×W×3. Then we
have hrgb = frgb(I) and hdep = fdep(D), where hrgb and hdep ∈ R

L×H×W×d are
the encoder features of frgb and fdep. After that, we calculate the cosine similarity
between the RGB features and text embeddings t ∈ RK×d to get dense pixel-
level predictions over all categories and choose the maximum probability class
as the pixel pseudo labels. It can be formulated as:

ŷrgb = argmax(S(hrgb, t)), (3)

where ŷrgb ∈ R
L×H×W is the pseudo labels from CLIP, S(·, ·) is the cosine

similarity and t is the text embeddings. Then, we use the RGB pseudo labels to
supervise the GE-CLIP. The objective function is as follows:

LI→D = CE(gdep(hdep, t), ŷrgb), (4)

where gdep(hdep, t) ∈ R
L×H×W×K is the depth pixel-level logits from depth

decoder. CE(·, ·) is the Cross-Entropy loss function. After that, the GE-CLIP
acquires the geometry-enhanced CLIP knowledge from the depth maps and pre-
trained CLIP text-RGB knowledge. Though supervised by RGB-biased labels,
GE-CLIP achieves an implicit geometric constraint by using depth modality as
the input. In the next section, we will consider how to aggregate the knowledge
from both CLIP and GE-CLIP to align the 3D model.

3.3 Align Point Feature Space to RGB-Depth Aggregated CLIP

Instead of directly distilling 2D knowledge of CLIP to 3D modality, we intro-
duce the depth modality and propose D-EA that aggregates the knowledge from
both CLIP and GE-CLIP to align the 3D model with the color information and
geometry information.

Depth-Enhanced Alignment. We denote the 3D model as f3D, and point
clouds of the 3D scene are passed into the 3D model. We can get h3D = f3D(P),
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Fig. 4. View-Integrated Pseudo Label Generation. With the predictions in different
views, we integrate the predictions of multiple pixels that are associated with the
same 3D point. Then, we regard the pseudo-label frequency of multiple pixels as the
probability of the class multinomial distribution to sample the final class as the view-
integrated pseudo label which will be used to supervise each 3D point. P is the view-
integrated probability of the class multinomial distribution.

where h3D ∈ R
N×d are the point features. With the pixel-point corresponding

pairs Omultiple introduced in Sect. 3.1, we get the RGB-3D pairs pseudo labels
with CLIP and depth-3D pairs pseudo labels with GE-CLIP, this can be formal-
ized as ŷq ∈ R

M , where q ∈ [I,D] for RGB (depth) and M is the number of
pixel-point corresponding pairs in Omultiple.

Finally, the 3D network will be supervised by RGB pseudo labels and depth
pseudo labels with Cross-entropy Loss, respectively. The objective function is as
follows:

LI,D→P =
1
M

M∑

i=1

CE(S(h3D, t)[pi], ŷq[xi]), (5)

where q ∈ [I,D], ŷq[xi] are the pseudo labels of xi-th RGB/depth pixel and
S(h3D, t)[pi] are the logits of pi-th point.

View-Integrated Pseudo Label Generation. We mentioned in Sect. 3.1 that
with the camera moving in the 3D scene to capture RGB images and depth
maps, one object would be captured in multiple images. Thus, in the pixel-
point corresponding pairs Omultiple, one point can be associated with multiple
pixels from different views. A 3D object viewed from a bright perspective can
be correctly recognized by CLIP but may have different predictions from a dark
view. Due to this view-specific noise, these multiple pixels associated with the
same point may get multiple pseudo labels from the 2D model. And Eq. (5) will
confuse the 3D model for aligning text feature space. In light of this, we propose
a View-Integrated Pseudo Label Generation to alleviate this issue.

Specifically, we first adapt the Omultiple to the unique point pixel-point cor-
responding pairs Ounique. For each point index pk in Ounique, we convert the
associated predictions of RGB/depth pixels to one-hot form. Then we sum the
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one-hot of pixels to indicate the target pseudo label frequency F q
pi

of pi-th point
which appears in different views.

Based on the Law of Large Numbers, we regard the frequency as the proba-
bility of the class multinomial distribution P q

pi
. Then we sample the final class

index ỹqpi
as the pseudo label for pi-th point with the multinomial distribution.

Formally, this can be written as:

ỹqpi
∼ P q

pi
. (6)

Table 1. Compaird with recent state-of-the-art Label-free Semantic Segmentation on
ScanNet and GraspNet-1Billion datasets. D-EA(Depth-Enhanced Alignment) denotes
the method we proposed. We did not reproduce the result of CLIP-FO3D because it
has not been open-sourced.

Method ScanNet GraspNet-1Billion
mIoU(%) mAcc(%) mIoU(%) mAcc(%)

CLIP2Scene [9] 28.1 46.6 21.8 33.9
CLIP-FO3D [10] 30.2 49.1 - -
D-EA(ours) 35.1 52.5 22.8 36.0

To align points feature space to RGB-Depth aggregated CLIP, we utilize the
aggregate pseudo labels from the CLIP and GE-CLIP in a view-integrated way:

ỹI,D
pi

∼ (P q=I
pi

+ P q=D
pi

)/2, (7)

As shown in Fig. 4, the 3D backbone will be optimized by the aggregate pseudo
labels finally:

Lunique
I,D→P =

1
Mu

Mu∑

i=1

CE(S(h3D[pi], t)), ỹI,D
pi

). (8)

Remark. During the GE-CLIP tuning in Stage 1, we can also leverage the View-
Integrated Pseudo Label Generation, as shown in Stage 2 of Fig. 3. Equation (4)
can be transformed to:

Lunique
I→D =

1
Mu

Mu∑

i=1

∑

xj∈Cpi

CE(gdep(hdep, t)[xj ], ŷI
pi
), (9)

where ỹI
pi

∼ P I
pi

is the unique RGB pseudo label from the CLIP.

4 Experiments

To evaluate the effectiveness of the proposed Depth-Enhanced Alignment frame-
work, we conducted experiments on the indoor 3D scene dataset ScanNet and
the robotics grasping dataset GraspNet-1Billion.
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Table 2. The results(mIoU) of limited annotations semantic segmentation on ScanNet.
The “Sup” denotes the supervision of points semantic labels during pre-training. The
bold indicates the best result and underline denotes the second-best result. ∗Compared
to the remaining methods including ours, VIBUS additionally utilized a fine-grained
pseudo-label fine-tuning stage.

Method Sup Number of labeled points
20 50 100 200

Scratch - 46.3 58.3 62.8 65.4
CSC [28] ✗ 54 60.7 65.6 68.3
LangGround [29] � 55.1 62.4 66 68.2
VIB [30] ✗ 57 63.6 66.8 68.5
VIBUS∗ [30] ✗ 61.6 65.6 68.9 69.6
CLIP-FO3D [10] ✗ 57.6 64.3 68.2 69.5
D-EA init(ours) ✗ 57.7 64.5 68.7 69.4

4.1 Experimental Setup

Datasets. ScanNet [15] dataset is a large-scale indoor dataset, which con-
tains 1201 scans for training and 312 scans for validation, totaling 20 classes.
Besides, we also perform experiments on the challenging robotics grasping
dataset GraspNet-1Billion [16], from which 128 and 50 scenes are selected for
training and testing.

Implementation Details. We applied the ViT-based [31] CLIP as the image
encoder of our GE-CLIP. The text encoder was passed with the text prompts of
categories to generate text embeddings. We used the 80 hand-craft prompts same
with MaskCLIP. Moreover, we also adopted the decoder of ZegCLIP [19] as the
decoder of GE-CLIP which can directly output the pixel-level class logits. For 3D
data, we used the MinkowskiEngine [26] to build a point cloud sparse convolution
model ResUNet14 [12] as the 3D backbone. When tuning the GE-CLIP, the RGB
encoder was frozen. When training the 3D backbone, both the CLIP and GE-
CLIP were frozen. The optimizer was AdamW with a cosine scheduler. Following
the CLIP2Scene [9], we also applied some data augmentations, including random
rotation around the z-axis and random flip on the point cloud, random horizontal
flip, and random crop on the images.

4.2 Label-Free 3D Semantic Segmentation

We evaluated our method on the ScanNet and GraspNet-1Billion datasets for
3D label-free semantic segmentation.

Datasets Setup. For the ScanNet dataset, we conducted experiments on
standard benchmarks. The 3D network was trained on the training set without
any labels and evaluated on the validation set. Following CLIP-FO3D [10], we
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RGB Image Ground Truth CLIP2Scene Ours

Fig. 5. Visualization of label-free 3D semantic segmentation on ScanNet dataset. We
used the intrinsic and extrinsic parameters of the camera to project the 3D model
predictions into 2D views.

removed the “other furniture” category that has no specific semantics for cor-
recting the text embeddings. To adapt our method to desktop robotic grasping
scenes, we also evaluated our method on the GraspNet-1Billion dataset. Simi-
lar to the ScanNet, some objects have no specific semantic categories. Thus, we
removed some semantic-unclear categories, such as “mount1” and “part1”. We
also aggregated some sub-categories into a single one, for example, integrating
the “cracker box” and “sugar box” into the “box”. We used the metric of mean
Intersection over Union (mIoU) and mean Average class accuracy (mAcc) to
evaluate our method on the 3D label-free semantic segmentation.

Results. The performance of our method is shown in Table 1. To ensure a fair
comparison, we selected the following methods which did not introduce large
models that used pixel-level labels for pre-training as auxiliary information.
Specifically, we compared our method with CLIP2Scene and CLIP-FO3D on
the ScanNet and compared different setups of our methods on the GraspNet-
1Billion. D-EA is our method that uses View-Integrated Pseudo Labels Genera-
tion (Sect. 3.2) to tune depth network and aggregate the view-integrated pseudo
labels of RGB and depth to train 3D network (Sect. 3.3), optimized by (9) and
(8). We reproduced the result of CLIP2Scene on scanNet and GraspNet-1Billion.

Our method outperformed the previous state-of-the-art method by 7%, 4.9%
mIoU on the ScanNet, and 1.0% mIoU on GraspNet-1Billion. It shows that our
method of D-EA that introduces the depth map can enhance the CLIP to
extract more reasonable semantic features for label-free semantic segmentation.
The improvements of our method was insignificant compared to experiments in
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the ScanNet possibly due to the size of the objects was much smaller than the
objects in the ScanNet dataset. The depth map of GraspNet-1Billion can be
easily affected by the distortion from the depth camera. However, our method
can also have an improvement over CLIP2Scene.

Visualization. The Visualization of label-free 3D semantic segmentation on
ScanNet dataset is shown in Fig. 5. For a more straightforward comparison, we
used the camera intrinsic and extrinsic parameters to project the predictions
of 3D models into 2D views. As shown in Fig. 5, CLIP2Scene has the color and
texture bias inherited from image-based CLIP and can not correctly segment the
chairs and tables that have similar colors. In comparison, our method utilized
rich geometric information from depth maps and achieved a better performance.

Table 3. The individual improvements of our method performed on ScanNet dataset
with Label-free Semantic Segmentation setting. “View-Int” represents the View-
Integrated Pseudo Label Generation paradigm.

Exp Components mIoU(%)
Depth View-Int RGB-Frozen RGB-Tuned

1 � 31.2
2 � 29.6
3 � � 33.6
4 � � � 35.1

4.3 Limited Annotation Semantic Segmentation

Recently, some methods [32,33] attempt to learn 3D semantic segmentation with
a subset of labels. In this section, we also evaluated the proposed D-EA in Lim-
ited Annotations(only a few labels were used for training) on the ScanNet, which
randomly annotated 20, 50, 100, and 200 points of each scene for training. Fol-
lowing [28], the baseline of this setting is training with a classification loss using
the labels mentioned above. We denoted this baseline as “Scratch” in Table 2.
To evaluate the effectiveness of the proposed D-EA, we simply used the model
parameters trained by D-EA as initialization and tuned them by the same clas-
sification loss. We denoted this method as “D-EA init” in Table 2.

The results are shown in Table 2, our method achieves the mIoU improvement
of 11.4%, 6.2%, 5.9%, and 4.0% over the training from Scratch. We outperformed
the CLIP-FO3D that used CLIP for pre-training at the 20, 50, and 100 anno-
tated points settings. With the increase of annotated points, the improvement of
“D-EA init” compared to “Scratch” became minor as the ground-truth supervi-
sion overshadowed the prior knowledge from D-EA, thus smoothing out the gap
between “D-EA init” and “Scratch”. Note that VIB [30] is the method for the
pre-training stage. Compared to the remaining methods including ours, VIBUS
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added a fine-grained pseudo-label fine-tuning stage. Our method, similar to VIB,
focuses on the pre-training stage, which is orthogonal to VIBUS and can be inte-
grated together in different training stages. Compared to VIB, our pre-training
method still achieves better performance.

4.4 Ablation Study

In this section, we tested the effectiveness of different components in D-EA. All
the experiments were conducted on the ScanNet validation set, under the 3D
label-free semantic segmentation setting. The results are shown in Table 3 and
described as follows.

Effectiveness of Introducing Depth Maps. Exp 1 is the baseline method
that we used the frozen CLIP to generate RGB pseudo labels ŷrgb in (3) to
optimize the 3D backbone. In Exp 3, the GE-CLIP is tuned by LI→D. The
3D backbone will be supervised both by LI,D→P . Comparing Exp 3 with Exp
1, the method using depth maps to enhance the pre-trained text-RGB pairing
knowledge of CLIP in a geometrical manner improves the results by 2.4% mIoU.

To further validate the effectiveness of introducing depth maps rather than
fine-tuning CLIP, we design the Exp 2. Specifically, we first construct a CLIP
with the same encoder-decoder architecture as the GE-CLIP. Then we use the
RGB pseudo labels ŷrgb to tune it. Finally, the RGB pseudo labels from the tuned
CLIP will be used to optimize the 3D network. Comparing Exp 2 and Exp 4,
fine-tuning depth is more effective than fine-tuning RGB. More importantly,
comparing Exp 2 to Exp 1, it is shown that using the pseudo label of RGB
to tune an RGB-input CLIP would make the color and texture biases further
exacerbated, which could lead to a degradation of performance.

Effectiveness of View-Integrated Pseudo Label Generation. We com-
pared Exp 4 with Exp 3. Exp 4 is our proposed method D-EA. In Exp 4, we
added the View-Integrated Pseudo Label Generation (introduced in Sect. 3.3) to
the framework in Exp 3. Specifically, we used Lunique

I→D to tune the depth network
and use Lunique

I,D→P to train the 3D backbone. Exp 4 improved the results by 1.5%
mIoU. The result shows that View-Integrated Pseudo Label Generation utilizes
the multiple pixels pseudo label and is effective for easing the view-specific noise.

5 Conclusions

In this work, we have proposed a novel Depth-Enhanced Alignment (D-EA)
method to build depth modality into the CLIP-driven strategy geometrically
for label-free 3D semantic segmentation, where we are the first to introduce the
depth maps to enhance the original CLIP with geometric information. We fur-
ther design a View-Integrated Pseudo Label Generation to mitigate the seman-
tic ambiguity caused by view-specific noise. Our method achieves state-of-the-art
performance on both the 3D indoor scene dataset ScanNet and the robotic grasp-
ing dataset Graspnet-1Billion in label-free tasks. Our model also achieves great
performance in limited annotations semantic segmentation.
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Abstract. Crowd counting problem is a challenging task in computer
vision and image analysis. It has many applications in the real world
such as crowd management, public safety, and urban planning. Our
proposal in this paper is a mask-aware transformer-based network for
crowd counting that uses the background/foreground mask informa-
tion to improve density regression accuracy. Our backbone network is
a pyramid vision transformer. Our proposed Mask-aware transformer
(M-Trans) takes into consideration the background/foreground mask
information. We further improve the performance by applying a greedy
ensemble strategy. Our experimental evaluation shows that our mask-
aware network achieves state-of-the-art performance on standard bench-
marking datasets for crowd counting such as ShanghaiTech and UCF-
QNRF datasets.

Keywords: Crowd counting · Vision Transformer · Mask-aware
model · Density map

1 Introduction

Crowd counting aims to count the number of people within an image or a video
frame. It has many applications in the real world such as crowd management,
public safety, and urban planning. Crowd counting is a challenging problem
in computer vision and image analysis. It is challenging because of the large
variations in crowd density, scale, and perspective.

There are different approaches to addressing the crowd-counting problem.
Some methods treat the problem as a regression task. Other methods treat the
problem as a detection problem. However, in the literature, the annotations
for the crowd-counting datasets are done on the dot level per object. Because
extremely complex annotations, like object bounding boxes or instance-level seg-
mentation masks, are difficult to provide, dot-level annotations are recommended
during the dataset construction process. Because of these difficulties, the tradi-
tional detection-based approach is less accurate. To solve this problem, most
existing methods choose to estimate a density map from the dot-level anno-
tation. In Fig. 1 we show an example of an image with its estimated density
map. By simply integrating the density values in the map, an object count can
be calculated once the density map has been accurately estimated. Integrating
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15318, pp. 16–30, 2025.
https://doi.org/10.1007/978-3-031-78456-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78456-9_2&domain=pdf
https://doi.org/10.1007/978-3-031-78456-9_2
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an image mask into the density map regression method improves the output’s
accuracy in counting.

In this paper, we propose a mask-aware transformer model (M-Trans) that
integrates the background/foreground mask information into the transformer-
based model. We process the input image and an additional mask to extract
mask features as well as other features driven from a pyramid vision transformer-
based model. Both extracted features are then combined to feed a density map
estimation head. The utilization of the mask-extracted features proved to be
effective in creating more accurate density maps as we show in our experiments.
Next, we count the number of persons present in the scene using these maps.
The main contributions of our work can be summarized as follows:

Fig. 1. Original image of a highly crowded scene and corresponding crowd density map.

1. We propose a novel mask-aware transformer-based architecture that incorpo-
rates the benefits of foreground/background masks in the training.

2. We improve the performance by applying a greedy ensembling strategy.
3. We compare the performance of our proposed model to several baselines on

the standard crowd-counting benchmarks with remarkable improvement over
many baselines.

The rest of the paper is organized as follows. We present the related work on
the crowd-counting problem in Sect. 2. Next, we describe our novel methodology
in Sect. 3. In Sect. 4, we show our experimental evaluation of our novel architec-
ture on standard benchmarks for crowd counting. Lastly, in Section we show the
conclusions of our study.

2 Related Work

Several significant contributions are present in the computer vision research
community for the crowd-counting problem. Regression-based methods are a
common approach such as [3,4]. In Regression-based methods, a CNN is trained
to directly predict the count of people in an image using regression techniques.
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This method doesn’t rely on density maps but instead learns to calculate the
count directly from the provided image.

Adaptive approaches [5] dynamically adjust the network architecture or
hyperparameters based on the characteristics of the input image. For example,
switching mechanisms may choose different pathways in the network based on
crowd density like Switch-CNN [6], allowing for better adaptability to varying
conditions. Designing effective mechanisms for dynamically adjusting network
architecture can be complex and may not always lead to improved performance.

Detection-based approaches treat crowd counting as a detection problem,
where individual people in the crowd are detected, localized, and counted. This
typically involves using object detection models such as Faster R-CNN [7] or
YOLO [8] to identify people within the image. The count is then determined
based on the detected objects.

Contextual Information approaches incorporate contextual information, such
as scene context or the relationships between people, to improve crowd counting
accuracy. Context-aware models consider not only individual people but also
their interactions within the crowd. CAN module proposed in [9] is built using
this approach. Incorporating contextual information can add complexity to the
model and may require additional computational resources.

The density Map Regression approach involves training a convolution neu-
ral network (CNN) to directly predict a density map from an input image (see
Fig. 1). The density map assigns a density value to each pixel in the image.
These density values are added up to get the total number of people in the
scene. This method is effective for handling varying crowd densities within an
image. Requires fine-grained annotations in the form of density maps, which can
be labor-intensive and costly to create. Multi-column CNN approach which is
introduced in MCNN [10] uses multiple parallel columns within the network to
capture different aspects and scales of information in the crowd image. These
columns may be specialized for different crowd densities or conditions. The final
count is obtained by aggregating the outputs of these columns. The disadvan-
tage of MCNN is increasing computational complexity due to multiple columns,
making it more resource-intensive.

The application of Vision transformers (ViTs) to the crowd-counting prob-
lem was not widely explored. The CCTrans module proposed in [11] uses a
pyramid transformer as a module backbone to extract global features from the
input image. Another approach to enhance crowd counting problem results is to
integrate the background/foreground mask into the network for more accurate
density regression. Mask-aware networks for crowd counting [12] proposed this
approach, they introduce mask integration into network architecture somehow
like to Top-down feedback for crowd-counting convolutional neural network [13]
which is a multi-layered CNN.

Our analysis of the related work revealed that there is a huge advantage to
using transformer-based models. However, mask integration is still under investi-
gation. Thus, we decided to bridge the gap by brining the idea of mask integration
into the successful transformer-based models for crowd counting.
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3 Mask-Aware Transformer (M-Trans)

This section starts with an illustration of our proposed model’s overall architec-
ture, followed by a detailed introduction to each component.

3.1 M-Trans Overview

Our proposed Model integrates information of an image background/foreground
mask to the CCTrans model to get better crowd counting results. As we can see in
Fig. 2, we use the input image along with its foreground/background mask. The
input image will go through a feature extraction branch using a CCTrans mod-
ule. The mask will go through feature extraction via convolution. The features
are concatenated before a regression head and then a density estimation head
will produce the final density map. In the following, we start by describing our
backbone model (CCTrans) and then describe our mask feature extractor and
its integration into the model. Finally, we describe multiple pre-trained model
aggregations using ensemble.

Fig. 2. The architecture of the proposed Mask integration model. A 1D sequence is
created from the input image, and the output is then fed into the transformer backbone.
Pyramid vision transformer [2] is used to extract global features through various down-
sampling stages. For feature aggregation, the outputs from each stage are transformed
into two-dimensional feature maps. The corresponding image mask is fed to several
convolutional layers followed by an upsampler to extract the mask feature map. The
concatenation of the pyramid feature aggregation and mask feature map is used as
mask integrated feature map which is fed to a simple regression head with a multi-
scale receptive field which is used to regress the final results.
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3.2 Backbone Module

We use the CCTrans network as the backbone of our work. First, fixed-size
image patches are created from the input images. Subsequently, the output is
compressed into a 1D vector sequence. Afterward, we extract global features
from the sequence using a pyramid transformer backbone. Then each stage’s 1D
sequence is transformed into two-dimensional feature maps and upsampled to
the same resolution. These feature maps are then subjected to an elementwise
addition. Lastly, the density map is regressed using a straightforward regression
head with multi-scale receptive fields. The loss functions of fully supervised and
weakly supervised methods are constructed using the final density map and the
sum of all of its pixel values, respectively.

From 2D Image to 1D Sequence. Before entering the transformer, images
must be converted into 1D sequences by separating them into H

K × W
K image

patches, each of which is K × K × 3 in size, with H and W standing for image
height and width, respectively, and K for crop size.

Pyramid Feature Aggregation. The transformer-based backbone takes the
1D sequence. The Pyramid Vision Transformer employs multiple steps of down-
sampling to obtain global context. Each stage’s outcomes are transformed into
two-dimensional maps. Feature maps from top layers still lack detailed informa-
tion that can not be reconstructed by up-sampling. The crowd counting method
struggles to accurately identify crowd locations due to high-level features that
cannot differentiate between objects. A feature pyramid is constructed to aggre-
gate the semantic information from high-level layers with detailed information
from low-level layers. Up-sampling the feature maps at every stage to the input
image’s 1

8 size, as is often done in most work [14]. Additionally, this resolution
facilitates a fair comparison with alternative approaches.

Regression Head. Inspired by [15] and [16], dilated Convolution layers with
varying dilation rates are stacked in parallel to create a multi-scale Dilated Con-
volution (MDC) block. It contains three columns (C1, C2, C3) and a shortcut
path. A single convolutional layer and a dilated convolutional layer form each
column. To accommodate the crowd-counting scenes with plenty of small-scale
objects, the associated kernel sizes and dilation rates are made as small as pos-
sible. After every convolutional layer is a batch normalization (BN) layer and a
ReLU activation function. To use multi-scale features, the output feature maps
are concatenated from each column and added via a shortcut path. Finally, the
density map is regressed using a 1× 1 convolution layer.

Loss Function Design. The design of loss functions is founded on a well-known
loss from [28], which is created by adding up the weights of the following losses:
total variation (TV), Optimal Transport (OT) loss, and counting loss. The loss



Mask-Aware Transformer for Crowd Counting 21

function for a predicted density map (DP ) and its ground truth (DG) is defined
as:

Ldm = L1(P,G) + λ1LOT + λ2LTV (DP ,DG) (1)

where P denotes the crowd count of PD and G denotes the crowd count of GD.
λ1 and λ2 are the loss coefficients to control the importance of loss values. L1

denotes counting loss which is defined as the absolute difference between P and
G. LOT and LTV equations defined in [28]. The model benefits from OT loss since
it has a good fitting capacity in order to reduce the gap in distribution between
the predicted and the ground truth density map. But because this method is not
very good at simulating sparse crowds, [28] also employs an additional TV loss
for stabilization. Total variation loss makes use of Ground-truth’s original head
annotations, which aren’t smooth enough to provide accurate human represen-
tation. Crowds have a bigger scale, especially in some sparse situations, and it
is unrealistic to describe a person by a pixel. [28] uses the mean square error
L2 to regularise the difference between the smoothed annotation maps and the
prediction to solve this problem. By using the adaptive Gaussian kernels, the
smooth feature maps are generated [14]. The total loss is defined as:

Ld = L1(P,G) + λ1LOT + λ2L2(DP ,DG) (2)

We have set λ1 and λ2 in our experiment to 0.1 and 0.01 correspondingly.

3.3 Mask-Aware Approach

Motivated by [12], There are several methods to include mask prediction data
in the density map estimate process as a whole. We implement two of those
solutions.

Mask Generation. All predicted masks in our work are generated using the
EncoderDecoder model from MMSegmentation. It’s a multi-class segmentation
model that consists of a Data preprocessor, Backbone, Decode head, and Aux-
iliary head. The data preprocessor is the part that copies data to the target
device and preprocesses the data into the model input format. The Backbone is
the part that transforms an image into feature maps. ResNet v1c is used as a
backbone to our encoder-decoder. The decode head is the part that transforms
the feature maps into a segmentation mask. PSPHead is used as a decode head
model. The auxiliary head is a component that transforms the feature maps into
segmentation masks. FCNHead is used as an auxiliary head [15].

Mask Multiplication. The first solution is motivated by [12] but with some
little bit changes. [12] propose elementwise multiplying the density map gener-
ated from the density estimation network with the ground-truth mask in the
training stage and in the testing stage the density map is multiplied by the
predicted mask from the segmentation model [15]. Our proposed approach is
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to elementwise multiply the image by the mask before feeding it to the density
estimation network. We also use ground-truth masks in training stage and the
predicted masks in testing stage.

Mask Feature Extractor Network. The second approach, which is motivated
by [12], involves mapping the mask using many convolutional layers to create
a feature map, which can then be combined with image features to estimate
density. More details for mask features integration are shown in Fig. 2. The
architecture of the mask features extractor is C(512, 256, 3)-C(256, 256, 3). If
the used dataset has a ground truth mask that can be used in the training stage
otherwise predicted masks from MMSegmentation are used. Predicted masks
always are used at the testing stage.

3.4 Greedy Ensemble

The main idea of the model ensemble is to choose a group of models that achieve
the best accuracy on the held-out validation set rather than a single fine-tuned
model. We combine multiple models fine-tuned independently.

Model Ensemble. combines the models by aggregating the predictions of sev-
eral base models. One popular type of ensemble is the greedy ensemble which
operates by iterative adding models to the ensemble based on their performance
on the held-out validation set. The selected aggregation is averaging the predic-
tions of the multiple models. Only models that improve the accuracy will added
to the ensemble.

Table 1. The mathematical equations for the ensemble.f(x, Θ) is considered a neural
network with input data x and parameters Θi

Method Method Equation

Ensemble 1
k

∑k
i=1 f(x, Θi)

Greedy ensemble check algorithm 1

4 Experiments

In this section, we describe our experiments. We begin by outlining the datasets
that were used. Next, we go over our training parameters, hyper-parameters, and
evaluation metrics. Finally, we present a comparison with the state-of-the-art,
followed by a discussion of our experiments.
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Algorithm 1. Greedy ensemble
Input potential ensemble models {M1, ..., Mk}
Procedure

ensemble ← {}
for i ← 1 to k do

if MAE(average(count(ensemble) ∪ count(Mi))) ≤
MAE(average(count(ensemble))) then

ensemble ← ensemble ∪ {Mi}
end if

end for
return ensemble

4.1 Datasets

ShanghaiTech dataset [10] is a large-scale crowd-counting dataset that con-
tains 1,198 annotated images with a total of 330,165 people with the centers of
their heads annotated. This dataset consists of two parts: Part A consists of 482
images separated into 300 images for the training set and 182 images for testing.
Part A images represent indoor and outdoor scenes and it’s randomly crawled
from the internet where the resolution of each image is greatly different. Part B
consists of 716 images separated into 400 images for training and 316 images for
testing. Part B images are taken from streets in Shanghai so all images represent
outdoor scenes and the image resolutions of which are 768× 1, 024.

UCF-QNRF dataset [17] includes 1,535 images of different scenarios from the
Internet with 1,251,642 annotations, among which it is divided into 1,201 images
for training and 334 images for testing. The number of pedestrians in each image
varies from 49 to 12,865. This dataset image represents indoor and outdoor
scenes. Furthermore, the image resolutions are very large and its scale varied
dramatically comparing other datasets. It is a challenging dataset for crowd
counting due to the large number of people in the images and the diversity of
scenes.

4.2 Training Setting and Hyper-Parameter

We did our experiments on Linux based machine with GPU model NVIDIA
RTX 4090, memory 24 GB on average 3GB used, driver Version 545.23.06 and
CUDA Version: 12.3. The transformer-based backbone is the official Twins-SVT-
large model, which is pre-trained on the ImageNet 1k dataset [29]. For every
experiment, we only use random horizontal flipping and random cropping as
data augmentations, which strictly follows [28,30] The crop size is 256 for all
datasets. We use AdamW [31] with a batch size of 8 for both ShanghaiTech
parts A and B and the batch size changed to 12 with the QNRF dataset. We
tuned the learning rate and weight decay value to avoid over-fitting and we found
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the best value of weight decay is 1.0E−04 and the best value of learning rate is
2.31E−05. The regularization value used is 12.

For the mask generation model, the initial weights loaded from pre-trained
weights on the cityscapes dataset. We also fine-tune the model on the Shang-
haiTech part A dataset to generate all dataset masks. ShanghaiTech part A
separated into 240 images for training, 60 images for validation, and 182 images
for testing.

4.3 Evaluation Metric

We use Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE or
MSE for short). They can be formulated as follows:

MAE =
1
N

N∑

i=1

| predictedi − groundTruthi | (3)

MSE =

√√√√ 1
N

N∑

i=1

| predictedi − groundTruthi |2 (4)

4.4 Comparison with the State-of-the-Art

In Tables 2 and 3, we demonstrate the effectiveness of our suggested approach
on several crowd-counting datasets.

ShanghaiTech Dataset [10] ShanghaiTech part A is a challenging dataset
as it has a small training set and its images are randomly gathered from online
sources where the resolution of each image is substantially different. As shown
in Table 2 our mask integration model exceeds CCTrans by 19.57% in MAE and
exceeds Mask-aware by 21.16% in MAE. The greedy ensemble exceeds CCTrans
by 22.36% and exceeds FGENet by 3.29%. ShanghaiTech Part B Dataset all its
images are taken from streets in Shanghai and its results are shown in Table 2.
We expect that might be because the part B dataset is considered a low-size
dataset (the average number of people in the image is small compared with
other datasets). Our model performs better on medium and large sized datasets.

UCF-QNRF Dataset [17] When compared to other datasets, the scale of
the images varied significantly and the resolutions were very high. As shown in
Table 3 our mask integration model exceeds CCTrans by 4.23% in MAE. The
greedy ensemble exceeds CCTrans by 10.7% in MAE and exceeds FGENet by
3.52%.



Mask-Aware Transformer for Crowd Counting 25

Table 2. The performance comparison on the ShanghaiTech dataset.

Method Shanghai Part A Shanghai Part B
MAE MSE MAE MSE

MCNN [10] (2016) 110.2 173.2 26.4 41.3
Switch [6] (2017) 90.4 135.0 21.6 33.4
Scale-adaptive [5] (2018) 86.8 139.2 16.2 25.8
ic-CNN [18] (2018) 68.5 116.2 10.7 16.0
CSRNet [14] (2018) 68.2 115.0 10.6 16.0
SANet [19] (2018) 67.0 104.5 8.4 13.6
CAN [9] (2019) 62.3 100.0 7.8 12.2
S-DCNet [21] (2019) 58.3 95.0 6.7 10.7
Mask-aware [12] (2020) 65.7 107.8 11.7 16.4
LSC-CNN [20] (2021) 66.4 117.0 8.1 12.7
CCTrans [11] (2021) 64.4 95.4 7.0 11.5
M-SFANet+M-SegNet [22] (2021) 57.6 94.5 6.32 10.1
P2PNet [23] (2021) 52.7 85.1 6.25 9.9
LoViTCrowd [24] (2022) 54.8 80.9 8.6 13.8
DMCNet [25] (2023) 58.5 84.6 8.6 13.7
SRN [27] (2024) 53.4 84.4 - -
FGENet [26] (2024) 51.7 85.0 6.3 10.5
Mask integration (Ours) 51.8 78.7 7.6 12.3
Greedy ensemble (Ours) 50.0 83.1 7.0 12.2

Table 3. The performance comparison on the UCF QNRF dataset.

Method MAE MSE

CAN [9] (2019) 107 183
S-DCNet [21] (2019) 104.4 176.1
LSC-CNN [20] (2021) 120.5 218.2
CCTrans [11] (2021) 92.1 158.9
M-SFANet+M-SegNet [22] (2021) 87.6 147.8
P2PNet [23] (2021) 85.3 154.5
LoViTCrowd [24] (2022) 87.0 141.9
DMCNet [25] (2023) 96.5 164.0
SRN [27] (2024) 92.3 164.2
FGENet [26] (2024) 85.2 158.8
Mask integration (Ours) 88.2 148.8
Greedy ensemble (Ours) 82.2 135.4
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4.5 Discussion of the Proposed Approaches

In this paper, we apply a model ensemble to aggregate several pre-trained model
predictions. We trained several mask integration models with different learning
rates then we examined whether to feed partially or all of them to the greedy
ensemble and we found significant enhancement in the results. The pre-trained
models are sorted ascending based on their MAE values. When the order of the
pre-trained models is changed then the greedy ensemble will get different results.

4.6 Ablation Analysis

Various Approaches. We performed an ablation study in the ShanghaiTech
dataset part A investigation to examine how various approaches affected our
findings. We specifically explored variations that mask multiplication and mask
integration approaches, as well as with the no-mask module. Comparing the
various methods, our results showed that integrating masks produced the best
results.

Table 4. Mask-aware approaches to achieve the best performance in ShanghaiTech
dataset part A.

Method MAE MSE

CCTrans weakly-supervised (No mask) 64.4 95.4
CCTrans fully-supervised (No mask) 52.3 84.9
Mask multiplication 53.3 85.8
Mask integration 51.8 78.7
Mask multiplication (Ensemble) 51.9 85.5
Mask integration (Ensemble) 50.0 83.1

Mask Quality. We also studied the effect of mask quality on the model’s
performance. We examine the use ground-truth mask instead of a predicted
mask also we examine the use predicted mask without fine-tuning the mask
generation model. For ShanghaiTech part A datset, we use the ensemble with
10 models, and the MAE when we use a ground-truth mask is 50.02 and the
MAE while using a predicted mask without fine-tuning is 50.32 while the MAE
when we used a predicted mask generated from a fine-tuned model on the same
dataset is 50.19. For the ShanghaiTech part B dataset, we use the ensemble with
5 models, and the MAE when we use a ground-truth mask is 7.01 while the
MAE when we use a predicted mask generated from a fine-tuned model on part
A dataset is 7.0, and the MAE when we use predicted mask generated from a
fine-tuned model on part B is 7.03. In summary, the mask quality doesn’t affect
that much on the model’s performance.
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Number of Ensemble Models. We performed an ablation study on the effect
of the number of models inserted into the ensemble on the accuracy and the
processing time. We did this experiment on the ShanghaiTech part A dataset
and we found that starting from 10 models the ensemble MAE is enhanced
by 2.14% over the best model in the inserted models to the ensemble and the
enhancement we gained from the more 17 models is not large compared to the
corresponding increase in the time. In the Table 5 we document different numbers
of models and the corresponding MAE, average time per image, and the number
of selected models by the greedy ensemble.

Table 5. Ensemble with different number of models. Models inserted into the ensemble
with MAE range from 51.84 to 56.75

Number of models MAE Avg. time per image (sec) Number of selected models

5 50.73 0.50 3
10 50.19 1.46 6
15 50.19 2.69 6
20 50.19 3.98 6
25 50.19 5.26 7
27 50.00 5.93 8

Scalability. To check the model’s scalability and possibility of using its practi-
cal application. We observe the total training time for the M-trans on different
datasets and also the average time for testing path (segmentation - M-trans -
ensemble) for a single image. Table 6 and Table 7 show values for our experi-
ments.

Table 6. The Average number of training epochs, Epoch time, and the average total
training time.

Dataset Number of epochs Epoch time(sec) Total training time(hour)

Shanghai part A 302 22.405 1.9
Shanghai part B 726 38.5 7.8
UCF-QNRF 200 226 12.6
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Table 7. The average time per image of segmentation, M-trans testing, and ensemble
time. The total time per image is averaging segmentation time + ensemble time.

Dataset Number of models Segmentation time(sec) M-trans testing time(sec) Ensemble time(sec) Total time(sec)

Shanghai part A 10 0.019 0.075 1.46 1.479
Shanghai part B 5 0.024 0.089 0.594 0.618
UCF-QNRF 5 0.1047 1.0267 5.8526 5.957

5 Conclusion

In this study, we have proposed a novel mask-aware transformer-based architec-
ture (M-Trans) designed to address the challenges of crowd counting by integrat-
ing mask information into a transformer-based model. We apply two different
approaches to this integration: 1. Mask multiplication. 2. Mask feature extractor
network. Also, we improve the performance by applying a greedy ensemble strat-
egy. Our work contributes to advancing the state-of-the-art in crowd-counting
performance on different datasets.
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Abstract. A video as acquired by a moving camera contains visual data pertain-
ing to different places (i.e. a particular room, a corridor, etc.) that have been tra-
versed through. Place proposal generation refers to delineating the correct place-
related boundaries in the incoming video and encoding the respective visual data.
This is an important problem since the resulting representation can be used for
video-based place analysis. To this end, we propose a novel two-stage unsuper-
vised place proposal generation framework that works real-time on unlabeled
videos as acquired by a moving camera. First, each distinct place is delineated
based on the continuous iterative partitioning of the incoming frames - con-
sidering their informativeness, coherency and plenitude. Following, “canonical
scenes” within each generated place proposal are identified based on the hierar-
chical clustering of the respective frames. This enables larger or cluttered places
that have multiple scenes to have better representations. Experimental results on
benchmark data as well as real-time data demonstrate superior video place anal-
ysis performance as compared to a baseline approach.

Keywords: Video segmentation · Vision for robotics · Place recognition · Place
learning · Video processing.

1 Introduction

This paper is focused on generating place proposals from RGB video as it is being
acquired by a moving camera. Each place proposal refers to a specific spatial region
similar to human’s concept of a ‘place’ and is then labeled accordingly such as ‘X’s
kitchen’ or ‘Y Park entrance [19]. It is known that even in outdoors without any clear
perceptual or physical boundaries, such a decomposition of space is done. In this paper,
we also adopt this definition of a place. As such, a place proposal is defined by a col-
lection of appearances sharing common perceptual signatures or physical boundaries.
If place proposals can be generated in an identity-independent manner - namely no
place-specific a priori knowledge being used - then they can be used as a basis for unsu-
pervised video-based place related reasoning. For example, if the three places as shown
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in Fig. 1 could be generated as place proposals from the incoming RGB video, learning
these places or recognizing them in future visits would both become possible. Many
human-machine interaction tasks would benefit from such a human-like detection of
places.

This problem is related to the video scene segmentation problem - a fundamental
step used for video summarization and browsing [6]. They both aim to partition the
frames’ sequence based on their temporal coherence. However, differing from video
scene segmentation problems, there is only one camera, processing needs to be real-
time and while changes between consecutive frames tend to be gradual, each place
can contain several scenes depending on the camera’s viewpoint. For example, larger
or cluttered places that are partially visible upon entry turn out to be challenging - as
appearances tend to vary significantly depending on camera’s viewpoint. In such cases,
the corresponding canonical scenes associated with each generated place proposal need
to be identified separately. Hence, reliable partitioning becomes difficult. Furthermore,
the resulting representation must also enable reliable recognition in incoming videos
when moving through these places in future.

Fig. 1. Place proposal generation as the video is being acquired through traversing 3 places. First,
each place needs to be delineated as indicated by yellow indexed frames. (Blue regions corre-
spond to transition regions.) Next, if a delineated place (i.e places 1 and 3) has multiple canonical
scenes, these need to be identified as well.

We propose to address this problem through introducing a novel two-stage place
proposal generation method. In the first stage, each distinct place is delineated based on
the continuous iterative partitioning of the incoming frames - considering their infor-
mativeness, coherency and plenitude based on previous work [12]. In the second stage,
“canonical scenes” within the delineated place are determined using hierarchical clus-
tering of the respective visual data. The level with the maximal gain in the resulting
hierarchy is then used to deterine the canonical scenes. Our approach is unsupervised
since it does not require any place-specific a priori knowledge. It is also applicable in
real-time since the processing of the first stage operates on each incoming video frame.
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Finally, the proposed multi-scene representation provides an efficient mechanism for
identifying the visually different parts of each place proposal. As such, semantic place
analysis performance can improve significantly as demonstrated in the experimental
results with benchmark data sets.

The paper is organized as follows. First, related work is covered in Section 2. The
proposed two-stage place proposal generation framework is presented in Section 3. We
then discuss how the place proposals can be used for video-based place analysis in
Section 4. In Section 5, the video datasets and the experimental protocol are presented.
A qualititative evaluation demonstrates the resulting performance on these datasets fol-
lowed by its usage for video-based place analysis that shows the applicative potential
of our approach as well as its superiority in comparison to the baseline approach. The
paper concludes with a brief summary where we give some perspectives for future work.

2 Related Literature

The generation of place proposals is related with two areas: video scene segmentation
and place detection in robot vision. We review work in both areas in this section.

Video scene segmentation (VSS) model the task from a global view of the frame.
Interestingly, this problem is found to be important event for video object segmentation
[28]. The proposed methods differ depending on whether they are category-aware or
not. Category-aware approaches such as action spotting split the video into smaller seg-
ments based on frame parsing and tracking of actions [15]. Alternatively, class agnostic
approaches assume the video to be structured in a specific way - namely a sequence
of frames that can be divided into ‘shots’ (coherent sequence of frames) and ‘scenes’
(a sequence of shots) in terms of the granularity of semantics [16]. Generally, shots
are separated by one of the several motion picture effects such as cuts, fade, dissolve
or camera motion such as rotating or zooming. Existing VSS algorithms exploit the
temporal relationships between consecutive shots and group several consecutive shots
into a single scene that can be conceptualized as a sub-story occurring within a par-
ticular environment . Temporal relationships are commonly established based on visual
features such as SURF [1] or as determined from a deep learning network [4,5,9]. Alter-
natively, in graph-based methods, instead, shots are arranged in a graph representation
and then clustered by partitioning the graph based on shot similarity [2]. Boundary
detection is performed by analyzing the dissimilarity of successive frames where high
dissimilarity indicates the boundary [35]. Although these approaches can easily detect
abrupt shot changes such as hard cuts, gradual shot changes that spread over the number
of frames are relatively hard to detect.

Place detection considers a similar problem in robot and vehicle vision. Similar to
VSS, this requires partitioning the incoming video stream into semantically meaning-
ful sets where each corresponds to one particular place. However, this problem differs
from VSS problems in three aspects: i) All frames are acquired by a single camera with
changes between consecutive frames being gradual; ii) The processing must be real-
time; iii) The resulting representation must also enable reliable recognition in videos
acquired via passing through the same places. In one group of approaches, the con-
sistency of the frame data is tracked with discontinuities signaling transitions among
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places. Tracking is done mostly using local features such as SIFT or SURF descriptors
[10,14,25]. Alternatively, global descriptors such as images [18], optical flow [21],
census transform [34], histograms [11] or hybrid descriptors such as bag-of-words
[20,22,32] and bubble descriptors [12] have also been used. There are also some work
in which temporal nature is not considered and the problem is posed as a clustering
problem [17]. The methods in the second group consider the scene contents at a higher-
level and hence require frame parsing. For example, detection is based on identifying
passages, doors or room structures [3,31,33]. As these methods primarily focus on tran-
sition regions, places are detected on the basis of being separated by transition regions.
This may be problematic if transition regions are not obvious. Alternatively, place con-
tents based on “proto-objects” (segments or blobs of uniform visual properties such as
color or disparity) are used to define a detected place [7].

In all of these methods, each place proposal is then either represented by a single
key frame or a single classifier based on the corresponding frames. As recognition is
typically based on matching the information obtained from the current set of frames
to the previously learned knowledge of places, the performance can deteriorate if there
are large variations in the visual appearances within a detected place. In this paper,
we introduce a two-stage unsupervised place proposal generation method in order to
address this problem. Differing from previous work, our method generates the place
proposals with their canonical scenes.

3 Two-Stage Place Proposal Generation

Consider the sequence of frames Fk, k ∈ K in an incoming video where K denotes the
frames’ index set. Let each frame Fk be encoded by a descriptor Ik. The descriptor can
be formed using one or several of the representations that have been developed - as long
as they are able to reliably represent the visual data. Here, we use bubble descriptors
[8]. We prefer to use this representation due to its shown comparative advantages to
other representations such as preserving the relative S2 geometry of visual features,
being rotationally invariant and incorporating any number of observations. However,
the proposed approach is in no way dependent on this particular choice and thus can be
used with other kinds of descriptors.

3.1 First Stage: Place Boundary Delineation

The first stage continually determines where a place starts and ends in the incom-
ing RGB video. Each delineated place m ∈ D is defined by Dm ⊂ K set and
D = {1, . . . , m∗} denotes the index set of place proposals. The delineation is defined
by the continuous iterative partitioning of the incoming frames as defined by the as
presented in [12]. For completeness, a brief summary is presented here. The interested
reader is referred to [12] for details.

The partitioning process has three states: delineation start, delineation in progress
and delineation termination. Each incoming frame is first checked for its informative-
ness. Informativeness is related to semantic content of the respective frame. For exam-
ple, in cases of low illumination or camera being very close to an object, the associated
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data will not be informative and needs to be ignored. As such, it is measured by a binary
valued function ς(Fk) ∈ {0, 1} that depends on a a priori determined threshold values.
Following, its coherency is computed. This is measured by a binary valued function
κ(Fk) ∈ {0, 1} that is defined on the space of descriptors encoding each frame. While
data from consecutive frames in one place tend to be coherent, data from consecutive
frames while in transition between two different places will be incoherent.

If a new delineation is started with index k, its extent Q∗(k) ⊂ K is determined
by iteratively partitioning the consecutive frame indexes that are both informative and
coherent. The iteration is defined as:

Qi+1(k) :=

⎛
⎝ ⋃

j∈Qi(k)

Q1(j)

⎞
⎠ where

Q1(k)
�
= {k + 1 | ς(Fk+1) = 1 and κ(Fk+1) = 1}

According to this definition, each (i + 1)st neighbor of frame with index k is infor-
mative and coherent wrt to some ith neighbor of starting frame index k. The iterative
process continues until uninformativeness or incoherency is detected. Let i∗ be the cor-
responding index. In this case, a temporal window T 1(k) is started:

T 1(k)
�
= {χ1(k)}

where χ1(k) denotes the index of uninformative or incoherent frame closest to Fk. A
temporal window contains indexes that are uninformative or incoherent. It may cor-
respond to temporary lapses in the delineated place or signal transitions between two
different delineations. As new frames are received, uninformative frames or incoherent
frames extend the temporal window:

T i+1(k) := T i(k)
⋃

j∈T i(k) {k′ ≤ χ2(j)}

where χ2(j) to be the smallest index that is at most τn distant to index j while still being
either not informative or incoherent: The incoherency extension threshold τn defines the
number of succeeding indexes that will be checked. If there is at least one uninforma-
tive or incoherent frame in the next τn indexes, then the temporal window is extended
to include the respective index. Thus, each T i(k) th temporal window contains uninfor-
mative or incoherent frame indexes to some ith neighbor of frame with index k. Let i∗

be the corresponding frame index when the temporal window is terminated:

T ∗(k) := T i∗(k)

Once a temporal window terminates, the extent of T ∗(k) as compared to temporal win-
dow extent parameter τw is used to decide how to use this knowledge. A short extent
indicates sensing problems. In this case, the associated frames are simply ignored and
delineation continues. On the other hand, a long extent signals transition regions which
suggests that the regions before and after the transition region need to be detected as



36 H. I. Bozma

two different places. In this case, current delineation ends and a new delineation starts.
Each delineated place is checked for plenitude - namely whether its extent is sufficiently
long or not. Only delineated places with sufficiently long extents are then considered
as detected places. Each detected place Dm is associated with corresponding set of
descriptors Il, l ∈ Dm. The mean descriptor Īm is defined as:

Īm =
1

|Dm|
∑
l∈Dm

Il (1)

3.2 Second Stage: Finding Canonical Scenes

In the second stage, canonical scenes are determined within each delineated place Dm.
Let ns(m) be the number of canonical scenes. Note that if the delineated place Dm

is small and unobstructed, appearances from different viewpoints will not vary signif-
icantly and ns(m) = 1. Canonical scenes are found using the hierarchical clustering
method SLINK [29]. In this method, an hierarchy is built in an incrementally bottom-up
manner through the nested sequence of clusters of the frames (as indexed by Dm that are
associated with the detected place. Let E(Dm) denote the set of equivalence relations
on Dm and ζ : R≥0 → E(Dm) be the clustering function. Each cluster is associated
with an height h as measured by a similarity metric - namely ζ(h+δh) = ζ(h)∀δh ≈ 0.
As the height h increases, clusters get larger - namely 0 ≤ h ≤ h′ → ζ(h) ⊆ ζ(h′).
Finally, the top level is a single cluster - namely ∃hr s.t. ζ(hr) = Dm×Dm. The result-
ing nested sequence of partitions can be shown to be equivalent to tree hierarchy con-
sisting of nL levels. Each level l = 0, . . . , nL is associated with a height hl ∈ (0, hr].
The height h0 = 0 corresponds to the terminal nodes while hnL

= hr corresponds to
the root node.

Once a place is detected, canonical scenes are detected automatically by finding
the level h∗(Dm) ∈ (0, hr) with the maximal height increment δhl = hl+1 − hl -
namely h∗(Dm) ∈ argmaxl δhl. Outlier subsets are pruned by only considering only
those clusters that have cardinality greater than a preset threshold τd. Each remaining
cluster Dmj ⊆ Dm, j = 1, . . . , ns with sufficient cardinality - namely |Dmj | > τd
then corresponds to one canonical scene in the detected place.

A sample case of finding canonical scenes is as shown in Fig. 2a. Here, 101 frames
have been delineated in the first stage of proposed approach. The height h∗(D) with
maximal increment contains 3 clusters with scenes as shown in Fig. 2a-2b. The clus-
ter with low cardinality is pruned out so that two canonical scenes are detected. Two
remarks are noteworthy: First, canonical scenes are based only on the similarity of
frame data. Hence, frames associated with each canonical scene set are not necessarily
temporally related. Second, when a large number of frames that have gradually decreas-
ing visual overlap exist in a generated place proposal (ie movement along a corridor),
the hierarchy typically ends up having two balanced clusters.

4 Video-Based Place Analysis

Place proposals can be used for video-based place analysis. In particular, we focus on
learning places so that they can be recognized in videos obtained by traversing these
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Fig. 2. Finding canonical scenes of a place proposal.

places in future. In this section, we present one approach to this as presented in [13].
However, other approaches including deep learning based approaches are also possible.

We first consider a place memory that enables the storage and retrieval of learned
places as defined by the index set P . We consider a hierarchical organization as defined
by a nested sequence of partitions P . The partition at the top level is the whole set P . All
inner nodes correspond to particular subsets P(N) ⊂ P while each N of terminal nodes
corresponds to a distinct place p(N) ∈ P . Such an organization enables associating
an incoming place proposal Dm with the learned place knowledge efficiently through
traversing down the memory hierarchy. Traversal is done level by level until either it
reaches the terminal level or check condition is not satisfied. At each level, the similarity
of each canonical scene with the learned places encoded by the children nodes N↓ is
evaluated and the node N∗ with the maximum similarity is determined based on the
discriminant function dN (Dm). It also ensures that the similarity is sufficiently high by
checking against a preset recognition threshold τr.

N∗ ∈ argmax
N∈N↓

dN (Dm) subject to dN (Dm) ≥ τr (2)
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The discriminant function dN considers each canonical scene one-by-one. In levels up
to the final terminal level, it is defined as:

dN (Dm) =
ns∑
j=1

|Dj |
|Dm|

(
ρj(ĪN ) + ηj(N)

)
(3)

The term ρj(Īj) ≥ 0 is the Pearson correlation that evaluates how well overall the
frames of the canonical scene Dmj as encoded by the descriptor Īmj match those asso-
ciated with the current node N as encoded by the descriptor ĪN where:

Īmj =
1

|Dmj |
∑

k∈Dmj

Ik and ĪN =
1

|P(N)|
∑

p∈P(N)

Ip

The second term ηjm(N) ≥ 0 computes the overall SVM support for the canonical
scene mj considering each frame associated with canonical scene Dmj :

ηmj(N) = 1
|Dmj |

∑
k∈Dmj

νN (Ik) where νN (j) =

{
1 if ψN (Ik) > 0,
0 otherwise

(4)
In the final terminal level, for each considered terminal node N , the discriminant func-
tion is defined by considering the ns(p(N)) canonical scenes associated with it:

dN (Dm) =
ns∑
j=1

argmax
l∈{1,...,ns(p(N))}

|Dj |
|Dm|

(
ρj(Īml) + ηl(Dmj)

)
(5)

where Iml is the mean descriptor associated with the l-th canonical scene. This process
is repeated until either a terminal node is reached or the check condition of Eq. 2 is not
satisfied. In the former case, the place is recognized to be the place associated with the
terminal node. In this case, the robot also updates its memory via incorporating the new
knowledge appropriately. The recognition threshold τr is a designating factor in the
trade-off between precision and recall. As τr increases, precision increases and recall
decreases.

In case of no recognition, place learning is invoked in order to add the place pro-
posal Dm into the place memory as a new place p. Learning a place consists of three
steps: i) Modifying the place memory hierarchy incrementally in order to accommodate
the new place proposal Dm; ii) Updating the one-SVM discriminant functions ψN at
the changed nodes N of the hierarchy associated with the place memory. The requires
learning the cost functions ψN that are associated with the nodes of the place memory
using one-class SVM [27]. The ψN functions are used in defining the discriminant func-
tions dN that are used in recognition. Thus, one-SVM discriminant functions ψN of the
nodes associated with the changed parts of the hierarchy are relearned. iii) Associating
the ns(m) canonical scenes with the newly added place Dm.

5 Experiments

To evaluate our proposed approach, we carry out comprehensive experiments on bench-
mark datasets - including comparative studies with a baseline approach. Each incoming
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Table 1. Place Proposal Generation Performance

(a) Recall Rates

Video Cloudy Sunny
Night

Evening

Fr 0.68 0.65 0.71

Lj 0.28 0.41 0.29

Sa 0.53 0.65 0.71

NC - 0.6 0.5

(b) Precision Rates

Video Cloudy Sunny
Night

Evening

Fr 0.79 0.63 0.71

Lj 0.47 0.54 0.38

Sa 0.67 0.81 0.67

NC - 0.46 0.42

(b) Canonical Scenes’ Statistics

Video # Places Mean ns Variance of ns

Fr 24 1.21 0.26

Lj 25 1.28 0.46

Sa 16 1.31 0.23

NC 11 1.08 0.08

Sy 12 1.50 0.25

frame is encoded with a d = 600-dimensional descriptor [8]. Canonical scenes are
detected with τd = 10 as determined experimentally. The per frame processing time
depends on the extent of the detected place as expected or as place memory grows
larger. Altogether, real-time performance of the whole system is around 2-3 frames per
second with a standard I5 CPU processor.

5.1 Datasets

Datasets are RGB videos from a variety of different routes: i) Benchmark COLD dataset
[23]; ii)New College (NC) dataset [30] and iii) SYNTHIA (SYN) dataset [26]. The
COLD dataset consists of indoor videos taken from three different routes - Freiburg
(Fr), Ljubljana (Lj) and Saarbrucken (Sa) routes under cloudy conditions. A typical
video contains around 1000-2000 frames. The NC dataset is recorded with a perspective
camera along an outdoor route of approximately two kilometers coverage with around
5000 frames per video. SYNTHIA dataset is a synthetic dataset from a car traveling
along a highway in spring time and . In each case, the ground truth of detected places is
obtained from the accompanying route and map data while that of canonical scenes is
based on visually inspecting whether they correspond to distinct characterizing scenes
in the detected place or not - as there is no ground truth provided. In each case, there
are multiple videos along the same route, but taken at different times and varying wrt
to illumination conditions. As such, datasets such as MovieNet [24] that are typically
used in VSS evaluations are not suitable in our case.

5.2 Ablation Tests

The goodness of the generated place proposals is evaluated in comparison to the ground
truth, which is obtained manually by considering the route coordinates and map data
provided as well final visual checking. Note that there are small variations along each
route as well. Moreover, there exists frames in the night/evening dataset where the illu-
mination conditions is impossible to reverse, e.g no light source . A detected place Dm

is determined to be correct if their IoU values with respect to the ground truth Gm ⊂ K
is at least 50% - namely |Dm

⋂
G|

|G| ≥ 0.5. Furthermore, they are constrained to have

compatible extents. This is checked as |D|
|G| ≤ τ+. τ+ is the upper bound of extent

ratio and is set to τ+ = 2. Thus, the extent of a detected place can be at most twice
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Fig. 3. Places and canonical scenes. For places m with ns(m) ≥ 2, a sample image associated
with each canonical scene is as shown.

of its ground truth. Hence, place proposals having an extremely long extents are not
considered to be correct.

For sample COLD videos, the resulting place proposals are as shown in Fig. 3a-
Fig. 3c. There are 24 place proposals as seen in Fig. 3a. Places 7, 9 and 12 are found
to contain 2 canonical scenes while place 20 is found to contain by 3 canonical scenes.
It should be remarked that some of the places that are traversed in opposite directions,
the collected appearances have gradually decreasing visual overlap and the resulting
clustering hierarchy turns out to be balanced - as is the case for place 7 in the Fr video.
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Hence, the place is associated with two canonical scenes depending on the navigation
direction. In the Lj video, places 2, 9, 22 and 23 are found to consist of 2 canonical
scenes while place 20 consists of 4 canonical scenes as seen in Fig. 3b. In the Sa video,
places 4,5,10,13 and 15 are all found to have 2 canonical scenes as seen in Fig. 3c. In
the NC video, most of the places have open space in general so that these consist of a
single canonical scene as seen in Fig. 3d. In the SYN videos, there are 8 places detected
- with half of them consisting of 2 canonical scenes. Based on how each place is viewed
and the openness of space, we expected the number of canonical scenes within each
place proposal generated to be lower for outdoors places as is the case here. In all, it
is observed that the canonical scenes correspond to distinct characterizing views in the
detected place.

The number of places detected in each video as well the average number of canoni-
cal scenes and their variance are given in Table 1c. It is observed that the mean number
of canonical scenes in each video varies between 1 and 2 which implies in this data set
that most of the detected places are relatively small and do not contain major obstruc-
tions. As the size of a place increases (ie a corridor) or the clutter of a room increases
(ie lab), the number of canonical scenes also tends to increase. Let it be also remarked
abrupt camera movements also lead to canonical scenes as is the case in place 15 in the
Sa video or due to dynamic scene entities (a walking person) as is the case in place 4 in
the NC video.

Fig. 4. Fr video - Learned places with canonical scenes.

5.3 Video-Based Place Analysis - Comparative Performance

Next, we compare the proposed approach with a baseline approach1 in which only first
level processing is applied - hence there are no canonical scenes [13]. The comparison
is done with respect to the resulting video-based place analysis performance on two

1 For the comparison of the baseline model with other approaches, we kindly refer the interested
readers to the respective references [13].
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Table 2. Precision and recall rates in 2nd videos.

(a) Fr video

τr

Method Baseline Proposed

Precision Recall Precision Recall

1 0.64 0.37 0.78 0.37

1.2 0.67 0.32 0.78 0.37

1.4 0.75 0.32 0.83 0.26

1.6 0.80 0.21 0.83 0.26

1.8 1.00 0.21 1.00 0.21

(b) Lj video

τr

Method Baseline Proposed

Precision Recall Precision Recall

1 0.37 0.50 0.50 0.64

1.2 0.39 0.50 0.50 0.57

1.4 0.38 0.43 0.53 0.57

1.6 0.43 0.43 0.57 0.57

1.8 0.45 0.36 0.62 0.57

(c) Sa video

τr

Method Baseline Proposed

Precision Recall Precision Recall

1 0.27 0.23 0.50 0.54

1.2 0.33 0.23 0.50 0.46

1.4 0.33 0.23 0.55 0.46

1.6 0.43 0.23 0.50 0.31

1.8 0.40 0.15 0.50 0.23

(d) New College video

τr

Method Baseline Proposed

Precision Recall Precision Recall

1 0.55 0.60 0.44 0.40

1.2 0.44 0.40 0.50 0.40

1.4 0.50 0.30 0.50 0.30

1.6 0.60 0.30 0.60 0.30

1.8 1.00 0.10 0.67 0.20

(d) SYN - Highway video

τr

Method Baseline Proposed

Precision Recall Precision Recall

1 0.57 0.5 0.71 0.68

1.2 0.67 0.5 0.71 0.68

1.4 0.60 0.38 0.80 0.50

1.6 0.75 0.38 0.75 0.38

1.8 1 0.13 1 0.25

videos along each of the routes, but obtained at different times. The first video is used for
learning the detected places while the second video is used to evaluate the recognition
performance. As discussed, learned places are stored in a place memory. For example,
place memory corresponding to the Fr video is as shown in the Fig. 4. Note that the
detected place of Fig. 2 (with two canonical scenes) has been learned as place 7 in this
memory. This memory is then used in the recognition experiments. Recall and precision
rates are presented in Table 2a-2c. The recognition threshold τr is varied between 1 to
1.8. It is observed that indoors recognition performance is significantly enhanced with
an average of 15% improvement for both precision and recall rates in comparison to the
baseline approach. For example, while place 10 in Sa video cannot be recognized in the
baseline method, this is not the case with the proposed approach. With the 2 canonical
scenes, it becomes possible to recognize in the second video. The highest improvement
happens in the Sa video. This is expected as it has the highest mean ns which implies
that a higher proportion of the places are represented by multiple canonical scenes.
Interestingly, such improvement is not observed with the places in the NC video. This is
expected since most of the places are characterized by one canonical scene. In summary,
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the representation of canonical scenes enables a better summary of each place proposal
and thus lead to improved scene analysis performance.

Table 3. Real-time video-based place analysis from a moving camera.

5.4 Real-Time Video Processing

We also consider real-time video processing from a moving camera that follows approx-
imately a 100 meter route. The same route is traversed twice - at different times. The
processing is done real-time during each movement. In the first time traversal, there are
12 place proposals generated. Sample frames from some of these places are shown in
Fig. 3a. Actually, 2 of these places are revisits. Interestingly, with the proposed app-
roach, both are recognized. This is in contrast to the baseline approach in which only
one place is recognized. In the second video as obtained from another traversal of the
same route, there are 13 place proposals. With the baseline approach, there are 6 true
recognitions and 2 false ones. This results in 75% precision with 46% recall rates as
shown in Table 3b. The performance is considerably better with the proposed approach.
In this case, there are 7 true recognitions and 1 false one. Thus, recall increases to 54%
while precision goes up 87.5%.

6 Conclusion

We present an unsupervised two-stage approach for generating place proposals reliably
from unlabeled videos as acquired by a moving camera. First, each distinct place is
delineated based on the continuous iterative partitioning of the incoming frames - con-
sidering their informativeness, coherency and plenitude Following, canonical scenes in
each detected place are determined based on the hierarchical clustering of the respec-
tive set of frames. The generated place proposals can then be used for video-based place
analysis. Experimental results demonstrate place recognition performance to improve
considerably when canonical scenes associated with each detected place are used. With
indoors datasets, there is a boost of precision rates up to 23% and of recall rates up to
21% as compared to the baseline approach. Outdoor performance is comparable with
the baseline approach since places tend to be less obstructed. We are currently working
on integrating this model with semantic video segmentation.
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13. Karaoğuz, H., Bozma, H.I.: An integrated model of autonomous topological spatial cogni-
tion. Auton. Robot. 40(8), 1379–1402 (2016)

14. Korrapati, H., Mezouar, Y.: Vision-based sparse topological mapping. Rob. and Auto. Sys-
tems 62(9), 1259–1270 (2014)

15. Lin, T., Zhao, X., Su, H., Wang, C., Yang, M.: BSN: Boundary sensitive network for temporal
action proposal generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
Computer Vision - ECCV 2018, pp. 3–21. Springer International Publishing, Cham (2018)

16. Lin, T., Zhang, H.J.: Automatic video scene extraction by shot grouping. In: Proceedings
15th International Conference on Pattern Recognition. ICPR-2000. vol. 4, pp. 39–42 vol.4
(2000). https://doi.org/10.1109/ICPR.2000.902860

17. Liu, M., Colas, F., Pomerleau, F., Siegwart, R.: A Markov semi-supervised clustering app-
roach and its application in topological map extraction. In: IEEE/RSJ Int. Conf. on Intel.
Rob. and Sys. pp. 4743–4748 (2012)

https://doi.org/10.1109/ICASSP.2014.6854873
https://doi.org/10.1109/CVPR46437.2021.00967
https://doi.org/10.1109/CVPR46437.2021.00967
https://doi.org/10.1109/ICSC.2018.00019
https://doi.org/10.1109/ICPR.2000.902860


Unsupervised Real-Time Two-Stage Place Proposal Generation 45

18. Matsumoto, Y., Inaba, M., Inoue, H.: Visual navigation using view-sequenced route repre-
sentation. In: IEEE Int. Conf. on Rob. Aut. pp. 83 – 88 (1996)

19. Miller, S.: Space and Sense. Psychology Press (2008)
20. Murphy, L., Sibley, G.: Incremental unsupervised topological place discovery. In: IEEE Int.

Conf. Robot. Aut. pp. 1312 – 1318 (June 2014)
21. Nourani-Vatani, N., Borges, P.V.K., Roberts, J.M., Srinivasan, M.V.: On the use of optical

flow for scene change detection and description. J. of Intel. & Rob. Sys. 74(3–4), 817–846
(2014)

22. Paul, R., Feldman, D., Rus, D., Newman, P.: Visual precis generation using coresets. In:
IEEE Int’l Conf. Rob. and Aut. pp. 1304–1311 (2014)

23. Pronobis, A., Caputo, B.: COLD: The COSY localization database. The Int’l J. of Rob. Res.
28(5), 588–594 (2009)

24. Qingqiu, H., Yu, X., Anyi, R.: Movienet. https://movienet.github.io/ (2020)
25. Ranganathan, A.: PLISS: detecting and labeling places using online change-point detection.

In: Rob.: Science and Systems (2010)
26. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: A large

collection of synthetic images for semantic segmentation of urban scenes. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (June 2016)

27. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the
support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

28. Sellami, A., Tabbone, S.: Video semantic segmentation using deep multi-view representation
learning. In: 2020 25th International Conference on Pattern Recognition (ICPR). pp. 1–7
(2021). https://doi.org/10.1109/ICPR48806.2021.9413239

29. Sibson, R.: SLINK: an optimally efficient algorithm for the single-link cluster method. Com-
put. J. 16(1), 30–34 (1973)

30. Smith, M., Baldwin, I., Churchill, W., Paul, R., Newman, P.: The New College vision and
laser data set. The Int. J. Robot. Res. 28(5), 595–599 (2009)

31. Tapus, A., Siegwart, R.: Incremental robot mapping with fingerprints of places. In: IEEE/RSJ
Int’l Conf. IROS. pp. 2429–2434 (2005)

32. Tomoya, M., Kanji, T.: Change detection under global viewpoint uncertainty. arXiv preprint
arXiv:1703.00552 (2017)

33. Topp, E.A., Christensen, H.I.: Detecting structural ambiguities and transitions during a
guided tour. In: IEEE Int. Conf. Rob. Aut. pp. 2564–2570 (2008)

34. Wu, J., Rehg, J.M.: Centrist: A visual descriptor for scene categorization. IEEE Trans. PAMI
33(8), 1489–1501 (2011)

35. Zhou, T., Porikli, F., Crandall, D.J., Van Gool, L., Wang, W.: A survey on deep learning
technique for video segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 45(6), 7099–7122
(2023). https://doi.org/10.1109/TPAMI.2022.3225573

https://movienet.github.io/
https://doi.org/10.1109/ICPR48806.2021.9413239
http://arxiv.org/abs/1703.00552
https://doi.org/10.1109/TPAMI.2022.3225573


Severity of Flood Damage Estimation from
Aerial Scenery

Tarakeswara Rao Landa(B) and Tushar Sandhan

Perception and Intelligence Lab, Electrical Department, Indian Institute of
Technology Kanpur, Kanpur, India
{ltrao22,sandhan}@iitk.ac.in

Abstract. Accurate assessment of the flood damage and its severity
estimation is essential for effective disaster management and related
reconstruction works. In our study, we propose a novel approach for
estimating the severity of flood damage from aerial scene images. We
introduce a fusion network architecture that leverages both RGB and
generated pseudo thermal image modalities. Our approach is based on
training a CNN head as U-Net model to perform semantic segmentation
of images from flood scenes. We show that the feature maps extracted
from multimodal data, helps to improve accuracy even though one of
the modalities is pseudo generated via CycleGAN. These feature maps
are fed into a custom fully connected network for regression, predicting
the severity level of flood damage. Our use of CycleGAN to generate
thermal images from RGB images, providing additional input modalities
for our network. Our approach significantly outperforms baseline meth-
ods, showcasing the effectiveness of leveraging multiple modalities for
flood damage severity estimation. The results from our regression net-
work show that our fused network outperforms conventional approaches.
Our method achieves 0.053 MAE and 0.008 MSE, indicating a substan-
tial enhancement of performance compared to baseline methods. These
results show the importance of multimodal fusion via pseudo modality
generation, which also offers valuable insights in flood damage assess-
ment.

Keywords: Flood damage assessment · Semantic segmentation ·
Thermal image generation · Regression Analysis · Disaster management

1 Introduction

Natural disasters, worsened by climate change, pose significant threats to lives
and infrastructure globally. Accurate and timely assessment of disaster dam-
age is essential for efficient emergency response and recovery operations. Aerial
imagery, particularly from unmanned aerial vehicles (UAVs), provides high-
resolution data essential for assessing disaster impacts. Semantic segmentation is
one deep learning technique that has shown promise in recent years for assessing
disaster damage from aerial data.
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Fig. 1. Our goal is to use exclusively post-disaster data to create a continuous number
that represents the severity of flooding. The first column shows post-disaster data,
which is the input used in our model. The U-Net segmentation network’s extracted
features are shown in the second column. The regression network (third column) will
use these features to create a continuous severity level (fourth column).

While existing research has focused on segmentation [1–3], classification [1,3],
and visual question answering [3] on aerial flood scene images, there is a lack
of work addressing the flood damage severity level present in an image. Most
authors have not explored this aspect, which is crucial for effective disaster
response and management. Our work aims to fill this gap by focusing on semantic
segmentation of aerial flood scene images and the ability to distinguish between
different levels of flood severity using both RGB and pseudo-thermal modalities.

A dataset of flood scene images annotated with flood severity levels, a fea-
ture extraction technique to extract reliable features from post-disaster image
data, and a regression network to condense these features into a single continu-
ous value indicating flood severity are needed to meet these requirements. This
idea is demonstrated in Fig. 1. The availability of publicly accessible datasets
with satellite or ground-level imagery of hurricane-affected areas labeled with
continuous values is limited. In order to overcome this difficulty, we labeled a
portion of the FloodNet [3] dataset, indicating the level of flood damage severity
in each instance.

In this study, we propose a novel approach for estimating flood severity
on aerial flood scene images using deep learning techniques. We leverage the
FloodNet [3] dataset, which offers high-resolution UAV imagery captured after
Hurricane Harvey, along with detailed pixel-level annotations for various classes
including flooded areas, buildings, roads, and more. Our approach involves train-
ing a U-Net [4] model for semantic segmentation to extract feature maps, fol-
lowed by pseudo thermal modality generation from unpaired CycleGAN and
finally a custom fully connected network for severity estimation based on these
joint feature maps.



48 T. R. Landa and T. Sandhan

By combining these networks and utilizing both RGB and thermal imagery,
we demonstrate significant improvements in flood severity estimation accuracy.
Our approach not only enhances the understanding of flood-affected areas but
also provides valuable insights for disaster response teams to effectively manage
operations during emergencies.

Our work has made the following primary contributions:

1. A unique method that combines semantic segmentation and regression
approaches to estimate the severity of flood damage on aerial scenes.

2. A demonstration of significant improvements in flood severity estimation
accuracy by combining features from pseudo thermal and RGB images.

3. The use of a CycleGAN [5] to generate pseudo thermal images from RGB
images, thereby providing latent feature dynamic information to basic seg-
mentation network providing additional input modalities for our network.

4. Annotated a portion of the FloodNet [3] dataset, indicating the level of flood
damage severity in each instance, to train a regression network for severity
estimation.

The format of this paper is as follows: An overview of related work on image
regression and semantic segmentation in the context of disaster damage assess-
ment is given in Sect. 2. The methodology for assessing flood damage severity,
including the model architecture, training process, and data preparation, is cov-
ered comprehensively in Sect. 3. In Sect. 4, we compare our technique with cur-
rent methods and give experimental data and performance metrics. The ablation
studies are discussed in detail in Sect. 5. The work is finally concluded in Sect. 6
with a discussion of potential future methods for this field of study.

2 Related Work

Damage assessment and detection are well-researched topics that have been stud-
ied in a variety of study fields. In the field of computer vision, techniques like
segmentation and classification are essential for creating systems that efficiently
analyze damage. Image regression, another crucial technique, predicts continuous
values from image datasets. In disaster estimation, these methods, particularly
semantic segmentation and image regression, play pivotal roles in accurately
assessing damage severity and predicting outcomes.

2.1 Semantic segmentation

A crucial task in computer vision is called semantic segmentation, which is giving
a label to every pixel in an image so that those pixels that have the same label
are associated with the same object class. In recent years, it has been increas-
ingly used in disaster estimation. Several methods were proposed by researchers
for qualitative as well as quantitative improvement of semantic segmentation for
various tasks. The Fully Convolutional Network [6] is a groundbreaking effort
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that was followed by several cutting-edge models to handle semantic segmenta-
tion.

The PSPNet [7] is a novel approach that harnesses the power of spatial pyra-
mid pooling to assimilate contextual information from various scales, thereby
setting new standards in the realm of semantic segmentation. On a different
note, DeepLab [8] merges the strengths of deep convolutional networks, atrous
convolution, and fully connected conditional random fields. This fusion results
in a robust framework for semantic image segmentation with a high degree of
precision. U-Net [4] and SegNet [9], while both employing an encoder-decoder
architecture for semantic segmentation, have distinct features. U-Net stands out
with its symmetric pathways between the encoder and decoder, augmented by
skip connections. SegNet, however, takes a unique approach by leveraging the
pooling indices from the encoder phase to guide the upsampling during the
decoder phase.

In the work of Doshi et al. [10], they leverage the power of semantic seg-
mentation, specifically the Residual Inception Skip Network method proposed
by Doshi [11], to analyze satellite images. Their goal is to discern alterations in
the architecture of various human-made structures. This approach aids in pin-
pointing areas that would be most affected by natural disasters. Sahil et al. [1]
presented a semi-supervised method for semantic segmentation and classification
to address the challenges of damage assessment with limited labeled data. In [12],
Rudner et al. combine multisensor, multitemporal, and multiresolution satellite
images and present a unique method called Multi3Net for quick segmentation of
flooded buildings. Rahnemoonfar et al. [13] introduced a hybrid network inte-
grating densely connected Convoluational Neural Network (CNN) and Recur-
rent Neural Network for precise semantic segmentation of object boundaries in
flooded UAV aerial images.

Using a UAV system and deep learning, Yang et al. [14] developed a flood
detection method that achieved high accuracy in identifying flooded areas in
a UAV dataset of flood-affected areas. Based on the Mask R-CNN deep learn-
ing model, Pi et al. suggested in [15] a disaster damage detection and semantic
segmentation strategy employing UAV imagery. The suggested method demon-
strated remarkable accuracy in identifying and classifying damaged objects when
tested on two real-world disaster datasets. Gupta et al. [16] introduced Res-
cueNet, a unified model designed for end-to-end training to simultaneously seg-
ment buildings and assess damage levels in post-disaster scenarios using satellite
imagery.

Asad et al. [2] applied a Transformer-based approach to perform semantic seg-
mentation on UAV images to assess damage caused by natural disasters. Safavi
et al. [17] conducted a comparative analysis of real-time semantic segmentation
networks applied to UAV imagery during flood conditions.

2.2 Image regression

Regression tasks are applied for image datasets in applications that require pre-
dicting a set of continuous values from the image. Image regression finds applica-
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tions in various fields such as predicting human age, house prices, and estimating
disasters.

In [18], Pereira et al. use social media photos to distinguish between images
that provide clear proof of a flood and images that estimate the flood’s sever-
ity. The goal of the authors in [19] is to improve post-disaster management by
identifying several hurricane categories using the estimation of tropical cyclone
intensity. They use wind speed data from the HURDAT2 database and infrared
satellite imaging data to estimate hurricane intensity using an enhanced deep
CNN model.

Papatheofanous et al. [20] introduced an image regression module using image
processing and CNNs to estimate solar irradiance, addressing Photovoltaic(PV)
power production variability. Their sun localization-based method shows poten-
tial for real-time control in smart PV parks. Nia et al. [21] presented a deep
learning model for building damage assessment using post-disaster data, with
three neural networks for feature extraction and a regressor for severity estima-
tion.

3 Methodology

We propose a novel approach for estimating flood damage severity on aerial flood
scene images, leveraging a combination of semantic segmentation and regression
techniques.

3.1 Data preprocessing

Semantic segmentation. We used the Floodnet [3] dataset to train the U-Net
[4] for the semantic segmentation task. It is a dataset collected using small UAVs
after Hurricane Harvey. This dataset’s images have very high spatial resolution.
The dataset contains 2,343 images paired with their respective masks, annotated
with 9 classes: Road flooded, Road non-flooded, Grass, Vehicle, Tree, Water,
Building flooded, Building non-flooded, and Pool. There are three sets of images
in the dataset: 481 images for validation, 422 images for testing, and 1,440 images
for training. We reduced the images to 416 x 320 dimensions during training due
to memory constraints. The model was trained for 120 epochs with a batch size
of 16.

We initiated the training phase by employing the Adam optimizer, with an
initial learning rate (LR) of 0.001, and applied the reduced LR on the Plateau
condition, which lowered the LR by 0.1 if the validation loss did not improve
after 40 epochs. To save the optimal model weights depending on the validation
loss, we also used the Model Checkpoint callback. We employed mIoU as the
evaluation metric for the semantic segmentation and categorical cross-entropy
as the loss function.
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Pseudo-thermal data generation. We utilized the Cycle Generative Adver-
sarial Network (CycleGAN) [5] to generate pseudo thermal images from the RGB
images. CycleGAN is a method known for its capability in unpaired image-to-
image translation tasks. Its objective is to acquire the knowledge of a mapping
function G : U → V between an output image in a target domain (thermal
images, V) and an input image from a source domain (RGB images, U) without
the need for paired training examples. This approach was chosen due to its effec-
tiveness in translating images between different domains, which is particularly
useful in our scenario where paired training examples are not available. The idea
behind this pseudo-thermal image generation is to transfer the knowledge from
pseudo-generation task to U-Net segmenter for efficient latent feature extraction
from original RGB images.

To train the CycleGAN, we utilized RGB images from multiple datasets
[3,22,23], and thermal images from other datasets [22–26]. The use of multiple
datasets was motivated by the diversity and richness of the data they provided,
improving the trained model’s ability to perform well on new, unseen data. Using
a 0.0002 learning rate and a batch size of 1, the CycleGAN was trained across 50
epochs. To balance the trade-off between training speed and model performance,
these parameters were selected.

The CycleGAN utilizes cycle consistency, adversarial, and identity losses.
The cycle consistency loss makes sure that when an image is translated from one
domain to another and back again, the original image is retained. The generated
images are guaranteed to resemble real photos in the target domain due to the
adversarial loss. The color distribution between the input and output images is
preserved by the identity loss.

The definitions of identity loss (Lidt), adversarial loss (LGAN), and cycle
consistency loss (Lcyc) are as follows:

Lidt(G,F ) = Ev∼pdata(v)[||F (v)− v||1] + Eu∼pdata(u)[||G(u)− u||1]
LGAN(G,DV , U, V ) = Eu∼pdata(u)[log(1−DV (G(u)))] + Ev∼pdata(v)[logDV (v)]

Lcyc(G,F ) = Ev∼pdata(v)[||G(F (v))− v||1] + Eu∼pdata(u)[||F (G(u))− u||1] (1)

CycleGAN aims at minimizing the following loss function:

L(G,F,DU ,DV ) = LGAN(F,DU , V, U)+LGAN(G,DV , U, V )
+λLcyc(G,F ) + μLidt(G,F ) (2)

Here, G and F are the mapping functions, DV and DU are the discriminators for
V and U respectively, V and U are images from the target and source domains,
λ and μ are hyperparameters.

These loss functions assist CycleGAN in developing a reliable relationship
between the RGB and thermal image domains, ensuring the generated thermal
images are realistic and maintain structural similarity to the input RGB images.
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Subsequently, we employed the trained CycleGAN network to generate ther-
mal images corresponding to the RGB images, providing us with a comprehensive
dataset for further analysis.

Fig. 2. An illustration of the Flood Damage Severity Architecture.

Regression. We created a new dataset of size 310 for the regression task
using the Floodnet [3] dataset. We manually labeled ground truth values for
310 images. Non-flooded images were labeled as 0, while flooded images were
divided into four severity levels: 0.25, 0.5, 0.75, and 1, focusing on build-
ings, roads, and vehicles affected by the flood event. The dataset consists
of 56 images for testing, 64 for validation, and 190 for training. We used
Mean Absolute Error as the evaluation metric and Mean Square Error as the
loss function for the regression model. The model had 50 epochs of train-
ing with a batch size of 16. The dataset can be accessed through this link:
https://github.com/Tarakes796/Flood-damage-severity-estimation-dataset.

https://github.com/Tarakes796/Flood-damage-severity-estimation-dataset
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3.2 Model architecture

The suggested model framework comprises three primary elements: U-Net seg-
mentation networks for feature extraction, CycleGAN for pseudo-thermal modal-
ity generation, and a fully connected regression network for flood severity pre-
diction. Fig. 2 illustrates the model architecture of our model.

U-Net Segmentation Networks. The first U-Net segmentation network (U-
Net 1) is fed with RGB images, and features are extracted from the decoding
layers with dimensions (BS, 80, 104, 64), (BS, 160, 208, 32), and (BS, 320,
416, 16) for each layer, where BS is the batch size. Global average pooling is
then applied to each set of feature maps, resulting in pooled feature maps with
dimensions (BS, 64), (BS, 32), and (BS, 16) respectively. The segmented out-
put images from U-Net 1 (trained on the FloodNet dataset) provide detailed
spatial information about the flood scene. Next, the RGB images are fed into a
CycleGAN-based generator to convert them into thermal images. By doing this
step, the model becomes more generalizable across various imaging modalities.
The generated pseudo-thermal images are then processed by the second U-Net
segmentation network (U-Net 2) which is exactly same as U-Net 1 model, and
thermal features were extracted from the decoding layers with similar dimensions
as the RGB features. RGB features and thermal features were saved separately.

Feature concatenation. RGB features and thermal features are concatenated
to create fused features. This step combines spatial and thermal information,
enhancing the model’s understanding of flood severity factors. The concatenated
features form a single feature vector for each image, resulting in a final feature
vector of dimensions (BS, 224).

Regression network. The concatenated features are fed into a custom fully
connected neural network for regression. This network has three dense layers with
32, 16, and 1 neuron(s) each; the output layer has a sigmoid activation function,
while the hidden layers have ReLU activation functions. The regression network
is trained using the concatenated features as input and Mean Squared Error
(MSE) as the loss function:

MSE =
1
m

m∑

q=1

(yq − ŷq)2 (3)

where yq is the qth sample’s actual value, ŷq is the qth sample’s predicted value,
and m is the number of samples in the dataset. MSE is useful in regression tasks
as it penalizes larger errors more heavily, making it suitable for measuring the
difference between predicted and actual continuous values.

The sigmoid activation function in the output layer of the regression net-
work is defined as σ(r) = 1/(1 + e−r). It maps the network’s output to a value
between 0 and 1, allowing for the prediction of continuous values within this



54 T. R. Landa and T. Sandhan

range. This activation function is well-suited for tasks where the output needs
to be interpreted as a probability or a continuous value within a specific range.

This model architecture leverages both semantic and thermal information to
enhance the prediction of flood severity levels in aerial flood scene images.

4 Experiments and Results

4.1 Evaluation Metrics

Mean Intersection over Union. For evaluating the accuracy of object detec-
tion or segmentation models, a commonly used statistic is the mean Intersection
over Union (mIoU), which measures the degree of overlap between the regions
of interest in the ground truth and the predictions. It is given as,

mIoU =
1
N

N∑

j=1

TPj

FNj + FPj + TPj
(4)

where TP is true positives, FN is false negatives, FP is false positives, and N is
the total number of classes.

Mean Absolute Error Regression model performance is commonly evaluated
using the Mean Absolute Error (MAE), which computes the average absolute
difference between values that are predicted and those that are actual. Better
performance is indicated by a lower MAE, while full consistency between pre-
dicted and actual values is shown by a value of 0. The MAE formula is:

MAE =
1
m

m∑

q=1

|yq − ŷq| (5)

where yq is the qth sample’s actual value, ŷq is the qth sample’s predicted value,
and m is the number of samples in the dataset.

4.2 Results on Test Set

Semantic Segmentation Results. After implementing the data process-
ing and training settings described earlier, our semantic segmentation model
achieved a mIoU score of 60.16% on the test dataset. This indicates the effec-
tiveness of our approach in accurately segmenting the various classes in the
Floodnet [3] dataset.

To visually demonstrate the performance of our semantic segmentation
model, Fig. 3 showcases qualitative results. The figure illustrates how our model
accurately identifies and segments different classes. These results visually confirm
the model’s capability to differentiate between different classes and accurately
segment flood-related objects in high-resolution images.
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Fig. 3. Semantic segmentation results of our re-trained U-Net base model and com-
parison with ground truths.
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Regression Model Results. We adopted the model suggested by Nia et al.
[21] as the reference model for our dataset, utilizing VGG16 [27] as the feature
extractor to transmit features to the regression model. We assessed our model’s
performance against several cutting-edge backbone models for feature extraction
in the regression task. Table 1 presents a comparison of Mean Square Error
(MSE) and Mean Absolute Error (MAE) between our proposed method and
state-of-the-art methods, while Table 2 displays the comparison of the MSE and
MAE for different backbone models.

Table 1. Comparison of MSE and MAE with State-of-the-Art Methods.

Model MSE MAE

Nia et al. [21] 0.023 0.095
Ours 0.008 0.053

Table 2. Comparison of MSE and MAE for different backbone models.

Backbone Model MSE MAE

ResNet50 [28] 0.010 0.059
MobileNetV3Small [29] 0.015 0.070
EfficientNetB0 [30] 0.014 0.063
DenseNet121 [31] 0.009 0.058
InceptionV3 [32] 0.125 0.205
Xception [33] 0.048 0.133
Ours 0.008 0.053

Our model achieved an impressive MSE of 0.008 and MAE of 0.053, outper-
forming all other models. Our fused network model demonstrates superior per-
formance compared to both the baseline VGG16 [27] model (Nia et al. [21])
and other backbone models. Notably, the DenseNet121 [31] backbone performs
well individually, but our fused approach using simple U-Net architecture still
outperforms it. Several factors contribute to the superior performance of our
model. One of the key aspects is the use of thermal images, which possess valu-
able distinguishing characteristics. Specifically, they highlight warm objects such
as humans, animals, and hot vehicles, hot buildings which are typically the focus
of attention in disaster management scenarios. These thermal features provide
additional information that is not available in RGB images, thereby enhancing
the model’s capability to estimate flood damage severity.

In our methodology, we used a U-Net model (U-Net 2) that is fed by the
thermal images to extract these thermal features. This U-Net 2 acts as an effi-
ciency booster for our overall network, leading to an increase in performance.
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This highlights the effectiveness of combining features from multiple sources for
more accurate regression in flood damage severity estimation. Fig. 4 shows the
testing input samples and their corresponding predicted labels produced by our
model.

5 Ablation studies

Our study on flood damage severity prediction using multimodal aerial imagery
involved several key experiments and analyses. Here’s a structured overview of
our work based on the experimental flow:

5.1 Experiment 1: RGB Images

Trained a U-Net [4] using the FloodNet [3] dataset for semantic segmentation.
Created a dataset of 310 images for regression. Extracted feature maps for RGB
images using the trained U-Net. Fed the RGB feature maps to a custom fully
connected network for flood damage severity prediction. Evaluated performance
using MSE and MAE.

5.2 Experiment 2: Pseudo-Thermal Images

Generated pseudo-thermal images from RGB images using the CycleGAN [5].
Extracted feature maps for pseudo-thermal images using the trained U-Net [4].
Fed the pseudo-thermal feature maps to a custom fully connected network for
flood damage severity prediction. Evaluated performance using MSE and MAE.

5.3 Experiment 3: Fused (RGB + Pseudo-Thermal) Images

Concatenated feature maps of RGB and pseudo-thermal images. Fed the fused
feature maps to a custom fully connected network for flood damage severity
prediction. Evaluated performance using MSE and MAE.
Results and Analysis: Table 3 contains the performance comparison of Mean
Squared Error (MSE) and Mean Absolute Error (MAE) for flood damage severity
prediction using different input modalities (RGB, Pseudo-thermal, and the fused
(RGB + Pseudo-thermal)).

The fused results demonstrate the significance of our proposed model archi-
tecture in effectively leveraging multimodal information for improved flood dam-
age severity prediction in aerial imagery. They also show the importance of
combining different data modalities for more robust predictions in disaster man-
agement scenarios.
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Fig. 4. Illustration of testing input samples and predicted labels by our model. The
first two columns represent the inputs to our model, the true label is displayed in the
third column, and the estimated damage severity level is shown in the final column.
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Table 3. Performance comparison of Mean Squared Error (MSE) and Mean Absolute
Error (MAE) for flood damage severity prediction using different input modalities:
RGB, Pseudo-thermal, and the fused (RGB + Pseudo-thermal) approach.

Input data MSE MAE

RGB 0.039 0.100
Pseudo-thermal 0.056 0.156
Fused(RGB + Pseudo-thermal) 0.008 0.053

6 Conclusion

In our work, we proposed a novel method for estimating flood damage severity
on aerial flood scene images using a combination of semantic segmentation and
regression techniques. Leveraging the FloodNet [3] dataset, we trained a U-Net
[4] model for semantic segmentation, generated pseudo-thermal modality via
CycleGAN [5], and a custom fully connected network for regression, achieving
significant improvements in accuracy compared to existing methods.

Our semantic segmentation model attained a mIoU score of 60.16% on the
test dataset, demonstrating its effectiveness in accurately segmenting flooded
areas, buildings, roads, and other objects. Additionally, our regression model
outperformed state-of-the-art methods, achieving an impressive MSE of 0.008
and a MAE 0.053.

By combining features from RGB and thermal images, our approach provides
valuable insights into flood damage severity, aiding disaster response teams in
managing operations during emergencies. Our work not only enhances the under-
standing of flood-affected areas but also demonstrates the potential of deep learn-
ing and fusion techniques in disaster damage assessment.

Future work could explore further improvements in accuracy by incorporating
additional features or by refining the training process. Additionally, extending
this approach to other types of natural disasters and integrating real-time data
could enhance its applicability in disaster management scenarios.
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Abstract. In recent years, Recurrent Neural Networks (RNNs) have
been extensively used for video frame prediction. The use of attention
in recurrent networks helps in better memory utilization and to date,
only a few recent video frame prediction models have used attention to
capture long-term motion information. Still, these methods fail to pre-
serve the structural consistency resulting in blurry output and fading
out of smaller objects. We propose a new RNN-based spatio-temporal
prediction unit with attention termed Spatio-Temporal Attentive Fusion
Unit (STAFU) that combines temporal motion information and spatial
appearance information respectively through a temporal attention unit
and a spatial attention unit to preserve long-term sequence informa-
tion at high resolution. The outputs from the two attention units are
next aggregated through a hybrid aggregation unit with a wide recep-
tive field for both the spatial and temporal features, which causes high-
quality video prediction. The above units are embedded within a GAN
framework that is trained in an end-to-end fashion. Our approach has
been evaluated on three public datasets, namely Moving-MNIST, KTH-
Action, and ETHZ, and interesting results have been obtained. A com-
parative study with other recent models shows that, on average, our
model performs better and more consistently than the others in terms of
the different metrics, namely MSE, MAE, SSIM, PSNR, and LPIPS.

Keywords: Spatio-Temporal Attentive Fusion Unit · Recurrent
Model · Hybrid Aggregation · Video Frame Prediction

1 Introduction

Video frame prediction deals with the prediction of future frames in a video given
a few previous frames. The topic has gained increasing attention in recent years
due to its wide range of applications such as robotics, autonomous vehicles, per-
son recognition, and surveillance. For instance, in robotics video prediction can
be used to plan future trajectories and avoid obstacles whereas in autonomous
vehicles video prediction can aid in predicting the behavior of other vehicles on
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the road and prevent collisions. In surveillance, video prediction can be used to
anticipate potential threats and provide early warning signals. Video prediction
can help gain insights into the underlying structure and dynamics of a video
sequence through which the complex interactions between different objects and
elements in the video can be better understood, which is useful for tasks such
as object tracking and recognition.

Recurrent Deep learning-based models for video prediction and related appli-
cations [25–27] have achieved impressive results in recent years. However, due
to a smaller temporal receptive field, RNN units cannot retain long-term inter-
frame motion information. To mitigate this problem, a few approaches use 3D
Convolutional Neural Networks (CNNs) to widen the temporal receptive field,
e.g., [26]. However, the increase in kernel size leads to high computational load.
Further, a few methods enhance the conventional Mean Squared Error (MSE)
loss to generate future frames, while others use Generative Adversarial Net-
work (GAN) based methods, e.g., [11], [9] for better-generalized predictions with
sharper visual quality. Most existing methods suffer from heavy computational
overhead. The work in [3] uses an attention module that pays different levels of
attention to the past temporal states, effectively widening the temporal recep-
tive field while keeping a low computation load. However, it fails to generalize
well in case of small inter-frame changes and overfits the training data due to
mainly MSE loss. Existing methods of video prediction are either computation-
ally intensive or fail to make long-term predictions effectively. In this paper, we
improve upon the existing approaches in these aspects and make the following
contributions:

– We propose a new GAN-based framework to train a video frame prediction
model with dynamic adversarial loss for sharper frame reconstruction. Our
GAN-based framework leverages dynamic adversarial loss to enhance frame
sharpness, reducing blurriness over extended sequences. This results in more
accurate and visually coherent long-term predictions compared to existing
methods.

– We develop a new spatial attention module to capture localized attention
between the highest motion areas in the current and previous frames.

– We develop a new hybrid aggregation module for an effective aggregation of
the spatial and temporal states using two fusion strategies.

2 Related Work

The approach by Barbaeizadeh et al. [2] first explores the applicability of stochas-
ticity in video prediction. In [5], a latent variable is constructed at every time
step from observing frames with the help of deterministic estimation, followed
by maximizing the likelihood of prior distributions. Villegas et al. [24] used a
convolutional LSTM to minimize inductive bias without reducing the network
capacity. Lee and Zhang [11] enclosed an adversarial loss inside a stochastical
framework to maintain the naturalness of future frames. Shrivastava et al. [19]
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proposed a model using the Gaussian Process to learn prior frames by con-
serving a probability distribution over observed frames. Akan et al. [1] further
inherited the latent variables as static and developed an explicit motion model
that remembers observed information’s static and dynamic values by maintain-
ing appearance and motion distributions.

The use of memory cells enhances the ability of Deep Learning modules
to anticipate future observations from historical events. In [15], Michalski et
al. developed a pyramid structure of recurrent networks by stacking multiple
gated autoencoders to represent the syntax of time series, which showed bet-
ter generalization results compared to standard RNNs. Later in the same year,
Srivastava et al. [20] defined an LSTM-based encoder-decoder predictive model
that encodes the extracted percepts of video sequences into a fixed embedded
representation and learns to decode probable future frames from that encoding.
The ConvLSTM [17], an improved version of FC-LSTM [20], adapted the convo-
lutional structures in the different state layers forming an end-to-end encoding
structure. This work was further extended to develop TrajectoryGRU [18] which
can learn the location-variant structure of recurrent cells with the help of Gated
Recurrent Units. Another work, namely [8], adopted the hierarchical architec-
ture of neural networks with 2D RNNs to avert the compounding errors in the
pixel-level recursive prediction, producing high-level pixel spaces.

The above-mentioned approaches focus on retaining the motion information
(inter-frame dependencies), neglecting spatial intra-frame information preser-
vation like appearance features. In [27] by Wang et al., intra-frame temporal
and spatial features are captured through a unified memory cell. Wang et al.
further extended this work [25] by maintaining a quick alternative route for gra-
dient flows, thereby capturing long-range information. Later, Wang et al. [26]
integrated a 3D Convolution unit with Recurrent networks while maintaining a
gate-controlled unit, named E3D-LSTM, that showed better information preser-
vation for both short-term and long-term features. Another improved version of
[27] is presented in [28] that retains long-range features through the introduc-
tion of a decouple loss in ST-LSTM cells. Moreover, to improve the local and
global dynamics of long-range videos, SA-CLSTM [14] was proposed by Lin et
al. by coupling a Self Attention Mechanism layer with standard Convolutional
LSTM. Lee et al. [13] extended the bottleneck of typical RNNs in long temporal
dependencies by introducing a Long Term Context (LTC) memory. To capture
the inter-frame motion information of video prediction, a Motion Aware Unit
(MAU) [4] was proposed where attention and fusion modules are used to learn an
attention map between the present and historic frames. An Augmented Motion
Information aggregates the information accumulated at the attention map and
forwards it to the fusion module for final prediction. An improved version of
MAU [4], i.e., STAU was introduced in [3] where not only the spatial informa-
tion can supervise the temporal information in the temporal domain, but the
temporal information can also supervise the spatial information in the spatial
domain. The work in [23] combines spatial and temporal downsampling to effec-
tively predict abstract representations such as human poses or locations over long
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time horizons, while still maintaining a competitive performance for video frame
prediction. In another work, namely [30], an end-to-end trainable two-stream
video prediction framework is introduced termed Motion-Matrix-based Video
Prediction (MMVP) to perform video prediction seamlessly while maintaining
appearance consistency across the frames. A new recurrent cell termed SwinL-
STM is presented in [22] that replaces the convolutional structure in ConvLSTM
with the self-attention mechanism of SwinTransformer.

After extensive study of the previous works, it seems most of these are unable
to extract useful information from the limited information field and suffer from
over-fitting towards recent information only. Although the work in [4] can effec-
tively extract past information and fuse this motion information with the current
spatial appearance information using attention mechanisms, it fails to maintain
structural consistency and the smaller motion entities tend to gradually get elim-
inated from the predictions. The approach in [3] is also unable to extract useful
information from spatio-temporal modules at a high resolution. In this work, we
consider solving the above problem by integrating attention mechanisms within
an RNN framework to address this issue. The STAFU aims to enhance the mem-
ory capabilities of RNNs by employing a temporal attention module to capture
the long-term motion information through a temporal attention unit that broad-
ens the temporal receptive field without increasing computational load, a spa-
tial attention module to preserve the structural consistency and finer details by
focusing on high-motion areas within frames through a spatial attention unit
and a hybrid aggregation module that fuses the spatial and temporal features to
maintain pixel consistency and prevent the fading away of smaller objects. By
embedding these units within a GAN framework, the proposed method seeks to
leverage the strengths of RNNs while mitigating their limitations, resulting in
improved video frame prediction quality.

3 Proposed Method

We aim to develop a Generative Adversarial Network (GAN)-based frame pre-
dictor that utilizes information from previous consecutive t frames, denoted
by F1, F2, ..., Ft, to predict the (t + 1)th frame (which is either missing or
occluded), denoted by ̂Ft+1. Let P denote the batch size at a particular instant
of time while training the model, and θ denote the model trainable parameters.
If ̂F b

t+1 and F b
t+1 respectively represent the predicted and ground truth for the

(t + 1)th frame corresponding to the bth pattern of the batch, then after the
batch training phase, the optimized network free-parameters θ∗ are obtained as
θ∗ = argminθ

∑P
b=1 ||F b

t+1 − ̂F b
t+1||2 through back-propagation based on ADAM

optimizer. θ∗ gets fine-tuned as the batch training process continues and the final
optimal set of values for θ∗ is obtained once training is done for all the batches.
The overall framework of our proposed network is illustrated using Fig. 1. It
follows a GAN-based architecture with a generator (G) and a discriminator (D).
The generator takes as input a frame Ft and predicts the immediately succeeding
frame Ft+1, which we denote as ̂Ft+1. This prediction is carried out by encoding
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the frame Ft through an Encoder that consists of a set of convolutional layers and
fusing it with a set of previous spatial and temporal states using a recurrent net-
work to obtain a prediction about the next frame in an encoded form, and finally
using a Decoder to transform the predicted encoding back to the image space.
The recurrent network used here consists of L layers of STAFU that effectively
fuse the spatial and temporal memory states by preserving structural as well as
long-term motion information. The skip connections between the convolutional
and corresponding de-convolutional layers help to recover fine-grained structural
details in the prediction. The model framework also consists of a discriminator
network, where the output frame from the generator network is fed along with
the ground-truth frame separately. The discriminator network thus produces two
encoded outputs that are further used for adversarial loss computation.

Fig. 1. Overall framework of the proposed GAN-based architecture

3.1 Generator

The generator network consists of an encoder network E, a decoder network D
(both of which are based on CNNs) and a set of L Spatio-Temporal Attentive
Fusion Units (STAFU s) (R1, R2, ..., RL), as shown in Fig. 2. A spatial and
temporal memory is maintained and updated using the outputs from STAFU
(to be discussed in Section 3.1) at each layer at every time step by various gating
mechanisms. The encoder part of the generator takes as input one frame at a
time (say, frame Ft) and produces an encoded spatial state of the frame denoted

Fig. 2. Overall framework of the proposed generator module
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by S0
t at the initial layer (i.e., Layer-1 with reference to Fig. 2). This spatial

state is given as input to a recurrent unit denoted as R1 in the figure, along with
the previous τ spatial and temporal states to compute self-attention, denoted as
St−τ+1:t−1 and Tt−τ :t−1, respectively. The outputs from R1 are matrices S1

t and
T 1

t , out of which T 1
t is updated and appended in the temporal memory to be

used for the next time step, i.e., while predicting Ft+2 from Ft+1. On the other
hand, S1

t is used by the STAFU in the next layer (denoted as R2 in the figure)
and also appended to the spatial memory. The contents of the spatial memory
corresponding to the previous τ time steps of the preceding layer (denoted by
S1

t−τ+1:t−1 in Fig. 2) along with the previous τ temporal states of the current
layer available in the temporal memory (denoted by T 2

t−τ :t−1 in Fig. 2) are also
input to the R2 unit. Similar to R1, the STAFU R2 also generates two outputs,
namely T 2

t which is saved in temporal memory and S2
t which is used as input

to STAFU R3 and also saved in the spatial memory for further use. The spatial
and temporal states for all the L layers of STAFU s are computed similarly.

Encoder The encoder network is a fully convolutional network that accepts one
frame at a time (say, Ft) and outputs an encoded spatial state (say, St). Let us
assume that the frame Ft with dimensions (H,W,C) is input to the encoder and
the encoded spatial state St output by this network has dimensions (H ′,W ′, C ′).
Here, C and C ′ denote the number of input and output channels respectively,
whereas H and W correspond to the image height and width before the encoding
step, and H ′ and W ′ denote the image width after the encoding step. Usually
H ′ < H, W ′ < W , and C ′ > C. The layer-wise architecture of the encoder is
shown in Fig. 3. This figure also depicts the layer-wise transformation of an input
mono-channel frame of dimensions 64×64×1 to the final encoded spatial state
of dimensions 16×16×64. The symbols K, S, and P in the figure respectively
denote Kernel size, stride, and padding.

Fig. 3. Graphic model of the encoder unit displaying all the Convolution layers
along with their parameters used for feature extraction and frame compression. The
negative slope coefficient for LeakyReLU is set to 0.2.

Spatio-Temporal Aware Unit As explained using Fig. 2, the generator con-
sists of L layers of our proposed STAFU. Each of these units has an identical
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architecture and consists of (i) a spatial attention module, (ii) a temporal atten-
tion module, and (iii) a novel hybrid aggregator that combines information from
the two attention modules, as shown in Figs. 4(a)-(d).

Fig. 4. (a) Spatio-Temporal Attentive Fusion Unit (STAFU ) showing the abstract
recurrent unit architecture, (b) Spatial Attention Module, (c) Temporal Attention
Module, (d) Hybrid Aggregation Module for combining enriched spatial and temporal
information to produce the spatial and temporal states at the current layer for the
current time step

Spatial Attention Unit: The architecture of the spatial attention unit of the pro-
posed STAFU is shown in Fig. 4(b). At a particular layer l, the spatial state
Sl−1

t from the encoder (or, from the previous layer) is input to this unit within
the STAFU Rl along with a spatial state from the previous time step denoted by
Sl−1

t−1. At each time step, the squared Euclidean distance between the current and
previous spatial states is computed which is further passed through sigmoidal
activation (σ) to generate a spatial attention map SAM as follows:

SAM = σ(‖Sl−1
t − Sl−1

t−1‖22). (1)

SAM is next aggregated with the previous spatial state Sl−1
t−1 and current spatial

state Sl−1
t using a spatial fusion gate Usf to obtain a superior spatial state
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representation S′, as explained using the following expression:

S′ = Usf � Sl−1
t + (1 − Usf ) � SAM � Sl−1

t−1. (2)

Here, Usf=σ(̂Sl−1
t ), where σ is the sigmoidal activation and ̂Sl−1

t =Wsf*Sl−1
t ,

Wsf being the weights of the convolutional kernel. The proposed spatial attention
unit mainly focuses on specific parts of the frame that contain high-motion
information. It also helps preserve smaller moving entities in the frame from
fading away and maintains pixel consistency while concentrating on intrinsic
intra-frame motion correlations.
Temporal Attention Module: The initial spatial state that is output from the
encoder is input to this temporal attention module (TAM) which is another
sub-module of the STAFU. The module has three more inputs which are ini-
tially zero matrices but are updated along the pipeline flow. These inputs are
the temporal state from the previous time step and a limited set of previous
τ spatial and temporal states used for computing self-attention as observed in
Fig. 4(c). These states are updated and controlled by the gating mechanisms.
The module solves one of the most challenging tasks of broadening the tempo-
ral receptive field without increasing the kernel size for long-term information
preservation and prediction. Let the set of previous temporal states from time
step t−τ to t−1 for layer l be denoted by T l

t−τ :t−1. Further, let us use τ to refer
to the number of past temporal states, ∗ and � to denote the convolution and
Hadamard operator respectively, and TAI to denote the attention information for
long-term temporal information. Then, TAI is computed as: TAI=

∑τ
i=1 αiT

l
t−i,

where, αi is the attention score for the temporal state Ti and is computed as
αi=Φ(

∑τ
j=1 Sl−1

t−j+1 � ̂Sl−1
t ). Here, Φ denotes the softmax function and ̂Sl−1

t =
Ws* Sl−1

t . TAI is accumulated with the preceding temporal state using a tem-
poral fusion gate Utf to obtain a superior temporal state T ′, given by:

T ′ = Utf � T l
t−1 + (1 − Utf ) � TAI , where Utf = σ(Wtf ∗ T l

t−1). (3)

Hybrid Aggregation Module: This module effectively fuses the enhanced spatial
and temporal states, namely S′ and T ′ obtained respectively by applying (2) and
(3), thereby exploiting the broadened receptive field. Unlike the existing method
[4] which only fuses the motion information from the aggregated temporal state
and the appearance information from the spatial state, we employ an improved
aggregation technique to fuse general appearance, motion information as well as
spatial structural changes to preserve better information related to the motion
of every moving entity in the frame with different levels of attention. The final
spatial output from this module has a high level of spatial information that the
discriminator network may effectively utilize to produce a much sharper output.
Our proposed hybrid aggregation module is schematically represented using Fig.
4(d). With reference to the figure, S′ and T ′ are fed into convolution layers where
each input is convoluted with four sets of kernels of the same dimensions. One
of the convolution operations is represented as S′

sc = S′ ∗ Wsc. Similarly, S′
ss,

S′
su, S′

st and T ′
tc, T ′

tt, T ′
tu, T ′

ts are generated by convolving with the respective
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kernels namely Wss, Wsu, Wst and Wtc, Wtt, Wtu, Wts weights. Wsu and Wtu

are activated using a sigmoidal function to create update gates for respective
spatial and temporal states represented in (4):

Usu = σ(S′
su) and Utu = σ(T ′

tu), (4)

which helps to control the information fusion ratios from S′
ss, T ′

ts and T ′
tt, S′

st.
The respective fusions generate Se and Te which is the final output after the
first level of aggregation. The fusion equations are given below (5):

T̃ = Utu�T ′
tt+(1−Utu)�S′

st and S̃ = Usu�S′
ss+(1−Usu)�T ′

ts. (5)

Here, S̃ contains motion information fused into spatial information and T̃ is an
updated temporal state with attention information that is used for the next pre-
diction. S̃ can readily be decoded using the decoder to produce the next frame
(Ft+1). However, the pixel consistency and localized motion are not focused in
these aggregation so we employ yet another aggregation technique which acti-
vates the S′

sc and T ′
tc using the tanh function, as shown next:

Tc = tanh(T ′
tc) and Sc = tanh(S′

sc). (6)

These intermediate outputs are controlled using a forget gate constructed using
sigmoidal activation of T ′

ts and S′
st (7) to generate estimated output states

(denoted by Se and Te respectively) as described in (8),

Utf = σ(S′
st) and Usf = σ(T ′

ts). (7)

Te = Utf �T ′+Tc�Utu and Se = Usf �S′+Sc�Usu. (8)

These estimations are merged with the corresponding outputs from aggregation-
1 using an adaptive function with learnable parameters to finally generate the
spatial and temporal state for the current layer and time step as shown next:

T l
t = Wt�T̃+(1−Wt)�Te, and Sl

t = Ws�S̃+(1−Ws)�Se. (9)

Decoder The last layer of the STAFU produces the spatial state SL
t that is

input to the decoder network composed of transposed 2D CNNs to produce the
predicted frame at the next time step ̂Ft+1 (refer to Fig. 1). The decoder archi-
tecture mirrors the encoder architecture, i.e., the transposed 2D convolutions
are arranged in a way that exactly reflects the encoder network with double
the number of filters such that a skip connection between each corresponding
layer of encoder-decoder is possible. Mathematically, ̂Ft+1 = Decoder(SL

t ). The
decoder-generated frames and the ground truth are used to compute standard
L1 loss and MSE loss denoted by LL1 and LMSE , respectively.
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3.2 Discriminator

The discriminator network that learns a function denoted by D, is composed of
the encoder and stacked layers of STAFU s (shown in Fig. 1). It takes any given
frame (Ft) and produces a concatenated spatial and temporal state information
XL

t which is used in adversarial loss function for comparing the real and gen-
erated spatial states (appearance) along with the temporal trend (motion). The
following equations describe the generation of XL

t from Ft:

SL
t , TL

t = D(Ft) and XL
t = Concat(SL

t , TL
t ). (10)

Adversarial learning is employed to get sharper output frames. The adversarial
loss function is given by:

min
G

max
D

LAdv(D, G) = Ex∼ptrue(x)[logD(x)]+Ez∼ppred(z)[log(1−D(G(z)))] (11)

where x = Ft and z =
{

Ft−1, η < teacher forcing ratio
̂Ft−1, otherwise.

(12)

Here, Ft−1 is the previous true frame and ̂Ft−1 is the previously generated frame.
At the early stages of model training, the β value is kept much higher with a
lower value of the α parameter because the penalization for a blurry output is
not required. The overall loss of the model is given by:

Lossmodel = αLAdv + βLMSE + γLL1, (13)

where α, β, and γ are constants used to control the weightage of the different
loss terms.

4 Experiments

All experiments have been carried out on a system having 96 GB RAM, an i9-18
core processor, and three GPUs: a Titan Xp with 12 GB RAM, 12 GB frame-
buffer memory, and 256 MB BAR1 memory and two GeForce GTX1080Ti with
11 GB RAM, 11 GB frame-buffer memory, and 256 MB BAR1 memory. The
following subsections describe the datasets used in the study and evaluation
metrics, implementation details, experiments and analyses of results obtained,
and also some cross-dataset experiments. Our STAFU has a total of 86M param-
eters. We use three datasets with sequential actions for evaluation.

– Moving MNIST [12]: This dataset contains two handwritten digits sampled
from the static MNIST dataset that move with different velocities and bounce
off the edges of the image. The digits pass through each other on collision.
For the experiment, 7,000 sequences have been used for training and 3,000
sequences have been used for testing.
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– KTH Action [16]: It contains six types of human actions: jogging, walking,
running, waving, clapping, and boxing. These actions are performed by 25
people in four different scene settings. 5686 sequences from this data have
been sampled for training and 2437 sequences are used for testing.

– ETHZ [6]: This pedestrian motion dataset is captured from a stereo rig
mounted on a car, with a resolution of 640×480, and a frame rate of 13-
14 FPS. The pedestrians’ sequences are cropped and resized to 64×64. For
training and testing, 910 and 390 sequences are sampled from this data.

For each of the datasets, we consider 20 successive frames from each sequence,
with each frame cropped (if required) and resized to dimensions 64×64. To deter-
mine an optimal value for τ , we conduct an ablation study for varying values
of τ using a validation set and observe the MSE, MAE, and inference times for
these different values. Corresponding results reported in Table 1 show that with
an increase in τ , both MSE and MAE get lowered implying the prediction accu-
racy increases. However, the inference time gradually gets higher. We consider τ
equal to 7 to be a good balance between prediction accuracy and inference time.

Table 1. Ablation study considering different values for τ with MSE Loss only (10
frames→10 frames) trained for 15 epochs

τ MSE↓MAE↓ Inference Time↓
1 82.7 147.6 20.34
3 82.0 146.1 20.86
5 80.8 144.7 22.71
7 78.0 140.3 24.58
9 75.3 135.3 27.03

A comparative study is next carried out with several recent approaches,
namely [3–5,7,10,11,13,14,22,26–30]. For a fair comparison, each model is
trained from scratch for 100 epochs using the same training set to predict a
video frame from its previous 10 consecutive frames. Further, for each RNN-
based prediction model, two recurrent layers have been used with 64 hidden
units. The results for the compared methods are obtained using our experimen-
tal settings (i.e., training for 100 epochs and observing the metrics for future 10
predicted metrics) using the source code provided by the authors of the respec-
tive papers. The learning rate of our model has been set to 2e−4 with a kernel
size of 5×5 and a stride of 1. Adam optimizer is employed for updating the
model. A maximum batch size of 16 has been used to train all the models. Dur-
ing the first 70 epochs of training of our proposed model, the α and β variables
(refer to 13) are set to 1e−6 and 1 and thereafter till the 100th epoch, these
are interpolated with steps of 10x and 0.1x respectively till α = 1e−3. Table 2
shows comparative results for the trained models averaged over 10 frames for the
Moving MNIST dataset and their inference times when run on the test data to
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Table 2. Quantitative results of different models on the Moving MNIST dataset (10
frames → 10 frames). The scores are averaged over 10 frames.

Model MSE↓MAE↓SSIM↑PSNR↑LPIPS↓Response Time (secs)↓
PredRNN[27] 74.7 124.5 0.878 17.8 7.1 61.00
PredRNNv2[28]73.7 122.7 0.881 18.0 7.0 51.60
E3D-LSTM[26] 89.6 149.7 0.752 17.7 16.9 30.50
SA-CLSTM[14] 139.6 195.7 0.603 14.9 31.3 37.40
LMCNet[13] 91.4 151.8 0.756 17.6 17.2 22.70
CrevNet[29] 98.4 159.5 0.755 16.5 19.9 24.10
PhyDNet[10] 63.4 147.9 0.843 18.8 15.4 21.40
SIM-VP[7] 119.3 174.4 0.814 15.6 19.9 17.60
MAU[4] 52.0 109.3 0.899 20.0 6.6 20.40
SVG[5] 75.7 197.0 0.859 18.3 7.5 20.60
STAU[3] 25.41 87.8 0.917 20.8 5.41 18.00
SAVP[11] 32.52 66.6 0.892 19.53 5.94 19.80
DVG[19] 139.5 192.4 0.618 14.8 29.1 34.00
SwinLSTM[22] 17.7 55.5 0.955 38.9 3.2 19.00
MMVP[30] 93.3 154.6 0.791 17.1 18.7 24.50
Proposed 46.9 84.9 0.920 21.7 5.4 15.40

predict the future 10 frames. The proposed model outperforms all the previous
models, except [22] in all metric scores. The good performance is due to the
high-quality spatiotemporal information extraction of earlier frames and effec-
tive fusion with the enhanced spatial state (appearance). The response time of
our method is also the least among all the compared approaches, which verifies
its computational effectiveness over the others.

The plots in Fig. 5 show per-frame metric plots for all metrics for all models
in consideration. The y-axis denotes the respective metric and the x-axis shows
the frame number. As observed from the plots, the metric scores worsen for
longer predictions for each model. However, the worsening trend seems to be the
least for the proposed model and it outperforms all the previous methods in all
metrics. This is due to the effective attention mechanisms where only the most
relevant information is retained from the past frames during the prediction. The
comparative results for KTH Action and ETHZ datasets are shown in Table 3. In
both cases, the proposed approach outperforms all the other compared methods.
Unlike the observation from Table 2, for these datasets, our model performs
better than SwinLSTM for most of the metrics. The superior performance of
our model for RGB datasets (i.e., KTH Action and ETHZ) is mostly due to
effectively capturing the richness of image features in the three channels of the
RGB images by the proposed spatial and temporal attention modules in STAFU.
For the ETHZ dataset, frame sequences of cropped pedestrians are taken and
the frames are resized to 64×64. The dataset also contains static and dynamic
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Fig. 5. Frame-wise metric plot for different metrics for per frame metric comparison
for different methods on the Moving MNIST dataset

occlusion scenarios. The improved results for the proposed model are due to the
effective fusion of the spatial pixel consistency with the temporal features, and
further due to using the adversarial loss that makes the final prediction sharper.
Fig. 6 shows a visual comparison of different frame prediction models using the
KTH Action data. As observed from the image, the predictions of the proposed
approach are not only in near-perfect synchronization with ground truth frames
but also have maintained the perceptual quality. The superiority in the prediction
quality of our model over the other compared models has been observed for the
ETHZ data as well, but due to space constraints, we could not provide the
comparative results here. Due to the effective utilization of the learned temporal
dynamics, the proposed model can learn much faster and retain correct motion
information for longer predictions. Further, the enhanced quality of the generated
frames is due to the incorporation of spatial attention for pixel consistency and
dynamic adversarial loss. It may be noted that among the datasets used in
the study, KTH Action data has videos with simple pose variations and less
background clutter. Hence, the obtained metrics are quite good for this dataset.
Our proposed spatial and temporal attention modules retain better structural
information for RGB videos than for binary videos. This is because, unlike RGB
data, binary data lacks detailed gradient information that is necessary to capture
complex structural information by our attention modules. Hence, the MSE and
MAE for Moving MNIST data containing binary frames are to some extent high.

We also compare the results stated in the respective papers with the proposed
method in Table 4 for the KTH dataset. Here, also we can see that the best results
obtained using our STAFU are better than those reported in the compared
approaches which is due to the effective fusion of spatial and temporal features.
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Table 3. Quantitative results of different models on the KTH Action and the ETHZ
datasets (10 frames → 10 frames). Metrics are averaged over 10 frames.

Model KTH Action ETHZ
MSE↓MAE↓SSIM↑PSNR↑LPIPS↓ MSE↓MAE↓SSIM↑PSNR↑LPIPS↓

PredRNN[27] 8.04 78.8 0.948 27.0 6.39 40.9 245 0.613 20.00 38.3
PredRNNv2[28] 7.98 75.5 0.951 27.1 6.14 37.1 204 0.646 20.42 36.7
SA-CLSTM[14] 2.38 51.9 0.961 32.3 3.68 35.3 209 0.652 20.63 34.5
LMCNet[13] 1.71 43.7 0.960 33.7 3.62 43.9 252 0.542 19.69 38.8
CrevNet[29] 6.89 71.3 0.950 27.7 6.08 34.6 211 0.693 20.72 28.6
PhyDNet[10] 2.68 53.3 0.955 31.8 5.58 30.9 247 0.716 21.22 33.5
SIM-VP[7] 1.55 40.2 0.968 34.2 3.58 24.7 165 0.724 22.19 25.2
MAU[4] 1.00 39.1 0.977 36.1 3.47 20.9 168 0.763 22.90 24.1
SVG[5] 1.53 41.4 0.969 34.2 3.58 36.8 231 0.684 20.46 29.2
DVG[19] 1.55 33.65 0.970 34.1 3.59 27.8 204 0.724 21.67 27.0
SwinLSTM[22] 5.62 14.57 0.889 34.4 3.13 49.7 298 0.505 19.27 40.1
MMVP[30] 3.17 58.6 0.952 30.4 5.98 26.9 187 0.759 22.16 25.0
Proposed 0.72 31.8 0.981 37.5 2.04 14.5 159 0.834 24.48 22.0

The reasons behind the improved performance of STAFU when scaling from
10→10 to 10→20 on the KTH dataset are:

– Effective Spatio-Temporal Attention Mechanisms: The proposed method uses
Spatio-Temporal Attentive Fusion Units (STAFU), which are designed to cap-
ture and integrate both spatial and temporal features effectively and combine
these through a novel hybrid aggregation module. This dual attention mech-
anism ensures that the model maintains a high level of accuracy even when
the prediction horizon is extended. Focusing on relevant spatial and temporal
cues allows the model to better understand and predict future frames without
losing coherence.

– Robust Feature Representation: The model’s architecture is robust to learn-
ing and representing features across different temporal scales. By efficiently
encoding temporal dependencies and spatial structures, the model can gen-
eralize well even when the prediction task scales from 10→10 to 10→20. This
robustness is particularly important in video prediction tasks where main-
taining temporal consistency is crucial.

– Attention to Temporal Dynamics: The STAFU model’s emphasis on tempo-
ral attention allows it to capture long-term dependencies and motion pat-
terns effectively. This capability is particularly beneficial when scaling the
prediction horizon, as the model can leverage learned temporal dynamics to
maintain performance over longer sequences.

– Adaptation to Dataset Characteristics: The KTH dataset, with its relatively
simple and temporal human actions, suits the strengths of the STAFU model.
The actions in KTH have consistent and predictable temporal patterns, which
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Fig. 6. Comparison results for different methods on the KTH Action dataset

Table 4. Quantitative results of
different models on the KTH
dataset. (10 frames –> 20 frames)

Model SSIM↑ PSNR↑ LPIPS↓
PredRNN[27] 0.839 27.55 0.204

PredRNNv2[28] 0.838 28.37 0.139

SA-CLSTM[14] 0.712 23.58 0.231

LMCNet[13] 0.806 26.29 -

SIM-VP[7] 0.905 33.72 -

MMVP[30] 0.906 27.54 -

MSPred[23] 0.930 28.93 0.032

MOSO[21] 0.822 29.80 0.083

Proposed 0.981 37.5 0.204

Table 5. Ablation study to study the
impact of the different loss terms dur-
ing training using the MNIST data (10
frames→10 frames)

Loss MSE↓ MAE↓ SSIM↑ PSNR↑ LPIPS↓
MSE 84 144 0.84 17.3 12.8

L1 102 153 0.82 16.3 15.7

GAN 202 257 0.56 12.9 12.4

MSE+L1 91 143 0.83 16.9 12.5

GAN+L1 253 325 0.63 12.0 25.1

GAN+MSE 79 142 0.87 17.5 12.4

GAN+L1+MSE 47 85 0.92 21.7 5.4

the model’s spatio-temporal attention mechanisms can capture and predict
accurately over extended horizons.

Other compared methods exhibit slight performance degradation possibly due to
their sensitivity to the increased prediction horizon caused by a lack of effective
mechanisms to capture long-term dependencies, leading to error accumulation
and degradation in prediction accuracy.

Table 5 shows the model performance on training it with different loss set-
tings. The adversarial loss is multiplied by 1e−4 and L1 loss with 0.5 for all
tests. The model was trained for 15 epochs on the Moving MNIST dataset with
the same settings considered in our work. When the loss criterion is individu-
ally employed, we see that for the adversarial setting, the temporal and spatial
dynamics are penalized for sharper frame generation which results in poor accu-
racy, while for MSE and L1 loss the accuracy is good. With the weighted com-
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Table 6. Ablation study on the Moving MNIST dataset of different core submodules
of the proposed model (10 frames→10 frames)

Modules MSE↓MAE↓SSIM↑PSNR↑LPIPS↓
Temporal Attention 81.5 119 0.85 19.7 9.1
Spatial Attention 50.7 75 0.87 21.7 6.7
Our Hybrid Aggregator46.9 85 0.92 21.7 5.4

bination of all three criteria can achieve the best results. The MSE loss leads to
better learned motion dynamics and higher accuracy while adversarial loss along
with L1 loss leads to better visual quality of output. To study the impact of the
different components of the proposed model, we next conduct a similar training
process by separately considering (i) the Temporal Attention module, (ii) the
Spatial Attention module, and (iii) the proposed hybrid model. Corresponding
results are reported in Table 6 using the Moving MNIST data. It can be seen
from the results that the spatial and temporal attention modules alone are not
effective enough for video prediction. However, the proposed hybrid aggregator
improves over all the metrics compared to the individual attention modules,
which emphasizes the superior frame prediction ability of STAFU.

5 Conclusions and Future Work

We propose a new recurrent architecture termed Spatio-Temporal Attentive
Fusion Unit (STAFU ) that combines spatial and temporal attention features
from previous frames to predict future ones. In this work, the proposed STAFU
is embedded within the generator of a GAN so that the spatio-temporal informa-
tion can be exploited better through adversarial learning. The complete genera-
tor model typically comprises multiple STAFUs. The temporal attention mech-
anism in the STAFU is capable of perceiving long-term temporal information
and effectively aggregating it with short-term dynamics. In contrast, the spatial
attention module perceives the immediate distortion in the spatial states. The
best estimated temporal state is next fused with the enhanced spatial state to
generate the subsequent frame. Information skip has been employed between mir-
rored encoders and decoders to achieve high structural-quality outputs. Exper-
imental results reveal that the proposed model achieves state-of-the-art perfor-
mance on various occluded and occlusion-free spatiotemporal datasets. Experi-
ments show that when trained for 100 epochs, our model always outperforms the
other compared methods. Only in the case of Moving MNIST data, SwinLSTM
has a slightly better performance than ours. In future, focus can be given to
improving the performance of our model for videos with binary frames. A pos-
sible approach can be incorporating dilation at the convolutional layers of the
Encoder to capture better structuralfeatures at different resolutions. Our model
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has 86M parameters and in the future efforts may also be given to making our
model lightweight through the application of knowledge distillation. Research on
developing effective diffusion models for video frame prediction is another scope
for future work.
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Abstract. Neural Radiance Fields (NeRF) excels in generating realistic
novel views of 3D scenes. However, generating these views based on few
input views is challenging because of the insufficient data to recover the
radiance field of the entire scene. To address this, we present a method for
reconstructing NeRF from just three closely spaced input views, lever-
aging both geometric and semantic consistencies. Geometric consistency
is ensured using a cost volume and variance evaluation across voxels,
effectively reconstructing visible areas. For unseen areas, semantic con-
sistency aligns semantic vectors between rendered and input images using
pre-trained feature extractors. Combining these consistencies allows for
precise reconstruction of both seen and unseen areas. Additionally, we
enhance NeRF learning through entropy minimization for volume den-
sity regularization, black blending to eliminate floating artifacts, and
relative learning-rate decay to facilitate learning of volume density. This
multifaceted approach outperforms existing methods that rely on single
consistency types, showing superior quantitative and qualitative results.

Keywords: 3D Reconstruction · Novel View Synthesis · NeRF ·
Few-shot

1 Introduction

3D scene reconstruction from multiple images is crucial for diverse applications
such as navigation, robotics, architectural design, and entertainment. Powered
by the progress of deep learning, neural 3D reconstruction, employing neu-
ral networks for 3D scene synthesis, has attracted attention because it can
incorporate contextual information within a scene. Numerous studies are con-
ducted to learn a good representation of 3D scenes; examples include estimating
signed distance fields from a specific object [13,26], exploring representations
through meshes [19,46], adopting methods to depict 3D spaces with discrete
voxels [12,47], and representing neural light field [39]. Among them, Neural Radi-
ance Fields (NeRF) [9] and gaussian splatting [7] stand out for generating novel
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views of 3D scenes. NeRF uses neural network’s weights to implicitly capture
a scene’s radiance field, while gaussian splatting employs multiple gaussians to
model this field explicitly. Both methods are effective because they rely on a con-
tinuous function that simultaneously represents the structure and appearance of
a scene. This allows for rendering from any camera position and orientation.

Fig. 1. Overview: Our method reconstructs a complete 3D scene from a few closely
taken input images, enabling the generation of images from any viewpoint. High-
accuracy restoration is achieved within the areas covered by the input images due
to geometric consistency. Semantic consistency provides cues for recovering areas the
input images does not depict. This collaboration ensures a comprehensive and seamless
restoration, filling in the unseen spaces with coherent detail.

NeRF employs a differentiable neural network concerning its input. This
inherent differentiability is critical in ensuring spatial coherence and supports
the capability to produce high-resolution rendered images. However, there are
several challenges associated with this method. Primarily, it demands a signif-
icant amount of training images for each scene reconstruction. Furthermore, it
cannot reconstruct regions not present in the training data.

To relax the large number of images required for NeRF, geometric consis-
tency inherent between images are utilized. PixelNeRF [6] and MVSNeRF [1]
incorporate geometry-aware features extracted from training images using pre-
trained convolutional neural networks (CNNs). These features are added as input
to NeRF, provide insights into the scene structure, guiding the network towards
a more accurate reconstruction. Semantic consistency from images are also used
to enhance 3D reconstruction. DietNeRF [3], for instance, leverages semantic
embeddings extracted from images via CLIP [4] encoder to recover regions
not present in the input images. A notable approach, DreamField [2] leverages
semantic embeddings derived from captions utilizing the CLIP encoder for 3D
reconstruction.

Even with geometric or semantic consistency, reconstructing an entire scene
from just three closely spaced images is still difficult. As we will demonstrate
in the experiments, semantic consistency alone is insufficient to reconstruct the
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scene, while geometric consistency alone fails to restore the invisible areas. How-
ever, this problem setting is important, as it is highly realistic, with relevant
applications such as three-camera smartphones and similar camera configura-
tions for mobile robots.

In this paper, we propose a method that achieves the generation of novel
viewpoint images from a full 360◦ range using only three nearby images, each
reflecting a limited region of a nearby object. This is achieved by seamlessly
integrating geometric and semantic consistencies. Each consistency does not con-
tribute independently to separate regions; instead, their collaboration enhances
3D reconstruction across all areas. Fig. 1 provides a broad overview, while Fig. 2
offers a detailed explanation. Geometric consistency ensures precise recovery of
regions illustrated by the three adjacent images. Semantic consistency provides
essential cues for recovering areas this trio of images does not depict.

Specifically, we use a geometric feature vector from 3D-CNN that trans-
fers knowledge from a cost volume derived from 2D-CNN image features. This
ensures geometric fidelity as in MVSNeRF [1], and both networks produce key
features for radiance field estimation. Semantically, we utilize CLIP encoder
embeddings to reconstruct areas not captured by the three input images. Addi-
tionally, incorporating volume density regularization from InfoNeRF [31] elimi-
nates artifacts and enhances object coherence.

Furthermore, we propose black blending and relative learning-rate decay.
In black blending, the rendered image merges with a black background based
on each pixel’s accumulated transmittance, effectively sharpening boundaries,
removing artifacts, and improving coherent object estimation. A black back-
ground is essential because it does not interfere with the foreground color, pre-
serving its semantic meaning. This has minimal negative impact when evaluated
by the CLIP encoder, especially in which the presence of objects is ambigu-
ous. With relative learning-rate decay, we reduce the learning rate of the MLP
for color output compared to the MLP for density, leading to clearer images
and accurate geometry estimation. This shows that in NeRF, learning color pre-
cedes learning geometry, quickly minimizing RGB loss and weakening the signals
needed to estimate geometry.

In the experiments on the Realistic Synthetic NeRF dataset [9], we evaluated
the quality of images ours and existing methods generated from new viewpoints
using three metrics. We confirmed accuracy improvements of 3.44 in PSNR,
0.048 in SSIM, and a reduction of 0.124 in LPIPS compared to those that rely
solely on single consistency.

Our contributions are summarized as follows:

1. A comprehensive method is proposed to reconstruct the radiance field of
a scene from only three closely-shot images, synergistically combining geo-
metric and semantic consistencies. The method also effectively incorporates
entropy minimization, black blending, and relative learning-rate decay for
performance improvement.
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2. Black blending enhances rendered image quality and eliminates the negative
impact of background color in regions where object presence is ambiguous,
as demonstrated both numerically and visually.

3. Relative learning-rate decay is proposed to prioritize volume density over
color, leading to improved geometric recovery as verified quantitatively.

4. Experiments on a NeRF dataset reveal performance improvements compared
to relying solely on semantic or geometric consistency. The experiments also
demonstrate the impact of each consistency as the synthesized viewpoint
diverges from the input viewpoints, as well as the contribution of each loss
for the quality of generated images.

2 Related Work

Various approaches are taken to enable 3D reconstruction with NeRF even with a
small number of images. Below, we review methods that incorporate the benefits
of large-scale pre-trained models into NeRF, methods that integrate geometric
information, and various improvement techniques aimed at enhancing the accu-
racy of NeRF estimation.
NeRF with Priors Recent proposals have leveraged large pre-trained models
as prior to distill a complete radiance field from just a few images. For instance,
methods that improve the quality of NeRF by utilizing GANs [22] or incorporat-
ing the probability distribution of images learned by Diffusion Models (DMs) [24,
38,49] have been introduced [10,11,17,21,25,27,30,33,35,40,43,44,50].

CLIP [4], trained on about 400 million pairs of captions and images through
contrastive learning, can similarly be used as a large pre-trained model for prior
knowledge. CLIPNeRF [14] uses semantic vectors extracted from CLIP, based on
captions or reference images, to modify the color and shape of specific 3D objects.
Blending-NeRF [20] proposes editing scenes to align with captions against pre-
estimated radiance fields. DreamField [2] devises a method to estimate radiance
fields that generate images aligned with text, using semantic vectors extracted
from text by CLIP. DietNeRF extracts semantic vectors from input images to
ensure that rendered images from new viewpoints have similar semantic vec-
tors. As in those studies, we introduce semantic vectors from CLIP so that it
aids recovery of unseen regions. However, estimating radiance fields with only
semantic vectors is challenging.
NeRF with Geometric Information Many methods incorporate geometric
information into NeRF to reduce the number of input images needed. Exam-
ples include using depth from images as geometric information and extracting
geometric information through geometric procedures.

Various methods employ depth as geometric information in different ways.
Techniques include using actual depth images, utilizing depth information
estimated by pretrained models, and verifying the consistency between ren-
dered images from estimated depth and input images. DSNeRF [29] uses real
depth from input images, while SparseNeRF [18] and SCADE [36] use depth
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images estimated by pretrained models for inferring radiance fields. DiffusioN-
eRF [27] leverages gradients of log-likelihood from RGBD image patches pre-
dicted by pretrained models. GeCoNeRF [32] and SinNeRF [16] check consis-
tency through reprojecting depth information between reference and unseen
viewpoints. Although RegNeRF [34] does not use depth information, it applies
regularization to ensure minimal differences between adjacent depths.

Geometric procedures reduce the number of input images for estimating radi-
ance fields by using geometric clues. PixelNeRF, GRF [5], and IBRNet [41] utilize
features extracted from the pixels of input images corresponding to a specific 3D
point as additional information. ReconFusion [44], similar to PixelNeRF, uses
these extracted features as conditions for DM. SparseFusion [50] aggregates geo-
metric information along epipolar lines corresponding to the rays being rendered.
MVSNeRF acquires geometric information by creating a cost volume through
plane sweep from input images. Using just geometric consistency makes it diffi-
cult to reconstruct the unknown regions. The seamless integration of geometric
and semantic consistencies remains unexplored.
NeRF with Various Improvement Techniques Various methods are pro-
posed to improve the accuracy of NeRF estimations. FreeNeRF [28] suppresses
early catastrophic overfitting by learning from low to high-frequency compo-
nents. Similarly, SimpleNeRF [37] reduces depth discontinuities by lowering the
highest frequency of positional encoding and minimizing the impact of view-
dependent radiance. RawNeRF [8] reduces surface ambiguity by encouraging a
decrease in the second moment around the mean of the probability distribu-
tion (variance) of object surface locations along rays. Likewise, InfoNeRF [31]
decreases entropy when an object is likely present along rays, considering a prob-
ability distribution of the objects’ existence. The proposed black blending and
relative learning-rate decay can be used concurrently with these techniques.

3 Method

3.1 Overview

We present a comprehensive method for efficiently estimating NeRF from three
closely positioned images for novel view synthesis. The accurate geometry is
obtained from input images by a NeRF equipped with stereo reconstruction tech-
niques, while the radiance field of unseen regions are reconstructed by applying
semantic consistency to them. We also incorporate an entropy minimization loss
to reduce fog-like artifacts. In addition, we propose two novel techniques for
estimating NeRF effectively: black blending and relative learning-rate decay.

The combination of geometric and semantic consistencies enables the recon-
struction of the entire scene by complementing each other, rather than con-
tributing independently. In areas slightly away from the input images, semantic
consistency helps fill in the uncertain parts. Geometric consistency, reinforced
by other consistencies, propagates from the visible area and provides clues for
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Fig. 2. Overview (detail): Our method consists of three main components: (a) geo-
metric consistency, (b) semantic consistency, and (c) ray entropy minimization loss. (a)
Geometric consistency is achieved by incorporating geometric features into the input of
the radiance estimating MLP, based on cost volumes derived from plane-sweep across
multiple input images. (b) Semantic consistency involves comparing the similarity of
semantic vectors obtained by feeding rendered and input images into the CLIP encoder
to minimize their semantic difference. (c) Ray entropy minimization loss reduces the
entropy of the probability distribution of volume density over rays, helping to eliminate
floaters like white fog and enhancing a scene’s coherence.

accurate 3D reconstruction. Given that the overall geometry is highly uncon-
strained, entropy loss helps regularizing ambiguous geometry. As a result, the
synergy of these consistencies contributes in all areas.

The overview of the method for a synergistic combination of those consisten-
cies is shown in Fig. 2. Total loss Ltotal is formulated as a linear combination of
the standard loss LRGB, loss LSC ensuring geometric and semantic consistency,
and ray entropy minimization loss Lentropy:

Ltotal = LRGB + λ1LSC + λ2Lentropy . (1)

Note that during training, RGB values for pixels are simultaneously estimated
from rays corresponding to both the input image and unseen viewpoint image
pixels. Ray entropy minimization loss is applied to both, whereas the RGB loss
is applied only to the former and the semantic loss is applied only to the latter.

Moreover, we propose two novel techniques: black blending and relative
learning-rate decay. These methods contribute to producing more precise and
accurate estimations. The details of these proposals are in 3.3.
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3.2 Geometric, Semantic, and Entropy Losses

Geometric Consistency3D reconstruction is achieved by estimating the entire
scene’s radiance field. This radiance field is represented by weight Θ of a function
f , which takes a scene’s position and direction as inputs and outputs the volume
density and color at that point. In other words, for a given position x and
direction d, it outputs the volume density σ and color c:

(σ, c) = fΘ(x, d, g, {Cref
i }3i=1) . (2)

Unlike the basic NeRF [9], we follow MVSNeRF [1] to add geometric feature
g and the pixel values {Cref

i }3i=1 corresponding to a 3D point x in the scene from
the input images. We detail the MVSNeRF’s method for extracting geometric
features in supplementary materials for readers.

NeRF aims to match the true pixel values of input images with the estimated
pixel values via the radiance field. To decide the pixel RGB values, the estimated
volume density and color at sampling points along the ray are integrated using
volume rendering. For a ray, the estimated pixel value and the true pixel value
lead to the loss function LRGB:

LRGB =
1

|R|
∑

r∈R
||Ĉr(Θ) − Cr||22 . (3)

Θ are the parameter characterizing the function f representing the radiance
field, updated through the estimation process.
Semantic Consistency As in other work [2,3], in the quest to ensure semantic
consistency between training and their rendered counterparts, we leverage CLIP,
a pre-trained encoder, to formulate a loss function as described in the bottom
row in Fig. 2. Given three semantically aligned input images, {xi}3i=1, CLIP
produces corresponding feature vectors, {vi}3i=1. One is randomly chosen as vGT.
Simultaneously, images rendered during the training phase denoted as xrender,
yield features termed vrender. The objective is to minimize the loss function LSC
as:

LSC = −〈vGT, vrender〉 . (4)

This semantic loss thereby ensures that the rendered images retain the semantic
essence of the originals.
Ray Entropy Minimization Ray entropy minimization loss is introduced in
InfoNeRF [31], which ensures objects on a ray become coherent and their bound-
aries clear, also removing artifacts like fog. It specifically lowers the entropy of the
probability distribution for volume density along a ray, based on the estimated
volume density, resulting in objects that are more distinct and coherent. Our
method incorporates this loss for further enhancing more accurate estimation of
the neural radiance field. We describe it here briefly for self-completion.
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When denoting the probability distribution as p(x), the entropy minimization
loss Lentropy is defined as follows:

Lentropy = M � H[p] = M �
(

−
∑

i

p(xi) log p(xi)

)
. (5)

M is a mask set to 1 when an object is considered to exist and 0 otherwise.

3.3 Enhancing the Learning of NeRF

Black Blending Black blending, shown in Fig 3, averages the rendered image
with a black background during training, weighted by the accumulated trans-
mittance from volume density along the ray. The advantage of the black back-
ground is that it avoids any negative impact from the background color. In
NeRF, the background color and the estimated RGB value are blended based on
the object’s existence probability, which can cause problems in ambiguous areas.
A black background, with all zero elements, prevents any adverse effects. As a
result, this enhances object coherence and sharpens their outlines while clearing
up floaters, which is especially effective for objects with ambiguous transparency.
It applies only to rendered images during training for CLIP’s input.

Fig. 3. Black Blending: We propose a method that blends the rendered image with
a black background, weighted by the accumulated transmittance. This technique elimi-
nates floaters, sharpens object-scene boundaries, and ensures consistent object estima-
tion. The accumulated transmittance, representing the likelihood of a ray encountering
an object, is based on the volume density along the ray.

Specifically, Black blending combines a rendered image I with a black back-
ground Ibg, weighted by the accumulated transmittance ω as a linear combina-
tion. Mathematically, it is expressed as:

I+bg = ωIbg + (1 − ω)I= (1 − ω)I . (6)
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Here, the accumulated transmittance integrates the volume density information
of sampling points along a ray, representing the probability of an object’s pres-
ence on the ray. This is calculated as:

ω =

{
N∑

i=1

(1 − exp(σiδi))

}
, where δi = ti+1 − ti . (7)

Relative Learning-rate Decay We propose relative learning-rate decay to
promote accurate geometry estimation. Specifically, relative learning-rate decay
slows down the learning rate of the MLP estimating color compared to the MLP
estimating volume density. This technique increases the importance of accurately
estimating volume density relative to color, thereby encouraging precise geome-
try estimation. By doing so, it helps reduce the risk of decreasing semantic loss
based solely on the estimated color. We use two types of schedulers and optimiz-
ers: one for the weights up to the volume density and another for estimating the
color. The learning rate for the color is lower than that for the volume density.

4 Experiments

4.1 Experimental Settings

Data We conducted a numerical evaluation using Realistic Synthetic NeRF
dataset [9], which features diverse scenes such as a chair, hotdog, and ficus.
The dataset has eight distinct scenes with 100 training images. We used three
closely spaced images for training from there, in line with MVSNeRF [1]. For
testing, instead of the provided 200 test images, we used 100 validation images
to avoid potential biases from the original test set’s viewpoints. The original test
set’s bias, along with the locations of our test and training data, is visualized in
the supplementary material’s “Positions of Train/Test Images”. This approach
ensures clarity and unbiased research outcomes.
Evaluation Metrics We employed three evaluation metrics for our pro-
posed method: peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM) [48], Learned Perceptual Image Patch Similarity (LPIPS) [45] following
prior research. These metrics offer a comprehensive assessment of the images
rendered by the respective methods.
Backbone Architecture Our model employs the same geometric consistency
approach as MVSNeRF, leveraging multi-view stereo principles to generate fea-
ture volume from three input images. The weights of 2D-CNN and 3D-CNN in
this model remain fixed throughout the training process. 2D-CNN incorporates
seven 2D convolutional layers for extracting image features. For the 3D-CNN, a
U-net structure with ten 3D convolutional layers (seven for downsampling and
three for upsampling) is employed to output a neural encoding volume within
the reference view’s frustum. It is pre-trained on the DTU dataset [42]. We
trained an MLP to estimate both radiance and volume density based on three
types of inputs: a given position in 3D space, the extracted volume feature, and
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pixel values of three input images. We did not include the view direction as an
input to the MLP because view-dependent radiance complicates the estimation
of the radiance field when the inputs are a small number of nearby images. This
model incorporates a six-layer function, with positional encoding applied to the
position vector at the preliminary stages.
Implementation Details The overall process follows Fig. 2. Our implementa-
tion is based on the MVSNeRF codebase, using its feature extraction and RGB
loss on input images. As MVSNeRF’s training is based on ray sampling, we
added the rendering of the images at novel views and semantic loss was added
by feeding the rendered images into CLIP and measuring the semantic similarity
to the inputs. At the volume rendering, the density along the ray is obtained
for entropy loss in both input and novel views. For Black blending, we remove
the term of blending with the background, as presented in Eq. (6). In Relative
Learning-rate Decay, we use separate optimizers and schedulers with different
learning rates for the neural network weights before and after volume density
calculation.
Additional Details For our training, we generated images by uniformly sam-
pling viewpoints from an upper hemisphere around the object. The training
process, conducted using an RTX 6000 Ada, took approximately 4.5 hours for
each scene. It consisted of 11 epochs, with each epoch having 1,884 training
steps. The images created during training were 160 by 160 pixels in size and
were later resized to 224 by 224 pixels through bicubic interpolation to comply
with the requirements of the CLIP encoder. Our model follows the parameteri-
zation of MVSNeRF. We used a two-stage stepwise sampling method for more
refined sampling along rays, leading to better scene reconstruction. Addition-
ally, we utilized Adam [15] with hyperparameters β1 = 0.9, β2 = 0.99, ε = 10−7,
and employed the CosineAnnealingLR [23] as our learning rate scheduler. For
the MLP that outputs volume density, we started with an initial learning rate
of 5.0 × 10−4. The learning rate for the MLP responsible for the color output
was set to 0.1 of the volume density. We set the hyperparameters to λ1 = 0.1
and λ2 = 0.001, following the approaches of DietNeRF [3] and InfoNeRF [31].
This setting ensures that the scale between each model’s loss and the RGB loss
matches that of their respective prior art.

4.2 Comparison with Existing Methods

Table 1 and Fig. 5 demonstrate that our proposed method, possessing both
geometric and semantic consistency, clearly outperforms methods with only one
type of consistency, both quantitatively and qualitatively. We prefer readers to
visit the Supplementary material for detailed qualitative evaluations and object-
level scores for other objects.

Note that, MVSNeRF is not fine-tuned but compared under zero-shot condi-
tions. The reason is that fine-tuning with three nearby input images diminishes
its generalization ability, making it less effective even near the input images,
as carefully validated in the Supplementary material. Nevertheless, its zero-shot
reconstruction ability with three adjacent inputs stabilizes our learning, and the
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reconstruction accuracy in areas close to input images is obviously high as in
Fig. 4. Therefore, we decided to use MVSNeRF as our backbone.

Fig. 4 demonstrates how evaluation scores change as the novel viewpoint
moves away from the input image locations. Near these input locations, combin-
ing semantic with geometric consistency enables more detailed reconstruction
than using geometric consistency alone. Even when moving further from input
image locations, the fusion of semantic and geometric consistency allows for
high-precision reconstruction. This is because the two types of consistency work
together to compensate for each other’s weaknesses, providing a more compre-
hensive understanding of the scene. The geometric consistency ensures that the
reconstruction adheres to the spatial constraints imposed by the input images,
while the semantic consistency fills in the missing details and ensures that the
reconstruction is coherent and meaningful. The two consistencies are also sup-
ported by the entropy regularization of the volume density.

The reason NeRF, neither using geometric nor semantic consistency, outper-
forms metrics like SSIM and LPIPS in Table 1 is considered to be because it
outputs white, the background color in the NeRF Dataset, in areas completely
away from the input image positions. RegNeRF [34] also mentions this issue
as evaluation bias, discussing the relationship between evaluation scores and
background color estimation. Following RegNeRF, by evaluating only the non-
background elements, we removed the background-induced evaluation bias and
conducted further analysis in Table 1. PSNR (masked) clearly shows NeRF’s sig-
nificant susceptibility to this bias, and our proposed method outperforms prior
arts even after eliminating this bias.

As shown in Fig. 5, the method using only geometric consistency can accu-
rately reconstruct areas captured in the input images but fails to reconstruct
unknown areas on the sides and back. The method employing only semantic
consistency can utilize semantic coherence to reconstruct areas close to the input
images, but it becomes clear that semantic consistency alone cannot reconstruct
areas not reflected in the input images. However, our method enables complete
3D reconstruction and arbitrary viewpoint image generation through the com-
plementary collaboration of semantic and geometric consistencies. In areas cap-
tured by the input images, it achieves precise reconstruction based on geometric
consistency, while semantic consistency allows for the reconstruction of unknown
areas by leveraging the information from geometric consistency.

4.3 Ablation Study

Impact of Each Loss Term Table 2 reveals the impact of each loss term indi-
vidually. The combination of these losses significantly boosts all metrics. Entropy
minimization loss greatly improves all metrics, while semantic loss slightly dete-
riorates SSIM but significantly improves PSNR and LPIPS. This improvement is
thought to occur because entropy minimization loss encourages accurate geom-
etry estimation, and semantic loss contributes to making rendered images more
high-quality. DietNeRF [3] mentions that SSIM disagrees with human judgments
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Fig. 4. PSNR of novel views versus the angle of deviation from input images:
The figure demonstrates how utilizing geometric consistency near the input images
enables detailed reconstruction, while in areas farther from the input images, semantic
and geometric consistency work together. The evaluation divides the average angles
formed by the input images and the evaluation image, based on the origin, into six
intervals, calculating the mean within each.

Fig. 5. Quantitative Evaluation: Images were rendered with roughly same, orthog-
onal, and inverse view directions relative to the input views. The results highlight that
our approach significantly outperforms by combining both geometric and semantic
consistencies, compared to methods focusing on either alone.
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Table 1. Quantitative Evaluation: We conducted a comprehensive assessment com-
paring the generated images to ground-truth images across comprehensive rendering
orientations. Our proposed method consistently outperforms the other two methods
which have either consistency in isolation across all evaluation metrics. PSNR (masked)
calculates scores for non-background elements, specifically to exclude the evaluation
bias RegNeRF [34] discusses.

Method PSNR↑ PSNR (masked)↑ SSIM↑ LPIPS↓
NeRF [9] 12.48 7.01 0.731 0.337
MVSNeRF [1] 11.63 7.35 0.731 0.343
DietNeRF [3] 13.11 8.96 0.699 0.344
InfoNeRF [31] 14.45 8.61 0.763 0.254
OURS 16.55 12.01 0.779 0.219

of similarity, indicating that incorporating semantic loss may lower SSIM outside
of human perception.

Table 2. Impact of Each Loss Term: The contributions of semantic loss and entropy
minimization loss are clearly identified. Each loss contributes to improvements, and
their combination notably enhances accuracy in all metrics, especially in PSNR and
LPIPS.

LRGB LSCLentropy PSNR↑SSIM↑LPIPS↓
� 11.63 0.731 0.343
� � 14.59 0.720 0.319
� � 14.81 0.770 0.250
� � � 16.26 0.762 0.238

Impact of Black Blending Table 3 and Fig. 6 reveal that the black blend-
ing outperforms when we clarify the effects of employing white, random (from
DreamField) background in the rendered images during training. Its perceived
advantage over the white background is thought to stem from its ability to dis-
criminate white fog-like artifacts and backgrounds. Additionally, it seems to offer
superiority over random backgrounds by providing accurate restoration signals
without introducing noise to the CLIP semantic vectors. This approach also
suggests that using a white background for rendered images during training, a
common practice, negatively impacts learning.
Impact of Relative Learning-rate Decay Table 4 shows the changes in eval-
uation metrics when we adjust the relative learning speeds in our experiments
to investigate how slowing down the learning speed of an MLP predicting color
affects its effectiveness compared to an MLP estimating volume density. These
results demonstrate that reducing the color MLP’s learning speed to 0.1 times
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Table 3. Impact of Black Blending: Black blending outperforms other methods. A
white background fails to differentiate between cloud-like floaters and the background,
while a random background introduces noise to the semantic vectors from CLIP. Our
method avoids these issues and suggests that using a white background for training, a
common practice, negatively impacts learning.

Background PSNR↑SSIM↑LPIPS↓
White 15.20 0.747 0.246
Random [2] 15.70 0.747 0.251
Black (OURS)16.26 0.762 0.238

Fig. 6. Effect of Black Blending: Black blending clearly outperforms other methods,
resulting in cleaner outcomes. It notably sharpens object boundaries and allows for a
more accurate estimation of object shapes.

is most effective. The reason this method is considered effective is because pri-
oritizing the learning speed of the MLP for estimating volume density over the
MLP for predicting color promotes accurate geometry estimation.

5 Limitation

While our approach enables the reconstruction of an entire scene from three
closely-spaced images, the final results still have room for improvement. Use
of depth priors, either with patch-based [34] or image-based [18], may improve
the reconstruction quality. Another limitation is that we have only evaluated

Table 4. Impact of Relative Learning Rate Decay: Lowering the MLP’s color
learning rate compared to volume density boosts accuracy by focusing on volume den-
sity.

Relative Learning-ratePSNR↑SSIM↑LPIPS↓
1.0 16.26 0.762 0.238
0.1 16.55 0.779 0.219
0.01 16.50 0.779 0.219
0.001 16.37 0.764 0.238
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our method on a set of a single object. Further testing on multiple objects and
real-world datasets is needed to fully assess its potential and generalizability.
The rendering of CLIP is time-consuming and accelerating the computation is
needed in practice. The difficulty of evaluating the generated image quality is
an issue for the entire research field.

6 Conclusion

We have presented a method that, by complementarily coordinating semantic
and geometric consistencies, can estimate a complete radiance field and gen-
erate images from arbitrary viewpoints, even in settings challenging for either
consistency alone. We propose various techniques for improved performance and
clarified their effectiveness one by one. The condition of using three close-shot
images, similar to those used in iPhones, also demonstrates high versatility.
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Abstract. We present an approach for estimating the pose of a pinhole
camera from a set of 3D lines and their corresponding line segment pro-
jections on a single image. The problem is formulated as a non-linear
quadratic program on the elements of the rotation matrix in a manner
that establishes direct correspondence to the Perspective-n-Point (PnP)
problem. By leveraging this connection to the PnP, existing method-
ologies are reapplied to recover the camera rotation from a constrained
quadratic program. Furthermore, a novel least squares formulation is
proposed to estimate the translation of the camera. Detailed compara-
tive experiments demonstrate that the proposed approach is robust to
noise and outperforms established techniques in terms of accuracy.

Keywords: Perspective-n-Line · PnL · PnP · Pose Estimation ·
Quadratically Constrained Quadratic Program · SQPnL · Line
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1 Introduction

Human-made environments typically abound with linear edges which give rise to
straight line segments when imaged in 2D. Line segments can be accurately local-
ized in images at a reasonable computational cost [9], offering robust structural
cues by delineating a scene’s main elements. They are also moderately robust
to noise, occlusions and illumination or viewpoint changes. Furthermore, they
are often present on even poorly textured objects, for which techniques based
on local patch detectors and descriptors such as [21], are not applicable. Hence,
in certain structured environments with weak texture, straight line segments are
the preferred type of visual features for tasks such as motion analysis [19], scene
reconstruction [12,17], visual SLAM [31] and object recognition [6].

This paper concerns the Perspective-n-Line (PnL) problem which given a
set of 3D lines, aims to determine a calibrated camera’s pose (i.e., position and
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Fig. 1. Top: 3D mesh model for a container crane spreader and six color-coded lines.
Bottom: The spreader while lifting a container. Using manually specified model-to-
image line correspondences delineated with identical colors in the bottom right inset
image, the spreader’s pose was estimated with the proposed method; the mesh model
was then rendered in cyan with the estimated pose and overlaid semi-transparently on
the image with its edges highlighted; see also [19].

orientation) from the line projections in an image taken with that camera (cf.
Fig. 1). A problem similar to PnL that has received considerably more attention
is the Perspective-n-Point (PnP) problem [23,26]. PnP seeks to determine the
camera pose that relates a set of 3D world points to their corresponding 2D
image counterparts. Our work concerns a formulation of PnL as a non-linear
quadratic program (NLQP) which we call SQPnL. It develops a cost that encodes
information regarding the geometry of at least three 3D lines and their matching
2D image projections. Similarly to our SQPnP solver for PnP [26], this cost is
optimized for the rotation by finding special feasible points and then conducting
low-iteration local searches in their vicinity.

The rest of the paper is organized as follows. Section 2 presents an overview
of relevant works from the literature. The novel aspects of the proposed method
are outlined in Sect. 3 whereas its details are presented in Sect. 4. Experimental
evaluation results are reported in Sect. 5 and a conclusion is in Sect. 6.
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2 Related Work

It is known that when three line correspondences are available, the solution
to the Perspective-3-Line (P3L) problem is not uniquely determined. This is
due to the fact that the order of the general polynomial arising from P3L is
8 [5,32], i.e. considerably higher compared to 4 which is the order pertaining to
the analogous polynomial of the Perspective-3-Point (P3P) problem defined on
points. As a result, the P3L incurs increased computational cost, is more sensitive
to noise and admits more potential solutions. Dhome at al. [8] presented one of
the earliest closed-form solutions for the P3L problem adopting a polynomial
approach. Xu et al. [32] provided an analysis of special line configurations and
concluded that the order of the P3L polynomial can be reduced depending on
the 3D lines arrangement. An example of the latter is the case of three lines
lying in a common plane that is addressed in [3]. A recent algebraic method to
solve P3L is provided by Wang et al. in [29].

While geometric ambiguities can cause P3L to have up to 8 possible solutions,
the PnL problem with four or more lines typically has a unique solution. Owing
to this observation and the potential of data redundancy to increase accuracy and
robustness, algorithms for the over-constrained case have attracted considerable
interest. For example, Ansar and Daniilidis [2] employed a general procedure for
linearizing quadratic systems to convert the polynomial system to a linear one in
the elements of the rotation matrix. The method guarantees a solution for non-
critical configurations of n ≥ 4 lines, yet it is very sensitive to image noise and
does not scale well with the number of lines. The first globally optimal and non-
iterative method for PnL was AlgLS, proposed by Mirzaei and Roumeliotis [22].
They decoupled rotation from translation by deriving a multivariate polynomial
system for the rotation parameters that was solved with resultants. Due to the
latter, the method is computationally expensive and returns a large number of
candidate solutions. Furthermore, it suffers from singularities at orientations ±π
that stem from the Cayley rotation representation [27] employed.

Zhang et al. [35] developed RPnL, a solver that performs well on small-
sized sets of lines but becomes less accurate and slow on larger ones. RPnL
forms a suboptimal problem and operates by selecting a rotation axis to sepa-
rate lines into triplets, then building a sixteenth order univariate cost function
from P3L polynomials and finally retrieving the optimum among the local min-
ima. Extending [35], Xu et al. [32] proposed ASPnL which is generally accurate,
yet is computationally expensive for larger numbers of lines. They also explored
the similarity between PnL and PnP and developed a series of linear PnL for-
mulations of which LPnL Bar LS that uses barycentric coordinates performs
best.

Přibyl et al. [24] used the Plücker coordinates to represent 3D lines and
derived a formulation of PnL as a homogeneous linear system that is solved with
the DLT algorithm. Wang et al. [30] developed SRPnL by deriving a closed-
form technique that involves solving a fifteenth order polynomial followed by
root polishing with a single Gauss-Newton step. Yu et al. [34] proposed OPnL
which employs the Cayley rotation representation and derives a cubic system
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that is solved with Gröbner basis techniques. While the latter provide a pow-
erful framework for solving polynomial systems, they typically construct linear
solvers involving fairly large coefficient and action matrices that need consid-
erable time for their evaluation and decomposition. This limitation can be a
hindrance to applications in demand of real-time, timely results. More recently,
Wang et al. [28] proposed yet another formulation which also employs the Cayley
parameterization for rotation to derive a system of polynomial equations solved
with the hidden variable method. For the sake of completeness, it is noted that
iterative methods for PnL such as [14,18] have also been proposed. However,
their need for initialization combined with the possibility of converging to a
local minimum, makes them less attractive in practice.

3 Contributions

This work introduces a novel methodology that employs, for the first time in
PnL, existing machinery developed in [26] for the PnP problem. Similarly to
its point-based analog, the proposed solver is non-minimal and has linear time
complexity. Coupled with its consistent accuracy, these features lend it a great
deal of practical utility, particularly when used in the context of locally optimized
(LO) RANSAC [15] or combined with modern approaches to robust estimation
such as graduated non-convexity [33] or adaptive kernels [4]. Our contributions
are summarized in the following:

1. We put forward a novel method1 for constructing a quadratic cost function
in the elements of the rotation matrix. By doing so, the PnL problem is
cast as a quadratically constrained quadratic program (QCQP), which can
be solved by leveraging existing PnP algorithms. Furthermore, we present a
linear method to recover the camera position from the estimated rotation.

2. Building upon the aforementioned methodology, we adapt the approach of
SQPnP [26] to derive a novel PnL solver. We demonstrate experimentally that
this solver is resilient to noise and exhibits consistent performance, estimating
pose with higher accuracy compared to state-of-the-art PnL solvers.

4 Method

A 3D line can be represented by a parametrized collection of points,

LLL :=
{
PPP + λuuu ∈ R

3 : (PPP , uuu) ∈ R
3 × S2, λ ∈ R

}
, (1)

where S2 is the unit sphere in the 3D space R
3, PPP is an arbitrary point on the

3D line and uuu is its direction vector. With the representation of Eq. (1) in place,

1 Some of the constituents have been previously employed, particularly the quadratic
cost in [32].
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we will henceforth refer to 3D lines either by name, or by means of the tuple
(PPP , uuu). A line lll in a 2D plane is represented with its Hesse normal form, i.e.

lll :=
{
xxx ∈ R

2 : nnnTxxx + c = 0, nnn ∈ S1, c ∈ R
}

, (2)

where S1 is the unit circle, nnn is the unit-norm normal of the line and c a real
constant. Clearly, a 2D line in a plane embedded in 3D space is a also a 3D line
and can therefore have the following tuple representation,

lll =
([−cnnn

1

]
, MMMnnn

)
, MMM =

⎡

⎣
0 −1
1 0
0 0

⎤

⎦ , (3)

where nnnTxxx + c = 0 is the Hesse line equation defined in (2) above.
Conversely, for a 3D line LLL that does not pass through the origin2,we may

obtain its projection, proj(LLL), on the camera plane at Z = 1 as a 3D line tuple
(subsequently converted into a 2D line tuple),

proj(LLL) =

⎧
⎪⎨

⎪⎩

(
(111Tz P̂̂P̂P)P̂̂P̂P+(111Tz û̂ûu)uuu
(111Tz P̂̂P̂P)2+(111Tz û̂ûu)2

,
−(111Tz uuu)P̂̂P̂P+(111Tz P̂̂P̂P)uuu√

(111Tz P̂̂P̂P)2+(111Tz uuu)2

)
(
111T

z P̂̂P̂P
)2

+
(
111T

z uuu
)2 �= 0

(PPP + 111z, uuu) otherwise

,

(4)
where 111z =

[
0 0 1

]T and P̂̂P̂P is the (unit) bearing vector of the nearest point on
LLL to the origin,

P̂̂P̂P =

(
III3 − uuuuuuT

)
PPP

√
PPPT (III3 − uuuuuuT )PPP

. (5)

Derivations of Eqs. (3), (4), and (5) are provided in the supplementary material.

4.1 A Quadratic Program in the Elements of the Rotation Matrix

The PnL is intrinsically related to its point counterpart, the PnP. It has been
shown that it yields similar problem formulations to those obtained from the
PnP, e.g., [32]. We describe next such an approach which decouples the unknown
orientation from the translation and yields the well-known in the PnP literature
quadratically constrained quadratic program (QCQP) on the rotation matrix.

Consider a camera orientation matrix RRR ∈ SO(3) and position CCC with respect
to a world frame. To clarify conventions, a world point PPPw is assumed to trans-
form to the local camera frame as PPP c = RRRT (PPPw − CCC). Let LLL = (PPP , uuu) be a 3D
line in the world frame and lll = (ppp, vvv) be the corresponding projected line on the
Z = 1 plane in the local camera frame where ppp and vvv are given as per Eq. (2).
Figure 2 illustrates the geometry of the projection, lll, of LLL onto the Z = 1 plane
of the local camera frame, via the plane induced by LLL and CCC.

2 The projections of 3D lines that pass through the origin are points and therefore not
applicable to the PnL setup.
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Fig. 2. The projection of a 3D line, LLL = (PPP ,uuu), as a line lll = (ppp,vvv) in the camera with
local image plane Z = 1 positioned at CCC in the world; the nearest point on the line to
CCC is p and the normal of the plane is given by the cross product of ppp with the normal
of the line on the plane, nnn.

In an ideal, noise-free setup, the 3D line LLL will lie in the plane defined by the
camera center CCC and the line lll. Vectors ppp and vvv of Eq. (3), i.e.,

ppp =
[−cnnn

1

]
, vvv = MMMnnn, (6)

comprise an orthogonal basis for this plane in the camera frame. Thus, the
normal of the plane defined by LLL and CCC should be the cross-product of vvv and
ppp. This cross product, transformed by RRR to the world frame, should in turn be
orthogonal to the direction, uuu, of LLL. Thus, the following should hold

uuuTRRR (vvv × ppp) = 0. (7)

The orthogonality constraint of Eq. (7) can be used to devise a quadratic cost
function in the elements of RRR. Consider n 3D lines LLL1, . . . ,LLLn and their corre-
sponding projections, lll1, . . . , llln on the Z = 1 plane in the local camera frame.
We may construct a cost function C, that penalizes the average deviation from
orthogonality as

C =
n∑

i=1

(
uuuT

i RRR

(
vivivi × pipipi

‖vvvi × pppi‖
))2

, (8)

where pppi is the nearest point from llli to CCC, vvvi the direction of llli and ‖ · ‖ is
the Euclidean norm. Note that the normalization of the cross-product vvvi × pppi

is necessary to eliminate arbitrary scaling in the i-th term. We next introduce
operators vec(·) and mat(·) in order to map RRR to a vector rrr ∈ R

9 by stacking its
elements row-wise and vice versa, as follows:

rrr = vec(RRR) =
[
r11, r12, r13, r21, r22, r23, r31, r32, r33

]T ⇐⇒ mat(rrr) = RRR.
(9)
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Then, C can be rewritten as a quadratic expression of rrr,

C = rrrTΩΩΩ rrr, ΩΩΩ =
n∑

i=1

(
III3 ⊗ vvvi × pppi

‖vvvi × pppi‖
)T

uuuiuuu
T
i

(
III3 ⊗ vvvi × pppi

‖vvvi × pppi‖
)

, (10)

where ⊗ denotes the Kronecker (matrix direct) product. We observe that C is
a symmetric function and therefore, for every minimizer with a negative deter-
minant in the orthogonal group O(3) (a reflection), there exists a minimizer in
SO(3) by means of negation. Thus, for convenience, we may cast our QCQP in
O(3) as follows,

minimize
rrr∈R9

rrrT ΩΩΩ rrr s.t. ggg(rrr) = 0006, (11)

where ggg(rrr) ∈ R
6 is a vector-valued function that imposes the orthonormality

constraints on rrr:

ggg(rrr) =
[‖rrr1:3‖2 − 1, ‖rrr4:6‖2 − 1, ‖rrr7:9‖2 − 1, rrrT

1:3 rrr4:6, rrrT
1:3 rrr7:9, rrrT

4:6 rrr7:9
]T

.
(12)

We have thus arrived at a problem formulation that is commonly met in PnP
methods in the literature. Such methods can be loosely categorized accord-
ing to their use of a) unconstrained least squares (LS) [16,32], b) polynomial
solvers [20,34,36], and c) quadratic programming techniques, including semidef-
inite programming (SDP) [1,26]. Several methods in the aforementioned first
two categories have been adapted for the PnL problem, e.g. [22,32,34]. Here
we derived the QCQP of Eq. (11), consequently we can apply the approach of
SQPnP directly and solve it by employing Algorithms 1 and 2 described in Sec. 3
of [26]. Our SQPnP solver attempts local searches from special initial estimates
of the rotation matrix and thereafter determines the solution of the QCQP by
choosing the best amongst the recovered minimizers (cf. Sec. 2 in [26]). This
approach has proven very effective for the PnP in practice. As will be confirmed
by the experiments in Sect. 5, this also holds true for the quadratic program (11)
formulated for PnL in this paper.

4.2 Estimating Camera Position from Known Orientation

Suppose rrr ∈ R
9 is a minimizer of the QCQP in Eq. (11) and RRR = mat(rrr) ∈ O(3)

the corresponding orthonormal matrix. To recover the position CCC of the camera
in the world, we make use of the coplanarity constraint between the camera
center and the plane defined by the 3D line and its projection, shown in Fig. 2.

Consider the 3D line representation of Eq. (1) as a parametric expression of
a point,

LLL(λ) = PPP + λuuu, λ ∈ R, (13)

uniquely identified by the parameter λ. We may thus resort to point transfor-
mations to obtain the corresponding 3D line LLLc(λ) in the local camera frame,

LLLc(λ) = RRRT (LLL(λ) − CCC) = RRRT (PPP − CCC) + λRRRTuuu. (14)
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In an ideal, noise-free setup, RRRT (PPP − CCC) lies in the plane defined by CCC and lll.
Thus, it can be written as a linear combination of ppp and vvv,

RRRT (PPP − CCC) = BBBxxx, (15)

where BBB =
[
ppp/‖ppp‖ vvv/‖vvv‖] ∈ R

3×2 is the basis of the local plane defined by lll and
CCC, and xxx ∈ R

2. We may therefore devise a linear least squares cost function on
the position CCC of the camera in the world,

J =
n∑

i=1

∥
∥RRRT (PPP i − CCC) − BBBixxxi

∥
∥2

, (16)

where BBBi is the orthonormal basis of the plane defined by CCC and the i-th line
llli identified on the 2D plane Z = 1 (see Fig. 2). Taking first order conditions of
the cost function in Eq. (16) with respect to xxxi and CCC, we obtain:

∂J
∂xxxi

= 000 ⇐⇒ −BBBT
i RRRT (PPP i − CCC) + xxxi = 000, (17)

∂J
∂CCC

= 000 ⇐⇒
n∑

i=1

(PPP i − CCC) − RRR
n∑

i=1

BBBixxxi = 000. (18)

Substituting Eq. (17) into Eq. (18) yields the solution,

CCC = RRR

(
n∑

i=1

(
III3 − BBBiBBB

T
i

)
)−1 (

n∑

i=1

(
III3 − BBBiBBB

T
i

)
RRRTPPP i

)

. (19)

5 Experiments

5.1 Synthetic Experiments

Using synthetic data, this section compares Matlab implementations of the pro-
posed SQPnL solver and the following PnL methods: Ansar [2], AlgLS [22],
DLT [25], LPnL Bar LS [32], RPnL [35], ASPnL [32], SRPnL [30], OPnL [34]
and HPnL (hidden variable PnL) [28]. The comparisons focus on both the repro-
jection error and the deviation from ground truth across multiple runs.

The following testing framework is adopted. Euclidean quantities are
expressed in units of meters. World 3D lines are defined from pairs of points
randomly sampled from an isotropic Gaussian distribution with standard devia-
tion 3, i.e. MMM i ∼ N (

MMM, 32 III3
)
, with MMM ≡ [

1.5/4, 1.5/4, 4
]T . Similarly, camera

poses comprising position CCC and MRP [27] orientation parameters ψψψ in the world
frame are sampled from a zero-mean 6D Gaussian distribution

[
CCC
ψψψ

]
∼ N

(
0006,

[
σ2

CCC III3 0003
0003 σ2

ψψψ III3

])
, (20)

where the standard deviations were chosen as σCCC = 0.15 and σψψψ = 0.001. The
generated lines were filtered to ensure that they lie in front of the simulated
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camera. The latter was assumed to have a focal length f = 1400 pixels and
image size 1600 × 1400. A collection of 200 random 3D lines was generated and
then for every n ∈ {4, . . . , 20}, a population of 500 sets of n 3D lines each
was randomly sampled. For each such set, a camera pose was next generated
using Eq. (20). Finally, the pose was used to project all sets on the image plane
and the projection endpoints were perturbed with additive Gaussian noise εεεi ∼
N (

0002, σ2
εεε III2

)
with σεεε = 5 pixels. For every set in a certain population, all PnL

solvers under comparison were executed with their default parameters3.
Most solvers being compared return multiple solutions, some corresponding

to 3D lines behind the camera. Since such solutions are not physically plausible,
they are eliminated with cheirality checks [10], as follows. For each line segment,
two 3D points were reconstructed from the intersection of the backprojecting
rays defined by its endpoints and the known 3D line and the sign of their Z
coordinate in the camera frame is examined. To account for these lines typically
being skew, the reconstructed point was computed as the middle of their com-
mon perpendicular. This calculation is similar to that involved in the midpoint
triangulation method [11]. Poses resulting in many reconstructed points being
behind the camera (i.e. Z < 0) were discarded. From the remaining poses, the
one giving rise to the smallest reprojection error was retained and the average
reprojection error for each solver was calculated across all its 500 executions.

The reprojection error quantifies the discrepancy between the actual image
line segments and their corresponding projections predicted by the current pose
estimate [13]. A limitation of line segment detection is that it inherently intro-
duces uncertainty in the detected line segment endpoints [9]. To account for this,
the reprojection error is computed by first projecting the 3D lines onto the image
plane with the current pose estimate and then calculating the distances between
the endpoints of the detected line segments and their closest points on the corre-
sponding projected lines. For parity with approaches such as [28,30,32], SQPnL’s
estimate is polished with one Gauss-Newton iteration on the reprojection error.

In addition to the reprojection errors for the PnL methods being compared,
we also determined the reprojection error corresponding to the maximum like-
lihood pose estimate. This was obtained by iteratively minimizing the total
reprojection error for each set’s noisy lines with the Levenberg-Marquardt (LM)
non-linear least squares algorithm [7] initiated at the true pose. Plots of the
average reprojection errors are in Fig. 3(a) which clearly demonstrates that our
proposed SQPnL attains the smallest reprojection errors. To demonstrate the
consistency of our solver in attaining errors that are similar to these of the
maximum likelihood estimate, we also present in Fig. 3(b) results from exactly
the same experiments for the maximum reprojection error. The latter is more
informative regarding the consistency and the accuracy achieved by each PnL
method, as its sensitivity to extremal values results in making readily apparent
even a single large error. Still, SQPnL remains superior in this metric as well.

Further to the reprojection error, the errors for the estimated poses were
also evaluated. Specifically, the rotation error for a true camera rotation Rg and

3 SQPnL employed maximum iterations T = 15 and tolerance ε = 10−7.
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Table 1. Average and median execution times (in ms) of several PnL solvers imple-
mented in Matlab, computed across all executions for every 4 ≤ n ≤ 20.

(ours) PnL Solver

SQPnL Ansar AlgLS DLT LPnL Bar LS RPnL ASPnL SRPnL OPnL HPnL

Time Mean 4.91 14.94 12.48 1.02 1.35 3.36 7.41 10.60 7.69 16.38

Median 4.52 10.41 12.20 1.00 1.35 3.37 7.41 10.81 7.50 16.65

estimate Re is the angle of rotation about a unit vector that transfers Re to Rg,
given by arccos((trace(RgRT

e )−1)/2). The translation error for a true translation
tg and for an estimate te is simply the Euclidean norm of their vector difference
||tg − te||. Figures 4 and 5 illustrate respectively the rotation and translation
errors corresponding to the same experiments of Fig. 3. The rotational errors
pertaining to SQPnL are the lowest, albeit often being indistinguishable from
those of AlgLS [22]. A noteworthy observation for the maximum rotational error
plots in Fig. 4(b) is that some methods occasionally yield erroneous estimates
with errors as large as π rad, which in spite of being smoothed out by averaging
in 4(a), are accentuated by the maximum operator in 4(b). This is more pro-
nounced for DLT and ASPnL, and to a lesser degree for RPnL. With respect
to translation, SQPnL clearly performs best, both in terms of the average and
maximum translational errors.

Timing measurements for the PnL methods under comparison are also pro-
vided. It is noted that they are all implemented in Matlab which is known not to
favor time efficiency. Still, time comparisons can be indicative of the method’s
relative performance. Execution times are provided in Table 1, showing that
SQPnL is competitive also in terms of computational cost. Similarly to SQPnP,
the execution time of SQPnL is dominated by the linear system solution invoked
in every SQP iteration. Our current implementation employs Matlab’s general-
purpose linear system solver linsolve. However, this operation can be consider-
ably accelerated by exploiting the special structure of the system’s matrix. This
optimization has been incorporated into the C++ implementation of SQPnP4,
resulting in a tenfold improvement in performance.

5.2 Real image experiments

SQPnL was also evaluated with the aid of real images from VGG’s multi-view
dataset5. Among others, this dataset includes 17 Oxford University building
images, taken with a digital camera held at a person’s height. The images are
organized into 5 sets and in addition to them, the dataset also includes matched
2D line segments along with their reconstructed 3D counterparts and camera pro-
jection matrices. We used the 3D lines and their corresponding 2D line segments
from all 17 images as inputs to PnL estimation, whereas the poses extracted
from the camera matrices were used as ground truth. SQPnL was compared

4 Code can be accessed here.
5 https://www.robots.ox.ac.uk/∼vgg/data/mview/

https://github.com/opencv/opencv/blob/2b1c8aa4db3cd74afec9a71b54765c7f57f053c5/modules/calib3d/src/sqpnp.cpp#L360
https://www.robots.ox.ac.uk/~vgg/data/mview/
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Fig. 3. Plots of the average and maximum reprojection error for 500 executions of each
PnL solver on n random line segments, 4 ≤ n ≤ 20. For each n, the line segments are
repeatedly generated from a previously sampled line population and their endpoints
are contaminated with additive Gaussian noise of standard deviation σεεε = 5 pixels.
Notice the different scales in the vertical axes of the plots.
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Fig. 4. Plots of the average and maximum rotation error (in radians) for the exper-
iments of Fig. 3. Note that methods DLT, ASPnL and RPnL have errors of π in the
maximum error plots in (b). This is because they occasionally provide grossly erroneous
estimates which are highlighted by the maximum operator, despite being attenuated
by the averaging in (a). Another observation is that all methods have returned at least
one highly erroneous estimate for n equaling 4 and 5.
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Fig. 5. Plots of the average and maximum translation error (in meters) for the exper-
iments of Fig. 3. SQPnL clearly surpasses all other methods.

with the best performing state-of-the-art methods, as identified from the syn-
thetic experiments in Sect. 5.1, i.e. AlgLS, SRPnL, OPnL and HPnL. Similarly
to the synthetic experiments, we include in Fig. 6(a) a bar plot of the repro-
jection errors using the pose estimated by each method. Figure 6(b) visualizes
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(a) reprojection error (b) reprojected lines and image line segments

Fig. 6. (a) Bar plots of reprojection error for SQPnL and selected PnL methods applied
to the 17 VGG building images. (b) Illustration of certain reprojected lines (blue) in
comparison with their corresponding line segments detected in an image (red).

(a) rotation error (b) translation error

Fig. 7. Bar plots of the rotation and translation errors for SQPnL and selected PnL
methods applied to the 17 VGG building images.

certain 3D lines reprojected with the estimated pose on an image. Furthermore,
Fig. 7 illustrates the rotation and translation errors with respect to the ground
truth, computed using the same metrics as in Sect. 5.1. Clearly, the proposed
method performs better than the competing ones in the majority of cases.

6 Conclusions

This paper has presented a non-minimal PnL solver that employs a quadratic
cost penalizing plane normal misalignment on the elements of the rotation
matrix. Utilizing existing machinery for solving QCQP formulations address-
ing the PnP, this cost is minimized by conducting local searches in the vicinity
of special feasible points from which the global minima are located in a few
steps. The translation is recovered via solving a linear least squares problem.
Comparative experiments have confirmed that the solver consistently recovers
the correct pose, attaining accuracy that exceeds or at least matches the best
competing methods across various levels of noise and spatial arrangements of
3D lines. A C++ implementation of the method is available at https://github.
com/terzakig/sqpnl.

https://github.com/terzakig/sqpnl
https://github.com/terzakig/sqpnl
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Abstract. This paper proposes a novel NeRF (Neural Radiance Fields),
called WF-NeRF, for accurately recovering wavefront signals with mul-
tiple depth values. Although range sensors such as LiDARs typically
return depth as scalars, the proposed method uses 1D raw signals of
LiDARs, i.e., all reflected signals of multiple objects in the path of a
beam. Due to this, coarse sampling used in the conventional NeRFs is
no longer required but only a single-pass sampling, thus improving learn-
ing and memory efficiency. Considering the property of LiDAR signals,
where the signal intensity decays inversely proportional to the square of
the distance as the beam light spreads over the wavefront, we introduce
a new sampling strategy of the same distance signals on the wavefront
and a loss function taking the relative error between the training and
predicted values (MSRE: Mean Squared Relative Error). The wavefront
sampling produces super-resolution-like effects and improves the accu-
racy of multiple-depth estimation. MSRE normalizes the decay of the
observed signals and stabilizes the learning process. In experiments with
an object occluded by a mesh, we show that the conventional NeRFs fail
to reconstruct the 3D shape. On the other hand, the proposed WF-NeRF
accurately recovers both the mesh and the object, even with a smaller
number of input data.

Keywords: Neural Radiance Fields · LiDAR · Wavefront Signals

1 Introduction

With the widespread use of inexpensive LiDARs, automatic navigation tech-
nology is becoming more and more practical in robotics research. The LiDAR
calculates distance based on Time-of-Flight, i.e., the time of transmission and
reception of a laser beam with a finite thickness. Due to data stream capacity
limitations, many commercial LiDAR systems can only provide the distance to a
single representative point on the beam path. However, actual scenes consist of
complex structures and objects that partially obstruct the beam. For example,
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inexpensive low-resolution LiDARs cannot observe objects behind a grid pattern
with 2–3 cm spacing, e.g., fences or nets. The degradation of map accuracy due
to such commonplace objects is a fatal problem in automated navigation. For
example, when a robot scans an indoor scene using a LiDAR, the LiDAR beams
interfere with complex objects placed in front of the LiDAR, such as nets and
houseplants. The sensor receives stronger reflections from closer structures, so
the shape of background objects will be discarded, causing holes in the 3D map.
The same problem occurs when using LiDAR together with other sensors in
remote sensing or autonomous driving. Since LiDAR beams first interfere with
branches, leaves, and fences, signals of the terrain in the distance are prevented.

On the other hand, 3D scene reconstruction from images is one of the major
applications in computer vision and has been studied intensively for decades.
The most fundamental theory is Structure-from-Motion (SfM) [7], which simul-
taneously estimates the 3D positions of image feature points and the camera
motion. Since the density of the 3D point cloud obtained by SfM is sparse,
various approaches have been devoted to recovering dense 3D shapes. Classi-
cal methods include Novel View Synthesis [1], which transfers pixel values to a
new viewpoint using the camera position from SfM; Visual Hull [10], which esti-
mates a 3D voxel from the silhouette of an object; Multi View Stereo [6], which
extends the stereo theory to multiple viewpoints; and DTAM [14], which gener-
ates smooth and dense 3D surfaces on real-time using RGB cameras. Recently,
Neural Radiance Fields (NeRF) [12] has attracted attention as an innovative
approach for obtaining photorealistic novel views from RGB images alone.

Since the original NeRF (hereinafter referred to as Vanilla-NeRF) has a sim-
ple structure to learn MLP (Multi-layer Perceptron) by minimizing the photo-
metric loss using a large number of images, various derivative techniques have
been proposed. For example, reducing the number of images using image fea-
tures (PixelNeRF [18], DietNeRF [8]), recovering microstructures in high resolu-
tion by extending the sampling range from lines to frustum (mip-NeRF [2], zip-
NeRF [3]), accelerating training time by hashing positional encoding (Instant-
NGP [13]), and improving memory efficiency by gridding the space using tensor
decomposition (TensoRF [4]). These studies focus on generating visually natural
images, often resulting in inaccurate 3D shapes.

Several studies have been proposed to incorporate 3D data measured by
LiDARs or RGB-D cameras into a NeRF framework to recover highly accu-
rate 3D shapes. UrbanRF [15] and Point-NeRF [17] use point clouds, and DS-
NeRF [5] and D-Nerfacto [16] use depths. Those works showed that utilizing 3D
information mitigates the inaccuracy around object boundaries. However, they
treat LiDAR signals as mere zero-dimensional signals or scalar values. In other
words, they ignore the characteristics of LiDARs, which irradiate a beam with a
certain width and output a depth with the highest reflectance in the beam lumi-
nous flux. If multiple objects smaller than the beam’s spot size are on the beam
path, only a single object with the highest reflectivity may be reconstructed.
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This paper aims to present a method for incorporating the aforementioned
property of LiDAR signals into NeRF to achieve highly accurate 3D shape recon-
struction1. The contributions of this paper, outlined in Fig. 1, are as follows:

– 1-pass IFM sampling
Raw signals from a LiDAR, distributing 1-dimensional in each depth direc-
tion, are used as the ground-truth data to determine sample points for ray
marching. We apply the IFM (Inverse Function Method) to the GT signal at
each iteration to add randomness to the sampling process and achieve high
spatial resolution and memory efficiency. This step corresponds to a direct
computation of coarse sampling in Vanilla-NeRF without rendering.

– Wavefront sampling and accumulation
We generate multiple rays within the spot of a LiDAR beam light flux. We
conduct ray marching on these rays at one time and calculate a 1D signal by
integrating points at the same distance from the center of the LiDAR. In the
field of optics, this is equivalent to obtaining signals on the same wavefront.

– Mean Squared Relative Error (MSRE)
The 1D signals predicted in the wavefront sampling described above are used
to calculate Loss against the training signals, i.e., the raw signals. We calculate
the relative error of the predictions to the training signals to remove the
inverse-square falloff.

2 Related Works

2.1 LiDAR Sensors

LiDARs internally record the time of flight between the transmitter’s emission of
the light signal and the receiver’s reception of the reflected light from the object.
After the transmitter emits a beam, the receiver continues to record the signal
of the reflected light from an object for a certain period of time. It determines a
representative value from the time-resolved signal. Many LiDARs on the market
output a single depth with the transmitter’s direction for each point; thus, the
3D structure of a scene or an object is obtainable as a point cloud. While point
cloud representation discretizes 3D space, it has several limitations about the
sparsity of points and the memory inefficiency for large-scale scenes. Moreover,
raw signals of LiDARs before representative depth is determined actually contain
rich information, i.e., the reflected radiance of multiple objects on the path of
beams. Some commercial products return raw signals or convert them into multi-
return point clouds; however, NeRF-based approaches have not been explored
extensively to handle such special signals or point clouds. These facts motivate
us to develop the novel NeRF to handle wavefront 1D signals.

1 Transient-NeRF [11], based on a similar motivation, was proposed on arXiv. How-
ever, it has yet to be peer-reviewed and code has not been released.
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Fig. 1. An overview of the proposed WF-NeRF. (a) A beam emitted from a LiDAR
sensor interferes with a mesh-like fence, an object, and a wall. The object and the
wall reflect the beam passing through a gap in the mesh. The LiDAR receives those
reflections. (b) The 1D raw signal of each beam has multiple reflected intensities at
the interference distance with the object. The IFM is applied to their 1D distribution
to select sampling points efficiently. The neural network predicts 1D signals from the
Radiance Fields Fθ of the sampling points. (c) Multiple rays are randomly flown within
each beam for sampling to simulate the actual beam spread of the LiDAR. The pre-
dicted signals at the same distance of each ray are accumulated along the wavefront
direction. (d) The difference between the raw signals and the predictions is used as a
loss in the training process. Signals from relatively dark objects, i.e. weak reflections
from distant objects, are normalized by taking the MSRE loss between the raw and
predicted signals.

2.2 NeRF Utilizing LiDAR/Depth Sensors

DS-NeRF [5] is the first method that incorporate dense depth maps into the
Vanilla-NeRF framework. The depth loss is minimized between the ground-
truth and predictions. D-Nerfacto [16] uses a strategy similar to DS-NeRF to
minimize the depth loss, but its framework is based on Nerfacto for faster com-
putation. UrbanRF [15] introduces the LiDAR loss, which uses point clouds to
actively reduce the volume density in empty regions in 3D space. The LiDAR
loss improves convergence and accuracy. Point-NeRF [17] proposes neural point
clouds for improving training efficiency. 3D neural points are initialized by
LiDAR or SfM, then, a pruning algorithm is performed on 3D points having
a low confidence. As these methods only assume single-return signals, using
multi-return signals has yet to be investigated well. In Sect. 4, we will report
that extending the conventional approaches to multi-return signals does not yield
good reconstruction results.

3 WF-NeRF: Wavefront Neural Radiance Fields

3.1 Overview

Figure 1 shows a conceptual diagram of the proposed method. As described in
Sect. 2.1, many commercial LiDARs convert the 1D raw signal of each beam to
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Fig. 2. Sampling strategies of the conventional NeRFs and the proposed WF-NeRF.
(a) Color sampling by the conventional NeRFs. Each pixel value is integrated along the
ray direction. (b) Wavefront sampling by the proposed WF-NeRF. Each depth value
within a beam is integrated along the wavefront direction, i.e. the same distance from
the sensor.

a scalar depth to output the 3D structure as a point cloud, while the raw data
contains rich information such as multiple reflections. The proposed method aims
to achieve more accurate sensing by directly inputting raw signals to a Neural
Radiance Field. The following sections describe the three techniques to recover
multiple depths of the raw signals in a NeRF framework.

3.2 1-Pass IFM Sampling

We customize the inverse function method, which was originally developed in
Vanilla-NeRF [12] and widely used in RGB-based variants, to reduce the amount
of processing data. The inverse function method is a Coarse-to-Fine approach
for sampling points of the 3D space. This method probabilistically selects sam-
pling points in proportion to the slope of the cumulative density function (CDF)
calculated from a probability density function (PDF). Vanilla-NeRF allocates
many points in a region with high-intensity reflections where an object is sup-
posed to exist. The 2-pass sampling requires a neural rendering for each coarse
and fine model. In the proposed method, on the other hand, a LiDAR raw signal
corresponds to the 1D density distribution along a ray. Therefore, the sampling
point distribution can be determined based on the raw signal, which is then
applied to the IFM to obtain fine sampling directly.
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The proposed method has the advantage of performing neural rendering only
once; however, LiDAR raw signals are more dense than depth maps. The amount
of data is enormous and memory inefficient to be used as the ground-truth signal
for training a NeRF model. We propose an efficient sampling method based on
the conventional approach to overcome this issue.

The intensity of raw signals is close to zero (apart from internal and distur-
bance noise) around an empty area where no objects exist and no reflections are
observed. As UrbanRF [15] and DS-NeRF [5] pointed out, those information give
a strong constraint for estimating the distribution of a sparse space. Therefore,
the spatial distribution can be efficiently estimated by adding moderate random-
ness to a region with zero-intensity signals at spatial sampling. Our sampling
strategy is as follows:

1. Add random bias of 1–10% of the maximum signal to the raw signals before
applying the IFM.

2. Apply the IFM at each iteration of a training phase to obtain random sam-
pling points.

In contrast to Vanilla-NeRF, the PDF in the proposed method is a LiDAR
raw signal added a weak bias. This leads to a gradient for the whole region in
the depth direction when the PDF is converted to a CDF. When performing
ray marching at every iteration of a training process, we can obtain random
sampling points with a certain probability even at points near zero intensity.
The proposed 1-pass IFM approach reduces memory consumption drastically.
We will describe actual reduction rate in the experiment section, Sect. 4.2.

3.3 Wavefront Sampling and Accumulation

The light emitted by LiDARs is a beam with a finite thickness. Therefore, as
shown in Fig. 1, when a beam interferes with multiple objects, the raw signal
contains information about the objects’ surface. We aim to reproduce this phys-
ical model with Radiance Fields to recover object shape. Figure 2 illustrates the
difference in the integration direction between the conventional NeRFs and the
proposed method. Ray marching in the conventional NeRFs is a 1D integra-
tion along a ray (Fig. 2a). Conversely, the proposed method integrates in the
wavefront direction perpendicular to the ray, as shown in Fig. 2b. We first set a
cross-section (spot) of a ray bundle that simulates the signal of a LiDAR beam
at a particular azimuth. Then, we randomly generate n rays passing through the
cross-section and perform ray marching for all rays as in Vanilla-NeRF to obtain
the intensity of each sampling point.

Similar to conventional NeRFs methods, a network that learns the inten-
sity c and volume density σ of a 3D point x viewed from a direction d can be
expressed as Fθ(x,d) → (c, σ). In our method, we extended the intensity vector
c from 3 dimensions of RGB to 4 dimensions of RGBI and used the fourth dimen-
sion as the intensity of beam refrection of the LiDAR. Note that in the main
experiments, these RGB values are not used for training, but only in Sect. 4.2.
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Suppose that a beam is composed of n rays. The signal intensity Ipred at xi

on a beam with the distance r from the origin oi is obtained as follows:

Ipred(x(r)) =
1
n

n∑

i

Ii(x(r)), (1)

where
Ii(x(r)) = T (r) σ(xi(r)) c(xi(r),d),

xi(r) = oi + rdi,

T (r) = exp
(

−
∫ r

0

σ(xi(s))ds

)
.

(2)

Note that T (r) represents the trasmittance at the distance r. Unlike Vanilla-
NeRF, the proposed method does not integrate Ii(x(r)) in the ray marching
direction but treats it as a 1D intensity distribution w.r.t. the distance r. Suppose
the intensities Ii(x(r)), i ∈ n are obtained at the same interval within the beam
flux. The distance r can be interpreted as a wavefront equidistant from the
LiDAR. Thus, Ipred(x(r)) can be represented by the average of the intensities
Ii(x(r)), i ∈ n.

3.4 Mean Squared Relative Error (MSRE)

The proposed method calculates the loss for every distance r between the raw
signal Iraw(r) and the predicted signal Ipred(r). It should be noted here that
raw signals of LiDARs decay in inverse proportion to the square of the dis-
tance. Ignoring the inverse-square falloff causes an exponential weighting by the
distance, resulting in the recovery of the nearest object being prioritized, and
distant objects may be lost. To overcome this issue, we employ the mean squared
relative error to ensure uniform weighting independent of distance from the sen-
sor:

LLiDAR =
(

Ipred(r) − Iraw(r)
Iraw(r) + ε

)2

, (3)

where ε = 10−9 is merely a small value to avoid zero division.

4 Experiments

This section reports the performance evaluation of the proposed method. First,
using synthetic data, we conducted an ablation study on the new wavefront
sampling and MSRE loss function as well as on different backbone models.
Next, quantitative and qualitative comparisons were made with the conventional
NeRFs, also using synthetic data. We will visually validate the reconstruction
results for real data captured by a consumer LiDAR. Finally, we will demonstrate
an example of sensor fusion combining WF-NeRF with an RGB camera.
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4.1 Implementations

The Proposed Method. The new approaches described in Sect. 3 can be
incorporated with various NeRFs based on the standard ray marching rendering
as a backbone model. Hereafter, we call the proposed method combined with
Vanilla-NeRF, mip-NeRF, TensoRF and Nerfacto by WF-NeRF-V, WF-NeRF-
M, WF-NeRF-T and WF-NeRF-N, respectively. The number of samplings of
Vanilla-NeRF and mip-NeRF were set to 512. The resolution of TensoRF was
initially set to 256 and finally to 1024. The number of rays forming one ray
bundle in the wavefront sampling was set to 128, corresponding to the number
of rays sampled in the ray marching in the fine network of Vanilla-NeRF. We
implemented WF-NeRF on NerfStudio [16], a unified framework for NeRF model
training and visualization.

The Conventional Methods. We chose three conventional NeRF methods
using RGB cameras: Vanilla-NeRF [12], mip-NeRF [2], and TensoRF [4]. Also,
we chose two methods using depth values: DS-NeRF [5] and D-Nerfacto [16].
Since DS-NeRF and D-Nerfacto assume point clouds or depth maps rather than
LiDAR raw signals, we input the maximum value of raw signals in the depth
direction. Unlike LiDAR raw signals, the depth map has the format limita-
tion that only one representation depth can be obtained for a given coordinate
(direction). Therefore, for fair comparisons, we prepared “2-layer depth” dataset,
where each depth map has two depth channels (the front and back of the fence).
We used the official DS-NeRF implementation and NerfStudio for the other
methods.

Evaluation Metrics. Following the conventional methods, we used MAE(Mean
Absolute Error) to evaluate the accuracy of 3D data.

Table 1. Ablation study of the proposed method using 45 LiDARs. WF-sampling
denotes the wavefront sampling proposed in Sect. 3.3. The bold and underlined numbers
depict the best and the second-best values for each column.

Model Backbone WF-sampling (Sect. 3.3) Loss (Sect. 3.4) Depth MAE↓
WF-NeRF-T TensoRF MSE 2.66

TensoRF � MSE 2.59

TensoRF MSRE 0.87

TensoRF � MSRE 0.62

WF-NeRF-N Nerfacto MSE 3.00

Nerfacto � MSE 2.78

Nerfacto MSRE 0.37

Nerfacto � MSRE 0.18
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Fig. 3. Visual comparison of the ablation study: depth map prediction.

Fig. 4. Experimental results on synthetic data w.r.t. the number of sensors.

4.2 Synthetic Dataset

We generated LiDAR raw signals using a transient light simulator developed by
Jarabo et al. [9]. In this simulation, all objects are set with a single-color Lamber-
tian reflection model, providing very little texture information. Additionally, the
simulation takes into account the spread of LiDAR beam spots, which are larger
than the frustums defined by each pixels of an RGB camera. Due to this, the
generated depth maps have lower spatial resolution than that of RGB camera.
The LiDAR beam spot was a portrait style whose aspect ratio is 3:1, which we
determined corresponding to the specification of Livox Mid-40 in the real data
experiments. See Sect. 4.3 for more details. As shown in Fig. 1, a mesh-like fence
was placed in front of an object with a grid spacing equal to the vertical width
of the LiDAR beam spot. We used the Stanford bunny for the object. We set
45 viewpoints for each LiDAR or RGB camera in front of the fence to generate
training data, and generated test images by placing 41 viewpoints behind the
fence. The image resolution (x, y) is 400 × 400 while the LiDAR raw signals
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which have 3D resolution (x, y, z) were rendered by 400×400×1600 for a single
view. The third parameter z here represents the range (depth) from the sensor.
We set the number of points by 128 for the 1-pass IFM sampling described in
Sect. 3.2. The depth resolution was reduced from 1600 to 128, which is 92% data
reduction (1 GB per view to 82 MB per view). The computational time using the
1-pass IFM was about 3–4 h for training a sequence on a single RTX3080 GPU.
We could not train a model without the 1-pass IFM because the amount of data
exceeds the 12 GB VRAM of the GPU.

Ablation Study. We start with ablation studies to validate the effectiveness of
the two proposed techniques: the wavefront sampling (WF-sampling) in Sect. 3.3
and MSRE in Sect. 3.4. In this experiment, we used 45 LiDAR views, WF-NeRF-
T and WF-NeRF-N. As comparisons of MSRE for the proposed method, we used
the conventional method MSE (Mean Squared Error) that uses absolute value of
the signal for them. Table 1 indicates that WF-sampling and MSRE significantly
improve depth estimation accuracy. Also, Fig. 3 shows the qualitative results with
and without WF-sampling and MSRE. We can clearly see that the proposed
approaches are required to reconstruct the fence and object. Interestingly, WF-
NeRF-T has a smoother 3D shape, while WF-NeRF-N is more detailed but with
tiny artifacts. This is caused by the difference in the spatial representation of
the two backbones.

Table 2. Quantitative results on synthetic data.

Method # of sensors Depth MAE↓
LiDAR RGB cam.

Conventional Vanilla-NeRF 0 45 1.72

mip-NeRF 0 45 1.72

TensoRF 0 45 1.21

DS-NeRF 45 0 2.20

DS-NeRF (2-layer) 45 0 1.97

D-Nerfacto 45 0 2.84

D-Nerfacto (2-layer) 45 0 2.61

Proposed WF-NeRF-V 45 0 0.31

1 0 0.56

WF-NeRF-M 45 0 0.57

1 0 1.29

WF-NeRF-T 45 0 0.62

1 0 0.98

WF-NeRF-N 45 0 0.18

1 0 1.08
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Fig. 5. Qualitative comparison of the depth map estimation on the synthetic dataset.
Each column is the estimation result by each method. Each row displays the results
from a different view angle.

Evaluation w.r.t. Varying the Number of Sensors. In this experiment,
we varied the number of sensors from 1 to 45 to compare the performance of the
proposed model with the conventional NeRFs. The number of sensors refers to
the number of cameras for the RGB-based methods (vanilla-NeRF, mip-NeRF,
TensoRF, Nerfacto) and the total number of cameras and LiDARs for the other
methods (DS-NeRF, D-Nerfacto, WF-NeRF-T and WF-NeRF-N.)

Figure 4 shows the transition of each metric with respect to the change in
the number of sensors. The proposed method is more accurate than the conven-
tional NeRFs even when the number of sensors is small. Unlike the widely used
public datasets, the experimental setting assumed in this paper involves many
occlusions. According to these results, we can confirm the effectiveness of the
proposed method, which assumes the presence of multiple depth values in raw
signals of LiDARs. Also, a detailed result is summerized in Tab. 2. WF-NeRF-T
maintains higher depth accuracy than conventional NeRFs.

Figure 5 shows the depth map visualization with the number of sensors in
Tab. 2. The two proposed methods successfully estimate multiple depths in the
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scene. When the viewpoint angle changes (rows 2 and 3), we see that the fence,
object, wall, and floor are reconstructed. On the other hand, Vanilla-NeRF, mip-
NeRF, and D-Nerfacto appear to reconstruct the fence from the front view (row
1) but actually fail to estimate the multiple depths. DS-NeRF reconstructs the
fence like a wall.

Fig. 6. (a) Results on various fence types. (b) Comparison of depth MAE w.r.t the
number of sensors.

Evaluation w.r.t. Varying the Fence Types. Figure 6 shows the recon-
struction results on various fence types consisting of half-pitch-sub-fences with
different line directions. Although the reconstruction quality of the fence slightly
decreases compared to Fig. 3 and Fig. 5, that of the scene behind the fence (the
bunny and background) maintains the same level.

Sensor Fusion with RGB Cameras. As in DS-NeRF, the proposed method
can perform sensor fusion by sharing a neural model for RGB cameras. In other
words, LiDARs and RGB cameras capture a scene at the same time to recover
high-resolution color images in addition to multi-depths. Each device can be
installed in spatially different locations. In order to train the fused model for the
different signals, the loss for each device is linearly combined using the weights
λ:

Lfusion = Lcamera + λLLiDAR. (4)

Here, Lcamera represents the photometric loss for RGB images used in the con-
ventional NeRFs. We varied λ with decay for WF-NeRF-N to avoid overfitting,
ranging from λmax = 5.0 × 10−12 to λmin = 10−14 with multiplying a decay
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Fig. 7. (a) Depth and RGB images rendered by the sensor fusion of 20 LiDARs and
20 cameras set in front of the fence. (b) Effect of the sensor fusion. LiDARs with RGB
cameras provides a more detailed reconstruction.

parameter 0.9999975 at each iteration. For other models, WF-NeRF-V and WF-
NeRF-M, λ was set to ranging from 10−8 to 10−10 with decay parameter 0.99995.

Figure 7(a) shows qualitative results of the bunny, LEGO, Chair, and Mic
generated by WF-NeRF-T and WF-NeRF-N. By mixing high resolution RGB
image, detailed and colored 3D scene can be obtained with fewer sensors.
Figure 7(b) shows a shape-reconstruction results of the fence and the bunny
behind the fence. WF-NeRF-N provides more accurate and clearer shape than
WF-NeRF-T.

4.3 Real Dataset

In this section, we report the experimental results in a real environment. We
used a commercial LiDAR, Livox Mid-40 equipped with a multi-return mode,
which accepts multiple reflection signals per beam up to three and outputs each
signal as different point clouds. As shown in Fig. 8, To recover 1D raw signals,
we merged the multi-return point clouds into a single point cloud and fit a
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Gaussian distribution on the points of each ray. The standard deviation σ was
set by 2cm based on the specification of Livox Mid-40. We manually measured
the beam shape of Livox Mid-40 by 3cm × 1cm vertically long (cylindrical) at
3 m distance, then, adjusted the ray bundle setting to the beam shape. The depth
resolution of the raw signals was reduced from 4800 to 128 by the 1-pass IFM
sampling. The depth maps for conventional method (D-Nerfacto) were created
by simply projecting point cloud data from the sensor viewpoint.

N(0, σ2)

Intensity

DistanceDistance

D
irection

Point Cloud
w/ Multi-Return Signal

Delta Function

Convolution

Pseudo Raw Signal
LiDAR Distribution 

Distance

Intensity

Fig. 8. Pseudo raw signals calculation from multi-return signals. Point cloud data
per direction is converted to the delta function along distance, then convoluted with
Gaussian distribution with the LiDAR depth accuracy σ.

We used the LiDAR (Livox Mid-40) to capture a scene consisting of multiple
depths where an object is behind a mesh-like net (Fig. 9) and plants (Fig. 10).
The mesh in Fig. 9 is of size 2.5 cm square. Figures 9 and 10 show an RGB
image (not used for training), a point cloud, reconstruction results by D-Nerfacto
(using 2-layered depth map) outputs, and reconstruction results by our methods.
Our methods (WF-NeRF-N) reconstructs the net/plants and the scene behind
them as continuous surface while point cloud output from LiDAR can only be
represented as sparse point data. D-Nerfacto appear to reconstruct some of the
scene behind net/plants, but much has disappeared and the details is lost. These
results validate that the proposed methods can provide a reasonable estimation
in real environments composed of fine objects and multiple depths.

5 Discussion

As reported in the experiments, WF-NeRF-T and WF-NeRF-N show unique
trends numerically and visually. The two methods represent 3D geometric infor-
mation differently, resulting in image quality differences. Since TensoRF per-
forms tensor decomposition of the 3D coordinates and feature values, WF-NeRF-
T is effective for reproducing flat structures like walls and floors due to the quan-
tization effect. On the other hand, Narfacto stores spatial features as a product
of hash information. WF-NeRF-N provides more detailed shapes of the fence
than WF-NeRF-T but loses surface continuity in some parts depending on the
signal density of training data.

One of the current limitations in handling LiDAR raw signals with NeRFs
is the memory inefficiency of increasing the number of sensors due to the large
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amount of data. Although the 1-pass IFM sampling reduces the data size by
an order of magnitude, the data size is still much larger than RGB images.
A quick workaround is to use a sparse representation such as Octree or apply
FFT decomposition, but those methods may lose high-frequency components.
Another issue is that there are few commercial LiDARs that output raw signals.
For example, SPAD sensors have a narrow range and are unsuitable for outdoor
scenes. Full waveform LiDARs are too large for portable measurement. We fitted
a Gaussian distribution to the peak values in the real data experiment but will
need a more sophisticated and efficient approach to estimate the 1D signal dis-
tribution accurately. Improving sampling performance can make the beam scan
sparse with increasing the beam spot size. Moreover, the scan time, which is a
common issue of many LiDARs, can be shortened.

Fig. 9. Qualitative results on our real dataset Net .

Fig. 10. Qualitative results on our real dataset Plants.

6 Conclusion

This paper presented a NeRF framework, WF-NeRF, to reconstruct multiple
depth values of LiDAR raw signals. To obtain accurate estimation, we intro-
duced two novel techniques: the MSRE (mean squared relative error) loss and
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point sampling along the wavefront of LiDAR beams. We incorporated these
techniques into Vanilla-NeRF (WF-NeRF-V), mip-NeRF (WF-NeRF-M), Ten-
soRF (WF-NeRF-T) and Nerfacto (WF-NeRF-N) in the experiments. We set
up an experimental environment consisting of a mesh-like fence and an object
behind the fence so that LiDAR beams have multiple depth values. First, we
reported by an ablation study that both MSRE and wavefront sampling are
required to reconstruct multiple depth values. The quantitative results showed
that using many sensors does not always lead to improvements for the conven-
tional NeRFs in such conditions. Then, we demonstrated in synthetic and real
data experiments that WF-NeRF-T and WF-NeRF-N successfully reconstruct
an object occluded by the fence even with fewer sensors.
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Abstract. The performance of PatchMatch-based multi-view stereo
algorithms is greatly influenced by the chosen source views used for
matching cost computation. Existing methods usually detect occlusions
in a rather ad-hoc way, which can negatively impact the computation.
In contrast, our paper introduces an innovative approach that deliber-
ately models view visibility. We present a novel visibility-guided pixel-
wise view selection scheme that progressively refines the set of source
views for each pixel in the reference view using visibility information
from validated solutions. Furthermore, the Artificial Multi-Bee Colony
(AMBC) algorithm is leveraged to parallelly search optimal solutions for
different pixels. To ensure smoothness of neighboring pixels and bet-
ter manage textureless areas, rewards are assigned to solutions that
come from validated sources. Our method, validated through experi-
ments on two datasets, improves detail recovery in occluded and low-
textured regions, demonstrating noteworthy performance on demanding
scenes. Our implementation is available at https://github.com/Ricky-S/
Visibility-Aware-Pixelwise-View-Selection.

Keywords: Multi-view stereo · PatchMatch · Artificial multi-bee
colony · Visibility-aware

1 Introduction

Multi-view stereo (MVS), which estimates dense 3D point clouds from a set of
input images, is an important research topic and supports many downstream
applications, such as autonomous driving, 3D reconstruction, and virtual real-
ity. Despite significant progress made in recent years [4,12,37,44], reconstruct-
ing accurate and complete 3D point cloud models remains challenging. Obsta-
cles such as occlusions, low/repetitive textures, and view-dependent appearances
often hinder the process.

Inspired by the success of MVSNet [55], numerous learning-based methods
[15,27,35,45,56,59] have been proposed in recent years and shown outstanding
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Fig. 1. The proposed algorithm iteratively performs view selection, normal/depth opti-
mization, and geometry consistency check. Once the process converges, 3D point clouds
from different views are fused together to produce the final model.

performances. While they are top-ranked for various MVS datasets [1,21,57],
they have two major limitations, namely, network complexity and dataset diver-
sity [46]. The former often results in high computational time and memory
requirements, while the latter poses difficulties in obtaining diverse and labeled
training data. Although self-supervised MVS approaches have been proposed
[10,16,20,30], their performance remains unsatisfactory. Therefore, we believe
that non-learning-based MVS approaches, which leverage available geometric
constraints to their fullest extent, offer significant value.

Recently, PatchMatch-based methods [13,37,51,52] show excellent capabil-
ity in depth map estimation. Following [3], these methods generally have a four-
step pipeline: random initialization, propagation, view selection, and refinement.
View selection is an essential factor here because correct matches can only be
found from nearby unoccluded views, and occlusions are common under the MVS
setting. Yet, existing approaches often resort to ad-hoc view selection methods
(e.g. top-n views with the lowest matching cost [13]) without considering visibil-
ity constraints. Therefore, two motivating questions are whether we can make
the view selection process visibility-aware and how much benefit we can gain
from such enhancement.

To this end, we develop a pixelwise view selection approach, which progres-
sively updating the source views used for each pixel. The selected views will be
used for both matching cost calculation and depth/normal consistency check,
which leading to a set of validated solutions. These validated solutions guide
future view selections through visibility checks; see Fig. 1.

Even with a proper set of source views selected, searching the optimal depth
and normal for each pixel is still a challenging problem due to the large solu-
tion space and numerous false local optima. To address this issue, we employ
three strategies: 1) utilizing a swarm-based optimization framework, the Artifi-
cial Multi-Bee Colony algorithm [48], to store multiple solutions for one pixel and
avoid being trapped in local optima; 2) using both intra-image and inter-image
solution propagation to speed up convergence; and 3) incorporating a smooth-
ness term in intra-image propagation to handle low/repetitive texture areas more
effectively. Under the same set of parameters, the final algorithm outperforms
existing non-learning-based methods on the DTU dataset and also achieves note-
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worthy performance on the more challenging subset of the Tanks-and-Temples
dataset.

2 Related Work

2.1 Learning-Based MVS

The huge success of the Convolutional Neural Network (CNN) has sparked inter-
est in introducing learning to 3D shape reconstruction. Two natural paths are
to estimate a 2.5D depth map for each input image or to operate on 3D voxels.
Depth map based approaches are proposed to infer per-pixel depth either from a
single image [25] or to use visual cues extracted from stereo pairs [14,58]. Addi-
tional processing is then needed to consolidate multiple depth maps into a single
3D point cloud [31,49]. Voxel-based methods [9,42] utilize 3D convolution oper-
ators to encode and decode geometric features in discretized 3D space directly
but are limited to the relatively low voxel resolution. To address these limita-
tions, 3D point cloud based [43,53] and implicit surface based [7,33] approaches
are also proposed.

SurfaceNet [17] is one of the first learning-based MVS, which combines images
and camera parameters as input and outputs the voxel surface reconstruction. It
uses a 3D CNN to regularize and infer the surface voxels. MVSNet [55] improves
3D reconstruction by first extracting 2D features from a reference image and
source images. However, forming 3D cost volumes is memory-consuming, [56]
replaces 3D CNNs with sequential 2D CNNs to reduce memory but cost more
runtime. In recent years, [8,15,54] integrate the coarse-to-fine strategy into MVS
reconstruction. This architecture can help reduce memory consumption and
achieve higher-resolution outputs. Note that the variance-based cost metric in
these methods is under the assumption that a pixel is visible in all input images,
Vis-MVSNet [59] integrates the occlusion information into the MVS network
via the matching uncertainty estimation to suppress the influence of occluded
pixels. Instead of cost volume approaches, [6] directly processes the target scene
as point clouds and refines point clouds iteratively.

2.2 Non-learning-Based MVS

Non-learning-based MVS approaches infer depth information from matching
costs of rectified image patches. According to [38], Non-learning-based MVS
can be categorized into four types to represent the scene: volumetric based
[22,39], point cloud based [12,23], mesh based [40,41], and depth map based
[13,51]. Recently, to harness parallel capabilities and achieve optimal perfor-
mance, PatchMatch series [13,51] have been widely used in this field. The core
idea of Patchmatch [2] is to establish matches between patches randomly and
iteratively by performing an efficient nearest-neighbor search. Adapting this idea
to the stereo matching problem, [3] proposes the concept of using planes as sup-
port windows assigned to every pixel. [51] applies the pyramid structure and
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geometric consistency. To address textureless regions, [52] uses a coarse-fitting
plane hypothesis.

Motivated by the concept of PatchMatch Stereo and recognizing the impor-
tance of different views in MVS, we propose a method that takes advantage of
the parallel processing capabilities of optimization algorithms and the physical
constraints of images.

Fig. 2. Illustration for the progressive view selection process: (a) initially, only source
views with poor triangulation angle (C5) will be removed from the source view set;
(b) once the normal of X is estimated, views with poor incident angles (C1) will be
removed; and (c) validated solutions are used to further remove occluded views (C4)
from the set.

2.3 Artificial Multi-Bee-Colony Alg.

Artificial Bee Colony (ABC) algorithm [18] and its variants [61] are optimization
frameworks that simulate the foraging behavior of honey bees. Compared with
other population-based algorithms, the ABC algorithm can achieve equal or
better performance with fewer parameters.

Our work leverages the idea of AMBC to build the MVS framework. We not
only apply the between-colony communication idea for propagating solutions
between different pixels of the same image but also for propagation among dif-
ferent images. In addition, rewards are added to validated solution propagation,
which allows simple yet effective enforcement of smoothness constraints.

3 Visibility-Aware MVS

Given a set of input 2D images I = {Ii|i = 1 · · ·N} with known camera param-
eters C = {Ci|i = 1 · · ·N}, the goal of MVS is to estimate pixel-wise depth
maps d = {di|i = 1 · · ·N} for every view and fuse them into a 3D point cloud.
Specifically, when processing a reference image Iref , MVS algorithms normally
estimate a local fitting plane P for each pixel x in Iref ’s local coordinates, using
some of the remaining views as source images Isrc ∈ {I} − Iref . The plane P
depicts both the depth and normal information of the local geometry, which are
denoted as dref (x) and nref (x), respectively.
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Fig. 3. Visual comparison of the quality of point clouds obtained by different algo-
rithms on three Advanced scenes in the Tanks-and-Temples dataset. The visualization
is provided by the official website, with pixel color representing the distance from the
ground truth to the nearest reconstructed point. The legend is on the right. Our results
show the lowest errors.

Figure 1 illustrates an overview of our method. We construct a three-phased
process that evolves over cycles. An initial set of source views is selected for
each pixel in each reference image based on only camera parameters C. These
source views are used to compute matching costs, based on which an AMBC
algorithm is used to search for the optimal solution (depth and normal) for
each pixel. A geometry consistency check is then performed by projecting the
optimal solution of a given pixel to all its source views. The solution is considered
validated if both depth and normal are consistent with the corresponding pixels
in these source views. Validated solutions are further used for: 1) guiding the
future source view selection process as some source views may be determined as
occluded; 2) communicating pixels information both within the same image and
across different images; and 3) fusing into the final point cloud.

3.1 Pixelwise View Selection

The selection of source views for matching cost calculation strongly impacts the
quality of reconstruction results. Previous work has proposed to use triangulation
angle, incident angle, and image resolution-based geometric priors to perform
pixelwise view selection [37]. While we acknowledge the importance of resolution-
based geometric prior in handling large-scale scenes, its benefit for reconstructing
small scenes is limited since all objects are captured under similar resolutions.
Hence, we removed this term from our implementation for simplicity. Instead,
we add a visibility-based term, which handles occlusions based on geometric
information instead of heuristics.

The actual terms used for view selection are based on available information.
At the beginning of the process, we have yet to gain prior knowledge of scene



Visibility-Aware Pixelwise View Selection for Multi-View Stereo Matching 135

geometry. Therefore, when processing image Ii as the reference view, only the
triangulation angle term is used for view selection. All nearby views whose tri-
angulation angle with Ii is between [10◦, 30◦] are selected into the source view
set {Isrc}; see Fig. 2 (a). It is worth noting that the same set of views is used for
all pixels in Ii.

Once the depth di(x) and normal ni(x) for each pixel x in Ii are estimated,
the incident angle term will be used. If a given view Ij has a poor incident angle,
i.e. the angle between ni(x) and the viewing vector of Ij is greater than 80◦, Ij
will be removed from the source view set {Isrc}; see Fig. 2 (b). As a result, the
set {Isrc} will be adaptively determined for different pixels in Ii.

Finally, once validated depth and normal are found for different views (details
on solution validation will be discussed in Sect. 3.3), the visibility term will
be introduced. That is, for a given pixel x in reference view Ii, we will first
backproject x to a 3D scene point X using the estimated depth di(x). The 3D
point X is then projected to each view Ij in set {Isrc}. Without losing generality,
here we assume the projection of X on image Ij is pixel y. We consider the X
is occluded in Ij if and only if a validated solution is found at pixel y and the
depth dj(y) is smaller than the distance to 3D point X. Ij will be removed from
source view set {Isrc} if X is occluded in Ij ; see Fig. 2 (c).

3.2 Search with AMBC Algorithm

To apply AMBC to MVS, we represent each pixel x in the reference image i
as a bee colony, where a candidate solution 〈di(x),ni(x)〉 is represented as a
food source. Each pixel stores a fixed amount of candidate solutions, which is
a preset parameter called the food number F . The optimal results are obtained
by dispatching three types of bees: employed, onlooker, and scout bees. We
parameterize the solution space in the Euclidean scene space, as Gipuma [13]
does, which avoids the need for epipolar rectification. This approach also enables
the generation of dense normals, which can be used for point cloud fusion [19].

Random Initialization. We randomly generate F candidate solutions for each
pixel, where F is the food number. We follow [32] to randomly sample the nor-
mal vector over the visible hemisphere uniformly. A trial count T (·) is set to
zero initially and maintained for each candidate solution. It is designed to track
whether each candidate solution is updated through iterations.

Matching Cost Evaluation. The similarity between two patches related via plane-
induced homography defines whether the candidate solution depicts the scene
correctly. In binocular stereo, the matching cost is straightforward. When extend-
ing to multi-view stereo, we adopt the following equation to aggregate the match-
ing cost of the solution 〈di(x),ni(x)〉 in pixel x of the reference image i:

C(di(x),ni(x)) =

⎧
⎪⎪⎨

⎪⎪⎩

∑

j∈{Ssrc}
m(i, j)

|{Ssrc}| − 1
, if |{Ssrc}| > 1

+∞, otherwise

(1)
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where m(i, j) represents the matching cost between two patches from reference
view i and source view j, and {Ssrc} is the set of suitable source views for
pixel x. We adopt bilaterally weighted Normalized Cross-Correlation [37] as our
matching cost function. The aggregation cost is divided by |{Ssrc}| − 1 rather
than |{Ssrc}| because we expect the results to be an unbiased sample estimate
that prefers a larger {Ssrc} set, which is more likely to capture the true normal
and depth than a smaller set.

Employed Bees. The employed bees search within the local colonies by randomly
perturbing each candidate solution. For solution yx, the perturbed one y′

x is
generated by:

y′
x = yx + R(−1, 1)(yn − yx) (2)

where R(−1, 1) returns a value uniformly distributed between [−1, 1], and yn is
another candidate solution randomly selected within the colony. The matching
cost of the perturbed solution is then evaluated based on Eq. 1. If C(y′

x) < C(yx),
we replace yx with y′

x and set T (yx) = 0. Otherwise, we set T (yx) = T (yx) + 1.

Onlooker Bees. The onlooker bees search in neighboring colonies. Following [13],
we adopt a red-black checkerboard pattern for sampling. It divides the image
into red and black groups. Pixels in the same color group can be processed in
parallel without interfering with others.

For every candidate solution yx with a black label, we randomly select a
colony with a red label following the pattern in [51], and vice versa. The solution
yn with the lowest matching cost at the selected colony is then compared against
yx. If C(yn) < C(yx), we replace yx with yn. Otherwise, we set T (yx) = T (yx)+1.

Scout Bees. Both employed and onlooker bees search within the solution space
that is spanned by the existing candidates. Hence, through iterations, they lead
the colony’s candidate solutions to converge to a smaller and smaller range.
The scout bees are therefore introduced to perform global searching and avoid
potential local optimum. We only perform global searching for F − 1 candidate
solutions since we want to always keep the best candidate in the colony. For each
remaining solution yx, if T (yx) exceeds a preset threshold (empirically set to 10),
scout bee replaces it with a randomly generated solution. The new solution is
evaluated via Eq. 1, and we reset T (yx) = 0.

3.3 Geometric Consistency Check

Due to noise and/or deviation from Lambertian property, mismatches sometimes
have lower matching costs than correct matches. To filter out these mismatches,
the consistency check is applied. As shown in Fig. 1, our approach alternates
between the depth/normal estimation stage and the consistency check stage until
the whole process converges. That is, once normal and depth map calculation is
completed for all views, the algorithm will cross-check the obtained depth/nor-
mal among these views. The solutions that pass the check will be marked as
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validated for the next calculation cycle. It is worth noting that both validated
and unvalidated solutions are continued to be refined in further optimizations.
However, only validated solutions are used for:

– Enforcing smoothness constraint during intra-image solution propagation;
– Propagating solutions among different views;
– Providing visibility information during future source view selection.

Ideally, if a solution 〈di(x),ni(x)〉 for the pixel x in image Ii is correct, it
should be consistent with all corresponding solutions in the source views used
for pixel x. That is, after applying homography transform Hij between view Ii
and one of the source views Ij , we should have Hij(di(x)) = dj(Hij(x)) and
Hij(ni(x)) = nj(Hij(x)). In practice, we relax the consistency requirement for
〈di(x),ni(x)〉 to:

|Hij(di(x)) − dj(Hij(x))| < Tdepth, (3)

arccos(Hij(ni(x)) · nj(Hij(x))) < Tnormal

where Tdepth and Tnormal are two preset thresholds. Note that depth comparison
is conducted in the disparity space in the experiment to automatically adapt to
sampling variation. In addition, instead of requiring all source views used for
pixel x to be consistent with 〈di(x),ni(x)〉, we relax the constraint by allowing
a small percentage of these views not satisfying the above conditions. That is,
〈di(x),ni(x)〉 is labeled as validated if it is consistent with 70% or more of the
source views {Isrc} selected for pixel x.

Propagation Between Views. Initially, solution propagation only appears in
neighboring colonies within the same image (intra-image propagation) via
onlooker bees. It is one of the vital concepts in PatchMatch-based multi-view
stereo. In this paper, we propose inter-image propagation as well, which enables
the solution to propagate between pixels in different images related by consis-
tency check. Figure 4 shows an example of propagation between views. The key
concept is to propagate already validated solutions to views without validated
solutions at the corresponding locations. This helps to speed up the convergence
and prevent potential local optimum.

Smoothness Constraint. Not being able to handle textureless areas properly is
a significant limitation for the PatchMatch-based methods [36]. In binocular
stereo, this problem is often addressed by introducing an additional smoothness
term, which converts per-pixel optimization into global optimization. Solving
global optimization under the MVS setting can be highly computationally expen-
sive. Hence, we utilizes a simple yet effective approach, which applies rewards to
solutions propagated by onlooker bees. The key observation is that the match-
ing cost for the correct match and mismatches are similar in textureless areas.
Adding a small reward to the validated solutions propagated by onlooker bees
effectively encourages the same fitting plane being selected at the current solu-
tion. The smoothness is therefore enforced, and flat textureless surfaces can be
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Fig. 4. Illustration of inter-view propagation. The solution in reference view Cr is
validated through two of its neighboring views (C2, C3). It is then projected to views
C1, C4 as candidate solutions at pixels x1, x4.

properly modeled. For areas with distinct textures, the small reward will not
affect the search for optimal solutions.

3.4 Fusion

Follows [13,37], after obtaining all the depth and normal maps, we fuse them into
a single point cloud. More specifically, for N images in the scene, we consequently
select each image as the reference image and convert its depth map to 3D points
in the world coordinate, then project them to the rest N−1 views. If the disparity
difference is less than 0.5 pixels, and the angle between normals is smaller than
30◦C, they are considered as projections of the same 3D point. The depth and
normal are then averaged into a single 3D point in the result point cloud.

Table 1. Quantitative results for non-learning-based approaches on full DTU dataset.
Lower is better. Our method ranks first in terms of Completeness and Overall metrics.

Method Acc.(mm) Comp.(mm) Overall

Furukawa [12] 0.605 0.842 0.724

Tola [44] 0.307 1.097 0.702

COLMAP [37] 0.400 0.532 0.664

Campbell [4] 0.753 0.540 0.647

Gipuma [13] 0.273 0.687 0.480

Ours 0.385 0.388 0.386

4 Experiments

We evaluate our method on two widely-used datasets, DTU [1] and Tanks-and-
Temples [21], under the same set of parameters. Here we present both evaluation
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results and ablation studies. The ablation study, which examines the critical com-
ponents of pixel-wise view selection, smoothness constraints, and the pixel-wise
view selection, is detailed in the supplementary materials. Additionally, these
materials include an extensive visual comparison with other methods, offering
further insight into the performance and effectiveness of our approach.

4.1 Datasets and Settings

The DTU Robot Image dataset [1] contains 124 different scenes captured by a
structured light scanner mounted on an industrial robot arm. Each scene has
been taken from 49 or 64 positions. The image resolution is 1600 × 1200, and
the camera calibration parameters are provided. Most importantly, this dataset
captures objects at a close distance and hence visibility handling is a major
concern, for which our approach aims to address.

The Tanks-and-Temples dataset [21] contains 21 scenes with image resolution
of 1920 × 1080. Unlike DTU, it does not provide ground truth camera poses, so
we utilized COLMAP [37] to estimate them. The dataset is divided into train-
ing and test sets, with the latter further split into Intermediate and Advanced
subsets. The Advanced subset contains larger scenes with more complex view-
point changes than the intermediate one. Since the Advanced subset has more
occlusion issues, it is the focus of our study.

Table 2. Quantitative results on DTU evaluation set. Both learning-based and non-
learning-based approaches are listed for impartial comparison.

Method Acc.(mm) Comp.(mm) Overall

Non-Learning-based

Furukawa [12] 0.613 0.941 0.777

Tola [44] 0.342 1.190 0.766

Campbell [4] 0.835 0.554 0.695

Gipuma [13] 0.283 0.873 0.578

COLMAP [37] 0.411 0.657 0.534

Ours 0.405 0.381 0.393

Learning-based

SurfaceNet [17] 0.450 1.040 0.745

MVSNet [55] 0.396 0.527 0.462

P-MVSNet [27] 0.406 0.434 0.420

R-MVSNet [56] 0.383 0.452 0.417

CasMVSNet [15] 0.325 0.385 0.355

PatchMatchNet [45] 0.427 0.277 0.352

UniMVSNet [35] 0.352 0.278 0.315
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4.2 Point Cloud Evaluation

For the DTU datasets, we present two versions of quantitative results. The
first version compares non-learning-based methods on the full DTU dataset,
whereas the second follows [55] and evaluates both learning- and non-learning-
based methods on the validation set (22 scenes) only. Table 1 shows that our
approach performs the best in both completeness and overall metrics among
non-learning-based approaches. Table 2 further demonstrates that our perfor-
mance is comparable to learning-based methods.

For the Tanks-and-Temples dataset, the generated point clouds undergo eval-
uation through the dataset’s official website, employing F-scores for assessment,
as detailed in Table 3. Our methodology distinguishes itself within the non-
learning-based segment, managing to secure performance on par with learning-
based approaches, particularly within the Advanced subset. This achievement
is largely attributed to the method’s handling of occlusions. The Intermediate
subset is presented in the supplementary material.

Table 3. Quantitative results of F-score (the higher the better) on Tanks-and-Temples
[21] Advanced subset, divided into learning-based and non-learning-based methods.
The best results within each category are highlighted in bold.

Method Advanced

mean Aud. Bal. Cou. Mus. Pal. Tem.

Non-L.-based COLMAP [37] 27.24 16.02 25.23 34.70 41.51 18.05 27.94

PLC [24] 34.44 23.02 30.95 42.50 49.61 26.09 34.46

ACMH [50,51] 33.73 21.69 32.56 40.62 47.27 24.04 36.17

ACMM [51] 34.02 23.41 32.91 41.17 48.13 23.87 34.60

ACMP [52] 37.44 30.12 34.68 44.58 50.64 27.20 37.43

ACMMP [50] 37.84 30.05 35.36 44.51 50.95 27.43 38.73

Ours 38.26 24.97 44.25 41.57 53.11 28.52 37.11

Learning-based PatchMatchNet [45] 32.31 23.69 37.73 30.04 41.80 28.31 32.29

CasMVSNet [15] 31.12 19.81 38.46 29.10 43.87 27.36 28.11

AttMVS [28] 31.93 15.96 27.71 37.99 52.01 29.07 28.84

GBi-Net [34] 37.32 29.77 42.12 36.30 47.69 31.11 36.93

EPP-MVSNet [29] 35.72 21.28 39.74 35.34 49.21 30.00 38.75

TransMVSNet [11] 37.00 24.84 44.59 34.77 46.49 34.69 36.62

MVSFormer [5] 40.87 28.22 46.75 39.30 52.88 35.16 42.95

GeoMVSNet [60] 41.52 30.23 46.53 39.98 53.05 35.98 43.34

ET-MVSNet [26] 40.41 28.86 45.18 38.66 51.10 35.39 43.23

APD-MVS [47] 39.91 32.54 42.79 39.24 51.03 33.08 40.77
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5 Conclusion

In this study, we introduce a visibility-aware, pixelwise view selection technique
tailored for PatchMatch-based multi-view stereo. This approach progressively
refines view selection for each pixel as further insights into scene geometry are
acquired. The chosen views are utilized for both matching cost assessment and
consistency verification.

While utilizing the Artificial Multi-Bee Colony (AMBC) to find optimal solu-
tions for distinct pixels concurrently, we employ between-colony onlooker bees
for both intra-image and inter-image olution propagation. To address the dearth
of photometric clues in regions with low texture, we have integrated rewards that
motivate the propagation of validated solutions to nearby pixels, thereby effec-
tively applying the smoothness constrprocesstableUpon testing our approach
on both the DTU and Tanks-and-Temples datasets, it has been proven that
our method outperforms existing non-learning-based techniques, particularly in
intricate scenes characterized by compleocclusions. The ablation study affirms
that our two primary components - visibility-awarex pixelwise view selection and
smoothness rewards - considerably enhance the 3D reconstruction of occluded
and low-textured regions.
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Abstract. We propose to repaint an image-to-video diffusion model to
synthesize light fields that are geometrically consistent. Despite signifi-
cant advancements in diffusion models for novel view synthesis, apply-
ing these models to generate a light field, i.e., fronto-parallel multiple
views, has been challenging because of persistent visual and geometric
consistency issues. By utilizing advances in video diffusion, we extend
the temporal consistency of video diffusion to the geometric consistency
of multi-view settings. We fine-tune the image-to-video diffusion model
framework for optimized multi-view diffusion by incorporating multi-
view data with camera parameters. Furthermore, we propose integrat-
ing a repaint method during the sampling (denoising process) to achieve
enhanced accurate camera control in multi-view diffusion, improving con-
sistency by maintaining the known region in the input image. This app-
roach enables the application of light field synthesis that requires precise
camera control and demonstrates the ability of diffusion models to gen-
erate light fields with wide baselines, leveraging their unique generative
power.

Keywords: Light Field · Novel View Synthesis · Video Diffusion
Model

1 Introduction

Light field (LF) is a vector function that describes the direction and intensity
of light rays from different angles in 3D space. It is mainly expressed as a 4D
function of (x, y, u, v) for the intensity and direction of light rays passing through
a 2D surface. Given that a light field image captures multi-view information, it
offers the advantage of enabling various post-processing tasks in a single light
field image. These tasks include viewpoint change, refocusing, and depth estima-
tion. However, obtaining a light field image is a challenge. Multiple cameras [38]
must be arranged horizontally and vertically, or a special light field camera [24]
is required to obtain a light field. In addition, although light field can be acquired
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Fig. 1. Results obtained from an LF synthesized from a single image. Left: Corner
view (5, 5) for generated LF. Middle: LF refocusing on the foreground and background.
Right: Depth estimation from generated LF.

through the special light field camera, a limitation exists, that is, only a narrow
baseline is expressed. Hence, the importance of synthesizing light fields with a
wide baseline has been raised.

Previous works aimed at synthesizing light fields have leveraged develop-
ments in deep learning, utilizing methods that combine deep neural networks
with 3D representations. Works such as [1,2,11,12,30] successfully generated
light field from a single image, but their scope was limited to light field with
relatively narrow baselines or specific scenes. Within the domain of novel view
synthesis (NVS), Neural Radiance Field (NeRF) [23] and 3D Gaussian Splat-
ting [13] have received particular attention. NeRF employs volumetric rendering
based on 3D representations to reconstruct target views inherently. Nonethe-
less, it requires scene-specific training and suffers from blurring problems when
a significant deviation exists between the target and the sparsely provided input
views. 3D Gaussian Splatting, although an attempt to address the limitations of
NeRF, maintains the constraint of requiring scene-specific training.

Recent works on NVS [16–20,27,28,36,37,40,42] have progressed with dif-
fusion models. This generative model approach has the advantage of producing
plausible random samples from a learned conditional distribution, addressing
issues related to unseen regions from the input viewpoint. However, a significant
drawback is the difficulty in generating geometrically consistent sequences with
almost no geometric prior available. To address the challenge of maintaining
geometric view consistency, recent works have employed diffusion models with
cross-attention modules in conjunction with conditioning techniques on the input
viewpoint or training alongside 3D networks to preserve geometric consistency.

Despite the progress in NVS, particularly for object-centric scenes, consider-
able research on light field synthesis has not yet progressed. Existing 360-degree
NVS models do not fit light field synthesis, which requires multiple parallel view-
points and significant consistency among these viewpoints. Therefore, we propose
to extend the video diffusion model to a multi-view diffusion model specifically
for light field synthesis. By leveraging the video diffusion model, we demonstrate
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the feasibility of transforming temporal consistency into multi-view consistency.
This method can resolve the issue of consistency among viewpoints without
additional 3D networks and representations. Light field synthesis demands the
representation of complex and precise camera movements and relies heavily on
information obtained from input images. To address these concerns, our app-
roach utilizes depth-based warping from an input view to target views during
the sampling process and fills holes in unseen regions through inpainting without
any additional training. We integrate a RePaint [21] method with the multi-view
diffusion model and achieve enhanced accurate light field synthesis. An example
of the generated light field result and its applications is shown in Fig. 1.

The novelty and contribution of this paper are summarized as follows.

– We extend the video diffusion model into a multi-view diffusion model for
light field synthesis by fine-tuning it with multi-view data and relative camera
parameters

– We employ repainting at every frame within the multi-view diffusion process
for synthesizing precise viewpoint light field images

– We demonstrate a geometrically consistent light field synthesis on a single
image that is commonly obtainable, showing the robustness of our method

2 Related Works

2.1 Light Field Synthesis

Light field synthesis began as angular super-resolution, generating a dense light
field from a sparse light field. The work [12] proposed a method for synthesizing
an 8×8 grid of sub-aperture images (SAIs) from four-corner SAIs. This field has
since evolved to include research on generating light fields from a single input
image. Srinivasan et al. [30] were among the first to demonstrate a learning-based
approach for light field synthesis from a monocular image. Their method involved
estimating occluded regions to achieve light field synthesis. Ivan et al. [11] and
Bae et al. [1] sought to use geometric information through appearance flow and
proposed a new loss function. Li et al. [15] suggested a method for light field
synthesis that adaptively estimates multi-plane images (MPI) representations,
allowing for the accommodation of data with various geometric scales. Similarly,
Bak et al. [2] proposed synthesizing light fields by estimating layers in a per-pixel
manner, thereby achieving accurate layer representations. Unlike other meth-
ods, we have approached light field synthesis via diffusion. Although LFDiff [7]
has recently been proposed for light field synthesis utilizing diffusion, it synthe-
sizes from macro-pixels that include spatial-angular representations through a
position-aware conditioning scheme. This method requires synthesis on a patch-
by-patch basis across the entire image. Such an approach leads to issues such as
fragmentation in each patch and the limitation of only being able to synthesize
5×5 light fields. By contrast, we utilize video diffusion to simultaneously synthe-
size each of the SAIs as individual frames, enabling us to synthesize light fields
larger than 5×5.



148 S. Yoon and I. K. Park

2.2 Novel View Synthesis with Diffusion

Recently, NVS research has progressed with diffusion models, which are a type
of generative model, owing to their ability to generate plausible samples from the
learned conditional distribution. This capability effectively addresses the issue
of unseen regions from the input viewpoint. The first application of diffusion
to NVS, 3DiM [36], utilized conditioning techniques on input viewpoints and
camera poses to create a novel view from the input image. However, training
from scratch presented a challenge because of insufficient 3D data. Zero-1-to-
3 [18] addressed this challenge by fine-tuning a pretrained large image diffusion
model for NVS, maintaining 2D priors while learning from 3D data. Issues such
as camera alignment and consistency across multiple views persisted, prompting
recent studies to either train additional 3D networks [16,17] or employ extra
3D representations [19,40]. Efforts have also been made to train multi-view
diffusion models [20,27,28,37,42] that generate multiple views simultaneously
to ensure consistency among views. However, these approaches often result in
models that can only generate fixed views or require post-processing. Similarly,
other methods [5,6,10] use pretrained diffusion models for multi-view inpaint-
ing, integrating the results with scene geometry like 3D meshes or point clouds
to maintain consistency. While these inpainting techniques are similar to ours,
they focus more on merging views with 3D scene geometry. In contrast, our
method enhances view consistency by fine-tuning a pretrained video diffusion
model for multi-view synthesis, overcoming limitations seen in image diffusion
models, and providing improved consistency in complex scenes without extensive
3D reconstruction.

2.3 Video Diffusion Model

Existing multi-view models have evolved from image diffusion models that inte-
grate cross-view attention. Nonetheless, for improved multi-view consistency,
the temporal priors of video diffusion models can be leveraged to extend NVS
models. ViVid-1-to-3 [14] utilized image and video diffusion models for NVS to
generate consistent views. Similarly, SVD-MV [4], IM-3D [22], and SV3D [32]
fine-tune a video diffusion model for NVS. However, their capability is confined
to rendering only 360-degree views of a 3D object. Different from previous video
diffusion models designed for object-centered NVS, our approach targets NVS for
general scenes such as a light field. Recent developments in video generation have
introduced models with more precise camera control with general scenes, such as
MotionCtrl [34] and CameraCtrl [8], which aim to improve camera pose adjust-
ments. While MotionCtrl relies on numerical values, CameraCtrl uses plücker
embeddings for better accuracy. However, both face challenges with movement
scaling and generating accurate light fields when detailed camera parameters are
involved. To address these issues, we introduce repaint techniques during sam-
pling in video diffusion models, which enhance camera control and enable the
synthesis of high-quality light fields.
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Fig. 2. Overall framework of our proposed method. Noise latents z1:Nt are processed by
the denoising UNet εθ, which incorporates the relative camera parameters (ΔR, ΔT)
for each multi-view. The denoised latents z1:Nt−1 are then combined with the warped
images at the repaint phase and modified. The final multi-view images are generated
through iteratively denoising steps.

3 Proposed Method

3.1 Geometrically Consistent Multi-view Diffusion Model

We propose to leverage the consistency of video diffusion for light field syn-
thesis. We extend a video diffusion model to a multi-view diffusion model by
fine-tuning it with a multi-view dataset including light fields and corresponding
camera parameters. This process allows us to learn the relationship between the
differences in viewpoints of each multi-view, thereby enabling its application in
synthesizing light fields. The overview of the entire architectural structure is
described in Fig. 2.

Video Diffusion Architecture. We adopt the architecture of Stable Video
Diffusion (SVD) [3,4], a large-scale open-set video diffusion model, consisting of
a temporal-aware UNet with multiple layers. Each layer includes a sequence of
one residual block with Conv3D layers and two spatial and temporal transformer
blocks with attention layers. To adapt SVD, which inherently possesses tempo-
ral consistency, to a multi-view diffusion model for light field, we fine-tune it
using a multi-view dataset. Camera parameters are incorporated into the model
to differentiate and learn the relationships among the views, thereby enabling
synthesis for the SAIs of the light field.

Camera Embedding. In the SVD model, temporal consistency and motion
are encapsulated into vector conditions comprising ‘fps id’, ‘motion bucket id’,
and ‘noise augmentation strength’. These conditions are combined and added to
the original time embedding to incorporate temporal dynamics into the diffu-
sion process. To enhance this architecture for multi-view consistency and motion,
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the approach involves calculating the relative rotation R and translation T from
the camera matrices of each input multi-view and the source view. These val-
ues capture the rotation and movement required to transition between the views,
thereby enhancing the model with spatial dynamics alongside its inherent tempo-
ral capabilities. The camera pose embeddings, derived from these R and T values,
are concatenated, linearly transformed, and then merged with the noise timestep
embedding. This enhanced embedding is supplied to every residual block within
the UNet architecture. Such embeddings are integrated into the output features
at each block, ensuring that the model incorporates spatial (multi-view con-
sistency and camera motion) and temporal information throughout the video
diffusion process. This approach allows the SVD model to synthesize images
that maintain temporal coherence and display consistent, dynamic perspectives
across multiple views, thus meeting the demands of multi-view and light field
synthesis.

Loss Function for Training. The loss function for training is defined as fol-
lows. Given multi-view data that include the source view x0, target view x1:N ,
and camera poses (ΔR,ΔT) ∈ P, the training proceeds with conditioning on the
source view and camera poses y = (x0,P). Each viewpoint image (source and
target views) is passed through an encoder to be represented in a latent space
z0, z1:N , and the source view is concatenated with the noise-augmented target
view. CLIP [26] encoding is also employed to provide cross-attention within the
network.

L = Eεθ,t,(z1:t
0 ,z0,P)

[‖ ε − ε̂θ(z1:Nt , t,y) ‖22
]

(1)

3.2 Repainting for Light Field Synthesis

We enhance the video diffusion model to a multi-view diffusion model capable
of synthesizing light fields, incorporating camera embeddings that account for
relative rotation and translation to ensure consistency across generated multiple
views. However, including only the magnitudes of relative rotation and transla-
tion poses a challenge in precisely managing camera poses, which is particularly
crucial for camera movement and light field synthesis in general scenes, beyond
only object-centered view synthesis. To address this challenge, we employ depth-
based image warping to preserve portions of the image that can be maintained
from the input view while subtly adjusting camera movements. For areas within
the warped image that require prediction, we integrate RePaint [21] for inpaint-
ing directly within the multi-view diffusion model, allowing us to predict the
necessary regions. This strategy enhances light field synthesis by obviating the
need for separate inpainting training. The process of repainting in multi-view
diffusion is illustrated in Fig. 3.
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Fig. 3. Detailed process of repaint in multi-view diffusion. The entire process operates
within the latent space for every view. Given an input image and its depth, depth-based
warping is applied to sample the known parts as warped images, and the outputs from
the denoising UNet are used to sample the unknown (inpainted) parts, influencing each
denoising step’s output.

Depth-Based Image Warping. Depth information for the source image is
required to perform warping for a desired target viewpoint. For acquiring depth
information, monocular depth estimation (MDE) is utilized. MiDaS [25] serves
as the MDE model, converting the relative inverse depth obtained into depth for
warping purposes.

The first step in the warping process involves transforming the pixel coordi-
nates (x, y) to camera coordinates. This transformation uses the depth d of the
pixel and the inverse of the intrinsic matrix K1 of the original view. The camera
coordinates pc are calculated using the depth and the inverse intrinsic matrix
to convert the pixel coordinates, as follows:

pc = d · K−1
1 · [x, y, 1]T (2)

After converting into camera coordinates, pc is transformed to the target
camera frame using the transformation matrix T21 = T2 ·T−1

1 , derived from the
extrinsic parameters of the original and target cameras.

p′
c = K2 · T21 · pc (3)

Finally, weights based on depth and the proximity of pixels are calculated to
align the transformed coordinates with the pixel grid. These weights are then
used to distribute the transformed coordinates among the nearest pixels, thereby
effectively achieving warping to the target viewpoint with consideration for depth
and spatial relationships.

[x′, y′, d′]T =
p′

c

p′
c,z

(4)
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Repaint for Sampling Light Field. For inpainting warped images, we apply
a repaint to multi-view diffusion without separate training on mask distributions,
relying solely on a video diffusion model trained on multi-view data. This app-
roach facilitates predicting the masked unknown parts, thereby eliminating the
necessity for inpainting models specifically trained with mask conditions tailored
to the camera movements and intervals typically used in view synthesis.

The repaint method works together with the denoising process at each step.
During the reverse step from zt to zt−1, known parts are sampled to zt−1 by
adding noise from the warped image, whereas unknown parts are sampled by
removing the predicted noise from zt.

zknown
t−1 ∼ N (√

ᾱtz0, (1 − ᾱt)I
)

(5)

zunknown
t−1 ∼ N (μθ(zt, t), Σθ(zt, t)) (6)

Given a mask m, the unknown area can be denoted as m�zunknown
t−1 and the

known area as (1 − m) � zknown
t−1 . Merging the two areas, we use the following

equation to calculate zt−1:

zt−1 = (1 − m) � zknown
t−1 + m � zunknown

t−1 (7)

This process is repeated at every denoising step, ensuring that the masked
area is filled to match the known region. The warped image and mask are passed
to the multi-view diffusion model for each target frame, and as the denoising
process proceeds, the repaint process is integrated with the multi-view diffu-
sion. This allows the known region warped to the target viewpoint to facilitate
accurate viewpoint transitions while filling the empty areas through repaint. The
empty areas are filled using the video diffusion model trained on multi-view data,
thereby ensuring consistent multi-view generation.

4 Experimental Results

4.1 Experimental Settings

To evaluate our proposed method, we present experimental results that demon-
strate light field synthesis from a single center-view image using existing light
field datasets. We also provide light field synthesis results from a single image
with general scenes, tested across various baselines and camera movements to
illustrate our method’s broad applicability and generalization. It is important
to note that recent NVS methods, such as those in [16–18], among others,
were excluded from our comparison. These methods are primarily designed for
object-centric NVS and represent camera parameters with only 4 degrees of
freedom (DoF), focusing on rotation, which includes azimuth, elevation, camera
orientation, and distance (radius). As a result, they are not suitable for light
field synthesis, which requires handling more complex camera movements.
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Table 1. Quantitative results (PSNR ↑/SSIM ↑/LPIPS ↓) of LF synthesis. The best
results are marked in bold and the second-best results are underlined.

Method HCI-new HCI-old STFGantry

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Srinivasan et al. [30] 27.175 0.7678 0.061 29.608 0.7946 0.053 20.874 0.6746 0.086

Li et al. [15] 27.202 0.7782 0.060 31.673 0.8806 0.046 21.651 0.7133 0.072

Bak et al. [2] 27.930 0.7955 0.066 31.9327 0.8658 0.047 21.747 0.7021 0.076

LFdiff [7] 30.665 0.9135 0.025 33.600 0.9207 0.023 24.264 0.7850 0.068

Ours 37.081 0.9093 0.048 35.308 0.9018 0.031 33.344 0.8392 0.049

Training Settings. We utilize 20 scenes from the light field synthetic dataset
HCI-new [9] and 9 scenes from the real light field dataset STFGantry [31]
as our training data. Additionally, to facilitate light field synthesis in general
scenes and allow for flexible camera control, we utilize a subset of data from
RealEstate10K [43] dataset, which includes multiple camera trajectories, com-
prising 105 scenes. During the training stage, we also utilize the camera param-
eters as inputs along with multi-view. During the training stage, we also use the
camera parameters as inputs along with multi-view and fine-tune a temporal-
aware UNet for video diffusion, leveraging the AdamW optimizer at a learning
rate of 1e–4 and a batch size of 1. We set a noise schedule based on a log-normal
distribution to adjust the noise levels dynamically across training timesteps.

Inference Settings. To generate samples of the light field, we use fine-tuned
multi-view diffusion with the repaint technique, and a single image (center view)
along with its corresponding depth map as input. On the basis of the camera
parameters of target viewpoints, we employ depth-based warping to generate
warped images and masks, which are then used in the repaint sampling process.
We employ 25 steps of the deterministic DDIM sampler [29] for this purpose.
The repaint is applied at a rate of 70% during these 25 steps. Details on the
application rate of repaint can be found in Supplementary Material.

4.2 Light Field Synthesis with Single View

For light field synthesis, we use camera parameters provided with the data and
target viewpoint images that are depth-based warped. These warped target view-
point images are then guided in the sampling (denoising process) through the
repaint for synthesis. We demonstrate the results of synthesizing a 5×5 light field
from a single-view image for the HCI-new [9], HCI-old [35], and STFGantry [31]
datasets, comparing them quantitatively and qualitatively with existing light
field synthesis methods.

Quantitative Evaluation. The quantitative results of our 5×5 light field syn-
thesis are presented in Table 1, where we compare the results of our method with
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Fig. 4. Qualitative results of LF synthesis by SAIs and EPIs. Comparison of the zoom-
in results of the synthesized corner view (1,1) with the GT.

Fig. 5. Qualitative results of LF synthesis by depth estimation and refocusing from
the synthesized LF scenes of STFGantry.
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those of Srinivasan et al. [30], Li et al. [15], Bak et al. [2], and LFdiff [7]. Relative
to other light field synthesis methods, our approach shows the first- or second-
best performance quantitatively. Although we place second in the HCI-new and
HCI-old datasets, our results are closely competitive, and we achieve a significant
lead as the first in the Stanford dataset. Interpretation of these outcomes sug-
gests that the comparison methods, except for that of Srinivasan et al., include
warping results through shifting based on light field disparity. This finding likely
explains the good results observed for light fields with smaller baselines, such as
HCI-new and HCI-old, given that they accurately represent the dense and nar-
row motion of light fields. Conversely, our method employs general homography
matrix-based warping for repaint, which leads to significantly improved results
in datasets with relatively larger baselines, such as the Stanford dataset, com-
pared with the results of other methodologies (achieving improvements in PSNR
+9.08 dB, SSIM [33] +0.054, and LPIPS [41] -0.019). This result indicates the
potential for synthesizing light fields with broad baselines using our approach.

Qualitative Evaluation. Figure 4 shows the results of synthesizing a 5×5 light
field, comparing our method with that of Li et al. [15] on different datasets. It
first presents the corner views of the light fields synthesized using our proposed
method and then provides a zoomed-in view of the corner SAI for a clear com-
parison with the method of Li et al. and the ground truth (GT). The compari-
son shows that our method yields results that are sharper and closer to the GT.
Moreover, the movement directions in the epipolar plane images (EPIs) extracted
results closely resemble those of the GT, demonstrating the effectiveness of our
approach in capturing dynamic aspects of the scene. In Fig. 5, we present the
depth estimation results for the synthesized light field using the depth estima-
tion algorithm CAE [39] and refocusing results. Depth estimation and refocusing
work effectively, indicating that the synthesized light fields successfully preserve
geometric depth information. This finding demonstrates our method’s capability
to maintain accurate geometric details in the light field synthesis.

4.3 Wide Baseline Light Field

We present the results when the baseline of a 5×5 light field is expanded to 2 and
3 times its original distance. Moreover, we demonstrate that light field synthesis
from a single image is feasible even in generally captured scenes, and synthesis
along non-light field camera trajectories is achievable.

Evaluation of LF Synthesis (Baseline ×2, ×3). We exhibit the results for
light fields with expanded baselines. Initially, we maintain the same baseline but
generate a 9×9 light field, doubling the number of viewpoint images horizontally
and vertically, to show a light field with twice the baseline. This outcome, being
verifiable against the GT, presents quantitative results, as shown in Table 2.
Although the increase in viewpoint count to 9×9 leads to a challenging synthe-
sis scenario and slightly decreased quantitative metrics such as PSNR, SSIM,
and LPIPS, the results remain notably robust. This finding demonstrates that
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Fig. 6. Qualitative results of LF synthesis by SAIs (corner views of LF with baseline
×3) and EPIs (with baseline ×1, ×2, ×3).

Table 2. Quantitative results (PSNR ↑/SSIM ↑/LPIPS ↓) of LF synthesis (5×5, 9×9).

5×5 LF 9×9 LF

PSNR SSIM LPIPS PSNR SSIM LPIPS

HCI-new 37.081 0.9093 0.048 35.253 0.8637 0.066

HCI-old 35.308 0.9018 0.031 34.367 0.8634 0.041

STFGantry 33.344 0.8392 0.049 32.467 0.7782 0.070

our synthesis approach can effectively handle high complexity while maintaining
an acceptable quality threshold. The robust performance in the face of increased
synthesis difficulty is illustrated in Fig. 6, which presents results with a base-
line expanded to 3 times alongside the twice-expanded results, using SAIs and
EPIs to show the effect of increased camera motion. The results demonstrate a
consistent increase in camera motion through EPIs and SAIs, highlighting the
effectiveness of our approach in generating high-quality complex light fields.

NVS from a Single Image. We demonstrate the feasibility of synthesizing
light fields from a single image in commonly captured scenes and illustrate the
potential for synthesis along non-light field camera trajectories in Fig. 7. The
input of the same single image can yield diverse synthesized viewpoints, depend-
ing on the selected camera trajectory. This diversity is guided by warping the
image with specific camera embeddings and using the repaint method. The last
row in Fig. 7, particularly those from the four-corner views when synthesizing the
light field, showcases the robust capability of our system to manage viewpoint
synthesis with camera control from a general image while maintaining consis-
tency across synthesized viewpoints. These experimental results underline our
approach’s practical applicability and versatility in realistic settings.
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Fig. 7. Qualitative results of viewpoint synthesis along a continuous camera trajectory
from a single frame for the RealEstate10K dataset. (a), (b), and (c) show synthesized
views along different points of the camera trajectory; (d) shows a corner view of LF
synthesized from the same single frame as in (c).

5 Conclusion

In this paper, we introduced a novel approach to light field synthesis using dif-
fusion models, addressing the challenge of geometric consistency across multiple
views. We successfully demonstrated the conversion of temporal into multi-view
consistency, significantly improving light field synthesis from single images. Our
contributions included extending video diffusion models for multi-view synthesis
and integrating a repaint method to enhance camera control precision. Through
the experimental results of light field synthesis, our work demonstrated outcomes
comparable to or surpassing those of existing light field methods. Furthermore,
by presenting extended baseline light field results and generalization across dif-
ferent camera trajectories, we illustrated the versatility and applicability of our
approach in various scenes.

Limitations and Future Work. Given the challenges of memory constraints
and the need for consistency, producing light fields with dense SAIs at high
angular resolutions remains challenging. The use of latent video diffusion, which
operates in latent space, leads to detail loss when transitioning to pixel space
compared with the original input. Nevertheless, advancements in variational
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autoencoder are expected to improve the generation of light fields, aligning them
closely and consistently with the input image.
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Abstract. Neural Radiance Fields (NeRFs) have received significant
attention in reconstruction of complex 3D scenes due to their novel view
synthesis capabilities. Their volumetric scene representation capabilities
and flexibility in handling inherent challenges in satellite imagery dis-
tinguish NeRFs from previous approaches to satellite image analysis.
Nonetheless, the evaluation of NeRF variants within the context of satel-
lite image analysis remains limited. This study presents a comprehensive
assessment of the NeRF and its variants using quantitative and qualita-
tive metrics. We systematically evaluate and compare the performance
of NeRF, Sat-NeRF, Shadow NeRF (S-NeRF), and their solar corrective
variants. Our analysis explores hyperparameter tuning, rendering qual-
ity, memory utilization, and computational requirements while showing
how NeRF variants tailored for satellite imagery show promise. Given the
unique challenges presented by satellite imagery, this comparative study
presents a thorough evaluation of various NeRF variants on an expanded
dataset and offers insights into performance and efficiency trade-offs.

Keywords: NeRF · Satellite Images · 3D Reconstruction

1 Introduction

The proliferation of commercial satellites and the wide availability of datasets
has significantly advanced research in the 3D reconstruction of satellite images
[1,7]. This field is actively explored at the intersection of computer vision and
remote sensing. Various methodologies, such as Structure from Motion (SfM)
[12], Multi-View Stereo [14], and Convolutional Neural Networks [13], have been
developed to create 3D models from satellite imagery.
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Neural Radiance Fields (NeRF) [9] has recently attracted increasing attention
due to its capacity to implicitly model 3D object representations and synthesize
novel views. NeRF variants such as Shadow-NeRF (S-NeRF) [3] and Satellite
NeRF (Sat-NeRF) [8], have also been developed in 3D satellite image recon-
struction. Each model adapts the original NeRF paradigm to address specific
challenges in 3D reconstruction that manifest in the context of distinct satellite
imaging applications.

Despite the novelty and demonstrated advantages of these models, there is a
lack of comprehensive evaluation of these NeRF models for satellite image anal-
ysis. While each NeRF variant has been evaluated independently, often within
a limited scope, there are several limitations. First, most existing performance
studies have relied on relatively small datasets (usually having only four scenes),
and have not typically considered the effects of physical scene properties, such as
occlusion [3,8]. Second, in these studies scene elevation evaluation has primar-
ily relied upon predicted surface altitudes. Third, the previous studies rely upon
datasets with restricted viewing angles inherent in satellite imagery which, when
combined with the limited number of scenes explored in these studies, offer very
few insights into model performance on datasets with similar challenges. Fourth,
they have generally overlooked the impact of solar correction, which plays a
critical role in modeling the shadows and ambience lighting. These limitations
make the existing studies less generalizable. On the other hand, comprehensive
quantitative and qualitative evaluation is indispensable for not only aiding the
potential users but also for guiding future advancements of this domain.

Towards overcoming the above limitations, this work aims to provide a holis-
tic and detailed evaluation of existing NeRF implementations tai-
lored for satellite imagery. We enhance the evaluation dataset (with 20
additional scenes) and employ both quantitative and qualitative analyses to
compare the performance of three state-of-the-art models, namely, base NeRF,
S-NeRF, and Sat-NeRF.

This work has the following scientific contributions.

1. To the best of our knowledge, this is the first study to provide a com-
parative analysis of NeRF models for 3D reconstruction from satel-
lite images within a broader, standardized, and uniform environment. We
present a three-step pipeline for robust evaluation of 3D reconstruction algo-
rithms that incorporates image quality and perceptual metrics like PSNR and
SSIM and surface elevation comparison based on MAE.

2. Our evaluation includes a larger and more diverse range of scenes,
providing insights into the performance of NeRF in scenarios not explored by
previous studies.

3. Towards understanding model performance across various land cover types,
we have developed a unique hybrid evaluation framework that incor-
porates segmentation labels to analyze the spatial, categorical and geo-
metric distribution of the synthesized novel views and Digital Surface Models
(DSMs).
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The key findings from our study include the following. First, we noted that
solar corrections significantly improve the accuracy of NeRF models across
most extended evaluation datasets. Second, the original NeRF shows subop-
timal results in reconstructing 3D models from satellite images, as indicated by
performance metrics in both the training and evaluation stages. Third, S-NeRF
and Sat-NeRF are more robust and thus better suited for scenarios involving the
presence of shadow regions and transient objects.

2 Background

2.1 Three-Dimensional (3D) Scene Reconstruction

Reconstructing 3D scenes from 2D images is a key task in computer vision, with
the aim of extracting spatial coordinates of 3D points from images taken at var-
ious angles. [9,12–14]. Traditional techniques, e.g ., SfM with bundle adjustment
[4,10–12], are common yet face substantial challenges which include handling
scenes with little to no texture, dealing with occlusions, resolving ambiguous
image features, and accounting for transient objects, leading to sparse and inac-
curate outputs. Further complexity arises from the need to accurately model
scenes using various camera models, especially in satellite imagery where the
RPC model is prevalent. This introduces numerous approximations, complicat-
ing the reconstruction process and affecting the fidelity of the resulting 3D mod-
els.

NeRF and its extensions have tried to address the limitations of traditional
methods like SfM by representing scenes as continuous volumetric functions,
resulting in denser representations. Each variant introduces different optimiza-
tions that further enhance the learned 3D scene representation. For example,
Sat-NeRF utilizes RPC models to mitigate inaccuracies from camera model
approximations while Shadow-NeRF aims to model the effect of shadows and
ambient lighting.

Unlike most NeRF-related studies that typically focus on indoor or outdoor
scenes captured by drones or commercial cameras, our study uniquely evaluates
NeRF variants within the realm of satellite imagery. In the next subsections, we
will provide the background of the NeRF variants examined in this work.

2.2 Brief Introduction of NeRF Models

NeRF (Fig. 1a) is a continuous volumetric function that predicts the RGB color
c and the volume density σ of a scene at a given 3D point X (spatial location
x,y,z) from a viewing direction d (θ, φ):

F : (X, d) → (c, σ) (1)

For training, NeRF uses images and their corresponding camera poses, pro-
jecting rays from the camera into the 3D space which intersect the image plane.
Points along these rays are sampled to determine 3D coordinates in space, with
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Fig. 1. Overview of NeRF, S-NeRF, Sat-NeRF and their Solar Correction
(SC) variants. NeRF [9] is the base model that uses an MLP as its backbone. The
basic NeRF architecture is modified in S-NeRF [3] to add sky color estimation, solar
visibility, and optional SC for enhanced performance on satellite imagery. Sat-NeRF [8]
unifies NeRF and S-NeRF, modifying the model to accommodate bundle-adjusted RPC
camera parameters and transient objects.

each ray r described as r(t) = o+td , where o is the origin and d is the directional
vector of the ray. t represents the points that are sampled along r(t). The color
c(r) of a ray is given by:

c(r) =
N∑

i=1

Ti × αi × ci, (2)

where Ti, αi, and ci denote the transmittance (probability of light reaching the
point), opacity (probability of light being absorbed or scattered a the point), and
color at the ith point. Both α and T are dependent on volume density σ. The
color of a ray is computed by summing these weighted point-wise color values
along the ray, with the model’s accuracy assessed by comparing predicted colors
to actual image pixels. ∑

r∈R

‖c(r) − cgt(r)‖22 (3)

NeRF has shown high quality reconstruction capabilities for simple indoor
scenes and artificial data. However, instances where input images are scarce,
have a lower range of viewing angles, belong to complex outdoor scenes lead
to adverse effect in output quality. Furthermore, NeRF requires a high amount
of computational resources and has no generalizability, requiring retraining for
each new scene.

S-NeRF and Sat-NeRF are variants of NeRF, aimed to introduce schemes to
deal with complex scenes and produce outputs close to its real-world counterpart.

S-NeRF incorporates additional elements into the base NeRF architecture,
as depicted in Fig. 1b. This extension introduces a solar visibility layer and a sky
color estimation layer and accepts a novel input, the solar direction ωs = (θs, φs).
S-NeRF, in turn, generates two new outputs, namely, s(x, ωs) and sky(ωs).
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The first output, s(x, ωs) quantifies the ratio between incoming solar light
and diffuse skylight (solar light not directly from the sun) , with values ranging
from 0 (no solar visibility) to 1 (complete solar visibility). The second output,
sky(ωs) serves as a learned estimator for the diffuse skylight. The total irradiance
l (Eq.-(4)) is the weighted sum of the known white light source and learned light
sources. The color of the point becomes a point-wise product of albedo ca and
irradiance l (Eq.-(5)).

l = s + (1 − s)sky (4)

c(x, ωs) = Ca(x).l(X,ωs) (5)

With NeRF’s pixel-based RGB sum squared error, S-NeRF adds a solar cor-
rection term and a L1 norm loss for solar absorption by visible surfaces. This
results in photo-realistic novel views, as well as a better estimation of various
illumination conditions, altitudes, and colors.

Sat-NeRF (Fig. 1c) further enhances Shadow-NeRF, tackling transient
objects (e.g ., cars and vegetation) in input images. With the spatial coordinates
x of a point and the direction of solar rays ω, Sat-NeRF takes an additional
input tj , the learned transient embedding of image j.

The model adopts S-NeRF’s shadow irradiance approach and introduces a
new output β to weigh the impact of transient objects (cars, vegetation) in the
scene, based on the transient embedding tj . As a result the Eq.-(1) becomes
F : (x, ω, tj) → (σ, ca, s, a, β).

2.3 Solar Correction

Prior observations [3] have highlighted that the shading scalar, when uncon-
strained, can lead to unrealistic results. To mitigate this issue, a solar correction
approach is employed, which is formulated by

LSC =
∑

r∈RSC

(
NSC∑

i=1

(Ti − si)2 + 1 −
NSC∑

i=1

Tiαisi

)
(6)

where Ti and αi are the transmittance and opacity of the ith point or ray r.
The initial part of the equation tries to keep the value of the shadow scalar as
close to the transmittance, modeling the behavior of the shadow scalar similar
to that of transmittance for different scene areas. RSC denotes the secondary
batch of rays used for solar correction. These rays follow the viewing direction of
the solar rays (ω). The later part of the equation ensures that the shadow scalar
always takes a value between 0 and 1 (when integrated over r) to make sure
albedo value ca(x) remains the primary explanation for non-occluded regions.
The solar correction LSC and depth supervision LDS terms are added to the
loss to get the final multitask loss function:

L = LRGB(R) + λSCLSC(RSC) + λDSLDS(RDS) (7)
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Sat-NeRF’s final loss function combines multiple terms to achieve accurate
reconstructions of dynamic satellite imagery. The main components include:

(1) Photometric Loss: This measures the pixel-wise difference between the
predicted and actual color values, ensuring realistic rendering.

(2) Transient Object Loss: Addreses moving objects in satellite scenes. It
penalizes inconsistencies in object appearance across different views, encour-
aging the model to render them correctly.

(3) Shadow Loss: Addresses the issue of shadows dynamically changing based
on the solar position, guiding the model to learn and reproduce these shad-
ows accurately.

(4) Depth Supervision (optional): This term, inspired by DS-NeRF [2], can
be added to reinforce training with additional depth-prior information.

(5) Solar Correction Loss: Introduces the effect of additional solar rays to
refine outputs even further.

By integrating these components, Sat-NeRF enhances its ability to render
dynamic satellite scenes, capturing transient objects and generating realistic
shadows with improved fidelity.

3 Evaluation Methodology

This section outlines the experiments and methods we used to analyze NeRF
and its variations (S-NeRF and Sat-NeRF).

Fig. 2. Evaluation pipeline for NeRF models.

Evaluation Pipeline. Figure 2 illustrates the evaluation pipeline, which is
composed of three steps: (1) data preprocessing and hyperparameter setup (2)
model training, and (3) inference and evaluation.

Step (1) focuses on data preparation and setup before model training by
processing the dataset for ensuring their compatibility with our models. Key
procedures involve extracting refined RPC camera poses and metadata for each
scene and applying image augmentations, e.g ., cropping, to fit the validation
area requirements of our model configurations. Additionally, we fine-tune hyper-
parameters to optimize the models for training.

Step (2) is the NeRF (and its variants) model building. We train five dif-
ferent NeRF models across 24 scenes, evaluating their performance throughout
the training using both quantitative metrics like PSNR, SSIM, and MAE.
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Step (3) is to perform the quantitative analysis of the outputs from NeRF
and its variants. We use image quality and geometric metrics. We generate and
compare novel views produced by the trained models – views not seen during
training – with the actual RGB images and DSM to assess the models’ accuracy.

NeRF Models. We evaluate five different NeRF models. The five models
include base (original) NeRF model and two NeRF models tailored for the satel-
lite imagery: Sat-NeRF and S-NeRF. Additionally, we also evaluate the solar
correction (SC) version of both Sat-NeRF and S-NeRF as detailed in Sect. 2.3.

Datasets. One of our contributions is the expansion of datasets for NeRF eval-
uations. Previous research typically utilized only four areas of interest (AOIs)
from the 2019 IEEE GRSS Data Fusion Contest [6]. However, we have success-
fully augmented our evaluation with an additional 20 AOIs. This substantial
increase in datasets enables a more extensive assessment of NeRF models.

Our expanded dataset includes imagery from the Maxar WorldView-3 satel-
lite, captured between 2014 and 2016, focusing on Jacksonville (JAX), Florida,
USA. This broader collection of AOIs enhances our ability to rigorously test
NeRF performance across a diverse array of scene characteristics. Each AOI is
represented by 24 images, with 2–3 images randomly chosen for testing purposes.
To maintain consistency, all images have been cropped to 800×800 pixels, cor-
responding to a physical coverage area of approximately 256×256m, considering
a GSD of 0.3m. The data preprocessing phase also involves extracting crucial
metadata for NeRF model inputs, i.e., sun azimuth and camera parameters.

Experimental Hardware and Training Configurations. We perform our
experiment on a server having two Intel Xeon CPUs with 26-core at 2.10 GHz,
256 GB of RAM, and two Nvidia RTX A6000 GPUs. Our SW environment is
based on Ubuntu 20.04, with CUDA v11.8, and cuDNN v8.5. All the NeRF
models are implemented using PyTorch v1.7.1 and PyTorch Lightning v1.3.7.

Each NeRF model employs an architecture of 8 fully connected layers, each
containing 256 units. Training is conducted using the Adam optimizer [5], start-
ing with an initial learning rate of 5×10-4. We apply a learning rate decay strat-
egy, utilizing a step scheduler that reduces the rate by a factor of 0.9 at each
iteration. To optimize training duration and performance across numerous AOIs
and model configurations, we do not preset the batch size and number of training
steps. Instead, these parameters are determined through grid search, allowing
for a more tailored and efficient training process.

Performance Metrics. We use three performance metrics for the quantitative
analysis of NeRF models: (1) PSNR, (2) SSIM, and (3) MAE.

(1) PSNR (Peak Signal to Noise Ratio) measures the level of noise or distor-
tion in an image by comparing it to a reference image (ground truth). PSNR is
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expressed as PSNR = 20 · log10(MAX/
√

MSE), where MAX indicates the max-
imum possible pixel value in the image (e.g ., 255 for 8-bit images), and MSE
is the mean squared error between the original/reference image and the recon-
structed/generated image. Higher PSNR values, indicating lower error, signal
less distortion and better image quality, making high PSNR scores a goal for
improved outcomes.

(2) SSIM (Structural Similarity Index) evaluates the structural similarity
between two images, considering factors like luminance, contrast, and structure
to quantify the preservation of the reference image’s structural integrity. Higher
SSIM values denote a closer match to the reference image, implying better per-
ceptual quality. SSIM is particularly valuable as it mirrors human visual percep-
tion, offering a measure of the perceptual accuracy of the generated images.

(3) MAE (Mean Altitude Error) calculates the average absolute difference
between predicted and altitude values in ground truth. A lower MAE means
the model’s altitude predictions are more accurate, reflecting greater precision
in height estimation. This metric is essential for tasks in geospatial analysis and
terrain modeling that demand precise elevation data.

For the qualitative analysis, we compare the predicted RGB and DSM
outputs with the test images from our datasets, providing a direct visual
assessment of the model’s performance.

Additionally, we have developed a hybrid evaluation framework that
incorporates both quantitative and qualitative analysis to better understand
the performance differences among the NeRF variants. Our framework uses the
segmentation labels provided with the dataset to better understand model per-
formance across different land cover types. Specifically, the labels are used to
segment both the ground truth and model-predicted RGBs and DSMs into ‘tree’
and ‘non-tree-covered urban’ regions. We then compare these segments based on
PSNR, SSIM, and MAE.

4 Evaluation Results

We tested five different NeRF models on 24 different Worldview3 scenes. The
evaluation results of PSNR, SSIM and MAE for all 24 scenes are shown in
Table 1, 2 and 3. We also present the (normalized) performance comparison of
all five model variants across all scenes over the base NeRF, as shown in Fig 3.
The results show that the performance of satellite-tailored models was generally
better than that of the base NeRF model across PSNR, SSIM, and MAE metrics
for all scenes. Specifically, the Sat-NeRF +SC model demonstrated 30.7%
higher average PSNR values, 33.5% higher average SSIM, and 22.1%
lower average MAE. This trend can be attributed to the following findings:

(1) PSNR-wise observations reveal that model variants with SC outper-
formed other models in 71% of scenes (Table 1). Specifically, the base
NeRF and non-SC models performed better in only 7 out of 24 scenes.
S-NeRF+SC and SatNeRF+SC models demonstrated significantly higher
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Fig. 3. Normalized performance of all models over the base NeRF.

average PSNR values, with increases of 28.5% and 30.7%, respectively, com-
pared to the base NeRF. Moreover, these models exhibited slightly higher
PSNR values (0.58% to 0.60%) over their counterparts without SC. In
a broader analysis, S-NeRF, Sat-NeRF, and their SC-enhanced versions
showed commendable performance in 91% of the scenes. The base NeRF
model only outperformed these advanced models in 2 out of the 24 scenes.
Among these, Sat-NeRF+SC emerged as the top performer in terms of
average normalized PSNR, achieving a value of 1.31, closely followed by
Sat-NeRF at 1.29, with the base NeRF normalized to 1, as shown in Fig. 3a.

(2) In SSIM-wise observations, S-NeRF, Sat-NeRF, and their version
with SC performed well in approximately 95.8% of scenes (Table 2).
Specifically, the base NeRF outperformed these models in just one out of
24 scenes. Furthermore, Sat-NeRF+SC demonstrated the highest average
normalized SSIM, achieving a value of 1.34, followed closely by Sat-NeRF
with a value of 1.30 over the base NeRF (Fig. 3b).

(3) According to MAE, these four satellite-image-tailored variants performed
well in 75% of scenes (Table 3) compared to the base NeRF. The base NeRF
model only outperformed these models in 6 out of 24 scenes. Sat-NeRF+SC
exhibits the lowest average normalized MAE with a value of 0.77, indicating
accurate elevation details, followed by S-NeRF+SC with a value of 0.89
(Fig. 3c) compared to the base NeRF.

4.1 Further Analysis with JAX-412 Dataset

We present scene JAX-412 as a specific example of overall performance
trends to describe the evaluation results further. Figure 5 reports the quantitative
results, and Fig. 6 and 7 show the qualitative evaluation results. The followings
are our observations.

1. Base NeRF: The baseline NeRF model showed the weakest performance
with a decreasing validation PSNR and SSIM curve and increasing MAEs. The
results indicate that the performance during the scene reconstruction suffered
from a drop in image quality and an increased error in elevation details. However,
our further analysis revealed that this base model is not well-adjusted for satellite
imagery due to the following reasons.
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Table 1. Scene performance metrics (PSNR). boldface: model wise best perfor-
mance, shaded: scene wise best performance, *: previously explored scenes

AOI (JAX) NeRF S-NeRF S-NeRF w/ SC Sat-NeRF Sat-NeRF w/ SC

068* 9.75 21.3 21.15 21.06 21.94

004* 17.59 25.33 22.09 25.11 24.89

214* 16.68 22.46 23.79 23.12 23.60

260* 9.95 19.77 21.33 20.75 21.87

017 10.04 15.82 16.38 15.97 16.38

018 13.33 21.16 20.79 21.69 22

020 22.83 21.95 25.07 24.82 24.69

022 16.69 19.83 19.98 19.74 20.1

028 20.09 21.56 22.3 21.92 22.14

031 20.51 18.77 18.57 19.85 19.52

033 19.3 22.41 22.67 22.94 22.43

070 22.82 21.81 20.79 21.83 22.87

072 16.6 20.91 21.81 21.75 21.67

175 17.08 19.84 20.16 20.12 19.90

236 9.55 25.15 23.14 24.78 24.12

280 24.85 25.22 25.26 24.86 24.76

359 5.37 21.79 22.06 21.94 22.12

412 19.48 24.29 24.75 24.37 23.84

416 18.97 28.11 23.24 28.39 28.00

427 21.91 20.78 19.88 21.16 20.94

467 20.99 21.65 21.64 20.10 20.11

474 19.77 20.79 21.76 21.62 21.55

505 17.52 21.96 22.41 22.27 22.27

559 16.75 15.44 19.34 16.23 17.89

(1) The base NeRF usually requires a larger volume of training images
per scene than the dataset we used. While a larger training set aids scene
estimation, the limited satellite imagery dataset presents challenges in scene
reconstruction due to scarce scene details.

(2) Satellite datasets are limited in the number and distribution of viewing
angles. Off-nadir positions offer crucial details about vertical structures,
aiding in 3D reconstruction [3]. However, our dataset primarily comprises
viewing angles below 35◦ off-nadir. Consequently, information from wider
off-nadir positions (e.g ., positions A, B, C, D in FigLNCSsubsubsection4)
is unavailable, restricting the base NeRF’s reconstruction abilities.



An Empirical Evaluation of the Impact of Solar Correction in NeRFs 171

Table 2. Scene performance metrics (SSIM). boldface: model wise best perfor-
mance, shaded: scene wise best performance, *: previously explored scenes

AOI (JAX) NeRF S-NeRF S-NeRF w/ SC Sat-NeRF Sat-NeRF w/ SC

068* 0.22 0.84 0.83 0.83 0.86

004* 0.47 0.86 0.72 0.86 0.86

214* 0.83 0.92 0.94 0.93 0.94

260* 0.08 0.76 0.85 0.81 0.84

017 0.14 0.26 0.27 0.25 0.29

018 0.38 0.74 0.71 0.75 0.76

020 0.86 0.78 0.89 0.88 0.88

022 0.60 0.77 0.79 0.78 0.80

028 0.70 0.76 0.79 0.78 0.79

031 0.81 0.79 0.80 0.81 0.82

033 0.81 0.8608 0.87 0.87 0.87

070 0.89 0.85 0.84 0.88 0.89

072 0.53 0.80 0.81 0.83 0.83

175 0.70 0.76 0.77 0.77 0.77

236 0.34 0.82 0.79 0.80 0.81

280 0.90 0.90 0.90 0.89 0.90

359 0.30 0.78 0.79 0.78 0.78

412 0.72 0.88 0.89 0.88 0.88

416 0.7615 0.95 0.88 0.95 0.95

427 0.82 0.78 0.72 0.80 0.80

467 0.83 0.84 0.83 0.83 0.93

474 0.68 0.73 0.76 0.77 0.76

505 0.63 0.85 0.86 0.85 0.86

559 0.68 0.56 0.75 0.62 0.74

(3) Images captured at different timestamps exhibit significant non-correlation
due to varying lighting conditions. Inconsistent lighting conditions can
lead to erroneous results in NeRF, affecting the accurate representation of
color and shadows within the scene [3]. This inconsistency may present a
challenge for the model when estimating novel views.

(4) The base NeRF employs a pinhole camera model, whereas satellites uti-
lize RPC camera models. However, the pinhole camera model’s usage
introduces approximations that may compromise prediction accuracy.

(5) Real-world satellite images often have further complexities, e.g ., transient
objects like cars and trees, which the base NeRF model does not effectively
address.
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Table 3. Scene performance metrics (MAE). boldface: model wise best perfor-
mance, shaded: scene wise best performance, *: previously explored scenes

AOI (JAX) NeRF S-NeRF S-NeRF w/ SC Sat-NeRF Sat-NeRF w/ SC

068* 2.74 3.11 2.18 3.30 1.89

004* 3.32 2.53 2.97 2.22 1.96

214* 4.65 7.14 4.98 6.17 4.85

260* 3.03 3.65 3.50 3.43 2.21

017 4.35 4.23 3.86 3.94 3.36

018 3.25 2.83 3.43 3.27 2.91

020 3.26 3.37 3.33 4.17 3.82

022 3.42 3.06 2.55 2.79 2.72

028 4.72 3.10 2.70 2.91 2.80

031 5.36 3.37 3.19 3.34 3.31

033 1.72 3.879 3.50 3.65 3.12

070 3.65 3.38 3.56 3.24 2.64

072 3.21 2.13 1.39 1.58 1.40

175 4.49 4.80 4.04 4.48 4.49

236 3.70 3.76 3.91 3.77 3.87

280 2.76 3.24 2.69 2.84 2.62

359 3.55 3.47 3.03 3.16 3.02

412 2.52 3.52 3.15 3.02 3.16

416 3.42 2.32 2.39 2.14 1.84

427 2.83 3.30 5.32 2.80 2.89

467 2.78 3.03 2.90 2.79 0.83

474 1.80 3.13 2.07 2.71 2.51

505 5.51 3.70 2.80 3.13 2.76

559 7.12 4.26 3.83 3.99 3.74

Qualitatively, while the base NeRF model’s color predictions were accurate,
the base NeRF’s predicted output had inconsistencies like blurred reconstruction
and lack of sharp edges (or lack of volumetric details), as shown in the region
‘A’ of Fig 7a. It also showed incomplete depth information in predicted DSM
output, evident in the region ‘B’ of Fig 6a where large portions lack elevation
detail.

2. S-NeRF and S-NeRF with SC: In contrast to the base NeRF evaluation,
both S-NeRF and S-NeRF with SC showed positive trends, supported by
increasing PSNR and SSIM scores shown in Fig. 5f, 5g, 5n, and 5o and
decreasing MAE scores shown in Fig. 5b and 5p. On average, S-NeRF and S-
NeRF+SC showed 27.7% to 28.5% higher PSNR values, 27.9% to 29.7% higher
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Fig. 4. Example of restricted view in the satellite imagery with off-nadir angle < 35◦

SSIM values and 3.3% to 11.3% lower MAE values compared to base NeRF.
These metrics generally plateaued after 15K training steps, but extended train-
ing to 35K steps to stabilize the rendering quality. These models, designed to
better handle shadows [3], outperformed the base NeRF in PSNR, SSIM, and
MAE values. Their continuous improvement in image quality throughout train-
ing showed their potential as superior alternatives to the base NeRF.

Qualitatively, S-NeRF and S-NeRF with SC showed notable perfor-
mance in capturing scene depth, although some areas still show blurriness
as visible in the regions ‘C’ or ‘D’ in Fig. 6. These comparisons suggest that the
SC variant excels over its predecessor, with S-NeRF showing improved depth in
DSM outputs (Fig. 7b), particularly in highlighted regions like ‘C’. However, cer-
tain limitations persist due to the lack of bundle adjustment for refining camera
parameters and an explicit mechanism for handling transient objects. These fac-
tors can compromise scene reconstruction and depth accuracy, especially with
transient objects present in the scene. Additionally, both S-NeRF and its SC
variant aim to accurately model shadows relative to scene geometry. This can
potentially lead to challenges in scenes with minimal altitude variation or limited
shadow coverage [3]. Consequently, they showed 1.11% to 2.28% lesser normal-
ized average PSNR values, 0.78% to 4.23% lesser normalized average SSIM values
and up to 24.17% higher MAE values compared to Sat-NeRF variants.

3. Sat-NeRF and Sat-NeRF with SC: Both Sat-NeRF and Sat-NeRF with
SC also showed an increasing trend in PSNR, shown in Fig. 5j and 5. Addi-
tionally, the Sat-NeRF with SC consistently achieved higher SSIM val-
ues, outperforming other NeRF models (Fig. 5). The trend in MAE was
decreasing, aligning with the trends observed in PSNR and SSIM (Fig. 5l and
5). They showed 29.9% to 30.7% higher normalized average PSNR values, 30.8%
to 33.6% higher normalized average SSIM values and 10.15% to 20.09% lesser
normalized average MAE values compared to base NeRF. They showed 1.12%
to 2.33% higher normalized average PSNR values, 0.78% to 4.41% higher nor-
malized average SSIM values and upto 19.46% lesser MAE values compared to
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Fig. 5. Evaluation metrics of the five NeRF variants during training and validation.
From (a) to (d) for NeRF results: (a) Training PSNR, (b) Validation PSNR, (c) Vali-
dation SSIM, and (d): validation MAE. From (e) to (h) for S-NeRF results: (e) Train-
ing PSNR, (f) Validation PSNR, (g) Validation SSIM, and (h): validation MAE.
From (i) to (l) for Sat-NeRF results: (i) Training PSNR, (j) Validation PSNR, (k) Val-
idation SSIM, and (l): validation MAE. From (m) to (p) for S-NeRF+SC results: (m)
Training PSNR, (n) Validation PSNR, (o) Validation SSIM, and (p): validation MAE.
From (q) to (t) for Sat-NeRF+SC results: (q) Training PSNR, (r) Validation PSNR,
(s) Validation SSIM, and (t): validation MAE.
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Fig. 6. DSM outputs from all NeRF variants. BaseN: Base NeRF, SN: S-NeRF,
SatN: Sat-NeRF, SC: Solar Correction

Fig. 7. RGB output from all NeRF variants. BaseN: Base NeRF, SN: S-NeRF,
SatN: Sat-NeRF, SC: Solar Correction

S-NeRF variants. We also observed an initial spike in PSNR, SSIM, and MAE
for Sat-NeRF models, followed by stabilization. This behavior aligns with the
delayed utilization of the uncertainty coefficient starting from epoch 2 [8].

In the qualitative evaluation, Sat-NeRF provides enhanced clarity in RGB
prediction (region ‘D’ in Fig. 6 and 7). Moreover, the Sat-NeRF with SC showed
superior capability in handling transient objects (region ‘D’ of Fig. 7), along with
offering more detailed object visuals and depth estimates (region ‘E’ of Fig. 7).
The improved performance of both Sat-NeRF and Sat-NeRF with SC can be
attributed to three key factors:

(1) Both Sat-NeRF and Sat-NeRF with SC utilize RPC-based sam-
pling, eliminating the need to model specific satellite features or pinhole
camera approximations. As a result, this method consistently delivers supe-
rior results across various scenarios.

(2) Refining the RPC camera via bundle adjustment helps reduce the
chance of projecting non-coincident image points, as detailed in [8].

(3) Effectively handling transient objects improves the model’s perfor-
mance, especially in accurately estimating depth, as shown in region ‘E’ of
Fig 7.

4.2 Land-Cover Study Using JAX-412 and JAX-260

During further exploration of the models, we have studied the performance vari-
ation of the models based on land cover types. Here, we use JAX-412 and
JAX-260 as examples of different land-cover types for our Land-cover study.
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We observed that tree regions exhibit higher performance in terms of
PSNR, SSIM, and MAE, indicating superior image quality and DSM
elevation accuracy for all the scenes. All five models perform better on
tree regions across all scenes—20–22% based on mean PSNR and 25–40% better
based on mean SSIM. Non-tree urban areas are prone to error, while water-
bodies were identified as weak areas with localized errors. These are likely due
to varying reflections at different timestamps in the training set and a potential
lack of texture. Rooftops and directly iluminated white surfaces demonstrated
minimal image quality errors but exhibited significant DSM inaccuracies, high-
lighting inaccuracy in depth reconstruction. Additionally, shadow areas were
found to be prone to errors, further impacting performance metrics. The general
trend can be viewed in Fig. 8a, 8b, and 8c. Moreover, the specific examples of
weak-area (water-body, buildings, shadows) can be verified from the error maps
in Fig. 9 and 11 (warmer shades are erroneous).

Based on the texture maps and error maps, both JAX-412 and JAX-260
conform to the general trends of better performing tree regions and error prone
urban areas as depicted in Fig. 9 and 10. The texture comparison maps in Fig. 10
show a unified error distribution across the urban area of the scene, except
for white regions which are directly illuminated by sunlight and have minimal
local patterns (e.g., rooftops), which have lower level of texture-based errors.
However, texture comparison map shows water-bodies having a higher texture
error compared to the rest of the scene. The error map between DSMs show a
much better comparison across the different models. According to DSM error
maps, the rooftops are localized sources of errors. Moreover, water-bodies and
shadow areas are also weakly reconstructed as depicted in Fig. 12 and 11. The
performance of the solar correction models are visibly better compared to the non
solar correction variants for both JAX-412 and JAX-260 as depicted in Fig. 11
and 9. The Solar Corrective variants have comparable performances. S-NeRF-SC
is approximately 4.20% higher than base S-NeRF for the masked (tree) region.
This behavior confirms the superiority of solar correction models.

Fig. 8. Comparative Performance Analysis of Models on tree and Non-tree
urban Regions based on PSNR, SSIM, and MAE masked (blue) = ‘tree’ region,
inverse (orange) = ‘non-tree region’. (Color figure online)
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Fig. 9. Altitude error map between ground truth DSM and predicted DSM
BaseN: Base NeRF, SN: S-NeRF, SatN: Sat-NeRF, SC: Solar Correction (warmer
shades: more erroneous region)

Fig. 10. Texture comparison map between ground truth DSM and predicted
DSM BaseN: Base NeRF, SN: S-NeRF, SatN: Sat-NeRF, SC: Solar Correction (Lighter
shades: more erroneous region)

Fig. 11. Error map between GT and DSMs showing waterbodies, rooftops
and shadows to be the source of localized error GT RGB: Ground Truth RG,
SN: S-NeRF, SatN: Sat-NeRF, SC: Solar Correction

Fig. 12. Error map between GT and texture comparison maps showing
waterbodies ws to be the source of localized texture error (Lighter shade
implies higher error) GT RGB: Ground Truth RGB, SN: S-NeRF, SatN: Sat-NeRF,
SC: Solar Correction
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4.3 Evaluation Summary

Here is our summary of the comprehensive evaluation conducted with five NeRF
variants across 24 expanded satellite datasets.

(1) Solar correction (SC) can significantly enhance the performance of both
S-NeRF and Sat-NeRF across quantitative and qualitative metrics.

(2) Sat-NeRF with SC demonstrates superior performance compared to S-NeRF
and its SC variant in scenes featuring frequent transient objects such as cars.
Sat-NeRF can generate more accurate representations.

(3) S-NeRF with SC can be the best option for scenes characterized by changing
lighting conditions but lacking moving or transient objects. This is because
S-NeRF with SC can ensure smooth handling and consistent scene rendering.

(4) Sat-NeRF and its SC variant are better suited for scenes with minimal
altitude changes and transient objects.

(5) Based on our land cover study, the S-NeRF, Sat-NeRF and their variants
perform better in tree regions, with lower errors and higher image quality
compared to urban regions.

5 Conclusion

In this study, we conducted a thorough evaluation of NeRF and its variants for
generating 3D views from satellite imagery, with a particular focus on their suit-
ability and effectiveness in handling satellite data. Our assessment encompassed
NeRF, Sat-NeRF, S-NeRF, and their variations incorporating SC, leveraging
extensive DFC2019 datasets comprising 24 diverse scenes. Both quantitative
and qualitative evaluation methods were employed to scrutinize their perfor-
mance. In summary, our evaluation of NeRF and its variants, including Sat-
NeRF, S-NeRF, and their solar correction variations, across 24 distinct urban
scenes derived from satellite imagery, unveiled their strengths and limitations.
The SC variants demonstrated superior performance compared to other NeRF
models, while S-NeRF and Sat-NeRF showcased notable proficiency, especially
in handling scenes characterized by shadows and transient objects.
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8. Maŕı, R., Facciolo, G., Ehret, T.: Sat-NeRF: learning multi-view satellite pho-

togrammetry with transient objects and shadow modeling using RPC cameras. In:
CVPR Workshops (2022)

9. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: NeRF: representing scenes as neural radiance fields for view synthesis. Com-
mun. ACM 65(1), 99–106 (2021)

10. Pierrot Deseilligny, M., Clery, I.: APERO, an open source bundle adjustment soft-
ware for automatic calibration and operation of set of images. Int. Arch. Pho-
togram. Remote Sens. Spat. Inf. Sci. 38, 269–276 (2012)

11. Rupnik, E., Daakir, M., Pierrot Deseilligny, M.: MicMac - a free, open-source
solution for photogrammetry. Open Geospat. Data Softw. Stand. 2(1), 14 (2017)

12. Wei, X., Zhang, Y., Li, Z., Fu, Y., Xue, X.: DeepSFM: structure from motion via
deep bundle adjustment. In: ECCV (2020)

13. Xie, H., Yao, H., Sun, X., Zhou, S., Zhang, S.: Pix2Vox: context-aware 3D recon-
struction from single and multi-view images. In: ICCV (2019)

14. Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: depth inference for unstruc-
tured multi-view stereo. In: ECCV (2018)

https://doi.org/10.21227/c6tm-vw12


Skeletal Triangulation for 3D Human
Pose Estimation

YiHeng Jiang1 , ZhiPeng Wang1, YunLong Zhao1(B), Yang Li2,3,
and ChunYan Liu1

1 College of Computer Science and Technology, Nanjing University of Aeronautics
and Astronautics, Nanjing, China
zhaoyunlong@nuaa.edu.cn

2 Unmanned Aerial Vehicles Research Institute, Nanjing University of Aeronautics
and Astronautics, Nanjing, China

3 Key Laboratory of Advanced Technology for Small and Medium-sized UAV,
Ministry of Industry and Information Technology, Nanjing, China

http://cs.nuaa.edu.cn

Abstract. Nowadays, many researchers have made significant progress
in the field of multi-view 3D human pose estimation. However, numerous
multi-view human pose estimation models based on deep learning heav-
ily rely on data-driven training. As a 3D reconstruction method based on
mathematical modeling, triangulation has shown excellent generalization
ability and is widely used for 3D pose estimation and 3D pose annotation
tasks in unlabeled environments. In this paper, we propose a refinement
module based on graph convolution and visual fusion, and based on this,
propose a triangulation-based method infused with structural informa-
tion, Skeletal Algebraic Triangulation (SAT), encoding human pose prior
knowledge into the model to ensure its robustness under occlusion and
complex motions. Experiments show that our model outperforms alge-
braic methods and achieves comparable performance to state-of-the-art
methods. Meanwhile, our method has better generalization performance,
showing better and more robust results on different view Settings from
the training dataset. Besides that, the proposed method can be applied
to different backbone networks. As a core part of SAT, the graph refine-
ment model can also be used to improve existing keypoint estimation.
The volume triangulation combined with the graph refinement module,
called Skeleton Volume triangulation, achieves state-of-the-art perfor-
mance on the Human36M. In addition, the graph refinement module
is also used for other keypoint estimation tasks that contain structural
information, such as hand landmarks.
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1 Introduction

3D human pose estimation is a research focus in the field of computer vision,
which aims to infer 3D joint coordinates from multi-view images and related
information. Despite advancements in multi-view pose estimation algorithms, as
seen in [28] and [35], many methods heavily rely on high-quality training data and
may struggle to adapt to novel camera configurations. Acquiring ample labeled
images for new scenarios is essential for achieving satisfactory performance.

A significant challenge lies in obtaining accurate 3D pose annotations, partic-
ularly in the wild, which predominantly rely on triangulation [12,16]. Triangula-
tion leverages mathematical modeling to compute spatial geometric relationships
among keypoints across multiple views, thereby yielding 3D keypoints. Due to its
mathematical underpinnings, this approach boasts strong generalization capa-
bilities, applicable wherever image data and camera calibration parameters can
be obtained. However, its reliance on mathematical methods renders it sensi-
tive to imprecise 2D pose estimates. Humans can effortlessly discern postures
in space, easily identifying incorrect pose estimates, thanks to their rich spatial
contextual and biological structure priors, which play a crucial role in enhancing
accuracy. Our contributions are summarized as follows:

(1) We have investigated methods for encoding structural information into pose
estimation, with experimental validation substantiating the significance of
such information in enhancing pose estimation accuracy.

(2) We propose a refinement module based on graph convolution and visual
fusion, and based on this, propose a triangulation-based method infused with
structural information, Skeletal Algebraic Triangulation (SAT), An approach
refining 2D joint localizations across views using both visual features and
skeletal prior, followed by multi-view 3D skeletal refinement after initial tri-
angulation.

Experiments show that our framework is compatible with mainstream 2D
skeletons, significantly improves pose estimation performance, and outperforms
mainstream algebraic methods. Especially in the case of significant deviations
in 2D pose. In addition, the Advanced volume method combined with our
refinement module called Skeletal Volume triangulation, achieves state-of-the-
art results.

2 Related Works

In the realm of human pose estimation, research is bifurcated into two primary
categories: monocular and multi-view estimation [30]. While significant advance-
ments have been made in monocular pose estimation [9,18,19,23,27,36], Directly
obtaining 3D human pose from a single 2D image is still an ill-posed problem.
This is due to the ambiguity caused by the existence of multiple 3D poses with
the same 2D projections. Incorporating multiple-view images alleviates these
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challenges, enhancing the precision of 3D pose recovery. Works focusing on single-
person scenarios have successfully exploited multi-view geometry [11], learn-
able triangulation techniques [16], and graphical models [20,24], with additional
inquiries into the generalizability of learned triangulation [1]. For more complex
multi-person settings, matching and triangulation-based algorithms [6,7] predict
2D keypoints followed by feature matching and application of multi-view geome-
try [11,12] for 3D joint coordinate extraction. Volumetric methods [28] segment
the 3D space into uniform grids and utilize probabilistic models alongside 3D
CNNs for keypoint detection. Two-stage, top-down graph convolutional networks
[32] tailor GNN modules based on dynamic graph convolutions [22] for specific
tasks. Leveraging Transformers’ [29] powerful attention mechanisms and their
profound impact in computer vision [8], single-stage approaches [35] directly pre-
dict 3D keypoints for multiple individuals. Additionally, monocular video-based
methods [21,34,37] are a thriving area of interest, leveraging temporal informa-
tion to resolve ambiguities distinct from spatial cues, offering wider applicability
but often at the expense of accuracy compared to multi-view strategies. Notably,
existing learning-based methods for human pose estimation are heavily reliant
on the quality and coverage of training data, necessitating extensive and high-
quality datasets for achieving satisfactory predictive performance. Datasets such
as shelf/campus [2], Panoptic [10], Human3.6M [15], HumMAN [3], and Freeman
[31] have been instrumental in providing real-world annotations, indoor/outdoor
scenarios, and depth information, pushing the boundaries of pose estimation
under varying conditions. These datasets commonly employ motion capture [15]
or triangulation methods [3,31], capitalizing on their generalization capabilities,
although the accuracy is contingent on meticulous camera calibration and precise
2D detections. Improved triangulation algorithms [16,24] refine these techniques
for enhanced precision. Humans innately understand complex poses and occlu-
sions, leveraging priors about body structure, spatial geometry, and multi-view
integration. The inherent graph structure of human pose can enhance estimation
accuracy, as seen in works addressing occlusions in 2D estimation [25] and 3D
regression [5,36], and more prominently in multi-person multi-view estimation
[32]. Structured triangulation [4], assuming known bone lengths, further incor-
porates the natural structural relationships and functional correlations between
body parts into optimization frameworks.

3 Skeletal Triangulation

3.1 Overview of Method

Algebraic triangulation transforms the 2D pose representation into 3D joint coor-
dinates in space using the principles of multi-view geometry and spatial geome-
try. This method boasts excellent generalization capabilities due to its reliance
on such underlying mathematical principles. However, the inherent nature of this
algebraic approach places a high premium on the precision of 2D joint detections.
The utilization of confidence scores associated with 2D keypoints as weights in
the 3D reconstruction process [16] can significantly ameliorate, yet reliance solely
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on this mitigation strategy still yields inaccuracies, as considerable amounts of
visual information are lost during the abstraction of 2D keypoints and their
corresponding confidences.

We propose a structural information embedding refinement module, and
based on that, propose a new learnable triangulation model, Skeletal Algebraic
Triangulation (SAT), which harnesses the human skeleton structure prior infor-
mation encoded into the graph structure while concurrently utilizing visual fea-
tures to rectify errors, thereby mitigating the detrimental influence of erroneous
intermediate outcomes on the overall estimation. The architecture of SAT is
depicted in Fig. 1.

Fig. 1. The Overview of SAT

3.2 Graph Refinement Module

Complex poses and occlusions have long posed significant challenges for human
pose estimation. The errors caused by these factors seriously affect the accu-
racy of pose estimation. Humans, with their extensive prior knowledge including
multi-view geometry, spatial arrangements, and innate understanding of bodily
structures, excel at recognizing faulty poses. This knowledge plays a decisive
role in mitigating errors resulting from varying circumstances. Extensive prior
research [25,32] has validated the profound impact of such priors on enhancing
pose estimation performance. In light of this, we introduce a graph refinement
module for pose correction. We construct a human pose graph G ={V ,E} to
model the skeletal structure, where V = {vi | i=0,1,...,n}is a set of vertices rep-
resenting n keypoints in the skeleton, and E={vivj — if vi and vj are connected
in the skeleton} represents the edges symbolizing body limbs. The adjacency
matrix A = {aij} of graph G is defined such that aij = 1 if vertices vi and vj are
connected, and 0 otherwise. The graph neural network employs a network archi-
tecture akin to [25,36] called SemanticGCN, with a layer schematic depicted in
Fig. 2 (a). Each key point will be passed through the multilayer perceptron to
obtain its feature vector. The feature vector is then passed through the semantic
graph convolutional layer, batch normalization layer, Dropout layer and RELU
activation layer, and added to the initial input to obtain the refined feature vec-
tor. The graph refinement module is divided into 2D refinement module(Figure 2
(b)) and 3D refinement module(Figure 2 (c)). The 2D refinement module uses
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skeletal prior encoded in the graph with visual features at locations of keypoints
to adjust incorrect predictions. The 3D refinement module utilizes skeletal priors
and integrates visual features from multiple views while learning their depen-
dencies. This strategy further improves the accuracy of pose estimation.

Fig. 2. shows the architecture of Graph Refinement modules,(a) shows the architecture
of Graph Refinement layer, (b) shows the architecture of 2D Refinement Module, and
(c) shows the architecture of 3D Refinement Module.

2D Refinement Module. This model is a two-layer semantic graph convolu-
tional network, similar to [25,36]. The first layer processes only 2D keypoints.
The input is the feature vector transformed by the keypoints, integrating infor-
mation through pre-established skeletal prior. It employs a skeletal structure to
rectify 2D keypoints, correcting 2D pose estimation biases induced by occlusions
or complex actions. Then, the visual features of each keypoint and the keypoint
features are concatenated and input to the next graph convolution layer. This
layer refines based on keypoints and their corresponding visual features, guided
by prior knowledge of human skeleton structure, yielding a more precise 2D pose,
as illustrated in Fig. 2(a).

3D Refinement Module. The architecture of 3D refinement Module is similar
to its 2D counterpart, as illustrated in Fig. 2(b). 3D coordinates derived from
triangulation are fed into a graph neural network layer for refinement with struc-
tural information, yielding refined 3D coordinates. These coordinates are then
projected onto individual views, extracting 2D visual features at corresponding
locations in each view’s feature map. Simple visual information concatenation
proves insufficient for multi-view 3D reconstruction and fails to effectively inte-
grate features from diverse perspectives. It also cannot accommodate different
numbers of views. Inspired by [22,32], we design a mult-view fusion method
based on a dynamic graph structure. The mathematical expression of fusing
multiple view visual feature vectors is as Eq. 1:

xv = max(FC(concat(xv, xv − xn))) (1)
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In a triangulation process involving n views, visual feature vectors from each
camera v are concatenated with differences from n − 1 remaining feature vec-
tors. xv represents the visual feature at the projected point in v’s feature map for
node x, while xn symbolizes features from all other views. MLP neural network,
FC, is employed. n− 1 concatenated feature vectors traverse a fully connected
layer, receiving learnable weights, and are max pooled to form a multi-view fused
feature vector encapsulating multi-view information. This process is applied to
all n visual feature vectors from each perspective, yielding n feature vectors with
integrated information. These vectors undergo a fully connected layer, multipli-
cation by learnable weights, and max pooling, ultimately merging into a single
visual feature vector.

Influenced by the concept of residual networks introduced in [13], the offset
used to refine the attitude coordinates is output instead of the final coordinates
directly, similar to [25]. The offset is then added to the original input coordinates
to obtain the final refined coordinates. This approach of outputting corrections
fosters stability during model training, while the optimization module demon-
strates strong versatility, as both the 2D and 3D refinement models can be
independently applied to various backbones.

3.3 Architecture of SAT

The overall architecture of SAT is depicted in Fig. 3. The 2D keypoints and their
visual feature maps are extracted from each view by the backbone. These key-
points are then input into the 2D refinement model, where they are adjusted
in conjunction with visual feature information, resulting in corrected 2D key-
point values. After refinement, the corrected keypoints undergo a triangulation
algorithm, generating preliminary 3D joint coordinates. These 3D keypoints are
further input into the 3D refinement model, where they are combined with visu-
ally fused features from each perspective for targeted fine-tuning, ultimately
yielding 3D keypoint correction values and precise 3D joint keypoint locations.

Fig. 3. The architecture of SAT.

During training, The gradients are backwarded to the corresponding 2D
refinements and backbone for each view, ensuring an efficient exchange of infor-
mation across views. Crucially, our model permits joint training with the 2D
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backbone network, the network can also learn the dependence between differ-
ent views in the multi-view joint training, which can better adapt to different
situations.

Our graph refinement module can also adapt existing methods to further
improve their metrics. For example, we combine 3DRM with end-to-end method
volume triangulation [16], which is called Skeletal Volume Triangulation.

4 Experiments

4.1 Experiments Setting

We mainly used the Human36M [15] for evaluation, and we also used the CMU
Panoptic [10] for experiments. The Human3.6M dataset, widely used in 3D
human pose estimation research, was released by Ionescu et al., as the largest
single-person 3D pose estimation dataset. The CMU Panoptic dataset contains
multiple cameras that capture the social activities of multiple people and is the
largest dataset for multi-person pose estimation. For Human36M, Adhering to
the experimental approach of Iskakov et al. [16]. However, the difference is that
we opted to work directly with the Human3.6M dataset’s raw images instead of
applying image undistortion. For CMU Panoptic, the HD images are resized to
a quarter and the single-person sequences 170915 office1, 171026 cello3, 171026
pose3, 171204 pose3, 161029 car1 are selected as the training set, and 16102
tools1, 170407 office2 are selected as the test set. At the same time, the frames in
which the subject cannot be seen in all views are removed. Our experiments were
conducted on an Nvidia GeForce RTX3090 GPU (24GB memory) using PyTorch
1.13.1 and CUDA-12.3. The backbone [33] and the baseline method were fine-
tuned on the Human3.6M dataset using the ResNet152 weight file provided by
Iskakov et al. [16]. For systematic comparison. We alse employed PoseResNet50
initially trained on the Panoptic dataset [10] following the VoxelPose [28] frame-
work and fine-tuned on Human36M. The metrics are mainly Mean Per Joint
Position Error(MPJPE), which quantifies the absolute error between prediction
and Groundtruth, and reflects the absolute accuracy assessment of the model in
the world coordinate system. All methods are based on the ResNet152 backbone
unless otherwise stated.

4.2 Evaluation of Graph Refinement Module

We investigated the core of SAT, the Graph Refinement Module (GRM). Table 1
shows the experimental results, contrasting the refinement capabilities of the
2D Refinement Module(2DRM) and 3D Refinement Module(3DRM). For the
evaluation of the two GRMs, we directly used the L2Loss on the test set as
the metric. SAT integrates algebraic triangulation with both 2DRM and 3DRM
modules. We performed ablation experiments using only 2DRM to refine the
2D pose(-G2 suffix in the table) and only 3DGM to refine the 3D pose(-G3)
compared with SAT(-G23). Table 2 shows the experimental results. The Mean
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Per Joint Position Error (MPJPE) was used as the metric. Considering the GRM
as a generic refinement model compatible with diverse frameworks. In order to
verify the generality of GRM, we also integrated the 3DRM component with
VolT. By refining the initial pose estimates yielded from this method through
incorporation with Structure prior and visual features, referred to as VolT-G3 or
Skeletal Volume Triangulation (SVT) in Table 2. We also investigate the role of
graph convolution and skeleton prior to GRM. The keypoint connections of GRM
were replaced with different structures separately and compared with SAT, using
a fully connected graph (or complete graph, -FCG suffix in the table), where each
keypoint connects all other points and does not represent an interpretable human
skeleton prior, and using only MLP(we did not change the network structure of
2DRM and 3DRM, It just turns the body structure graph into an empty graph.
Each node is independent and no two points are connected, -MLP suffix in the
table).

Table 1. Evaluation of GRMs

L2-Before L2-After Improve

2DRM 0.20 0.19 5.00%

3DRM 1.92 1.70 11.46%

Table 2. Effectence of GRMs

MPJPE-Before MPJPE-After Improve

AlgT-G2 20.89 19.12 1.78 (8.00%)

AlgT-G3 20.89 18.66 2.23 (10.71%)

AlgT-G23(SAT) 20.89 18.65 2.24 (10.73%)

VolT-G3(SVT) 17.62 16.71 0.68 (5.16%)

AlgT-FCG 20.89 19.49 1.40(6.72%)

AlgT-MLP 20.89 19.46 1.43(6.85%)

AlgT-G23(SAT) 20.89 18.65 2.24 (10.73%)

It is evident from the results that both the 2DRM and 3DRM modules
help to reduce the error between keypoints and Groundtruth. Note that the
enhancement provided by using only 3DRM is better than using only 2DRM.
This is because 2D refinement focuses on refining 2D pose, whereas accuracy
in a single view may not necessarily improve 3D pose estimation accuracy. In
contrast, 3DRM, which combines pose structure with multi-view visual infor-
mation, exhibits stronger 3D pose accuracy. Integrating 3DRM with the end-to-
end method volumetric triangulation also improves accuracy. Graph Refinement
modules exploit interpretable prior information to further refine the results. This
confirms the generality of graph refinement models that can be adapted to dif-
ferent frameworks and improve their performance capabilities. Based on studies
on the effectiveness of graph convolutions (bottom half of Table 7), it is evident
that the fusion of visual information leads to improved performance. We note
that employing a fully-connected graph yields inferior performance compared to
both the method only MLPs and SAT. The redundancy in connections within
the fully-connected graph introduces unnecessary interference, detracting from
accuracy. Relying exclusively on MLPs, which lack the integration of skeletal con-
text and instead adjust keypointsbased solely on visual features, also falls short
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of the performance achieved by SAT. This highlights the crucial importance of
combining human anatomical priors with visual information for enhancing the
precision of pose estimation.

4.3 Performance Comparison

Comparison with Baseline. We first compare the performance of SAT with
its baselines. GRM is a general module, and SAT based on GRM can be adapted
to different backbones. To verify compatibility and performance with differ-
ent backbones, PoseResNet50 was adopted, initially set up on VoxelPose [28]
and trained on the Panoptic dataset [10]. This was subsequently fine-tuned on
H36M. The -50 suffix in the table represents that the backbone is replaced with
ResNet50. We also evaluate on CMU Panoptic dataset. Similar to the config-
uration on the H36M, all models were tested after re-fine-tuning in Panopitc.
Tables 3 and 4 illustrate the results.

Table 3. Experiments on the H36M

Human3.6M MPJPE

AlgT-50 24.38

AlgT 20.89

SAT-50(ours) 20.26

SAT(ours) 18.65

Table 4. Experiments on the Panoptic

CMU-Panoptic MPJPE

AlgtT-50 29.59

AlgtT 28.31

SAT-50(ours) 28.17

SAT(ours) 27.31

Our method SAT achieves better results with different backbones. When
the backbone is replaced with ResNet50, The parameter count nearly halved in
the backbone, leading to a decline in performance across all metrics. Despite
these constraints, our model adjustments still yield improved outcomes. It is
noteworthy that our SAT employing ResNet50 as the backbone outperforms the
AlgT model utilizing ResNet152. Furthermore, considering the computational
overhead in light of the performance contrasts presented in Table 6 and 7, SAT
with ResNet50 backbone demonstrates significantly lesser expense compared to
AlgT with a ResNet152 backbone. This underscores the efficacy of SAT’s graph
refinement model in leveraging both visual and structural information to enhance
pose estimation.

We notice a noticeable decrease in the metrics of Panoptic relative to H36M.
This is because the Panoptic data set is different from the H36M data set in
which all images can contain complete subjects, including a large number of
parts that cannot shoot complete subjects. Many of the selected sequences also
contain more complex occlusions Experimental results show that our method
still achieves better results than the Baseline in CMU Panoptic dataset. In par-
ticular, SAT using small-scale Baseline ResNet50 surpasses the baseline using
ResNet152.



Skeletal Triangulation 189

Comparison with Existing Methods. Our method is compared with existing
methods, including existing algebraic methods, similar methods and state-of-the-
art methods in human pose estimation on the Human36M dataset, and Table 5
shows the comparison results. This table is divided into three sections, start-
ing with a comparison with the single-frame algebraic methods, RANSAC is an
improved method by [16]. The Lagrangian Method in the table is the iteration-
based method reproduced by [4], which is used as the baseline of Structural
triangulation (ST) [4], ST necessitates estimating bone lengths for pose refine-
ment; to maintain uniformity in experimental settings, we confined our estima-
tion of subject-specific bone lengths to the current frame’s image data(The -S
suffix in the table). The second part of the table shows the comparison of similar
methods. The structural triangulation (ST) method introduces a mathematical
method that leverages known bone lengths to perform more accurate structure
estimation and is a similar approach to SAT. Unlike ST, SAT is a data-driven
algorithm that learns skeletal priors directly from training data. To compare
these two methods, we conducted a detailed comparative test. SAT learns prior
information directly from the training data, for ST, various strategies for bone
length estimation were employed: utilizing ground truth values directly (ST-
GT), estimating average bone lengths individually for each person in the test
set (ST), calculating an average bone length across all frames in the test set
(ST-A), estimating bone lengths per frame for testing(ST-S), and adopting the
average bone length from the training set as a universal prior (ST-T-A). All
bone length estimation methods are the same as in [4]. The last part of the table
is a comparison with the state-of-the-art method on Human36M.

Experimental results indicate that our method achieves the best performance
among single-frame algebraic methods. And SAT also surpasses the algebraic
triangulation-based method AlgT as well as previous methods, is closely com-
petitive with the current state-of-the-art. Skeletal Volume Triangulation (SVT),
an advanced method of volumetric triangulation refined with our 3DRM, out-
performs all previous methods and has achieved state-of-the-art performance on
the Human3.6M dataset. Experimental results show that the similarity method
ST achieves the state of the art when the bone length is known (estimated using
groundtruth). ST is also better than SAT when the bone length is known and
accurate for each individual. Nonetheless, in practical situations, estimating bone
length requires subject identification and traversal of image sequences, which is
not feasible in a single-frame context. It is also not easy to obtain the exact
length of bones, and identification is required for scenes where different people
may appear. Conversely, SAT excels in single-frame scenarios, particularly when
utilizing universally scaled skeletal priors derived from a population. In addi-
tion, SAT(18.65 mm) surpasses the reported of the multi-person pose estimation
model VoxelPose [28](19.0 mm) on Human3.6M and is on par with the reported
of MvP [35](18.6 mm). SVT, with an even lower error of 16.71 mm, exceeds the
performance of both VoxelPose and MvP.
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Table 5. Comparison with existing methods

Avg Dir. Disc. Greet Phone Pose Purch. Smoke Photo Wait Walk WalkD. WalkT.

Comparison of single-frame algebraic methods

RANSAC [16] 24.39 22.01 23.96 21.71 25.26 22.83 23.31 26.33 25.69 22.07 26.52 25.30 27.70

AlgT [16] 20.89 18.55 20.09 17.70 21.61 18.57 20.84 21.58 22.37 18.59 24.35 22.33 24.14

Lagrangian [4] 19.49 18.14 20.53 18.38 20.07 18.00 19.67 20.60 19.99 19.50 19.02 21.10 18.88

ST-S [4] 19.89 17.98 20.36 18.29 19.92 17.91 19.57 20.27 19.68 19.31 18.91 20.83 18.73

SAT(ours) 18.65 17.29 18.18 16.72 19.08 17.74 20.13 19.41 20.16 17.08 18.68 20.47 18.88

Comparison of similar methods

ST-GT 17.53 16.00 18.54 16.81 17.79 16.47 17.43 18.19 17.82 17.82 17.52 18.67 17.33

ST 18.52 16.81 19.67 18.05 18.61 17.43 18.58 18.84 18.51 18.97 18.84 19.78 18.20

ST-S 19.89 17.98 20.36 18.29 19.92 17.91 19.57 20.27 19.68 19.31 18.91 20.83 18.73

ST-T-A 31.08 35.19 29.17 30.60 33.40 53.96 27.22 26.22 24.82 28.30 27.33 28.89 27.82

ST-A 19.44 17.94 20.69 19.34 19.27 18.70 19.38 19.44 19.20 19.88 19.59 20.47 19.33

SAT(ours) 18.65 17.29 18.18 16.72 19.08 17.74 20.13 19.41 20.16 17.08 18.68 20.47 18.88

Comparison with SOTA

CVF [24] 31.2 28.9 32.5 28.1 29.3 28.0 36.8 35.6 29.3 30.0 30.0 28.3 30.5

GHPT [1] 29.1 27.5 28.4 27.5 30.1 27.9 30.8 30.8 28.1 29.4 30.5 28.5 30.1

ET [14] 25.7 27.7 23.7 24.8 26.9 24.9 26.5 28.2 31.4 26.4 28.3 23.6 23.5

TF [17] 24.6 24.2 26.4 21.1 25.2 23.2 24.7 26.4 26.8 24.2 23.2 26.1 23.3

AlgT [16] 20.89 18.55 20.09 17.70 21.61 18.57 20.84 21.58 22.37 18.59 24.35 22.33 24.14

ST-GT [4] 17.53 16.00 18.54 16.81 17.79 16.47 17.43 18.19 17.82 17.82 17.52 18.67 17.33

MFT+ [26] 25.8 23.4 25.2 24.4 27.4 22.8 25.2 25.9 28.5 23.6 26.6 22.6 22.7

VolT [16] 17.62 16.13 18.51 15.39 17.80 16.21 18.26 17.20 19.34 16.29 18.22 18.55 19.54

SAT(ours) 18.65 17.29 18.18 16.72 19.08 17.74 20.13 19.41 20.16 17.08 18.68 20.47 18.88

SVT(ours) 16.71 15.62 17.05 15.22 16.47 16.17 17.64 16.99 18.11 14.95 16.16 17.26 16.18

4.4 Evaluation of Computational Overhead

Due to the integration of a 2DRM and 3DRM atop algebraic triangulation,
an increase in computational overhead is inevitable for SAT. Consequently, we
assessed the computational overhead. All experiments were performed on a sys-
tem equipped with i5-13600KF, 32 GB RAM, RTX 3060(8 GB memory), and
all experiments were based on H36M. Table 6 presents an evaluation of Com-
putational overhead. The computational overhead metric used in the table is
milliseconds We further compared SAT with other methods, and Table 7 sum-
marizes these comparative outcomes. In the table, the time metric is milliseconds
and the memory metric is MB. The -50 suffix in the table represents that the
backbone is replaced with ResNet50.

It is evident that the computational cost of 2DRM exceeds that of 3DRM.
Because 2DRM must handle each view, whereas 3DRM only refines the overall
3D pose. It is observed that the overall performance overhead of the graph convo-
lutional model is minimal, requiring approximately 5 ms, which closely approx-
imates the computational cost of the purely mathematical method, ST (4 ms
under identical conditions). It can also be observed that the parameter incre-
ment introduced by SAT is minimal, showing no substantial increase compared
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Table 6. Comparison
of computational
overhead of each part

Part Pred-time

Backbone 22

2DRM 3

3DRM 2

Table 7. Comparison of Computational overhead with other
methods

pred-Time Train-Time pred-Mem Trai-Mem Param

AlgT-50 58 511 815 2210 44886114

SAT-50(ours) 65 670 831 2251 46470895

AlgT 89 870 853 3694 79521890

SAT(ours) 94 1040 920 3714 79555535

VolT 100 2011 1176 5220 80588050

to the identical baseline. This highlights the lightweight of SAT’s core 2DRM
and 3DRM.

Generalization Experiment. Triangulation, known for its strong generaliza-
tion, is used for data annotation in GT-absent environments and diverse sce-
narios. Iskakov et al. [16] proved its efficacy. However, real-world camera setups
may differ from ideal conditions, warranting investigation of view and scene
impacts on model performance. We trained on Human36M with fixed four views
but tested with random 2–4 views, repeating 100 times to gauge model gen-
eralization across camera configurations. The random seed was fixed to ensure
consistent view selection in each validation run. We compared the mean and
standard deviation of MPJPE between the baseline and SAT in the random
view test. In the table, the suffix -50 represents the replacement of the backbone
with ResNet50, the prefix AVG- represents the mean and STDEV- represents
the standard deviation.

Table 8. Experimental results of generalization performance on H36M

Avg Dir. Disc. Greet Phone Pose Purch. Smoke Photo Wait WalkD. Walking WalkT.

AVG-AlgT 36.34 40.64 32.70 86.58 32.71 32.82 32.12 32.59 33.89 34.80 36.40 31.89 37.94

AVG-SAT(ours) 33.28 42.47 33.41 33.86 29.85 40.63 31.62 30.21 32.75 30.91 36.60 29.10 32.13

STDEV-AlgT 10.60 16.39 5.79 227.05 4.23 8.17 6.75 3.46 6.03 10.91 13.77 4.26 11.52

STDEV-SAT(ours) 3.93 23.25 11.12 15.77 3.78 41.48 6.74 3.34 6.22 7.21 40.28 4.06 10.44

AVG-AlgT-50 79.80 70.05 79.46 77.25 93.40 78.10 54.17 56.68 57.58 78.01 43.74 71.73 44.83

AVG-SAT-50(ours) 46.93 52.42 54.04 45.43 60.72 58.29 41.09 39.67 41.48 53.69 36.42 35.66 37.56

STDEV-AlgT-50 33.28 52.07 69.80 70.92 93.20 102.81 17.41 12.46 16.72 118.14 13.47 86.69 20.94

STDEV-SAT-50(ours)10.35 27.61 43.23 20.35 77.31 64.38 12.07 4.63 9.82 49.00 9.51 6.23 12.22

Table 8 shows the results of the generalization experiments, using a different
view order and number of views than the train set. Compared to the case where
the same set of views is used for both training and testing, the error of a sin-
gle view is magnified in different views. The integration of structural prior and
visual feature in the refined model alleviates this inaccuracy, while the dependen-
cies learned by the model across multiple views provide enhanced generalization
capabilities and robustness. A significant decrease in performance is observed
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for smaller backbones. In the case of a small number of cameras, the impact of
single view error on 3D coordinates is more serious.

Fig. 4. shows the visualization of the results using PoseResNet50, (a) shows the results
for three views, (b) and (c) show the results for two views.

Figure 4 provides a visualization of the results derived from PoseResNet50.
In the case of only 3 views (Fig. 4 (a)), the wrong 3D coordinates of a single view
have some impact, and the bias caused by this error is more severe in the case of
only 2 views. (Figure 4 (b)) The bias due to occlusion is more severe, and (Fig. 4
(c)) the 3D joints due to occlusion have obvious errors. Our SAT initially corrects
2D poses and subsequently improves 3D reconstruction performance by inte-
grating multi-view visual features, encoding human skeleton priors, and learning
inter-view dependencies throughout training. These enhancements under abnor-
mal conditions demonstrate the robustness of SAT in handling adversity. We also
conduct generalization performance experiments on the CMU Panoptic dataset.
CMU Panoptic differs from H36M by containing a large number of images from
different views. We tested the trained model with a different number of views
(more or less than the training views) and with views completely different from
the training view. Table 9 shows the experimental results, and Fig. 5 shows the
visualizations of testing and training at different views.

Table 9. Experimental results of generalization performance on CMU Panoptic

Same views Less views More views Different views

AlgT 28.31 49.21 30.46 30.68

SAT 27.31 46.22 29.65 29.79

AlgT-50 29.59 49.42 33.89 42.27

SAT-50 28.71 47.94 31.98 30.28
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Similar to the experimental results on H36M, fewer views lead to a magni-
fied error for a single view and a noticeable decrease in 3D pose accuracy. The
dependencies between visual features and multiple views are learned by SAT,
mitigating this error. The visualization also shows that SAT makes fewer false
predictions.

Fig. 5. shows the visualization of the results on CMU Panoptic

We also observe that SAT achieves better results with more views than
trained or with completely different views. In addition, testing with more views
or completely different views than training, SAT results were comparable to both
training and testing with the same viewpoint. This also illustrates the general-
ization of SAT.

5 Conclusion

In this paper, we propose a refinement module encoding skeletal priors, leading
to the introduction of Structured Algebraic Triangulation (SAT), a learnable
algebra method that enbedding structural information. Experimental results
show that SAT outperforms algebraic methods and is on par with state-of-
the-art methods. Additionally, enhanced generality and stability are showcased.
Our method can be adapted to different backbones, with the refinement model
applicable for boosting the performance of existing 2D and 3D pose estimation
techniques. The integration of the graph refinement module in volumetric trian-
gulation, called SVT, achieves state-of-the-art on the Human36M dataset. The
proposed method facilitates new scene data acquisition, with minimally prepro-
cessed data easily utilized for training other multi-view 3D pose models. SAT
primarily employs lightweight graph convolution operations and triangulation
processes, thereby incurring modest computational overhead. This enables fine-
tuning and real-timepose estimation even on low-performance hardware. In con-
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trast to various deep learning-based methods with high computational demands,
SAT is better suited for deployment in resource-constrained environments like
edge devices.
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Abstract. Reassembling 3D broken objects is a challenging task. A
robust solution that generalizes well must deal with diverse patterns
associated with different types of broken objects. We propose a method
that tackles the pairwise assembly of 3D point clouds, that is agnostic
on the type of object, and that relies solely on their geometrical infor-
mation, without any prior information on the shape of the reconstructed
object. The method receives two point clouds as input and segments
them into regions using detected closed boundary contours, known as
breaking curves. Possible alignment combinations of the regions of each
broken object are evaluated and the best one is selected as the final align-
ment. Experiments were carried out both on available 3D scanned objects
and on a recent benchmark for synthetic broken objects. Results show
that our solution performs well in reassembling different kinds of broken
objects. The code is available at https://github.com/RePAIRProject/
AAFR.

Keywords: Puzzle Solving · 3D Reassembly · Pairwise Geometric
Reassembly

1 Introduction

Reconstructing three-dimensional broken objects is an important task in several
fields such as computer graphics [8,16], cultural heritage [14,15], and robotics
[4,10,21]. The growing interest in the community toward the 3D multi-part
assembly task in recent years led to the development of a benchmark composed
of realistically broken objects [16].

While there are numerous methods for the registration of 3D points, e.g.,
[2,9,18,22], reassembling two parts of a broken object is a different task that
usually requires registering only a partial subset of each part. Some registration
methods address this issue by focusing on the low-overlap region [9], however
accurately identifying the fractured surface region is important for performing

A. Alagrami, L. Palmieri and S. Aslan—Equal contribution.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15318, pp. 197–208, 2025.
https://doi.org/10.1007/978-3-031-78456-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78456-9_13&domain=pdf
https://github.com/RePAIRProject/AAFR
https://github.com/RePAIRProject/AAFR
https://doi.org/10.1007/978-3-031-78456-9_13


198 A. Alagrami et al.

pairwise matching over such point subsets. Indeed, the success of the reassembly
depends highly on the precision of the segmentation process, and developing
an algorithm that accurately identify fractured surface regions without making
assumptions about the shape of the object is challenging. To deal with this issue,
prior works [1,8,17] adopted extraction of breaking curves in an initial step,
and achieve segmentation by merging vertices that are not part of the breaking
curve into a single region. Other approaches adopted graph-based techniques for
segmentation of point clouds, as outlined in Sect. 2. These have been successfully
used for extracting spatial geometric attributes from 3D point cloud data [5,6,
12].

We propose a modular and adaptable open-source1 framework that integrates
geometric-based methods to effectively reassemble pairs of 3D broken objects,
without making any assumptions about their type or the nature of their dam-
age. The proposed approach offers a significant advantage in obtaining region
segmentation independent of surface characteristics. This is achieved through
the guidance of breaking curves, which are extracted using an extension of the
graph-based method in [5]. We experimentally demonstrate that, if the breaking
curve extraction and the successive segmentation steps are successfully achieved,
it is possible to accomplish the registration stage with a standard registration
method such as the Iterative Closest Point (ICP) [2]. We evaluated the proposed
approach on a state-of-the-art synthetic benchmark as well as two real-world
datasets. The results demonstrate the robustness and accuracy of the proposed
method, as presented in Fig. 1.

Fig. 1. The proposed method reconstructs accurately the mug by assembling the two
parts, where the other approaches fail drastically in this case.

2 Related Work

2.1 Non-learning Based (Geometrical) Methods

A common approach for automatic reassembly of broken 3D objects relies on
fractured region matching for identifying potential pairwise matches of frag-
ments. This involves (i) segmentation of the broken objects into fractured and

1 The code is available at https://github.com/RePAIRProject/AAFR.

https://github.com/RePAIRProject/AAFR
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intact regions and (ii) matching of the fractured surfaces. A conventional tech-
nique for surface segmentation is to use region growing, where vertices with
similar attributes are combined in the same region.

The region growing segmentation relies either on the contours or on the sur-
face characteristics. Altantsetseg et al. [1] adopted the Fourier series to approxi-
mate the boundary contour, Huang et al. [8] extracted the long closed cycles from
a minimum spanning graph of the edge points that have persistent curvatures
at multiple scales. Several works used breaking curves for aligning fragments
after segmenting them [19,23], yet they do not consider deteriorated fragments.
Some other works adopted features computed on the fractured surfaces for their
alignment, e.g., concave and convex regions were extracted on the fractured sur-
faces by Li et al. [11] and Son et al. [17], and Huang et al. [8] adopted clusters
of multi-scale surface characteristics computed based on the integral invariants.
Papaioannou et al. [14] conducted an exhaustive search of fractured surfaces of
all fragments, rather than extracting features.

2.2 Learning-Based Methods

Another approach adopted by the recent literature involves learning-based tech-
niques to estimate the transformation required for the reassembly of fragments.
In this context, Chen et al. [3] created a synthetic dataset by breaking 3D meshes
into pairs of fragments and employed a transformer-based network with a loss
that is a combination of geometric shape-based and transformation matrix-based
loss functions to learn pairwise alignment. The reported results highlight the high
complexity of this task, given that synthetically generated fragments devoid of
physical deterioration were only roughly aligned [16]. This trend is further val-
idated by Sellan et al. [16], which introduced a physically realistic dataset of
broken 3D meshes to serve as a benchmark for the reassembly task and demon-
strated that baseline learning-based algorithms are insufficient for solving the
multi-part assembly task. In this work, we follow the first approach, i.e., seg-
ment the broken surfaces as in [1,8,17] and register each segmented broken
region with an exhaustive search as in [14]. Unlike them, we use a graph-based
method for detecting the breaking curves of fragments which allows segmenting
regions without prior assumptions on the surface characteristics of the object,
and adopt the ICP algorithm for registration.

3 The Proposed Approach

The proposed method has a modular workflow depicted in Fig. 2, which is divided
into three main parts:

1. Detecting breaking curves: the set of points which belong to a three-
dimensional edge (Sect. 3.1),

2. Segmenting the points into a set of regions using the breaking curves
(Sect. 3.2),

3. Registering the objects by selecting the best match among possible combina-
tions of the segmented regions of each objects (Sect. 3.3).
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Fig. 2. The pipeline of the proposed approach. The 3D object (a drinking bottle from
Breaking Bad dataset [16], A) is broken into two parts (B), which are the input to our
algorithm. The algorithm detects the breaking curves (C) and segment the regions (D).
The registration selects the best match among the segmented regions and reassemble
the two parts (E).

3.1 Breaking Curves Extraction

When dealing with the assembly of fragmented objects, it is crucial to detect
borders and edges as they provide cues for the correct matching. The proposed
approach starts from a 3D point cloud and detects breaking curves. A breaking
curve is defined as a subset of connected points that belong to a 3D edge, as illus-
trated in Fig. 3b. The set of all breaking curves acts as a support for segmenting
the objects into distinct regions.

We do not make any assumption regarding the type of fracture, their size or
location. While this allows us to work with data coming from different sources,
it introduces the possibility of having one large broken region or several small
ones. The proposed approach detects breaking curves in different parts of the
fragment, which may result in over-segmentation, creating more broken region
(as shown in red in Fig. 2 step C). However, it is enough to obtain even a part
of the correct pair of broken regions to obtain a correct registration.

Let P be the set of points in a point cloud. We represent P as an unweighted
directed graph G = (V,E) where the set of vertices V corresponds to the set of
points p ∈ P and the edges E ⊆ V × V represents the neighbouring relations
between the points. Being the density of the point cloud non-uniform, we opted
for a mixed approach when adding edges: we create an ε-graph [13,20] using the
average distance of the k nearest neighbours considering the entire point cloud.
The ε value is then computed as:

ε =
1

|P |
1
k

∑

p∈P

∑

q∈Nk
p

|p − q| (1)

Here P is the point cloud, p ∈ P is a 3D-point in R
3 and N k

p is the set of k-
nearest neighbours of point p.
After the graph is created, we compute for each node its corner penalty [5]
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defined as:
ωco(p) =

λ2(p) − λ0(p)
λ2(p)

(2)

where λ0 and λ2 are respectively the smallest and the largest of the three eigen-
values of the correlation matrix of the neighbours of p. The eigenvalues of the
correlation matrix provide the level of skewness of the ellipsoid enclosing the
points.

Intuitively, if the point p lies on a flat area (i.e. the surface), one would have
λ2 ≈ λ1 and λ2 ≈ 0, while if the point lies on a corner, the eigenvalues should
approximately be the same (λ2 ≈ λ1 ≈ λ0) [5]. If the corner penalty tends
to 1, the node is likely to be on a flat area. We select all nodes whose corner
penalty is less than a threshold to obtain a noisy initial version of the breaking
curves. The final version is obtained after applying a refinement step similar to
the morphological operation of opening. A pruning step is followed by a dilation
to remove small isolated branches and promote the creation of closed breaking
curves. Given a point cloud P we define BP as the set of points in P that are
part of a breaking curve.

3.2 Regions Segmentation

Regions are extracted using a region-growing approach constrained by the previ-
ously extracted breaking curves. Given a point p /∈ BP we define the i-th region
RP

i and assign p to it. We consider the set of q ∈ Np and include each q in the
region Ri if q /∈ BP . This procedure is iterated until all p /∈ BP are considered.
This results in segmenting the point cloud P into several regions RP enclosed
by the breaking curves.

The only points that remain unassigned to a region are those that belong
to the breaking curves. However, the breaking curve shape can also aid in the
matching phase. Thus, a k-NN voting scheme is employed to assign these points
to a segmented region. For each boundary point in the breaking curves we count
the number of its neighbouring points which are not labeled as boundary. If more
than τ = 50% of the neighbouring points belong to one segmented region, that
boundary point is assigned to that segmented region. If the algorithm completes a
run over all border pixels without any changes, the threshold τ is decreased until
all points are assigned to any segmented region. This straightforward heuristic
yields acceptable outcomes (see Fig. 3c). This operation is applied to the dilated
boundaries, some of which naturally reside within specific segments’ regions.

3.3 Region Matching and Registration

The final step involves aligning the fragments using the segmented regions. Given
two segmented point clouds P and Q, we attempt to register the regions in RP

with the one in RQ. To this end, we first discard regions having a number of
nodes below a certain threshold. This step has two beneficial effects: reducing the
computational effort and making the method more robust to noisy regions. The
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Fig. 3. An example of the pipeline on both synthetic (top) and real (bottom) data:
after processing the original point cloud, the borders (in red) are detected and the
regions are segmented accordingly (different colors). (Color figure online)

registration is achieved with an exhaustive search of all the remaining regions
matches. Given a pair of regions RP

i and RQ
j , we register them with ICP [2] and

compute the Chamfer Distance (CD) as their matching score. The pair with the
best score is selected and their transformation is used for the final alignment.

4 Experiments

We evaluate our model on two available datasets of both synthetic and real
scanned 3D objects and on an in-house set of scanned 3D fresco fragments from
the Pompeii Archaeological Site collected under the RePAIR project2. In par-
ticular, we experimented on a subset of categories of the Breaking Bad (BBad)
dataset [16] having enough variability in terms of object characteristics, and one
sample of TU-Wien dataset [8] since it was sufficient to explore whether the pro-
posed algorithm is capable of solving the reassembly task with objects coming
from different data sources.

Figure 4 illustrates the experimental setup where the input consists of two
point clouds, P and Q, which are randomly translated and rotated. The output
of the algorithm is the transformation that aligns point cloud Q to point cloud
P , enabling the assembly of the two broken parts.

2 For more information, please visit https://www.repairproject.eu/.

https://www.repairproject.eu/
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Fig. 4. An example experiment demonstrating the input , segmentation, and matching
outcomes of our approach. Here, the point clouds are sourced from a Toy figure in the
Breaking Bad dataset [16].

We compare our method against the Generative 3D Part Assembly (DGL)
method proposed in [7], which was reported as the superior method on the BBad
dataset in [16]. As a baseline we also include ICP [2] into our evaluation3.

Despite other approaches for assembling 3D broken objects [1,8,14] exists, we
do not report a comparison with them for two reasons: i) these algorithms have a
high dependence on particular characteristics of the broken objects, and ii) they
are complex to reproduce due to a large number of parameters. Moreover, they
are not suitable for assembling synthetic objects, as they differentiate broken and
intact regions of the objects based on the surface roughness [8] or use feature
curves to complete the reassembly [14].

Although Neural Shape Mating (NSM) [3] reported promising results in the
pairwise assembly task, we choose DGL as our competitor since we consider our
work as a building block for the multi-part assembly task. Moreover, NSM is
using an adversarial shape loss, which requires the complete object reconstruc-
tion after pairwise assembly, while our approach, as visible in Fig. 5, correctly
assembles incomplete broken parts with no need for the complete object recon-
struction, an important step towards real-cases multi-part assembly.

Quantitative Results. We followed [16] for the choice of the metric using the
root mean square error of the translation and the relative rotation. Quantitative
results are presented in Table 1. To ensure a fair comparison we list the best
outcome of DGL across any pair belonging to a certain category. Our method

3 We trained from scratch the DGL on only pairs of fragments following
authors’ implementation and used the Open3D implementation for ICP.

https://github.com/Wuziyi616/multi_part_assembly/blob/master/docs/model.md#dgl-neurips20
http://www.open3d.org/docs/release/tutorial/pipelines/icp_registration.html
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significantly outperforms DGL and ICP in all datasets in terms of relative rota-
tion error and in the majority of datasets in terms of translation error.

We note here that for some categories (Mirror, Cup, Repair) the ICP results
show very low error. This happens because the broken parts are merged and
almost completely overlap, but the solution is not satisfactory (See Fig. 1.e).

Table 1. Preliminary quantitative evaluation. The top rows refer to the synthetic
breaking bad dataset [16] and the last two rows refer to real scanned objects. ♠For
DGL, we take the best value for each category. ♣Scanned objects, where the solution is
obtained from manual alignment (Brick from TU Wien Dataset [8] and fresco fragments
from the RePAIR Project).

Relative RMSE (R) RMSE (T)
Category ICP [2] DGL♠ [7] ours ICP [2] DGL♠ [7] ours

BeerBottle 57.028 78.933 1.62 1.104 0.073 0.02
WineBottle 54.262 84.699 1.58 0.743 0.024 0.02
DrinkBottle 60.253 70.014 1.89 1.288 0.008 0.033
Bottle 68.125 76.802 1.983 1.198 0.078 0.077
Mug 5.041 86.221 1.12 0.364 0.164 0.025
Cookie 12.594 85.707 1.96 0.632 0.159 0.043
Mirror 0.593 81.454 0.111 0.503 0.125 0.001
ToyFigure 208.333 87.972 1.98 4.123 0.159 0.079
Statue 105.582 89.605 0.66 2.159 0.149 0.003
Vase 30.756 82.218 0.592 1.496 0.109 0.002
Brick♣ [8] 11.577 62.820 3.064 2.356 1.684 0.626
Repair♣2 7.911 87.491 3.466 2.525 0.076 0.695

Qualitative Results. We report qualitative results in Fig. 5 showing that our
method correctly reassembles the broken parts of real and synthetic broken
objects. Visual inspection of the assembled objects confirms the accuracy of
the reconstruction. We show results on different kinds of objects, ranging from
high-quality textured data from the RePAIR dataset (texture is not used from
the proposed approach, but rather used for visualization) to the scanned brick
from [8] and the synthetic data from [7]. Subfigures 5 (a), (b), (c), (d), (g) and
(h) are two-parts assembly of objects which are composed of more parts, high-
lighting the capability of our approach to handle multiple broken regions in the
input point clouds. Subfigures 5 (g) and (h) have a common broken part (the blue
part of the head of the toy) and hint towards possible extensions to multi-part
assembly.
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Fig. 5. A qualitative overview of our results. In the first row, we present the reassembly
of real scanned objects: (a-b) show fresco fragments from the RePAIR project and (c-d)
show the scanned brick from the TU Wien dataset [8]. In the second row, we illustrate
the reassembly of synthetic objects from various categories of [16].

Fig. 6. Example Failure Cases. Here, we present failure cases from three algorithms,
showcasing their respective limitations. While our algorithm successfully identified seg-
mented regions, it assembled the bottle’s cork upside down. In contrast, the ICP algo-
rithm merged two point clouds instead of assembling them, and the DGL algorithm
struggled to determine a suitable assembly pose. Our algorithm’s failure, though sig-
nificant, underscores its relative performance compared to these benchmarks.
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Limitations and Failure Cases. To ensure a thorough evaluation, we dis-
cuss both the limitations and failure cases of our approach and those of our
competitors, illustrated in Fig. 6.

Our algorithm fails when the broken surface is not detected and segmented
or when it struggles to determine the correct transformation for aligning the two
parts. The detection of breaking curves and subsequent segmentation is sensitive
to noise, requiring careful parameter tuning. However, with optimal parameters,
our algorithm effectively identifies broken regions across diverse datasets. Some-
times, we observed our method assembling broken parts in an inverted orienta-
tion (See Fig. 6a). This can occur with roughly planar surfaces where alignment
may still appear plausible even after a vertical flip.

Regarding ICP, it is important to note that the algorithm was originally
developed for registering sets of points rather than for assembling objects, thus
its lower performance was expected. Figure 6b presents example with a mirror
broken in half, where the two halves are almost completely overlapped. Explain-
ing DGL is challenging due to its complex nature. This learning-based method
was originally designed to assemble objects with semantic meaning, initially
focusing on furniture objects. However, it faces difficulties in adapting to unfa-
miliar objects that are broken into non-standard parts, as depicted in Fig. 6c.

5 Conclusions

We presented a robust method for the pairwise assembly of 3D broken objects
which performs well across different datasets of both real and synthetic models.

The objective of this analysis is not to discuss which algorithm works better
in which case, but rather to analyze the current situation. We note that: (i)
using an off-the-shelf approach like ICP without processing the point cloud is
not a viable solution, (ii) it is confirmed that the DGL method, which was the
best performer for the published benchmark [16], although performing well for
semantic assembly, does not work for the geometric reassembly of broken objects
and (iii) using a more principled geometrical approach is a safe way to assemble
broken objects.

Concerning the limitations, the proposed pipeline is sensitive to the choice
of the parameters. In our experiments, we used a different set of parameters for
the synthetic objects and for the real ones. There is a margin for improvements
in the robustness at different steps of the pipeline.

The proposed method is presented as a building block for reassembling
objects broken into multiple parts. Extending the reassembly task to multiple
broken parts following a greedy approach is under exploration. Future works
include detecting non-matching surfaces and designing more principled ways of
selecting the best registration among many pairs of broken objects.
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the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 964854.



Reassembling Broken Objects Using Breaking Curves 207

References

1. Altantsetseg, E., Matsuyama, K., Konno, K.: Pairwise matching of 3D fragments
using fast fourier transform. Vis. Comput. 30, 929–938 (2014)

2. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans.
Pattern Anal. Mach. Intell. 14, 239–256 (1992)

3. Chen, Y.C., Li, H., Turpin, D., Jacobson, A., Garg, A.: Neural shape mating: self-
supervised object assembly with adversarial shape priors. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12724–
12733 (2022)

4. Ghasemipour, S.K.S., Kataoka, S., David, B., Freeman, D., Gu, S.S., Mordatch,
I.: Blocks assemble! learning to assemble with large-scale structured reinforcement
learning. In: International Conference on Machine Learning, pp. 7435–7469. PMLR
(2022)

5. Gumhold, S., Wang, X., MacLeod, R.: Feature extraction from point clouds. In:
Proceedings of 10th International Meshing Roundtable 2001 (2001)

6. Hao, F., Li, J., Song, R., Li, Y., Cao, K.: Mixed feature prediction on boundary
learning for point cloud semantic segmentation. Remote Sens. 14(19), 4757 (2022)

7. Huang, J., et al.: Generative 3D part assembly via dynamic graph learning. In: The
IEEE Conference on Neural Information Processing Systems (NeurIPS) (2020)

8. Huang, Q., Flöry, S., Gelfand, N., Hofer, M., Pottmann, H.: Reassembling fractured
objects by geometric matching. ACM Trans. Graph. 25, 569–578 (2006). https://
doi.org/10.1145/1141911.1141925

9. Huang, S., Gojcic, Z., Usvyatsov, M., Andreas Wieser, K.S.: Predator: registration
of 3D point clouds with low overlap. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR (2021)

10. Kataoka, S., Ghasemipour, S.K.S., Freeman, D., Mordatch, I.: Bi-manual manip-
ulation and attachment via sim-to-real reinforcement learning. arXiv preprint
arXiv:2203.08277 (2022)

11. Li, Q., Geng, G., Zhou, M.: Pairwise matching for 3D fragment reassembly based
on boundary curves and concave-convex patches. IEEE Access 8, 6153–6161 (2019)

12. Loizou, M., Averkiou, M., Kalogerakis, E.: Learning part boundaries from 3D point
clouds. In: Computer Graphics Forum, vol. 39, pp. 183–195. Wiley Online Library
(2020)

13. Natali, M., Biasotti, S., Patanè, G., Falcidieno, B.: Graph-based representations of
point clouds. Graph. Models 73(5), 151–164 (2011)

14. Papaioannou, G., et al.: From reassembly to object completion - a complete systems
pipeline. ACM J. Comput. Cult. Heritage 10(2), 1–22 (2017). https://doi.org/10.
1145/3009905

15. Pintus, R., Pal, K., Yang, Y., Weyrich, T., Gobbetti, E., Rushmeier, H.: A survey
of geometric analysis in cultural heritage. In: Computer Graphics Forum, vol. 35,
no. 1, pp. 4–31 (2016)

16. Sellán, S., Chen, Y.C., Wu, Z., Garg, A., Jacobson, A.: Breaking bad: a dataset
for geometric fracture and reassembly. In: Thirty-sixth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (2022). https://
openreview.net/forum?id=mJWt6pOcHNy

17. Son, T.G., Lee, J., Lim, J., Lee, K.: Reassembly of fractured objects using surface
signature. Vis. Comput. 34, 1371–1381 (2018)

18. Yang, H., Shi, J., Carlone, L.: TEASER: fast and certifiable point cloud registra-
tion. IEEE Trans. Robot. 37, 314–333 (2020)

https://doi.org/10.1145/1141911.1141925
https://doi.org/10.1145/1141911.1141925
http://arxiv.org/abs/2203.08277
https://doi.org/10.1145/3009905
https://doi.org/10.1145/3009905
https://openreview.net/forum?id=mJWt6pOcHNy
https://openreview.net/forum?id=mJWt6pOcHNy


208 A. Alagrami et al.

19. Yang, X., Matsuyama, K., Konno, K.: Pairwise matching of stone tools based on
flake-surface contour points and normals. In: GCH, pp. 125–129 (2017)

20. Yu, L., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: EC-Net: an edge-aware point
set consolidation network. In: Proceedings of the European Conference on Com-
puter Vision (ECCV), pp. 386–402 (2018)

21. Yu, M., et al.: RoboAssembly: learning generalizable furniture assembly pol-
icy in a novel multi-robot contact-rich simulation environment. arXiv preprint
arXiv:2112.10143 (2021)

22. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces.
Int. J. Comput. Vision 13(2), 119–152 (1994)

23. Zhao, F., Zhou, M., Geng, G., Zhu, L.: Rigid blocks matching method based on
contour curves and feature regions. IET Comput. Vision 12(1), 76–85 (2018)

http://arxiv.org/abs/2112.10143


Fluent and Accurate Image Captioning
with a Self-trained Reward Model

Nicholas Moratelli(B) , Marcella Cornia , Lorenzo Baraldi ,
and Rita Cucchiara

University of Modena and Reggio Emilia, Modena, Italy
{nicholas.moratelli,marcella.cornia,lorenzo.baraldi,

rita.cucchiara}@unimore.it

Abstract. Fine-tuning image captioning models with hand-crafted
rewards like the CIDEr metric has been a classical strategy for pro-
moting caption quality at the sequence level. This approach, however,
is known to limit descriptiveness and semantic richness and tends to
drive the model towards the style of ground-truth sentences, thus los-
ing detail and specificity. On the contrary, recent attempts to employ
image-text models like CLIP as reward have led to grammatically incor-
rect and repetitive captions. In this paper, we propose Self-Cap, a cap-
tioning approach that relies on a learnable reward model based on self-
generated negatives that can discriminate captions based on their consis-
tency with the image. Specifically, our discriminator is a fine-tuned con-
trastive image-text model trained to promote caption correctness while
avoiding the aberrations that typically happen when training with a
CLIP-based reward. To this end, our discriminator directly incorporates
negative samples from a frozen captioner, which significantly improves
the quality and richness of the generated captions but also reduces the
fine-tuning time in comparison to using the CIDEr score as the sole met-
ric for optimization. Experimental results demonstrate the effectiveness
of our training strategy on both standard and zero-shot image captioning
datasets.

Keywords: CLIP-based Reward · Image Captioning ·
Vision-and-Language Models.

1 Introduction

The image captioning task involves a step-by-step generation of textual descrip-
tions, where each word is produced incrementally. During this process, contex-
tual information is taken into account by leveraging the previously generated
words while also incorporating the semantic information derived from the visual
features of the input image. Over the years, researchers have made remarkable
progress in developing image captioning architectures in such a way that the
model strives to produce captions that effectively capture the salient aspects
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of the image while maintaining linguistic fluency and relevance. In the ini-
tial stages, traditional training of early architectures involved minimizing the
standard cross-entropy loss. Subsequent advancements introduced reinforcement
learning techniques based on policy gradient methods, as proposed by [31,41].
Similarly, the most adopted paradigm employs SCST (Self-Critical Sequence-
Training) [43], which has demonstrated notable improvements in achieving state-
of-the-art results through the optimization of the CIDEr metric [50].

Despite substantial progress, the capability to generate “human-like” descrip-
tions remains a challenge. Recently, there has been an exploration of the large-
scale CLIP model [40] for evaluating image captioning performance. This led
to the development of the CLIP-Score [21], which demonstrated a considerable
correlation with human judgment, thereby highlighting its effectiveness as an
evaluation metric. Following this direction, other evaluation metrics based on the
CLIP model have been proposed [44,45,52]. Among them, PAC-Score [44] stands
out for its greater correlation with human evaluations, obtained thanks to a
positive-augmented fine-tuning strategy that has converted the CLIP embedding
space towards the style of COCO captions [30]. When employed as a reward for
a captioning model, these metrics exhibit impressive ability to generate seman-
tically rich sentences. Nonetheless, they also lead to significantly longer captions
that may often contain word repetitions and grammatical errors and tend to
overlook the proper word order in captions, which is an essential prerequisite in
text generation.

To address these issues, we propose a novel approach based on SCST, wherein
the image captioning model learns to generate captions by iteratively refining its
output through a self-evaluation mechanism. Our strategy encompasses two key
steps. First, we conduct a fine-tuning process for a caption discriminator using a
self-supervised methodology inspired by CLIP. Specifically, alongside the usual
positive image-caption pairs, we introduce a set of negative texts generated by
the captioning model fine-tuned with the original CLIP-S and PAC-S as reward.
The overall goal is to create a self-supervised environment that improves the
correlation with human judgment, preserves syntactic accuracy, and allows the
model to learn from its errors. As a second step, we integrate this discriminator
as the reward used to fine-tune a captioning model, further enhancing its ability
to generate high-quality and semantically richer captions.

We assess the effectiveness of the proposed approach by conducting several
experiments on the COCO dataset [30], thereby showcasing its robust perfor-
mance across a range of different backbones. To enhance the comprehensiveness
of our analysis and validate the zero-shot capability of our approach, we expand
our investigations to include out-of-domain experiments conducted on additional
datasets like CC3M [46], nocaps [1], and VizWiz [20], providing insights into its
potential applicability in various real-world scenarios.

2 Related Work

Standard image captioning architectures. Early captioning architectures
initially involved filling in predefined templates after identifying relevant objects
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within the image [48,56]. Notable advancements in this field led to the adop-
tion of CNNs for encoding images, traditionally employed in several Computer
Vision tasks [7,38,39], followed by RNNs to describe the encoded visual informa-
tion into natural language [24,43,51]. This approach was further refined with the
incorporation of attention mechanisms [33,54], which facilitated a shift towards
enhancing the generation by focusing on key regions in the image [4], eventu-
ally enriched with spatial and semantic graphs [55,57]. Currently, in addition to
shifting towards Transformer-based architectures [15,16,23], a dominant strat-
egy involves leveraging visual features from comprehensive cross-modal architec-
tures like CLIP [47]. In this context, several directions have been explored, such
as defining memory concepts to gather information from other samples [6,16]
or integrating external knowledge into the architecture [28]. More recently, the
advent of large scale models like LLMs and multimodal LLMs [9,10,13,49] as
significantly changed the landscape of image description leading to generated
captions with increased descriptive capabilities [8,19,27].
Training strategies. While initial captioning models were trained with a stan-
dard cross-entropy loss [24,51,54], literature in this field soon turned towards the
use of reinforcement learning paradigms. This strategy entails conceptualizing
the models as agents, with the primary goal of maximizing the expected reward.
On this line, notable advancements have been made by adopting a reinforcement
learning strategy defining the reward as non-differentiable metrics [41,43] such as
BLEU [37], ROUGE [29], CIDEr [50], SPICE [2], or a combination of them [31].
Following this principle, Dai et al. [17] proposed a contrastive loss method to
distinguish captions based on their relationship to references, while the approach
proposed in [34] exploits a reward represented by a weighted combination of the
CIDEr score and a discriminability loss. Slightly different is the work proposed
by Ren et al. [42], which relies on controlling the captioning model by mapping
images and sentences into a unified semantic embedding space.

Despite the effectiveness of these training schemes, especially when employed
in combination with a CIDEr-based reward, the advent of pre-trained vision-
and-language models like CLIP [40] has also shed light on the limitations of the
traditional criteria to evaluate caption quality. In fact, while using a CIDEr-
based reward can lead to aligning with the style of ground-truth captions, it can
also significantly reduce the semantic richness of predicted sentences. Following
this premise, our work introduces a novel training strategy, focusing on the
complete removal of all reference captions involved in calculating the reward
and exploiting the supervision given by a CLIP-based model fine-tuned with
additional examples. Along this line, very few approaches [14,18,36,58] closely
aligned with ours refer to the CLIP model to obtain more descriptive captions.

3 Proposed Method

3.1 Preliminaries

In this section, we recap the definition of the training protocol typically used
in image captioning, of Contrastive Language-Image Pre-training [40], and of
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learnable image captioning metrics. Also, we introduce the terminology employed
in the rest of the paper.
Captioning training protocol. Image captioning models are usually trained
with a two-stage training approach. The network fθ is first pre-trained by encod-
ing an image Ii, described through a sequence of R = (v1, v2, ..., vR) visual fea-
tures, with a time-wise cross-entropy loss in relation to ground-truth sentences
sij = (w1, w2, ..., wT ). In the second stage, the network undergoes fine-tuning
through a RL strategy aimed at maximizing the CIDEr score [50] on the train-
ing dataset. During the first stage, the model is trained from scratch through a
conditioning mechanism, wherein caption generation depends not only on visual
features R but also on all previous ground-truth tokens up to time step t − 1,
where wt is a token belonging to a pre-defined vocabulary. During this phase, fθ

is optimized using a cross-entropy loss (XE) as follows:

LXE(θ) = −
t∑

t=1

log
(
P (wt|w1:t−1, R)

)
. (1)

The network then operates in an autoregressive manner, generating one token
per time step. The model fθ outputs a discrete probability distribution, where
the token wt is chosen as the one with the highest probability, determined by
preceding tokens. This selection involves passing the final network embeddings
through an MLP followed by a softmax function. In the second training stage, at
each time step t tokens are sampled from the probability distribution generated
by the model at time step t−1. Once the entire caption is generated, the CIDEr
score is computed as reward to guide a policy-gradient RL update step [43].
Contrastive Language-Image Pre-Training (CLIP). CLIP [40] represents
a state-of-the-art model for the computation of similarities between images and
texts. In this context, the computation of matrix similarities and the training
of the network through contrastive learning assume a critical role, as it serves
as a fundamental step in learning the intrinsic relationships between textual
and visual elements, denoted as T and V respectively. The effectiveness of the
contrastive method is particularly evident when applied to large-scale datasets.
Here, the matrix T is defined as comprising Nt textual instances, each character-
ized by a D-dimensional embedding. Likewise, the visual representation matrix
V has a size of Nv × D. To calculate the similarity matrix S, the cosine similar-
ity function is adopted. For each textual instance Ti and visual instance Vj , the
similarity score Sij is computed as follows: Sij = sim(Ti, Vj), where sim(·) rep-
resents the cosine similarity. This leads to a matrix S, with dimensions Nt ×Nv,
where each element Sij represents the similarity score between the i-th textual
instance and the j-th visual instance.
Learnable captioning metrics from human feedback. A recent yet under-
explored research direction involves leveraging a model trained with language-
image pre-training as an image captioning metric, given its robust alignment
capabilities between visual and textual domains. Following [21], the evaluation
score of a caption s′

i can be computed with a cosine similarity sim(Ii, s
′
i) between
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Fig. 1. Overview of our approach. On the left, the training strategy of the captioner
model is shown. The model acts as an agent providing rewards from a discriminator
obtained with textual negatives directly derived from the model itself (right).

the visual embedding of the input image and the generated caption. In particular,
in [21] a score proportional to the ReLU of the predicted similarity is employed.
Additionally, to confine the score within the range of [0, 1] for convenience, the
final result is scaled by a multiplicative factor denoted as w:

Score(Ii, s
′
i) = w · ReLU(sim(Ii, s

′
i)). (2)

One of the most commonly used learnable scores is CLIP-S [35], where the under-
lying architecture was pre-trained on 400M noisy (image, text) pairs sourced
from the internet. Despite demonstrating better alignment with human judgment
compared to traditional captioning metrics (e.g. BLEU, METEOR, CIDEr),
which rely on reference captions, the use of noisy data during training leads to
significant performance degradation when this score is used to directly optimize
a captioning model, resulting in disparities between the score and the over-
all quality of captions. To mitigate this, a recent approach termed PAC-S [44]
involves fine-tuning the model on cleaned data, thereby enhancing correlation
with human evaluations. Specifically, PAC-S score is trained using a similarity
matrix constructed from human-curated captions and machine-generated ones.
Nevertheless, although these two metrics appear to yield improved correlation
with humans, they tend to favor longer texts that are semantically rich yet
grammatically flawed over shorter yet grammatically correct captions.

3.2 Self-Trained Reward Model

The SCST approach outlined in Sec. 3.1 has proven to be effective in increasing
the quality of description with respect to a single XE training stage. However,
it also tends to bias the model towards the “average” caption that reflects the
most general mode contained in the training set [12]. This comes with some
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critical disadvantages, including reduced descriptiveness, semantic richness, and
discriminative power of the generated captions. What is more, one could argue
that employing the CIDEr metric as a reward is an obsolete choice, as it achieves
a low correlation with human judgments in comparison with recent alternatives.

Following this intuition, in this paper we propose a novel training scheme
which is based on a self-supervised reward. In our approach, the classical CIDEr
reward is replaced by a learnable language-image discriminator Dr, which takes
the form of a language-image model. Following the REINFORCE algorithm, the
expected gradient of the reward function can be computed as

∇θLSCST(Ii, s
′
i, θ) = (Dr(Ii, s

′
i) − b)∇θ log fθ(s′

i), (3)

where the expected gradient has been approximated using a single Monte-Carlo
sample, and b is a baseline employed to reduce the variance of the gradient
estimate, which is usually computed as a function of the rewards computed
inside a mini-batch. A classical choice when generating multiple descriptions
for the same image through beam search is that of computing b as the average
reward of all descriptions generated for Ii, so that b =

∑
j Dr(Ii, s

′
ij)/n.

There are three conceptual advantages in replacing an handcrafted captioning
metric with a learnable discriminator: (i) contrarily to a standard metric, Dr is
aware of Ii and thus can evaluate image-text alignment by “looking” at the image;
(ii) being not handcrafted, Dr can be trained to mimic an evaluation behavior
of choice, and does not depend on the annotation style; (iii) Dr is not limited to
work on semantic domains on which ground-truth captions are available.

In this regard, a straightforward choice for Dr would be that of employing
a pre-trained CLIP model based, which also has a large semantic coverage, as
explored in [14]. However, when employing learnable rewards, we observed a
significant decrease of performance on reference-based metrics, which nonethe-
less serve as crucial benchmarks for assessing caption quality. Moreover, it is
well known that CLIP-based architectures, if not properly fine-tuned, tend to
focus heavily on the semantics of the caption, strongly neglecting its grammat-
ical aspect, which is one of the most important aspects of image captioning.
From a pragmatic perspective, several works have analyzed the embedding space
of CLIP and consistently find that it excels in aligning object categories with
images using a bag-of-words approach. This results in robustness against word
swapping, rather than mere repetition of identical concepts. Therefore, we intro-
duce a novel fine-tuning methodology grounded in self-supervised learning, which
comprises two distinct stages: (i) refinement of CLIP through fine-tuning condi-
tioned on self hard-negatives sourced from the model itself post fine-tuning with
CLIP-S and PAC-S; (ii) fine-tuning of the pre-trained model employing our self-
discriminator as a reward model. An overview of our training strategy is shown
in Fig. 1.

3.3 Fine-tuning of Self-Discriminator

As mentioned above, the first stage involves refining the CLIP-based discrimina-
tor Dr through generation-aware mining of hard-negatives. Initially, we employ
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Fig. 2. Overview of our self-discriminator approach, in which both CLIP encoders are
fine-tuned with low-rank adaptation (LoRA) using additional textual negatives.

captioner models trained with CLIP-based rewards to generate these negative
instances, which are then exploited to fine-tune CLIP. This process aims to
condition CLIP against enforcing alignment styles particularly unsuitable for
image captioning. Specifically, through fine-tuning, the goal is to modify the
noisy embedding space of CLIP based on the errors obtained from the caption-
ing model. When CLIP is employed in SCST, it results in a meager grammatical
reward, despite its strong semantic robustness. For this purpose, we have gen-
erated two distinct types of negatives for each sample (i.e. Zi = {Zi

1, Zi
2})

derived from the fine-tuned captioner using SCST with rewards based on CLIP-
S and PAC-S in their reference-based versions, respectively. This choice allows
the model to learn not only to better align the embedding space but also to
provide self-supervised reward and thus learn from its own mistakes.

To fine-tune the CLIP-based discriminator Dr, we propose a simple modifica-
tion to the CLIP objective (see Figure 2). In particular, given a batch of N images
I = {I1, ..., IN} and N captions T = {T1, ..., TN}, we concatenate the textual
negatives in such a way as to obtain T̄ = {T1, ..., TN , Z1

1, Z1
2, ..., ZN

1, ZN
2}.

Next, we compute the similarity matrix S ∈ R
N×3N . Here, the row-wise and

column-wise cross-entropy losses are computed as in CLIP, with the difference
that we do not compute the loss for the negative captions column-wise (as there
is no matching image for a negative caption). To reduce the number of trainable
parameters and save memory, we employ low-rank adaptation (LoRA) [22] dur-
ing the fine-tuning phase of our CLIP-based discriminator, on all layers of both
visual and textual encoders.



216 N. Moratelli et al.

3.4 Training strategy

Once the fine-tuning of the discriminator is completed, it is employed as a reward
signal to fine-tune the captioner through SCST. Our fine-tuned discriminator Dr

is capable of providing feedback not only on semantics but it is also sensitive to
grammar and syntax. Finally, the reward perceived by our agent is conditioned
not only on the generated text but also on the input image and implicitly on
the errors that our model would have generated without any correction and
modification of the embedding space.

4 Experimental Evaluation

4.1 Datasets and Evaluation Protocol

We train our model on the COCO dataset [30] which contains around 120k
images each associated to five different captions, using the splits defined in [24]
where 5,000 images are used for validation, another 5,000 for testing, and the
remainder for training. We then evaluate the effectiveness of our solution on the
COCO test set and on the validation set of different image captioning datasets,
namely nocaps [1], VizWiz [20], and CC3M [46].

To evaluate our results, we employ both standard captioning metrics, such as
BLEU [37], METEOR [5], ROUGE [29], CIDEr [50], and SPICE [3], and more
recent learning-based scores like CLIP-Score [21] and PAC-Score [44] in their
reference-free and reference-based versions. In addition, we employ a novel mea-
sure to evaluate the grammatical correctness of the generated captions. Specifi-
cally, we define Rep-n with n = 1, 2, 3, 4 as the average number of n-grams which
are repeated in the generated captions.

4.2 Implementation Details

CLIP fine-tuning. Regarding the fine-tuning of CLIP, we use ViT-B/32 as
backbone for encoding both images and textual sentences, leveraging the original
OpenAI implementation1. As positive examples, we exploit image-caption pairs
from the COCO dataset. We use AdamW [32] as optimizer with a learning rate
set to 1 · 10−4 and a batch size of 256. Additionally, to reduce the number of
trainable parameters and make fine-tuning more efficient, we employ LoRA [22]
with a rank equal to 8.
Architecture. As our captioning model, we employ a standard encoder-decoder
Transformer with 3 layers in both encoder and decoder, a hidden size of 512,
and 8 attention heads. To encode input images, we use different CLIP-based
backbones, such as RN50, ViT-B/32, and ViT-L/14. To implement our model,
we employ the Hugging Face library [53].

1 https://github.com/openai/CLIP

https://github.com/openai/CLIP
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Training details. We first pre-train the model with the classical cross-entropy
loss for sentence generation. Next, we optimize our model using different rewards
based on unsupervised and supervised metrics (i.e. our Self-Cap strategy, both
CLIP-Score [21] and PAC-Score [44], and the CIDEr score). During cross-entropy
pre-training, we train our network with the Adam optimizer [25], a batch size
of 1,024, and for up to 20,000 steps. During this phase, we linearly warmup for
1,000 steps, then keep a constant learning rate of 2.5 · 10−4 until 10,000 steps,
then sub-linearly decrease until 15,000 steps to 10−5 and keep the value constant
until the end of the training. For the second stage, we further optimize our model
with 1 ·10−6 as learning rate using a batch size of 32. During caption generation,
we employ a beam size equal to 5.

Table 1. Comparison between different reward signals in terms of supervised, unsu-
pervised, and grammar-based metrics. Results are reported on the COCO test set.

Supervised ↑ Unsupervised ↑ Grammar ↓
Backbone Reward B-4 M R C S RefCLIP-SRefPAC-S CLIP-SPAC-S Rep-1 Rep-2 Rep-3 Rep-4

- 32.8 28.1 55.0 109.820.3 0.796 0.853 0.743 0.817 1.516 0.108 0.022 0.009
CIDEr 39.7 29.2 58.3 126.821.2 0.797 0.855 0.739 0.817 1.384 0.05 0.008 0.005

CLIP-S 14.3 24.7 34.9 3.1 21.2 0.765 0.830 0.804 0.837 11.7625.168 2.809 1.518
PAC-S 18.5 26.5 42.2 32.2 21.7 0.785 0.849 0.799 0.860 5.453 1.588 0.645 0.288
CLIP-S [14] 6.3 19.7 29.5 11.2 12.3 0.786 0.823 0.843 0.837 5.619 1.541 0.466 0.151
CLIP-S+Gr [14] 16.9 25.9 45.6 71.2 19.6 0.792 0.849 0.779 0.839 1.536 0.0970.0150.003

*RN50 Self-Cap 20.826.848.272.0 21.80.792 0.851 0.780 0.844 2.706 0.495 0.153 0.049

- 33.1 28.2 55.4 112.420.5 0.804 0.861 0.755 0.830 1.468 0.091 0.017 0.005
CIDEr 39.4 29.5 58.3 129.022.2 0.809 0.866 0.757 0.833 1.360 0.055 0.006 0.001

CLIP-S 11.4 23.1 31.2 1.1 18.5 0.778 0.830 0.851 0.846 11.1663.566 1.232 0.395
PAC-S 20.3 27.1 44.1 40.7 22.4 0.796 0.858 0.810 0.870 5.078 1.443 0.584 0.260

*ViT-B/32Self-Cap 23.627.349.381.4 22.90.808 0.862 0.800 0.861 2.626 0.4830.1560.063

- 37.3 30.4 58 1 126.623.3 0.811 0.868 0.758 0.831 1.402 0.062 0.007 0.002
CIDEr 43.6 30.8 61.0 143.323.2 0.809 0.866 0.750 0.826 0.239 0.498 0.616 0.349

CLIP-S 10.2 23.0 30.3 1.1 15.3 0.793 0.827 0.865 0.834 8.788 2.113 0.716 0.248
PAC-S 22.3 28.4 46.2 51.1 24.6 0.801 0.861 0.805 0.862 4.612 1.199 0.479 0.206

*ViT-L/14 Self-Cap 22.628.450.282.7 24.70.809 0.864 0.787 0.853 2.216 0.3760.1180.039

4.3 Experimental Results

Results on COCO test set. We start by comparing our solution against other
CLIP-based rewards (i.e. CLIP-S and PAC-S) using different visual backbones
to encode input images. Results are reported in Table 1 in terms of supervised,
unsupervised, and grammar-based metrics. For completeness, we also include
the results of the model trained after cross-entropy loss and using a standard
CIDEr score as reward. In all experiments, we employ the same Transformer-
based architecture with three layers in both the encoder and decoder. Regarding
a comparison with previous works, it is important to note that the only work
within the same settings is proposed by Cho et al. [14] which however only
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Table 2. Descriptiveness analysis of generated captions in terms of unsupervised scores
and retrieval-based metrics. Results are reported on the COCO test set.

Unsupervised Recall

Backbone Strategy CLIP-SPAC-S R@1R@5R@10MRR

XE 0.743 0.817 21.2 44.2 57.6 31.2
SCST (CIDEr) 0.739 0.817 19.8 43.4 55.7 29.8

*RN50 Self-Cap 0.780 0.844 37.767.378.6 50.3
XE 0.755 0.830 24.8 50.8 62.8 35.7
SCST (CIDEr) 0.757 0.833 25.7 51.7 64.4 36.7

*ViT-B/32Self-Cap 0.800 0.861 47.174.684.9 58.9
XE 0.758 0.831 27.7 52.6 64.2 38.5
SCST (CIDEr) 0.750 0.826 23.9 49.8 61.6 34.9

*ViT-L/14 Self-Cap 0.787 0.853 44.771.882.6 56.5

adopts CLIP RN50 backbone as visual encoder. Specifically, two variants both
optimized using CLIP-S are proposed, where the former only employs CLIP-S
as reward while the latter combines CLIP-S with a grammar-based reward.

From the results, we can notice that adopting a reward relying on CLIP-based
models significantly alters the performance of the model, leading to word repeti-
tions and a lack of logical or grammatical structure within the caption. Indeed,
within a few steps, the model appears to hack the metric by finding alterna-
tive ways to boost the semantics and consequently the value of the metric itself
(i.e. CLIP-S or PAC-S), completely disregarding the syntactic structure of the
caption. In particular, considering the results of our proposal (i.e. Self-Cap) with
ViT-B/32 as visual backbone, it can be seen that our reward strategy can sig-
nificantly improve the results on standard supervised metrics (e.g. 81.4 CIDEr
points compared to 40.7 and 1.1 achieved with PAC-S and CLIP-S rewards
respectively). This demonstrates the effectiveness of Self-Cap in better preserv-
ing the coherence of the predicted caption with the image and the ability to gen-
erate “human-like” and thus structurally correct captions. As expected, directly
optimizing a specific metric leads to the best results on that metric, as showed by
the results of the models trained with CLIP-S or PAC-S as reward. Nonetheless,
this is not confirmed on the reference-based versions of CLIP-S and PAC-S for
which Self-Cap achieves the best performance according to all employed back-
bones, further confirming a better correlation with human-written captions.

To further clarify the problems associated with unsupervised metrics when
used as rewards, we also report the average number of repeated n-grams for each
caption (i.e. Rep-n with n = 1, 2, 3, 4). Notably, Self-Cap significantly reduces
the number of repetitions within the generated sentences, decreasing the 1-gram
repetitions from 11.166 and 5.078 respectively using CLIP-S and PAC-S to 2.626,
always when employing visual features from ViT-B/32. These results are con-
firmed also considering a larger number of n-grams and across all considered
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visual backbones, further demonstrating the effectiveness of our training strategy
in reducing the grammatical incorrectness of captions generated by captioners
optimized using standard CLIP-based rewards.

When instead comparing our model with the one proposed in [14] using
RN50 visual features, we can notice that the model optimized only with CLIP-S
version yields a high value of CLIP-S, while totally degrading the reference-free
metrics (i.e. 11.2 CIDEr points with respect to 72.0 of Self-Cap) and producing
numerous repetitions (i.e. 5.619 and 1.541 of Rep-1 and Rep-2 compared to 2.706
and 0.495 of our approach). The scenario is different when considering the second
variant, which is optimized with a combination of CLIP-S and a grammar-based
reward. Specifically, while Self-Cap still achieves higher results in terms of all
supervised metrics, it presents slightly higher values of repetitions. Nevertheless,
it is noteworthy that Self-Cap does not exploit any explicit grammatical reward,
as it is learned directly within the embedding space of the discriminator itself
during the refinement process.

Table 3. Ablation study on COCO test set, using different negative textual sentences
and CLIP ViT-B/32 as image encoder.

Negatives Supervised Unsupervised

ManualCLIP-SPAC-S B-4 M R C S RefCLIP-SRefPAC-S CLIP-SPAC-S

� 19.7 27.4 44.0 41.2 22.30.799 0.856 0.812 0.865
� 21.6 27.546.2 57.3 22.3 0.801 0.858 0.808 0.865

� 23.1 27.4 48.5 78.9 21.9 0.805 0.861 0.803 0.864
� � 21.3 27.1 47.5 70.0 21.8 0.807 0.862 0.798 0.861
� � � 21.0 27.3 46.0 60.4 21.7 0.808 0.862 0.802 0.862

� � 23.627.3 49.381.421.9 0.808 0.862 0.800 0.861

Analysis on the descriptiveness of generated captions. To effectively
compare the captions generated by Self-Cap with those generated by a captioning
model trained with a standard training paradigm (i.e. cross-entropy loss followed
by SCST with CIDEr reward), we complement the results shown in Table 1 with
retrieval-based metrics reported in Table 2. Retrieval-based metrics are generally
used to measure the discriminative degree of the generated captions, which is
usually a viable strategy to estimate their descriptiveness and semantic richness.

In particular, following recent works [11,26], we measure the quality of gener-
ated captions in distinguishing images in a dataset and compute the percentage
of the times the image corresponding to each generated caption is retrieved
among the first k retrieved items. This is done by ranking the images in terms
of CLIP similarity between visual and textual embeddings, using the CLIP ViT-
B/32 model, and computing recall at K with k = 1, 5, 10. We also compute the
mean reciprocal rank (MRR) for each generated caption: higher MRR scores indi-
cate that captions are more discriminative and therefore usually more detailed.
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Notably, Self-Cap can significantly increase the results obtained with a stan-
dard training paradigm (i.e. 24.8 and 25.7 achieved by XE and SCST (CIDEr)
in terms of R@1 vs. 47.1 achieved by Self-Cap with ViT-B/32), highlighting a
higher degree of descriptiveness in generated captions.
Ablation study on negative examples. As mentioned in Sec. 3, to com-
pute the reward during the RL-based optimization, we employ a CLIP-based
discriminator fine-tuned using a combination of self-generated negative samples
obtained by two different captioners, one trained with CLIP-S reward and the
other trained with PAC-S reward. In Table 3, we evaluate the effectiveness of
the chosen negative samples. In particular, we consider negative samples gener-
ated by a single captioning model (i.e. either trained with CLIP-S or PAC-S)
and manually-constructed negative samples, or a combination of them. When
generating manual negatives, we consider the failure cases typically produced by
a captioner fine-tuned with CLIP-based rewards: (i) premature termination of
captions (e.g. “a man playing with a cat in”); (ii) redundancy of the final term
(e.g. “a man with an umbrella in the background background background”); and
(iii) duplication of concepts within captions (e.g. “a cat in the garden and a cat
in the garden”). We therefore manually corrupt COCO captions either manually
repeating or removing one or more random words, performing a random swap
of two words, or substituting one word with a randomly selected word from the
entire vocabulary of the COCO dataset.

Table 4. Out-of-domain performance analysis on nocaps, VizWiz, and CC3M valida-
tion sets in terms of supervised and unsupervised metrics.

nocaps VizWiz CC3M

Backbone Reward B-4R C S CLIP-SPAC-S B-4 R C S CLIP-SPAC-S B-4R C S CLIP-SPAC-S

CLIP-S 3.7 23.2 4.6 12.9 0.738 0.799 8.70 29.8 6.7 8.8 0.667 0.78 1.0 13.9 4.3 6.5 0.678 0.78
PAC-S 4.0 25.3 20.9 14.10.741 0.850 9.22 31.6 13.0110.3 0.688 0.816 0.8 12.4 5.8 6.5 0.699 0.814

*RN50 Self-Cap 4.9 27.130.413.9 0.737 0.844 10.135.419.7 8.1 0.667 0.795 1.2 14.915.97.70.686 0.798
CLIP-S 4.0 27.1 9.8 13.2 0.754 0.810 5.5 23.8 1.3 8.5 0.737 0.814 0.8 11.4 0.6 6.0 0.718 0.784
PAC-S 5.2 28.5 35.7 16.20.750 0.854 11.0 34.3 20.1 9.8 0.715 0.837 1.2 14.1 9.8 7.6 0.698 0.809

*ViT-B/32Self-Cap 6.2 29.846.316.0 0.751 0.854 13.037.827.0 9.1 0.702 0.828 1.3 15.219.48.50.688 0.803
CLIP-S 5.2 28.9 10.2 17.3 0.750 0.819 4.1 21.8 1.2 7.0 0.766 0.775 0.6 10.2 0.6 4.4 0.747 0.765
PAC-S 5.7 30.0 44.8 18.10.746 0.850 11.2 36.0 26.8 12.20.701 0.820 1.4 15.1 13.2 8.6 0.701 0.811

*ViT-L/14 Self-Cap 6.9 31.362.818.10.742 0.839 11.437.428.5 10.2 0.690 0.809 1.6 16.721.99.60.696 0.809

As it can be seen, the best results are obtained using a combination of
negative samples deriving from the combination of CLIP-S and PAC-S, which
achieves significantly higher CIDEr values compared to the manually created
negatives (i.e. 81.4 vs. 41.2) and all other alternatives. Overall, the use of man-
ual negatives does not prove effective also when used in combination with other
considered negative samples, leading to performance degradation on all super-
vised metrics.
Out-of-domain evaluation. To assess the out-of-domain capabilities of our
model, we evaluated Self-Cap on three distinct datasets, namely nocaps [1],
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CC3M [46], and VizWiz [20]. While nocaps is specifically tailored for the novel
object captioning task encompassing object classes absent in COCO, CC3M
and VizWiz respectively comprises images sourced from the web and captured
by visually impaired people. Except for captions from CC3M which are auto-
matically generated, all other datasets are composed of manually-curated textual
sentences. Table 4 shows the results obtained using three different visual back-
bones, comparing our approach with models fine-tuned using CLIP-S and PAC-
S rewards. Also in this setting, Self-Cap achieves significantly higher results in
terms of standard evaluation metrics, demonstrating the effectiveness and gen-
eralization capabilities of our approach even in out-of-domain scenarios.

4.4 Qualitative Analysis

To validate the quality of captions generated by our approach, Figure 3 shows
some qualitative samples from the COCO test set. In this case, we compare
captions generated by Self-Cap with those generated by a captioning model
trained with PAC-S reward. As it can be seen, Self-Cap can generate more
descriptive and complex captions while minimizing repetitions and grammatical
errors often encountered when combining SCST with CLIP-based rewards.

Fig. 3. Qualitative results on COCO sample images, comparing Self-Cap with a model
trained using PAC-S as reward.



222 N. Moratelli et al.

5 Conclusion

We present Self-Cap, a novel fine-tuning method for image captioning which
entails a two-phase training procedure. It leverages a discriminator to provide
feedback by learning directly from the errors of the captioner. In a setting uti-
lizing a CLIP-based reward, the proposed solution demonstrates state-of-the-art
performance in supervised metrics. Additionally, we showcase the out-of-domain
capabilities of our approach on three different datasets. Self-Cap generates cap-
tions that are not only more complex and semantically richer but also yield
superior grammatical accuracy compared to competitors.
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Abstract. When exploring the development of Artificial General Intel-
ligence (AGI), a critical task for these models involves interpreting and
processing information from multiple image inputs. However, Large Mul-
timodal Models (LMMs) encounter two issues in such scenarios: (1) a
lack of fine-grained perception, and (2) a tendency to blend information
across multiple images. To better investigate the capability of LMMs
to perceive fine-grained visual details when dealing with multiple input
images, we built a benchmark for evaluating LMM with multiple image
inputs - MIMU(Muti-Image Inputs Multimodal Understanding Bench-
mark). The benchmark focuses on two scenarios: first, image-to-image
matching (to evaluate whether LMMs can effectively reason and pair
relevant images), and second, multi-image-to-text matching (to assess
whether LMMs can accurately capture and summarize detailed image
information). We conduct evaluations on a range of both open-source
and closed-source large models, including GPT-4V, Gemini, Open-
Flamingo, and MMICL. Although GPT-4V achieves the best results
in all metrics, it still has a significant gap from Human Evaluation. To
enhance model performance, we further develop a Contrastive Chain-
of-Thought (CoCoT) prompting approach based on multi-input multi-
modal models. This method requires LMMs to compare the similarities
and differences among multiple image inputs, and then guide the mod-
els to answer detailed questions about multi-image inputs based on the
identified similarities and differences. Our experimental results showcase
CoCoT’s proficiency in enhancing the multi-image comprehension capa-
bilities of large multimodal models.
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1 Introduction

Recent advancements in Large Language Models (LLMs) [3,4,19,24,32] have
sparked optimism in the pursuit of Artificial General Intelligence (AGI). Given
the pivotal role of vision in human information acquisition, its integration is
crucial for AGI’s perceptual capabilities. To bridge the gap between textual and
visual modalities, researchers are experimenting with aligning language with
vision [7,13,21,26] and directly encoding visual inputs into discrete tokens [5,6].
These efforts have demonstrated the substantial potential of large multimodal
models in processing multimodal content. However, they still fall short of human-
like perception of the world [14,16,29]. One significant challenge is understanding
the relationship between multiple image inputs. Language-based descriptions of
relationships and interactions within and across images can become challeng-
ing, necessitating explanations of both individual elements and their spatial and
contextual ties. Another hurdle is the loss of image detail when using natural
language, a medium less precise than visual data. Complex visual information,
such as subtle lighting shifts or intricate patterns, often requires comprehensive
verbal description. These issues result in LMM’s inability to accurately perceive
information in images when dealing with multiple image inputs, especially in
cases where the multiple image inputs are quite similar.

To better evaluate the capabilities of LMMs with multiple image inputs, we
introduce MIMU: a comprehensive benchmark designed for the understand-
ing capability of LMMs under multiple image inputs. Our benchmark includes
two general scenarios: (1) image-to-image matching and (2) multi-image-to-text
matching, where image-to-image matching primarily focuses on whether LMMs
can perform deep reasoning on the information in images and build relationship
between multiple image inputs to match them accordingly. Meanwhile, multi-
image-to-text matching requires LMMs to find the subtle differences between
two images and match them with text, thus can test whether LMMs lose image
details during encoding. We evaluate four different large models capable of han-
dling multiple image inputs, such as GPT-4V, MMICL, etc. We find that MIMU
faces significant challenges; for example, GPT-4V achieves an accuracy of 85.30%
in the image-to-image matching task, but this is still far from the human accu-
racy of 98.60%, indicating substantial room for improvement.

In this case, we have further developed a multimodal prompting strategy
called Contrastive Chain-of-Thought (CoCoT) to enhance LMMs’ performance
in multi-image tasks. CoCoT prompts LMMs to discern and articulate the sim-
ilarities and differences among various inputs, laying the groundwork for
answering detailed, multi-image-based questions (Fig. 1). Compared to previ-
ous multimodal prompting strategies [17,36], This method sharpens the models’
focus, particularly on the distinctions between inputs, ensuring comprehensive
capture of nuanced, question-relevant information during summarization. We rig-
orously evaluate CoCoT on the MIMU benchmark and our method has shown
improvements across a variety of models.

To summarize, our main contributions are:
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Fig. 1. Comparison between different multimodal prompting strategies. The unique
components in each prompting strategy’s corresponding response are highlighted in
varied colors. Note that GPT-4V is used in this example.

– We establish a benchmark-MIMU for LMM with multiple image inputs,
comprising two scenarios: (1) image-to-image matching and (2) multi-image-
to-text matching and find that most current models do not perform well on
MIMU.

– To address the issues with existing methods, we propose a novel Contrastive
Chain-of-Thought (CoCoT) prompting strategy to enhance models’ under-
standing of the relationships between multiple image inputs.

– Our proposed method produces significant improvement for both open-source
and closed-source models on MIMU.

2 Related Work

Large Multimodal Models. Inspired by the advancements of LLMs (e.g.,
LLaMA [24]), LMMs offer a promising way towards AGI with multimodal
information. These models blend the textual reasoning prowess of LLMs with
the image and video comprehension of Vision-and-Language models. This fusion
enables LMMs to handle complex tasks requiring both a profound understanding
and expressive generation across various modalities. Several open-source LMMs
like LLaVA [13] have emerged, demonstrating competence in tasks such as image
captioning and visual question-answering. However, their architectural limita-
tions restrict their understanding and reasoning to a single image. Conversely,
models like OpenFlamingo [1], and MMICL [34] employ specialized architec-
tures enabling the processing of multiple image features, which better mirrors
real-world scenarios. Closed-source LMMs such as GPT-4V [18] and Gemini [22]
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go beyond basic object descriptions to capture the scene’s context [17], emo-
tions [34], and relationships [23]. A common technique to enhance performance
is fine-tuning, but applying similar methods to LMMs presents computation chal-
lenges [15]. To overcome this, we propose a novel approach to directly enable
detailed analysis and reasoning on images without additional training data.
LMM Benchmarks. These performance measures span a broad array of
LMMs’ specific capabilities, including adversarial robustness [35] and halluci-
nation [2], exemplified by initiatives like POPE [12] and HaELM [25]. Com-
prehensive assessments have also been carried out, featuring benchmarks like
LAMM [27], MMMU [30], SEED [10], MMBench [15], and MM-Vet [28]. How-
ever, these benchmarks predominantly focus on basic sensory skills, bypassing
the need for evaluating details across multiple images and critical thinking.
Diverging from these, MIMU starts from the perspective of input from multiple
images, constructing two types of tasks based on common scenes.
Multimodal Prompting Methods. Within the domain of LLMs, several lan-
guage prompt methods have been established to enhance inference capabilities
and ensure accurate results during prediction. These include zero-shot [9], few-
shot [33], and Chain-of-Thought (CoT) [17,36] approaches. Recently, research
has begun exploring the application of prompting techniques in the multimodal
domain to improve the comprehension and reasoning abilities of LMMs for image
data. Current multimodal prompts employed in LMMs often exhibit limitations
in capturing the intricate interrelationships between visual and language infor-
mation, particularly when faced with multi-image inputs. As shown in the exam-
ple in Fig. 1, they are not able to identify the critical action of the boy throwing
the ball. To overcome this challenge, we propose a novel prompting method that
directs LMMs to extract and analyze essential information, requiring a holistic
consideration of all the input images.

3 The MIMU Benchmark

The MIMU benchmark is built on two fine-grained multi-image tasks: (1)
image-to-image matching and (2) multi-image-to-text matching. Both tasks are
well-suited for assessing whether LMMs can acquire more fine-grained informa-
tion from multiple image inputs.

3.1 Image-to-image Matching

The image-to-image matching task employs the Raven-50 [8,31] and
Factify2 [20] datasets. This task tests the models’ ability to identify and inter-
pret visual details, requiring them to determine the degree of match between
different images. The Raven-50 [8,31] test is a common tool for assessing the
nonverbal reasoning capabilities of LMMs. This test demands both visual acuity
and logical reasoning to decipher the connections between images. In each sce-
nario, participants are presented with either 3 or 8 images as inputs, alongside
6 potential answer images, each with a distinct solution. The goal is to correctly
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Fig. 2. Sampled questions from the Raven-50, Factify-V, and Winoground datasets.

identify the appropriate image. Example questions are shown in Fig. 2. Note that
the evaluation metric for OpenFlamingo and MMICL on Raven-50 dataset
is to calculate the logits of the output for each image pair; while for GPT-4V
and Gemini, we directly let the model choose the correct result and calculate
the accuracy.

The Factify2 [20] dataset features 35,000 data pairs for training, and 7,500
pairs each for validation and testing. Every data pair includes a claim and a
corresponding document, both of which are made up of an image, text, and
OCR-generated text from the image. These pairs are categorized into one of
five labels: “support multimodal”, “support text”, “refute”, “insufficient multi-
modal”, or “insufficient text”. Specifically, we randomly sample 500 cases in the
test set, 100 for each of the 5 categories. We only use the images in the dataset
in our experiments where the labels are reorganized into “support image” and
“refute”. The generated subset is called Factify-V. Example questions are shown
in Fig. 2. The task involves prompting the model to determine whether the pair
of input images are contextually entailed.

3.2 Multi-image-to-text Matching

For the multi-image-to-text matching task, we use Winoground [23]. This task
requires LMMs to effectively pair similar images with their corresponding tex-
tual descriptions, or alternatively, to align similar texts with the correspond-
ing images. The Winoground [23] task involves matching images and captions
which contains 400 groups of image-caption pairs. Each group contains two sim-
ilar image-caption pairs. This task is challenging because the captions have the
same words but in different sequences. LMMs must analyze both images and
texts to identify subtle differences and understand the implied references. The
Winoground is chosen to test if LMMs can comprehend fine-grained image infor-
mation to text. Example questions are shown in Fig. 2. There are two tasks in
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the Winoground dataset: 1) given two images, the model is required to find out
which image can match the given caption; 2) given two pieces of text, the model
is required to find out which text can match the given image.

4 Contrastive Chain-of-Thought

4.1 Motivation Analysis

Traditional CoT-based prompting methods for LMMs can be categorized into
two types. The first type is based on text understanding, such as DDCoT (i.e.,
Duty-Distinct Chain-of-Thought) [36], which decomposes a question into sub-
questions for a step-by-step response. The second type is based on image under-
standing, like CCoT (i.e., Compositional Chain-of-Thought) [17], which gener-
ates a scene graph of the image to provide answers. However, while processing
images, the text-based CoT does not enable LMMs to directly acquire and com-
prehend the detailed information in images. As shown in Fig. 1, DDCoT does not
enable the LMM to recognize that the kid in the second image is not throwing
a basketball. The image-based CCoT merely extracts basic information about
the main objects in the image, also overlooking significant details. As shown in
Fig. 1, CCoT generates a series of scene graphs unrelated to the question. Exist-
ing CoT-based prompting methods struggle to notice the details when answering
questions about images rich in detail. Therefore, an effective prompting method
should enable LMMs to discern and understand the details in images, and sub-
sequently answer questions based on this understanding.

4.2 Methodology

We focus on how to enable LMMs to extract more detailed information from
images, especially when the images are very similar. Initially, we examine the
extent to which LMMs based on CCoT can extract information from images, as
illustrated in Fig. 3. GPT-4V, utilizing CCoT, is limited to identifying entities,
their characteristics, and straightforward details like events and relationships
between entities. Drawing inspiration from contrastive learning [11], our app-
roach encourages LMMs to discern similarities and differences within images.
We discover that these models are capable of engaging with more complex infor-
mation, such as reasoning, even when there is a considerable difference in the
domain between the images being compared and the original. For instance, they
might deduce that an image’s scene likely follows a storm and recognize a neg-
ative emotional tone in it. When comparing similar images, focusing on the
similarities and differences of images effectively highlights the contrasts, such
as recognizing more severe damage in one image compared to another, or dif-
ferentiating the causes of car damage between two images, thereby effectively
facilitating causal reasoning. Consequently, we develope the Contrastive Chain-
of-Thought prompting. As shown in Fig. 1, this approach, similarly starting from
an image perspective, initially compares the similarities and differences between
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Fig. 3. Different CoT-based methods and their performance in extracting informa-
tion from images under various conditions, with GPT-4V being used in the experi-
ments. Left: Utilizing CCoT to generate image information; Middle: CoCoT prompting
between images with a big domain gap; Right: CoCoT prompting between images with
a small domain gap.

various image inputs. It then directs LMMs to answer questions based on the
insights gathered from such comparisons.

Specifically, for the comparison between two images, we directly allow
the LMM to perform the comparison between them. For situations involving
multiple-choice questions with multiple images, we combine the images in each
option with the prompt information and input them together, allowing the LMM
to compare the differences between the input images.

5 Experiments and Results

5.1 Experiment Setup

Language Models. We evaluate two open-source LMMs: OpenFlamingo [1]
and MMICL [34], as well as two proprietary models including GPT-4V [18]
and Gemini [22]. Due to API restrictions of GPT4-V, we only evaluate the
standard and CoCoT prompting for it. For the setting of generation, we use the
default configuration for each model. We use beam search with beam width of
3 for OpenFlamingo. In the case of MMICL, the beam width is set to 8. For
Gemini, we opt for the API of Gemini Pro Vision under the default settings
which include a temperature of 0.4, TopK set to 32, TopP at 1, and a maximum
length of 4,096. For GPT-4V, we use the default settings of the web version as
of December 30, 2023. Our evaluation is conducted under a zero-shot set- ting to
assess the capability of models to generate accurate answers without fine-tuning
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or few-shot demonstrations on our benchmark. For those open-source models,
all experiments are conducted with NVIDIA A6000 GPUs.
CoT Baselines. We compare CoCoT prompting to two state-of-the-art methods
in CoT-based multimodal prompting. This includes DDCoT [36] and CCoT [17].
Additionally, we benchmark CoCoT against the standard prompting baseline,
which does not incorporate any CoT instructions. All the experiments are con-
ducted under the zero-shot setting. Example prompts and anwsers can be found
in Fig. 1.

5.2 Main Results

MIMU is a challenging benchmark for LMMs. As shown in Table 1,
all LMMs have a significant gap compared to the results of human evaluation.
The reasons for this situation could include several possibilities: 1) The visual
encoder’s capabilities are insufficient; 2) Large models are unable to extract
detailed information from the visual encoder, thereby failing in reasoning; and
3) Large models themselves are inadequate, leading to incorrect reasoning. Based
on current experimental results, the visual encoder of LMMs is actually capable
of recognizing some detailed information. However, due to the differences in
the latent spaces between the visual encoder and the large language models, as
well as the generalization issues of LLMs, LMMs are unable to fully understand
images, resulting in mediocre performance across various tasks.

Table 1. Accuracy of LMMs in the MIMU benchmark.

Raven-50 Factify-V Winoground-group

Human Evaluation 98.00 99.20 85.50
OpenFlamingo 24.00 54.00 33.25
MMICL 22.00 64.60 37.75
Gemini 18.00 58.00 25.00
GPT-4V 30.00 74.00 33.75

CoCoT in Image-to-image Matching task The task of image-to-image
matching requires the model to extract information from two images simultane-
ously and then determine under a prompt whether the information from both
images matches, as exemplified in Fig. 4. LLMs are expected to select the correct
answer from the given choices. In addition to the aforementioned methods, we
include another random choice baseline for comparative reference. Accuracy of
LMMs with different prompting methods is shown in Table 2.

CoCoT significantly improves LMMs’ performance in the image-to-
image matching task. Most models show improved performance when DDCoT
and CCoT are employed, but the extent of improvement is not as significant as
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Fig. 4. An example question from the image-to-image matching task, sourced from the
Raven-50 [8,31] dataset.

Table 2. Accuracy of LMMs employing different prompting strategies in the image-
to-image matching task. The best performance within each LMM is highlighted in
bold.

Raven-50 Factify-VAvg

Random Choice 17.00 50.00 42.00
Human Evaluation 98.00 99.20 98.60
OpenFlamingo 24.00 54.00 39.00
OpenFlamingo + DDCoT 24.00 58.40 41.20
OpenFlamingo + CCoT 24.00 63.20 43.60
OpenFlamingo + CoCoT 26.00 65.00 45.50
MMICL 22.00 64.60 43.30
MMICL + DDCoT 10.00 68.40 39.20
MMICL + CCoT 26.00 73.20 49.60
MMICL + CoCoT 26.00 77.00 51.50
Gemini 18.00 58.00 38.00
Gemini + DDCoT 12.00 65.40 38.70
Gemini + CCoT 20.00 80.20 50.10
Gemini + CoCoT 22.00 77.80 49.90
GPT-4V 30.00 74.00 52.00
GPT-4V + CoCoT 45.00 80.60 85.30

with CoCoT in most cases. Furthermore, regarding the Raven-50 dataset, which
comprises non-natural images made up of various shapes, surprisingly, Gemini
emerges as the model with the poorest performance in our evaluations when
GPT-4V performs the best which surpasses all models, including the open-
source ones like OpenFlamingo and MMICL.

For the Factify-V dataset featuring natural images, Gemini without CoT
outperforms OpenFlamingo in similar conditions. However, when CoT is
incorporated, Gemini’s performance is almost on par with that of GPT4-V
under similar conditions. This outcome differs from the results on the Raven-50
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dataset, suggesting that Gemini inherently possesses the capability to extract
detailed information from natural images. Its full potential in this aspect is not
fully demonstrated without the use of prompts.

In summary, our analysis of the image-to-image matching task reveals a con-
sistent enhancement in performance across most models upon integrating various
types of CoT-based prompting. This improvement underscores the ability of the
visual components within LMMs to concentrate on details in terms of the task
at hand. These details are subsequently processed by the LMMs for in-depth
analysis, following the CoT-based prompting approach. Notably, in a majority
of cases, CoCoT prompting elicits LMMs to achieve state-of-the-art performance
on both natural and artificial datasets, surpassing other CoT-based strategies.
This showcases the efficacy of CoCoT in guiding LMMs to accurately extract
and analyze task-relevant information from images, facilitating enhanced com-
parative and analytical reasoning within these models.

CoCoT in Multi-image-to-text Matching task Compared to the image-to-
image matching task, the multi-image-to-text matching task requires models to
precisely extract information from images and match it with text. An exmaple
question can be found in Fig. 1. In particular, Winoground dataset is used for
this task. Performance on Winoground (shown in Table 3) is assessed using three
distinct metrics, each examining a different facet of the models’ abilities to rea-
son with both vision and language. The first metric, known as the text score,
evaluates the model’s capability to accurately choose the right caption when pro-
vided with an image. The second metric is the image score, assessing a model’s
ability to correctly identify the appropriate image when presented with a cap-
tion. The last metric is a composite score that integrates the first two metrics. In
this group score, a case is considered correct if the model successfully achieves
both the accurate text score and image score.

CoCoT boosts LMMs’ performance in the multi-image-to-text
matching task, achieving substantial gains. It outperforms other CoT-
based methods in the majority of scenarios. This indicates that when comparing
the similarities and differences of images, LMMs can better match with the text
by identifying subtle differences in the input image pairs. The example in Fig. 1
also shows that methods like DDCoT and CCoT may miss key information,
possibly as a result of misdirected focus.

Gemini’s performance is still the worst, indicating that although Gemini’s
visual encoder can extract detailed information from the image, the model is
not able to effectively summarize the information in the image, resulting in a
poor match with the text. GPT-4V’s performance on this task is also inferior
to MMICL, indicating that GPT-4V also struggles to effectively summarize
detailed information within images, particularly when the input image pairs are
very similar.
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Table 3. Accuracy of LMMs employing different prompting strategies in the multi-
image-to-text matching task. The best performance within each LMM is highlighted
in bold.

Text Image Group

MTurk Human 89.50 88.50 85.50
Random Choice 25.00 25.00 16.67
OpenFlamingo 39.00 41.25 33.25
OpenFlamingo + DDCoT 47.50 47.25 39.00
OpenFlamingo + CCoT 42.50 27.50 20.00
OpenFlamingo + CoCoT 58.25 55.25 41.50
MMICL 46.50 40.75 37.75
MMICL + DDCoT 46.75 45.00 36.75
MMICL + CCoT 51.00 48.00 47.50
MMICL + CoCoT 64.25 52.50 50.75
Gemini 30.75 26.00 25.00
Gemini + DDCoT 45.00 25.00 23.75
Gemini + CCoT 22.50 33.00 20.75
Gemini + CoCoT 40.00 32.50 27.75
GPT-4V 54.50 42.50 37.75
GPT-4V + CoCoT 58.50 49.50 44.50

Table 4. Ablation study of the similarities and differences varaints of CoCoT on the
Factify-V dataset.

MMICLGemini

No prompt 64.60 58.00
+ Similarities 75.60 60.80
+ Differences 63.40 65.40
+ CoCoT 77.00 77.80

5.3 Ablation Study for CoCoT

CoCoT instructs LMMs to identify the similarities and differences across mul-
tiple image inputs first before providing an answer. In our ablation study, we
break down the prompts into two distinct components: 1) a prompt that only
requests the identification of similarities, and 2) a prompt that solely focuses on
extracting the differences. As shown in Table. 4, we can observe that for Gemini,
the performance improves to some extent with the addition of either similarities
or differences prompts alone, but not as much as when all prompts are included.
For MMICL, adding only the differences prompts leads to a minimal decrease
in performance, but the best results are achieved when both prompts are incor-
porated.
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6 Discussions and Conclusions

In this study, we address the challenges faced by Large Multimodal Models
in processing detailed visual information from multiple images. We first estab-
lish a benchmark for LMMs with multiple image inputs, named MIMU, which
includes tasks under two major scenarios: (1) image-to-image matching and (2)
multi-image-to-text matching. We evaluate several commonly used models capa-
ble of processing multiple input images and fid that their performance on MIMU
are far inferior to human evaluation results. Consequently, we develop the
Contrastive Chain-of-Thought (CoCoT) approach, a novel multimodal prompt-
ing strategy that significantly enhances LMMs’ ability to discern fine-grained
details in multi-image tasks. Our experiments with various models, demonstrate
that CoCoT improves performance in image-to-image matching and multi-image-
to-text tasks. This study contributes to the field of Artificial General Intelligence
(AGI), offering new possibilities in areas requiring precise image interpretation.
Future research should focus on refining CoCoT for more complex scenarios and
integrating it with other AI technologies to further advance multimodal under-
standing and AGI development.

Acknowledgement. This work is supported by NSF award #2038208.

A Additional Discussions of Motivation

As shown in Fig. 1, DDCoT, leaning towards a language perspective in han-
dling images, first decouples the original question and image information into
sub-questions. It then prompts LMMs to answer these sub-questions, generat-
ing sub-answers, and finally, LMMs use these sub-questions and sub-answers to
respond to the original question. CCoT, more image-oriented, initially directs
LMMs to generate a Scene Graph (SG) based on image information. LMMs then
use the SG’s image information in conjunction with the user’s question to find
an answer. Given that the above methods are not effective in catching detailed
information, we focus on how to enable LMMs to extract more detailed informa-
tion from images, especially when the images are very similar. To address this,
CoCoT is designed to guide LMMs in identifying both the similarities and the
nuanced differences between images, facilitating a more in-depth and accurate
interpretation of visual content.

B More Examples

We further provide example responses of CoCoT based on GPT-4V on different
datasets, as shown in Fig. 5 and Fig. 6.
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Fig. 5. Anexample response generated byGPT-4V viaCoCoTon the Raven-50dataset.

Fig. 6. An example response generated by GPT-4V via CoCoT on the Factify-V
dataset.
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Abstract. Due to the proliferation of rumors in social networks, auto-
matic rumor detection has evoked increasing attention in recent years.
Despite great progress achieved by exploiting multimodal features, exist-
ing works suffer from false discrimination issues due to insufficient mul-
timodal modeling, mainly from two aspects: 1) neglect of the dynam-
icity of social networks. 2) misaligned multimodal features. To allevi-
ate the issues, we propose DGM, Dynamic Graph Modeling for rumor
detection. Firstly, dynamic graph attention is devised to exploit message
propagation’s structural and temporal features. Secondly, we propose
a modality-shared adapter to learn better multimodal representation.
Thirdly, well-aligned visual-textual features are introduced to achieve
better multimodality alignment and fusion, together with cross-modal
attention and alignment supervision. We conduct extensive experiments
on two public datasets, demonstrating the effectiveness and superiority
of DGM.

Keywords: Rumor detection · Multimodal learning · Dynamic graph
network.

1 Introduction

In recent years, the rapid development of the internet has transformed social
network platforms, such as Twitter and Weibo, into pivotal sources for news and
interactions. In this evolving landscape, multimodal tasks [23,24] have emerged
as crucial for analyzing and understanding multimodal data. As one of the multi-
modal tasks, rumor detection has sparked increasing interest in recent years. The
proliferation of rumors on social networks may lead to severe repercussions and
sometimes even threaten public safety. For instance, a misguided claim asserting
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that “5G was the cause behind the coronavirus pandemic” resulted in a 5G base
station being incinerated in the UK. Given these potential consequences, devel-
oping automatic rumor detection techniques for information on social networks
has become paramount.

Targeting the rumor detection task, early works mainly focus on uni-
modal information [4,20]. Traditional learning models such as decision trees
are employed to classify the given text or image content. Considering rumors in
social networks often contain a wealth of multimodal information, recent research
has attempted to integrate cross-modal features and make decisions from mul-
tiple perspectives. For example, Zhou et al. [46] compute the similarity between
text and image and use the similarity to guide the cross-modal feature fusion.
Another study on intra-modality and inter-modality relationships is proposed to
improve performance with finer-grained features [28].

Fig. 1. Illustration of a rumor propagation on Pheme. (a) A multimodal post with its
replies, (b) a static social graph diagram where all replies nodes are directly connected
under the post node [45], and (c) a dynamic propagation diagram showcasing variations
in propagation over time, including replies to the post and subsequent nested replies.

Despite promising results that have been achieved, we observe that most
existing methods ignore the social context, leading to a lack of comprehensive
understanding of the posts. Specifically, the social context of a source post refers
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to the retweets and replies information from social users, which plays a critical
role in rumor detection. To deal with it, a straightforward solution is to construct
a heterogeneous graph based on this context information and utilize it as an
additional model input [45]. Nevertheless, as shown in Fig.1, several limitations
could be involved: 1) The heterogeneous graph is static and thus cannot reflect
the dynamic evolution of posts. Yet, the timeline cues could provide strong
evidence for detecting rumors. For example, the “R4” reply gives a skeptical
opinion based on past comments, suggesting that the post might exhibit obvious
flaws. 2) All retweets and replies nodes are simply connected under the post
node, which neglects the propagation structure characteristics. To be concrete,
the static social graph treats “R3” and “R2_1” as being on the same level of
the propagation chain, which misleads the learning process of rumor detection
models. 3) How to effectively integrate the dynamic graph feature with other
multimodal features is an open question. As the graph is structured while other
modalities (text and image) are unstructured, simply concatenating them results
in inferior performance.

To address the above issues, we propose a dynamic graph modeling (DGM)
method for rumor detection. Specifically, we propose dynamic graph attention to
generate dynamic graph representations through self-attention along structural
neighborhoods and temporal dynamics. On the one hand, structural attention
captures features from the local node neighborhoods in each snapshot through
self-attention aggregation. On the other hand, temporal attention uses flexible
weighting of historical representations to capture the evolutionary features of
the graph. To learn better multimodal representation, we devise a modality-
shared adapter to project different modalities into a multimodal shared semantic
space. For better multimodality alignment and fusion, well-aligned visual-textual
features [29] are introduced, together with cross-modal attention and alignment
supervision. Integrated with these modules, DGM can produce more accurate
predictions on discriminating rumors.

The main contributions of our work are summarized as follows:

– We design a dynamic graph modeling method for multimodal rumor detec-
tion. With this method, both structural and temporal information in social
networks are well captured.

– A progressive modality alignment mechanism is elaborated to project the
graph features to a shared multimodal space, facilitating effective interaction
between different modalities.

– Extensive experiments are conducted on two public datasets, verifying the
effectiveness and superiority of the proposed method.

2 Related Work

Considering the richness of the modality information utilized, we divide existing
methods into unimodal and multimodal rumor detection.
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2.1 Unimodal Rumor Detection

Traditional rumor detection relies on hand-crafted features from text or image
content in the posts. Castillo et al. [4] first propose a learning-based method for
classification. Ma et al. [26] utilize RNN to extract text representations, setting
a precedent for automatic rumor detection using deep learning. To verify the
relationships between emotional information and rumors, convolutional neural
networks are used in CAMI [42] to extract hidden emotional features from text
content. Bhattarai et al. [2] exploit lexical and semantic attributes to detect
rumors. To obtain more fine-grained emotional features, FakeFlow [15] extracts
affective words in the text and combines them with theme words to obtain fea-
ture representations. Zhang et al. [44] excavate the relationships between the
publisher’s emotion and social emotion (i.e., dual emotion) for fake news detec-
tion. For images, Jin et al. [20] assert that image content has distinct features
between non-rumors and rumors. MVNN [27] learns effective visual features by
combining the information of frequency and pixel domains. However, with the
proliferation of multimodal content in social networks, these methods cannot
capture the inconsistency from multiple modalities, causing poor generalization
performance on rumor detection.

2.2 Multimodal Rumor Detection

With the spread of multimodal information in social networks, rumors tend to
be presented multimodally. To solve the gap that existing methods focus on
single mode, Hu et al. [18] construct a multimodal data set, i.e., MR2, and pro-
pose a detection method based on multimodal retrieval. To learn multimodal
features, Jin et al. [19] first incorporate merging textual and visual features to
enhance the accuracy of rumor detectors. SAFE [46] calculates the relevance
of cross-modal features for rumor detection. A multimodal contextual attention
network called HMCAN [28] is proposed to obtain the intra-modality and inter-
modality relationships. Khattar et al. [21] use a bimodal variational autoencoder
coupled with a binary classifier for fake news detection. Besides, to enhance
the generalization of rumor detectors in new event news, EANN [36] employs
an adversarial neural network, extracting event invariable features to fit new
events. Zhang et al. [11] apply meta multi-task learning to detect rumors. QSAN
[32] combines quantum-based text encoding with an innovative signed attention
mechanism to enhance false information detection. To measure the consistency
between textual and visual representations, CAFE [5] evaluates the Kullback-
Leibler (KL) Divergence between the distributions of unimodal features as a
cross-modal ambiguity measurement. Wu et al. [39] stack multiple co-attention
layers to fuse multimodal features. To achieve more accurate multimodal align-
ment, Wang et al. [35] introduce cross-modal contrastive learning for fake news
detection. An adaptive co-attention contrastive learning network [41] has been
introduced to integrate multimodal features effectively. Chen et al. [6] analyze
and identify the psycholinguistic bias in text and images, and propose a CCD
framework to remove the latent data bias. However, these multimodal methods
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don’t consider the propagation structure features in social networks, which have
been proven to be beneficial for rumor detection [40].
Graph Modeling. The graphical social network also reserves abundant infor-
mation, which includes retweeted users and their comments. Based on it, a het-
erogeneous graph can be built to extract structure features. Bian et al. [3] propose
a BiGCN network using GCN [22], which obtains the propagation and disper-
sion features via top-down and bottom-up graph convolution networks. Inspired
by the graph attention network [34], GLAN [43] integrates global structure and
local semantic features based on heterogeneous social networks to detect rumors.
Lu et al. [25] predict fake news based on the source tweet and its propagation-
based users. Wei et al. [37] rethink the reliability of latent relations by adopting
a Bayesian approach. MFAN [45] simultaneously considers textual, visual, and
static graph features to improve the discrimination ability of rumor detection
models. Inspired by computer vision, Wu et al. [38] regard the rumor conversa-
tion thread as a color image and each node as a pixel.

While these methods have demonstrated strong performance, few consider
the dynamic nature of social networks. Different from existing methods, we pro-
pose dynamic graph modeling which jointly captures information from temporal
and node dimensions as well as progressively aligns graph features to the other
unstructured modalities.

3 Problem Definition

Let P = {p1, p2, ..., pN} be a set of multimodal posts with texts and images,
where N is the number of posts. For each post pi ∈ P , pi = {ti, vi, ui, ci}, where
ti, vi, and, ui refer to the text, image, and author of the post. ci = {c1i , c

2
i , ..., c

Nc
i }

signifies all comments of pi. In social network graphs, let G = {G1,G2, ..,GT}
be a series of static graph snapshots, where T is the number of time steps.
Each snapshot Gt = {V,At, Et} is a weighted undirected graph with a set of
shared nodes V , links set Et, an adjacency matrix At ∈ {0, 1}|V |∗|V | at time
t. Dynamic graph learning seeks to learn the potential embeddings etv ∈ Rd for
each node v at time t, which reserve both local graph structures and its temporal
evolutionary behaviors. Following existing works, we define rumor detection as a
binary classification task. ŷ ∈ {0, 1} refers to binary label, where ŷ = 0 indicates
non-rumor, and ŷ = 1 otherwise. Given a set of posts P , our goal aims to find a
function F : F (P ) −→ ŷ to predict the label.

4 Methodology

As shown in Figure 2, the overall pipeline can be separated into three parts.
Given a multimodal input including text, image, and social graph, unimodal
features are obtained by the corresponding encoders. After that, we project the
unimodal features to a shared multimodal semantic space and then aggregate
them to generate a rich multimodal representation for the final classification
task.
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Fig. 2. The architecture of the proposed method. We first derive the three modal
representations of textual, visual, and graphical for each post on social media through
unimodal extractors. Then a modality-shared adapter is utilized for unified multimodal
learning. We perform cross-modal attention to obtain the enhanced features between
graphic features and visual/text features. All generated cross-modal features are inte-
grated for rumor detection.

4.1 Unimodal Extraction

BERT [14] and ResNet50 [16] are utilized as the text encoder and visual encoder
to generate corresponding unimodal features, which are denoted as mBERT and
mResNet. To reduce the burden of multimodal alignment, we also introduce
pretrained CLIP encoders [29] to get well-aligned features as mCLIP−T and
mCLIP−V . The overall textual and visual features can be obtained by weighting
the outputs from BERT/ResNet50 and the CLIP encoder:

{
mt = WBERT ∗ mBERT + WCLIP−T ∗ mCLIP−T ,
mv = WResNet ∗ mResNet + WCLIP−V ∗ mCLIP−V ,

(1)

where WBERT ,WCLIP−T ,WResNet, and WCLIP−V are learnable parameters to
project the features to the same dimension.

For social graphs at different snapshots, we designate the initial node embed-
dings as X ∈ R|V |×d, where V is a set of shared nodes with dimension d. The
textual features are used as initial embeddings for posts and comments nodes.
For user nodes, we average the post-node embeddings posted by the user as the
initial embedding. The graphs feature mg can be obtained by aggregating the
information from nodes and time snapshots, detailed in section 4.2.

4.2 Dynamic Graph Attention

In this part, we attempt to capture the graph structure and temporal represen-
tations at every snapshot with dynamic graph attention (DGA), illustrated in
Figure 3.
Structure Attention. The input to this layer consists of a set of snapshots
and an embedding matrix of nodes {xt

v ∈ Rd,∀v ∈ V }, where xt
v represents the

node representation at time t and is initialized from X. The output is a new set
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Fig. 3. Illustration of the proposed dynamic graph attention.

of node embeddings with local structure properties. The design of the structure
layer follows GAT [34]. The operation is defined as:

xt
v = σ(

∑
u∈Nt

v

αuvW
sxt

u), αuv =
exp(euv)∑

w∈Nt
v
exp(ewv)

,

euv = σ(At
uvα

T [W sxt
u||W sxt

v]) ∀(u, v) ∈ εt,

(2)

where N t
v = {u ∈ V : (u, v) ∈ εt} is a set of neighbors of node v in snapshot Gt

at time step t; αuv is a set of learnable coefficients, obtained by a softmax over
the neighbors of each node in V ; W s is shared trainable weight applied to each
node; α is an attention value between node u and v; At

uv is weight of link (u, v)
at time step t; || is concatenation operation and σ(·) is a non-linear activation
function. We apply the LeakyReLU [8] function as an activation function to
compute attention weights.
Temporal Attention. Considering the dynamicity of social networks, we design
a temporal attention layer to capture the evolving behaviors of graphs fur-
ther. Specifically, we capture the ordering information by using position embed-
dings, {p1, p2, .., pT }, which encode the absolute temporal position of each snap-
shot. The position embeddings are combined with the output of the struc-
tural attention layer to obtain a sequence of input representations of this layer:
{x1

v + p1, x2
v + p2, .., xT

v + pT }. The final layer outputs are fed into a feed-forward
layer to get the final node representations {e1v, e

2
v, ..., e

T
v },∀v ∈ V with the dimen-

sion of d.
In this layer, we apply self-attention to capture the temporal variation of

the graph structure. The queries, keys, and values are transformed to a differ-
ent space through linear projection matrices Wq,Wk,Wv respectively. Then the
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temporal attention function is defined as:

etv = βv(XvWv), βij
v =

exp(eijv )∑T
k=1 exp(eikv )

,

eijv = (
((XvWq)(XvWk)T )ij√

d
+ Mij),

(3)

where βv ∈ RT×T is the attention weight matrix and M ∈ RT×T is a mask
matrix with Mij ∈ {0,−∞}, which ensures that future node information doesn’t
leakage to past. To encode the temporal information, the mask matrix M is
defined as:

Mij =

{
0, i ≤ j

−∞, otherwise.
(4)

When Mij = −∞, the softmax returns a zero attention vector, which means the
temporal attention layer only pays attention time step i to j [30]. We apply mean
pooling to get the final dynamic graphs feature mg, which contains structural
information and temporal variation at every time step:

mg = MEAN(e1v, e
2
v, ..., e

T
v ). (5)

4.3 Multimodal Aggregation

In the multimodal aggregation stage, for better multimodal representation, we
propose to maintain multimodal alignment during the aggregation process: 1)
A modality-shared adapter that unifies to process the text, visual, and graph
modalities to a multimodal semantic space efficiently. 2) Cross-modal attention
mechanism which introduces an interaction between different modalities to gen-
erate semantic-rich multimodal representation.
Modality-shared Adapter. Hu et al. [17] show that the updates to the weight
have a low “intrinsic rank” during adaptation. Besides, the pre-trained model
can still learn efficiently despite a random projection to a smaller subspace [1].
Inspired by this, we propose a modality-shared adapter to learn the features
of different modalities in a low-rank shared semantic space. In this part, all
parameters are shared. Specifically, each modal feature is first projected to the
low-rank semantic space then mapped back to the high-dimensional space, and
finally summed with the original feature to get a better quality feature:

m′
∗ = WupWdownm∗ + m∗, (6)

where Wdown and Wup denote the learnable parameters in the shared linear
layers, which aim to project features into different embedding spaces. m∗(∗ ∈
{t, v, g}) and m′

∗ denote the three modal features of input and output.
Cross-modal Attention. In this part, attention mechanism [33] is employed
to learn the interaction between different modalities. To obtain the textual-
graphical enhanced feature mtg, we use Qg = m′

gWq, Kt = m′
tWK , Vt = m′

tWv
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to get query, key and value matrices. Then we calculate the multi-head cross-
modal attention textual-graphical feature mtg as:

mtg =
(

H

‖
h=1

softmax
(

QgK
T
t√

d

)
Vt

)
W o

tg, (7)

where h denotes the h-th head, W o
tg is the output linear transformation. Similarly,

we can obtain graphical-textual feature mgt, visual-graphical feature mvg, and
graphical-visual feature mgv.

4.4 Optimization

Classification. Given the enhanced features after cross-modal interaction, the
final multimodal feature m is obtained by concatenating all cross-modal features.
Then we feed the final multimodal feature mi to a multilayer perceptron to
generate the prediction y. Standard cross-entropy loss is adopted to supervise
the classification task:

Lcls = −ŷ log(y) − (1 − ŷ) log(1 − y). (8)

Modality Alignment. Besides the classification supervision, we introduce a
modal alignment module by enforcing dynamic graph features close to textual-
visual features to refine the representation. Specifically, the textual features are
summed to the visual features and then transformed to get textual-visual features
Aligntv. The dynamic graph features are also projected into the same feature
space to get Aligng:

Aligntv = Wtv(m′
t + m′

v),
Aligng = Wgm

′
g,

(9)

where Wtv and Wg are learnable parameters. Then the alignment loss is defined
as:

La =
1
d

d∑
i=1

(Aligntv − Aligng)2. (10)

The overall loss function is defined as:

L = Lcls + λaLa, (11)

where λa denotes the balanced factor for the alignment loss.

5 Experiments

5.1 Datasets

We evaluate our model on two real-world datasets: Weibo [31] and Pheme [47].
Weibo is collected from the biggest social media in China. Pheme contains a
collection of Twitter rumors and non-rumors posted during five breaking news.
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Except for the accuracy, the evaluation metrics including the precision, recall,
and F1-score are weighted considering the class imbalance, which follows the
official implementation of MFAN1. Each dataset contains texts, images, and
social behaviors. The statistics of the two datasets are presented in Table 1.

Table 1. Statistics of the Weibo and Pheme datasets.

Dataset Real Fake Text-Image pairsNodesEdges

Weibo 877 590 1467 8505 7544
Pheme 1428590 2018 8650 7756

5.2 Implementation Details

Following existing work [45], the datasets are divided into a training set, valida-
tion set, and test set in the ratio of 7:1:2. We set up 5 snapshots in both datasets.
In the Weibo dataset, the number of low-rank layers in the modality-shared
adapter is 16, while in the Pheme it is 64. To ensure the validity of the comment
information, we retain comments with a length of more than 150 (Weibo) and
130 (Pheme). λa is set to 1 in both datasets. We use BERT to obtain text rep-
resentation with the dimension of 768 (bert-base-uncased for English text and
bert-base-chinese for Chinese text), and ResNet50 to extract image features with
the dimension of 1000. For the CLIP model, the clip-ViT-B-32 version is utilized
to derive text and image representations with the dimensions of 512. All these
pre-trained models are frozen. We train our model for 20 epochs and report the
best testing accuracy.

5.3 Experimental Results

Comparison with state-of-the-art. In this section, we evaluate DGM and
compare it with other alternatives including graph-free and graph-based meth-
ods. Specifically, graph-free methods only take the textual and visual features
of posts as input, such as EANN [36] and SAFE [46]. In contrast, graph-based
methods take the social context into account which is usually constructed as a
graph. As reported in Table 2, it can be seen that graph-based methods are gen-
erally better than graph-free ones, suggesting the importance of social context
in rumor detection. Moreover, the proposed DGM model leads the performance
among graph-based approaches. To further elaborate, all previous graph-based
methods are implemented on static graphs, having difficulty capturing struc-
ture and temporal information hidden in social context. Benefiting from the
dynamic graph modeling and progressive modality alignment mechanism, our
DGM achieves an accuracy of 90.85% and F1-score of 90.67% on the Weibo
1 https://github.com/drivsaf/MFAN

https://github.com/drivsaf/MFAN
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Table 2. Performance comparison of different methods on the Weibo and Pheme
datasets. Acc, P, R, and F1 are short for Accuracy, Precision, Recall, and F1-score. *
indicates results reproduced by us with the official implementation. The bold (under-
lined) text indicates the best (second best) performances on each dataset.

Method Weibo Pheme
Acc P R F1 Acc P R F1

Graph-free EANN [36] 80.96 80.19 79.68 79.87 77.13 71.39 70.07 70.44
MVAE [21] 71.67 70.52 70.21 70.34 77.62 73.49 72.25 72.77
QSAN [32] 71.01 71.02 67.54 67.58 75.13 69.97 65.80 66.87
SAFE [46] 84.95 84.98 84.95 84.96 81.49 79.88 79.50 79.68
MM-MTL[11] - - - - 82.21 78.84 85.45 82.02
PVCG[13] - - - - 88.50 86.80 86.10 86.40

Graph-based EBGCN [37] 83.14 85.46 81.76 81.45 82.99 81.31 79.29 79.82
GLAN [43] 82.44 82.45 80.86 81.26 83.32 81.25 77.13 78.51
KhiCL[7] - - - - 87.40 84.90 84.20 84.60
MGIN-AG[10] - - - - 87.60 86.80 88.9087.40
MFAN [45] 88.95 88.91 88.13 88.33 88.7387.07 85.61 86.16
MFAN* [45] 86.10 87.77 86.10 85.49 87.27 87.09 87.27 87.15
DGM 90.8591.0290.8590.67 87.53 87.4287.53 87.47

dataset, setting a new state-of-the-art result. Note that we do not list results
on the Weibo dataset due to inconsistent dataset splits used in some SOTA
methods, which may lead to unfair comparison. On the Pheme dataset, DGM
still reaches better or more competitive performance compared to these meth-
ods. More specifically, as PVCG employs an additional powerful language model
(T5) and MGIN-AG introduces OCR recognition to extract image embeddings
at a finer granularity, they achieve a slightly higher accuracy than DGM. Never-
theless, DGM notably outperforms them in terms of F1-score. Considering the
category imbalance in the Pheme dataset, the performance advantage in the
F1-score can better demonstrate the superiority of our method.
To validate the impacts of key components in DGM, we perform an extensive
ablation study, which is shown in Table 3. In the following analysis, we mainly
focus on the accuracy metric for the sake of simplicity, as the performance of the
F1 measure across different variants follows a similar trend as that in accuracy.
Effectiveness of DGA and SF. We start with training a model without DGA
(#1), in which only textual and visual content are utilized. As can be seen, com-
pared to DGM (#8), direct accuracy decreases of 4.07% and 4.15% on Weibo
and Pheme datasets are achieved, which illustrates the importance of consid-
eration of dynamic temporal information. Replacing the dynamic graph with a
static graph (#2) results in decreases of 2.37% and 1.56% in terms of accuracy
on Weibo and Pheme datasets, indicating the superiority of dynamic graph mod-
eling. When all reply nodes are connected under the post node without structure
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Table 3. Ablation analysis on the Weibo and Pheme datasets. Abbreviations nota-
tions: Dynamic Graph Attention (DGA), Structure Feature (SF), Temporal Index (TI),
Modality-shared Adapter (MSA), Modality Alignment (MA), Static Graph (SG), Sep-
arate Adapter (SA).

#DGASFMSAMA Weibo Pheme
Acc F1 Acc F1

1 � � 86.78 85.40 83.38 79.85
2 SG � � � 88.48 87.63 85.97 85.21
3 � � � 90.17 90.22 85.71 84.90
4 TI � � � 86.10 85.58 84.94 83.76
5 � � � 86.44 86.50 85.20 85.53
5 � � SA � 89.15 89.10 85.71 85.53
7 � � � 88.17 88.28 85.97 84.95
8 � � � � 90.8590.67 87.5387.47

feature (#3), the accuracy can decrease by 0.68% and 1.82%, indicating that the
propagation structure feature plays an important role on both datasets and has
a greater impact on the Pheme dataset. We speculate that the higher number of
active users on Twitter and the more complex network structure may contribute
to the ability to assess the authenticity of information.
Impacts of dynamic temporal features. In Table 3, we study the effect of
different ways of introducing temporal information. In the naïve version, the
temporal index is simply appended to the last graph node embeddings just as
position embeddings do. Compared to the baseline without temporal informa-
tion (#2), the naïve version (#4) even degrades performance. We suspect that
dynamic temporal evolution is difficult to capture by encoding temporal indexes.
In contrast, our complete version brings significant improvements.
Effectiveness of MSA and MA. We train variant models without the
Modality-shared Adapter (#5) and with separate adapters (#6) for compar-
ison. We can observe that the modality-shared adapter can effectively learn
the multimodal representation to achieve more precise detection. Specifically,
when substituting the modality-shared adapter with three separate adapters,
the accuracy decreased by 1.7% and 1.82%. Due to the shared low-rank seman-
tic modeling, the model can better learn unified semantic representation across
different modalities. Besides, the comparison of experimental results #7 and #8
can also indicate that modal alignment supervision is profitable for multimodal
alignment. Overall, via constructing dynamic temporal networks with propaga-
tion structure features and introducing modality-shared adapter and modality
alignment, the proposed DGM achieved the best accuracy of 90.85% and 87.53%
on Weibo and Pheme datasets.
Impacts of low-rank dimensions. Table 4 shows the effect of using different
low-rank dimensions in the modality-shared adapter. Compared to the variants
without MSA, adapters with different dimensions exhibit consistent improve-
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ments, further demonstrating the effectiveness of the modality-shared adapter
module. Specifically, we choose 16 dimensions for Weibo and 64 dimensions for
Pheme as the low-rank dimensions in the adapter to achieve the best detection
results.

Table 4. Performance comparison of variants with different low-rank dimensions in
MSA on the Weibo and Pheme datasets. “w/o MSA” denotes a variant model without
the Modality-shared Adapter.

Dimension Weibo Pheme
Acc F1 Acc F1

w/o MSA 86.44 86.50 85.20 85.53
4 88.14 88.07 86.23 85.78
8 89.83 89.89 85.45 84.67
16 90.8590.67 85.52 84.61
32 88.81 88.87 86.49 86.22
64 90.17 90.16 87.5387.47

5.4 Validation on other benchmarks

We evaluate the generalization of our method on the FakeNewsNet dataset,
which is a comprehensive dataset with diverse features in news content and social
context, and it can be divided into PolitiFact and GossipCop subsets according
to the data source. We report the comparison results of DGM with existing
competitors in Table 5. Compared to MFAN [45], DGM has better performance
on a broad range of benchmarks, indicating the effectiveness of dynamic graph
attention in detecting rumors in social networks. Besides, DGM significantly
outperforms other competitors and achieves new state-of-the-art on these two
subsets, well demonstrating the generalization of our proposed method.

Table 5. Results in FakeNewsNet. The bold (underlined) text indicates the best (sec-
ond best) performances on each dataset.

Method FakeNewsNet
PolitiFact GossipCop
Acc Pre Rec F1 Acc Pre Rec F1

MFAN [45] 78.26 78.55 78.26 76.74 74.21 74.24 74.21 74.20
MDFEND [9] 84.73 82.12 82.09 82.08 80.80 81.32 79.70 80.46
M3FEND [12] 84.78 84.49 82.16 81.79 82.3785.7679.32 81.86
DGM 86.3688.0282.5984.29 82.11 83.04 82.1181.97
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5.5 Case Study

Fig. 4. A rumor case detected through capturing the temporal dynamic information
of social networks.

We provide a case study from the Weibo dataset to demonstrate the effectiveness
of DGM. As shown in Figure 4, a post claimed that a man was planning to
propose to his girlfriend after a marathon, but she was tragically killed. At time
step T1, all comments expressed regret for this post. However, as time went by,
doubts about the post emerged, which were marked with red boxes. Someone
raised this was a CNN report about a man comforting and caring for an injured
woman near the finish line, without any information about the man’s intention
to propose. Simply connecting all replies under the post node (like Figure 1
(b)) will not notice the dynamic temporal changes of social networks and will
ignore the replies that hold doubts and opposing views. Yet, our model DGM
can capture the opinion variances and evolution of posts along the temporal
dimension in social networks, which plays a crucial role in identifying the rumor.
This case study helps to demonstrate the effectiveness of the proposed method.

6 Conclusion

In this work, we propose a novel multimodal rumor detection framework named
DGM in which both structural and temporal information in the propagation
graphs are well modeled and captured with dynamic graph attention. Addition-
ally, we design a modality-shared adapter to learn the semantic representations
of different modalities in low-rank space. The multimodal features are further
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aligned and aggregated with cross-modal attention and alignment supervision.
Extensive experiments on two public datasets show that our method can out-
perform state-of-the-art baselines for rumor detection.

Acknowledgements. This work is supported by the fund of the Laboratory for
Advanced Computing and Intelligence Engineering.
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Abstract. Creating and understanding art has long been a hallmark
of human ability. When presented with finished digital artwork, profes-
sional graphic artists can intuitively deconstruct and replicate it using
various drawing tools, such as the line tool, paint bucket, and layer fea-
tures, including opacity and blending modes. While most recent research
in this field has focused on art generation, proposing a range of methods,
these often rely on the concept of artwork being represented as a final
image. To bridge the gap between pixel-level results and the actual draw-
ing process, we present an approach that treats a set of drawing tools as
executable programs. This method predicts a sequence of steps to achieve
the final image, allowing for understandable and resolution-independent
reproductions under the usage of a set of drawing commands. Our experi-
ments demonstrate that our program synthesizer, Art2Prog, can compre-
hensively understand complex input images and reproduce them using
high-quality executable programs. The experimental results evidence the
potential of machines to grasp higher-level information from images and
generate compact program-level descriptions.

Keywords: Program synthesis · Vector graphics · Image
vectorization · Image reasoning

1 Introduction

Humans can easily understand the procedure that generates an image, no matter
the drawing or characters, which necessitates understanding its underlying struc-
ture. However, inferring the drawing process from only the final image presents
significant challenges. These challenges stem primarily from the occlusion of
shapes and inherent ambiguity, as multiple interpretations can often be equally
valid. Recent research has proposed various definitions for the process leading
to the final image, including sketch colorization [13,23,26,28], color segmenta-
tion [1] and time-lapse video generation [29]. Though these methods accom-
plished their tasks, their results still suffer from low resolution, distortion and
noise to different degrees. There are also similar methods that aim to bridge the
gap between images and other forms of description, such as vector graphics, by
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utilizing different types of parametric primitives, such as closed paths [16,18]
or strokes [14,30]. Though these works produce promising vector-based results,
they do not target to reason their generations. Instead, they approach the pro-
cess more akin to vector-level segmentation. To address these issues, we design a
graphics program that can comprehensively represent the drawing process, mir-
roring the methods used by artists with digital drawing tools (e.g., straight or
curved lines, paint buckets and layer blendings). By introducing an executable
graphics program, images can be represented as structured drawing commands,
enabling their reconstruction at any resolution (see Fig. 1 as an example). Beyond
its reconstruction capabilities, our proposed graphics program offers a represen-
tation of graphics that is not only readable and editable but also semantically
meaningful. This makes it an ideal candidate for further applications, including
drawing instruction.

Fig. 1. (a): A complex 2D graphic composed of lines and colors can be represented and
reproduced by an executable program. (b): The program comprises individual lines of
code, each corresponding to a specific drawing command. Executing these commands
sequentially reveals the process of constructing the graphic, closely mirroring an artist’s
workflow.

Our work builds upon recent developments in graphics program synthe-
sis [5,8,19], which have demonstrated the potential of program synthesis in
decomposing complex shapes into a series of commands. However, the recur-
rent inference of the drawing process for colored images remains largely unex-
plored, and is the main focus of this paper. Unlike most vectorization-based
methods [12,14,16,18,30], our approach does not rely on a differentiable raster-
izer for path optimization or supervision in the pixel space. Instead, we train
a program synthesizer to generate codes directly from a single image input.
Our experimental results indicate that Art2Prog outperforms state-of-the-art
optimization-based vectorization approaches in reconstruction accuracy while
executing the inferred programs. Additionally, our method is capable of repre-
senting more complex graphics compared to existing graphics program synthe-
sizers.
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In summary, the contributions of this paper are threefold:

– As shown in Fig. 1, we define a colored graphics program that emulates an
artist’s workflow. This program is comprehensible to humans and capable of
generating images at any resolution, thus efficiently bridging the bidirectional
gap between programs and images.

– We develop Art2Prog, a novel GPT-2 [17] based program synthesizer for
generating colored graphics programs from a single input image. This archi-
tecture demonstrates the feasibility of capturing high-level information such
as the number of layers, enclosed shapes, layer overlaps, and color blending
modes, all through the inference of a complex 2D graphics program.

– We evaluate our performance with state-of-the-art program synthesizers
and optimization-based approaches in image vectorization. The experimental
results show that Art2Prog outperforms existing works, achieving the high-
est reconstruction accuracy while also producing high quality program-level
explanation.

2 Related Works

2.1 Graphics program synthesis

The task of learning to synthesize 2D graphics programs is not novel, with numer-
ous recent papers being focused on reproducing 2D binary shapes. [5,8,19] pri-
marily focused on reproducing CSG-based shapes, which are binary representa-
tions of solid shapes formed by applying boolean operations to simple shapes like
circles and rectangles on the canvas. These methods successfully reconstructed
solid shapes comprising up to 20 objects. Similarly, [4] constructed complex
shapes by stacking a pre-defined binary shape (bricks of different lengths) built
on the idea of Lego bricks. Written in a subset of LATEX, [6] defined programs
as line shapes (e.g., circle, rectangle and straight line) rendered on an empty
canvas. Building on this concept, [7] conceptualized the program as controlling
a ‘pen’ that draws binary lines on an empty canvas, and [27] followed a similar
approach for reconstructing CAD sketches by sequentially drawing lines. Addi-
tionally, [9] introduced parameterized brushstrokes as programs and generated
blurry paintings from photos.

To the best of our knowledge, our proposed Art2Prog is the first work that
explicitly targets the inference of complex 2D graphics programs that include
lines, colored surfaces, and overlapping layers with different blending modes.

2.2 Image vectorization

Different from image rasterization, vectorization is inherently more complex due
to the potential non-uniqueness of its results. Traditional methods [3,10,11,21,
22,25] normally build specific algorithm-based methods that rely on image seg-
mentation to conduct vectorization. To address this issue, recent research has
tried to leverage the power of learning-based approaches. Studies [12,14,16,30]
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approached vectorization by optimizing a fixed number of parametric strokes
relying on differentiable rasterizers. However, these methods needed to fully
account for shape semantics, leading to redundant and inaccurate vectorization.
Meanwhile, [18] trained an encoder-decoder model without supervision from vec-
tor ground-truth. However, it still relied on a differentiable rasterizer for loss
backpropagation. Similarly, [2,15] attempted vector reconstruction using Vari-
ational Autoencoders (VAEs) but failed to reach accurate results. [20] imple-
mented category-conditioned image vectorization through a two-module net-
work, adding one layer of solid color at a time. Their recent works highlight the
potential of deep architectures to capture higher-level structural information in
image vectorization.

Different from most existing vectorization approaches, Art2Prog does not rely
on differentiable rasterization. Instead, we directly synthesize a program from
the image input and execute it to accurately reconstruct the image. Furthermore,
our method not only generates resolution-independent vector graphics but also
comprehensively describes the image through human-understandable programs.

Table 1. The domain-specific language (DSL) for our 2D graphics.

Program P → O | O(O) | L(O, O)

Operation O→ Create(x = N, y = N)
| Straight(x = N, y = N, O)
| Circle(x = N, y = N, r = R,

dir = D, O)
| Fillcolor(color = C,O)

Layer L → Normal(O1 = O, O2 = O)
| Multiply(O1 = O, O2 = O)

Position N → integers within range of [−8 : 8]

Radius R → integers within range of [1 : 4]

Direction D → True | False

color C → integers within range of [1 : 54]

3 Graphics Programs

This section defines the domain-specific language (DSL) used for our 2D graphics
program. As depicted in Table 1, our graphics program is structured hierarchi-
cally. A final image comprises several overlapping layers, each utilizing one of
two distinct color blending modes. To construct each layer, multiple drawing
commands must be executed sequentially:

1. A Create (x, y) command that initiates a new layer on the current canvas
and sets the starting position at coordinates (x, y).
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2. Multiple Straight (x, y, O) commands that draw continuous straight lines
from the last position to a relative position (x, y). These commands also help
define enclosed shapes that can be filled with color.

3. Multiple Circle (x, y, r, dir, O) commands that draw circular arcs. These
arcs extend from the current position to a specified relative position (x, y),
defined by a radius r and a direction dir, which can be either clockwise or
counterclockwise.

4. A Fillcolor (C, O) command that applies the color C to an enclosed shape.
This enclosed shape is determined by the line path resulting from an earlier
operation O, which is defined by the arrangement of lines in the current layer.

Normal (O, O) or Multiply (O, O) employs two distinct layer blending
modes to connect a pair of object layers, denoted as O. All of the variables N ,
R, D and C in Table 1 are defined as tokens in this paper. We incorporate two
types of layer blending modes-‘normal’ and ‘multiply’-to enhance visual variety
in the output (controlled by corresponding tokens). To further constrain the
search space, we divide the positions on a canvas into an 8×8 grid. Additionally,
instead of using separate tokens in color channels (RGBA), we build a color list
for C that contains 54 different colors to choose from. This allows a single token
to correspond to a wide range of colors, akin to a palette commonly used in
modern drawing software and traditional paintings. In summary, we define our
goal of 2D graphics program inference as follows: reconstructing an input image
(at a resolution of 64 × 64) by executing an inferred graphics program.

4 Methodology

In this section, we begin with a detailed description of the model architecture in
Section 4.1 and introduce the tokenization strategy in Section 4.2 that enables
our language model to interpret graphics programs as a sequence of tokens.
Subsequently, we will discuss the training process in Section 4.3, followed by an
explanation of the inference pipeline in Section 4.4.

4.1 Model architecture

We developed a deep architecture capable of efficiently inferring an executable
graphics program from a randomly drawn image under our defined DSL. The
comprehensive neural design of our network is illustrated in Fig. 2(a), includ-
ing two trainable modules: an image encoder (ResNet) to encode the executed
image results and a program decoder (GPT-2) to learn the probability distri-
bution of the tokenized program sequence. To bridge the gap between program
syntax and semantics effectively, our approach integrates information from both
image and program spaces. Inspired by REPL [5], the graphics program is exe-
cuted sequentially, line-by-line, to generate intermediate images through a non-
differentiable, off-the-shelf rasterizer. These images are then concatenated with
the target image, creating an 8-channel input image to be fed into an image
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Fig. 2. The overall architecture of Art2Prog, which contains two trainable modules:
an ResNet-based image encoder and a program decoder built upon the architecture
of GPT-2 [17]. (a): To reconstruct a target image into an executable graphics pro-
gram, Art2Prog treats the program as a flattened sequence of tokens. It also utilizes
image embeddings derived from the target image and partially executed programs as
conditioning inputs. (b): Art2Prog infers a graphics program directly from the target
image. By predicting the ‘ENDING’ token, Art2Prog is capable of inferring programs
of various lengths.

encoder. The encoder follows the architecture of ResNet without pretraining on
other datasets.

To process the graphics program, we flatten it into a sequence of tokens,
appending a special token ‘<NEXTLine>’ at the end of each line to signify
its termination. This tokenized program sequence is then embedded and con-
catenated with the image embeddings on a token-wise basis, as illustrated in
Fig. 2(b). Given that each line of code can only be executed following the pre-
diction of a ‘<NEXTLine>’ token, each token within the same line of code is
associated with the same executed image. Therefore, to enable the concatenation
of images and programs in a practical manner, we duplicate the images to match
the token length for each executed line of code. Only when a ‘<NEXTLine>’
token is predicted is the execution result of the current program updated. We
build our program decoder on the basis of an existing language model (GPT-
2 [17]) to decode the concatenated embeddings of the current state into the
program sequence for the next state. Additionally, we train our decoder from
scratch without pretraining on other datasets. Consequently, we simplify the
program inference problem by predicting the next token based on the current
program sequence. The prediction distribution for a graphics program can thus
be factorized as follows:

p(S|IT ) =
K∏

k=1

p(tk|gθ{fθ(IT , Ij), tj}k−1
j=1 ), (1)
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where t1...tK are the tokens in the target flattened program sequence S, K is
the length of program sequence that varies across different programs, gθ is the
sequence decoder (GPT-2), and fθ is the image feature extractor (we use ResNet-
18 in this paper). IT and Ij are the target image and canvas rendering at token
tj respectively.

4.2 Tokenization

Art2Prog employs a unique tokenization strategy to convert a graphics program
into a sequence of tokens, facilitating feature concatenation and sequence decod-
ing. The graphics program P can be represented as P = (O1, ..., ON ), where Oi

indicates the ith line of code in the program. As mentioned in Table 1, we first
quantize arguments Xi ∈ {N,R,D,C} into distinct intervals as tokens, and sim-
ilarly, assign tokens to command classes Ci (such as create, sline, circle, color,
normal, and mul). Therefore, a single line of code Oi may contain 2 types of
tokens: Oi = (Ci, v

1
i , ..., vk

i ). Here, we do not tokenize the pointer to the former
line Oi−1 because we execute our code line-by-line by default so that it can be
simplified. For the layer combination commands normal and mul, our detok-
enizer refers to Oi−1 and the second last color command, which should indicate
the end of a layer. Additionally, we introduce 3 special tokens {‘STARTING’,
‘ENDING’, ‘<NEXTLine>’} that indicate the start of a sequence, the end of a
sequence, and the end of a line respectively.

4.3 Training

The primary training objective of our model is to minimize the cross-entropy
loss for the predicted tokens at each position in the program sequence. Given
the target program sequence S and a corresponding target image IT , we train
our model Θ to minimize:

l(Ŝ, S) = CE(Ŝ, S|IT ;Θ), (2)

where CE() refers to the cross-entropy function, and Ŝ is the output program
sequence of our model.

Inspired by recent transformer-based language models, we shift the input
sequence s to the right by one position, as shown in Fig. 2(a). Thus, the input
sequence starts with a special token ‘STARTING’ and the output sequence ends
with a special token ‘ENDING’. For each line of code On, we assume that the
preceding lines (O1, ..., On−1) have been correctly successfully inferred; thus,
we execute and render these partial lines to produce n − 1 intermediate images
(I1, ..., In−1). As illustrated in Fig. 2(b), these intermediate images, concatenated
with the target image, are fed to ResNet to generate n − 1 image embeddings.
Since the lines are flattened to sequence before being fed into the GPT-2, the
number of image embeddings should match the token length. Thus, we repeat
each image embedding Ii to the length LO + 1, where LO is the token length
of the code to which these embeddings pertain. The addition of 1 accounts for
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Algorithm 1 The inference process of Art2Prog.
Input:

the target RGBA image (spec)
Output:

Programs Pbest

Initialisation: Start an empty program P .
Start an empty sequence of tokens O indicating current line of code.
Set the maximum number of token in each line as Nt.
Set the maximum number of lines in P as NO.

P ⇐ ‘STARTING’
repeat

if len(O) > Nt then
Reset O

end if
Samples the next token t from current P and O
O ⇐ t
if t is ‘<NEXTLine’ then

P ⇐ O
Reset O

end if
if Pbest then

if Loss(P ) < Loss(Pbest) then
Pbest = P

end if
else

Pbest = P
end if

until len(P ) > NO or t is ‘ENDING’
return Pbest

the additional special token ‘<NEXTLine>’. We then concatenate the extended
image embeddings and program embedding in a token-wise manner prior to
being fed into GPT-2.

4.4 Inference

As shown in Fig. 2(b), our model infers a single token at a time, beginning with
the initial input sequence [‘STARTING’] and terminating with the prediction of
‘ENDING’. This design allows our model to infer graphics programs of varying
lengths based solely on a target image as input. Our approach does not rely
on specific search algorithms, such as beam search or Sequential Monte Carlo
(SMC), which can significantly slow down the inference process. Instead, we
employ a simple greedy search strategy while supporting early stopping if the
program has already been correctly inferred (indicated by MSE = 0).

The implementation details of our graphics program inference scheme are
shown in Algorithm 1. For each inference, we repeatedly conduct inference from
empty until timeout. After that, we compare all of the generated programs by
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their IoUrgba distance from the target raster image to find the best match. The
metric IoUrgba is defined as a modified version from IoU , which aims to measure
the similarity of RGBA graphics with objects of different sizes.

Experimental results demonstrate that Art2Prog is capable of producing
high-quality inferences within a short time frame (approximately 15 seconds),
surpassing current state-of-the-art techniques. We present examples of our infer-
ence results in Fig. 3. The comparative analysis of results and a detailed imple-
mentation will be presented in the subsequent section.

Fig. 3. Inference results on hand-drawn geometric artworks. We render all the images
at resolution 300 × 300 for better visualization. The input image size to the model is
still 64 × 64. The bottom column shows examples of failure cases.

5 Experiments and Results

5.1 Data preparation and experiment settings

We collect data for training by randomly generating graphics programs with up
to 10 layers with reference to the defined DSL as described in Section 3. During
training, our model was exposed to approximately 6 million examples. We utilize
the Adam optimizer with a learning rate of 1 × 10−3, using a batch size of 32
across one RTX 3090 GPU for all settings in Table 2. For evaluation, we built
an eval set with 1000 generated data up to 13 layers in each program. Also,
inspired by the design of IoU , we define a modified version to fairly compare the
similarity among RGBA images with objects of different sizes:

IoUrgba(Î , I) =

∑P
p=1(Îp = Ip)

∑P
p=1(Îp(A) > 0 and Ip(A) > 0)

, (3)
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where Î and I denote the predicted image and the target image, respectively.
Îp and Ip indicate the pixel value of Î and I at position p. Îp(A) and Ip(A)
are the pixel values at the alpha channel of images Î and I, which indicate the
transparency in the RGBA color space.

Table 2. Quantitative results under different architecture designs of Arg2Prog. #Lay-
ers denotes the maximum number of program layers each model was exposed to during
training. SR denotes the rate of correct inferences (IoUrgba = 1.0). MaxPL denotes the
maximum program lengths. These scores are all derived from the same eval set, which
comprises 1,000 data entries, each containing programs with up to 13 layers. We have
equipped Monte Carlo Tree Search (MCTS) with models that utilize Pointer Network
(PtrNet) [24] as the decoder. The inference timeout for all models is set at 125 seconds
in this table.

Model EncoderDecoder#Layers (L) IoUrgba (↑)IoU (↑)MSE (↓)SR (↑)MaxPL (↑)

AL=5 CNNs PtrNet 5 0.7535 0.8471 0.1739 0.593 26
BL=5 RN PtrNet 5 0.9330 0.9692 0.0447 0.907 26
CL=5 RN GPT-2 5 0.9420 0.9858 0.0304 0.919 26
AL=10 CNNs PtrNet 10 0.5529 0.6722 0.2968 0.275 17
BL=10 RN PtrNet 10 0.9363 0.9719 0.0399 0.920 26
CL=10 RN GPT-2 10 0.9631 0.9923 0.0182 0.951 27

5.2 Ablations

In order to ablate our architecture, we assessed the impacts of two key compo-
nents in Art2Prog: the image encoder and the program generator. Additionally,
we evaluated the influence of the training set on model performance. Our models
are tested on an evaluation set comprising up to 13 layers. Thus, we conducted
training on two different sets, one with layers up to 5 and another up to 10, to
determine whether training with longer programs enhances the performance of
the synthesizer.

We first compared the evaluation scores of different image encoders, including
sequentially stacked Conv2d blocks with ReLU activation (CNNs) and ResNet-
18. Notably, we introduced a minor modification to the original ResNet structure
by removing Batch Normalization. This alteration led to a substantial improve-
ment in performance. As indicated in the AL=5 and BL=5 of Table 2, compared
with CNNs, ResNet demonstrates higher reconstruction accuracy (IoUrgba, IoU
and MSE) and the ability to precisely infer longer programs (with the highest
rate of successfully inferred programs and maximum program length). When
trained with longer programs (up to 10 layers), ResNet demonstrates a slight
improvement in performance. Conversely, CNNs encounter difficulties in train-
ing under these conditions. By comparing the qualitative results in Fig. 4, it is
evident that utilizing ResNet facilitates the construction of complex programs in
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Fig. 4. Qualitative results of different architecture designs of Art2Prog. We pick the
best models (AL=5, BL=10, and CL=10) based on their average inference accuracy for
comparison.

the majority of scenarios. However, in specific instances, such as those illustrated
in the third column of this figure, CNNs demonstrate superior performance in
accurately reproducing a given image.

Subsequently, we demonstrated the necessity of using GPT-2 as the program
generator, as opposed to Pointer Network (PtrNet) [24]. When utilizing PtrNet
as the generator, the program is not flattened but treated as separate lines of code
as in [5]. We observed that GPT-2 consistently demonstrates superior accuracy,
regardless of whether it is trained with longer program or not. Upon comparing
the qualitative results depicted in the figure, it is observed that GPT-2 exhibits
a marginally superior capability in preserving the sharp details within raster
images. However, PtrNet achieves satisfactory performance in the majority of
cases. Overall, models trained with longer programs exhibit better generalization
capabilities in complex scenes.

5.3 Comparison with the state-of-the-art methods

We compared our proposed method against two other state-of-the-art (SOTA)
image vectorization methods: LIVE [16] and REPL [5]. We conducted this eval-
uation using a consistent dataset comprising 1000 data points, each generated
under our DSL and containing up to 13 object layers per program. The results
of this comparison are presented in Table 3 and Fig. 5.

Regarding the colored image-to-SVG method, LIVE exhibits inaccuracies
in color inference, which negatively impacts its average pixel accuracy (MSE).
Moreover, LIVE demonstrates difficulties in handling overlapped areas and in
reconstructing paths that self-intersect. As illustrated in Fig. 5(a), Art2Prog
consistently maintains layer integrity in scenarios with overlapping layers and
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Fig. 5. Our qualitative comparison with SOTA methods LIVE and REPL.

Table 3. Inference comparison on the evaluation set. Here we only picked the trans-
parency channel for IoU calculation. The timeout for each inference is 15 seconds in
this table.

Model Search IoU (↑)MSE (↓)
Algorithm

REPL [5] GS 0.4514 -
REPL [5] Beam 0.5338 -
REPL [5] SMC 0.6630 -
LIVE [16] - 0.8513 0.0508
Arg2Prog (ours)GS 0.9733 0.0491
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accurately reconstructs self-intersections. This figure showcases comparisons in
various cases. The left column presents scenarios where LIVE overlooks details
in overlapped layers of shapes, attributed to a misinterpretation of the segmenta-
tion process. The middle column reveals that LIVE performs poorly with areas of
self-intersection and often fails to capture sharp shapes accurately. The column
on the right demonstrates cases involving both self-intersection and layer over-
lap, areas where LIVE struggles to achieve accurate reconstruction. In contrast,
our approach is capable of comprehensively representing these complexities as
graphics programs.

Since the REPL inverse CAD model supports only binary images as input,
we processed the input data accordingly. As illustrated in Fig. 5(b), it is evident
that REPL struggles with the vectorization of complex and sharp shapes, often
inaccurately interpreting shapes at the canvas’s edges. In the examples showcased
in the left column of this figure, REPL frequently generates redundant shapes to
represent simple structures, such as a single triangle or a circle. For sharp shapes,
as depicted in the middle column, REPL similarly faces difficulties in achieving
accurate reconstruction. The right column demonstrates scenarios where, when
tasked with predicting the graphics program for a shape positioned in a corner,
REPL often inaccurately predicts a rectangle instead of the correct shape, such as
a circle. In contrast, Art2Prog demonstrates precise program inference regardless
of the shape’s position and size.

In summary, our model demonstrates superiority in color inference and the
intricate reconstruction of compositions involving multiple shapes, producing
outputs that are both clean and precise.

6 Discussion

In this section, we examine the instances where our method failed to produce
accurate predictions, as illustrated in Fig. 6. These examples demonstrate fail-
ures in replicating the input raster image through generated graphic programs,
particularly highlighting our system’s tendency to neglect minor details, as evi-
dent in the first column of examples in Fig. 6. To improve accuracy, enhancing
the image encoding component to more effectively capture detailed image fea-
tures may be beneficial.

Failures in accurately determining the appropriate color blending mode or
the exact color in scenarios where one layer completely encompasses another
are depicted in the second column. These challenges stem from the ambiguity
in distinguishing between blended colors and the dominant color of the upper
layer. Incorporating a dedicated, trainable module specifically designed for layer
combination might mitigate this issue.

Moreover, in complex multi-layered images, our synthesis algorithm often
misses segments, indicating difficulty in generating longer programs. This limi-
tation points to potential advancements in program generation capabilities, pos-
sibly by exploring innovative architectural solutions or integrating more sophis-
ticated large language models for future enhancement.
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Fig. 6. Examples of failed cases, where the predicted graphics programs do not repro-
duce the target image comprehensively.

7 Conclusion

This paper presents a learning-based program synthesizer that aims to write
a graphics program to represent the input image comprehensively. We propose
a novel graphics program definition by separating the drawing steps towards
a target RGBA image into several steps: (1) creating a new layer on the can-
vas, (2) outlining an enclosed shape with continuous lines, (3) filling the lined
area in the current layer with colors and (4) combining layers with blending
modes, which mimics the workflow of real-world digital artists. The quantita-
tive and qualitative results in our experiments demonstrate that our approach
achieves high-quality reconstruction results and effectively discerns the underly-
ing drawing process. Though the drawing commands are highly simplified com-
pared to existing drawing software, this paper can be considered as an initial
step toward complex graphics program synthesis. Thus, future works can extend
it to a broader range of more complex graphics.
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Abstract. Stylized image captioning aims at generating captions that
accurately describe the image content while aligning with the desired
style. In semi-supervised setting, existing methods typically first pre-
train models on large-scale factual image-caption pairs and then fine-tune
the pre-trained models on small-scale unpaired stylized corpus, requir-
ing significant resources. In this paper, we propose PPCap, a novel Plug
and Play framework for stylized image captioning, where only a styl-
ized image captioning model needs to be trained on small-scale unpaired
stylized corpus. Then it will form a generative style discriminator via
Bayes rule by the contrast of the captions in different styles, guiding an
off-the-shelf large-scale factual image captioning model to generate styl-
ized image captions in a post-processing manner, which is flexible and
efficient. Experimental results on SentiCap and FlickrStyle10k show that
our framework achieves comparable performance to the state-of-the-art
methods in the same setting while reducing training time by over 90%.
Our code is available at https://github.com/gWeiXP/PPCap.

Keywords: Plug and Play framework · generative style
discriminator · training efficiency

1 Introduction

Stylized image captioning aims at generating captions that accurately describe
the image content while aligning with the desired style. When people describe
an image, they often incorporate their styles. As shown in Fig. 1, people with
different styles have different captions for the same image. Adding style elements
to a caption not only enriches how images are presented but also helps users
convey their emotions. For example, on social media platforms, pairing travel
photos with poetic captions enhances their artistic appeal, while pairing daily
life photos with humorous captions relaxes the audience, and so on.

There has been significant effort dedicated to stylized image captioning. Ear-
lier methods mainly focus on using factual and stylized image-caption pairs to
achieve supervised stylized image captioning [3,17]. However, collecting image-
caption pairs incurs significant human and time costs, especially for stylized
data. To solve this problem, SAN [12] proposes a data augmentation frame-
work to extend stylized image-caption pairs, while more researchers propose
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15318, pp. 275–291, 2025.
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Fig. 1. An example of the captions generated by our framework in factual, positive
(Pos), negative (Neg), romantic (Ro), and humorous (Hu) styles for an input image,
with the style-related words underlined.

semi-supervised methods to reduce reliance on stylized image-caption pairs
[4,7,8,18,29]. Most of them use large-scale factual image-caption pairs to pre-
train the model, enabling it to accurately describe the image content, and then
use small-scale unpaired stylized corpus to fine-tune the pre-trained model,
enabling it to incorporate stylistic elements. However, the pre-training process
dominates the total training time due to the data scale. And this process is
redundant with the training of the factual image captioning model, resulting in
resource wastage.

In this paper, we propose PPCap, a novel Plug and Play framework for styl-
ized image captioning. Our motivation is to decouple the task of stylized image
captioning into generating accurate captions for input images and incorporating
style elements into the captions, where any off-the-shelf factual image captioning
model can be used for the former, then we only need to design a post-processing
module to be responsible for the latter, i.e., generating appropriate stylized words
or phrases in appropriate positions of the factual captions. Through our frame-
work, we no longer require the pre-training process, saving most of the training
time. To achieve such a functionality, we design a generative style discriminator
as the post-processing module, which can discern, word by word, whether all the
candidates of each word align with the desired style. The discriminator actually
is composed of a lightweight stylized image captioning model via Bayes rule,
which can generate captions aligning with desired and undesired styles for input
images. And to train the stylized image captioning model solely on unpaired
stylized corpus, we use the CLIP model [21] to align images and captions to
the CLIP embedding space, allowing us to use captions instead of corresponding
images for training. In the subsequent sections, we will respectively denote the
factual and stylized image captioning model as factual model and stylized model.

The main contributions are summarized as follows:

• We propose a novel Plug and Play framework for stylized image captioning
where the task of stylized image captioning is decoupled into generating fac-
tual captions and incorporating style elements into the captions. Then we
can utilize the existing knowledge of any off-the-shelf factual image caption-
ing model to generate accurate captions, achieving good performance without
the need for the pre-training process.
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• We design a generative style discriminator composed of a lightweight stylized
image captioning model via Bayes rule, which can incorporate style elements
in appropriate positions of the captions, thereby guiding the factual image
captioning model to generate stylized image captions.

• Experiments on SentiCap and FlickrStyle10k datasets verify the effective-
ness of our proposed framework. Results demonstrate that our framework
can achieve comparable performance to the state-of-the-art methods in semi-
supervised setting while reducing training time by over 90%.

2 Related Work

2.1 PLM-Based Controllable Text Generation

The existing controlled text generation methods based on pre-trained language
models (PLM) can be roughly divided into three categories according to the
working mode of control signals: retraining, fine-tuning, and post-processing.
Among them, the retraining methods [2,10] need to consume a lot of com-
puting resources and also face the problem of lacking labeled data. With the
rapid increase of parameters in the PLM, even fine-tuning has become resource-
intensive. The post-processing methods [5,11,27] can fix the parameters of the
pre-trained language model and use a post-processing module to guide the decod-
ing process of text generation, thereby ensuring the quality of the generated text
while consuming less computing resources. A representative method of this type
is GeDi [11]. It trains a small class-conditional language model as the generative
discriminator to guide the generation from large PLM like GPT-2 [22] and GPT3
[1]. Inspired by it, we propose our framework, utilizing a small stylized image cap-
tioning model as the generative style discriminator to guide the generation from
a large factual image captioning model. However, compared to controllable text
generation, stylized image captioning represents a more challenging endeavor.
Controlled text generation only requires the generated text to align with the
desired control signals. In contrast, stylized image captioning requires generated
captions to not only match the desired style but also accurately describe the
content of the images. To tackle this issue, we conducted a derivation of the
formulas, migrating this post-processing method from text generation to image
captioning. Refer to Sect. 3.1 for specifics details.

2.2 Image Captioning

The task of image captioning is to generate a caption that accurately describes
the content of the image for a given input image. And the research on image
captioning has made remarkable progress in recent years [6,13,14,23]. With the
application of various technologies such as attention mechanisms, graph neural
networks, reinforcement learning, transformer, vision-language pre-training tech-
niques, retrieval augmentation to image captioning models, all kinds of models
have been proposed for image captioning. These models have learned exten-
sive knowledge in both vision and language, enabling them to generate accurate
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captions for input images. In our framework, we aim to make full use of their
learned visual and language knowledge in a post-processing method that re-ranks
the generated text without altering their model parameters to conduct stylized
image captioning task. In our experiments, we choose ClipCap [19] as the fac-
tual model, which is a lightweight model based on CLIP [21] and GPT-2. It can
achieve CIDEr score of 108.4 on MSCOCO test set. And to demonstrate the
plug-and-play capability of our framework, we also plug our style discriminator
into PureT to observe the performance. It is a purely Transformer-based model
and can achieve CIDEr scores of 120.2 when trained using cross-entropy (XE)
loss and 138.2 when optimized using the self-critical sequence training (SCST)
strategy on the MSCOCO test set.

2.3 Stylized Image Captioning

Stylized image captioning works can be divided into two categories: methods
using parallel stylized image-caption data (supervised method) and methods
using non-parallel stylized corpus (semi-supervised method). Earlier works [3,17]
are all supervised methods, depending heavily on stylized sentences paired with
images for training a stylized image captioning model. To address this issue, SAN
[12] employs data augmentation to extend paired stylized datasets, while more
methods adopt a semi-supervised approach, training models only using stylized
sentences unpaired with images. StyleNet [7] decomposes the weight matrices
in the LSTM network to model both factual sentences and stylized sentences.
MSCap [8] uses a style gate to adaptively assign different weights to the image
feature and the text feature. Semstyle [18] and MemCap [29] use sentiment
terms and scene graphs, respectively, as an medium between vision and text
to align images and captions. ADS-Cap [4] uses a contrastive learning module
to align the image and text features and uses a conditional variational auto-
encoder to memorize diverse stylistic patterns in latent space. But most of these
works follow the traditional methodology of first pre-training models on large-
scale factual image-caption pairs and then fine-tuning the pre-trained models on
small monolingual textual corpus, or even directly training models with both
types of data, which demands a considerable amount of computational resources
and time. Our framework is also a semi-supervised method and only requires
training a style discriminator on the stylized sentences unpaired with images
to relieve this issue. Lately, TridentCap [25] simultaneously considers semantic
alignment and mapping between image-fact-style trident data, fully mines the
core relationship between them, and achieves a excellent performance. But it is
also a supervised method and in addition to paired stylized images and captions,
also needs corresponding factual captions as additional input to the model.

3 Method

3.1 Overview

Given an input image x and a style label s, our goal is to generate a sentence
y1:T that is semantically related to the given image x and consistent with the
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Fig. 2. Overview of our framework. The lower part is the factual model, responsible for
generating accurate captions for input images. The upper part is the generative style
discriminator, responsible for discerning whether the candidates of each word align
with the desired style. Inside the discriminator, the stylized model is fed with both
desired and undesired styles, and the discrimination function is implemented via Bayes
rule by the contrast of the outputs corresponding to these two styles.

linguistic style s, where T is the length of the sentence. Our framework consists
of a factual image captioning model and a generative style discriminator. The
whole framework is illustrated in Fig. 2, where any off-the-shelf factual image
captioning model can serve as the factual model.

When predicting the t-th word yt, the factual model is fed the image x and
the generated words y1:t−1, and then gives the probability distribution of the
next word, namely P (yt|x, y1:t−1). In the meanwhile, the discriminator is fed the
style label s, the image x and the generated words y1:t−1, and then predicts the
probability that all candidates of next word align with the label style s , namely
P (s|x, y1:t−1, yt). Then the probability distribution we desire P (yt|s, x, y1:t−1)
can be computed according to Formula 1. The derivation process is in appendix.

P (yt|s, x, y1:t−1) =
P (s|x, y1:t−1, yt)P (yt|x, y1:t−1)

P (s|x, y1:t−1)
. (1)

We aim for the factual model to play a primary role when generating fac-
tual words, with minimal interference from the style discriminator. Conversely,
when generating stylized words, we expect the style discriminator to increase
the probability of appropriate stylistic words. However, in our experiments, we
find that because the factual model is trained only on factual data, it assigned
lower scores to stylized words. When tasked with generating stylized words, the
style discriminator cannot easily alter the output of the factual model based on
Eq. 1. Therefore, we introduced a weight parameter w to bias generation more
strongly towards the style. If the value of w is too large, the style discriminator
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may interfere with the normal operation of the factual model when generating
factual words. Therefore, choosing a suitable value for w is important to generat-
ing good stylized captions. In subsequent experiments, we investigate the impact
of different values of w on the performance of the framework. In addition, when
predicting the t-th word, the input image x, the style label s and the generated
words y1:t−1 are known, therefore we ultimately compute the weighted posterior
of P (yt|x, y1:t−1) and P (s|x, y1:t−1, yt) to obtain P (yt|s, x, y1:t−1) according to
Formula 2.

P (yt|s, x, y1:t−1) ∝ P (yt|x, y1:t−1)P (s|x, y1:t−1, yt)
w
. (2)

3.2 Generative Style Discriminator

Compared to standard (non-generative) discriminator, which takes the entire
sentence as input and outputs a corresponding score, generative discriminator, by
receiving generated words and outputting scores for all possible candidate words,
evidently saves computation1. In our framework, the function of the generative
style discriminator is to give P (s|x, y1:t−1, yt) while the function of factual model
is to give P (yt|x, y1:t−1). And any off-the-shelf factual image captioning model
can serve as factual model. Then in this section, we show how the stylized model
forms the generative style discriminator via Bayes rule and how the discriminator
guides the factual model to generate stylized image captions.

Given the style label s, the image x and the generated words y1:t−1, the styl-
ized model can output P (yt|s, x, y1:t−1). And P (y1:t−1|s, x) has been calculated
in last time step, therefore it can further calculates P (y1:t−1, yt|s, x). Then we use
s and s̄ to represent the desired and undesired styles, respectively. Then accord-
ing to Bayes rule and the law of total probability, the probability distribution
P (s|x, y1:t−1, yt) can be transformed into:

P (s|x, y1:t−1, yt) =
P (s, x, y1:t−1, yt)∑

s′∈{s,s̄} P (s′, x, y1:t−1, yt)
. (3)

Because the style s and the image x are independent of each other, that is, the
occurrence or non-occurrence of one does not affect the other, we can consider
that , for any given s′ ∈ {s, s̄}, P (s′, x) = P (s′)P (x), and then P (s′, x, y1:t−1, yt)
can be transformed into:

P (s′, x, y1:t−1, yt) = P (s′)P (x)P (y1:t−1, yt|s′, x). (4)

The distribution P (s|x, y1:t−1, yt) can be further transformed into formula 5,
in which P (s) can be assumed to be a constant for uniform styles, learned or set
manually as a hyper-parameter.

P (s|x, y1:t−1, yt) =
P (s)P (y1:t−1, yt|s, x)∑

s′∈{s,s̄} P (s′)P (y1:t−1, yt|s′, x)
. (5)

1 The more detailed explanation is in the appendix.
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This way, we can use the stylized model to form the generative style discrim-
inator. As shown in Fig. 2, when generating stylized words, the factual model
desires to generate words that still describe the image content. The stylized
model with desired and undesired styles desires to generate words corresponding
to the styles, and then according to formula 5, uses the contrast between the
two output distributions to get P (s|x, y1:t−1, yt), where the classification prob-
ability of desired words and undesired words will be increased and decreased,
respectively. Finally we can compute the weighted posterior of P (yt|x, y1:t−1)
and P (s|x, y1:t−1, yt) to obtain P (yt|s, x, y1:t−1) according to formula 2. In addi-
tion, when generating factual words, the difference between the outputs of the
stylized model with desired and undesired styles is small and the discrimina-
tor dose not significantly impact the factual model. Therefore, our generative
style discriminator can incorporate style elements in appropriate positions of
the captions.

3.3 Stylized Model

The structure of stylized model is illustrated in Fig. 3, which takes the pre-
trained language model GPT-2 as the main body. For the input style, it will
use the embedding layer of GPT-2 to convert its tokens into its corresponding
embedding vector. For the input image, it uses CLIP image encoder to extract its
CLIP embedding vector and uses a simple multi-layer perceptron (MLP) to map
it to the same space as the style embedding vector. Then the style embedding
vector and image embedding vectors will be concatenated and used as the prefix
input for GPT-2 to generate the caption with style.

Fig. 3. Structure of stylized model. The left part shows the encoding process, it will give
the CLIP image embedding when inferring and the CLIP text embedding with noise
when training. The right part shows the decoding process. The GPT-2 will decode the
concatenation of style feature vector and CLIP feature vectors into the corresponding
caption.

To train the stylized model only using unpaired stylized corpus, we use the
CLIP embedding as the medium between vision and text to align images and
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captions. The stylized model, during training and inference, will reconstruct
texts from their respective CLIP text and image embedding. But we find CLIP
embeddings of images and their corresponding captions are not interchangeable,
which means there is a gap between the CLIP embeddings of images and cap-
tions. To solve the problem, we inject noise into the embedding during training,
as suggested in [20].

When training the stylized model, the MLP and GPT-2 are fine-tuned
together, and the overall training loss L consists of the standard generative
language modeling loss Lg and a discriminative loss Ld as suggested in [11]:

Lg =
1
N

N∑

i=1

− 1
Ti

logP (yi
1:T |si, xi) (6)

Ld =
1
N

N∑

i=1

−logP (si|xi, yi
1:T ) (7)

L = λLg + (1 − λ)Ld (8)

where λ is a weight balancing the generative loss and discriminative loss, N is
the number of samples, and T is the length of the captions.

4 Experiment

4.1 Dataset and Experimental Settings

We conduct experiments on two stylized image captioning datasets, including
FlickrStyle10K [7] and SentiCap [17]. FlickrStyle10K contains 10K Flickr [28]
images with stylized captions, where only the 7K training set are public and each
image is labeled with 5, 1, and 1 captions for factual, humorous, and romantic
styles, respectively. Following [8], we randomly select 6,000 and 1,000 of them
as the training and test sets, respectively. SentiCap contains 2360 MSCOCO
[16] images with 5013 positive captions and 4500 negative captions. The positive
and negative subsets contain 998/673 and 997/503 images for training/testing
respectively, and we split 100 samples from the training set for validation.

We evaluate our method in three aspects: the relevance with input images,
the fluency, and accuracy of style. BLEU-1, BLEU-3, METEOR, and CIDEr [16]
are used to evaluate the relevance between the generated captions and the input
images. They are mostly calculated based on n-gram overlap between candidates
and ground truth captions, and are the widely used automatic evaluation met-
rics in image captioning task. And we also utilize CLIPScore and RefCLIPScore
[9] for evaluation in the ablation experiments. Compared to the reference-based
n-gram overlap metric, they are more sensitive to detect potentially subtle inac-
curate details in captions and more correlated with human judgments. Then we
employ the average perplexity (ppl) to evaluate the fluency of generated cap-
tions. Following [4], we use a language modeling toolkit SRILM [24] to calculate
the ppl. To evaluate the accuracy of style of generated captions, the style classi-
fication accuracy (cls) is adopted. The cls represents the proportion of generated
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captions that align with the desired style. Following [4], we train a logistic regres-
sion classifier using stylized captions and factual captions for each of the four
styles. The trained classifiers is used to classify the style of generated captions
and the average accuracy of them can reach 96%.

We choose ClipCap [19] as our factual model. For the stylized model, we use
the ViT-L/14 backbone for CLIP encoder and the GPT-2(small) for decoder.
When training the stylized model, only the captions in stylized image captioning
datasets is used. The number of training epochs and batch size is set to 20 and
64. The weight λ and noise variance is set to 0.8 and 0.016. Positive style and
negative style each serve as the undesired style for the other on SentiCap dataset,
and factual style serve as the undesired style for both humorous and romantic
styles on FlickrStyle10k dataset. When inferring, the weight w is set to 300, 100,
30, 39 for positive, negative, romantic, humorous, respectively. In addtion, for a
fair experimental result, we retrain the factual model on the MSCOCO training
set that has removed the data existing in the SentiCap test set when conducting
experiments on SentiCap.

4.2 Comparison with State-of-the-Art

Performance Comparisons. We compare our framwork with several state-
of-the-art semi-supervised methods for stylized image captioning, including
MSCap, Memcap and ADS-Cap. And in order to reflect the recent advances
of stylized image captioning, we also add some supervised methods to Table 1,
namely SF-LSTM, SAN and TridentCap. The supervised methods use paired
image-caption data for training, where SAN also incorporates retrieval augmen-
tation and data augmentation (DA), while TridentCap employs trident image-
factual-style data for training and also requires a factual captioning model to
provide a factual caption as input to the decoder during inference. Compared
to them, for the factual captioning data, the semi-supervised methods also
require paired image-caption data. But for the stylized captioning data, only
the unpaired stylized corpus will be used. While our framework only requires
training a stylized model on unpaired stylized corpus, it also needs a off-the-
shelf factual image captioning model to ensure the fidelity of the image content.

Table 1 shows the performance comparison results including the relevance
with input images, the fluency, and accuracy of style in four styles. We have
observations that, when the cls exceeds 90%, meaning that the generated cap-
tions essentially align with the desired styles, our framework can achieve better
results than earlier semi-supervised methods (MSCap and MemCap) in the rel-
evance with input images (measured by Bleu-1, Bleu-3, CIDEr and METEOR),
and achieve comparable performance to the state-of-the-art method (ADSCap),
which means our framework can accurately describe the content of images. And
we notice that, our method has a low ppl on SentiCap dataset, indicating good
fluency in generated captions, it is high on FlickrStyle10K dataset, for reasons we
give later. In addition, even only using unpaired stylized corpus, our framework
can achieve comparable performance comparable to the supervised method SF-
LSTM, which indicates our framework can be easily applied to a broader range of
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Table 1. Performance comparisons on the test splits of positive (pos), negative (neg),
romantic (roman), and humorous (humor) styles. For metric ppl, the lower value is
better. For other metrics, the higher value is better. The top two scores for each metric
are bolded and underlined, respectively.

Method Style Bleu-1 Bleu-3 METEOR CIDEr ppl(↓) cls

Supervised SF-LSTM [3]
(Paired)

pos 50.5 19.1 16.6 60.0 – –

neg 50.3 20.1 16.2 59.7 – –
roman 27.8 8.2 11.2 37.5 – –
humor 27.4 8.5 11.0 39.5 – –

SAN [12]
(DA)

pos 53.0 23.4 18.1 72.0 11.7 100.0

neg 51.2 20.5 17.6 67.0 14.8 100.0
roman 29.5 9.9 12.5 47.2 13.7 99.4
humor 29.5 9.9 12.5 47.2 13.7 99.4

TridentCap [25]
(Trident)

pos 57.1 24.6 18.7 77.4 13.4 100.0

neg 56.8 25.9 19.0 80.7 12.4 100.0
roman 31.9 11.4 13.4 60.4 9.3 100.0
humor 30.6 11.2 12.8 56.6 12.6 100.0

Semi-supervised MSCap [8] pos 46.9 16.2 16.8 55.3 19.6 92.5
neg 45.5 15.4 16.2 51.6 19.2 93.4
roman 17.0 2.0 5.4 10.1 20.4 88.7
humor 16.3 1.9 5.3 15.2 22.7 91.3

MemCap [29] pos 51.4 17.0 16.6 52.8 18.1 96.1
neg 49.2 18.1 15.7 59.4 18.9 98.9
roman 19.7 4.0 7.7 19.7 19.7 91.7
humor 19.8 4.0 7.2 18.5 17.0 97.1

ADSCap [4] pos 52.5 18.9 18.5 64.8 13.1 99.7
neg 52.3 21.0 18.0 65.1 12.4 98.2
roman 25.6 6.7 10.9 33.1 10.6 95.9
humor23.7 6.3 10.3 31.6 12.8 97.3

Ours pos 53.3 20.3 18.6 68.1 13.1 97.0
neg 51.5 19.0 16.9 62.7 14.7 97.2
roman 22.3 5.3 10.2 32.6 35.8 95.9
humor 21.3 3.9 9.2 27.5 43.9 90.3

application scenarios without a heavy reliance on paired training data. We also
note that compared to the updated supervised methods (SAN and TridentCap),
our framework exhibits poorer performance and requires improvement.
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Table 2. The time required for pre-training/retraining and fine-tuning, and the pro-
portion of pre-training time in the entire training process.

method pre-training/retraining fine-tuning proportion

ADSCap [4] 7h 26 m 49 s 37 m 20 s 92.3%
Ours 3h 40 m 33 s (optional) 19 m 55 s 91.7%

Table 3. The performance of plugging our framework into different factual models

method SentiCap FlickrStyle10k
C ppl cls CLIPS CLIPSRef C ppl cls CLIPS CLIPSRef

CLIPCap(w=0) 85.7 18.4 0.2 66.0 69.9 52.5 14.9 9.2 68.2 66.0
CLIPCap 65.4 13.9 97.1 59.6 64.9 30.1 39.9 93.1 63.7 62.6
PureT-XE(w=0) 99.8 21.4 0.1 65.6 70.3 50.5 15.9 1.7 62.5 62.1
PureT-XE 72.0 16.9 97.5 58.7 64.4 23.7 43.7 86.3 57.3 57.4
PureT-SCST(w=0) 112.2 15.7 0.3 65.9 71.1 53.8 14.2 1.0 62.9 62.8
PureT-SCST 90.3 16.5 96.7 60.5 66.7 28.1 43.8 85.8 58.2 58.3

Efficiency Comparison. We measure the time required for pre-training and
fine-tuning of ADSCap and our framework, as shown in Table 2, where all experi-
ments are conducted under the same settings to ensure consistency2. The cause of
reducing training time in our framework is that, previous methods like ADSCap
need to use the large-scale factual image-caption pairs to pretrain their model,
which accounts for more than 90% of the total training time but our framework
does not need the process. It should be emphasized that the pre-training time of
our framework in Table 2 actually refers to the training time of the factual model.
For a fair experimental result, we retrain the factual model on the MSCOCO
training set that has removed the data existing in the SentiCap test set, which is
not required in practical applications. We record this data to illustrate that, it is
due to the data scale that training using factual image-caption pairs will always
occupy the majority of the total training time, regardless of the method used.
And in our framework, any off-the-shelf factual image captioning model can be
directly used as the factual model to generate factual captions for input images.
Then we only need to use the small-scale unpaired stylized corpus to train the
stylized model, and then use it to construct the generative style discriminator to
guide the factual model generate stylized image captions, eliminating the need
for the pre-training process and thus reducing training time by over 90%. Fur-
thermore, the composition of our stylized model with pre-trained CLIP and GPT
also enhances the efficiency of model training.

2 As only ADSCap has published its code, we only measured its training time.
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Table 4. The performance of factual model, style model, factual+style framework and
PPCap framework on SentiCap dataset

method positive negative
C ppl cls CLIPS CLIPSRef C ppl cls CLIPS CLIPSRef

factual model 86.0 18.0 0 66.1 70.2 85.3 18.6 0 65.9 69.5
style model 28.1 13.7 100.0 45.2 50.7 25.9 12.4 97.6 43.5 48.6
factual+style 41.1 14.0 82.7 51.1 56.1 40.9 13.6 81.1 51.1 55.3
PPCap 68.1 13.1 97.0 60.2 65.9 62.7 14.7 97.2 58.9 63.6

4.3 Ablation Study

Performance with Different Factual Models. To demonstrate the plug-
and-play capability of our framework, we also plug our generative style discrim-
inator into other factual models to observe the performance. The only potential
issue that may arise is that, the vocabularies used by the discriminator and the
factual model are different. To align the vocabularies of the discriminator and
the factual model, We set the probability of words not used by the discriminator
to 0 and discard the words not used by the factual model. We select PureT
[26], a purely Transformer-based model, as the factual model. As mentioned
in Sect. 2.2, it performs better than CLIPCap on MSCOCO test set. For each
evaluation metric, we compute the average scores for all styles on each dataset.
Table 3 presents the results. The results on SentiCap align with our expecta-
tions. Specifically, we utilize the existing knowledge of pre-trained factual image
captioning model to generate accurate captions. Therefore, models with better
performance can achieve higher scores within this framework. We also noticed
that, compared to CLIPCap, plugging into PureT does not achieve better CIDer
scores on FlickrStyle10k. We set weight w to 0, so the factual model is not influ-
enced by the discriminator. Then we find that although PureT achieves better
CIDEr scores on MSCOCO, it does not perform better on FlickrStyle10k. We
think this is because FlickrStyle10k’s styles are more complex with more style-
related words in captions and the factual model itself does not generate words
related to style. And the CLIPScore indicate that the generated captions actu-
ally align semantically with the images content. Overall, PPCap can be applied
to any auto-regressive factual models to achieve stylized image captioning, as
long as it can give the probability distributions output at each time step.

The Role of the PPCap Framework. In order to show the role of the
PPCap framework, we compare the performance of factual model, style model,
factual+style framework and PPCap framework on SentiCap dataset, as shown
in Table 4 and Fig. 43. It is evident that the factual model can accurately describe
the content of the image and the stylized model can achieve a high classification

3 More examples are in the appendix.
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Fig. 4. Two examples, each consisting of an image and its corresponding positive cap-
tions generated by the factual model (FM), stylized model (SM), factual+style frame-
work (FS) and PPCap. The words related to the desired style and unrelated to the
image content are highlighted in red and blue, respectively. (Color figure online)

score (cls). However, as shown in Fig. 4, the stylized model can only generate
approximate captions for images, with some content unrelated to the image,
namely hallucination. It may even produce identical captions for two similar but
different images. We consider this is because training solely on unpaired stylistic
corpus makes the model focus more on linguistic styles and thus causes incon-
sistency with images. On one hand, the scale of stylistic corpus is too small.
On the other hand, the CLIP model does not perfectly align images and texts
and substituting text for images in training can not yield satisfactory results,
as demonstrated in [15]. Then, we hope to design a framework that can achieve
good scores in both content and style. But simple weighted combination (fac-
tual+style) not only fails to effectively integrate style into captions but also
retains hallucination. In contrast, PPCap can achieve high scores in both con-
tent and style simultaneously. It decouples the task of stylized image captioning
into generating factual captions and incorporating style elements into the cap-
tions. The function of the generative style discriminator is only to incorporate
style elements in appropriate positions of the factual captions. The hallucination
mainly comes from the factual model and the pre-trained factual model is capable
of accurately describing the content of images. Therefore, PPCap can improve
stylistic accuracy without introducing incorrect content and the hallucination
problem in our framework is not severe. We also use the new evaluation met-
rics CLIPScore and RefCLIPScore, which utilize the pre-trained CLIP model to
directly compute the similarity between images and captions, thus making them
more sensitive to detecting potentially subtle inaccuracies in captions. As shown
in Table 4, after incorporating stylized elements, PPCap can achieve scores sim-
ilar to those of the factual model.

The Impact of Different Values of w. In addition, we conduct experiments
on the impact of the generative style discriminator with different weights w
on the factual model. The results are shown in Fig. 5. For each kind of styles,
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Fig. 5. The impact of the discriminator with different weights w on the factual model,
namely the changes in CIDEr, cls, and ppl with the variation of w.

when the weight w is set to 0, the generated caption becomes a factual caption,
where cls approaches 0 and CIDEr shows a relatively high value. Then, as the
value of the weight w increases, style factors are gradually incorporated into
the generated captions, where cls increases and CIDEr decreases. And when the
cls exceeds 90%, meaning that the generated captions essentially align with the
desired styles, CIDEr still maintains a relatively high value, which implies that
the generated captions still can accurately describe the content of the images.
This demonstrates the effectiveness of our framework, wherein the factual model
is employed to ensure the fidelity of the image content, guided by the discrimina-
tor to incorporate style into factual captions, resulting in stylized image captions.

4.4 Limitations and Discussion

While efficient, the performance of PPCap shows a slight gap compared to the
SOTA method in the same setting. Especially on FlickrStyle10K, the ppl is high
and increases as w increases in Fig. 5. Our explanation is as follows: the dis-
criminator guides the factual model by leveraging the contrast between different
styles. On SentiCap, there is a noticeable difference between positive captions
and negative captions. But on FlickStyle10k, the styles are implied in the whole
sentence and the difference between stylized captions and factual captions is not
as pronounced, which results in the discriminator disrupting the fluency of gener-
ated captions while guiding the factual model. In future research, we aim to train
a stylized model that considers multiple styles as undesired styles, highlighting
the distinctions between various styles to further enhance the performance of
the framework. Furthermore, generating long and detailed stylized captions is
more practically meaningful, and the emergence of large vision language models
(LVLMs) has provided opportunities for this. However, discriminators trained
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only on short texts cannot effectively guide LVLMs. In the future, we plan to
explore constructing long stylized corpus to train the discriminator for improving
combination with LVLMs.

5 Conclusion

In this paper, we propose a novel Plug and Play framework PPCap for efficient
stylized image captioning, where only a stylized image captioning model needs to
be trained on the small-scale unpaired stylized corpus. Then It can function as
a generative style discriminator by Bayes rule and guide an off-the-shelf factual
image captioning model to generate accurate stylized captions. Experimental
results on two widely used stylized image captioning datasets demonstrate that
our framework achieves outstanding performance while reducing training time
by over 90%. In our future work, we aim to enhance the ability of PPCap to
capture differences between different styles to further improve its performance.

Acknowledgements. This work is supported in part by the National Natural Science
Foundation of China (No. 62106037, No. 62076052), and in part by the Major Program
of the National Social Science Foundation of China (No.19ZDA127).

References

1. Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural
Information Processing Systems, vol. 33, pp. 1877–1901 (2020)

2. Chan, A., Ong, Y.S., Pung, B., Zhang, A., Fu, J.: CoCon: a self-supervised app-
roach for controlled text generation. arXiv preprint arXiv:2006.03535 (2020)

3. Chen, T., et al.: “factual” or“emotional”: stylized image captioning with adaptive
learning and attention. In: Proceedings of the European Conference on Computer
Vision (ECCV), pp. 519–535 (2018)

4. Cheng, K., Ma, Z., Zong, S., Zhang, J., Dai, X., Chen, J.: ADS-Cap: a framework for
accurate and diverse stylized captioning with unpaired stylistic corpora. In: CCF
International Conference on Natural Language Processing and Chinese Computing,
pp. 736–748. Springer (2022)

5. Dathathri, S., et al.: Plug and play language models: a simple approach to con-
trolled text generation. arXiv preprint arXiv:1912.02164 (2019)

6. Fei, Z., Fan, M., Zhu, L., Huang, J., Wei, X., Wei, X.: Uncertainty-aware image cap-
tioning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37,
pp. 614–622 (2023)

7. Gan, C., Gan, Z., He, X., Gao, J., Deng, L.: StyleNet: generating attractive visual
captions with styles. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3137–3146 (2017)

8. Guo, L., Liu, J., Yao, P., Li, J., Lu, H.: MSCap: multi-style image captioning with
unpaired stylized text. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4204–4213 (2019)

9. Hessel, J., Holtzman, A., Forbes, M., Bras, R.L., Choi, Y.: ClipScore: a reference-
free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718 (2021)

http://arxiv.org/abs/2006.03535
http://arxiv.org/abs/1912.02164
http://arxiv.org/abs/2104.08718


290 X. Wei et al.

10. Keskar, N.S., McCann, B., Varshney, L.R., Xiong, C., Socher, R.: Ctrl: a con-
ditional transformer language model for controllable generation. arXiv preprint
arXiv:1909.05858 (2019)

11. Krause, B., et al.: Gedi: generative discriminator guided sequence generation. arXiv
preprint arXiv:2009.06367 (2020)

12. Li, G., Zhai, Y., Lin, Z., Zhang, Y.: Similar scenes arouse similar emotions: parallel
data augmentation for stylized image captioning. In: Proceedings of the 29th ACM
International Conference on Multimedia, pp. 5363–5372 (2021)

13. Li, J., Vo, D.M., Sugimoto, A., Nakayama, H.: Evcap: retrieval-augmented image
captioning with external visual-name memory for open-world comprehension.
arXiv preprint arXiv:2311.15879 (2023)

14. Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: bootstrapping language-image pre-
training with frozen image encoders and large language models. In: International
conference on machine learning, pp. 19730–19742. PMLR (2023)

15. Liang, V.W., Zhang, Y., Kwon, Y., Yeung, S., Zou, J.Y.: Mind the gap: under-
standing the modality gap in multi-modal contrastive representation learning. In:
Advances in Neural Information Processing Systems, vol. 35, pp. 17612–17625
(2022)

16. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

17. Mathews, A., Xie, L., He, X.: Senticap: generating image descriptions with senti-
ments. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30
(2016)

18. Mathews, A., Xie, L., He, X.: Semstyle: learning to generate stylised image captions
using unaligned text. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 8591–8600 (2018)

19. Mokady, R., Hertz, A., Bermano, A.H.: Clipcap: clip prefix for image captioning.
arXiv preprint arXiv:2111.09734 (2021)

20. Nukrai, D., Mokady, R., Globerson, A.: Text-only training for image captioning
using noise-injected clip. arXiv preprint arXiv:2211.00575 (2022)

21. Radford, A., et al.: Learning transferable visual models from natural language
supervision. In: International Conference on Machine Learning, pp. 8748–8763.
PMLR (2021)

22. Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI
Blog 1(8), 9 (2019)

23. Ramos, R., Martins, B., Elliott, D.: LMCap: few-shot multilingual image cap-
tioning by retrieval augmented language model prompting. In: Findings of the
Association for Computational Linguistics: ACL 2023, pp. 1635–1651. Association
for Computational Linguistics, Toronto, Canada (2023). https://aclanthology.org/
2023.findings-acl.104

24. Stolcke, A.: Srilm-an extensible language modeling toolkit. In: Seventh Interna-
tional Conference on Spoken Language Processing (2002)

25. Wang, L., Qiu, H., Qiu, B., Meng, F., Wu, Q., Li, H.: TridentCap: image-fact-style
trident semantic framework for stylized image captioning. IEEE Trans. Circuits
Syst. Video Technol. 34(5), 3563–3575 (2024). https://doi.org/10.1109/TCSVT.
2023.3315133

26. Wang, Y., Xu, J., Sun, Y.: End-to-end transformer based model for image caption-
ing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp.
2585–2594 (2022)

http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/2009.06367
http://arxiv.org/abs/2311.15879
https://doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/2111.09734
http://arxiv.org/abs/2211.00575
https://aclanthology.org/2023.findings-acl.104
https://aclanthology.org/2023.findings-acl.104
https://doi.org/10.1109/TCSVT.2023.3315133
https://doi.org/10.1109/TCSVT.2023.3315133


PPCap: A Plug and Play Framework for Efficient Stylized Image Captioning 291

27. Yang, K., Klein, D.: Fudge: controlled text generation with future discriminators.
arXiv preprint arXiv:2104.05218 (2021)

28. Young, P., Lai, A., Hodosh, M., Hockenmaier, J.: From image descriptions to visual
denotations: new similarity metrics for semantic inference over event descriptions.
Trans. Assoc. Comput. Linguist. 2, 67–78 (2014)

29. Zhao, W., Wu, X., Zhang, X.: MemCap: memorizing style knowledge for image cap-
tioning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
pp. 12984–12992 (2020)

http://arxiv.org/abs/2104.05218


Harlequin: Color-Driven Generation of
Synthetic Data for Referring Expression

Comprehension

Luca Parolari , Elena Izzo(B) , and Lamberto Ballan

University of Padova, Padua, Italy
{luca.parolari,elena.izzo}@phd.unipd.it, lamberto.ballan@unipd.it

Abstract. Referring Expression Comprehension (REC) aims to iden-
tify a particular object in a scene by a natural language expression,
and is an important topic in visual language understanding. State-of-
the-art methods for this task are based on deep learning, which gener-
ally requires expensive and manually labeled annotations. Some works
tackle the problem with limited-supervision learning or relying on Large
Vision and Language Models. However, the development of techniques
to synthesize labeled data is overlooked. In this paper, we propose a
novel framework that generates artificial data for the REC task, taking
into account both textual and visual modalities. At first, our pipeline
processes existing data to create variations in the annotations. Then, it
generates an image using altered annotations as guidance. The result of
this pipeline is a new dataset, called Harlequin, made by more than 1M
queries. This approach eliminates manual data collection and annota-
tion, enabling scalability and facilitating arbitrary complexity. We pre-
train three REC models on Harlequin, then fine-tuned and evaluated on
human-annotated datasets. Our experiments show that the pre-training
on artificial data is beneficial for performance.

Keywords: Synthetic Data Generation · Referring Expression
Comprehension · Visual Grounding.

1 Introduction

The expressiveness and variety of the human language are the basis of com-
munication between people. Their ability to interact and understand each other
attracts researchers to design models able to communicate with them. In this con-
text, the task of Referring Expression Comprehension (REC) [42], also known as
Visual Grounding [7,20] or Phrase Localization [29,34], aims to identify a specific
object in a scene described by a phrase, called referring expression or sometimes
query. The research progress in this task has been made possible thanks to the
active development of datasets. Since 2015, Flickr30k Entities [27], ReferIt [18],
RefCOCO, and two variants RefCOCO+ and RefCOCOg, [26,43] were released.
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Fig. 1. Annotations required by the Refer-
ring Expression Comprehension task. In
this example, the image has one caption
with three referring expressions. Each refer-
ring expression is accompanied by the loca-
tion of the referred object (bounding box).

These datasets are human-labeled
and consist of triplets composed of an
image, a referring expression, and a
bounding box. Fig. 1 shows an exam-
ple. However, the gathering and anno-
tation of such data is time-consuming
and resource-intensive, representing a
critical bottleneck for the collection of
sufficiently large training sets and new
benchmarks.

Current works face this issue
exploring limited supervision learning
techniques such as weakly-supervised
[28], semi-supervised [15], and unsu-
pervised [34] or rely on large Vision
and Language models pre-trained on
a massive amount of multimodal
data [17]. However, the development
of techniques and pipelines to cre-
ate new, reasoning-oriented datasets
is overlooked, limited by fine-grained
annotations required by the Referring Expression Comprehension task. Some
works explore the generation of the queries by either working on their properties
or structure [5,14,33]. However a method to generate both queries and images
has not been investigated yet.

In this paper, we propose a pipeline for generating synthetic data for the
Referring Expression Comprehension task, taking into account both textual and
visual modalities. Recent developments in text-to-image generation with dif-
fusion models allowed fine-grained control over the output by either embed-
ding guidance signals like bounding box, keypoints, or semantic maps with lan-
guage [21] or even expressing them by means of text [37]. Inspired by these
advancements, we argue that (i) the process of manual collection and annota-
tion of data for this task can finally be avoided, and (ii) new benchmarks with
arbitrary size and complexity can be created. The proposed pipeline and exten-
sive experiments we run address those hypotheses.

Broadly speaking, our pipeline is composed of two modules. The first is the
Annotation Generation Engine. It is responsible for generating new referring
expressions (REs) with consistent bounding box annotations. We use REs from
Flickr30k Entities as seeds and generate their variations to keep consistency
with the arrangement of objects in the image. REs are altered by varying their
attributes, specifically the color attribute. The second is the Image Generation
Engine. Guided by the annotation obtained in the previous step, it generates
a new image. The synthesized image should represent the given caption and
depict objects at specific locations that look like the given description. Objects
are described through referring expressions, which may have varied attributes.
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Following this strategy, we synthetically generate Harlequin, a new dataset
consisting of train, validation, and test sets. Harlequin is the first dataset
totally synthetic generated for the Referring Expression Comprehension task.
The experiments show that its use in pre-training stage boost the results on real
data, reducing labeling effort and errors in annotations.

Our contributions can be summarized as follows:
(i) We propose a novel pipeline for generating synthetic data for the Referring

Expression Comprehension task, increasing richness and variability and reduc-
ing to zero the human effort required for collecting annotations; (ii) We intro-
duce Harlequin, a new dataset for the Referring Expression Comprehension task,
which is entirely synthetically generated; (iii) We prove the effectiveness of our
synthetic dataset if used in a pre-training stage to transfer knowledge on real
datasets; (iv) We release both the dataset and the code.1

2 Related Work

Referring Expression Comprehension Among different approaches studied in lit-
erature [38,42], recently the transformer-based approach emerged, demonstrat-
ing superior performance. TransVG [7] makes use of transformer for both intra-
and inter-modality correspondence. VLTVG [36] employs a language-guided con-
text encoder to extract discriminative features of the referred object. QRNet [40]
introduces query-aware dynamic attention to extract query-refined visual fea-
tures with a hierarchical structure. VG-LAW [32] adds adaptive weights to
the visual backbone to make it an expression-specific feature extractor. LGR-
NET [25] emphasizes the guidance of the referring expression for cross-modal
reasoning. InterREC [35] increases object-level relational-level interpretability
through an image semantic graph and a reasoning order tree.

Synthetic Data Generation In the last decade different areas of research started
to investigate the use and generation of synthetic data to lower the cost of data
and automation collection. In [12], the authors argued the interchangeability
between real and synthetic datasets and demonstrated the improvements of per-
formance pre-training the models on virtual data encouraging the generation
of synthetic data in various domains such as autonomous driving [12], garden-
ing [19], deepfake detection [1], object detection and 3D reconstruction [31].
In many cases, datasets were created by means of simulators which guarantee
complete control over synthetic environments such as Unity [16], Blender [3]
and CARLA [9]. Newer trends instead employ generative models to increase the
automation in data generation and labeling process [1].

Text-to-image Generation Diffusion-based models demonstrated astonishing
abilities in generating complex and realistic images. Recently, the existing pre-
trained text-to-image diffusion models allowed fine-grained control in image gen-
eration, specifying requirements at the level of bounding boxes, masks, and
1 https://github.com/lparolari/harlequin

https://github.com/lparolari/harlequin
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edge or depth maps. For example, GLIGEN [21] uses a pre-trained T2I dif-
fusion model and, freezing its weights, injects the grounding information into
new trainable layers via a gated mechanism, focusing primarily on bounding
boxes as the grounding condition. Similarly, ReCo [39] extends stable diffusion,
adding position tokens to enable open-ended regional texts for high-level region
control. Finally, ControlNet [45] introduces conditional control connecting the
trainable copy and the large pre-trained text-to-image diffusion models via “zero
convolution” layers to eliminate harmful noise during training.

3 Human-annotated Datasets for Referring Expression
Comprehension

The most popular datasets in the field are Flickr30k Entities, ReferIt, and espe-
cially RefCOCO family. All these datasets were built on top of existing sets of
captioned images, and they were human-annotated to align a referring expres-
sion with the bounding box of the mentioned entity in the image. In particu-
lar, Flickr30k Entities dataset was built to augment Flickr30k [41] image cap-
tions with 244k coreference chains yielding almost 276k bounding boxes in 32k
images. ReferIt, which contains images from the TC-12 expansion of the Image-
CLEF IAPR dataset [10], has 131k expressions in 20k photographs of natural
scenes. RefCOCO, RefCOCO+, and RefCOCOg were built on top of MSCOCO
dataset [22]. RefCOCO and RefCOCO+ count 142k referring expressions in 20k
images, instead RefCOCOg counts 85k expressions in 27k images. They aimed
to collect images with multiple instances of the same object class to increase the
complexity. Besides, RefCOCOg focused on rich and natural descriptions, while
RefCOCO and RefCOCO+ on appearance-based descriptions.

Although crowd-sourcing protocols allowed the collection of a noticeable
amount of annotations, we believe that such a time-consuming and resource-
intensive task severely limits the gathering of new datasets where generaliza-
tion, adaptability, and reasoning properties can be learned and evaluated. In
this paper, we investigate a pipeline for generating synthetic data for the Refer-
ring Expression Comprehension task, having control of both visual and textual
content. As a starting point towards this direction, we decide to add some con-
straints in the generation of the data in order to properly validate the pipeline,
the synthetic dataset and its applicability to real data. In particular, inspired
by [12], we generate a dataset applying variations on the existing Flickr30k Enti-
ties one. Among others, we chose Flickr30k Entities for seed samples because
every image is annotated with a sentence, yielding many referring expressions.
From a generative point of view, this setting alleviates the amount of guessing
and constrains the possible space of images that can be generated to a subset,
where objects are precisely described and spatially located.
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Fig. 2. Our pipeline. It processes existing samples from Flickr30k Entities data. We
select the ones characterized by at least one color attribute in their referring expres-
sions. The Annotation Generation Engine processes the sample’s caption, referring
expressions and locations where the color attribute is replaced with a randomly chosen
color. The caption is updated accordingly. Then, the Image Generation Engine creates
the new image using new annotations provided by the Annotation Generation Engine
as guidance for the generation.

4 The Proposed Pipeline

The proposed approach, depicted in Fig. 2, relies on two components to gener-
ate synthetic data for Referring Expression Comprehension. The former, termed
Annotation Generation Engine, is in charge of creating annotations to guide
image generation. The latter, named Image Generation Engine, is responsi-
ble for synthesizing images enforcing the guidance provided by the Annotation
Generation Engine. Specifically, given an input annotation a composed of an
image caption c and set of referring expressions along with referred object loca-
tions {(qi, li)}Ni=1, the Annotation Generation Engine produces new annotations
by varying attributes in the p-th referring expression, with p ∈ [1, N ]. Then,
the Image Generation Engine uses the annotation provided by the Annotation
Generation Engine to generate a synthetic image I exploiting GLIGEN [21], a
generative model based on Stable Diffusion [30].
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Since people frequently use colors to describe and disambiguate objects [18],
we select color as the attribute to alter in the annotations. The color attribute
has also proven to have a strong impact in several computer vision tasks, ranging
from visual recognition problems (like object detection and image captioning)
[24] to visual tracking [6]. Therefore, for each referring expression we generate
several variations where the color attribute is replaced with a new color. This
enhance richness and variability of the dataset, because with one single seed
many other examples can be generated representing objects with different col-
ors, and possibly new orientations, perspectives and views of the same scene.
Moreover, altering the color attribute offers some advantages: (i) a simple varia-
tion of the textual content has a strong impact on the generated images, allowing
the models to learn to disambiguate between similar scenes; (ii) this alteration
does not affect the position of the object in the image, retaining the original
layout of objects in the image; (iii) it is (relatively) easy to understand and
manipulate by a generative model.

4.1 The Annotation Generation Engine

The Annotation Generation Engine (AGE) is a function defined over the set of
annotations A. It is specifically designed for Referring Expression Comprehen-
sion task and produces compatible annotations by altering queries in existing
samples: φ : A → A. The AGE component takes an annotation a in input. The
annotation consists of a caption c and a non-empty set of entities E. Each entity
is described by the textual form of a referring expression and the location of the
referred object:

Annotation: a = (c, E) (1)
Caption: c = [c1, · · · , cL] (2)

Entities: E = {(qi, li)}Ni=1 (3)

where c is a caption of L tokens, N is the number of referring expressions,
qi = [cj , . . . , ck] with 1 ≤ j ≤ k ≤ L is the textual representation of the referring
expression from a subset of contiguous tokens in c, li = [αmin, βmin, αmax, βmax]
is with top-left and bottom-right coordinates of the referred object. The AGE
returns a new annotation where the p-th referring expression is varied by replac-
ing a color attribute, p ∈ [1, N ]. The location is not altered. Tokens in the
caption are updated accordingly to the new referring expression, while other
referred objects are not varied and serve as context. Mathematically, the output
of φ(a) is â = (ĉ, Ê) where

ĉ = [c1, · · · , cj−1,

q̂p

︷ ︸︸ ︷

ĉj , · · · , ĉk, · · · cL] (4)

Ê = {q̂p, lp} ∪ {(qi, li)}Ni=1,i �=p (5)

with q̂p = [ĉj , · · · , ĉk] the new referring expression where the color attribute is
changed. Specifically, we replace in qp the color with a new randomly sampled
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one. Sampling is done on a vocabulary C of 12 color attributes based on [44]:
black, gray, white, red, orange, yellow, green, cyan, blue, purple, pink, and brown.
The variation function φ is applied 6 times (|C|/2) per referring expression with
color attribute. We chose 6 as a trade-off between the number of annotations
generated and the variability introduced through multiple sampling.

The current definition of φ keeps fixed all objects’ locations and N − 1 refer-
ring expressions. This is done to preserve the spatial arrangement of the objects,
i.e. the layout and the image context. Objects’ locations are particularly relevant
as they express complex semantic meaning. For example, the size of bounding
boxes may express perspective: a person in the foreground should be bigger with
respect to one in the background. Moreover, they could also identify relations:
in the scene represented by “a person reading a book”, the bounding box of the
book should be small but also close to the bounding box of the person. In order
to keep this rich semantic, in this work we prefer to focus on variation of text,
which is more intuitive to generate and evaluate.

4.2 The Image Generation Engine

The Image Generation Engine (IGE) is responsible for generating synthetic
images. This component receives an annotation â obtained from the Annota-
tion Generation Engine. It returns an image I ∈ I from the domain of images
encoding semantic information expressed in â. More in detail, we define the IGE
as a function ψ : A → I: ψ(â) = I.

We implement the Image Generation Engine component with Grounded-
Language-to-Image Generation (GLIGEN) [21]. GLIGEN is a generative model
based on Stable Diffusion [30], which is capable of generating detailed and high-
quality images. Although the pipeline does not bind the IGE component with a
specific generative model, we chose GLIGEN for different reasons. Unlike main-
stream generative models, GLIGEN allows fine-grained control over the output
image. This is a fundamental aspect because we are interested in providing sam-
ples for REC task. Specifically, we are interested in generating images that are
coherent to the annotations, i.e. locations of the referred objects. For this reason,
a critical feature of the chosen generator is the ability to guide the synthesizing
process through “objects description”, beyond the image caption. That is, an
image is generated by describing its content through a caption as in Stable Dif-
fusion, but a set of pairs (referring expression, object location), namely entities,
is also provided. These entities instruct GLIGEN with the objects’ location and
information on their appearance features. The more accurate the positioning
of objects and fidelity to descriptions, the better the supervision signal for the
Referring Expression Comprehension task.

Although the main focus of GLIGEN is the conditioning on entities, i.e.,
description and location of objects, it can also work with other modalities:
images, keypoints, hed map, canny map, semantic map, normal map. Every
modality can be used to control the generation of the output image. In this
work, we focus on the standard modality, which is compatible with the format
of annotation â produced by the Annotation Generation Engine.
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Fig. 3. Examples produced by our pipeline. On the left, we show reference images
along with their annotations from Flickr30k Entities. On the right, we report some
generated variations. Colors are altered and guide, along with objects’ locations, the
image synthesis.

5 Harlequin Dataset

We introduce the first totally synthetic generated dataset for the Referring
Expression Comprehension task, termed Harlequin,2 collected via our pipeline.
We report some examples in Fig. 3. The dataset is originated from Flickr30k
Entities: we select samples characterized by referring expressions containing the
color attribute to variate them. Since the Image Generation Engine is eager in
terms of resources, we first generate all the new annotations with Annotation
Generation Engine using the selected samples as seeds. Secondly, we run the
image synthesis adopting a frozen instance of GLIGEN in “generation” mode
with “text + box” modality and batch size 1.3

Harlequin comprises a total of 286,948 synthetic images and 1,093,181 anno-
tations targeting color attributes and following the coco format. It has 2.60±1.14
words per referring expression on average, in line with Flickr30k Entities statis-
tics. The median value is 2, while the longest referring expression is 14 words.
Harlequin follows Flickr30k Entities’ data splits. It provides 988,342 annotations

2 Harlequin, or Arlecchino in Italian, is a character from the Italian commedia dell’arte
known for his colorful patched costume.

3 https://github.com/gligen/GLIGEN.

https://github.com/gligen/GLIGEN
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Fig. 4. Dataset statistics. We report the number of images and referring expressions
per dataset on the left and right, respectively. Harlequin is highlighted in orange.

over 259,930 images for the training set, 52,554 annotations over 13,584 images
for the validation set, and 52,284 annotations over 13,434 images for the test
set. Fig. 4 visualizes the amount of data in Harlequin compared to existing,
manually annotated, and collected datasets. Harlequin doubles the amount of
referring expression in Flickr30k, the largest dataset available in the literature,
and provides a noticeably larger amount of images.

Harlequin presents some interesting properties. For instance, the generated
images display the same objects under various orientations and on different back-
grounds, increasing the variability and complexity of Harlequin with respect to
Flickr30k Entities, while retaining its supervision signal (Fig. 3, third row). More-
over, we observe that our generation strategy fixes some errors in the human-
annotated labels. As a matter of fact, we noticed that Flickr30k Entities contains
some samples annotated with the wrong locations of the bounding boxes. The
pipeline addresses this issue, generating new images coherent with the given
annotations where the referred object is correctly inside the provided bounding
box. Finally, we bring up that the used variation function φ inevitably leads
to the generation of unrealistic-colored objects (e.g. “the blue dog”). Indepen-
dently of that, the results show that Referring Expression Comprehension mod-
els learn a robust representation from Harlequin. This is coherent with the fact
that humans are usually capable of identifying an object regardless of its color
and use this information to disambiguate similar objects.

6 Experiments

We present experimental results obtained in Referring Expression Comprehen-
sion by pre-training two models on Harlequin, our synthetic dataset, and fine-
tuning them on realistic datasets. We show that the pre-training improves per-
formance. We discuss the role that variations in original annotation play in the
improvement of results, and finally, we analytically evaluate the contribution of
the color variations through an ablation study.
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6.1 Implementation details

We pre-train TransVG [7], VLTVG [36], and LGR-NET [25] on our synthetic
dataset and then fine-tune them on RefCOCO family datasets initializing the
weights of the model with those obtained after the pre-training. We followed
the implementation details of TransVG, VLTVG, and LGR-NET. For all the
experiments on TransVG and VLTVG, pre-training on Harlequin, fine-tuning
on RefCOCO family, and from-scratch baselines, we initialized the weights of
the visual transformers with those of DETR [4] based on the ResNet-50 [13]
available on projects’ page. Instead, the linguistic branch is initialized with the
weights of the BERT model [8]. We set the batch size to 32 and use AdamW as
the optimizer. For the pre-training on Harlequin, we train both TransVG and
VLTVG for 60 epochs, the value suggested by authors for Flickr30k, dropping
the learning rate by a factor of 10 after 40 epochs. Instead, the fine-tuning exper-
iments and supervised baselines are trained for 90 epochs with a learning rate
dropped by a factor of 10 after 60 epochs. When using the TransVG model, we
set the weight decay to 10−4, the initial learning rate of the vision-language mod-
ule and prediction head to 10−4, and of the visual branch and linguistic branch
to 10−5. When using the VLTVG model, the initial learning rate of the feature
extraction branches is 10−5 and 10−4 for all the other components. Moreover,
we freeze the weights of the visual and textual branches in the first 10 epochs.
As concerns LGR-NET model, we pre-trained the model on Harlequin and the
fine-tuning and supervised baselines experiments are trained for 15 epochs. We
used Swin Transformer Small [23] as the backbone, BERT as the textual extrac-
tor, and followed the implementation details provided by the authors. During
evaluation, we set batch size to 32. We carried out all the experiments on a single
NVIDIA RTX A5000. We used the code provided online.4,5,6

6.2 Evaluation Models and Metrics

The models we chose for the evaluation of Harlequin on the Referring Expression
Comprehension task are TransVG [7], VLTVG [36], and LGR-NET [25], as men-
tioned above. TransVG proposes an alternative prediction paradigm to directly
regress the target coordinates. It makes use of transformer for both intra- and
inter-modality correspondence. A regression token is added to the multi-modal
transformer and is optimized through a regression head that directly outputs
the object’s location. VLTVG employs a visual-linguistic verification mecha-
nism alongside a language-guided context encoder to extract discriminative fea-
tures of the referred object. The visual-linguistic verification module enhances
visual features, emphasizing regions related to the referring expression, whereas
the language-guided context encoder collects meaningful visual contexts. Ulti-
mately, a multi-stage cross-modal decoder is utilized to iteratively analyze the
encoded visual and textual features, refining the object representation for precise
4 https://github.com/djiajunustc/TransVG
5 https://github.com/yangli18/VLTVG
6 https://github.com/lmc8133/LGR-NET.

https://github.com/djiajunustc/TransVG
https://github.com/yangli18/VLTVG
https://github.com/lmc8133/LGR-NET
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Table 1. Results. We show the performance of three methods, TransVG, VLTVG
and LGR-NET, on the Referring Expression Comprehension task with pre-training on
Harlequin (Synth→Real) and without (Real). The pre-training shows superior or com-
parable performance on three benchmarks: RefCOCO, RefCOCO+ and RefCOCOg.
We report the standard accuracy percentage.

Method RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val test

TransVG [7]:
Real 63.33 69.05 55.62 64.69 69.02 55.76 64.04 63.22
Synth→Real 65.7770.6656.8066.6672.0155.66 65.1364.33
(Improv.) +2.44 +1.61 +1.18 +1.97 +2.99 -0.10 +1.09 +1.11
VLTVG [36]:
Real 69.6674.33 61.35 70.83 76.02 61.71 70.5770.03
Synth→Real 69.60 75.7661.14 71.4677.1661.30 70.04 69.57
(Improv.) -0.06 +1.43 -0.21 +0.63 +1.12 -0.41 -0.53 -0.46
LGR-NET [25]:
Real 82.71 85.77 79.31 71.11 75.45 63.35 70.75 71.11
Synth→Real 84.3887.1380.6771.4075.6064.7074.6175.22
(Improv.) +1.67 +1.36 +1.36 +0.29 +0.15 +1.35 +3.86 +4.11

target localization. LGR-NET emphasizes the guidance of textual features for
cross-modal reasoning extending the standard textual features generating three
embeddings: coordinate, word, and sentence. The textual features are, then,
employed for alternated cross-modal reasoning exploiting a loss enhances the
cross-modal alignment while localizing the referred object.

The evaluation metric is the standard accuracy. Given a referring expression,
it considers a prediction to be correct if and only if the intersection over union
between the predicted and the ground truth bounding box is at least 0.5.

6.3 Results

Tab. 1 shows the performance of TransVG [7], VLTVG [36], and LGR-NET [25]
in Referring Expression Comprehension task. Specifically, we report the results
obtained in two settings. In the first, we train the model from scratch on realistic
datasets: RefCOCO, RefCOCO+, and RefCOCOg. In the second, we pre-train
the model on Harlequin, our synthetic dataset, and then fine-tune it on realistic
datasets. In both cases, we report the evaluation on the three RefCOCO datasets.

TransVG shows homogeneous improvement among all datasets. It improves
by 2.44%, 1.61%, and 1.18% in RefCOCO splits and shows superior performance
also in RefCOCO+ and RefCOCOg. For VLTVG, despite the model starts from
a higher performance with respect to TransVG, it shows a remarkable 1.43%
and 1.12% improvement on RefCOCO and RefCOCO+’s testA. As concerns
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LGR-NET, we improve the supervised baselines on all the datasets reaching up
to +3.86% and +4.11% on the RefCOCOg splits. We recall that the reported
improvement emerges in a cross-dataset setting. As a matter of fact there is no
overlap between the pre-training data, synthetically generated from Flickr30k
Entities, and the fine-tuning datasets.

Table 2. Ablation study. We evaluate the performance of TransVG and VLTVG on
a subset of test sets where referring expressions contain at least one color attribute.
Column % Anns reports the percentage of annotations with at least a color attribute
with respect to original test sets. Columns Real and Synth→Real show the performance
without or with pre-training on Harlequin. We report standard accuracy in percentage.

Evaluation TransVG [7] VLTVG [36]
Dataset % Anns Real Synth→Real Real Synth→Real

RefCOCO val (color) 23.2 64.3569.50 (+5.15)77.1577.11 (-0.04)
testA (color)37.5 68.7372.91 (+4.18) 79.46 81.48 (+2.02)
testB (color) 17.8 56.4660.11 (+3.65) 68.95 70.28 (+1.33)

RefCOCO+val (color) 34.6 68.9170.07 (+1.16) 75.79 77.13 (+1.34)
testA (color)37.5 71.6374.20 (+2.59) 79.13 80.95 (+1.82)
testB (color) 26.8 55.7357.33 (+1.60) 65.6563.82 (-1.83)

RefCOCOg val (color) 41.4 62.3765.04 (+2.67)73.2373.09 (-0.14)
test (color) 41.7 62.1264.94 (+2.82) 73.05 73.70 (+0.65)

The results demonstrate that pre-training on synthetically generated data is
feasible in the Referring Expression Comprehension task. Annotations required
by this task challenge generative models, where their artistic traits need to deal
with fine-grained constraints on objects’ locations and descriptions. Nevertheless,
our pipeline proves that the generation and collection of heavily annotated data
with zero human effort is possible. This is an important milestone and opens
a wide range of future directions where data can be crafted to overcome the
increasing need for annotations. We argue that the artificial nature of data is
overcome when the control over semantic properties is appropriately exploited.
Merely generating a dataset may not imply good performance, especially if the
model is tested on realistic benchmarks. The generated dataset must encode
some knowledge that the model can learn in order to compete with real-world
datasets.

6.4 Impact of the Color Attribute

In this section, we evaluate the impact of our pre-training on realistic samples
with the color attribute. We follow the same training scheme. However, here the
test sets are limited to samples containing a referring expression with a color.
As shown in Tab. 2, TransVG [7] demonstrates a boost in performance among



304 L. Parola et al.

RefCOCO family datasets, with remarkable +5.15%, +4.18% and +3.65% on
RefCOCO. The pre-training shows superior or comparable performance also for
VLTVG [36], with the exception of testB for RefCOCO+. We recall that no
changes to the model’s architecture have been made to encode extra knowledge
about colors. The improvement is solely guided by learning patterns from data.

However, these results were expected. As a matter of fact, Harlequin is mainly
composed of referring expressions that contain a color attribute. Consequently,
models pre-trained on our dataset primarily acquire generalization capabilities
in identifying and distinguishing objects with different colors.

7 Conclusion

In this work, we design a new pipeline that aims to generate synthetic data
for the Referring Expression Comprehension task. It involves two components:
the Annotation Generation Engine for creating new expressive annotations and
the Image Generation Engine to generate synthetic images conditioned by the
annotations. Our strategy can generate datasets with arbitrary dimensions and
complexity without human effort and reduce some errors in labeling. We adopt
the method to generate Harlequin, the first dataset collected for the Referring
Expression Comprehension task. Harlequin is built on top of Flickr30k Entities’
annotations and is generated varying color attributes in the original referring
expressions. We validate our approach by pre-training state-of-the-art models on
Harlequin and demonstrate that the acquired generalization capabilities improve
the performance after the fine-tuning on real data.

In future work, we plan to investigate the potential and flexibility of our
pipeline to progressively get rid of each input until the entire sample is gener-
ated from scratch. In particular, we believe that the proposed variation function
could be extended to work with other attributes besides the color or could be
learned. Some of them, such as size and location, also require the manipulation
of bounding boxes’ coordinates besides queries. There has been effort to face this
new challenge. For example, LayoutGPT [11] generates a reasonable arrangement
of objects given a textual description and returns their coordinates. This tool,
combined with our pipeline, could alleviate the problem of having fixed layout of
objects. Finally, we believe that the generation of the referring expressions could
be automatized through prompting strategies, which have been proven effective
for task adaptation in Large Language Models [2].

Acknowledgments. We acknowledge the CINECA award under the ISCRA initia-
tive, for the availability of high performance computing resources and support. This
work is also supported by the PNRR project FAIR - Future AI Research (PE00000013),
under the NRRP MUR program funded by NextGenerationEU.
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Abstract. The integration of attention mechanisms into computer
vision tasks, inspired by the success of Transformers in natural lan-
guage processing, has revolutionized various applications such as object
detection and visual grounding. In this paper, we focus on spatio-
temporal video grounding (STVG), a computer vision task that aims
to jointly extract spatial and temporal regions from videos based on
textual descriptions. Leveraging recent advancements in attention-based
Transformer architectures, particularly in object detectors, and build-
ing upon a recent baseline model, we integrate two enhancements in
attention modules: Width-Height Modulation and Deformable Attention
units. These enhancements aim to improve the accuracy and efficiency of
STVG techniques in two datasets, HC-STVG and VidSTG, by address-
ing challenges related to feature inconsistencies and prediction reliability
across video frames. As a result, our study contributes to advancing the
baseline models in spatio-temporal video grounding, bridging the gap
between computer vision and natural language processing domains.

Keywords: Video Grounding · Spatio-Temporal Video Grounding ·
Transformers · Attention Unit

1 Introduction

The recent success of Transformers in natural language processing has led to
the integration of attention mechanisms into computer vision tasks, such as
image classification, object detection, and action recognition [8]. Particularly,
Transformers have shown competitive performance in object detection with the
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DETR architecture [1], eliminating the need for hand-crafted components such as
anchor generation and non-maximum suppression. More recently, MDETR [10],
a multimodal architecture, has further extended this framework to detect objects
in images based on free-form text, i.e., phrase grounding.

In video analysis, the grounding problem is mainly explored as the temporal
video grounding task, which seeks to identify segment boundaries within videos
for described actions. In our study, we focus on the spatio-temporal video ground-
ing tasks (STVG), which aims to jointly extract spatial and temporal regions
by employing a series of bounding boxes spanning identified frames, leveraging
both spatial and temporal localization losses. This can be considered a crucial
multimodal task bridging computer vision and natural language processing, with
applications in video indexing, retrieval, and analysis [25].

To tackle the modeling of multimodal representations and spatio-temporal
relationships, attention-based architectures [9,23] are emerging as robust solu-
tions for STVG, leveraging the latest object detection progress [1]. Our objective
is to explore integrating recent advances, particularly attention modules, around
the baseline Spatio-Temporal Consistency Aware Transformer (STCAT) [9], for
the STVG task. Our integration particularly delves into the evaluation and
enhancement of attention units within the spatial decoder (see Fig. 1).

Building upon recent developments in DETR-based object detectors, we
initially incorporate the Width-Height Modulation from DAB-DETR [13] and
the deformable attention unit from Deformable-DETR [28] into the attention
units used in the spatial decoder component of the architecture. Subsequently,
these two mechanisms are combined into a single attention unit. Our proposed
improvements in the attention unit also include rethinking of the implicit and
explicit integration of multimodal representations, visual-text encodings, within
the attention block. The experimental results conducted on the HC-STVG [20]
and VidSTG [27] benchmark datasets demonstrate that our proposed enhance-
ments yield improved performance. Furthermore, we show in this work that
improved attention units can lead to better grounding results for small-scale
objects. The source code of our model is available on GitHub1.

2 Background

Video grounding presents a challenging task that lies at the intersection of com-
puter vision and natural language processing. It involves aligning video regions
with corresponding textual descriptions. The complexity of this task is com-
pounded by inherent ambiguity and variability found in natural language descrip-
tions, as well as the multimodal nature of both video and text data. Within the
domains of temporal video grounding (TVG) and spatial-temporal video ground-
ing (STVG), research has been conducted to address this challenge.

1 https://github.com/Hans7331/stvg-work

https://github.com/Hans7331/stvg-work
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Fig. 1. The baseline STCAT [9] drawn at a coarse scale and our proposed attention
variants integrated into the baseline architecture.

Temporal Video Grounding (TVG) Several approaches have been pro-
posed for temporal video grounding, with advancements often revolving around
improved feature representations, attention mechanisms, and training strate-
gies [2,3,24].

Cross-modal based approaches aim at fostering a rich interaction between
the video and text modalities. The Memory Augmented Network (MAN) [25]
is an exemplar, utilizing memory networks to capture the cross-modal dynam-
ics. Rank-based approaches generate numerous candidate segments and rank
them according to their predicted relevance to the textual description [5]. Recent
models have started incorporating more intricate mechanisms to bridge the gap
between the vision and text modalities.

Building upon the success of Transformers [22], recent methods have begun
utilizing self-attention mechanisms to selectively focus on the most relevant video
frames to a given textual description. The development of unified embedding
spaces, where video frames and textual tokens coexist, has been another trend.
These shared spaces facilitate better understanding and alignment between the
two modalities [26]. With the vast diversity in video content and textual descrip-
tions, few-shot learning techniques are being employed to adapt temporal video
grounding models to new tasks with limited labeled data [17], incorporating
Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs),
and Transformer-based architectures.
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Spatio-Temporal Video Grounding (STVG) While retaining the temporal
grounding aspect, STVG identifies spatial regions in a video segment where the
described action or object is present. It outputs a series of bounding boxes, creat-
ing a tube-like spatio-temporal structure for a sentence query in an untrimmed
video sequence. Early methods like STGRN [27] and STGVT [20] rely on a
two-stage process. First, a pretrained tube detector generates candidate pro-
posals. Then, the best tube proposal is chosen from these candidates, ranked
according to their similarity to the sentence query. Recently, STVG models have
emerged as one-stage approaches. These include STVGBert [19], which intro-
duces an improved visual-linguistic transformer that does not rely on any pre-
trained detectors. However, the method faces a feature alignment issue due to the
absence of complete video content. Another one-stage model is TubeDETR [23],
based on a Transformer model inspired by the DETR [1] and MDETR [10]
architectures. The Transformer includes a video and text encoder for spatial
multimodal interactions and a space-time decoder to perform spatio-temporal
localization. While STVGBert is primarily built around its core module and
TubeDETR employs a video-text encoder followed by a space-time decoder,
CSDVL [12] proposes a framework where a static vision-language stream and a
dynamic vision-language stream collaboratively reason for localization.

STCAT [9], used as a baseline in our experiments, is more intricate. It incor-
porates a cross-modal encoder, a template generator, and a query-based decoder
in a one-stage approach. The architecture of STCAT emphasizes the importance
of feature alignment consistency in the STVG task.

More recently, CoSTA [11] employs a space-time entanglement framework to
address space-time interaction. Another concurrent work, CG-STVG [7], relies on
an encoder-decoder architecture with a context-guided decoder that integrates
mined context from video at each decoding stage. The integration of large lan-
guage models is becoming increasingly significant in grounding tasks. One recent
study, PG-Video-LLaVA [16], introduces a grounding module designed to local-
ize objects in videos based on user instructions. Although the experiments were
conducted on videos from the VidSTG and HC-STVG datasets, the assessments
specifically focused on the spatial grounding task.

3 Our Model

This section summarizes the basics of the chosen baseline architecture and intro-
duces two proposed attention unit variants. The proposed variations consists of
an enhanced attention mechanism that incorporates Width-Height Modulation
and a Deformable Attention unit, which replaces the standard attention block.
Width-Height Modulation enhances the spatial attention maps by integrating
scale information directly into them, allowing for robust feature extraction from
objects with varying widths and heights. On the other hand, Deformable Atten-
tion unit addresses the challenges of applying Transformer attention on image
feature maps, focusing only on selected key sampling points around a reference
point.
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3.1 Baseline STVG Model

Numerous methods have been proposed to solve the spatio-temporal video
grounding task by treating it as a parallel frame-grounding problem. This app-
roach, however, has led to several challenges, particularly related to feature
and prediction inconsistencies. These inconsistencies, especially when occurring
together, can hinder the accuracy and reliability of the grounding process, mak-
ing it imperative to seek alternative strategies.

To address the challenges, the Spatio-Temporal Consistency Aware Trans-
former (STCAT) [9] introduces an innovative end-to-end one-stage framework.
Its essence lies in its ability to ensure consistent grounding across video frames.
It achieves this by employing a novel multimodal template as a global objective.
This template serves to constrict the grounding region, ensuring that predictions
are consistently associated across different video frames. A visual representation
of this architecture, depicted at a coarse scale, is shown in Fig. 1.

The architecture employs both visual and textual backbones to meticulously
extract visual and textual features. To extract visual features, the model utilizes
the pretrained weights of ResNet-101 [10]. On the other hand, for textual fea-
tures, pretrained RoBERTa [14] is leveraged. These extracted features are then
concatenated and channeled into the encoder block. Within this block, global and
local tokens are processed, which carry overarching video-level contexts and spe-
cific frame-level contexts, respectively. These tokens are subsequently directed
to the template generator block. Here, the content query is utilized as input
for the time decoder, while the positional query serves as input for the spa-
tial decoder. Notably, these two decoders share similarities and their intricacies
will be elaborated upon in subsequent sections. Finally, the prediction heads
come into play, determining the start and end times through the time decoder’s
prediction head. Concurrently, the spatial decoder’s prediction head ascertains
the coordinates for the bounding boxes associated with each frame, resulting in
comprehensive prediction output.

In the context of STVG, the attention unit’s functionality and its variants
are of significant interest. As the STCAT model’s code was available when we
needed a baseline for STVG tasks, we based our video grounding model on it
and proposed various modifications in its spatial decoder’s attention unit, as will
be described next.

3.2 Width-Height Modulation

The concept of Width-Height Modulation emerges as an enhancement in the
STCAT’s decoder’s attention unit as shown in Fig.2a. Traditional positional
attention maps, often visualized as Gaussian-like priors, have been convention-
ally assumed to be isotropic with a fixed size for all objects [13]. This assumption
inadvertently neglects the scale information, specifically the width and height of
objects.

To address this limitation and enhance the positional prior, a novel approach,
originally proposed in DAB-DETR [13], is being leveraged here: the integration of
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Fig. 2. Two proposed attention unit variants integrated into the spatial decoder of the
baseline model.

scale information directly into the attention maps. In the conventional positional
attention map, the query-to-key similarity is computed as:

Attn((x, y), (xref , yref )) =
PE(x) · PE(xref ) + PE(y) · PE(yref )√

D
, (1)

where PE(·) stands for the sinusoidal position encoding, the 1√
D

factor serves
as a rescaling term, as suggested by [22]. (x, y) are the coordinates of the current
position being attended to, while (xref , yref ) are those of a reference position
used to compute the attention score. To better accommodate objects of varying
scales, the positional attention maps can be modulated by dividing the refer-
ence anchor width and height by those of the query. This modulation can be
represented as:

Modulatex = PE(x) · PE(xref ) · wq,ref

wq
, (2)
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Modulatey = PE(y) · PE(yref ) · hq,ref

hq
, (3)

ModulateAttn((x, y), (xref , yref )) =
Modulatex + Modulatey√

D
, (4)

where wq and hq denote the width and height of the anchor Aq, and wq,ref

and hq,ref represent the reference width and height. These two are computed
from the positional query Cq as:

wq,ref , hq,ref = σ(MLP(Cq)). (5)

This modulation in the positional attention facilitates robust extraction of fea-
tures from objects with diverse spatial sizes. The video and text inputs here are
processed in a manner similar to the baseline STCAT, with modifications made
exclusively in the spatial decoder component.

3.3 Deformable Attention Unit

The Deformable Attention Transformer [28] introduces a novel approach to
address the challenges of applying Transformer attention on image feature maps.
Unlike traditional Transformer attention mechanisms, which consider all possi-
ble spatial locations, this innovative method aims to optimize computational
efficiency and enhance performance. The deformable attention module focuses
only on a select set of key sampling points around a reference point. This app-
roach, regardless of the spatial size of the feature maps, can mitigate issues
related to convergence and spatial resolution of features.

Given an input feature map x ∈ R
C×H×W , let q index a query element with

content feature zq and a 2-D reference point pq, the deformable attention feature
is formulated as:

DeformAttn(zq, pq, x) =
M∑

m=1

Wm

K∑

k=1

Amqk · W 0
mx(pq + Δpmqk), (6)

where m and k index the attention head and the sampled keys, respectively.
The attention weight Amqk lies in the range [0,1], normalized by

∑K
k=1 Amqk = 1,

and the sampling offset Δpmqk is obtained through linear projection over the
query feature zq.

The Template Generator, as introduced in the STCAT framework by [9],
produces two key outputs: the positional query qp and the content query qc. In
the case of deformable attention, the decoder input is the content query qc. Con-
versely, in the original STCAT framework, this decoder input is a zero-initialized
embedding, as depicted in Fig. 2b. The reference anchor, which remains consis-
tent with the original STCAT framework, is the positional query qp. This refer-
ence anchor plays a crucial role in guiding and constraining the grounding region
for each frame in the video.
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In this work, we introduce two variations of deformable attention blocks:
DeformAttnV and DeformAttnVT. The DeformAttnV variant is inspired by the
original design presented in Deformable DETR [28]. Since the deformable atten-
tion module is designed to handle visual data exclusively, the input primarily
comprises of visual, with no textual element. However, the textual context is
inherently encoded via the template generator. This indirect inclusion of textual
context in the spatial pipeline ensures that the essence of the original STCAT
architecture is preserved.

Conversely, in the DeformAttnVT variant, the architecture explores the
potential of leveraging multi-scaling within deformable attention. Recognizing
the challenge of memory constraints and the necessity of maintaining perfor-
mance, a pragmatic approach is taken. Here, the textual feature is treated as a
scale of the visual feature, with a width equivalent to the length of the textual
feature and a height of one. This approach aims to incorporate textual context
into the spatial decoder pipeline.

We observed improvements with DeformAttnV, which may be attributed to
the robustness of the Template Generator and/or the effectiveness of the spatial
decoder, both of which contribute to enhancing the performance metrics. In the
case of DeformAttnVT, while this approach offers a creative solution to integrate
textual context, its efficacy may be limited due to the inherent complexities of
distinguishing between the two types of features within the deformable attention
framework.

To further enhance performance, we integrated Width-Height Modulation
(W&H) with Deformable Attention, creating two variants: DeformAttnV+W&H
and DeformAttnVT+W&H. In both, we combined the robust spatial and textual
decoding of Deformable Attention with the scale-awareness of W&H. This lever-
ages the selective key sampling of Deformable Attention while ensuring positional
priors are modulated for object scales. W&H adjusts the cross-attention input
by scaling the positional query frame embedding according to the ratios of refer-
ence height and width to the object’s dimensions. Similarly, this modulation is
integrated into the deformable attention unit by adjusting the width and height
dimensions of the positional embeddings, thereby enhancing the model’s spatial
awareness and focus on relevant features. Furthermore, notable improvements
were seen in the case of DeformAttnVT+W&H, highlighting the effectiveness of
combining these two approaches to enhance performance metrics.

3.4 Training Objectives

In our approach, we utilize a set of pivotal loss functions, similar to STCAT [9],
to optimize the performance of our model. The computation of Lbbox involves
several components. Firstly, the L1 Loss (LL1) is utilized, which measures abso-
lute differences between true and predicted values. It is primarily employed for
spatial localization. Furthermore, the gIoU Loss (Lgiou) plays a critical role,
especially beneficial for object detection tasks. Both LL1 and Lgiou are utilized
in the computation of Lbbox for spatial localization. The Temporal Loss compo-
nent (Ltemp) is calculated based on the KL Divergence Loss (Ls and Le), which
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are employed to measure the divergence between target and predicted probabil-
ity distributions for starting and ending positions in temporal localization tasks.
For binary classification purposes, we employ the Binary Cross Entropy Loss
(Lseg) to measure the error in predicting frame membership to the ground-truth
segment. Furthermore, we incorporate the Guided Attention Loss (Latt), which
penalizes the model for focusing on irrelevant information by computing the neg-
ative logarithm of attention weights. This loss ensures that the model prioritizes
relevant parts of the input, such as the action segment.

The losses are combined to compute the composite loss L defined as:

L = λbboxLbbox + λtempLtemp + λsegLseg + λattLatt, (7)

where λbbox, λtemp, λseg, and λatt are coefficients that control the contribution of
the corresponding loss components Lbbox, Ltemp, Lseg, and Latt to the composite
loss L. The mentioned losses are also used in the TubeDETR [23] model.

4 Experiments

In this section, we discuss the datasets employed and outline their characteris-
tics and significance in our research. Subsequently, we introduce the evaluation
metrics chosen to assess the model’s performance rigorously. Following this, we
delve into the implementation details, providing information on hardware setups,
optimization strategies, and training procedures. Finally, we present both quan-
titative and qualitative results obtained from our experiments and compare them
with baseline STCAT performances, providing insights into the effectiveness and
robustness of our proposed approach.

4.1 Datasets

HC-STVG Dataset Tang et al. [20] provide the HC-STVG dataset focusing
solely on humans with 16,500 description-video pairs from various movie scenes.
The training split of the dataset contains 10131, the validation split 2000, and the
test split 4413 videos, respectively. The dataset ensures that test and training
samples are not derived from the same raw video. Each video clip is accom-
panied by a descriptive statement and trajectories of the corresponding person,
represented as a series of bounding boxes. Notably, all clips include multiple indi-
viduals, enhancing the challenge of video comprehension. Throughout our study,
the HC-STVG dataset has been primarily used for testing and comparisons due
to its comprehensive public availability and lightweight nature.

VidSTG Dataset Zhang et al. [27] introduce VidSTG, a large-scale STVG
dataset by augmenting the sentence annotations on VidOR [18,21]. VidOR is rec-
ognized as the most extensive object relation dataset, comprising 10,000 videos
with detailed annotations for objects and their interrelations. Specifically, it cat-
egorizes 80 object types with dense bounding boxes and 50 relation predicate
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categories among objects, including 8 spatial and 42 action relations. Each rela-
tion in VidOR is represented as a triplet <subject, predicate, object>, associated
with temporal boundaries and spatio-temporal tubes of the human subject and
object. Please note that the test set of the VidSTG dataset is not publicly avail-
able. Consequently, our research solely focuses on validation results, which are
then compared with the reported validation results of TubeDETR [23].

4.2 Evaluation Metrics

A set of evaluation metrics commonly used in the previous STVG studies are
adopted to rigorously assess the performance [4,6,9,23,27].

m tIoU, mean temporal intersection over union, evaluates the temporal local-
ization performance by the average temporal Intersection-over-Union (tIoU).
The tIoU is defined as the ratio of the intersection to the union of the predicted
and ground truth clips, tIoU = |Ti|

|Tu| , where Ti and Tu are the intersection and
union between the temporal locations of the predicted tube and ground-truth
tube, respectively.

m vIoU, mean visual intersection over union, provides an average of the vIoU
scores across all testing videos, where vIoU = 1

|Su|
∑

t∈Si IoU(b̂t, bt) and b̂t and
bt are the detected and ground-truth bounding boxes at frame t, respectively.
IoU is the Intersection-over-Union between these bounding boxes. Si and Su
represent the union between the predicted and ground-truth tubes.

vIoU@0.3 and vIoU@0.5 are metrics measuring the proportion of samples
for which the vIoU score exceeds a certain threshold (0.3 and 0.5, respectively).
Specifically, vIoU@R represents the ratio of samples with vIoU > R in the
testing subset.

m gt vIoU , mean ground truth vIoU , is computed analogously to vIoU , with
a distinct difference in its focus. While the standard vIoU calculates the IoU
between predicted boxes and ground truth boxes of the frames in the predicted
temporal segment of the action, m gt vIoU evaluates the IoU between the same,
but in the ground-truth temporal segment of the action for a more nuanced eval-
uation of the model’s spatial accuracy. The extended metrics, m gt vIoU@0.3
and m gt vIoU@0.5, are derived similarly, setting IoU thresholds at 0.3 and 0.5,
respectively. The primary significance of employing this metric is to segregate
the spatial performance evaluations from other metrics, ensuring a more isolated
and focused assessment of the bounding box predictions.

4.3 Implementation Details

The experiments were conducted utilizing a setup of 32 AMD GPUs. The opti-
mizer used is AdamW [15]. The learning rate is dynamically adjusted during
training based on the schedule. The base learning rate is 10−4, the text learning
rate is 5 · 10−5, the visual backbone learning rate is 2 · 10−5, and the temporal
learning rate is 10−4. Initially, a warm-up phase is used where the learning rate
gradually increases. After the warm-up, the learning rate is decreased at specified
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epochs (drop steps). The loss weight hyper-parameter values (see Section 3.4)
used for experiments were λbbox = 5, λtemp = 2, λseg = 2, and λatt = 1.

For the HC-STVG dataset, the model input is set to a resolution of 448 ×
448. During training, there is a 50% probability that the input will be flipped
controlled with a variable. The sampling rate is set at 3.2 frames per second
to ensure a uniform number of frames from each 20-second video, simplifying
processing and analysis compared to using fps, which varies with video length.
The training process spans 90 epochs with a batch size of one video. The training
data is shuffled before each epoch. The learning rate decreases at the 50th and
90th epochs. Pre-validation is not used in this setup, instead directly the test
set is used, because here the split does not contain any validation dataset.

For the VidSTG dataset, the model resolution and probability thresholds
remain the same as those of HC-STVG. Additionally, there is a 50% probability
for temporal cropping also controlled with a variable. The number of training
samples is set to 64. The training process is set to run for a maximum of 7
epochs, with a batch size of one video.

Table 1. Performance comparison on the HC-STVG test set among models featuring
different attention unit variants. The performance values are reported at epoch 90.
STCAT* shows our replicated results for comparison.

Methods m tIoU m vIoU vIoU@0.3 vIoU@0.5 m gt vIoU gt vIoU@0.3 gt vIoU@0.5 Params/M FLOPs/T

STVGBert [19] 20.42 29.37 11.31 — — — — — —

TubeDETR [23] 43.70 32.40 49.80 23.50 — — — — —

STCAT [9] 49.44 35.09 57.67 30.09 — — — — —

CG-STVG [7] 52.80 38.40 61.50 36.30 — — — — —

CoSTA [11] 52.85 38.97 63.10 38.19 — — — — —

STCAT* 47.74 34.16 56.21 29.22 68.43 90.17 81.03 159.7 2.10

W&H Modulation 48.86 34.95 56.81 28.88 68.80 90.78 81.12 159.8 2.98

DeformAttnV 49.06 34.88 57.93 29.91 69.62 91.55 83.19 165.0 1.40

DeformAttnVT 47.38 33.88 54.83 28.71 69.24 90.95 81.55 165.0 1.79

DeformAttnV+W&H 47.30 33.70 54.83 28.10 69.27 90.95 82.67 165.0 1.40

DeformAttnVT+W&H 49.26 35.09 56.81 32.41 69.52 91.55 82.67 165.0 1.79

4.4 Results and Comparison to the Baseline

Table 1 reports the outcomes of recent studies, including our replication of [9],
followed by recent works, TubeDETR [23], CG-STVG [7] and CoSTA [11], and
our proposed improvements on the HC-STVG dataset. It is important to note
that CG-STVG and CoSTA are very recent advancements in the field, and at
the time of this study, their codes were not accessible. Consequently, STCAT has
been employed as the baseline for comparative analysis throughout our study.
Initially, our experiments were conducted with the default parameters at epoch
90 following [9]. However, when the experiment conducted in STCAT was repli-
cated, the results obtained in STCAT* did not match the original values. Com-
pared to STCAT*, significant improvement is observed with both the Defor-
mAttnV and W&H Modulation models. We can see that the best results were
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obtained with the model where the original spatial decoder had been replaced
with the deformable attention unit, as seen in the DeformAttnV result. Subse-
quently, by integrating deformable attention and W&H modulation, we observed
improved performance particularly with DeformAttnVT+W&H model across
almost all metrics, with a significant increase of roughly three points in the
metric vIoU@0.5 from 29.22 in STCAT* to 32.41 in DeformAttnVT+W&H.
DeformAttnVT+W&H outperforms all other methods including the DeformAt-
tnV+W&H in vIoU@0.5. We also report in Table 1 the number of parameters
and FLOPs of our improved models. While STCAT* and our models have similar
number of parameters, our DeformableAttnVT and DeformAttnVT+W&H have
fewer FLOPs compared to STCAT*. Please note that while deformable atten-
tion is primarily designed to support multi-scale processing, memory constraints
necessitated the use of a single scale.

Table 2. Performance comparison on the VidSTG validation set among models fea-
turing different attention unit variants. The performance values are reported at epoch
7. STCAT* shows our replicated results.

Methods m tIoU m vIoU vIoU@0.3 vIoU@0.5 m gt vIoU gt vIoU@0.3 gt vIoU@0.5

TubeDETR [23] 46.90 26.20 36.10 24.10 — — —

STCAT* 49.72 28.57 39.59 27.22 52.88 70.29 59.94

W&H Modulation 49.95 28.70 39.53 27.40 53.12 71.19 59.86

DeformAttnV 49.58 27.03 37.82 25.02 50.29 69.25 56.95

DeformAttnVT 49.95 27.42 38.69 25.73 50.68 69.34 57.10

DeformAttnV+W&H 49.78 27.06 37.68 25.27 50.39 69.23 57.03

DeformAttnVT+W&H 49.54 27.08 37.54 25.02 50.71 69.12 57.18

Table 2 presents the evaluation results obtained on the VidSTG dataset.
Our performance evaluation utilizes the same split as the TubeDETR architec-
ture [23], allowing for direct comparison with their study. While all proposed
variations outperform TubeDETR [23], W&H Modulation gives better results
than STCAT* model. Notably, the value of gt vIoU@0.3 increases by almost a
point from 70.29 in STCAT* to 71.19 with W&H Modulation.

4.5 Analysis on Object Scales

Evaluation criteria are pivotal in understanding both the temporal and spatial
accuracy of the model in the context of STVG task. As crucial as the above
metrics are, to gain a deeper understanding of the model’s performance across
different scales of bounding boxes within the dataset, we introduce several vari-
ations of these metrics. These metrics extend the current spatial evaluation met-
rics, such as m vIoU and its thresholded versions, to specific subsets of the test
set. Given the variability in width and height for each sample in the dataset,
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these subsets are delineated based on the threshold of the metric as follows:

BBoxRatio =
1
N

N∑

t=1

GTBBoxAreat
FrameTotalAreat

, (8)

where t indexes the ground truth frames in the video from 1 to N covering the
action occurrence and GTBBox respresents the ground truth bounding boxes in
the corresponding video.

Subsequently, the videos are categorized into Small, Medium, and Large sub-
sets, each containing a varying number of samples based on the thresholded
BBoxRatio in eq. (8). The resulting distribution of HC-STVG dataset according
to BBoxRatio is as follows: 709 Small boxes (BBox Ratio ≤ 0.25), 401 Medium
boxes, and 50 Large boxes (0.5 < BBox Ratio). As can be seen in the results of
Table 3, the DeformAttnV model consistently outperforms STCAT* across all
scales, while the DeformAttnVT+W&H model results in the best performance
specifically for the small-scale boxes.

Table 3. Performance comparison on the HC-STVG test set across various bounding
box scales. STCAT* shows our replicated results.

Small Medium Large

Methods vIoU@0.3 vIoU@0.5 vIoU@0.3 vIoU@0.5 vIoU@0.3 vIoU@0.5

STCAT* 53.17 26.94 61.10 32.17 60.00 38.00

W&H Modulation 53.74 26.09 62.84 33.42 52.00 32.00

DeformAttnV 53.74 28.07 61.85 36.91 62.00 44.00

DeformAttnVT 53.17 24.82 59.35 34.66 42.00 36.00

DeformAttnV+W&H 52.61 23.98 58.60 34.91 56.00 32.00

DeformAttnVT+W&H 54.02 28.21 61.60 39.15 58.00 38.00

4.6 Qualitative Analysis

We conducted qualitative analysis on a subset of samples extracted from the
HC-STVG dataset. In Fig. 3, parallel results with STCAT* and DeformAt-
tnVT+W&H are shown together with ground truth bounding boxes. The exam-
ples provided in (a)–(c) pertain to instances involving Small -sized objects, while
(d)–(e) relate to Medium-sized objects (see Section 4.5).

Examining example (a), the phrase the man in the hat turns around describes
a scene featuring a man wearing a hat. Particularly, there are two men with
hats present in the video. Our model adeptly identifies and tracks the correct
individual wearing the hat, as indicated by the ground truth box highlighted
in red. In contrast, STCAT* appears to misidentify a different individual with
a hat. This discrepancy is similarly evident in examples (c) and (d), wherein
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Fig. 3. Qualitative Analysis comparison of STCAT* and DeformAttnVT+W&H on
the HC-STVG dataset. Examples (a)–(c) relate to small and (d)–(e) to medium size
boxes. Red frames show the ground truth and blue ones the detected objects. The
increased values of metric m vIoU and m gt vIoU evince the quantitative improve-
ments obtained in Table 3.
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our model consistently outperforms STCAT* in tracking the correct individual
across frames. In example (b), the trajectory of STCAT* bounding boxes exhibits
significant drifting, whereas our model demonstrates a steady performance in
intersection over union. Lastly, in example (e), both models effectively ground the
detailed text, with our model demonstrating superior performance in bounding
box size estimation, closely aligning with the ground truth.

5 Conclusions

In this paper we presented improvements to spatio-temporal video grounding, in
particular to the STCAT model that served as our baseline, and evaluated them
on the HC-STVG and VidSTG datasets. First, a comparative analysis between
the original attention unit and our proposed version consisting of Width-Height
Modulation and two variants of Deformable Attention revealed subtle differences
in respect to seven performance measures.

With the HC-STVG dataset, the combination of Width-Height Modulation
and Deformable Attention with both vision and text was best-performing. With
the VidSTG dataset, the Width-Height Modulation alone performed the best.
In another experiment, we showed improvement for especially small and medium
sized objects. This is very important particularly for small objects that are gen-
erally the most challenging ones to ground correctly. Our qualitative validations
further verified that the quantitative improvements obtained with our proposed
DeformAttnVT+W&H model were also visible in more accurate and stable spa-
tial location of the objects.

Looking ahead, our proposed variants for the spatial attention could be
applied to other state-of-the-art baseline STVG models and extended to the
temporal domain for improved spatio-temporal grounding. Yet another direc-
tion of extension could be to apply grounding also in the audio domain.
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Abstract. Image captioning is a typical task in multimodal learning.
Many existing image captioning models rely on autoregressive paradigms,
causing notable delays in inference and impacting practical applica-
tions. While non-autoregressive methods effectively address the issue of
inference delay, there still exists a performance gap when compared to
autoregressive models. In this paper, we introduce a dual branch non-
autoregressive image captioning model that significantly enhances per-
formance. Firstly, we leverage both region and grid features to fully
exploit the fine-grained aspects of the image. To prevent an increase
in inference delay, we designed a dual branch network to handle these
two features separately. Secondly, we design a word retrieval module to
augment the semantic richness of the inputs to the non-autoregressive
decoder. Meanwhile, our approach incorporates multiple teacher models
in the knowledge distillation process, which aims to preserve the diver-
sity of our model by avoiding reliance on a single autoregressive teacher
model. Experiments on the MSCOCO dataset show that our dual branch
non-autoregressive image captioning model achieves new state-of-the-art
performances, boosting a 128.8% CIDEr score on the ‘Karpathy’ offline
test split and delivering a 17× inference speedup.

Keywords: Image captioning · Non-autoregressive · Dual branch.

1 Introduction

Image captioning [30] is a challenging multimodal task aimed at generating a
caption that reflects the image content and conforms to human language habits
for an image. Image captioning models usually adopt the encoder-decoder archi-
tecture [1], where the encoder is responsible for image processing and the decoder
generates caption statements. Early image captioning models [10,13] used the
pre-trained CNN and object detection models to extract image features as input
and used Recurrent Neural Networks (RNNs) or Transformer [26] to generate
words in the captions one by one.

By using the Transformer-based decoder, the autoregressive image captioning
models [6,28] not only improve the model performance but also greatly speed up
the training speed because it can be trained in parallel. During the model infer-
ence process, they generate each word conditioned on the sequence of previously
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15318, pp. 325–340, 2025.
https://doi.org/10.1007/978-3-031-78456-9_21
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generated words [25] and result in high inference latency which is unacceptable in
some real-time applications, such as blind assistants. Non-autoregressive models
[5,8] can significantly improve the inference speed of the model, as they can gen-
erate words in parallel during both training and inference processes. However,
there is still a performance gap between the non-autoregressive image captioning
model and the autoregressive model.

Research on non-autoregressive image captioning [5,8] usually focuses on
decoders, using iterative refinement and sequence-level knowledge distillation
methods to improve model generation quality. In the encoder stage, they mainly
use region features extracted from the object detection model such as Faster
R-CNN [9] as the basis for generating captions. However, due to the inability
of covering areas outside the target, region features do not contain contextual
information [23]. Therefore, in the terms of accuracy, region features can help
the model perceive the objects in the image more effectively. However, as for the
completeness and fluency of sentences, grid features play a more important role
since they are extracted from the entire image and contain more contextual infor-
mation. More and more autoregressive models integrate multiple image features
[29] to achieve better performance, while non-autoregressive models overlook
this issue. As shown in Figure 1, another typical issue is missing input for the
non-autoregressive decoder, and most existing models use [MASK] sequences as
inputs [8], which contain no semantic information and have the same initial val-
ues for each position. It also makes it difficult to predict the correct words at the
corresponding positions and exacerbates the decoding inconsistency problem.

Fig. 1. The autoregressive image captioning model generates words one by one, while
the non-autoregressive model generates words in parallel, which can greatly improve
the inference speed of the model.

On the other hand, existing non-autoregressive image captioning models use
the sequence-level knowledge distillation [15] to solve the problem of decoding
inconsistency. They usually employ an autoregressive image captioning model as
a teacher model to guide the training of non-autoregressive models [11], thereby
helping them re-establish semantic dependencies. However, semantic informa-
tion such as word combinations contained in a single autoregressive model is
insufficient, and the performance of non-autoregressive models is vulnerable to
be limited by the performance of the teacher model.

In this paper, we adopt region and grid features to deeply mine the informa-
tion contained in images and design a dual branch structure that prevents the
model from greater computational overhead and inference delay. Meanwhile, a
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novel word retrieval module is designed for our model. It retrieves highly cor-
related words from the vocabulary as input for the non-autoregressive decoder,
which helps the model generate the correct words in the correct positions. To
enable non-autoregressive models to fully learn semantic knowledge and diverse
expression methods, we propose a sequence-level knowledge distillation method
with multiple teacher models, using the results generated by multiple autore-
gressive models as supervisory information, which alleviates the problem of word
repetition caused by decoding inconsistency.

We validate the proposed dual branch non-autoregressive image captioning
model on offline ‘Karpathy’ test split [14] and online test server of the MSCOCO
dataset [20]. The experimental results demonstrate that the proposed model
achieves new state-of-the-art performance in generation quality with a 128.8%
CIDEr score. Meanwhile, our model achieves the fastest inference speed with a
decoding speed improvement of 17 times1. The main contributions of this paper
are summarized as follows:

• We leverage both region and grid features to fully exploit the fine-grained
aspects of the image and propose a dual branch model that integrates two
types of features without reducing inference speed.

• We design a word retrieval module to address the issue of missing inputs
and augment the semantic richness of the inputs to the non-autoregressive
decoder.

• We utilize multiple autoregressive teacher models in the knowledge distilla-
tion, thereby reducing the dependency of our model on a single autoregressive
teacher model and imparting richer semantic information.

• We conduct comprehensive experiments on the MSCOCO dataset, attaining
new state-of-the-art performance on both the ’Karpathy’ offline test split and
the online test server. Concurrently, our model demonstrates a significant
enhancement in the inference speed.

2 Related Works

2.1 Visual Representations for Image Captioning

The early image captioning models [3] use a convolutional neural network (CNN)
to extract the global features of the image to guide the caption generation. Due
to the lack of fine-grained information of the image in this way, the later mod-
els [22] segment the image into grids to extract grid features, and caculate the
weight of each grid with attention operations in the text generation process. So
that the generated caption is more fine-grained. With the development of the
object detection model, Anderson et al. [2] use Faster R-CNN [9] to extract the
region features of the image, which greatly improve the generation quality of
the image captioning model. In recent years, with the emergence of Transformer
architecture [26] and the further development of Transformer-based object detec-
tion models such as Swin Transformer [21], the extraction of image features is
1 The source code is available at https://github.com/Liu-Yuanqiu/DBNAIC.git.

https://github.com/Liu-Yuanqiu/DBNAIC.git.
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more diversified. Although image features contain more fine-grained informa-
tion, each still has its focus. Generally speaking, region features are considered
to contain more object information while grid features contain contextual infor-
mation because regions do not cover image regions outside of the object, while
grid features cover the entire image.

2.2 Non-Autoregressive Image Captioning

Image captioning model [6,12] is widely used in real life, such as blind assis-
tant. In practical application scenarios, the lower latency is one of the most
important requirements, so non-autoregressive image captioning has received
widespread attention. Gao et al.[8] first explores a non-autoregressive decoding
method, which uses [MASK] tokens as the input of the decoder and generates
subtitles in multiple stages in parallel. It executes random masks at each stage
to eliminate duplicate words. Non-autoregressive models also use methods such
as iterative refinement [8] and knowledge distillation [15] to narrow the per-
formance gap between non-autoregressive and autoregressive models. However,
the quality of the non-autoregressive image captioning model is still inferior
to the autoregressive models. On the one hand, non-autoregressive models lose
the semantic dependence of forward words. On the other hand, issues such as
insufficient visual understanding and missing decoder inputs still exist in non-
autoregressive models, resulting in performance gaps. In this paper, we propose
a dual branch non-autoregressive image captioning model to tackle the problem
of inadequate visual understanding and design a word retrieval module to gener-
ate decoder input. More importantly, we improve the sequence-level knowledge
distillation algorithm to further boost the quality of model generation.

3 The Proposed Method

Our overall model architecture is shown in Figure 2, which also adopts the widely
used encoder-decoder architecture. The encoder part is responsible for processing
image features (Sec. 3.1), the non-autoregressive decoder part is responsible for
caption generation (Sec. 3.3), and both the encoder and decoder are stacked
by multi-layer Transformers. Between the encoder and decoder, we use a word
retrieval module (Sec. 3.2) to generate inputs for the non-autoregressive decoder.
In addition, we divide the entire model into two branches, and process the grid
features and region features respectively. Due to the identical structure of the
two branches, we will only introduce one of them in the following paper. Finally,
we merge the results of the two branches.

3.1 The Encoder Module

In our model, multi-head self-attention is widely used in encoders and decoders,
which can be formulated as follows:

MSA(Q,K,V) = Concat(head1, ..., headh), (1)
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headi = Attention(Qi,Ki,Vi), i = 1, 2, ..., h, (2)

where h is the number of heads, Qi,Ki,Vi are the i-th slice of Q,K and V
respectively. The Attention(·) operation uses Softmax(·) to calculate the simi-
larity score:

Attention(q,k,v) = Softmax(
qkT

√
dk

)v, (3)

where dk is the dimension of k.

Fig. 2. Overview of our proposed dual branch non-autoregressive image captioning
model. The upper branch uses region features R to generate captions, while the lower
branch uses grid features G. In the middle area, we present the structure of each layer of
the encoder and the non-autoregressive decoder, as well as a semantic retrieval module
for generating decoder input. The EV represents word embedding, and the output S
of the semantic retrieval module serves as the initial input of the decoder.

We use two encoders with the same architecture to extract region features and
grid features respectively. Grid features G = {g1,g2, ...,gm} and region features
R = {r1, r2, ..., rn} are derived from the paper GRIT [23], where gi ∈ R

DG ,
ri ∈ R

DR , and m is the number of grid features, n is the number of region
features. Taking the processing of region features as an example, the encoder
includes N layers of Transformer, where each layer of Transformer includes a
multi-head self-attention module and a feedforward module. The calculation
formula for the l − th layer Transformer can be written as follows:

Ĝl = LayerNorm
(
Gl−1 + MSA(Wg,l

E,QG
l−1,Wg,l

E,KGl−1,Wg,l
E,V G

l−1)
)
, (4)

Gl = LayerNorm
(
Ĝl + FeedForward(Ĝl)

)
, (5)

where Gl−1 denotes the output of block l−1, and G is used as the input of layer 0.
Wg,l

E,Q,Wg,l
E,K ,Wg,l

E,V ∈ R
D×D are learnt parameter matrices. FeedForward(·)
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consists of two linear layers with a ReLU activation function in between, as
formulated below:

FeedForward(x) = Wg,l
2 ReLU(Wg,l

1 x), (6)

where Wg,l
1 ∈ R

(4D)×D and Wg,l
2 ∈ R

D×(4D) are learnt parameter matrices of
two linear layers respectively.

Through N-layer self-attention and feedforward network calculations, we ulti-
mately obtain the encoder output GN of the grid features. Similarly, the encoder
output RN for region features can also be obtained.

3.2 The Word Retrieval Module

We propose a word retrieval module to address the issue of missing inputs in
non-autoregressive decoders. The word retrieval module calculates the similarity
between visual features (region features or grid features) and word embeddings
in the vocabulary as a basis to obtain the retrieved words. For an example, region
features are projected into the semantic space firstly:

R̂S = WR
SR

N , (7)

where WR
S ∈ R

D×D is the projection matrix to be learned. Then, based on
the vocabulary V = {v1, v2, ..., vDv

} and its corresponding embedding matrix
EV = {e1, e2, ..., eDv

}, where EV ∈ R
Dv×D and Dv is the number of words in

the vocabulary, we calculate the similarity PR = {p1,p2, ...,pn} between image
features and word vectors, where n is the number of the region features:

PR = Softmax(R̂SET
V ). (8)

We select the word with the highest similarity as the retrieval result, and
then generate a set of word embeddings WR:

WR = {eargmax(pi)
}, where i ∈ {1, 2, ..., n}, (9)

argmax(pi) = argmax
j

pi,j , where j ∈ {1, 2, ...,Dv}. (10)

Finally, similar to residual networks, we add semantic vectors R̂S and word
embedding WR to obtain the output of the word retrieval module R̄S :

R̄S = R̂S + WR. (11)

Through word retrieval module, we get n (the number of region features)
words that may appear in the caption from the entire vocabulary as input to
the decoder. Similar to the calculation method of R̄S , we can also obtain ḠS as
the input for the grid feature decoder.

However, it is still a problem that the number of grid features m and
region features n do not match t, the number of features input by the decoder
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(equivalent to the length of the caption). We reduce the number of visual
features to the number required by the decoder through a simple method.
Given R̄S = {r̄s,1, r̄s,2, ..., r̄s,n}, the j-th element of the decoder input RS =
{rs,1, rs,2, ..., rs,t} is computed as:

rs,j =
∑

i

wij · r̄s,i, (12)

wij = exp
(
−(

j − i · (t/n)
)2

/τ
)
, (13)

where τ is a hyper-parameter controlling the sharpness of the function. With the
same method, we obtain the decoder input GS for the grid feature branch.

3.3 The Non-Autoregressive Decoder Module

Like the encoder, the decoder also has two identical branches, which use grid
features and region features to generate words. Firstly, we perform self-attention
calculation on the input and use the obtained results with visual features to
calculate cross-attention, thereby generating a probability distribution for the
caption statement. Then, we directly add the probability distributions obtained
from the two branches as the final generation result.

After the calculation of the word retrieval module, we finally obtain the
input RS and GS for the non-autoregressive decoder. As mentioned earlier,
the decoder includes self-attention blocks and cross-attention blocks. The self-
attention blocks are used to model the relationship between inputs and can be
accurately expressed as follows:

R̃l
S = LayerNorm

(
Rl−1

S + MSA(Wr,l
S,QR

l−1
S ,Wr,l

S,KRl−1
S ,Wr,l

S,V R
l−1
S )

)
, (14)

where Rl−1
S denotes the output of block l − 1, and RS is used as the input of

block 0. Wr,l
S,Q,Wr,l

S,K ,Wr,l
S,V ∈ R

D×D are learnt parameter matrices.
Cross-attention blocks are used to model the relationship between semantic

and visual features, the output of the l-th block is computed as follows:

R̆l
S = LayerNorm

(
R̃l

S + MSA(Wr,l
C,QR̃

l
S ,Wr,l

C,KRN ,Wr,l
C,V R

N )
)
, (15)

Rl
S = LayerNorm

(
R̆l

S + FeedForward(R̆l
S)

)
, (16)

where Wr,l
C,Q,Wr,l

C,K ,Wr,l
C,V ∈ R

D×D are learnt parameter matrices and the
FeedForward(·) is defined in Eq. 6. After decoding at layer N , we obtain the
output RN

S of the region feature branch. The output GN
S of the grid feature

branch is obtained using the same method as the region feature branch.
According to the output of the decoder, the conditional distribution over the

vocabulary V is given by:

p(Y |R) = Softmax(WR
FR

N
S ), (17)
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p(Y |G) = Softmax(WG
FG

N
S ), (18)

where p(Y |R) and p(Y |G) represent the probability distributions obtained from
the region feature branch and the grid feature branch respectively. WR

F ,WG
F ∈

R
Dv×D are learnt parameters and Dv is the number of words in the vocabulary,

Y = {y1, y2, ..., yt} is the generated caption, and t is the length of a caption.

3.4 Objective Functions

In this paper, we also use the cross-entropy loss function to optimize the model
as the classical non-autoregressive image captioning models do. The loss of the
whole model is obtained by adding the losses of the two branches:

LXE(θ) = −
l∑

t=1

log
(
p(y∗

t |R)
) −

l∑

t=1

log
(
p(y∗

t |G)
)
. (19)

where θ denotes the parameters of the whole model, and y∗
t denotes the target

ground truth word.
On the other hand, sequence-level knowledge distillation algorithms are

widely used in non-autoregressive decoding to improve the generation quality.
It owes to that knowledge distillation algorithms can bring much more infor-
mation to student models than normal training methods. In this paper, we also
employ the knowledge distillation algorithm to convert the supervised signal of
the model from target ground truth Y ∗ = {y∗

1 , y
∗
2 , ..., y

∗
t } to the caption Ŷ ∗

generated by the autoregressive model. We use multiple autoregressive models
instead of a single one as the teacher model. The captions generated by multiple
teacher models are constructed as training sets, greatly enhancing the diversity
of training samples.

The final loss function is formulated as follows:

LXE(θ) = −
t∑

i=1

log
(
p(ŷ∗

i |R)
) −

t∑

j=1

log
(
p(ŷ∗

j |G)
)
. (20)

4 Experiments

4.1 Datasets

We conducted experiments on the popular MSCOCO dataset [20] in the image
captioning task, which includes 123287 images, and each was annotated with 5
reference captions. In this paper, we follow the widely used ‘Karpath’ split [14],
where 113287 images for training, 5000 images for validation, and 5000 images
for testing. During the training phase, we extract words that appear more than
5 times from the training set to form a vocabulary.
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4.2 Baselines

The comparative models include AIC [11], PNAIC [7], SATIC [32], SAIC [31],
MNIC [8], FNIC [4], and CMAL [11]. These models are classified into three
categories: autoregressive models, partially non-autoregressive models and non-
autoregressive models. The scores and latency of the models come from their
papers and the speedups are recalculated based on the data reported in their
paper using AIC (bw=3) as the benchmark.

4.3 Evaluation Metrics

We adopt the widely used metrics to evaluate the quality of the generated cap-
tions and compare with other methods, including BLEU-1/4 [24], METEOR
[17], ROUGE-L [19], and CIDEr [27].

Table 1. Generation quality, latency, and speedup on MSCOCO “Karpathy" split. “-"
denotes that the results are not reported. Latency is the time to decode a single image
without mini batching, averaged over the whole test split, and tested on a GeForce
GTX 1080 Ti GPU.

Models BLEU-1↑BLEU-4↑METEOR↑ROUGE↑CIDEr↑ Latency↓SpeedUp↑
Autoregressive models
AIC(bw=1) [11] 79.8 38.4 29.0 58.7 126.6 134ms 1.66×
AIC(bw=3) [11] 80.3 38.9 29.1 58.9 128.8 222ms 1.00×
Partially Non-autoregressive models
PNAIC [7] 79.9 37.5 28.2 58.0 125.2 32ms 6.94×
SATIC [32] 80.6 37.6 28.3 58.1 126.2 35ms 6.34×
SAIC [31] 80.3 38.4 29.0 58.2 127.1 54ms 4.11×
Non-autoregressive models
MNIC [8] 75.4 30.9 27.5 55.6 108.1 61ms 3.64×
FNIC [4] - 36.2 27.1 55.3 115.7 - 8.15×
CMAL [11] 80.3 37.3 28.1 58.0 124.0 16ms 13.88×
Ours 81.7 39.5 28.8 59.4 128.8 13ms 17.08×

4.4 Experimental Settings

The embedding size D of the region and grid features is set to 512, the number of
transformer heads is 8, and the number of layers N for the encoder and decoder
of each branch is 3. In the training process, we employ GRIT [23], PureT [28] and
COSNet [18] as teacher models, and train the models under the cross-entropy
loss LXE for 90 epochs. The hyperparameter τ in the semantic retrieval module
is set to 0.5, and the length of the generated caption t is 20, as the vast majority
of captions do not exceed 20 in length. Adam [16] optimizer is uesd during the
training phase.
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Table 2. Results on online MSCOCO testing server.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEORROUGE CIDEr
c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Partially Non-autoregressive models
PNAIC [7] 80.1 94.4 64.0 88.1 49.2 78.5 36.9 68.2 27.8 36.4 57.6 72.2 121.6 122.0
SAIC [31] 80.0 94.5 64.1 88.2 49.2 78.8 37.2 67.8 28.0 36.8 57.7 72.4 121.4 123.7
Non-autoregressive models
CMAL [11]79.8 94.3 63.8 87.2 48.8 77.2 36.8 66.1 27.9 36.4 57.6 72.0 119.3 121.2
Ours 80.995.365.188.550.279.038.168.428.337.1 58.873.4121.5122.9

4.5 Offline Evaluation

Table 1 reports the performance of the compared models and our proposed
dual non-autoregressive image captioning model on the offline test set of the
MSCOCO dataset [20]. Our model achieves state-of-the-art performance in all
evaluation metrics. Not only does it surpass all existing non-autoregressive mod-
els in all evaluation metrics, but it also surpasses all partially non-autoregressive
models in all metrics except METEOR, which is only 0.2% lower than the best
partially non-autoregressive model. Compared with the strong baseline CMAL
[11], our model achieves more than 1.4% on BLUE-1, BLUE-4, ROUGE, and
CIDEr metrics. Especially for the CIDEr score, our model achieves 128.8%, which
is a new-state-of-art performance in image captioning with non-autoregressive
models. Even compared with the best partially non-autoregressive model SAIC
[31], our model still achieves a performance improvement of 1.0% on multiple
evaluation metrics, while the other non-autoregressive image captioning models
never exceeded the partially non-autoregressive model in performance. On the
other hand, our model, as a non-autoregressive model, matches or even surpasses
the performance of autoregressive models using reinforcement learning. In terms
of BLUE-4 and ROUGE metrics, the performance of our model is about 0.5%
higher than AIC (bw=3), while 1.4% higher in BLUE-1. Our method performs
similar or better compared with the autoregressive models on four of the five
metrics.

As a non-autoregressive model, inference delay is also an aspect that must
be paid attention to. Our model only requires 13 ms in inference speed, achiev-
ing optimal performance. Compared to other partially non-autoregressive and
non-autoregressive models, we achieved the maximum speed improvement, the
inference speed of our model is 17 times faster than the autoregressive model.

4.6 Online Evaluation

Table 2 reportes the performance on the official online testing server of MSCOCO
dataset [20]. In online testing, five reference descriptions (c5) and forty reference
descriptions (c40) are used for evaluation. Compared with the existing non-
autoregressive image captioning model, our model achieves the best performance
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on all evaluation metrics. Especially for CIDEr scores, we achieved 121.5% (c5)
and 122.9% (c40), exceeding the optimal performance model CMAL [11] by 2.2%
and 1.7%, respectively. Compared with the partially non-autoregressive model,
our model also achieves the best score, except for a slightly lower on CIDEr (c40)
than SAIC [31].

In summary, the significant improvement on different evaluation metrics of
our proposed dual branch non-autoregressive image captioning model demon-
strates its advantages, and the greatest acceleration in inference speed of model
greatly accelerates the non-autoregressive image captioning.

Table 3. Comparison of performance between single branch model and dual branch
model.

Models BLEU-1BLEU-4METEORROUGECIDEr

Ours w/o G 80.7 38.1 28.5 58.6 125.3
Ours w/o R 80.5 38.1 28.4 58.6 124.7
Ours 81.7 39.5 28.8 59.4 128.8

4.7 Ablation Study

To demonstrate the effectiveness of the method proposed in this paper, we
designed multiple ablation experiments for validation.

Influence of Region Branch and Grid Branch. Our model has a two-branch
structure for processing regional features and grid features to cover different
aspects of image information, and the results generated by these two branches
are merged at the end. As shown in Table (reftab:branch), Ours w/o G and Ours
w/o R represent the scores of the region branch and the grid branch, respectively.
Using branch alone results in a performance degradation, specifically a 3.5% drop
in the CIDEr score for the regional branch and a 4.1% drop for the grid branch.
It shows that the two branches focus on different types of image information
and that combining the results of both can further improve the quality of the
non-autoregressive model. Moreover, since the two branches are independent of
each other and can be computed in parallel, there is no significant delay in the
inference speed of the model.

We also visualize the contribution of region and grid branches, as shown in
Figure 3. In the figure, we show the largest probability distributions generated
by the two branch and our model. Most of the time, the results generated by
the region branch (the second column in Figure 3(b)), the grid branch (the third
column in Figure 3(b)), and the dual branches (the first column in Figure 3(b))
are the same, but the region branch and the grid branch diverge sometimes.
It can be found that when there is a deviation in the generated results of a
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Fig. 3. The contribution of the region branch and grid branch to the accuracy of
generated captions. 3a displays the image and the generated caption, while 3(b) displays
the generation probability value of our model and two branches, with only the top three
display. The first column in 3(b) represents the generation probability values of our
model. The second column represents the generation probability values of the region
branch, and the third column represents the generation probability value of the grid
branch.

certain branch, the combination of the generated results of two branches can
often generate the most suitable word, which proves the effectiveness of our
model with dual branches.

Table 4. Performance comparison of using different numbers of teacher models. NT
represents the number of teacher models.

NT BLEU-1BLEU-4METEORROUGECIDEr

1 82.3 38.2 28.3 58.3 126.2
2 80.8 38.1 28.2 58.6 125.0
3 81.7 39.5 28.8 59.4 128.8
4 82.2 39.4 28.4 59.0 128.1

Influence of the Number of Teacher Models. To explore the role of multi
teacher models in sequence-level knowledge distillation, we conduct experiments
with different numbers of teacher models and compare them with the complete
model. As shown in Table 4, our model can achieve good results on BLUE-1
when supervised using a teacher model, however, the scores on relevant met-
rics concerned with the quality of sentence-level generation (e.g., BLUE-4 and
CIDEr) are low. This is mainly due to the fact that high accuracy at the word
level corresponds to multiple reference captions. As shown in Figure 4, although
each position generates words that correspond to a real caption, the lack of
sufficient word combination information leads to duplicate words and semantic
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incoherence in the generated captions, resulting in lower accuracy for BLUE-4
and CIDEr.

Fig. 4. Examples of captions generated by our dual branch non-autoregressive image
captioning model (Ours) with ground truths (GT-1/2/3), and Ours (NT=i) represents
our model using i teacher models. The red number represents the corresponding CIDEr
score for the caption.

Meanwhile, it also performs poorly with two teacher models which is largely
due to the divergence of the two models. When using three teacher models, we
achieve the optimal score on multi evaluation metrics. It’s mainly because at
least two models will reach consensus in most cases during the training process,
which is similar to the case of human voting in reality. We also train our model
with four teacher models and obtain slightly lower results compared with three
teacher models. It can be concluded that the model has learned enough semantic
knowledge from the three teacher models.

4.8 Visualization Analysis

We display some examples of generated image captions in Figure 4. It can be
seen that some challenging issues, such as semantic inconsistency and repetition
are solved in the generated captions. Our proposed model not only recognizes
objects in the images effectively but also ensures that the generated sentences are
complete and coherent, effectively conveying the content depicted in the image.
Some of these sentences are even basically the same as the sentences annotated
by humans.
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5 Conclusion

In this paper, we propose a novel dual branch non-autoregressive image caption-
ing model. Without affecting the reasoning speed of the model, region features
and grid features are fused to improve the quality of model generation. Mean-
while, we design a word retrieval module to enrich the semantic information
contained in the input. At the same time, by using sequence-level knowledge
distillation algorithms with multiple teacher models, our model can learn richer
word combination information and generate more accurate and coherent cap-
tions. Experiments on the MSCOCO dataset have shown that our proposed
model achieves state-of-the-art performance with a 128.8% CIDEr score and the
inference speed is increased by 17 times faster than the autoregressive model.
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Abstract. Text-to-Image Vehicle Re-identification(TIVReid) aims to
retrieve the target vehicle image according to a given description. For this
task, efficient feature alignment of image and text modalities is crucial
yet constrained by the lack of large-scale, high-quality datasets. Recently,
the multimodal Large Language Model(MLLM) has shown remarkable
performance in image-text understanding, which motivates this paper
to explore the application of MLLM in TIVReid. We propose an effec-
tive method to distill the knowledge of MLLM into the TIVReid model
with the following innovations: Firstly, we propose a prompt design app-
roach that introduces the attribute-guided pre-prompt and optimized
few-shot policy to guide MLLM to generate high-quality descriptions.
Secondly, we devise a two-stage aligning strategy to better utilize the gen-
erated data. We relax the alignment on the non-target domain(generated
data) in stage-1 and then enhance it on the target domain in stage-2.
Finally, sufficient experiments have demonstrated the effectiveness of our
method and that the generated data are comparable to or even superior
to human-annotated data. Our method achieves significant improvement
by 6.7%, 7.6%, and 4.9% in Rank-1, Rank-5, and mAP respectively, com-
pared to the SOTA model on the T2I-VeRi dataset. Code and dataset
will be open-sourced at https://github.com/Fly-ShuAI/TIVR2.

Keywords: Text-to-Image Vehicle Re-identification · Text-based
Vehicle Retrieval · Multimodal large language model

1 Introduction

Text-to-Image Vehicle Re-identification(TIVReid) aims to retrieve the target
vehicle image from a large set based on a given description[10]. Existing vehicle
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re-identification tasks primarily focus on pure visual modality[20,32,33]. How-
ever, in many real-world application scenarios, we can only obtain text descrip-
tions of the target vehicle. Therefore, the TIVReid task is highly worthwhile to
study.

Currently, research on this task is in its early stages. Only Ding et al.[10]
proposed a dataset for TIVReid, called T2I-VeRi. However, due to the limitations
of manual annotation, the text descriptions of vehicles are relatively brief and
some are insufficient for retrieving the target vehicle. The lack of high-quality
large-scale data makes it difficult to effectively align features across the two
modalities, resulting in lower performance of existing models.

Recently, Multimodal Large Language Model(MLLM) (such as GPT4-V[24])
has shown excellent performance in multiple multimodal tasks[12]. MLLM pos-
sesses a wealth of knowledge and powerful multimodal understanding capabili-
ties but we can only interact with it through conversation, which precludes their
direct use for the large-scale training and inference.

Motivated by the main problem in TIVReid and the power of MLLM, this
paper aims to explore the potential applications of MLLM in TIVReid. We
explore an effective method to distill the knowledge of MLLM into the TIVReid
model: First, through attribute-guided pre-prompt and optimized few-shot pol-
icy, we leveraged GPT4-V to construct a new large-scale, high-quality Text-
to-Image Vehicle Re-identification Dataset, called TIVRD2. Following this, we
devise a two-stage aligning strategy called Global feature First, Local feature
added After(GFLA), to better utilize the generated vehicle image-text pairs. We
first relax the alignment on the non-target domain(generated data) to prevent
overfitting and then fine-tune the model on the target domain with a more com-
prehensive alignment to enhance its capability. Through our method, Rank-1,
Rank-5, and mAP have increased by 6.7%, 7.6%, and 4.9% respectively com-
pared to the state-of-the-art model on commonly used human-annotated dataset
T2I-VeRi[10], proving the effectiveness of our proposed method. Our main con-
tributions are as follows:

1. We are the first to explore the potential application of MLLM in TIVReid.
We propose an effective method to distill the knowledge of MLLM into the
TIVReid model, which achieves significant improvement over existing models.

2. We propose a useful prompt design approach to guide MLLM to generate
high-quality vehicle descriptions. We have demonstrated the effectiveness of
this approach by designing different types of prompts and conducting sys-
tematic comparative experiments.

3. We devise an effective two-stage aligning strategy to better utilize the gener-
ated data. This strategy is validated through sufficient experiments and can
be easily extendable to other multimodal models that need two-stage training.

4. We have demonstrated that the quality of the generated dataset TIVRD2
is comparable to or even superior to that of the human-annotated dataset
T2I-VeRi, which offers a low-cost, simple and effective solution to the current
data shortage problem in TIVReid. Our TIVRD2 dataset contains 23,780
high-quality vehicle image-text pairs, nearly ten times the size of T2I-VeRi
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(2,458 pairs). We will open-source our dataset and code to facilitate research
in TIVReid.

2 Related Work

2.1 Multimodal Large Language Models

In recent years, Large Language Models(LLM) have achieved tremendous suc-
cess in the field of natural language processing. Early encoder-decoder models
such as BERT[9], as well as models primarily based on the decoder, such as
GPT-1[25], leveraging the Transformer[27] architecture, have achieved excellent
performance on a variety of NLP tasks. GPT-3[4] was trained on a massive
corpus of text data, and with further instruction-based fine-tuning, ChatGPT
was developed. ChatGPT and subsequent GPT-4[1] have demonstrated power-
ful capabilities across multiple application scenarios. These LLMs compress and
learn information from vast amounts of text data, possessing broad understand-
ing and generative abilities.

Recently, the capability of LLM has been further extended to include image
modalities. Latest LLMs introduce vision-language models and are trained
on large amounts of image-text data, thereby gaining powerful multimodal
understanding capabilities[30], known as Multimodal Large Language Mod-
els(MLLM), such as GPT4-V[24], Google Gemini, Claude-3, etc. These mod-
els have demonstrated excellent performance across multiple multimodal down-
stream tasks[12], providing new insights and methods for the research of multi-
modal tasks.

For example, [28] propose a framework using MLLM to filter image-text pairs,
this method outperforms the existing popular methods CLIPScore via integrat-
ing the recent advances in MLLM. [16] investigate the capabilities of MLLM in
detecting AI-generated human face images(called DeepFakes), They find the per-
formance of GPT4-V is better than the early methods, and it is noteworthy that
these methods are trained on a large-scale face image dataset. [5] use GPT4-V to
generate high-quality captions for 100K diverse images, and replace the image-
text pairs utilized in the Supervised Fine-Tuning(SFT) stage of several typical
MLLMs(containing LLaVA[18], Qwen-VL[2]) with an equivalent quantity. Then
they re-benchmark these models and the results show that they use a small equiv-
alent substitution but get consistent performance improvements across various
MLLMs and benchmarks. In the field of Autonomous Driving(AD), [8] and [29]
systematically review the exploration of MLLM in AD.

The potential applications of MLLM in various multimodal tasks are gradu-
ally being explored, but that in TIReid is still in its infancy.

2.2 Text-to-Image Vehicle Re-identification

Text-to-Image Vehicle Re-identification(TIVReid) faces challenges from both
image-based vehicle re-identification [19–21,31–33] and image-text retrieval
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tasks[15,22]. The key point of TIVReid is to align the image and text fea-
tures fine-grainedly and effectively, which typically requires plenty of high-quality
image-text pairs.

As far as we know, there is only one dataset for Text-to-Image Vehicle Re-
identification task[10], called T2I-VeRi. T2I-VeRi is constructed based on VeRi-
776[20], a widely used dataset for Vehicle Re-identification(image-based), con-
taining 776 different vehicles with 49,357 images in total, captured by 20 non-
overlapping cameras. T2I-VeRi first selects 3-4 images for each vehicle in different
views from VeRi-776, and then manually annotates the text descriptions for each
image. Finally, T2I-VeRi contains 2458 vehicle-text pairs, partitioned into the
training set and test set for the TIVReid task.

But T2I-VeRi has some limitations: (1) The number is small. The TIVReid
task is challenging. The dataset is too small to train a robust deep-learning
model. (2) Cost is high. The dataset is manually annotated, which is time-
consuming, labor-intensive and expensive. (3) Quality has room to improve.
Due to the limitation of manual annotation, most of the text descriptions are
relatively short and some are insufficient to retrieve the target vehicle.

MCANet[10] is the current SOTA model for the TIVReid task, It uses
ResNet-50[13] and BERT[9] as the image and text encoder and designs a multi-
scale multi-view structure to align the image and text features both globally and
locally. However, its performance on T2I-VeRi is still far from satisfactory, the
Rank-1, Rank-5, and mAP are only 0.261, 0.571 and 0.195 respectively. Since
similar model architectures can achieve a not bad performance in Text-to-Image
Person Retrieval(TIPReid)[6], which is a similar task, the low performance of
MCANet is likely due to the lack of large-scale, high-quality data.

3 Methodology

Aiming to explore the potential applications of MLLM in TIVReid, we propose
an effective method to distill the knowledge of MLLM into the TIVReid model.
Fig 1 shows the framework of our method, which will be introduced afterwards.

3.1 Apply MLLM to TIVReid

In this section, we introduce how to distill the knowledge of MLLM into TIVReid.
MLLM possesses rich knowledge and powerful multimodal understanding

capabilities. but we can only interact with MLLM through conversation, which
precludes their direct use for the training and inference in TIVReid. So, we pro-
pose an effective method to distill the knowledge of MLLM into TIVReid. Hence,
we have developed a useful prompt design method that introduces attribute-
guided pre-prompt and optimized few-shot policy to enable MLLM to generate
high-quality descriptions for vehicle images.

Attribute-guided pre-prompt: As shown in 2, the pre-prompt includes
attribute tips such as vehicle type, color, view, etc. Furthermore, we design
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Fig. 1. The framework of our method. We first guide MLLM to generate high-quality
descriptions with the attribute-guided pre-prompt and optimized few-shot policy. Then
we train the model with the proposed two-stage aligning strategy: We relax the align-
ment on the generated data in stage-1 and enhance it on the target domain in stage-2.

some attribute options in brackets. In this way, we can guide MLLM to generate
descriptions with distinctive and sufficient attributes for vehicle images.

Optimized few-shot policy: Next, we carefully select five vehicle images of
representative and different vehicle types, colors, and views, and then manually
design detailed and distinctive descriptions based on these images. Moreover,
the example descriptions all start with a similar sentence structure. In this way,
under normal circumstances, the beginning of MLLM’s response will also follow
a similar sentence structure, containing information about the view, color, and
vehicle type attributes, followed by some specific detailed descriptions.

Through this prompt design approach, we guide MLLM to generate high-
quality descriptions for vehicle images, during which the rich knowledge and
powerful multimodal understanding capabilities of MLLM were distilled into
high-quality vehicle descriptions, and further into the TIVReid model by training
on the generated data with the proposed two-stage aligning strategy.

3.2 Dataset construction

In this section, we introduce the construction details of our dataset TIVRD2.
VeRi-776[20] contains 776 different vehicles with 49,357 images, captured by 20
cameras. ‘0001 c001 00016450 0.jpg’ is an example name: ‘0001’ is the vehicle
ID(one vehicle has one ID. Different vehicles have different IDs.), ‘c001’ is the
camera ID, and ‘16450’ is the timestamp, as shown in Fig 3. We use the word
ID-Camera to represent the combination of vehicle ID and Camera ID, such as
‘0001 c001’. Images with the same ID-Camera usually have a similar appear-
ance. We count 5,145 different ID-Cameras in the train set and 1,677 different
ID-Cameras in the test set. For each ID-Camera, we select about 4 images in
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Fig. 2. 5-shot Prompt: consists of pre-prompt and 5 optimized image-text pairs. In
pre-prompt, we use red color to represent the attribute tips, and use bold to represent
the attribute options. In the following 5 descriptions, we use blue color to represent
the key features of the vehicle. Pre-prompt: Give a paragraph of about 60 words to
describe the vehicle in detail, including the view(front, left front, right front, left
rear, right rear, rear), color, vehicle type(car, SUV, van, bus, pickup, truck),
and any distinguishing features on the front, side, or rear of the vehicle, etc. Here
are five examples of descriptions.

Fig. 3. How to select images: For each ID-Camera, we select images with different
timestamps, which ensures the diversity of the dataset TIVRD2: different vehicle types,
colors, and views. ‘0001 c001’ means the ID-Camera of the vehicle. ‘16450’ is the times-
tamp.
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the train set and about 2 images in the test set, such that the timestamp dif-
ference between the selected images is as large as possible. ( One image with
the minimum timestamp, one image with the maximum timestamp, one or two
images with the median timestamp(if there are still images left). ) This is because
images with big timestamp differences usually have different views. In this way,
we get images with a remarkable diversity of ID, camera, and view. Furthermore,
based on the diverse images, we use MLLM to generate text annotations for each
image, which naturally leads to diverse text annotations.

Then, we use 5-shot prompt shown in 2 to request GPT-4-vision-preview
API to generate the text descriptions. After generating, we manually check the
quality of the descriptions and remove the unusable replies, which may con-
tain refusals(“I am sorry...”), strange chars(“...json”), descriptions about mul-
tiple vehicles, etc. After repeating the request-check process several times, we
finally get a large-scale high-quality dataset, named TIVRD2 since it is the sec-
ond Text-to-Image Vehicle Re-identification Dataset. It contains 20,460 vehicle
image-text pairs for training and 3,320 pairs for testing, Table 1 shows the com-
parison of T2I-VeRi, TIVRD2 and some commonly used datasets for vehicle
re-identification(ReID) and Text-to-Image Person Reidentificationl(TIPReid).

Table 1. Comparison the datasets of ReID, TIPReid and TIVReid tasks.

task dataset average lengthcameras ids images or pairs

Vehicle ReIDVeRi-776[20] n/a 20 776 49,357

CityFlow[31] n/a 40 666 56,277

VehicleID[19] n/a 12 26,267221,763

VERIWild[21] n/a 174 40,671416,314

TIPReid RSTPReid ¿23 - 4,101 20,505

CUHK-PEDES23.5 - 13,00340,206

ICFG-PEDES 37.2 - 4,102 54,522

TIVReid T2I-VeRi[10] 27.6 - 776 2,458

TIVRD2(Ours)64.6 20 776 23,780

3.3 Two Stage Aligning Strategy

In this section, we introduce the proposed two-stage aligning strategy.
Text-to-Image Vehicle Re-identification aims to learn a function F that maps

the input image-text pair (T, I) (T donates the text, I donates the image) to a
feature space, such that the distance of the positive pairs (fT , f+

I ) is minimized
and that of the negative pairs (fT , f−

I ) is maximized as much as possible. Usually,
F is a deep neural network, trained by minimizing a loss function on a training
set X = {xi = (Ti, Ii)}Ni=1 with the annotate labels Y = {(idT , idI)} (idT or idI
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donates the corresponding vehicle ID of the image or text), that is:

minF
N∑

i=1

L(F(Ti, Ii), yi) (1)

where L(·, ·) is the loss function, (fT , fI) and F(Ti, Ii) are the feature represen-
tation of the image-text pairs.

The current SOTA method[10] designs a multi-view multi-scale cross-modal
alignment network MCANet(F) and a masked bidirectional infoNCE loss(L) to
align the image and text features both globally and locally. It uses ResNet-50[13]
as the image encoder, where the fourth layer is multi-branched, and BERT[9]
appended corresponding multi-branched convolutional layers as the text encoder.
It gets six image-text feature pairs {(fT , fI)}6i=1, representing the front view, rear
view, side view, low scale, high scale and ensemble feature, respectively. Fig 1
shows the brief structure of MCANet.

We take MCANet as our feature extraction model F . To better align the
image and text features by utilizing the large-scale high-quality vehicle image-
text pairs in TIVRD2, we propose an effective two-stage aligning strategy, called
Global feature First, Local feature added After(GFLA), that is:

Stage-1: In stage-1, we train the model on TIVRD2, the non-target domain.
Unavoidably, the generated data has a little domain gap with the human-
annotated data(target domain). So we relax the alignment requirement and only
align the global feature(high scale and ensemble feature mentioned above), to
learn a universal global feature alignment capability and prevent overfitting.

InfoNCE loss[23] is commonly used to align two feature spaces:

LInfoNCE(q, k) = − 1
N

N∑

i=1

log
exp(qi · ki/τ)

∑N
j=1 exp(qi · kj/τ)

(2)

where qi, ki donates i-th feature pair, τ is the temperature parameter, N is
the batch size. Minimizing the InfoNCE loss means enlarging the similarity of
positive pairs exp(qi · ki/τ) and reduce the sum of similarities of negative pairs∑N

j=1 exp(qi · kj/τ). We use global contrastive loss Lglobal to train the model in
stage-1:

Sij = exp(qi · kj/τ) (3)

Lmb(q, k) = − 1
N

N∑

i=1

log
Sii

Sii +
∑

j∈Mi
Sij +

∑
j∈Mi

Sji
(4)

Lglobal = Lmb(f5
T , f5

I ) + Lmb(f6
T , f6

I ) (5)

where Sij is the similarity between qi and kj , In a batch of image-text pairs, Mi

denotes the set of index of the pairs that has the different ID with the i-th pair,
so

∑
j∈Mi

Sij means the similarity of negative pairs from text to image, and∑
j∈Mi

Sji means the similarity of negative pairs from image to text. Lmb(q, k)
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is the masked bidirectional InfoNCE loss[10]. It masks kj with the same ID as
qi, and qj with the same ID as ki because images and descriptions can have a
huge difference from different views of the same vehicle. Bidirectional loss means
we align both the image feature to the text feature and the text feature to the
image feature simultaneously, which is more comprehensive and robust than
unidirectional loss. (f5

T , f5
I ) and (f6

T , f6
I ) are the global features of the image and

text mentioned above.

Stage-2: In stage-2, we fine-tune the model on the target domain(T2I-VeRi) by
more fine-grained feature alignment to enhance its capability. We use multi-view
multi-scale masked bidirectional contrastive loss[10] Lmvms to train the model:

Lmvms =
3∑

i=1

λiLmb(f i
I , f

i
T ) +

6∑

i=4

Lmb(f i
I , f

i
T ) (6)

We align all the global, local and multi-view feature pairs {f i
I , f

i
T }6i=1 via Lmvms

to learn a more comprehensive and detailed feature alignment. λ1, λ2, λ3, are the
self-adapting weights of the front view, side view and rear view, respectively.

4 Experiments

4.1 Experimental Setup

Dataset: We partition the dataset into training set and testing set by vehicle
ID in the same way as VeRi-776, that is, given 576 IDs for training and the rest
200 IDs for testing. Specifically, T2I-VeRi has 1,826 pairs for training and 632
for testing. TIVRD2 has 20,460 pairs for training and 3,320 for testing.
Evaluation Metrics: We use the common metrics Rank-1, Rank-5, Rank-10
and mAP to evaluate the model. It is worth noting that in image-text retrieval
tasks, Rank-k and Recall@k have the same meaning, that is, the proportion of
the top-k retrieval results that contain the target[15]. AP reflects the area under
the precision-recall curve. Refer to the highly-starred repository for detailed
calculation. mAP is the mean of AP of all queries, which is more comprehensive.
Implementation Details: Input images are resized to 224x224. Random flip-
ping and cropping are used for data augmentation. The maximum length of the
text description is set to 60 for T2I-VeRi and 100 for TIVRD2 to ensure that
at least 95% of the text descriptions are completely input into the model. The
BERT model is fixed during training. We use the Adam optimizer with a learning
rate of 0.002(0.001 in stage-2), warming up for 10(5) epochs, and decreasing to
80% at set epochs, 25(20) epochs in total. The batch size is 64. The temperature
parameter τ is set to 0.02. Our devices are NVIDIA TITAN RTX GPUs.

https://github.com/layumi/Person_reID_baseline_pytorch/blob/master/evaluate.py
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4.2 Comparison with State-of-the-Art Methods

Table 2 shows the comparison of our method with existing methods on T2I-VeRi.
Current research on TIVReid is limited(only one method[10] is pro-

posed), so we compare not only with the SOTA method in TIVReid
but also with some latest and representative methods in Text-Image Per-
son Retrieval(TIPReid), Vision-Language Pre-training(VLP) and image-based
object re-identification(ReID) tasks. LGUR[26], SSAN[11], HAT[3], TIPCB[6],
TFAF[17] are the recent models for TIPReid. We re-train these models on T2I-
VeRi and report the results. TransReID[14] is the representative model in object
ReID and its performance is only marginally different from the SOTA method
in both person and vehicle ReID tasks, so we choose it to compare with our
method. However, this model can only be used for image-based retrieval tasks,
so we add BERT as the text encoder and re-train it on T2I-VeRi. MCANet[10]
is the current SOTA model for the TIVReid task, and we use it as the backbone
of our method.

Our method outperforms the existing methods by a large margin: Rank-1,
Rank-5, and mAP are 6.7%, 7.6%, 4.9% higher than the current SOTA method,
which indicates the effectiveness of the TIVRD2 and two-stage aligning strategy.

Table 2. Comparison with existing methods on T2I-VeRi.

Method Ref Rank-1Rank-5Rank-10mAP

TransReID[14] ICCV 21 7.5 24.3 35.1 7.4

LGUR[26] ACM MM 22 11.3 29.0 45.9 9.2

SSAN[11] arXiv 21 14.2 34.3 52.6 12.2

HAT[3] ACM MM 23 16.0 40.7 56.2 13.7

TIPCB[6] NeuroComputing 22 16.8 44.0 58.8 18.0

TFAF[17] IEEE SPL 22 20.1 49.0 66.3 15.5

MCANet[10](baseline) IEEE ITS 24 26.1 57.1 72.3 19.6

GFLA Stage-1(Ours) 19.3 43.0 56.2 16.4

GFLA Stage-2(Ours) 32.8 64.7 79.1 24.5

Ablation Study: Data Scale. Table 3 shows the performance of our method
with different data scales: 5k, 10k, 15k, and 20.5k(all train data) of TIVRD2. As
the data scale increases, the performance significantly improves in both stages.

Ablation Study: Training Strategy. Table 4 shows the performance on T2I-
VeRi with different training strategies. Baseline method MCANet aligns global
and local features in both two stages, which performs better in stage-1 but worse
in stage-2 compared with our method GFLA, which relaxes the alignment in
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Table 3. Performance of our method on T2I-VeRi with different training data scales.

Stage Train Data Rank-1Rank-5Rank-10mAP

Stage-1 TIVRD2 5k 17.5 37.8 50.9 14.8

TIVRD2 10k 17.6 38.6 55.1 14.8

TIVRD2 15k 18.2 40.8 56.2 15.8

TIVRD2 20.5k 19.3 43.0 56.2 16.4

beseline T2I-VeRi 26.1 57.1 72.3 19.6

Stage-2
(based on Stage-1)

T2I-VeRi 27.1 58.0 75.5 20.7

29.3 64.0 76.1 21.8

29.6 60.3 76.6 22.0

32.8 64.7 79.1 24.5

Table 4. Performance on T2I-VeRi with different training strategies.

MethodStageTrain Align Loss Rank-1Rank-5Rank-10mAP

MCANet - T2I-VeRiGlobal+LocalLmvms 6 26.1 57.1 72.3 19.6

MCANet1 TIVRD2 Global+LocalLmvms 6 21.2 44.1 61.6 16.4

+9.5 +20.1 +17.2 +6.0

2 T2I-VeRiGlobal+LocalLmvms 6 30.7 64.2 78.8 22.4

GFLA 1 TIVRD2 Global Lglobal 5 19.3 43.0 56.2 16.4

+13.5 +21.7 +22.9 +8.1

2 T2I-VeRiGlobal+LocalLmvms 632.8 64.7 79.1 24.5

stage-1. The baseline method aligns the features fine-grained on the non-target
domain(TIVRD2) in stage-1, which may lead to overfitting, and thus performs
worse on the target domain(T2I-VeRi) in stage-2.

4.3 Ablation Study: Prompt design

In this section, we evaluate the effectiveness of the prompt design method.
The prompt word has a significant impact on the generation effects of MLLM.

So we meticulously design four different prompts: 0-shot-v1(base version), 0-
shot-v2(attribute-guided pre-prompt), 1-shot and 5-shot, shown in Table 5.

Based on these four prompts, we used GPT4-V to generate text descriptions
for 2,458 vehicle images in T2I-VeRi respectively. To ensure the reliability of the
results, all datasets are partitioned into training(1,826) and testing(632) sets in
the same way as T2I-VeRi, and the model used is also the same, MCANet[10].
We cross-validated the trained models on T2I-VeRi and these generated datasets,
yielding the following results and conclusions:



352 J. Zeng and C. Zhang

Table 5. Prompt comparison. Attribute tips and options are in red and blue.

Prompt nameDetails

0-shot-v1 Give a paragraph of about 60 words to describe the vehicle
in detail.

0-shot-v2 Give a paragraph of about 60 words to describe the vehicle
in detail, including the view(front, left front, right front,
left rear, right rear, rear), color, vehicle type(car, SUV,
van, bus, pickup, truck), and any distinguishing features on
the front, side, or rear of the vehicle.

1-shot Prompt in 0-shot-v2 and the second pair in Fig 2.

5-shot Prompt in 0-shot-v2 and five image-text pairs in Fig 2.

Table 6. Train on different prompt-guided generated datasets and test on T2I-VeRi.

Train AttributesShotsTest Rank-1Rank-5Rank-10mAP

0-shot-v1✗ ✗ T2I-VeRi 9.2 25.2 39.7 8.5

0-shot-v2✓ ✗ 10.6 25.9 34.2 9.2

1-shot ✓ 1 14.7 34.8 48.4 11.6

5-shot ✓ 5 13.6 29.3 41.8 10.5

Table 6 shows the test results of models trained on the generated dataset and
tested on T2I-VeRi. Typically, the higher the quality of the generated dataset,
the better the model is trained, and the higher the performance on T2I-VeRi.

Table 7 shows the test results of the model trained on T2I-VeRi and tested on
the generated dataset. Typically, the higher the quality of the generated dataset,
the better the performance of the model on it.

Therefore, the prompt with designed attributes and few optimized shot sig-
nificantly improves the quality of the generated data and the performance of
the model trained on them, which demonstrates the effectiveness of attribute-
guided pre-prompt and optimized few-shot policy in guiding MLLM to generate
high-quality descriptions.

Table 7. Train on T2I-VeRi and test on different prompt-guided generated datasets.

Train Test AttributesShotsRank-1Rank-5Rank-10mAP

T2I-VeRi 0-shot-v1✗ ✗ 7.1 19.9 30.2 7.3

0-shot-v2✓ ✗ 9.7 26.4 38.4 9.7

1-shot ✓ 1 12.0 32.4 43.4 10.9

5-shot ✓ 5 13.4 34.2 46.7 12.0
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4.4 Dataset Evaluation

In this section, we conduct a detailed comparison of the T2I-VeRi and TIVRD2
datasets, to further verify the effectiveness of TIVRD2 generated by MLLM.
Quantitative Analysis: We conducted cross-validaion using the current SOTA
model MCANet[10] on TIVRD2 and T2I-VeRi in Table 8. The first two rows
show that when models are tested on their respective source datasets, TIVRD2
performs better, indicating better consistency of the TIVRD2 dataset; the lower
mAP is due to the larger number of TIVRD2 test datasets. The last two rows
show that when models are tested on different source datasets, TIVRD2 performs
better, indicating that the model trained on the TIVRD2 dataset has better
generalization performance. Comparing rows 1 and 4, even without using T2I-
VeRi, the model’s performance on the T2I-VeRi test set is not far off from
the existing SOTA model trained on T2I-VeRi, which fully demonstrates the
effectiveness of the TIVRD2 dataset.

Table 8. cross-validaion on TIVRD2 and T2I-VeRi dataset.

Train Test Rank-1Rank-5Rank-10mAP

T2I-VeRi 26.1 57.1 72.3 19.6

TIVRD2 33.6 61.6 74.2 14.5

T2I-VeRiTIVRD2 12.2 28.7 39.3 7.9

TIVRD2 T2I-VeRi21.2 44.1 61.6 16.4

Qualitative Analysis: We randomly selected 100 image-text pairs from the
T2I-VeRi and TIVRD2 datasets and manually counted the number of noisy
pairs (inappropriate, incorrect, or insufficient annotations). Results show that
the proportion of noisy pairs in T2I-VeRi is about 3%, while that in TIVRD2 is
less than 1%. We present some pairs from T2I-VeRi and TIVRD2 for comparison
in Fig 4 and the matching result comparison in 5.

Overall, through quantitative and qualitative analysis, we demonstrate that
the quality of the dataset TIVRD2, generated by guiding GPT4-V with pro-
posed attribute-guided pre-prompt and optimized few-shot policy, is not only
comparable to but even exceeds the quality of manually annotated datasets.
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Fig. 4. Examples from TIVRD2 and T2I-VeRi. We use red to mark the noisy annota-
tions in T2I-VeRi and corresponding better annotations in TIVRD2, use ‘[ ]’ to explain
the reasons, and use blue to mark the distinctive features in descriptions.

Fig. 5. Results comparison of models trained on T2I-VeRi and TIVRD2. The follow-
ing description example shows that the manual description is insufficient to retrieve
the target vehicle since there are many vehicles matching these features(marked in
blue), while the generated description contains more representative and discrimina-
tive features (marked in red). The matching results show the limitation of the manual
annotation and the effectiveness of the generated description.
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5 Conclusion

In this paper, we have explored an effective method to distill the knowledge of
MLLM into the TIVReid model. We propose a useful prompt design approach,
which introduces the attribute-guided pre-prompt and optimized few-shot pol-
icy to guide MLLM to generate high-quality descriptions for vehicle images,
and thus construct a large-scale high-quality vehicle image-text pairs dataset
TIVRD2. Then, We devise an effective two-stage aligning strategy to better
utilize the generated data. systematic and extensive experiments show the effec-
tiveness of our prompt design approach and the two-stage aligning strategy, and
demonstrate that the quality of the TIVRD2 dataset is of equal or even better
quality than manually annotated datasets.

However, there are still some limitations in our work. We only consider
the representative MLLM GPT4-V to test our ideas. Future research can test
some open-source MLLMs to further verify the effectiveness of our method and
compare their performance, such as LLaVA[18], InternVL[7], Qwen-VL[2], etc,
Besides, we only focus on the text-to-image vehicle re-identification task, The
similar method can be applied to text-to-image person re-identification or other
fine-grained text-image retrieval tasks. What’s more, 2D visualization of learnt
space can be used to analyze the feature alignment effect. We wish that our work
and limitations could inspire more research on the relevant fields.
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Abstract. Embodied navigation, which involves robotic agents explor-
ing an unknown environment to reach target locations with egocentric
observation, is a complex problem in the field of embodied AI. Audio-
visual navigation extends this concept by equipping agents with both
visual and auditory sensors. Recent studies have explored the audio-
visual navigation task, exploring its potential and intricacies. Current
methodologies, despite their achievements, often fail to fully utilize the
capabilities of these sensory modalities, leading to sub-optimal designs
and inefficiencies. In addition, the prevalent backtracking problem in
navigation tasks often leads to redundant movements by robots. To
address these challenges, we introduce the Audio-Visual Guided Naviga-
tion (AVGN) model. At its core, AVGN champions the fusion of visual
and auditory data through sophisticated modality fusion layers. Our
model represents a significant advancement by employing transformers
for visual encoding and deploying a novel Dual Stage Feature Integration
(DSFI) to decode latent interrelationships between the visual and audio
realms. With AVGN, the backtracking issue is mitigated, as the acoustic
map synergizes more effectively with visual features for informed action
decisions. Furthermore, targeting the backtracking problem, we propose
a unique set of reward structures to guide and refine the actions of the
agent. Benchmark evaluations on Replica and Matterport3D datasets
validate our claims, and AVGN notably surpasses existing methodolo-
gies in audio-visual navigation tasks.

Keywords: Visual Navigation · Reinforcement Learning · Audio
Visual Navigation.

1 Introduction

Embodied navigation [1–5] is a critical area of research in the field of embod-
ied intelligence [6–9], where robotic agents navigate unknown environments to
reach their target destinations using egocentric observations. In addition to visual
observations, hearing is an essential sense as it provides both temporal and spa-
tial information, allowing visually impaired subjects to navigate efficiently. To
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get a better understanding of physical space and localizing sound-emitting tar-
gets, Chen et al. [10] introduced the concept and standard of the audio-visual
navigation task. Concurrently, research [10–15] have been proposed for the audio-
visual navigation task. Among recent audio-visual navigation research, LLA [12]
presents a traditional phase-based navigation approach, leveraging a topolog-
ical graph to streamline path planning. SoundSpaces [10] distinguishes itself
as a trailblazing end-to-end solution, uniquely foregoing reliance on topological
graphs and specific auditory meta-data such as sound source categories (e.g., tele-
phone, doorbell, alarm). AV-WaN [15] utilizes waypoints (depicted via a topo-
logical graph) to enhance long-distance navigation efficacy. SAVi [14] addresses
environments with sporadic sound emissions by incorporating auditory meta-
data.

However, a significant limitation of these methodologies lies in their approach
to fusing visual and auditory data. Their strategies for modalities integration
often use concatenation. This simplistic merging often loses the details that each
type of sensor can provide, potentially missing opportunities for deeper insights
and enhanced navigation cues. Furthermore, existing methods suffer from the
pervasive backtracking problem. This challenge manifests itself in multiple ways:
it not only introduces redundancy trajectories, inflating the navigation time, but
it can also lead to agents being sent astray. Such misdirection can be particu-
larly detrimental in complex or dynamic environments where efficient navigation
is paramount. Agents often find themselves retracing their steps or oscillating
between points, increasing the risk of navigational failure.

To enhance the effectiveness of information utilization and reduce the back-
tracking issue, our proposed methodology aims to effectively integrate both audio
and visual cues and examine their interrelationships. We have designed a model
that comprises two dedicated encoders, tailored for visual and audio inputs,
complemented by an advanced suite of fusion techniques on different levels of
features. In contrast to conventional Convolutional Neural Networks (CNNs),
vision transformers [16–18] demonstrate superior capability in capturing intri-
cate spatial relationships and global context from visual data. Leveraging the
prowess of transformers, our model becomes adept at extracting and assimilat-
ing pivotal features from visual streams. To further accentuate this synergy, we
introduce a multi-stage fusion strategy termed Dual Stage Feature Integration
(DSFI). This approach allows our model to discern and represent the nuanced
connections between visual scenes and concurrent audio cues. The DSFI pro-
cedure is bifurcated into two fusion strata. The Early Fusion integrates early
visual and audio features, offering a foundational context and immediate sen-
sory correlations. On the other hand, the Acoustic Fusion branch refined visual
and auditory features in a more context-aware manner. By introducing DSFI
into our architecture, our model can seamlessly blend insights from both sen-
sory channels, providing a holistic and enriched understanding for the navigating
agent. Since the acoustic map contains information about the direction of the
sound source, which is also the navigation target, the backtracking issue is allevi-
ated. Moreover, in addressing the common backtracking issue inherent in many
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navigation algorithms, we introduce the directional continuity reward and the
historical trajectory reward to constrain the agent’s actions. The directional con-
tinuity reward penalizes abrupt changes in the agent’s direction of movement.
The historical trajectory reward imposes penalties if the agent revisits a location
to which it has already been on its trajectory.

In conclusion, our contributions can be summarized as three-fold: (i) We
introduced a novel audio-visual navigation method, AVGN, which employs a
robust fusion strategy, DSFI, adeptly integrating visual and audio features to
optimize action decisions; (ii) We have innovatively devised a triad of reward
mechanisms, specifically targeting and mitigating the persistent backtracking
challenges inherent to navigation tasks; (iii) Benchmarking on the SoundSpaces
platform, our model has demonstrated superior performance over existing meth-
ods on Matterport3D and Replica datasets.

2 Related Work

2.1 Vision-Based Navigation

The significance of vision in cognitive mapping for human navigation has been
extensively investigated in early research [19,20]. Similarly, recent AI agents
process egocentric visual input for navigation purposes [8,19,21–26]. NTS [21]
presents a method for image-goal navigation in uncharted environments by lever-
aging topological space representations that intricately merge semantics with
proximate geometry, hinged on nodes and their relationships. Meanwhile, LB-
WayPtNav [19] offers an inventive blend of model-based control and learning-
oriented perception for robot navigation, delivering consistent and efficient tra-
jectories in uncharted terrains. Bansal et al. [22] introduces a technique that syn-
ergizes model-based control with learning-driven perception to navigate robots,
resulting in reliable and efficient trajectories in unfamiliar environments, even
with minimal 3D environmental mapping and lower frame rates, showcasing
effective sim-to-real generalization.

Vision-based navigation is frequently augmented with textual input in the
form of dialogs. Pioneering studies [27–29] have investigated the feasibility of
vision-dialog navigation. Specifically, Jesse et al. [27] curate a dataset tailored for
Cooperative Vision-and-Dialog Navigation set within photorealistic residential
environments, and introduce a task where agents rely on human dialog history
for navigation. Their insights reveal that a richer dialog history boosts navigation
outcomes. VLN-BERT [28] refines the BERT [30] architecture by incorporating
a time-sensitive recurrent function for the vision-and-language navigation chal-
lenge, showcasing adaptability over multiple transformer models and adeptness
in managing both navigation and expression referral tasks. Furthermore, Hao
et al. [29] propose a pre-training and fine-tuning strategy for vision-language
navigation tasks, which leverages a plethora of image-text-action datasets in a
self-supervised manner to augment performance in established vision-language
navigation setups.
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Although vision-based and vision-language navigation has achieved consid-
erable success, audiovisual navigation is emerging as a novel challenge in the
domain.

2.2 Audio-Visual Navigation

Audio-Visual Navigation pertains to tasks where agents process visual and audi-
tory cues. Historically, most audio-visual navigation research has been confined
to single-sound environments. Notable examples include LLA (Look, Listen, and
Act) [12], SoundSpaces [10], AV-WaN (Audio-Visual Waypoint Navigation) [15],
and SAVi (Semantic Audio-Visual Navigation) [14]. LLA [12] offers a conven-
tional phase-based navigation method, relying on a topological graph to facili-
tate optimal path planning. SoundSpaces [10], a pioneering end-to-end method,
stands out by not depending on any topological graph or specific auditory meta-
information, such as the category of the sound source (e.g., telephone, door-
bell, alarm). AV-WaN [15] adopts waypoints (represented through a topological
graph) to optimize navigation over longer distances. SAVi [14] considers scenarios
with intermittent sound emissions, enriching their model with auditory meta-
information. For more acoustically intricate settings, where the target sound
blends with multiple ambient noises, SAAVN (Sound Adversarial Audio-Visual
Navigation) [13] offers an end-to-end framework.

Although significant strides have been made in audiovisual navigation, the
audio and visual modalities are recognized as underutilized, a gap that we aim
to bridge in our proposed methods.

3 The Proposed Method

3.1 Method Overview

We frame the navigation challenge as a reinforcement learning problem, where
a robot, driven by an audio cue, learns an optimal policy to swiftly navigate
to a target within an unfamiliar environment. We focus on two tasks: Audio-
Goal Navigation and AudioPointGoal Navigation. In the AudioGoal scenario,
the agent receives both audio and visual inputs. AudioPointGoal is an audio
extension of the PointGoal task [31–33], where the agent navigates with an ego-
centric view and audio input, and its displacement to the target. The action
space of the agent comprises {MoveForward, TurnLeft, TurnRight, Stop}. Fol-
lowing [10], the sensory inputs include binaural sound simulated by room impulse
response (RIR) [34], egocentric RGB images, and the displacement vector to the
goal (exclusive in the AudioPointGoal setting). We introduce our solution as
AVGN, which stands for Audio-Visual Guided Navigation. The architecture of
AVGN consists of four key components, as illustrated in Fig. 1. Specifically,
AVGN processes given egocentric vision and audio inputs by encoding them into
distinct features. Visual data is encoded using transformers, while audio data is
processed with convolutional neural networks (CNNs). These separate features
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are then fused through the Dual Stage Feature Integration (DSFI), resulting in
a comprehensive audio-visual embedding. This fused embedding is subsequently
transformed into a temporally-sensitive state representation by a Gated Recur-
rent Unit (GRU). Finally, an actor-critic framework is applied to predict, eval-
uate, and refine subsequent actions. The robot agent iteratively undergoes this
sequence until it successfully locates the target. Each of these components will
be elaborated upon in the subsequent sections.

Fig. 1. The AVGN structure. The visual and audio inputs are initially processed by
their respective encoders. Each type of input is encoded to generate the corresponding
features, which include both primary and early-stage characteristics. These features,
along with a displacement vector, are then input into the Dual Stage Feature Integra-
tion (DSFI) to derive an observation feature. Subsequently, this observation feature is
fed into a Gated Recurrent Unit (GRU) to capture the state feature at step t. Finally,
this state feature is used by an actor-critic algorithm to determine the appropriate
action.

3.2 Audio-Visual Model

At t-th step, the agent receives a visual input, denoted as It, and an audio
input, represented by At. The visual input It undergoes processing via a Swin
transformer [17], resulting in the derivation of an early image feature, Ft

EI ,
and an image feature, Ft

I . Similarly, the audio input At is processed through a
Convolutional Neural Network (CNN) to obtain an early audio feature, Ft

EA,
and an audio feature, Ft

A. Additionally, the GPS sensor of the agent collects the
displacement input, Δt.

To gauge the real-time contribution of each modality, factoring in the fluc-
tuating contexts, we have devised a trainable audio-visual fusion mechanism,
termed Dual Stage Feature Integration (DSFI). This mechanism is adept at con-
verting the encoded features into a consolidated embedding vector, Ft

O:

Ft
O = DSFI(Ft

I ,F
t
A,Ft

EI ,F
t
EA,Δt) (1)
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The detailed structure of DSFI is illustrated in Fig. 2. The early fusion branch
is shown on the left, and we pay special attention to the early visual feature Ft

EI

with the early audio feature Ft
EA as follows. For the early audio feature Ft

EA, we
apply the max pooling and average pooling along the channels. We obtain max
pool Fmax∈R1×W×H and the average pool Favg∈R1×W×H , respectively. Then
we concatenate the obtained features and process a 1 × 1 convolutional layer
followed by a sigmoid function, to obtain a weighted early audio feature. Then
we proceed with a Hadamard product between the weighted early audio feature
and the early visual feature to obtain an early fusion feature. The procedure
above can be concluded as follows:

Ft
E = sigmoid(Conv(Fmax ⊕ Favg)) � Ft

EI (2)

Fig. 2. The structure of DSFI. The early audio feature Ft
EA is first enhanced

with a spatial attention mechanism and then combined with the early vision features
Ft

EI using the Hadamard product. For the image and audio features, we apply cross-
attention to process their interaction. The resulting output is then concatenated with
the early fused features and the displacement vector to form the observation feature.

The other branch is the acoustic fusion branch, which we process with visual
feature Ft

I and audio feature Ft
A. We apply the function as follows:

Ft = softmax(
W1Ft

I(W2Ft
A)T

√
d

)W3Ft
A (3)

where W1 and W2 are both weight matrices to be optimized; d is a scalar factor
with a value of 256; and F t is the resulting fused embedding vector. We use the
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right branch to extract useful information from the audio feature Ft
A and fuse

with the visual feature Ft
I . In this way, the audio information, which delivers

the sound source orientation, is combined with the visual feature and the agent
can make better decisions accordingly.

The primary advantage of the DSFI design lies in both the acoustic fusion
branch and the early fusion branch. Since the acoustic reveals where the sound
comes from, it is important to transfer the audio information into visual features.
By fusing the visual feature Ft

I and the audio feature Ft
A, it ensures a robust

correlation between the two, efficiently extracting valuable information from the
audio data and enhancing the visual feature in the process. Importantly, the
fusion of early visual and audio features delves into finer details of the envi-
ronment, capturing nuanced environmental cues. Such multi-level feature fusion
greatly aids in making more informed decisions regarding actions.

With the fused early feature Ft
E , the fused feature Ft, and the displacement

vector Δ, the DSFI concatenates them together to obtain the feature of current
observation at step t:

Ft
O = Ft

E ⊕ Ft ⊕ Δ. (4)

We employ a bidirectional GRU [35] with a 512-dimensional hidden layer to
enhance a series of observation features, namely Ft0

O through Ftn
O , culminating

in a temporally-aware state representation denoted by st. Specifically, at time
t, the GRU cell takes in both the current embedding Ft

O and the previous cell
state ht−1 to produce st and ht, which can be formulated as

st, ht = GRU(Ft−1
O , ht−1). (5)

The state vectors, denoted as s1,...,st, are processed through an actor-critic net-
work for two primary purposes: firstly, to predict the conditioned action prob-
ability distribution πθ1(a

t|st) and secondly, to estimate the state value Vθ2(s
t).

The actor and the critic are implemented with a single linear layer parameter-
ized by θ1 and θ2, respectively. The action sampler shown in Fig.1 samples the
actual action denoted at, based on πθ1(a

t|st)). The training aims to maximize
the expected discounted return R:

R = Eπ[
T∑

t=1

Γtr(st−1, at)], (6)

where Γ represents the discount factor, while T is the maximum number of time
steps. Additionally, π denotes the policy that governs the robot agent. r(st−1, at)
is the reward given by the environment at the time step t. The reward is detailed
in Section 3.3. Proximal Policy Optimization (PPO) [36] is adopted in this work
to optimize Equation (6). The entire procedure is described in Algorithm 1.
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Algorithm 1 Audio Visual Guided Navigation.
Require: Environment E, stochastic policies π, initial actor-critic weights θ0, initial

encoder and DSFI weights W0, the number of updates M , the number of episodes
N , max time steps T .

Ensure: Trained weights: θM and WM

1: for i = 1 to M do
2: # Run policy πθi−1 in environment for N episodes and T timesteps
3: {(ot, ht−1, at, rt)i}T

t=1 ← roll(E, πθ, T ) for i-th update
4: Compute advantage estimates
5: # Optimize w.r.t. θ and W
6: (θi,Wi) ← update the weights using the PPO algorithm to maximize Equation

(6)

3.3 Reward and Training

To address the backtracking issue discussed in Section 1, besides integrating
the audio feature and the visual feature to guide the agent, as mentioned in
Section 3.2, we implement a combination of fundamental rewards that facil-
itate navigation. These include rewards for stopping at the designated goal,
time-related penalties, rewards for decreasing geodesic distance, and penalties
for increasing geodesic distance. Additionally, we introduce specialized rewards,
termed the directional continuity reward and historical trajectory reward.
Directional continuity reward penalizes the agent for abrupt changes in its
direction of movement. It encourages the agent to move smoothly and contin-
uously. Let θprev be the agent’s previous movement direction and θcurr be its
current movement direction. Then the directional continuity reward rdcr can be
be defined as:

rdcr = −β × |θcurr − θprev| (7)

where β is a constant that determines the penalty’s strength for changing direc-
tion. Backtracking often requires an agent to make a U-turn or change its direc-
tion drastically. By penalizing sharp directional changes, the agent is less likely
to make such U-turns, thus reducing backtracking.
Historical trajectory reward is based on storing the recent positions the
agent has visited. If the agent revisits a location that has been in the recent
past, it receives a penalty. Let Ht

i be the set of positions visited by the agent
in the past i timesteps, and pcurr be the agent’s current position. Then the
historical trajectory reward rhtr at time t can be defined as:

rhtr =

{
−α, if pcurr ∈ Ht

i ,

0, otherwise,
(8)

where α is a positive constant representing the penalty for revisiting a recent
position. By penalizing the agent for revisiting recent locations, the agent is
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discouraged from taking routes that lead it back to where it has just come from,
thus reducing the chances of backtracking.

In our experimental framework, we amalgamate the aforementioned rewards
with three straightforward incentives, which follow SoundSpaces [10]: (1) a
reward of +10 points when the robot successfully navigates to the target and
initiates the “Stop" action; (2) a reward of +0.25 points whenever the Manhat-
tan distance between the robot and the target decreases; and (3) a time penalty
of -0.01 for each action taken, promoting more efficient navigation.

4 Experiemnts

4.1 Dataset and Benchmark

In this study, we employ our method in conjunction with the 3D environ-
ment benchmark, SoundSpaces [10,11]. SoundSpaces stands out as an advanced
and lifelike acoustic simulation platform tailored for audio-visual embodied AI
research. This platform is built based on Habitat [37,38], offering a wide spec-
trum of research possibilities, ranging from audio-visual navigation and explo-
ration to echolocation, as well as audio-visual floor plan reconstruction. This
broad array of capabilities enables researchers to delve deeper into the nuances
of embodied vision in various dimensions. For our experiments and analysis, we
have specifically chosen datasets from Matterport3D [39] and Replica [40]. We
use the AudioGoal setting for our experiments. We mainly use the telephone as
a sound source for the experiments.

Table 1. Quantitative comparisons with navigation methods. We compare our
model with existing methods on the Replica dataset and the Matterport3D dataset
under both Heard and Unheard settings. SPL, SR, and SNA denote the success rate,
success weighted by path length, and success weighted by number of actions, respec-
tively.

Method Replica Matterport3D
Heard Unheard Heard Unheard
SPL SR SNA SPL SR SNA SPL SR SNA SPL SR SNA

RandomAgent 4.9 18.5 1.8 4.9 18.5 1.8 2.1 9.1 0.8 2.1 9.1 0.8
Direction Follower 54.7 72.0 41.1 11.1 17.2 8.4 32.3 41.2 23.8 13.9 18.0 10.7
Frontier Waypoints 44.0 63.9 35.2 6.5 14.8 5.1 30.6 42.8 22.2 10.9 16.4 8.1
Supervised Waypoints 59.1 88.1 48.5 14.1 43.1 10.1 21.0 36.2 16.2 4.1 8.8 2.9
LLA [12] 57.6 83.1 47.9 7.5 15.7 5.7 22.8 37.9 17.1 5.0 10.2 3.6
SoundSpaces [10] 78.2 94.5 52.7 34.7 50.9 16.7 55.1 71.3 32.6 25.9 40.1 12.8
AV-WaN [15] 86.6 98.770.7 34.7 52.8 27.1 72.3 93.654.8 40.9 56.7 30.6
AVGN (Ours) 88.597.3 71.9 34.959.129.0 84.388.3 57.1 53.262.238.6
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For evaluation, we apply three metrics in our experiments: 1) success rate
(SR), the fraction of successful episodes, i.e., episodes in which the agent stops
exactly at the audio goal location on the grid; 2) success weighted by path length
(SPL) [41], the standard metric that weighs successes by their adherence to the
shortest path; 3) success weighted by number of actions (SNA), which penalizes
rotation in place actions, which do not lead to path changes.

4.2 Implementation Details

In the implementation of the AVGN model, raw egocentric vision images of size
256 × 256 × 3 are processed through 6 transformer blocks, each with multi-
head self-attention mechanisms, producing a visual feature map of 64 × 64 ×
128. Currently, the audio data, represented as spectrograms with dimensions
64× 128, undergoes processing through a CNN composed of three convolutional
layers (each followed by batch normalization and ReLU activation), resulting in
a feature map of 8 × 16 × 64. These visual and audio features are fused using
the Dual Stage Feature Integration (DSFI) mechanism, yielding a combined
embedding of dimension 128. This embedding undergoes temporal refinement
in a bidirectional GRU with a hidden state of 512, feeding into the actor-critic
framework. The actor and critic networks, each built from two dense layers with
256 neurons and ReLU activations, optimize actions using the Proximal Policy
Optimization (PPO) algorithm [36] at a learning rate of 1 × 10−4.

Fig. 3. Comparison with state-of-the-art methods. Our results showcase smooth
navigation without backtracking problems.

4.3 Comparison with Baselines

The experiment results are shown in Table 1. We compare our methods with
baselines on two datasets: Replica and Matterport3D. On each dataset, we eval-
uated the methods under two settings: Heard and Unheard, where Heard stands
for the standard AudioGoal setting with both visual and audio sensors equipped
on the agent, while in the Unheard setting, only the visual sensor is attached.
The existing methods and baselines with which we compared are as follows:

1. Random Agent: An agent that randomly selects each action and selects
Stop when it reaches the goal.
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2. Direction Follower: A hierarchical model that sets intermediate goals K
meters in the predicted direction of arrival (DoA) of the audio. Following [15],
we set K = 2 in Replica and K = 4 in Matterport3D.

3. Frontier Waypoints: A hierarchical approach that combines the predicted
DoA with the boundaries of the explored areas to designate the next waypoint.

4. Supervised Waypoints: This model employs supervised learning to pre-
dict waypoints within its field of view (FoV), using RGB frames and audio
spectrograms.

5. SoundSpaces [10]: This model applies CNNs to both acoustic and visual
inputs from sensors, using a simple concatenation to combine different modal-
ities. The output is passed to a GRU, and an actor-critic model estimates the
value of the state and policy distribution.

6. LLA [12]: A conventional phase-based navigation method that uses a topo-
logical graph for enhanced path planning.

7. AV-WaN [15]: This method utilizes waypoints, represented through a topo-
logical graph, to improve navigation efficiency over longer distances. Similar
to SoundSpaces, the model uses a simple concatenation to combine different
modalities.

In the Replica dataset, under the Heard setting, the proposed AVGN method
conspicuously stands out. It achieves an SPL score of 88.5, suggesting optimal
path utilization. While its success rate of 97.3 slightly lags behind the state-of-
the-art method AV-WaN (98.7), AVGN leads the SNA metric with a dominant
score of 71.9, a roughly 1.2 point improvement. In the Unheard setting, AVGN
achieves the best performance, with 34.9 in SPL, 59.1 in SR, and 29.0 in SNA.
Transitioning to the Matterport3D dataset, under Heard conditions, the perfor-
mance of AVGN is unparalleled. The SPL, SR, and SNA are 84.3, 88.3, and 57.1
respectively. This places AVGN firmly at the top, especially in the SPL metric,
where it outperforms the nearest competitor by a substantial 12 points. Under
the Unheard setting, AVGN’s excellence persists. It registers the highest scores
across all three metrics: 53.2 in SPL, 62.2 in SR, and 38.6 in SNA. To put this
into perspective, in the SPL metric alone, AVGN exceeds the closest rival by an
impressive 12.3 points.

When the performance of AVGN is compared with LLA, SoundSpaces and
AV-WaN, the progress is evident. Particularly in the Matterport3D dataset
under the Heard setting, the performance improvements of AVGN are significant.
It not only tops the charts, but does so with a clear margin in the SPL, high-
lighting the advancements made from baseline methodologies to our proposed
methods. In essence, the AVGN method introduced in this study signifies a land-
mark in embodied AI navigation research. Its consistent top-tier performance,
especially when evaluated against the backdrop of prior methods, underscores
its potential and the considerable progress made in the field.

We also include qualitative results for our model and comparisons with
LLA [12], SoundSpaces [10] and AV-WaN [15] in Fig.3. These qualitative results
intuitively highlight the strengths and advantages of our methods.
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4.4 Ablation Study

In our research, we conduct an ablation study using three distinct settings: (1)
without the DSFI module and backtracking rewards; (2) without backtracking
rewards; and (3) without the DSFI module. To evaluate the efficacy of our pro-
posed model, we compare these settings within the Heard configurations across
both datasets. Detailed outcomes of these evaluations are presented in Table 2.
We denote the Directional continuity reward and Historical trajectory reward as
Rb for simplicity.

Table 2. Ablation study for AVGN. We evaluate our model under three configu-
rations: 1. AVGN without both DSFI and backtracking rewards; 2. AVGN excluding
backtracking rewards; and 3. AVGN without the DSFI module.

4emMethod Replica Matterport3D
SPL SR SNA SPL SR SNA

AVGN w/o DSFI and Rb 74.9 88.5 51.8 54.9 78.5 31.8
AVGN w/o Rb 84.7 92.0 61.1 81.1 87.2 48.4
AVGN w/o DSFI 74.0 83.9 55.2 56.5 74.8 35.1
AVGN (Ours) 88.597.371.9 84.388.357.1

Table 2 elucidates the pivotal roles of the Dual Stage Feature Integration
(DSFI) mechanism and the backtracking rewards in our AVGN model through
an ablation study. By assessing the model’s performance across different config-
urations on the Replica Heard and Matterport3D Heard datasets, we draw sev-
eral conclusions as follows. When both components are removed from the model
(AVGN w/o DSFI and Rb), there is a pronounced decline in performance across
all metrics. The SPL values for Replica and Matterport3D are notably reduced
to 74.9 and 54.9, respectively, indicating that both the DSFI and backtrack-
ing rewards are key contributors to the model’s efficacy. By retaining only the
DSFI and omitting backtracking rewards (AVGN w/o Rb), the model achieves an
SPL of 84.7 on the Replica dataset. This substantial improvement from the first
configuration underlines the DSFI’s indispensable role in synergistically fusing
visual and audio inputs. The version without the DSFI but including backtrack-
ing rewards (AVGN w/o DSFI) performs similarly to the model lacking both
components. However, when comparing the full AVGN with the model that only
has DSFI, we see better results with the complete AVGN. This suggests that
backtracking rewards contribute positively to the DSFI mechanism. Our fully-
fledged AVGN model, which integrates both the DSFI and backtracking rewards,
unsurprisingly registers the highest performance metrics on both datasets. With
outstanding SPL scores of 88.5 and 84.3 for Replica and Matterport3D, it reiter-
ates the combined strength of both the DSFI and the backtracking rewards. Col-
lectively, this ablation study reaffirms the centrality of the DSFI in our model. Its
prowess in amalgamating visual and audio information proves vital in enhancing
the robot’s navigation capabilities.
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5 Conclusions

In this work, we introduced the Audio-Visual Guided Navigation (AVGN) app-
roach, a novel audio-visual navigation methodology. Central to AVGN is the Dual
Stage Feature Integration (DSFI), an advanced feature fusion module adept at
amalgamating audio and visual cues. Furthermore, we incorporated a triad of
rewards specifically designed to address the backtracking issue. Comparative
evaluations have demonstrated the superior performance of AVGN over exist-
ing methods. As a future direction, we aim to explore audio-visual navigation
challenges in more complex scenarios, such as environments with moving sound
sources or those with background noise.

Acknowledgments. This research is supported by NSF IIS-2309073 and ECCS-
2123521. This article solely reflects the opinions and conclusions of authors and not
funding agencies.

References

1. P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf, I. Reid,
S. Gould, and A. Van Den Hengel, “Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2018

2. S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cognitive mapping
and planning for visual navigation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2017

3. J. Truong, S. Chernova, and D. Batra, “Bi-directional domain adaptation for
sim2real transfer of embodied navigation agents,” IEEE Robotics and Automation
Letters (RA-L), vol. 6, no. 2, 2021

4. Z. Zhao, H. Tang, J. Wan, and Y. Yan, “Monocular expressive 3d human recon-
struction of multiple people,” in Proceedings of the 2024 International Conference
on Multimedia Retrieval, 2024, pp. 423–432

5. H. Wang, Z. Yu, Y. Yue, A. Anandkumar, A. Liu, and J. Yan, “Learning calibrated
uncertainties for domain shift: A distributionally robust learning approach.” in
IJCAI, 2023, pp. 1460–1469

6. J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and
A. Zeng, “Code as policies: Language model programs for embodied control,” in
2023 IEEE International Conference on Robotics and Automation (ICRA), IEEE,
2023

7. J. Duan, S. Yu, H. L. Tan, H. Zhu, and C. Tan, “A survey of embodied ai: From
simulators to research tasks,” IEEE Transactions on Emerging Topics in Compu-
tational Intelligence (TETCI), vol. 6, no. 2, 2022

8. G. Zhang, H. Tang, and Y. Yan, “Versatile navigation under partial observability
via value-guided diffusion policy,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024, pp. 17 943–17 951

9. Y. Shang, D. Xu, G. Liu, R. R. Kompella, and Y. Yan, “Efficient multitask dense
predictor via binarization,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2024, pp. 15 899–15 908



Audio-Visual Navigation with Anti-Backtracking 371

10. C. Chen, U. Jain, C. Schissler, S. V. A. Gari, Z. Al-Halah, V. K. Ithapu, P. Robin-
son, and K. Grauman, “Soundspaces: Audio-visual navigation in 3d environments,”
in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part VI 16,Springer, 2020

11. C. Chen, C. Schissler, S. Garg, P. Kobernik, A. Clegg, P. Calamia, D. Batra,
P. Robinson, and K. Grauman, “Soundspaces 2.0: A simulation platform for visual-
acoustic learning,” Advances in Neural Information Processing Systems (NeurIPS),
vol. 35, 2022

12. C. Gan, Y. Zhang, J. Wu, B. Gong, and J. B. Tenenbaum, “Look, listen, and act:
Towards audio-visual embodied navigation,” in 2020 IEEE International Confer-
ence on Robotics and Automation (ICRA), IEEE, 2020

13. Y. Yu, W. Huang, F. Sun, C. Chen, Y. Wang, and X. Liu, “Sound adversarial
audio-visual navigation,” arXiv preprint arXiv:2202.10910, 2022

14. C. Chen, Z. Al-Halah, and K. Grauman, “Semantic audio-visual navigation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2021

15. C. Chen, S. Majumder, Z. Al-Halah, R. Gao, S. K. Ramakrishnan, and K. Grau-
man, “Learning to set waypoints for audio-visual navigation,” arXiv preprint
arXiv:2008.09622, 2020

16. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth
16x16 words: Transformers for image recognition at scale,” arXiv preprint
arXiv:2010.11929, 2020

17. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin
transformer: Hierarchical vision transformer using shifted windows,” in Proceedings
of the IEEE/CVF international conference on computer vision (ICCV), 2021

18. J. Wu, B. Duan, W. Kang, H. Tang, and Y. Yan, “Token transformation matters:
Towards faithful post-hoc explanation for vision transformer,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024,
pp. 10 926–10 935

19. A. D. Ekstrom, “Why vision is important to how we navigate,” Hippocampus,
vol. 25, no. 6, 2015

20. E. C. Tolman, “Cognitive maps in rats and men.” Psychological review, vol. 55,
no. 4, 1948

21. D. S. Chaplot, R. Salakhutdinov, A. Gupta, and S. Gupta, “Neural topological slam
for visual navigation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020

22. S. Bansal, V. Tolani, S. Gupta, J. Malik, and C. Tomlin, “Combining optimal
control and learning for visual navigation in novel environments,” in Conference
on Robot Learning, PMLR, 2020

23. Z. Al-Halah, S. K. Ramakrishnan, and K. Grauman, “Zero experience required:
Plug & play modular transfer learning for semantic visual navigation,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2022

24. A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra, “Embodied question
answering,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 1–10

25. U. Jain, L. Weihs, E. Kolve, M. Rastegari, S. Lazebnik, A. Farhadi, A. G. Schwing,
and A. Kembhavi, “Two body problem: Collaborative visual task completion,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 6689–6699

http://arxiv.org/abs/2202.10910
http://arxiv.org/abs/2008.09622
http://arxiv.org/abs/2010.11929


372 Z. Zhao et al.

26. M. Wortsman, K. Ehsani, M. Rastegari, A. Farhadi, and R. Mottaghi, “Learning
to learn how to learn: Self-adaptive visual navigation using meta-learning,” in Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition,
2019, pp. 6750–6759

27. J. Thomason, M. Murray, M. Cakmak, and L. Zettlemoyer, “Vision-and-dialog
navigation,” in Conference on Robot Learning (CoRL). PMLR, 2020

28. Y. Hong, Q. Wu, Y. Qi, C. Rodriguez-Opazo, and S. Gould, “Vln bert: A recur-
rent vision-and-language bert for navigation,” in Proceedings of the IEEE/CVF
conference on Computer Vision and Pattern Recognition (CVPR), 2021

29. W. Hao, C. Li, X. Li, L. Carin, and J. Gao, “Towards learning a generic agent for
vision-and-language navigation via pre-training,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020

30. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018

31. M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub,
J. Liu, V. Koltun, J. Malik et al., “Habitat: A platform for embodied ai research,” in
Proceedings of the IEEE/CVF international conference on computer vision, 2019,
pp. 9339–9347

32. D. S. Chaplot, S. Gupta, D. Gandhi, A. K. Gupta, and R. Salakhutdinov, “Learning
to explore using active neural mapping,” in International Conference on Learn-
ing Representations, 2020. [Online]. Available: https://api.semanticscholar.org/
CorpusID:204770375

33. D. Gordon, A. Kadian, D. Parikh, J. Hoffman, and D. Batra, “Splitnet: Sim2sim
and task2task transfer for embodied visual navigation,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp. 1022–1031

34. H. Kuttruff, Room acoustics.Crc Press, 2016
35. J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio, “A recur-

rent latent variable model for sequential data,” Advances in neural information
processing systems, vol. 28, 2015

36. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017

37. M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub,
J. Liu, V. Koltun, J. Malik et al., “Habitat: A platform for embodied ai research,”
in Proceedings of the IEEE/CVF international conference on computer vision
(ICCV), 2019

38. A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner, N. Maestre,
M. Mukadam, D. S. Chaplot, O. Maksymets et al., “Habitat 2.0: Training home
assistants to rearrange their habitat,” Advances in Neural Information Processing
Systems (NeurIPS), vol. 34, 2021

39. A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song,
A. Zeng, and Y. Zhang, “Matterport3d: Learning from rgb-d data in indoor envi-
ronments,” arXiv preprint arXiv:1709.06158, 2017

40. J. Straub, T. Whelan, L. Ma, Y. Chen, E. Wijmans, S. Green, J. J. Engel, R. Mur-
Artal, C. Ren, S. Verma et al., “The replica dataset: A digital replica of indoor
spaces,” arXiv preprint arXiv:1906.05797, 2019

41. P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V. Koltun,
J. Kosecka, J. Malik, R. Mottaghi, M. Savva et al., “On evaluation of embodied
navigation agents,” arXiv preprint arXiv:1807.06757, 2018

http://arxiv.org/abs/1810.04805
https://api.semanticscholar.org/CorpusID:204770375
https://api.semanticscholar.org/CorpusID:204770375
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1709.06158
http://arxiv.org/abs/1906.05797
http://arxiv.org/abs/1807.06757


Towards Building Secure UAV Navigation
with FHE-Aware Knowledge Distillation

Arjun Ramesh Kaushik1(B), Charanjit Jutla2, and Nalini Ratha1

1 University at Buffalo, The State University of New York, Getzville, USA
{kaushik3,nratha}@buffalo.edu

2 IBM Research, Yorktown Heights, USA
csjutla@us.ibm.com

Abstract. In safeguarding mission-critical systems, such as Unmanned
Aerial Vehicles (UAVs), preserving the privacy of path trajectories during
navigation is paramount. While the combination of Reinforcement Learn-
ing (RL) and Fully Homomorphic Encryption (FHE) holds promise, the
computational overhead of FHE presents a significant challenge. This
paper proposes an innovative approach that leverages Knowledge Distil-
lation to enhance the practicality of secure UAV navigation. By integrat-
ing RL and FHE, our framework addresses vulnerabilities to adversarial
attacks while enabling real-time processing of encrypted UAV camera
feeds, ensuring data security. To mitigate FHE’s latency, Knowledge Dis-
tillation is employed to compress the network, resulting in an impressive
18x speedup without compromising performance, as evidenced by an R-
squared score of 0.9499 compared to the original model’s score of 0.9631.
Our methodology underscores the feasibility of processing encrypted
data for UAV navigation tasks, emphasizing security alongside perfor-
mance efficiency and timely processing. These findings pave the way for
deploying autonomous UAVs in sensitive environments, bolstering their
resilience against potential security threats.

Keywords: Autonomous Unmanned Aerial Vehicles · Reinforcement
Learning · Fully Homomorphic Encryption · Privacy · Knowledge
Distillation

1 Introduction

In recent years, the integration of autonomous Unmanned Aerial Vehicles (UAVs)
has revolutionized various industries, offering unparalleled capabilities in surveil-
lance, reconnaissance, disaster response, and product delivery [22]. However,
ensuring secure navigation of UAVs, particularly in critical scenarios, has become
a paramount concern due to the inherent vulnerabilities associated with Deep
Learning (DL) techniques and potential adversarial attacks [21][11]. While pre-
vious research has made strides in enhancing UAV security [1][19], the computa-
tional demands of existing solutions often render them impractical for real-world
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Fig. 1. Overview: In an ordinary scenario the UAV is vulnerable to attacks, as the
attacker can directly steal the information. FHE-encrypted input and inference prevent
this. But, currently, FHE is computationally infeasible.

Fig. 2. An overview of the need for an FHE optimized model.

deployment. This paper addresses the pressing need for a secure and feasible
architecture for UAV navigation.

While traditional approaches to UAV navigation have relied on vision-based
systems incorporating visual mapping, obstacle detection, and path planning
[31], recent advancements have shifted towards leveraging Deep Learning and
Reinforcement Learning methodologies [24,27,28]. In response to the increas-
ing importance of security, recent works have explored various security schemes
[1,4,13]. However, many existing solutions either prioritize maximum security
at the expense of computational feasibility or offer compromised security with
practical implementation. Our contribution introduces a secure Reinforcement
Learning framework, utilizing the Actor-Critic policy within the Proximal Policy
Optimization (PPO) algorithm, capable of seamlessly operating on encrypted
real-time video feeds captured by UAV cameras, while remaining resilient to
adversarial attacks (Fig. 1). Building upon prior research [1], we present a sig-
nificantly more feasible architecture in terms of computational efficiency.
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Fig. 3. We propose a smaller model through Knowledge Distillation to suit FHE needs
while maintaining security and accuracy.

In the subsequent sections, we provide a comprehensive overview of how each
component of our deep learning model is uniquely adapted to handle encrypted
data. Key aspects of our approach include transforming convolutional layers
into spectral domain operations, employing generalized matrix multiplication in
fully connected layers, and customizing activation functions for the FHE domain
through polynomial approximations and comparators. Additionally, navigational
steps are extracted through a neural network trained to replicate the OpenAI
Gym library. Despite the maximum security provided by FHE, its computational
overhead remains significant even after adaptation. To address this challenge,
we propose a smaller model through Knowledge Distillation, ensuring feasibility
within the FHE framework. Importantly, our research demonstrates the minimal
loss of accuracy when mapping teacher and student models to the FHE domain,
validating the feasibility of processing encrypted data for UAV navigation tasks.

This work not only addresses immediate security concerns associated with
UAVs, but also lays the groundwork for a new era in autonomous aerial systems.
By prioritizing security and privacy through FHE integration, our approach
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opens avenues for deploying UAVs in sensitive domains where data confidential-
ity is paramount. The implications extend to applications in military operations,
surveillance, and disaster response, where enhanced security measures are essen-
tial for the successful execution of critical missions.

2 Threat Model

Unmanned Aerial Vehicles (UAVs) deployed in critical scenarios are exposed to
various adversarial threats, including (i) Data Poisoning [29], (ii) Model Inversion
[17], and (iii) White-box attacks [23,26]. In our research, we specifically address
the scenario where an attacker can intercept communication between the drone
and its navigation server, posing a potential risk to the UAV’s secure operation.
Our primary focus is on establishing secure communication channels between
the drone and its navigation server, thereby safeguarding it against Targeted
Attacks.

Our solution not only mitigates the risk of Targeted Attacks but also pro-
tects against Model Inversion attacks. This is achieved by intelligent adaptation
of different components of the model architecture to the encrypted domain. The
server can be assumed to hold the weights of the model as matrices, and acti-
vation functions as polynomial approximations, instead of the true model archi-
tecture in sequence. Consequently, even with full knowledge of such weights, an
attacker would be unable to configure the architecture, enhancing the security
posture of the UAV system. Moreover, the overall execution of the algorithm
takes place on encrypted data. Thus one with access to the secret key can only
consume the results. However, adversarial image attacks are not protected by
this approach.

3 FHE basics

Homomorphic encryption (HE) is a cryptographic system that enables
computations on encrypted data without the need for decryption,
unlike other encryption methods. In this system, two key components are
utilized: public key pk and secret key sk. Encryption and decryption operations
are denoted by E and D, respectively. Consider the plaintext values x and y,
and their corresponding encrypted versions, denoted as x′ = E(x, pk) and y′ =
E(y, pk).

Homomorphic Encryption allows for the computation of various operations
directly on encrypted ciphertexts. For instance, the addition of encrypted values
(x′ + y′) corresponds to the addition of the original plaintext values (x + y).
Likewise, the multiplication of encrypted values (x′ ∗ y′) is equivalent to the
multiplication of original plaintext values (x ∗ y).

While there exist various Homomorphic Encryption schemes, FHE stands
out as the only one capable of supporting computations on ciphertexts
of any depth and complexity as shown in Fig. 4. Various FHE cryptosystems
have been proposed - BFV, BGV, and CKKS schemes [9]. Notably, BFV and
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BGV schemes support integers. In our research, we have employed the
CKKS scheme as it supports floating-point decimals.

Fig. 4. Types of Homomorphic Encryption (HE) and their features.

HEAAN, a CKKS FHE scheme, restricts data encryption, allowing only sizes
in powers of 2. Hence, we pack our input into arrays of size 2n before encryption.
If the input sizes are not perfect powers of 2, we pad the data with 0s. Although
these ciphertexts support Single Instruction Multiple Data (SIMD) operations,
they do not provide direct access to individual elements within the ciphertext.

Our research utilizes FHE, specifically the CKKS scheme, to enable secure
autonomous UAV navigation using Deep Learning. While FHE allows compu-
tations on encrypted data without compromising privacy, certain essential com-
putational operators are yet to be fully implemented in the FHE framework.
To address this, we resort to polynomial approximations for these operations.
In this paper, we have developed FHE-compatible operators tailored
for autonomous UAV navigation tasks, leveraging a fully learned deep
learning network for inference.

4 Related Work

Numerous surveys have delved into the privacy and security challenges spe-
cific to UAVs. Works such as [30] and [14] highlight the vulnerability landscape
in UAV communication networks, emphasizing the delicate trade-off between
robust security and the imperative for lightweight, efficient operations. These
discussions underscore the crucial role of encryption in fortifying UAV systems
against multifaceted threats, as presented by the authors in [18]. Our research
aims to build upon these foundational insights, contributing to the ongoing dis-
course on UAV security.

Homomorphic Encryption has been employed in prior work to secure com-
putations in the context of UAV navigation. For instance, in [2], the authors
propose an extra key generation encryption technique using the Paillier Cryp-
tosystem to prevent cipher data from being compromised. Further, Cheon et al.
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[5] explores the development of secure UAVs using a homomorphic public-key
encryption method, enabling both secret communication and confidential com-
putation. Another approach focuses on providing a secure and efficient method
for third-party UAV controllers to collect and process client data, as demon-
strated in [20]. The authors propose a Secure Homomorphic Encryption (SHE)
framework, which transfers the FHE encryption to UAVs through an encryption
protocol.

Despite notable progress in advancing autonomous systems and encryption
methodologies for various applications [13][4][1], achieving a comprehensive and
practical solution for secure drone systems has proven elusive. While previ-
ous works, such as [4], offer feasible frameworks for drone controllers, they do
not address drone security, leaving them vulnerable to attacks when operat-
ing autonomously. Similarly, [1] presents a secure Reinforcement Learning-based
framework for drone navigation, yet its practical implementation remains unfea-
sible. In contrast to the innovative approach of AutoFHE [3] for accelerating
inference in encrypted domain of large CNN models (with a focus on ReLU
amongst other activations), our work uses a small model with minimal activa-
tion functions.

Among various model compression techniques, including Pruning, Quantiza-
tion, Decomposition, and Knowledge Distillation [15], our research finds Knowl-
edge Distillation to be particularly effective for FHE. Pruning involves elimi-
nating network components to create sparse models, which, although useful for
acceleration and compression, does not significantly reduce computational time
for CNNs in FHE. While Quantization typically operates in the BGV scheme,
our research focuses on the CKKS scheme [9]. Although Decomposition shows
promise, it does not match the effectiveness of reducing network depth through
Knowledge Distillation.

Fig. 5. Architecture overview of our framework implementing the Actor-Critic algo-
rithm.



Towards Building Secure UAV Navigation 379

5 Proposed Method

The drone is trained using the Actor-Critic Reinforcement Learning algorithm
[25]. During training, both the Actor and Critic networks are utilized, whereas,
during inferencing, only the Actor network is leveraged. The network architec-
ture can be divided into two segments - Feature Extractor and Fully Connected
Network as shown in Fig. 5. The Feature Extractor consists of three convolution
blocks and one linear block as shown in Fig. 6. Each convolution block consists of
a Convolution layer, Batch Normalization layer, and ReLU activation layer. The
linear block consists of a Dense Layer, Batch Normalization layer, and ReLU
activation layer. The Fully Connected Network segment consists of two shared
linear blocks (shared between Actor and Critic) and an output linear block as
in Fig. 6. The shared linear blocks are made up of a dense layer and utilize the
TanH activation function.

Computation within the Fully Homomorphic Encryption (FHE) domain
introduces several significant limitations, including the absence of individual ele-
ment access in encrypted arrays, restricted computation depth, heightened time
complexity, and the absence of inherent support for operators like comparators.
Consequently, we choose to train the Actor-Critic model in the unencrypted
domain with data generated in a simulated environment, employing Microsoft’s
AirSim library and Unreal Engine. Subsequently, leverage the model weights for
inference within the encrypted domain. To achieve this, we carefully adapt each
component of the Actor-Critic network to seamlessly operate within the FHE
domain, addressing specific challenges presented by FHE.

In addition to computational constraints, currently, operations in the FHE
domain consume significant time. We must have an efficient model with low
inference times and high accuracy. We achieve this with the help of Knowledge
Distillation in 2 steps.

Key adaptations within the FHE domain encompass the following compo-
nents: (i) Model Compression via Knowledge Distillation; (ii) 2-D strided Con-
volution; (iii) ReLU activation function; (iv) Dense Layer; (v) TanH activation
function; and (vi) OpenAI Gym Library. In this section, we provide an in-depth
exploration of these adaptations in each layer.

Fig. 6. Architecture of the original model (Teacher Network).
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5.1 Input Adaptations for FHE

The drone’s input comprises of three consecutive images, each captured from
the AirSim simulator, with dimensions 50x50. These images are concatenated
to form a single input image with dimensions 50x150. In HEAAN, we adopt a
strategy where each row of the image is encrypted as a single ciphertext. This
approach enables the utilization of SIMD operations, enhancing computational
efficiency [16].

Given that HEAAN exclusively supports the encryption of data with sizes
as powers of 2, we address this constraint by padding each row of the image
with zeros, extending the width to 256. Consequently, the padded input image,
now of size 50x256, is encrypted, resulting in a vector of ciphertexts. To facili-
tate efficient computation, the plaintext weights or filters undergo similar zero-
padding, aligning with the dimensions of the padded input image. Importantly,
the increase in input size from 50x150 to 50x256 does not impose a significant
computational overhead, thanks to the SIMD nature of operations inherent in
HEAAN.

5.2 Knowledge Distillation

Knowledge distillation, a representative type of model compression and acceler-
ation, effectively learns a small student model from a large teacher model [10]. In
our work, we employ feature-based Knowledge Distillation to compress our orig-
inal model (Teacher network) to a smaller and FHE-friendly model (Student2
network). We achieve this in 2 steps as shown in Fig. 3, achieving Student1 net-
work first and then using Student1 to further compress the model to Student2. It
is important to note that, we perform distillation only on the feature extractor
network of while training Student1. As shown in Fig. 3, we train the student
networks on the Cosine Similarity Loss between the extracted features. This sig-
nificantly reduces the inference time, thereby making the FHE implementation
more feasible.

5.3 Convolutional Layer

Performing regular convolution in the encrypted domain is extremely computa-
tionally inefficient as shown in Table 1 . In our research, we adopt a frequency-
domain approach for convolution leveraging the Discrete Fourier transform
(DFT). Following are steps performed to achieve 2D convolution in an efficient
manner: (i) Perform Homomorphic Fourier Transform (HFT) for each row of 2D
Ciphertext using the method in [12]; (ii) Take the transpose of 2D Ciphertext
using the method proposed in [32]; (iii) Perform row wise HFT of the new trans-
posed Ciphertext; (iv) Transpose back the 2D Ciphertext (v) Compute the con-
volution output y[n] using element-wise multiplication in the frequency domain,
as expressed in Equation 1, where G−1 denotes the inverse Fourier transform, and
H(u) and F (u) are the DFT of the row of input image and filter, respectively.

y[n] = G−1 {H(u) · F (u)} (1)
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Fig. 7. Architecture of the final compressed model (Student2 Netowrk) to comply with
FHE’s time constraints.

Fig. 8. (a) Mean Absolute Error (MAE) for various filter counts in the feature-extractor
of the Student network (b) R-squared score for various filter counts in the feature-
extractor of the Student network (c) Inference time in seconds for various filter counts
in the feature-extractor of the Student network.

The DFT of each input value h[v] is computed using Equation 2, where H[v]
represents the DFT coefficient at frequency bin v, and N is the size of the input.

H[u] =
N−1∑

v=0

h[v] · e−j 2π
N uv (2)

To address the time inefficiency associated with computing the DFT of
encrypted data using standard plaintext methods, we employ the Homomorphic
Fourier transform. This approach, inspired by Cooley-Tukey matrix factorization
[8], facilitates an efficient algorithm for computing the 1-D DFT of encrypted
data.

For transforming the plaintext filter into the frequency domain, we utilize
the standard Fast Fourier Transform (FFT). The element-wise multiplication
between the input and filter in the frequency domain, followed by the inverse
DFT, yields the complete convolution output. To achieve a strided convolution,



382 A. R. Kaushik et al.

Table 1. Time complexity analysis of convolution in spatial domain and frequency
domain, for an image of size mxm and filter of size nxn. The time complexities below
reflect multiplication complexities.

Convolution domain spatial domain frequency domain

Time complexity O(m2 ∗ n2) O(m2 + 2 ∗ n ∗ logn)

a rotational manipulation is applied to the resulting ciphertext. We introduce
a leftward rotation of the resulting ciphertext by (N − (2 ∗ padding))%N and
downward rotation by 2∗padding, where N represents the size of the Ciphertext
and padding represents the padded value used to extract DFT convolution out-
put. Additionally, this result is multiplied by an array containing 1s and 0s to
obtain appropriate convolution based on the stride value, as illustrated in Fig.
9.

Fig. 9. 2D Convolution in FHE Domain. Input ciphertext and weights are multiplied in
the frequency domain to obtain full convolution. Final convolution output is obtained
by rotating the full convolution as shown above. Different stride-based convolutions
can be extracted by multiplying appropriate vectors.

5.4 Activation functions

Activation functions play a crucial role in neural networks, but their implemen-
tation in the context of FHE presents unique challenges [7]. FHE libraries lack
native support for comparison operations, necessitating the use of approxima-
tions like CompG for the sign function [6]. Normalization is essential to align
input values within the required range, achieved by scaling the outputs of convo-
lutional layers based on the maximum observed absolute values during training.
This scaling factor is determined by the maximum of the absolute values of the
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inputs’ observed range. Following the application of the approximations, positive
input values are rescaled to their original range using the inverse of the scaling
factor.

In our research, we adopt a composite approximation technique for compar-
ison in ReLU implementation. This method evaluates the input value a against
zero, encoding the output as 1 for a > 0, 0 for a < 0, and 0.5 for a = 0,
and subsequently calculates the final ReLU output by multiplying this result
by the input value a. Additionally, we address the challenges of implementing
exponential functions in FHE by employing an 8-degree polynomial approxima-
tion of TanH restricted to the range [-2, 2]. This approach allows for a closer
approximation while mitigating the limitations of FHE in handling exponential
functions. The performance of our approximation is evaluated through the rel-
ative error of 2000 points within the specified range, providing insights into its
effectiveness and accuracy as shown in Fig . 10.

5.5 Flattening layer

The flattening operation is usually performed on the convolution outputs. Flat-
tening operation is not possible in FHE without decrypting and re-encrypting
the ciphertexts, as it involves changing the length of ciphertexts. To circumvent
this issue, we perform element-wise multiplication of the weights and convolution
output. Element-wise multiplication is an extremely time-consuming operation
as it involves multiplication, addition, and left rotation. We multiply each cipher-
text with its corresponding weight vector and add it to a temporary ciphertext
initialized to zeros. Then, we perform a summation of the ciphertext elements
through repetitive left rotation and addition N-1 times.

5.6 Fully-Connected Layer

A Fully Connected Layer is adapted to FHE as the matrix multiplication of
ciphertext inputs and plaintext weight matrices. Each row of weight matrix is
multiplied with the ciphertext and the elements of the ciphertext are summed
through left rotation.

5.7 OpenAI Gym Library

We have adapted the OpenAI Gym Library to FHE through a 3-layer neural
network as in Fig. 6 and Fig. 7. This is due to the limitations of FHE in modeling
probability distributions. The neural network learns the probability distribution
and maps the final 64-dimension latent vector to the action output. The model
is trained in the unencrypted domain and its weights are used for inferencing in
FHE.
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Fig. 10. Relative error of f(x) over the interval [-2, 2], where f(x) is the polynomial
approximation of Tanh(x). Relative error of f(x) = |f(x)−tanh(x)| |tanh(x)|.

6 Results

Experiments were performed in the encrypted domain on a subset of randomly
selected samples from the testing set of the unencrypted domain. We evaluated
our results from the FHE-adapted Reinforcement Learning framework against
the expected results from the Reinforcement Learning framework in the unen-
crypted domain. Table 2 depicts the mean absolute error (MAE) across each
block in the Teacher and Student networks within the encrypted domain. Cru-
cially, the regression-based prediction output remained consistent between the
FHE version and the plaintext counterpart for the tested samples, indicating
coherence in predictive outcomes. We have also achieved an R-squared score
of 0.9631 for the Teacher network and 0.9499 for the Student2 network
with the end-to-end FHE-based Reinforcement Learning framework, in compar-
ison with results in the unencrypted domain. Additionally, Table 3 presents the
average processing time across each block in the Teacher and Student networks.
We achieve an 18x improvement in inference speed with Knowledge Distillation.
These findings substantiate the efficacy of our FHE-adapted network, showcasing
the viability of FHE in preserving model accuracy while ensuring data confiden-
tiality.
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Fig. 11. Relative percentage errors of actions on adaption of OpenAI Gym Library to
FHE.

Table 2. Layerwise average Mean Absolute Error (MAE) between plain-text and FHE
model intermediate outputs in Teacher and Student networks.

Layer Avergae MAE
TeacherStudent1Student2

Convolution 0.0779 0.0860 0.0873
Linear 0.0129 0.0185 0.0203
OpenAI Gym Library Blackbox 0.0210 0.0206 0.0201

Table 3. Time taken by the Teacher and Student networks.

Layer Inference Time (seconds)
Teacher Student1Student2

Convolution 1,006,337.18 9,508.44 9,510.22
Linear 13,662.48 43,670.76 41,989.52
OpenAI Gym Library Blackbox 4,574.82 4,725.92 4,668.19
Total 1,024,754.48 57,905.12 56,167.93

7 Conclusion

This paper introduces a groundbreaking end-to-end homomorphically encrypted
Unmanned Aerial Vehicle (UAV) navigation system, leveraging a fusion of
reinforcement learning and deep neural networks. Given Fully Homomorphic
Encryption’s (FHE) high latency, our results indicate a significant speedup (18x)
through Knowledge Distillation. In addition, we seamlessly incorporate convo-
lutional layers, fully connected networks, activation functions, and the OpenAI
Gym Library into the FHE domain. The use of the Homomorphic Fourier Trans-
form facilitates efficient convolutions, and an approximate comparator enables



386 A. R. Kaushik et al.

the effective mapping of the ReLU activation function. Furthermore, we have
devised Tanh approximations, functional mappings from latent feature vectors
to action outputs for the Gym Library, and implemented fully connected layers
within the FHE domain. In our evaluation of inference, our proposed FHE-based
compressed architecture demonstrates lower latency with minimal error across
each block in the network, showcasing no discernible accuracy loss when com-
pared to its plaintext counterpart.
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Abstract. Object navigation is crucial for robots, but traditional meth-
ods require substantial training data and cannot be generalized to
unknown environments. Zero-shot object navigation (ZSON) aims to
address this challenge, allowing robots to interact with unknown objects
without specific training data. Language-driven zero-shot object nav-
igation (L-ZSON) is an extension of ZSON that incorporates natural
language instructions to guide robot navigation and interaction with
objects. In this paper, we propose a novel Vision Language model with
a Tree-of-thought Network (VLTNet) for L-ZSON. VLTNet comprises
four main modules: vision language model understanding, semantic map-
ping, tree-of-thought reasoning and exploration, and goal identification.
Among these modules, Tree-of-Thought (ToT) reasoning and exploration
module serves as a core component, innovatively using the ToT rea-
soning framework for navigation frontier selection during robot explo-
ration. Compared to conventional frontier selection without reasoning,
navigation using ToT reasoning involves multi-path reasoning processes
and backtracking when necessary, enabling globally informed decision-
making with higher accuracy. Experimental results on PASTURE and
RoboTHOR benchmarks demonstrate the outstanding performance of
our model in LZSON, particularly in scenarios involving complex natu-
ral language as target instructions. Videos are available at https://vlt-
lzson.github.io/.
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1 Introduction

Object navigation, a fundamental task in robotics, is crucial for robots to
intelligently explore an environment and interact with objects in the environ-
ment. Conventional methods rely on extensive visual training data contain-
ing labeled objects from the environment, limiting their ability to generalize
to unknown and unstructured environments. To remedy this limitation, recent
research [12,23,29,41] explores zero-shot object navigation (ZSON), which allows
robots to navigate and interact with unknown objects without the corresponding
labeled training data. However, while effective in basic navigation, this method
often falls short in scenarios requiring intricate interaction and communication,
which are essential for enhanced autonomy and more robust human-robot col-
laborations.

Fig. 1. Comparison of different object navigation methods under two types of language
input: 1) word input with only object category, 2) sentence input with detailed spatial
descriptions. a) FBE model [36]: cannot accept either word or sentence input. b) ESC
model [43]: only accepts word input. c) Our model: accepts both word and sentence as
input.

To improve autonomous agents and human-robot interaction which is lacking
in the traditional ZSON, there is a growing interest in Language-driven Zero-
Shot Object Navigation (L-ZSON). L-ZSON guides agents using natural lan-
guage instructions to require agents to follow the textual or spoken guidance to
reach the specified unseen objects or locations. The pioneering efforts [12,13,29]
have leveraged Large Language Models (LLMs) for L-ZSON. For instance, Huang
et al. [17] introduce VLMaps, a spatial map representation that integrates pre-
trained visual-language features with 3D reconstruction of a physical environ-
ment. Zhou et al. [43] introduce a novel Exploration with Soft common sense
Constraints (ESC) module that utilizes a pre-trained LLM for scene under-
standing and common sense reasoning. Nonetheless, these approaches can only
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handle instructions that explicitly contain object categories, failing to navigate
to unknown objects or objects described by spatial or visual attributes in the
instructions. To remedy the problem, Gadre et al. [13] build the PASTURE
benchmark, which more closely reflects real-world scenarios and provides a more
rigorous evaluation of L-ZSON. Therefore, we choose this benchmark to evalu-
ate the performance of our proposed L-ZSON method. Furthermore, it is worth
noting that existing works employ standard LLMs for common-sense reasoning
or decision-making. However, although LLMs are powerful in many applications,
they can still struggle to self-assess their decisions during reasoning processes,
thus potentially leading to sub-optimal decisions.

To resolve this critical problem of making more effective decisions in dynamic
environments, in this paper, we propose a novel Vision Language Model with
Tree-of-thoughts NETwork, named VLTNet, for L-fZSON. VLTNet consists of
four core modules: vision language model understanding, semantic mapping,
tree-of-thoughts reasoning and exploration, and goal identification. Specifically,
we first leverage the vision language model understanding module to perform
scene understanding. Then, we use the semantic mapping module to build a
semantic navigation map. Next, we utilize the tree-of-thoughts reasoning and
exploration module to select frontiers based on common sense reasoning for
exploration. Finally, we employ the goal identification module to determine
whether the current object being navigated to matches the target object. A
significant novelty of our paper is the utilization of the Tree-of-Thoughts (ToT)
reasoning framework for frontier selection in robot exploration. As shown in Fig.
1, our model with ToT reasoning can incorporate goal-based instructions of vary-
ing complexity to choose the optimal frontier. Unlike conventional LLMs, ToT
equips models with the capacity to engage in deliberate, multi-path reasoning
processes, enabling them to self-evaluate choices and make informed decisions for
the action. This self-evaluation reasoning framework also allows models to antic-
ipate future prediction and backtrack when necessary to make globally informed
decisions. Experimental results conducted on two benchmarks, PASTURE [13]
and RoboTHOR [9], demonstrate that our model excels in L-ZSON tasks, par-
ticularly in complex ZSON tasks that involve natural language as guidance.

2 Related Work

Object Goal Navigation The primary task of goal-conditioned navigation is to
guide robots towards distinct targets based on varying specifications. These spec-
ifications can be categorized into position goals, i.e., predefined spatial coordi-
nates [6,7]; image goals, i.e., locations that match a given image view [25,44];
and object goals, i.e., locations containing specific objects that the agent needs
to find [2,5,13,43]. Our research focus on object goal navigation task, which
requires the robot to locate and navigate towards specific objects within an
environment.

In order to develop agents capable of navigating previously unseen environ-
ments, recent work has shifted focus to Zero-shot Object Navigation (ZSON)
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[12,23,29,41]. Nonetheless, most ZSON approaches only take in object names as
targets, which can sometimes lead to inefficiency and inaccuracy when navigating
through complex environments. Therefore, Language Driven Zero-shot Object
Navigation (L-ZSON) were studied as a subset of ZSON, aiming to interpret
object goals and descriptive cues from natural language input [12,13,29].

Exploration strategies Currently, the exploration strategies in object goal naviga-
tion can be divided into two main categories: learning-based and frontier-based.

Learning-based exploration strategies can be divided into two lines. The
first utilizes pre-trained visual encoders [16,31] to convert egocentric images into
descriptive feature vectors, which were fed to train a robot navigation policy by
employing imitation learning or reinforcement learning [8,10,19,24,33,38]. The
second constructs an explicit semantic graph and then the navigation policies
are then trained to identify locations of goal objects with the semantic graphs
[6,26,42]. Learning-based object goal navigation methods rely on training data
to fine-tune the navigation policies of agents, often necessitating intricate reward
engineering [13]. Furthermore, these methods often face difficulties in generaliz-
ing with new objects or unfamiliar environments drastically different from their
training data [43].

Frontier-based exploration strategies address the limitations of the
learning-based approaches. Frontier-based exploration (FBE) [36] is a heuristic
algorithm to navigate a robot or an agent in an unseen environment. By recon-
structing a depth map of the environment, and marking the boarder between
the explored (known) area and unexplored (unknown) area as “frontiers”, FBE
iteratively selects the closest frontier to explore. In addition to being used for
constructing depth maps [21,34] and semantic maps [15,39] in free-exploration
tasks, FBE is also employed in real-world object navigation[14]. FBE has also
been adapted in ZSON models with different variations. For example, CLIP on
Wheel (CoW) [13] generates text-to-image relevance depth maps based on RGB
and depth observations, which is then used to determine the region of interest in
FBE [36]. ESC [43] and L3MVN [40] employs FBE by using an LLM to assign
scores to each potential frontier. However, the methods of assigning numeri-
cal scores to each frontier do not account for the complex interrelations between
objects and the environment. Therefore, to solve this problem, our VLTNet aims
to use an LLM to incorporate more human-like reasoning in navigation.

LLM Reasoning Although LLMs have emerged as powerful tools in various
domains to understand and generate human-like text [4,11,30]. Since the vanilla
LLMs are trained with the aim for natural language processing, they tend to per-
form poorly in tasks such as arithmetic, common sense, and symbolic reasoning
[32]. Nonetheless, Wei et al. [35] proposed Chain-of-Thought (CoT) prompting to
significantly boost LLM’s reasoning capability, by instructing them to explicitly
output the reasoning process. Building up on the linear progression of thoughts
in CoT, Tree-of-Thoughts (ToT) [37] proposed a branching reasoning structure
that further boosts LLM’s reasoning ability, by instructing LLMs to simulate a
discussion among several experts on a given question, until reaching a consen-
sus among these simulated experts. In our study, we seek to employ ToT for
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Fig. 2. Illustation of our VLTNet framework. During navigation, the Vision Language
Model (VLM) Understanding module obtains the observed objects by parsing the cur-
rent RGB observations of an agent. Based on the object locations provided by both
the VLM Understanding module and depth observations from the agent, the Semantic
Mapping module reconstructs a semantic navigation map containing rooms, objects,
and frontiers. Conditioned on the navigation instruction and semantic navigation map,
the agent then performs common sense reasoning via the Tree of Thoughts Reasoning
and Exploration module to infer the most probable location of the goal object, and
select the corresponding frontier to explore. Upon the VLM Understanding module
grounding a candidate object in the same category as the goal object, the Goal Iden-
tification module further verifies if the candidate object reached by the agent matches
the description from the navigation instruction.

decision-making in L-ZSON, which empowers LLMs, e.g., GPT-3.5 [28] to be
able to consider complex interrelations between goal objects and their surround-
ings, so that LLMs have complete analytical and reasoning autonomy during the
frontier selection process.

3 Methods

3.1 Problem Statement

L-ZSON is designed to validate the capability of an intelligent robot or agent
system to navigate to the target or goal objects specified by natural language
instructions, without any prior knowledge of the target. In this task, the funda-
mental components include: (1) a natural language instruction L, which consists
of a sequence of words representing the task to be performed by the agent,
encompassing descriptions of the target object, location cues, and directional
instructions; (2) an environment representation St, denoting the current state
or observation of the agent at time t, typically encapsulating the observed infor-
mation about the environment; and (3) a collection of objects within the envi-
ronment, denoted as O, where each object oi ∈ O is assigned a unique identifier
and optionally possesses additional attributes, such as position and appearance.

The objective of L-ZSON is to generate a sequence of actions A that guides
the agent to navigate within the environment and reach the target object o∗ ∈ O
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specified in an instruction I, which mathematically represented as:

A∗ = argmax
A

P (A | L, S0,O) (1)

where P (A | L, S0,O) represents the probability of a generated action sequence
A, given the language instruction L, initial state S0, and object set O. The cen-
tral challenge lies in maximizing the likelihood of selecting the optimal action
sequence, enabling the agent to navigate to the target object without prior knowl-
edge or tailored training for that object.

3.2 VLTNet for L-ZSON

Overview We present a novel VLTNet tailored for the L-ZSON task, consisting
of four core modules as shown in Fig. 2: Vision Language Model (VLM) Under-
standing module, Semantic Mapping module, Tree of Thoughts Reasoning and
Exploration module, and Goal Identification module. At each time t during nav-
igation, the VLM Understanding module leverages a VLM to perform semantic
parsing from the observed RGB image It, enhancing the model’s understanding
of the environment semantics. Subsequently, the Semantic Mapping module inte-
grates the semantically parsed image Ist generated from the VLM Understanding
module, depth image Dt captured by the agent, and the agent pose P a

t to con-
struct a more comprehensive semantic map Mt, defining objects based on the
parsed semantic and spatial relationships. Following that, the Tree of Thoughts
Reasoning and Exploration module strategically selects a frontier to perform a
frontier-based exploration, considering the agent position and the target object
information. Lastly, the Goal Identification module assesses the alignment of
the currently reached object with the goal object specified in the instruction L,
ensuring navigation consistency. This framework aims to enhance ZSON through
a seamless and intelligent integration of scene understanding, semantic mapping,
LLM-based frontier selection, and goal object consistency checking, harnessing
the power of LLMs equipped with reasoning ability.

Vision Language Model Understanding VLMs excel in semantic under-
standing, as they have been pre-trained on vast amounts of textual and visual
data, which enables them to associate texts with the corresponding visual
objects, allowing for a deeper comprehension of the content within images.
Specifically, we employ the Grounded Language-Image Pre-training (GLIP) [22]
due to its inherent advantages in grounding language description with visual
context. Inspired by ESC [43], considering both low-level and high-level scene
contexts, we define a set of common objects and rooms in an indoor environment
as prompts fed into GLIP. We establish multiple prompts, such as the object
prompt (po) and room prompt (pr), to query the GLIP model in generating
detection results. Here, po and pr correspond to object and room categories,
respectively, as represented in natural language. Specifically, at time t, we can
obtain the detected objects {ot,i}, rooms {rt,i} and bounding boxes {bot,i} and
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{brt,i} of the objects and rooms from the currently observed image It:

{ot,i, bot,i, rt,i, brt,i} = GLIP(It, po, pr) ∈ Ist (2)

where Ist is a semantically parsed image.

Semantic Mapping Typically, we need to generate a navigation map that
is essential for guiding an agent to make informed decisions during navigation
in a complex environment. To achieve this, we utilize the function Nav_M(·) to
generate the navigation map. Specifically, at time t, we utilize depth informa-
tion obtained from the agent, along with the agent pose P a

t , to calculate 3D
points from Dt. These points are then voxelized into 3D voxels. Subsequently,
we project these 3D voxels from the top to produce a 2D navigation map Mnav.
We formulate the above process as:

Mnav = Nav_M(Dt, P
a
t ). (3)

Mnav provides information about the layouts, obstacles, pathways, landmarks,
and other relevant details within a specific area. Furthermore, we also incor-
porate the semantic understanding of objects and rooms that are obtained by
the VLM Understanding module to generate a semantic navigation map Msem

using Sem_M(·) function:

Msem = Sem_M(Mnav, {ot,i, bot,i, rt,i, brt,i}). (4)

Semantic information, including the types of objects and rooms associated with
detected objects in 3D space, is projected onto a 2D plane to create Msem.
This semantic navigation map Mt := Msem obtained at each time t enables the
agent to navigate through the environment with a deeper understanding of the
objects and their arrangements, making it more capable of handling complex
and dynamic scenarios.

Tree-of-Thoughts Reasoning and Exploration Due to limitations in the
field of agent view or the presence of obstacles, target objects often do not appear
within the initial view of an agent. Thus, it is necessary to design an efficient
algorithm that enables the agent to explore the environment to swiftly locate the
target object quickly. Frontier-based exploration aims at autonomously explor-
ing unknown environments. The core idea is to direct an agent towards the
boundaries, known as “frontiers”, between explored and unexplored areas, ensur-
ing a systematic and efficient exploration. However, traditional frontier-based
exploration algorithms [43] usually lead an agent to select the nearest frontier
to minimize traversal distance. Given the complexity of certain environments,
naively choosing the closest frontier is often not an optimal solution.

To tackle this limitation, we harness the common sense knowledge inherent
in LLMs. By analyzing Mt, our approach identifies unexplored areas that are
likely proximate to the target object. Unlike previous methods [43] that rely on
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Probabilistic Soft Logic (PSL) [3] and craft a bunch of intricate rules to deter-
mine the optimal frontier, our approach offers a fresh perspective: we utilize
LLMs to select the frontier that most likely directs to the goal object. Noting
the potential inaccuracies caused by multiple candidate frontiers fed to an LLM
in a native way, we integrate the Tree of Thoughts (ToT) mechanism [37] to
let the LLM reason about the optimal frontier to select. ToT employs a struc-
tured tree-based decision-making process, allowing for organized and systematic
exploration, which enhances the model’s ability to make informed decisions in
complex environments. Specifically, given a set of frontier candidates {fn}Nn=1

return by [43], we apply the ToT reasoning, as depicted in Algorithm 1 [37],
to decide on the optimal frontier for the next move. To instantiate a ToT, we
need to implement four components: thought decomposition, thought genera-
tion, state evaluation, and tree search. These components are outlined in the
comments of Algorithm 1, which are highlighted in blue.

Algorithm 1 ToT reasoning(x,m,G, k, V, T, b)
Require: Input x, an LLM m, thought generator G & size limit k, states evaluator

V , step limit T , breadth limit b.
S0 ← {x} � Thought decomposition.
for t = 1, · · · , T do � Tree search.

S′
t ← {[s, z] | s ∈ St−1, zt ∈ G(m, s, k)} � Thought generation.

Vt ← V (m, S′
t) � Thought evaluation.

St ← argmaxS⊂S′
t,|S|=b

∑
s∈S Vt(s)

end for
return G(m, argmaxs∈ST VT (s), 1)

The input x consists of prompt decorator and frontier selection query prompt,
and Algorithm 1 finally returns the selected frontier. We design a prompt dec-
orator or several prompt decorators for each of the above four components to
elicit reasoning in LLMs as below.

– Thought decomposition: Imagine ten different experts are answering this
question. They will brainstorm the answer step by step, reasoning carefully
and taking all facts into consideration.

– Thought generation: All experts will write down one step of their thinking,
then share it with the group. They will each critique their response, and the
all the responses of others They will check their answer based on science and
the laws of physics. Then all experts will go on to the next step and write
down this step of their thinking. They will keep going through steps until they
reach their conclusion taking into account the thoughts of the other experts. If
at any time they realise that there is a flaw in their logic they will backtrack
to where that flaw occurred. If any expert realises they are wrong at any point
then they acknowledges this and start another train of thought.

– Thought evaluation: Each expert will assign a likelihood of their current asser-
tion being correct.
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– Tree search: Continue until the experts agree on a single most likely location.

We append the above ToT prompt decorators with our frontier selection
query prompt, i.e., pick one single location where a laptop is most likely to occur
and give a final answer with one single location index, and the location indices
and objects extracted from the semantic navigation map Mt are formatted as:
location #<i>, located near <room type>, where <{object1, object2, ...}> are
also found.. We feed them together into an LLM. The LLM returns a consensus
about the most feasible frontier index to the goal object along with a numerical
likelihood. The final output from LLM is formated as: Conclusion, location #<i>
with highest likelihood [%]. Therefore, our method pinpoints the most promising
frontiers, effectively bridging the insights of an LLM with precision in frontier
selection, thus enabling more informed and context-aware exploration.

Goal Identification This module determines whether the current object
approached by an agent matches the target object specified in an instruction
L. Our definition of the target object encompasses more intricate spatial and/or
appearance descriptions of the object, rather than just object category as pre-
vious work [13,43], such as: “Alarm clock on a dresser near a desk lamp, bed”
or “Small, metallic alarm clock”. Thus, an algorithm that merely checks object
category, e.g., if the current object is an “alarm clock”, is insufficient. To make
a more informed assessment of whether the scene’s context aligns with the tar-
get object description, we initially employ a vision language model to interpret
the current scene and convert it into a language-based expression. Subsequently,
we use a large language model, specifically GPT-3.5 [28] in our experiments,
to analyze the textual descriptions of the target in the instructions L and the
object currently observed in the scene. By integrating both textual and visual
semantic information, our model achieves a deep semantic understanding of the
environment, enhancing the accuracy of aligning scene context with the target
description and thereby improving the results of L-ZSON.

4 Experiments

4.1 Environments and Datasets

We evaluate the performance of our L-ZSON approach based on ToT reasoning
on two benchmarks, i.e., PASTURE [13] and RoboTHOR [9].
PASTURE Introduced by Gadre et al. in CoW [13], PASTURE is characterized
by its diverse set of environments, each presenting unique navigation challenges.
For example, PASTURE introduces categories such as uncommon objects,
objects with varying appearance complexities, objects placed in intricate spaces,
and also hidden objects strategically obscured from plain sight. Designed mainly
for L-ZSON tasks, PASTURE contains 2,520 validation episodes in 15 validation
environments with 12 goal object categories. In the PASTURE dataset, agents
are tested not only in their navigation skills but also in their adaptability and
decision-making ability.
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RoboTHOR Introduced by Deitke et al. [9], offers a platform for ZSON eval-
uation. Based on real-world indoor settings, RoboTHOR provides precise 3D
representations of these environments, creating a more practical and genuine
evaluation platform. This benchmark contains a diverse array of objects, set
within familiar household and office spaces.con 15 validation environments with
12 goal object categories.

4.2 Metrics

Following the setting of [13,43], we employ the Success Rate (SR) and Success
Weighted by Path Length (SWPL) as our evaluation metrics. These metrics not
only measure the agent’s ability to reach the goal objects, but also consider
the efficiency and reliability of navigation. Specifically, the SR quantifies the
proportion of episodes in which the agent successfully navigates to the goal
object within maximum steps. Represented in percentage, a higher value suggests
superior capability. Although SR provides a measure of success, it does not
account for the efficiency of the agent’s navigation path. Therefore, the SWPL
metric considers both the success of navigation and the optimality of the path
taken. It penalizes unnecessary long paths, ensuring that the agent’s navigation
is both correct and efficient.

4.3 Baselines

Our VLTNet is evaluated against the following state-of-the-art models for both
ZSON and L-ZSON tasks.
CoW [13]: CoW targets both ZSON and L-ZSON tasks, using CLIP to con-
sistently update a top-down map with image-to-goal relevance. Variants of
CoW with different CLIP-like localization modules were also included: CLIP-
Ref [13], CLIP-Patch [13], CLIP-Grad [13], MDETR [18], OWL [27].
ESC[43]: ESC utilizes GLIP for object detection to facilitate scene understand-
ing and common sense reasoning. ESC also incorporates soft logic predicates to
ensure optimal path and navigation decisions.

4.4 Results

Our experiments was designed rigorously to assess the efficacy of our proposed
VLTNet for ZSON and L-ZSON tasks. We juxtaposed our method with the
state-of-the-art approaches and the results are shown in Table 1.

On the PASTURE dataset, our VLTNet model consistently surpassed com-
peting models across all metrics. Notably, within the Appearance category, our
VLTNet model achieves a noteworthy success rate of 35.0%. In contrast, the
OWL has an SR of 26.9%. Similarly, in the Spatial category, the SR of our VLT-
Net model is 33.3%, outperforming OWL model’s 19.4%. This demonstrates our
model’s capability in understanding spatial relationships and interpreting com-
plex object descriptions using the Tree of Thoughts Reasoning and Exploration
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Table 1. Quantitative results on the PASTURE[13] and RoboTHOR[1] benchmarks
are provided, comparing our VLTNet model with six CoW (CLIP on Wheel) variants
designed for L-ZSON tasks, while ESC is exclusively used for ZSON tasks. Abbrevi-
ations used include Unc. for Uncommon, App. for Appearance, dist. for distract, and
Hid. for Hidden. The best results are highlighted in red bold, while the second-best
results are highlighted in blue bold.

PASTURE RoboTHOR

Unc.App.Space
App.
dist.

Space
dist.

Hid.
Hid.
dist.

Avg. Avg.
Models

SR SR SR SR SR SR SR SWPL SR SWPL SR

CLIP-Ref. 3.6 2.8 2.8 3.1 3.3 4.7 5.0 1.7 2.5 2.4 2.7
CLIP-Patch 18.1 13.3 13.3 10.8 10.8 17.5 17.8 9.0 14.2 10.6 20.3
CLIP-Grad. 16.1 11.9 11.7 9.7 10.3 14.4 16.1 9.2 12.9 9.7 15.2

MDETR 3.1 7.2 5.0 7.2 4.7 8.1 8.9 5.4 6.3 8.4 9.9
OWL 32.8 26.9 19.4 19.4 16.1 19.2 15.8 12.6 21.1 17.2 27.5
ESC 35.5 - - - - - - - - 22.2 38.1

VLTNet 36.9 35.0 33.3 21.9 21.7 22.8 26.4 14.0 28.2 17.1 33.2

module. As shown in Fig. 3, our model successfully leverages an LLM to extract
the candidate frontier of “bowl” and then the Goal Identification module verifies
that the bowl aligns with the spatial cues in an instruction. Conversely, the ESC
model is unable to locate the goal object even if the agent was facing the target.
Also, it is essential to note that ESC is only designed for ZSON tasks and thus
can only accept a single object category instruction and cannot directly handle
object descriptions using natural language.

On the RoboTHOR dataset, the ESC model, tailored for RoboTHOR, secures
an SR of 38.1%. Our VLTNet continues its commendable performance by achiev-
ing an SR of 33.2% and an SWPL of 17.1%, which outperforms CoW that secures
an SR of 27.5%. This further proves that our VLTNet navigation model has a
competitive performance compared to the state-of-the-art methods.

4.5 Ablation Study

The effect of ToT Reasoning and Exploration module. To evaluate the
efficacy of Tree of Thoughts Reasoning and Exploration module, we conducted
a comparative analysis with two models on the PASTURE LONGTAIL dataset
[13], consisting of 12 uncommon object goals. All models employ GPT-3.5, dif-
fering only in their input prompts. The first model is guided to directly select
a frontier from all the available candidates, devoid of any explicit directive for
reasoning. The second model uses ToT input prompts, which requires a delibera-
tion between ten experts to articulate their reasoning and collectively determine
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Fig. 3. Visualizing egocentric trajectories of VLTNet and ESC navigation process when
given a spatial goal instruction. Color indicates trajectory progress, where blue indi-
cating trajectory start and white indicating trajectory end. The goal objects are boxed
in green, while distractors are boxed in red.

a frontier to select for exploration. As evidenced by Table 2, the model that
uses ToT prompts for frontier selection exhibits a marked superiority over the
model without ToT prompts. This underscores the efficacy of ToT prompting in
facilitating the selection of frontier that are closer to the goal object.
Comparison of different models for Goal Identification module. To
prove the robustness of using an LLM in the Goal Identification module, we
tested this module using GPT-3.5 along with two other VLM models: VILT
[20] for visual question answering and GLIP [22] for object grounding. All three

Table 2. Performance between different prompting in ToT Reasoning and Exploration
module on Pasture Uncom. split.

Reasoning PromptSWPLSR

W/o ToT prompts12.4 29.8
ToT prompts 16.6 36.9

Table 3. Performance between different models in Goal Identification module on Pas-
ture Space dist. split.

Module SWPLSR

GLIP 5.9 12.6
ViLT 8.7 18.3
GPT-3.59.3 21.7
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models are evaluated on the PASTURE Space dataset [13], in which target
objects are embedded in spatially descriptive prompts. Table 3 illustrates that
GLIP faces challenges in grounding objects when presented with intricate spatial
cues. When the current frame is isolated and processed through VILT, there is a
marginal improvement in object identification based on spatial hints. However,
the most effective method for validating the goal object in accordance with
a spatial prompt is GPT-3.5, by determining the congruence between objects
present in the current scene and the provided spatial cues in an instruction.

5 CONCLUSIONS

In this paper, we introduce a VLTNet model, which harnesses both visual lan-
guage modeling and ToT reasoning for L-ZSON task. We innovatively integrated
the Tree of Thoughts reasoning framework, enriching the decision-making pro-
cess with its nuanced multi-path reasoning capabilities. This empowers the model
to make informed decisions during a frontier selection process in language-
instructed navigation. The results on the PASTURE and RoboTHOR bench-
marks demonstrate that our VLTNet excels in handling complex L-ZSON tasks
that demand intricate understanding and interpretation of natural language
instructions and environments.
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Abstract. Camera localization predicts the camera pose from a query
image. There are two types of deep learning-based camera localization
methods: image-based and structure-based. Previous works have shown
that data augmentation can improve the performance of image-based
methods, but there are no research studies on the structure-based method
with data augmentation technique. In this paper, we propose a new pose
augmentation procedure that can further improve the performance of the
deep structure-based camera localization method, especially under few-
shot settings. We investigate different inpainting and rendering strategies
and compare their performance with pose augmentation. In addition, we
propose a confidence-based sampling scheme that drastically reduces the
computation time while maintaining high pose estimation accuracy.

Keywords: Camera localization · deep learning · pose augmentation.

1 Introduction

Camera localization is to estimate the 6-DoF camera pose, including 3D position
and orientation, from an image in a known environment. Traditional methods
use feature descriptors [1–3] to establish 2D-3D correspondences between the
key points on the 2D image and the 3D model generated by a SfM system
[4,5]. These correspondences can then be used to compute the camera pose
of the query image. However, these methods are computationally expensive and
suffer from textureless scenes, repetitive patterns, duplicated objects, and highly
symmetrical indoor scenes.

Various CNN-based methods have been proposed to take advantage of the
strong learning capability of CNN in recent years. They can be divided into
two categories: image-based and structure-based. Image-based methods [10,15]
regress poses from images. Structure-based methods [20–22,24,25] establish 2D-
3D correspondences by using CNN, and then compute the 6-DoF camera pose by
solving the Perspective-n-Point (PnP) [20,27] problem. Structure-based methods
typically outperform image-based methods.

To make the most of the training data, previous works [6–8] proposed different
methods to augment camera poses. They [6–8] proved that augmented image-
pose pairs can improve the performance of camera localization models. However,
these augmentation methods have only been applied to image-based models. In
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15318, pp. 405–419, 2025.
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this paper, we aim to extend the data augmentation strategy to improve the
structure-based camera localization.

Most camera localization models, either image-based or structure-based, need
to be trained on specific datasets for each scene of application interest. Previous
models were usually trained on thousands of image-pose data samples. In the
real world, collecting fine, dense datasets for model training may be hard. Thus,
few-shot learning is a more practical setting for real-world applications of camera
localization. Accordingly, data augmentation can make a limited number of data
samples cover more scene information, helping models learn better to predict
more accurate camera poses from query images.

In this work, we focus on applying data augmentation to improve structure-
based camera localization in few-shot situations. In this work, we propose a
new data augmentation method to handle invalid pixels and combine our data
augmentation method with a state-of-the-art structure-based model: Hierarchi-
cal Scene Coordinate Classification and Regression (HscNet) [24]. The improved
method can achieve improvements in camera localization accuracy that is supe-
rior to the state-of-the-art models. In addition to the image-based methods,
we prove that additional image-pose pairs generated by synthesizing images
from spatially-augmented camera poses can still improve the performance of the
structure-based localization method (HscNet [24]). We also prove that our aug-
mentation method performs satisfactorily under few-shot situations for the cam-
era localization problem. We also propose a confidence-based sampling scheme
to improve the quality of the candidate point set for solving the PnP problem
that computes the final query camera pose. This improvement speeds up the
prediction while maintaining low prediction error and high accuracy for camera
localization.

2 Related Work

Deep learning based camera localization methods can roughly be divided into
image-based and structure-based localization approaches. Image-based methods
[10,15] feed the query images into CNN models, and models output regressed
camera poses.

Instead of regressing the camera pose, structure-based methods [19–26]
regress each 2D pixel on the query image into 3D scene coordinates to obtain 2D-
3D correspondences. Then the camera pose prediction task becomes a PnP [27]
problem and can be solved by the above 2D-3D correspondences. After predicting
scene coordinates, DSAC [19] samples minimal sets of four scene coordinates to
create a pool of hypotheses. It uses another CNN model to score the reprojection
errors and selects the best hypothesis as the final predicted pose. DSAC++ [20]
improves the scoring model in DSAC [19], and applies a PnP-RANSAC algo-
rithm that puts the PnP solver into a RANSAC [28,29] loop. The RANSAC
process filters outliers in the predicted coordinates to reduce the noise of incor-
rectly predicted coordinates. The recent structure-based methods [20,22–26]
compute the camera pose of the query image from the predicted scene coordi-
nates by the RANSAC-PnP step. NeuMap [26] decomposes the scene information
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Fig. 1. HscNet [24] network architecture and the pose estimation procedure.

into scene-agnostic key points and scene-specific latent code. The scene-agnostic
auto-transdecoder regresses the sparse 3D scene coordinates for the PnP algo-
rithm by the cross-attention between the robust features and the scene-specific
latent codes.

The training objective of deep models in structure-based methods is the
regression of 3D scene coordinates. Therefore, it requires depth information
to establish the ground truth of the 3D scene coordinates. Due to the pre-
cise 3D information during training, structure-based methods perform better
than image-based methods. Thus we choose the structure-based approach as
our research focus.

HscNet [24] is a state-of-the-art structure-based model for camera localiza-
tion. Its model architecture is depicted in Figure 1. HscNet [24] clusters all
3D points of training scenes into hierarchical classes with hierarchical k-means
clustering and sets clusters as class labels during pre-processing. The model hier-
archically classifies labels for each 2D pixel and predicts the closest cluster center
to each 2D pixel. Finally, HscNet [24] computes the predicted camera pose by
the PnP-RANSAC algorithm.

Dong et al. [30] first propose the few-shot problem setting for the visual
localization task. Few-shot learning, or low-shot learning, is a learning problem
where only a small amount of data is available for learning. Dong et al. [30]
samples the training data of camera localization datasets by fixed steps to form
the new few-shot sets for training. We follow this uniform sampling strategy to
create few-shot training sets but still use complete test sets for evaluation.
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3 Proposed Method

3.1 Structure-Based Camera Localization Model

In this work, we propose to apply data augmentation for structure-based cam-
era localization so that the CNN model can benefit from augmented training
data with larger pose variations for better generalization. Especially in the few-
shot situation, the spatially augmented camera poses and synthesized images
can fill in more scene information to support the training process. We use the
inpainting technique to deal with the blank area caused by the invalid depth
and pose changes. In addition to the new RGB images, the rendering pipeline
simultaneously generates new depth maps. This allows us to use the extended 3D
information to improve structure-based methods. Since our spatially-augmented
data do not fit the original label maps provided by HscNet [24], we use Nearest
Neighbor search to assign the nearest cluster label to the 3D point of each pixel,
and generate the new label maps for the augmented images as the ground truth.

The new camera poses, synthesized RGB images & depth maps, and the
new label maps form additional augmented image-pose pairs, which is m times
the number of original data. After the pre-processing and data preparation, we
train and evaluate HscNet [24] with the augmented data to verify whether the
structure-based localization can benefit from the data augmentation method
that increases the number of image-pose pairs.

HscNet[24] provides point correspondences for the PnP-RANSAC algorithm
to estimate the 3D camera localization. The purpose of the pose augmenta-
tion is to improve the accuracy of point correspondences generated by HscNet,
so that the final pose estimation by using PnP-RANSAC is more accurate. In
this work, we use the traditional RANSAC for estimating the 3D camera pose
estimation. Our main contribution is focused on improving the training of Hsc-
Net for generating more accurate point correspondences to be used as input to
PnP-RANSAC [28,29] for more accurate 3D camera localization. It can also be
combined with a more robust RANSAC algorithm to achieve more accurate pose
estimation.

3.2 Data Augmentation

We use the following augmentation pipeline to generate the augmented data. It
starts by generating new camera poses. It first applies the K-Nearest-Neighbor
search to find the k nearest camera poses, and dynamically decides the sam-
pling ranges for camera poses in the three axes and three Euler angle directions
according to the maximum and minimum values for each pose element from the
k neighbors. After finding the bounds in the six dimensions, it randomly adjusts
the camera poses by independently sampling each component with uniform dis-
tribution within the bounds to create additional poses. It augments an image for
m times, so augmented images is m times the number of original images. The
rendering pipeline projects the pixels of the 2D images onto the 3D point cloud
and reprojects them back to 2D images according to new camera poses. We set
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Fig. 2. Flowchart of the proposed data augmentation pipeline.

k to 50 in the K-Nearest-Neighbors Search, but we lower it to fit the smaller and
sparser data in the few-shot situation (Fig. 2).

We observe that different point size settings of the point cloud in the render-
ing pipeline affect the effect of augmentation. The point size setting affects how
large the 3D points are projected onto 2D images. When the point size is larger,
the rendered images look coarser and less accurate, but there are fewer invalid
pixels because the larger point sizes cover more space. On the other hand, the
smaller point size produces more accurate and precise images, but they suffer
from more blank areas. Even though smaller point sizes cause the blank area
problem, we choose a smaller point size for rendering and use the RGB inpaint-
ing technique to cover these blank areas and make the images rendered under
smaller point sizes more photo-realistic than the coarser ones. In this work, we
apply the inpainting function with the Navier-Stokes based algorithm from the
OpenCV Python toolkit to fill in the blanks on the augmented RGB images.

3.3 Confidence-based Sampling

The FPS bottleneck of HscNet [24] is the first part in the PnP-RANSAC algo-
rithm that samples four points to form a valid hypothesis. It spends much time
forming a valid hypothesis because it sometimes picks bad points and has to
resample. We plan to improve the quality of candidate points so that it does not
have to spend too much time resampling.

HscNet [24] uses the one-hot encoding format for the ground truth of two
hierarchical label maps. In addition to HscNet [24] using the “argmax” function
to extract the predicted classes, we also edit the model to output the “max”
value for each pixel. This raw value indicates how strongly the model considers
the pixel the predicted label. We take this raw value as confidence and create
a confidence map. We select the top 50% points with higher confidence as the
sample range and filter out the other 50% points with lower confidence. The pro-
posed confidence-based sampling scheme samples the points with higher quality



410 C.-Y. Tsai and S.-H. Lai

for the PnP-RANSAC algorithm and has a higher probability of successfully
forming a valid hypothesis, thus making the PnP-RANSAC algorithm more effi-
cient. Because the second classification network performs poorly in some scenes,
we only use the raw value as confidence in the first classification network. Fig. 3
provides visualization of the confidence map.

Fig. 3. Visualization of the confidence maps for the corresponding RGB images. In
the second row, the lighter areas mean they have higher confidence than other darker
areas.

4 Experiments And Discussion

4.1 Datasets and Experimental Setup

We use two standard visual localization benchmark datasets, 7-Scenes & 12-
Scenes, to evaluate the proposed method. 7-Scenes [32] dataset is an indoor
RGB-D dataset with seven scenes. It is widely used for visual localization and
SLAM research. It uses Microsoft Kinect V1 to capture RGB images and depth
maps, then applies the KinectFusion system to obtain the ground truth camera
pose. 12-Scenes [33] is also an indoor RGB-D dataset. It contains four bigger
scenes, in total, twelve smaller sub-scenes. It uses an iPad color camera with a
Structure.io depth sensor to capture RGB-D images and applies a global-bundle
adjustment algorithm to obtain the ground truth camera pose. Fig. 4 depicts
some sample images from these two datasets.

Under the few-shot condition, we compare our experimental results with our
baseline HscNet [24], and Dong et al. [30] on 7-Scenes. Since Dong et al. [30] did
not report experimental results on 12-Scenes, we only compare our method with
the baseline HscNet [24] on 12-Scenes.
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Fig. 4. Some sample images selected from different scenes in the 7-Scenes and 12-Scenes
datasets are depicted in the upper and lower rows, respectively.

Table 1. Comparison of the experimental results on 7-Scenes with 100% data with dif-
ferent methods. DSM[25] has two prediction modes, Single (frame) and Video (frames),
while other methods predict from a single image. SANet [22] only report the total aver-
age of accuracy. The numbers are median translation (in meters) and rotation errors
(in degrees). Here we set k to 50 and m to 32.

7-Scenes
100%

DSAC++[20] SANet[22] DSM(Single)[25] DSM(Video)[25] HscNet [24] Ours

Acc. Median err. Acc. Median err. Acc. Median err. Acc. Median err. Acc. Median err. Acc. Median err.

Chess 97.1 0.02, 0.50 - 0.03, 0.88 94.5 0.02, 0.71 96.1 0.02, 0.68 97.5 0.02, 0.70 97.7 0.02, 0.59

Fire 89.6 0.02, 0.90 - 0.03, 1.08 93.8 0.02, 0.86 94.5 0.02, 0.80 96.7 0.02, 0.90 96.2 0.02, 0.84

Heads 92.4 0.01, 0.80 - 0.02, 1.48 96.4 0.01, 0.85 99.5 0.01, 0.80 100 0.01, 0.90 100 0.01, 0.82

Office 86.6 0.03, 0.70 - 0.03, 1.00 82.3 0.03, 0.84 84.2 0.03, 0.78 86.5 0.03, 0.80 87.2 0.02, 0.72

Pumpkin 59.0 0.04, 1.10 - 0.05, 1.32 57.0 0.04, 1.16 57.2 0.04, 1.11 59.9 0.04, 1.00 60.3 0.04, 1.03

Kitchen 66.6 0.04, 1.10 - 0.04, 1.40 68.7 0.04, 1.17 69.2 0.03, 1.12 65.5 0.04, 1.20 63.2 0.04, 1.17

Stairs 29.3 0.09, 2.60 - 0.16, 4.59 53.9 0.05, 1.36 69.9 0.04, 1.16 87.5 0.03, 0.80 87.7 0.03, 0.73

Average 76.1 0.04, 1.10 68.2 0.05, 1.68 78.1 0.03, 0.99 81.6 0.03, 0.92 84.8 0.03, 0.90 84.3 0.03, 0.84

Table 2. Experimental results on 7-Scenes dataset under few-shot settings.

7-ScenesFew-shot HLoc [34,35] DSAC* [21] Dong et al [30] HscNet [24] Ours

Median err. Median err. Median err. Acc. Median err. Acc. Median err.

Chess (0.5%) 0.04, 1.42 0.03, 1.16 0.04, 1.23 77.9 0.03, 1.13 77.0 0.03, 0.99

Fire (0.5%) 0.04, 1.72 0.05, 1.89 0.04, 1.52 56.9 0.04, 1.50 62.2 0.04, 1.30

Heads (1%) 0.04, 1.59 0.04, 2.71 0.02, 1.56 63.9 0.04, 2.16 74.6 0.02, 1.58

Office (0.5%) 0.05, 1.47 0.09, 2.21 0.05, 1.47 40.0 0.06, 1.61 49.9 0.05, 1.28

Pumpkin (0.5%) 0.08, 1.70 0.07, 1.68 0.07, 1.75 30.3 0.07, 1.65 33.5 0.06, 1.56

Kitchen (0.5%) 0.07, 1.89 0.07, 2.02 0.06, 1.93 27.1 0.07, 2.09 39.4 0.06, 1.81

Stairs (1%) 0.10, 2.21 0.18, 4.80 0.05, 1.47 26.6 0.10, 2.76 39.3 0.06, 1.61

Average 0.06, 1.71 0.08, 2.35 0.05, 1.56 46.1 0.06, 1.84 53.7 0.05, 1.45
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4.2 Experimental Comparison

Table 1 summarizes the results on 7-Scenes with 100% data. All methods are
state-of-the-art structure-based methods. HscNet [24] is our baseline that does
not use augmentation data. The rightmost column is HscNet [24] combined with
our data augmentation method. It shows that the additional augmented image-
pose pairs can also improve the performance of the structure-based method
(HscNet [24]). It makes HscNet [24] perform better and achieve the best results.

Table 2 demonstrates the experimental results on 7-Scenes under few-shot
conditions. We obtain competitive results on median error and accuracy rate.
Table 3 shows the experimental comparison on 12-Scenes, under the 1% and 0.5%
few-shot conditions. The proposed method can achieve over 50% improvement in
median translation and rotation errors and over 30% improvement in accuracy
rate. The few-shot conditions on 7-Scenes follow the setting from Dong et al.
[30]. The numbers are median translation and rotation errors (m, ◦), and the
percentages of test images accurately predicted (error < 0.05 m, 5◦). The results
of HLoc [34,35], DSAC* [21], and Dong et al. [30] are copied from [30].

4.3 RGB Inpainting and Noise

Table 4 shows the comparison of RGB noise and RGB inpainting for filling empty
areas on augmented images. Both RGB noise and RGB inpainting can improve
the performance of HscNet [24], but RGB inpainting is better than RGB noise.

Table 3. Experimental results on 12-Scenes datasets under few-shot settings.

12-Scenes Few-shot 1% Few-shot 0.5%

HscNet [24] Ours HscNet [24] Ours

Acc. Median err. Acc. Median err. Acc. Median err. Acc. Median err.

Average 55.3 0.060, 2.4 76.4 0.028, 1.2 39.4 0.259, 16.8 51.3 0.180, 15.5

Table 4. Experimental results on 7-Scenes and 12-Scenes datasets under few-shot
settings. Here we set k to 4 and m to 64 on 7-Scenes, and k to 2 and m to 32 on
12-Scenes.

Few-ShotAverage HscNet [24] w/ aug + Noise w/ aug + Inpainting

Acc. Media err. Acc. Media err. Acc. Media err.

7S 46.1 0.060, 1.8 51.2 0.050, 1.6 53.7 0.047, 1.5

12S 1% 55.3 0.060, 2.4 75.0 0.029, 1.2 76.4 0.028, 1.2

12S 0.5% 39.4 0.259, 16.8 50.3 0.182, 15.6 51.3 0.180, 15.5
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4.4 Rendering Quality

Although the images with smaller point sizes are more accurate and precise, the
larger blank regions negatively impact model training. Fortunately, the RGB
inpainting technique can fill in the blanks and improve the benefits of aug-
mented data. Adding RGB inpainting to the blank pixels can improve the train-
ing results, especially for images with smaller point size.

Table 5 compares the results of different point size settings and invalid
pixel fixing strategies (RGB inpainting/RGB noise) when rendering augmented
images. The augmented images with rendering quality “point size = 2.0” per-
form best. So we set the point size as 2.0. Table 5 also shows that adding RGB
inpainting is better than adding RGB noise to augmented images with different
rendering qualities (point size: 2.0/3.0).

Table 5. Ablation study of different rendering quality (point size settings) and different
invalid pixel inpainting strategies on 7-Scenes under few-shot conditions. Here we set
k as 2 and m as 32. The top table is augmented images with RGB inpainting, and the
bottom is augmented images with RGB noise.

7-Scenes
Few-shot
Average

Point Size = 3.0 Point Size = 2.0 Point Size = 1.5

w/ RGB Inpainting

Acc. Media err. Acc. Media err. Acc. Media err.

48.7 0.06, 1.66 49.5 0.05, 1.62 47.9 0.06, 1.67

w/ RGB Noise

Acc. Media err. Acc. Media err. Acc. Media err.

44.8 0.06, 1.81 44.6 0.07, 1.84 44.1 0.07, 1.83

4.5 Discussion on k and m

We analyze the influence of different k and m settings. The parameter k for
K-Nearest-Neighbors Search affects the distribution of augmented data. The
parameter m for augmentation multiple affects the density of augmented data.
We test different k and m to find the best parameters for data augmentation.
We first adjust the parameter m and find that m = 64 is the best. And we adjust
the parameter k with fixed m = 64, and find that k = 4 is the best, as shown in
Table 6. We use this fixed k/m for the few-shot experiments on 7-Scenes dataset.

k for K-Nearest-Neighbors Search: The parameter k for K-Nearest-
Neighbors Search affects the distribution of augmented data. Suppose k is too
large or too small. In that case, the augmented camera pose can not benefit suf-
ficiently from the KNN process, which dynamically decides the range of random
new poses according to the dataset’s attribute. At the top of Fig. 5, the figure
shows the distribution of augmented data (blue dots) with different values of
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Fig. 5. These figures show the distribution and density of augmented data in the 7-
Scenes dataset. The blue dots are augmented camera poses, the red lines are testing
sequences, and the green lines are few-shot training sequences without augmentation.
At the top, the figure shows the distribution with different values of k . At the bottom,
the figure shows the density of augmented data with different values of m.
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k. Two endpoints of green lines restrict a group of blue dots in the upper left
corner while k is 2 or 3. After k becomes larger, the KNN process can find the
appropriate random range by the larger scale with more neighbors, and the new
augmented poses spread wider.

m for Multiple of Augmentation: The parameter m for augmentation mul-
tiple affects the amount and density of augmented data. The bottom of Fig. 5
shows the density of augmented data (blue dots).

Table 6. Ablation study of different m and different k values on 7-Scenes under few-
shot conditions.

7-ScenesFew-shotm = 48, k = 2 m = 64, k = 2 m = 80, k = 2

Acc. Median err. Acc. Median err. Acc. Median err.

Average 49.6 0.05, 1.62 51.1 0.05, 1.58 50.6 0.05, 1.62

7-ScenesFew-shotm = 64, k = 2 m = 64, k = 3 m = 64, k = 4

Acc. Median err. Acc. Median err. Acc. Median err.

Average 51.1 0.05, 1.58 53.8 0.05, 1.46 53.7 0.05, 1.45

We compare our results of the previous fixed k/m and the new dynamic k/m
with Dong et al [30]. Since the dynamic selection of k and m is not yet mature
enough to be automatically selected by some mechanisms, we show the results of
dynamic k/m only in this section. For the few-shot problem settings on 7-Scenes,
our results with dynamic k/m achieve the best. An important future work is how
to decide the values of k and m automatically and dynamically according to the
datasets’ attributes (Table 7).

4.6 Confidence-based Sampling

In this section, we show the benefits of applying the proposed confidence-based
sampling to the model of HscNet [24]. We evaluate the reference time and FPS
performance on NVIDIA RTX 3090 GPU and Intel i9-12900KS CPU.

Table 8 shows that after applying the proposed confidence-based sampling,
the model’s FPS performance is improved by about 55% on the 7-Scenes dataset
and 60% on the 12-Scenes dataset under the few-shot condition. At the same
time, the accuracy (recall) and the median translation and rotation errors are
about the same.

The confidence-based sampling significantly reduces the reference time while
maintaining high accuracy (recall) and low translation and rotation error. The
points with higher confidence bring a higher probability of successfully solving
the coarse camera poses during the first part in the PnP-RANSAC algorithm.
After reducing the number of failed hypothesis generation cases, the FPS for our
method is increased by 55% ˜60%.
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Table 7. This table shows the results on the 7-Scenes dataset under the few-shot con-
ditions following the setting from Dong et al. [30]. The numbers are median translation
and rotation errors (m, ◦), and the percentages of test images accurately predicted
(error < 0.05 m, 5◦). The third column, labeled “Fixed k/m”, means that we use the
fixed k = 4 and m = 64, which is the result reported in this section. The fourth column
labeled “Dynamic k/m” means that we use the optimal k and m from the tables above,
which are shown in this subsection. For consistency, we use the results with fixed k/m
to compare with other research results. We compare our results with dynamic k/m
with other research results in this table only.

7-ScenesFew-shot Dong et al. [30] HscNet [24] Ours: Fixed k/m Ours: Dynamic k/m

Median err. Acc. Median err. Acc. Median err. Acc. Median err.

Chess 0.04, 1.23 77.9 0.03, 1.13 77.0 0.03, 0.99 78.6 0.03, 0.92

Fire 0.04, 1.52 56.9 0.04, 1.50 62.2 0.04, 1.30 61.2 0.04, 1.29

Heads 0.02, 1.56 63.9 0.04, 2.16 74.6 0.02, 1.58 74.6 0.02, 1.58

Office 0.05, 1.47 40.0 0.06, 1.61 49.9 0.05, 1.28 50.5 0.05, 1.24

Pumpkin 0.07, 1.75 30.3 0.07, 1.65 33.5 0.06, 1.56 33.2 0.06, 1.51

Kitchen 0.06, 1.93 27.1 0.07, 2.09 39.4 0.06, 1.81 39.4 0.06, 1.81

Stairs 0.05, 1.47 26.6 0.10, 2.76 39.3 0.06, 1.61 44.0 0.06, 1.46

Average 0.05, 1.56 46.1 0.06, 1.84 53.7 0.05, 1.45 54.5 0.05, 1.40

Table 8. Comparison of camera localization experiment results with and without using
the proposed confidence-based sampling on 7-Scenes and 12-Scenes datasets under few-
shot conditions. On 12-Scenes, as we consider the results of Kitchen-2 and Living-2
under the 0.5% condition to be outliers, we exclude them and calculate a new average
result (Avg.*) for the 0.5% condition.

7-Scenes Few-shot Acc. Median err. Time(s) FPS

Avg. w/ aug 53.7 0.047, 1.45 0.25634 3.90

w/ aug + cfd. 54.1 0.047, 1.44 0.16568 6.04

12-Scenes Few-shot Acc. Median err. Time(s) FPS

Avg.(1%) w/ aug 76.4 0.028, 1.15 0.26413 3.79

w/ aug + cfd. 75.9 0.029, 1.17 0.16409 6.09

Avg.(0.5%) w/ aug 51.3 0.180, 15.50 0.42770 2.34

w/ aug + cfd. 51.8 0.170, 14.43 0.26566 3.76

Avg.*(0.5%) w/ aug 54.9 0.055, 2.23 0.40210 2.49

w/ aug + cfd. 55.4 0.053, 2.23 0.24459 4.09

5 Conclusion

In this paper, we presented the pose augmentation strategy for the structure-
based camera localization method. We combined the proposed data augmenta-
tion method with the state-of-the-art structure-based model HscNet [24], and
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prove that the augmented image-pose pairs can further improve the perfor-
mance of the structure-based model. Furthermore, our augmentation method
can provide reasonable model training results under few-shot settings for the
structure-based camera localization model. In addition, we propose a confidence-
based sampling scheme for the structure-based camera localization model, which
brings about 40% reduction in the inference time. Meanwhile, it maintains high
accuracy in the camera localization results.

The proposed data augmentation method works well for indoor scenes, but it
may not work well for outdoor scenes. Our augmentation method relies on high-
quality depth information to reproject the pixels for image rendering at different
camera poses. Indoor datasets usually contain deep maps with good quality for
the novel view generation, such as 7-Scenes and 12-Scenes. In contrast, Outdoor
datasets usually have sparse depth data in large space, making it difficult to
generate novel views for scenes with large depth variations. Extension of the
proposed data augmentation method to outdoor scenes is a topic worthy of
further research.
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Abstract. Point cloud completion aims to fill in incomplete or partially
missing point cloud data to restore its complete shape information. Cur-
rently, some methods attempt to incorporate image modality informa-
tion to achieve high-quality point cloud completion. However, they fail to
fully integrate complementary features within the multimodal context. In
this paper, we propose a novel Residual Multimodal Fusion network for
point cloud completion, significantly improving the quality of shape com-
pletion. Specifically, we introduce a cross-modal residual feature fusion
module to capture local shape features. It uses cross-modal attention
mechanisms, while employing a residual structure to mitigate the process
of globalizing features, thus effectively enhancing feature diversity. The
decoder adopts an innovative attention-based multi-branch structure to
reconstruct the complete point cloud by regions. Additionally, the point
cloud refinement module is divided into local refinement units and view-
assisted units, which can simultaneously capture global shape structures
and local details, reducing outliers in the predicted point cloud. Experi-
ments show that our network achieves competitive performance on syn-
thetic and real-world datasets, outperforming existing methods.

Keywords: Point cloud completion · Multi-modality · Feature fusion ·
Transformer.

1 Introduction

Nowadays, the popularity of depth cameras and LiDAR has made it easier to
capture color images and 3D point clouds, leading to wide applications of point
clouds in fields like autonomous driving [10], shape understanding [26], and
robotics [14]. However, due to constraints such as perspective and occlusion,
3D point clouds collected from real-world scenes are often sparse and incom-
plete, resulting in the loss of geometric and semantic information. Completing
incomplete 3D point clouds to obtain a full representation is a challenging issue
in current point cloud applications.

Most previous methods [24] [20] [21] [13] [29] only used partial point clouds as
input. For example, by combining a PointNet-based [15] encoder with a folding-
based decoder, PCN [24] represented the first dedicated network for completing
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point clouds, marking an important milestone in the field. SnowflakeNet [20]
modeled the generation of complete point clouds as the snowflake-like growth
of points, generating detail-rich complete point clouds. However, these methods
extracted global features from partial point clouds, failing to fully utilize the
details carried by local features. Additionally, self-occlusion of objects made it
difficult to determine their missing parts. Recently, some methods [27] [1] [30]
have utilized 2D images to assist in completing point clouds, aiming to intro-
duce image modal information into point cloud completion and leverage the
complementary information between images and point clouds to achieve high-
quality completion. For example, ViPC [27] fused information by estimating
rough point clouds from images using single-view reconstruction techniques.
However, directly predicting complete point clouds from images was difficult
and inaccurate. Despite considerable efforts in using images to assist in complet-
ing point clouds, fusing data from cross-sensors remains challenging. It is difficult
to make images a true complement to high-quality point cloud complementation
tasks.

In this paper, we aim to devise a module that seamlessly blends the comple-
mentary information/features from 2D images and 3D point clouds. Additionally,
we seek to develop a framework for merging these two modalities, thereby signifi-
cantly enhancing the quality of completed point cloud shapes. Inspired by previ-
ous work, our point cloud encoder adopts the three-layer set abstraction in Point-
Net++ [16] to aggregate local features, which utilizes a hierarchical architecture
to extract local features of the point cloud layer by layer. In addition, we employ
Point transformer [28] to merge local shape contexts, aiming to learn the cor-
respondence between points in local neighborhoods. Our image encoder, on the
other hand, leverages multiple 2D convolutional layers to extract features from
2D images representing local shapes. Specifically, we introduce a cross-modal
residual fusion module that capitalizes on cross-modal attention mechanisms to
fully integrate features from both modalities. The residual structure [9] within
this module mitigates the process of feature globalization, thereby effectively
enhancing feature diversity. Our decoder is designed to convert local features
into complete point clouds. It innovatively adopts a multi-branch decoder based
on attention to regionally reconstruct complete point clouds. To comprehensively
integrate image information in a coarse-to-fine manner for shape completion, we
have devised a point cloud refinement module. This module is segmented into
local refinement units and view-assisted units, enabling it to simultaneously cap-
ture global shape structures and local details. Additionally, it predicts the offset
of each point and calibrates it into the final result.

In summary, the main contributions of this paper are as follows:

1. We design a novel cross-modal residual fusion module that combines the
attention mechanism and residual connection with a gated variable weighting.
The module achieves capturing complementary features in different modal
spaces and fusing multimodal contextual features to fully integrate point
cloud and image features.



422 J. Wan et al.

2. We propose a novel Residual Multimodal FusionNet (RMF-Net) for point
cloud completion. Its decoder uses an attention-based multi-branching struc-
ture to reconstruct the complete point cloud by region. The refinement mod-
ule uses view features to constrain the point cloud. Our approach generates
convincing complete point clouds from coarse to fine.

3. Our experiments show that our network has competitive performance com-
pared to existing methods on both synthetic and real-world datasets.

We experiment on ShapeNet [2] dataset with rendered images and KITTI [7]
dataset to test our approach. The quantitative and qualitative evaluations from
the experiments indicate that our proposed method (RMF-Net) achieves com-
petitive performance compared to recent representative methods.

2 Related Work

Unimodal Point Cloud Completion Due to PointNet [15], learning and
extracting features from unordered point sets became feasible, leading to the
rapid development of completion methods based on deep learning. PCN [24] was
the pioneer in introducing a point cloud completion network structure based on
PointNet [15], employing an encoder-decoder design. The encoder extracts global
features from incomplete point clouds and then folds 2D grids [22] to reconstruct
intricate complete shapes. This encoder-decoder architecture has been widely
adopted by most methods, with popular point cloud encoders including Point-
Net [15], PointNet++ [16], and DGCNN [18]. GRNet [21] consolidates unordered
and irregular point clouds into regular 3D grids while preserving the spatial lay-
out of the point set, enabling CNN utilization without sacrificing structural
information. Moreover, VRCNet [13] introduces a dual-path architecture for
probabilistic modeling and a relationship-enhancement module based on VAE,
thereby refining local shape details. PointTr [23] adapts transformer blocks to
leverage the inductive bias of 3D geometry, creating a geometry-aware block to
simulate local geometric relationships for point cloud completion. Recently, Seed-
Former [29] introduced a point cloud representation called Patch Seeds based on
key point features. Unlike prior methods relying on global feature vectors, it
not only captures the general structure obtained from partial inputs but also
retains regional information regarding local patterns. AnchorFormer [3] innova-
tively employs pattern-aware discriminative nodes, termed anchors, to dynami-
cally capture the regional information of objects. It models region discrimination
by learning a set of anchors based on input local observations of point features.

Image-Assisted Point Cloud Completion Recently, the multimodal fusion
of point clouds and images has proven to be effective in many tasks. ME-PCN [8]
completes missing parts in point clouds based on blank information in occluded
regions. However, its judgment of occluded areas is not accurate enough, lead-
ing to some unnatural results in the recovery. ViPC [27] first introduced the
use of images to assist point cloud completion, explicitly reconstructing rough
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point clouds from a single image, which is itself a challenging inverse prob-
lem. XMFNet [1] attempted to effectively combine features extracted from both
modalities into a local latent space, proposing a multimodal feature fusion net-
work. Additionally, CSDN [30] proposed a cross-modal shape transfer dual refine-
ment network, allowing auxiliary images to participate in the coarse-to-fine com-
pletion pipeline, but the extracted global features may lose geometric details. In
fact, how to fully utilize multimodal information remains an unresolved issue.

Single-View Reconstruction Predicting the invisible parts of an object from
a single image has always been a major challenge in 3D reconstruction. Current
methods mostly use deep neural networks for prediction. In the work [5], an
attempt was made to use a GAN network model to convert RGB images into
3D point clouds. However, this method only focuses on reconstruction and does
not involve model completion. PSGN [6] uses a point set generation network
to generate 3D point clouds from a single image. This method consists of a 2D
encoder and a 3D decoder for predicting complete point clouds, but its output
point cloud is sparse and lacks detail. DensePCR [11] proposes a deep pyramid
network to generate high-resolution 3D point clouds. It continuously predicts
higher-resolution 3D point clouds in a layered manner. However, the issue of
edge point pseudo-shadow still needs further resolution.

Fig. 1. The overall architecture of residual multimodal fusion network (RMF-Net).
It consists of four parts: point cloud and image encoder, cross-modal residual fusion,
decoder and point cloud refinement.

3 Methodology

In this section, we will provide a detailed overview of our network architecture.
Firstly, we introduce the point cloud and image encoders, which serve as the
primary feature extractors. Subsequently, we introduce a novel modality fusion
module: the cross-modal residual fusion. Following this, we outline the multi-
branch decoder and point cloud refinement module, designed to generate and
refine the output point cloud. Fig. 1 shows the overall architecture of our network.
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Fig. 2. Architecture of point cloud, image encoder and cross-modal residual fusion
module.

3.1 Point and Image Encoder

To fully extract the features of partial point clouds and images, their feature
extraction processes should avoid interfering with each other. Therefore, we
adopt two independent feature extractors: a point cloud encoder and an image
encoder (see Fig. 2). The task of a point cloud encoder is to extract features
from local shapes, rather than simply embedding the entire point cloud. This is
because most models need to deal with local information, requiring association
with only a small number of points, without considering the entire point cloud.
However, at the same time, it is also crucial to have a sufficiently large receptive
field to infer some global information about the entire object. To address this
issue, we add a Point Transformer [28] layer between the Set Abstraction Layers
of PointNet++ [16], aiming to capture the correlation between local features
of point clouds. The Set Abstraction Layers aggregate and abstract points at
different levels of point cloud to obtain higher-level feature representations. The
Point Transformer [28] layer computes attention weights between points, allow-
ing the network to adjust feature representations based on the similarity and
importance between points.

On the other hand, the image encoder extracts 2D image features represent-
ing local shapes from view images. It utilizes a subnet of 7 convolutional layers
to extract a 7×7×C feature map, and then obtains its local features through
average pooling layers.

3.2 Cross-modal Residual Fusion

When processing point cloud and image data, the localized information we obtain
may differ in domain but contains complementary features. Therefore, we need
to effectively combine these two types of information. To integrate features from
both modalities and capture local shape information, we introduce a cross-modal
residual fusion module, which integrates low-level features from shallow layers
into deep network layers, avoiding the attention mechanism losing focus on local
information. Fig. 2 and 3 show the architecture of cross-modal attention module.
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Fig. 3. Architecture of cross-modal attention module.

Specifically, we adopt the multi-head attention mechanism of the Trans-
former [17] to find features in the point cloud corresponding to features in the
image. Through this layer, point cloud and image features are projected into ten-
sors Query Q, Key K, and Value V , and then different features of different image
regions are aggregated based on their associated weights. At the same time, we
use skip connections to allow attention information to propagate between consec-
utive layers, which can integrate low-level features while maintaining the original
ability of the Transformer to extract context. The self-attention layer performs
permutation-invariant transformations on point features with a global receptive
field, allowing better integration of information not correctly integrated in the
image.

However, the network may accumulate an excessive amount of attention infor-
mation related to low-level features, thereby hindering the network from learn-
ing higher-level representations. To address this issue, we introduce a learnable
gating variable α, allowing the network to autonomously determine how much
attention to propagate between layers. The cross-modal residual fusion module
is represented as follows:

Kl =
{

FIW
K
l , l = 2n − 1, n ∈ N

∗

Xl−1W
K
l , l = 2n, n ∈ N

∗ , Vl =
{

FIW
V
l , l = 2n − 1, n ∈ N

∗

Xl−1W
V
l , l = 2n, n ∈ N

∗ (1)

Ql = Xl−1W
Q
l (2)

A (Ql,Kl, Vl) = softmax
(

QlK
T
l√

F

)
Vl (3)

Xl+1 =
{

LN[A(Ql,Kl, Vl)], if l = 0
LN[αl A(Ql,Kl, Vl) + (1 − αl)Xl], otherwise

(4)

Where l denotes the l-th attention layer, WQ
l ∈ R

FP ×F , Ql,Kl, Vl ∈ R
Np×F ,

α ∈ [0, 1], the fused feature Xl ∈ R
Np×F , A represents the multi-head attention
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mechanism of the Transformer, LN represents layer normalization. For cases
where l is odd, WK

l ,WV
l ∈ R

FI×F , and the attention layer is a cross-modal
attention layer; for cases where l is even, WK

l ,WV
l ∈ R

FP ×F , the attention layer
is a self-attention layer. Fp represents the feature dimension of the point cloud,
FI represents the feature dimension of the image, and Np represents the number
of feature points. It is worth noting that the cross-attention layer at the end of
this module takes low-level features as input, merging information from the end
and middle of the module together.

3.3 Attention-based Decoder

The point cloud decoder aims to reconstruct the complete shape from fused
features, while incorporating farthest point sampling [12] (FPS) to retain parts
of the input point cloud. Inspired by [25], our approach involves a process from
local to global: employing different branches to predict multiple point clusters,
each corresponding to different parts of the point cloud, which are then merged
into a global point cloud. In the specific implementation, N temporary points
in the fused features are mapped to an N × M matrix through a shared multi-
layer perceptron (MLP). Next, a softmax activation function is applied along
the N dimension of the matrix, followed by transposing the matrix, generating
an M × N attention map. Finally, based on the attention map, the original N
points are aggregated to generate M new points.These new points represent a
cluster of points. The architecture of the decoder is shown in Fig. 4.

Fig. 4. Architecture of point cloud decoder. It combines point clusters generated by
multiple branches into a global point cloud.

This method utilizes attention mechanism to generate each temporary point,
and the convex combination is reformed by weighted operations of the attention
map. Specifically, if N temporary points exist in set S, forming the convex hull
conv(S), then the M points output by this branch are located inside conv(S).
This cohesive constraint ensures that the distribution of generated points is con-
centrated rather than dispersed. Therefore, when our architecture has multiple
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branches, the points generated by each branch will automatically gather together
to form clusters of points:

Dj = MLP1
j (X), j = 1, 2 . . . K (5)

Ŷj =
(
softmax

(
MLP2

j (Dj)
)T

Dj

)
Wj (6)

Ŷ = concat
[
Ŷ1, Ŷ2, . . . , ŶK ,FPS(P0)

]
(7)

Where the multilayer perceptron MLP1
j : RF → R

F ′
,MLP2

j : RF ′ → R
N1/K ,

Sj ∈ R
M×N1/K represents the attention map of branch j, Ŷj denotes the point

cluster generated by branch j, Wj ∈ R
F ′×3 is the projection matrix in 3D space,

P0 is the input point cloud, ”concat” refers to concatenation operation, FPS
stands for farthest point sampling. The equation 7 combines the output point
clouds generated by all branches and the point clouds sampled by FPS to produce
a rough point cloud.

3.4 Point cloud refinement and offset prediction

To further adjust the positions of calibration points [19], we designed a coordi-
nate refinement module aimed at generating a set of coordinate offsets for each
point. This module consists of two units, namely the local refinement unit and
the view-assisted constraint unit (see Fig 5). The local refinement unit employs
DGCNN [18] to learn the offset features F off

P for each point in the calibra-
tion shape. Specifically, we utilize four layers of EdgeConv [18], which effectively
models the features of the local neighborhood of point clouds. EdgeConv [18]
is based on edge features relative to its neighboring points to obtain the global
feature of that local neighborhood. The point-wise features outputted by each
EdgeConv [18] module are concatenated to obtain a fusion of global and local
features, serving as the offset feature F off

P for each point.
However, due to reasons such as missing data, these partial point clouds

may not provide complete local shape information, especially in specific areas
of ground truth. Meanwhile, RGB images typically contain information about
the underlying 3D perceptual shape attributes, such as boundaries, textures,
and local connections. To address this issue, we adopt an approach called the
view-assisted constraint unit to repair the missing information in the partial
point cloud, which is obtained by learning image features. This constraint unit
projects 3D points through camera parameters onto the last four feature maps
(derived from the 2D encoder), and then merges them using bilinear interpolation
from nearby pixels. Subsequently, through a residual MLP module (i.e., Offset
Predictor), these obtained per-point features are processed to calibrate the final
offset, thereby repairing the missing information of the partial point cloud.
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Fig. 5. Architecture of point cloud refinement and offset prediction module. It reduces
outliers in the predicted point cloud.

3.5 Loss Function

The loss function measures the difference between point cloud Pfine and ground
truth Pgt . Chamfer Distance (CD) is a commonly used loss function in 3D point
cloud completion, so we choose Chamfer Distance (CD) as the loss function. The
completion process is divided into two steps, namely generating coarse point
clouds and refining point clouds. The loss function 8 we set consists of two terms
with hyperparameters α weighted.

Ltotal = LCD (Pcoarse , Pgt ) + αLCD (Pfine , Pgt ) (8)

where LCD is defined as:

LCD (S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

‖x − y‖22 +
1

|S2|
∑
y∈S2

min
x∈S1

‖y − x‖22 (9)

In the experiment, we will perform the first 50k iterations by α increase from
0.01 to 2 because Pcoarse is more important at the beginning of training.

4 Experiments

4.1 Datasets

We collect point clouds and render images on the ShapeNet [2] dataset. It con-
tains 8 categories and 28974 objects covering airplanes, benches, cabinets, and
cars, following the training and test set partitioning of PCN [24]. The point
clouds of this dataset are presented in two forms: complete ground truth point
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clouds and partially occluded point clouds. The incomplete point cloud com-
prises 2048 points, generated from the respective viewpoint (taking into account
occlusion). The complete ground truth point clouds consist of 2048 points uni-
formly sampled from the mesh surfaces of ShapeNet. For rendering the images,
we rendered RGB images from ShapeNet’s CAD model by Blender. The image
data follows the 3D-R2N2 [4] rendering of 24 viewpoints. During the training
process, we randomly select an image viewpoint, and align the point cloud with
the chosen image for each training data pair.

In addition, we evaluate our RMF-Net on a real-world dataset (i.e., the
KITTI [7] dataset). According to the input settings, we extract point clouds
on the surface of the real scanned object, and then downsample them into a
point cloud of 2048 points.

4.2 Implementation Details

The input image size is 224×224×3, and the input number of points is 2048.
The point cloud encoder outputs point cloud features with a dimensionality of
256. The architecture of the image encoder is shown in Fig. 2, with its output
feature map being 14×14×256. The multi-head attention in the feature fusion
module consists of 4 attention heads, with an embedding size set to 256. The
decoder has k = 8 branches, each producing M = 128 points. The generated
coarse point cloud comprises 2048 points. We implemented our model using
PyTorch, training it on an Ubuntu 18.04 system equipped with a single NVIDIA
RTX A6000 GPU. The entire network was trained end-to-end using the Adam
optimizer for approximately 40 epochs, with a batch size of 32. The learning rate
was initialized to 5 × 10−5 and decayed by a factor of 0.1 every 15 epochs.

4.3 Quantitative Comparison with Baselines

We conducted experiments on the ShapeNet dataset with rendered images.
Table 1 and 2 present quantitative results comparing our method with other
state-of-the-art approaches, including several representative methods for com-
pleting point clouds: PCN [24], GRNet [21], PointTr [23], ViPC [27], Seed-
former [29], and CSDN [30]. PCN employs a point-based approach, while PointTr
and Seedformer utilize Transformer-based techniques, and ViPC and CSDN
employ multimodal methods. From the data in Table 1 and 2, it is evident
that our approach outperforms previous multimodal point cloud completion
methods. Specifically, compared to the best-performing previous multimodal
method, CSDN, our method reduces the average CD across all categories by
0.393. Notably, in the categories of ”sofa” and ”lamp”, our method achieves a
CD reduction of over 0.6 compared to the optimal method.

4.4 Qualitative Results

Fig. 6 shows the qualitative results of our method on the ShapeNet dataset
with rendered images. compared to state-of-the-art approaches. From Fig. 6, it
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Fig. 6. Qualitative results on the ShapeNet dataset with rendered images. Our RMF-
Net result has more local details.

Table 1. Quantitative comparison on the ShapeNet dataset with rendered images.
Mean Chamfer Distance per point ×10−3 (lower is better).

Methods Avg AirplaneCabinetCar Chair Lamp Sofa Table Watercraft

PCN [24] 5.619 4.246 6.409 4.840 7.441 6.331 5.668 6.508 3.510

GRNet [21] 3.171 1.916 4.468 3.915 3.402 3.034 3.872 3.071 2.160

PointTr [23] 2.851 1.686 4.001 3.203 3.111 2.928 3.507 2.845 1.737

ViPC [27] 3.308 1.760 4.558 3.138 2.476 2.867 4.481 4.990 2.197

Seedformer [29]2.902 1.716 4.049 3.392 3.151 3.226 3.603 2.803 1.679

CSDN [30] 2.507 1.251 3.670 2.977 2.835 2.554 3.240 2.575 1.742

Ours 2.1141.008 3.027 2.7142.2851.6732.6132.2191.375

can be observed that most methods effectively recover the missing parts while
retaining some input. Compared to PCN, ViPC, and CSDN, our method restores
a clearer overall shape and finer local details, with a neater arrangement of
points. Particularly, it performs well in recovering certain details such as airplane
engines and table legs, while other methods can only predict rough shapes. In
cases of large missing areas, such as chairs, our method generates complete chair
seats and legs, while other methods produce noisy points.
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Table 2. Quantitative comparison on the ShapeNet dataset with rendered images.
F-Score@0.001 (higher is better).

Methods Avg AirplaneCabinetCar Chair Lamp Sofa Table Watercraft

PCN [24] 0.407 0.578 0.270 0.331 0.323 0.456 0.293 0.431 0.577

GRNet [21] 0.601 0.767 0.426 0.446 0.575 0.694 0.450 0.639 0.704

PointTr [23] 0.683 0.842 0.516 0.545 0.662 0.742 0.547 0.723 0.780

ViPC [27] 0.591 0.803 0.451 0.512 0.529 0.706 0.434 0.594 0.730

Seedformer [29]0.688 0.835 0.551 0.544 0.668 0.777 0.555 0.716 0.786

CSDN [30] 0.695 0.862 0.548 0.560 0.669 0.761 0.557 0.729 0.782

Ours 0.7200.897 0.585 0.5740.7120.8160.6080.7520.814

Fig. 7. Visualization results on the KITTI dataset. Our RMF-Net can predict reason-
able shapes.

4.5 Results on Real-world Scans

To evaluate the performance in real-world scans, we experiment on the KITTI
dataset, which includes raw point clouds and RGB images. We extract car objects
in KITTI, where part of the point cloud is highly sparse and we remove objects
with less than 100 points. Fig. 7 shows some visualisation results of our method
and the CSDN and PoinTr methods, where the output is selected from 2048
points by farthest point sampling (FPS). Compared to CSDN and PoinTr, our
network predicts reasonable shapes and recovers clearer unobserved parts, while
CSDN has difficulty in dealing with the domain gap problem, and the comple-
mentary results produce noise. In contrast, our method is able to recover reliable
results in real-world scans.

4.6 Ablation Study

To evaluate the effectiveness of the model design, we conducted ablation studies
on key modules. Specifically, we systematically removed or modified modules,
including the image feature branch, cross-modal residual fusion, and point cloud
refinement, to analyze the contributions of these three key modules to the model.
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Table 3. Ablation study for our method.

Methods CD×10−3 F-Score

w/o Image 3.218 0.610

w/o Cross-Modal Fusion 2.849 0.667

w/o Residual Connections 2.372 0.693

w/o Point Cloud Refinement2.535 0.684

Ours 2.114 0.720

Effect of Image Input This ablation study aimed to explore the impact of
image inputs on completion effectiveness. Specifically, we converted the network
into a single-modal version to analyze the contribution of image input modal-
ity. We conducted ablation on single-view images, where the image encoder and
view auxiliary units were removed, leaving only the self-attention block in the
feature fusion module. Table 3 shows the results of this ablation study. Without
input images, i.e., only using point clouds for reconstruction compared to the
multi-modal approach, the average CD value increased by 1.1, while the F-score
decreased by 0.1. The comparison indicates that images can provide complemen-
tary information about point cloud shapes to aid in point cloud completion.

Effect of Cross-Modal Residual Fusion To demonstrate the contribution of
the cross-modal residual module to completion performance, we conducted abla-
tion experiments on this module. Specifically, we implemented two approaches:
(1) replacing the cross-modal attention block with a self-attention block; (2)
removing the residual connections within the module. As shown in Table 3,
without using cross-modal attention, the performance of our framework slightly
decreased. This demonstrates that our cross-modal residual fusion module inte-
grates complementary information from both modalities, rather than solely
reconstructing shapes from images.

Effect of Point Cloud Refinement The point cloud refinement module aims
to correct outliers in the point cloud. We conducted an ablation of this module to
assess its impact on completion effectiveness. Without the point cloud refinement
module for point cloud calibration, the average CD value increased by 0.4, and
the F-score decreased by 0.04. This implies that the point cloud refinement
module can predict the coordinates of calibration points more accurately.

5 Conclusion

This paper aims to design a module that fully integrates 2D image and 3D point
cloud information. It proposes a framework for blending both modalities to signif-
icantly improve the quality of completing the point cloud shape. By introducing a
cross-modal residual fusion module, it utilizes cross-modal attention mechanisms



Multimodal Point Cloud Completion via Residual Attention Feature Fusion 433

to fully integrate the features of both modalities while using a residual structure
to ease the process of feature globalizing, effectively enhancing feature diver-
sity. The decoder innovatively adopts an attention-based multi-branch decoder
to reconstruct the complete point cloud by region. Additionally, the point cloud
refinement module is divided into local refinement units and view-assisted units,
which can simultaneously capture global shape structures and local details, pre-
dicting the offset of each point and calibrating them to achieve the final result.
Experimental results demonstrate that on synthetic and real-world datasets, this
network performs competitively, surpassing existing methods.
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Abstract. The processing, storage and transmission of large-scale point
clouds is an ongoing challenge in the computer vision community which
hinders progress in the application of 3D models to real-world settings,
such as autonomous driving, virtual reality and remote sensing. We pro-
pose a novel, one-shot point cloud simplification method which preserves
both the salient structural features and the overall shape of a point
cloud without any prior surface reconstruction step. Our method employs
Gaussian processes suitable for functions defined on Riemannian man-
ifolds, allowing us to model the surface variation function across any
given point cloud. A simplified version of the original cloud is obtained
by sequentially selecting points using a greedy sparsification scheme.
The selection criterion used for this scheme ensures that the simpli-
fied cloud best represents the surface variation of the original point
cloud. We evaluate our method on several benchmark and self-acquired
point clouds, compare it to a range of existing methods, demonstrate its
application in downstream tasks of registration and surface reconstruc-
tion, and show that our method is competitive both in terms of empir-
ical performance and computational efficiency. The code is available at
https://github.com/stutipathak5/gps-for-point-clouds.

Keywords: Point clouds · Simplification · Gaussian processes ·
Riemannian manifolds

1 Introduction

Recent years have seen a growing need for the conversion of real-world objects to
computerized models [9,35] across several domains, such as digital preservation
of cultural heritage [27] and manufacturing of mechanical parts for industry [21].
This need has given rise to a range of modern data acquisition techniques such as
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laser scanning, which densely samples the surface of a 3D object, thereby gener-
ating millions of significantly redundant data points. 3D models can be obtained
from this point cloud by constructing a polygonal mesh using techniques such
as the ball-pivoting algorithm and Poisson surface reconstruction [1,2,16]. How-
ever, the sheer size of these dense point clouds makes this task computationally
expensive in terms of both memory and time. Furthermore, the size of such gener-
ated meshes impedes further processing efforts, and necessitates the use of costly
mesh simplification strategies [7,11,13] for size reduction. This makes efficient
simplification of the underlying point cloud, prior to any surface reconstruction,
an important and impactful problem which if addressed, has the potential to
significantly improve the scalability of several computer vision applications.

The inherent dependency of surface reconstruction methods on surface nor-
mals, makes the visual perceptual quality of a point cloud an indirect yet impor-
tant aspect of any mesh processing pipeline [7]. Although it is difficult to quantify
this visual degradation in the case of point cloud simplification methods, one can
say that the more enhanced the characteristic features of an object (such as sharp
edges and high curvature regions) are in the simplified cloud, the higher is its
human perceptual quality [19]. Therefore, an optimal point cloud simplification
technique should preserve both the global structural appearance, and the salient
features of the point cloud in question. Some of these methods will be discussed
in detail in the upcoming section.

Given that the point cloud representing an object exists on a Riemannian
manifold in 3D space, Euclidean distance fails to measure the intrinsic distance
between any two points on its surface. Recently, techniques which extend exist-
ing machine learning methods to model functions defined on manifolds have
gained popularity. For instance, Gaussian processes (GPs), a widely used class
of non-parametric statistical models, which often use Euclidean distance-based
covariance functions, have been made compatible for functions whose domains
are compact Riemannian manifolds using ideas from harmonic analysis [5].

Fig. 1. Point cloud simplification methods typically fail to strike a balance between pre-
serving sharp features and maintaining the overall structure of the original cloud. Our
approach circumvents this trade-off by achieving both targets, as is evident from the
simplified versions of the Stanford Bunny [20] obtained using the proposed technique
and three pre-existing methods; Hierarchical Clustering (HC) [26], Weighted Locally
Optimal Projection (WLOP) [14], and Potamias et al. [28] simplification.
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In this work, we propose a novel, one-shot, feature-preserving simplifica-
tion method using GPs with kernels defined on Riemannian manifolds. Using
a greedy algorithm for GP sparsification, we iteratively construct a simplified
representation of a point cloud without the need for any prior surface reconstruc-
tion or training on large point cloud datasets. We experiment on several point
clouds, compare with several techniques and demonstrate competitive results
both empirically and in terms of computational efficiency. Qualitatively, as shown
in Fig. 1, our method effectively preserves visual features whilst providing a suf-
ficiently dense coverage of the domain of the original cloud.

Outline of the Paper: Section 2 briefly reviews a number of existing point
cloud simplification techniques which are relevant to our work. Section 3 provides
background details regarding the computation of surface variation, GPs with
kernels defined on non-Euclidean domains and a greedy subset-of-data scheme
for GP inference. Section 4 outlines the proposed GP-based point cloud simpli-
fication algorithm. Section 5, in combination with the supplementary material,
includes an empirical evaluation of our method on various benchmark and self-
acquired point clouds, with comparisons to competing simplification techniques,
along with applications to some downstream tasks and ablation studies. Finally,
Sect. 6 summarises our contributions and provides a brief discussion of the scope
for future work.

2 Related Work

In this section we will introduce a number of existing point cloud simplification
techniques, with a particular focus on works which have a feature-preserving
element to their approach. Some of the earliest curvature-sensitive simplification
techniques were proposed by Pauly et al. [26] and Moenning et al. [25]. The
former method, termed Hierarchical Clustering (HC), recursively divides the
original point cloud into two sets, until each child set attains a size smaller than
a threshold size parameter. Moreover, a variation parameter plays an important
role in sparsifying regions of low curvature by selective splitting. The perceptual
quality and the size of the simplified cloud depend entirely on these two param-
eters, which must be carefully and manually tuned, making HC unsuitable for
automated applications. Additionally, the surface reconstructions obtained from
HC-simplified point clouds are often poor for clouds with complex surfaces, as
will be seen in Sect. 5. This is because it is challenging to tune the parameters
of HC in such a way that preservation of sharp features is achieved whilst still
ensuring dense coverage of the original cloud.

Another widely-used technique is Weighted Locally Optimal Projection
(WLOP) proposed by Huang et al. [14]. In this work, the authors modified
the existing parameterization-free denoising simplification scheme termed Locally
Optimal Projection (LOP) [22], which is unsuitable for non-uniformly distributed
point clouds. WLOP overcomes this limitation by incorporating locally adaptive
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density weights into LOP. Although WLOP results in an evenly distributed sim-
plified cloud, it still lacks sensitivity towards salient geometric features which will
also become apparent in Sect. 5. Recently, Potamias et al. [28] have proposed
a graph neural network-based learnable simplification technique which uses a
modified variant of Chamfer distance in order to backpropagate errors. Their
method can simplify point clouds in real-time but involves a computationally
intensive training process using large point cloud datasets such as TOSCA [6].
Moreover, their model’s efficiency is limited to simplifying point clouds which are
structurally similar to the learned data, as inherently neural networks struggle to
generalize outside of the domain of the training data. Even more recent work from
Wu et al. [33], named APES, proposes an edge-sampling method which claims
to capture the salient points within a point cloud using an attention mechanism.
As shown in their paper, this technique generally provides good results for some
point cloud tasks. However, as discussed by the authors themselves, the edge-
enhancing nature of their method hinders upsampling operations, which can lead
to poor reconstruction and segmentation results later.

Approximate Intrinsic Voxel Structure for Point Cloud Simplification
(AIVS), introduced by Lv et al. [24], combines global voxel structure and local
farthest point sampling to generate simplification demand-specific clouds which
can be either isotropic, curvature-sensitive or have sharp edge preservation. As
with HC however, AIVS requires manual tuning of user-specified parameters in
order to obtain optimal results. Additionally, even in parallel computation mode,
AIVS is quite costly in terms of computational runtime. Potamias et al. and Lv
et al. do not provide open-source implementations of their curvature-sensitive
simplification techniques, which poses a challenge for reproducibility and bench-
marking. However, we thank the authors of Potamias et al. for directly providing
some simplified point clouds; their results are included later in this paper. Qi
et al. [29] introduced PC-Simp, a method which aims to produce uniformly-
dense and feature-sensitive simplified clouds, leveraging ideas from graph sig-
nal processing. This uniformity depends on a weight parameter which as with
HC and AIVS, is user-specified. Alongside simplification, they also apply their
technique to point cloud registration. However, in practice PC-Simp is unreli-
able for complex-surfaced point clouds as it fails to provide a high degree of
feature-preservation, regardless of the weight parameter chosen. Additionally, as
discussed later in Sect. 5, the runtime of this technique is considerably longer
than any other method tested.

Finally, it has been observed that most of the aforementioned works on
feature-preserving point cloud simplification schemes experiment on structurally
simple point clouds. Furthermore, surface reconstruction results are rarely pre-
sented and discussed. Hence, to underline the efficiency of our method, we exper-
iment on point clouds generated from complex-surfaced objects and provide the
corresponding reconstruction results. Also, some of the datasets used by the
mentioned techniques are synthetically generated and already have a higher
concentration of points around salient features when compared to low curva-
ture regions (for example, the TOSCA dataset). Hence, unlike them, we do not
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experiment on point clouds from these datasets as it defeats the purpose of being
a feature-sensitive simplification technique.

3 Background

3.1 Surface Variation

Consider an unstructured dense point cloud P = {p1,p2, ...,pN } of size N
existing in 3D Euclidean space, R3. We can generate the local neighbourhood
Npi

of each point pi in P by two different methods. Firstly, we can gather all
of the points within a certain Euclidean distance r from pi ; this approach is
referred to as radius search. Alternatively, we can gather all of the k-nearest
Euclidean neighbours of pi , which is referred to as KNN search. The choice of
this scale-factor (r or k) not only depends on the size and density of a point cloud
but also on the desired level of detail for a given application. These aspects make
the task of automatic estimation of the neighbourhood of a point in a cloud an
important, yet challenging one [31]. In this work, we implement the approach
taken by the CloudCompare software package, where this process is automated
by first calculating an approximate surface per point from the bounding box
volume. This estimated value, along with a user-defined approximate neighbour
number, is used to estimate a radius r, which is then used to perform radius
search for each point. In our method, we have fixed this approximate neighbour
number to 25 as it provides good empirical performance across a wide variety of
point clouds. However, we provide ablation studies over a range of neighbourhood
sizes in the supplementary material.

Several local surface properties [32] of the point cloud at a given query point
pi can be estimated by analysing the eigenvalues and eigenvectors of the covari-
ance matrix Ci defined by the point’s neighbourhood Npi

= {pi1 ,pi2 , ...,pin
}:

Ci =

⎡
⎢⎢⎣

pi1 − p̄i

pi2 − p̄i

...
pin

− p̄i

⎤
⎥⎥⎦

T

·

⎡
⎢⎢⎣

pi1 − p̄i

pi2 − p̄i

...
pin

− p̄i

⎤
⎥⎥⎦ , (1)

where, p̄i is the centroid of all the points pii
∈ Npi

. By means of principal
component analysis (PCA), we may now fit a plane tangent to the 3D surface,
formed by all of the points within Npi

, at p̄i . As Ci is a 3 × 3 symmetric and
positive semi-definite matrix, all of its eigenvalues (λj , j ∈ {0, 1, 2}) are positive
and real, whilst the corresponding eigenvectors (vj ) form an orthogonal frame
corresponding to the principal components of Npi

. If 0 ≤ λ0 ≤ λ1 ≤ λ2, then v2

and v1 span the aforementioned tangent plane, whilst v0 represents the vector
perpendicular to it. Therefore, v0 can be considered as an estimate of the surface
normal to the point cloud (without actual surface reconstruction) at query point
pi . Furthermore, as defined by Pauly et al. [26], we can calculate the surface
variation at the query point as:

σn(pi) =
λ0

λ0 + λ1 + λ2
. (2)
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This quantity is not only closely related to the surface curvature at pi but also
serves as a more suitable criterion for simplification, as discussed in detail by
the authors [26].

3.2 Gaussian Processes on Riemannian Manifolds

Gaussian processes (GPs) are non-parametric Bayesian models which allow for a
rigorous estimation of predictive uncertainty, and have been widely studied and
applied by the machine learning community over the last two decades. Consider
a scenario where we have a training dataset of N observations, {xi, yi}N

i=1, where
xi ∈ R

P and yi ∈ R. In our application, xi ∈ R
3 is a Euclidean coordinate, and

yi is the surface variation associated with said coordinate. We assume access to
noisy observations of an underlying latent function, such that yi = f(xi) + εi,
where εi ∼ N (0, σ2

y). A GP defines a distribution over functions which we can use
to infer the form of the true latent function which generated our training data.
The GP prior can be written as f ∼ GP (μ (x) , k (x,x′)), where, μ(·) and k(·)
are the mean and kernel functions respectively, which completely describe our
process [30]. As is common, we assume a zero-mean prior throughout this work,
using the kernel as the primary means of modeling the variation in our function
over its domain. A popular choice for GP kernels is the Matérn class of covariance
function, which takes the form, kν(x,x′) = σ2 21−ν

Γ(ν)

(
r
√

2ν
κ

)ν

Kν

(
r
√

2ν
κ

)
, where

r = ‖x − x′‖ and Kν is a modified Bessel function. We define θ = {σ2, κ, ν} to
be the set of kernel hyperparameters; σ2 controls the variance of the GP, κ the
lengthscale of its variation and ν its degree of differentiability.

Inference: Using Bayes’ Rule, we can condition our GP on the training data
and derive closed form expressions for the posterior mean and covariance:

μpost = K∗(K + σ2
yI)

−1y, (3)

Σpost = K∗∗ − K∗(K + σ2
yI)

−1K�
∗ . (4)

Generally, the noise variance σ2
y and the kernel function hyperparameters θ are

optimised via maximisation of the log-marginal likelihood, which can also be
derived analytically. Where X ∈ R

N×P and y ∈ R
N are matrix and vectorial

representations of our training inputs and targets respectively, the log-marginal
likelihood takes the form [30],

log p(y | X,θ,σ2
y) = −1

2
y� (

K + σ2
yI

)−1

− 1
2
log | K + σ2

yI | −N

2
log(2π).

(5)

Kernels on Manifolds: Many different kernel functions for GPs exist, and
choosing a kernel is in itself a model selection problem as some kernels are more
suited to modeling certain types of data. However, one characteristic which many
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kernels share is that they are defined using Euclidean distance. This presents an
issue should we wish to use a GP to model variation in a quantity over a non-
Euclidean space. Borovitskiy et al. [5] proposed a solution to this problem in the
form of an extension to the Matérn kernel, which allows for modeling of functions
whose domains are compact Riemannian manifolds. The approach proposed by
the authors involves two stages. Firstly, numerical estimation of the eigenvalues
λn and eigenfunctions fn corresponding to the Laplace-Beltrami operator of the
given manifold is performed. Secondly, for a manifold of dimensionality d, the
kernel is approximated using a finite truncation of:

kν(x,x′) =
σ2

Cν

∞∑
n=0

(
2ν
κ2

+ λn

)−ν− d
2

fn(x)fn(x′), (6)

where, Cν is a normalizing constant. The hyperparameters σ2, κ and ν have sim-
ilar interpretations to those introduced for the conventional Euclidean Matérn
kernel.

3.3 Greedy Subset-of-Data Algorithm

A major challenge which arises when working with GPs in practice is the O(N3)
complexity associated with performing exact inference, which arises due to the
matrix inversions in Eqs. (3) and (4). To circumvent this issue, numerous formu-
lations of sparse GPs have been proposed, many of which are based on approx-
imate inference techniques and concepts such as inducing points [23]. In this
work however, we consider the subset-of-data (SoD) approach. As explained in
Sect. 8.3.3 of [30], it is a conceptually simple form of sparse approximation which
allows for exact Bayesian inference. In this setting, rather than modifying the
formulation of the GP itself, we simply perform exact inference using a carefully
selected subset of M(<< N) observations. Specifically, for our case we modify
the greedy SoD approach of [18], which uses a selection criterion to sequentially
construct a subset of size M which is representative of our full training set of N
observations. We use this technique for GP sparsification in order to construct
a set of inducing points for a point cloud which are best capable of representing
the changes in surface variation over the cloud; this set of points forms our sim-
plified point cloud. The original method involves randomly selecting one initial
inducing point and then adding one point to the set at each iteration, however
we have employed farthest point sampling (FPS) for selecting a set of initial
inducing points instead of one, and we add several points to our set of inducing
points at each iteration. Our approach is explained in further detail in Sect. 4.

Our method forms a simplified point cloud which is a subset of the original,
thus the optimization problem is a discrete one. There has been recent work
on inducing point optimization on discrete domains [10], however such methods
only obtain comparable performance to methods based on greedy selection of
the inducing points from the input domain, which are considerably conceptually
simpler. The main disadvantage of a greedy approach is that the training set
does not necessarily span the whole input domain, however in our setting this is
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indeed the case, making our application especially well-suited to a greedy app-
roach. Additionally, our proposed method allows us to obtain competitive results
for clouds containing millions of points, whilst still employing exact Bayesian
inference rather than approximate variational schemes, which can often under-
estimate the variance of the posterior distribution [4].

4 Point Cloud Simplification with Riemannian Gaussian
Processes

In this section, we outline our GP-based approach with the help of a concise
algorithm. We can represent a point cloud of size N as a set of 3D Euclidean
coordinates P = {xi}N

i=1, where xi ∈ R
3. The surface variation yi ∈ R at each

point in P can be computed using Equation (2). Using this data we formulate a
regression problem, whereby we employ a GP with a Matérn kernel defined on a
Riemannian manifold (as described in Sect. 3.2) to predict the surface variation
from the coordinates of each point. We then employ the greedy subset-of-data
scheme discussed in Sect. 3.3 in order to obtain a simplified set of M(<< N) 3D
coordinates, Psimp = {xj}M

j=1, where Psimp ⊂ P .
We formally outline our proposed approach in Algorithm 1. FPS(P, kinit)

denotes a function which selects kinit initial points from P using FPS; we use
this to initialise our active set Psimp with an initial set of points from across
the point cloud. MAX(s, R, kadd) selects the points from the remainder set R
which are associated with the kadd largest values in our selection criterion vector
s. The notation y(R) denotes a vector containing the target surface variation
values associated with each of the points contained within the set R. At each
step t of the algorithm, we update the posterior mean μt and covariance Σt

using Eqs. (3) and (4) respectively, where the active set Psimp is used as training
data, whilst the remainder set R is unseen test data.

Algorithm 1 GP-based simplification algorithm
Data: P , y, M , kinit, kadd, kopt, GP prior GP(0, k(·, ·)), where k is defined in Eq.
(6)
Result: Psimp

Popt ← random subset of kopt points from P ;
Optimise GP hyperparameters using Eq. (5), Popt and y(Popt);
Active set Psimp ← FPS(P, kinit);
Remainder set R ← P − Psimp;
while |Psimp| < M do

Compute μt and Σt using Eq. (3) and (4);
s ← √

diag(Σt) + |μt − y(R)|;
Psimp ← Psimp + MAX(s, R, kadd);
R ← R − MAX(s, R, kadd);

end while

To clarify, we predict the surface variation and the uncertainty values for R
based on Psimp at each iteration of our algorithm. The selection criterion which
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we use favours selection of points within the original cloud which lie in regions of
high predictive uncertainty and/or error. By selecting a set of points using this
criterion, we form a simplified cloud which implicitly favours selection of points
surrounding finer details within the cloud, where the error and uncertainty is
likely to be high if we have not yet selected a sufficient number of points around
said location.

As Psimp grows with each iteration to be gradually more representative of
our input data, the uncertainty and predicted surface variation values for points
in R also change. For example, consider two neighbouring points on the tip of
one of the Stanford bunny’s ears, and assume that neither of them are currently
in Psimp. If one of these points is added to Psimp, the elements of the uncertainty√

diag(Σt) and error |μt −y(R)| associated with the second point will decrease,
and in subsequent iterations it may no longer be one of the top-ranked points
based on the selection metric s.

5 Empirical Evaluation

In this section, we extensively evaluate the proposed simplification method
using various point cloud datasets and processing techniques. First, we compare
our simplification technique both quantitively and qualitatively using bench-
mark object level point clouds as given in Subsect. 5.1. Second, in Subsect. 5.2
we extend the use-case of our algorithm as a time and memory efficient pre-
processing step for the downstream task of point cloud registration. Moreover,
we provide some experiments on scene level and self-acquired point clouds along
with ablation studies in the supplementary material (Sect. 2).

5.1 Benchmark Object Level Point Clouds

Evaluation Criteria: In order to evaluate the performance of our method in
comparison to other simplification techniques, we firstly use each simplified point
cloud obtained from three object level point clouds to form simplified meshes,
using screened Poisson surface reconstruction [17]. We can then compute the
reconstruction errors between the original meshes, and the reconstructed meshes
formed from our simplified clouds. Specifically, we choose to evaluate the mean
and maximum Hausdorff distance [8]. Evaluating the error associated with mesh
reconstruction is effective at quantifying the ability of each method to preserve
features from the original cloud, as accurate reconstruction of a mesh from a
simplified point cloud requires that a high density of points be placed in the
vicinity of finer details within the cloud. The MeshLab software was used to
reconstruct all surfaces and compute the Hausdorff distances. Also, given that
one of our primary aims is to preserve sharp features within each point cloud,
we also report the average surface variation over each simplified point cloud.
The surface variation at each point is computed using the approach described in
Sect. 3.1.
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Baselines: We use the aforementioned evaluation procedure to compare our
method (denoted GP) empirically to a number of competing simplification
techniques discussed in Sect. 2. We compare our approach to PC-Simp, AIVS,
Potamias et al., HC and WLOP, with the latter two approaches implemented
using the CGAL library. Additionally, we provide a visual comparison of our sim-
plification method with APES. For the HC method, the size and variation param-
eters discussed in Sect. 2 were manually tuned to obtain approximate desired
simplified sizes. Also, as noted in Sect. 2, we use the non-curvature aware ver-
sion of the AIVS algorithm, as there is no available open-source implementation
of the curvature-aware variant.

Fig. 2. Simplified representations of the Dragon point cloud for simplification ratio
α = 0.03 (top row) and associated reconstructed meshes (bottom row) for all evaluated
simplification techniques.

Experimental Details: We evaluate our proposed method and the afore-
mentioned baselines on three complex object-level point clouds from the Stan-
ford 3D Scanning Repository [20], namely Armadillo (N = 1, 72, 974), Dragon
(N = 4, 37, 645) and Lucy (N = 1, 40, 27, 872). Let the simplification ratio be
defined as α = M/N . In this work we focus on the challenging regime where
we wish to significantly reduce the size of the cloud, such that α << 1. It is
in this regime that feature-preserving techniques such as ours become partic-
ularly important, as we do not have a large number of points to select, thus
we must efficiently select points which allow us to capture the salient features
of the original cloud. We chose α for each cloud by finding the minimum α at
which all evaluated techniques were capable of forming simplified clouds from
which meshes visually comparable to the original meshes could be generated
[20]. This value varies depending on the surface complexity of each cloud, thus
for Armadillo, Dragon and Lucy we chose α = 0.05, 0.03 and 0.002 respectively.
Additionally, we also visually evaluate the point cloud simplification results of
all aforementioned techniques on a noisy Armadillo from the PCPNet dataset
[12], with α = 0.05. This corresponds to the original Armadillo model surface
sampled 105 times (N = 1, 00, 000), with Gaussian noise (of standard deviation
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σ = 2.5 × 10−3 × d, where d is bounding box diagonal length) added to every
point position. We also perform the same evaluation for three objects, an air-
plane, a glass and a toilet (N = 2, 048 for all three) from ModelNet40 dataset
[34] to compare our method with APES.

Fig. 3. Simplification results of a noisy Armadillo with Gaussian noise added to every
point position (of standard deviation σ = 2.5 × 10−3 × d, where d is the bounding
box diagonal length) for simplification ratio α = 0.05 for all evaluated simplification
techniques.

Discussion: From the results presented in Table 1, it is clear that our pro-
posed method is capable of comparable empirical performance to many of the
existing methods for simplifying point clouds. The GP-based approach outper-
forms the AIVS baseline across all experiments and metrics, and outperforms
the PC-Simp baseline on all but the mean Hausdorff distance for the Armadillo
experiment. Moreover, our algorithm also runs considerably faster than both of
these approaches. Note that due to the scale of Lucy, we were unable to evaluate
PC-Simp on this cloud as it was taking more than two hours to run.

Table 1. Empirical results and total runtimes (time taken by surface variation com-
putation and simplification) for all tested simplification methods and point clouds. We
report the maximum and mean Hausdorff distances between the original meshes, and
the meshes reconstructed from the simplified point clouds. Also reported is the aver-
age surface variation over each simplified point cloud. Best, second-best and third-best
results are in red, green and blue respectively. It is worth mentioning that as per the
evaluated metrics, our algorithm mostly stays within the top three methods.

Mean Hausdorff Distance (↓)Max. Hausdorff Distance (↓)Mean Surface Variation (↑) Total Time (s) (↓)

Armadillo Dragon Lucy ArmadilloDragon Lucy ArmadilloDragon Lucy ArmadilloDragon Lucy

GP (ours) 0.246 0.000246 1.11 3.26 0.00457 195.78 0.0728 0.0546 0.0724 0.8 1.4 12.9
HC 0.374 0.000758 1.14 3.26 0.0141 195.41 0.0803 0.0686 0.0762 0.1 1.1 10.0

WLOP 0.197 0.000188 1.29 4.14 0.00417 195.52 0.0557 0.0413 0.0631 3.5 6.5 84.2
PC-Simp 0.241 0.000487 - 5.48 0.00802 - 0.0364 0.0433 - 132.6 245.5 -

AIVS 0.715 0.000638 8.75 4.11 0.00539 196.45 0.0513 0.0441 0.0666 17.2 44.6 1983.5
Potamias et al. 0.215 0.000599 4.28 3.47 0.00933 190.00 0.0478 0.0650 0.0511 0.00060 0.000700.00212
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Fig. 4. Simplification results of an airplane, a glass and a toilet point cloud for simpli-
fication ratios α = 0.25 and 0.5 using APES and GP-based simplification.

HC and Potamias et al. are the only baselines with shorter runtimes than our
method, and obtain maximum Hausdorff distances comparable to those obtained
by our approach. However, as discussed in Sect. 2, tuning the user-specified HC
parameters make striking a balance between feature preservation and retaining
a sufficient density of points across the cloud relatively challenging. Moreover,
there is no control over the size of the simplified cloud, as discussed by the
authors [26] and in subsequent work [24]. We tuned this baseline to attempt
to balance this trade-off, and whilst the HC-simplified clouds shown in Figs. 2
and 3 here, and Fig. 3 of the supplementary material, do have clearly preserved
features (an observation supported by the high mean surface variation across
all clouds), the density of points away from these areas is very low. This leads
to inferior mesh reconstructions compared to our approach, as evidenced by the
fact that we obtain superior mean Hausdorff distance compared to HC across
all three clouds.

Since results and inference times for the Potamias et al. approach were pro-
vided by the author of the paper, we do not have knowledge of the exact details
of their experimental setup, especially the time required in hours to train the
model. As mentioned in Sect. 2, their learning-based approach demands huge
datasets to train on, which not only increases the computational requirements
but also limits their method’s generalizability. When compared to our method
quantitatively, our method generally gives superior results, except for two of the
nine error metric values. This is supported by the quality of their simplified point
clouds and the corresponding reconstructions shown in Figs. 2 and 3 here, and in
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Figs. 2, 3 and 5 of the supplementary material. Although their method performs
best in the case of Lucy’s maximum Hausdorff distance, in reality their simpli-
fied cloud gives arguably the poorest qualitative reconstruction result amongst
all of the other baselines. As expected, the inference time of their approach is
the lowest of all the baselines, because of their neural network-based approach,
which involves pre-training.

The WLOP baseline does not efficiently preserve the features and favours
uniformly covering the domain of the original cloud. Therefore, the mean sur-
face variation of the WLOP simplified clouds is lower, but overall the Hausdorff
distances obtained from the reconstructed meshes are superior to those obtained
by our method. However, it is noteworthy that on the largest and unarguably
the most challenging point cloud, Lucy, our method achieves a superior mean
Hausdorff distance as compared to all of the other techniques evaluated, includ-
ing WLOP. Additionally, WLOP is significantly slower than our approach, as
shown in Table 1. Our surface variation computation is currently performed on
a CPU, therefore further improvements to the runtimes of our method shown
could be achieved by re-implementing this in a GPU-compatible framework.

Overall, these results show that our approach provides a computationally
efficient option for performing point cloud simplification in settings where the
user wishes to strike a balance between preserving high fidelity around sharp
features in the cloud, and ensuring that the simplified cloud covers the manifold
defined by the original cloud with a sufficient density of points. This is important
for generating reconstructions which resemble the original meshes, as is evident
from visual inspection of the reconstruction results in Fig. 2 here and Fig. 3 of the
supplementary material. In terms of surface reconstruction, our method clearly
outperforms all of the other techniques for the Dragon (compare the tail, teeth,
horns and the face detailing for all methods and additionally the curved body for
HC) and the Armadillo (compare the ears, hands and feet across all the methods)
and gives competitive results for Lucy, shown in Fig. 2 of the supplementary
material. We highlight once again the poor surface reconstructions resulting
from the Potamias et al. simplified clouds, compared to those obtained using all
of the other baselines. Again, visual inspection of the simplification results for
the noisy Armadillo in Fig. 3 demonstrates the balanced feature-sensitivity of our
method in comparison to others. We experiment with more noise levels in the
supplementary material (Sect. 2). Finally, from Fig. 4 we can see how the edge-
sampling-based APES simplified clouds have several missing portions including
object edges, whereas our method enhances the salient features and captures
the overall object structure simultaneously. We do not provide corresponding
surface reconstructions and hence quantitative results for this baseline because
their low simplified point cloud sizes (N = 1, 024 and 512) and aforementioned
missing areas will always result in open meshes.

The O(M3) and O(M2N) complexities associated with training and predic-
tion respectively in the greedy inference scheme described in Sect. 3.3 allow for
increased scalability compared to typical GP regression, in which inference has
O(N3) complexity. The scalability of our approach is limited by the fact that,
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as in a conventional exact GP, we have a storage demand associated with K
matrix which scales according to O(N2). However, we can circumvent this issue
when N is very large by simply using Algorithm 1 with a randomly selected
subset of P . For Armadillo and Dragon we obtain the above results with just
25,000 randomly selected points. For a large point cloud such as Lucy, we obtain
competitive results using a subset of just 40,000 points to run our simplification
algorithm.

5.2 Point Cloud Registration

As discussed earlier, PC simplification has benefits for many downstream tasks,
not solely surface reconstruction. In Table 2 we present registration results on
some simplified clouds. We firstly translate and rotate the original, HC and
GP-simplified clouds in the same fashion, before performing global and ICP
point-to-point registration [3] with the Open3D package [36]; visualisations are
available in the supplementary material (Fig. 4). Our GP-simplified cloud allows
for quicker registration and leads to superior inlier RMSE.

Table 2. Inlier RMSE and time taken for global and ICP registration. Best results are
in red, whilst second-best are in green.

Inlier RMSE (↓) Time (s) (↓)

Global (10−3) ICP (10−7) Global ICP Total

Original 4.76 4.08 0.017 1.4481.465
HC 5.41 4.08 0.018 0.0460.064

GP (ours) 3.91 4.08 0.017 0.0400.057

6 Conclusion

In this work we have presented a novel, one-shot point cloud simplification algo-
rithm capable of preserving both the salient features and the overall structure
of the original point cloud. We reduce the cloud size by up to three orders
of magnitude without the need for computationally intensive training on huge
datasets. This is achieved via a greedy algorithm which iteratively selects points
based on a selection criterion determined by modeling the surface variation over
the original point cloud using Gaussian processes with kernels which operate on
Riemannian manifolds. We show that our technique achieves competitive results
and runtimes when compared to a number of relevant methods, outperforming
all baselines tested in terms of mean Hausdorff distance on Lucy, the largest and
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most complex point cloud we consider, consisting of approximately 14 million
points. Our method can also be used to improve the computational efficiency of
downstream tasks such as point cloud registration with no negative effects on
the empirical performance.

Future Work: Whilst Hausdorff distance is a useful metric, it is not the ideal
candidate for assessing the feature sensitivity of a simplification algorithm, as
it tends to return lower errors for more evenly distributed clouds. Whilst out
of the scope of this work, there is a clear need for a well-defined and widely
adopted error metric for curvature-sensitive simplification. Currently, the best
way to evaluate this is a qualitative visual inspection of the resulting point cloud
(or reconstructed mesh). This view is supported by the fact that some recent
works employ user studies to evaluate their feature-preserving approaches [28].

In this work we study the setting where we enforce the restriction that the
simplified cloud be a subset of the original; as discussed in Sect. 3.3, a greedy
inference scheme is appropriate in this setting. However, this assumption could
be relaxed and sparse GPs can be used to perform continuous optimization of
the inducing points across the point cloud [15]. This would allow occluded as well
as outlier-ridden extremely noisy point clouds, where the original observations
do not necessarily lie on the true surface of the manifold, to be denoised and/or
simplified.
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Abstract. Learning meaningful local and global information remains a
challenge in point cloud segmentation tasks. When utilizing local infor-
mation, prior studies indiscriminately aggregates neighbor information
from different classes to update query points, potentially compromising
the distinctive feature of query points. In parallel, inaccurate model-
ing of long-distance contextual dependencies when utilizing global infor-
mation can also impact model performance. To address these issues,
we propose GSTran, a novel transformer network tailored for the seg-
mentation task. The proposed network mainly consists of two principal
components: a local geometric transformer and a global semantic trans-
former. In the local geometric transformer module, we explicitly calculate
the geometric disparity within the local region. This enables amplifying
the affinity with geometrically similar neighbor points while suppressing
the association with other neighbors. In the global semantic transformer
module, we design a multi-head voting strategy. This strategy evaluates
semantic similarity across the entire spatial range, facilitating the pre-
cise capture of contextual dependencies. Experiments on ShapeNetPart
and S3DIS benchmarks demonstrate the effectiveness of the proposed
method, showing its superiority over other algorithms. The code is avail-
able at https://github.com/LAB123-tech/GSTran.

Keywords: Point cloud segmentation · Local geometric transformer ·
Global semantic transformer

1 Introduction

3D point cloud segmentation is a crucial topic in computer vision and graphics,
with widespread applications in autonomous driving, simultaneous localization
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and mapping (SLAM), augmented reality, and virtual reality. Limited by the
weak discriminative capability of handcraft features, traditional solutions fail
to achieve satisfactory segmentation performance. Fortunately, benefited from
the development of deep learning, the performance of segmentation has been
significantly improved to support high-level semantic analysis [14].

Recent efforts [8,16] have shown promising results in point cloud processing
by integrating multi-scale neighbor features to enhance the capability of feature
analysis. However, repeating similar contextual features at various scales seems
redundant and computationally expensive, especially for hierarchical architec-
tures. Subsequent studies [17,22,24], advanced the refinement of point features
by encoding the detailed geometric description information in the local region of
the point cloud. Nonetheless, these algorithms simply stack the geometric and
coordinate information of the point cloud and take the stacked result as input
to the network. These approaches fail to fully exploit geometric properties, as
geometric information is likely to be lost during learning. Large language model
(LLM) based methods [10,32] have also demonstrated their effectiveness in point
clouds. The main idea of these approaches is to render the 3D point cloud as
a set of multi-view 2D images for semantic parsing. But, LLM, being a type of
generalized model, lacks the ability to perceive the internal structure of point
clouds [13]. For accurate geometric structure determination of point clouds, the
LLM still have limitations.

With the breakthrough of transformer in the fields of natural language pro-
cessing and computer vision, some algorithms [27,28] consider incorporating
geometric information of the point cloud into the self-attention mechanism to
execute segmentation. PointTr [27] introduces a geometric-aware module that
models the local geometric relationships of point clouds by constructing neigh-
borhood graph structures. PointGT [28] decouples the local neighborhoods and
utilizes a bi-directional cross-attention mechanism to merge the edge and inside
components of the local features. Nonetheless, the weights assigned to neighbor
points rely solely on learning. The model struggles to prioritize neighbor points
belonging to the same category as the query point. As a result, the descrip-
tive power of point features is compromised, potentially leading to erroneous
segmentation results at the boundary.

Although deploying transformer in the local regions of point clouds plays
a positive role in capturing geometric information, its receptive field remains
limited. In point clouds, points that are semantically related to query points
may be located far apart. Therefore, certain research studies [11,15,31] employ
transformer to compute global similarity for each point. Such approaches treat
all points as neighbor points of the query point. They employ self-attention to
capture long-range contextual dependencies among points of the same class. This
contributes to the enhancement of semantic understanding. However, the strong
similarity between points computed with self-attention does not guarantee that
these points belong to the same category.

In light of the above analysis, fully exploiting local geometric features and
accurately capturing long-range dependencies hold significant importance for
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transformer to understand point clouds. Based on this, we propose a novel trans-
former architecture for point cloud segmentation, named GSTran. It consists of
two crucial transformer modules: (i) a local geometric transformer and (ii) a
global semantic transformer. In the local geometric transformer, we thoroughly
investigate the geometric disparity in the local region to quantify the significance
of each neighbor point. Specially, we explicitly compute the distance from the
query point to the tangent plane of its corresponding neighbor points. In general,
the query point tends to be closer to the tangent plane of its geometrically sim-
ilar neighbors. As a result, greater significance is attributed to these neighbor
points, leading to enhanced segmentation outcomes for boundaries within the
point cloud.

In the global semantic transformer, a multi-head voting strategy is introduced
to facilitate the preservation of meaningful long-range dependencies. Essentially,
this involves employing a multi-head attention mechanism to compute multiple
global similarities for each point. However, unlike multi-head attention mecha-
nisms, we further extract the shared information from multiple global similarities
to generate a global mask. By leveraging the global mask, we can more accu-
rately compute the long-distance similarity between points in the point cloud.
Equipped with both transformer modules, GSTran effectively infuses features
with rich local geometric structures and comprehensive global semantic context.
The main contributions of our paper are summarized as follows:

– We introduce a local geometric transformer module that leverages the geo-
metric disparity within the local point cloud. This module assigns higher
weights to neighbor points that exhibit similar geometric structure to the
query point. This enhancement improves the model’s ability to distinguish
target boundaries.

– We design a multi-head voting-based global semantic transformer module to
capture semantically aligned contextual dependencies beyond local regions.
By leveraging this module, we can enhance the accuracy of computing long-
distance similarity between points within the point cloud.

– We present the performance evaluation of GSTran on both ShapeNetPart and
S3DIS benchmarks to demonstrate the efficacy of our approach in addressing
segmentation tasks.

2 Methodology

2.1 Overview

The architecture of the proposed model, as shown in Fig. 1, features a hierar-
chical framework consisting of symmetric encoder and decoder stages. There are
five stages in the encoder. The point cloud sampling rate between two adja-
cent stages is 1/4, and the channel expansion rate is 2. Within the first stage
of the encoder, the MLP layer projects the point cloud data with coordinate
and normal vector information into higher dimensional feature. Subsequently,
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Fig. 1. Overview of the proposed model. In the encoder and decoder stages, the trans-
former structure serves as the primary feature aggregator throughout the network.
MLP: Multi-layer perception. N: The number of points in the point cloud.

two sequential modules - local geometric and global semantic transformer - are
sequentially applied for feature extraction at different scales. The features are
progressively downsampled with channel expanding in the following four stages.
This process continues until the sampling rate reaches 1/256 and the channel
expands to 512. The decoder stage follows a similar structure but utilizes inverse
interpolation [16] for progressive upsampling. Details about the local geometric
and global semantic transformer modules are given in Sect. 2.2 and Sect. 2.3,
respectively.

2.2 Local Geometric Transformer Module

The local geometric transformer module is designed to achieve discrimina-
tive feature extraction. It achieves this by investigating the geometric dis-
parity within the local region. As depicted in Fig. 2, given input point cloud
χ = {xi|i = 1, 2, · · · N} ∈ RN×(6+C), each point xi is defined by its position
coordinate pi ∈ R3, normal vector ni ∈ R3 and feature fi ∈ RC . We separate
the coordinate information as the Q vector. At the same time, corresponding
neighbor sets are constructed for each point in both Euclidean space and feature
space using the KNN algorithm, represented by K and V , respectively. Subse-
quently, corresponding weights are assigned to the neighbor points to quantify
their importance with respect to the query points.
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Fig. 2. Structure of the local geometric transformer module. We visualize the local
weight on an airplane, with a red query point located on the wing. In weightours, the
weights of neighbor points in the wing decay slowly as the distance increases. However,
the weights of other neighbor points decay rapidly.

As shown in the dashed box of Fig. 2, given a red query point pi (located at
the wing) and its green neighbor points h = {q1, · · · , qk} ∈ Rk×3, we compute
the reciprocal of the Euclidean distance to obtain the distance weights denoted
as weightdis. Clearly, smaller weights are assigned to distant neighbor points,
but the weights remain consistent for neighbor points of different classes, such
as fuselage and wing. With only distance weights, the query point may indis-
criminately aggregate information from neighbor points of various classes. This
may compromise the descriptive power of the query point.

Therefore, we use the following formula [21] to characterize the geometric
importance of neighbor points with respect to the query point.

dtan = (pi − qj)nj , ∀j ∈ Gi, (1)

where pi is the coordinate of i -th query point, qj denotes the coordinate of j -
th neighbor point corresponding to pi. Gi is the index set of the local group
centered on pi. nj is the normal vector corresponding to qj . Essentially, dtan

signifies the distance from the query point to the tangent plane of the neighbor
points, as shown in Fig. 3. (Note: to clearly explain dtan, we choose a chair target
for illustration.) The tangent plane of neighbor points belonging to the same class
as the query point is close to the query point. This proximity implies that the
importance attached to this neighbor point should be large. Based on dtan, we
quantify the weight in the geometry using an exponential function as follows.

weightgeo = exp(−dtan) (2)



458 A. Li et al.

Fig. 3. Illustration of the distance dtan1 and dtan2 from p1 to the tangent plane of q1
and q2, respectively. Although the Euclidean distance from p1 to both q1 and q2 remain
the same, p1 is closer to t2, signifying that q2 holds greater significance than q1.

Eq. (2) shows that the weight is inversely proportional to the value of dtan. It
can be seen from Fig. 2 that the weightgeo assigns higher weights to points on
the wings and lower weights to points on the fuselage. However, the weights
assigned to the neighbor points from the wings are nearly equal in geomet-
ric weight. Following the principle that larger distances correspond to fewer
dependencies between points, we consider combining the distance and geomet-
ric weights through a Hadamard product to obtain the local weight of ours. It
can be observed that the weights of neighbor points on the wing in weightours

exhibit a slow decay rate with increasing distance. This is in contrast to points
located on the fuselage, where the weights decrease more rapidly. High response
weight values are predominantly distributed in the wings. Finally, the weighted
features are obtained by multiplying the local weight with the V vector.

2.3 Global Semantic Transformer Module

The output of the local geometric transformer module exhibits powerful dis-
criminative capabilities for local features. However, the relations captured by
this module are restricted to local structures within the point cloud. Cer-
tain approaches [6,11,31] employ transformer to calculate the global similarity
between each pair of points in the entire point cloud. Then, the global similarity,
along with the point cloud features, is multiplied to perform feature aggregation.
Mathematically, the formula is as follows:

yi =
∑

fj∈χ

softmax
(

QKT
√

dk

)
V, Q = ϕ(fi),K = ψ(fj), V = φ(fj) (3)

where fi denotes the feature of the i -th query point, and fj represents the feature
of the j -th point within point cloud χ. The symbols ϕ, ψ, and φ represent three
MLP operations conducted on the feature of the point clouds to obtain the query
Q, key K, and value V vectors, respectively. dk is the dimension of the feature.
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Fig. 4. Overview of the global semantic transformer module. We visualize the refined
similarity on an airplane, with a red query point located at the wing. In the refined
similarity generated by our method, high response weights are exclusively assigned to
points belonging to the wing section. (Color figure online)

A drawback of using QKT in Eq. (3) to compute global similarity is that
the obtained global similarity may not accurate. To be specific, points that show
strong similarity to query points may belong to different classes. A example of
the global similarity is shown in Fig. 4(b). Given a query point within the wing
section (marked in red), we visualize the global similarity corresponding to this
query point. It is evident that the global similarity exhibits high response weights
for points in both the wing and tail sections. However, the weights of the points
in the wing section are the only ones truly relevant. We designate points in the
tail as interfering points and points in the wings as candidate points.

To accurately compute the long-distance similarity between points within the
point cloud, we devise a multi-head voting strategy that is incorporated into the
global semantic transformer module. The corresponding structure is illustrated
in Fig. 4. Given the features of the input point cloud, three MLP operations are
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performed to obtain the Q, K, and V vectors, respectively. Then, the matrix
multiplication between Q and the transposition of K is performed, followed by
the softmax function to generate the global similarity for each point. In order
to mitigate the effect of interfering points, we further refine the global similarity
by generating a global mask using a multi-head voting strategy. The details are
depicted within the dashed box in Fig. 4(a).

Specifically, we split the channels of the point cloud to obtain multi-head
representations of the feature, denoted as MQ. Similarly, we do the same to
obtain MK. We proceed by performing matrix multiplication between MQ and
the transpose of MK to produce multiple attentions. Corresponding results are
shown in the dashed box in Fig. 4(b). It can be observed that the weights of
candidate points consistently exhibit strong response in multi-attention 1 to 4.
However, the weights of the interfering points exhibit randomness. For instance,
in multi-attention 1 and 2, the weights of the interfering points are large, whereas
in multi-attention 3 and 4, they are small. This inconsistency leads to uncertainty
in selecting the optimal attention. To mitigate the influence of randomness, we
propose to summarize multiple attentions and apply normalization to obtain
a global mask. It can be observed that in the global mask, the weights of the
interfering points are reduced to some extent. To further reduce the weights of
interfering points, we consider subjecting the global similarity and global mask
to Hadamard product operations to generate refined similarity. In the refined
similarity, the weights of the interfering points are significantly reduced, while
the weights of the candidate points still exhibit strong responses. Finally, the
refined similarity is multiplied with the vector V to obtain the refined features,
which fulfill the aggregation of global information for each point.

3 Experiments

3.1 Experimental Setting

We demonstrate the effectiveness of the proposed model in various point cloud
segmentation tasks. Specifically, we utilize the S3DIS dataset for 3D semantic
segmentation and the ShapeNetPart dataset for 3D part segmentation. Experi-
ments were conducted on an Ubuntu system equipped with two NVIDIA GTX
2080Ti GPUs. We employed the Adam optimizer with momentum and weight
decays set to 0.9 and 0.0001, respectively. For the S3DIS dataset, we trained for
60,000 iterations, starting from an initial learning rate of 0.5. This rate drops by
a factor of 10 at steps of 30,000 and 50,000. For the ShapeNetPart dataset, we
trained for 200 epochs. The initial learning rate is set to 0.05 and reduced by a
factor of 10 at epochs 100 and 150.

3.2 3D Semantic Segmentation and Part Segmentation

Semantic Segmentation. The S3DIS dataset comprises 271 scenes from 6
indoor areas, and each point labeled among 13 categories. Since the S3DIS
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Table 1. Semantic segmentation results on S3DIS dataset.

Method mIoU mAcc OA ceiling floor wall beam column window door table chair sofa bookcase board clutter

PointWeb [29] 66.7 76.2 87.3 93.5 94.2 80.8 52.4 41.3 64.9 68.1 71.4 67.0 50.3 62.7 62.2 58.5
PointAttn. [5] 66.3 77.3 88.9 94.3 97.0 76.0 64.7 53.7 59.2 58.8 72.4 69.2 42.6 60.8 54.1 59.0
SCFNet [4] 71.6 82.7 88.4 93.3 96.4 80.9 64.9 47.4 64.5 70.1 81.6 71.4 64.4 67.2 67.5 60.9
CBL [23] 73.1 79.4 89.6 94.1 94.2 85.5 50.4 58.8 70.3 78.3 75.7 75.0 71.8 74.0 60.0 62.4
PointTrans. [30] 73.5 81.9 90.2 94.3 97.5 84.7 55.6 58.1 66.1 78.2 77.6 74.1 67.3 71.2 65.7 64.8
BAAFNet [18] 72.2 83.1 88.9 93.3 96.8 81.6 61.9 49.5 65.4 73.3 72.0 83.7 67.5 64.3 67.0 62.4
DPFA [2] 61.7 61.6 89.2 94.6 98.0 79.2 40.7 36.6 52.2 70.8 65.9 74.7 27.7 49.8 51.6 60.6
RepSurf [19] 74.1 82.6 90.8 93.8 96.3 85.6 62.5 52.5 67.4 75.3 73.9 82.1 71..5 73.3 65.1 61.8
Ours 74.9 83.5 91.3 93.2 96.1 85.1 65.1 50.7 71.2 73.3 79.1 84.2 71.9 73.9 67.5 62.4
Note: bold font indicates best result.

Table 2. Part segmentation results on ShapeNetPart dataset.

Methods Ins.mIoU Cat.mIoU air. bag cap car cha. ear. gui. kni. lam. lap. mot. mug pis. roc. ska. tab.

PointAttn. [5] 85.9 84.1 83.3 86.1 85.7 80.3 90.5 82.7 91.5 88.1 85.5 95.9 77.9 95.1 84.0 64.3 77.6 82.8
PointASNL [26] 86.1 83.4 84.1 84.7 87.9 79.7 92.2 73.7 91.0 87.2 84.2 95.8 74.4 95.2 81.0 63.0 76.3 83.2
PointMLP [12] 86.1 84.6 83.5 83.4 87.5 80.5 90.3 78.2 92.2 88.1 82.6 96.2 77.5 95.8 85.4 64.6 83.3 84.3
APES [25] 85.8 83.9 85.3 85.8 88.1 81.2 90.6 74.0 90.4 88.7 85.1 95.8 76.1 94.2 83.1 61.1 79.3 84.2
PointTran. [30] 86.5 83.7 85.8 85.3 86.8 77.2 90.5 82.0 90.8 87.5 85.2 96.3 75.4 93.5 83.8 59.7 77.5 82.5
PointGT [9] 85.8 84.2 84.3 84.5 88.3 80.9 91.4 78.1 92.1 88.5 85.3 95.9 77.1 95.1 84.7 63.3 75.6 81.4
PCT [7] 86.4 83.1 85.0 82.4 89.0 81.2 91.9 71.5 91.3 88.1 86.3 95.8 64.6 95.8 83.6 62.2 77.6 83.7
LGGCM [3] 86.7 84.8 85.1 85.9 90.3 80.8 91.6 75.4 92.7 88.1 86.5 96.1 77.0 94.2 84.5 63.6 80.2 84.3
Ours 87.5 85.6 86.1 87.2 88.1 79.4 92.4 82.3 92.0 88.4 86.9 96.7 78.7 95.6 85.8 63.8 79.3 85.3
Note: air.: airplane. cha.: chair. ear.: ear-phone. gui.: guitar. kni.: knife. lam.: lamp.
lap.: laptop. mot.: motorbike. pis.: pistol. roc.: rocket.
ska.: skateboard. tab.: table.

dataset does not provide normal vector information, it becomes necessary for
us to compute the normal vector before training. In this step, we refer to the
method outlined in [1]. Here, we extract the eigenvector corresponding to the
minimum eigenvalue of the point cloud. This is achieved by performing singular
value decomposition on the covariance matrix of the point cloud. At the same
time, we can precompute the normal vector for each point before training, storing
them in the dataset to reduce running time.

During the training process, the computational complexity of the global
semantic transformer module being O(n2), where n represents the number of
points processed. However, in the entire algorithm process, only the first global
transformer module in the encoding stage and the last one in the decoder stage
handle a relatively large number of points. The other transformer modules, due
to the UNet [20] structure used in the algorithm, process a smaller number of
points. Moreover, we use block-wise training strategy [16] to ensure that n is not
excessively large, thereby improving running efficiency. Specially, each room is
divided into 2m × 2m blocks, from which 4096 points are randomly sampled for
training. During testing, we employ six-fold cross-validation for evaluation. This
approach involves using all points in the scene for testing purposes. For evalu-
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ation metrics, we use mean instance IoU (mIoU), mean class accuracy (mAcc),
and overall pointwise accuracy (OA).

Fig. 5. Visualization of segmentation results for different methods on S3DIS. The red
box indicates the region where the segmentation error occurs. (Color figure online)

As shown in Table 1, compared with other algorithms, the proposed algorithm
achieves satisfied results in mIoU, mAcc, and OA. The superior performance over
other transformer architecture [30] (+1.4% mIoU, 1.6% mAcc, 1.1% OA) proves
the importance of incorporating the geometric relationships in semantic segmen-
tation. Meanwhile, we compare the segmentation results of our algorithm with
several algorithms in various scenarios on the S3DIS dataset. The corresponding
results are shown in Fig. 5. In scene one (top row), compared to other algorithms,
our proposed algorithm does not show significant errors in the sofa segmenta-
tion results. Due to the fact that windows are nearly embedded within walls,
both our method and other algorithms suffer from certain shortcomings in the
segmentation results of windows. But, the segmentation results of our method
for the window are the closest to the ground truth. In scenario two (third row),
our algorithm effectively improves the segmentation results of chairs, especially
at the junction areas with the floor.

Part Segmentation. The ShapeNetPart dataset consists of 16, 880 3D models
categorized into 16 shape categories with 50 different parts. For each point cloud
object, 2048 points are uniformly sampled from its surface for both the training
and testing phases. The data augmentation strategy we applied involves random
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scaling of the object within a range of 0.8 to 1.25, coupled with arbitrary rotation
along any coordinate axis. We evaluate the performance of our method using
Intersection over Union (IoU) for each category. Additionally, we calculate the
average IoU of all instances (Ins.mIoU) and the average IoU of all categories
(Cat.mIoU) for the entire dataset.

Ground TruthOursLGGCMAPESPCT

Fig. 6. Visualization of segmentation results across various methods on ShapeNetPart,
with areas of inaccurate segmentation highlighted by a red box. (Color figure online)

Table 2 presents the performance comparison of various algorithms on the
ShapeNetPart dataset. Although the performance is quite saturated, our method
achieves the best performance as measured by Ins.mIoU and Cat.mIoU. Com-
pared to PCT [7], which also employs the concept of transformer, our algo-
rithm achieves 1.1% improvement in Ins.mIoU. In addition, it achieved a 2.5%
improvement in cat.mIoU, further demonstrating the effectiveness of our app-
roach. Meanwhile, our method achieves the best performance on 9 out of 16
categories, such as airplane, bag and chair. Since the geometric discrepancies
exhibited in the local regions of these categories are distinct. This property facili-
tates the local geometric transformer module in extracting information from local
neighbor points. The corresponding segmentation results are shown in Fig. 6. It
can be observed that other algorithms display significant segmentation errors at
the boundaries of various components in the lamp and headphone targets. In
contrast, the proposed algorithm exhibits minimal segmentation errors. At the
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OursPCT APES LGGCM

Query PointQuery Point

Fig. 7. Visualization of the global similarity and the corresponding segmentation
results from various methods. The red dashed box indicates interfering points with
high response weights. The red solid line box indicates the incorrect segmentation
result. (Color figure online)

same time, the global similarity computed in our method achieves a high level of
accuracy compared to other algorithms, as shown in Fig. 7. In other algorithms,
high response weights are assigned not only to points belonging to the wing
part, but also to interfering points in the tail part. In contrast, in the proposed
algorithm, high response weights are assigned exclusively to points belonging to
the wing part. Moreover, no segmentation error is detected in the wing section
in our method.

3.3 Ablation Study

Effects of Different Components. To further illustrate the validity of the
transformer modules in our method, we design an ablation study on the
ShapeNetPart dataset as shown in Table 3. It can be observed from model A
and B that the improvement is minimal when replacing the distance weights
with geometric weights alone. It suggests that while geometric weight dimin-
ishes the effect of neighbor points with geometric disparity to the query point,
the model struggles to focus on meaningful neighbor points. This is evident
since the weights assigned to neighbor points that share similar geometry with
the query point are nearly equal. In contrast, model C shows a significant per-
formance improvement. Since only neighbor points that share similar geometry
and close to the query point are assigned large weights.

Furthermore, from the results of model D and E, it is evident that modeling
global dependencies is crucial for point cloud segmentation. Also, we can see that



GSTran 465

Table 3. Ablation study on ShapeNetPart.

Models Local Geometric Transformer Global Semantic Transformer Ins.mIoU Cat.mIoU
Dis.weight Geo.weight Glo.similairty Glo.mask

A � 85.1 84.2
B � 85.5 84.5
C � � 86.6 85.0
D � � � 87.0 85.3
E � � � 87.2 85.4
F � � � � 87.5 85.6
Note: Dis.weight: distance weight. Geo.weight: geometric weight. Glo.similarity: global
similarity. Glo.mask: global mask.

Table 4. Effect of different neighbor size
settings.

k 8 16 24 32 48

Ins.mIoU 86.5 87.2 87.5 87.4 87.2

Cat.mIoU 84.7 85.3 85.6 85.3 85.1

Table 5. Effect of different head number
settings.

Heads 1 2 4 6 8

Ins.mIoU. 87.1 87.3 87.5 87.4 87.2

Cat.mIoU. 85.2 85.4 85.6 85.5 85.3

solely employing the global mask generated by the multi-head voting strategy
results in superior performance compared to solely using global similarity. At
last, the optimal accuracy is achieved when the global mask is combined with
the global similarity. Since the weight information belonging to interfering points
is filtered out in the refined similarity.

Effect of Different Neighborhood Size. The number of neighbor points
becomes a crucial parameter when employing the local geometric transformer
module. It determines the size of the receptive field for the local point cloud
region. We test our model on the ShapeNetPart benchmark with various settings
to ascertain the optimal value. As shown in Table 4, the performance improves
as the parameters k increase. This suggests that expanding the receptive field
by considering more neighbor points enhances the model’s ability to capture
relevant features and contexts. However, further increasing the value of k may
cause the performance of the model to degrade. Because it may introduce some
geometrically similar but irrelevant point information, which could impact the
local geometric transformer module’s ability to extract valid features.

Table 6. Investigation of different operators.

Operators Concat Summation Average Hadamard product

Cat.mIoU 85.3 85.3 85.4 85.6
Ins.mIoU 87.0 87.1 87.2 87.5
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Effects of Different Head Number. We test our model on ShapeNetPart to
evaluate the impact of different head number settings on the model performance.
The relevant results are shown in Table 5. When the number of attention heads is
set to one, the multi-head voting strategy fails to reduce the weight of interfering
points. As a result, interference points may still exhibit high response weight in
refined similarity. Meanwhile, As the number of heads increases, the model’s
performance gradually improves. Since multiple heads aid the model to preserve
meaningful global information. However, the performance deteriorates when the
number of heads become larger.

Effects of Different Operator. We employ different operators that integrate
geometric weights within the local geometric transformer module to evaluate
their performance. The results are presented in Table 6. Concat, Summation,
Average, and Hadamard product denote the element-wise operations of concate-
nating over the channel, adding, averaging, and multiplying the geometric weight
and distance weight, respectively. As can be seen, four operations have relatively
minor effects on the final performance. But the Hadamard product obtains the
best results. Since the Hadamard product achieves a substantial reduction in
the weights of neighbor points with geometrical disparity. Simultaneously, it
preserves the weights of points within the same class neighborhood, effectively
balancing the influence of various data points.

4 Conclusion

In this paper, to better leverage local geometric information and accurately cap-
ture long-range semantic relationships within the transformer framework, we pro-
pose a novel transformer network named GSTran for point cloud segmentation.
GSTran mainly consists of two essential modules: a local geometric transformer
and a global semantic transformer. In the local geometric transformer module, we
explicitly compute the geometric disparity. This allows us to amplify the affinity
with geometrically similar neighbors and simultaneously suppress the associa-
tion with other neighbors. In the global semantic transformer module, we design
a multi-head voting strategy. This strategy computes the semantic similarity
for each point over a global spatial range, capturing more accurate semantic
information. Experiments with competitive performance on public datasets and
further analysis demonstrate the effectiveness of our method.
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A Appendix

Experiments on robustness, outdoor point cloud scenarios, and others are
included in the supplementary material. For more details, please refer to the
links below. Either of the following two links can be chosen.

Link 1: Google Drive.
https://drive.google.com/file/d/1rS36mBizZS4yHw4tcuOc5JAYDYLr1SUk/
view?usp=sharing

Link 2: Baidu Drive. Password: 1234
https://pan.baidu.com/s/1T3hOOrgMKvwmQOvGTzaeVQ
Password: 1234

References

1. Bazazian, D., Casas, J.R., Ruiz-Hidalgo, J.: Fast and robust edge extraction in
unorganized point clouds. In: 2015 International Conference on Digital Image Com-
puting: Techniques and applications, pp. 1–8. IEEE (2015)

2. Chen, J., Kakillioglu, B., Velipasalar, S.: Background-aware 3-D point cloud seg-
mentation with dynamic point feature aggregation. IEEE Trans. Geosci. Remote
Sens. 60, 1–12 (2022)

3. Du, Z., Ye, H., Cao, F.: A novel local-global graph convolutional method for point
cloud semantic segmentation. IEEE Trans. Neural Netw. Learn. Syst. (2022)

4. Fan, S., Dong, Q., Zhu, F., Lv, Y., Ye, P., Wang, F.Y.: SCF-net: learning spatial
contextual features for large-scale point cloud segmentation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14504–
14513 (2021)

5. Feng, M., Zhang, L., Lin, X., Gilani, S.Z., Mian, A.: Point attention network for
semantic segmentation of 3D point clouds. Pattern Recogn. 107, 107446 (2020)

6. Guo, B., Deng, L., Wang, R., Guo, W., Ng, A.H.M., Bai, W.: MCTNet: multiscale
cross-attention based transformer network for semantic segmentation of large-scale
point cloud. IEEE Trans. Geosci. Remote Sens. (2023)

7. Guo, M.-H., Cai, J.-X., Liu, Z.-N., Mu, T.-J., Martin, R.R., Hu, S.-M.: PCT: point
cloud transformer. Comput. Vis. Media 7(2), 187–199 (2021). https://doi.org/10.
1007/s41095-021-0229-5

8. Li, Y., Duan, Y.: Multi-scale network with attentional multi-resolution fusion for
point cloud semantic segmentation. In: 2022 26th International Conference on Pat-
tern Recognition, pp. 3980–3986. IEEE (2022)

9. Li, Z., et al.: Geodesic self-attention for 3d point clouds. Adv. Neural. Inf. Process.
Syst. 35, 6190–6203 (2022)

10. Liu, M., et al.: PartSLIP: low-shot part segmentation for 3d point clouds via pre-
trained image-language models. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 21736–21746 (2023)

11. Lu, D., Xie, Q., Gao, K., Xu, L., Li, J.: 3DCTN: 3D convolution-transformer
network for point cloud classification. IEEE Trans. Intell. Transp. Syst. 23(12),
24854–24865 (2022)

https://drive.google.com/file/d/1rS36mBizZS4yHw4tcuOc5JAYDYLr1SUk/view?usp=sharing
https://drive.google.com/file/d/1rS36mBizZS4yHw4tcuOc5JAYDYLr1SUk/view?usp=sharing
https://pan.baidu.com/s/1T3hOOrgMKvwmQOvGTzaeVQ
https://doi.org/10.1007/s41095-021-0229-5
https://doi.org/10.1007/s41095-021-0229-5


468 A. Li et al.

12. Ma, X., Qin, C., You, H., Ran, H., Fu, Y.: Rethinking network design and local
geometry in point cloud: a simple residual MLP framework. In: International Con-
ference on Learning Representations (2021)

13. Mei, G., Riz, L., Wang, Y., Poiesi, F.: Geometrically-driven aggregation for zero-
shot 3D point cloud understanding. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (2024)

14. Mei, G., et al.: Unsupervised point cloud representation learning by clustering and
neural rendering. Int. J. Comput. Vision 1–19 (2024)

15. Park, J., Lee, S., Kim, S., Xiong, Y., Kim, H.J.: Self-positioning point-based trans-
former for point cloud understanding. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 21814–21823 (2023)

16. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learn-
ing on point sets in a metric space. Adv. Neural Inf. Process. Syst. 30 (2017)

17. Qiu, S., Anwar, S., Barnes, N.: Geometric back-projection network for point cloud
classification. IEEE Trans. Multimedia 24, 1943–1955 (2021)

18. Qiu, S., Anwar, S., Barnes, N.: Semantic segmentation for real point cloud scenes
via bilateral augmentation and adaptive fusion. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1757–1767 (2021)

19. Ran, H., Liu, J., Wang, C.: Surface representation for point clouds. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
18942–18952 (2022)

20. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4_28

21. Song, H., Feng, H.Y.: A progressive point cloud simplification algorithm with pre-
served sharp edge data. Int. J. Adv. Manuf. Technol. 45, 583–592 (2009)

22. Srivastava, S., Sharma, G.: Exploiting local geometry for feature and graph con-
struction for better 3d point cloud processing with graph neural networks. In: 2021
IEEE INternational Conference on robotics and Automation, pp. 12903–12909.
IEEE (2021)

23. Tang, L., Zhan, Y., Chen, Z., Yu, B., Tao, D.: Contrastive boundary learning
for point cloud segmentation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8489–8499 (2022)

24. Wang, C., Ning, X., Sun, L., Zhang, L., Li, W., Bai, X.: Learning discriminative
features by covering local geometric space for point cloud analysis. IEEE Trans.
Geosci. Remote Sens. 60, 1–15 (2022)

25. Wu, C., Zheng, J., Pfrommer, J., Beyerer, J.: Attention-based point cloud edge
sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5333–5343 (2023)

26. Yan, X., Zheng, C., Li, Z., Wang, S., Cui, S.: PointASNL: Robust point clouds
processing using nonlocal neural networks with adaptive sampling. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5589–5598 (2020)

27. Yu, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., Zhou, J.: PoinTr: diverse point cloud
completion with geometry-aware transformers. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 12498–12507 (2021)

28. Zhang, H., Wang, C., Yu, L., Tian, S., Ning, X., Rodrigues, J.: PointGT: a method
for point-cloud classification and segmentation based on local geometric transfor-
mation. IEEE Trans. Multimed. (2024)

https://doi.org/10.1007/978-3-319-24574-4_28


GSTran 469

29. Zhao, H., Jiang, L., Fu, C.W., Jia, J.: PointWeb: enhancing local neighborhood
features for point cloud processing. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5565–5573 (2019)

30. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–
16268 (2021)

31. Zhou, W., et al.: GTNet: graph transformer network for 3D point cloud classifica-
tion and semantic segmentation. arXiv preprint arXiv:2305.15213 (2023)

32. Zhu, H., Yang, H., Wu, X., Huang, D., Zhang, S., et.al.: PonderV2: pave the way
for 3D foundataion model with a universal pre-training paradigm. arXiv preprint
arXiv:2310.08586 (2023)

http://arxiv.org/abs/2305.15213
http://arxiv.org/abs/2310.08586


SPiKE: 3D Human Pose from Point Cloud
Sequences

Irene Ballester(B) , Ondřej Peterka , and Martin Kampel

Computer Vision Lab, TU Wien, Vienna, Austria
{irene.ballester,martin.kampel}@tuwien.ac.at

Abstract. 3D Human Pose Estimation (HPE) is the task of locat-
ing keypoints of the human body in 3D space from 2D or 3D rep-
resentations such as RGB images, depth maps or point clouds. Cur-
rent HPE methods from depth and point clouds predominantly rely on
single-frame estimation and do not exploit temporal information from
sequences. This paper presents SPiKE, a novel approach to 3D HPE
using point cloud sequences. Unlike existing methods that process frames
of a sequence independently, SPiKE leverages temporal context by adopt-
ing a Transformer architecture to encode spatio-temporal relationships
between points across the sequence. By partitioning the point cloud
into local volumes and using spatial feature extraction via point spa-
tial convolution, SPiKE ensures efficient processing by the Transformer
while preserving spatial integrity per timestamp. Experiments on the
ITOP benchmark for 3D HPE show that SPiKE reaches 89.19% mAP,
achieving state-of-the-art performance with significantly lower inference
times. Extensive ablations further validate the effectiveness of sequence
exploitation and our algorithmic choices. Code and models are available
at: https://github.com/iballester/SPiKE.

Keywords: 3D human pose estimation · point cloud · depth maps

1 Introduction

3D Human Pose Estimation (HPE) aims to localize body keypoints or joints
in the 3-dimensional space from images, videos and 3D representations, such as
point clouds. This task faces significant challenges due to the occlusion of body
parts, diversity in human postures, and the wide range of human appearances
and shapes. Achieving precise joint localisation is critical for numerous appli-
cations in the real world [47], including human activity recognition [31], gait
analysis [18,32] and motion forecasting [9].

Methods for HPE from RGB have received more attention than depth-based
approaches [21,46,49]. However, the depth modality offers distinct advantages
for 3D HPE, encoding inherent 3D information and exhibiting robustness to
diverse lighting conditions while preserving privacy better than RGB [2,25].
Depth maps serve as a representation of 3D space in a 2D image, allowing the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15318, pp. 470–486, 2025.
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direct extraction of 3D HPE from a single 2D depth map [16,42]. However,
using 2D depth maps encounters challenges such as perspective distortion and
a non-linear mapping between depth maps and 3D coordinates, which hinder
the learning process [24,48]. To overcome this limitation, 3D representations are
derived from depth maps, such as voxels [24] or point clouds [48], facilitating
the direct estimation of 3D keypoints. In line with these works, we employ point
clouds from depth maps as input for our method.

Fig. 1. Importance of exploiting sequence information. When considering only
the current frame (sequence length T=1), only the right hand is visible in the input
point cloud, leading to an incorrect prediction. On the contrary, if we consider past
frames (T=3), in particular t2 where both hands are visible, SPiKE estimates the
position of both arms more accurately. Timestamp ID: 3_02244.

Different from direct methods, 2D-3D lifting methods [7,44,45], inspired by
lifting approaches in RGB [23,46,49], first estimate the 2D keypoints from the
depth map. Then, they use the z-coordinate of the estimated 2D keypoints in the
depth map to project its coordinates into 3D space and refine the 3D prediction,
typically using a point cloud representation. This comes at the cost of increased
complexity, as methods must deal with more than one input type. Furthermore,
since depth-based methods rely on dense maps to extract the coordinates of the
joints, they are not compatible with sparse point clouds [45] and would require
additional algorithms to densify the point cloud [5,33]. In this work, we propose
a pure point cloud method, that achieves state-of-the-art performance with a
reduced inference time.

Most of the presented works process the timestamps of sequences of depth
maps or 3D representations independently without using sequence information
and thus without taking advantage of temporal relationships between frames. In
the RGB domain, sequence information proves beneficial for pose estimation to
cope with occlusion [21,40]. Inspired by recent advances in dynamic point cloud
processing [12,13,39], we propose to use a Transformer [34] to process sequential
point clouds for 3D HPE. As illustrated in Fig. 1, sequence information makes
the model more robust against occluded body parts and noise.

More specifically, we divide each point cloud of the sequence into local vol-
umes and extract spatial features within them. The input tokens for the Trans-
former are generated by combining the 4D coordinates of the centroid of the
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local volumes and the features of that volume extracted by a point convolution.
This is fed into a Transformer [34] that performs global self-attention to encode
the spatio-temporal relationships of the points along the sequence to predict the
3D coordinates of the joints. Our method, SPiKE (Sequential Point clouds for
Keypoint Estimation), is validated on the ITOP dataset [19] and outperforms
the state of the art, confirming its suitability for 3D HPE from sequential point
clouds. Our contributions are as follows:

– We introduce SPiKE, a novel approach for 3D HPE from point cloud
sequences. Unlike previous works that process timestamps independently, our
method leverages temporal information by employing a Transformer to encode
the spatio-temporal structure along the sequence. To ensure efficient process-
ing by the Transformer while preserving spatial integrity per frame, SPiKE
partitions each point cloud of the sequence into local volumes for feature
extraction through point spatial convolution.

– Experiments, qualitative results and comparisons with the state of the art
confirm the effectiveness of our approach. SPiKE achieves an mAP of 89.19%
for 3D HPE on the ITOP dataset [19], outperforming existing direct models
from depth maps, voxels or point clouds. Furthermore, our model performs
similarly to 2D-3D lifting approaches with a significantly lower inference time
since no depth-branch is required.

– Extensive ablation studies confirm the value of leveraging sequence informa-
tion, retaining spatial structure per timestamp, and our algorithmic choices.

2 Related Work

2.1 Human Pose Estimation from 3D Information

Direct Methods for 3D HPE: Depth Maps, Voxels and Point Clouds.
The depth modality is different from RGB in that, by its nature, it already con-
tains 3D information in its 2D form. Early works in HPE from depth extract
the 3D coordinates directly from the 2D depth map [3,26,35,36,42]. Arguing
a lack of generalisation capabilities between different perspectives, DECA [16]
utilizes Capsule Networks [20] to model inherent geometric relations in human
skeletons to achieve viewpoint-equivariance. Depth maps offer the advantage of
lightweight data storage and processing, and their 2D nature facilitates the adap-
tation of RGB models and pre-trained feature extractors, broadening the scope
of available methods and datasets. However, they suffer from perspective distor-
tion [24,37]. To overcome this limitation, Moon et al. [24] propose to voxelise the
depth map to obtain a volumetric representation and generate per-voxel likeli-
hoods for each keypoint. Despite effectively solving the problem of perspective
distortion, voxels also present challenges in terms of computational demands
and unavoidable quantisation errors during voxelisation, which is particularly
relevant for HPE where precise scene geometry measurement is crucial.

Point clouds require memory relative to the number of points and provide
arbitrary precision. In this line, Zhou et al. [48], adapt stacked EdgeConv layers
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from DGCNN [38] and T-Net from PointNet [27] to regress the 3D positions of
the joints. More recently, Weng et al. [41] propose an unsupervised pre-training
strategy for 3D HPE from point clouds. LiDAR-HMR [11] estimates 3D human
body mesh from sparse point clouds by first estimating the 3D human pose to
then employ a sparse-to-dense 3D mesh reconstruction approach. LPFormer [43]
proposes a top-down multitask approach for 3D HPE from sparse point clouds.

Despite the advances in 3D HPE from depth maps and point clouds resulting
from the approaches presented, they all process each depth map or point cloud
independently and cannot directly process sequences due to the lack of an inter-
frame feature fusion approach. Encouraged by the success of integrating sequence
information in the RGB domain [1,21,40], we propose the use of a Transformer
architecture [34] to encode sequence information.

2D-3D Lifting Models for 3D HPE: Depth Maps + Point Clouds.
Extracting an intermediate 2D pose from depth maps and then refining its 3D
projection with point clouds proves to be an effective strategy. In this line,
inspired by RGB 2D-3D lifting methods, D’Eusanio et al. [7] evaluate the mod-
ular refinement network RefiNet [6] using as starting point 2D keypoints from
HRNet [38]. Following a similar strategy for hand pose estimation, Ren et al. [30]
iteratively correct the 3D projection of the estimated 2D hand keypoints by tak-
ing a feature set from a local region around each estimated joint. Zhang et
al. [44] use depth maps to obtain an intermediate 2D pose estimate and sampled
point cloud, and then refine the estimates by processing point clouds through
PointNet [27]. An ablation study presented in this work shows that using 2D
predictions as a starting point instead of direct 3D estimation from point clouds
improves the overall accuracy by almost 14 points on the ITOP dataset, demon-
strating that combining these modalities is an effective strategy. Building on this
work, Adapose [45] adds to this pipeline 1) an adaptive sampling strategy for
point clouds and 2) an LSTM module to capture inter-frame features and enforce
temporal smoothness, demonstrating the benefits of using sequential point cloud
processing. This last finding, coupled with the evidence from the RGB modality,
further strengthens our argument for the use of sequence information.

One of the main contributions is that SPiKE takes only point clouds as
input, without requiring depth maps for intermediate 2D estimation. This not
only provides versatility by allowing seamless integration with different point
cloud acquisition methods, but also significantly reduces inference time as SPiKE
performs direct estimation in 3D.

2.2 Deep Learning for Dynamic Point Clouds

Point cloud sequences, unlike grid-based RGB video, lack regularity in spatial
arrangement as points appear inconsistently over time. One approach to address
this lack of order is to voxelise the 3D space and apply 4D grid-based convolu-
tions. In this line, Choy et al. [4] extend the temporal dimension of 3D sparse
convolutions [17] to extract spatio-temporal features on 4D occupancy grids.



474 I. Ballester et al.

3DV [37] combines voxel-based and point-based modelling by first integrating
3D motion information into a regular compact voxel set and then applying Point-
Net++ [28] to extract representations via temporal rank pooling [15].

An alternative to voxelisation is to operate directly on point sets, avoiding
the quantisation errors inherent in the voxelisation process. In this line, Meteor-
Net [22] extends PointNet++ [28] for 4D point cloud processing to collect infor-
mation from neighbours and relies on point tracking to merge points across times-
tamps. PSTNet [14] decomposes spatial and temporal data and proposes a hier-
archical point-based convolution. To avoid point tracking, P4Transformer [12]
proposes to use a Transformer architecture [8,34] to perform self-attention over
the whole sequence after encoding spatio-temporal local regions by a 4D point
convolution. PST-Transformer [13] modifies the Transformer architecture of [12]
to preserve the spatio-temporal encoding structure.

These methods are effective in downstream tasks such as semantic segmen-
tation and activity recognition. In this work, we show that point convolutions
and attention-based architectures are also suitable for HPE. Similarly to [12,13],
we use a Transformer to relate local volumes from different timestamps. How-
ever, different from [12,13], we propose to use spatial local regions instead of
spatio-temporal ones. The rationale behind this is that while temporal merging
is suitable for action recognition, allowing for longer sequences that yield better
performance, this strategy is not directly applicable to HPE. For HPE, we show
that while sequence information is beneficial, longer sequences beyond a certain
length do not improve performance (consistent with [40] in RGB). This choice
preserves spatial structure by merging only spatial information within the same
timestamp before passing local features to the Transformer.

3 Method

SPiKE processes a sequence of point clouds, [P1, P2, . . . , PT ], each containing
N randomly sampled points that are represented as Pt = {pi(t)}N

i=1 for times-
tamp t within total sequence length T . Each point pi(t) is defined by its Euclidean
coordinates in R

3. Our goal is to predict the 3D locations of M key body joints,
represented as J = [j1, j2, . . . , jM ].

The entire pipeline is illustrated in Fig. 2. First, we extract spatial features
by applying a point spatial convolution to local regions in the point cloud of each
timestamp (described in Sect. 3.1). These local features, together with a posi-
tional encoding, are then processed by a Transformer architecture that merges
information across different timestamps (described in Sect. 3.2). Subsequently, a
max pooling operation merges the transformed local features into a single global
feature representation. Finally, a multilayer perceptron (MLP) regresses the 3D
coordinates of the M joints.

3.1 Point Spatial Convolution in Local Regions

Point cloud sequences represent dynamic 3D environments with a large number
of individual points. The direct application of self-attention across all points
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Fig. 2. SPiKE pipeline. First, each point cloud of the sequence (sequence length = T )
is partitioned by selecting Nv reference points P ′

i and creating local volumes VNv

around them by sampling points within a radius r. Point Spatial Convolution extracts
spatial features Fi from each local volume. These features are then embedded with the
coordinates of their respective reference point P ′

i and fed into the Transformer. After
a max pooling layer, an MLP regresses the 3D coordinates of the M joints.

in such sequences proves to be computationally expensive and demanding in
terms of running memory. Following [12,14,28], we construct Nv local regions
(hereinafter referred to as local volumes) and perform a point spatial convolution
to encode the local structure of the points within these volumes.

Each point cloud is divided into Nv local volumes V1, V2, . . . , VNv
centred

around reference points. The selection of reference points P ′
1, P

′
2, . . . , P

′
Nv

is car-
ried out using Farthest Point Sampling (FPS) [28], ensuring that these points
are strategically distributed across the point cloud. For each reference point P ′

i ,
we then sample Ns neighboring points within a radius r, again using FPS.

After creating the local volumes, we apply a point spatial convolution to
encode the spatial relationships among the Ns neighboring points contained
within. This process transforms the original point cloud sequence, designated
as [P1, P2, . . . , PT ], with Pt ∈ R

3×N representing the set of point coordinates
at the t-th frame into a sequence of encoded features. Each timestamp in
the transformed sequence is represented as [P ′

1;F1] , [P ′
2;F2] , . . . , [P ′

T ;FT ], where
P ′

t ∈ R
3×Nv and Ft ∈ R

C×Nv , with C denoting the number of feature chan-
nels. For any given reference point P ′

i , located at (x, y, z, t), its feature vector
F (x, y, z, t) ∈ R

C×1 is derived from the spatial convolution as follows:

F (x, y, z, t) = max
‖(δx,δy,δz)‖≤r

(MLP(Ws · (δx, δy, δz)T )) (1)

Here, Ws ∈ R
C′×3 represents the transformation matrix applied to the 3D

displacements (δx, δy, δz), encapsulating the spatial differences relative to the
reference point. This matrix multiplication facilitates the projection of spatial
displacements into a higher-dimensional feature space, which is subsequently
processed by an MLP to enhance the representation. Finally, we aggregate the
features by performing max pooling within the local region.
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3.2 Transformer

Positional Embedding. After the point spatial convolution, the local vol-
umes of the t-th frame are encoded to features F (x, y, z, t). These features,
however, solely capture the local spatial features without explicitly accounting
for the absolute positions of the reference points within the global structure of
the point cloud. To address this limitation and ensure the preservation of the
spatio-temporal structure inherent to the point cloud sequence, we combine the
coordinates of the reference point, i.e., P ′(x, y, z, t), and local area features as
input to the Transformer.

I(x, y, z, t) = Wi · P ′(x, y, z, t)T + F (x, y, z, t) (2)

In this equation, Wi ∈ R
C×4 represents a weight matrix that transforms the

four-dimensional coordinates P ′(x, y, z, t) into a feature space that is compati-
ble with the encoded local features F (x, y, z, t). The result of this transforma-
tion, I(x, y, z, t), serves as the input to the Transformer, where I ∈ R

C×TNv

are the transformed input features ready for further processing. By embedding
the spatial and temporal coordinates directly into the feature representation,
the subsequent Transformer layer can take advantage of both the local feature
information and the positional context of each reference point.

Multi-head Self-attention. The multi-head self-attention mechanism [34]
enables the model to capture spatial and temporal dependencies within the
sequences of point clouds. Input features I(x, y, z, t) ∈ R

C×TNv representing
local spatial features and positional embeddings are transformed into query (Q),
key (K), and value (V ) matrices through linear transformations. Specifically, for
each local volume centered at P ′(x, y, z) at timestamp t, we compute:

Q = I(x, y, z, t) · WQ, K = I(x, y, z, t) · WK , V = I(x, y, z, t) · WV ,

where WQ ∈ R
Ck×C , WK ∈ R

Ck×C , Wv ∈ R
Cv×C are learnable weight matrices,

and Ck and Cv are the dimensions of key and value, respectively.
The attention mechanism computes attention scores based on the similarity

between queries and keys, determining the relevance of different spatial positions
and timestamps within the input sequence. For each local volume centered at
P ′(x, y, z) at timestamp t, the attention scores are calculated as follows:

Attention(Q,K, V ) = softmax
(

QKT

√
dk

)
V (3)

where dk represents the dimensionality of the key vectors. The softmax function
normalizes the attention scores across the key vectors, indicating the importance
of each value vector relative to the given query.

To capture diverse patterns and dependencies within the data, the multi-head
mechanism splits the query, key, and value matrices into h separate heads, each
operating independently. This parallel processing enables the model to attend
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to different parts of the input simultaneously, enhancing its ability to capture
both local and global dependencies. The outputs of the individual heads are
then concatenated and linearly transformed by Wo, resulting in the final output
of the multi-head self-attention mechanism. Finally, the model incorporates m
Transformer blocks, each equipped with a multi-head self-attention mechanism.

3.3 Implementation Details

SPiKE is trained end-to-end with L1 loss and SGD optimizer (batch size = 24,
learning rate = 0.01) for 150 epochs. We use 4096 randomly sampled points, with
r = 0.2, Nv = 128, and Ns = 32. Furthermore, C = 1024, and the Transformer
has m = 5 self-attention blocks with h = 8 heads each. Point clouds are centred
by subtracting the mean of 3D coordinates of the points per sequence, with
rotation in the y-axis of [-90, 90] degrees and x-axis mirroring for augmentation.
Training and testing are performed on a single NVIDIA GeForce RTX 3090.

To isolate the points belonging to the human, following [48], we use depth
thresholding to remove the background and discard the first 10 bins of the y-
coordinate histogram to exclude floor points. Then, clusters are formed using
DBSCAN [10] with a 15 cm inter-cluster distance. Since humans may not always
form a single cluster, we select the largest cluster and include clusters below,
above and between the largest cluster and the sensor, offset by 20 cm.

4 Evaluation

We describe the dataset and evaluation metrics, and systematically evaluate
SPiKE by comparing it to the state of the art, discussing qualitative results,
and providing ablations to illustrate our contributions.

4.1 Datasets and Metrics

ITOP Human Pose Dataset [19] is a collection of 100k depth maps from
two camera viewpoints captured with Asus Xtion Pro sensors. It consists of 15
action sequences performed by 20 subjects. All depth maps are labelled with
3D coordinates of 15 body joints from the camera viewpoint. We train and test
SPiKE on ITOP front-view and adopt the original division proposed in [19],
i.e., using subjects 00-04 for testing and subjects 05-19 for training, so that our
evaluation reflects a scenario where testing is performed on unseen subjects.

In ITOP, only about 45% of the annotated joints are human-validated
(referred to as “valid joints”), and methods typically evaluate performance only
on these valid joints [44,45,48], hence, we train and test our method only on vali-
dated ground truth annotations. The point clouds of instances with invalid joints
are incorporated into the sequence to predict subsequent valid joint positions,
but the invalid joints are never used for training or testing.
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Mean Average Precision (mAP). Following previous work [7,16,24,42], we
use mean Average Precision (mAP) as the evaluation metric with a threshold of
10 cm. mAP is the percentage of all predicted joints that fall within an interval
of less than 0.10 metres of the 3D coordinates of the ground truth joints.

4.2 Comparison with State-of-the-Art Methods

We evaluate SPiKE on ITOP front-view against state-of-the-art methods for 3D
HPE on depth maps, point clouds and voxels in Table 1. For better compari-
son, the different approaches are classified as direct and 2D-3D lifting methods
(SPiKE belongs to the former). Specifically, we compare our approach with the
following direct methods: V2V [24], A2J [42], Zhou et al. [48] and DECA [16].
For 2D-3D lifting methods, we consider WSM [44], AdaPose [45], and HRNet+
RefiNet [7]. For reference, we also include the ablation study by [44] as “WSMa”
as part of the direct methods, since in this ablation the 3D pose is estimated from
the point clouds without relying on an intermediate extraction of 2D keypoints.

Table 1. Comparison with the state-of-the-art methods on ITOP front-view (0.1m
mAP). (*) identifies the methods using additional training data.

direct methods 2D-3D lifting methods

Method V2V A2J WSMa Zhou DECA SPiKE WSM* AdaPose HRNet+
et al. (Ours) RefiNet

2018 2019 2020 2020 2021 - 2020 2021 2023

Modality voxels depth points points depth points depth+points

Head 98.29 98.54 - 96.73 93.87 98.42 98.15 98.42 -
Neck 99.07 99.20 - 98.05 97.90 99.47 99.47 98.67 -
Shoulders 97.18 96.23 - 94.38 95.22 97.48 94.69 95.39 -
Elbows 80.42 78.92 - 73.67 84.53 81.64 82.80 90.74 -
Hands 67.26 68.35 - 54.95 56.49 71.71 69.10 82.15 -
Torso 98.73 98.52 - 98.35 99.04 99.24 99.67 99.71 -
Hips 93.23 90.85 - 91.77 97.42 93.68 95.71 96.43 -
Knee 91.80 90.75 - 90.74 94.56 91.56 91.00 94.41 -
Feet 87.60 86.91 - 86.30 92.04 84.30 89.96 92.84 -

Upper B. - - - 80.10 83.03 88.75 - - 80.8
Lower B. - - - 89.60 95.30 89.85 - - 88.1

Mean 88.74 88.00 75.64 85.11 88.75 89.19 89.59 93.38 84.2

SPiKE (T = 3 and only past timestamps) achieves an overall mAP of 89.19%,
outperforming existing direct methods using any of the modalities: depth maps,
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points and voxels. Our method shows significant improvements, most notably
for the upper limbs, which are prone to occlusion when the person is sideways or
moving their arms. In these cases of occlusion, the sequence information becomes
valuable as certain timestamps can reveal visible joints that are occluded at that
particular timestamp, providing crucial context for accurate estimation.

Compared to direct methods working with point clouds, lifting methods
can leverage 2D pre-trained backbones with additional data (marked with *
in Table 1). This is an effective strategy to improve performance, but prevents
a direct and fair comparison with methods trained only in ITOP. Nevertheless,
despite using additional data in the WSM 2D HPE network training, SPiKE
(trained only on ITOP) achieves comparable performance with a difference of
only 0.4 points. The reliance of 2D-3D lifting approaches on the estimation of an
intermediate pose from the depth map is evident from the performance drop of
14 points between WSM (mAP = 89.59%) and WSMa (mAP = 75.64%) when no
intermediate pose is considered. In standard WSM, intermediate 2D keypoints
are first extracted, reprojected in 3D to obtain an intermediate 3D pose estimate,
and then refined by processing the point clouds. In contrast, in the WSMa abla-
tion study, the 3D pose is estimated directly from the point clouds (as in SPiKE,
mAP = 89.19%). This illustrates the heavy reliance on an intermediate 2D pose
in WSM, while SPiKE can accurately regress the 3D pose directly from point
cloud sequences alone.

Direct point cloud methods have the advantage of being independent of depth
maps, allowing them to handle data from different acquisition methods, such as
LiDAR sensors, which produce sparse point clouds. In contrast, 2D-3D lifting
methods depend on depth maps (or dense point clouds) to derive an intermediate
pose, making them incompatible with sparse point clouds [45].

4.3 Computational Efficiency

The independence from intermediate 2D keypoint extraction eliminates the need
for additional processing of the depth maps, reducing the network complexity
and computational needs. Table 2 shows a comparison with 2D-3D lifting meth-
ods in terms of inference time (ms) and performance on ITOP (mAP). Since
Adapose [45] omits its 2D HPE network in their released code, for our compar-
ison, we add the runtime associated with the released code plus the runtime for
HRNet, as a representative network for 2D HPE.

Table 2 shows that SPiKE has a comparable runtime to the 2D-3D lifting
modules, but it holds a considerable advantage as it operates independently
from a 2D HPE network. This independence provides a significant computational
advantage, regardless of the efficiency of the 2D-3D lifting approach employed.

4.4 Qualitative Results

Fig. 3 shows a comparison between ground truth joint coordinates (left, with
keypoints in red) and the model’s predicted joint positions (right, with keypoints
in blue) across a spectrum of poses. This side-by-side view illustrates the model’s
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Table 2. Inference time (ms) per frame and performance (mAP) on ITOP.

Methods 2D HPE (HRNet) 2D-3D Lifting Total mAP (ITOP)

HRNet+Refinet 30.34 ms 5.18 ms 35.52 ms 84.2
AdaPose 30.34 ms 13.23 ms 43.57 ms 93.38
SPiKE (ours) - 5.98 ms 5.98 ms 89.19

accuracy in predicting body keypoints. This accurate performance is evident not
only in standard poses, such as sample A but also in complex situations where
limbs are in motion or partially occluded, as shown in samples B, C, E, G and H.
The model is also adept at recognising poses in which the person is turned away
from the camera, as shown in sample D, where the colours of the limb joints are
inverted from left to right and vice versa, indicating body orientation.

Fig. 3. Qualitative results. Each pair represents the groundtruth skeletons on the
left (keypoints in red) and the joints predicted by the model on the right (keypoints
in blue). ID top row: A: 0_01439, B: 2_00220, C: 1_00587, D: 3_02966. ID bottom
row: E: 0_01712, F: 2_02827, G: 0_00168, H: 1_01611.

4.5 Ablations

We isolate our contributions and algorithmic choices and construct a set of exper-
iments to measure their effect. Specifically, we examine the following aspects of
our algorithm: the length of the point cloud sequence, using past or including
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also future timestamps for pose estimation, and the effect of spatio-temporal
convolution instead of spatial convolution to encode local volume features.

Past vs. Past-Future Timestamps. When using only past timestamps, the
model relies solely on historical data, potentially missing context from future
frames, especially in occlusion scenarios. In theory, including future timestamps
allows the model to use both past and future information, providing a more
complete understanding of the temporal context.

However, Fig. 4 (Left) shows that the performance difference between these
approaches is marginal, regardless of sequence length. Thus, while considering
future timestamps may theoretically enrich the temporal context, the practi-
cal advantage appears to be limited, and models can rely predominantly on
past timestamps for efficiency without sacrificing significant performance gains,
opening up our method for real-world applications.

Fig. 4. Ablations Left: Effect on performance (mAP) and running memory (GB) vs.
sequence length T , using only past or past and future timestamps. Spatial convolutions
are employed for this ablation study. Right: Effect on performance (mAP) vs. sequence
length T for spatial convolutions, spatio-temporal (ST) convolutions with temporal
kernel size kt = 3 and kt = 5. For this ablation, only past timestamps are considered.

Sequence Length. In action recognition, longer point cloud sequences con-
sistently yield superior results [12–14,22,39]. This superiority arises from the
uneven distribution of action-related information over time. Consequently, short
sequences may overlook critical frames necessary for accurate action inference.

However, the relationship between sequence length and HPE is not as direct,
as the influence of distant timestamps on the current pose may be minimal.
Moreover, processing long sequences in HPE requires more memory without
necessarily adding significant new information. This phenomenon is illustrated
in the left plot of Fig. 4 where the mAP peaks at a certain sequence length
(T = 3), beyond which the memory requirement continues to increase without a
significant improvement in performance. This finding aligns with previous work
in HPE from egocentric RGB videos [40].
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Spatial vs. Spatio-Temporal Convolution. We compare the effectiveness
of spatial against spatio-temporal convolutions [12,13] for feature encoding from
local volumes as input to the Transformer. Spatial convolutions maintain the spa-
tial structure within each timestamp, while spatio-temporal convolutions merge
information across timestamps, allowing for processing longer sequences.

Fig. 4 (Right) shows the performance (mAP) using spatial convolutions and
spatio-temporal convolutions with temporal kernel sizes kt = 3 and kt = 5.
Our findings confirm that spatial convolutions are more effective than spatio-
temporal convolutions for HPE due to the fine-grained nature of the task.

5 Limitations and Future Work

Despite the multiple contributions of our work, SPiKE is not without limita-
tions. First, similar to [44,45,48], we apply depth thresholding and clustering to
isolate the points belonging to the human. While this strategy is effective for the
ITOP dataset, it may not be sufficient for real-world applications. In addition,
SPiKE currently focuses on single-human pose estimation and does not address
multi-human scenarios. Therefore, future work is needed to address the effec-
tive integration of human instance detection as part of the HPE framework. A
second line of future work arises from the versatility of SPiKE, which requires
only point cloud sequences as input, allowing HPE from point clouds acquired
by different sensing devices. Our evaluation is limited to point clouds derived
from depth maps, and future work will investigate its performance on datasets
of sparse LiDAR point clouds. Finally, future research directions include the
adaptation of auto-regressive motion models, such as HuMoR [29], for 3D HPE
from point cloud sequences.

6 Conclusion

We presented SPiKE, a novel approach to 3D HPE from point cloud sequences
employing point spatial convolutions and a Transformer architecture to encode
spatio-temporal relationships between points along the sequence. We demon-
strated that exploiting temporal information by processing sequential point
clouds yields superior results compared to treating each timestamp indepen-
dently.

To ensure efficient processing while preserving per-timestamp spatial
integrity, SPiKE partitions each point cloud of the sequence into local volumes
and extracts spatial features through point spatial convolution. Ablation studies
confirmed the effectiveness of this strategy and highlighted the superiority of
spatial convolutions over spatio-temporal convolutions for HPE.

Experiments on ITOP validated SPiKE’s effectiveness, outperforming exist-
ing direct approaches with an 89.19% mAP. Using only point clouds, SPiKE
performed comparably to lifting approaches with significantly faster inference.

Qualitative analysis further underscored SPiKE accuracy across a wide range
of poses, including complex scenarios involving occlusion or varying orientations.
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These findings collectively illustrate the robustness of SPiKE in accurately esti-
mating 3D human poses from point cloud sequences.
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