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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. A fully automated technique for wood pith detection (APD),
relying on the concentric shape of the structure of wood ring slices, is
introduced. The method estimates the ring’s local orientations using the
2D structure tensor and finds the pith position, optimizing a cost function
designed for this problem. We also present a variant (APD-PCL) using
the parallel coordinate space that enhances the method’s effectiveness
when there are no clear tree ring patterns. Furthermore, refining Kur-
dthongmee’s work, a YoloV8 net is trained for pith detection, producing
a deep learning-based approach (APD-DL). All methods were tested on
seven datasets, including images captured under diverse conditions (con-
trolled laboratory settings, sawmill, and forest) and featuring various
tree species (Pinus taeda, Douglas fir, Abies alba, and Gleditsia tria-
canthos). All proposed approaches outperform existing state-of-the-art
methods and can be used in CPU-based real-time applications. Addition-
ally, we provide a novel dataset comprising images of gymnosperm and
angiosperm species. Dataset and source code are available at http://
github.com/hmarichal93/apd.

Keywords: Computer vision · Wood pith detection · Deep neural
network object detection · Wood quality

1 Introduction

Locating the pith of tree cross-sections is essential to identify (in basal discs) the
first year of growth and, therefore, the tree’s age. The pith has a different type
of tissue than the rest of the tree, with distinct physical-mechanical properties.
Locating the pith is useful, among other reasons, to detect growing eccentricity
because in the natural process of senescence of standing trees, the fungi that
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degrade the wood enter through the pith or because the industry discards that
part as it has different uses than the rest of the wood. Moreover, some tree ring
delineation algorithms are sensitive to a precise pith location [2,14,16,18], mainly
when those algorithms are based on the ring structure, a concentric pattern
similar to a spider web as illustrated in Fig. 1d. That figure shows some examples
of the diversity of images of tree slices. Ideally, the intersection point between
the perpendicular lines through the tree rings should be the pith (the center of
the structure, located inside the tree’s medulla). The spider web model is only
a general approximation. Real slices include ring asymmetries, cracks, knots,
fungus, etc., as seen in Fig. 1b and c. Different species produce diverse patterns.
Moreover, gymnosperm, as the ones illustrated in Fig. 1, and angiosperm species
produce a different wood structure, as seen in Fig. 6e. Automatic pith detection
must be robust to such variations and perturbations.

Fig. 1. Some examples from UruDendro dataset [15] (a to c). (d) The whole structure,
called spider web, is formed by a center (the slice pith), rays, and the rings (concentric
curves). In the scheme, the rings are circles, but in practice, they can be (strongly)
deformed as long as they don’t intersect another ring.

This paper presents several key contributions: the release of a new challenging
dataset (UruDendro2 and UruDendro3) for wood pith detection, the develop-
ment of real-time automatic detection methods (APD and APD-PCL), training
of a YoloV8 net (APD-DL) for the same purpose, and rigorous comparison with
state-of-the-art methods on various public datasets. These contributions enhance
the field of wood pith detection, offering practical solutions and insights for real-
time applications.

2 Previous Work

Schraml and Uhl et al. [21] proposed a method (here called LFSA) that splits
the wood cross-section into patches, estimating the patch’s orientation by 2D
Fourier Transform. They accumulate the patch’s orientation using a Hough
Transform approach and calculate the pith position as the maximum in the accu-
mulation space. Kurdthongmee et al. [11] proposed the Histogram Orientation
Gradient to estimate the tree ring local orientation and proceed similarly to [21].
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In the same line, Norell et al. [19] proposed two ways for estimating the local
orientations: quadrature filters and a Laplacian pyramids approach. Recently,
Decelle et al. [3] proposed ACO, a method based on an ant colony optimization
algorithm for the local orientation accumulation step.

Deep Neural Network (DNN) methods have also been applied to solve this
problem. Kurdhongmeed et al. [9] compared the effectiveness of two DNN object
detector models (YoloV3 and SSD MobileNet) to locate the pith. They trained
the models via transfer learning over 345 wood slice RGB images captured within
a sawmill environment and evaluated over a separate dataset of 215 images.

3 APD: Automatic Wood Pith Detection

We propose an automatic pith detection method based on a model of the wood
slice. In a gymnosperm tree cross-section, as the ones shown in Fig. 1, two types
of structures are present: the rings formed by (roughly) concentric curves and, in
some cases, the presence of radial structures such as cracks and fungi. Both are
fundamentally related to the pith. The former is due to the growing process of
the tree, which forms the rings, and the latter is because the tree’s anatomy
leads naturally to the radial characteristic of cracks and fungus growing. The
principal idea of the proposed method derives from this observation: we can
locate the pith at the intersection of the lines supported by radial structures and
the perpendiculars to the rings.

The angiosperm tree cross-section structure is slightly different, as seen in
Fig. 6e. Still, it is also formed of radially organized cells, with texture patterns
appearing at different pith radii. This produces visual macrostructures that allow
a similar approach to determine the pith position as depicted in the previous
paragraph.

Not always do those hypotheses stand out completely. Sometimes, the ring
structure can be highly (locally) deformed, as in the presence of a knot. Some-
times, there are no cracks or fungi present. However, in general, enough informa-
tion is produced by the ring structure and, eventually, by the presence of cracks
and fungi to estimate the pith location correctly.

Given an image of the tree cross-section, and using the spider web model
illustrated in Fig. 1.d, the APD approach pseudocode is described at Algorithm
1. The main steps are the following (see Fig. 3 for more details):

1. Local orientation detection (line 1 of Algorithm 1). To estimate the local ori-
entation (LO), we compute the 2D-Structure Tensor [1] ST [p] at each pixel
p using a window of size stw × stw. Pixels in the window are weighted by
a Gaussian kernel w of parameter stσ. The structure tensor is calculated as
ST [p] =

∑
r w[r]STxy[p − r] where STxy[p] is defined as

STxy[p] =
[

(Ix[p])2 Ix[p]Iy[p]
Ix[p]Iy[p] (Iy[p])2

]
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Algorithm 1: APD
Input: Imin, // RGB slice image;
Output: Pith location

1 STO, STC ← local orientation(Imin, stσ, stw)
2 LOf ← lo sampling( STO, STC , low, percentLO)
3 LOr ← LOf

4 for i in 1 to max iter do
5 if i > 1 then
6 LOr ← filter lo around ci(LOf , rf , ci), // See Figure 3.e

7 ci+1 ← optimization(LOr) // Equation 4
8 if ‖ci+1 − ci‖2 < ε then
9 ci ← ci+1

10 break

11 ci ← ci+1

12 return ci

where Ix[p] and Iy[p] are the first derivatives of image I in point p along x
and y, respectively. We can re-write the 2×2 structure tensor matrix at pixel
p as:

ST [p] =
[
J11 J12

J12 J22

]

The local orientation at pixel p is:

STO[p] =
1
2

arctan(
2J12

J22 − J11
) (1)

The coherence of the LO estimation in p is given by the relative value of ST[p]
eigenvalues λ1 and λ2 (where λ1 is the largest and λ2 is the smallest one):

STC [p] =
(

λ1 − λ2

λ1 + λ2

)2

(2)

The outputs of this step are two matrices: one of local orientations (STO)
and one of coherence (STC).

2. Local orientation sampling (line 2 of Algorithm 1). The LO estimations are
sampled in the following way: 1) STO and STC are divided in non-overlapping
patches of size low × low. 2) We find the pixel pj with the highest coherence
(cj

high) within patch patchi. A minimum patch coherence stth is defined. We
assign STO[pj ] to patchi in position pj , if cj

high > stth. To fix stth, we calculate
the value of STC such that a given percentage (parameter percentLO) of
the LO in the slice has STC > stth. Each LO is a segment loi = pi

1p
i
2,

defined by the limits pi
1 and pi

2. pi
LO is the middle point between them (pj).

Given the local orientation αi = STO[pi
LO], points pi

1 and pi
2 are computed as

pi
1,2 = pi

LO ± (cos(αi), sin(αi)). Suppose N patches have coherently enough
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LO; the output of the step is a matrix, LOf of size N ×4. In this way, lines are
supported by the LO of all meaningful structures in the cross-section, such
as the rings. The pseudocode of the step is described in the supplementary
material.

3. Find the center (line 7 of Algorithm 1). Given the filtered local orientation
matrix, LOr, we define the following optimization problem: find copt, the
geometrical position that maximizes the collinearity between the loi and a line
passing by copt and pi

LO. To this aim, we define the following cost function:

h(x, y) =
1
N

N∑

i=1

cos2(θi(x, y)) (3)

Figure 2 illustrates the vectors involved in computing Eq. 3. The angle
between pi

1p
i
2 and cpi

LO is θi. The pith position c of coordinates (x,y) is

the origin of a segment cpi
c. As cos(θi(x, y)) = <cpi

LO,pi
1pi

2>

|cpi
LO||pi

1pi
2| , the optimization

problem to be solved becomes:

copt = max
c

1
N

N∑

i=1

(
<cpi

LO, pi
1p

i
2>

|cpi
LO||pi

1p
i
2|

)2

s.t. c ∈ Slice Region

(4)

4. To find the global maximum (copt) of the former optimization problem, we use
the SLSQP1 algorithm [8]. Problem 4 has a global maximum and is unique
if it is restricted to the region of the wood cross-section. To initialize the
SLSQP method, we use the least squares solution of finding the point cini,
which minimizes the distance to all the lines in LOr within the slice.

5. Refinement (lines 4 to 11 of Algorithm 1). Once a candidate for the pith
location copt is obtained, the optimization procedure (4) is repeated using only
the local orientations within a squared region of size Sizeimage/rf centered
in copt (see Fig. 3.e). This step is repeated until the pith location doesn’t
move more than a given tolerance (ε = 10−5) or the iteration counter reaches
max iter = 5. This approach avoids distortions introduced by an asymmetric
tree ring growth pattern.

Fig. 2. Cost function definitions.

1 Using the python implementation in scipy.optimize.minimize method.
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4 APD-PCL: PClines Based Automatic Wood Pith
Detection

The APD method described in Sect. 3 works fine when the ring structure gives
enough information. In some (rare) cases, the ring structure is not visible due
to fungi or other perturbations. In those cases, it is possible to solve the same
problem using the lines supported by the radial structure of those perturbations
and the lines produced by the ring structure. Hence, the APD-PCL version of the
method is more robust and allows for the successful treatment of cross-sections
with highly degraded ring patterns. The price to pay is a slower algorithm, as it
includes a RANSAC-based clustering step.

Fig. 3. Principal steps of APD method (L04d image from UruDendro2 collection). (a)
Resized slice image, without background; (b) Sampled LO produced by the Structure
Tensor estimation; (c) Accumulation space defined by the LO supported lines; (d) Plot
of the cost function (Eq. 3), highest values in yellow; (e) Sub image built around the
solution c1 obtained after the first iteration; (f) Evolution of ci. The final solution is
in blue; previous iterations’ solutions are in red. (Color figure online)

The APD-PCL method selects which local orientations to consider in the
optimization problem of Eq. 4. In general, the estimation made by the structure
tensor calculation step is determined by the rings. Different perturbations also
produce some LO, but its number is minimal, and the lines they support don’t
converge to the pith. In some (rare) cases, the perturbations are so important
that they overshadow the ring structure. In those cases, the number of LO pro-
duced by the perturbations is more significant than those produced by the ring
structure. The set of perturbations-related LO can be of diverse origin: knots,
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fungi, cracks, and noise. Some of them (as fungi and cracks) have a typical radial
orientation, so the perpendicular lines to its LO converge to the pith. Consider-
ing this, we modify Algorithm 1, by including a post-processing step over matrix
LOf , between lines 2 and 3. The rest of the algorithm is the same:

1. Use the PClines transform [4] to convert each line into a point.
2. The PClines space is formed by two sub-spaces defined by a parameter d:

the straight space includes lines with orientations αi ∈ [0, π
2 ] and the twisted

space lines with orientations αi ∈ [π
2 , π]. As seen in Fig. 4, convergent lines in

the Euclidean space correspond to aligned points in the PClines spaces. This
allows the following steps:
(a) Lines supported by LO produced by the ring structure converge some-

where around the pith. They produce a line-shaped cluster in the PClines
spaces (Figs. 4b and c). Working only in the [−d, 0] and [0, d] ranges for
the twisted and straight sub-spaces, we select the aligned points using a
RANSAC [5] approach. This avoids the use of points near the infinity. We
select the converging lines in each sub-space, excluding those simultane-
ously selected in both.

(b) The previous step clusters all convergent LOf in the image producing
the set LOring. We rotate by 90◦ all the orientations in LOf and repeat
the previous procedure to detect the converging ones. These rotated con-
verging lines cluster, LOradial, are produced by cracks, fungi, or similar
structures. Adding both gives the set:

LOPClines
f = LOring + LOradial

.
(c) To make the line segment selection method more robust, we add a third

PClines transform using the lines supported by LOPClines
f . Most ring-

related LO and rotated LO generated by radial structures are expected
to converge (hence, to form a line cluster in the PCline space). Therefore,
most of the outliers should be removed at this step.

Fig. 4. Use of PClines to cluster converging local orientations for slice F07e. (a)
Local orientations; (b) Selection of the converging segments in the twisted space using
RANSAC to fit a line (in red). Inliers are colored in green; (c) The same procedure is
applied in the straight space; (d) In blue, the converging LO (inliers from both sub-
spaces) and the LO to be removed in red. (Color figure online)
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Figure 5 illustrates the considered lines and the accumulation space of Eq. 3
without and with the PClines step. Note how the method filters out many non-
convergent lines and regularizes the cost function.

The APD-PCL method is similar to the APD one, but the PClines-based
filtering step diminishes the number of considered lines, filtering out many non-
convergent ones.

5 APD-DL: Deep Learning Based Automatic Wood Pith
Detection

In Sects. 3 and 4, we tackle the pith detection problem using a spider web model,
as in the “classic” image processing approaches. Now, we present a Deep-learning
approach that learns the model from the data. Inspired by Kurdthongmee et al.
[10], who used a YoloV3 model, we train a YoloV8 [6] network using the datasets
described in Sect. 6. This is an architecture tailored for object detection and
segmentation. To train the model, we need to supply a dataset of wood cross-
section images, each labeled with the ground truth pith location indicated by a
bounding box, where the bounding box size is one-tenth of the image dimensions.

Fig. 5. LO Accumulation space and cost function for slice F07e with and without
applying the PClines filtering method. (a) LO Accumulation space without filtering;
(b) cost function without filtering; (c) LO Accumulation Space with PClines filtering;
(d) cost function with PClines filtering.

We divide the data into five sets and use five-fold cross-validation. In each
fold i, we use one set (testi) for testing and the other four for training. The
training process in each fold is done as usual, and we use the produced model
to label the data in testi. The process is repeated for all the folds. In the end,
we have predictions for all the data, and in each case, the used model was
generated without the influence of the testi data. With the predictions for all
images produced in this manner, we can deliver the metrics to determine the
method’s performance.

Table 1 shows the results using normalized errors (see Sect. 7.2). Training
with such a high diversity of data produces state-of-the-art results. Results over
each row (collection) are calculated using the predictions and the bounding box
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Table 1. Prediction results of 5-fold cross-validation for the APD-DL. The second to
fourth columns show the Mean (and standard deviation in parenthesis), Median, and
Maximum normalized error (defined in Sect. 7.2) values. The last column shows the
false negatives. We use all the datasets together to train the model and calculate the
performance within each dataset.

Collection Mean (Std) Median Maximum FN

Uru2 0.55 (1.45) 0.18 11.32 2

Uru3 0.13 (0.06) 0.13 0.27 0

Kennel 0.14 (0.07) 0.13 0.24 0

Forest 0.45 (1.85) 0.12 13.91 0

Logyard 0.52 (1.29) 0.27 7.51 0

Logs 0.22 (0.46) 0.13 4.42 1

Discs 0.23 (0.54) 0.14 5.67 0

All 0.33 (1.01) 0.14 13.91 3

center, produced during the five-fold cross-validation with all the images in the
seven datasets. In some rare cases, this approach doesn’t give a prediction (hence
a false negative). In those situations, the method provides the center of the image
as the pith position. This explains the relatively large value of the Maximum
error and the differences between the Mean and Median errors. Besides the rare
false negatives, the results are excellent. The last row depicts the results for all
the collections.

Hyperparameters The algorithm was trained with 640 pixels width images
(keeping the aspect ratio), using a batch size of 16, for 100 epochs, with the
optimizer AdamW [13] (lr = 0.002, momentum = 0.9) and yolov8n as pre-
trained weights. All the network was re-trained.

6 Datasets Description

We use the following datasets:

– UruDendro. We introduce here a new public dataset with two collections of
wood cross-section samples with experts’ annotated ground truth [15]:

• UruDendro2: 119 RGB images of Pinus taeda slices. This collection
includes 64 images taken under different illumination conditions and cam-
eras, published in 2022 on our website [15], now increased with 55 new
images taken in laboratory conditions, with an iPhone 6S phone (12 Mpx
camera) at a distance between 43 and 51 cm from the slice, under con-
trolled illumination with a led ring of 35 W. Size images range between
1000 and 3000 pixels in width. Slice’s surface presented different condi-
tions: some were cut by chainsaw, smoothed by a handheld planner, and
polished with a rotary sander. All images are annotated by at least one
expert with the position of the pith.
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Fig. 6. Examples of the used datasets. Species are (a–d) Douglas fir, (e) Gleditsia
triacanthos, (f) Abies alba. Acquisition conditions: (a–c) in the field, with a smartphone
camera; (d–e) in the laboratory, with controlled illumination. The samples (d–e) were
previously sanded and polished. Images (a–c) didn’t have any special treatment.

• UruDendro3: 9 RGB images of Gleditsia triacanthos, an angiosperm,
acquired in a laboratory, without illumination-controlled conditions, using
a Huawei P20 Pro smartphone (24 Mpx camera) at a distance of approxi-
mately 1 m from the slice. Size images range between 1000 and 2000 pixels
in width. All the slices were polished. All these images are annotated by
at least one expert with the position of the pith.

– Kennel [7]. A public dataset with 7 RGB 1280 pixels squared images of Abies
alba, polished and acquired in controlled illumination laboratory conditions.
The pith pixel location is provided as metadata.

– TreeTrace [12]. It is a public dataset, with samples of Douglas fir taken at
different stages of the wood process chain, and the pith pixel location provided
as metadata. Each image has several wood slices. To build the collections, we
extract sub-images containing one slice each, producing images between 1000
and 3000 pixels in width. This dataset includes the following collections:

• Forest, 57 RGB images taken from the freshly cut logs with a digital
camera.

• Logyard, 32 RGB images of the same log ends, acquired with a smart-
phone in the sawmill courtyard several days after the cutting.

• Logs, 150 RGB images acquired in the sawmill with a smartphone.
• Discs, 208 RGB images acquired with a 400 dpi scanner from sanded and

polished slices after several weeks of air-drying.

Table 2 summarize the used datasets. Figure 1 show images from the Uru-
Dendro2 dataset, and Fig. 6 show examples from the other collections. These
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Table 2. Datasets description.

Collection Number of images Specie

UruDendro2 119 Pinus taeda

UruDendro3 9 Gleditsia triacanthos

Kennel 7 Abies alba

Forest 57 Douglas fir

Logyard 32 Douglas fir

Logs 150 Douglas fir

Discs 208 Douglas fir

datasets convey a high degree of variability. It includes examples of gymnosperm
(Pinus taeda, Abies alba and Douglas fir) as well as angiosperm (Gleditsia tria-
canthos). Acquisition conditions are also diverse, including images obtained with
a smartphone in the forest and the sawmill. Samples were acquired in the field
with dirt, sap, or saw marks, and others were obtained in controlled illumina-
tion conditions in the laboratory from polished samples. The samples include
perturbations as fungi, cracks, and knots, as can be seen in Fig. 1 and sap and
saw marks (Fig. 6b and Fig. 6d). All have the ground truth position of the pith.
Considering all datasets, we work with 582 images.

7 Results and Discussion

7.1 Preprocessing

Sometimes, the images are acquired in the field with a smartphone camera, and
one image can contain more than one cross-section. Regardless of the method
used, all images are preprocessed in such a way as to standardize the image
input:

1. Background substraction. Produce a new image limited to one slice. To this
aim, when possible, we filter out the background using the mask provided
in the datasets. If the mask is not provided, we use a deep learning-based
method [20], which uses an U2Net to segment salient objects.

2. Resize the image. This step, which is not strictly necessary, allows us to fix
the algorithm’s parameters once and for all. All images are resized to 640
pixels width, respecting the original image’s aspect ratio using Lanczos inter-
polation.2

2 We impose this restriction due to the GPU memory limitations encountered during
the training of the APD-DL method.
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7.2 Normalized Errors

Given the cross-sections’ diverse dimensions, presenting the errors in pixels is
not informative. Additionally, not all datasets provide millimeter pixel relations.
We use the percentage of the equivalent slice radius. Given a prediction Pi and
a Ground Truth GTi, this error is calculated as follows:

Erri =
100 × Dist(Pi, GTi)

Equivalent radii(imagei)

Where Dist(Pi, GTi) is the Euclidean distance between the prediction and
the Ground Truth, in pixels, remember that the pith is modeled as a point in the
image within this work. Therefore, Dist(Pi, GTi) is the distance between points.
Equivalent radii(imagei) (in pixels) is half the biggest side of the rectangle that
circumscribes the slice.

7.3 Experiments

The method to fine-tune the APD-DL method is explained in Sect. 5. To deter-
mine the best parameters’ values for ACO, LFSA, APD, and APD-PCL, we
minimize the average of Euclidean distances between ground truth and predic-
tions for all used datasets.

For the APD and APD-PCL methods, the parameters ransac outlier th
(0.03), stσ(1.2) and rf (7) were set after experiments over a few images. The fixed
values are shown in parentheses. The rest of the parameters, percentLO, stw
and low were set searching the minimum over the following grid: percentLO in
[0.3, 0.5, 0.7, 0.9], stw in [3, 7, 9, 11] and low in [3, 7, 9, 11].

Inferences were made using an Intel Core i5 10300H workstation with 16 GB
and a GPU GTX1650 (when needed).

7.4 Results

In this section, a performance comparison is made between the mentioned meth-
ods. Table 3 shows the performance of the proposed methods and two state-of-
the-art ones [3,21], over the datasets presented in Sect. 6. To compare different-
size wood cross-sections, we use the mean error and standard deviation using

Table 3. Results on all the datasets. Normalized errors. We show the mean error and
the standard deviation between parenthesis.

UruDendro2 UruDendro3 Kennel Forest Logyard Logs Discs

LFSA [21] 1.03 (0.85) 1.46 (0.97) 0.42 (0.18) 0.80 (0.36) 1.02 (0.62) 0.80 (0.46) 0.72 (0.43)

ACO [3] 2.23 (6.64) 4.52 (11.96) 0.2 (0.06) 0.24 (0.24) 0.60 (1.11) 0.46 (0.45) 0.24 (0.35)

APD-PCL 0.42 (0.34) 0.74 (0.54) 0.19 (0.10) 0.81 (0.98) 0.82 (0.84) 0.52 (0.47) 0.46 (0.57)

APD 1.02 (2.45) 0.55 (0.30) 0.14 (0.06) 0.22 (0.18) 0.35 (0.17) 0.29 (0.33) 0.26 (0.42)

APD-DL 0.55 (1.45) 0.13 (0.06) 0.14 (0.07) 0.45 (1.85) 0.52 (1.29) 0.22 (0.46) 0.23 (0.54)
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normalized errors. The performance of the methods differs for each collection
due to its specific characteristics regarding species, acquisition conditions, etc.
Note that ACO was developed (and tailored) for the TraceTree collections. Its
performance degrades when tried on other species (such as UruDendro collec-
tions). LFSA performance is more regular across collections. The three methods
proposed in this paper outperform ACO and LFSA on all collections. APD and
APD-DL perform better for almost all collections. APD outperforms APD-PCL
for all collections except UruDendro2, which has some images with fungi and
cracks overshadowing the ring structure. Note that in all the cases, the precision
of the pith detection is very high.

Table 4. Results of all the methods over the whole set of images, i.e., merging all
collections. Normalized errors, number of false negatives, and execution time in mil-
liseconds.

Method Mean Median Max FN Time

LFSA [21] 0.83 0.72 5.03 0 627

ACO [3] 0.79 0.21 36.39 2 918

APD-PCL 0.52 0.34 4.33 0 2339

APD 0.42 0.19 15.44 0 784

APD-DL 0.33 0.14 13.91 3 209

Table 4 compares the performance of all tested methods using the 582 images
of all collections. All methods presented in this paper outperform LSFA and
ACO methods. The APD performance is surpassed only by the APD-DL method
but at the cost of some false negatives: images in which APD-DL didn’t find a
solution. We can see that APD slightly outperforms the APD-PCL method.
This is due to the RANSAC algorithm used to cluster points in the PClines
space. When there is no apparent clustering of points around a line, RANSAC
tries to fit a line anyway, selecting a wrong set of LO and producing a wrong
pith localization. This situation sometimes appears in the TreeTrace dataset.
Considering each method’s mean processing time per image, we must stress that
APD-DL and ACO methods run on GPU, while APD, APD-PCL, and LFSA
run on a CPU machine. Note that APD is roughly three times faster than APD-
PCL. All in all, it is remarkable that the “classic style” model-based proposed
methods (APD and APD-PCL) and a Deep Learning one (APD-DL) have similar
performance and execution times, allowing real-time applications with a CPU in
the APD and APD-PCL cases. In the supplementary material, we add showcases
illustrating how the different methods work under extreme conditions.

8 Conclusions and Future Work

This paper addresses the wood pith detection on tree slices problem using clas-
sic image processing and machine learning-based approaches. Both approaches
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are determined by the characteristics of the data used to tune the algorithm.
In search of a more general solution, we use a set of diverse datasets, which
spans different species, acquisition conditions, and perturbations (from cracks
and knots to saw marks and dirt for images acquired on the field).

We proposed three real-time methods. The first two are based on a spider
web model in a classic image processing approach, and the third one is a Deep
Learning method. The former has excellent performance and runs in real-time on
a CPU-based machine, and the model allows a clear comprehension of the app-
roach. The limited number of parameters is understandable and can be fixed once
and for all. The latter has better (although similar) performance but has some
false negatives and is more opaque concerning the meaning of its millions of
parameters.

The UruDendro dataset, with annotated images of Pinus taeda (a gym-
nosperm) and Gleditsia triacanthos (an angiosperm), are presented and can be
used by the community to test other approaches to this problem.
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Abstract. Segmenting the most prominent objects in a scene using a
pair of color and depth images requires the model to learn effective mul-
timodal fusion. Despite an explosive number of recent studies, a signifi-
cant problem remains underestimated: datasets have been labeled from
people’s subjectivity, thus lacking consistency in determining the most
prominent objects, while one picture can contain numerous sets of salient
objects. To tackle this issue, we propose a multi-ground truth approach
for RGB-D Saliency Detection (dubbed S-MultiMAE) that combines
multi-perspective tokens to guide the model to create various desirable
predictions and a masked autoencoding pretraining task (inherits Multi-
MAE) to achieve a superior multi-model synthesis of color and depth
images. We conducted extensive analyses on both multi- and single-
ground truth benchmarks on the COME15K dataset to demonstrate the
effectiveness of our proposed method. The source code is available at
https://github.com/thinh-re/s-multimae.

Keywords: RGB-D · Saliency Detection · Multimodal

1 Introduction

The main goal of Salient Object Detection (SOD) is to find and segment the most
visually prominent objects in a scene. Multi-ground truth SOD involves each
scene having different sets of salient objects, hence multiple ground truths per
scene. RGB-D salient object detection (RGB-D SOD) task uses two modalities:
a color modality (provide texture information) and a depth modality (provide
geometric structures and extra contrast cues). Additional depth maps contribute
crucial supplemental information for handling complex environments, such as
low-contrast salient objects with similar appearances to the background. Con-
volutional neural network (CNN) approaches (e.g., BBS-Net [13], CMINet [46])
achieve significant RGB-D SOD performance by fusing color (RGB) informa-
tion and additional depth information. Recently, Transformer [38] was used in

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15317, pp. 16–29, 2025.
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Fig. 1. Single-ground truth approach (single-GT, left) and Multi-ground truth app-
roach (multi-GT, right)

TriTransNet [24], GroupTransNet [14], and SwinNet [23] to learn better global
long-range semantic information.

Despite an enormous number of recent studies, two major issues are still
underappreciated: Firstly, there has been an inconsistent convention about deter-
mining which objects are the most attractive in complex scenes. This leads to one
scenario that may have multiple accepted salient objects. Inconsistent ground
truth annotations can perplex the model during training, leading to undesirable
outcomes like blurred regions or wrong salient objects. Most existing RGB-D
SOD models [40,41,43,44] are rigid, predict only one saliency map per scene.
Secondly, the majority of RGB-D SOD models operated a feature extractor
separately for each modality and a middle multi-level features fusion method.
This design restricted the model to initializing pre-trained weights from solely
single-modal pretraining, thus requiring the creation of a successful fusion model
to incorporate information from color and depth branches. Thanks to a multi-
modal masked auto-encoding pretraining technique (influenced by MultiMAE
[2]), during pretraining, the model learns feature extraction and multimodal
fusion simultaneously and generalizes satisfactorily for downstream tasks (e.g.,
RGB-D SOD task).

Our main contributions can be summarized as follows:

– We introduce a novel S-MultiMAE method that combines the powerful
multi-modal fusion model inherited from MultiMAE [2] and effective multi-
perspective signals to address the Multi-ground truth RGB-D SOD task.

– The fusion model learns cross-modal predictive coding among two modalities
(color and depth images), which improves the robustness of saliency predic-
tors. The multi-perspective signals guide the model to output desirable sets of
salient objects in each scene, overcoming the limitation of inconsistent ground
truth annotations in complex scenes.

– Extensive experiments demonstrate our proposed method’s effectiveness in
multi-ground and single-ground truth benchmarks on the COME15K dataset.
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2 Related Works

2.1 RGB-D Salient Object Detection

Combining the depth and color modalities has significantly improved salient
object detection since the depth image provides more reliable spatial structure
information and is insensitive to the variations of light and colors.

Different from an instance segmentation task, which aims to predict the
regions of all instances belonging to predefined classes that appear in the scene,
SOD focuses only on a smaller set of objects that are visually attracted and
prominent in a scene. In addition, the original instance segmentation task [17] is
often limited by the number of predefined classes (e.g., cats, dogs), while SOD
is not bounded by predefined classes since any object can potentially become
prominent in a scene, ranging from common objects (e.g., people, cats, and
dogs) to rare objects (e.g., musical instruments, ancient artifacts, toys, and glass
candle holders).

The limitation of CNN in learning global long-range dependencies directs
methods toward Transformer-based architecture. Due to its high computational
cost, TriTransNet [24], GroupTransNet [14], and CAVER [29] surrogated Trans-
former architecture make it suitable for RGB-D SOD tasks. TriTransNet pro-
poses the triple transformer embedded module to learn cross-layer long-range
dependencies to enhance high-level features. GroupTransNet proposed a Group
Transformer Network in which energy weights outside groups pursue various
features, whereas energy weights within groups pursue the consistency of fea-
tures. CAVER constructed a top-down Transformer-based information propaga-
tion path by cascading several cross-modal integration units. SwinNet [23] made
use of the Swin Transformer backbone, which absorbed CNN’s local advantage
and the Transformer’s merit of long-range dependency.

2.2 Self-supervised Representation Learning

Over the past few years, the focus has steadily changed from pretraining models
in a supervised learning manner (e.g., image classification) to self-supervised
learning (SSL) by leveraging massive unlabeled datasets. Many pretraining tasks
have been applied for self-supervised learning, such as image inpainting [30],
clustering [5], and image colorization [19]. Practical SSL pretraining tasks can
promote models to learn useful semantic features for downstream tasks.

A masked autoencoder, also known as a denoising autoencoder [39], predicts
a property of masked input from unmasked input content. Masked autoencoders
revived success in recent MAE [16] inspires numerous works to apply it in various
applications, such as video (VideoMAE [37]), generative models (MAGE [21]),
multi-model multi-task learning (MultiMAE [2]).

Original MAE learns to reconstruct missing pixels in randomly masked image
patches using only input from a visible subset of patches. MultiMAE applied this
technique to multiple modalities (e.g., color, depth, and semantic segmentation).
Inspired by MultiMAE, our method applies pretraining to dual-modality (color
and depth images).
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Fig. 2. Our proposed method for Multi-Ground truth RGB-D SOD with different per-
spective signals (generated from a cosine function) going through a shared saliency
processor to produce different saliency outputs.

3 Our Proposed Method

In this section, we explain how multi-perspective signals are used to solve Multi-
Ground truth RGB-D SOD tasks (Sect. 3.1), review the optimized version of
MultiMAE used in the shared saliency processor (Sect. 3.2), and finally describe
a pretraining technique (Sect. 3.3).

3.1 Multi-perspective Signals

Most existing single-GT RGB-D SOD models modeled classification as the prob-
ability of each output pixel given some input, Prθ(y|I) parameterized by the
weights θ, where I is a series of color and depth features, and y is a binary class
(i.e., y = 1 when this pixel belongs to salient objects, otherwise y = 0). To adapt
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to multi-ground truth, we model saliency detection as a conditional generation
by appending a perspective signal, P , such that the model learns to maximize
the likelihood of the correct y per pixel, Prθ(y|[I, P ]).

The j-th scene has nj perspective signals, each corresponding to one set of
salient objects (i.e., one GT). The number of perspective signals varies among
various scenes depending on their complexity. (e.g., in the COME15K dataset
[46], a simple scene can contain only one set of prominent objects, but a highly
complicated one can contain up to five sets).

Each perspective signal is a sequence of numbers sampled from a cosine
function in one complete cycle. To adapt the perspective signals for different
numbers of sets of salient objects (i.e., multi-GT), we distribute their starting
phase evenly within a single cycle. For instance, if a scene has three GTs, three
perspective signals have the starting phases at 0, π

3 , and 2π
3 , respectively. This

constraints the maximum number of GTs the model can generate in each scene
and implicitly forces the model to learn the underlying number of possible sets
of salient objects that each scene can have.

To make the multi-perspective signals less rigid, during the training process
of RGB-D SOD tasks, each signal is sampled from a Gaussian distribution (i.e.,
N (μ, σ2)) around its phase. For instance, with the scene having 3 GTs, the
second perspective signal is selected randomly from the Gaussian distribution
N (μ = π

3 , σ2).
The formula for the i-th perspective signal in the j-th scene is built as follows:

MLP

([
A × cos

(
2π × 0

d
+ i × T

)
,

A × cos
(

2π × 1
d

+ i × T

)
,

...

A × cos
(

2π × d − 1
d

+ i × T

)])
(1)

where A is the amplitude of a cosine function, d indicates the token dimen-
sion, i is the order of the perspective token, and T = 2π

nj
is the difference in the

starting phase.

3.2 Saliency Processor

Our saliency processor utilizes a Vision Transformer encoder [9] for a cross-
modal fusion and ConvNeXt [25] as a saliency predictor. The saliency processor’s
weights and a pair of color and depth images are shared among multiple perspec-
tive signals for each scene. Firstly, color and depth images are split into fixed-size
patches, which subsequently are added 2d positional embeddings. These tokens
are concatenated in the following order: color tokens, depth tokens, and perspec-
tive tokens. Then, the encoding tokens, color, and depth tokens are fed to the
decoder to predict the regions of salient objects, whereas all perspective tokens
are disregarded.
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3.3 Pretraining Multimodal Masked Autoencoding Task

Similar to MultiMAE [2], we randomly select a small portion of patches from
input modalities and encode them using a ViT encoder. The objective is to
reconstruct the masked-out patches using task-specific decoders. The pretraining
MultiMAE helps the model learn spatial predictive coding (in-painting within
RGB and depth images) and cross-modal predictive coding (reconstructing tasks
from multiple input modalities).

3.4 Loss Function

Given the color image X ∈ R
H×W×3 and its corresponding depth image Y ∈

R
H×W×1, by conditioning on perspective tokens Zi ∈ R

d×NP , our model predicts
a saliency map Si ∈ [0, 1]H×W×1. Let Gi ∈ {0, 1}H×W×1 denote the i-th binary
ground-truth saliency map. Our loss is the binary cross entropy loss (BCE)
between the predicted saliency maps and their corresponding binary ground-
truth saliency maps.

L = BCE(Si, Gi) = −[Gi log (Si) + (1 − Gi) log (1 − Si)] (2)

where Si = fθ(X,Y,Zi). The loss is performed on the pixel level as we treat all
pixels equally.

4 Experiments

4.1 COME15K Benchmark

Table 1. Percentages of the number of ground truths in the COME15K dataset.

1 GT 2 GTs 3 GTs 4 GTs 5 GTs

COME8K (8025 samples) 77.61% 1.71% 18.28% 2.24% 0.16%

COME-E (4600 samples) 70.5% 1.87% 21.15% 5.70% 0.78%

COME-H (3000 samples) 62.3% 2.00% 25.63% 8.37% 1.70%

The COME15K dataset [46] contains a total of 15,625 samples, including
COME-8K (8025 samples), “normal” subdataset COME-E (4600 samples), and
“difficult” subdataset COME-H (3000 samples) under multi-ground truth anno-
tations (Table 1). Each scene contains a pair of color and depth images, and
a fixed number of ground truths. This dataset allows us to explore the capac-
ity of RGB-D Saliency Detection models when scenes become more diverse and
complex. We evaluate on ten datasets (approximately 12K samples): COME-
E, COME-H, DES [7], DUT-RGBD [33], LFSD [20], NJU2K [18], NLPR [31],
ReDWeb-S [22], SIP [12], and STERE [27].
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Fig. 3. S-measure by the number of GTs. Fig. 4. An example where our model
thinks there are only 3 different sets of
salient objects but we input 5 multi-
perspective signals.

4.2 Evaluation Metrics

We use four metrics to evaluate the effectiveness of different methods quantita-
tively. MAE [32] (M) shows the average absolute pixel inaccuracy. S-measure
[10] (Sm) concentrates on object-aware and region-aware structural similarities
between the predicted salient map and the ground truth where α is set to 0.5
to assign equal constraints to both. F-measure [1] (Fβ) is a region-based simi-
larity metric with recall and precision as its foundations where β is set to 0.3 to
emphasize precision more than recall as suggested in [4]. E-measure [11] (Em)
is defined as local pixel matching in addition to image-pixel statistics.

4.3 Implementation Detail

Our strategy consists of two sequential phases: pretraining with masked predic-
tion task and finetuning with RGB-D saliency prediction task. Both phases use
a similar image resolution 224 × 224 with a patch size of 16 × 16 pixels.

Pretraining Phase. The models were trained with masked image prediction
from 1.5M pairs of color and depth images on 10 RGB-D SOD datasets, NYU-
depth-v2 [8] dataset, and 1.28M images from ImageNet1K [36] dataset (with
pseudo-depth images generated from DPT-Hybrid [35]). The AdamW [26] opti-
mizer was used with base learning rate 10−5 and weight decay 0.05. The batch
size was set to 512 when the models were trained for 100 epochs using 4 V100
GPUs with automatic mixed precision enabled. To reduce training costs, the ViT
encoder was initialized by pre-trained weights from MAE [16]. The pretraining
stage do not include any perspective token.
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Finetuning on Multi-ground Truth RGB-D SOD Datasets. Pretrained
weights acquired during the pretraining phase are used as the initialization for
the models for the RGB-D SOD task. Since the designs of the decoder in the
pre-trained and finetuning stages are different, only the pre-trained weights in
the encoder are retained, and the decoder must be trained from scratch. The
learning rate in the encoder is kept low (at 10−7), while the learning rate in the
decoder is set higher than 100 times (at 10−5), preserving the efficiency of the
multimodal fusion. We apply the linear learning rate decay, gradually decreasing
the learning rate until 10−8. Like the pretraining stage, the AdamW optimizer
[26] is used with weight decay 0.05. We implement conventional SOTA methods
as follows: each method consists of five weights-separated models (i.e., the same
structures but differences in the weights), in which each model learns a distinct
set of salient objects.

Evaluation Phase. Every SOTA method is expected to yield five saliency maps
in each scene for evaluation. For each ground truth, we select the best one out of
five based on mean-absolute-error between saliency maps and that ground truth.
Afterward, with the best saliency map found, we compute the remaining scores of
Sm, Fβ , and Em (Tables 2 and 4). In the case of the conventional SOTA method,
five separate models are all used to generate five saliency maps in each scene.
Our proposed method only needs one model (instead of five) since our model can
produce five saliency maps simultaneously by passing 5 multi-perspective signals
to the model. Although during the training process, our models can implicitly
learn the underlying number of GTs per scene (Sect. 3.1), it would be costly to
find the maximum number of distinct saliency maps per scene. Instead, Fig. 3
shows that if the model thinks there are only 3 possible sets of salient objects,
passing 5 multi-perspective signals to the model would result in only 3 distinct
sets. The second (at 2π

5 ) and the third (at 4π
5 ) predictions having the same set of

salient objects (i.e., a bottle of wine in the middle), whereas the fourth (at 6π
5 )

and the fifth (at 8π
5 ) predictions have the same saliency map (i.e., two glasses).

Finally, the first prediction (at 0) has a different saliency map (i.e., both two
glasses and a bottle of wine).

4.4 Comparison with SOTA RGB-D Models

Quantitative Comparison PySODMetrics [28] calculates the quantitative
results.

Under the multi-ground truth setting, Table 2 shows the potential of our app-
roach that only one ViT-L model consisting of 328M parameters outperforms the
combination of five distinct models of AFNet [6] (added up to 1.27B parameters
in total). Specifically, our large model gains 15.625% M , 0.65% Sm, 0.22% Fβ ,
and 0.21% Em over the second-best method AFNet.

Under the single-ground truth setting, Table 3 shows that our base model
(with the ViT-B backbone) achieves competitive results with the second-best
method AFNet [6]. Our large model (ViT-L) outperforms the others in all four
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Table 2. Top-5 Multi-ground truth benchmark on COME15K datasets. RED,
GREEN, and BLUE are used to highlight the top three results.

METHOD
HiDANet23 PopNet23 HINet22 AFNet23 RFNet23 TBINet23 Ours*

[41] [43] [3] [6] [42] [40] [ViT-B] [ViT-L]

Num. distinct models 5 5 5 5 5 5 1 1

Num. params 224M × 5 131M × 5 98.9M × 5 254M × 5 90.8M × 5 1.7M × 5 108M 328M

Input size 354 × 354 384 × 384 354 × 354 354 × 354 354 × 354 354 × 354 224 × 224 224 × 224

COME-E

M ↓ 0.020 0.022 0.030 0.023 0.021 0.022 0.026 0.019

(4600)

Sm ↑ 0.935 0.933 0.924 0.935 0.933 0.930 0.928 0.935

Fβ ↑ 0.935 0.929 0.903 0.925 0.926 0.926 0.901 0.927

Em ↑ 0.963 0.961 0.939 0.962 0.960 0.961 0.943 0.960

COME-H

M ↓ 0.040 0.041 0.054 0.037 0.041 0.041 0.040 0.030

(3000)

Sm ↑ 0.902 0.902 0.886 0.910 0.901 0.898 0.908 0.918

Fβ ↑ 0.904 0.901 0.871 0.904 0.895 0.897 0.882 0.914

Em ↑ 0.935 0.932 0.905 0.941 0.931 0.932 0.922 0.945

DUT-RGBD

M ↓ 0.021 0.027 0.039 0.020 0.030 0.022 0.037 0.016

(400)

Sm ↑ 0.945 0.937 0.926 0.952 0.931 0.944 0.939 0.958

Fβ ↑ 0.945 0.928 0.906 0.944 0.916 0.940 0.895 0.951

Em ↑ 0.968 0.958 0.934 0.972 0.953 0.968 0.932 0.975

ReDWeb-S

M ↓ 0.086 0.096 0.104 0.079 0.087 0.090 0.073 0.068

(1000)

Sm ↑ 0.797 0.782 0.782 0.828 0.799 0.797 0.841 0.840

Fβ ↑ 0.803 0.779 0.759 0.828 0.794 0.802 0.808 0.829

Em ↑ 0.837 0.808 0.795 0.867 0.829 0.838 0.853 0.863

Average

M ↓ 0.032 0.034 0.047 0.032 0.034 0.035 0.034 0.027

(11964)

Sm ↑ 0.914 0.912 0.896 0.918 0.912 0.908 0.918 0.924

Fβ ↑ 0.913 0.907 0.873 0.908 0.903 0.903 0.889 0.915

Em ↑ 0.944 0.940 0.911 0.947 0.940 0.941 0.931 0.949

Table 3. Single-ground truth benchmark on COME15K datasets. RED, GREEN,
and BLUE are used to highlight the top three results.

A2Dele20 JLDCF20 UCNet20 BBS-Net21 CMINet22 HINet23 AFNet23 RFNet23 TBINet23 HiDANet23 PopNet Ours

[34] [15] [45] [13] [46] [3] [6] [42] [40] [41] [43] [ViT-B] [ViT-L]

M ↓ 0.077 0.057 0.057 0.057 0.049 0.065 0.047 0.056 0.052 0.052 0.052 0.045 0.038

Sm ↑ 0.802 0.869 0.868 0.874 0.885 0.859 0.890 0.871 0.876 0.874 0.876 0.897 0.906

Fβ ↑ 0.800 0.846 0.847 0.849 0.873 0.826 0.878 0.853 0.864 0.869 0.864 0.873 0.895

Em ↑ 0.847 0.893 0.900 0.893 0.912 0.878 0.921 0.899 0.910 0.908 0.906 0.916 0.933

Table 4. Multi-ground truth benchmark (diversity test). RED, GREEN, and BLUE
are used to highlight the top three results.

METHOD
HiDANet23 PopNet23 HINet22 AFNet23 RFNet23 TBINet23 Ours*

[41] [43] [3] [6] [42] [40] [ViT-B] [ViT-L]

COME-E

M ↓ 0.068 0.068 0.073 0.068 0.066 0.062 0.049 0.039

(7562 sets in 4600 scenes)

Sm ↑ 0.828 0.825 0.820 0.830 0.829 0.829 0.848 0.862

Fβ ↑ 0.768 0.760 0.740 0.763 0.763 0.767 0.757 0.798

Em ↑ 0.861 0.859 0.842 0.861 0.860 0.867 0.860 0.887

COME-H

M ↓ 0.091 0.089 0.098 0.087 0.088 0.083 0.065 0.050

(5555 sets in 3000 scenes)

Sm ↑ 0.793 0.792 0.783 0.801 0.796 0.794 0.825 0.844

Fβ ↑ 0.727 0.722 0.698 0.729 0.724 0.726 0.724 0.773

Em ↑ 0.831 0.829 0.809 0.837 0.831 0.837 0.836 0.871

criteria. In particular, our large model gains 19.15% M , 1.80% Sm, 1.94% Fβ ,
and 1.30% Em over the second-best method AFNet.
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Moreover, Fig. 3 shows that as the number of GTs per scene increases, the
overall performance of all models drops, but the S-measure scores of our ViT-L
and ViT-B models remain relatively higher than other SOTA methods’.

Qualitative Comparison. Figure 5 shows three complex scenes presenting two
examples in which our models perform best and one case in which our models
perform worst when compared to other SOTAs. Some of our predictions have
S-measure scores slightly lower than other SOTAs’, but the average S-measure
scores are significantly higher than other SOTAs’ since our models predict more
diverse and correct sets of salient objects (e.g., 0.966 Sm of our second prediction
is slightly lower than 0.976 Sm of RFNet and 0.967 Sm of HiDANet, but our
average score is substantially greater). Diversity is crucial in the multi-ground
truth settings.

4.5 Ablation Studies

Contributions of Pre-Trained Self-supervised Methods in Multimodal
Fusion Process. We analyze in Table 5 about weights initialization from dif-
ferent pre-trained paradigms, including:

(1) MultiMAE : a self-supervised learning paradigm and pre-trained with an
image mask prediction task but with three modalities including additional
semantic segmentation modality, about two half of the training data is
pseudo-generated.

(2) S-MultiMAE : a modified version of MultiMAE but with two modalities
including color and depth.

(3) MAE : a simplified version of MultiMAE and the same as MultiMAE but
with only one modality.

(4) Supervised ViT : a supervised learning paradigm with an image classification
task, pre-trained on Image1K.

(5) Non-pretrained ViT : trained from scratch with random initialization.

As can be seen in Table 5, with a 75% mask ratio, MAE and MultiMAE have
improved the saliency prediction tasks over the supervised learning paradigms.
Although the results indicate that MultiMAE performs marginally better than
MAE, neither of the two pretrained methods has yet reached state-of-the-art
due to the following likely causes: Firstly, because MAE training only employs
one modality (i.e., RGB), it can only learn the feature representation of that
modality and has a restriction on the dual-modality fusion (i.e., RGB-D), which
is essential for RGB-D applications; Secondly, Although MultiMAE allows for
multimodal fusions (i.e., RGB-D-Semantic Segmentation), the majority of the
training data is made up of images that were both generated artificially and came
from a single source (color images). As a result, the models do not adequately
account for the complex semantic contexts between modalities, which lowers
their ability to perform RGB-D tasks.
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Fig. 5. Qualitative comparison between our S-MultiMAE and existing SOTA methods
under the multi-ground truth setting includes our two best-case scenarios and one
worst-case scenario with each having three different GTs. A number on top of each
prediction indicates Sm score. The text is for interpretation only and not used as an
input to the model.

Table 5. Ablation study: Weights initialization from different pre-trained paradigms.

S-MultiMAE MultiMAE MAE Supervised ViT No pretrained

Modalities RGB+D RGB+D+Semseg RGB RGB RGB

Mask ratio 83% 75% 75% 75% - -

COME-E M ↓ 0.020 0.021 0.027 0.031 0.087 0.090

Sm ↑ 0.936 0.936 0.933 0.921 0.828 0.820

Fβ ↑ 0.931 0.927 0.912 0.893 0.756 0.747

Em ↑ 0.964 0.960 0.946 0.935 0.827 0.818

COME-H M ↓ 0.031 0.032 0.044 0.048 0.116 0.120

Sm ↑ 0.917 0.918 0.906 0.897 0.791 0.783

Fβ ↑ 0.915 0.911 0.885 0.873 0.729 0.721

Em ↑ 0.947 0.944 0.918 0.913 0.792 0.783
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5 Conclusion

In this research, we offer a straightforward and effective S-MultiMAE (a modi-
fied version of MultiMAE) for RGB-D saliency detection that adopts the multi-
perspective signals to urge the models to think differently in complicated sce-
narios (where several ground truth annotations are available). Numerous tests
using challenging Multi-ground truth RGB-D SOD benchmarks show that our S-
MultiMAE not only enhances saliency detections but also overcomes the limita-
tion of inconsistent ground truth annotations in complex scenes, which occurred
with the traditional technique of most SOTA models.

Acknowledgments. We acknowledge Ho Chi Minh City University of Technology
(HCMUT), VNU-HCM, for supporting this study.
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Abstract. Multi-class anomaly detection has been a promising research
area. However, most methods focus on increasing backbone parameters or
the depth of the network. This study uses multi-texture anomaly detec-
tion as an example to validate a lightweight flow-based pipeline called
Multi-Scale Siamese Flow (MSSF) with a Multi-level Feature Fusion
(MLFF) to fully use extracted shallow and deep features. Besides, a
Mixed anomalies synthesis (MAS) method is incorporated into the MSSF
and trains our pipeline in a self-supervised manner by designing a novel
training loss combining negative log-likelihood with a changeable self-
supervised hindering loss. Extensive experiments on real-world texture
subsets or texture datasets, including MVTec-AD, KSDD2, MT, and
AITEX, indicate the effectiveness of our MSSF. The inference speed
surpasses the second fastest method, UniAD, about 2 times. Compared
with other cutting-edge methods, the MSSF achieves an effective balance
between performance and speed.

Keywords: Anomaly Detection · Normalizing Flow · Multiple
Texture Classes · Inference Speed · Backbone Parameters

1 Introduction

Research on industrial anomaly detection has thrived [15,17,21] recently. Addi-
tionally, with the development of various networks, the multi-class anomaly
detection task has become a popular branch of the visual anomaly detection
field. The main challenge of the topic is the diverse characteristics of various
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industrial product styles. Most methods [19,21,27] focus on increasing the net-
work parameters to improve perceptual power. To the best of our knowledge, only
a few of them [7,9] focus on analyzing computation and storage costs. Besides,
due to the inner limited perception of distribution-based networks [4,20], none of
them is applied to multi-class anomaly detection and localization settings. In this
paper, we aim to investigate the performance of a distribution-based structure
on anomaly detection of regular industrial multi-texture class products.

As shown in Fig. 1, the main difference between the single-texture and multi-
texture settings is the set number of network parameters. This indicates the
utilization of a unified set of network parameters across different texture product
types, as illustrated in Fig. 1b. Even though the texture classes seem regular and
easy to distinguish, the network may easily tilt towards a few-class local optimum
instead of a balance between various product types.

The multi-class mainstream detection ViT-based large models [5,6,19,21,22,
27] have been proven to outperform these methods on various datasets [2,3,10]
competitively. However, most methods are mainly based on the extracted fea-
tures or improve the performance by adding trainable layers. Besides, little
research has looked into the lightweight flow-based method for anomaly detec-
tion.

Fig. 1. Display of acceleration methods and the single-class task as well as multi-
class task

Inference speed and efficacy are necessary indexes for the application of
anomaly detection application. To improve the efficiency of training and testing,



32 Y. Chen et al.

a common approach is to directly use model frameworks with fewer parameters
or distill large models. In the case of model distillation, it is necessary to pre-
pare well-pretrained large models and feature extraction modules, which requires
extra data preparation. However, using models with fewer parameters poses a sig-
nificant challenge to the perceptual capabilities and may not achieve the desired
training results. This study explores the potential application of small models
based on normalizing flow in detecting defects in multiple categories.

The aforementioned multi-class anomaly detection methods have their lim-
itations. Some pipelines have restricted parameters but require performance
enhancement, while others deliver excellent results but involve an extensive num-
ber of parameters, which hinders real-time application.

To explore the potential of parameter limitation with competitive detection
ability for practical application, a Multi-scale Siamese Flow (MSSF) architec-
ture is introduced with a Multi-level Feature Fusion (MLFF) block to combine
multi-level information and optimize inference speed in a rarely precedent self-
supervised flow manner. Besides, a specified anomaly detection loss for a Mixed
anomalies synthesis (MAS) process is proposed to take advantage of multi-source
self-supervised anomaly synthesis and to benefit overall and detailed normal fea-
ture learning. Thus, by assessing the distribution of normal samples and multi-
style artificial anomalies, the training processes optimize parameters of distribu-
tion estimating pipeline and the fusion modules MLFF. To validate the efficiency
of our methods, we compare its performance with mainstream methods on var-
ious texture datasets [2,3,10,16].

Fig. 2. The demonstration of the improvement and novelty of flow-based architecture

In Fig. 2, each enclosed dashed line delineates the decision boundary between
normal and anomalous samples as trained by individual flow models. The sam-
ples residing within these boundaries are the mapped normal-sample patterns,
and vice versa. The different shape representations correspond to various types
of test samples.

The characteristics of traditional flow models are depicted in Fig. 2 a). They
estimate the distribution exclusively using normal samples, with different cate-
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gories estimated separately using a set of parameters. Figure 2 b) showcases the
distinct novelties and technical strategies of the MSSF. Multiple categories are
trained simultaneously to enhance inference efficiency and speed. Even under
the constraints of finite samples and parameter volumes, area boundaries can be
defined with the assistance of self-supervision, which further boosts the precision
of the defect detection process. Moreover, even when normal samples are limited,
the network can still predict a robust and well-generalized boundary employing
the MAS and Siamese flow architecture.

The main contributions of our method are as follows:

(1) To explore the potential of parameter limitation with competitive detection
ability for practical application, we introduce a Multi-Scale Siamese Flow
(MSSF) architecture that utilizes Siamese flows to enhance robustness while
preserving limited parameters and ensuring rapid inference speed. To further
exploit the usage of cross-level information and improve performance, the
Multi-Level Feature Fusion (MLFF) facilitates the integration of multi-level
features.

(2) To train the MSSF in a self-supervised manner, the Mixed Anomalies Syn-
thesis (MAS) process is introduced to produce realistic anomalies for global
normal template and extra-source defects for detailed usual pattern. Thus,
by assessing the distribution of normal samples and multi-style artificial
anomalies, the training processes optimize parameters of distribution esti-
mating pipeline and the fusion modules MLFF. A dynamic novel loss func-
tion is designed for the self-supervised learning context which can change
the ratio of different parts gradually during training.

(3) We compare the MSSF with other comparative pipelines on various texture
categories of different datasets. The index results indicate the potential of
multi-texture class anomaly detection with flow-based models.

2 Related Work

2.1 Distribution-Based Anomaly Detection Pipelines

Distribution-based models can be divided into distribution-estimation pipelines
[4,20], diffusion-based models [11,26], and Normalizing-flow-based types.
Distribution-assessment methods are mainly focused on directly assessing the
characteristic distribution of target samples. Diffusion-based model pipelines aim
to add noise to corrupt target images and reconstruct them for non-defect sam-
ples.

Normalizing-flow-based frameworks [7,9,23,28] aim to find reversible flows
to project images into individual normal distributions. MSFlow [28] combines
cross-scale features to estimate the proper distribution of normal samples pre-
cisely. The training and the testing speed of the above methods still have space
to improve compared with Fastflow [23]. However, they all lack generalization
capacity.
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2.2 Multi-class Anomaly Detection Methods

Multi-class anomaly detection is a promising research topic. Zhao et al. [27] adopt
a unified CNN-based network to locate anomaly areas. PMAD [21] and UniAD
[22] apply an attention mechanism to increase the perception under multi-class
situations.

Various studies [1,17,18] focus on texture anomaly detection. MCDEN [19]
and CKT [6] study the multi-texture class anomaly detection task. The study
of MSSF helps bridge the gap in pipeline efficiency research.

Fig. 3. The figure of the Mixed Anomalies Synthesis (MAS)

Fig. 4. The pipeline and inner structure of Multi-Scale Siamese Flow (MSSF)
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3 Method

This section introduces a novel flow-based pipeline, Multi-Scale Siamese Flow
(MSSF), as shown in Fig. 4. To start with, as shown in Fig. 3, the Mixed Anoma-
lies Synthesis (MAS) is applied to inject obvious Extra-source Perlin-Noise(EPN)
anomalies from extra-source patterns like the Draem [25] and Realistic Anomaly
Noise(RAN) seamlessly from inner-class patches [12]. Subsequently, the input
of the MSSF is non-defect images and synthetic anomaly images, which novel
flow-based anomaly detection loss are used to update the projected Gaussian
distribution and push away abnormal projections individually. With the help of
MLFF, the MSSF can make full use of multi-level features. The details of the
proposed pipelines are demonstrated as follows.

3.1 The Mixed Anomalies Synthesis (MAS)

As shown in Fig. 3, according to the given normal training set X =
{xi | i ∈ 1, ..., n}, the MSSF periodically synthesizes the EPN X̄1 and the RAN
X̄2 by randomly selecting k samples from X.

During the creation of the EPN X̄1 = {x̄1,i | i ∈ 1, ..., k}, a mask set con-
taining rectangular shapes Ȳ1 = {ȳ1,i | i ∈ {1, . . . , k}} is randomly generated
in each epoch, where the width (wi) and height (hi) of each rectangle fol-
low the Gamma distributions, i.e., wi ∼ Γ (αw, βw) and hi ∼ Γ (αh, βh) for
i = 1, . . . , k. Ȳ1 dot product the randomly rotated and flipped X̄ to output
X̂ = {x̂1,i | i ∈ 1, ..., k}. Finally, the X and the X̂ are seamlessly combined [12]
to obtain X̄1 = {x̄1,i | i ∈ 1, ..., k}.

During the fusion of the RAN X̄2, a set of Normalized Perlin Noise maps Ȳ2 =
{ȳ2,i | i ∈ 1, ..., k} is randomly generated like the Draem [25]. Nevertheless, to
preserve the alien features, we directly remove original parts and paste frequent
anomaly regions in a manner different from the Draem. Meanwhile, k extra-
source texture images, Xex = {xex,i | i ∈ 1, ..., k}, are chosen randomly.

x̄2,i =(1 − ȳ2,i) � x̄2,i+ (1)
ȳ2,i � [Tixex,i + (1 − Ti)xi], i = 1, . . . , k

In formula (1), the T is a transparent parameter that balances the injected
extra-source and original images. In conclusion, the input of the pipeline is X
and X̄, where X̄ contains {X̄1, X̄2}.

3.2 The Multi-Scale Siamese Flow (MSSF)

Initially, a pretrained feature extractor, denoted as fea, is deployed to condense
the information. Let H denotes the features in the Flow1, while H̄ denotes the
features in the Flow2. The notations without¯indicates the first flow, while ones
with ¯ refers to the second flow. The MLFF to obtain the fused 2nd-layer and
3rd-layer features, namely H2nd, H̄2nd and H3rd, H̄3rd, as shown in formula (2),



36 Y. Chen et al.

where fea,12 and fea,123 indicates utilizing 2 and 3 layers of extraction blocks
individually. LP (·), C(·), Intp(·), and Conv(·) indicate linear projection, con-
catenation, interpolation, and convolution layers individually. The more intuitive
representation of this process is illustrated in Fig. 4(b).

⎧
⎪⎨

⎪⎩

H3rd = fea,123(X),
H̄in = fea,123(X);
Hin = LP (C(Conv(Intp(H3rd)), fea,12(X))),

(2)

As shown in Fig. 4(a), the Multi-Scale Siamese Flow (MSSF) is introduced to
estimate the likelihood and obtain the reversible multi-step Siamese flow fsia =
{f1 : Hin → Hout; f2 : H̄in → H̄out}. Both the first flow f1 and the second flow
f2 are each composed of K flow blocks. On the one hand, the first flow utilizes
the multi-layer combination to improve understanding of detailed information.
On the other hand, the second flow is aimed at focusing on high-level semantic
information to concentrate on global representations. As a result, the innovative
twin pipelines avoid the predilection to local details or simply global expressions.

As shown in Fig. 4(c), every single step of each flow has the same structure
whose expression can be represented as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Hin = {Hin,1, Hin,2},

H ′
in,1 = Subnet(Hin,1),

H ′
in,1 = {H ′

in,1,1, H ′
in,1,2},

H ′
in,2 = s(H ′

in,1,1) + Hin,2 � t(H ′
in,1,2),

Hout = C(Hin,1, H ′
in,2)

(3)

If it is the 1st step, the input Hin is the concatenation of {H3rd,H2nd} and
H̄ is the concatenation of {H̄3rd, H̄2nd}. In formula (3), the Subnet indicates a
subnet consisting of a 3×3 convolution block Conv3×3 and an activation function
ReLU . As shown in Fig. 4(c), {Hin,1, Hin,2} and {H ′

in,1,1, H ′
in,1,2} are the split

of Hin and H ′
in,1 individually. Hin,1 corresponds to the first half of the features in

Hin,1. Hin,2 corresponds to the remaining portion. H ′
in,1,1 and H ′

in,1,2 represent
the similar definitions. C(·), s(·), and t(·) represent concatenation, scale, and
exponential function, respectively.

3.3 Training Loss

MSSF aims to acquire the distribution of original normal images. The foundation
of flow-based methods is to optimize the assessment of the distribution pH(h)
of the original flawless image features H = {H2nd,H3rd} to closely approximate
non-defect maps as much as possible. So, the ideal result is to make the pH(h)
close to zero. As a result, the loss of the Siamese-flow structure fsia = {f1, f2}
can be measured by punitive negative log-likelihood − log(pH(h)) as follows:

Lneg =
2∑

i=1

[‖zi‖22
2

− log
∣
∣
∣
∣
∂f i(h)

∂h

∣
∣
∣
∣

]
(4)
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Additionally, we suppose the mapped distribution is the standard Gaussian
distribution. Thus, the Lneg has the property shown in formula (4).

The mapped results in formula (4) are Z ∼ N (0, 1). The Jacobian matrix
∂f(h)

∂h is estimated by clamped tanh(s(H ′
in,1,1)), where tanh is the hyperbolic

tangent.
With the averaged results Ĥ from H and H̄, the anomaly map Ŷ are calcu-

lated as follows:

Ŷ = Intp(exp(Ĥ)) (5)

where Intp(·) and exp(·) represent interpolation and exponential functions indi-
vidually.

The artificial anomalies seem redundant and hinder the proper inference of
the distribution evaluation. Indeed, this part is designed as an obstacle for flow
updates. The anomaly-localization pixel-wise average L1 loss Lmask is listed as
follows:

{
Yall = {Ynorm, Ŷ }

Lmask = L1(Y, Yall)
(6)

where Ynorm and Ŷ are the zero maps of the input normal samples and synthetic
defect maps separately. Y indicates the ground-truth maps.The formula (7) is
the calculation of anomaly score Sano. {·} indicates the concatenation operation.

Sano = max(Yall ∗ fm ×m) (7)

where the fm × m indicates the average pooling kernel size is m × m and ∗
means the convolution operator. Yall is the composite set of Ynorm and Ŷ .

The eventual training loss Ltr, taking advantage of the negative log-likelihood
and the segmentation loss in an adversarial way, is shown as formula (8).

Ltr = Lneg − λ · epoch · Lmask (8)

where λ is a parameter that influences the constraint capability of Lmask. Larger
λ indicates more intensive adversarial behavior. The epoch represents the current
training epoch. The epoch is a dynamic factor that gradually balances the log-
likelihood component with the pixel-level part.

4 Experiments

4.1 Datasets, Indexes and Experiment Setups

MVTec-AD [2] dataset contains five texture classes with over 200 normal
images for training. KSDD2 [3] dataset includes 356 defective images and 2979
normal images. MT (the magnetic tiles) [10] dataset contains 784 defective
images and 1904 non-defective images. AITEX [16] dataset contains seven tex-
ture classes with 140 non-defect images and over 100 pixel-wise labeled defect
images.
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Table 1. Image-level/pixel-level AUROC(%) on texture classes of MVTec-AD dataset
(Multi-class)

Category Non-flow-based Flow-based
MKD [14] UniAD [22] PMAD [21] CSFlow [13] CFlow [9] MSSF

Carpet 69.8/95.5 99.5/97.4 99.9/98.8 100.0/98.1 99.3/99.5 99.3/98.3
Grid 83.8/82.3 98.4/94.8 98.2/96.2 99.5/97.3 98.5/99.3 98.6/97.1
Leather 93.6/96.7 100.0/97.3 100.0/99.0 100.0/98.2 100.0/99.2 99.2/99.3
Tile 89.5/85.3 99.3/98.7 100.0/95.6 100.0/96.7 97.6/99.1 99.6/98.5
Wood 93.4/80.5 98.6/91.8 98.5/90.8 98.6/92.5 98.2/96.7 99.3/99.2

Average 86.0/88.1 99.2/96.0 99.3/96.1 99.6/96.6 98.9/98.7 99.2/98.3

Table 2. Pixel-level AUROC(%) on KolektorSDD2, MT and AITEX datasets

Methods KSDD2 MT AITEX Average

MKD [14] 94.4 76.6 81.2 81.1
CKT [6] 94.7 78.9 81.3 85.2
CFlow [9] 96.2 94.7 89.1 93.3

MSSF 97.1 93.0 91.6 93.9

The Area Under the Receiver Operating Characteristic Curve (AUROC) is
a reliable index to compare the image-level and pixel-level performance.

All the training stages are completed on a single GPU (GeForce RTX 2080 Ti).
We resize all input images and masks to a consistent size of 256 × 256 pixels. The
Wide-Resnet50 [24] is selected as the pretrained feature extractor. The defective
parts originate from the Describable Textures Dataset (DTD) [8]. The flow step
K is 8. Transparency T is 0.8. Both the (αw, βw) and (αh, βh) are set as (2, 0.1).
The numbers of normal samples n and noise-injected samples k are 50 and 100
individually, with 50 RAN abnormal samples and 50 EPN anormaly samples. The
learning rate lr is initialized as 1e-3 with the weight decay as 1e-5, while the batch
size is set to 128. The pipeline is trained for 500 epochs. The λ is set as 100.

Fig. 5. Visualization of segmentation results compared with other flow-based methods
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4.2 Results on Multiple Datasets

As visualized in Fig. 5, our method achieves relatively good segmentation results
on some representative samples. The image-level texture anomaly detection abil-
ity has been proven effective, especially for several outstanding types: carpet,
leather, and tile. Compared to large CFlow [9] and CSFlow [13], the MSSF
achieves more considerable segmentation certainty with less computational cost
and space.

As shown in Table 1, the image-level texture anomaly detection ability has
been proven effective, especially for types like tile (99.6%/98.5%) and wood
(99.3%/99.2%). Although the image-level result of 99.2% falls behind CSFlow
[13], our method still remains competitive compared with other methods like
UniAD [22] and PMAD [21] in pixel-level results. The averaged image-level and
pixel-level results represent a balance between inference efficiency and perfor-
mance.

According to Table 2, the MSSF has achieved considerable averaged pixel-
level AUROC results (93.9%) compared with CKT (85.2%) [6] and CFlow
(93.3%) [9], especially on the KSDD2 [3] and AITEX [16] dataset. The vali-
dation results remain . Generally speaking, even executed on low-resolution and
challenging real-life datasets, MSSF is still competitive in results and running
speed with finite resources.

Table 3. Training/testing speed (images/sec) and backbone parameters (M) of the
models

Methods Training Testing Param

UniAD [22] 38.6 64.7 27.4
PMAD [21] 31.9 31.1 92.0

CSFlow [13] 26.9 19.4 275.2
CFlow [9] 27.4 38.2 81.6

MSSF 74.3 124.7 45.6

Table 4. Ablation results of image-level/pixel-level AUROC(%) on texture classes of
MVTec-AD dataset

8-Steps EPN RAN MLFF Flow1 Flow2 results

� 80.2/76.3
� 89.3/84.5

� � 92.2/89.1
� � � 93.7/91.4

� � � � 96.9/94.1
� � � � 95.8/95.2

� � � � � 97.6/96.1
� � � � � � 99.2/98.4
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4.3 Computation Cost Analysis

According to Table 3, with respect to MSSF, the backbone parameters are out-
standing and lead to relatively considerable results in contrast to other public
codes1,2,3. Besides, compared with the open-resource codes4 of the smallest and
second fastest method, UniAD [22], the training and inference speeds of the
MSSF are approximately 2 times faster. As analyzed in the previous discussion,
the extraordinary efficiency of the MSSF remains competitive in various texture
categories. Compared with other decoder-encoder structures, MSSF applies an
end-to-end structure to acquire distribution and segmentation results directly. In
summary, the MSSF sacrifices tolerable performance for the superior inference
and parameter quantity.

Compared with other flows like CS-Flow [13] and CFlow [9], MSSF distin-
guishes itself as it doesn’t require the interaction of multiple scales or deep struc-
tures during propagation, yet it efficiently handles smaller input images and fea-
tures. The MSFF combines the multi-level features both initially and ultimately.
Instead of enhancing performance with numerous parameters, blocks, twin struc-
tures and self-supervised manifold and distinct loss are designed to improve per-
formance based on the shallower architecture. Consequently, the MSSF is more
efficient.

4.4 Ablation Studies

The ablation processes are based on the five texture classes of MVTec-AD
dataset.

As visualized in Table 4, the ablation studies reflect the rational choice of
our Siamese pipeline. The initial ablation studies are conducted when the MSFF
contains four steps. Simply remaining one flow channel limits the performance
of the pipeline. The 3rd-layer features retain semantic-level information, and the
2nd-layer features keep low-level details. To be more specific, the first flow utilizes
the multi-layer combination to improve understanding of detailed information,
while the second flow is aimed at focusing on high-level semantic information
to concentrate on global representations. To further balance the performance
(99.2%/98.4%) and the speed, we chose the 8-step structure. The results of
varying parameters are listed in Table 6.

In addition, the self-supervised anomaly detection mode is an irreplaceable
approach. After mixing the EPN and RAN, the AUROC reaches 97.6%/96.1%,
surpassing the results obtained by solely inputting the EPN (96.9%/94.1%) or
the RAN (95.8%/95.2%). Indeed, the prompt of EPN facilitates distinguishing
the general character of normal regions with the introduction of obvious differ-
ences, while RAN pushes the pipeline to focus on minor details of the authentic

1 https://github.com/gudovskiy/cflow-ad.
2 https://github.com/xcyao00/PMAD.
3 https://github.com/marco-rudolph/cs-flow.
4 https://github.com/zhiyuanyou/UniAD.

https://github.com/gudovskiy/cflow-ad
https://github.com/xcyao00/PMAD
https://github.com/marco-rudolph/cs-flow
https://github.com/zhiyuanyou/UniAD
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features by distinguishing the nearly seamless minor differences between normal
and abnormal patterns.

During training, we found that the magnitude of Lneg in formula (8) can vary
significantly. Our experiments showed that maintaining a fixed loss, whether
large or small, often results in pixel-level AUROC scores below 90.0%, similar
to scenarios involving only normal samples. This issue stems from the dynamic
nature of Lneg. If the coefficient is fixed and large, then the Lneg part will lead
to overfitting on generated abnormal patterns when the normal patterns have
converged as the number of epochs increases. However, if the coefficient is fixed
and small, Lneg has little impact, and the self-supervised architecture becomes
useless. To address this, we incorporated epoch as an adaptive adjustment factor
and λ as a scaling factor. The effects of λ are detailed in Table 5.

Table 5. Ablation results of λ based on image-level/pixel-level AUROC(%)

λ 1 10 100 1000

AUROC 93.5/92.4 97.1/96.899.2/98.4 96.2/95.9

If the factor of normalized Lmask becomes too large, such as a thousand, the
influence of the normal distribution mapping loss, Lneg, might become negligible,
which could impair the mapping capabilities of the flow-based MSFF. Conversely,
a small factor might make the self-supervised component ineffective. Based on
our experiments, we select 100 as the optimal choice, making it the value adopted
in our other ablation studies.

Table 6. Ablation results of the backbone parameters(M) based on image-level/pixel-
level AUROC(%) and the Training/testing speed (images/sec)

Steps 4 8 16

Param 22.1 45.6 86.3
AUROC 97.6/96.1 99.2/98.499.4/98.9
Training 316.5 124.7 34.4
Testing 142.1 74.3 42.5

The number of steps indicates the number of parameters. As shown in Table 6,
with increasing in steps, MSSF achieves better anomaly detection results on
the grid and across categories. Thus, compared to CFlow (98.9%/98.7%) and
CSFlow (99.6%/96.6%), MSSF has more competitive anomaly detection ability
(99.4%/98.9%). However, the training and testing speeds are not competitive. If
the flow steps are limited to four, the training and testing speeds increase dra-
matically. The parameter amount is optimal, even when compared with UniAD
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[22]. Additionally, the 4-step changes in pixel values and AUROC are also tol-
erable for classes like Leather (99.6%/98.5%), Carpet (99.2%/98.1%) and Tile
(99.5%/95.4%) when the 8-step MSFF achieves Leather (99.2%/99.3%), Carpet
(98.6%/97.1%) and Tile (99.6%/98.5%).

From the ablation experiments, MSSF demonstrates a significant balance
between metrics and efficiency when parameters are limited. The results for
8-step configurations in our study indicate that MSSF significantly improves
inference speed and efficiency with limited loss in metric performance.

5 Discussion and Conclusion

With balanced excellent inference and inference efficiency, a novel self-supervised
flow-based pipeline is proposed to detect multi-texture defects. Besides, the pro-
posed MSSF with the MLFF combines the self-supervised anomaly synthesis
MAS, assisting efficient assessment of the distribution of normal samples and
multi-style artificial anomalies. The performance on various datasets reflects the
superiority in training and inference speed of MSFF while sacrificing little per-
formance indices on specific categories like Grid. However, the training results
are uncertain sometimes, probably because of the extremely limited backbone
parameters for thorough perception of multi-texture categories.
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Abstract. Detectors based on convolutional neural networks (CNN)
commonly employ label assignment to distinguish positive and nega-
tive samples during training. However, existing label assignment strate-
gies overlook the diverse characteristics of objects in remote sensing
images(RSI), such as arbitrary directions, large aspect ratios, and varying
scales, which leads to inadequate and low-quality sample issues. To tackle
these challenges, we propose a novel distance-sensitive label assignment
(DSLA) strategy to effectively select both adequate and high-quality pos-
itive samples. Specifically, we design an elliptical region sampling (ERS)
strategy to carefully screen candidate positive samples by utilizing ellip-
tical regions, thereby mitigating background interference that hampers
the model’s performance. Furthermore, we propose a distance-controlled
compensation loss (DC-Loss) to further enhance the effectiveness of ERS
by reducing the impact of low-quality samples. Extensive experiments
are conducted on two challenging datasets for rotated object detection,
namely DIOR-R and HRSC2016, validate the superiority of our proposed
method.

Keywords: remote sensing images · label assignment · objects with
huge diversity · elliptical region sampling

1 Introduction

Oriented object detection (OOD) uses rotated bounding boxes to locate and
identify objects of interest. In comparison to horizontal bounding boxes, rotated
boxes offer greater accuracy and retain directional information about the objects,
which are widely used in remote sensing object detection, facial recognition, scene
text detection, and natural scenes [7,15,17,26]. However, objects in remote sens-
ing images often exhibit intricate distribution patterns, characterized by dense
arrangements, varied orientations, and significant aspect ratios, which leads to
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Fig. 1. Different strategies for the priority and selection range of positive samples. (a)
MaxIoU uses a fixed IoU threshold for sampling. (b) ATSS assigns a dynamic IoU
threshold based on simple distance. (c) DSLA strategy uses a dynamic threshold, and
then prioritizes selecting high-quality samples from elliptical regions

inadequate sampling quantities and low quality. Oriented object detection still
faces challenges in the field of remote sensing.

Numerous label assignment methods [9,10,20,21,30] have been developed for
object detection, as they play a crucial role in determining positive or negative
samples, which directly and significantly influences performance. However, these
methods often overlook the actual shape and content of object intersection areas,
which brings tough problems for remote sensing object detection. As shown in
Fig. 1(a), [7,16,18,26,28] rely on the maximum union intersection (IoU) value
between proposals and objects (MaxIoU for simplicity). Meanwhile, ATSS [30]
introduced a sample selection strategy utilizing dynamic IoU thresholds, as illus-
trated in Fig. 1(b). Nonetheless, while increasing the number of samples, this
method introduces a significant amount of complex background noise. Although
these strategies are more effective than fixed assignment strategies, they exhibit
the following issues: (1) disregarding the shape information of oriented objects,
leading to insufficient sampling; (2) uniformly processing the selected positive
samples without considering their quality leads to the introduction of background
noise.

To address the aforementioned limitations in scale and spatial assignment, in
this paper, we propose a distance-sensitive label assignment (DSLA) strategy to
dynamically select higher quality positive samples on multi-level feature maps,
thereby improving detection performance. Specifically, we designed a novel and
simple strategy, namely the elliptical region sampling (ERS) strategy, as shown
in Fig. 1(c), to avoid insufficient sampling and low sample quality. In addition,
a distance-controlled compensation loss (DC-loss) is proposed, which mitigates
the impact of low-quality samples through the direction and shape character-
istics of the object. Extensive experiments conducted on public remote sensing
datasets such as DIOR-R and HRSC2016 have demonstrated the effectiveness
and superiority of our proposed DSLA.



DSLA: A Distance-Sensitive Label Assignment Atrategy for OOD in RSIs 47

Fig. 2. Illustration of the difference between two sampling strategies. (Left column)
ATSS. (Right column) DSLA

The contributions of this work are summarized as follows:

1) To address the issue of insufficient and low-quality sampling, we introduce a
distance-sensitive label assignment (DSLA) strategy. This strategy dynami-
cally selects positive samples across all feature levels.

2) We propose an elliptical region sampling (ERS) strategy that leverages the
orientation and shape properties of objects to effectively select high-quality
samples.

3) We design a distance-controlled compensation loss (DC-Loss) to further
improve the quality of positive samples and mitigate the impact of low-quality
ones.

The remaining sections of this article are as follows: the related work is
reviewed in Sect. 2. Section 3 provides a detailed introduction to the method
proposed in this article. In the Sect. 4, ablation experiments and comparative
experiments were conducted on two publicly remote sensing datasets: DIOR-R
and HRSC2016. Finally, the conclusion is drawn in the Sect. 5.

2 Related Work

2.1 Oriented Object Detection in Remote Sensing Images

The traditional oriented object detection method [11,13] solves the problem
of anchor box angle regression by preset rotating anchor boxes with different
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Fig. 3. Overview of the proposed DSLA. The upper and lower block represent baseline
architecture of S2A-NET and our proposed DSLA strategy, respectively. The ERS
strategy selects candidate samples based on the elliptical region of the object on each
level of feature map. The candidate positive samples will be sorted by the distance from
the center point of the ground truth bounding box. The top-k samples are selected as
positive samples

widths, heights, and angles. However, presetting massive anchor boxes leads to
the imbalance of positive and negative samples and redundant calculations. To
solve the above problems, the method of horizontal anchor [2,7] achieves regres-
sion by converting horizontal anchors to rotated anchors. Ding et al. [2] pro-
posed a RoI transformer to achieve the transformation from horizontal anchors
to rotated anchors. S2A-Net [7] proposes a feature alignment module that gen-
erates high-quality rotated anchors while only presetting single-scale horizontal
anchors. Abandoning the traditional anchor-based method [6,24] also achieved
good detection results, Guo et al. [6] proposed a convex hull representation
method to optimize the prediction box regression. Xu et al. [24] designed quadru-
ple sliding vertices to represent objects and achieved point localization. Although
the above methods have achieved considerable progress, there still suffers heavily
from several drawbacks caused by objects with diverse distribution characteris-
tics.

2.2 Label Assignment in Object Detection

Existing coarse-grained label assignment strategies (such as MAXIOU) have lim-
itations when matching objects with large aspect ratios and angle variations, as
they cannot guarantee that all objects can be matched with a sufficient number
of positive samples during the sample assignment stage, which affects the detec-
tion performance of the model. Therefore, dynamic sample assignment strate-
gies [14,21,30] are proposed, which used dynamic matching metrics for sample
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assignment tasks. Zhang et al. [30] studied the impact of anchor-based sample
assignment on model performance and constructed a sample assignment strat-
egy based on the statistical characteristics of the object. Ming et al. [14] adap-
tively selected high-quality anchor boxes based on their ability to capture key
features. For stable optimization, Sun et al. [21] explored how sample distribu-
tion influences the task of sample assignment. While the dynamic measurement
based on IoU is simple and intuitive, it may not adequately address the require-
ments of object diversity distribution in remote sensing images. Huang et al.
[10] introduced a general approach for representing positive samples using a
two-dimensional Gaussian distribution. Although the above strategy effectively
alleviates the problem of imbalanced samples, it requires prior setting of param-
eters and complex functions, as well as introducing low-quality samples.

3 The Proposed Method

This section provides a detailed introduction to the two key components of the
proposed DSLA strategy: ERS strategy and DC-Loss. Implemented on the S2A-
Net, the method’s pipeline is shown in Fig. 3. It consists of a backbone network,
feature pyramid network (FPN), initial detection head, and refined detection
head. The proposed DSLA strategy is implemented in the initial detection stage
to select high-quality samples for objects with different shapes and arbitrary
orientations. In Algorithm1, we detail the sampling process incorporated in our
DSLA strategy. Meanwhile, a DC-Loss is designed for the anchor-based bounding
box regression, which automatically changes the form of regression loss function
based on the center distance and angle deviation during training.

3.1 Elliptical Region Sampling Strategy

Assume the given ground truth gi(xi, yi, wi, hi, θi) and the center point of an
anchor box aj(xj , yj , wj , hj , θj), which is already mapped back to the input
image, elliptical region can be formulated as:

F (·) =

⎧
⎪⎨

⎪⎩

true,
a2

(0.5wi)2
+

b2

(0.5hi)2
< η

false, otherwise
(1)

where the ratio factor η acts as an adaptive threshold based on the object’s
shape. It controls the extent of the elliptical distribution, ensuring the selection of
high-quality samples with minimal background noise. We will provide a detailed
explanation of η in Sect. 4. Parameters a and b are calculated by the offset of
the center point coordinates between gi and aj and the angle of gi, which can
be formulated respectively as:

a = xj cos θi + yj sin θi

b = xj sin θi + yj cos θi

(2)
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Algorithm 1. Position sensitive label assignment strategy.
Require:

The set of ground truth bboxes for current batch, G;
The set of preset anchor boxes for current batch, A;
The set of each level in the pyramid layers, L;
The sample number, topk;

Ensure:
The set of positive samples P and negative samples N ;

1: Compute the center points of the anchor box, Points;
2: Compute the set of labels for the elliptical region with G:

Flag = CheckPointsInEllipse(G, Points) (1);
3: for each level l ∈ L do
4: Build an empty set for candidate samples: C ← ∅

5: Si ←− Select k anchors from A whose center are closest
to the center of Gi when Flagi=True;

6: if k < topk then
7: Ei ←− Select topk-k anchors from A whose center

are closest to the center of Gi when Flagi=False;
8: Si = Ei ∪ Si

9: end if
10: Ci = Ci ∪ Si

11: end for
12: Compute threshold for each ground truth bboxes:

T = ComputThreshold(Cg,g) (3);
13: for each candidate c ∈ Ci do
14: if the intersection union ratio between the candidate

box and G, G > Ti and center of c in G then
15: P = P ∪ c
16: end if
17: end for
18: N = A − P
19: return P, N ;

In this way, the sampling distribution can be adjusted dynamically according
to the shapes of objects. As shown in Fig. 4, the sampling range tends to be a
circular distribution when the shape of ground truth is close to a square. When
the ground truths with an extremely large aspect ratio, the sampling range will
approximate that of an inner tangent ellipse, which is better suited for such
object shapes.

3.2 Dynamic Positive Sample Threshold

Based on the properties analyzed by the affine transformation, we propose a
distance-based dynamic label assignment strategy to allocate sufficient samples
for the hard ground truth. In detail, we set a monotonic decreasing function as
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Fig. 4. Illustration of ATSS strategy (top row) and DSLA strategy (bottom row) for
selecting positive samples of objects with different scales

the weighting factor for the IoU threshold. For a given ground truth g, the IoU
threshold Ti can be defined as:

Ti = μ + σ (3)

where μ and σ represent the mean and standard deviation of the IoU between
samples and the ground truth, which are defined as:

μ =
1
N

N∑

j=1

Ii,j ,σ =

√
√
√
√ 1

N

N∑

j=1

(Ii,j − μ) (4)

where N is the number of candidate samples, and Ii,j is the IoU value between
the i-th ground-truth box and the j-th prediction it matches.

3.3 Distance-Controlled Compensation Loss

In line with the baseline (S2A-Net), long edge definition is adopted to repre-
sent an arbitrary-oriented rectangle by five parameters (x, y, w, h, θ), and the
angle θ ∈ [−π/4, 3π/4]. Therefore, the regression process of the sample can be
formulated as:

A =

(
Sx/Sy 0

0 (Sx/Sy) · (ax/ay)

)(
cos θ -sinθ

sin θ cosθ

)

(5)

where Sx and Sy are the scale differences of the x-axis and y-axis, ax and ay

denote the aspect ratio differences of the x-axis and y-axis.
As illustrated in Fig. 4, the ERS strategy results in anchors’ center points

located in low-quality regions far from the center of the ground truth. As shown
in Fig. 5, where the difficulty of sample regression is related to angle difference
and center distance. Due to the geometric symmetry of the sample, when the
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Fig. 5. Illustration of the mapping relationship between ground truth and label.
(x, y, w, h, θ) and (x

′
, y

′
, w

′
, h

′
, θ

′
) are the center, width, height and angle of ground

truth and label. (Δx, Δy) denotes the offset between them

angle is 0 or −π/4, there is no angle difference between the sample and the
ground truth, and the difficulty of sample regression is the smallest. Angles
of −π/4, π/4 or 3π/4 represent the greatest deviations, making these samples
the most challenging for regression. To mitigate above impact, we introduced
DC-Loss to weight the regression loss and classification probability during the
training process.

Specifically, for each positive sample ai, the DC-Loss module calculates
weight W based on the L2 distance and the deviation of angle between gj and
ai, which is represented as Lij and Δθij . Here, W is formulated as:

W(Lij ;Δθij) = e−Lij ·Δθij (6)

where Lij represents the center distance after normalizationcan, which can be
formulated as:

Lij =
‖gc − ac‖2

0.5 · ‖dj‖2

(7)

where gc and ac represent the center point coordinates of gj and ai, respectively.
dj is the diagonal length of the gj box. Δθij represents the deviation between
angles, which can be formulated as:

Δθij =

⎧
⎪⎨

⎪⎩

0.5 + 0.5sin2θij , −π

4
≤ θij <

π

4

0.5 + 0.5sin2
(
θij − π

2

)
, −π

4
≤ θij <

3π

4

(8)

Finally, W is used to measure the weight of candidate boxes participating in
the loss function calculation. The total loss Ltotal is denoted as:

Ltotal = Linit
reg + Lref

cls + Lref
reg + Lref

cls (9)
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Linit
∗ and Lref

∗ representing the losses in the initial and refinement stages,
respectively. The box regression loss is formulated as:

L∗
reg =

1
Ni

N∑

n=1

t
′
n

∑

j∈{x,y,w,h,θ}
Lreg(v

′
nj , vnj ,Wj) (10)

where N indicates the number of proposals, tn represents the label of object, t
′
n

is a binary value (t
′
n = 1 for foreground and t

′
n = 0 for background, no regression

for background). v
′
∗j represents the predicted offset vectors, v∗j represents the

objects vector of ground truth. The regression loss Lreg adopts smooth L1 loss,
which as defined in [4]. The classification loss is formulated as:

L∗
cls =

{
− δ(Wj − pn)γ log (pn) , tn = 1
− δ(Wj)

γ log (1 − pn) , otherwise
(11)

where pn ∈ {0, 1} is the probability distribution of various classes calculated by
Softmax function. δ and γ are hyperparameters of the focal loss [19].

4 Experiments

4.1 Datasets

DIOR-R [1] is an aerial image dataset annotated by oriented bounding boxes
from the DIOR-R dataset. There are 23,463 images and 192,518 instances in this
dataset, containing 20 common categories. The categories of objects in DIOR-R
include Airplane (APL), Airport (APO), Baseball Field (BF), Basketball Court
(BC), Bridge (BR), Chimney (CH), Expressway Service Area (ESA), Expressway
Toll Station (ETS), Dam (DAM), Golf Field (GF), Ground Track Field (GTF),
Harbor (HA), Overpass (OP), Ship (SH), Stadium (STA), Storage Tank (STO),
Tennis Court (TC), Train Station (TS), Vehicle (VE) and Windmill (WM).
HRSC2016 [12] is a high-resolution ship remote sensing dataset collected from
six famous ports. It includes 1061 images, all annotated with rotation boxes. The
dataset is divided into training set, validation set, and test set, which contain
436, 181, and 444 images, respectively.

4.2 Experimental Details

In our experiments, for simplicity and efficiency, ResNet-50 pretrained on Ima-
geNet is used as the backbone network, and FPN is employed as the neck network
unless specified. The hyperparameters of SGD, i.e., weight decay, momentum and
gamma, are set to be 1.0 × 10−2, 0.9 and 0.1, respectively. For experiments on
DIOR-R dataset, our network is trained with four NVIDIA V100 GPUs with 8
images per batch. We train the models on the HRSC2016 and DIOR-R datasets
for 48 and 36 epochs, respectively, with a learning rate initialized to 6.25×10−2.
It was reduced by 10 times in iterations of 24, 32, and 38 epochs.
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4.3 Ablation Study

In this section, a series of ablative experiments are conducted with DIOR-R
dataset to illustrate the advantages of each proposed component in DSLA. Here,
the components of proposed DSLA are indicated in abbreviated form, i.e., ‘-E’
indicates ERS strategy and ‘-D’ means DC-Loss. The second row shows the
results using only the dynamic positive sampling threshold (DPST) strategy,
which is strongly associated with the elliptical region sampling (ERS) strategy.
The overall results of the ablative experiments are presented in Table 1. Specifi-
cally, the first row represents the results of our baseline detector, followed by the
ablative results of 65.40 and 38.80 in AP50 and AP75, respectively, obtained by
replacing the scale assignment with our ERS strategy. In addition, by adopting
DC-Loss strategy, we achieve an improvement of 0.30 and 0.60 in AP50 and
AP75, respectively, as compared with baseline. When combining all the com-
ponents of DSLA together, we can achieve the AP50 and AP75 performance of
65.70 and 38.90, as shown in the last row of Table 1.

Moreover, in order to introduce the improvement for different categories, a
more detailed experimental results for each category are provided in Table 2, and
the contribution of improvement from each component is discussed in detail as
follows.

Table 1. Ablative experiments and evaluations of the proposed method on the DIOR-R
dataset. Red and blue: top two performances

DPST ERS DC-Loss AP50 AP75

- - - 64.40 37.40

� - - 64.60 (+0.20) 38.02(+0.62)

� � - 65.40 (+1.00) 38.80 (+1.40)

- - � 64.70 (+0.30) 38.00 (+0.60)

� � � 65.70 (+1.30) 38.90 (+1.50)

Table 2. Ablative experiments and evaluations of the proposed method on the DIOR-R
dataset. The best result is highlighted in bold. All methods adopt ‘3x’ training schedule
and use R-101 as backbone.

Method APL APO BF BC BR CH ESA ETS DAM GF -

Baseline 62.80 43.80 74.10 81.50 41.10 72.60 80.40 70.70 27.30 77.90 -

DSLA(w/ -E) 62.80 52.20 75.50 81.50 42.50 78.30 80.00 70.10 31.50 78.20 -

DSLA(w/ -D) 67.70 50.10 75.30 81.50 41.30 72.70 79.20 70.20 29.10 76.70 -

DSLA(w/ -E, -D) 62.90 52.30 75.80 81.50 43.70 75.40 80.10 70.50 31.70 78.80 -

Method GTF HA OP SH STA STO TC TS VE WM AP50

Baseline 80.90 44.70 57.10 80.80 67.90 69.30 81.50 59.20 48.90 65.70 64.40

DSLA(w/ -E) 80.30 46.00 57.00 80.90 70.40 68.60 81.50 57.80 48.10 65.00 65.40

DSLA(w/ -D) 80.30 44.60 56.70 80.80 68.30 68.90 81.60 55.70 49.00 63.80 64.70

DSLA(w/ -E, -D) 80.60 46.00 57.80 80.90 71.60 69.50 81.60 59.40 48.10 64.80 65.70
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Effect of Elliptical Region Sampling Strategy. At the heart of this method
lies the ERS strategy, which effectively addresses the issue of inadequate object
sampling at extreme scales. For instance, quantitatively speaking, the proposed
ERS strategy not only yielded a 1.00 increase in AP50 but also notably enhanced
the AP performance for challenging-to-identify objects (such as APO, BR, and
HA) by 8.40, 1.40, and 1.30, respectively, when compared to the baseline method,
as illustrated in the first and second rows of Table 1. These results underscore
the efficacy of the ERS strategy in improving detection accuracy across various
object types.

Effect of Distance-Controlled Compensation Loss. Based on ERS, a DC-
Loss module was proposed to mitigate the impact of low-quality samples on
detection performance. Compared to the baseline method, this strategy improves
the accuracy of AP50 and AP75 by 0.30 and 0.60, respectively. By compensat-
ing anchors based on the deviation of center distance and angle, samples with
higher quality are given higher weights, thus obtaining samples with more feature
information and avoiding the influence of anchors at the edge of the elliptical
sampling area.

Table 3. Evaluation of using various ratios factor η in our strategy. Red and blue: top
two performances

η 1 0.75 0.5 0.25

AP50 65.10 65.40 65.10 65.40

AP75 39.10 38.80 38.60 38.20

Table 4. Comparisons with the advanced oriented detectors on DIOR-R dataset. All
methods rely on ‘3x’ training schedule and use R-50 as backbone. * indecates R-101
as backbone. † indecates random rotate data enhancement. Red and blue: top two
performances

Method APL APO BF BC BR CH ESA ETS DAM GF GTF HA OP SH STA STO TC TS VE WM mAP

Rotated RetinaNet [19] 59.54 25.03 70.08 81.01 28.26 72.02 55.35 56.77 21.26 65.70 70.28 30.52 44.37 77.02 59.01 59.39 81.18 38.43 39.10 61.58 54.83

SASM [9] 61.41 46.03 73.22 82.04 29.41 71.03 69.22 53.91 30.63 70.04 77.02 39.33 47.51 78.62 66.14 62.92 79.93 54.41 40.62 63.01 59.81

S2A-Net [7] 67.98 44.44 71.63 81.39 42.66 72.72 79.03 70.40 27.08 75.56 81.02 43.41 56.45 81.12 68.00 70.03 87.07 53.88 51.12 65.31 64.50

R3Det [26] 62.55 43.44 71.72 81.48 36.49 72.63 79.50 64.41 27.02 77.36 77.17 40.53 53.33 79.66 69.22 61.10 81.54 52.18 43.57 64.13 61.91

Gliding Vertex [24] 62.67 38.56 71.94 81.20 37.73 72.48 78.62 69.04 22.81 77.89 82.13 46.22 54.76 81.03 74.88 62.54 81.41 54.25 43.22 65.13 62.91

GWD [27] 66.52 46.80 71.76 81.43 40.81 78.25 79.23 66.63 29.01 78.68 80.19 44.88 57.23 80.91 74.17 68.02 81.48 54.63 47.80 64.41 64.63

KLD [29] 69.68 28.83 74.32 81.49 29.62 72.67 76.45 63.14 27.13 77.19 78.94 39.11 42.18 79.10 70.41 58.69 81.52 47.78 44.47 62.63 60.31

Rotated Faster RCNN [3] 66.52 46.80 71.76 81.43 40.81 78.25 79.23 66.63 29.01 78.68 80.19 44.88 57.23 80.91 74.17 68.02 81.48 54.63 47.80 64.41 64.63

Rotated FCOS [22] 62.31 42.18 75.34 81.32 39.26 74.89 77.42 68.67 26.00 73.94 78.73 41.28 54.19 80.61 66.92 69.17 87.20 52.31 47.08 65.21 63.21

Rotated ATSS [30] 62.19 44.63 71.55 81.42 41.08 72.37 78.54 67.50 30.56 75.69 79.11 42.77 56.31 80.92 67.78 69.24 81.62 55.45 47.79 64.10 63.52

RoI Trans. [2] 63.18 44.33 71.91 81.26 42.19 72.64 79.30 69.67 29.42 77.33 82.88 48.09 57.03 81.18 77.32 62.45 81.38 54.34 43.91 66.30 64.31

CFA [5] 61.10 44.93 77.62 84.67 37.69 75.71 82.68 72.03 33.41 77.25 79.94 46.20 54.27 87.01 70.43 69.58 81.55 55.51 49.53 64.92 65.25

ReDet [8] 63.22 44.18 72.11 81.26 43.83 72.72 79.10 69.78 28.45 78.69 77.18 48.24 56.81 81.17 69.17 62.73 81.42 54.90 44.04 66.37 63.81

Oriented RCNN [23] 63.31 43.10 71.89 81.17 44.78 72.64 80.12 69.67 33.78 77.92 83.11 46.29 58.31 81.17 74.54 62.32 81.29 56.30 43.78 65.26 64.53

DSLA(Ours) 68.60 49.70 71.70 81.50 42.50 76.80 79.70 68.60 31.80 77.90 80.60 44.80 56.40 80.90 70.70 69.40 81.60 58.10 48.30 64.70 65.20

DSLA(Ours)∗ 62.90 52.30 75.80 81.50 43.70 75.40 80.10 70.50 31.70 78.80 80.60 46.00 57.80 80.90 71.60 69.50 81.60 59.40 48.10 64.80 65.70

DSLA(Ours)† 71.30 53.90 77.40 89.40 44.60 78.20 86.60 72.10 37.30 78.10 82.50 46.90 58.60 81.00 75.00 69.00 88.90 62.60 49.00 65.40 68.40
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4.4 Evaluation of Hyperparameters

Sample Number η. By incorporating a ratio factor into the ERS strategy, we
enhance the quality of sample selection, thereby controlling the sample distri-
bution. As illustrated in the Table 3, various tests were conducted to determine
the optimal value of η, and the impact of different ratio factors was analyzed.
Notably, AP75 serves as a high-precision detection benchmark, and the grad-
ual decrease in AP75 values with varying η underscores the efficacy of our ERS
strategy. When η = 0.75, we observed AP50 and AP75 values of 65.40 and 38.80,
respectively, leading us to adopt a compromise in the detection results and select
a ratio factor of 0.75.

4.5 Comparison with State-of-the-Art

Results on DIOR-R. Our DSLA strategy achieved an impressive mAP of
65.70, surpassing the baseline by 1.30, and the experimental results are presented
in Table 4. Furthermore, when incorporating random rotation enhancement, our
method achieved the best mAP results, particularly in detecting challenging
types such as APO, BR and DAM. ATSS [30] is a well-established method for
object detection in natural scenes. We integrated the ERS strategy to adapt it
for oriented object detection in remote sensing, resulting in a 2.18% increase
in mAP. Specifically, SASM [9] enhances the learning of objects with extreme
aspect ratios by setting a dynamic threshold, but it barely considers the edge
feature extraction of such objects and its mAP is 5.89% lower than ours. For four
large aspect ratio objects, BR, DAM, HA and SH, our method improves mAP by
14.29%, 1.07%, 6.67%, and 2.28%, respectively. Compared with S2A-Net [7], our
elliptical region sampling strategy is more friendly to large-scale and large aspect
ratio objects, for example, APO, BF, and DAM are improved by 7.86%, 4.17%,
and 4.62%, respectively. While slightly harming the detection performance of
some objects such as STO and VE, the mAP is improved by 1.2%. Our detection
results are visualized in Fig. 6, showcasing the method’s effectiveness in handling
objects of diverse distributions, as further demonstrated in Fig. 7.

Results on HRSC2016. To further evaluate the proposed method’s robust-
ness, we conducted experiments using the HRSC2016 dataset, and the results
are detailed in Table 5. Notably, our DSLA strategy achieves a remarkable mAP
of 90.30. The detection results on the HRSC2016 dataset, depicted in Fig. 8.
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Table 5. Performance comparison with different state-of-the-art methods on the
HRSC2016 dataset. Red and blue: top two performances

Method Backbone mAP

RoI-Transformer [2] R-101 86.20

Gliding Vertex [24] R-101 88.20

R3Det [26] R-101 89.26

CSL [25] R-101 89.62

DAL [14] R-101 89.77

S2A-Net [7] R-101 90.17

DSLA (Ours) R-101 90.30

APL APO BF BC BR CH

HAGTF

ETS GT

STASHOP

DAM ESA

STO TC TS VE WM

APL APO BF BC BR CH

HAGTF

ETS GT

STASHOP

DAM ESA

STO TC TS VE WM

Fig. 6. Visualization of detection results on the DIOR-R dataset

Fig. 7. Comparison of detection results for diverse distribution objects on the DIOR-R
dataset. Baseline (top row) and ours method (bottom row)



58 M. Wei et al.

Fig. 8. Visualization of detection results on the HRSC2016 dataset

5 Conclusion

In this paper, we propose a novel and efficient strategy for label assignment,
namely DSLA. A distance-sensitive label assignment strategy has been proposed
for handling objects with significant distribution diversity, especially in remote
sensing images, by setting dynamic thresholds from appropriate and continuous
multi-level feature maps. To mitigate the impact of background noise, we design
an elliptical region assignment method, which was adaptively controlled by the
spatial shape of the objects. To learn high-quality information from selected
training samples, a distance-controlled compensation loss was developed. Exten-
sive experimental results demonstrated the effectiveness of our proposed.
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Abstract. We propose BridgeCLIP, an innovative framework designed
to harness the power of vision-language models for bridge inspection from
images. BridgeCLIP is a CLIP-based multi-label classifier that finds mul-
tiple damages in a single bridge image. Pre-trained vision-language mod-
els learn the relationships between general objects by millions of text-
image pairs, of which descriptions are not precise enough for domain-
specific problems. Following the concept that humans normally learn
the visual appearance of bridge damage by reading a manual, we intro-
duce a novel Description Attention Module (DAM) to incorporate the
domain-specific knowledge extracted from the professional descriptions
in bridge inspection manuals. By utilizing both general knowledge of
the pre-trained CLIP and professional knowledge of bridge inspection,
BridgeCLIP comprehensively learns the inter-class relationships of dif-
ferent damages. Experimental results on bridge inspection datasets show
that BridgeCLIP outperforms the state-of-the-art multi-label classifiers.

Keywords: Bridge Inspection · Vision-Language Models · Multi-label
Classification

1 Introduction

As a crucial part of city infrastructure, bridges facilitate transportation and
connect communities, making them indispensable in our daily lives. Tokyo in
Japan has over one thousand bridges that support the city’s bustling life and
commerce. However, 43% of the bridges have been built for more than 50 years
since their construction before the period of rapid economic growth, and the
aging situation of these bridges is becoming more severe [41]. This social issue
is not unique to Japan; now, it is a global concern, with countries worldwide
facing similar issues [2,42]. In addition to the elapsed years, the daily condi-
tions of bridges are very severe. Wet conditions, strong winds, vehicle vibrations,
and even earthquakes or natural disasters accelerate the deterioration. Without

*P. Liao’s contribution was made when he was an intern at NEC Corporation.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15317, pp. 61–76, 2025.
https://doi.org/10.1007/978-3-031-78447-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78447-7_5&domain=pdf
http://orcid.org/0009-0000-7916-0688
http://orcid.org/0000-0002-4107-5100
https://doi.org/10.1007/978-3-031-78447-7_5


62 P. Liao and G. Nakano

regular maintenance, minor damages can escalate into significant deterioration,
eventually resulting in disasters with profound economic and social losses. For
instance, the I-40 Bridge collapse in Oklahoma in 2002 profoundly impacted
freight flow movement in the U.S. highway network [1]. The collapse affected
nearby highway network links and those further away, indicating the extensive
economic implications of such events on local, regional, and national economies.

The importance of bridge inspection cannot be overstated to avert such disas-
ters. By bridge inspection, damages can be found before they cause irretrievable
consequences. However, conducting these inspections requires specialized knowl-
edge in civil engineering and often involves working in dangerous locations. With
the global labor force in decline, the need for more professionals is becoming
increasingly critical for bridge inspection.

Addressing challenges like the laborious unsafe conditions and high costs of
traditional bridge inspections, the interest in using advanced technologies has
remarkably increased over the last decade. Laser scanners have been widely
applied for bridge engineering [35,43]; however, the cost of laser scanning tech-
nology remains relatively high. Consequently, bridge inspection methodologies
utilizing vision-based techniques coupled with deep learning algorithms have
gained increasing research interest [7,8,24]. In vision-based bridge inspection,
accurately detecting all damages within the images is crucial. Multi-label bridge
inspection, which aims at detecting multiple types of damages from a single
image, remains challenging due to the following reasons:

– The relationships between different damage types (inter-class relations) is
unclear.

– A substantial amount of data is required for training.
– Precise annotation for multi-label classification is difficult and costly.

To facilitate the comprehension of the inter-class relationships, we incorporate
a pre-trained vision-language model into our framework.

In recent years, models trained under the supervision of natural language
have achieved remarkable success in the computer vision community. A notable
example is CLIP [34], which was pre-trained on 400 million web-scraped image-
text pairs, demonstrating promising capabilities across various datasets. By
incorporating the pre-trained model of CLIP, some traditional vision tasks such
as object detection [17,46,54] and semantic segmentation [27,30,49] can be inter-
faced with text. Through the pre-trained text-feature space CLIP has learned,
the vision-language model can understand the inter-class relationships and facil-
itate multi-label classification [38]. However, despite CLIP’s impressive perfor-
mance on general datasets, e.g., ImageNet [11], the performance will greatly
decrease on tasks that demand highly specialized knowledge, e.g., EuroSAT [19]
and DTD [10]. Since the knowledge that CLIP learned is general, researchers
have explored strategies to adapt CLIP for domain-specific tasks such as trans-
forming prompts into learnable vectors [53] or appending a Multilayer Perceptron
(MLP) to the CLIP encoders [16].

In this paper, we aim to investigate the capabilities of CLIP for a task
that highly requires professional knowledge, such as bridge inspection. Typically,
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reading a manual proves helpful when humans with general knowledge want to
learn how to do bridge inspection. In the manual, instead of only providing the
name of every damage, it will also provide detailed descriptions of each type
of damage, enabling inspectors to combine this specific information with their
pre-existing general knowledge to learn bridge inspection skills. Inspired by this
learning process, we introduce a novel Description Attention Module (DAM)
to enable CLIP to “read” and “learn” from such manuals. We design this mod-
ule to enhance the ability of the proposed framework, BridgeCLIP, to perform
bridge inspection tasks by combining the knowledge from pre-trained CLIP and
professional descriptions. In summary, our contribution is two-fold:

• We propose BridgeCLIP for multi-label bridge inspection. The Description
Attention Module (DAM) effectively adapts a pre-trained vision-language
model with professional descriptions.

• We conduct experiments on bridge inspection datasets (dacl10k [15] and
CODEBRIM [32]) and demonstrate that our BridgeCLIP improves mAP by
3.02% on dacl10k and 3.77% on CODEBRIM over DualCoOp [38].

2 Related Work

2.1 Image-Based Bridge Inspection

Vision plays a pivotal role in bridge inspection, offering abundant information to
detect various damage types. Over the past decade, many researches have been
focusing on crack detection by various computer vision methods like histograms
of oriented gradients (HOG) [23], Hough transform [33], object detection [12,
14], motion analysis [3], and semantic segmentation [28,29,50]. However, while
crack detection is vital, comprehensive bridge inspection demands attention to a
broader spectrum of damages, such as corrosion, efflorescence, and so on. To deal
with various damage types in bridge inspection, images with different damage
labels are collected. They are used for different algorithms, e.g., multi-classes
classification [21], multi-label classification [32], and semantic segmentation [15].
Recent studies have also explored the use of vision-language models for bridge
inspection. Chun et al. [9] trained a vision-language model to do image captioning
for bridge inspection. Kunlamai et al. [25] utilized a vision-language model to
conduct visual question answering (VQA) in bridge inspection.

2.2 Multi-label Classification

Single-label classification, identifying the primary object in an image, is one
of the most popular computer vision tasks [11]. Meanwhile, the more com-
plex challenge of multi-label classification [40], which aims to identify multiple
objects in an image, is more related to real-world usage and gaining increas-
ing research interest in recent years. Although multi-label classification can be
performed by simply transferring to multiple single-label classifications, this app-
roach often fails to consider the relationship between labels. Recent developments



64 P. Liao and G. Nakano

have introduced methodologies employing Graph Neural Networks (GNN) [5,6],
RNN/LSTM [4,45], and vision-language models [38], which have proven effective
in learning and leveraging the relationships between labels, thereby facilitating
significant progress in multi-label classification tasks.

2.3 Vision-Language Models Adaption

Vision-language models such as CLIP [34] and ALIGN [22] have demonstrated
that they can understand the relationship between vision and nature language in
everyday contexts, a capability acquired through extensive training on numerous
images with corresponding text descriptions. Leveraging this capability, these
pre-trained models can be adapted for various downstream tasks, including but
not limited to object detection [17,46,54], image segmentation [13,27,30,49],
image editing [26,47,48], and image captioning [20,31].

However, in focusing on classification, the original CLIP model struggles with
domain-specific datasets such as EuroSAT [19] and DTD [10]. A promising solu-
tion to this issue is “prompt learning”, where prompt significantly influences the
model’s performance. To avoid tedious prompt engineering, CoOp [53] intro-
duces learnable vectors as prompts, allowing the model to train and optimize
these prompts. CoCoOp [52] employs a lightweight network to dynamically adapt
prompts. Other than prompt learning, Clip-adapter [16] adds a bottleneck layer
to learn new features, utilizing residual connections to preserve the model’s orig-
inal pre-trained knowledge. DualCoOp [38] encodes positive and negative con-
texts with class names, by binary classification for every class individually, can
be adapted for multi-label classification.

3 Methodology

3.1 Approach Overview

Figure 1 illustrates the overview of the proposed method. Our approach addresses
the challenge of identifying multiple damage types of bridges in a single image
through multi-label classification. Since identifying inter-class relationships is
vital in multi-label classification [5,6,40], we employ a powerful pre-trained
vision-language model (CLIP [34]), which is adept at understanding complex
class relationships through extensive image-text pair learning. To adapt the pre-
trained model to our task, we train the Description Attention Module (DAM)
while freezing the parameters of the image encoders and the text encoders of
CLIP. Within DAM, a pair of learnable prompts and an attention module are
designed to associate the general knowledge from the pre-trained CLIP text
encoder with the specialized knowledge from the description. This fusion enables
our model to adjust to the demands of bridge inspection applications, even in
the absence of extensive data sets. Additionally, to recognize all the bridge dam-
age in different regions of the image, we apply Class-Specific Region Feature
Aggregation [38] in our method. During the training, we optimize the network
by minimizing Asymmetric Loss (ASL) [36].
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Fig. 1. Overview of the proposed approach. BridgeCLIP learns a pair of prompts
and an Attention Module to adapt powerful pre-trained Vision-Language encoders for
multi-label bridge inspection.

3.2 Description Attention Module

We present the Description Attention Module (DAM) as an innovative adap-
tation of the CLIP framework for bridge inspection applications, enhancing its
multi-label classification capabilities. Unlike previous approaches that utilize a
single learnable prompt [53], we set a pair of learnable prompts [38] for multi-
label classification. Each prompt pair consists of a positive and a negative con-
text. A series of learnable vectors act as the learnable prompts and follow the
name of the targeted bridge damage (Fig. 2).

There are N learnable vectors V1, · · · , VN in each prompt with a class name
(damage type) CLS. A pair of a positive and negative prompt can be written by

Prompt+ = [V +
1 , V +

2 , ..., V +
N+,CLS], (1)

Prompt− = [V −
1 , V −

2 , ..., V −
N−,CLS]. (2)

These vectors are input alongside the damage’s class name into the text encoder
Et, yielding the Classes Name Text-Feature Fc and the Descriptions Text-
Feature Fd generated from professional descriptions:

Fc = Et(Prompt+,Prompt−), (3)
Fd = Et(Descriptions). (4)

To let our model “read” and “learn” from professional descriptions, we concate-
nate Fc and Fd, then input it into an Attention Module. We get the output of a
pair of features F+

Att and F−
Att by

F+
Att, F−

Att = ReLU
(
w

(
softmax

(
q(Fc)k(Fc, Fd)T

)
v(Fc, Fd)

))
, (5)
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Fig. 2. Illustration of Description Attention Module (DAM). Descriptions
Text-Feature and Classes Name Text-Feature, generated from profession description
and a pair of learnable prompts, are mixed by an attention module.

where w, q, k, and v represent independent linear embedding layers. To keep
the original knowledge of CLIP, we set a residual connection after the Attention
Module output as

F+
DAM = αF+

Att + (1− α)Et

(
Prompt+

)
, (6)

F−
DAM = αF−

Att + (1− α)Et

(
Prompt−)

. (7)

The ratio α can be manually adjusted during the training. The features F+
DAM

and F−
DAM will be used to calculate the cosine similarity in Class-Specific Region

Feature Aggregation [38].

3.3 Class-Specific Region Feature Aggregation

During bridge inspections, images often contain multiple damages, which may
be spread across various regions. To accurately recognize all damages in dis-
parate regions, we incorporate Class-Specific Region Feature Aggregation [38] in
our approach. In the original CLIP [34], the last attention-pooling layer can be
presented as follows:

AttnPool(x) = Projv→t

(
∑

i

softmax(
q(x̄)k(xi)T

C
) · v(xi)

)

=
∑

i

softmax(
q(x̄)k(xi)T

C
) · Projv→t(v(xi))

= Pool
(
Projv→t(v(xi))

)
,

(8)
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which pools the visual feature map initially, followed by the projection of the
global feature vector into the text space. The q, v, and k are independent linear
layers, and x is the output feature map of the visual encoder. xi denotes the
input feature at spatial location i, and x̄ is the average of all xi. By removing
the pooling operation in the last multi-headed attention pooling layer of the
visual encoder in CLIP [34], we can project the vision feature xi of each region
i to textual feature space as follows [51]:

F i
v = Projv→t (v(xi)) (9)

Subsequently, each image feature F i
v is compared against both positive and neg-

ative features F+
DAM , F−

DAM from the DAM, using cosine similarity Scos to pro-
duce positive and negative logits:

S+
i,m = Scos(F i

v, F+
DAM ), S−

i,m = Scos(F i
v, F−

DAM ). (10)

After aggregating the positive and negative logits S+
i,m, S−

i,m, we obtain a final
positive and negative logit for every class by

S+
m =

∑

i

(
softmax(S+

i,m) · S+
i,m

)
, (11)

S−
m =

∑

i

(
softmax(S−

i,m) · S−
i,m

)
. (12)

Finally, with a pair of the final logits, the binary classification output p can be
given by

p =
exp(S+

m/τ)
exp(S+

m/τ) + exp(S−
m/τ)

. (13)

3.4 Optimization

During the optimization, we apply ASL [36] to address the imbalance between
positive and negative labels in multi-label classification. Specifically, we calculate
the losses for positive {image, label} pairs L+, and negative {image, label} pairs
L−, using the following formulas:

L+ = (1− p)γ+ log(p), (14)

L− = pγ−
m log(1− pm), (15)

where pm denotes the shifted probability, which fully discards negative pairs when
the possibility is very low, and is defined as

pm = max(p − m, 0), (16)

where m is a margin for hard thresholds. The loss-wight for L− is greater than
or equal to L+ to ensure that ASL minimizes the influence of hard thresholds
on these easy negatives. The learnable prompts and the attention module in
DAM are then refined through back-propagation of ASL across the frozen text
encoder.
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4 Experiments

Fig. 3. Examples from dacl10k datasets. Examples of bridge damage images and
corresponding damages and descriptions from dacl10k [15].

4.1 Multi-label Bridge Inspection

Dataset. To show our method can recognize multiple damage types from a
single bridge image, we tested our model on two publicly available datasets,
CODEBRIM [32] and dacl10k [15]. In CODEBRIM [32], there are five different
types of bridge damage and 1590 images in the dataset. Dacl10k [15] is a dataset
for semantic segmentation, and their annotation can be easily transferred for
multi-label classification. There are 9,920 annotated images and 18 classes in
the dacl10k dataset.
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Fig. 4. Examples from CODEBRIM datasets. Examples of bridge damage images
and corresponding damages and descriptions from CODEBRIM [32].

Table 1. Multi-label bridge inspection dacl10k [15]

Method Val Set Test Set
PrecisionRecall F1 mAP PrecisionRecall F1 mAP

VGG16 [37] 58.45 23.78 31.92 49.94 58.63 22.24 30.29 45.83
ResNet50 [18] 54.85 50.40 51.16 52.49 53.29 48.15 48.51 50.47
DualCoOp [38] 50.38 59.61 53.90 56.79 50.51 59.84 53.87 56.32
BridgeCLIP (ours) 51.75 62.33 55.94 60.59 50.52 62.72 55.65 59.34

Professional Descriptions. For each damage type, we defined a prompt with
a professional description as follows:

{damage class name} : {description} (17)

The descriptions CODEBRIM and dacl10k are named the same as the corre-
sponding dataset because the descriptions contain the same number of descrip-
tions as damage types in the dataset. Some examples of image and description
pairs are shown in Figs. 3 and 4. There are 13 descriptions in dacl10k and 6 in
CODEBRIM, respectively.
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Table 2. Multi-label bridge inspection CODEBRIM [32].

Method Val Set Test Set
PrecisionRecall F1 mAP PrecisionRecall F1 mAP

VGG16 [37] 62.12 69.72 65.39 71.70 63.50 73.09 67.65 73.84
ResNet50 [18] 62.77 69.81 65.79 72.92 66.47 72.20 68.70 73.69
DualCoOp [38] 62.00 77.90 67.41 78.64 67.31 81.83 71.90 83.75
BridgeCLIP (ours)66.03 81.38 71.93 83.24 69.23 85.18 75.26 87.52

Evaluation. On the dacl10k and CODEBRIM datasets, we reported the average
overall precision, recall, F1, and mean average precision (mAP) for both the
valuation set and the test set.

Implementation. In our implementation, ResNet-50 [18] serves as the visual
encoder across all baselines, and the input resolution is 448×448 pixels. The text
encoding component utilizes the same Transformer architecture [44] in CLIP [34].
Both the visual and text encoders are initialized using weights from the pre-
trained CLIP model and are maintained without alterations (frozen) during the
optimization process. Optimization is conducted using the Stochastic Gradient
Descent (SGD) optimizer, starting with an initial learning rate of 0.02. This
rate undergoes adjustment according to the cosine annealing rule throughout
training.

Baselines. To evaluate the effectiveness of BridgeCLIP for multi-label bridge
inspection, we compared our method with the baseline DualCoOp. We also
trained two prevalent models VGG16 [37] and ResNet50 [18] with cross-entropy
loss.

Result. Tables 1 and 2 show that our method BridgeCLIP consistently shows
superior performance in recall, F1, and mAP across both datasets, indicating
its robustness and effectiveness in the multi-label bridge inspection task. While
VGG16 shows high precision, it falls short in recall, suggesting a need for a
better balance. ResNet50 and DualCoOp offer competitive but not leading per-
formances. The result suggests BridgeCLIP offers a significant advancement in
multi-label bridge inspection, by effectively balancing precision and recall and
achieving high mAP scores.

4.2 Ablation Study

Residual Ratio α. DAM incorporates a residual connection after the attention
module to preserve the inherent knowledge gained by the CLIP text encoder
through extensive training on millions of text-image pairs. We varied the resid-
ual ratio α to elucidate its effect on the model’s efficiency. As Fig. 5 shows, when
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setting the ratio to 0, the model will not use any knowledge from professional
descriptions, significantly reducing the performance of models. Our experiment
also indicates that an α of 0.8 for dacl10k and 0.6 for CODEBRIM datasets opti-
mizes performance. The performance remains relatively stable for α adjustments
between 0.2 and 0.8 but noticeably declined at α = 1.0. This trend highlights
the importance of keeping both original CLIP knowledge and professional knowl-
edge.

Fig. 5. Varying the residual ratio α. The Precision, Recall, F1, and mAP of Bridge-
CLIP (ours) trained on dacl10k and CODEBRIM dataset when the residual ratio α in
DAM is varied.

Professional Descriptions. To understand how the content of professional
descriptions would affect our model, we trained our model on two datasets with
three different descriptions. In addition to dacl10k and CODEBRIM, we also
collected the damage descriptions from NILIM Japan [39], containing 26 diverse
bridge damage categories in Japan standard bridge inspection. The descriptions
were written in Japanese and translated into English using ChatGPT. We chose
23 descriptions of common damages as in dacl10k and CODEBRIM.

Table 3. Different descriptions. The mAP of our BridgeCLIP with various descrip-
tions. ∗ indicates using a prompt for descriptions

Test data Descriptions for training
CODEBRIMCODEBRIM∗ dacl10k dacl10k∗ NILIMNILIM∗

dacl10k 59.62 60.06 60.10 59.34 59.78 59.38
CODEBRIM87.38 87.52 87.69 87.32 87.31 87.29
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Table 4. Examples of different descriptions. Three examples of descriptions from
dacl10k and NILIM.

Damage Class Descriptions examples

Cracking (dacl10k) Elongated and narrow zigzag line. Clearly
darker compared to the surrounding area or
black.

Cracking (NILIM) Surface crack(s) on concrete components.
Rust (dacl10k) Reddish to brownish area. Often appears on

concrete surfaces and metallic objects
Rust (NILIM) Rusting in ordinary steel materials, leading

to reduced thickness. In weathering steel, it’s
when protective rust fails to form, causing
abnormal rust. Common in parts with water
accumulation or poor ventilation.

Spalling (dacl10k) Spalled concrete area revealing the coarse
aggregate. Significantly rougher surface (tex-
ture) inside the Spalling than in the sur-
rounding surface.

Spalling (NILIM) Peeling or flaking concrete layers, possibly
revealing the steel bars underneath, which
may show signs of rust.

As shown in the Table 3, the variation in descriptions suggests a nuanced
impact on the model’s performance compared to the significant differences
between them. Table 4 provides examples demonstrating how the same damage
class can have vastly different descriptions from different sources. The intro-
duction of prompts (denoted by ∗) for descriptions appears to offer marginal
improvements in some cases (e.g., CODEBRIM from 87.38 to 87.52) but shows
a slight decrease in others (e.g., dacl10k from 60.10 to 59.34). This suggests that
while prompts can help model learn more when the number of descriptions is
limited, when the number of descriptions is enough, prompts will not help the
model and even decrease the performance. Although descriptions from NILIM
have the most different kinds of bridge types, our method performs best with
dacl10k descriptions. This suggests that the descriptions related to the dataset
could help our model better.

5 Conclusion and Discussion

This study introduced BridgeCLIP, a novel approach for multi-label bridge
inspection leveraging a vision-language model enhanced with a Description
Attention Module (DAM). Our findings demonstrate that integrating DAM with
the pre-trained CLIP model significantly improves the model’s ability to inter-
pret professional descriptions, thereby enhancing its performance on specialized
tasks such as bridge damage classification. Experimental results on the dacl10k
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and CODEBRIM datasets underscore our method’s superiority over existing
state-of-the-art method, with improvements in precision, recall, F1 scores, and
mean Average Precision (mAP).

The incorporation of DAM enables BridgeCLIP to effectively utilize text
features extracted from professional descriptions, a key advancement over pre-
vious methods. This innovation not only bolsters the model’s accuracy but also
its applicability in real-world scenarios where expertise in bridge inspection is
crucial.

Future research could explore further optimizations to the DAM and the inte-
gration of additional descriptions to enhance the model’s robustness and accu-
racy. By continuing to refine BridgeCLIP, we aim to contribute to the develop-
ment of automated inspection systems that can aid in maintaining and ensuring
the safety of critical infrastructure globally.
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Abstract. One of the key areas of study in palaeography involves iden-
tifying the various scribes collaborating on a medieval book. Although
digital technologies have allowed significant improvements in this field,
it is far from being solved in the general case and is still an open issue.
Very interesting results were obtained in the case of highly standardized
handwriting and book typologies, where the analysis of some basic layout
features regarding the organization of the page and its exploitation by the
scribe allowed a high recognition rate. The main drawback of approaches
based on layout features is that the results obtained from an ancient text
are difficult to use in other texts, produced following different standards.
Based on these considerations, we have developed a new approach that
attempts to overcome the above-mentioned limitations. The basic idea
is to exploit the knowledge of palaeographers who have identified, for
each scribe, some letters or abbreviations that characterize them. In this
preliminary study, we used two ancient manuscripts, the Avila Bible and
the Trento Bible, and we considered the letter “a” as a reference symbol:
such letter, according to the indications of the palaeographers, is one of
the distinctive symbols able to characterize individual scribes and it is
also widely present in all pages of text. A template matching technique
was used to identify the occurrences of the character “a” on each page,
and a Convolutional Neural Network (CNN) was used to train a classi-
fication system capable of attributing each occurrence of the character
“a” to the corresponding scribe. Finally, we used a majority voting tech-
nique to assign the entire manuscript page to the scribe with the highest
number of occurrences of the character “a” on that page. The experi-
mental results obtained on both Bibles confirmed the effectiveness of our
method, allowing us to correctly attribute to each scribe over 80% of
the pages processed.

1 Introduction

Palaeography is the study of ancient writing, particularly concerning decipher-
ing, dating, and interpreting manuscripts and documents from various histor-
ical periods. This field includes examining writing systems, styles, letterforms,
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abbreviations, punctuation, and other aspects of written communication, often
in languages no longer in common use [3,4,18,22,27,28].

A very important aspect of palaeographic studies is the identification of the
different scribes who contributed to the production of an ancient text. Scribes,
in fact, often had distinct writing styles, whose knowledge can help scholars
attribute specific parts of a text to a specific author or period. Furthermore,
identifying different scribes can help trace how a text was completed over time
and understand the different places scribes worked. Finally, examining how copy-
ing and annotation work was carried out can provide insight into the culture and
other aspects of the social and intellectual life of the time [9,14–16,23].

In this area, over the years, there has been an increasingly intense use of
digital technologies, which have made it possible to integrate traditional pale-
ographic methods with a vast range of techniques such as image processing,
machine learning, recognition of writing patterns and styles, which helped to
decode and interpret ancient handwritten texts more efficiently and accurately
[17,25]. It is useful to highlight, however, that the problem of identifying the
different hands that produced an ancient text is still far from being solved in the
general case and still represents one of the most difficult challenges to face.

As discussed in [6], techniques for identifying scribes in ancient manuscripts
can be divided into two main categories. In the first category, we can con-
sider approaches based on the analysis of single letters, signs, or abbreviations
obtained by examining single lines of text or the entire page [19,24]. All these
approaches are based on the possibility of effectively segmenting the manuscript
text into letters or graphemes: a condition which, in general, is very difficult to
guarantee and often produces unsatisfactory results [5].

The second category includes techniques for extracting features from the
entire manuscript page. These techniques use texture or layout features and
have produced particularly interesting results in the case of highly standardized
handwriting and book typologies, for which the analysis of some basic layout
features, regarding the organization of the page and its exploitation by the scribe,
may give precious information for distinguishing very similar hands even without
recourse to paleographical analysis [2,20].

In previous studies [7,10–12], we proposed some pattern recognition systems
for distinguishing the scribes who worked together to transcribe a single medieval
Latin book. We used a specifically devised set of features directly derived from
page layout analysis according to the suggestions of palaeographic and codico-
logical researchers and performed classification using standard machine learning
systems. We have also developed deep neural network approaches, in which we
proposed a deep transfer learning solution for row detection and page classifica-
tion, obtaining very encouraging results [6,8]. Obviously, the main problem of
approaches based on layout features is that the results obtained from an ancient
text are difficult to use in other texts, produced following different standards.
The effect is that it is difficult, for example, to recognize the hand of a scribe
who worked on multiple ancient texts produced following different standards.
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Based on these considerations, we have developed a new approach that
attempts to overcome the above-mentioned limitations. The basic idea is to
exploit the knowledge of palaeographers who have identified, for each scribe,
some letters or abbreviations that characterize them. In this preliminary study,
we used two ancient manuscripts, the Avila Bible and the Trento Bible, and we
considered the letter “a” as a reference symbol: such letter, according to the
indications of the palaeographers, is one of the distinctive symbols able to char-
acterize individual scribes and it is also widely present in all pages of text. For
each scribe, a template image of the character “a” was obtained with the help
of paleographers, and a template matching technique was used to identify in the
image of the entire page the regions (sub-images) where with higher probability
an occurrence of the character “a” is present. In this way, we have overcome the
problem of segmenting lines of text into individual characters. These images were
then processed using Convolutional Neural Networks (CNNs) to train a classifi-
cation system capable of attributing each occurrence of the character “a” to the
corresponding scribe. Finally, we used a majority voting technique to assign the
entire manuscript page to the scribe with the highest number of occurrences of
the character “a” on that page.

The results obtained on the Avila Bible were very interesting, showing per-
formance higher than those obtained previously using layout information. It is
useful to highlight that the proposed approach is independent of all the style rules
defined for producing an ancient volume and attempts to characterize the dis-
tinctive aspects of each scribe. We, therefore, tried to apply our system, trained
on the Avila Bible, on the images relating to the pages of the Trento Bible. The
studies carried out by paleographers on the Trent Bible have, in fact, highlighted
that at least one of the scribes who worked on the Avila Bible also contributed to
the writing of the Trent Bible. Also, in this case, the results were very convincing
and allowed us to obtain good percentages of correct identification of this scribe
in the Trento Bible.

The remainder of the paper is organized as follows: Sect. 2 illustrates the
datasets derived from both the Avila and the Trento bibles, Sect. 3 describes the
proposed method discussing the different parts in which it is articulated, while
the experimental results are presented in detail in Sect. 4. Discussion and future
works are eventually left to Sect. 5.

2 Data Description

As previously discussed, we aim to perform the identification of a scribe who
participated in the handwriting of two Medieval Bibles, namely the Avila Bible
and the Trento Bible. The Avila Bible was penned in Italy by a minimum of
nine scribes during the third decade of the 12th century [21]. Subsequently, it
was transported to Spain, where local scribes completed both the text and dec-
oration. In a third phase, occurring in the 15th century, additional content was
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Fig. 1. Examples of pages from the Avila (left) and Trento (right) Bibles

incorporated by yet another writer. Due to the involvement of multiple scribal
hands, both contemporary and non-contemporary, this manuscript serves as a
rigorous testbed for assessing the efficacy of automatic scribe identification sys-
tems. As far as we know, there is currently no other standard database offer-
ing the same characteristics, such as complete high-quality reproductions and
a limited number of recurring and identifiable hands. High-quality images of
the Bible pages are available online [1]. The scarcity of comparable databases
can be attributed primarily to the rarity of these immense Bibles, their sub-
stantial size, and the high costs associated with digitization. Consequently, they
have not been frequently digitized, and the available microfilms are often inad-
equate for conducting automatic pattern recognition analyses due to low image
quality and compromised page margins. The Avila Bible comprises 870 two-
column pages, although, for this study, several pages of very poor quality were
excluded. Palaeographers analyzing this manuscript have identified at least 13
distinct scribal hands. One of these hands may work only for rubricated letters
that we opted to remove during preprocessing; thereby, we exclude this writer
from the identification. Furthermore, paleographers furnished us with guidance
on the distinctive identifying letters used solely by 12th-century contemporane-
ous italian writers. Consequently, we chose to omit pages authored by scribes
from the 15th century and Spanish writers. Scribes contributed to the Bible in
varying capacities; some penned only a few pages (with one page being the min-
imum), while others were responsible for a significant portion of the text (with
143 pages being the maximum). Consequently, the classification task at hand
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is marked by a notably imbalanced distribution of samples per class. Thus, we
opted to exclude pages of scribes penned only a limited number of pages due
to the extensive dataset requirement for training deep-learning algorithms. In
this study, we focused on 705 pages featuring identifiable handwriting from 8
different writers to ensure an ample dataset for DL applications. Each page was
digitized at a resolution of 4100 × 6110 pixels and meticulously labeled by an
expert paleographer, assigning the letters A,B,D,E, F,G,H, I to denote indi-
vidual writers.

The Trento Bible is an Atlantic volume dating back to the first half of the
12th century. The history of the volume is less complex than the Avila Bible
and centered on a more limited period, without subsequent additions and mod-
ifications. The existing part of the Bible, which has come down to the present,
has been analyzed by palaeographic experts. Palaeographers widely attribute
the decorative elements within the bible to a singular hand, referred to as the
Master of the Avila Bible and his atelier. Additionally, paleographers identified
three scribes who collaborated in writing the Trento Bible, and among them,
they identified a scribe already involved in the composition of the Avila Bible
(the F scribe). While the entire Trento Bible has been digitized, the availability
of digital images of satisfactory quality is limited. Trento Bible consists of 394
pages. Each page was digitized at a resolution of 2832 × 4256 pixels. Figure 1
compares pages from the Avila and the Trento Bible.

3 The Proposed Method

This section outlines the method proposed in this study, which unfolds in two
main stages: image processing and DL approach. The workflow overview is
depicted in Fig. 2. The input comprises image datasets of ancient Bibles (Avila
and Trento Bibles as detailed in Sect. 2). Section 3.1 delineates the first step
of the method, where many image data processing techniques were employed.
Subsequently, Sect. 3.2 describes the DL architectures and techniques adopted
to identify the writer who contributed to both the ancient books. Additionally,
we have included Figs. 3, 4 and 5 to describe the following sections better, pro-
viding a more detailed visual explanation of each step involved in the processes.
To highlight the generality of the proposed approach, in the following figures,
we will indicate the Avila Bible, from which the reference patterns have been
extracted, as Bible1, while the Trento Bible will be denoted as Bible2.

3.1 Image Processing

The initial phase of image processing takes as input a reference letter image for
each author of the Avila Bible, along with the images of the pages from both
the Avila and Trento Bibles. This phase resulted in the creation of two datasets
comprising extracted instances of the letter “a” from the pages of each Bible. The
details of this procedure are illustrated in Fig. 3, which delineates the process
into distinct modules, each described in the following subsections.
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Fig. 2. The architecture of the proposed method

•
•

Fig. 3. The image processing scheme

Avila Reference Letters Enhancement. To build a dataset for each bible,
we opted to utilize the letter “a” as recommended by the paleographer, given its
prevalence as the most common letter, ensuring the extraction of an adequate
number of samples. Furthermore, the paleographer selects this letter because
it is particularly instrumental in identifying the writer. As discussed in Sect. 2,
we considered eight distinct scribes in the Avila manuscript, each attributing a
reference sample of the letter “a”. Notably, these reference letters differ among
authors, showcasing their unique styles and idiosyncrasies in handwriting.

The reference samples provided by the paleographers required preprocessing
to prepare them for the subsequent steps. Each sample underwent binarization
to facilitate analysis. Moreover, given that each sample contained the letter itself
and adjacent letter fragments, a cleaning operation was necessary to eliminate
artefacts. To address the cleaning operation, we first applied a thinning algorithm
to reduce the letters to their essential structure, making the contours clearer and
easier to detect. Then, we considered the findContours function [29] from the
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OpenCV library used for image contour detection, where a contour is a curve
joining all the continuous points along a boundary with the same colour or
intensity. Using this function, we analyzed the ratio of black to white pixels at
the image edges to determine if the area contained part of the main letter (high
black presence) or just noise from adjacent characters (high white presence). This
process significantly refined our letter images by removing unwanted artefacts.
Additionally, resizing the images was essential to standardize their height to
match the average row height of the Bible pages and adjust the base without
altering the aspect ratio. At this point, the prepared images were ready to extract
letter occurrences from the pages.

Page Processing. The pages of the Bibles considered for this study were
digitized with high resolution, ensuring clarity and legibility of the text while
minimizing any signs of degradation. Despite their overall quality, it became
imperative to perform binarization to facilitate the application of identification
methods and, subsequently, DL techniques. Given that the images were in RGB
format and typically consisted of three distinct colors - background texture, text,
and initial characters or symbols often marked in red - the binarization process
required a preliminary operation. A strategic decision was made to convert all
red pixels to white. This was crucial for enhancing the clarity of the text and
simplifying subsequent processing steps.

After removing the red pixels, additional transformations were applied to
prepare the images for further analysis. Firstly, a conversion to grayscale was
performed to standardize the representation of intensity levels across the image.
Then binarization was carried out utilizing the Otsu algorithm.

By employing these preprocessing steps, the digitized images were effectively
transformed into a format adequate to advanced analytical techniques, enabling
the identification of occurrences and subsequent DL-based text analysis.

Letters Extraction and Postprocessing. As a result, the steps previously
described produced enhanced reference letters of the Avila Bible and binarized
pages for both the Avila and Trento Bibles. Once those data were obtained, it was
possible to extract letter occurrences from the Avila text to arrange a dataset. We
used the reference letter of each author from the Avila manuscript to systemati-
cally extract occurrences of the letter “a” from the pages of the respective writer in
the Avila Bible. Regarding extracting the letters from the Trento Bible, we didn’t
have references, so our focus was solely on the reference letter of the scribe who
contributed to the writing process of both bibles, namely scribe F. This strategic
choice was informed by the guidance of paleographers, who noted that author F
was the only common writer across both ancient texts (see Sect. 2).

Hence, we tested various template-matching algorithms to identify every
instance of the reference letter “a” attributed to each author within their respec-
tive pages. For this purpose, we opted for a method provided by the OpenCV
library: the normalized cross-correlation template matching function [26]. This
function is specifically designed to detect instances of a template image, in this
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case, the reference letter, within a larger image representing the page. It operates
by sliding the template image over the larger image and computing a similar-
ity measure at each position. This similarity measure indicates how closely the
template matches the corresponding region of the larger image. We considered
a threshold for the similarity scores of the detected occurrences, which enabled
us to extract reliable samples and avoid misleading occurrences. Once regions of
interest (ROIs) containing the letter occurrences with similarity scores surpass-
ing the threshold were identified, we extracted and saved them in PNG format.

The next step involved image cleaning of the extracted occurrences, as they
were taken from text pages, and traces of adjacent letters were present. There-
fore, we performed the same cleaning process described in Sect. 3.1, considering
thinning and findContours operations. The extracted images had different sizes,
so we uniformed them in a standard 224 × 224 shape. This process guaranteed
the precise extraction of the desired letters and convenient postprocessing, thus
laying a solid foundation for subsequent analysis and study.

3.2 Deep Learning Approach

This section outlines the DL approaches utilized in this study. In the first app-
roach, we conducted a multiclass classification on the Avila dataset, each class
representing a different writer. Conversely, the second approach involved train-
ing a model on the Avila dataset for binary classification, distinguishing F from
all other classes. Subsequently, we applied this model to the Trento dataset to
assess its ability to identify shared writers across the two bibles.

Multiclass Classification on Avila Bible. The initial DL approach involved
a multiclass classification, intending to identify the writers of the Avila Bible
based on their handwriting styles. Figure 4 depicts each implemented step. The
Avila dataset consists of images depicting occurrences of the letter “a” from
eight distinct writers. These images were generated through the methodology
outlined in Sect. 3.1 and subsequently categorized according to the respective
writers. The Avila dataset was used to feed a CNN; further details about the
training and testing processes are described in Sect. 4. The output of the CNN
was a prediction for every occurrence sample in the dataset. Ultimately, the
outcomes were synthesized by utilizing a majority voting rule to consolidate the
results and obtain a classification at the page level. This comprehensive approach
facilitated the accurate identification of writers and underscored the significance
of model selection, cross-validation, and metric evaluation in enhancing classifi-
cation outcomes.

Inference Approach to Trace the Writer. This section describes the devel-
oped DL approach to trace the writer across the two Bibles. The process is
shown in Fig. 5, which takes as input the images generated through the image
processing step outlined in Sect. 3.1.
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Fig. 4. The proposed Multiclass approach on Avila Bible

Fig. 5. The proposed Inference approach to identify the common writer

The Avila dataset consisted of images depicting occurrences of the letter “a”
attributed to each of the eight writers. Since we had prior knowledge of the
common writer between the two bibles, for this experiment, we structured the
dataset into two distinct classes: F, comprising solely letters from the F writer,
and All, encompassing letters from the remaining writers in the collection. Using
the One vs. All approach, we trained two CNN models specifically tailored to
differentiate the writing style of the F writer from the others. Subsequently,
these models were applied to infer insights from the Trento dataset. The Trento
dataset, comprising two classes–F and All–served as the test set, resulting in
predictions for each sample indicating whether it belonged to the F writer.
Recognizing that a single individual wrote each page of the Trento Bible, we
enhanced our evaluation by employing a majority voting rule to aggregate the
predictions of occurrences associated with each page.

The culmination of the entire system provided an answer for each page of
the Trento Bible, providing insight into whether the writer F of the Avila Bible
had authored any pages within the Trento Bible or not.

4 Experimental Results

This section focuses on deploying and analyzing the outcomes derived from the
image processing procedure described in Sect. 3.1 and the experimental workflow
outlined in Sect. 3.2.
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Table 1. Details about the image extraction process of the letter “a” from Avila Bible.

A B D E F G H I Total

#occurrences 2933 166 378 565 1317 269 425 52 6105

#total pages 309 31 18 76 150 31 37 53 705

#rejected pages 65 7 2 8 11 24 2 25 144

#occurrences/page 12.02 6.91 23.62 7.43 8.78 38.42 12.14 1.85 13.89

Table 1 presents comprehensive details regarding the extraction process of
occurrences of the letter “a” from the Avila Bible. Each column corresponds to
a writer, and the last column shows the sum of the previous columns. The first row
displays each writer’s extracted occurrences and the final aggregate measure. Fol-
lowing this, the second row provides the number of pages attributed to each writer,
while the third row delineates the count of pages rejected from our evaluation due
to deterioration, impeding letter extraction. Finally, the last row presents the aver-
age number of extracted occurrences per page. This table highlights a significant
imbalance among the various classes, stemming from several factors. Firstly, out
of the eight authors, only two have written more than a hundred pages, resulting in
higher occurrences of the chosen character. Furthermore, this imbalance is influ-
enced by the fact that many classes exhibit a very high percentage of rejected pages
and, simultaneously, a low number of occurrences per page. This suggests that cer-
tain authors may have contributed disproportionately to the dataset, potentially
skewing the distribution of occurrences across classes.

The extraction process of occurrences of the letter “a” from the Trento
manuscript, using the reference letter attributed to the writer F from the Avila
Bible, is illustrated in Table 2. The row organization mirrors that of the previous
table. Regarding the Trento Bible, our dataset comprises two classes: one corre-
sponding to the F writer and the other labelled All, encompassing the remaining
authors. Each column in this table pertains to a specific class within the prob-
lem, with the final column representing the aggregation of the first two classes.
This table is very interesting as it shows the numeric imbalance of the prob-
lem since F writer wrote most of the pages of the Trento Bible. The reason for
this imbalance is not only due to the higher number of pages written by writer
F but also related to the fact that we used the reference letter of writer F to
extract occurrences from pages not belonging to that writer. The poor or even
the absence of occurrences of the character among the pages belonging to the
All class, resulting in a small number of occurrences per page and the rejection
of 48 pages, is a positive aspect. This means that the method used for template
matching works effectively and serves as a first-level filter for identifying the
shared writer. Indeed, only pages belonging to class All have been rejected, as
no occurrence was found, while no page related to class F has been rejected.

After completing the image processing step, we utilized the DL methodolo-
gies detailed in Sect. 3.2 to carry out two experiments: a multiclass experiment
using the Avila dataset, and an experiment focusing on the Trento dataset aimed
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at identifying the shared writer. Subsequently, various metrics, expressed as per-
centages, were calculated to assess the performance of the experiments relative
to their respective problem domains.

Concerning the multiclass evaluation, we adopted a 5-fold cross-validation
technique to enhance our analysis’s robustness and mitigate overfitting. Each fold
encompassed 20% of the dataset and served as the test set, while the remaining
80% was split between the training set (70%) and the validation set (10%).
We ensured that occurrences from the same page remained within the same
set during the partitioning process. Following dataset preparation, we employed
deep neural networks for training and testing. Several CNN models were assessed,
with InceptionV3 [30] emerging as the optimal choice based on performance. The
number of parameters, the depth and input/output size of the CNN are shown
in Table 3. Once the CNN architecture was chosen, its evaluation through an
experimental phase was necessary to maximize the mean accuracy. This entails
selecting specific hyper-parameters and settings, such as employing Stochastic
Gradient Descent (SGD) with a learning rate of 0.001 and momentum of 0.9 as
the optimization method to minimize the loss function. Additionally, we adopted
the categorical cross-entropy as the loss function, defining a maximum of 100
epochs and setting a patience level of 2 epochs wherein training halts if validation
accuracy fails to improve, and finally, utilizing accuracy as the performance
metric. The training of the model was conducted through a two-step procedure.
First, transfer learning was applied using a pre-trained model with the ImageNet
dataset [13], and then we fine-tuned the model with the Avila dataset.

The experiment’s efficacy was gauged using diverse metrics averaged across
the five folds to provide a comprehensive evaluation.

Table 4 presents the outcomes of the multiclass experiment conducted using
the Avila dataset from the point of view of extracted occurrences, namely assum-
ing as pattern to be classified the single letter occurrences. Here, the results are
expressed in terms of recognition rate per class and displayed in the first eight
columns. The ninth column illustrates the overall accuracy achieved for the mul-
ticlass problem. All the metrics reported were averaged across the five folds. The
results shown in the table are exceptionally high. Each writer’s accuracy in letter
occurrences, depicted in the first eight columns, demonstrates near-perfect per-
formance, with values ranging from 99.75% to 100%. The ninth column shows
the overall accuracy for the multiclass problem, averaging an impressive 99.96%

Table 2. Details about the image extraction process from Trento Bible, using reference
letters of F writer from Avila.

F All Total

#occurrences 43038 4554 47592

#total pages 249 145 394

#rejected pages 0 48 48

#occurrences/page 172.84 46.94 137.54
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Table 3. Number of parameters, depth and input/output size of the CNNs exploited
in the experiment.

Model #Parameters Depth Input Size Output Size

InceptionV3 23.9M 189 299 × 299 2048

EfficientNetB2 9.2M 186 260 × 260 1408

Table 4. Accuracy Results for the Multiclass Experiment on the Avila extracted let-
ters.

A B D E F G H I ACC

99.96 100 100 100 100 100 99.75 100 99.96

across the five folds. Obviously, these results don’t consider all the letter occur-
rences possibly present in the rejected pages.

Table 5 reports the same metrics and problem as the previous table, but in
this case, everything was computed on the page level, so after the application of
the majority voting. Additionally, rejected pages were considered in this evalu-
ation, which caused a decrement in the performance. The first row reports the
recognition rate for each class, and the final column shows the overall accu-
racy. The second row provides information on the rejection rate of pages. The
table shows how the recognition rate improves when the rejection rate decreases,
independently of the total number of occurrences extracted for each writer. This
result is the direct consequence that concerning the accepted pages, where at
least one occurrence was found, the letter recognition rate is close to 100%.
Considering the complexity of the problem and the number of rejected pages,
these results are indeed very encouraging, showing a majority vote accuracy of
79.57%.

Concerning the second experiment, the Avila dataset was partitioned into
two classes, F and All, and it was split into training and validation sets to train
a CNN using the One vs All approach. As previously described, we selected
the same model, InceptionV3, and hyper-parameters setting of the multiclass
experiment. Moreover for this experiment, we tested a second CNN model, Effi-
cientNetB2 [31]. Table 3 reports details about the two models. InceptionV3 has
more parameters and a larger input size, whereas EfficientNetB2 is more compact
with fewer parameters and a smaller input size. EfficientNetB2 is also the more

Table 5. Majority Vote Results for the Multiclass Experiment on the Avila dataset
considering rejected pages.

A B D E F G H I ACC

Recognition Rate 78.96 77.41 88.88 89.47 92.66 22.58 94.59 52.83 79.57

Rejection Rate 21.04 22.59 11.12 10.53 7.34 77.42 5.41 47.17 20.43
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Table 6. Results for the F vs All experiment on the Trento Bible.

Model Level ACC TPR PPV

InceptionV3 Occurrence 68.70 70.45 93.29

Page (MV) 84.39 93.17 86.24

EfficientNetB2 Occurrence 69.70 72.74 92.14

Page (MV) 84.12 97.43 84.77

recent model, designed to achieve better performance with optimized efficiency
compared to earlier models like InceptionV3. The output of this procedure was
the InceptionV3 and the EfficientNetB2 models trained on the Avila dataset,
ready to receive new inputs and recognize if a sample belongs to the F writer.
After the models underwent training using the Avila dataset, they were preserved
and deployed for inference on the Trento dataset. In this scenario, the Trento
dataset, consisting of occurrences of the letter “a”, was assumed as the test set
and used to evaluate the method’s performance. This decision was motivated by
our interest in assessing whether the model trained on the Avila dataset could
accurately discern samples from the Trento Bible attributed to writer F.

The outcome of this phase yielded a prediction for every letter sample of the
Trento Bible. After acquiring these predictions, we computed various metrics
to assess the system’s performance at the letter occurrence and page level, as
shown in Table 6. For every model (first column) and classification level (sec-
ond column), the third column reports the overall accuracy metric, while the
following columns refer solely to the positive class, F, showing the sensitivity -
True Positive Rate (TPR) - and the precision - Positive Predict Value (PPV).
Sensitivity measures the proportion of actual positive cases correctly identified
by the model. Precision quantifies the proportion of positive cases identified by
the model that are truly positive. In essence, sensitivity assesses the model’s
ability to capture all positive instances, while precision evaluates its accuracy in
labelling instances as positive.

These results are notable for several reasons. For every CNN model, the
first row shows that it performs very well for the F class, correctly identify-
ing approximately 70% of occurrences with high sensitivity and precision. The
second row presents the metrics computed for the same problem, this time apply-
ing the majority vote rule at the page level. Notably, the results demonstrate a
significant improvement over the previous case, showcasing enhanced classifica-
tion performance with the aggregation of predictions at the page level. Table 6
allows for a comparison between the two models tested: InceptionV3 and Effi-
cientNetB2. Although the overall accuracy of both models is quite similar, other
metrics reveal distinct differences in performance. EfficientNetB2 performs supe-
rior in recognizing samples from the F writer, as evidenced by a higher TPR.
Conversely, it performs less in recognizing samples from the All class, as indi-
cated by a lower PPV.
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5 Conclusions and Future Work

Palaeographers study ancient documents from different historical periods to deci-
pher, date, and interpret their content. In this framework, identifying the scribes
who collaborated to transcribe a single medieval book is of great interest.

In previous studies, we proposed some pattern recognition systems for scribe
distinction, using basic layout features regarding the organization of the page
and its exploitation by the scribe. We considered the case of highly standardized
handwriting and book typologies, where such features are highly distinctive.
Even if the results were very interesting, the above features didn’t allow the
system to characterize the peculiarities of the writing style of each scribe, making
it very difficult to recognize the hand of a scribe who worked on multiple ancient
texts produced following different standards.

This paper presents preliminary results from a novel approach to overcoming
the abovementioned limitations. The rationale is to exploit the knowledge of
palaeographers who have identified, for each scribe, some letters or abbreviations
that characterize them. According to their suggestions, we considered the letter
“a” and used a template matching technique to identify the occurrences of this
letter on each page of the considered manuscripts. Then, a Convolutional Neural
Network (CNN) was used to train a classification system capable of attributing
each character “a” occurrence to the corresponding scribe. Finally, we used a
majority voting technique to assign the entire manuscript page to the scribe with
the highest number of occurrences of the character “a” on that page.

The experimental results obtained by applying our approach to the Avila
Bible were very interesting, improving the performance previously obtained with
layout features. Furthermore, using data relating to the Avila Bible, we trained
two CNN models to recognize the writing of a scribe whose hand was also iden-
tified by paleographers in the Trento Bible: the CNNs obtained in this way were
able to identify with good reliability the pages written by this scribe in the
Trento Bible without using any prior knowledge of this bible.

Based on the preliminary but encouraging results presented here, we will
focus our future work on investigating two aspects. First, we will explore improv-
ing our convolution-based approach to extract the reference images. To this aim,
we will test several techniques to merge the single letters extracted by palaeog-
raphers and test other convolutional filters. Second, we will validate the effec-
tiveness of the proposed approach by including more ancient Bibles.
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25. Rahal, N., Vögtlin, L., Ingold, R.: Historical document image analysis using con-
trolled data for pre-training. Int. J. Doc. Anal. Recognit. 26(3), 241–254 (2023).
https://doi.org/10.1007/s10032-023-00437-8

26. Sarvaiya, J., Patnaik, S., Bombaywala, S.: Image registration by template matching
using normalized cross-correlation. In: 2009 International Conference on Advances
in Computing, Control, and Telecommunication Technologies, pp. 819–822 (2009).
https://doi.org/10.1109/ACT.2009.207

27. Stokes, P.: Computer-Aided Palaeography, Present and Future, pp. 309–338. Insti-
tut für Dokumentologie und Editorik (2009)

28. Stokes, P.A.: Digital approaches to paleography and book history: some challenges,
present and future. Front. Digit. Humanit. 2, 5 (2015)

29. Suzuki, S., be, K.: Topological structural analysis of digitized binary images by bor-
der following. Comput. Vis. Graph. Image Process. 30(1), 32–46 (1985). https://
doi.org/10.1016/0734-189X(85)90016-7

30. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016)

31. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural net-
works. In: International Conference on Machine Learning, pp. 6105–6114. PMLR
(2019)

https://doi.org/10.1016/J.IPM.2022.102875
https://doi.org/10.1007/s11042-022-12927-8
https://doi.org/10.1007/s11042-022-12927-8
https://arxiv.org/abs/2305.05358
https://doi.org/10.1007/s10032-023-00437-8
https://doi.org/10.1109/ACT.2009.207
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1016/0734-189X(85)90016-7


Cyclic Learning of a Frame Downsampler
and a Recognion Model in High-Speed

Camera Image Recognition

Shigeaki Namiki(B) , Takuya Ogawa, Keiko Yokoyama, Shoji Yachida,
and Toshinori Hosoi

NEC Corporation, Kanagawa, Japan
{s-namiki,takuya ogawa,k.yokoyama,s-yachida,t.hosoi}@nec.com

Abstract. High-speed cameras capture instantaneous changes in
dynamic phenomena, enabling new image classification applications such
as nonstop visual inspection of dynamically moving objects. However,
due to high-speed cameras’ high frame rate, downsampling excess frames
or limiting the size of the recognition model is necessary for real-time pro-
cessing. Previous work has introduced a frame downsampler (a binary
classifier optimized to predict in advance whether the output of a recog-
nition model is true or false) and applied the downsampler to retain high-
scoring frames for the recognition model. However, further optimization
of the recognition model for the sampled data distribution is unexplored
and remains sub-optimal. In this study, we propose “cyclic learning” for
high-speed camera image recognition. It optimizes the recognition model
for the data distribution left by the downsampler and retrains the down-
sampler based on the updated recognition model. We constructed a
dataset of fast-moving objects captured by a high-speed camera to clas-
sify object types, and experimental results on this dataset proved that the
proposed method outperformed previous studies regarding overall classi-
fication performance with the same number of samples and the number
of samples required for comparable classification performance.

Keywords: High-speed camera · Image classification · Optimizations

1 Introduction

High-speed cameras can capture time-dense images at very high frame rates,
allowing them to capture the appearance of instantaneous features and their
changes, such as tracking fast-moving objects or classifying differences in the
surface textures of such objects. It is, therefore, used in fields where high-speed
imaging of events is required. For example, it is beginning to be used for indus-
trial product manufacturing sites [11].
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Fig. 1. A inference flow of the high-speed camera image recognition

Fig. 2. A training flow of the proposed cyclic learning for the high-speed camera image
recognition. WCE means Weighted Cross Entropy, and KD means Knowledge Distil-
lation.

For image processing of high-speed camera images, the characteristic of low
frame-to-frame variation of the image makes it possible to perform object track-
ing with simple and lightweight processing. Based on this, various applications
are being researched, for example, controlling high-speed robot hands and manip-
ulating high-speed moving objects [14]. They use lightweight image processing
to acquire an object’s position and orientation motion.

On the other hand, for object recognition, there are examples of gesture or
posture recognition based on motion information [7,12] as extensions of object
tracking. However, only a few studies have explored the classification of object
appearance.

Due to the high image frame rate, the problem of object classification from
high-speed camera images requires limiting the size of the recognition model or
downsampling the extra frames for real-time processing.

Especially in order to apply a deep model as a recognition model, there are
two directions of existing research: direction to lighten the deep model [1,2,6]
and frame selection direction [9].

Although various architectures and model weight reduction methods have
been proposed for the former, the size of recent large-scale models such as ViT [3]
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is increasing due to their characteristic of scaling for performance. Therefore, the
latter direction of choosing frames remains useful.

The previous study [9] is the only example in this direction. It assumes high-
speed camera frames contain features either visible for object classification or
too ambiguous. They propose a downsampler to retain clear frames and exclude
ambiguous ones, implemented with a binary classifier predicting the recognition
model’s output accuracy. However, the recognition model remains sub-optimal
due to the downsampler’s data distribution differing from the training set. Fur-
ther optimizing the recognition model for this sampled data distribution is con-
ceivable but remains unexplored.

We propose a ‘cyclic learning’ method for fast camera image recognition.
It optimises the recognition model for the data distribution left by the down
sampler and re-trains the down sampler based on the updated recognition model.

We also created a dataset of fast-moving objects captured by a high-speed
camera and set up a task to classify object types (normal vs. anomalous). In
this task, the features representing anomalies appear only fleetingly so that the
downsampler cannot miss these instantaneous frames. In this sense, this task is
more complicated than the classification task in previous studies (object type
unchanged in any frame). This task allows a better assessment of the performance
differences of the downsampler.

Experimental results on this dataset prove that the proposed method outper-
forms previous studies concerning the overall classification performance at the
same number of left samples and the number of samples required for comparable
classification performance.

Our main contributions are:

– Proposed to optimise the recognition model not for all data but for the sam-
pled data of a high-speed camera.

– Proposed to train the downsampler and recognition model alternately.
Improves performance compared to training each only once.

– Experiments show the effectiveness of cyclic learning on multiple types of
data and neural network architectures.

2 Related Works

2.1 High-Speed Camera Image Recognition

[9] is the only previous study with a high-speed camera image classification and
introduces a downsampler. Assuming that there are frames in a high-speed cam-
era image of an object in which the features necessary for object classification are
visible and frames in which the features are ambiguous and difficult to classify,
they propose a downsampler that retains the former and excludes the latter.
The downsampler was implemented with a binary classifier optimised to predict
in advance whether the output of the recognition model would be true or false.
However, the recognition model was sub-optimal because the data distribution
output by the downsampler varied from the distribution on which the recognition
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model was trained. Therefore, it is conceivable to optimise the recognition model
further for this sampled data distribution for further performance improvement,
but this has yet to be explored in existing research. We are doing this for the
first time.

2.2 Easy Example Mining

[8] proposed online easy example mining to learn credible supervision signals
instead of noisy pseudo labels from the weakly supervised learning setting. They
assumed the confidence score as a metric to indicate the learning difficulty and
proposed the cross entropy loss weighted with the metric calculated using the
confidence score. Inspired by this, we assume the frames with high confidence
scores output by the recognition model are easy examples in high-speed camera
image recognition settings. As mentioned before, we are thinking about opti-
mising the recognition model to fit the data distribution sampled by the down-
sampler, so the easy example of a high confidence score from the recognition
model will be changed after the re-training. This relationship means that the
downsampler can be further optimised for the output data distribution from the
recognition model. We focus on this point. Note that [8] could perform easy
example mining online because they handled loss-weighted easy examples based
on the confidence of the inference results. However, in our problem set-up, the
easy example is calculated from the confidence of the inference results of the
recognition model, and the downsampler learns the easy example, so it is more
like alternating learning than online learning. Cycling through this alternating
optimisation should improve performance.

2.3 Cyclic Learning

There are some examples of cyclically optimising multiple neural networks.
Cycle GAN [16] is a method for training neural networks that transform images
from one domain to another. They train an image-transforming neural network
from the source domain to the target domain and another image-transforming
neural network from the target domain to the source domain. This method
minimises the loss between the source images and transformed source-to-target-
to-source images via the two networks. The information shared between the two
neural networks in this example is the image data. Also [15] propose “cyclic learn-
ing” in the context of weakly supervised learning. Instead of using costly seg-
mentation masks, they propose to utilise relatively low-cost whole-image labels.
After supervised neural network training to infer labels for the whole image, a
pseudo-segmentation mask is created with CAM visualising the neural network’s
points of interest during inference. The encoder weights are copied and used as a
backbone of another neural network that infers the segmentation mask, which is
trained using that pseudo-segmentation mask. In this example, the information
shared between the two neural networks is the pseudo masks and the encoder
weights.
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We first introduce a cyclic learning framework for high-speed camera image
recognition in different information-sharing manner from the above two studies.
In our framework, the information shared between the two neural networks is
the confidence score, which can be seen as the degree of the easy examples. The
downsampler is trained with the confidence score of the recognition model’s pre-
diction correctness in a knowledge distillation manner instead of directly sharing
weights between the downsampler and the recognition model. This is because we
assume the downsampler is more lightweight, and thus, its architecture is differ-
ent from the recognition model, so we cannot share the weights directly. Next,
the trained downsampler infers the confidence score of the recognition model’s
prediction correctness and weighs the samples with its score in the training loss
of the recognition model. After that, the downsampler is trained again with the
altered confidence score of the recognition model. In this order, the downsam-
pler and the recognition model are cyclically trained until the validation accuracy
peaks.

Experimental results on this dataset prove that the proposed method outper-
forms previous studies concerning the overall classification performance at the
same number of left samples and the number of samples required for comparable
classification performance.

3 Our Framework

3.1 Pipeline of the Framework

We follow the inference framework of high-speed camera image recognition in [9]
as shown in Fig. 1. It can efficiently handle massive amounts of incoming tem-
porally dense images captured by a high-speed camera.

The input to the system is a sequence of images of an object captured by a
high-speed camera, and the output is the classification result of the object with C
classes. The system has two main components: a downsampler and a recognition
model. The downsampler is a lightweight binary classifier that predicts whether
the output prediction of the recognition model is true or false. The recognition
model is a much deeper neural network than the downsampler that classifies the
input image into one of C classes.

Following [9], we detect and track objects in the camera’s field of view in
real-time using the same lightweight processing as [9] and obtain a sequence
of ROI images of the object in real-time. We denote the i-th sequence of ROI
images as Si:

Si = {xi,1, xi,2, ..., xi,Ni
}, (1)

where xi,j is the j-th image in the i-th sequence and Ni is the number of images
in the i-th sequence.

The sequence of image-wise ground-truth labels for Si is denoted as Sy
i :

Sy
i = {yi,1, yi,2, ..., yi,Ni

}, (2)
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where yi,j is the true value of the j-th image in the i-th sequence. If the image
recognition task is to classify categories that remain the same regardless of the
frame-by-frame visibility, the labels do not change within the sequence. In other
words, the ground truth label yi,j is the same for all j. In contrast, the labels
change within the sequence if the task is to classify categories that vary according
to how each frame looks. In other words, the frame-wise ground-truth label yi,j
differs for each j. An example of the former is a task that classifies the type of
object itself, while an example of the latter is a task that classifies whether an
object has an abnormality. Depending on the type of task, one sequence-wise
label Yi is calculated from Sy

i and assigned to the input sequence.
We then input each ROI image in the sequence Si to the downsampler f(x; θ),

which is a binary classifier learned to predict whether the output of the recog-
nition model g(x;φ) is true or false and output the probability of true. We then
get the output sequence f(Si):

f(Si) = {f(xi,j ; θ)|j = 1, ..., Ni}. (3)

In the following, θ and φ are omitted for simplicity.
The output of f is taken as the score, and the top K images in the score are

selected to form a new sequence Sf
i :

Sf
i = {xi,j̃ |j̃ = 1, ...,K; f(xi,j̃) > f(xi,j̃−1)} ⊂ Si, (4)

where j̃ is the index of the selected image in the sequence Si.
We then pass Sf

i to the recognition model g and get the output sequence
g(Sf

i ).
g(Sf

i ) = {g(xi,j̃)|j̃ = 1, ...,K}. (5)

In order to get the final classification result for the i-th sequence Si, a single
category needs to be assigned depending on the task type; we map the output
sequence g(Sf

i ) to the final class-wise score Hi. This mapping function can be
arbitrary, depending on the task.

For example, we can use the average of g(Sf
i ):

Hi =
1
K

∑

xi,j̃∈Sf
i

g(xi,j̃). (6)

or, we can use the maximum of g(Sf
i ):

Hi = max
xi,j̃∈Sf

i

g(xi,j̃). (7)

Finally, we classify the i-th sequence as the category of interest Yi:

Ŷi = argmax
c

Hi. (8)

where Ŷi is the final classification result of the i-th sequence.
The traning flow are shown in Fig. 2 and the details are described in the

following subsections.
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3.2 Learning the Downsampler

We use some neural network models for the downsampler f , such as ResNet or
MobileNet. Previous work [9] used primitive image features and SVM or LDA
as a classifier. We relax this and use a deep neural network where the feature
extraction and classifier can be trained arbitrarily. While previous studies did not
require perfect inference performance for f since the purpose was cleansing the
data, we need high inference performance to avoid learning stalls as we alternate
between optimising the downsampler and the recognition model.

We first assign the training data with the new labels to train the downsam-
pler, indicating whether the recognition model is correct or incorrect for the
given ROI image. The training of the recognition model is described in the fol-
lowing subsection, but let us assume that the base pre-trained recognition model
is already obtained and that the true value yi,j and the output of the recogni-
tion model is obtained for the input ROI image xi,j . If the true value yi,j and
the output of the recognition model ˆyi,j match, then the new label yT/F,i,j is
assigned to the input ROI image xi,j as 1; otherwise it is assigned as 0. So the
new sequence of labels S

T/F
i for

S
T/F
i = {yT/F,i,1, yT/F,i,2, ..., yT/F,i,Ni

}, (9)

where yT/F,i,j is the new label of the j-th image in the i-th sequence.
Next, We assume a binary classifier for the downsampler, so we adopt the

binary cross entropy loss (LBCE):

LBCE = − 1
Ntotal

Ntotal∑

i,j

yT/F,i,j log(pyT/F
(xi,j)), (10)

where pyT/F
(xi,j) is the probability, the softmax of the output of the downsam-

pler f(xi,j) for the true value yT/F,i,j = 1, and Ntotal is the number of images
in training data.

Furthermore, we also perform knowledge distillation learning [4], considering
that the correct or incorrect inference results of a recognition model of a larger
model size are inferred by a downsampler of a smaller model size. Note that the
recognition model g outputs are the logits of the C-class classification problem.
So we define the softmax with temperature proposed in [4] of the recognion
model qi,j as:

qi,j,c=cyT
=

exp( g(xi,j)c
T )

∑C
c′=1 exp( g(xi,j)c′

T )
,

qi,j,c=cyF
= 1 − qi,j,c=cyT

,

(11)

where cyT
is the class of the true value yT /F , C is the number of classes, cyF

is
the class of the false value yT /F , g(xi,j)c is the c-th element of the output of the
recognition model g(xi,j), and T is a hyperparameter denoting temperature.
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the softmax with temperature of the downsampler pi,j is:

pi,j,c=cyT
=

exp( f(xi,j)c
T )

∑C
c′=1 exp( f(xi,j)c′

T )
,

pi,j,c=cyF
= 1 − pi,j,c=cyT

.

(12)

We then introduce knowledge distilllation loss LKD with KL-Divergence:

LKL =
1

Ntotal

Ntotal∑

i=1

T 2
C∑

c=1

qi,j,c=cyT
log(

qi,j,c=cyT

pi,j,c=cyT

), (13)

where C is the number of classes, g(xi,j)c is the c-th element of the output of
the recognition model g(xi,j), and T is a hyperparameter denoting temperature.

we add the two losses to obtain the total loss LDS KD with a weight hyper-
parameter α:

LDS KD = α · LBCE + (1 − α) · LKL. (14)

We can train the downsampler by minimising this loss.
The trained downsampler will produce sample weights wi,j for the recognition

model training in the next step:

wi,j = Sigmoid(f(xi,j)). (15)

So we can get Sw
i :

Sw
i = {wi,1, wi,2, ..., wi,Ni

}. (16)

3.3 Learning the Recognition Model

We also use neural network models for the recognition model g, such as ResNet
or MobileNet, like in the downsampler, but the difference is the model size. The
downsampler solves the binary classification problem of correct/incorrect. In
contrast, the recognition model generally solves the more difficult classification
problem of inferring the categories of a given ROI image. Therefore, a larger
model size, such as ResNet or MobileNet models with more layers, is required.

To train the recognition model, we use the sample weights wi,j output by
the downsampler and use them as the weight for the weighted cross entropy loss
denoted as LRec CE :

LRec WCE = − 1
Ntotal

Ntotal∑

i=1

Ni∑

j=1

wi,j · yi,j log(g(xi,j)). (17)

For training the recognition model as the base pretrain model used in the
initial training of the downsampler described in the previous subsection, the
initial sample weights wi,j are set to 1.0 for all i and j. On the other hand, to
train the recognition model to fit the data distribution produced with outputs
by the downsampler, the sample weights wi,j are set to weights output by the
downsampler for all i and j.
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3.4 Cyclic Learning of the Downsampler and the Recognition
Model
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Fig. 3. Flow chart of the cyclic learning

We propose a cyclic learning framework for high-speed camera image recognition.
It optimises the downsampler and the recognition model alternately. At first, It
optimises the downsampler with the new labels produced by the recognition
model’s inference correctness. Then, it retrains the recognition model based on
the sample weights updated by the downsampler. This process is repeated until
the data convergence or early stopping with validation data.

This cyclic learning framework is shown in a flow chart Fig. 3 and Algo-
rithm 1. The initial data D0 is set as the training and validation data. The
initial sample weights Sw

i are set to 1.0 for all i and j. The initial recogni-
tion model g is learned by optimizing LRec WCE with D0. Then, the new labels
S
T/F
i are obtained by the recognition model g. The downsampler f is learned by

optimizing LDS KD with DDS KD. The sample weights Sw
i are obtained by the

downsampler f . The recognition model g is learned by optimizing LRec WCE with
DRec WCE . This process is repeated until the data convergence or early stopping
with validation data.
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4 Evaluation

Datasets

To evaluate the effectiveness of our approach on temporally dense images pro-
duced by a high-speed camera, we created a new dataset because there was no
practical high-speed camera dataset with industrial applications such as anomaly
inspection in mind. In our dataset, tablets speedily rolling over a curved lane on
a slope are captured by a high-speed camera. These tablets invert at the mid-
dle of the road so that we can capture with multiple frames images the instant
appearance of an anomaly anywhere on the tablets’ surface (the figure of the
lane and the field of view(FOV) can be viewed in the supplimental material).
Figure 4 shows an example sequence of temporally dense images of an anomaly
tablet from our dataset. The same setting is popular at production inspection
lines, but human visual inspectors inspect them instead of a high-speed camera
system, and tablets’ speed is relatively slow. These tablets have minimal dotted
black ink somewhere randomly on their surfaces as a simulated anomaly, and it
is captured with a few pixels with an unclear edge. Tablets roll over and invert,
making conventional image processing-based inspection algorithms developed
for constant object pose and illumination hard to distinguish the anomaly. We
carefully cleaned the environment around the lane so that something else did
not contaminate the normal tablets. Moreover, human annotators watched the
resulting sequences frame by frame and labelled anomalies to avoid each image
while checking contaminations. We have captured 900 sequences of images for
anomaly tablets and 900 for normal tablets. We divided the sequences into three
parts equally for training, validation, and test data. Each image in the sequence
has a label of anomaly or not. Each sequence consists of around 200 images,
though it varies depending on the rolling speed of the tablet. For a sequence of
anomaly tablets, the images labelled as anomaly occupy about 10% of the total
images in the sequence. More detailed information on the images in the dataset
is described in the supplimental material.
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Fig. 4. An example sequence of temporally dense images of an anomaly tablet from
our dataset. The number under each image is an index of the image. It is best viewed
in colour.

Evaluation Metrics

To evaluate the effectiveness of our methods, we have chosen the Area Under
Curve of Precision-Recall Curve (PR-AUC) as the basis of our evaluation metric.
This metric is usually applied when the positives and negatives are imbalanced.
In our case, the positives are the anomaly images in a sequence, and the negatives
are the normal images. Usually, a high recall rate is more important than a high
precision since missing an anomaly is to be avoided as much as possible. So we
are interested in higher recall than lower. So, we calculate partial PR-AUC at a
higher recall than a threshold. It can be viewed as partial AP because PR-AUC
equals the average precision (AP). We apply this partial AP for our evaluation
metric and set the threshold to 90%.

Prior Researches to be Compared with

We compared the proposed method with the prior research [9], which has pro-
posed high-speed camera image recognition for the first time. Our method
is based on [9] and adds novel cyclic learning approaches, so [9] should be com-
pared as a baseline. We also add the naive method, which is the recognition model
trained with the whole training data without the downsampler, and it takes ran-
domly sampled images from a sequence as the input. This naive method is the
simplest and most straightforward, but it is unsuitable for high-speed camera
image recognition because it does not care which frames should be selected and
might be unstable. Unfortunately, we could not find any other research that
proposed high-speed camera image recognition so that we could compare our
method with only [9] and the abovementioned naive method.
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Implementation Details

The neural network architectures for a downsampler and the recognition model
are arbitrary. However, the former should be much smaller than the latter, con-
sidering that the downsampler should process all images frame by frame and
needs to run as fast as possible to capture the instant appearance of positives( a
class of interest, i.e., an anomaly in our dataset) by multiple frame images. We
explored such architecture by attaching auxiliary classifiers [13] to every convo-
lutional layer in a base neural network model, learning with training data, and
choosing the shallowest layer with the validation accuracy over a threshold. In
our experiment, we choose MobileNetV2 [10] for the base model and 70% for the
accuracy threshold. After training, the second convolutional layer was selected,
and we extracted from the base model all the layers from the input layer to the
corresponding auxiliary classifier as a base downsampler.

Note that this base downsampler was not the same one from [9], in which
the downsampler was a linear model with hand-made features. Because we need
to fairly evaluate the effectiveness of the retraining of the recognition model and
cyclic learning, we need to apply the same base downsampler to [9] and ours.

For the base model of the recognition model, we also chose a MobileNetV2 [10]
pre-trained with ImageNet without truncating any layers.

For the mapping function, we used the average of the output sequence g(Sf
i ).

We cycled up to 10 times for the cycle condition until the validation accuracy
peaked. We set the batch size to 64 and the learning rate to 0.01. We set step
per epoch to 2000 and epochs to 100. We used the Adam optimizer [5] for both
the downsampler and the recognition model. We set the temperature T to 1.0
and the weight hyperparameter α to 0.5. We used the same training data for
the downsampler and the recognition model. We used the same validation data
for the early stopping of the cyclic learning. We used the same test data to
evaluate the effectiveness of our approach.

The architecture of the models under comparison is organised as follows:

– Naive method: Random sampler + Recognition model trained with whole
training dataset once.

– [9]: Downsampler trained with Recognition model’s output once + Recogni-
tion modelt rained with whole training dataset once.

– Ours: Downsampler trained with Recognition model’s output cyclically +
Recognition model trained with whole training dataset cyclically.

Results

Table 1 shows partial AP(pAP) with the threshold 90% for the proposed and
prior methods with various K. The proposed method outperformed the naive
method and [9], and especially, at K = 1, 5.1% better pAP than the naive
method and 3.6% better pAP than [9]. Table 2 shows the minimum K taken to
achieve each AP level. Smaller K means faster inference. It is preferable for prac-
tical applications in the industry, such as visual inspection systems, because it



Cyclic Learning in High-Speed Camera Image Recognition 105

enables speeding up production lines. The proposed method outperformed the
naive method and [9], 2.5 times faster than the naive method and two times
faster than [9] on average on the AP range. These results demonstrated the
effectiveness of our approach.

Table 1. Partial Average Performance (pAP) at higher recall area than 90% on our
dataset compared to näıve and existing methods.

Methods K (number of samples)

1 2 3 4 5 6 7 8 9 10

Naive 69.9 72.8 74.5 75.7 76.7 77.3 77.8 78.2 78.2 78.7

[9] 71.3 73.7 75.5 76.4 77.1 77.6 78.2 78.4 79.1 79.2

Ours 74.9 77.4 78.7 79.8 80.5 80.7 80.9 80.6 81.0 81.1

Table 2. The minimum K taken to achieve each AP level. Smaller K means lower
computation.

Methods pAP levels

0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8

Naive 2 2 2 3 3 4 5 6 8 N/A N/A

[9] 1 1 2 2 3 3 4 5 7 9 N/A

Ours 1 1 1 1 1 2 2 2 3 4 5

Analysis

Cycle Steps

We also analyze the effect of increasing cycle steps. We show the proposed
method’s performance on cycle steps vs AP and 2D plots of AP in Fig. 5. Figure 5
shows that at an early stage of cycle steps (until the 3rd step), AP at the same K
increased, and K to achieve the same level of AP decreased, but after that, they
seemed to deteriorate and fluctuate. These results indicate that the downsam-
pler effectively learns easy examples at an early stage, and after reaching the top
level, the downsampler starts overfitting and it seems like perturbated. We also
show the F-value of the downsampler at each number of cycle steps in Fig. 6.
Comparing Fig. 5 and Fig. 6 shows that the downsampler’s F-value seems corre-
lated with the AP. This is because the downsampler’s F-value is high when the
recognition model is easy to fit, but it is not always high when the recognition
model is hard to fit. These results indicate that the proposed cyclic learning
strategy successfully found easy examples in the temporally dense images and
fitted to them, enabling higher performance.
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Fig. 5. Left: AP at higher reall rate area vs cycle steps. The higher number of samples:
K is, the higher the AP is. The number of cycle steps where peaks of AP exists varies
for different K, though they seem to be correlated. Right:2D plots of AP at higher
recall rate area conditioned by cycle steps and number of samples: K.
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Fig. 6. F-value of the downsampler at each number of cycle steps.

5 Limitations

Our approach has some limitations. First, cyclic learning has a large computa-
tional cost. The computational cost is linearly proportional to the number of
cycle steps. In our experiment, we set the number of cycle steps to 10, but it is
not always necessary to set it to 10. We need to find the optimal number of cycle
steps for each dataset. Second, generalization to other datasets is not guaran-
teed. While we have datasets the same as [9], we observed that the accuracy is so
high that we cannot obtain any performance gain thanks to cyclic learning. Our
method would not be available for such tasks. Future directions include reducing
the computational cost and generalizing the method to other datasets.
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6 Conclusions

This paper proposed a novel learning strategy to improve prior work on high-
speed camera image recognition. In addition to the downsampler proposed in
the prior work, we proposed to retrain the recognition model with the sample
weights output by the downsampler and to cycle the learning of the downsam-
pler and the recognition model. We evaluated the effectiveness of our approach
on a newly constructed dataset with a high-speed camera. The results showed
that our approach significantly improved the average precision under high recall
conditions. We also analyzed the effect of increasing cycle steps and showed that
the performance increased as cycle steps increased until they reached their peak.
These results indicate that the proposed cycling strategy successfully found easy
examples in the temporary dense images and fitted to them, enabling higher
performance. Our approach is expected to be useful for practical applications in
the industry, such as sorting or visual inspection systems because it speeds up
production lines.

References

1. Benmeziane, H., Maghraoui, K.E., Ouarnoughi, H., Niar, S., Wistuba, M., Wang,
N.: A comprehensive survey on hardware-aware neural architecture search. ArXiv
abs/2101.09336 (2021). https://api.semanticscholar.org/CorpusID:231699126

2. Cheng, Y., Wang, D., Zhou, P., Tao, Z.: A survey of model compression and accel-
eration for deep neural networks. ArXiv abs/1710.09282 (2017). https://api.
semanticscholar.org/CorpusID:22163846

3. Dosovitskiy, A., et al.: An image is worth 16 × 16 words: transformers for image
recognition at scale. ArXiv abs/2010.11929 (2020). https://api.semanticscholar.
org/CorpusID:225039882

4. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural net-
work. ArXiv abs/1503.02531 (2015). https://api.semanticscholar.org/CorpusID:
7200347

5. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2014). https://api.semanticscholar.org/CorpusID:6628106

6. Lee, J., et al.: Resource-efficient deep learning: a survey on model-, arithmetic-,
and implementation-level techniques (2021)

7. Lee, S., Kim, H., Ishikawa, M.: Deep learning approach to face pose estimation for
high-speed camera network system. In: 2020 International Conference on Artificial
Intelligence in Information and Communication (ICAIIC), pp. 084–088 (2020).
https://api.semanticscholar.org/CorpusID:215816283

8. Li, Y., Yu, Y.Z., Zou, Y.X., Xiang, T., Li, X.: Online easy example min-
ing for weakly-supervised gland segmentation from histology images. ArXiv
abs/2206.06665 (2022). https://api.semanticscholar.org/CorpusID:249642594

9. Namiki, S., Yokoyama, K., Yachida, S., Shibata, T., Miyano, H., Ishikawa, M.:
Online object recognition using CNN-based algorithm on high-speed camera imag-
ing: framework for fast and robust high-speed camera object recognition based
on population data cleansing and data ensemble. In: 2020 25th International
Conference on Pattern Recognition (ICPR), pp. 2025–2032 (2021). https://api.
semanticscholar.org/CorpusID:233877508

https://api.semanticscholar.org/CorpusID:231699126
https://api.semanticscholar.org/CorpusID:22163846
https://api.semanticscholar.org/CorpusID:22163846
https://api.semanticscholar.org/CorpusID:225039882
https://api.semanticscholar.org/CorpusID:225039882
https://api.semanticscholar.org/CorpusID:7200347
https://api.semanticscholar.org/CorpusID:7200347
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:215816283
https://api.semanticscholar.org/CorpusID:249642594
https://api.semanticscholar.org/CorpusID:233877508
https://api.semanticscholar.org/CorpusID:233877508


108 S. Namiki et al.

10. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2:
inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4510–4520 (2018). https://api.
semanticscholar.org/CorpusID:4555207

11. Schleier, M., Adelmann, B., Esen, C., Hellmann, R.: Image processing algorithm
for in situ monitoring fiber laser remote cutting by a high-speed camera. Sen-
sors (Basel, Switzerland) 22 (2022). https://api.semanticscholar.org/CorpusID:
248073023

12. Song, Q.B., Kubota, N., Zhang, Y.: Posture recognition for human-robot interac-
tion based on high speed camera. In: 2022 World Automation Congress (WAC),
pp. 419–423 (2022). https://api.semanticscholar.org/CorpusID:253423833

13. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2014). https://api.
semanticscholar.org/CorpusID:206592484

14. Yamakawa, Y., Matsui, Y., Ishikawa, M.: Human-robot collaborative manipula-
tion using a high-speed robot hand and a high-speed camera. In: 2018 IEEE Inter-
national Conference on Cyborg and Bionic Systems (CBS), pp. 426–429 (2018).
https://api.semanticscholar.org/CorpusID:58673585

15. Zhou, Y., et al.: Cyclic learning: bridging image-level labels and nuclei instance
segmentation. IEEE Trans. Med. Imaging 42, 3104–3116 (2023). https://api.
semanticscholar.org/CorpusID:258659613

16. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image transla-
tion using cycle-consistent adversarial networks. In: 2017 IEEE International
Conference on Computer Vision (ICCV), pp. 2242–2251 (2017). https://api.
semanticscholar.org/CorpusID:206770979

https://api.semanticscholar.org/CorpusID:4555207
https://api.semanticscholar.org/CorpusID:4555207
https://api.semanticscholar.org/CorpusID:248073023
https://api.semanticscholar.org/CorpusID:248073023
https://api.semanticscholar.org/CorpusID:253423833
https://api.semanticscholar.org/CorpusID:206592484
https://api.semanticscholar.org/CorpusID:206592484
https://api.semanticscholar.org/CorpusID:58673585
https://api.semanticscholar.org/CorpusID:258659613
https://api.semanticscholar.org/CorpusID:258659613
https://api.semanticscholar.org/CorpusID:206770979
https://api.semanticscholar.org/CorpusID:206770979


Early Feature Distributions Alignment
in Visible-to-Thermal Unsupervised

Domain Adaptation for Object Detection

Adrien Maglo(B) and Romaric Audigier
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Abstract. Infrared or thermal images are used in many civilian and mil-
itary applications to detect objects due to the heat they emit, especially
when environmental conditions such as nighttime or adverse weather
prevent the use of visible images. To train an object detector based
on a deep neural network, a significant amount of annotated data is
required to achieve good detection performance. However, annotations
for infrared images are often unavailable and costly to obtain. Besides,
the trained model may show poor robustness against the change of ther-
mal sensor. Therefore, unsupervised domain adaptation (UDA) methods
have been proposed to train an object detector with annotated visi-
ble images, which are easily available, and unannotated infrared images.
This paper presents a new visible-to-thermal UDA approach for object
detection based on Deformable-DETR with hybrid matching. Our app-
roach aims to establish common features between visible and thermal
images at the earliest stages of the backbone network. The feature distri-
butions extracted from visible and thermal images are aligned thanks to
discriminator networks and adversarial learning. Gradient images are
also used as a domain translation of input images to ease the alignment.
Detection performance is further improved by randomly masking tokens
at the input of the transformer. Experiments on public datasets demon-
strate that our method consistently outperforms previous works.

Keywords: unsupervised domain adaptation · object detection with
transformers · thermal imaging · feature alignment

1 Introduction

Thermal infrared images are used in many applications in both military and civil-
ian domains. They enable the detection of people and objects by capturing the
heat they emit, which is particularly useful in nighttime or adverse weather condi-
tions. The detection task involves generating bounding boxes around objects and
classifying them. Many detectors have been proposed in the literature based on
deep learning approaches, achieving good performance across a wide range of
objects. However, they require a significant amount of training data. Large detec-
tion datasets in the visible domain, such as MS-COCO [30], have been proposed to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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train these models. Despite efforts to release large-scale infrared datasets [11,21],
annotated datasets in the infrared domain are much less common than in the vis-
ible domain. Additionally, using different sensors (response, quality, sensitivity,
etc.) under varying weather conditions may result in thermal images with differ-
ent distributions.

The challenges related to thermal data collection and annotation have led to
the development of unsupervised domain adaptation (UDA) methods from the
visible to the thermal domain, allowing the utilization of knowledge from the
more readily available visible domain. The model is trained using both visible and
thermal images. However, annotations are only provided in the visible domain.
Consequently, the model learns the task in the thermal domain through pseudo-
labeling or feature distribution alignment. Some previous works have focused
on visible-to-thermal UDA for classification and segmentation tasks, while only
Marnissi et al. proposed an approach for the object detection task [31]. The UDA
for the detection task from one visible domain to another visible domain has been
widely studied in the literature [32]. However, UDA from the visible domain to
the thermal domain presents a different challenge. Approaches must contend
with two distinct domains that possess very distinctive features. Additionally,
thermal images have a single component, while RGB images have three.

We therefore propose a new visible-to-thermal UDA detection framework that
aims to early align the distribution of the features extracted from both domains.
Our framework is based on the Deformable-DETR detector with hybrid match-
ing (H-Deformable-DETR) [22]. Many previous works align the distribution of
features after the backbone, at the detection stage of the model. We demon-
strate that early alignment of the features within the backbone can be beneficial
for the visible-to-thermal domain adaptation task. Our detection model takes
multi-scale backbone features as input. We propose to align the distribution
of these features from the two domains using discriminator networks and adver-
sarial training. Furthermore, we align the visible and thermal images by using
gradient images as a common translated input modality for the model. Gradient
images extracted from visible and thermal images are indeed much more similar
than the original images. Finally, we apply token masking to the input of the
detector transformer to improve its robustness.

The remainder of the paper is organized as follows. In the second section, we
introduce previous work about UDA for detection and visible-to-thermal domain
adaptation. We describe our method in the third section. Experimental results
on two public datasets are provided in the fourth section.

2 Related Work

Unsupervised domain adaptation (UDA) involves training a model with anno-
tated data in the source domain and unannotated data in the target domain.
This technique enables the training of a model adapted to a target domain with-
out requiring annotation for the target data. In the literature, various UDA
methods have been proposed for classification tasks, segmentation tasks, and
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detection tasks. In this section, we will first review previous work related to
UDA for object detection. Subsequently, we will delve into the specific case of
visible-to-thermal UDA.

2.1 Unsupervised Domain Adaptation for Object Detection

The UDA methods for object detection can be classified into three main cat-
egories [32]: pseudo-labeling, domain invariant feature learning and image-to-
image translation.

Pseudo-labeling frameworks generate annotations for the target images using
confident detections obtained by a model trained on the source data. Soft label-
ing is employed in the framework proposed by RoyChowdhury et al. [35] to
mitigate the risk of incorrect pseudo-labels. In the approach by Khodabandeh et
al. [24], bounding boxes are generated by the detection model trained on labeled
source data while pseudo-label classes are provided by an additional image clas-
sifier. Kim et al. [25] proposed an algorithm that mines positive samples and
weak-negative samples for each class of pseudo-labels. Zhao et al. [47] intro-
duced a method that aligns features by minimizing the discrepancy between the
Faster R-CNN region proposal network and the region proposal classifier. Other
approaches utilize a mean-teacher architecture where the teacher model gener-
ates pseudo-labels to train the student. The teacher weights are then updated
from the student model using exponential moving average (EMA). Cai et al. [2]
perform random augmentations on a target image to obtain two images, ensur-
ing the consistency of student predictions between them. In the recent MIC
approach [18], the student network is trained by matching the pseudo-labels it
generates on masked target images with those generated by the teacher. The
Harmonious Teacher method [10] focuses on improving the consistency between
classification scores and the Intersection-Over-Union between predicted and real
object bounding boxes.

Domain invariant feature learning methods focus on aligning the features
extracted by the model between the source and target domains. This is often
achieved by adding discriminator modules to the original detector, which learn to
classify whether the images come from the source domain or the target domain.
Thus, the objective for the detector is to generate common features between the
two domains. Therefore, a gradient reversal layer [13] is often added between
the feature outputs and the discriminator in order to achieve this contradictory
goal. The approach of Chen et al. [6] aligns the features produced by a Faster R-
CNN model [34] at both the instance level and global image level. Its extension
[7] integrates a feature pyramid network to independently align the image and
object features of each scale. In the framework of Saito et al. [36], local image-
based features and global instance-based features are extracted and aligned at
two different levels of the network. Hsu et al. [19] align the instance features at
the center of the object proposals. MeGA-CDA [39] aligns the features with a
discriminator at the global level and a discriminator for each category. Since the
object categories are unknown for the target images, memory-guided attention
maps redirect the features to each discriminator. Li et al. [29] use a mean-teacher
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architecture and integrate a discriminator to align the distribution of features
generated by the student network.

Graph reasoning techniques model the relations between objects and cate-
gories in the source and target images as graphs. The framework proposed by Xu
et al. [42] aligns the detected object proposals by merging them. It also aligns
the object classes between domains by improving the compactness of each class
and its separability from others. Similarly, I3Net [5] follows the same alignment
objectives. It weights the target samples based on adaptation difficulty, boosts
foreground objects, suppresses redundant background information, and aligns
category features between domains using consistency regularization. SIGMA
[28] transforms model features into graphs and employs graph matching the-
ory to align class feature distributions.

Image-to-image translation methods involve using a model to convert images
from one domain to another. Chen et al. [4] utilize CycleGAN [48] for generating
synthetic samples and enhancing the training of the adversarial domain discrim-
inator. Similarly, CycleGAN is employed by Hsu et al. [20] to create synthetic
annotated images. Subsequently, their features are aligned with target image
features using an adversarial discriminator. Deng et al. [9] use images translated
from the source to the target domain with CycleGAN to mitigate the bias of the
teacher and student networks towards their trained domain.

The methods listed above are based on convolutional detectors, with the
most frequent one being Faster R-CNN. However, recent approaches have also
been proposed for Deformable-DETR detectors [49] based on transformers [38].
MTTrans [43] utilizes a mean teacher approach for pseudo-label generation. The
method proposed by Wang et al. employs a feature alignment strategy [40].
DA-DETR [46] adds feature fusion modules to enable information communica-
tion across channels. These approaches do not directly align features at multi-
ple output levels of the backbone. While multiresolution feature alignment has
been studied for Faster R-CNN detectors [17,41], it has never been used with
DETR architectures. Visible and thermal images have very different characteris-
tics. We believe that early feature alignment is important for efficient visible-to-
thermal UDA. Multiresolution feature alignment in the backbone network can
achieve this objective.

2.2 Visible-to-Thermal Domain Adaptation

The unsupervised domain adaptation from visible-to-thermal images has
received less attention in the literature. For the semantic segmentation task,
MS-UDA [26] performs UDA from a large visible dataset to a smaller unla-
beled visible and thermal paired dataset using pseudo-label generation. Gan et
al. [12] employ domain-specific attention maps for segmentation and classifica-
tion tasks. The network is trained with adversarial learning and fine-tuned with
pseudo-labels. Akkaya et al. [1] select high-confidence pseudo-labels that fool a
trained domain discriminator. Regarding the detection task, Lee et al. proposed
a GAN-based visible to thermal image translation method [27] that focuses on
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preserving the edges. It is trained on a combination of large visible and thermal
datasets. They conducted thermal detection experiments by training a VFNet
detector [44] on a synthetic dataset [23] translated using their method. To our
knowledge, only Marnissi et al. [31] have attempted visible-to-thermal UDA for
detection. Their UDAT framework, based on Faster R-CNN, requires annota-
tions only in the visible domain. It also aligns features at four different feature
map levels and instance levels. Given the distinct characteristics of visible and
thermal images, our approach proposes to align thermal and visible features
at shallower levels of the network so that deeper levels can benefit from fea-
tures with common distributions. It also aligns visible and thermal images by
using gradient images, as a common translation domain, at the input of the
model.

3 Our Method

3.1 Overview

Fig. 1. Illustration of the training of our visible-to-thermal unsupervised domain adap-
tation method for object detection based on H-Deformable-DETR. The model is trained
with a supervised detection loss Ldet on visible images. The distribution of features
extracted from visible and thermal images are aligned with adversarial learning. The
discriminative loss Ldisc trains the discrimination networks FFNdisc connected to the
token generators FFNtok of the backbone output levels through gradient reversal lay-
ers GRL (details in Sect. 3.3). Gradient images are also used as a common modality for
backbone inputs (details in Sect. 3.4). Token masking improves the detection robustness
(details in Sect. 3.5).



114 A. Maglo and R. Audigier

Our framework is based on the H-Deformable-DETR detector [22]. In order
to detect objects in the thermal domain, for which we do not use annotated
training data, we simultaneously train our detector in a supervised manner with
annotated training data from the visible domain and align the distribution of
features extracted at several levels of the backbone network. We refer to this
strategy as “early alignment” (EA) because the prioritized feature distribution
alignments occur at the shallowest output levels of the backbone network. This
alignment is performed using discriminator networks connected to the model
through gradient reversal layers. We use the image gradient operation as an
image domain translation method. The gradient images, extracted from visible
and thermal images, serve as inputs to the model. They reduce the domain gap
between the visible and thermal images. Finally, we apply token masking at the
output of the backbone to increase the model’s generalization (See Fig. 1).

3.2 Baseline Detector

The H-Deformable-DETR detector belongs to the DETR family of detectors [3]
based on transformers [38]. With the Deformable-DETR detector [49], the input
images are first processed by a ResNet-50 backbone [16] that extracts features
at a single resolution. These features are then transformed into tokens by the
feedforward networks FFNtok. The shallowest output layer of the ResNet-50
backbone is discarded, and an additional output layer is artificially added by
applying another FFNtok to the last output layer. Positional embedding is then
added to the tokens. They are processed by a transformer encoder and then by a
transformer decoder. The decoder takes as additional inputs object queries that
are learned parameters. The model predicts for each decoder output token a class
score and a bounding box. During training, each ground-truth object is associ-
ated with a decoder query using Hungarian matching based on class scores and
bounding box IoU criteria. Deformable-DETR replaces the transformer attention
modules with multi-scale deformable attention modules. Instead of computing
an attention map for all input feature locations, the deformable attention mod-
ule is trained to sample only a few significant points around the reference point.
This sampling is done at different feature-map scales. It speeds up the model
training and improves the detection of small objects. The hybrid matching of
H-Deformable-DETR increases performance by employing a second round of
ground truth and object query matching. In this round, each ground truth can
be assigned to multiple decoder queries from a second set of queries. We utilize
the two-stage variant of H-Deformable-DETR [49]. The encoder generates object
proposals, and the proposals with the highest scores are selected to be refined
by the transformer decoder. Their bounding boxes are fed to the transformer
decoder as positional embeddings of the decoder object queries. The model is
trained in a supervised way with the images and the annotations of the visi-
ble domain. The supervised detection losses are the same as with the original
H-Deformable-DETR. We call their sum Ldet.
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3.3 Early Feature Distribution Alignment

Our main objective is to build a detector that has a high performance in the ther-
mal domain. Consequently, we want our backbone to generate domain agnostic
tokens. Our model should produce features with the same distribution for the
thermal or visible images. The features learnt with annotated visible images
should also be a good representation of thermal images. To this end, we add
at each output of the backbone, gradient reversal layers GRL followed by dis-
criminator networks FFNdisc. The role of the discriminators is to classify the
tokens: they determine whether tokens come from a thermal image or a visible
image. Each discriminator is composed of 5 linear layers with the same dimension
as the transformer. The first 4 layers are followed by a ReLU activation function.
The output dimension of the last layer is 1. Our discriminator learns to classify
tokens coming from either thermal or visible images. However, we aim for back-
bone features from both domains to be indistinguishable. Therefore, the GRL
inverses the signs of the gradients to enable the adversarial learning between
the backbone and the discriminators. We use a cross entropy loss to train the
discriminator networks:

Ldisc = −
∑

l

wl

∑

t

yl,t × log(xl,t) + (1 − yl,t) × log(1 − xl,t)

where l is the output layer of the backbone network, wl is a weight for the layer
l, t is the token, xl,t is the output of the discriminator network for the layer l
and token t and yl,t is its target value. Features extracted by the backbone net-
work at the shallowest layers are more of spatial nature while features extracted
at the deepest levels of the network are more semantic, so less dependent from
the input domain. As we want an early alignment of the features, we set much
higher weight wl to the shallower layer outputs than to the deeper ones.

During training, we build mini-batches with one half of the images coming
from the visible domain and the other from the thermal domain. The adversarial
discriminative loss Ldisc applies to both thermal and visible images. The feature
alignment task and the detection tasks have two objectives that may disturb
each other. The feature alignment task may want to generate completely uniform
distribution of features so the discriminator is unable to determine whether they
come from visible or thermal images. To balance the importance of the feature
alignment task relative to the detection task, we dynamically weight Ldisc with
the coefficient α based on the value of Ldet, ensuring that a constant ratio rloss
between the two losses is maintained:

αLdisc

Ldet
= rloss

where rloss is a constant positive parameter set for the entire training. At each
iteration, Ldet and Ldisc are first computed on the total of the mini-batch of
images. Then α is determined with the formula:

α =
rlossLdet

Ldisc
.
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No gradient is backpropagated before the determination of α. It becomes a
scaling constant for the computation of the total loss:

Ltot = Ldet + αLdisc.

Notice that α is forced to zero for the first epoch in order to bootstrap the
detector without the discriminative loss. This mechanism improves the stability
of the training.

3.4 Input Gradient Images

Fig. 2. Visible and thermal images from the Free FLIR dataset [11] (top) and their
respective Sobel gradient intensity images (bottom). Despite the fact that the visi-
ble and thermal gradient images do not outline the same visual features, the domain
gap appears to be narrower than with the original images.

We use the gradient images as a common modality to reduce the domain gap
between the visible and thermal. The Sobel [37] and Prewitt [33] image gradients
have the advantage of being quick to compute. Their intensity images have a
similar appearance between visible and thermal images, as depicted in Fig. 2. The
gradient outlines edges in the input images, which is crucial for detecting objects
in both domains. We compute the gradients for each axis with the following
convolutions:



Early Feature Distribution Alignment for UDA 117

GPrewittx =

⎡

⎣
−1 0 1
−1 0 1
−1 0 1

⎤

⎦ ∗ I ; GPrewitty =

⎡

⎣
−1 −1 −1
0 0 0

+1 +1 +1

⎤

⎦ ∗ I

GSobelx =

⎡

⎣
−1 0 1
−2 0 2
−1 0 1

⎤

⎦ ∗ I ; GSobely =

⎡

⎣
−1 −2 −1
0 0 0
1 2 1

⎤

⎦ ∗ I

Gradient images are then obtained by taking the L2 norms of the gradients:

GSobel =
√

GSobelx
2 + GSobely

2 ; GPrewitt =
√

GPrewittx
2 + GPrewitty

2

The gradient images are then normalized between 0 and 1. During training,
we randomly switch between the Sobel and Prewitt gradients to artificially aug-
ment the amount of training data. During inference, only the Sobel gradient is
used.

3.5 Detector Token Masking

Image masking in the pixel space has shown its effectiveness for UDA [18].
Instead, we propose to leverage this mechanism by randomly masking the trans-
former tokens from all input levels. Token masking has also been shown to be
beneficial for pretraining Vision Transformer models [15]. In our case, it aims at
forcing the model to rely on features from all the input levels of the transformer
by reducing the overfitting. Token masking is performed by randomly selecting
a random ratio αm of token at the input of the transformer encoder and setting
their value to 0. Gradient backpropagation is halted for the masked tokens.

4 Experiments

4.1 Dataset

To run our experiments, we use the Free FLIR “aligned” dataset [45], version
derived from the original version 1.3 [11]. It provides annotations for 4,129 well-
aligned thermal and visible image pairs for training and 1,013 image pairs for
testing. However, in this UDA work no alignment is used: the visible and thermal
images from the training set are used in an unpaired way during training. The
testing is performed on the thermal images from the test set. In addition, only
the person, bicycle and car classes are considered.

Experiments are also performed on the KAIST dataset [21]. We use the
“sanitized” annotations and the image sets provided in the latest release of the
dataset, selecting one out of every four images for the train set and one out
of every twenty images for the test set. In line with previous evaluation proto-
cols on this dataset [31,45], only instances annotated with the class “person”,
“person?” or “people” are kept and grouped in a common “pedestrian” class.
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Bounding boxes with the minimum of the width and height inferior to 50 pix-
els or flagged as occluded are discarded. At the end, only images with at least a
valid bounding box are used for training and testing. This resulted in a dataset
of 4,110 image pairs with 7,908 instances in visible images for training and 859
thermal images with 1,846 instances for testing.

4.2 Implementation Details

We built our framework on top of the implementation of H-Deformable-DETR
[14] based on the Pytorch framework. Our model utilizes a ResNet-50 backbone
[16] pretrained on ImageNet [8], with the remaining parts of the model initial-
ized with random weights. As base configuration for the H-Deformable-DETR,
we chose the two-stage configuration from the official implementation that per-
forms the best on the MS-COCO dataset [30]. Thus, the number of queries for the
one-to-one matching is set to 300. For the one-to-many matching, each ground
truth is set to one of 1500 queries. The weight of the one-to-many matching loss is
set to 1. The mixed selection is used. The dimension inside the transformer is set
to 256 and its feed-forward network dimension is set to 2048. The data augmen-
tation techniques of Deformable-DETR are used: random horizontal flip, crop
and resize. In our experiments, all the model layers are trained during 12 epochs
with the AdamW optimizer on two NVIDIA RTX A5500 GPUs with 24 GB or
RAM. The learning rate is set to 2×10−5 for the backbone network and 2×10−4

for the rest of the network. It is divided by 10 after 11 epochs. The weight decay
is set to 10−4. The batch size is set to 4: two random visible images and two ran-
dom thermal images. The wl feature distribution alignment weights are set to 10,
1, 10−4 and 10−5 for shallower to deeper layers, respectively. The token masking
ratio αm is set to 0.2. The ratio between the discrimination and the detection
loss rloss was fine-tuned to 0.32 after a grid-search on the Free FLIR dataset.
The same value of rloss is used for the experiments on the KAIST dataset. We
observed that the concurrency between the supervised detection loss Ldet and
the discrimination loss Ldisc can lead to training instabilities and catastrophic
detection performance. Disabling Ldisc for the first training epoch removed this
issue in our experiments.

4.3 Results

Experimental results on the Free FLIR dataset are reported in Table 1. We use
the mAP metric with an IoU of 0.5. We compare our method to existing UDA
state-of-the-art approaches generaly evaluated on visible-to-visible benchmarks
[4,6,7,10,18,36,40]. Only UDAT [31] is specialized in visible-to-thermal UDA.
Some experimental results of previous work have been originally reported by
Marnissi et al. [31]. For methods we trained and evaluated, we provide mean
and standard deviation values over four different runs. Our method outperforms
all previous works in terms of mAP. It reaches an average mAP of 68.4% on
the Free FLIR dataset, about 4.9% points (pp) higher than the SOTA method
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SFA [40]

Our method

Ground truth

Harmonious teacher [10]

MIC [18]

Fig. 3. Qualitative detection results on the thermal images of Free FLIR dataset. The
red, blue and green bounding boxes correspond respectively to the person, car and
bicycle classes. The score threshold is set to 0.4 for all the methods. No Non-Maximum
Suppression is used. (Color figure online)

Harmonious teacher [10]. In order to demonstrate the performance improve-
ments brought by each of our components, we conducted an ablation study.
The results are provided in Table 1. The “Baseline” method corresponds to the
H-Deformable-DETR detector trained on visible images and tested on thermal
images without any adaptation. The early alignment of feature distributions
improves the mAP by approximately 5.3 pp. The use of gradient images results
in an additional improvement of around 7.5 pp. Finally, random token masking
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Table 1. Performance in mAP (%) on the Free FLIR aligned dataset without using
alignment. Results marked by * have been originally reported by Marnissi et al. [31].
The others show mean and standard deviation of the mAP we obtained by training on
4 runs each. EA stands for the early alignment of features distributions; grad. img. for
the use of gradient images; mask. token. for the random masking of the transformer
encoder input tokens.

Method Car Bicycle Person Average mAP

DA-faster [6]* 59.90 24.30 26.60 36.93

SWDA [36]* 58.96 32.02 32.32 41.40

HTCN [4]* 56.37 37.95 33.17 42.49

SA-DA-faster [7]* 70.38 33.30 47.27 50.30

UDAT [31]* 66.83 49.34 43.41 53.19

MIC [18] 67.89 ± 5.81 48.45 ± 5.53 57.20 ± 6.85 57.85 ± 5.96

SFA [40] 77.33 ± 1.37 45.14 ± 3.66 55.58 ± 2.23 59.35 ± 1.44

Harmonious teacher [10] 78.36 ± 1.25 45.67 ± 0.71 66.46 ± 1.43 63.50 ± 0.79

Baseline 68.11 ± 2.09 49.91 ± 2.01 45.15 ± 2.90 54.38 ± 2.25

EA 75.29 ± 1.16 53.35 ± 0.94 50.46 ± 1.56 59.70 ± 1.04

EA + grad. img. 82.81 ± 0.39 51.27 ± 2.14 67.47 ± 1.25 67.18 ± 1.00

EA + grad. img. + mask. tok. 82.76 ± 0.47 54.55 ± 1.31 67.92 ± 0.69 68.42 ± 0.32

enhances the mAP by 1.2 pp. Some qualitative detection results on the Free
FLIR dataset are provided in Fig. 3.

Experimental results on the KAIST dataset are reported in Table 2. We com-
pare our method with the previous works that performed best on the Free FLIR
dataset. Surprisingly, the Harmonious teacher did not perform so well in this
benchmark, whereas our approach outperforms the best SOTA method, MIC
[18], by about 4.1 pp. We also conducted an ablation study on this dataset,
which shows performance increase for each of the components of our approach.

4.4 Discussion

Our approach consistently outperforms previous works on the Free FLIR and
KAIST datasets. It uses less computational resources during training than mean
teacher approaches [10,18] that must store, at least, two versions of the model in
memory. Our method is easily implemented on top of the efficient H-Deformable-
DETR detector that has available source code [14]. It uses the same initial 48
million parameters with only 1 million extra parameters for the domain discrim-
inators FFNdisc during training.
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Table 2. Performance in mAP (%) on the KAIST dataset.

Method mAP

Harmonious teacher [10] 32.79 ± 2.08

SFA [40] 37.86 ± 0.80

MIC [18] 41.95 ± 3.38

Baseline 26.45 ± 3.69

Early alignment 34.04 ± 3.35

Early alignment + gradient images 42.65 ± 2.62

Early alignment + gradient images + masked tokens 46.04 ± 1.94

5 Conclusion

We present in this paper a new visible-to-thermal unsupervised domain adap-
tation method based on an efficient H-Deformable-DETR detector. We demon-
strate that early feature distribution alignment combined with image domain
translation through gradient images is key to achieving good detection perfor-
mance in the thermal domain. For future work, we aim to study the performance
of our method on thermal images captured by various sensors under different
weather and temperature conditions. Additionally, we plan to explore the appli-
cability of the early alignment and gradient translation principles to segmenta-
tion approaches.
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Abstract. Estimating poses of objects that interact with hands is a key
task for tangible user interface. It is highly challenging due to its inher-
ence of self- and mutual occlusion. Previous approaches often predict 2D
object keypoints from features to establish 2D-3D correspondence during
object pose estimation. However, the features for the object and hand
are usually intermixed and lead to unreliable output keypoints and inac-
curate object pose estimation. To address this issue, we propose a novel
Boundary-guided Network (BG-Net). This network takes two cooper-
ative branches for the object and hand. It can effectively capture the
object region and utilizes the region as guidance to narrow down the
area for keypoint searching. Additionally, we introduce an efficient and
effective loss function, min-max boundary distance (MMBD) loss, which
restricts the range of estimated keypoint locations. This further bene-
fits the 2D-3D mapping. Experiments demonstrate that the proposed
model outperforms related state of the arts for object pose estimation in
multiple interactive hand-object benchmarks.

Keywords: Object 6D pose estimation · Hand posture · Region-aware
framework

1 Introduction

The interplay between hands and objects is one of the most frequent actions con-
ducted by human beings, wherein the interactions are affected not only by the
hand postures but also by those of target objects. Hence, estimating hand-object
poses can help understanding human actions. For the emerging tangible inter-
face and augmented reality, accurately estimating poses of objects that interact
with hands is the key issue since such systems generate visual feedback accord-
ing to estimated 6D object poses (three dimensional rotations and translations,
respectively) [8,19,21].

To estimate 6D object posture from a single image, several approaches adopt
fusing features from a RGB-D image [2,3]. Since it is easier to access RGB images,
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Fig. 1. Object and hand poses estimated by the proposed method from monocular
RGB images, respectively.

recent work pays attention on object pose estimation from a RGB image, and the
3D models of target objects are usually available. One strategy [14,20] is to directly
regress object poses, for instance, to learn a prediction model that can map an
input image to the corresponding 6D poses. Although such methods are quite effec-
tive, they do not fully leverage the projective geometry of known 3D objectmodels.

Another stragety [9,10,15,17,18] makes use of keypoints of objects. During
the inference time, these methods predict the object keypoint locations within
the input image. After the 2D keypoint locations are associated with 3D ones, a
Perspective-n-Point (PnP) algorithm can be employed to estimate the 6D object
pose from these 2D-to-3D correspondences. While recent keypoint-based methods
moderately tolerate partial occlusion, their performance usually becomes unsta-
ble when the target object is grabbed. When a user holds an object with her (or
his) hand, features in the occluded regions often deviate significantly from the
object characteristics. Under such circumstances, it is challenging to determine
the object boundary and geometric shape, and thereby the accuracy of the output
poses degrades. Several recent methods [12,13] notice the challenge of estimating
hand-interacting object poses and take hand-object correlations into account. We
found that there is competition between hand and object features when they utilize
a single backbone to extract features and keep them in the same space.

To address the aforementioned issues, we propose a novel Boundary-Guided
Network (BG-Net) to estimate 6D poses of an object that is interacting with a
human hand (Fig. 1). BG-Net capitalizes on features of the object and hand and
learns their correlations. Our network is designed to comprise two branches: one
focusing on the object and the other dedicated to the hand. This dual-stream
design can avoid feature competition and extract distinctive object and hand
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Fig. 2. Overview of the proposed BG-Net.

features. To mitigate the uncertainties in prediction, we predict the object mask
as guidance and enable the network to regress object keypoints from promising
regions.

By adopting attention mechanism [16] with the guided object region, our
model learns the correlation of interactions between each pixel of the hand and
object with less ambiguity. Even when object areas are partially occluded by
the hand during interaction, our framework can still gain additional cues from
joint features. Consequently, the posture of the hand can assist in inferring the
distribution of object keypoints during occlusion.

Furthermore, given the potential interference from the image background, we
observed that when the object features lack clarity, object keypoints tended to
gather within the interior of the object and make the following PnP algorithm
difficult to estimate adequate poses. Thus, we introduce a novel loss function,
min-max boundary distance (MMBD) loss. This loss function compels the out-
most 2D keypoints to align with the object bounding box, and therefore enhances
the reliability of 2D keypoints, even in scenarios where the object is seriously
occluded. To verify the effectiveness of our proposed method, we conducted mul-
tiple experiments on two popular hand-object interaction datasets: HO3D [4]
and Dex-YCB [1]. Experiments demonstrate that our proposed framework reach
state-of-the-art performance for pose estimation of hand-interacting objects.

In summary, our contributions include:

– A new framework BG-Net for hand-interacting object pose estimation is pro-
posed. It utilizes object amodal masks as guidance and directs the network
attention toward crucial regions. This approach enables better delineation of
the geometric shape of the object and leads to precise keypoint prediction.

– Our proposed MMBD loss, aligning the outermost keypoint 2D coordinates
to the projected object keypoint bounding box, can effectively reduce the
prediction errors caused by occlusions and enhance the accuracy of poses.
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Fig. 3. Visualization of the feature maps Fo, the object feature maps from our back-
bone, and Rdo, the intermediate feature maps within the object decoder. Rdo is the last
feature map before the 2D object keypoint regression. With amodal mask prediction
(right columns), our network improves its capability of extracting the boundary of the
object.

2 Methodology

As illustrated in Fig. 2, our BG-Net consists of two branches to predict hand
and object pose respectively. Each branch utilizes its own backbone to extract
features, and the object branch includes an additional mask predictor to learn
the object contour. Subsequently, the cross enhancement module leverages hand
information to provide more cues for occluded object regions. Afterward, the
object 2D keypoints K2D is estimated by 2D keypoint predictor, in which the
proposed MMBD loss and other loss functions benefit the 2D keypoint alignment
during training. In parallel, the 2D joint locations J2D are estimated by the joint
regressor. Finally, the hand and object decoders output the 3D hand mesh V h

and the 6D object pose P o according to 2D joints and keypoints, respectively.
The following sections explain each component and the loss functions we used.
To ease the explanation, we use F to denote feature maps that contain the
same region as the input image, and the superscript h and o represents hand
and object, respectively. R denotes feature maps that are cropped and resized
after RoIAlign [6]. The first and second superscripts of R denote the source and
cropped region, respectively. For example, Rho denotes the feature map cropped
from hand feature map Fh and its cropped region is aligned with the predicted
object region.
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2.1 Backbone and Mask Predictor

As mentioned in the introduction, previous methods [12,13] used a single-stream
backbone to extract both hand and object features. We found that they might
compete with each other during feature learning, and it lessens the distinction of
these features. As a result, given an RGB image I ∈ R

256×256×3, we employ two
separate ResNet-50 models [7] to extract hand and object features. Two distinct
Feature Pyramid Networks (FPN) [11] are utilized to fuse the output features
from multiple levels within each branch individually. The extracted features for
hand and object are denoted as Fh ∈ R

64×64×256 and Fo ∈ R
64×64×256. With our

dual-branch design, when the hand and object are partially occluded by each
other, the respective network can still correctly acquire information from the
regions relevant to their estimation target.

As shown in the middle of Fig. 2, after FPN, we obtain Rhh ∈ R
32×32×256

from Fh by RoIAlign according to the hand bounding box. We apply a similar
operation to obtain Roo and Rho from Fo and Fh according to the object bound-
ing box. Rho, hand-to-object feature, is used as auxiliary information for object
pose estimation in our cross enhancement module in Sect. 2.2.

Although we have obtained a rough region of the object by the object bound-
ing box, there is still a portion of area, between the object and the boundary
of the given bounding box, belongs to the background. This background area
can still disturb the pose prediction. Hence, we introduce a mask predictor that
not only outputs the visible part of the object but also predicts occluded areas
caused by interactions between hand and object.

Specifically, we utilize Roo as input for the mask predictor, which includes
four convolutional layers and a sigmoid function to output the object amodal
mask Mo. This mask serves a dual purpose: it aids the backbone in focusing
on the object and guides subsequent modules to prioritize the object. In other
words, such additional prediction compels the feature extractor to acquire ade-
quate features that benefit the visible and occluded area estimation, and that
helps our system predict more accurate keypoints around the object boundary.
We illustrate how the amodal mask affects the learned features of the object
branch in Fig. 3.

2.2 Cross Enhancement

The interaction between hands and objects is highly correlated, allowing vis-
ible parts within the image to contribute information to analysis of occluded
regions. Previous research [12,13], has yielded promising results by applying
attention mechanisms to enhance object features. However, they employed fea-
tures extracted from the object bounding box(blue box in Fig. 5.a) as query and
intersecting areas between the hand and object(green box in Fig. 5.a) as key and
value for the attention module.

Such a design has two limitations. Firstly, when hands and objects do
not overlap, this module fails to produce meaningful learning outcomes. Sec-
ondly, due to the permutation-invariance property of Transformer [16], typical
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Fig. 4. The structure of our cross enhancement module. This module utilizes the object
features Roo (query) to identify its correlation with hand features over the object region
Rho (key and value) and outputs the enhanced features Reo accordingly.

approaches often incorporate positional embeddings to retain spatial informa-
tion. Nonetheless, the aforementioned methods [12,13] treated the overlapped
regions as key and value (Fig. 5.f), which mostly do not align with the query
(Fig. 5.d) size generated by the object bounding box. Such spatial misalignment
hindered the use of positional embeddings.

In our paper, according to an identical object bounding box, we extract and
align features regarding objects, Rho (Fig. 5.e) and Roo (Fig. 5.d) from hand
Fh (Fig. 5.b) and object Fo (Fig. 5.c) features, respectively. This enables our
module to persistently serve as a self-attention module even when there are no
interactions between hands and objects. Additionally, our query, key, and value
are situated in the same spatial domain by this strategy, and it allows us to
add positional embeddings and ensures that the process of computing attention
scores maintains spatial relationships. The illustration of cross enhancement is
shown in Fig. 4.

Specifically, we add learnable positional embeddings to Rho and Roo and
employ three separate 1×1 convolutions to derive query q, key k, and value
v from Roo and Rho. They are then fed into a multi-head attention module
following a feed-forward network, and finally we can output the enhanced object
features Reo ∈ R

32×32×256.

2.3 Min-Max Boundary Distance Loss

Based on the cross-enhanced features, our object decoder then predicts projected
2D keypoints of an object. Afterward, the 6D object pose can be estimated from
2D keypoints by a PnP algorithm. Figure 6 show the defined keypoints on the
3D bounding box of an object (object keypoint amount, No = 21 in our case).
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Fig. 5. Illustration of features. (a) Bounding boxes for the hand, hand-object overlap
and object are in red, green, and blue, respectively. (b) and (c) Feature maps for hand
and object branches after FPN. (d) Features from Fo after RoIAlign according to the
blue box in (a). (e) and (f) Features from Fh after RoIAlign according to the blue and
green boxes in (a). (Color figure online)

During early trials, we observed that the estimated locations of prominent,
especially outermost, keypoints tend to shrink toward the object center, as shown
in Fig. 7(c). Even with L2 keypoint distance loss, the model took an conservative
way to fit in with various cases, including occlusion. Based on these gathered
keypoints, the following PnP method then predicts a farther 3D location for the
object. If we directly take object depth as a depth loss, we have to incorporate
PnP computation into the network and lose the flexiblity of our framework.

Hence, we propose a Min-Max Boundary Distance (MMBD) loss based on
projected keypoints to effectively correct the shrunk keypoint problem. This
novel loss compares the bounding boxes of projected keypoints. The objective of
this loss function is to encourage the outermost predicted 2D keypoints to align
with the ground-truth bounding box of projected keypoints. The MMBD loss
LMMBD is formulated as:

LMMBD =
∑

s∈S

(min
k∈K

‖kx − sx‖1 + min
k∈K

‖ky − sy‖1), (1)

where S includes the coordinate of the top-left corner and bottom-right corner
of the 2D object bounding box, K indicated the No keypoints. The subscript x
and y denote the x coordinate and y coordinate respectively. The loss sums the
distances between the four edges of the ground-truth bounding box projection
and their closest predicted 2D keypoints.
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Fig. 6. Visualization of keypoints of an object, including eight corners, twelve midpoint
on edges, and one central point of the 3D object bounding box.

As shown in Fig. 7, in the images without using MMBD loss, the outermost
keypoints are not aligned with the bounding box and the error of estimated
depth is large. By contrast, with the MMBD loss, it can be observed that the
outermost keypoints are pulled toward the bounding box. This, in turn, enhances
our object pose estimation and reduces the error of the output object depth.

2.4 Decoder and Overall Loss Functions

Our hand and object decoder share the same architecture as previous works [12,
13], except that we employ three residual blocks instead of six convolutional
blocks in the object decoder to better retain features learned from preceding
boundary-guided processes and preserve the contours of the object as shown in
Fig. 3.

Besides the MMBD loss mentioned above, multiple loss functions are applied
in our framework during training. We apply the binary cross entropy loss LBCE

for our object mask Mo:

Lmask = LBCE(Mo, M̂o), (2)

where M̂o is the corresponding ground-truth amodal mask. We briefly describe
the remaining loss used for hand and object supervision since they are the same
as [12,13]. The overall hand and object loss are as below:

Lhand =αmanoLmano + αJ2DLJ2D+
αJ3DLJ3D + αV hLV h ,

(3)

Lobj =αMMBDLMMBD + αp2dLp2d+
αconfLconf + αmaskLmask,

(4)

where Lmano denotes the L2 loss for MANO parameters θ and β. LJ2D is the
L2 loss for 2D joint predictions. LJ3D and LV h are the L2 loss for 3D joints and
3D hand mesh. Lp2d and Lconf are the L1 loss for 2D object keypoints and their
confidence scores.
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Fig. 7. Visualization of the effect of MMBD loss. (a)(c) are outputs without MMBD;
(b)(d) are the corresponding outputs with MMBD loss. Red dots and green circles
indicate the predicted object keypoints and the outermost ones. Our MMBD loss sig-
nificantly assists in aligning the outermost keypoints along the boundaries. (Color figure
online)

αmano, αJ2D , αJ3D , αV h , αMMBD, αp2d, αconf and αmask are hyper-
parameters for balancing each loss. (In our case, two terms of weights for MANO
pose and shape are 10 and 10−1. The others are 102, 104, 104, 20, 500, 102, 102,
respectively.) Finally, our total loss function is defined as:

Ltotal = Lhand + Lobj . (5)

3 Experiments

3.1 Datasets and Evaluation Metrics

We adopted two popularly used hand-object datasets, HO3D [4] and DexYCB [1]
for our experiments. HO3D consists of 66,000 training images and 11,000 test-
ing images, covering 10 different objects. DexYCB is a more challenging dataset,
encompassing 582,000 images and featuring interactions with 21 distinct objects.
This dataset presents a greater diversity of interactions between hands and
objects. We employed the official s0 split to partition the dataset into train-
ing and testing sets. We followed the evaluation metrics applied in HFL-Net [12]
for fair comparisons. For our primary task, 6D object pose estimation, we apply
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Fig. 8. Qualitative comparison of the proposed BG-Net and state-of-the-art hand-
object pose estimation methods [12,13] on HO3D [4] dataset.

the popular ADD-0.1D. It evaluates the percentage of object 3D vertices error
within 10% of the object diameter of the dataset. For the hand pose estimation,
besides evaluating the average joint error, joint error with procrustes alignment
(PA) is another popular metric. It first aligns the centroids, scales and orienta-
tions of two shapes and evaluates the differences.

3.2 Implementation Details

We cropped and resized the input images from the dataset to 256 × 256 pixels,
centered around the midpoint of the hand and object. During training on the
HO3D dataset, we employed the Adam optimizer with an initial learning rate of
1e-4 and a weight decay rate of 0.7 every 10 epochs. We set the batch size as 32
and trained the model with 60 epochs on a single NVIDIA RTX4090 GPU. To
augment the data, we utilized techniques such as color jittering, random rotation,
translation, and scaling. Please refer to the supplementary document for other
details. The codes will be available from the project page of the authors.
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Table 1. Comparison with state-of-the-art methods on object pose estimation on
HO3D [4] dataset. “avg” denotes the average among all object categories. Our method
achieves the best performance on average.

Methods ADD-0.1D↑
cleanser bottle can avg

Liu et al. [13] 88.1 61.9 53.0 67.7

HFL-Net [12] 81.4 87.5 52.2 73.3

Ours 94.7 80.2 65.8 80.2

Table 2. Comparison with state-of-the-art methods on hand pose estimation on
HO3D [4] dataset. Even though our goal is object pose estimation, our estimated hand
poses are comparable to those of related methods.

Methods Error(PA)↓ F-score↑
Joint Mesh F@5 F@15

Liu et al. [13] 10.1 9.7 53.2 95.2

ArtiBoost [22] 11.4 10.9 48.8 94.4

Keypoint Trans. [5] 10.8 – – –

HFL-Net [12] 8.9 8.7 57.5 96.5

Ours 9.7 9.7 53.1 95.3

3.3 Comparisons with State-of-the-Art Methods

HO3D. Our work emphasizes 6D object pose estimation in an interactive sce-
nario, and the comparison with state of the arts is shown in Table 1. Our results
achieved 80.2% accuracy on ADD-0.1D, surpassing the second-best method by
6.9%. It demonstrates the effectiveness of object pose estimation through our
boundary-guided network. Qualitative comparisons are shown in Fig. 8. Even in
cases where a large portion of hands or objects are occluded, or when object fea-
tures are ambiguous, our model generates a more precise object pose compared
to that of [12,13].

Even though the proposed work focuses on hand-interacting object pose esti-
mation, our BG-Net can still estimate accurate hand poses comparable to recent
methods as shown in Table 2. Although our approach did not achieve the best
performance on hand posture, our method still outperforms Liu et al. [13], which
has a similar hand pose estimation structure to ours.

Table 3. Comparison with state-of-the-art methods on Dex-YCB [1] dataset. Our
method achieves competitive results with the best approach [12] on hand pose estima-
tion and outperforms the others on object pose estimation by a large margin.

Methods ADD-0.1D(s)↑ Joint↓ Joint(PA)↓
Liu et al. [13] 29.8 15.27 6.58

HFL-Net [12] 30.2 12.56 5.47

Ours 46.2 12.7 5.53
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Fig. 9. Qualitative comparison of the proposed BG-Net and state-of-the-art hand-
object pose estimation methods [12,13] on DexYCB [1] dataset.

Dex-YCB. Table 3 summarize results of object and hand pose estimation on
Dex-YCB dataset. The errors of joint estimation by our method with and with-
out Procrustes Alignment are 12.7 mm and 5.53 mm, respectively. They are on
a par with state-of-the-art approaches. For object pose estimation, our results
reach 46.2% on ADD-0.1D(s), substantially outperforming HFL-Net [12] by 16%.
We attribute this advance to our double-stream architecture and amodal mask
in tackling the challenges of learning from such a diverse object dataset, where
twenty one objects are included. Our approach allows the object backbone to
concentrate solely on extracting object-specific features, while the mask aids in
learning object boundaries, and our MMBD loss helps correct improperly esti-
mated depth of an object. Qualitative comparisons are shown in Fig. 9.

Our framework has shown its advantage of estimating hand-interacting object
poses and it employs 59,073,760 trainable parameters, while there are 46,080,659
and 34,480,019 trainable parameters in HFL-Net [12] and Liu et al. [13], respec-
tively.

3.4 Ablation Study

To verify the effectiveness of our proposed methods, we conducted ablation study
on the HO3D [4] dataset.
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Table 4. Ablation study on the major components and MMBD loss.

Methods ADD-0.1D↑
cleanser bottle can avg

w/o mask 93.3 80.7 59.7 77.6

w/o cross enhance. 93.6 77.0 57.9 76.3

w/o residual blocks 93.2 73.3 60.4 75.7

w/o MMBD loss 92.6 72.9 60.2 75.2

Ours 94.7 80.2 65.8 80.2

Effectiveness of the Major Components and MMBD Loss. As our
designed approach mainly focuses on enhancing object pose estimation, we report
the ADD-0.1D in Table 4. In the first experiment, we removed the mask predic-
tor. The result indicates that the absence of the mask decreases the accuracy
in pose estimation. The visualization in Fig. 3 shows that prediction with the
amodal mask accentuates the object boundaries in feature maps. In the second
experiment, we removed the cross enhancement module, and no additional infor-
mation from hand features is provided. It results in a 2.6% performance drop. It
manifests that the hand poses can provide useful features for hand-interacting
object pose estimation.

For the third experiment, we replaced the three residual blocks in the object
decoder with six convolutional layers, similar to [12,13]. The result reveals that
residual blocks play a significant role in preserving previously learned features.
They prevent losing the cues provided by the contours of the object mask and
clues from hand features. The fourth experiment and Fig. 7 validate the proposed
MMBD loss. They show that without MMBD loss, the performance substantially
degrades. These experiments demonstrate that the employed components and
MMBD loss indeed benefit the pose estimation performance for objects that are
partially occluded by a hand.

Effectiveness of Double-Stream Backbone. While related methods [12,13]
took a single-stream backbone, we adapted a double-stream backbone. To verify
the effectiveness of our double-stream backbone, we replaced the architecture
of our model with a shared ResNet-50 with FPN for both hand branch and
object branch while keeping other components unchanged. Table 5 shows that
applying our double-stream backbone, combined with the proposed modules and
loss functions, provides a 7.8% improvement in object pose estimation compared
to a framework adopting the single-stream backbone.

Additionally, there is a 0.3 mm enhancement in average hand joint and mesh
errors. This outcome demonstrates that using two separate backbones to learn
hand and object features enables an easier learning process for respective targets
without interference. The mask predictor also better guides the object backbone
in learning object boundaries.
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Table 5. Ablation study on single-stream and double-stream architectures.

Methods ADD-0.1D↑ Joint↓ Mesh↓
Single-stream 72.4 10.0 10.0

Ours 80.2 9.7 9.7

Table 6. Ablation study on different settings for Rho in cross enhancement. “Intersect.”
and “object bbox.” denote that we use the hand-object overlapped region (green box
in Fig. 5.a) or the object bounding box (blue box in Fig. 5.a) to produce Rho. “Pos.”
indicates that positional embeddings are appended.

Methods ADD-0.1D↑
cleanser bottle can avg

intersect. 93.8 74.3 56.5 74.9

intersect. + pos. 93.3 71.0 62.3 75.5

object bbox. 91.8 75.2 62.3 76.4

Ours 94.7 80.2 65.8 80.2

Different Settings for Rho in Cross Enhancement. Table 6 compares the
results of using different bounding boxes to produce Rho (Fig. 5.e & Fig. 5.f) in
cross enhancement, along with the incorporation of positional embeddings. In
the first and second settings, Rho is extracted from the overlapping region of the
hand and the object (green box in Fig. 5.a), while the second setting additionally
integrates positional embeddings. It can be observed that the incorporation of
positional embeddings in such settings merely gains 0.6% improvement on ADD-
0.1D. It is worth noting that the performance of the first and second settings
is not as good as when we do not employ cross enhancement in our model (the
second row in Table 4). This suggests that when there is a spatial inconsistency
among the key, value, and query in transformer, attention mechanism does not
successfully benefit the model.

By contrast, in the third and fourth settings, Rho is extracted based on the
object bounding box (blue box in Fig. 5.a). Compared to the third setting, the
fourth setting includes positional embeddings and exhibits a 3.8% enhancement
on ADD-0.1D. This underscores the significance of positional embeddings for
preserving spatial information, when the key, value, and query share identical
space on feature maps.

4 Conclusion

This paper presents the Boundary-Guided Network (BG-Net) for 6D post esti-
mation of objects interacting with a hand. This framework adapts a double-
stream framework to enhance the object and hand feature distinction respec-
tively. In this framework, we estimate and utilize the object amodal mask to
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guide the object branch in learning object-specific features and identifying object
boundaries for accurate prediction of 2D object keypoints. Moreover, we propose
a novel min-max boundary distance (MMBD) loss. It tackles the gathering issue
of predicted keypoints and therefore reduces the depth error of the output object
pose. Experiments demonstrate that our method surpasses state-of-the-art meth-
ods on hand-interacting object pose estimation, and it also achieves comparable
performance in hand pose estimation.
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Abstract. Modern object detection models often require enormous
training images with accurate annotations for each scenario; it is a signif-
icant obstacle for actual applications for computer vision. In this paper,
we propose a novel framework for training lightweight object detection
models without additional manual annotations by inheriting the rich
expression power of multiple pre-trained visual-language(VL) models.
The key is to obtain elaborate pseudo labels for lightweight model by
knowledge-extraction training from multiple VL models, the biases of
which are corrected by score correction. We can obtain accurate detec-
tion labels without using any prior manual annotations for each image
by using novel data augmentation to enhance knowledge extraction from
the VL models and pseudo-label integration. In contrast to current semi-
supervised and unsupervised approaches for object detection, our pro-
posed framework is immediately applicable to state-of-the-art object
detection models and training protocols. Comprehensive experiments
on two public datasets demonstrated that our framework is fast and
lightweight while maintaining accuracy, surpass supervised models.

Keywords: Visual and Language model · Foundation model ·
Annotation-free · Object detection

1 Introduction

Modern deep network architectures, large public datasets with accurate man-
ual annotations, and open sources have led to remarkable progress in object
detection [4,9,27,32,48]. However, modern object detection models (hereafter,
object detectors) are data-hungry; thus, incurring enormous annotation costs.
Each application scenario requires dull data collection and laborious manual
annotation (e.g., hundreds to thousands) for each rare object not included in
the public dataset. Although unsupervised and semi-supervised learning algo-
rithms for object detection have also been proposed [13,33,34,37,41,45], these
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Fig. 1. Overview of proposed framework. Our framework enable to training accurate
object detector without manual annotations using VL models for object detection.

algorithms have limitations in architectural scalability and accuracy. The high
cost of manual annotation continues to be a significant issue for object detection
in practical applications.

In parallel with the progress of object detection, pre-trained visual-language
(VL) models are causing a new paradigm shift in various vision tasks such as
classification [14,26], object detection [18,21,39], and captioning [16,17]. These
VL models designed for object detection have high detection accuracy and zero-
shot capability thanks to their high expressive power by simultaneously training
large image-language pairs. In particular, GLIP [18] and Grounding DINO [21]
outperform closed-set object detectors and have become standard models for
highly accurate open vocabulary object detection.

In compensation for their high expressiveness power, however, these VL mod-
els require significant computer resources. The processing speed is also very slow
for both training and inference. Therefore, it is infeasible to naively apply these
pre-trained VL models to practical applications require real-time processing or
application scenarios with massive data processing. The computational cost and
low speed also make it difficult to use them for detection-based tasks such as
tracking [24,42]. For such applications, there is a strong demand for a frame-
work to train lightweight object detectors with infinitely low supervision costs
while inheriting the strengths of these pre-trained VL models with their high
expressive power and detection accuracy.

In this paper, we propose an annotation-free framework for object detec-
tor using knowledge extraction training from VL models. Our framework can
simultaneously leverage high detection accuracy in rare target objects using
text-prompt-driven VL models and lightweight capability thanks to modern
closed-set object detectors such as YOLOX [9]. An overview of our framework is
shown in Fig. 1. Pseudo-annotation is generated from VL models and the set of
unlabeled images. A lightweight object detector is then trained in the existing
closed-set object detection manner. The key is to improve the pseudo-annotation
quality using score-calibrated VL models for each instance obtained by test-time
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augmentation (TTA). We can generate accurate pseudo-annotations without do
so manually for arbitrary objects because we can detect the target object using
the VL guided by the text prompts. Comprehensive experiments on two pub-
lic datasets showed that our framework can train an object detector capable of
real-time inference with low supervision cost. We also demonstrated that effec-
tive training algorithms and data augmentation can achieve detection accuracy
comparable to supervised learning.

The contributions of this paper are the followings;

– A simple-yet-effective framework for training lightweight object detectors
using VL models.

– Supervised-label generation using multiple score-calibrated VL models and
TTA.

– Comprehensive experiments showing that our framework can train an object
detector capable of real-time inference with low supervision cost.

2 Related Work

2.1 Object Detection

Object detection, used for localizing objects and recognizing their categories in
images, is an essential task in computer vision. It has significantly improved
in both accuracy and processing speed since the introduction of deep learning
approaches and large-scale datasets.

Convolutional neural networks (CNNs) have led to significant strides in
object recognition tasks [9,27]. Different CNN-based architectures for object
detection, such as one-stage [9,32] and two-stage detection [19,27], were pro-
posed to tackle such tasks. The availability of large-scale annotated datasets such
as Pascal VOC [8], MS COCO [20], and OpenImage [15] has played a pivotal
role in effectively training deep neural networks. In recent years, Transformer-
based approaches, inspired by their success in natural-language-processing tasks,
have gained traction in object detection research [4,48]. Against the backdrop of
increasing demand for object detection in industrial settings, such as vehicle and
road-sign detection for autonomous driving [46] and human detection for safety
monitoring, real-time processing of object detection has been achieved [9,22].
Object detectors that meet both real-time processing and detection performance
are thus applied to tasks such as tracking [24,42] and action detection [25,31],
becoming essential in computer-vision applications.

Training object detectors for new objects, however, requires annotating large
datasets with fine-grained object bounding boxes, and the annotation work is
time-consuming. Our framework, unlike previous frameworks, can train object
detectors capable of detecting objects from arbitrary classes without annota-
tions and without affecting existing architectures, while maintaining real-time
processing capability. We verified the effectiveness of our framework for several
object detectors that have different architectures.
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2.2 Visual-Language Models for Object Detection

VL models, including CLIP [26] and ALIGN [14], trained on a large-scale
dataset of image-text pairs, have achieved remarkable zero-shot performance in
image classification, paving the way for advancements in image recognition. The
paradigm of achieving zero-shot recognition by grounding images and text has
been extended to object detection, enabling the detection of arbitrary objects on
the basis of input text without the need for training [10,18,21,39,40]. Despite
being in a zero-shot setting, VL models for object detection demonstrate com-
parable performance to fully supervised models on well-established object detec-
tion benchmarks [18,21,39,40]. The representative VL models for object detec-
tion, GLIP [18,40] and Grounding DINO [21] demonstrate the effectiveness of
vision-language modality fusion at middle layers, highlighting the importance of
simultaneous processing of images and language.

These object detection VL models can recognize arbitrary objects guided
by text even if it is not in the training data; however, due to the large size of
both image and language models, they incur higher processing costs compared
to conventional object detectors and lack real-time processing capability. Our
framework aims to construct light-weight object detectors that can detect objects
from any class with the help of VL models’ high-quality labeling.

2.3 Reducing Annotation Costs in Object Detection Training

There has been growing interest in developing methods for achieving high-
performance object detection while simultaneously reducing annotation costs.
In this context, unsupervised, weakly-supervised, and semi-supervised learning
make significant contributions.

Unsupervised object detection aims to identify objects in images without any
manually labeled data, showcasing remarkable improvements [13,33,34]. While
learning without labeled data in unsupervised object detection is similar to the
setting in our study, previous methods fail to identify the categories of objects.
They also still face challenges in capturing fine-grained object details and achiev-
ing high detection accuracy due to the absence of labeled data.

Weakly supervised object detection uses only coarse annotations, such as
image-level labels or bounding boxes, instead of precise object annotations for
each instance, to train object detectors [2,12,28,29,35,38,43]. Although these
methods can significantly reduce annotation costs, the accuracy gap with full
supervised methods is significant when the amount of available data is limited.
These approaches cannot be adapted to current object detectors due to their
reliance on specialized designs.

Semi-supervised object detection involves a combination of labeled and unla-
beled data for training [5,11,37,41,44,45]. In this field of research, special designs
are being explored to enhance the performance of object detectors and investi-
gate improved learning strategies. However, these designs may not be adaptable
to other object detectors, potentially limiting their applicability. While model-
agnostic semi-supervised learning methods have also been proposed [7], there is
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Table 1. Comparison between our framework and previous method for training object
detectors.

Annotation
free

Accuracy in
practical scenarios

Light weight
(real-time flops)

Category
identification

Unsupervised
√ × √ ×

Semi-supervised × √ √ √

Weakly-supervised × × √ √

VL model
√ √ × √

Proposed
√ √ √ √

a significant gap from fully supervised performance under conditions of limited
labeled data.

Table 1 shows the main comparisons between our framework and those
described above. Our framework, designed to be independent of model architec-
tures, is applicable to lightweight object detectors used in various applications,
thus offering versatility. Our framework also enables the training of object detec-
tors capable of identifying arbitrary categories without manually annotations,
thus demonstrating a very high adaptability to practical applications.

3 Method

Our goal is to quickly obtain an accurate-and-lightweight object detector without
incurring additional annotation costs for each scenario. We propose a lightweight
detector training framework that can leverages the rich knowledge of VL models.
Our framework consists of the following two phases: 1) supervision knowl-
edge extraction from multiple VL models: Inputting unlabeled data into
the VL models for object detection, and creating teacher data by utilizing the
inferred results as pseudo-labels. 2) lightweight detector training: Training
a lightweight object detector on the basis of the obtained training data.

The key is to extract and integrate the knowledge from multiple VL models
while inheriting their strengths by using score calibration. With the proposed
framework, we can exploit the rich knowledge extracted from multiple VL models
to various modern object detectors by clearly separating the steps of the frame-
work, i.e., knowledge extraction and lightweight model training. In the following
sections, we provide detailed explanations for each phase.

3.1 Supervision Knowledge Extraction From Multiple VL Models

In general, VL models are capable of detecting arbitrary objects by specifying
them through prompts. In our framework, we first feed a set of unlabeled images
into the VL model along with prompts specifying the category names of the
objects to be detected. The VL model outputs the bounding boxes and confidence
scores for each object corresponding to these prompts’ category names.

Let x, Fj(·), and T = {T l}Ll=1 be an input image, the j-th VL model, and a
set of input texts for the prompt, respectively. Here, j, l, and L are the index for



146 Y. Nagase et al.

Table 2. Examples of differences in precision and recall by classes in two founda-
tion models: GLIP-Large (GLIP) and Grounding DINO swin-T (GDINO). We used
detection results from MS COCO dataset and evaluated COCO metrics introduced in
Sect. 4.1.

Category AP AR

GLIP [18] GDINO [21] GLIP [18] GDINO [21]

Kite 46.8 51.6 66.3 68.7

Vase 33.0 37.5 66.4 67.4

Hair drier 43.0 17.6 54.5 57.3

Toothbrush 47.9 46.4 67.0 64.4

the VL model, that of the category, and the number of categories, respectively.
The output of the j-th VL model Fj is obtained from the input image x as
follows:

{yj
i}Nj

i=1 = Fj(x), (1)

where i and Nj are the index for the object detected with the j-th VL model
Fj and the number of detected objects. Here, yj

i = (cji , p
j
i ,b

j
i ) is the i-th

detected object, where cji , pji , and bj
i are the category label, confidence score,

and bounding-box position, respectively.
The generation of training data with reliable annotations is vital for obtaining

highly accurate object detection. To this end, we introduce the following two
approaches, i.e., multiple VL model ensemble and TTA, into our framework to
generate more accurate teacher data.

Multiple VL Model Ensemble with Score Calibration. The proposed
framework uses multiple pre-trained VL models in parallel to generate anno-
tation data. The proposed method can improve the robustness of the output
results by ensembling multiple VL models. As an example of the sensitivity of
VL models against categories, we show the differences in detection rates of some
categories for GLIP and Grounding DINO1 in Table 2. We can see that there are
variations in detection accuracy across different categories. This suggests that
ensemble fusion can combine these detection results to generate even more accu-
rate training data. A more detailed discussion is provided in the supplementary
material.

A naive approach to improve the accuracy of output results is ensemble fusion
based on non-maximum suppression (NMS) [3,23,30]. However, applying inte-
gration algorithms such as NMS to the outputs of multiple VL models using their
inherent confidence scores. This naive approach may unfairly favor VL models,
which produces high confidence scores. This selection bias often arises because
multiple VL models, trained on different data or architectures, define confidence
1 Unless otherwise specified, we utilize the GLIP-Large and Grounding DINO Swin-T

models, respectively.
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Fig. 2. Overview of the proposed calibration method in our framework.

score scales differently. Figure 3 illustrates an example of the difference in score
scales among VL models when reflecting them in precision curves. We can see
that GLIP tends to output higher scores than Grounding DINO.

To align the score scale between VL models in the proposed framework,
we introduce the following calibration algorithm. We first statistically obtain a
score-precision function ζj(p) on the basis of a small dataset separated from the
target training dataset in the j-th VL model. For simplicity, we represent this
function using a look-up table approach, and the interpolated values are linearly
interpolated. As shown in Fig. 2, the score calibration from the j-th VL model
to the j̃-th VL model is formally expressed using the function ζj and inverse
function ζj̃

−1, which is given by

p̃ji = φj→j̃

(
pji

)
= ζ−1

j̃

(
ζj(p

j
i )

)
, (2)

where φj→j̃ = ζ−1

j̃

(
ζj(·)

)
is the calibration function for the j-th VL model2. After

the calibration, the output of the j-th VL model is given as ỹj
i = (cji , p̃

j
i ,b

j
i ). Note

that the score-precision function is robust to data-domain changes, as described
in Sect. 4.3, because we use only the average relationship between score and
precision.

The results before and after score calibration are shown in Fig. 3. First, we
set GLIP as the target VL model and create a score-conversion look-up table
using the MS COCO val subset. The results of the Grounding DINO, as shown
in Fig. 3 (a), are calibrated using the created table, resulting in Fig. 3 (b). By
comparing the results, we can see that the score scales of the two models are cali-
brated and transformed to exhibit the same score-output tendency. This enables
us to suppress the effect of score-scale differences during the subsequent inte-
gration. Note that, even though the calibration table was created using the MS
COCO dataset, similar effectiveness can be obtained using the PASCAL VOC
dataset. The detailed discussion for the effectiveness of the proposed score cali-
bration is discussed in Sect. 4.4.
2 Note that, if j̃ and j are the same, the uncalibrated score (i.e., raw score) is used

because it is an identity function, i.e., φj→j = ζ−1
j

(
ζj(·)

)
= I(·).
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Fig. 3. Comparison of before and after score calibration. In both graphs, solid lines and
dashed lines are training subset of MS COCO and PASCAL VOC results, respectively.
GDINO stands for Grounding DINO. Results (b) indicate that calibration performed
well on both dataset.

By using the calibrated scores obtained above and aggregating the bounding-
boxes using NMS manner, we can deal with both confidence score without score
scale bias; therefore higher quality pseudo-labels can be obtained. The bounding-
boxes aggregation function ψ is formally given by

{ŷi}Ni=1 = ψ

(
{{ỹj

i}Nj

i=1

}J

j=1

)
= ψ

(
{ỹ1

i }N1
i=1, · · · , {ỹJ

i }NJ
i=1

)
, (3)

where N is the number of object for the input image x after aggregation by
NMS mannar. Finally, we obtain the merged labels ŷi = (ĉi, p̂i, b̂i). A more
detailed discussion of bounding box aggregation is provided in the supplementary
material.

Test-Time Augmentation. TTA can improve accuracy by executing image-
transformation extensions to the data during model evaluation. As suggested by
[40], by executing multi-scale data extension at the time of base model output,
further accuracy improvement can be achieved. Therefore, this is also applied
during the output of the base model to enhance the quality of the teacher data.
The actual effectiveness of implementing TTA is discussed in more detail in
Sect. 4.4.

3.2 Lightweight-Detector Training

Finally, a lightweight detector is trained using generated pseudo-labels men-
tioned in the previous section as teacher data. Unlike many unsupervised or
weakly supervised methods, our framework does not restrict the type of detector
or model architecture used, enabling users to choose a model that suits their task
freely. There are also no constraints on the training method, enabling users to
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execute data augmentation or fine-tuning of models as needed. In our framework,
by explicitly separating these steps as the supervision-knowledge extraction and
lightweight-detector training, we can simultaneously leverage the strengths of
the VL models and modern network architectures and sophisticated training for
closed-object detection.

4 Experiments

We describe the experimental settings then the three experiments we conducted
to demonstrate the effectiveness of the proposed framework; i) the effectiveness
of training-data generation by using multiple VL models, ii) performance of
lightweight-detector training using the generated pseudo labels, and iii) ablation
study and analysis of the proposed framework.

4.1 Settings

Datasets. We evaluated our method and existing methods on MS COCO [20]
and Pascal VOC [8]. MS COCO is a large dataset containing 80 categories of
objects and composed of train2017, val2017, and test-dev 2017 subsets respec-
tively containing 118,287, 5,000 and 20,288 images. PASCAL VOC consists of
VOC2007 and VOC2012 and contains objects in 20 categories. The 16,551 images
in the trainval subsets of VOC2007 and VOC2012 are used for training, and the
4952 images in the test subset of VOC2007 are used for testing. We report the
performance on the MS COCO datasets following the standard COCO metric,
which includes several metrics, such as average precision (AP) and average recall
(AR) with varying intersection-over-union (IoU) thresholds3.

Models and Implementation Details. We used GLIP-L [18] and Grounding
DINO swin-T [21] as the VL models for supervision-knowledge extraction in our
framework. These models, including the detector head, are publicly available.
These pre-trained models have not been trained on Pascal VOC or MS COCO
datasets. The confidence-score threshold after the score calibration is usually set
around 0.4 to 0.6. In our experiments, we set it to 0.4 as pseudo labels for all
cases. We used GLIP and Grounding DINO to create pseudo labels by inputting
images and category names from publicly available datasets for accuracy vali-
dation. Note that, These VL models are used for only inference. Therefore, our
framework does not require such an enormous computational cost during the
training phase.

For object detection, we employ the well-known models Faster R-CNN [27],
YOLOX [9], and CO-DINO [48]. These models are considered de facto standards.
A more details of the detectors is provided in the supplementary material.

The training and evaluation of these models were implemented using MMDe-
tection [6] ver 3.2.0, and all hyperparameters and training schedules of the models
referred to default settings.
3 Unless otherwise specified, AP and AR indicate the IoU threshold range was set to

0.50 to 0.95, and the maximum number of objects was set to 100.
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Table 3. Results of VL models’ knowledge extraction performance on training datasets
from Pascal VOC trainval and MS COCO train2017.

Pascal VOC MS COCO

AP AR AP AR

GLIP-Large [18] 74.6 86.8 51.4 69.2

Grounding DINO swin-T [21] 65.0 89.3 48.4 73.6

Merged (Ours) 75.6 89.3 52.0 74.3

Fig. 4. Examples merged results by the proposed framework.

4.2 Training Data Generation by Using Multiple VL Models

To evaluate whether the VL models can generate accurate annotated data,
we conducted inference and evaluation on the training images of the dataset
using GLIP [18] and Grounding DINO [21]. The experimental results are listed
in Table 3. GLIP demonstrated better precision, while Grounding DINO exhib-
ited better recall. By integrating them into the proposed framework, as described

Table 4. Comparison of accuracy of detector trained with proposed framework and
conventional unsupervised method. * indicates that it was evaluated on VOC2007
trainval subset. AP50 means average precision when IoU threshold was 0.5. All results
were calculated on class-agnostic setting.

Model Pascal VOC MS COCO

AP AP50 AR AP AP50 AR

DETReg [1] – – – 1.0 3.1 12.7

Exemplar-FreeSOLO [13] 12.6* 26.8* – 12.6 17.9 17.9

CutLER [34] 20.2 36.9 44.3 12.3 21.9 32.7

Ours w/ Faster R-CNN 50.2 82.8 63.8 37.3 61.1 57.3

Ours w/ YOLOX 57.3 76.7 68.1 44.4 64.1 63.1

Ours w/ CO-DINO 71.7 92.9 83.5 51.6 70.9 70.9
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in Sect. 3.1, we can obtain better results compared with using the VL models
individually, as they complement each other in selecting the correct bounding
boxes. Examples for qualitative evaluation are shown in Fig. 4. As shown in
Table 2, for hair drier and kite classes, there are instances in which Groudning
DINO and GLIP failed to detect objects individually. In contrast, after the com-
plementary integration into the proposed framework, however, correct detection
results could be incorporated into the pseudo labels.

4.3 Lightweight-Detector Training Using Generated Pseudo-Labels

The results of training several detectors using the generated training data men-
tioned in the previous section are listed in Table 4 and Table 5. In addition to the
results of learning under fully supervised conditions, the results of conventional
methods divided for each annotation type are also presented for comparison.
Note that AP and AR significantly improved compared with conventional unsu-
pervised methods. Conventional unsupervised methods lack background knowl-
edge of target labels, leading to frequent non-detection or misdetection. Detectors
trained with the proposed framework can transfer knowledge from the pseudo-
labels generated with a the VL model as background knowledge, thus signifi-
cantly improving accuracy even under the same problem setting.

Interestingly, the accuracy for AR in the proposed method is approaching,
if not surpassing, that of the fully-supervised methods. This is thought to be

Table 5. Comparison of accuracy of detector trained with proposed framework and
conventional method: annos column indicates the annotation types. AP50 means aver-
age precision when the IoU threshold is 0.5. We report two results (val/test-dev) on
MS COCO dataset. † indicates that was evaluated on MS COCO val-2014 subset.

annos Model Pascal VOC MS COCO

AP AP50 AR AP AP50 AR

Full Faster R-CNN 51.6 82.7 62.1 37.4/37.7 58.1/58.7 51.7/52.5

YOLOX 69.7 88.9 76.9 50.6/50.7 68.4/68.9 63.6/63.5

CO-DINO 73.4 91.8 85.9 60.0/59.7 77.7/77.4 78.2/73.9

Semi DETReg 5% [1] – – – 24.8/– – –

Semi-DETR(DINO) 5% [41] – – – 40.1/- – –

Semi-DETR(DINO) 30% [41] 65.2 86.1 – – – –

MixPL (DINO) 2% [7] – – – 34.7/– – –

MixPL (Faster R-CNN) 2% [7] – – – 28.6/– – –

MixPL (Faster R-CNN) 30% [7] 56.1 85.8 – – – –

Weakly Wetectron [28] – 54.9 – 12.6†/– 26.1†/– 24.7†/–

WSCL [29] – 58.7 – 13.8/– 27.8/– 29.7/–

WSTDN [35] – 54.7 – – – –

Free Ours w/ Faster R-CNN 50.0 79.9 64.6 32.8/33.1 52.2/52.7 53.2/53.8

Ours w/ YOLOX 66.4 85.1 79.2 42.2/42.0 59.4/59.0 61.9/61.3

Ours w/ CO-DINO 71.2 87.8 86.8 50.4/51.6 68.1/68.1 74.0/72.1
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due to the outputs of the VL models having a tendency to have over-detection.
Thus, the proposed framework train from a larger number of instances than
from supervised oracle annotations. A more details of the result is provided in
the supplementary material.

Figure 5 shows a comparison of FPS and accuracy of VL models and our
framework. This result indicates that, although the accuracy of the VL models
is high, it is difficult to apply directly them to real-time processing due to the
slow processing speed. In contrast, the object detector YOLOX trained with
our framework, realizing processing speed, is applicable to real-time application
scenarios while outperforming traditional un-, weakly and semi-supervised man-
ners in terms of detection accuracy. Given that the proposed framework has no
limitations on the type of detector or architecture, it is possible to achieve even
faster inference while maintaining high accuracy by using conventional acceler-
ation methods, such as Tensor RT [9,36,47].

4.4 Ablation Study

We evaluated the effectiveness of our three key aspects of our framework, i.e.,
the use of multiple VL models, score calibration, and TTA, described in Sect. 3.1
on the Pascal VOC dataset. The AP and AR of Faster R-CNN are shown in
Table 6. Compared with the simple merging of multiple VL models, those with
applied score calibration showed accuracy improvements of 1.5% and 1.4% in

Fig. 5. Comparison of processing time and accuracy of VL models, object detectors
trained with conventional methods and YOLOX trained with our framework on MS
COCO dataset. Note that time of conventional methods are roughly estimated by
referring from their backbone model size. FPS was measured with an NVIDIA Geforce
1080Ti.
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Table 6. Ablation study of proposed framework based on detection accuracy of Faster
R-CNN. In addition to simple integration of multiple VL models, introduction of score
calibration and TTA is effective for improving detector accuracy.

Multiple VL models Score calibration TTA AP AR
√

47.8 62.6√ √
49.3 64.0√ √ √
50.0 64.6

AP and AR, respectively. In addition, using TTA during the GLIP data gener-
ation resulted in further improvements in accuracy, recording 0.7% and 0.6%,
respectively. This ablation study clearly demonstrates that score calibration and
TTA can enhance the performance of the proposed framework.

5 Conclusion

We proposed a simple-yet-effective framework for training lightweight object
detectors by inheriting the rich expression power of multiple pre-trained visual-
language models. The key is to obtain elaborate pseudo-labels for lightweight
model training by extracting knowledge from multiple visual-language models,
the biases of which are corrected by score correction. In contrast to current
semi-supervised and unsupervised methods for object detection, our proposed
framework is immediately applicable to state-of-the-art detectors. Comprehen-
sive experiments on two public datasets demonstrated that the proposed frame-
work is fast and lightweight while maintaining detection accuracy, and the results
surpass those of supervised methods.
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Abstract. Scale imbalance, where objects of different sizes are not
equally represented in a dataset, is a common problem in real-world
object detection scenarios that leads to significant performance degrada-
tion of object detection methods. Although several solutions have been
proposed based on multilevel feature maps, these methods may not be
suitable in real-time applications owing to their low speed and memory
consumption. Recently, you only look one-level feature (YOLOF) was
proposed based on a single-in-single-out (SiSo) architecture; the SiSo
architecture is well suited for real-time applications with performance
comparable to that of methods based on multilevel feature maps. How-
ever, they show limited performance when applied to real-world object
detection scenarios with scale imbalance problems. Therefore, we propose
a lightweight object detection method that can handle the scale imbal-
ance problem while retaining the advantages of the SiSo framework. To
mitigate the scale imbalance, we use dilated attention to extend the SiSo
architecture and learn the scale range of objects. Extensive experiments
on public datasets show the effectiveness of a dilated attention-based
proposed method in scale-imbalanced scenarios. Our method achieves
results comparable to those of the original YOLOF on the MS COCO
and PASCAL VOC datasets. In particular, for imbalanced datasets, the
proposed method outperforms the original YOLOF by 4.78% on the
first-person-walking-livingroom dataset and by 1.38% on the imbalanced
PASCAL VOC dataset in terms of average precision (AP)50.

Keywords: Object detection · Scale-imbalance problem · YOLOF ·
Single-level feature · Dilated attention

1 Introduction

Object detection identifies objects with different scale ranges, from a single image
or image sequences. Thus, it is an essential task in vision-based applications such
as healthcare monitoring [39], robotics [12,17,21], and autonomous driving [3,7].
Many studies have been conducted to identify objects in images accurately.

Object detection methods can be sorted into one- and two-stage detectors.
The two-stage detectors generate a set of object proposals (candidate bounding
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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https://doi.org/10.1007/978-3-031-78447-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78447-7_11&domain=pdf
http://orcid.org/0000-0001-8399-655X
http://orcid.org/0000-0003-4914-0584
http://orcid.org/0000-0001-7089-2516
https://doi.org/10.1007/978-3-031-78447-7_11


An Improved YOLOF for Scale Imbalance with Dilated Attention 157

boxes) that may contain an object during the initial stage. In the second stage,
the detector predicts the object class by extracting features from the generated
proposals. A region convolutional neural network (R-CNN) [10] and its family
[11,29] are versions of two-stage detectors. Although two-stage detectors show
state-of-the-art results, they are relatively slow owing to their enormous com-
putational costs. In one-stage detectors, the bounding boxes and object classes
are predicted using a single neural network without a proposal generation stage.
Therefore, one-stage detectors significantly increase the detection speed, render-
ing them more suitable for real-time applications.

Among one-stage detectors, Redmon et al. [26] proposed you only look once
(YOLO) algorithm in 2015, and its variants [5,8,28,36] are commonly used in
real-world applications owing to their excellent accuracy and high processing
speed. Starting from YOLOv3 [28], multilevel feature maps have been used
to enhance the detection of objects of different sizes; however, they sacrificed
the processing speed owing to the computational overhead of multiple feature
maps. YOLOX [8] was introduced by updating YOLOv3 architecture based on
several advanced techniques: decoupled head, anchor-free, and advanced label
assignment strategy. It uses three feature maps from a feature pyramid network
(FPN) [18] to enhance object detection across multiple scales and increase its
baseline YOLOv3 by 3.0% AP. RetinaNet [19] is also the FPN-based one-stage
object detector. It proposes a Focal Loss function to address a class imbalance by
focusing on misclassified examples and achieves higher accuracy than two-stage
Faster-RCNN by leveraging multiple feature maps and the Focal Loss function.

Recently, you only look one-level feature (YOLOF) [5], which balances the
accuracy and speed without using feature pyramids and transformer layers, has
been proposed. The architecture of YOLOF is simple and efficient and utilizes
only a single feature map extracted from the ResNet model [14]. Its excellent
performance demonstrates that a single feature map can provide sufficient infor-
mation for all object-scale ranges without feature fusion.

Existing object detection methods have achieved reasonable performance on
well-prepared general object detection datasets such as MS COCO (common
objects in contexts) [20] and PASCAL VOC (visual object classes) [6], which are
scale-balanced datasets. When collecting real-world data, it is unlikely that the
dataset is balanced across object categories and sizes. Thus, scale imbalance
is a common problem in training object recognition models, particularly when
a certain range of object sizes is over- or underrepresented in the dataset. A
recent study [24] also indicated that many scale-imbalanced datasets exist, and
scale imbalance is a challenging issue in object detection tasks.

We conducted controlled experiments to determine the impact of scale-
imbalanced datasets on the performance of object detection models. We created
a scale-imbalanced dataset from the PASCAL VOC 0712 dataset by increasing
imbalance ratios. Figure 1a shows the percentage of small, medium, and large-
scale objects in the original PASCAL VOC and imbalanced PASCAL VOC. We
then trained YOLOF models on the original and imbalanced datasets and eval-
uated their performances using the PASCAL VOC test dataset. Our aim was
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to demonstrate the degrading influence of imbalanced datasets on the detection
performance, represented in Fig. 1. We can observe that when the imbalance
ratio is increased (Fig. 1a), the performance is lowered (Fig. 1b).

Fig. 1. Comparison of the average precision (AP) among the small, medium, and large
object detection on the PASCAL VOC test dataset. We changed the original PASCAL
VOC dataset by removing objects to increase scale imbalance.

Many studies have addressed this problem by making detection from image
pyramids [25,32,33], feature hierarchies [23,28], and feature pyramids [9,18,22].
Earlier object detection methods [32,34] have used multiscale feature maps
extracted from image pyramids to cover objects of different sizes. However,
these methods are computationally expensive because they require the inde-
pendent building of feature maps for all image scales. Another memory-efficient
approach involves using deep convolutional neural networks (CNNs) to extract
hierarchical feature maps in sequential layers. It uses features from shallow to
higher layers to capture objects of various scales. The single shot detector (SSD)
[23] was member of the initial methods to use a CNN-based multiscale feature
hierarchy. Subsequently, the FPN was applied to many state-of-the-art detectors
by combining shallow-level spatially rich features and deep-level semantic-rich
features through a top-down architecture to enhance feature maps. However, it
requires more resources and decelerate the speed because of its costly proce-
dure, such as extracting multiple feature maps and performing object detection
on each feature map.

Therefore, this study proposes a lightweight object detection method that
uses a powerful single-level feature map for scale-imbalanced datasets. Inspired
by the YOLOF algorithm, the proposed object detection method uses a sin-
gle feature map. To address scale-imbalanced datasets, we propose an attention
module based on several dilation rates to focus on all ranges of object scales
without multiple feature maps. We summarized the main contributions as fol-
lows:
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– We propose a lightweight object detection method with a powerful single-level
feature map for scale-imbalanced datasets.

– We propose an attention module based on multiple dilation rates to focus on
all ranges of object scales when improving the detection performance.

– We evaluated the proposed method on well-organized public datasets such as
MS COCO and PASCAL VOC and the scale-imbalanced first-person-walking
datasets. Experimental results show that the proposed method outperforms
the original YOLOF.

The remainder of this study is organized as follows: Sect. 2 reviews existing
methods in object detection; Sect. 3 details the method presented in this study;
Sect. 4 introduces the experimental environment and datasets and then evalu-
ates and compares the performance of the proposed method on the MS COCO,
PASCAL VOC, and first-person-walking datasets; Sect. 5 concludes the paper.

2 Related Work

Current object detection methods rely on two or one-stage mechanisms. R-CNN
[10] is a popular example of a two-stage detector that implements a region
proposal strategy. The first stage produces candidate object locations called
region proposals. The second stage uses deep CNN and support vector machine
(SVM) models to predict object classes from the region proposals. However,
this method works slower because of the requirement for a forward pass in the
feature-extraction CNN model for each proposed region. In addition, the training
pipeline is complicated because three different models must be trained separately
for feature extraction, classification, and bounding box regression. Then, Fast-
RCNN [11] addresses these problems using a region of interest pooling layer to
learn features from the entire image by one forward pass. Another solution in
fast-RCNN is to use a single CNN model for all tasks, ranging from feature
extraction to classification. Faster-RCNN [29] proposed a more efficient train-
ing framework by combining the region proposal network into the entire network
architecture instead of the external region proposal. This unified object-detection
framework achieves faster speed with competitive accuracy than its predecessors.

For one-stage detectors, object detection is performed without a region pro-
posal stage. SSD [23] and YOLO [26] are early representatives of one-stage detec-
tors, demonstrating promising results at high speeds. SSD uses multiple layers of
convolutional feature maps in a single CNN to predict object boxes and labels.
Conversely, YOLO splits the input image into grids, where each grid predicts
the bounding boxes and their confidence scores. These detectors significantly
improved the speed, but their accuracy was low or similar to the two-stage
methods.

Both one- and two-stage object detection methods encounter a scale imbal-
ance problem during model training. Their performances were reasonably good
for well-organized datasets but dropped significantly for imbalanced datasets.
Numerous techniques have been proposed to solve scale imbalance problems in
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object detection, as summarized in references [24,40]. These methods typically
involve extracting multiscale features from images of different scales or construct-
ing pyramidal features from single-scale images to detect objects of various sizes.

In [32], the authors proposed scale normalization for image pyramids,
developed several detectors on images of varying scales, and performed back-
propagation on objects with selected sizes. A more efficient training schema
was proposed in SNIPER [34] using an image-cropping approach. Although the
image pyramid strategy can increase performance, it is unsuitable for real-time
applications owing to its high memory consumption. Another memory-effective
method compared with the image pyramid approach is to extract a multiscale
feature hierarchy from a single-scale image, with each level of feature map rep-
resenting different scales of objects. The SSD [23] is one of the first methods
to use a CNN-based multiscale feature hierarchy. It creates a feature pyramid
by adding several new layers to a pretrained VGG-16 [31] backbone network.
However, the pyramid does not involve low-level features with a high resolution,
which is significant for detecting small objects [18].

Recently, feature fusion techniques have become increasingly popular for
obtaining feature maps rich in semantic information. A popular method for con-
structing feature pyramids is FPN, which fuses high- and low-level feature maps
by a top-down architecture. Subsequently, many different versions of feature
fusion techniques were introduced in various studies, such as the path aggrega-
tion network (PANet) [22] and NAS-FPN [9]. Popular object detection methods
that use FPN as their feature extraction architecture include the RetinaNet [19],
R-CNN families [10,11,29], YOLOv3 [28], and its successors. YOLOX [8] is a
family of the YOLO series, which utilizes a combination of FPN and PANet to
enhance multilevel feature representations. Although multilevel features enhance
detection performance on different scales, they also lead to increased computa-
tion.

Earlier object detection methods such as R-CNN [10], YOLO [26], and
YOLOv2 [27] used only one feature map, which is the top layer of the feature
extraction network, to gather information about all objects. However, further
improvements in speed and accuracy are still required to render these meth-
ods more efficient and accurate for real-time applications. YOLOF proposed
a single-in-single-out (SiSo) architecture and has shown comparable results to
that of RetinaNet [19] and detection transformer (DETR) [2] models using one
feature map from the ResNet [14] model. They used dilated residual blocks to
enlarge a single-feature map without multiscale feature fusion. Several studies
have proposed enhancements based on YOLOF, such as the attention mecha-
nism [30,37] and feature fusion [16], to enhance the performance in specific areas.
In this study, we focused on all ranges of object scales using a dilated attention
without complex modification on SiSo architecture.

3 Method

In the Introduction, we explained that a scale-imbalanced dataset significantly
affects YOLOF’s performance. Considering this shortcoming of SiSo architec-
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ture, we improved it without significantly increasing the workload of the detec-
tor. This section briefly introduces the SiSo architecture used in the proposed
method and details the dilated attention module applied to the SiSo framework.

3.1 Main Components of Base Framework

We used the SiSo architecture as the basic framework owing to its good perfor-
mance and high speed. The SiSo architecture consists of three modules: back-
bone, encoder, and decoder. The detection pipeline in Fig. 2 shows the overall
structure of the proposed method based on SiSo architecture.

Fig. 2. Overall structure of the proposed method.

Backbone. The SiSo architecture uses a single feature map that can provide
sufficient information to detect all the objects. We used a ResNet-50 model
pretrained on ImageNet to learn the feature maps. Each level of the feature map
in the backbone model decreases the resolution while increasing the number of
channels. For subsequent analysis, we used only the highest-level C5 feature map
from ResNet-50, which has 2048 channels and a downsampling rate 32.

Encoder. The encoder is responsible for feature enhancement before the detec-
tion process. The detection part of YOLOF uses only a one-level feature map,
which can degrade accuracy. A dilated encoder was used to obtain multiscale
information to address the loss of accuracy. The dilated encoder structure com-
prises a projector and residual blocks. The projector part reduces the number
of channels to 512 using 1 × 1 convolutional layer and then generates a feature
map for residual blocks using a 3 × 3 convolution layer. Subsequently, four con-
secutive residual blocks with different dilation rates of 2, 4, 6, 8 produced a final
feature map capable of representing all scales of objects. Each residual block was
composed of a 1 × 1 convolutional layer for channel reduction with a reduction
rate of 4, followed by a 3 × 3 dilated convolutional layer to cover all objects on
various scales; a 1 × 1 convolutional layer was used to restore the number of
channels back to 512. In this study, we incorporated dilated attention into the
neck structure after the encoder (Fig. 2).

Decoder. The decoder in this model has two separate heads, each with a dif-
ferent number of convolutions. One head is responsible for the classification,
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whereas the other is responsible for the bounding box regression. The regres-
sion head has four 3 × 3 convolutions, whereas the classification head has two 3
× 3 convolutions. The two heads were calculated separately. At the end of the
regression head, an implicit objectness prediction was added to each anchor box
to determine whether the box contains an object. Finally, the classification con-
fidence was estimated by multiplying the result of the classification head by the
objectness score from the regression head.

3.2 Dilated Attention Module

We only used a one-level feature map in the detection process, which requires
further feature improvement to represent multiscale objects. In YOLOF, the C5
feature map from the ResNet backbone is enlarged in the neck part using the
encoder module before being used for detection. The encoder module enriches
the feature representation using a projector and residual blocks with different
dilated convolutional layers. However, scale-imbalanced datasets require addi-
tional analysis to achieve a good performance.

Fig. 3. Structure of the proposed feature enhancement (neck) module. It appends
dilated attention to the YOLOF’s neck part. In the figure, 1 × 1 and 3 × 3 denote 1 ×
1 and 3 × 3 convolution layers, respectively, and BN stands for a batch normalization
layer.

In CNN-based object detectors, channel and spatial attention focus on the
semantic information. The convolutional block attention module (CBAM) [38]
and squeeze-and-excitation networks (SENet) [15] are the main techniques for
attention in convolutional networks. For transformer-based methods, they uti-
lize a multihead self-attention [35] to handle long-range dependencies between
image patches. However, it introduces significant computation complexity, and
techniques such as sparse self-attention and window-based local self-attention
are proposed to reduce the complexity. The dilated neighborhood attention [13]
is one approach to reduce complexity, applying a concept of dilated convolution
to its self-attention mechanism for calculating sparse attention on a subset of
patches in a dilated manner rather than being contiguous. Our proposed method
uses a single-level feature; the attention module can focus on all scales of objects
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on this feature using conventional dilated convolutions with several dilation rates
without multiple feature maps.

In this study, we redesigned the YOLOF’s neck structure by appending a
dilated attention section. One solution to obtain efficient information for objects
of all sizes is to use an attention mechanism on the feature map. We focused
on the output of the encoder module to effectively consider the pixel informa-
tion. The input of the proposed dilated attention is obtained from the result of
the last stage of the encoder module (Fig. 3). The dilated attention uses 3 × 3
convolutional layers with dilation rates of 2, 3, and 4. A batch normalization layer
followed each convolutional layer. Finally, three softmax layers are aligned for
the channel, width, and height dimensions to obtain useful semantic informa-
tion from the feature map. The first softmax layer accounts for channel-wise
attention, whereas the other two layers account for spatial attention.

The dilated attention module makes the detector focus on all scale objects,
even if the dataset is scale-imbalanced, without degrading the performance on
well-distributed datasets. The layers used in the attention module and their
impact on the network are evaluated in detail in Sect. 4.

4 Experimental Study

4.1 Datasets

We evaluated the object detection models using three public datasets. The exper-
imental study used the MS COCO 2017 [20], PASCAL VOC 0712 [6] datasets,
commonly used as standard datasets in object-detection research, and the first-
person-walking [1] imbalanced open datasets in living room, bathroom, and bal-
cony environments.

The MS COCO 2017 dataset comprises 118,287 and 5,000 images for training
and testing, respectively, and includes 80 object categories. For the PASCAL
VOC 0712 dataset, a trainval split with 16,551 images was used for training,
and a test split with 4,946 images was used for testing, with the objects divided
into 20 categories. The first-person-walking datasets, available on the AI Hub
website [1], was collected to train AI-based models to identify indoor/outdoor
first-person walking environments, such as roads and alleys, and obstacles to
walking, particularly for disabled and elderly individuals. This dataset consists
of images captured from 18 different locations at distances of 165, 80, 60, and
40 cm. We used the datasets in living room, bathroom, and balcony environ-
ments with a point of view of 165 cm. The number of training and testing
images of first-person-walking-livingroom, first-person-walking-bathroom, and
first-person-walking-balcony are (11,986 and 2,508), (2,215 and 655), and (3,142
and 490); the numbers of object categories are 13, 9, and 12, respectively. Figure 4
shows the proportion of small, medium, and large objects to the total number
of objects in the experimental datasets. The first-person-walking datasets are
highly scale-imbalanced compared to the MS COCO 2017 and PASCAL VOC
0712 datasets, with over 90% of the objects belonging to large-scale objects.
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Fig. 4. Proportion of small, medium, and large objects in the overall count of objects.
Objects are categorized based on their size: small (area < 322), medium (322 < area
< 962), and large (area > 962).

4.2 Experimental Setup

The experiments were conducted on a server equipped with an NVIDIA RTX
A6000 GPU. We used the MMDetection [4] object-detection toolbox based on
Pytorch, and the parameter configurations were similar to those of MMDetec-
tion. To ensure stable training, we rescaled the learning rate values for our server.
We used the ResNet-50 model as the backbone for all compared detectors. We
used a stochastic gradient descent (SGD) optimizer with a weight decay of 0.0001
and a momentum of 0.9 to train the models. The training used the 1× schedule,
with a learning rate decay of 0.1 at epochs 8 and 11.

4.3 Experimental Results

We evaluated the proposed attention-based YOLOF on various datasets: MS
COCO, PASCAL VOC, first-person-walking, and customized PASCAL VOC
datasets. We compared this with the original YOLOF. To evaluate the pro-
posed method on different scale-imbalanced datasets, images with objects of
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particular sizes were removed from the PASCAL VOC dataset to increase the
scale-imbalance ratio. The learning rate for stable training changed based on the
number of GPUs. Both models used the same learning rate (0.06) on the MS
COCO, PASCAL VOC, and imbalanced PASCAL VOC datasets, whereas the
learning rates for the models trained on the first-person-walking datasets were
0.24. The ResNet-50 model was used as the backbone of the compared models
on a 1x schema with 12 epochs.

Table 1 lists the performances of the original YOLOF model and the proposed
model on MS COCO, PASCAL VOC, and imbalanced PASCAL VOC datasets.
For the MS COCO and PASCAL VOC datasets, the proposed method slightly
enhanced the detection of small and medium objects. For the imbalanced PAS-
CAL VOC dataset, the attention-based YOLOF achieved better performance
on all scales of objects, improving AP by 1.62% and AP on small, medium, and
large objects by 1.06%, 1.97%, and 1.55%, respectively.

Table 1. Comparison with YOLOF on open datasets.

Dataset Method AP (%)AP 50 AP 75 APS APM APL

MS COCO YOLOF 37.56 56.90 40.34 18.80 42.32 52.78

Ours 37.58 56.94 40.48 18.98 42.34 52.58

PASCAL VOC YOLOF 49.68 76.97 53.99 11.79 35.88 59.40

Ours 49.83 77.13 54.15 12.03 35.92 59.55

Imbalanced PASCAL VOC YOLOF 40.34 67.42 41.81 5.89 21.23 52.21

Ours 41.96 68.80 43.76 6.95 23.20 53.76

We validated the generalizability of our method on real-world datasets in
different environments, and the results are listed in Table 2. The presented
method outperformed YOLOF on all real-world datasets by improving AP50

between 2.46% and 4.78%. Particularly, first-person-walking-bathroom and first-
person-walking-balcony are extremely scale-imbalanced datasets because they
consist of only 1.2% and 4.8% of medium objects, respectively, and 98.8% and
95.2% of large objects, respectively. Our method improved the performances for
medium and large-sized objects on the first-person-walking-bathroom dataset by
0.24% and 1.94%, respectively, and on the first-person-walking balcony dataset
by 0.12% and 1.59%, respectively.

In addition, we compared the proposed method with other one- and two-stage
algorithms, namely Faster-RCNN, RetinaNet, SSD300, SSD512, YOLOX, and
DETR, on the first-person-walking-livingroom dataset. The results are presented
in Table 3. The proposed method demonstrated an improvement in AP50 over
the other algorithms: 4.12% over SSD512, 4.27% over Faster-RCNN, 6.69% over
RetinaNet, 9.11% over SSD300, 11.44% over DETR, 22.01% over YOLOX, and
4.78% over our baseline YOLOF. Table 3 shows that SSD300, SSD512, DETR,
and YOLOF have fewer FLOPs than the proposed method, but their AP is
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Table 2. Comparison with YOLOF on real-world first-person-walking datasets. “–”
represents that the corresponding area has no objects.

Environments Method AP (%)AP 50 AP 75 APS APM APL

Living room YOLOF 16.92 31.79 16.88 – 2.41 17.84

Ours 19.33 36.57 18.56 – 3.26 19.76

Bathroom YOLOF 39.43 56.74 46.23 – 0.00 40.1

Ours 41.37 59.43 48.62 – 0.24 42.04

Balcony YOLOF 10.00 21.33 8.92 – 6.06 10.22

Ours 11.49 23.79 9.68 – 6.17 11.81

lower. Conversely, Faster-RCNN, RetinaNet, and YOLOX are FPN-based object
detectors that require more operations than ours, resulting in higher FLOPs. Our
method has 50% fewer FLOPs than Faster-RCNN and RetinaNet.

Table 3. Comparisons of different object detection methods on the first-person-
walking-livingroom test dataset. ResNet-50 serves as the backbone for the experimented
models. Only the YOLOX model employed CSPDarknet as its backbone. “–” represents
that the corresponding area has no objects.

Method Epochs #Params FLOPsAP (%)AP 50 AP 75 APS APM APL

Faster-RCNN 12 41.4 M 208 G 17.80 32.39 17.22 – 1.54 18.35

SSD300 12 25.4 M 31 G 12.53 27.46 9.36 – 0.82 13.07

SSD512 12 26.2 M 89 G 16.34 32.45 15.42 – 1.02 16.90

RetinaNet 12 36.6 M 211 G 15.54 29.88 14.66 – 2.36 16.01

DETR 500 41.6 M 97 G 12.66 25.13 11.23 – 0.24 12.98

YOLOX 300 99.0 M 141 G 8.47 14.56 8.54 – 0.7 8.99

YOLOF 12 42.6 M 99 G 16.92 31.79 16.88 – 2.41 17.84

Ours 12 49.7 M 106 G 19.33 36.57 18.56 – 3.26 19.76

We conducted a cost analysis of the proposed model, the original YOLOF
model, and other counterparts to multilevel feature maps-based models, such as
Faster-RCNN, RetinaNet and YOLOX. All the models except YOLOX used the
ResNet-50 backbone, and YOLOX employed CSPDarknet as its backbone. To
obtain the number of parameters, frames per second (FPS), and floating point
operations (FLOPs), we used analysis tools from MMDetection [4]. The FLOPs
were estimated for the first 100 images of the first-person-walking-livingroom
test dataset, which had a size of 768 × 1344. A single GPU with a batch size of
one was used to calculate the FPS. The analysis of memory consumption during
inference was measured by summing CPU and GPU memory usage for the first
100 images of the first-person-walking-livingroom test dataset. Table 4 compares
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memory consumption, computation complexity, and speed between multilevel
feature maps-based models and our proposed model.

Compared to the methods with multilevel feature maps, the memory con-
sumption of the proposed method is lesser by 34 MB to 629 MB. Faster-RCNN
and RetinaNet use multilevel feature maps from FPN, doubling their FLOPs
from YOLOF and ours. In contrast, the proposed method requires 4578.19 MB
of memory, outperforming all multilevel maps-based methods by FPS of 45.9
and AP50 of 36.57%.

Faster-RCNN and RetinaNet, as the models with the highest FLOPs, require
31.9 ms and 33.8 ms, respectively, to predict for a single image. YOLOX achieves
the fastest speed among the multilevel feature maps-based detection models,
with an inference time of 24.1 ms. YOLOF demonstrates the highest speed, and
our method decreased it by less than 1 ms, adding an attention module. Our
model requires 21.7 ms for inference, which is an acceptable result compared
to the YOLOF, as our proposed model has superior accuracy. In the proposed
method, we appended attention layers after the encoder module to the neck of
YOLOF, which increased the number of parameters by 7M. The FPS decreased
slightly by 4%, and FLOPs increased by 7%. Despite the dilated attention mod-
ule increasing YOLOF’s memory consumption by 27.03 MB, it improved the
baseline by 4.78% AP50 with minimal impact on speed, with only difference of
0.7 ms.

Table 4. Comparison of the FLOPs, AP, FPS, the number of parameters, and memory
usage between the proposed model, YOLOF model, and multilevel feature maps-based
models.

Method FLOPs(G) FPS #Params(M)AP 50 Memory(MB)

Faster-RCNN 208 31.0 41.4 32.39 4706.17

RetinaNet 211 29.4 36.6 29.88 4612.21

YOLOX 141 40.1 99.0 14.56 5207.96

YOLOF 99 47.2 42.6 31.79 4551.16

Ours 106 45.9 49.7 36.57 4578.19

Because the proposed method does not detect objects from multilevel fea-
tures, the attention module focuses on all scales of objects on a single feature
map. The proposed dilated attention uses several dilated convolutions to enhance
important regions in the feature map for objects of varying sizes. We conducted
experiments with different dilation values in the attention module to confirm that
dilated attention on the single feature map improves the performance. Table 5
lists the results of different dilations in the attention module on the first-person-
walking-livingroom dataset. As a result, dilations with values of (2, 3, 4) are
better than the same dilations such as (1, 1, 1) or (2, 2, 2). However, perfor-
mance starts to drop when using larger dilations with values of (3, 3, 3) and (3,
4, 5).
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Table 5. Ablation study of dilation ratios on the proposed attention module. “–”
represents that the corresponding area has no objects.

Dilations AP(%)AP 50 AP 75 APS APM APL

Baseline 16.92 31.79 16.88 – 2.41 17.84

(1,1,1) 17.90 33.18 17.21 – 2.88 18.32

(2,2,2) 17.57 33.91 16.71 – 2.87 18.02

(3,3,3) 17.33 32.47 16.7 – 3.03 17.85

(1,2,3) 17.97 34.64 16.94 – 2.98 18.39

(2,3,4) 19.33 36.57 18.50 – 3.26 19.76

(3,4,5) 17.28 32.59 16.83 – 2.85 17.77

We analyzed the impact of the proposed attention component on YOLOF in
terms of their coverage of channel, width, and height. According to the results
presented in Table 6, each type of attention positively impacts the performance of
YOLOF. Attention to the channel using channel dimension as input to softmax
improved both medium and small object detection, whereas attention to the
width or height spatial dimension as input to softmax only enhanced medium
object detection. The combination of width and height attention parts improved
AP for medium object detection by 1%, whereas using all attention parts led to
an overall improvement in performance, particularly in large object detection,
by 1.92%.

Table 6. Ablation study of input dimensions on the proposed attention module. “–”
represents that the corresponding area has no objects.

Method AP(%)AP 50 AP 75 APS APM APL

Baseline 16.92 31.79 16.88 – 2.41 17.84

+Attention channel 17.79 33.39 17.35 – 2.86 18.25

+Attention width 17.04 32.62 16.11 – 2.69 17.56

+Attention height 17.29 32.51 16.83 – 3.06 17.73

+Attention width and height 17.86 33.86 17.40 – 3.42 18.30

+Attention all 19.33 36.57 18.50 – 3.26 19.76

We replaced the proposed attention block in YOLOF with two more com-
monly used attention mechanisms: CBAM and SE. Figure 5 illustrates the
impacts of these attentions on the YOLOF algorithm. The results show that the
distributions of both the baseline and SE-based models were more widespread
than those of the other models, which can be attributed to the relatively dif-
ferent results. The CBAM-based YOLOF showed a short distribution, but the
mean and maximum values were lower than those of the proposed attention-
based YOLOF, which had the shortest distribution and highest value.
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Fig. 5. Performance distribution of the compared attention-based YOLOF models on
the first-person-walking-livingroom test dataset.

5 Conclusions

This study highlights the negative impact of datasets with imbalanced scales
on detection accuracy. To address this problem, several studies have introduced
techniques based on multiple feature maps for specific object scales. However,
these techniques increase computational cost and reduce detection speed. In
response, we propose a lightweight method based on a single feature map that
extends YOLOF. We appended the dilated attention module to the neck part,
which enhanced the detection performance on imbalanced datasets without sig-
nificantly affecting the speed. We compared our method with YOLOF on scale-
imbalanced and standard object detection datasets and demonstrated its effi-
ciency. Our dilated attention-based YOLOF will serve as a robust model for
imbalanced datasets in future research.
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Abstract. Point cloud understanding is an inherently challenging prob-
lem because of the sparse and unordered structure of the point cloud
in the 3D space. Recently, Contrastive Vision-Language Pre-training
(CLIP) based point cloud classification model i.e. PointCLIP has added
a new direction in the point cloud classification research domain. In this
method, at first multi-view depth maps are extracted from the point
cloud and passed through the CLIP visual encoder. To transfer the 3D
knowledge to the network, a small network called an adapter is fine-
tuned on top of the CLIP visual encoder. PointCLIP has two limita-
tions. Firstly, the point cloud depth maps lack image information which
is essential for tasks like classification and recognition. Secondly, the
adapter only relies on the global representation of the multi-view fea-
tures. Motivated by this observation, we propose a Pretrained Point
Cloud to Image Translation Network (PPCITNet) that produces gen-
eralized colored images along with additional salient visual cues to the
point cloud depth maps so that it can achieve promising performance
on point cloud classification and understanding. In addition, we propose
a novel viewpoint adapter that combines the view feature processed by
each viewpoint as well as the global intertwined knowledge that exists
across the multi-view features. The experimental results demonstrate the
superior performance of the proposed model over existing state-of-the-
art CLIP-based models on ModelNet10, ModelNet40, and ScanobjectNN
datasets.

Keywords: Contrastive Language-Image Pre-Training · Point Cloud
Classification · Few shot Learning

1 Introduction

Point cloud understanding refers to the process of extracting meaningful infor-
mation from 3D point clouds, which are sets of 3D coordinates representing the
surface geometry of objects or scenes. The goal of point cloud understanding
is to analyze and interpret the data contained in the point cloud in order to
understand the objects or scenes that it represents. Point cloud understanding
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Fig. 1. Example of different image representations: (a) natural RGB images; (b) ren-
dered RGB images; (c) point cloud depth maps; (d) 3D depth maps; (e) processed
binary mask images.

has various applications in the real world, such as stereo reconstruction, indoor
navigation, autonomous driving, augmented reality, and robotics perception etc.
Although both 2D image understanding and point cloud understanding involve
analyzing visual data, compared to the 2D image understanding [14], 3D point
cloud understanding [11] is more challenging. A 2D image consists of a dense
and regular pixel array. In contrast, a 3D point cloud only consists of sparse and
unordered points in the 3D space. Moreover, point clouds often lack the rich
texture and image information available in 2D images.

The success of deep learning in computer vision has also accelerated deep
learning-based point cloud understanding and 3D-related research. While early
deep learning methods had tried to propose some advanced architectures like
PointNet [12], PointNet++ [13], RSCNN [9], DGCNN [18], CurveNet [20], the
success of Contrastive Language-Image Pre-Training (CLIP) model has added
new direction in the context of computer vision. CLIP has several advantages
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over traditional deep learning methods. Firstly, the CLIP model is trained in a
more generalizable manner, learning to associate images with natural language
text in a way that can be applied to a wide range of downstream tasks. Whereas,
traditional deep learning models are typically trained on specific tasks, such
as image classification or object detection, and their performance can degrade
significantly when applied to new, unseen tasks. Secondly, the CLIP model is
trained on a large, unlabeled dataset of image-caption pairs, which does not
require labeling efforts. On the other hand, traditional deep learning models often
require large amounts of labeled training data to achieve good performance on a
specific task. Finally, most importantly the CLIP model can be fine-tuned on new
datasets and tasks with minimal additional training, making it a more flexible
and adaptable solution to the downstream tasks compared to traditional deep
learning models. Recently following the CLIP’s success on image and natural
language domain, several works have been proposed to generalize pre-trained
clip to 3D recognition. Some of these works focus on designing a small adapter
network to CLIP [6,23] and fine-tuning it for the downstream task. Other works
focus on LLM-assisted 3D prompting and realistic shape projection [24] and
cross-modal training framework [22] to bridge the gap between 2D image and
point cloud. In general, the pipeline is as follows. Given a point cloud, the point
cloud is first projected as a depth map. The depth map is then processed by
the pre-trained CLIP visual encoder [14]. A small network called an adapter is
added and fine-tuned for the downstream task.

Although these methods show some promising performance, they have cer-
tain limitations. It is due to the fact that the CLIP [14] is trained on RGB
images whereas these models utilize point cloud depth maps for the point cloud
understanding. Inherently, RGB images and depth maps are quite different from
one another as depicted in Fig. 1. Point cloud depth maps represent depth infor-
mation as a set of 3D points in space, with each point having an x, y, and z
coordinate. This information is useful for 3D reconstruction and robotics navi-
gation and manipulation. On the other hand, RGB images consist of red, green,
and blue color channels, and each pixel in the image is represented by a com-
bination of intensity values for these channels and captures color and texture
information that is important for tasks like classification, recognition, and local-
ization. In summary, the image information missing in the depth maps leads to
the degrading performance of the state-of-the-art CLIP-based [14] point cloud
models.

To transfer the image information to the CLIP-based point cloud models,
one naive solution can be designing a network that maps depth maps to the
corresponding natural RGB images. But, there does not exist any dataset that
has depth maps and natural RGB image correspondence. However, there exists
a dataset that has depth maps and rendered RGB image correspondence. In this
direction, the next solution can be designing a network that maps depth maps
to the corresponding rendered RGB images. Here the problems are three-fold.
Firstly, CLIP is trained on natural RGB images. Rendered images differ from
natural images in terms of realism, lighting, and Complexity depicted by Fig. 1(a,
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b). Secondly, for a single depth map, there can be many possible corresponding
rendered RGB images. For example, for a depth map of a sofa, the synthetic
color changes in various parts as depicted in Fig. 1(b) in multiple rendered image
instances. Finally, a 3D model depth map differs from a point cloud depth map
as showed by [16]. A 3D model depth map typically represents depth information
as a grayscale image shown in Fig. 1(d), with darker regions indicating greater
distance from the viewer. In contrast, a point cloud depth map represents depth
information as a set of 3D points in space, with each point having an (x, y, z)
coordinate as depicted by Fig. 1(c).

In order to transfer image information to the CLIP [14] based point cloud
model, we propose a novel Pretrained Point Cloud to Image Translation Net-
work (PPCITNet) that produces generalized colored images along with addi-
tional salient visual cues to the point cloud depth maps. Here, the salient visual
cues refer to additional color concentration to prominent or distinctive parts like
an additional color concentration in the head and legs of a person (see Fig. 4).
The target of our PPCITNet is to provide image information to the CLIP [14]
model so that it can achieve promising performance on point cloud classifica-
tion and understanding. To pre-train this Point Cloud to Image Translation
Network (PCITNet), we utilize the binary mask images of the rendered RGB
images. Binary mask images and point cloud depth maps are similar geomet-
rically because of discrete and compact representation. But visually, they are
slightly different (see Fig. 1(d, e)). To further bridge the gap, we preprocess the
binary mask images by multiplying the binary image with a noise image to make
the binary image sparse. The noise image is composed of 50% white pixel and
50% of black pixel sampled randomly. Through PPCITNet, the depth features
of the point cloud can then be well aligned with the visual CLIP features.

To further adapt our network to the few-shot learning, we proposed a novel
viewpoint adapter that combines the local feature processed by each viewpoint
as well as the global intertwined knowledge that existed across the multi-view
features. In our opinion, the local viewpoint information is crucial for point
cloud classification. For example, to classify the point cloud of ‘airplane’ the
viewpoint that contains the wing information is more crucial than any other
parts. In summary, the contributions of our paper are as follows. 1) We propose
a novel Pretrained Point Cloud to Image Translation Network (PPCITNet) that
transfers image information to the point cloud depth maps so that it can achieve
promising performance on point cloud classification and understanding. 2) We
propose a novel viewpoint adapter that combines the view feature processed by
each viewpoint as well as the global intertwined knowledge existing across the
multi-view features. 3) Our methods achieve state-of-the-art results on few-shot
point cloud classification tasks on ModelNet10, ModelNet40, and ScanobjectNN.

2 Related Works

Deep Learning in Point Clouds. Deep learning has revolutionized the field of
point cloud classification and understanding. Categorically, deep learning-based
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models are divided into three sections, including multi-view based methods [5],
volumetric-based methods [8] and point-based methods [12]. Early works on deep
learning primarily focused on multi-view-based methods [5], where the 2D image
models are utilized for point cloud classification. In volumetric-based methods
[8], point clouds are treated as voxel data. 3D convolution-based models are used
for classification and segmentation. The state-of-the-art models are point cloud-
based methods [12], where the raw points are processed and passed through
the model without any transformation. PointNet [12] is the first point-based
model that has encoded each point with a multi-layer perception. PointNet++
[13] further utilizes the max pooling operation to ensure permutation invariance.
Recently, the success of CLIP for the downstream tasks on 2D has motivated the
use of pre-trained CLIP for point cloud classification. Zhang et al. [23] propose
PointCLIP which generalizes pre-trained CLIP to 3D recognition.

CLIP-Based Point Cloud Models. Recently several works have been
proposed to generalize pre-trained Contrastive Language-Image Pre-Training
(CLIP) to point cloud understanding tasks. For example, Zhang et al. first pro-
posed PointCLIP [23] by extending the CLIP [14] for handling 3D point cloud
data. In addition, they presented an inter-view adapter to capture the feature
interaction between multiple views. In this direction, Zhu et al. [24] further
introduced an efficient cross-modal adaptation method called PointCLIP V2
by proposing LLM-assisted 3D prompting and realistic shape projection. Next,
Huang et al. [6] presented a novel Dual-Path adapter and contrastive learning
framework to transfer CLIP knowledge to the 3D domain. Yan et al. [22] pre-
sented PointCMT, an point cloud cross-modal training framework that utilized
the merits of color-aware 2D images and textures to acquire more discriminative
point cloud representation and formulated point cloud analysis as a knowledge
distillation problem.

3 Methodology

In this section, we first briefly revisit PointCLIP [23] for few-shot 3D classi-
fication (Sect. 3.1). Then we introduce our Pretrained Point Cloud to Image
Translation Network (PPCITNet) framework (Sect. 3.2) that aligns image infor-
mation to the point cloud depth map. Finally, we describe our proposed few-shot
learning framework for few-shot point cloud classification (Sect. 3.3). The overall
overview of our method is depicted in Fig. 3.

3.1 Revisit of PointCLIP

Similar to CLIP [14] which matches images and text by contrastive learning,
PointCLIP [24] consists of one visual encoder and a textual encoder. For K class
classification, PointCLIP uses a pre-defined template: “point cloud depth map
of a big [CLASS]” and the textual encoder outputs P ∈ RK×C , where C is
the channel of the text embedding. To feed point clouds to the CLIP’s visual
encoder [14], point clouds are first projected onto depth maps {f1, f2, . . . , fM}.
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Fig. 2. For a binary mask image, we multiply the binary image with a noise image to
the make binary image sparse. The noise image is composed of 50% white pixel and
50% of black pixel sampled randomly.

Here M denotes the number of views and fi ∈ RH×W×C denotes each view of
the point cloud, where H and W denote height and width respectively. Given the
input {f1, f2, . . . , fM}, the visual encoder in PointCLIP generates visual feature
{F I

1 , F I
2 , . . . , F I

M}, where F I
i ∈ R1×C and C is the channel dimension of the

embedding.

Zero-Shot Classification: In a zero-shot setup, there is no training stage. Each
viewpoint generates a prediction by calculating the cosine similarity between the
visual feature F I

i and the textual feature PT . The final prediction is the weighted
sum of all viewpoint-wise predictions. Thus,

Oi = F I
i PT , i = 1, 2 . . . N (1)

ŷ = softmax(
N

∑

i=1

αiOi) (2)

where αi is a hyper-parameter that describes the weighting importance of the
view i.

Few-Shot Classification: For few-shot point cloud classification, PointCLIP
proposes an inter-view adapter. The inter-view adapter extracts the global visual
representation by combining the multi-view features produced by the visual
encoder of PointCLIP. The global representation is then added back to the
adapted features F I

i . Thus, the adapter can be formulated as follows:

G = f2(ReLU(f1(concat(F I
i

M

i=1))) (3)
F g = ReLU(GWT ) (4)

ŷ = softmax(
M
∑

i

αi((F I
i + F g){PT }T )) (5)

where P denotes textual information, αi is a hyper-parameter that denotes
importance of view i, W denotes learnable weights, and f1, f2 are MLP lay-
ers.
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Fig. 3. The training of our approach is composed of two stages. In the first stage, we
pre-train our PCITNet using the processed binary mask and RGB pairs. In the second
stage, we perform a few shot learning on a viewpoint adapter utilizing PPCITNet and
pre-trained CLIP.

3.2 Point Cloud to Image Translation Network Pre-training

Instead of directly applying CLIP [14] visual encoder to depth maps, we pro-
pose to learn a Point Cloud to Image Translation Network (PCITNet) for align-
ing point cloud depth features with CLIP visual features. In other words, we
expect the extracted features of a rendered point cloud depth map to be con-
sistent with the CLIP visual features of the corresponding image. Then CLIP
[14] textual prompts can be directly adopted to match the depth features. Let
S = {Bi, Ri}L

i=1 denotes a pre-training dataset with L instances. Here Bi is a
binary mask image and Ri denotes its corresponding rendered RGB image. We
would like to learn a network Fθ(·) that maps from a binary mask image to a
rendered RGB image as follows:

̂R = Fθ(B) (6)

Our goal is to learn the PCITNet Fθ that represents generalized image color
distribution along with additional salient visual cues. As discussed earlier, binary
mask images and point cloud depth maps are similar geometrically because of
their discrete and compact representations. But visually, they are slightly differ-
ent. To further bridge the gap, we pre-process a binary mask image by multi-
plying the binary image with a noise image to make the binary image sparse as
depicted in Fig. 2. The noise image is composed of 50% white pixel and 50% of
black pixel sampled randomly. To learn the generalized image information along
with additional salient visual cues, we optimize the following objective function:

Lc =
1
L

L
∑

i=1

(Ri − ̂Ri)2 (7)
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Here, L is the total number of mask-RGB pairs in the dataset. The generalized
image information along with additional salient visual cues information helps to
encode a richer and more diverse set of visual features that can be used to dis-
criminate between different objects. Without image information, CLIP [14] may
have difficulty distinguishing between objects with similar shapes. For example,
consider the task of classifying chairs based on their shape alone. Chairs have
similar shape features to tables such as legs. Based on the shape alone, it is
very difficult for CLIP [14] to distinguish between them. However, by incorpo-
rating image information in the classification process, we can identify additional
features that can help differentiate between chairs and tables as the image infor-
mation provides additional cues for the CLIP [14] as described by Bramao et al.
[1].

3.3 Few-Shot Learning

Settings. Let ρ ∈ RP×3 denote the point cloud, where P denotes the number of
points of the point cloud sample from the N × K few shot data. Here, N is the
total number of classes and each class has K instances of point cloud. Given the
PPCITNet and pre-trained CLIP [14] network, the goal is to train the viewpoint
adapter so that it can boost the performance of the CLIP-based point cloud
classification network.

Feature Extraction. For each ρ ∈ RP×3, we need to project 3D coordi-
nates to 2D coordinates. Following [6], we get the point cloud depth maps
fd = {f1, f2, . . . , fM}. These depth maps are first passed through the PPC-
ITNet, then the output feature is passed through CLIP’s visual encoder. The
goal of our PPCITNet is to provide generalized image information along with
additional salient visual cues to the CLIP model so that it can achieve promising
performance on point cloud classification and understanding.

fc = Fθ(fd), i = 1, 2 . . . M (8)
fv = FV (fc), i = 1, 2 . . . M (9)

where i indicates the number of depth maps of a 3D point cloud captured from
different perspectives, fv

i denotes output for fd
i depth map, fc

i denotes general-
ized colored images, Fθ and FV denote the PPCITNet and CLIP’s visual encoder
[6] respectively.

Viewpoint Adapter. We propose a novel viewpoint adapter that combines
the view feature processed by each viewpoint as well as the global intertwined
knowledge that exists across the multi-view features. Given the extracted feature
fv = {f1, f2, . . . , fM}, the view-specific view information is calculated using M
MLP layers. Thus,

f l
i = φ(fv

i Wli) (10)

where Wli is the weight of an MLP layer and φ denotes the activation func-
tion. f l

i captures the view-specific fine-grained visual features and generalized
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image information along with additional salient visual cues that are relevant to
a particular point cloud object. For example, to classify the point cloud of an
airplane, the viewpoint that contains the wing information is more crucial than
any other part. f l

i encodes fine-grained wing information for the point cloud
of the airplane. To get the global information of the M views, we perform the
following operation:

fg = φ(concat(fv
i

M
i=1)W

T
g1)W

T
g2 (11)

where fg ∈ R1×C and Wg1 Wg2 denote the two-layer weights in the viewpoint
adapter. Here, the global knowledge captures the overall structure and organi-
zation of point clouds and provides a more holistic understanding of the point
cloud objects. Finally, the classification is performed as follows:

logits = softmax(
N

∑

i

αi((f l
i + fg){PT }T )) (12)

where αi denotes the learnable weight, and P denotes textual information. Note
that, Only the viewpoint adapter is trained in few-shot learning. The features
learned by the viewpoint adapter provide complementary information about the
overall structure and view-specific fine-grained features of point cloud objects
combining both view and global information.

4 Experiments

Pre-training Datasets. To pre-train our PCITNet network, we use the DISN
2D dataset released by Wang et al. [21]. This dataset is based on the ShapeNet
Core dataset [2], which is a 3D dataset consisting of 13 object categories. While
early work [4] of rendering this dataset utilizes 24 views with limited variation
in terms of camera orientation for each model, DISN provides two types of
settings: “easy” and “hard”. The easy setting consists of 36 renderings with
smaller variations, The hard setting is composed of 36 renderings with larger
variations. To train our PCITNet network, we sample 100k data from the easy
setting randomly. From the RGBA image, we sample the mask image.

Downstream Datasets. Following PointCLIP [23], we evaluate our proposed
model on three widely used benchmark datasets: ModelNet10 [19], ModelNet40
[19] and ScanObjectNN [17]. ModelNet10 and ModelNet40 have a training point
cloud set of 3991 and 9,843 and a test point cloud set of 908 and 2,468 respec-
tively. ScanObjectNN is a real-world point cloud dataset that includes 2,321
samples for training and 581 samples for testing the point cloud from 15 cate-
gories. Compare to the ModelNet, ScanObjectNN is more challenging because
the CAD models are attached with backgrounds and partially presented. For all
three datasets, we uniformly sample 1,024 points of each object as the PPCIT-
Net’s input.

Implementation Details. We use Unet architecture from [15] as our PCITNet
network. To pre-train the PCITNet network, we resize the image to 224 × 224
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Fig. 4. Input Visualization. Our PPCITNet produces generalized colored images along
with additional salient visual cues. The salient visual cues refer to additional color
concentration to prominent or distinctive parts of the image.

and train our model in a 12 GB Nvidia Titan X GPU using PyTorch. In pre-
training, we use the Adam optimizer [7] with decay of 1 × 10−4 and the initial
learning rate of 1 × 10−3. Our pre-training task takes 100 epochs with a batch
size of 16. For few-shot learning, we utilize AdamW optimizer [10] with decay
of 1 × 10−4 and the initial learning rate of 1 × 10−3. The training batch size is
32 and it takes 100 epochs to train the network. Similar to [6,23], we use the 6
orthogonal views: left, right, top, bottom, front, and back for few-shot learning.

4.1 Results

CLIP-based models [6,23] are generally evaluated by comparing with state-of-
the-art methods on few-shot learning and prompt engineering. In Table 1, we
present the zero-shot and few-shot performance of PPCITNet on ModelNet40
using the prompt “point cloud of a big [CLASS]”. In Table 2, we present the
few shot performance of PPCITNet and compare it with state-of-the-art 3D
networks like PointNet [12], PointNet++ [13], CurveNet [20], SimpleView [3] as
well as CLIP based models PointCLIP [23], CLIP2Point [6] on 16 shot setup.
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As we can see from the table, PPCITNet with a viewpoint adapter outperforms
PointCLIP and CLIP2Point by a margin of 3–5 % for 16 shot setup for prompt
“point cloud of a big [CLASS]” on all three datasets. To further evaluate the
transfer ability of PPCITNet, we show the performance for 1, 2, 4, 8, 10, 12, 16
shots in Fig. 5.

Table 1. Zeroshot and Few-shot results of PPCITNet on ModelNet40 using the prompt
“point cloud of a big [CLASS]”.

Setup Accuracy

Zeroshot 22.74

Few-shot 88.93

We can see from the graph, our PPCITNet surpasses all by a reasonable good
margin. This is due to the additional visual cues provided by PPCITNet and
the view and global information encoding of the viewpoint adapter. The large
performance gain on ScanObjectNN indicates the robustness of PPCITNet under
noisy real-world scenes.

Table 2. Performance (%) of PPCITNet with other methods in 16-shot setup using
prompt “point cloud of a big [CLASS]”.

Model ModelNet10 ModelNet40 ScanObjectNN

CurveNet 82.45 76.55 34.76

SimpleView 84.15 71.17 37.44

PointNet 73.98 67.34 36.18

PointNet++ 84.62 77.13 51.62

PointCLIP 89.33 83.80 54.37

CLIP2Point 90.21 85.10 57.49

PPCITNet 94.30 88.93 63.22

The visualization in Fig. 4 further establishes our claims. While PointCLIP
and CLIP2Point provide uniformly sampled point features to the CLIP’s visual
encoder, our PPCITNet produces generalized colored images along with addi-
tional salient visual cues. Here, the salient visual cues refer to additional color
concentration to prominent or distinctive parts like an additional color concen-
tration in the head and legs of the human in Fig. 4. In Table 3, we compare
our PPCITNet with PointCLIP for different prompt designs on ModelNet40,
where [CLASS] represents the class token and ‘[Learnable Tokens]’ refers to the
prompts with a fixed length that are capable of being learned during training.
The large performance gain indicates the generability of our PPCITNet over
PointCLIP for various prompt designs.
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Fig. 5. Few-shot performance comparison under 1, 2, 4, 8, 10, 12, 14, and 16-shot
settings.

Table 3. Performance (%) of PPCITNet with PointCLIP for different prompt designs
on ModelNet40.

Prompts PointCLIP PPCITNet

“a photo of a [CLASS]” 81.78 86.63

“a point cloud photo of a [CLASS]” 82.02 87.33

“point cloud of a [CLASS]” 82.10 87.04

“point cloud of a big [CLASS]” 83.80 88.93

“point cloud depth map of a [CLASS]” 81.58 85.15

“[Learnable Tokens] + [CLASS]” 69.23 76.27

4.2 Ablation Studies

In this section, we evaluate the effect of our PPCITNet and the effect of view
information on the viewpoint adapter. To observe the effect of PPCITNet, we
conduct an experiment with PPCITNet and without PPCITNet on ModelNet40
as shown in Table 4.

Table 4. Effect of PPCITNet on ModelNet40 using prompt “point cloud of a big
[CLASS]”.

Model Accuracy

Without PPCITNet 84.27

With PPCITNet 88.93

From the table, it is evident that incorporating PPCITNet on the few-shot
pipeline improves accuracy by 4.6 %. To analyze the view feature, we conduct
experiments with the only view feature, with only global information, and with
both view information and global information on PPCITNet on ModelNet40.
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Although the performance drops significantly while utilizing only the view infor-
mation, a combination of view and global information yields the best perfor-
mance, specifically an improvement of 1.3% over global information as described
in Table 5.

Table 5. Effect of view information for PPCITNet on ModelNet40 using prompt “point
cloud of a big [CLASS]”.

View info. Global info. Accuracy

� – 82.34

– � 87.60

� � 88.93

5 Conclusion

In conclusion, we present a novel pretrained point cloud to image translation
network that transfers image information to the point cloud depth maps. In
addition, we present a novel viewpoint adapter that combines the view feature
processed by each viewpoint as well as the global intertwined knowledge exist-
ing across the multi-view features. The experiment results validate the superior
performance of our approach compared to the other state-of-the-art models on
the few-shot point cloud classification.
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Abstract. Since their invention in 1949, barcodes have remained the
preferred method for automatic data capture, playing a crucial role
in supply chain management. To detect a barcode in an image, mul-
tiple algorithms have been proposed in the literature, with a significant
increase of interest in the topic since the rise of deep learning. How-
ever, research in the field suffers from many limitations, including the
scarcity of public datasets and code implementations, which hampers
the reproducibility and reliability of published results. For this reason,
we developed “BarBeR” (Barcode Benchmark Repository), a benchmark
designed for testing and comparing barcode detection algorithms. This
benchmark includes the code implementation of various detection algo-
rithms for barcodes, along with a suite of useful metrics. It offers a
range of test setups and can be expanded to include any localization
algorithm. In addition, we provide a large, annotated dataset of 8 748
barcode images, combining multiple public barcode datasets with stan-
dardized annotation formats for both detection and segmentation tasks.
Finally, we share the results obtained from running the benchmark on
our dataset, offering valuable insights into the performance of different
algorithms.

Keywords: BarBeR · Barcodes · Benchmark · QR Codes · Public
Dataset

1 Introduction

Barcodes, a prevalent form of machine-readable data representation, have rev-
olutionized the accuracy and speed of data collection and identification [36].
Their cost-effectiveness and efficiency have led to their widespread use in vari-
ous engineering applications. First of all, barcodes serve as a cornerstone of sup-
ply chain management [24], facilitating the flow of goods from manufacturers
to consumers by enabling efficient inventory tracking and logistics management.
Secondly, barcodes are extensively used in warehouses to automate the process
of goods receipt, storage, and dispatch, helping in reducing manual errors and
improving the speed of operations [19]. Other notable applications are compo-
nent tracking in manufacturing, product recognition in retail [25], and robot
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15317, pp. 187–203, 2025.
https://doi.org/10.1007/978-3-031-78447-7_13
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guidance [29]. Despite their inception over seven decades ago, barcodes continue
to hold their ground in today’s digital age, and their use is forecasted to increase
in the future [17]. This is reflected in the projected growth of the barcode reader
market, which was valued at $7.4 billion in 2022 and is expected to reach $13.3
billion by 2032, growing at a CAGR of 6.3% from 2023 to 2032 [33]. Barcodes
come in two categories: one-dimensional (1D or linear) and two-dimensional
(2D). Linear barcodes encode data with lines of varying widths and spacing, but
have limited data storage capacity. To overcome this issue, 2D barcodes were
introduced. Their structure allows data to be stored on both vertical and hori-
zontal axes, offering greater capacity compared to 1D barcodes [32]. The process
of reading a barcode can usually be divided into two macro steps: localization
and decoding. While some papers focus on both steps [10,18] most of the publi-
cations just focus on the localization part [30,38,41]. Especially in recent times,
it has become the norm to use public third-party libraries to handle the decoding
step [37]. The two most used libraries are ZXing1 and Zbar.2 Each software tool
can handle both 1D and 2D barcodes. Therefore, our primary focus from now
on will be on localization. Until recently, real-time speed for a localization algo-
rithm was achievable solely through the computation of hand-crafted features
from the image. However, the recent advancements in edge deep learning fueled
the interest in developing barcode localization solutions based on deep learn-
ing. Between the years 2015 and 2021, 25 publications introduced a method for
barcode localization (either 1D, 2D, or both) that utilized deep learning tech-
niques [37]. Despite the huge interest in the field, several issues prevent defini-
tive conclusions about methods’ effectiveness and applicability. The first is that
existing research relies on small datasets that do not reflect real-world scenarios
accurately and make training deep learning models difficult. Then there is the
problem of reproducibility. The lack of public code implementations makes repli-
cating results challenging. Finally, different studies use different metrics, leading
to contradictory comparisons even with identical algorithms and datasets.

To address these challenges, we have developed “BarBeR” (Barcode Bench-
mark Repository)—an open-source benchmark for barcode localization with
standardized test protocols and evaluation metrics. BarBeR contains the imple-
mentation of multiple localization algorithms tailored for barcodes that we
selected after a thorough review of the literature. In addition, we are publicly
releasing a large annotated dataset of 8 748 images of barcodes to be used with
our benchmark. Our aim is to enhance reproducibility and facilitate more reliable
algorithm comparisons within the research community.

2 Related Works

Early Barcode Localization Efforts. Joseph Woodland and Bernard Silver
invented the linear barcode in 1949 and patented it in 1952. Early decoding

1 https://github.com/zxing/zxing.
2 https://github.com/ZBar/ZBar.

https://github.com/zxing/zxing
https://github.com/ZBar/ZBar
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Table 1. List of the public datasets collected for the benchmark. The table reports the
number of images per dataset and the resolution of the image with the minimum and
the maximum number of pixels in the dataset respectively. # 1D and # 2D represent
the number of linear and two-dimensional barcode instances in each dataset.

Dataset Name # Images Minimum Resolution Maximum Resolution # 1D # 2D

Arte-Lab Medium 1D [39] 430 1 152 × 864 2 976 × 2 232 430 7

Arte-Lab Extended 1D [40] 155 648 × 488 648 × 488 165 3

Bodnár-Huawei QR [3] 98 1 600 × 1 200 1 600 × 1 200 0 98

DEAL KAIST Lab [7] 3 308 141 × 200 3 480 × 4 640 3 378 76

Dubska QR [8] 810 402 × 604 2 560 × 1 440 0 806

InventBar [16] 527 480 × 640 480 × 640 530 33

Muenster 1D [35] 1 055 1 600 × 1 200 2 592 × 1 944 1 068 1

OpenFood Facts [1] 185 390 × 520 5 984 × 3 376 187 5

ParcelBar [16] 844 1 108 × 1 478 1 478 × 1 108 1 196 17

Skku Inyong DB [38] 325 1 440 × 2 560 1 440 × 2 560 368 10

Szentandrasi QR [31] 90 1 024 × 768 4 752 × 3 168 0 225

ZVZ-Real [41] 921 407 × 576 3 288 × 4 930 740 475

Total 8 748 200 × 141 5 984 × 3 376 8 062 1 756

methods relied on analog circuits, with laser scanners being the primary decod-
ing method in the ‘70s. However, these systems required the reader to be directly
aimed at the barcode. The 1990s saw the advent of 2D image barcode reading.
A significant advantage of this approach is the ability to read a barcode from
a wider field of view, but to do so, the barcode must first be located. Detec-
tion methods for linear barcodes included Sobel filters for texture analysis [34],
Gabor filters [13], and even early machine learning techniques for texture classifi-
cation [14]. The Hough Transform also gained popularity for linear barcodes [26],
and gradient analysis was used for QR codes [27].
Recent Approaches. Research continued to address limitations and expand
barcode localization applications. Methods explored skeletonization [4] and tex-
ture direction analysis [12], while the use of the Hough Transform was extended
to the 2D barcodes [31]. Huge efforts were directed into increasing the algorithm’s
speed, to allow the use on mobile phones [10].

The Deep Learning Era. Chou’s 2015 work marked a turning point with the
introduction of CNNs for QR code detection [6]. Deep learning has since become
dominant, with notable successes using YOLO [11] and Faster R-CNN [20]. Many
also proposed custom CNN architectures adapted to the task [41].

3 Dataset

For this project, we required a large dataset to accurately compare algorithms
and train object detection neural networks. For this reason, we conducted a
thorough literature review to identify publicly available datasets of barcodes.
Table 1 lists these datasets and their sources. The collected datasets account
for a total of 8 748 images with 9 818 annotated barcodes, 8 062 linear, and
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Fig. 1. Example of images taken from the proposed dataset. Multiple types of items
are portrayed in different settings. In addition, we have some examples of hard cases,
such as confusing patterns, small bounding boxes, variable lighting, underexposure,
and blur. Some barcodes are also non-planar or partially obstructed.

1 756 two-dimensional. A significant challenge was the lack of annotations in
some datasets and the wide variation in annotation formats. To address this, we
generated new annotations for all images using Datalogic’s proprietary software,
which generates a 4-point polygon for each barcode read and provides additional
information, such as its type, and the encoded string. In addition, we have infor-
mation about the pixel density of the barcode, usually measured in pixels per
element (PPE), i.e., the mean width of the smallest element in a barcode. This
measure can also be referred to as pixels per module (PPM). While most codes
were annotated in this way (8 096), a few (1 722) were un-decodable due to blur,
noise, or incorrect scale. These codes were manually annotated, and thus they
lack some information like the PPE. Since the annotations use polygons instead
of boxes, they are suitable for both detection and segmentation.

The final dataset presents an extensive diversity of subjects and environ-
ments. It contains barcodes of 18 categories, 14 of which are considered linear
symbologies (Code 128, Code 39, EAN-2, EAN-8, EAN-13, GS1-128, IATA 2
of 5, Intelligent Mail Barcode, Interleaved 2 of 5, Japan Postal Barcode, KIX-
code, PostNet, RoyalMail Code, and UPC) and 4 are considered 2D symbologies
(Aztec, Datamatrix, PDF417, and QR Code). The images have been captured
with different devices such as a Nokia N95 [35], a Huawei Smartphone from
2014 [3], and a 15MP professional camera [8]. The dataset also features different
settings and subjects. Skku Inyong DB [38] was captured inside a supermarket
and represents items found there. DEAL KAIST Lab [7] also represents market
items, but the settings change widely, some indoors, others outdoors. Dubska [8]
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dataset represents mostly QR codes printed on paper, captured indoors in a con-
trolled setting. ZVZ-Real [41] is one of the most diverse datasets in the collection,
with images taken indoors and outdoors, with subjects ranging from market
items, product labels, receipts, and letters as well as book photos and scans.
In addition, our dataset contains both planar barcodes and skewed or warped
barcodes. The dataset contains barcodes in different lighting conditions, some
are underexposed or overexposed, and others have variable lighting throughout
the code. Other codes have specular reflections. Finally, some codes are affected
by blur and noise or are partially covered or obstructed, as shown in Fig. 1.

4 Benchmark Description

As part of this project, we have developed BarBeR, a benchmark for barcode
localization algorithms available on GitHub.3 It includes various detection meth-
ods and scripts to train neural networks for barcode detection. Our dataset, used
for running our tests, can be downloaded from the same GitHub repository or
from our website.4

4.1 Tests and Metrics

The repository is equipped with a variety of test scripts, each supporting diverse
configurations. Here is a breakdown of the test scripts and their main configu-
ration parameters:

– Single Class Detection: runs all the selected algorithms considering only
images with the selected type of barcodes. It can be tailored to permit only
linear or two-dimensional barcodes. It is also possible to include only images
with a single Region Of Interest (ROI) or multiple ROIs per image. In addi-
tion, we can decide the target resolution used to rescale the images in the
test set. Finally, we can specify which algorithms to use in the test and with
which arguments;

– Multi-Class Detection: runs all the selected algorithms on all the images
of the test set. As for Single Class Detection, we can choose the resizing
resolution and which algorithms are included in the test;

– Timing Performance: measures the time required to run the algorithms.
The times can be taken from the average times on all datasets or a subsection
of it. It is possible to measure the algorithms’ performance on a single core
or multiple cores as well as on GPU.

All test scripts are written in Python and take as input argument a YAML config-
uration file and output a YAML file containing multiple metrics for every tested
algorithm. The available metrics are precision, recall, and F1-score at different
IoU scores. For algorithms that also output a confidence score, the Benchmark
3 https://github.com/Henvezz95/BarBeR.
4 https://ditto.ing.unimore.it/barber.

https://github.com/Henvezz95/BarBeR
https://ditto.ing.unimore.it/barber
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Table 2. Characteristics of the deep-learning models used in our tests. Two-stage
detectors first propose regions, then classify and refine bounding boxes. One-stage
detectors perform detection and classification in a single step.

Network Type Backbone # Parameters [M] GFlops @ (640 × 640)

Zharkov et al. [41] One-Stage dilated-net 0.0424 1.528

Faster R-CNN [28] Two-Stage resnet50 fpn 3x 41.755 134.38

RetinaNet [21] One-Stage resnet50 fpn 3x 34.014 151.54

YOLO-v8 [15] One-Stage yolov8 medium 25.903 39.66

YOLO-v8 Nano [15] One-Stage yolov8 nano 3.157 4.429

RT-DETR [23] One-Stage HGNetv2-L 31.005 54.17

computes the Average Precision (AP@.5, AP@[.5:.95]) for each class, the mean
Average Precision (mAP@.5, mAP@[.5:.95]) and the Average Recall (AR100,
AR10, AR1). Finally, the benchmark allows to filter these metrics depending on
the size of the ground truth and its pixel density. The repository also contains
bash scripts used to run a pipeline of tests. This is useful, for example, for k-fold
cross-validation.

4.2 Available Localization Methods

Gallo et al. The localization method proposed by Gallo and Manduchi in 2011
is a rapid algorithm that localizes a single 1D barcode per image. It assumes
the barcode is horizontally positioned with vertically aligned parallel lines and
is not rotation invariant. The process begins by calculating a heatmap Ie(n),
representing the difference between the magnitudes of the horizontal and vertical
derivatives. After smoothing and binarizing the heatmap, the blob containing the
pixel that maximizes Ie(n) is used to compute the barcode’s bounding box.

Soros et al. This algorithm was proposed in 2013 by Sörös and Flörkemeier. It
is a method designed for both 1D and 2D barcodes that is orientation invariant
and is quite resistant to blur [30]. However, this method can only output a
single ROI for each barcode type. It is based on the UNIVAR detector and
OMNIVAR detector proposed by Ando [2]. The first detector finds areas with
strong unidirectional edges and can be used to find linear barcodes, while the
latter can find corners and is useful for 2D barcode localization.

Zamberletti et al. The method introduced by Zamberletti et al. in 2013 is
capable of detecting multiple linear barcodes. It generates several rotated boxes,
all sharing the same angle of rotation. This proves beneficial in scenarios where
a single label contains multiple barcodes, each exhibiting the same rotational
angle. It uses a multi-layer perceptron to process the Hough Transform of the
image and predict the angle of the barcodes in the image. Once the angle is
found, the technique of Galamhos et al. [9] is used to find all lines with that
angle of orientation. Finally, the areas with the highest concentration of these
lines are located using a method based on histograms and labeled as barcodes.
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Table 3. Precision, Recall and F1-score with an IoU threshold of 0.5. Employed images
contain a single 1D barcode and were resized to have their longest side of 640 pixels.

Detection Method Precision ↑ Recall ↑ F1-score ↑
Gallo et al. [10] 0.533 0.533 0.533

Soros et al. [30] 0.658 0.658 0.658

Zamberletti et al. [40] 0.234 0.340 0.278

Yun et al. [38] 0.806 0.714 0.757

Zharkov et al. [41] 0.725 0.952 0.823

Faster R-CNN [28] 0.981 0.996 0.989

RetinaNet [21] 0.988 0.991 0.990

YOLO Nano [15] 0.978 0.997 0.987

YOLO Medium [15] 0.984 0.998 0.991

RT-DETR [23] 0.987 0.999 0.993

Yun et al. This detection method was described in 2017 by Yun and Kim. The
algorithm is designed for the detection of linear barcodes and supports multiple
detections per image. For detecting the salient regions, the entropy scheme is
used [5]. The idea is to divide the image into non-overlapping cells, and for
each cell the local orientation histogram is computed. The histogram is used to
compute the entropy of the cell. Cells with high entropy have high directionality
and a high probability of being part of a barcode.

Zharkov et al. In 2019, Zharkov et al. proposed a custom Convolutional Neural
Network for 1D and 2D barcodes segmentation employing dilated convolution.
The network is trained using a loss function that prioritizes high recall over high
precision.

Open Source Object Detection Models. In addition, we included five open-
source object detection models in our benchmark. Each model was pre-trained
on the MS COCO dataset [22] and fine-tuned on our training set. The selected
architectures are Faster R-CNN, RetinaNet, YOLO-v8 Medium, and Nano and
RT-DETR. The details of the selected architectures are presented in Table 2.

5 Benchmark Results

5.1 Methodology

We assess the detection accuracy using 5-fold cross-validation for both single-
class and multi-class modes. End-to-end deep learning models are trained with
75% of the training set, using the remaining 25% as a validation set for early
stopping. Zamberletti’s method leverages a pre-trained MLP trained on the Arte-
Lab Rotated dataset, that is not included in our dataset, thus preventing any
unfair comparison. Timing measurements are taken as the best of three runs to
minimize external factor interference.
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5.2 Single 1D Barcode Localization

First, we tested the available detection algorithms by considering just images
of a single class, linear barcodes, or 2D barcodes. This evaluation focuses on
images containing a single linear barcode, allowing us to test all the available
algorithms. The total number of images included in this test was 6 811. For
this test, we resized all images to have their longest side of 640 pixels. This
is the same size used to test the methods of Gallo [10] and Zamberletti [40]
in their original paper. This is also the default resolution for YOLO-v8 [15]
and other object detection networks. At this resolution, our dataset comprises
42 small objects (area < 322), 2 665 medium objects (322 < area < 962), and
4 104 large objects (area >962). Traditional methods often rely on some form of
texture detection for localization, where barcode texture depends on the number
of pixels per element (PPE). After resizing, the PPE ranges from 0.35 to 5.13,
with most barcodes in the dataset having a pixel density between 1 and 3 pixels
per element. Additionally, there are 1 044 barcodes without PPE information,
suggesting that the automatic labeler was unable to decode them.

Since not all methods generate a confidence score, we used precision, recall,
and F1-score as metrics for a fair comparison. In Table 3 we can see the results
of the different methods considering an IoU threshold of 0.5. Gallo and Soros’
algorithms produce a single prediction every time, so their precision, recall, and
F1 scores are always the same. However, considering a single IoU threshold could
not be enough for a fair comparison. A more complete evaluation is displayed in

Fig. 2. F1-score of detection algorithms at different thresholds. Employed images con-
tain a single 1D barcode and were resized to have the longest side equal to 640 pixels.
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Table 4. Precision, Recall and F1-score with IoU threshold of 0.5. All images contain
a single 2D barcode and were resized to have their longest side equal to 640 pixels.

Detection Method Precision ↑ Recall ↑ F1-score ↑
Soros et al. [30] 0.140 0.140 0.140

Zharkov et al. [41] 0.727 0.900 0.804

Faster R-CNN [28] 0.981 0.992 0.987

RetinaNet [21] 0.981 0.995 0.988

YOLO Nano [15] 0.962 0.989 0.975

YOLO Medium [15] 0.980 0.990 0.985

RT-DETR [23] 0.972 0.997 0.984

Fig. 2, with the F1-score curves at different values of TIoU . Apart from Zharkov et
al., all the other end-to-end neural networks always outperform the other meth-
ods. This was expected since these methods are more computationally intensive
and adept at complex detection problems. Among the tested classic algorithms,
Yun et al. is by far the one that performs better at every IoU threshold, making
it a valid choice when a neural network is too resource-heavy. The methods of
Gallo and Soros have similar performance, with a moderate edge in favor of the
second one at low TIoU . Zamberletti’s method is the weakest performer overall.
Zharkov et al. reaches a very high recall, much higher than what is achieved by
the classic algorithms, but scores lower in precision. All the other deep-learning-
based methods reach a near-perfect precision and recall for TIoU < 0.75. Despite
being the two biggest models, Faster R-CNN and RetinaNet underperform a bit
compared to other networks for TIoU > 0.75, meaning that the generated boxes
are less precise. Overall, T-DETR leads the leaderboard, albeit by a small mar-
gin. Interestingly, YOLO Nano, despite having nearly 10 times fewer parameters,
performs similarly to YOLO Medium and RT-DETR, suggesting that smaller
networks can excel in this detection task without sacrificing accuracy.

5.3 Single 2D Barcode Localization

In this test, we only include examples with a single two-dimensional barcode.
Soros’s method [30] is the only non-deep-learning-based method available that
also detects 2D barcodes. The employed dataset contains 1 164 images, resized
to a maximum edge length of 640 pixels. At this resolution, our dataset included
19 small objects (area < 322), 202 medium objects (322 < area < 962), and 943
large objects (area > 962). Alongside the object’s area, module density remains
crucial for determining the dataset’s difficulty. After resizing, the PPE ranges
from 0.48 to 9.98, with most codes being uniformly distributed in the range 1.5
to 7.0. Additionally, 90 barcodes lack PPE information. As for the linear barcode
case, we present the values of precision, recall, and F1-score of the tested methods
considering an IoU threshold of 0.5. The results are presented in Table 4.
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It is clear that the Soros et al. method, with an F1 score of 0.14, is not
a reliable 2D barcode detector. To better understand how the other methods
perform at different IoU thresholds, we present their F1 curves in Fig. 3.

Zharkov et al. achieves good results, especially in recall, but falls short of the
other deep learning architectures. At TIoU < 0.75, RetinaNet performs the best
in terms of F1-score, while YOLO Medium and RT-DETR have the highest score
for TIoU > 0.75. YOLO Nano has a similar performance to YOLO Medium, but
now the gap is a bit larger with respect to the 1D case.

Fig. 3. F1-score curves of 2D barcode detection algorithms at different values of IoU
threshold. Employed images contain a single 2D barcode and were resized to have their
longest side of 640 pixels.

Table 5. Number of objects per class and size category across the entire dataset, with
images resized at different resolutions.

Longest Side Resolution Type Small Objects Medium Objects Large Objects Total

640 px 1D 172 3 613 4 277 8 062

2D 85 611 1 060 1 756

Total 257 4 224 5 337 9 818

480 px 1D 478 4 789 2 795 8 062

2D 157 712 887 1 756

Total 635 5 501 3 682 9 818

320 px 1D 1 813 5 447 802 8 062

2D 421 574 761 1 756

Total 2 234 6 021 1 563 9 818
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Table 6. Average precision scores for the tested models across all images of the dataset
resized at different scales.

Longest Side
Resolution

Model 1D barcodes 2D barcodes Average

AP@0.5 ↑ AP@[.5:.95] ↑ AP@0.5 ↑ AP@[.5:.95] ↑ mAP@0.5 ↑ mAP@[.5:.95] ↑
640 px Zharkov et al. 0.905 0.536 0.741 0.468 0.823 0.502

YOLO Nano 0.986 0.902 0.960 0.910 0.973 0.906

YOLO Medium 0.988 0.909 0.976 0.930 0.982 0.920

RT-DETR 0.989 0.914 0.973 0.930 0.981 0.922

Faster R-CNN 0.982 0.857 0.967 0.866 0.974 0.862

RetinaNet 0.973 0.848 0.968 0.894 0.970 0.871

480 px Zharkov et al. 0.380 0.180 0.661 0.465 0.521 0.322

YOLO Nano 0.982 0.889 0.961 0.901 0.972 0.895

YOLO Medium 0.988 0.899 0.966 0.917 0.977 0.908

RT-DETR 0.987 0.900 0.968 0.919 0.977 0.910

Faster R-CNN 0.979 0.843 0.953 0.843 0.966 0.843

RetinaNet 0.963 0.830 0.948 0.866 0.955 0.848

320 px Zharkov et al. 0.530 0.254 0.571 0.382 0.551 0.318

YOLO Nano 0.976 0.860 0.947 0.872 0.961 0.866

YOLO Medium 0.975 0.853 0.946 0.862 0.960 0.857

RT-DETR 0.980 0.875 0.955 0.893 0.968 0.884

Faster R-CNN 0.929 0.764 0.928 0.787 0.928 0.775

RetinaNet 0.887 0.740 0.89 0.793 0.888 0.766

5.4 Multi-class Detection

We expand our analysis to the entirety of the dataset, encompassing both 1D
and 2D barcode classes. The task is now not only about detection, but also clas-
sification. The available methods for multi-class and multi-ROI detection are the
deep-learning-based models. As previously observed, deep-learning models sig-
nificantly outperform classical methods in this domain. However, implementing
them in industrial applications could be challenging due to the high computa-
tional costs. A potential solution is to detect barcodes at a lower resolution and
execute the decoding phase at full resolution. We thus decided to run our tests
at three different resolutions, to test the viability of this strategy. First, all the
images are resized to have their longest side equal to 640 pixels, then to 480 pixels
and 320 pixels. For each scale, we re-trained the models using a training set with
the same scale used for testing. In Table 5 we see the number of instances divided
by class and size. In total, 8 748 images are included, with 8 062 instances of 1D
barcodes and 1 756 instances of 2D barcodes. To evaluate model performance,
we calculated the Average Precision at an IoU threshold of 0.5 (AP@0.5) and
the Average Precision across IoU thresholds from 0.5 to 0.95 with a step size of
0.05 (AP@[.5:.95]) for each class. In addition, we considered the corresponding
mean Average Precision values (mAP@0.5 and mAP@[.5:.95]) for each model.
The results are presented in Table 6. Zharkov et al.’s model, while not as robust
as the others, achieves a respectable mAP@0.5 score of 0.823 at the 640 pixels
scale. However, its performance drops significantly at the other two scales. Other
models perform well at all tested resolutions. The performance drop from 640
pixels to 480 pixels is small for most models, while downscaling to 320 pixels has
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Table 7. Average time required for detection on PC and on Raspberry PI. All images
have been resized to have the longest side to 640 pixels. The ∞ symbol indicates that
there was not enough RAM to run the algorithm.

Detection Method

Times on PC (ms) Times on Raspberry PI (ms)

Single-Thread Multi-Thread
GPU ↓ Single-Thread Multi-Thread

CPU ↓ CPU ↓ CPU ↓ CPU ↓
Gallo et al. [10] 1.63 – – 53.45 –

Soros et al. [30] 11.25 – – 397.53 –

Zamberletti et al. [40] 48.20 – – 1 360.23 –

Yun et al. [38] 7.59 – – 146.31 –

Zharkov et al. [41] 25.85 5.97 1.45 2 120.43 1 949.08

YOLO Nano [15] 64.99 17.40 18.66 3 034.27 1 803.09

YOLO Medium [15] 478.92 51.36 23.91 20 083.87 15 813.46

RT-DETR [23] 985.41 141.06 37.55 39 882.45 33 224.15

Faster R-CNN [28] 1 271.93 237.91 30.27 ∞ ∞
RetinaNet [21] 1 124.11 105.20 36.00 ∞ ∞

a more noticeable impact. At the 640 pixels scale, Faster R-CNN and RetinaNet
achieve lower scores than other models, while YOLO Medium and RT-DETR
deliver the highest mAP@0.5 and mAP@[.5:.95], respectively. At the other two
scales, the scores of Faster R-CNN and RetinaNet decrease more than those of
YOLO and RT-DETR. RT-DETR is the best model across all metrics consid-
ered, with an increase in lead at the lowest resolution. Surprisingly, YOLO Nano
has better metrics across all categories compared to YOLO Medium at 320 pixels
resize, while this is not true for the other scales.

5.5 Time Measurement

In this section, we evaluate barcode detection algorithm inference times. This
analysis is essential for applications running on devices with limited resources.
For a comprehensive assessment, we benchmark the algorithms on two contrast-
ing platforms: a high-end PC and a Raspberry Pi 3B+. The algorithms we tested,
implemented in C++, were not specifically optimized for multi-threading, but
employ a few OpenCV functions capable of multi-threaded execution. To pro-
vide a clear understanding of their performance, we ran these methods on a
single CPU thread. For a balanced comparison, we also recorded the inference
times of deep-learning methods running on a single CPU thread. In addition, we
also report the times of deep-learning methods when running on GPU or CPU
with multi-threading enabled. All C++ implementations were compiled with -
O3 optimization for maximum performance. For this benchmark, we run all the
detection methods on all the images of the dataset. To reduce the impact of the
background processes, we repeat detections three times per image and take the
lowest time. The final time is the average for every image.
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Table 8. Average times required for detection on PC and on Raspberry PI, using a
single thread on the CPU, at different longest side resolutions. The ∞ symbol indicates
that there was not enough RAM to run the algorithm.

Detection Method

Times on PC (ms) Times on Raspberry PI (ms)

Time at Time at Time at Time at Time at Time at

640px ↓ 480px ↓ 320px ↓ 640px ↓ 480px ↓ 320px ↓
Gallo et al. [10] 1.63 0.92 0.41 53.45 32.04 14.31

Soros et al. [30] 11.25 6.26 2.78 397.53 205.51 92.02

Zamberletti et al. [40] 48.20 29.66 17.42 1 360.23 1 357.17 855.78

Yun et al. [38] 7.59 4.49 2.17 146.31 103.84 52.80

Zharkov et al. [41] 25.85 14.56 6.72 2 120.43 882.50 340.92

YOLO Nano [15] 64.99 40.20 20.82 3 034.27 2 108.00 1 050.38

YOLO Medium [15] 478.92 284.62 135.24 20 083.87 12 091.44 5 570.13

RT-DETR [23] 985.41 604.01 329.26 39 882.45 25 371.39 13 427.26

Faster R-CNN [28] 1 271.93 892.33 599.15 ∞ ∞ ∞
RetinaNet [21] 1 124.11 665.03 319.17 ∞ ∞ ∞

Time on PC. We measured times when running on a PC with a 24-core AMD
Ryzen Threadripper Pro 5965WX CPU, 128 GB of DDR4 RAM, and an RTX
4090 GPU. All the tests were conducted after scaling the images to have their
longest side of 640 pixels. In total, we have 8 748 images, with a mean resolution
of 0.284 Megapixels after resizing. Inference is conducted on a single image at a
time. Table 7 presents the times required to run detection methods on a single
CPU thread. For deep-learning methods, we also report multi-threaded perfor-
mance and GPU performance. Focusing on single-threaded performance on the
CPU, there’s a significant difference between the methods, with Gallo et al. being
the fastest (1.63 ms). This was expected since this is the oldest method, and its
main focus was to run on limited hardware. Yun et al. is the second fastest
method (7.59 ms), despite having a better detection accuracy than Soros and
Zamberletti’s algorithms. Zharkov et al. is the only deep-learning model that
could run in real-time on a single core with a recorded time of 25.85 ms. YOLO
Nano is also quite faster than the other deep-learning models with a mean execu-
tion time of 64.99 ms. YOLO Medium is much slower at 478.9 ms in single-thread.
As expected, RT-DETR is slower with a time of 985.4 ms, and both RetinaNet
and Faster R-CNN require even more time (1 124 ms and 1 272 ms respectively).
Using multiple threads, all neural networks become 5–10 times faster, except
YOLO Nano which becomes only 4 times faster with a time of 17.4 ms. On
GPU, the ranking remains the same, but bigger models receive a bigger boost
than smaller models. The fastest model is still Zharkov et al. at 1.45 ms while
the slowest one is RetinaNet at 36 ms. All barcode detection methods could be
used for real-time applications on a high-end PC. However, it is hard to find a
real-world application where this makes economic sense.
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We also recorded the single-thread performance when resizing the longest
side to 480 pixels and 320 pixels, as deep-learning-based detectors work well
even at lower resolutions. The results are shown in Table 8. At lower resolution,
the ranking remains the same, but shorter times are required. Indeed, time scales
more or less linearly with the amount of pixels.

Time on Embedded Device. Many barcode reading applications rely on
embedded CPUs, such as identification marking and retail automatic checkouts.
The use of embedded devices instead of PCs ensures a reduction in costs, latency,
and space requirements. To measure the performance on embedded devices we
run our benchmark on a Raspberry PI 3B+ (1.2 GHz quad-core ARMv8 CPU,
1 GB DDR2 RAM). Since the tested system is now much slower, we had to test
on a subset of 500 randomly selected images of the dataset, to make the test
run in a reasonable time. The mean area remained 0.284 Megapixels. Single-core
CPU tests were conducted for all detection algorithms, with deep-learning meth-
ods also tested using all four cores of the CPU. Results are presented in Table 7.
Compared to the PC results, execution times increased by 30–50×. Insufficient
RAM prevented Faster R-CNN and RetinaNet from running. No method cur-
rently achieves real-time performance, with Gallo’s method being close. The
comparison between the various methods in terms of timings remains unchanged.
Gallo’s method is the fastest (53.45 ms), followed by Yun’s (146.3 ms), Soros’
(397.5 ms), and Zamberletti’s (1 360 ms) algorithms. All the deep-learning meth-
ods are slower. Zharkov et al. is still the fastest network at 2 120 ms, followed by
YOLO Nano (3 034 ms). YOLO Medium and RT-DETR are incredibly slow, with
processing times of 20 084 ms and 39 882 ms respectively. Multi-core execution
yielded a modest speed-up of roughly 1.5×, potentially limited by unoptimized
libraries or system bottlenecks such as RAM. We also recorded the single-thread
performance when resizing the longest side to 480 pixels and 320 pixels. The
results are shown in Table 8. The ranking remains the same, apart from Zharkov
et al. surpassing Zamberletti et al. at 320 pixels scaling. At this resolution, the
time required by the smaller neural networks, Zharkov et al. and YOLO Nano,
becomes more reasonable (340.9 ms and 1 050 ms respectively), but still far from
the real-time applications target.

It is crucial to acknowledge that the speed of these methods could be sig-
nificantly enhanced through optimization. For instance, the C++ methods we
have tested could be optimized with SIMD intrinsics and multi-threaded code,
while the use of software toolkits for Edge AI or techniques like quantization and
pruning can be employed to boost the speed of neural networks with minimal
impact on accuracy. However, this goes beyond the scope of our paper.

6 Conclusion

The paper contributions include a comprehensive review of the field of bar-
code localization, the release of a large dataset of 8 748 images of barcodes with
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standardized annotations, and the public release of our benchmark. This bench-
mark includes multiple localization algorithms, scripts for training deep learn-
ing models, and diverse performance metrics. This ensures transparency and
enables researchers to easily replicate and expand upon our work. Finally, we per-
formed multiple tests with our benchmark, using our dataset and trained models,
from which we can draw some interesting conclusions. First, our tests confirmed
the significant accuracy advantage of deep learning methods over hand-crafted
approaches. However, the computational complexity of most deep learning mod-
els remains a challenge for real-time embedded applications, since even fairly
small models require more than one second per detection. Downscaling the image
before localization gives a huge speed-up, but does not solve the problem entirely.
Our findings suggest that small neural networks, such as YOLO Nano, perform
nearly as well as much bigger architectures like RT-DETR and RetinaNet. Our
tests also highlight the big advantage of using pre-trained general models, like
YOLO or RetinaNet, over custom-built models like Zharkov’s. Lastly, among
the methods tailored to barcodes, Yun et al. proposal offers an optimal blend of
accuracy and speed, surpassing Soros’ and Zamberletti’s methods in both met-
rics. The fastest method was Gallo et al., showing that decent accuracy could
be achieved even on very constrained devices.

As a closing remark, we hope this benchmark will be a valuable asset for
further research in this field. Its modular design facilitates the integration of
new algorithms, metrics, and data. We welcome feedback and contributions to
further enhance the proposed benchmark.
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Abstract. Text-line segmentation is still considered challenging for complex
background scene images. The success of text detection and recognition depends
on the success of the text segmentation. This study presents a new method for text
segmentation to facilitate reliable detection and recognition. Therefore, we intro-
duce a newmodel called PixelCorrelation andGaussianAttentionDrivenNetwork
(PCGAUNet) for text segmentation. To extract pixel correlation, we modified the
MultiResUnet architecture, which leverages pixel-wise correlation to effectively
highlight foreground pixels. In addition, the proposed model utilizes the prior
spatial statistics of bottleneck features to create a learnable Gaussian distribution,
which guides the decoder for accurate text segmentation. Experimental results on
three standard scene text segmentation datasets, ICDAR13 FST, Total Text, and
COCO-TS, show that the proposed model outperforms existing methods. Further-
more, the results for the underwater dataset UTS-55 show that our model is robust
and generic.

Keywords: Text segmentation · Attention mechanism · Pixel correlation ·
Gaussian distribution · Underwater scene text images

1 Introduction

In practical applications, such as autonomous vehicles navigating in various conditions,
challenging factors such as rainy weather and rapid movement of background elements
such as trees, other vehicles, and pedestrians, adversely impact the effectiveness of text
detection and recognition [1–7]. In addition, text detection and recognition may be nec-
essary in a variety of other extreme situations, such as underwater or aerial images. To
address this complex problem, rather than detecting and recognizing text outright, we
propose to first segment the text and then select and apply appropriate detection and
recognition methods, improving the detection and recognition performance irrespective
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of the above-mentioned challenges. This is because segmentation does not require text-
specific features, such as those specific to characters, words, and text. Segmentation
considers general textual features, such as the correlation between pixels and the distri-
bution of text, for separating text from non-text [8, 9]. This approach can be applied to
any type of text and background combination. In the case of text detection and recog-
nition, models focus on extracting the characteristics of characters, words, and lines
to detect text accurately. This approach may not work well in complex scenes; hence,
generalization is questionable for those models. Thus, to ensure that the detection and
recognition models work for any image without any constraints and assumptions, text
segmentation before detection and recognition becomes very important.

Recentmethodologies have sought to address these challenges by incorporating prior
knowledge of text to guide models in producing segmentation results that closely align
with text characteristics [8, 9]. Despite considerable progress made in text segmentation
methodologies, numerous existing strategies are plagued by the following shortcomings.
The effectiveness of segmentation relies solely on visual indicators from foreground
elements.However, these cues are highly susceptible to interference from the background
noise. It is evident from the illustration shown in Fig. 1, where it is noted that the existing
transformer-based model [10], which extracts inter- and intra-textual features at various
granularities by modeling global and local dependencies for text segmentation, fails to
output proper segmentation results compared to the Ground Truth (GT), especially for
underwater and low-contrast images. The key reason for these poor results is that the
model depends significantly on the augmented data and parameter settings. On the other
hand, the proposed model exhibited superior performance.

Fig. 1. Examples of scene and underwater images where TextFormer [10] fails to produce
satisfactory segmented text mask whereas the proposed model performs well.
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It is confirmed from the illustration in Fig. 1 that developing a generalized method
that can work for all possible real-world scenarios is challenging. Therefore, we intro-
duce PCGAUNet, a novel approach that leverages pixel-level correlation to accentuate
the foreground regions. The text then employs an attention mechanism that utilizes a
learnable Gaussian distribution derived from the spatial information of the bottleneck
features. It is important to note that the pixel correlation and Gaussian distribution are
global features that are capable of representing any type of text. Moreover, these features
are unique in their ability to represent text as opposed to non-text regions. The pro-
posed model successfully segments text by utilizing pixel-wise correlation to emphasize
foreground pixels and employing distribution-aided conditioned decoding to diminish
irrelevant noisy features.

The key contributions of the proposed study are as follows. (i) Modifying Multi-
ResUnet to extract pixel correlation features. (ii) Use of Gaussian distribution derived
from spatial statistics through an attention mechanism to accurately segment the text in
scene images. The remainder of this paper is organized as follows. The related semantic
and text segmentation methods are discussed in Sect. 2. The modified MultiResUnet
architecture, called PCGAUNet, and attentionmodules are presented in Sect. 3. Section 4
discusses the results of our own and the standard datasets to validate the proposed and
existing methods. Section 5 summarizes the findings of this work.

2 Related Works

Because of the methods of semantic segmentation text segmentation and relevant
approaches, we review the different methods in the same categories.

Semantic Segmentation: For instance, the method in [11] employs dilated convolu-
tions to expand the receptive field, whereas [12] integrates boundary information to
prevent individual pixels from being overshadowed by the global scene. In addition,
attention mechanisms and encoder-decoder structures have been effectively utilized in
semantic segmentation. Themethod in [13] combines the transformer architecture with a
lightweightmultilayer perception decoder to enhance the performance.However, despite
these advancements, integrating text characteristics into semantic segmentation remains
a daunting task. In summary, the primary objective of the methods is not text segmen-
tation; therefore, these methods are not suitable for text segmentation in scenes and
underwater images.

Text Segmentation: TexRNet [9] evaluated the readability of the segmentation results
using a single-word text recognizer as a discriminator. The approach in [14] integrated
text segmentation with text region detection for co-optimization, while ARM-Net [15]
proposed a module that highlighted text regions and provided higher-level semantic
information about the text. PGTSNet [16] introduced pluggable text detection and text-
line recognition modules to enhance text perception. Additionally, [17] pioneers text
instance segmentation based on attention mechanisms. PSPNet [18], which was origi-
nally designed for semantic segmentation, is a deep convolutional neural network that is
also used for text segmentation [19]. This network is built on the ResNetmodel for image
classification and uses a set of dilated convolutions to replace the standard convolutions
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in the ResNet part of the network to enlarge the receptive field of the neural network. To
deal with the specificity of scene text segmentation, [20] proposed a SegmentationMulti-
scale Attention Network composed of three main components: a ResNet encoder, a mul-
tiscale attention module, and a convolutional decoder. The encoder is based on PSPNet
[18] for semantic segmentation, which is a deep fully convolutional neural network that
repurposes ResNet, originally designed for image classification. [21] presents an object-
contextual representation approach for semantic segmentation in which the label of a
pixel is the label of the object in which the pixel lies. Pixel representation is strengthened
by characterizing each pixel using the corresponding object region representation.

Overall, despite the existence of models for text segmentation, the problem of text
segmentation remains an open challenge. This is because the scope of most methods is
limited to scene images, not poor-quality realistic images such as underwater images.
In other words, the existing methods are ineffective for multiple domains.

Fig. 2. The block diagram representation of PCGAUNet

3 Methodology

The proposed model, PCGAUNet, uses MultiResUNet [22] as its backbone for text
segmentation. The effectiveness of MultiResUNet has been proven in various domains
like biomedical imaging [23], remote sensing [24], biometrics [25], semantic scene
segmentation [26], etc. Within PCGAUNet, the MRBE and MRBD serve as Multi-
ResUNet Blocks, operating on the encoder and decoder sides, respectively. Introducing
a Correlation-aided Skip Connection (CSC) module enables the capture of pixel-wise
correlations between foreground and background pixels, creating a correlation space. As
information traverses from the encoder to the decoder via skip connections, it undergoes
a projection onto this correlation space before reaching the decoder module. Moreover,
the Gaussian Distribution Attention Module (GdAM) leverages spatial means and stan-
dard deviations across all channels of the bottleneck layer to generate a 2D Gaussian
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distribution. Features extracted from this distribution inform the trans-posed convolu-
tion layers (CT), generating attention maps. These maps, in turn, undergo element-wise
multiplication with decoder feature maps, effectively highlighting the relevant spatial
regions. An illustration of PCGAUNet is shown in Fig. 2.

3.1 Correlation-Aided Skip Connection

In text segmentation, discerning foreground (text) and background pixels is a critical
task. However, in natural scenes, the relationship between adjacent pixels, especially
between the text and background regions, can be intricate and subtle. The CSC module
addresses this challenge by capturing the inherent correlation patterns between fore-
ground and background pixels, thus enhancing the model’s ability to focus on relevant
regions. Consider an image containing text overlaid on various background elements.
Pixels corresponding to the text exhibit distinctive correlation patterns compared to
those representing the background. By analyzing these correlation patterns, the model
can effectively distinguish between text and non-text regions, leading to precise seg-
mentation outcomes. The detailed architecture for extracting pixel correlation is shown
in Fig. 3.

The CSC module employs a multi-step approach to exploit pixel correlations. It
begins by computing the mean feature map F’ across channels of the input feature F
as shown in Eq. (1). This operation effectively summarizes the spatial distribution of
features within the input image.

F′ = 1/C
∑C

c=1
Fc (1)

By performing element-wise multiplication between the F’ and its transpose, the
module constructs a correlation space Scorr as shown in Eq. (2). This space encapsu-
lates the interdependencies between adjacent pixels, highlighting regions where pixel
correlations are particularly strong.

Scorr = F ′ � F
′T (2)

Through the application of a convolutional layer, the module derives attention
weights that accentuate regions exhibiting high pixel correlations while suppressing
noise and irrelevant details. The obtained attention weights are then applied to mod-
ulate the original feature map. This process amplifies features in regions where pixel
correlations are significant, effectively directing the model’s focus toward salient text
regions (foreground pixels) while attenuating background noise. This is demonstrated
in Eq. (3) where f 1×1

sigmoid represents a separable convolution layer with a kernel size of 1
and a sigmoid activation function.

Fskip = F � f 1×1
sigmoid (Scorr) (3)

This attention-aided feature, Fskip, was then passed on to the MRBE for further
processing. By integrating correlation-based attention mechanisms, the CSC module
facilitates a nuanced understanding of image context, enabling the model to discern
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Fig. 3. Correlation-aided Skip Connection

text regions from complex backgrounds. This correlation-driven approach enables the
model to make informed segmentation decisions, leading to more accurate and robust
text segmentation outcomes. This reinforcement of the attention-aided skip features from
the encoder side helps the decoder generate better correlation-oriented feature maps. A
block diagram of the CSC module is shown in Fig. 3. The foreground pixel correlations
of the images shown in Fig. 1 can be observed in the heat maps, as shown in Fig. 4.

Fig. 4. Heatmaps showing the correlated regions highlighted by the CSC module for images
shown in Fig. 1.

3.2 Gaussian Distribution Attention Module

The Gaussian distribution Attention Module (GdAM) plays a pivotal role in enhancing
text segmentation by leveraging the bottleneck features to derive a 2D Gaussian dis-
tribution and extract an attention mask. Bottleneck feature (B) encapsulates high-level
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representations extracted from the input image, providing a comprehensive understand-
ing of its salient features.GdAMutilizes spatial statistical information across all channels
of the bottleneck feature to generate a two-dimensional (2D) Gaussian distribution. The
mean (μ) and standard deviation (ϭ) for the distribution, Ɲ (μ, ϭ), are calculated using
Eq. (4) and Eq. (5), respectively. The encapsulation of the statistical properties of the
bottleneck feature space enables the intricate encoded information of the input image to
be represented within the distribution.

µ = f 1×1(B) (4)

(5)

The GdAM employs transposed convolution layers to upsample B, enhancing spa-
tial resolution while preserving essential features. The upsampled features are B1, B2,
…Bn (n = 4 which can be observed in Fig. 2). Subsequently, the distribution function is
applied to each upsampled feature map, generating corresponding 2DGaussian distribu-
tions Ɲ (μn, ϭn) where μn and ϭn denote the spatial mean and standard deviation across
the channels of Bn. The attention masks derived from the Gaussian distributions serve as
guidance signals, highlighting relevant spatial regions within the decoder features. By
modulating the decoder features (Dn) with attention masks, the model focuses its seg-
mentation efforts on regions deemed significant based on the learned spatial coherence
and variability from the bottleneck features. This is shown in Eq. (6).

(6)

By integrating bottleneck features to derive 2D Gaussian distributions and extract
attention masks, the model gains a deeper understanding of spatial relationships within

Fig. 5. Heatmaps showing the focus of GdAM for images shown in Fig. 1.
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the input image, particularly in text-rich regions. By leveraging learned spatial charac-
teristics, the model can discern text regions amidst cluttered backgrounds, facilitating
more precise and reliable segmentation outcomes. Figure 5 demonstrates the heatmaps
of DGdAM corresponding to CT1–CT2.

After the incorporation of both the GdAM and CSC modules, the enhancement in
the feature extraction of the proposed model can be qualitatively assessed by visualizing
the heatmaps of the encoder and decoder layers. Heatmaps corresponding to the encoder
last layer (stated as Encoder last in Fig. 6). The bottleneck layer (stated as Bottleneck
in Fig. 6), and the decoder last layer (stated as the decoder last in Fig. 6) can be seen to
focus on the relevant text regions. As we traverse from the encoder to the decoder layers,
that is, delving deeper into the model’s architecture, notable enhancements and clarity
in relevant information extraction can be observed concurrently with the suppression
of unnecessary details. This progression underscores the effectiveness of the proposed
architecture, demonstrating the gradual refinement of information across the depths of
the model.

Fig. 6. Heatmaps of the encoder and decoder layers after using the GdAM and CSC module for
images shown in Fig. 1.

4 Experimental Results

To evaluate the proposed model in terms of usefulness, fairness, and effectiveness, we
consider four datasets, namely, the two standard datasets for scene text segmentation,
ICDAR13 FST [27], and Total-Text [28]. To demonstrate fairness, the underwater text
segmentation dataset has been used, UTS-55, which validates the effectiveness of the
proposed method in challenging situations. Furthermore, to validate the generalization
ability, the proposed method is tested on an additional dataset, COCO-TS [19], which
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consists of scene, printed, and handwritten text images. Therefore, the generalization
properties of the proposed method were validated by testing on datasets from above
mentioned different domains of the data.

4.1 Dataset and Evaluation

The details of the ICDAR13 FST [27], Total-Text [28], UTS-55, and COCO-TS [19]
datasets are listed in Table 1. Sample images for the respective datasets are shown in
Fig. 7, where each sample indicates different characteristics, complexity, and nature.
Hence, these four datasets represent four different domains. Therefore, these datasets
are used to evaluate the usefulness, fairness, effectiveness, and the generic nature
of the proposed method. We used standard metrics, which are defined as the Fore-
ground Intersection-Over-Union (fgIoU) and F-score on foreground pixels to measure
the performance of the methods.

Table 1. A summary of the number of images used for training and testing for the three datasets
and the additional COCO-TS dataset.

Dataset Training Testing

Scene Text-ICDAR13 FST [27] 229 233

Scene Text-Total-Text [28] 1254 300

Underwater Text-UTS-55 35 20

Scene + Printed + Handwritten-COCO-TS [19] 43686 10000

Implementation Details: We use 256 × 256 × 3 dimensioned images as our input.
We train the models using the Adam optimizer for 100 iterations, a learning rate of
0.00001, and a batch size of 4. We have used a linear combination of dice loss and BCE
loss for training the model. During training, we used a system with an Intel Core i7
processor, with 8 GB RAM and an NVIDIA P100 GPU. Python version 3.7.4 is used
for implementation.

4.2 Ablation Study

The main components of the proposed method to segment text in different domains are
the modified architecture of MultiResUnet as the baseline UNet for feature extraction,
Correlation-Aided Skip Connection (CSC) for defining pixel correlation, and Gaussian
distribution attention module (GdAM) for selecting features that represent text for text
segmentation. To validate the effectiveness of each key step, we conducted the following
experiments on the ICDAR13 FST [27] dataset: (i) This experiment used the baseline
architecture of MultiResUnet [22] to show that the baseline is not effective in solv-
ing complex segmentation. (ii) This experiment included the baseline architecture with
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Fig. 7. Sample images of three datasets, Total Text, ICDAR13FST, andUTS-55 and the additional
COCO-TS dataset.

GdAM to demonstrate the contribution of GdAM to text segmentation. (iii) This exper-
iment included the baseline + GdAM and CSC to validate the effectiveness of CSC
for text-line segmentation. (iv) This experiment includes the modified MultiResUnet +
GdAM + CSC, which is the proposed method. It is clear from Table 2 that the base-
line architecture is not sufficient to achieve the best result compared with the proposed
method. In the same way, the results of experiments (ii) and (iii) show that GdAM and
CSC contribute equally to achieving the best text segmentation. This is evident from the
results of the proposed method, which combines all the steps and achieves the best result
compared to the baseline and individual key steps.

Table 2. Ablation study to analyze the effect of GdAM and CSC module on the performance of
the model (in %)

# Configuration fgIoU F-score

(i) MultiResUnet 63.31 75.58

(ii) MultiResUnet + GdAM 74.34 86.60

(iii) MultiResUnet + GdAM + CSC 75.13 87.49

(iv) Modified MultiResUnet + GdAM + CSC (PCGAUnet) 75.29 87.57
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4.3 Comparison with the State-of-the-Art

A qualitative analysis of the PCGAUnet output is in Fig. 8 where the segmented output
mask is shown along with the original image and the ground truth. As shown in Fig. 8,
our proposed method correctly segmented text for all four datasets. This demonstrates
that the proposed method can address the challenges of text in multiple domains.

Quantitative results of the proposed and existing methods on the datasets of different
domains are presented in Table 3, where it is observed that for all four datasets, the
proposed model is superior to the existing models. In addition, it demonstrates superior
accuracy in segmenting unclear and densely packed text regions, leveraging its capabil-
ity to model intricate pixel-level relationships between foreground and background ele-
ments. Furthermore, our approach incorporates a learnable Gaussian distribution based
on spatial statistics derived from the richly encoded features in the bottleneck layer. This
adaptation enables the model to effectively focus on text regions within complex under-
water images, addressing challenges such as the poor quality and noise prevalent in such
environments. Therefore, we can infer that the proposed model is domain-independent.
The reason for the poor results of the existing methods is that they were limited to a
particular type and hence lack generalization ability.

Table 3. Comparison of PCGAUnet with the state-of-the-art segmentation models (in %)

Model ICDAR13 FST
[27]

Total Text [28] UTS-55 COCO-TS

fgIoU F-score fgIoU F-score fgIoU F-score fgIoU F-score

PSPNet [18, 19] – 79.71 – 74.00 – 68.00 – 74.0

SMANet [20] – 78.52 – 77.00 – 71.00 – 77.0

DeepLab V3+ [11] 69.27 80.20 74.44 82.42 70.82 78.26 72.07 64.1

HRNetV2-W48+OCR
[21]

72.45 83.00 76.23 83.28 76.01 79.50 69.54 62.7

TexRNet [9] 73.38 85.00 78.47 84.80 76.73 81.74 72.39 72.0

TextFormer [10] 72.27 83.80 81.56 88.70 77.15 83.38 73.20 74.5

Ours 75.29 87.57 86.54 90.23 81.51 88.23 73.42 74.5

To further demonstrate the robustness of the proposed model, cross-dataset experi-
mentation is shown in Table 4. Three setups were used, FST-TT (trained on ICDAR13
FST [27] and tested on Total Text [28]) and FST-UTS (trained on ICDAR13 FST [27]
and tested on UTS-55), TT-FST (trained on Total Text [28] and tested on ICDAR13 FST
[27]) and TT-UTS (trained on Total Text [28] and tested on UTS-55), and UTS-FST
(trained on UTS-55 and tested on ICDAR13 FST [27]) and UTS-TT (trained on UTS-55
and tested on Total Text [28]). It can be seen that the proposed model performs better
than other models. This demonstrates the robustness of the model and the effectiveness
of the learnable sampled attention weights from the distribution in GdAM along with
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(a) ICDAR13 FST (b) Total-Text 

(c) UTS-55                                                   (d) COCO-TS

Fig. 8. Predicted mask of PCGAUNet for the images shown in Fig. 7.

the spatial focus of the CSCmodule. It is important to note that in conducting the experi-
ments presented in Tables 4 and 5, we utilized only three datasets and did not incorporate
the COCO-TS dataset. This is because we separately benchmark the proposed model on
a larger, more diverse text segmentation dataset to demonstrate its performance under
conditions of both data scarcity and data availability.

Table 4. Cross-dataset validation of the proposed and existing methods with one to one set up
evaluation (in %)

Model FST-TT FST-UTS TT-FST TT-UTS UTS-FST UTS-TT

fgIoU F-score fgIoU F-score fgIoU F-score fgIoU F-score fgIoU F-score fgIoU F-score

TexRNet
[9]

68.46 71.50 63.52 59.85 68.47 70.75 60.69 62.98 60.73 57.74 60.57 63.19

TextFormer
[10]

70.43 76.30 64.47 63.80 72.18 70.35 61.56 60.10 63.27 59.92 61.15 63.55

Ours 77.67 74.69 68.59 67.23 75.02 72.51 63.70 65.35 65.69 61.78 66.96 64.11
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To further test the robustness of the models, we used a two-one setup where the
three datasets mentioned above are used for evaluation. The symbolic representation is
XX-YY-ZZ where XX dataset is used for training, YY dataset is used for validation, and
ZZ dataset is used for testing. Table 5 demonstrates the results of this setup where the
proposed model showcases better results in most of the cases than the state-of-the-art.

Table 5. Cross-dataset validation of the proposed and existing methods with two-one set-up
evaluations (in %)

Model FST-TT-UTS FST-UTS-TT TT-FST-UTS TT-UTS-FST UTS-FST-TT UTS-TT-FST

fgIoU F-score fgIoU F-score fgIoU F-score fgIoU F-score fgIoU F-score fgIoU F-score

TexRNet
[9]

65.41 67.22 59.86 57.43 64.51 66.25 58.29 57.90 58.55 52.34 55.91 57.25

TextFormer
[10]

65.43 66.50 60.13 59.11 66.35 67.81 58.15 57.46 62.41 51.72 55.85 57.55

Proposed 67.31 64.89 62.39 60.77 65.13 67.91 59.03 58.68 62.35 54.82 54.89 59.85

To test the efficiency of the proposedmethod, we estimated the number of parameters
and GFLOP involved in the text segmentation process. Table 6 presents a computational
comparison between the proposed model and state-of-the-art methods. The number of
trainable parameters in a deep learning model refers to the total number of parameters
(weights and biases) that can be adjusted during the training process. These parameters
are updated through the backpropagation algorithm based on the loss function to mini-
mize the error in predictions. GFLOPs are a measure of the computational complexity
of a deep learning model. It represents the number of billion (giga) floating-point oper-
ations the model performs during inference (forward pass). This metric helps to under-
stand the computational resources needed to run the model. The proposed model outper-
forms the state-of-the-artmethods in bothmetrics, demonstrating superior computational
efficiency.

Table 6. Computational comparison of the proposed and existing methods

Models No. of Parameters GFLOPs

PSPNet [18, 19] 46.6 M 357.17

DeepLab V3+ [11] 59.5 M 178.72

HRNetV2-W48 + OCR [21] 65.8 M 174.043

TexRNet [9] 67.2 M –

Proposed 28.9 M 113.95
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4.4 Error Cases

Although PCGAUnet exhibits superior performance compared to state-of-the-art mod-
els, there are still areas for improvement. Figure 9 illustrates the specific images that
result in an erroneous segmentation output. These images present challenges such as
light reflection, hazy foreground, and intricate background-to-foreground relationships,
making it challenging for the model to accurately focus on text regions and generate
precisely segmented masks. The distortions and missed pixels evident in the segmented
outputs underscore the extreme difficulties posed by scenes and underwater images.
Addressing these challenges necessitates advancements in handling complex lighting
conditions, mitigating hazy foregrounds, and improving the ability of the model to dis-
cern text regions amidst intricate backgrounds. However, this is beyond the scope of the
proposed study. However, instead of the spatial domain, if we consider the frequency
and polar domains and explore language models to integrate the features extracted from
multiple domains, the above challenges can be addressed, which will be our future work.

Fig. 9. Error cases of PCGAUnet.

5 Conclusions and Future Works

In this paper, we introduced a novel model called PCGAUnet for text segmentation
by leveraging a modified MultiResUnet as the backbone architecture, correlation-aided
skip connections (CSC), and a Gaussian Distribution Attention Module (GdAM). The
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CSC module harnesses pixel-wise correlations to provide essential attention to relevant
spatial regions, whereas the GdAM module uses spatial statistics derived from highly
enriched bottleneck features. These modules collectively contributed to enhancing the
performance of themodel. The experiments on four different datasets, namely, ICDAR13
FST, which is a standard dataset for scene text segmentation, Total-Text, which is a stan-
dard dataset for scene text detection and segmentation, UTS-55, which is an underwater
scene text dataset and COCO-TS, which is a general a large scale dataset including
scene, printed and handwritten text images, show that the proposed method is domain-
independent and generalizable. In addition, the lower number of GFLOPs and trainable
parameters required show that the proposed method is more efficient for text segmenta-
tion than existing methods. Overall, the performance of the proposed method is superior
to that of existing methods for all four datasets in terms of robustness, generalization,
and efficiency. However, for certain images that suffer from severe degradation, blur,
and poor contrast, the proposed method does not perform as well, as discussed in the
Experimental section. To solve this problem, we plan to explore a language model that
integrates features extracted from multiple domains.
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Abstract. Recognizing text extracted frommultiple domains is complex and chal-
lenging because complexities vary from one domain to another. Most existing
methods focus either on natural scene text or specific text type but not text of
multiple domains, namely, scene, underwater, and drone texts. In addition, the
state-of-the-art models ignore the vital cues that exist in multiple instances of
the text. This paper presents a new method called the Student-Teacher-Assistant
(STA) network, which involves dual CLIP models to exploit cues in multiple text
instances. The model that uses ResNet50 in its image encoder is called helper
CLIP, while the model that uses ViT in its image encoder is called primary CLIP.
The proposed work processes both models simultaneously to extract visual and
textual features through image and text encoders. Our work uses cosine similar-
ity for the randomly chosen input image to detect instances similar to the input
image. The input and similar instances are supplied to primary and helper CLIPs
for visual and textual feature extraction. The outputs of dual CLIPs are fused in a
different way through the alignment step for recognizing text accurately, irrespec-
tive of domains. To demonstrate the proposed model’s significance, experiments
are conducted on a set of standard natural scene text datasets (regular and irregu-
lar), underwater images, and drone images. The results on three different domains
show that the proposedmodel outperforms the state-of-the-art recognitionmodels.
The datasets and code for public use in training and testing shall be made available
on GitHub.

Keywords: Visual encoder · textual encoder · CLIP · Knowledge Distillation ·
Domain Agnostic · Text recognition

1 Introduction

When we consider traditional applications such as image retrieval, understanding, label-
ing, and machine translation, the methods developed in the past work well by addressing
the challenges of arbitrarily oriented and arbitrarily sized text. However, when we con-
sider real-world applications, such as self-driving vehicles, surveillance and monitoring,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15317, pp. 220–235, 2025.
https://doi.org/10.1007/978-3-031-78447-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78447-7_15&domain=pdf
https://doi.org/10.1007/978-3-031-78447-7_15


DATR: Domain Agnostic Text Recognizer 221

namely, theft vehicle tracking and tracking scuba divers under the ocean, the existing
models may not be effective (Mokayed et al., 2022). This is because the challenges of
above-such images are different compared to natural scene text images. As mentioned,
the scene text images pose arbitrary orientations and shaped text. In contrast, underwater
images pose poor quality, low contrast, and drone images pose low quality, distortions
of tiny text, and loss of text due to occlusion. Furthermore, in the case of drone images,
this work considers only license plate numbers (Mokayed et al., 2022; Alkhaled et al.,
2023). Indeed, the license plate number does not provide semantic information unlike
scene text. Therefore, proposing a model for addressing those challenges is an elusive
goal for the researchers. In addition, developing a single domain-independent model
makes the problem more complex and challenging.

The sample images of the scene, drone, and underwater images are shown in Fig. 1,
where the state-of-the-art models fail to recognize the text in drone and underwater
images, while the same models perform well for the text in the scene images. The
reason for the poor results by the existing method is that lack of generalization ability
and limited scope. On the other hand, the proposed method performs well for images
of three different domains. Therefore, one can infer that although the existing models
explore the deep learning approaches, the existing methods are not effective for drone
and underwater images. In the same way, the proposed new Student-Teacher-Assistant
(STA) is effective and domain-independent.

“provincial” “provincial” “provincial”

Scene text images

“wb351r” “wb351r”   “wb351r”

Drone images

“pineappu(le)” “pineapplu” “pineapple”

Underwater images

Yang, M et al. (2024a)                    Wang Z et al. (2023)                         Proposed  

Fig. 1. Performance of the proposed method and the state-of-the-art models for scene, drone and
underwater images. Characters in green represent the correct predictions, whereas characters in
red represent the incorrect predictions, bluerepresents missing predictions.

Thus, in this work, inspired by the ability of the CLIP (Radford, A. et al. 2021)
model that integrates visual and textual information to extract the fine-tuned features,
we propose dual CLIPs for encoding visual and textual features to solve the complex
problem of recognition in images of multiple domains. In addition, the proposed work
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uses vital information in multiple instances of similar text images. One can find multiple
instances of the exact text in the images. This was ignored by the existing models for
recognition. Therefore, the proposed work introduces dual CLIPs, one for a primary
set, which is input images, and one more for the helper set, which is similar instances
of the input image. The way the proposed work designs visual and textual encoders
and decoders of the dual CLIPS extract robust and invariant features to achieve the
best recognition rate for text of multiple domains. Therefore, the following are the key
contributions of the proposed work.

• Introducing a novel student-teacher assistant pipeline network that utilizes primary
and helper modules to recognize text with improved confidence scores and accuracy.

• Proposing a new fusion network for integrating merits of visual and textual encoder
and decoders of dual CLIPs.

The structure of the paper is organized as follows. The existing methods of scene
text recognition are reviewed in Sect. 2. Section 3 presents the proposed framework,
including our student-teacher-assistant network. Experimental results are discussed in
Sect. 4, and finally, the conclusion and future work are provided in Sect. 5.

2 Related Works

In recent years, we have seen significant progress in scene text recognition. The existing
methods addressed several challenges of scene text recognition. However, the scope and
objectives of the existing models are limited to a single domain.

Cheng et al. (2023) introduced LISTER, a Length-Insensitive Scene Text Recog-
nizer, which employs a Neighbor Decoder and a Feature Enhancement Module to rec-
ognize text regardless of its length accurately. This approach demonstrates superiority
in recognizing long text and exhibits length extrapolation capabilities. Yan et al. (2023)
proposed an adaptive n-gram transformer for multi-scale scene text recognition (ANT-
STR).ANT-STRutilizes an adaptive n-gram embedding to explore semantic correlations
between neighboring visual patches and a patch-based n-gram attention mechanism to
process feature maps for multi-scale texts. To integrate the advantages of both permuted
language modeling (PLM) and masked language modeling (MLM), Yang et al. (2024b)
proposed a masked and permuted implicit context learning network for scene text recog-
nition. The model achieves superior performance on popular benchmarks by unifying
PLM and MLM within a single decoder and employing perturbation training. Zhang
et al. (2023) introduced DPF-S2S, a dual-pathway-fusion-based sequence-to-sequence
learning model for text recognition in the wild. DPF-S2S focuses on enriching spatial
information and extracting high-dimensional representation features to assist decoding.
X. -Y. Ding et al. (2023) introduced a text recognition model tackling unsupervised
domain adaptation. It uses dual adaptation on global (text layout) and local (character)
features. Adaptive Feature Clustering enhances local adaptation by leveraging source
domain knowledge, improving recognition of fine-grained characters across domains.

Wang Z et al. (2023) introduced a Symmetrical Linguistic Feature Distillation strat-
egy that uniquely leverages both visual and linguistic features of CLIP for Scene Text
Recognition (STR). It establishes a novel image-to-text feature flow, enhancing STR
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accuracy through progressive, layer-by-layer optimization and a new Linguistic Con-
sistency Loss. Nguyen et al. (2024) proposed Diffusion in the Dark (DiD), a diffusion
model for low-light image reconstruction for text recognition. DiD provides competitive
reconstructions while preserving high-frequency details in boisterous and dark condi-
tions. Jiang et al. (2023) revisited scene text recognition from a data-oriented perspective
by consolidating a large-scale real scene text recognition dataset calledUnion14M.Aber-
dam et al. (2023) developed CLIPTER, a framework that harnesses the representative
capabilities of modern vision-language models to provide scene-level information to
crop-based recognizers. Banerjee et al. (2024) proposed E2EMVSTR, combining cycle
consistency, Siamese networks, and semi-supervised attention for scene text recogni-
tion. It employs NLP and genetic algorithms for error correction and restoring missing
characters, enhancing recognition accuracy from multiple views. Yang et al. (2024c)
explored adversarial training’s impact on STRmodels, proposing a regularization-based
method enhancing robustness and accuracy, especially in low-resolution images. Yang
et al. (2024a) developed a Class-Aware Mask-guided refinement (CAM) for scene text
recognition, using standard font-generated glyph masks to reduce background and style
noise, enhancing feature distinction. They also designed an alignment and fusionmodule
with mask guidance for further refinement.

In summary, the above-review shows that although themodels successfully addressed
several challenges, such as diverse text lengths, multi-scale texts, low-light conditions,
the method’s scope is limited to natural scene text images or single domain. Therefore, it
is not sure whether the methods work well for the text of multiple domains, such as text
of underwater and drone images. Hence, our work aims at developing a novel method
based on CLIPS for recognizing text of multiple domains.

3 Proposed Methodology

As discussed in the previous section, we propose a model for recognizing text in scenes
and underwater and drone images, which we consider as three domains. Each domain
exhibits different characteristics and complexities. In addition to the challenges of scene
text recognition, text in underwater images needs better visibility, quality, contrast, and
low resolution. In contrast, drone images suffer from loss of text, lack of semantic
information, and tiny text. Since afore-mentioned three types of images exhibit different
nature, characteristics and complexities, text recognition in three types of images is
considered as text recognition inmultiple domains. Therefore, developing a singlemodel
that can work well for three domains is complex and challenging. To address such a
complex problem, motivated by the performance of the CLIPmodel that fuses visual and
textual features for text recognition, we explore the same CLIP models for recognizing
text of multiple domains in a novel way. Unlike existing models, the proposed method
exploits the intuition of the presence ofmultiple instances of the same text or similar text.
This observation motivated us to introduce dual CLIPs, one for extracting features from
the input image (primary) chosen randomly and one more for the feature extraction from
the helper image. To implement such an idea, we use the ResNet50 and ViT in CLIP
encoders and define them as primary and helper CLIPS, respectively. The two CLIPs are
processed simultaneously to extract features from input and helper text images. Further,
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the proposed work fuses the features extracted from primary and helper CLIPs for
recognizing text in the images ofmultiple domains, named theStudent-Teacher-Assistant
(STA) network. The framework of the proposed model is presented in Fig. 2.

In Fig. 2, we use CLIP (Contrastive Language–Image Pre-training) as the image
and text encoders inside the Teacher-Assistant pipeline to generate visual and linguistic
guidance. It uses the strengths of two CLIP models, giving an efficient dual-modality
learning approach. It consists of a Vision Transformer (ViT) based recognition encoder
and a decoder in the student pipeline. Its inclusion of CLIP encoders demonstrates more
significant interrelatedness between visual and textural data, improving model accuracy
in complex recognition tasks.

Fig. 2. Framework of the proposed model

3.1 Teacher-Assistant Pipeline

The Teacher-Assistant pipeline features extraction comprises two CLIP models; one
uses the ResNet50, and another uses ViT for image and text encoders, with a patch
size of 16. Therefore, the proposed work defines the CLIP model with the ResNet50
architecture as helper CLIP and the ViT architecture as primary CLIP. During training,
it processes two different images simultaneously using two CLIPs. The helper images
and their labels pass through the helper CLIP’s image and text encoder, respectively.
Similarly, the primary image and its label pass through the primary CLIP’s image and
text encoders. In this way, the proposed dual-pathway approach effectively encodes
visual and textual data, which integrates the strengths of two different modalities.

The selection process for the helper and primary batches of images and labels in our
Student-Teacher-Assistant(STA) network pipeline is designed to optimize learning effi-
ciency, diverging from random categorization. The primary batch of images and labels
are chosen at random. Subsequently, to select the helper batch, we use cosine similarity
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measures to identify images resembling those in the primary batch, ensuring thematic
or contextual alignment between the pairs. This strategic selection process ensures that
both the helper and primary batches are not only relevant but also complementary to
each other. Once selected, the helper batch of images and their corresponding labels are
processed through the helper CLIP model and, similarly, the primary batch through the
primary CLIP model, as previously described. This pairing and processing mechanism
significantly enhances the model’s ability to learn from nuanced similarities and differ-
ences between the images, fostering a more robust and accurate recognition capability
that leverages the full potential of contrastive learning through visual and textual data
alignment across multiple domains.

To effectively combine features from two different CLIP models without altering
their shapes for use in a recognition pipeline, a Hybrid Feature Fusion (HFF) layer
is used. The HFF layer integrates helper information into the main feature pathway
without changing the feature shape. For each pair of feature vectors Fprimary and Fhelper ,
a linear transformation is applied to Fhelper to align its dimensionality with Fprimary.
A concatenation of the features is done after the transformation to get all the possible
features from the CLIPs, which is named the final concatenated feature vector as Fcmb.

3.2 Student Pipeline

The student pipeline approach consists of the recognition encoder and decoder, which
are used to save the predictions and the recognition feature list. It is noted that the
traditional distillation techniques presume that the input and output formats of the teacher
and student models must be identical to perform consistent supervision. However, the
proposed dual CLIP models, which comprise only two encoders and lack a decoder, face
structural mismatches when distilling knowledge into encoder-decoder models. Since
CLIP employs word-level tokenization, which does not guide the character level, we
divide the word-level labels into character-level lists for tokenization.

(a)

(b)

Fig. 3. Structures of adaptive and global alignment modules. (a) represents the adaptive align
module and (b) represents the global alignment module

This approach enables us to capture more detailed feature sequences crucial for
effective feature distillation. This way, the proposed work matched features from the
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Teacher-Assistant pipeline and the Student pipeline to the Adaptive Alignment Modules
(AAMs) and Global Alignment Modules (GAMs) (Wang Z et al., 2023). Next, we
calculate the loss of the overall architecture,whichwill be discussed inSect. 3.3.Aligning
the student model directly with the teacher-assistant model may hinder generalization
ability. To overcome this problem, we propose Symmetrical Distillation Strategy (Wang
et al., 2023), as shown in Fig. 3.

Let’s assume the recognition feature to be Frec with the shape of (Nrec,Drec) and
the feature from the teacher-assistant pipeline be Fcmb with the shape of(Ncmb,Dcmb).
The AAM first uses an adaptive trainable projection matrix M ∈ (Ncmb,Nrec) and one
linear layer W1 ∈ (Drec,Dcmb) followed by a ReLU activation layer to project Frec to
Fcmb’s feature space and adjust their shapes to be the same. Then a normalization layer
is added to undo the effect of magnitude in computation of the consistency loss (Fig. 4).

Fig. 4. Overall architecture of the proposed model. Here Lrec represents the regular recognition
loss, LA represents the adaptive alignment loss and LG represents the global alignment loss.
AAM is the adaptive alignment module and GAM is the global alignment module. The pretrained
assistant CLIP uses ResNet50 in the image encoder and the pretrained teacher CLIP uses ViT in
the image encoder. χ is the weight associated with the CLIP embeddings where all the CLIPs and
recognition components are divided into four stages.
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The formulation of the distillation loss LA for AAM is defined in Eq. (1).

LA(Frec,Fcmb) = L1(norm(ReLU (M × Frec × W1)), norm(Fcmb)) (1)

Here, L1 is a predefined consistency L1 loss, norm denotes the normalization layer
and × represents matrix multiplication. The GAM is formulated to support the notion
of gradually aligning the class token’s guidance of the CLIP image encoder towards
the text encoder through joint alignment characteristics. Unlike the AAM, GAM uses
another linear layer W2 ∈ (Drec,Dcmb) for projecting the feature space. As defined in
Eq. (2), GAM uses a similar approach like AAM but only uses the class token for global
projection.

LG(Frec,Fcmb) = L1
(
norm

(
ReLU

(
Frec

cls × W1

)
× W2

)
, norm

(
Fcmb

cls
))

(2)

In the above equation, Frec
cls and Fcmb

cls represents the class tokens from the
recognition model and the teacher-assistant pipeline.

The overall distillation loss LD after applying AAM and GAM on the image-to-text
flow can be formulated as follows.
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Here, Frec
E , Frec

D are the recognition encoder and decoder’s features, Fcmb
I , Fcmb

T are
the combined image and text features from the teacher-assistance pipeline. i is the stage
index and n is the number of stages in encoder and decoder which in our case is 4.

3.3 Similarity Based Weighted Linguistic Consistency Loss

Motivated byWangZ et al. (2023), the proposedwork derives the Linguistic Consistency
Loss by incorporating aweighted lossmeasurement system. This novel system considers
the similarity between the helper and primary CLIP embeddings and quantifies this
relationship using a sophisticatedweightingmechanism.Specifically, the similarity score
between the CLIP embeddings, derived from the teacher-assistant network, is computed
utilizing cosine similarity, a measure reflecting the degree to which the embeddings align
in the vector space as formulated as defined in Eq. (4).

SC(PCE,HCE) = PCE · HCE

‖PCE‖‖HCE‖ (4)

where SC is the cosine similarity ranging from 0 to 1. PCE and HCE are the embeddings
of the primary and secondary CLIP respectively. Subsequently, the sigmoid function
determines the weighing of these similarity scores by applying a nuanced approach to
evaluating linguistic consistency as defined in Eq. (5).

χ = σ(SC) (5)
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where χ is the weight of the similarity between the primary and secondary clip
embeddings. The weight is calculated by taking the sigmoid, σ of the cosine similarity
between the embeddings. This methodology not only enhances the precision of loss
calculation but also significantly contributes to the robustness and efficacy of the model
by ensuring a more granular and context-sensitive assessment of linguistic features. The
consistency of the first order statistics is considered by general distillation losses such
as L1 loss. For our task we use L1 loss as defined in Eq. (6).

LL1(Frec,Fcmb) = 1

ND
‖Frec − Fcmb‖ (6)

where Frec,Fcmb ∈ (N ,D) are the feature sequences of the student and teacher-assistant
pipeline from AAM and GAM alignment modules. To enhance the linguistic knowl-
edge learning efficiency from AAM and GAM, we use the Linguistic Consistency Loss
introduced byWang et al. (2023). There, we combine two kinds of intra and inter losses,
which are nothing but contrastive learning loss and the cross-attention map between the
recognition and CLIP features. We combine these losses to formulate the final LCL as
defined in Eq. (7).

LLCL(Frec,Fcmb) = λ1Lintra(Frec,Fcmb) + λ2Linter(Frec,Fcmb) (7)

Here, λ1 and λ2 are hyperparameters determined experimentally to fit best with the
LCL. Then the linguistic consistency loss is applied to Eq. (1) and Eq. (2). Finally, the
total loss is formulated as defined in Eq. (8).

L = Lrec + (LDχ) (8)

where L is the total loss, Lrec is the regular character level cross-entropy recognition
loss, LD is the distillation loss and χ is the weight of the similarity between the primary
and secondary clip embeddings.

4 Experimental Results

Sincewe aim to evaluate the proposedmodel for recognizing text inmultiple domains,we
combine the standard regular and irregular datasets of scene text recognition as the scene
domain, our underwear image dataset, and drone images as two more domains, respec-
tively. Therefore, we conducted experiments on each domain to test the performance of
the proposed method, which will be discussed in subsequent sub-sections.

4.1 Dataset and Evaluation

Natural Scene Domain. This includes benchmark datasets of IIIT5k, SVT, SVTP,
IC13, and IC15. IIIT5k offers 3000 web images, highlighting font, size, and background
complexity. SVT, derived from Google Street View, includes 647 images marked by
occlusion and low resolution. SVTP, with 645 images, emphasizes perspective distor-
tions in text. IC13 provides 1015 images featuring varied text orientations and scales,
while IC15, with 1811 images, focuses on incidental text affected by motion blur and
uneven lighting. Collectively, these datasets test the robustness and adaptiveness of text
recognition models in natural scenes.
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Underwater Domain. The underwater image domain consists of 488 images for train-
ing and 141 images for testing, which we created. This domain poses unique challenges,
such as turbidity, absorption, and scattering, which degrade image clarity. Successful
recognition requires techniques that can handle reduced visibility, distortion, and small
text size, making underwater environments crucial for developing robust text recognition
algorithms suited to harsh conditions.

Drone Domain. This domain includes our own dataset, which provides 991 cropped
license plate number images captured from aerial drone views for training and 278 for
testing. Challenges include crowded or multiple license plates, distortions, and varied
angles due to drone altitude changes. Addressing these is crucial for enhancing text
recognition algorithms in aerial imaging, where text distortion and occlusion demand
sophisticated techniques for accurate and reliable recognition.

Implementation Details: Our model is trained with real text-recognition instances
from ArT (2019), COCOv2 (2018), LSVT (2019), MLT (2019), RCTW (2017), ReCTS
(2019) and UberText (2017) datasets. We trained it on the NVIDIA RTX 4060 GPU
system with 36-charset configuration and batch size of 160 with 9e-4 learning rate. The
model is further tested for multiple domains, with the natural scene domain consisting
of 6 benchmark datasets, three regulars (IIIT5k, SVT, IC13), and three irregular (IC15,
SVTP, CUTE80) datasets. Then, the model is finetuned and tested with the instances
of Drone and Underwater domain. For evaluating, we use standard measures, namely,
recognition accuracy. For all the existing methods used for comparative study, the same
evaluation scheme and process have been used.

4.2 Ablation Study

In this work, we propose a novel Student-Teacher-Assistant (STA) network where the
features from the assistant pipeline help the teacher to pass down similar, related, and
meaningful features to the student to learn more efficiently. For this process, we con-
ducted experiments on our model with multiple components, each from the teacher and
assistant pipeline. We trained our model by using/freezing the primary and helper CLIP
embeddings and concatenated text and image features of the Teacher-Assistant pipeline.
The recognition accuracy is calculated for only Primary CLIP embeddings, only Helper
CLIP embeddings, Primary CLIP embeddings with Image and Textual features, and
Helper CLIP embeddings with image and textual features. Furthermore, the recognition
accuracy is calculated for combining all the components, which is the proposed model.
Results for all the experiments on three domains are presented in Table 1, detailing the
model’s performance across different configurations and emphasizing the benefits of
using concatenated image/text features.

It is observed from Table 1 that when the Primary CLIP embeddings combine with
textual features, the results are improved compared to the Primary CLIP embeddings
with image features. The same conclusion can be drawn from the combination of Helper
CLIP embeddingswith image and textual features. Therefore, one can conclude that input
images and their instances provide vital clues for improving the recognition performance
of the method. In the same way, the combination of image and textual features helps us
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to achieve stable results irrespective of domain. At the same time, Table 1 shows that
each component contributes equally and effectively achieves the best performance in the
three domains. This approach provides insightful revelations into the contributions of
individual and combined feature sets, illustrating the STA network’s capacity to enhance
learning through the strategic integration of multimodal information. It is also noted
from Table 1 that the recognition accuracy of individual components is not greater than
the proposed model. This indicates that individual components cannot cope with the
challenges of recognition in multiple domains.

Table 1. Comparison table of the model trained with different active components of the proposed
model. PCE refers to the primary CLIP embeddings, HCE refers to the helper CLIP embeddings.
IF and TF are both the CLIP’s combined image and text features. Bold text represents the result
with best model configuration.

Model components Accuracy (domain)

PCE HCE IF TF Natural Scene Drone Underwater

✔ - ✔ - 92.94 96.03 65.99

✔ - - ✔ 92.21 95.41 66.73

✔ - ✔ ✔ 93.20 97.66 69.64

✔ ✔ - - 89.82 93.68 61.40

- ✔ - ✔ 93.28 98.28 65.25

- ✔ ✔ - 92.11 97.48 68.09

✔ ✔ ✔ ✔ 93.34 98.92 70.21

As discussed in the proposedmethodology section,Weighted Linguistic Consistency
Loss (WLCL) is one more critical step in coping with the challenges of text recognition
in multiple domains. To assess the effectiveness of the proposed WLCL, we conducted
experiments on all the domainswithweighted loss andwithoutweighted loss, as reported
in Table 2. The difference in accuracy demonstrates that the similarity weight between
the CLIP embeddings affects the model’s learning, resulting in improved recognition
accuracy. We trained and tested the model on all the domains to validate the proposed
loss function’s efficiency.

Table 2. Assessing the effectiveness of linguistic consistency loss (LCL) and weighted LCL for
text recognition in different domains in terms of Accuracy.

Models Loss Natural Scene Drone Underwater

DATR (Our method) LCL 92.07 96.40 68.79

DATR (Our method) Weighted LCL 93.34 98.92 70.21
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4.3 Experiments on Domains

Qualitative results of the proposed method on samples of three different domains are
shown in Fig. 5, where it can be seen that the text in underwater and drone images is of
poor quality compared to the text in scene images. For all images of different domains,
the proposed model recognizes text accurately. This shows that the proposed model is
domain-agnostic and generic, which can handle the challenges of text recognition of
multiple domains.

The above statement can be verified through quantitative results of the proposed
and existing methods recorded in Table 3 for the datasets of three domains. The results
from our experiments make it clear that our method works better than the current state-
of-the-art methods, especially when trained and tested on various domains. When we
compare the results of the three domains, the accuracy for the drone datasets is higher
than that of the natural scene and underwater image datasets. This is because although
the drone domain suffers from tiny, blurry, and noisy text, most of the text has uniform
size and horizontal directions in contrast to the scene domain, which has more arbitrarily
oriented text texts. In the case of the underwater domain, the visibility of text is very
poor compared to the drone and scene text domain. Therefore, the proposed and exist-
ing methods report lower results for the underwater domain than the scene and drone
domains. However, the existing models report poor results for drone and underwater
domains compared to the scene test domain. SinceWang et al. (2023) uses CLIP models
for recognizing text in scene images while Yang et al. (2024a) do not, the results ofWang
et al. (2023) are better for almost all three domains. This clearly indicates that the CLIP
model has the ability to recognize the text affected by adverse effects. When we con-
sider the overall performance of the existing methods on three domains, both methods
are inferior to the proposed method. The key reason is that the models were developed
for scene text images or single domain, and hence, the methods lack generalization and
domain independence abilities. In addition, none of the models use cues in multiple
instances for recognition as the proposed method. In our case, the same CLIP model has
been explored in a novel way with the help of information in multiple instances, and the
proposed method is the best compared to the existing methods for all three domains.

Table 3. Recognition accuracy of the proposed and existing methods across domains. Bold text
represents the best results.

Models Year Natural Scene Drone Underwater

X. -Y. Ding et al. (2023) 2023 84.41 - -

Wang et al. (2023) 2023 92.11 69.06 66.67

Yang, et al. (2024a) 2024 85.15 88.49 55.32

DATR (Our method) 2024 93.34 98.92 70.21
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Natural Scene Drone        Underwater 

: sale

: much

: large

: shop

: ferndale

: su78660

: wb1959f

: nar409

: bnf2848

: agv445

: canon

: cubba

: fireball

: kreidesee

: pineapple

Fig. 5. Proposed model’s recognition results on multiple domains. Characters in green represent
the correct predictions, whereas characters in red represent the wrong predictions.

4.4 Experiments on Cross Domain Validation

To validate the domain agnosticism of our proposed model, we conducted multiple sets
of experiments by training and fine tuning on a specific domain and testing it on the rest
of the domains. It is noted from Table 4 that when we train the proposed model on drone
and underwater domains and test it on scene text domain, the performance is higher than
that of other combinations. This makes sense because the drone and underwater domains
have more diversified samples compared to the natural scene domain. Similarly, when
we train on drone and test it on the underwater domain or vice versa, the performance of
the proposed model is low. This is due to insufficient samples for learning to address the
challenges of drone and underwater domains. The results are better and more reasonable
when we train on the natural scene domain and test it on drone or underwater domain.

Table 4. Detailed cross-domain validation results on the proposedmethod and the existing stet-of-
the-artmethods,where the domain on left represents the domain onwhich themodel is trained/fine-
tuned and the domain on right represents the domain on which the model is tested.

# Cross-Domain Validation Accuracy

Wang et al. Yang, et al. Proposed

(i) Natural Scene → Drone 58.87 67.63 85.97

(ii) Natural Scene → Underwater 60.79 54.61 68.79

(iii) Drone → Natural Scene 92.11 74.68 93.07

(iv) Drone → Underwater 57.45 41.13 66.67

(v) Underwater → Natural Scene 93.25 83.73 93.30

(vi) Underwater → Drone 51.08 50.11 54.32
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Overall, when we consider the performance of the proposed method on different com-
binations, the accuracy is promising and reasonable. Therefore, one can assert that the
proposed model is domain-agnostic and domain-independent.

Labels:         not                                  pastel                                      f1004g 

Predicted:  frout pastee w1304g

Labels:      hunger      raft                                        wb351r

Predicted: humark safe wash

Fig. 6. Failure cases of the proposedmodel. Characters in green represent the correct predictions,
whereas characters in red represent the wrong predictions.

It is noted from samples shown in Fig. 6 that the proposed model does not recognize
the text accurately. This is because the texts in the samples shown in Fig. 6 are not visible,
and even humans cannot read the text in the images with naked eyes. The samples are
affected by severe blur and degradation. The proposedmethod fails to extract compelling
features to predict the text in these cases. This is beyond the scope of the proposed work.
A possible remedy is integrating the feedback enhancement model with the sequence of
CLIPs. This will be our future work.

5 Conclusion and Future Work

We have proposed a novel model called the Student-Teacher-Assistant network for rec-
ognizing text in multiple domains, namely, scene text, underwater, and drone domains.
Unlike most existing models that focus on a single domain, such as natural scene images
or specific types of images, the proposed work focused on three domains. Our model is
built based on the fact that multiple instances of text share the same characteristics. This
observationmotivated us to introduce dual CLIPs called primary for input image and one
more called helper for support image. The helper image is obtained using cosine simi-
larity. The features extracted from the image and text encoder of dual CLIPs are fused
differently through the alignment approach for recognizing text accurately, irrespective
of domains. Experiments on ablation study, each domain, and cross-dataset validation
show that the proposed method outperforms the existing methods. The results also show
that the proposed model is domain-independent and agnostic. However, as noted from
the experimental section, ourmodel fails to recognize the text when the text in the images
is not visible and readable even from human eyes. This can be solved by integrating an
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image enhancement module with the sequence of CLIPs, which can be explored in the
near future.
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Abstract. Object detection in poor-illumination environments is a chal-
lenging task as objects are usually not clearly visible in RGB images. As
infrared images provide additional clear edge information that comple-
ments RGB images, fusing RGB and infrared images has potential to
enhance the detection ability in poor-illumination environments. How-
ever, existing works involving both visible and infrared images only focus
on image fusion, instead of object detection. Moreover, they directly fuse
the two kinds of image modalities, which ignores the mutual interference
between them. To fuse the two modalities to maximize the advantages
of cross-modality, we design a dual-enhancement-based cross-modality
object detection network DEYOLO, in which semantic-spatial cross-
modality and novel bi-directional decoupled focus modules are designed
to achieve the detection-centered mutual enhancement of RGB-infrared
(RGB-IR). Specifically, a dual semantic enhancing channel weight assign-
ment module (DECA) and a dual spatial enhancing pixel weight assign-
ment module (DEPA) are firstly proposed to aggregate cross-modality
information in the feature space to improve the feature representa-
tion ability, such that feature fusion can aim at the object detection
task. Meanwhile, a dual-enhancement mechanism, including enhance-
ments for two-modality fusion and single modality, is designed in both
DECA and DEPA to reduce interference between the two kinds of image
modalities. Then, a novel bi-directional decoupled focus is developed to
enlarge the receptive field of the backbone network in different directions,
which improves the representation quality of DEYOLO. Extensive exper-
iments on M3FD and LLVIP show that our approach outperforms SOTA
object detection algorithms by a clear margin. Our code is available at
https://github.com/chips96/DEYOLO.
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1 Introduction

As a fundamental task of computer vision, object detection in complex scenes
still encounters various challenges. Due to the limited wavelength range of vis-
ible light, it is difficult to obtain object information in complex environments
with poor illumination (e.g. heavy smoke). To address this problem, infrared
information has been widely introduced. However, due to the low quality of
infrared images, it is hard to extract useful texture and color information for
general detectors from infrared images. Thus, it is difficult for them to support
the detection task alone.

In contrast, utilizing the complementary information in the cross-modality
of visible-infrared images can improve the performance in object detection. The
commonly used methods adopt fusion-and-detection strategies, which means the
image fusion network uses the object detection results as the validation met-
ric. However, the fusion-and-detection methods have several deficiencies. Firstly,
fusion of two-modality images does not focus on object detection tasks. Secondly,
their redundant model structures (e.g. two separate models for fusion and detec-
tion, respectively) cause increased training cost as well. Thirdly, although being
rich in structure information, infrared (IR) images have a drawback of missing
texture. Thus, fusion models usually focus on enriching the texture information
while eliminating the complex brightness information of the object. On the con-
trary, they seldom take the mutual interference between the two modal images
into account. e.g. infrared images maybe offset the visible imaging quality in
fusion process. Only direct image pair fusion without cross-modality enhance-
ment is not sufficient to improve the object detection performance.

Most existing RGB-IR detection models either construct a four-channel
input or maintain RGB and infrared images in two separate branches, merging
their features downstream. These multi-modality information fusion strategies
enhance detection performance to some extent. However, we believe that the
interaction between the two modalities is insufficient in these methods. There
is a clear boundary between the processing of single-modality images and the
feature fusion, resulting in insufficient utilization of cross-modality information.
Furthermore, they lack compound interactions at the channel and spatial dimen-
sions, overlooking the potential relationship between semantic and structural
information.

To this end, we propose a cross-modality feature fusion approach to dually
enhance the feature map of visual and infrared images for detection tasks. This
enhancement strategy is able to guide the fusion process of two-modality fea-
tures from different scales to ensure the integrity of feature information and
optimal information extraction. Aiming at object detection, DECA and DEPA
are designed to enrich semantic and structure information contained in the fea-
ture maps respectively. Moreover, for the purpose of highlighting the modality-
specific characteristics, we insert a novel bi-directional decoupled focus in the
backbone. It improves the receptive field in the feature extraction stage of DEY-
OLO multi-directionally, yielding better results. Figure 1 shows the detection
results by DEYOLO and DetFusion [23], IRFS [29], PIAFuse [25], SeaFusion [24]
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U2Fsuion [31]. It can be observed that the proposed DEYOLO achieve better
detection results. The contributions of this work are three-fold:

1. We propose the DEYOLO based on YOLOv8 [11], which performs cross-
modality feature fusion between the backbone and the detection heads. Dif-
ferent from other fusion methods which directly fuse two-modality images, we
fuse two-modality information in feature space and focus on object detection
tasks.

2. We propose two modules DECA and DEPA utilizing dual-enhancement mech-
anism. They reduce interference between two kinds of modalities and achieve
semantic and spatial information enhancement by redistributing the weights
of channels and pixels.

3. To make the features extracted by the backbone more adaptive to our dual-
enhancement mechanism, we design the bi-direction decoupled focus. It down-
samples shallow feature maps in different directions, increasing the receptive
fields without losing surrounding information.

Fig. 1. Detection results of different methods

2 Related Work

In this section, we review the commonly used single-modality object detection
algorithms first. Then, some recent visible and infrared image fusion methods
are introduced.
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2.1 Single-Modality Object Detection

Recently, deep neural networks have been proposed to improve accuracy in object
detection tasks, including CNN and its variants, e.g. Sparse R-CNN [22], Center-
Net2 [36] and the YOLO series [2,20,28], as well as Transformer-based models,
e.g. DETR [3] and Swin Transformer [17]. Although the outstanding perfor-
mance can be achieved by these models, they all merely utilize information from
single-modality images. In addition, these models heavily rely on the texture of
the image, which hinders their detection capabilities for infrared images.
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Fig. 2. The framework of the proposed DEYOLO. We incorporate dual-context col-
laborative enhancement modules (DECA and DEPA) within the feature extraction
streams dedicated to each detection head in order to refine the single-modality fea-
tures and fuse multi-modality representations. Concurrently, the Bi-direction Decou-
pled Focus is inserted in the early layers of the YOLOv8 backbone to expand the
network’s receptive fields.

To handle infrared object detection problems, researchers are continuously
introducing different network structures and mechanisms. ALCNet [5] uses back-
bone to extract the high-level semantic features of the image and a model-driven
encoder to learn the local contrast features. ISTDU-Net [30] effectively integrates
the encoding and decoding stages and facilitates the transfer of information
through hopping connections. This structure is able to increase the receptive
field while maintaining a high resolution. IRSTD-GAN [34] treats infrared tar-
gets as a special kind of noise. It can predict infrared small targets from the input
image based on the data distribution and hierarchical features learned by the
GAN. These models only take infrared images into account without extracting
information from visible images.

The above single-modality methods are not well suitable for object detec-
tion under complex illumination conditions. In contrast, two-modality fusion
can extract complementary information from both visible and infrared images,
and thus has less over-dependence on texture information.
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2.2 Fusion-and-Detection Methods

Considering that infrared images are less vulnerable to poor lighting conditions,
various visible and infrared image fusion methods have been proposed.

U2Fusion [31] is an unsupervised end-to-end image fusion network that can
solve different fusion problems. It uses feature extraction and information mea-
surement to automatically estimate the importance of the corresponding source
images and proposes adaptive information preservation degree. PIAFusion [25]
takes the illumination factor into account using an illumination-aware loss. Swin-
Fusion [18] involves fusion units based on self-attention [27] and cross-attention,
in order to mine long dependencies within the same domain and across domains.
CDDFuse [35] introduces a Transformer-CNN extractor and succeeds in decom-
posing desirable modality-specific and modality-shared features. After the fusion
process, the obtained image are fed to a separate model to detect objects.

Although these models can produce convincing results that preserve the
adaptive similarity between the fusion result and source images, they don’t
directly aim at the object detection task. Another drawback is that there may
exist conflicts in the fusion results (e.g. the textureless patches of infrared images
ruin the originally texture-rich ones of visible images), which is harmful to detec-
tion accuracy. In contrast, DEYOLO only focuses on object detection and the
newly designed dual-enhancement mechanism can tackle the conflict problem.

3 Method

As shown in Fig. 2, to process the multi-scale features extracted from the two-
modality images, we add newly designed modules DECAs and DEPAs (Fig. 3)
between the backbone and the necks of the YOLOv8 [11] model. Through a
specific dual-enhancement mechanism, the fusion of semantic and spatial infor-
mation makes two-modality features more harmonious. Meanwhile, for the back-
bone network, to better extract and retain the useful features of both modalities
of images, we propose a novel bi-directional decoupled focus strategy. It increases
the receptive field of the backbone in different orientations and ensures no leak-
age of origin information.

3.1 DECA: Dual Semantic Enhancing Channel Weight Assignment
Module

The dual enhancement mechanism here refers to the enhancement for two-
modality fusion result with single-modality information between the channels
and further enhancement for single modality with complementary information
from two-modality fusion. Therefore, DECA is able to emphasize the semantic
information by distributing weights according to the importance of each channel.

The first enhancement aims to use the single-modality feature to improve
the two-modality fusion results of both RGB-IR features, which may contain
conflicts. Let F V0 ∈ R

b×c×h×w and F IR0 ∈ R
b×c×h×w be the feature maps of
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visible and infrared images calculated by the backbone, respectively. At first,
to get the comprehensive information of RGB and IR images, we concatenate
the two features along the channel dimension. Then, a convolution operation
will make the combined feature map change to the previous size, filtering the
redundant information. As a result, the mixed feature map FMix0 ∈ R

b×c×h×w

is obtained:
FMix0 = conv(concat(F V0 ,F IR0)) (1)
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Fig. 3. The concrete structure of DECA and DEPA. These modules utilize both single-
modality and cross-modality information through a dual enhancement mechanism.
DECA enhances the cross-modality fusion results by leveraging dependencies between
channels within each modality and outcomes are then used to reinforce the original
single-modal features, highlighting more discriminative channels. Similarly, DEPA is
able to learn dependency structures within and across modalities to produce enhanced
multi-modality representations with stronger positional awareness

Next, we propose a novel weight-encoding method through convolution. An
encoder is designed to squeeze FMix0 in the spatial dimension progressively to
the size of Rb×c×1×1:

WMix0 = CMWE(FMix0) ∈ R
b×c×1×1 (2)

where CMWE(·) refers to the cross-modality weight extraction operation in
Fig. 3.

On the other hand, we need to acquire the specific feature of each modality.
The SE block [7] explicitly models the interdependencies between the channels
of its convolutional features for improving the quality of the feature map repre-
sentation. Motivated by this idea, we feed this structure with visible and infrared
images to get the feature blocks of size R

b×c×1×1, which represents the weight
values of different channels:{

W V0 = CWE(FV0) ∈ R
b×c×1×1

W IR0 = CWE(FIR0) ∈ R
b×c×1×1

(3)
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where CWE(·) refers to the channel weight extraction block in Fig. 3. W V0

and W IR0 can enhance the mixed feature of the two modalities by element-
wise multiplication to redistribute weights, which is able to highlight significant
channels: {

W enV0 = W V0 ⊗ softmax(WMix0)
W enIR0 = W IR0 ⊗ softmax(WMix0)

(4)

For the second enhancement, we attempt to make each feature map of RGB
and IR fully utilize the respective advantages of another modality. To this end,
F V0 and F IR0 will multiply the corresponding feature weights acquired in the
first enhancement to get semantic and textural information from another modal-
ity: {

F IR1 = F IR0 � W enV0

F V1 = F V0 � W enIR0

(5)

where � is multiplication in channel dimension. The enhancement results F V1 ∈
R

b×c×w×h and F IR1 ∈ R
b×c×w×h will pass through the DEPA described below.

3.2 DEPA: Dual Spatial Enhancing Pixel Weight Assignment
Module

Similar with DECA, DEPA adopts the dual enhancement mechanism as well. Re-
encoded in the spatial dimension, DEPA emphasizes important pixel positions
while minimizing the irrelevant ones.

Specifically, to obtain the mixed feature including global information, we
perform a shape transformation for the two feature maps F V1 and F IR1 using
convolution. Then, an element-wise multiplication is applied on the result of each
other:

WMix1 = conv(F V1) ⊗ conv(F IR1) (6)

Afterwards, a softmax operation is performed on WMix1 . In order to fully obtain
the feature specific to each modality in spatial dimension, we maintain the dif-
ferences in spatial information learned by different convolutional kernel sizes.{

W IR1temp = concat (conv1(F IR1), conv2(F IR1))
W V1temp = concat (conv1(F V1), conv2(F V1))

(7)

In Eq. (7), two convolution operations are used to extract the pixel weights from
distinct scales. By concatenating them in the channel dimension, we can obtain
W IR1 ∈ R

b×2×w×h and W V1 ∈ R
b×2×w×h. Then, we compress the feature by

reducing the number of channels by half and obtain W IR1 ∈ R
b×1×w×h and

W V1 ∈ R
b×1×w×h. The element-wise multiplication by the softmaxed FMix1 is

applied on W IR1 and W V1 :{
W enIR1 = W IR1 ⊗ softmax(FMix1)
W enV1 = W V1 ⊗ softmax(FMix1)

(8)
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The second enhancement is implemented by an element-wise multiplication
operation between the input feature maps and the results of first enhancement:{

F IR = F IR1 � W enV1

F V = F V1 � W enIR1

(9)

Equation (9) aims to extract structural feature from another modality in spatial
dimension. In the end, we do element-wise addition on F IR and F V for the
object detection.
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Fig. 4. Bi-direction decoupled focus.

3.3 Bi-direction Decoupled Focus

In this subsection, we tend to improve the performance of object detection from
the perspective of the single modality. In order to enhance the capability of
extracting targets, the bi-direction decoupled focus is designed to enlarge the
receptive field of the backbone in DEYOLO while minimizing the loss of sur-
rounding pixels.

The focus block in YOLOv5 [10] is a slicing operation, which is improved from
the passthrough layer in YOLOv2 [21]. This specific operation gets a pixel in an
image with an interval by one pixel and thus can provide a two-fold downsampled
feature map without an information loss.

Inspired by this downsampling method, we design bi-direction decoupled
focus to retain the information adequately in multi-directions. Specifically, we
adopt two specific sampling and encoding rules implemented horizontally and
vertically. As shown in Fig. 4, we divide the pixels into two groups for convolu-
tion. Each group focuses on the adjacent and remote pixels at the same time.
Finally, we concatenate the original feature map in the channel dimension and
make it go through a depth-wise convolution [4] layer.
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4 Experiments

4.1 Datasets

Since infrared images are obtained by measuring the heat radiation emitted from
objects, they are susceptible to noises in the environment. In fact, only a small
number of high-quality datasets composed of infrared and visible images are
available, such as TNO [26] and RoadScene [32]. However, these datasets often
aim at infrared and visible image fusion tasks, rather than object detection,
thus the labels for object detection are absent. The FLIR [1] dataset provides
annotations for object detection but it lacks pixel-level alignment. Therefore, we
choose the public datasets M3FD [15], LLVIP [9], and KAIST [8] which are pixel-
wise aligned for infrared-visible image pairs and contain annotations for object
detection. Among these, the M3FD dataset comprises 4,200 image pairs, totaling
8,400 images. The LLVIP dataset includes 16,836 image pairs, amounting to a
total of 33,672 images. Considering the original KAIST dataset contains noisy
annotations, we use a cleaned version of the training set (7,601 examples) and
the testing set (2,252 examples).

4.2 Implementation Details

In this subsection, two sets of experiments are conducted to verify the effec-
tiveness of DEYOLO. One is the comparison with the SOTA single-modality
object detection algorithms and the other is the comparison with the fusion-
and-detection algorithms. When training single-modality detection algorithms,
we use infrared and visible images to train the model, respectively. For the sake
of experimental fairness, we also combined the visible and infrared images from
the datasets to serve as the training set of these detector. For the fusion-and-
detection algorithms, the pre-trained image fusion models for cross-modality
fusion are adopted in the comparison algorithms, and then the fused images are
further used to train YOLOv8 [11]. The training is performed on eight NVIDIA
RTX 4090 GPUs. The number of epochs for training is 800, the batch size is 64,
the initial and final learning rates are 1× 10−2 and 1× 10−4, respectively. And,
we evaluate our method on the validation set and use the mean average precision
(mAP) with the IoU threshold of 0.5 and Log Average Miss Rate (LAMR) as
the evaluation metric.

4.3 Ablation Studies

To validate the impact of the key components in DEYOLO, we conducted a
number of experiments on the M3FD [15] dataset to investigate how they affect
our final performance.

Firstly, we verify the impact of the use of the bi-directional decoupled focus,
DECA and DEPA modules on the model, respectively. The experimental results
are shown in Table 1. It can be seen that DECA and DEPA improve the detection
accuracy of the model more obviously. The use of DECA and DEPA modules
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Table 1. Ablation studies on the M3FD dataset. Bi-direction stands for using bi-
direction decoupled focus on the backbone. DECA stands for using the DECA module.
DEPA stands for using the DEPA module.

Bi-direction DECA DEPA mAP50 mAP50−95

80.8 54.3
� 85 58.7

� 84.4 57.8
� � 85.2 58.9

� � � 86.6 59.6

alone improves mAP50 by 4.2% and 3.6%, as well as mAP50−95 by 4.4% and
3.5%, compared to the baseline network trained merely by visible images. While
the improvement of DECA is more obvious than that of DEPA. The joint use of
them improves mAP50 by 4.4% and mAP50−95 by 4.6%, respectively. Moreover,
the object detection accuracy is further improved using all three modules at the
same time, with the two metrics improving by 5.8% and 5.3%, respectively.

In the DECA and DEPA modules, the channel weights and spatial pixel
weights, which incorporate both semantic and spatial information from two
modalities, are utilized to respectively enhance the semantic and structural infor-
mation within the single-modality channel weights and spatial pixel weights.
The enhanced weights are then applied to the single-modality feature maps to
achieve dual enhancement. By fully leveraging the advantages of each modality
and their complementary information within the feature space, the use of DECA
and DEPA results in improving the performance of cross-modality object detec-
tion. Since we are utilizing deep features, each feature map contains stronger
semantic information compared to spatial information. As a result, the enhance-
ment effect of DECA on the model is more pronounced compared to that of
DEPA.

Furthermore, in order to investigate how to make the dual enhancement
mechanism in DECA and DEPA relieves the interference between two-modality
images and obtain cross-modality channel weights and pixel weights better, we
choose different hyperparameters in the feature mixing part in DEPA and cross-
modality weight extraction part in DECA, respectively.

Table 2. Performance of different kernel sizes used in DEPA to get the mixed feature.

Layer Kernel Size mAP50 mAP50−95

Conv 3 × 3 85.3 58.9

5 × 5 85.1 58.4
7 × 7 85.1 58.1
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For DEPA, we use different convolution kernel sizes to get the spatial pixel
weights of two modalities. The results are shown in Table 2. We believe that
as the convolution kernel size increases, more and more redundant information
within each single modality is also integrated, thereby increasing mutual interfer-
ence between the two modalities and hindering feature enhancement. It is found
that for feature maps with different scales, when the number of convolutional
layers is the same, the kernel size of 3 × 3 can better model the spatial pixel
information.

Table 3. Performance of different ways to generate WMix0 through Cross-Modality
Weight Extraction in DECA.

Layer Number of Layers mAP50 mAP50−95

Conv 1 ✗ ✗

2 84.5 58.1

3 84.9 57.8
Depth-wise Conv 2 84.5 58.3

3 85.2 58.9

For DECA, we try to use different types of convolutions with different num-
bers of layers for cross-modality channel weight extraction. The experiment
results are shown in Table 3. We firstly attempt to directly extract the weights
of each channel through one layer of convolution with the same size as the orig-
inal feature map. However, we find that the model cannot converge if the layer
number is set to 1. Then, we set the number of convolution layers to 2 and 3
successively, and find that the weights of each channel can be better extracted
when it is 3. For channel weight extraction, we find that the depth-wise con-
volution [4] is more suitable for guiding the training process because of its fast
convergence rate, which demonstrates its advantages.

4.4 Comparison with State-of-the-Arts Models

At last, we compare DEYOLO with recent state-of-the-art fusion models and
object detection models on the M3FD [15] and LLVIP [9] datasets. Here we
select YOLOv8-n and YOLOv8-l as our baseline.

As shown in Table 4, due to utilization of different information from two
modalities, DEYOLO outperforms all single-modality object detection models.
In addition, mAPs of the detectors trained using visible images are higher than
those of the detectors trained with infrared images. But none of the single-
modality detectors can surpass DEYOLO, which uses the dual feature enhance-
ment mechanism. Particularly, DEYOLO outperforms ViT-based models, such
as Swin Transformer [17] and Sparse RCNN [22]. The ViT-based models only
considers single-modality global correlation, while DEYOLO additionally uses
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Table 4. Performance comparison with other detectors. Visible stands for training
the model using visible images, infrared stands for training the model using infrared
images. Cross-modality stands for using two-modality images for training.

Method Modality mAP50 mAP50−95

Swin Transformer [17] visible 76.4 44.9
infrared 72.6 41.9
cross-modality 73.8 42.6

CenterNet2 [36] visible 78.5 52.4
infrared 65.3 42.4
cross-modality 70.2 46.5

Sparse RCNN [22] visible 82.4 49.6
infrared 76.4 44.8
cross-modality 78.2 47.3

YOLOv7-tiny [28] visible 82.1 51.6
infrared 78.1 48.4
cross-modality 80.1 49.8

YOLOv7 [28] visible 90.4 61.3
infrared 87.9 58.3
cross-modality 88.3 59.6

YOLOv8n [11] visible 80.8 54.3
infrared 78.3 52.3
cross-modality 79.2 52.8

YOLOv8l [11] visible 88.3 61.8
infrared 86.5 59.6

DEYOLO-n (ours) Cross-modality 86.6 58.9
DEYOLO-l (ours) Cross-modality 91.2 66.3

the complementary information between two modalities extracted by DECA
and DEPA without conflicts.

It can be observed that some fusion-and-detect methods, such as DetFu-
sion [23] and U2Fusion [31], as shown in Fig. 1(b) and (d), produce fused images
which look more like the infrared images, lacking partial texture and color
information required for detection tasks. On the other hand, the fused images
obtained by the other methods including SeAFusion [24] and Tardal [15], do
not effectively capture rich structural information in the infrared image (e.g.,
Fig. 1(c)). The comparison methods fail to balance the texture and structure
information of both modalities to improve the detection accuracy. In contrast,
DEYOLO first exploits the advantages of both modalities through bi-direction
decoupled focus and then utilizes the DECA and DEPA modules based on a
dual-enhancement mechanism to reduce the mutual interference between the
two modalities, thereby improving the detection accuracy.
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Fig. 5. mAP50 in specific categories Fig. 6. mAP50−95 in specific categories

As shown in Table 5, the performance of our method on both datasets is
better than that of the state-of-the-art fusion-and-detection methods. Specifi-
cally, in M3FD [15] dataset the mAP50 and mAP50−95 of DEYOLO-n are higher
than those of the other models by 5.4% and 3.1% at least, respectively. And the
improvement of the mAP50 and mAP50−95 of DEYOLO-l can reach more than
10.0% and 10.5%, respectively. Meanwhile, in LLVIP [9] dataset, we observe at
least 0.6% and 1.4 % improvement on the mAP50 and mAP50−95 of DEYOLO-

Table 5. Performance comparison with fusion-and-detection works.

Dataset Method Modality mAP50 mAP50−95

M3FD [15] IRFS [29] cross-modality 81.2 55.8
Tardal [15] 81.0 54.9
CDDFuse [35] 80.3 54.9
PIAFusion [25] 80.6 54.9
Swin Fusion [18] 80.2 54.7
DetFusion [23] 80.6 55.0
SeAFusion [24] 80.7 55.4
U2Fusion [31] 79.2 53.8
DEYOLO-n (ours) 86.6 58.9
DEYOLO-l (ours) 91.2 66.3

LLVIP [9] IRFS [29] cross-modality 94.0 60.7
Tardal [15] 94.5 63.3
CDDFuse [35] 92.1 57.5
PIAFusion [25] 96.1 62.4
Swin Fusion [18] 93.3 59.4
MFEIF [16] 95.8 64.0
SeAFusion [24] 96.2 64.0
U2Fusion [31] 92.2 58.3
DEYOLO-n (ours) 96.8 65.4
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n, respectively. In addition, in Fig. 5 and Fig. 6, the detection results of every
category in M3FD dataset also shows the superiority of our method. We have
re-split the datasets into training, validation, and test sets in a 3:1:1 ratio. After
dividing the test set as described above, the mAP50 on the test/validation sets
of the two datasets are 85.7%/86.6% and 96.4%/96.8%, respectively.

To validate the generalization ability of our model, experiments were con-
ducted on the KAIST dataset, as shown in Table 6. Unlike the M3FD and LLVIP
datasets, KAIST consists of pairs of RGB and thermal images. Thermal images,
unlike infrared images studied in our research, exhibit lower imaging quality and
significant differences. Therefore, these experiments serve as an extended valida-
tion of our model. From Table 6, it is evident that our method does not achieve
state-of-the-art (SOTA) performance but outperform the majority of existing
methods.

Table 6. Comparison with other RGB-T detectors on KAIST dataset.

Methods ALL Day NIGHT

RPN+BDT [14] 29.83 30.51 27.62
TC-DET [12] 27.11 34.81 10.31
Halfway Fusion [19] 25.75 24.88 26.59
IATDNN [6] 26.37 27.29 24.41
IAF R-CNN [13] 20.59 21.85 18.96
CIAN [33] 14.12 14.77 11.13
DEYOLO (ours) 15.45 17.23 12.23

5 Conclusion

In this paper, we propose DEYOLO using the dual enhancement mechanism for
cross-modality object detection in complex-illumination environments. DECA
and DEPA are designed to fuse the feature maps of two modalities between
the backbone and the detection heads. And the bi-direction decoupled focus
is proposed in the backbone to improve the feature extraction capability. The
superiority of this method is verified on two datasets. It is worthwhile to point
out that, both DECA and DEPA proposed in this paper can be used as a plug-
and-play module for wider applications in other models to solve the problem
of object detection in complex environments. And this will be the topic in our
future work.
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Abstract. Detection of unknown but concerned objects such as diverse
unknown suspicious objects in the sea area is a critical problem in mil-
itary defense applications, but the problem is challenging because 1) a
pre-trained detector cannot easily detect unknown but concerned objects,
2) it detects too many unconcerned objects such as usual objects in the
coastal land area, and 3) we cannot easily establish a well-performing
discriminator to divide the detected objects into unknown and known
objects, as well as concerned and unconcerned objects because the
unknown objects are not available, whereas the concerned and uncon-
cerned objects are not clearly defined. To tackle this challenge, this
paper proposes a real-time framework for unknown but concerned object
detection in maritime environments by integrating object detection, seg-
mentation, and out-of-distribution (OOD) detection techniques. In our
framework, an object detector finds all object-like foregrounds by set-
ting a low threshold and a segmentation deep-learning network filters out
unconcerned foregrounds detected in the coastal land area. After that,
to discriminate known or unknown objects among concerned objects
detected in the sea area, a discriminator performs unsupervised OOD
detection using bisecting K-means clustering. To boost the performance
of the proposed framework, we apply a pre-processing scheme and a
contrastive separation loss for segmentation. The proposed framework
achieves a high detection rate of unknown but concerned objects with
minimal detection of unconcerned objects (i.e., minimal false positives),
surpassing baseline methods and demonstrating potential for enhanced
maritime safety and security. The codes are open at https://github.com/
AIX-Coast-Defense-PIL/MarUCOD.
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1 Introduction

In maritime environments, detecting unknown objects that are not usually vis-
ible is crucial for military defense. Among unknown objects, those floating on
the sea are the primary concern in maritime surveillance. These unknown but
concerned objects including suspicious objects such as naval mines or rafts can
serve as means of enemy attack or intrusion. Implementing an automated sys-
tem for detecting unknown but concerned objects has a wide range of appli-
cations along coastlines and can significantly reduce the workload of sentries.
Despite the significance of the problem, the detection of unknown but concerned
maritime objects remains under-explored.

While object detection models [1,2] have achieved remarkable success in accu-
rately identifying and localizing objects, most of these models are limited to
detecting only known objects that belong to classes seen during training. How-
ever, unknown objects frequently emerge in real-world situations, leading to cru-
cial problems in safety-critical applications (e.g., autonomous driving, military
defence) when relying on conventional object detection models. To address this
issue, models capable of detecting unknown objects have been developed [3,4].

Despite the potential of existing unknown object detection models, detect-
ing unknown objects in maritime environments still remains a challenging task.
Although object detection models used in maritime environments are often
trained with datasets of known objects such as various type of ships, false alarms
are frequently generated due to various unconcerned objects such as vehicles in
the coastal land area. In maritime applications, such as autonomous unmanned
surface vehicles (USVs) and maritime surveillance, the primary interest is to
detect unknown but concerned objects floating on the sea area. However, exist-
ing object detection models cannot selectively detect unknown but concerned
objects in the sea area, because of yielding many false positives detected on
coastal land area. To mitigate the aforementioned difficulty, identifying the cir-
cumstances surrounding each unknown object can help prevent false alarms.

In this paper, we propose a real-time framework for unknown but concerned
object detection in maritime environments, named MarUCOD, which integrates
object detection, segmentation, and out-of-distribution (OOD) detection tech-
niques. The object detection employs an off-the-shelf object detector trained
across a vast spectrum of classes to act as a class-agnostic detector, and outputs
many object boxes by setting low threshold. The segmentation identifies the
circumstances surrounding the object boxes and filters out unconcerned objects
detected in the coastal land. Finally, the OOD detection discriminates unknown
objects among the remaining concerned objects. To maximize performance of
proposed MarUCOD in maritime environments, we devise a new brightness pre-
processing scheme and a novel contrastive separation loss for segmentation.

The main contributions are summarized as: (1) We propose a real-time frame-
work for unknown but concerned object detection in maritime environments,
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which integrates object detection, segmentation, and OOD detection techniques.
(2) We apply bisecting K-means clustering to the unsupervised OOD detection
to enhance the performance of proposed MarUCOD. In addition, we suggest
brightness pre-processing schemes and a separation loss for optimizing MarU-
COD to maritime environments. (3) We demonstrate the effectiveness of MarU-
COD through comprehensive analyses on each component of MarUCOD. Despite
the lightweight of each component, MarUCOD achieves state-of-the-art perfor-
mance in unknown but concerned object detection in maritime environments.

2 Proposed Method

The overall scheme of the proposed MarUCOD is depicted in Fig. 1, which
includes an object detection module, a segmentation module, and an OOD detec-
tion module. First, an input image is fed into both the object detection module
and the segmentation module. The object detection module produces sufficient
object boxes by using a low confidence threshold during detection. Concurrently,
the segmentation module determines which pixels are located in the sea area.
Based on the results from the segmentation module, the unconcerned objects
are filtered to retain only the concerned objects located in the sea area. These
concerned objects are fed into the OOD detection module that discriminates
unknown objects from known objects belonging to in-distribution. The detected
boxes on unknown but concerned objects are the final output of MarUCOD.

Fig. 1. Overall Scheme of MarUCOD.

2.1 Object Detection Module

When MarUCOD receives an input image, it aims to detect as many objects as
possible, regardless of their classes. To achieve this class-agnostic object detec-
tion, we employs an object detection model with a low confidence score thresh-
old, which has been trained on a wide range of classes. For the model, we uti-
lize a YOLOv7 [1] model trained on the COCO datasets with 80 classes. This
paper specifically employs YOLOv7, chosen for its fast and stable state-of-the-
art performance, for real-time object localization. Using the YOLOv7 model, we
produce object boxes by combining all detected objects across classes.
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The YOLOv7 [5] model provides a confidence score for each predicted object
and outputs boxes containing objects with scores greater than a threshold α.
Since our objective is to identify objects regardless of classes, we intentionally
reduce the confidence score threshold to β < α. This adjustment makes the
model less sensitive to classification and meets the goal of detecting object boxes
regardless of their classes.

2.2 Segmentation Module

If the object detection module is used alone in maritime environments, false
alarms (boxes of known or unconcerned objects) frequently occur, that is, lots of
unconcerned objects in the coastal land or in the sky are detected. To tackle this
issue, we adopt a segmentation module to remove the unconcerned object boxes
obtained by the object detection module. The segmentation module comprises
two stages: image segmentation network and ground and sky extraction.

Image Segmentation Network. As a backbone network for image segmenta-
tion, we use WODIS [6], which is for image segmentation in marine environments
and requires light computation burden. WODIS has an encoder-decoder archi-
tecture and classifies each pixel of an input image into three categories: water,
sky, and obstacle (others excluding water and sky). Here, the encoder is based on
ResNet [7] convolutional layers and the decoder classifies each pixel from features
extracted by the encoder. To boost the performance of the image segmentation,
we introduce a brightness pre-processing scheme and a novel loss function.

Brightness Pre-processing. The dynamic lighting conditions of the maritime
environment, ranging from sun-drenched horizons to murky twilight, pose a
significant challenge for reliable image analysis. Furthermore, inconsistency in
brightness can impede computer vision tasks of deep learning such as object
detection or image segmentation. By harmonizing pixel brightness across diverse
lighting scenarios, brightness pre-processing fosters consistent data represen-
tations that enhance performance on learning tasks. In this work, brightness
directly corresponds to the V channel in HSV color space. That is, after con-
verting an image from RGB to HSV, each value in V channel represents the
brightness of pixels. Given a dataset, we propose two pre-processing schemes to
mitigate inconsistency in brightness as follows.

Brightness shift adjusts the brightness mean of pixels in an input image to match
the brightness mean of pixels in all images in the training dataset. It aims to
learn more robust model against various brightness spectrum by making bright
images darker and dark images brighter. The shifted brightness of each pixel is
obtained by

b̃
x
ij = min(max(0, bx

ij − (μbx − μbD )), 255), (1)

where bx
ij , μbx and μbD denote the brightness of the i-th row and the j-th

column pixel in an input image x, the brightness mean of the input image,
and the brightness mean of the dataset, respectively.
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Brightness Normalization normalizes the brightness distribution of a brightness-
shifted input image according to the brightness statistics of a dataset.

b̄x
ij =

bx
ij − μbD

σbD
, (2)

where σbD is the brightness standard deviation of a dataset.

Contrastive Separation Loss Function. To enhance the robustness of the
segmentation network to background diversity, we propose a contrastive sepa-
ration loss function that creates an effective feature space for segmentation. Let
v be a vector obtained by flattening Nc-channel features from the third layer of
the encoder and let R1 and R2 represent regions corresponding to two different
classes from {water, sky, obstacle}. We define the values of features belonging to
R1 in the c-th channel as {vc

i}i∈R1 . Additionally, we define the batch mean values
of c-th channel features belonging to R1 and R2 as μc

R1
and μc

R2
, respectively.

The proposed loss function aims to make the features of each component dis-
tinct from each other in the feature space. Specifically, the loss function makes
the features corresponding to R1 closer to their mean value, μc

R1
, and at the same

time farther away from the mean value, μc
R2

, corresponding to R2. The con-
trastive separation loss function can be expressed by

LR2
R1

=
1

Nc

Nc∑

c=1

∑
i∈R1

(
vc
i − μc

R1

)2
∑

i∈R1

(
vc
i − μc

R2

)2 . (3)

Depending on the components assigned to R1 and R2, different loss functions
with distinct meanings can be formulated. For instance, a contrastive water-
obstacle separation loss (CWOL) can be defined as LR2

R1
= LRobstacle

Rwater
. Unlike the

water-obstacle separation loss (WSL) [8], our proposed loss function considers
class information for each pixel by measuring class-wise distances in a feature
space. Furthermore, while WSL uses pixels from two different classes as an input
simultaneously, ours focuses on pixels belonging to a single class, resulting in
more favorable features for segmentation.

The final loss function includes not only the proposed contrastive separation
loss but also a focal loss [9] for emphasizing regions prone to misclassification
during training. The final loss function can be expressed by

L = Lfocal + λLR2
R1

. (4)

Ground and Sky Identification. Utilizing class information for each pixel
obtained during the segmentation step, we filter out unconcerned objects in
land and sky. Pixels belonging to the obstacle class can be considered as uncon-
cerned objects in the land. To identify pixels corresponding to land area, we
apply the Connected Component Labeling (CCL) [10] algorithm only to obsta-
cle pixels. This process enables the identification of connected pixels as a single
component, as illustrated in Fig. 2(c). Considering that the ground generally lies
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Fig. 2. Result images at each step of the ground & sky extraction algorithm

between the sky and the sea in surveillance camera compositions, class informa-
tion of surrounding pixels is utilized for each component. If the number of pixels
corresponding to the sky among the surrounding pixels of a component exceeds
a certain threshold, it is classified as a land component. As shown in Fig. 2(d),
a binary mask is created where the pixels belonging to the land and the sky are
assigned a value of 1, while all other pixels are assigned a value of 0. Ultimately,
among object boxes detected by the object detection module, those located in
parts corresponding to the value of 1 in the mask are filtered out, leaving only
concerned objects floating on the sea. These concerned object boxes are then
fed into the OOD detection module to identify unknown objects.

2.3 OOD Detection Module

The OOD detection module categorizes the concerned object boxes into known
and unknown ones. Only objects falling into the unknown object boxes become
the final detection results. The OOD detection process consists of three steps:
feature extraction, Bisecting K-Means clustering, and unknown object identifi-
cation.

Feature Extraction. To determine unknown objects, we first extract feature
vectors from each concerned object boxes. In this process, the concerned object
boxes are cropped from the image, referred to as object patches. These object
patches are then resized to a fixed patch size and inputted into a feature extrac-
tor. Using a feature extractor trained solely on ID data may lead to difficulties
in extracting feature vectors for OOD objects which represent entirely differ-
ent objects from ID data. Accordingly, we utilize an ImageNet [11] pre-trained
ResNet50 [7] model as the feature extractor for the OOD detection module.

Bisecting K-Means Clustering. To distinguish unknown objects from known
objects, we employ unsupervised clustering to form clusters of known objects
within a feature space. During training, we use feature vectors of ID objects
without class information to learn the distribution of ID objects. After learn-
ing ID objects, OOD objects are identified by measuring the distance between
feature vectors of concerned object boxes and the cluster centroids in the fea-
ture space. For unsupervised clustering that largely affects the performance, We
utilize bisecting K-Means clustering [12]. Bisecting K-Means is a hierarchical
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Fig. 3. A flow chart of Bisecting K-Means clustering

clustering algorithm, derived from K-Means clustering [13], which categorizes a
given extracted feature vector z into K clusters.

K-Means clustering is an iterative clustering algorithm that selects K cen-
troids and assigns each data point to the nearest cluster until convergence.
Bisecting K-Means clustering [12] performs the K-Means clustering in a hier-
archical manner. Unlike traditional K-Means clustering that divides all z into K
clusters at ones, Bisecting K-Means repeatedly divides each cluster into two clus-
ters until the total number of clusters reaches K. The structure of this algorithm
is outlined in Fig. 3. First, Bisecting K-Means clustering receives as input the
final number of cluster K and feature vectors z. Then, it treats all z as one clus-
ter and divides it into two clusters using standard K-Means clustering. Among
the K ′ clusters formed up to that point, the cluster with the highest SEE(Sum-
of-Squared-Error) is selected. Subsequently, the standard K-Means clustering is
repeated until the number of clusters reaches K.

Through Bisecting K-Means clustering, centroids µk(k = 1 · · · K) of K clus-
ters representing training data are identified and stored. These µk values sym-
bolize the distribution of the training data (i.e., ID data).

Unknown Object Identification. After obtaining the centroids µk of each
cluster, the OOD score s of ztest is computed as

s = min
k=1...K

(
1 − µk · ztest

‖µk‖‖ztest‖
)

, (5)
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where ztest is an extracted feature vector of an object box and s represents the
minimum cosine distance between the centroids μk of K clusters and ztest. Thus,
s signifies the distance between the distribution of training data and ztest, with
higher values indicating greater differences between the training data and ztest.

During training, OOD scores, denoted by st for tth training sample, are used
to determine the OOD score threshold θ to be utilized during detecting OOD
objects. st is sorted in ascending order, and θ is defined by the lowest OOD score
among those greater than p% scores in the ascending order. The threshold θ is
determined by selecting p that maximizes the overall OOD detection accuracy.

During detecting OOD objects, when an object feature vector ztest is
received, if the OOD score of ztest is greater than the OOD score threshold θ, it
is considered OOD; otherwise, it is considered ID. Accordingly, only objects clas-
sified as OOD among feature vectors of object boxes are categorized as unknown
but concerned objects finally.

3 Experiments

3.1 Out-of-Distribution Detection Module

Datasets. The OOD detection module is trained using the set of known and
concerned objects seen at the sea area, i.e., SeaShips dataset [14]. SeaShips is an
image dataset containing six types of ships, and we train the OOD detection
module using images of ships from this dataset. Therefore, in MarUCOD, ships
are considered as ID data (known and concerned objects), and objects in the
sea area other than ships are considered as unknown but concerned objects.
The performance is evaluated using MID [15] and MODD [16] datasets. The
MID and MODD datasets consist of 7 and 12 videos of maritime environments,
respectively. Videos without unknown objects are excluded, resulting in the use
of 5 and 8 videos for evaluation, respectively.

Object Detection Model. To detect unknown but concerned objects, it is
essential to first locate as many objects as possible regardless of their class and
thereafter classify them as unknown but concerned objects. To swiftly detect
various objects, we utilize YOLOv7, which demonstrates state-of-the-art perfor-
mance in real-time object detection, trained on the COCO dataset containing 80
diverse classes. However, if we have used this model as is, objects outside of the
trained 80 classes have not been detected. Therefore, to mitigate the influence
of classes in our work, we drastically reduce the confidence score threshold of
the model from the default threshold 0.25 (α) to 0.05 (β).

Clustering Method Selection. To select the clustering method for the detec-
tion of unknown objects, we conduct experiments comparing the performance
depending on clustering method. The experiments utilize a total of six clustering
methods: K-Means [13], Gaussian Mixture [17], Mean Shift [18], Affinity Prop-
agation [19], HDBSCAN [20], and Bisecting K-Means [12]. During clustering
the features of training data, we employ the clustering scheme and code from
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Table 1. Performance of OOD detection depending on clustering methods.

Clustering Method F1-score (%) Recall (%) Precision (%) FPS

KMeans [13] 48.25 54.16 58.60 31.95
GaussianMixture [17] 44.88 54.39 50.87 33.31
MeanShift [18] 44.34 54.67 49.71 32.43
AffinityPropagation [19] 44.09 52.25 54.97 23.72
HDBSCAN [20] 44.47 54.11 52.86 28.78
BisectingKMeans [12] 50.57 58.11 57.75 32.23

Table 2. Performance of OOD detection depending on score function.

Score Function F1-score (%) Recall (%) Precision (%) FPS

Euclidean [6] 50.57 58.11 57.75 32.23
Cosine [7] 60.82 65.53 64.03 32.74
Mahalanobis [8] 54.23 72.96 50.02 19.85

Scikit-Learn [21], utilizing the default settings for each clustering method. Con-
sequently, the number of clusters (K) is set to 8 for K-Means and Bisecting K-
Means, the number of mixture components for Gaussian Mixture is set to 1, the
bandwidth for Mean Shift is set to 96, the dumping factor for Affinity Propaga-
tion is set to 0.5, and the minimum distance between neighbors (EPS) for HDB-
SCAN is set to 0.5. The performance of each clustering method is measured, and
the results are presented in Table 1. Table 1 shows that the Bisecting K-Means
clustering method achieves the highest F1 score. Consequently, we choose Bisect-
ing K-Means clustering method for the detection of unknown objects.

Score Function Selection. The performance can vary depending on the
method used to measure OOD scores. Therefore, we compare performance of
3 distance measurement formulas: Euclidean Distance (Eq. 6), Cosine Distance
(Eq. 7), and Mahalanobis Distance (Eq. 8). In these equations, µk(k = 1 · · · K)
represents the cluster-wise centroid vectors, Σ denotes the covariance, n dimen-
sional feature vector is denoted by ztest(= [ztest1 , ztest2 , · · · , ztestn ]�), and s is the
OOD score for ztest.

s = min
k=1...K

√√√√
n∑

i=1

(µki − ztesti )2, (6)

s = min
k=1...K

(1 − µk · ztest
‖µk‖‖ztest‖ ), (7)

s = min
k=1...K

√
(ztest − µk)Σ−1(µk − ztest)�. (8)

The performance for each score function is presented in Table 2. Table 2
demonstrates that the Cosine Distance achieves the highest F1 score and also
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Fig. 4. Performance on OOD according to the number of cluster (K), in terms of F1
score.

Table 3. Performance on OOD detection depending on patch size.

Patch Size F1-score (%) Recall (%) Precision (%) FPS

32 42.42 74.79 33.28 62.39
64 46.17 64.10 42.56 50.29
128 62.34 68.16 63.54 32.37
256 43.46 49.99 46.54 13.38
512 40.17 85.68 29.60 4.10

the fastest FPS. Therefore, we choose the Cosine Distance (Eq. 7) as the final
formula for calculating the OOD score.

Performance Depending on the Number of Cluster K. Bisecting K-Means
clustering [12] is an algorithm that iteratively divides each cluster into two clus-
ters until the total number of clusters reaches K. Therefore, the performance can
vary significantly depending on the chosen value of K. We experiment with differ-
ent values of K, specifically 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50, measuring
the performance for each. The results are presented in Fig. 4. Looking at the
Fig. 4, it is observed that the highest F1 scores are achieved when the number
of clusters K is 30. Therefore, we have selected K = 30 as the final number of
clusters.

Object Patch Size Selection. When classifying objects using clusters, we
resize various size of an object bounding box into a fixed patch size to apply it
the classifier. The performance and speed of the classifier can vary depending on
the size of the patch size. As shown in Table 3, the highest F1 scores are achieved
when the object patch size is 128.
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3.2 Segmentation Module

Datasets. The segmentation network in the segmentation module is trained
and evaluated using the LaRS dataset [22]. The LaRS dataset consists of a total
of 4,006 images, but only 2,803 images with segmentation labels are utilized
for training and evaluation. Additionally, LaRS consists of datasets from var-
ious sources, among which 1,323 images corresponding to MaSTr1325 [23] are
used for training, while the remaining 1,480 images are employed for evaluation,
ensuring that images from the same source are not used for both training and
evaluation.

Table 4. Comparison of preprocessing cases.

Rank Train Preprocess Test Preprocess Acc. (%) Obst. Iou (%) Water Iou (%) Sky Iou (%) Mean Iou (%)

1 ImageNetN + BrN ImageNetN + BrN 98.74 90.63 97.77 98.95 95.79
2 ImageNetN + Brµ ImageNetN + Brµ 98.67 90.9 97.85 98.52 95.76
3 ImageNetN + Brµ ImageNetN 98.64 90.8 97.81 98.43 95.68
4 BrN BrN 98.36 90.94 96.88 98.07 95.29
5 ImageNetN ImageNetN 98.19 91.04 96.69 97.51 95.08
6 ImageNetN ImageNetN + Brµ 98.04 90.38 96.42 97.31 94.70

Brightness Pre-processing. This section shows the results of different prepro-
cessing cases when learning WODIS. In training and testing, the performance is
compared with different preprocess combinations. The preprocessing consists of
a total of 6 cases as below:

– No preprocessing is applied: No Normalization and no brightness shift.
– ImageNet normalization which is commonly used as preprocessing:

ImageNetN .
– Brightness Normalization: BrN .
– Brightness Shift: Brµ.
– Both ImageNet Normalization and Brightness Normalization are applied:

ImageNetN + BrN .
– Both ImageNet Normalization and Brightness Shift are applied: ImageNetN

+ Brµ.

After conducting 36 experiments with all possible combinations, only top
6 results are reported in Table 4 including existing ImageNet normalization as
baseline. As can be seen in Table 4, four combinations show improved perfor-
mance in terms of Accuracy and Mean IoU compared to the ImageNet normal-
ization. It shows Obstacle IoU, which is slightly lower than ImageNet Normal-
ization, on the other hand, increases by 1%+ in both Water and Sky IoU. The
combination of ImageNet Normalization with Brightness Shift leads to improved
performance. Nevertheless, the best result is achieved by fusing Brightness Nor-
malization and ImageNet Normalization.
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Contrastive Separation Loss Function. As discussed in the Sect. 2.2, the
proposed contrastive separation loss function can be applied to diverse compo-
sitions of the loss function based on the selection of components for R1 and R2.
Among these, we compare the performance of Contrastive Sky-Obstacle separa-
tion Loss (CSOL; LRobstacle

Rsky
), Contrastive Sky-Water separation Loss (CSWL;

LRwater
Rsky

), Contrastive Obstacle-Sky separation Loss (COSL; LRsky
Robstacle

), Con-
trastive Obstacle-Water separation Loss (COWL; LRwater

Robstacle
), Contrastive Water-

Sky separation Loss (CWSL; LRsky
Rwater

), and Contrastive Water-Obstacle separa-
tion Loss (CWOL; LRobstacle

Rwater
).

Table 5 presents the results of segmentation performance based on different
loss functions. We compare the performance of our loss functions with WSL
that shows the highest performance among the loss functions proposed in WaSR
[8]. The comparison includes accuracy, Intersection over Union (IoU) for water,
IoU for obstacles, IoU for the sky, and the average of these three IoU values.
Notably, among our loss functions, CSOL and CSWL outperform WSL in both
accuracy and IoU, indicating a significant improvement in segmentation perfor-
mance.

Table 5. Performance on image segmentation with different loss functions.

Loss Function Accuracy (%) Obstacle IoU (%) Water IoU (%) Sky IoU (%) Mean IoU (%)

WSL [8] 89.29 74.22 81.31 88.91 81.48
CSOL 90.62 77.25 83.60 89.30 83.38
CSWL 90.06 73.91 83.44 90.46 82.60
COSL 89.93 76.60 82.59 87.35 82.18
COWL 88.75 74.43 80.21 86.98 80.54
CWSL 88.74 75.06 80.66 84.80 80.18
CWOL 87.87 72.65 80.05 83.30 78.67

Table 6. Performance per segmentation filtering.

F1-score (%) Recall (%) Precision (%) FPS

without Seg Filter 62.34 68.16 63.54 32.37
with Seg Filter 67.72 65.03 76.82 15.52

3.3 Performance of MarUCOD

In the main stream of MarUCOD, the object detection module estimates the
locations of all unspecified objects and the OOD detection module discriminates
them into known or unknown objects. The final performance of the two detection
modules corresponds to “without Seg Filter” in Table 6. This includes setting the
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Table 7. Comparison with a state-of-the-art method for unknown but concerned object
detection.

F1-score (%) Recall (%) Precision (%) FPS

STUD [4] 25.63 48.67 19.99 14.28
MarUCOD(Ours) 67.72 65.03 76.82 15.52

Fig. 5. Qualitative comparison with a state-of-the-art method.

confidence score threshold β for YOLOv7 to 0.05, the object patch size to 128,
employing Bisecting K-Means with a cluster count K of 30, and setting the OOD
threshold θ determined by p = 95%. When the segmentation module is used for
filtering unconcerned object boxes, all the performance metrics largely increase
as shown in the case of “with Seg Filter” in Table 6.

The comparison between the performance of existing research and our MarU-
COD is presented in Table 7. We have investigated various out-of-distribution
detection techniques [24–26]. However, among with STUD [4], which focuses on
object-level OOD detection, these methods primarily address image-level OOD
detection. Since STUD is the only state-of-the-art (SOTA) in our problem set-
ting, we perform a performance comparison with this paper. In our study, we
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adapt this approach to the maritime domain by training on the SeaShips dataset
and evaluating its performance on the MID and MODD datasets.

As shown in Table 7, significant improvements are observed in F1 score, which
includes precision and recall. The F1 score increases from 25.63% to 67.72%,
recall from 48.67% to 65.03%, and precision from 63.54% to 76.82%. Addition-
ally, the final speed increases slightly to 15.52 fps compared to STUD’s 14.28 fps.
Given that the conventional target frame rate for real-time processing in surveil-
lance footage is 15 fps [27], MarUCOD’s speed ensures real-time performance.
This performance enhancement can also be observed in Fig. 5.

We develop a user interface (UI) using the PyQT5 library, enabling users to
easily train MarUCOD and tune hyperparameters depending on their maritime
environments. The codes and the UI for MarUCOD is available at https://github.
com/AIX-Coast-Defense-PIL/MarUCOD.

4 Conclusion

We proposed a novel real-time framework for unknown but concerned object
detection (MarUCOD) in maritime scenes. By integrating object detection,
segmentation, and OOD detection techniques, along with optimizing the per-
formance of each technique to meet maritime environments through extensive
experiments, MarUCOD achieves state-of-the-art performance in unknown but
concerned object detection in maritime settings. We believe that our frame-
work will be applied to a variety of maritime applications, including unmanned
surface vehicles and maritime surveillance. However, in extremely dark envi-
ronments, all pixels of a RGB input image may have a value of 0, leading to
performance degradation. Therefore, exploring unknown object detection using
alternative channels (e.g., infrared) is left for future research.
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Abstract. The presence of visible particles in pharmaceutical products
is a critical quality issue that demands strict monitoring. Recently, Con-
volutional Neural Networks (CNNs) have been widely used in industrial
settings to detect defects, but there remains a gap in the literature con-
cerning the detection of particles floating in liquid substances, mainly
due to the lack of publicly available datasets. In this study, we focus on
the detection of foreign particles in pharmaceutical liquid vials, leverag-
ing two state-of-the-art deep-learning approaches adapted to our specific
multiclass problem. The first methodology employs a standard ResNet-18
architecture, while the second exploits a Multi-Instance Learning (MIL)
technique to efficiently deal with multiple images (sequences) of the same
sample. To address the issue of no data availability, we devised and par-
tially released an annotated dataset consisting of sequences containing
19 images for each sample, captured from rotating vials, both with and
without impurities. The dataset comprises 2,426 sequences for a total
of 46,094 images labeled at the sequence level and including five dis-
tinct classes. The proposed methodologies, trained on this new extensive
dataset, represent advancements in the field, offering promising strate-
gies to improve the safety and quality control of pharmaceutical products
and setting a benchmark for future comparisons.

Keywords: Vial Liquid inspection · Multi-Instance Learning ·
Convolutional Neural Network · Classification · Prediction

1 Introduction

Control over visible particles represents an important aspect in various fields,
such as pharmaceuticals, food and beverages, and manufacturing, because they
have a significant effect on the quality of the products. Impurities found in food
can have different forms: physical, chemical, and biological contaminants, like
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15317, pp. 269–283, 2025.
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Fig. 1. An example of some impurities (circled in red) that can occur in a liquid vial. (a)
shows brown plastic particles, in (b) black rubber particles are present, (c) illustrates
the presence of a piece of glass, and (d) shows residual sand at the bottom of the vial.

small metal fragments or pesticides [30]. These impurities pose significant health
risks to humans, potentially leading to severe illnesses and affecting the qual-
ity and taste of food. In manufacturing processes, impurities can alter desired
product characteristics and performance. For example, metallic contaminants in
semiconductor manufacturing can alter product mechanical properties, leading
to the development of weak points, thus impairing the functionality of final prod-
ucts [9]. Our work is focused on foreign particles in pharmaceutical products.
These impurities can lead to various consequences, including reduced effective-
ness due to interference with active ingredients, safety risks from toxic sub-
stances or allergens, and regulatory issues resulting in product recalls or legal
penalties [3]. These particles can arise from injection of the bottles, packaging,
collisions, or filtration, and they can pose serious health risks when injected
into the bloodstream, potentially resulting in thrombosis, phlebitis, tumors, and
anaphylactic reactions [15]. The detection of these particles is particularly chal-
lenging because they can occur in various forms, such as dust, plastic, rubber
and silicone particles, glass fragments, and sand residues as illustrated in Fig. 1.

Traditionally, identifying particles and impurities relied on manual inspec-
tion, which has been proven to be inefficient due to its time-consuming nature,
subjectivity, low repeatability, and susceptibility to errors. Several factors influ-
ence the likelihood of visually detecting particles, such as the particle’s size,
composition, and shape, as well as the product formulation, the vials, the filled
volume, and inspection conditions [29]. In manual detection, typically, inspec-
tors position the injection bottle under a high brightness and planar light source,
then rotate and tilt the container manually (or with the assistance of machin-
ery) to observe any visible foreign substances inside. Based on their inspection
experience, they decide whether these substances are acceptable or not. Such
an approach often exhibits poor efficiency since it strongly depends on light
conditions and other external factors, and it is not exactly repeatable [10].
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Advancements in imaging technology and computer vision have led to the
establishment of automated particle detection systems, which are increasingly
reliable, removing human error. These systems typically leverage image process-
ing [21], machine learning techniques [42], and well-known vision algorithms [18].
The main challenge to overcome is to find a method capable of efficiently extract-
ing fine-grained features from images that may be captured under suboptimal
lighting conditions and contain various sources of interference or noise. In sum-
mary, the issues to be tackled when designing particle detection methods in
liquid vials are as follows:

1. The appearance of particles can be influenced by different lighting condi-
tions, leading to variations in color, especially if some particles are transpar-
ent, as is often the case with glass fragments. Images of pharmaceutical con-
tainers are taken using a camera positioned beneath a mobile tracking device,
operating synchronously, and changes in illumination within the image may
occur due to ambient light conditions and vibrations from the machine;

2. Particles come in a variety of forms, ranging from small spots to bigger
shapes. They can exhibit different textures and surface characteristics, from
smooth to rough or irregular. The diversity in particle properties poses a sig-
nificant challenge for detection and classification systems, requiring robust
algorithms capable of effectively distinguishing between different particle
types under various circumstances;

3. The presence of noisy elements on the bottle wall and bubbles [40] within
the liquid can pose challenges in classifying the foreign particles, as they share
similar visual characteristics.

In recent years, Convolutional Neural Networks (CNNs) have been exten-
sively used for multiple applications [4,7,33,34,38,39], including industrial defect
detection [8,11,20,41]. They have shown promising results in overcoming the
aforementioned issues. CNN models can perform various tasks thanks to their
strong capability to represent robust features. While recent literature focused on
developing tools for detecting particles in liquids using deep learning methods,
there is an absence of publicly available datasets for this task, mainly due to the
preservation of industrial secrets. For this reason, previous research in this area
relied only on private datasets, making the comparison with existing approaches
impractical.

Paper Contributions. To partially cope with this literature gap, this paper
releases a small set of images that can be employed for future comparison.1

Unfortunately, for the same aforementioned reasons, the entire training set can-
not be released.

1 Test data are available at https://ditto.ing.unimore.it/residual.

https://ditto.ing.unimore.it/residual


272 G. Rosati et al.

More specifically, this paper tackles the problem of identifying different
kinds of impurities in pharmaceutical vial liquid by smartly leveraging two
existing state-of-the-art deep learning approaches, namely ResNet-18 [16] and
DSMIL [22]. To cope with the previously identified issues 1 and 2, instead of
dealing with a single image per sample, we opted for acquiring sequences of 20
images for each vial, suitably subjected to machinery-supported rotation. Such
an approach, which is also feasible in modern inline injection machines, allows for
mitigating particle appearance issues and the presence of noisy elements. How-
ever, it introduces additional challenges in the automatic detection algorithms.
In order to achieve satisfactory performance without sacrificing computation
time, our approach advocates for ResNet-18 by directly feeding it with multiple
channels, each corresponding to a sequence frame.

Additionally, to achieve similar results, although tackling it in a different
way, a Multi-Instance Learning Approach (MIL) is employed by treating each
sequence as a bag composed of multiple images instances. This way, the model
can deal with moving objects in the sequence without requiring expensive track-
ing strategies as previously proposed in literature [48].

In both cases, our proposed pipeline achieves outstanding results without
requiring pixel-level annotations.

2 Related Works

Product quality is crucial for pharmaceutical products, given their impact on
people’s health. To ensure this quality, various works have been made on vial
inspection, with the goal of detecting defects such as tilting and sinking of the
cap or cracks in the glass, which may negatively affect the product quality [44].
Although this is a slightly different task with respect to the detection of liquid
defects, our approach follows similar steps and employs comparable techniques to
those used in these studies.

The first works in this field employed traditional computer vision techniques.
Liuet al. [25] have proposed an inspection method that used the watershed
transform to find defective areas and a fuzzy SVM ensemble combined with
an ensemble of genetic algorithms to classify the type of imperfection. Also,
Liuet al. [27] used the SVM classifier to inspect vials for flaws, fed with local
binary pattern (LBP) features extracted from the region of interest of the image,
grouped using k-means clustering to have a compact representation of them. Sev-
eral other studies have utilized SVM for classifying defects on the surface of the
rolled steel [19], in the industrial pavements [28], and in textile materials [1]. The
key difference in existing approaches lies in the method used for feature extrac-
tion. More recently, Zhouet al. [49] proposed two different techniques to find
defects in glass bottles using traditional vision algorithms: a template-matching-
based method with multiscale filtering, and a region-growing Euclidean saliency
method, with the integration of superpixel segmentation and geodesic saliency
detection algorithms.
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Regarding the analysis of liquid solutions, Wanget al. [45] developed a method
to find unwanted glass fragments in the liquid by shaking the container, exploit-
ing the fact that the glass pieces are heavier, so they cannot move smoothly
with liquid and other particles. Thus, they took several images in sequence and
used the optical flow algorithm to perform the detection. In the same year, Geet
al. [12] presented an automated system for checking ampoule injections for tiny
foreign particles. They developed a custom hardware platform for transportation
and agitation, capturing images for analysis. The computation of trajectories of
moving objects within liquid allowed them to differentiate foreign particles in the
images; then impurity types were classified through multiple features, including
particle area, mean gray value, and geometric invariant moments.

The advent of deep learning has been a breakthrough in visual detection
tasks, including defect detection [41]. Its ability to autonomously learn complex
features from datasets enabled algorithms to accurately identify patterns and
objects with more precision. One of the first approaches regarding foreign particle
inspection is another work of Ge et al. [11]. They successfully explored the usage
of a modified version of Pulse-Coupled Neural Networks (PCNN) [20] to identify
undesired particles in glucose or sodium chloride injection liquids. PCNNs are
non-trained neural networks where each neuron receives as input the correspond-
ing pixel intensity and other inputs from its neighboring neurons. These stimuli
are added together, accumulating them until they surpass a dynamic thresh-
old, triggering a pulse output. This process, iteratively performed, generates a
series of binary images as outputs. Neighboring neurons’ connections lead to
pixels of the image with similar intensity values pulsing together. Thus, it is
possible to obtain image segmentation by identifying pixels corresponding to
synchronously pulsing neurons. The main drawback of this technique lies in its
dependence on the choice of thresholds. The author of the paper suggested an
adaptive approach to find the best hyperparameters.

Since the middle of the 2010s, many neural network architectures have
been developed for detection tasks, such as R-CNN [14], Faster R-CNN [36],
YOLO [35], SSD [26], and ResNet [16] and have become widely popular. Exam-
ples of application of these networks can be found in defect detection addressing
various domains, such as the inspection of flat surfaces [46] using a combina-
tion of Fast and Faster R-CNN, the particle detection in complex biomedical
images [13] through a ResNet-based architecture and the detection of cracks in
aircraft structures through the usage of YOLOv3-Lite [23]. In the work of Dinget
al. [8], a defect-detecting Single-Shot Detector (SSD) is devised for wood inspec-
tion, using DenseNet [17] as the backbone to improve the extraction of deep
features and mitigate gradient vanishing issues of the original SSD backbone.
Furthermore, the integration of a feature fusion function to combine multi-layer
feature maps from the backbone enhances the classification of wood defects. Rit-
teret al. [37] presented a new method to identify and track fluorescent particles
in microscopy images. Their approach leveraged the Deconvolution Network [31],
a CNN similar to an encoder-decoder architecture for particle detection, along
with a bidirectional long short-term memory for tracking, which also aided in
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particle classification. A less conventional deep learning approach was used by
Zhanget al. [48], who developed a particle inspection system for liquid vials. They
captured eight sequential images and used fuzzy cellular neural networks for pre-
cise position and segmentation, introducing an adaptive tracking system based
on a sparse model for determining the presence of foreign particles. In one of the
most recent works, Yiet al. [47] explored the usage of the attention mechanism on
pharmaceutical foreign particle detection. They developed an end-to-end deep
architecture with adaptive convolution and multiscale attention to identify and
classify foreign particles.

Based on the results reported in the aforementioned papers, we can state that
deep learning detection methods outperform traditional approaches in particle
detection liquids. For these reasons, in this work, we choose to employ two state-
of-the-art deep learning architectures: ResNet [16], which we employed in a new
fashion to handle sequences rather than individual images, and DSMIL [22], a
method not previously investigated for multiclass particle detection. The specific
details of our architectures and the results on our dataset are outlined in the
following sections.

3 Methods

As said, to face the task of recognizing defective vials, we decided to explore
two different paths; the former is based on the use of ResNet [16] in a slightly
different way than the standard one, in order to deal with the entire sequence of
images, the latter is a Multi-Instance Learning (MIL) [5] based technique.

3.1 ResNet-18

Residual Neural Network (also known as ResNet [16]) is a family of deep learning
models in which the weights layers learn residual functions based on the layer
inputs. This is possible through the residual connections that execute identity
mappings and are added to layer outputs. In our study we employed ResNet-18.

As ResNet operates on individual images, we had to adapt its architecture
to our problem, where we deal with a sequence of images for each rotating vial.
Our goal was to capture the collective information across the sequence of frames
acquired during the vial’s rotation. To perform classification at the sequence
level, we explored two different aggregating methods. In the first approach, we
learned to predict a class for each frame within the sequence and subsequently
determined the class for the entire sequence through a majority voting approach.
Secondly, we investigated an alternative approach wherein we independently
extracted features from each frame using ResNet convolutional layers. Then,
these features were concatenated along a new dimension before being fed to
the fully connected layers, resulting in a single prediction for the entire sequence.
As a loss function, we used cross-entropy.
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Fig. 2. Representation of the proposed MIL-based pipeline, divided into four main
steps: preprocessing, self-supervised training of ResNet-18, Embedding phase, and the
MIL phase.

3.2 MIL-Based Approach

Multiple instance learning is an extensively used weakly supervised learning algo-
rithm [2,24,32] where a subset of examples from the training set is arranged as a
set (bag) composed of multiple instances. If we deepen the case of binary clas-
sification, let B = {(x1, y1), . . . , (xn, yn)} be a bag where xi ∈ X are instances
with labels yi ∈ {0, 1}, the label of B is given by:

c(B) =

{
1, if ∃ yi ∈ B : yi = 1
0, otherwise

The challenge of detecting defects in the liquid inside vials can be seen as a
multiple-instance learning problem if the detection method involves capturing a
series of images of the rotating vials and the labeling is done based on the entire
sequence. The sequence-level labeling method is usually the standard because
while foreign particles may not always be visible in every frame if they appear at
least in one frame, the vial should be classified as defective.

The problem of multi-instance learning for a bag-level classification can be
approached by training a model that assigns a probability c(X) of the bag being
labeled as positive (Y = 1). The function c(X), can be formulated as follows:

c(X) = g(σ(f(x1), . . . , f(xn)))

where the function f is a feature extractor transforming single instances into a
lower-dimensional embedding; σ is a permutation-invariant aggregation function
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(often referred to as MIL pooling), which derives the bag representation; and g
apply a final transformation to obtain the bag probability. Both functions f and
g can be parameterized by neural networks, which can be trained end-to-end
through backpropagation. The only other requirement is that the MIL pooling
operation σ must be differentiable.

In our case, each image sequence is considered a bag, while each single frame
composing the sequence is treated as an instance. We used the MIL architec-
ture developed by Liet al. [22] called Dual-Stream Multiple Instance Learning
(DSMIL). This network, depicted in Fig. 2, learns from both instances and bag
embeddings at the same time. The first stream works at instance-level. It extracts
an embedding from each instance and classifies each embedding, giving a single
score in case of a binary classification problem. Then, the classification step is
followed by a max-pooling operation to identify the instance with the highest
score, referred to as the critical instance.

In a more exhaustive way, let X = x1, ..., xn denote a sequence (bag) of
frames of a rotating vial. Given f as feature extractor, each frame xi can be
projected into an embedding hi = f(xi) ∈ R

L×1. The first stream uses a frame
classifier on each frame embedding, followed by max-pooling on the scores:

cm(X) = gm(f(x1), . . . , f(xn)) = max{W0h1, . . . , W0hn}

where W0 is a weight vector. The max-pooling stream provides the frame with
the highest score (the critical instance).

The second stream aggregates the above frame embeddings into a single
sequence embedding, which is further scored by a bag classifier. It transforms
each instance embedding hi, obtained in the first stream (including the critical
instance embedding hm) into two vectors, query qi ∈ R

L×1 and information
vi ∈ R

L×1, which are given respectively by:

qi = Wqhi, vi = Wvhi, i = 0, . . . , N − 1

where Wq and Wv are learnable weight matrices. Then, a distance measurement
U , which has a similar structure and meaning of the attention operation used in
Transformers architecture [43], is defined as follows:

U(hi, hm) =
exp(〈qi, qm〉)∑N−1

k=0 exp(〈qk, qm〉)
where 〈·, ·〉 denotes the inner product of two vectors. As we can see from the
formulation, the distance is computed only between the critical instance and all
the instances in the bag. This ensures a linear complexity of O(n) rather than
quadratic like the attention mechanism.

Overall bag representation b is computed by combining the information vec-
tors vi of all instances using a weighted sum, where the weights are determined
by the distances to the critical instance:
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Fig. 3. Sample images from a sequence of a vial containing no impurities.

b =
n∑

i=1

U(hi, hm)vi

The bag score of the second stream is obtained through a final linear layer. This
score, averaged with the one of the first stream cm(B), produced the final score.

Since our research tackles a multiclass problem, DSMIL has been adapted
accordingly. We use max-pooling to determine the critical instance of each class,
and then we compute attention weights for each class individually with respect
to the corresponding critical instance. As a result, the bag embedding b becomes
a matrix with dimensions L × C, where C represents the number of classes. In
this matrix, each entry is a weighted sum of the instance information vectors vi.
The final fully connected layer for the classification has C output channels.

DSMIL exploited SimCLR [6], which stands for Simple Contrastive Learn-
ing Representation, to produce a robust feature extractor in an unsupervised
learning setting. In our case, SimCLR trains a ResNet-18 to drastically reduce
the input size of each frame by embedding it into a vector. It randomly selects
pairs of images from the sequences, applies random augmentations to improve
the robustness, and trains the network to maximize similarity between images
belonging to the same sequence while minimizing similarity between images from
different sequences. After training, ResNet-18 is used to generate the embeddings
for single frames within the first stream of DSMIL.

4 Experiments and Results

Dataset. The samples under examination are glass vials with silicone caps filled
with distilled water. Image acquisition was performed on a rotating test bench
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Fig. 4. Sample images from a sequence of a vial containing glass impurities.

using a Matrix Vision camera with a bottom white illuminator and a single
LED. The vials were rotated at a speed of 200 rpm with an acceleration and
deceleration time of 400 ms. Image acquisitions of each sample occurred after a
rotation of the vial, with a delay of approximately 100 ms.

Before the acquisition procedure, each vial was cleaned on the outside with
alcohol to remove marks and residual particles from the glass. The dataset used
to train and evaluate our models is composed of 2,426 vial sequences, where each
sequence consists of 19 frames, for a total of 46,094 images.

The dataset contains annotations for five different classes. One class repre-
sents good vials, indicating the absence of impurities. The other four classes refer
to different types of foreign particles: brown impurities, corresponding to burnt
plastic particles, black defects, corresponding to rubber or silicone particulates, a
class is for glass pieces of various sizes, and the last class for sand residues. These
are essentially the defects shown in Fig. 1. Samples from a clean sequence are
reported in Fig. 3, while images extracted from sequences containing glass and
sand impurities are depicted in Fig. 4 and Fig. 5.

Pre-processing. Each frame in the dataset encompassed a pre-processing phase
consisting of a center crop to a fixed dimension of 325× 268 pixels to isolate the
vial, followed by a rotation to ensure a consistent vial alignment.

Implementation Details. The experiments were conducted for both the pre-
sented methods by dividing the dataset into 4 separate and non-overlapping
sequence splits. For each split, each training set consists of 2, 000 sequences,
while each test set consists of 426 sequences.

For what concerns ResNet-18 with voting and concat, we used SGD with
momentum as optimizer, a learning rate of 0.01, ReduceLROnPlateau as sched-
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Fig. 5. Sample images from a sequence of a vial containing sand impurities.

uler, and a batch size of 4 sequences. In this case, convergence is achieved after
a total of 30 epochs.

For DSMIL, instead, we used Adam as optimizer, keeping a fixed learning rate
of 0.0002 during the training and a batch size of 1. The feature extractor (ResNet-
18) is trained using the SimCLR framework on each frame of all the sequences.
To achieve convergence, DSMIL is trained for a total of 120 epochs. Both DSMIL
and ResNet are trained using NVIDIA Tesla K80 as GPU.

Results. The classification results are summarized in Table 1. For each
method, we reported accuracy, precision, recall, and F1-score computed on the
test set, averaged across the five classes. Additionally, we computed the average
inference time on a single sequence. We used 4-fold cross-validation to evaluate
the model’s performance more robustly and mitigate the risk of overfitting to
a specific subset of the data. Thus, the reported results consist of the average
metrics computed across all the folds. The results suggest that all models reach
good performance on this classification task; in particular, the best-performing
method is DSMIL, which reaches an accuracy of 99.53%. DSMIL misclassifies
only a few sequences confusing brown particles sample as vials’ without impuri-
ties. This occurred because these types of impurities consist of very tiny burnt

Table 1. Comparison of different methods on our dataset.

Model Accuracy Precision Recall F1-Score Time [ms]

ResNet (voting) 0.9835 ± 0.0071 0.9829 ± 0.0062 0.9851 ± 0.0069 0.9840 ± 0.0064 1257

ResNet (concat) 0.9903 ± 0.0046 0.9899 ± 0.0042 0.9918 ± 0.0048 0.9908 ± 0.0046 1328

DSMIL 0.9953 ± 0.0023 0.9948 ± 0.0020 0.9957 ± 0.0024 0.9952 ± 0.0022 1639
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plastic pieces. Comparing the two aggregation methods used for ResNet exper-
iments, we observed that concatenation is slightly more effective than majority
voting. We noticed that instances where majority voting failed were due to a
misclassification of vials with an impurity as pure vials. This happens because
very small impurities (Fig. 5) are only visible in specific frames of the sequence,
leading to most of them being assigned the “no impurities” class. Thus, we can
conclude that, particularly for challenging-to-detect defects, using concatenation
before the ResNet-18 fully connected layers is preferable.

5 Conclusion

In conclusion, this study addresses the critical issue of detecting visible particles
in pharmaceutical liquid vials using advanced deep-learning techniques. Over the
years, some traditional algorithms, such as SVM and k-means clustering have
been explored. More recently, deep learning techniques have outperformed the
latter, improving the safety of the final products. In this work, we introduce
two methodologies, leveraging ResNet-18 and DSMIL, to classify four types of
impurities. To gap the absence of publicly available dataset we also create a
new dataset (which is partially released) comprising sequences of images cap-
tured from rotating vials, enhances research in this area by providing valuable
data for future comparisons. Our methodologies, trained on this dataset, reaches
impressive results, with a maximum accuracy of 99.53%, and 99.52% of F1-score.

Future Work. The proposed methodologies exhibited exceptional performance
in the designated task, achieving near-optimal scores in multi-class classification.
Future research will pivot towards the localization and detection of impurities
rather than solely focusing on classification, thereby augmenting the pipeline
with explanatory capabilities. Moreover, this allows to classify each detection
with its own class, and identify different kind of impurities within the same
sample. Another direction of research could focus on improving the inference
time in order to obtain real-time performance in a production environment.
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Abstract. Multispectral object detection, utilizing both visible (RGB)
and thermal infrared (T) modals, has garnered significant attention for
its robust performance across diverse weather and lighting conditions.
However, effectively exploiting the complementarity between RGB-T
modals while maintaining efficiency remains a critical challenge. In this
paper, a very simple Group Shuffled Multi-receptive Attention (GSMA)
module is proposed to extract and combine multi-scale RGB and thermal
features. Then, the extracted multi-modal features are directly integrated
with a multi-level path aggregation neck, which significantly improves the
fusion effect and efficiency. Meanwhile, multi-modal object detection
often adopts union annotations for both modals. This kind of super-
vision is not sufficient and unfair, since objects observed in one modal
may not be seen in the other modal. To solve this issue, Multi-modal
Supervision (MS) is proposed to sufficiently supervise RGB-T object
detection. Comprehensive experiments on two challenging benchmarks,
KAIST and DroneVehicle, demonstrate the proposed model achieves the
state-of-the-art accuracy while maintaining competitive efficiency.

Keywords: Multispectral object detection · Attention mechanism ·
Group shuffle · Multi-modal supervision

1 Introduction

As an integral branch of computer vision, object detection has a wide range of
applications in real-world scenarios. However, unimodal object detection meth-
ods often encounter limitations from unfavorable conditions, such as dim light-
ing, fog, or occlusion [37]. To address this challenge, a common approach is
to fuse complementary information of different modals, which has been widely
used in tasks such as video surveillance [1] and autonomous driving [23]. For
example, visible cameras typically capture complex details such as color and
texture under sufficient lighting. But in dark scenarios, their effectiveness will
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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be significantly reduced. In contrast, thermal cameras specialize in capturing the
thermal radiation emitted by objects and are almost unaffected by changes in
lighting and weather conditions. Nevertheless, the resolution of thermal images
is lower, and the texture and color of objects are absent. Consequently, the
sufficient fusion of complementary information of RGB and thermal modals is
critical.

Feature-level fusion, also known as middle fusion, has been widely explored
since its excellent performance. It often adopts two separated sub-networks
to extract feature maps from RGB and thermal modals and employs meth-
ods such as channel concatenation [11] and weighted fusion [19] for further
fusion. Researchers also explored more complex fusion modules to fully utilize
the potential complementary information between RGB and thermal modal,
such as illumination-aware techniques [7] and attention modules [31]. However,
these methods are typically based on two-stage R-CNN variants [10,32] and with
overly complex designs fail to achieve an optimal balance between accuracy and
efficiency. In addition, prevalent studies often utilize union annotations [38] as
detection supervision. It may cause the network easily affected by noise in weak
alignment or modal-absent situations. Moreover, using union annotations to
supervise two modals is unfair, since objects observed in one modal may not
be seen in the other modal. It may cause confusion and failure to fully utilize
the precise information of each modal.

In this paper, we propose a novel one-stage SAMS-YOLO network to address
the problems mentioned above. Specifically, for significant and efficient multi-
modal feature fusion, we introduce a lightweight multi-scale attention module
to extract RGB-T multi-receptive field features and combine them via a novel
parameter-free group shuffle operation. Through the multi-level path aggrega-
tion neck [16], the combined multi-modal features are effectively and sufficiently
fused. Additionally, to ensure robust and accurate object detection, we propose a
multi-modal supervision strategy consisting of three branches for detection, i.e.,
RGB, thermal, and fusion, which is supervised by visible, thermal, and union
annotations separately. It can solve the problem of unfair supervision caused
by union annotations. By integrating the aforementioned lightweight and effi-
cient modules into the one-stage YOLOv5 [9] framework, we achieve a good
balance between detection accuracy and efficiency. Extensive experiments are
conducted on the KAIST and DroneVehicle datasets, the results demonstrate
superior detection performance. The contributions of this paper are summarized
as follows:

1) A simple Group Shuffled Multi-receptive Attention (GSMA) module is pro-
posed to effectively extract and combine multi-modal multi-receptive field fea-
tures. Through the integration with the top-down and bottom-up PANet [16],
multi-modal features are efficiently and sufficiently fused. With this module,
we achieve a reduction of 2.07%, 2.28%, and 1.93% on MR−2 across all-day,
day, and night subsets of the KAIST dataset, respectively.

2) A Multi-modal Supervision (MS) strategy is proposed to effectively guide
the network to learn precise and robust feature representations by leveraging
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Fig. 1. Architecture of the proposed SAMS-YOLO. The multi-modal supervision strat-
egy is applied to the RGB, thermal, and fusion branches. During training, the RGB,
thermal, and union annotations are used as supervision to calculate detection loss. Dur-
ing inference, a decision-level fusion is applied to fuse the RGB, thermal, and fusion
branch results.

visible, thermal, and union annotations as supervision. This strategy leads to
a reduction of 2.66%, 2.87%, and 2.25% on MR−2 across all-day, day, and
night subsets of the KAIST dataset, respectively.

3) The proposed RGB-T object detection method, namely SAMS-YOLO, inte-
grates GSMA and MS into YOLOv5, enhancing the detection ability of small
targets, night scenes, and occlusion situations. It achieves the state-of-the-art
results on two challenging datasets: KAIST multispectral pedestrian dataset
and DroneVehicle remote sensing dataset, while maintaining a fast processing
speed.

2 Related Work

2.1 Multispectral Object Detection

Due to the significant advantages offered by collaborative detection in visible and
thermal domains, multispectral object detection has made remarkable progress.
Liu et al. [15] adopted a two-stage method Faster R-CNN [18] as the frame-
work, and incorporated two separate pedestrian detectors on visible and ther-
mal images, respectively. SDS-RCNN [2], MSDS-RCNN [11], and I2MDet [34]
leveraged ground truth bounding boxes as weak segmentation annotations to
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facilitate supervised learning. IAF R-CNN [12] integrated illumination-aware
modules into the detection network, enabling dynamic weight adjustment for
different input modals based on varying light conditions. AR-CNN [32] and
TSFADet [28] proposed modal alignment operations to solve the problem of
temporal and spatial misalignment between RGB-T modals. Additionally, Zhou
et al. [38] investigated the issue of multi-modal imbalance resulting from the
inadequate fusion of modal information in their MBNet framework. UA-CMDet
[19] tackled the quantification of uncertainty associated with multi-modal targets
through uncertainty perception and illumination estimation. Li et al. [14] pro-
posed multiscale cross-modal homogeneity enhancement and confidence-aware
feature fusion in their MCHE-CF. Notably, most of the approaches mentioned
above are based on two-stage R-CNN variants, which suffer from slow detection
speeds due to their intricate architecture and multiple stages involved.

2.2 Multi-modal Features Fusion

Fusing multi-modal features is a crucial aspect of multispectral object detec-
tion, which can be categorized into four types: early fusion, middle fusion, late
fusion, and decision-level fusion. Among these, middle fusion strategies have
been widely explored and demonstrated to be more effective, as they are more
flexible in design and enable deeper feature fusion [5,17]. MSDS-RCNN [11] and
UA-CMDet [19] employed a simple channel concatenation approach for feature
fusion. CSAA [3] combined channel switching and channel concatenation. CIAN
[31] introduced a cross-modal interaction attention module to adaptively recal-
ibrate channel responses. MBNet [38] leveraged the differences between modals
to design a differential modal-aware fusion module. SC-MPD [5] incorporated a
spatial-contextual feature aggregation block to efficiently utilize multiple source
features. DCMNet [24] improved feature complementarity through dynamic local
and non-local feature aggregation modules. C2Former-S2ANet [29] employed an
intermodality cross-attention module to obtain the calibrated and complemen-
tary features between the RGB-T modals. However, a simple concatenation
fusion method cannot guarantee accuracy, and complex modules significantly
result in high memory usage and latency. To address these challenges, we pro-
pose a novel group shuffled multi-receptive attention module that considers both
channel and multi-spatial level attention while ensuring low computational costs.

3 Method

Figure 1 illustrates the overall architecture of our SAMS-YOLO model. It com-
prises three primary components: the dual-stream feature extractor backbone,
three-branch detection neck, and three-branch detection head. In the training
phase, we utilize RGB, thermal, and union annotations of the RGB-T modals for
detection supervision. For inference, we adopt a decision-level fusion strategy to
weigh the prediction from the RGB, thermal, and fusion branches.
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Fig. 2. The structure of Group Shuffled Multi-receptive Attention module. (a) shows
the data flow structure of the GSMA. (b) shows the SPC structure in (a).

3.1 Framework Overview

As shown in Fig. 1, the network takes RGB-T image pairs as input, and a dual-
stream backbone with five layers (denoted as P1 to P5) to extract hierarchical
feature maps. The size of features generated by P1 to P5 is 2, 4, 8, 16, and
32 times downsampling of the input images, respectively. The neck and head
are designed with a three-branch structure of RGB, thermal, and fusion. Firstly,
the visible and thermal features obtained by P3 to P5, are passed to the cor-
responding neck branch, i.e., the top one and the bottom one, for refined fea-
ture representation and prediction, respectively. Secondly, two GSMA modules
are employed to extract RGB-T multi-receptive field features and fully com-
bine them at the P3 and P4 stages. Thirdly, the concatenated features at the
P5 stage and the fused features enhanced by GSMA are then fed into the fusion
neck and head (middle branch) for further prediction. The neck here is the top-
down and bottom-up PANet [16]. Subsequently, as expressed in Eq. 1, the final
prediction result pfinal is obtained by taking the weighted average of fusion
detection pf , visible detection pv, and thermal detection pt. λ1, λ2, and λ3 are
hyper-parameters, and detailed in the experimental implementation.

pfinal = λ1pf + λ2pv + λ3pt (1)

3.2 Group Shuffled Multi-receptive Attention Module

The motivation of this work is to build an efficient and effective multi-modal
attention mechanism to improve multi-modal feature fusion. As illustrated in
Fig. 2(a), the structure of the GSMA module is quite straightforward, it contains
two parts: multi-receptive attention and group shuffle.

Multi-receptive Attention. Previous studies have rarely focused on the
impact of multi-receptive field features on multi-modal feature fusion. Inspired by
[30], we introduce a multi-receptive attention mechanism to effectively extract
the multi-modal multi-scale spatial information. As shown in Fig. 2(a), two
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Squeeze Pyramid Concat (SPC) modules [30] are adopted to obtain multi-
receptive field feature maps on channel-wise of the input features F v

i and F t
i

(i ∈ {3, 4}). Then, two SEWeight modules [30] are applied to extract channel-
wise attention weights for the RGB-T multi-scale features obtained from the
SPC module. It is worth noting that the SEWeight module [30] can encode
global information and adaptively recalibrate channel-wise relationships through
squeezing and excitation operations. After that, element-wise multiplication is
applied to recalibrate the weights and corresponding feature maps. Finally, the
refined features F v′

i and F t′
i at different receptive fields are combined by the

group shuffle operation to obtain F s
i .

The structure of the SPC module is shown in Fig. 2 (b). The input features
are extracted by multi-scale group convolution kernels to capture information
regarding different spatial resolutions and depths. The multi-scale group con-
volution kernel sizes are 3 × 3, 5 × 5, 7 × 7, and 9 × 9, with corresponding
convolution groups set as 1, 4, 8, and 16. Then, the multi-receptive features are
merged through channel concatenation.

Group Shuffle. The RGB-T features contain rich complementary information
such as color, texture, and contour. To efficiently learn modal correlations, we
propose a new representation module called group shuffle. As shown in Fig. 3,
we first split and group the RGB and thermal features along the channel dimen-
sion, and then combine them through alternating merging. This parameter-free
operation not only preserves the similarity of intra-group modal but also makes
inter-group modal responses more diverse, effectively improving the fusion of
multi-modal features. Assuming that both RGB and thermal features have C
channels, we split these channels into K groups, each containing N channels,
where N = C/K. The channel index j of F v

j and F t
j is mapped to new posi-

tion j′ according to Eq. 2. It should be noted that when K = 1, group shuffle is
equivalent to channel concatenation, and when K = C, it is equivalent to channel
shuffle [35].

j′ =

{
j mod N +

⌊
j
N

⌋ × 2N, F v
j ∈ F v

j mod N +
⌊

j
N

⌋ × 2N + N, F t
j ∈ F t

(2)

The multi-modal features after the group shuffle are fully mixed with each
other at different multi-receptive fields. By aggregating through multi-level top-
down and bottom-up path neck, a comprehensive fusion of multi-modal and
multi-scale features can be achieved, and the detection ability of small targets,
night scenes, and occlusion situations can be improved.

3.3 Multi-modal Supervision Strategy

Due to the possibility of spatial misalignment between visible and thermal
images, the position of the same object may be different in the two modals.
Simply using the union annotations of RGB-T modals may lead the network
to be subjected to biased supervised information due to misalignment, which is
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Fig. 3. The structure of the Group Shuffle.

not conducive to learning more accurate feature representations. Furthermore,
in situations where specific modal are not available, such as a visible camera in
dark night environment, the union annotations used to supervise the visible
branch may introduce noise disturbance. Therefore, we use visible annotations,
thermal annotations, and the union annotations of RGB-T modals to provide
more accurate feature learning supervision for feature extraction and detection.
As shown in Fig. 1, during training, the visible, thermal, and union annotations
are used to supervise the prediction of the RGB, thermal, and fusion branches,
respectively.

Additionally, to guide the network to extract more accurate feature represen-
tations, following [11], we add segmentation prediction heads in the dual-stream
backbone and use the RGB and thermal ground truth bounding boxes as seg-
mentation supervision. This method is only used during training and does not
affect the network inference speed.

3.4 Loss Function

The loss function is built upon YOLOv5 [9], incorporating the multi-modal
supervision loss and segmentation supervision loss. As shown in Eq. 3, Lf , Lv

and Lt are fusion, visible and thermal detection loss, respectively. Lcls, Lobj ,
Lbbox represents the object classification loss, object confidence loss, and object
coordinate position loss, respectively. Lseg is segmentation loss of binary cross-
entropy. λcls, λobj , λbbox and λseg are correction factors and are detailed in the
experimental implementation.

Ltotal = λcls

(
Lf
cls+Lv

cls+Lt
cls

)
+λobj

(
Lf
obj+Lv

obj+Lt
obj

)
+λbbox

(
Lf
bbox+Lv

bbox+Lt
bbox

)
+λsegLseg (3)

4 Experiments

In this section, the experimental datasets are introduced firstly. Then, the imple-
mentation details and comparison experiments are presented. Finally, ablation
studies are conducted to verify the effectiveness of each component in our app-
roach.
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Fig. 4. Illustration of the modal misalignment problem in the DroneVehicle training
set. (a) and (b) depict the original and aligned RGB-T image pairs, where the top
images are thermal images and the bottom images are visible images. Yellow boxes
indicate annotations on the thermal images, while red boxes indicate annotations on
the visible images. Both modal annotations are visualized on the visible image. (Color
figure online)

4.1 Datasets and Evaluation Metric

Our approach is evaluated on two challenging datasets: KAIST multispectral
pedestrian dataset [8] and DroneVehicle remote sensing dataset [19]. These two
datasets along with their related evaluation metrics are depicted as follows.

KAIST Dataset. The KAIST dataset [8] consists of 95,328 RGB-T image pairs
with 103,128 pedestrian annotations. Following [15,32], we use 7,095 image pairs
for training and 2,252 image pairs for testing. Specifically, The test images con-
tain 1,455 day-time images (‘Day’) and 797 night-time images (‘Night’). We use
the standard MR−2 (log-average Miss Rate over false positive per image range
of

[
10−2, 100

]
) [8] and FPS (frames per second) to evaluate the performance.

Note that a lower MR−2 indicates a better detection performance.

DroneVehicle Dataset. The DroneVehicle dataset [19] is a large-scale drone-
based image dataset of oriented vehicles. It contains 28,439 RGB-T image pairs
with 953,087 instances covering urban roads, residential areas, parking lots, and
other scenarios. Specifically, it contains five categories, i.e., car, truck, bus, van,
and freight car.

Due to the lack of union annotations in the DroneVehicle training set, to
verify the effectiveness of our method, we established union annotations for the
first time by taking the union of independent annotations of RGB and thermal
modals. Specifically, due to the cross-modal misalignment problems [28], we use
the method proposed by [36] to register 2,441 RGB-T image pairs in the training
set. As shown in Fig. 4, the position misalignment problem has been addressed
compared with the original image pairs. Finally, we use the aligned training set
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Table 1. Evaluation results on the KAIST dataset.

Method MR−2 Platform FPS

All-Day Day Night

ACF [8] RGB+IR 47.32 42.57 56.17 MATLAB 0.37

Halfway Fusion [15] RGB+IR 25.75 24.88 26.59 TITAN X 2.33

IATDNN + IASS [7] RGB+IR 14.95 14.67 15.72 TITAN X 4.00

CIAN [31] RGB+IR 14.12 14.77 11.13 1080Ti 14.29

MSDS-RCNN [11] RGB+IR 11.34 10.53 12.94 TITAN X 4.55

AR-CNN [32] RGB+IR 9.34 9.94 8.38 1080Ti 8.33

CMPD [13] RGB+IR 8.16 8.77 7.31 1080Ti 9.09

MBNet [38] RGB+IR 8.13 8.28 7.86 1080Ti 14.29

SC-MPD [5] RGB+IR 8.07 8.16 7.51 Tesla P6 10

BAANet [26] RGB+IR 7.92 8.37 6.98 1080Ti 14.29

UGCML [10] RGB+IR 8.18 6.96 7.89 1080Ti 11.11

CPFM [20] RGB+IR 7.09 5.61 6.62 3090Ti -

MCHE-CF [14] RGB+IR 6.71 7.58 5.52 - -

DCMNet [24] RGB+IR 5.84 6.48 4.60 3090 7.14

YOLOv5 [9] RGB 18.72 13.48 28.45 2080Ti 83.33

IR 16.90 22.33 6.34 2080Ti 83.33

YOLOv5 [9] (early fusion) RGB+IR 17.61 20.67 12.18 2080Ti 58.48

SAMS-YOLO (ours) RGB+IR 5.26 6.00 3.81 2080Ti 19.31

for training and the original test set for evaluation. Following [19], we evaluate the
detection performance by utilizing the mean average precision (mAP) under
different IoU thresholds as the evaluation metric. Specifically, we select mAP0.5

and mAP in our experiments. Here, the mAP indicates that the IoU threshold is
set from 0.50 to 0.95 with a step of 0.05. Note that the evaluation performance of
RGB and thermal modal are averaged as the final evaluation results in our
experiment.

4.2 Implementation Details

The proposed SAMS-YOLO is based on YOLOv5 [9]. During training, mosaic
data enhancement, random HSV enhancement, and horizontal flip are adopted
to enhance RGB-T image pairs. The input images in both datasets are resized to
640 × 640 pixels. The optimizer employed is stochastic gradient descent (SGD)
for 150 epochs with a learning rate of 0.001 and a batch size of 6. Weight decay
and momentum are set to 0.0001 and 0.937, respectively. The hyper-parameters
λ1, λ2, and λ3 in Eq. 1 are set to 0.5, 0.25 and 0.25, respectively. The correction
factors λcls, λobj , λbbox, and λseg in Eq. 3 are set to 0.5, 1.0, 0.05, and 0.25,
respectively.
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Table 2. Evaluation results on the DroneVehicle dataset.

Method car truck van bus freight car mAP0.5 mAP Platform FPS

UA-CMDet [19] 87.5 60.7 38.0 87.1 46.8 64.00 - 3090 9.12

Oriented R-CNN [25] 89.9 56.6 46.9 89.6 54.4 67.52 42.60 - -

RoI Transformer [6] 90.1 60.4 52.2 89.7 58.9 70.29 43.57 - -

CIAN(OBB) [31] 89.98 62.47 49.59 88.9 60.22 70.23 - GV100 21.7

AR-CNN(OBB) [32] 90.08 64.82 51.51 89.38 62.12 71.58 - GV100 18.2

TSFADet [28] 89.88 67.87 53.99 89.81 63.74 73.06 - GV100 18.6

ViT-B+RVSA [21] 89.7 52.3 44.4 88.0 51.0 65.07 42.63 - -

C2Former-S2ANet [29] 90.2 68.3 58.5 89.8 64.4 74.2 - TITAN V -

I2MDet [34] 96.3 73.4 58.6 93.2 65.0 77.30 46.20 - -

DTNet-B [33] 90.2 78.1 65.7 89.2 67.9 78.23 52.85 3090 -

SAMS-YOLO-OBB (ours)97.00 79.57 67.50 95.95 63.75 80.75 57.13 2080Ti 17.83

Table 3. Effect of K in group shuffle. We tune the group hyperparameter K to
{1, 2, 4, 8, 16, 32, C}.

Subset MR−2

K = 1 K = 2 K = 4 K = 8 K = 16 K = 32 K = C

All-day 7.30 8.11 7.63 6.89 6.48 7.70 6.77

Day 8.33 9.40 8.92 8.77 7.86 10.03 8.46

Night 5.66 6.07 5.11 3.26 3.94 4.10 3.64

4.3 Comparison on the KAIST Dataset

The performance of SAMS-YOLO on the KAIST Dataset is presented in
Table 1. Compared with mainstream multispectral object detection algorithms,
our method achieves the best accuracy, reaching 5.26%, 6.00%, and 3.81% MR−2

on the reasonable all-day, day, and night subsets, respectively. At the same
time, our detector achieves the fastest detection speed of 19.31 FPS on 2080Ti
GPU. Compared with unimodal YOLOv5 [9] and early fused YOLOv5 [9,15], our
method has achieved significant performance improvement. This indicates that
the proposed GSMA module enhances the fusion ability of complementary infor-
mation of RGB-T modals, and improves the localization accuracy while main-
taining high efficiency. Meanwhile, through the proposed MS strategy, the detec-
tion results from the RGB, thermal, and fusion branches ensure the model’s recall
rate, achieving superior consequences.

4.4 Comparison on the DroneVehicle Dataset

Since the DroneVehicle is an oriented bounding box detection dataset, to achieve
the detection of oriented objects, we modified our model referring to [27], named
SAMS-YOLO-OBB. The experimental results are shown in Table 2. Our method
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Fig. 5. Impacts of RGB-T feature concatenation and group shuffle. The top and third
rows depict the feature map values along the channel dimension, while the second
and fourth rows display RGB-T images and corresponding heatmaps. The top two
rows showcase day-time scenes, whereas the bottom two rows depict night-time scenes.
Notably, the response of RGB features diminishes during night-time. As observed in the
feature maps and heatmaps in the bottom right corner, compared to simple concate-
nation, the group shuffle operation achieves more comprehensive multi-modal feature
mixing. Through the GSMA module and multi-path aggregation fusion, the network
exhibits heightened attention towards pedestrian areas.

significantly outperforms others, achieving the best performance. Specifically, we
improved mAP0.5 and mAP metrics by 2.52% and 4.28%, respectively, compared
with the previous best method DTNet-B. Furthermore, we achieved the highest
scores in the subcategories of car, truck, van, and bus, with mAP0.5 increasing
by 0.70%, 1.47%, 1.8%, and 2.75% compared to the previous state-of-the-art
methods.

4.5 Ablation Study

Ablation experiments are conducted on the KAIST dataset to verify the effect
of the GSMA and MS modules. We employ a framework without the GSMA
module and RGB and thermal branches in the MS strategy as the baseline in
the experiment.
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Table 4. Effects of GSMA module. MA means multi-receptive attention and GS means
group shuffle operation.

Method MR−2

All-day Day Night Near Medium Far None Partial Heavy

Baseline 8.55 10.14 5.87 0.00 13.23 41.28 22.75 28.53 50.02

MA without GS 7.30(−1.25) 8.33(−1.81) 5.66(−0.21) 0.00 12.56(−0.67) 40.63−0.65) 22.13(−0.62) 29.04(0.51) 52.00(1.98)

GS before MA 7.39(−1.16) 9.78(−0.36) 3.90(−1.97)3.90(−1.97)3.90(−1.97) 0.00 11.46(−1.77)11.46(−1.77)11.46(−1.77) 40.82(−0.46) 21.15(−1.60) 26.83(−1.70) 47.07(−2.95)

GS after MA 6.48(−2.07)6.48(−2.07)6.48(−2.07) 7.86(−2.28)7.86(−2.28)7.86(−2.28) 3.94(−1.93) 0.00 11.67(−1.56) 38.51(−2.77)38.51(−2.77)38.51(−2.77) 21.00(−1.75)21.00(−1.75)21.00(−1.75) 24.86(−3.67)24.86(−3.67)24.86(−3.67) 47.03(−2.99)47.03(−2.99)47.03(−2.99)

CBAM [22] 7.57(−0.98) 9.49(−0.65) 4.45(−1.42) 0.00 14.22(0.99) 44.13(2.85) 24.04(1.29) 27.86(−0.67) 54.36(4.34)

GCB [4] 8.48(−0.07) 10.58(0.44) 5.07(−0.80) 0.00 12.93(−0.30) 39.64(−1.64) 21.86(−0.89) 29.84(1.31) 52.11(2.09)

Fig. 6. Examples of detection and heatmaps of baseline method and the addition of
GSMA module on the KAIST pedestrian dataset. As shown in the orange and green
elliptical areas, the GSMA module enhances the detection ability of small and occluded
objects. (Color figure online)

Table 5. Effects of GSMA module and MS strategy evaluated on KAIST dataset.

GSMA MSMR−2

All-day Day Night Near Medium Far None Partial Heavy

× × 8.55 10.14 5.87 0.00 13.23 41.28 22.75 28.53 50.02

� × 6.48(−2.07) 7.86(−2.28) 3.94(−1.93) 0.00 11.67(−1.56) 38.51(−2.77) 21.00(−1.75) 24.86(−3.67) 47.03(−2.99)

× � 5.89(−2.66) 7.27(−2.87) 3.62(−2.25) 0.00 9.21(−4.02)9.21(−4.02)9.21(−4.02) 34.18(−7.10) 17.70(−5.05)17.70(−5.05)17.70(−5.05) 23.64(−4.89) 47.13(−2.89)

� � 5.26(−3.29)5.26(−3.29)5.26(−3.29) 6.00(−4.14)6.00(−4.14)6.00(−4.14) 3.81(−2.06) 0.00 9.91(−3.32) 36.25(−5.03) 19.05(−3.70) 23.04(−5.49)23.04(−5.49)23.04(−5.49) 46.87(−3.15)46.87(−3.15)46.87(−3.15)
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Effectiveness of GSMA. We first conduct experiments on the effects of dif-
ferent group configurations and the operation position of group shuffle. As illus-
trated in Table 3, optimal performance is observed when K = 16. As shown in
Table 4, placing group shuffle (GS) after multi-receptive attention (MA) achieves
the best performance. Besides, the proposed GSMA module exhibits promi-
nent superiority, when compared to existing attention methods such as CBAM
[22] and GCB [4]. As shown in Table 5, when adding the GSMA into the baseline,
it achieves the reductions of 2.07%, 2.28%, and 1.93% on MR−2 across the rea-
sonable all-day, day, and night subset, respectively. Figure 5 exhibits some typical
images and the corresponding visualized feature maps, we can see that through
the group shuffle operation, the fused RGB-T features is inclined to highlight
pedestrian regions. Relevant detection result examples are shown in Fig. 6. This
indicates that the GSMA facilitates a complementary fusion of RGB-T fea-
tures and enhances detection accuracy in night scenes and situations involving
occlusion.

Effectiveness of MS Strategy. As indicated in Table 5, after incorporating
the MS strategy into the baseline, we observe decreases of 2.66%, 2.87%, and
2.25% on MR−2 across reasonable all-day, day, and night conditions, respec-
tively. These results indicate that the supervision by utilizing independent anno-
tations for RGB, thermal, and fusion modal is more sufficient and can fully
utilize the precise information of each modal.

The combination of the GSMA module and MS strategy also verifies their
effectiveness. Finally, the baseline was reduced by 3.29%, 4.14%, and 2.06% on
the reasonable all-day, day, and night subsets via applying the GSMA module
and MS strategy which obtained the best performance.

5 Conclusions

In this paper, we propose a novel multispectral object detection network named
SAMS-YOLO, which can effectively improve multi-modal detection accuracy
while maintaining high efficiency. Particularly, we design a group shuffled multi-
receptive attention module to fully extract and combine multi-scale RGB-T fea-
tures and promote deeper multi-modal feature fusion. In addition, we propose
a multi-modal supervision strategy to guide the network in learning more accu-
rate and robust feature representations, as well as improving object detection.
Comprehensive comparison and ablation experiments on KAIST and DroneVe-
hicle datasets demonstrate the effectiveness of the proposed framework and its
components. The proposed method can be applied to unmanned driving, video
surveillance, and other RGB-T object detection domains.
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Abstract. The adoption of deep learning-based object detection mod-
els has proliferated across numerous applications. However, their efficacy
is significantly constrained under challenging imaging conditions like fog
or occlusion. In response to these limitations, we present a novel app-
roach that transcends these hurdles by exploiting scene contextual knowl-
edge distilled from Large Language Models (LLMs). This methodology
empowers our model to deduce and anticipate object presence within
a scene by leveraging contextual knowledge akin to human perception,
thereby overcoming the constraints of direct visual cues. Our method
synergizes the capabilities of object detection models with the contex-
tual interpretation and predictive capacity of LLaMA, an advanced LLM.
Our framework operates exclusively on the labels and positional infor-
mation provided by a detection algorithm, sidestepping the reliance on
pixel-level image data both during training and inference. The effec-
tiveness of our approach is validated through extensive experiments con-
ducted on the COCO-2017 dataset, including a modified version simulat-
ing reduced visibility conditions. The empirical findings underscore the
superior performance of our integrated model compared to standalone
YOLO models, particularly evident in adverse conditions, where notable
enhancements in detection accuracy are observed across various object
sizes.

Keywords: Object Detection · Scene Understanding · Deep
Learning · Large Language Models (LLMs)

1 Introduction

While state-of-the-art computer vision algorithms have demonstrated remark-
able proficiency in recognizing diverse objects and their locations, it is widely
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recognized that their performance often falters when tasked with images afflicted
by poor lighting, obscurants like fog, or occlusions. In contrast, humans excel in
locating objects within such images by leveraging contextual knowledge, extend-
ing their perception beyond what is visible. One such example is driving a vehicle
on dimly lit, foggy, or rainy roads at night. Visibility in such conditions is signifi-
cantly poorer compared to driving in clear daylight. Yet, many drivers maneuver
through these challenging circumstances, detecting and evading potential haz-
ards without additional aid, reaching their destination with little trouble.

The use of contextual knowledge to infer and predict, even with limited
visual data, is a unique aspect of human perception that current computer vision
systems do not possess. Our work aims to address this deficiency by integrat-
ing contextual information from transformer-based deep learning architectures
such as Large Language Models (LLMs). The ability to capture long-ranging
dependencies and extract contextual information has made transformers criti-
cal in natural language processing tasks. The contextual understanding ability of
Transformer architectures (TAs) comes from the self-attention mechanism, which
enables these models to determine the relative importance of other words in the
input text with respect to any given word. Under this, the transformer has a
mechanism to capture contextual information from the whole input sequence
rather than just exploiting local context.

In this paper, we develop a new technique that strengthens object detection
algorithms in challenging situations by embedding them with Large Language
Models (LLMs), with an emphasis on contextual scene understanding. We start
by employing an object detector, such as YOLO [10,11,21], to identify and locate
objects within a visually challenging scene. The object detector produces a list of
objects along with their bounding boxes, accompanied by a range of confidence
scores. From the objects detected with high confidence, we assert that a scene
context can be established. Our aim is to predict the remaining objects present
in the scene, likely detected with lower confidence. To achieve this, we task the
Large Language Model (LLM) to generate a list of objects anticipated to occupy
the bounding box locations of low detection confidence, guided by the context
established from the detected objects of high confidence. If any object in the
generated list aligns with those initially detected by the YOLO detector with
low confidence, it is deemed as a detected object. Conversely, it is disregarded.
In summary, our approach restricts the sample space of the objects in the image
by placing a contextual condition on possible objects not fully detected by the
pixel based object detector.

In Fig. 1, we exemplify the benefits of augmenting current state-of-the-art
(SotA) object detectors with the aid of LLM. The left image displays objects
detected by YOLOv8 [10]. However, due to image distortion caused by rain-
drops, YOLOv8 fails to detect the Car in the bottom-right corner and one of the
Traffic Lights in the upper left quadrant. In contrast, our integrated app-
roach accurately finds these missed objects, as depicted in the image on the
right. By combining visual cues with contextual knowledge, we posit that object
detection, even in challenging scenes, can be significantly enhanced.
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Fig. 1. An example of qualitative results using YOLOv8 on the COCO-2017 dataset:
(left) object detection using an out-of-the-box YoloV8 model, where YOLOv8 fails
to detect the Car in the bottom-right corner and one of the Traffic Lights in the
upper left quadrant. (right) YOLOv8 enhanced with LLaMA 2pt, where our integrated
approach accurately finds these missed objects. The green boxes in the right image
highlight the correctly detected objects which were missed by the standard YOLOv8
model. (Color figure online)

2 Related Work

The integration of language models with visual object detection has been
explored extensively in the literature, focusing on enhancing visual recognition
through contextual understanding and multi-modal learning. Our review here
aims to highlight these approaches, emphasizing their limitations and how our
proposed method addresses these shortcomings.

2.1 Visual Learning Using Language

Textual information integration to the visualization process has greatly improved
object detection approaches by incorporating image and text attributes. For
example, ImageBERT [19] and ViLT [13] employ the complementarity of the
context to enhance the performance of the systems regarding various scenes.
These developments have been important for approaches such as Flamingo [1]
and SIMVLM [25] that utilize vision and text to improve scene understand-
ing and object recognition respectively. Some recent models including CLIP [20],
which applies contrastive learning to match image captions with the correspond-
ing images, have slightly shifted focus onto zero shot learning, but have primarily
focused on matching attributions. This approach expanded the capability of the
system to detect objects not included in the training corpus through the trans-
lation of textual prompt into classifiers [24]. However, these models are not pre-
cisely optimized for the cases where visual data are smeared by low illumination
or occlusions. Recent methods have made use of the open-ended vocabulary-
matching power of CLIP to integrate attribute data via descriptions created
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by large language models (LLMs) [17,18]. However, these models often struggle
with attribute recognition and contextual understanding in complex scenes.

Despite these advancements, our approach is unique in that it leverages
LLMs to enhance object detection specifically by providing contextual knowledge
for low-confidence predictions. Unlike previous methods that focus on zero-shot
learning and attribute integration, our method directly improves detection accu-
racy under challenging conditions by utilizing the contextual understanding of
LLMs.

2.2 Contextual Knowledge in Object Detection

Recent advances in object detection are increasingly incorporating contextual
understanding by resorting to transformer models and Large Language Models
[23,29]. However, most of such methods, although very creative, have limitations
addressed by our approach.

Among these, Zang et al. [29] proposed ContextDET, which uses Multimodal
Large Language Models for contextual object detection. Although this interface
between the human operators and AI systems is vastly improved when Con-
textDET connects visual objects to linguistic cues, it does not really imbibe the
full potential of LLMs in improving detection accuracy within a spatially com-
plex or ambiguous setting. Additionally, they also fed the image features to the
LLM, which increases the complexity of the model.

In 2020, Ilharco et al. [9] examined the language alignment with visual repre-
sentations of concrete nouns. Since their findings show that the visual-semantic
representation is compatible with text data, the motivation from their work
is more towards model selection rather than improving operation performance
in object detection. Our approach actively uses this finding to exploit improve-
ments in the prediction at hand from object detection systems with the addition
of context, explicitly from the LLMs, in interpreting the diversity within complex
scenes. More recently, Xue et al. [27] constructed DIAG-TR, which employs a
dual network structure to extract global and local features from transformers.
DIAG-TR was verified on remote sensing image datasets, where it demonstrated
the value of feature hierarchies but was still limited to the specificity of different
kinds of images.

Large image-caption datasets and text embeddings have enabled the upsurge
of methods with easier supervision techniques and cheaper vocabulary expansion
[3,12,14,31], while the generation of large image-caption datasets and weakly
supervised techniques have made cheaper supervision approaches [6,28]. Simi-
larly, open-vocabulary detection methods [2,7,8,26,30] generalize the function-
alities of object detection systems, enabling them to identify and label a vast
number of objects beyond those included in the training set. This expansion
significantly broadens the scope of detectable objects. Methods along both lines
oftentimes pay the price for the varying quality of image-caption pairs, a common
issue in real-life scenarios.

Bravo et al. [4] demonstrated an open-vocabulary detection method based
on matching image-caption pairs. Although that was useful in detecting new
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objects, its applications in real-life scenarios get restricted due to the availability
and quality of the data. We circumvent these limitations by using contextual
information gathered from LLMs to enhance detection at no large computational
cost traditionally involved in processing image datasets of this scale.

Most object detection techniques make heavy use of fine-grained visual
inputs, thereby limiting performances in scenarios when objects could be per-
ceived as highly occluded, blurred, or tiny. These are some of the factors
that lower the area of clear visual information, making it hard to perform
object detection. Moreover, the direct use of LLMs in processing image data
may bring about immense computational loads, more so in real-time applica-
tions. Such a method is very resource-intensive, as image data is large in size
and complex in nature, hence hampering the real-world implementation of such
a system where responses are expected in real-time.

3 Proposed Approach

To address the limitations of current object detection models under challeng-
ing conditions, we propose a novel method that integrates YOLO with Large
Language Models (LLMs), enhancing detection through contextual knowledge.
Our approach begins by detecting visual objects within a scene using the YOLO
model. Following the detection, we extract and segregate labels and bound-
ing box data from the output, categorizing them into high and low-confidence
groups based on their scores. For the detections marked with low confidence,
we apply the LLaMA 2 model [22], leveraging its advanced contextual com-
prehension capabilities, to validate whether these labels fit with the context
established by the detected objects of high confidence. The final step of our
method involves aligning the original detection results with these predictions
from LLaMA 2, integrating the enhanced label predictions to refine and improve
the overall detection results. Figure 2 illustrates the architecture of our proposed
approach. In this section, we describe our approach’s workflow in detail and
all the specific processes involved in each step of our proposed methodology,
including the computational techniques and the integration mechanism between
YOLO and LLaMA 2.

3.1 Object Detection with YOLO

Using the YOLO algorithm, an input image I is analyzed to detect a set of
objects O, with each object oi ∈ O defined by a bounding box bi = (xi, yi, wi, hi)
and a confidence score ci. Objects are then classified based on their confidence
scores into two categories: high and low confidence. Objects in the high category
are all elements of O with their confidence score greater than a threshold thigh,
following

Ohigh = {oi | ci > thigh}.
Similarly, the detected objects are categorized into the low confidence cate-

gory following
Olow = {oi | tlow < ci ≤ thigh},
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Fig. 2. Pipeline illustration showing the integration of YOLO and LLaMA 2 for
enhanced object detection. The image demonstrates the detection of Traffic Light

and Bench objects with low confidence by YOLO. These objects are then masked and
passed into LLaMA 2, along with high-confidence objects. LLaMA 2 predicts potential
objects for the given location and size. The process includes a mapping step to align
LLaMA 2 predictions with dataset objects. If the masked label (e.g., Traffic Light) is
among the mapped predictions from LLaMA 2, we add it to the list of detected objects;
otherwise, we disregard it. Note that the process is repeated for each low-confidence
object. The “Bench” object is input to the model in the next round.

where we set thigh = 0.25 and tlow = 0.1. The thigh value matches YOLO’s
default detection threshold. Objects with a confidence level below tlow are not
considered successful detections; thus, we ignore them.

3.2 Integration with LLaMA

In our methodology, for each object detected with a low confidence score, we
mask out its label while retaining its bounding box information. This information
forms part of the input prompt that we feed to the LLaMA model. The prompt
includes the names and bounding boxes of objects detected with high confidence,
providing a contextual backdrop for the model, see Fig. 2. To prepare the data for
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this prompt, we use a function f that specifically formats the bounding box and
high-confidence object data. Then, we use the prompt as the complete query
we send to the LLaMA model. This process is repeated individually for each
object in the low confidence set Olow. Mathematically, the prompt function and
the prediction process for each low-confidence object are represented as follows:

qmasked = f(bmasked,Ohigh,Bhigh), ∀ omasked ∈ Olow (1)

Opredicted = LLaMA(qmasked), (2)

where the function f is responsible for preparing the data by structuring the
bounding box information and details of high-confidence detected objects into
a prompt format qmasked suitable for the LLaMA model. The LLaMA model
aims to predict the identity of an object detected with low confidence, referred
to as omasked. The variable omasked is an object selected from the low-confidence
group Olow and its bounding box bmasked provides its spatial position and size.
The context for these predictions is enriched by Ohigh and Bhigh, which represent
the objects detected with high confidence and their corresponding bounding
boxes. Finally, Opredicted comprises the set of possible object labels that LLaMA
predicts for the position and context of omasked, representing the model’s best
guess based on the provided prompt.

This streamlined process ensures that LLaMA uses both the location and
contextual clues from high-confidence detections to enhance the accuracy of low-
confidence object identification.

3.3 Word Embedding and Mapping

One issue of simply combining Large Language Models like LLaMA with object
detection systems stems from the disparity between the set of words in the
object detection dataset and the vocabularies contained in LLaMA. Typically,
the object detection dataset is comprised of a vastly smaller set of words com-
pared to the extensive vocabulary of LLaMA. The main goal is to align LLaMA’s
natural language predictions with the predefined object categories implemented
in our dataset, such as the COCO label dataset. To bridge this misalignment, we
employed a word embedding approach utilizing a Word2Vec model. This app-
roach helps determine the closest semantic match between the output categories
of visual detector and LLaMA. Using the Word2Vec [5] model, we transform
both the predicted labels and labels of the COCO dataset into high-dimensional
vectors. We subsequently compute the cosine similarity between the predicted
label vector and vectors of the COCO labels. The label from the COCO dataset
that exhibits the highest similarity to the predicted label is selected as the best
match and included in the set of mapped labels Omapped, provided that the cosine
similarity exceeds a threshold of 0.5. This ensures that the matched labels share
a significant semantic similarity, thus avoiding incorrect or arbitrary matches.

Omapped = {Match(opredicted) | opredicted ∈ Opredicted} (3)
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with

Match(opredicted) = argmax
l ∈ LCOCO

Sc(V (opredicted), V (l)), if Sc > 0.5 (4)

In Eq. 3 and 4, Omapped represents the set of mapped objects, opredicted is a
member of the predicted object labels set Opredicted, LCOCO denotes all possible
labels within the COCO dataset, V (Opredicted) and V (l) are the vector represen-
tations of the predicted label and the COCO label obtained through Word2Vec
word embedding, and Sc is the cosine similarity between two vector embeddings.

This embedding and mapping step is crucial for developing stable object
detection. It avoids the removal of an instance just because LLaMa forecasted a
synonym-such as Vehicle when the visual detector output label was Car. This
alignment is particularly crucial in the later stages when we compare the outputs
of YOLO and LLaMA’s predictions.

3.4 Alignment and Inclusion of Detected Objects

After applying the mapping on LLaMA’s predictions, we check whether omasked

is suitable to be added to the final set of detections, according to the rule in
Eq. 5. If omasked is among any of the top three mapped predictions of LLaMA,
we validate it and consider omasked as a detected object; otherwise, we ignore it.

is valid(omasked) =

{
true if omasked ∈ Omapped

false otherwise
(5)

When it passes this alignment, we include an object in the final set of detec-
tions such that

Ofinal = Ohigh ∪ {omasked | is valid(omasked)} (6)

Figure 2 demonstrates the enhancement of a low-confidence detection, specif-
ically a Traffic Light, within an urban street scene analyzed by the YOLOv8
algorithm. The initial detection classifies the Traffic Light with a lower-than-
desired confidence score, designating it as omasked.

The LLaMA model, upon receiving the spatial and size details of omasked

alongside the high-confidence object data Chigh, provides a list of three poten-
tial object labels for the given location and size: Signal Light, Bird, and Car.
We apply word embedding transformations to semantically match these predic-
tions with standard object categories and calculate their cosine similarities with
the COCO dataset labels. This process yields a corresponding list of COCO
dataset classes: Traffic Light, Bird, and Car.

In the final alignment step, we confirm whether the original masked object
omasked, which YOLOv8 detected as Traffic Light, is included in the list of
mapped predictions of LLaMA. Given that Traffic Light is present, we con-
clude that LLaMA’s context-aware prediction aligns with the initial detection,



Enhancing Object Detection by Leveraging Large Language Models 307

and thus, we incorporate the Traffic Light into the final set of detected objects
Ofinal.

This case underscores the strength of our methodology in leveraging the
capabilities of a Large Language Model to enhance the precision and confidence
of object detection in complex, real-world scenarios.

4 Experimental Results

4.1 Datasets and Evaluation Metrics

We evaluate our method on the validation set of the well-known COCO-2017
dataset [15]. This dataset consists of 118k training images and 5k validation
images spanning across various object sizes. The dataset classifies objects into
small (S) when the objects are less than 32 × 32 pixels, medium (M) when they
are between 32×32 and 96×96 pixels, and large (L) when they are greater than
96 × 96 pixels. This classification is based on the object’s bounding box area.

Moreover, We have modified the COCO 2017 dataset to create COCO-2017-
Blurred, simulating real-world scenarios with reduced visibility. This variation
tests model performance in challenging conditions. In this variant, one-third of
the objects are randomly blurred using a 21×21 Gaussian kernel, increasing the
difficulty for object detection systems.

4.2 Methodology

We conducted comprehensive experiments to evaluate the performance of various
YOLO models integrated with LLaMA 2, assessing their ability to detect objects
of different sizes with precision. The YOLO models tested in our experiments
included YOLOv3, YOLOv7, and YOLOv8. For the integration with LLaMA
2, we utilized two specific versions of the model: LLaMA 2pt, which is the pre-
trained version, and LLaMA 2ft, which is a fine-tuned version using the LoRA
technique specifically adapted to the COCO dataset’s labels and bounding box
information.

4.3 Results

Table 1 summarizes the AP scores for each configuration on the standard COCO-
2017 and the COCO-2017 Blurred datasets. The results indicate a consistent
improvement in object detection across all sizes when YOLO models are aug-
mented with LLaMA. Notably, the fine-tuned LLaMA versions generally out-
performed the pre-trained ones, emphasizing the value of tailoring the LLM to
the specific dataset.

A significant aspect to highlight is that the pre-trained model, LLaMA2pt,
was not trained on the experimental COCO dataset. This indicates that the
model’s capabilities in enhancing object detection are robust and generalizable,
as it can effectively apply learned contextual knowledge from different datasets to
improve detection accuracy in unseen environments.
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We report further experiments with YOLO models whose confidence thresh-
old is set below the default values to prove that improvements in mean Average
Precision (mAP) were due to Large Language Models’ integration and not just
due to the lowering of the confidence threshold. We designed these experiments
to specifically compare the performance of the models under diminished con-
fidence thresholds of YOLO models against those enhanced by LLMs at close
threshold conditions. The approach will help isolate the effect of LLM integration
from other potential confounding factors due to threshold manipulation, hence
providing a clearer insight into the real value added by incorporating contextual
knowledge from LLMs into the object detection process.

Table 1. Enhancement in Object Detection Across Various Sizes using YOLO and
LLaMA Integration: The table compares the Average Precision (AP) for small,
medium, and large objects across the standard COCO-2017 and its altered counter-
part, COCO-2017 Blurred. The metrics are reported for IoU thresholds from 0.5 to 0.95,
highlighting improvements when YOLO models are combined with both pre-trained
and fine-tuned LLaMA 2 models.

COCO-2017 COCO-2017 Blurred

AP-S AP-M AP-L AP-S AP-M AP-L

YOLOv3 Th=0.25* 0.21 0.42 0.49 0.06 0.18 0.23

YOLOv3 Th=0.1 0.19 0.41 0.47 0.05 0.16 0.20

YOLOv3 + LLaMA2 pt 0.28 0.48 0.54 0.11 0.24 0.28

YOLOv3 + LLaMA2 ft 0.30 0.51 0.54 0.17 0.26 0.30

YOLOv7 Th=0.001* 0.35 0.55 0.66 0.10 0.26 0.41

YOLOv7 Th=0.0001 0.34 0.55 0.66 0.08 0.25 0.40

YOLOv7 + LLaMA2 pt 0.37 0.57 0.70 0.19 0.29 0.44

Yolov7 + LLaMA2 ft 0.39 0.57 0.71 0.20 0.30 0.44

YOLOv8 Th=0.25* 0.36 0.59 0.70 0.11 0.27 0.50

YOLOv8 Th=0.1 0.325 0.56 0.67 0.07 0.24 0.48

YOLOv8 + LLaMA2 pt 0.39 0.61 0.71 0.20 0.30 0.52

YOLOv8 + LLaMA2 ft 0.40 0.61 0.72 0.20 0.31 0.52

Models marked with * use the default threshold value as pre-
sented in the original paper.

The enhanced performance is especially pronounced in the COCO-2017
Blurred dataset, underlining the proposed method’s robustness against reduced
visibility conditions. The fine-tuned LLaMA models exhibit superior Average
Precision (AP) scores, indicating that the supplementary contextual knowledge
gained through the fine-tuning process proves advantageous in challenging detec-
tion scenarios.

Figures 3 and 1 showcase visual comparisons highlighting the enhanced object
detection capabilities achieved by integrating YOLOv8 with LLaMA 2’s cog-
nitive processing. This integration markedly improves the detection of small
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Fig. 3. Comparison of the object detection outcomes using the YOLOv8 with and
without using an LLM on a sample from the COCO-2017 dataset [16]. The left image
showcases detection with YOLOv8 only, while the right image demonstrates YOLOv8
[10] with LLM. Notice how YOLOv8 without the LLM fails to detect the Stop Sign,
whereas the YOLOv8+LLM integration successfully accurately them.

or visually ambiguous objects. For example, as illustrated in Fig. 3, the model
effectively finds the Stop Sign, while it was missed by the baseline YOLOv8.
Figure 1 depicts a realistic scenario on a rainy day, where YOLOv8 alone strug-
gles to detect a Car and a Traffic Light due to low detection confidence but
succeeds when augmented with LLaMA 2.

For more qualitative examples illustrating the effectiveness of our integra-
tion of YOLOv8 with LLaMA 2pt, please refer to Fig. 4 and the supplementary
materials.

4.4 Ablation Study

The goal of this analysis is to compare the detection accuracy of the baseline
YOLO models with their counterparts integrated with LLaMA 2 under standard
and visually impaired conditions provided by the COCO-2017 and COCO-2017
Blurred datasets, respectively.

Performance on COCO-2017: The integration of YOLO with LLaMA 2, both
pre-trained (LLaMA 2pt) and fine-tuned (LLaMA 2ft), significantly enhances
detection accuracy for all object sizes on the COCO-2017 dataset, as evidenced
by the improved AP scores in Table 1. Notably, there is a marked increase in AP
for small objects, with the AP-small for YOLOv8+LLaMA 2ft reaching 0.40,
a clear improvement over the baseline YOLOv8 model’s AP of 0.36. Medium
and large objects also see commendable performance gains, underscoring the
integrated models’ effectiveness over a range of object dimensions.

Performance on COCO-2017 Blurred: The COCO-2017 Blurred dataset
introduces additional complexity to object detection tasks. However, the com-
bined YOLO models and LLaMA 2 models demonstrate robust performance
enhancements, particularly in the recognition of small objects. The integration
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of LLaMA 2, both in its pre-trained and fine-tuned forms, with the YOLOv8
architecture results in a notable improvement in AP for small objects. Specifi-
cally, the AP-small metric increases to 0.20 for the integrated models from an
AP of 0.11 for the standalone YOLOv8. This increase highlights LLaMA 2’s
adeptness at employing contextual information effectively to bolster detection
accuracy, even under challenging conditions where visibility is compromised.

Comparative Effectiveness of LLaMA Integration and Model Effi-
ciency: Based on the results shown in Table 1, across all variants of YOLO
(YOLOv5, YOLOv7, and YOLOv8), on both dataset, integrating LLaMA has
consistently aided the models in detecting objects that were previously missed.
This enhancement underscores the significant impact of incorporating contex-
tual knowledge through LLMs on the object detection process. Moreover, we
can see that the performance of the pre-trained LLaMA model (LLaMA2pt)
closely matches that of its fine-tuned counterpart (LLaMA2ft) in many cases.
Despite the expectation that fine-tuning would boost performance, the marginal
improvements suggest the pre-trained LLaMA model already possesses a consid-
erable degree of the necessary contextual knowledge for this task. This finding
highlights the pre-trained model’s efficacy, indicating it is a robust choice for
enhancing object detection without additional fine-tuning.

5 Limitations

While our approach has demonstrated significant improvements in object detec-
tion by leveraging contextual clues from Large Language Models, it is not with-
out limitations. A key dependency of our method is the availability of a sufficient
number of high-confidence detections to establish a robust scene context. In sce-
narios where the object detector yields few high-confidence detections, our model
may struggle to generate accurate predictions for low-confidence objects due to
insufficient contextual data. This limitation highlights the importance of having
reliable initial detections and suggests that our method may be less effective in
extremely challenging visual conditions where few objects are detected with high
confidence.

Furthermore, adding an LLM to the model increases computational load to
the overall process. The input to the LLM in our case, however, is purely text
composed the names and bounding box information of the found objects. The
computational load in our case, therefore, is significantly lower compared to those
methods where the whole image is processed by LLM, like [29]. Nevertheless, we
have to consider few parameters, such as maximum token count, which will be
self-optimizing in an LLM for its performance feature. While the inclusion of
an LLM does increase computational load, efforts in optimizing the integrated
process and fine tuning would lead to many practical applications.
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Fig. 4. Qualitative Result Samples from COCO-2017 (top three rows) and COCO-
2017 Blurred (bottom three rows) Datasets: Original images are displayed on the left,
detections by YOLOv8 without LLaMA 2pt integration in the middle, and detections by
YOLOv8 with LLaMA 2pt integration on the right
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6 Conclusion

In this work, we presented a novel strategy to augment the capabilities of state-of-
the-art visual object detectors by integrating them with learn-based contextual
knowledge models. Through this integration, our goal was to emulate the human
ability to comprehend and interpret complex visual scenes, even under conditions
of uncertainty or incomplete information. Our method achieves this by exploiting
contextual knowledge from the scene. Our strategy shows an improvement in the
detection performance of visual object detectors, such as YOLO, when paired
with attention-based transformer architectures such as LLaMA 2.

Our experiments clearly showcased the benefits of exploiting scene contextual
knowledge in object detection.

In conclusion, this paper aimed to demonstrate that by utilizing the con-
textual knowledge capabilities of Large Language Models (LLMs) alongside tra-
ditional object detection methods, we can enhance the performance of these
detection models. This is achieved without the need to process entire images
within the LLM, relying solely on textual information of objects. Thus, LLMs
can significantly boost the efficacy of conventional object detection models with-
out adding substantial complexity to the system.
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Abstract. Remote sensing object detection has important application
value in fields such as environmental monitoring and resource detec-
tion and analysis. However, the current universal object detectors are
not very effective in detecting remote sensing objects. To this end, this
paper proposes an efficient, low-complexity and anchor-free remote sens-
ing object detection framework YOLO-RSOD based on YOLOv7. First,
an additional Tiny Object Head is proposed for better detection of micro-
remote sensing objects. The original Head is then replaced with Decou-
pled Head (DH) to explore the detection potential of the decoupled detec-
tion head structure. Then the Explicit Vision Center (EVC) in the Cen-
tralized Feature Pyramid Network (CFP) is added to further improve the
detection ability of remote sensing objects. Finally, this article also inte-
grates a global attention module (GAM) to find attention areas in dense
object scenes. Ablation experiments on the general remote sensing target
detection dataset VisDrone2021 demonstrate the effectiveness of several
modules introduced in this paper in remote sensing target detection. On
the VisDrone2021 data set, YOLO-RSOD can achieve accuracy rates of
30.7% AP50:95 and 51.7% AP50, which are 3.1% and 3.2% higher than
the baseline model respectively.

Keywords: Object Detection · Remote Sensing Object Detection ·
Attention Mechanism · Feature Pyramid Networks · Decoupled Head

1 Introduction

With the increasing performance of computing hardware, deep neural network-
based computer vision technology has been rapidly developing in the past decade.
Object detection is an important part of computer vision technology [1], and
remote sensing object detection is one of the most challenging tasks in the field
of object detection. Currently, there are two mainstream object detection strate-
gies. One is a two-stage strategy represented by the R-CNN family [2–5], and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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the other is a one-stage strategy with YOLO [6] as one of the most popular
frameworks. On common object detection datasets (MS COCO2017), models
using the two-stage strategy perform somewhat better than those using the one-
stage strategy. However, due to the inherent limitations of the two-stage frame-
work, it is far from meeting the real-time requirements on traditional computing
devices and is likely to face the same situation on most high-performance equip-
ment. In contrast, one-stage object detectors can maintain a balance between
real-time metrics and performance, and thus have received more attention from
researchers. However, all current YOLO family models are designed and opti-
mized based on general object detection, and no work has been done specifi-
cally for remote sensing object detection. Directly applying previous models to
solve the remote sensing object detection task leads to three main problems,
which are visually illustrated by some cases in Fig. 1.

In Fig. 1, row 1 illustrates the large variation in the size of remote sensing
object images. Row 2 illustrates the high density characteristic of remote sensing
objects, which usually results in occlusion between objects. Row 3 then illustrates
that the coverage of remote sensing object is usually large and contains a wide
variety of complex background information. The above three issues make remote
sensing object detection very challenging.

In this paper, an improved model YOLO-RSOD is proposed based on the
one-stage object detector YOLOv7, so as to solve the above three problems.

Fig. 1. Three main problems of object detection in remote sensing object images.

The contributions of this paper are as follows: (1) The remote sensing object
detection framework YOLO-RSOD is proposed to deal with remote sensing
objects.
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(2) YOLO-RSOD integrates the Tiny Object Head, Decoupled-Idetect (DID),
the Explicit Visual Center (EVC) in the Centralized Feature Pyramid Network
(CFP), and the Global Attention Module (GAM). These modules can effectively
improve the framework’s detection effect on remote sensing objects. (3) On the
VisDrone2021 dataset [7], the YOLO-RSOD proposed in this paper achieves
30.7% AP50:95 and 51.7% AP50, which is an improvement of 3.1% and 3.2%
compared to the baseline model, respectively.

2 Related Work

Since the beginning of object detection research, the problem of remote sensing
image detection has received widespread attention. As the proportion of objects
in the image decreases, the pixel information used to express the objects also
decreases. Large objects often occupy dozens or even hundreds of times more
information than small objects, while the detection accuracy of small objects is
often significantly lower than that of large objects. Therefore, the key difficulty
of remote sensing object detection lies in improving the detection accuracy of
small objects.

There have been many previous efforts aimed at improving small object
detection performance. Some research has focused on optimizing the overall
architecture of the YOLO series detector neck assembly. For example, J. Shang
[8] replaced Neck in YOLO with weighted bidirectional feature pyramid multi
BIFPN, and H. Liu [9] introduced a new feature fusion method PB-FPN in the
neck of YOLO.

However, both methods choose to change the entire structure of the neck
to achieve better feature fusion, which results in greater computational cost.
On the contrary, this paper only uses a lightweight display vision center (EVC)
[10] in the neck for feature integration. At the same time, this module can also
fuse global and local information. This improvement aims to achieve less com-
putational cost and Higher precision improves the performance of the YOLO
neck.

In addition, some studies have tried to use the attention mechanism [11].
The attention mechanism can help the model better understand and process
the structure and characteristics of the input data, so that the model can more
accurately focus on the key parts of the image, such as the object and its sur-
rounding area, thereby improving the accuracy and speed of object detection.
There are many types of attention mechanisms, such as channel attention, spa-
tial attention, temporal attention, branch attention, etc. Compared with these
methods, YOLO-RSOD adds a global attention module (GAM) [9] mechanism
in the transmission module between the neck and the head. The purpose is
to reduce the computational cost, improve the model’s ability to detect image
occlusions that often exist in remote sensing images, and pay more attention to
essential information when extracting features.

The conflict between classification and regression tasks is a well-known prob-
lem [12,13]. Therefore, decoupled heads for classification and localization are
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widely used in most one-stage and two-stage detectors. However, with the contin-
uous development of the backbone and feature pyramids of the YOLO series (e.g.,
FPN, PAN [12]), they generally adopt coupled detection heads. However, this
design will lead to performance degradation, so this article adopts a decoupled
structure in the detection head part, decomposing the original single detection
head into two independent parts, one is responsible for the position information
of the prediction box, and the other is responsible for the category information
of the prediction box. This design improves the flexibility and generalization
ability of the model while reducing the amount of calculation and memory con-
sumption.

3 Approach

3.1 Baseline Model Selection

In the past few years, the YOLO series of models have become the most widely
used and high-performing methods in the field of real-time object detection.
Currently, the most commonly used YOLO series models include YOLOv5,
YOLOv6, YOLOv7 and YOLOv8 methods. The performance comparison of
these models on the general object detection data set COCO is shown in Fig. 2.
The abscissa is the amount of model calculations, which directly affects the model
running speed. The ordinate is the detection accuracy of the model in the COCO
data set, reflecting the model performance. Taken together, the YOLOv7 model
can achieve the best performance and computational cost balance compared to
other models, so this article chooses YOLOv7 as the baseline.

3.2 YOLO-RSOD

In order to improve the performance of remote sensing object detection, this
paper improves the original YOLOv7 model, thus forming the YOLO-RSOD
model, and the framework of YOLO-RSOD is shown in Fig. 3.

In Fig. 3, the Backbone part adopts the structure of the original YOLOv7.
The Neck part adds the EVC, while the GAM attention mechanism is intro-
duced in the ELEN-H module and an additional Tiny Object Head is proposed.
The Head part adopts a decoupled structure based on the head of the original
structure.

Tiny Object Head. This paper studies and analyzes various remote sens-
ing object datasets and finds that these remote sensing object datasets contain
many very small instances. Therefore, this paper proposes a prediction head to
predict remote sensing objects. This new prediction head is specifically used to
detect tiny objects. It receives low-level, high-resolution feature maps as input.
The newly added prediction head is combined in parallel with the original three
prediction heads to form a four-head detection structure. During the training
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Fig. 2. YOLO series model performance comparison chart.

Fig. 3. The overall architecture of YOLO-RSOD.



320 Y. Xu and J. Lu

process, the four prediction heads jointly learn features and perform object detec-
tion, giving full play to their respective advantages.

As shown in Fig. 4, Tiny Object Head, a prediction head specifically used
to detect tiny objects, allows image features to be passed to the feature fusion
module at a shallower level of the model, so that the model can obtain more
detailed information about tiny objects in the image. This method allows the
model to capture more features of tiny objects, thereby improving the detection
accuracy of tiny objects in remote sensing images.

Although adding tiny object head will bring certain computational and mem-
ory overhead, this trade-off is worth accepting compared to the improved tiny
object detection performance. Because for scenes such as remote sensing images
that contain a large number of tiny objects, improving the tiny object detection
effect is very critical, and subsequent experimental results can prove this.

Fig. 4. Added tiny object head.

Decoupled Head. Traditional detection models, such as YOLOv5, use a single
detection head that predicts both the object category and the location of the
box. This design has a problem: combining category prediction and location
prediction in one head may cause the error of one task to affect the other task.
Category prediction and location prediction have different problem domains and
require different loss functions and network layers.

The decoupled head separates category prediction and location prediction,
and uses two independent network branches to process them respectively. This
can optimize the loss function of each task separately, improve model flexibility,
and avoid mutual interference between different tasks.
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The decoupled detection head structure used in this paper is shown in Fig. 5.
The category prediction branch uses a fully connected layer to output various
probabilities. The location prediction branch uses a convolutional layer to gen-
erate bounding box coordinates, and IoU is used as an evaluation indicator to
measure the quality of the prediction results, and non-maximum suppression is
applied in the post-processing stage.

Fig. 5. The overall architecture of Decoupled Head.

Centralized Feature Pyramid. The feature pyramid is a basic neck net-
work in modern recognition systems that can be effectively and efficiently used
to detect objects at different scales. Overall, feature pyramid can handle the
problem of multi-scale changes in object recognition without increasing com-
putational overhead, and the extracted features can generate multi-scale feature
representations that include some high-resolution features. Compared with exist-
ing feature pyramids, the CFP not only captures global long-range dependencies,
but also efficiently obtains comprehensive and discriminative feature represen-
tations. The structure of the core block EVC in the CFP is shown in Fig. 6.

From Fig. 6, Between the top-level features Xin and EVC, there is a Stem
Block for feature smoothing. The Stem Block consists of a 7*7 convolution with
an output channel size of 256, followed by a batch normalization layer and an
activation function layer. The above process can be expressed by Xsb as formula
(1).

Xsb = BN(Conv7 ∗ 7(Xin)) (1)

It can be seen that EVC mainly consists of two parallel-connected blocks, where
a lightweight MLP is used to capture the global information of the top-level
feature Xin. Implement a learnable visual centering mechanism on Xin using
Learnable Visual Center (LVC) to aggregate local region features within lay-
ers. The resulting feature maps of these two blocks are concatenated along the
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channel dimension as the output of EVC for downstream recognition. It can be
expressed as formula (2).

Xout = Cat(MLP (Xsb), LV C(Xsb)) (2)

In Fig. 6, the architecture of EVC uses a lightweight MLP module that can cap-
ture remote dependencies and a parallel LVC to aggregate local corner regions
of the input image. The integrated features incorporate the benefits of both
the MLP and LVC modules, allowing the detection model to learn comprehen-
sive and discriminative feature representations. Experiments show that the EVC
architecture improves the detection capability of the model in this paper.

Fig. 6. The overall architecture of Explicit Vision Center.

Global Attention Module. Global Attention Module (GAM) is a simple
but effective module for attention. It is a lightweight module that can be inte-
grated into the best known CNN architectures and can be trained in an end-to-
end manner. Given a feature map, GAM has two modules, channel attention and
spatial attention. Channel attention uses a 3D arrangement to preserve infor-
mation in three dimensions, while to focus on spatial information, two convolu-
tional layers are used in the spatial attention sub-module for spatial information
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fusion. GAM sequentially infers the attention map along the two separate dimen-
sions, channel and spatial, and then the attention map multiplied by the input
feature map to performs adaptive feature refinement. The structure of the GAM
module is shown in Fig. 7, the execution process can be expressed as formula
(3).

F1 = RC ∗ H ∗ W,F2 = Mc(F1)F1, F3 = Ms(F2)F2 (3)

Fig. 7. The overall architecture of GAM.

In formula (3), F1 is the input feature map, F2 is the intermediate state and
F3 is the output. Mc is the channel attention map and Ms is spatial attention
map.

According to the experiments in the paper, the performance of the model
is greatly improved after integrating GAM into different models on different
classification and detection datasets. In remote sensing object detection, there
is usually a variety of complex and puzzling background information contained
in large scale images. Using GAM can extract the attention region and help
YOLORSOD to eliminate the negative effects of complex background informa-
tion. It makes model focus on useful objects.

4 Experiments

4.1 Implementation Details

(1) Dataset section. This paper uses VisDrone2021 dataset and COCO2017
dataset for experiments. VisDrone2021 includes training set (6471 images),
validation set (548 images) and test set (1610 images), and the maximum
image resolution is 2000× 1500. COCO2017 includes train (118287 images),
val (5000 images) and test (40670 images).
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(2) Training section. Training is performed on GPU server with 4 RTX 3090,
using SGD optimizer, maximum learning rate 0.005, weight decay 0.0005,
momentum 0.9, a total of 300 epochs, image size 640*640, batch size 32.

4.2 Results and Comparison

This paper selects YOLOV7 as the baseline model and compares the YOLOR-
SOD detector with the YOLO series detectors and some popular object detec-
tors on the VisDrone2021 dataset, as shown in Table 1. It is compared with
the YOLO series object detectors and recent remote sensing object detectors
on the COCO2017 dataset, as shown in Table 2. Table 3 shows the performance
improvement of YOLO-RSOD compared to YOLOv7 in various categories of the
VisDrone2021 dataset.

Table 1. Comparison of different object detectors in VisDrone2021.

Model Size AP50:95 AP50

YOLOv5-X 640*640 22.6% 38.6%

YOLOX-X 640*640 25.8% 43.2%

YOLOv6-L 640*640 27.3% 47.1%

YOLOv7 640*640 27.5% 48.6%

SF-YOLO 640*640 18.2% 34.3%

YOLO-IMP 640*640 20.1% 36.4%

EdgeYOLO 640*640 26.4% 44.8%

TPH-YOLO 640*640 28.3% 47.4%

YOLO-RSOD(ours) 640*64030.7% 51.7%

Table 2. Comparison of different object detectors in COCO2017.

Model Param Size AP50:95 AP50

YOLOv5-X 86.7M 640*640 50.7% 68.9%

YOLOX-X 99.1M 640*640 51.1% 69.3%

YOLOv6-L 59.6M 640*640 51.8% 69.2%

YOLOv7 36.9M 640*640 51.2% 69.7%

SF-YOLO 2.24M 640*640 32.3% 50.6%

YOLO-IMP 15.3M 640*640 42.7% 58.7%

EdgeYOLO 40.5M 640*640 50.6% 69.8%

TPH-YOLO 53.6M 640*640 51.2% 70.1%

YOLO-RSOD(ours) 39.8M 640*64052.7% 70.1%

As can be seen from Table 1, YOLO-RSOD achieves 30.7% and 51.7% on
AP50:95 and AP50, respectively. Specifically, YOLO-RSOD outperforms the
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YOLOv7 model by 3.2% and 3.1% on AP50:95 and AP50. At the same time, the
model outperforms the most popular remote sensing object detector, the TPH-
YOLO model, by 2.4% on AP50:95 and is 4.3% ahead on the AP50 metric. The
same conclusion is also verified on the COCO2017 dataset, where Table 2 shows
that YOLO-RSOD leads all other models in AP50:95 and AP50. For the base-
line model YOLOv7, AP50:95 improves by 1.5%, while the number of parameters
only increases by 2.9M.

Table 3. Comparison of YOLO-RSOD and YOLOv7 on Specific Categories in the
VisDrone2021 Dataset.

Class YOLO-RSOD YOLO-RSOD YOLOv7 YOLOv7

AP50:95 AP50 AP50:95 AP50

all 30.7% 51.7% 27.5% 48.6%

pedestrian 26.4% 54.7% 22.6% 51.2%

people 19% 44.3% 15.6% 40.7%

bicycle 11.5% 25.9% 8.5% 22.1%

car 62.5% 89.6% 60.5% 87.6%

van 38.2% 56.1% 35.7% 53.8%

truck 32.1% 48.5% 28.7% 46.1%

tricycle 22.9% 41.1% 20.2% 38.6%

awning-tricycle 14.3% 26.2% 12.2% 23.4%

bus 51.5% 72.2% 47.5% 68.5%

motor 27.4% 57.4% 23.7% 53.8%

For the improvement of specific categories, it can be concluded from Table 3
that YOLO-RSOD achieves good detection results for all 10 detection object
categories included in the VisDrone2021 dataset. Specifically, the performance
improvement for both large-sized and small-sized objects is significant. For exam-
ple, in the AP50:95 indicator, the detection performance for buses improves by
4%, and the performance for pedestrians improves by 3.8%. There is also a
corresponding improvement in the detection of dense and complex objects; for
instance, in the AP50:95 indicator, the detection performance of people improves
by 3.4%, and the performance of awning-tricycles improves by 2.1%. The per-
formance improvement for complex scenes is reflected in the overall performance
enhancement.

The above experimental conclusions fully verify the improved object detec-
tion performance of YOLO-RSOD compared to YOLOv7, especially for common
problems in remote sensing object detection, such as large size changes, high den-
sity situations, and complex backgrounds, which have been effectively solved.

4.3 Ablation Studies

In this paper, the importance of each component is analyzed on the Vis-
Drone2021 validation set, and the experiments show that each component has
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Table 4. Ablation experiments.

Model Decoupled HeadGAMEVCTiny Object HeadAP50:95 AP50

YOLO-RSOD 27.5% 48.6%

YOLO-RSOD * 27.9% 49.3%

YOLO-RSOD * * 28.1% 49.6%

YOLO-RSOD * * * 28.5% 50.1%

YOLO-RSOD * * * * 30.7% 51.7%

some improvements on the remote sensing object detection capability. Table 4
lists the impact on YOLO-RSOD detection performance with the addition of
each component.

According to Table 4, it can be seen that the four improvement measures
adopted in this article can effectively improve the detection performance of
remote sensing image objects. The specific performance is as follows: (1) After
adding the decoupling structure to the original IDetect Head, the model’s
AP50:95 increased by 0.4%, and AP50 increased by 0.7%. (2) After replacing the
convolution block of the ELAN structure of the network with the GAM atten-
tion mechanism, the model’s AP50:95 increased by 0.2%, and AP50 increased
by 0.3%. (3) By adding the EVC block of the feature pyramid to the NECK part
of the network, the network’s ability to extract multi-scale features is enhanced.
The model’s AP50:95 is increased by 0.4%, and AP50 is increased by 0.5%. (4)
After using an additional tiny object head, the model’s AP50:95 increased by
2.2%, and AP50 increased by 1.6%. It can be seen that the additional remote
sensing object detection heads contribute the most to the performance of the
model. The reason is that the remote sensing objects in the data set are too
small and there are too many types. Only when the additional detection heads
can detect these objects first can other modules be more accurate. Good perfor-
mance.

4.4 Visualization

The YOLO-RSOD proposed in this paper is better than YOLOv7 on remote
sensing object datasets. In order to prove this more intuitively, this paper visu-
alizes the detection results of YOLO-RSOD and YOLOv7 for the remote sensing
object dataset. Specifically, some representative remote sensing object images in
the validation set of VisDrone2021 dataset are first selected, and then YOLOR-
SOD and YOLOv7 are used to detect these images respectively. The detection
results are shown in Fig. 8 with each row displaying different remote sensing
object detection scenarios and each column displaying the detection performance
of different models, from left to right: YOLOv7, YOLO-RSOD, Ground Truth.

As shown in Fig. 8, for four groups of very representative remote sensing
object scenes, it can be clearly seen that the detection effect of YOLO-RSOD is
better than that of YOLOv7. Specifically, the first group of images is a common
low-density larger object scene, that is, a traditional object detection scene. The
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detection effect of this scene can well illustrate the model’s detection performance
for common objects. It can be seen from the detection results that for larger
objects, YOLOv7 and YOLO-RSOD perform equally well, and both achieve
excellent detection results. For example, both detectors can successfully detect
all objects to be identified in the scene.

The second group of images shows a common multi-size dense object scene
in remote sensing object detection. This scene shows the characteristics of high
density and large size variation of remote sensing objects. From the detection
results, it can be seen that for densely distributed and small objects, YOLOv7
can detect larger objects in the foreground very well, but the detection effect for
smaller objects farther away is very poor, and some categories are not successfully
identified. YOLO-RSOD can achieve excellent detection results for both large
and small objects.

Fig. 8. Visual comparison of detection results.

The third group shows one of the important application scenarios in remote
sensing object detection - aerial photography detection. This scenario shows
the large coverage characteristic of remote sensing objects. From this group of
comparative experiments, it can be seen that YOLOv7 is basically unable to
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detect very distant objects in similar pictures, while the YOLO-RSOD proposed
in this paper performs much better than YOLOv7 in remote sensing object
detection, especially aerial photography detection.

The fourth group shows the remote sensing object scene at night, which is
mainly to reflect the robustness of the model. This set of comparative experi-
ments shows that the detection ability of YOLO-RSOD at night is also stronger
than that of YOLOv7.

Through the comparison experiment of the detection effects in Fig. 8, it can
be seen that the three main problems of remote sensing object detection at
this stage are large-scale changes, high density and large coverage. In addi-
tion, this paper also conducts night scene detection to verify robustness. The
YOLO-RSOD proposed in this paper can effectively overcome these problems
and performs much better than YOLOv7.

5 Conclusion

This paper proposes a remote sensing object detection framework YOLO-RSOD.
This model is more effective for remote sensing image datasets and is optimized
and improved on the framework of the state-of-the-art one-level object detec-
tor YOLOv7. First, an effective remote sensing object data prediction head is
proposed by combining the GAM attention mechanism and EVC module in the
feature pyramid at the neck. Finally, a more effective decoupling head struc-
ture is adopted in the detection head structure, resulting in a detector with
excellent performance. The YOLO-RSOD model is particularly good at object
detection in remote sensing image scenes. Tests on the VisDrone2021 dataset
show that YOLO-RSOD achieves excellent performance on the remote sensing
image dataset, indicating that YOLO-RSOD provides better results in the anal-
ysis and processing of remote sensing image scenes.

The YOLO-RSOD proposed in this article still has some room for improve-
ment in terms of model complexity and calculation speed. In the future, the
author will further optimize the model structure, reduce computational complex-
ity, and improve detection speed to meet the needs of more practical application
scenarios.
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Abstract. The images taken under varying lighting or adverse weather
conditions exhibit different distributions in high-dimensional space,
and make object detection networks perform poorly. In this paper,
we propose a domain adaptation method based on adversarial learn-
ing to ensure the features extracted from a similar distribution,
even when the input images belong to different domains. Consid-
ering the scarcity of images taken under certain weather condi-
tions in the existing dataset, a semi-supervised learning framework
is incorporated to enhance the detection performance through train-
ing with unlabeled images. The experiments conducted on public and
private datasets show that our proposed adversarial learning tech-
nique outperforms the recent traffic scene object detection networks
in all different domains. Source code and datasets are available at
https://github.com/daniel851218/all-weather-vehicle-detector.

Keywords: All Weather Object Detection · Adversarial Learning ·
Semi-Supervised Learning

1 Introduction

In the past decades, numerous computer vision tasks have exceeded the perfor-
mance of conventional algorithms due to the explosive growth of deep neural net-
works. The advances in these technologies have enhanced the ability of machines
to perceive the real world, which leads to the development of more comprehen-
sive advanced driver assistance systems. It provides both drivers and pedestrians
with a safer environment. Current object detection networks, whether one-stage
models like YOLOv7 [20], or two-stage models such as Faster R-CNN [17], can
perform the target identification successfully in various driving datasets (e.g.,
KITTI [10], CityScapes [4], and BDD100K [21]). These datasets contain images
primarily acquired under daytime with normal weather conditions.
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Fig. 1. Road scene images captured under adverse conditions for various application
scenarios.

For a broader aspect, the lighting and weather conditions are highly variable
in the real world. In general, the images captured in the nighttime might be
excessively dark due to under-exposure. The headlights of coming vehicles can
cause backlighting, which results in significant variations between bright and
dark areas of the image. In addition, the increase of exposure time will lead to
the effect of motion blur in the images. As shown in Fig. 1, image blurring is also
prone to occur due to the light refraction caused by raindrops during the rainy
weather. Since conventional cameras are limited by the intensity dynamic range
in image acquisition, they cannot capture bright and clear scenery under all-
weather scenarios. Consequently, the object detect networks trained on daytime
and normal weather data face challenges in the applicability to general situations
due to the domain shift between training and testing data.

An advanced driver assistance system should be capable of detecting objects
under any lighting and weather conditions [13]. It is clear that training multiple
object detection networks for different scenarios using the images captured under
various conditions is an inefficient approach. Collecting and labeling image data
is a time-consuming and labor-intensive task. To improve the detection per-
formance of all-weather conditions, infrared or thermal cameras are adopted,
and combined with RGB images for cross-modality deep learning techniques
[5,8,23,24]. Although the contour characteristics of objects could be perceived
in nighttime or dense foggy weather, the equipment is typically high-cost, and
presents issues such as lower resolution and distance limitations.
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In this work, we propose an all-weather detection network based on adver-
sarial and semi-supervised learning for traffic scenes. The objective is to adopt
the same network model to identify targets in the RGB images captured under
different situations. We consider four scenarios based on the lighting variations
and weather conditions, more specifically, daytime normal, daytime rainy, night
normal, and night rainy. For the feature extraction of traffic scenes associated
with a similar distribution but belonged to different domains, we incorporated
daytime/night and normal/rainy domain classifiers for adversarial learning. To
deal with imbalanced data due to the significantly less rainy images in available
datasets, teacher-student frameworks for semi-supervised learning are adopted to
enable the object detection network trained on imbalanced samples. The exper-
iments carried out on SHIFT, BDD100K and our datasets have demonstrated
the effectiveness of the proposed approach. Our source code and datasets are
available at https://github.com/daniel851218/all-weather-vehicle-detector.

2 Related Work

To improve the performance of visual tasks under adverse conditions, some
researchers utilized GAN-based approaches for image style transformation. In
previous works, Anoosheh et al. proposed ToDayGAN [1] to transfer image styles
from night to daytime. Based on CycleGAN and image retrieval, it was able to
perform the accurate localization of robots with 6-DOF. ForkGAN proposed by
Zheng et al. employed a fork-shape module composed of one encoder and two
decoders. It was used to disentangle the domain-invariant and domain-specific
image features across different scenarios [22]. Data augmentation using ForkGAN
to transform labeled daytime images into nighttime reduced data imbalance and
enhanced visual localization, semantic segmentation, and object detection in the
nighttime. However, a major drawback of GAN-based methods is the uncer-
tainty of the generated contents. During the process of image style transfer,
small objects such as pedestrians, motorcycles, and distant vehicles are easy to
disappear. This is a crucial flaw for development of advanced driver assistance
systems, and particularly noticeable in dark nighttime images.

The images captured under adverse conditions are usually with low quality.
This makes network detection results prone to false positives and misses. Thus,
some previous researches proposed image enhancement methods to improve the
quality before feeding the images into the object detection networks. One typical
approach is to train the neural networks for direct adjustments of parameters to
enhance the image quality. Guo et al. proposed an end-to-end training frame-
work “enhance before detect” [11]. This approach converts the RGB images into
the YCbCr color space to adjust exposure and then feed them into Faster R-
CNN for object detection. In [14], Liu et al. proposed Image-Adaptive YOLO by
using a differentiable processing module to perform dehazing, sharpening, con-
trast enhancement and white balance adjustment for object detection. Nayak et
al. proposed ObjectRL, which trained an agent by deep reinforcement learning
to adjust the image properties for improvements [16]. It utilized a pre-trained

https://github.com/daniel851218/all-weather-vehicle-detector
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network and provided feedback to the agent based on IoU and F1 scores. While
these approaches are intuitive and adaptable to various image processing algo-
rithms, they often struggle to increase the object detection performance when
the image quality is fairly poor.

When the images are captured under different lighting and weather condi-
tions, the domain shift problem occurs as their distributions are different in
high-dimensional space. In order to enable object detection networks to perform
cross-domain detection, Chen et al. proposed Domain Adaptive Faster R-CNN
to divides domain shift into image-level and instance-level [3]. The approach
utilized adversarial learning based on H-divergence to extract features with sim-
ilar distributions, even if input images came from different domains. Saito et al.
claimed that aligning the global features of images from different domains would
be beneficial, and proposed strong-weak distribution alignment to enhance the
performance of Domain Adaptive Faster R-CNN [18]. To address the issue of
insufficient labeled images in the target domain, Deng et al. proposed an unbiased
mean teacher method [6]. It utilized CycleGAN to generate source-like or target-
like images, and send them into the mean teacher model for semi-supervised
learning. Jiao et al. noted that in the semi-supervised learning framework using
current teacher-student networks, the model weight updates of the teacher net-
work overly depend on the student network. Hence, a dual instance-consistent
network was proposed to learn and extract the features independently from the
source and target domains [12].

This paper leverages the advantages of adversarial learning to align features
from different domains. In addition, semi-supervised learning is employed for
training with unlabeled images to enhance the detection network. The target
objects can then be identified under the adverse lighting and weather conditions.

3 Approach

To reduce the effect of domain shift due to varying lighting and address the
problem of insufficient image quantity under certain weather conditions, this
work first utilizes adversarial learning to extract the features with a consistent
distribution by an object detection network. Simultaneously, we incorporate a
semi-supervised learning framework to train the object detection network using
unlabeled images for minimizing the efforts of data collection and annotation. In
order to alleviate the performance degradation of object detection network due
to the application scenario change, we classify input images into four domains:
daytime normal, daytime rainy, nighttime normal, and nighttime rainy. Faster
R-CNN is utilized as our backbone for object detection with two domain clas-
sifiers for time and weather. Each kind of domain classifiers are further broken
down into image-level and instance-level classifiers. Hence, there are totally four
different classifiers to recognize the images belonged to which domain and at
different feature level.

The features derived from the feature extractor consist of the global charac-
teristics of input images, and are referred to as image-level features. Similarly,
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the feature maps obtained from the RoI align represent the local characteristics
of input images, and are hence termed instance-level features. Before feeding
both types of features into the corresponding domain classifiers, they are pro-
cessed with the gradient reversal layer [9] to minimize the detection loss and
maximize the domain classification loss at the same time. Since the image-level
and instance level features originate from the same input image, the classification
results of different domain classifiers must also be the same.

The losses of daytime and weather domain classifiers are given by

Ladv
d (X, Ĉd) = BCE(Cins

d , Ĉd) + BCE(Cimg
d , Ĉd) + MSE(Cimg

d , Cins
d ) (1)

and

Ladv
w (X, Ĉw) = BCE(Cins

w , Ĉw) + BCE(Cimg
w , Ĉw) + MSE(Cimg

w , Cins
w ), (2)

where Ĉd and Ĉw denote the ground truth labels, Cimg
d and Cimg

w are the image-
level predictions of two classifiers, and Cins

d and Cins
w represent the instance-

level predictions. Equations (1) and (2) consist of three loss terms. The first two
are used to calculate the domain classification loss of each classifier with the
binary cross entropy (BCE). The third term is used to compute the consistency
loss between the image-level and instance-level classifiers by mean squared error
(MSE).

This adversarial learning based method enables the feature extractor of
Faster R-CNN to extract the features with similar distributions. Consequently, it
can achieve cross-domain object detection under different lighting and weather
domains. Figure 2 shows the overall architecture of the proposed Adversarial
Faster R-CNN. Based on Eqs. (1) and (2), the total loss is defined by

Ladv
det (X, Ĉ, B̂) = Ldet(X, Ĉobj , B̂) + λd · Ladv

d (X, Ĉd) + λw · Ladv
w (X, Ĉw) (3)

where λd and λw are used to control the influence of daytime and weather
classifiers, respectively.

3.1 Semi-Supervised Adversarial Object Detection Network

Due to the frequency of different weather conditions, the collection of driving
images could easily lead to a significant quantity imbalance in the dataset. In
the BDD100K training dataset, the images of daytime rainy and night rainy
account for only 5% and 4% of the entire dataset, respectively. The number of
rainy images is almost ten times less than normal weather images. To address the
data imbalance issue caused by the images from different domains, we collect our
driving data and YouTube video clips for specific weather conditions as a private
dataset for model training. The image annotation is conducted by incorporating
the teacher-student network in Adversarial Faster R-CNN. Based on this network
structure, Semi-Supervised Adversarial Faster R-CNN is established as shown in
Fig. 3. Note that the architecture of student network is almost identical to teacher
network, except for the domain classifiers attached for adversarial learning.
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Fig. 2. The architecture of the proposed Adversarial Faster R-CNN. The total loss
contains weighted influence of daytime and weather classifiers.

In general, the object detection networks cannot generate enough accurate
pseudo labels for the unlabeled low-quality images. This work employs the con-
cept of curriculum learning [2] by selecting the easier images for training prior to
the difficult ones. The student network is trained with labeled data for each iter-
ation first to make the training process more stable. It is followed by performing
data augmentation on the unlabeled image to obtain two images with less dis-
turbance. One is fed into the teacher network to generate pseudo labels, and the
other is sent into the student network for supervised learning with pseudo labels.
After several iterations, student network updates its weights to the teacher net-
work using the exponential moving average

θt ← α · θt + (1 − α) · θs (4)

where θt and θs denote the weights of the teacher and student networks, respec-
tively.

Too many false detections in the pseudo labels will cause the student net-
work learned the incorrect information. As the training iteration increases, the
object detection results may become even worse. To deal with this problem, we
filter out the low-confidence pseudo labels using double-thresholding and voting
mechanism to derive more reliable ones. For the bounding boxes with confidence
scores larger than the high threshold or smaller than the low threshold, they
are kept or abandoned respectively. For the ones with confidence scores between
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Fig. 3. The architecture of our Semi-Supervised Adversarial Faster R-CNN. The stu-
dent network has the structure similar to the teacher network, except for the domain
classifiers are attached for adversarial learning.

the low and high thresholds, the voting based on the width, height, aspect ratio
and area of each ground truth label in the public dataset is conducted. After
sorting with these four characteristics, the pseudo labels in the first quartile or
their aspect ratios in the fourth quartile will receive one vote. When the number
of votes exceeds the voting threshold, the pseudo label is likely a false positive,
and is abandoned from the student network training.

The loss function for the proposed Semi-Supervised Adversarial Faster R-
CNN is defined by

Lssl
det(X

sup,Xunsup, Ĉ, B̂) = Lsup
det (X

sup, Ĉ, B̂)

+ λunsup · Lunsup
det (Xunsup, CT , BT ) + Lunsup

adv (X, Ĉ) (5)
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Algorithm 1. Training Process of Semi-Supervised Learning
Input: Images with labels Xsup

Input: Images without labels Xunsup

Input: F (x) is Data Augmentation Function
Input: G({Cj , Bj}) is Pseudo Label Filter Function
1: Get pre-trained weight θinit by training Adversarial Faster R-CNN with Xsup

2: Initialize Student Network S(x) with θinit

3: Initialize Teacher Network T (x) with θinit

4: for i = 0 to MAX_EPOCH do
5: for xsup ∈ Xsup, xunsup ∈ Xunsup do
6: Train Student Network with F (xsup)
7: Compute Supervised Loss Lsup

det

8: Get xunsup
1 = F (xunsup)

9: Get xunsup
2 = F (xunsup)

10: Get Pseudo Label {CT
j , BT

j } = T (xunsup
1 )

11: {C′T
j , B′T

j } = G({CT
j , BT

j })
12: Train Student Network with xunsup

2 and {CT
j , BT

j }
13: Compute Adversarial Loss Lunsup

adv

14: Compute Unsupervised Loss Lunsup
det

15: Total Loss Lssl
det = Lsup

det + λunsupL
unsup
det + Lunsup

adv

16: end for
17: Update Student Parameter θs
18: if i % NUM_UPDATE == 0 then
19: Update Teacher Parameter θt ← α · θt + (1 − α) · θs
20: end if
21: end for

where Xsup and Xunsup denote the labeled and unlabeled data, CT and BT are
the pseudo labels of object category and bounding box position, and λunsup is
used to control the influence of the unsupervised learning. It consists of three
components, with first the supervised loss derived from the labeled data, second
the unsupervised loss obtained from the pseudo labels, and last the adversarial
loss calculated from cross-domain learning. The overall training process is shown
in Algorithm 1.

4 Experiments

The proposed detection techniques for all-weather driving are evaluated on two
public datasets, SHIFT, BDD100K, and our recorded driving videos. We com-
pare the performance of the networks, Faster R-CNN, Adversarial Faster R-CNN,
and Semi-Supervised Adversarial Faster R-CNN. The images in the datasets are
categorized to four domains: daytime sunny, daytime rainy, nighttime sunny,
and nighttime rainy. In the experiments, we consider six target objects: car, bus,
bicycle, truck, motorcycle, and pedestrian.
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SHIFT Dataset. The SHIFT dataset contains synthetic images generated
using the CARLA simulator [7,19]. It incorporates various onboard sensors
to create virtual driving images with diverse lighting and weather conditions.
SHIFT is mainly designed for domain adaptation applied to various autonomous
driving tasks.

BDD100K Dataset. The BDD100K dataset consists of large-scale driving
data released by UC Berkeley DeepDrive [21]. It includes a wide range of road
scenes, weather conditions, and lighting, with data annotation provided for vari-
ous autonomous driving evaluation. Nevertheless, the dataset still covers a large
part of images taken in the normal weather as illustrated in Fig. 4.

Private Dataset. To address the issue of limited number of rainy weather
images in the BDD100K dataset, in this paper we include additional images
of rainy scenes from our driving recording and downloads from YouTube. The
images are served as unlabeled data in the training process of Semi-Supervised
Adversarial Faster R-CNN.

The SHIFT and BDD100K datasets are used for training and testing of
the backbone network and adversarial learning. In the training phase of semi-
supervised learning, both of the BDD100K and private datasets are utilized. The
BDD100K dataset provides ground truth data, which helps maintain the training
stability. On the other hand, the private image dataset is used to expose the net-
work to a wider variety of data. In the testing phase, the BDD100K and private
datasets are used for qualitative and quantitative experiments, respectively.

Fig. 4. The distributions of the numbers of images provided by the four domains in
the BDD100K dataset.
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Fig. 5. The feature distributions of the SHIFT and BDD100K datasets after adversarial
learning.

Table 1. The results of adversarial learning on the SHIFT dataset for different domains
and classes.

P/R/AP Car Truck Pedestrian Bus Bicycle Motorcycle

Daytime
Normal

–0.0157/
0.0248/
0.0110

–0.0132/
0.0187/
0.0334

0.0445/
0.0088/
0.0202

0.0414/
0.0315/
0.0621

0.0324/
0.0420/
0.0229

0.0589/
–0.0030/
0.0288

Daytime
Rainy

0.0197/
0.0144/
0.0098

–0.0332/
0.0593/
0.0429

0.0230/
0.0195/
0.0248

0.0318/
0.0930/
0.0868

0.0091/
0.0309/
0.0115

–0.0452/
0.0710/
0.0097

Night
Normal

–0.0062/
0.0377/
0.0043

0.0593/
0.0114/
0.0314

–0.0106/
0.0480/
0.0318

0.0544/
0.0276/
0.0424

0.0409/
–0.0037/
0.0402

0.0756/
0.0126/
0.0099

Night
Rainy

0.0287/
0.0069/
0.0086

0.0466/
0.0916/
0.0553

0.0640/
0.0281/
0.0396

–0.0644/
0.0523/
0.0346

0.1702/
0.0607/
0.0899

0.0717/
0.0357/
0.0554

4.1 Results of Adversarial Learning

We use Precision (P), Recall (R), and AP (IoU = 0.5) as evaluation metrics.
The improvement of adversarial driving scene detection network is evaluated
separately on the SHIFT and BDD100K datasets. Figure 5 shows the feature
distribution after the adversarial learning visualized through t-SNE [15]. It can
be observed that the domain shift issue among images is indeed alleviated by
adversarial learning. Tables 1 and 2 represent the improvements achieved by
Faster R-CNN with adversarial learning on the SHIFT and BDD100K datasets,
respectively, with positive values indicate improvement and negative values indi-
cate degradation.

Table 1 shows that Adversarial Faster R-CNN effectively improves Precision,
Recall, and AP on the images from four different domains compared to Faster R-
CNN in the SHIFT dataset. In these four domains, the night rainy scene exhibits
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Table 2. The results of adversarial learning on the BDD100K dataset for different
domains and classes.

P/R/AP Car Truck Pedestrian Bus Bicycle Motorcycle

Daytime
Normal

0.0087/
0.0023/
0.0017

0.0574/
–0.0360/
–0.0021

0.0121/
0.0002/
0.0038

0.1055/
–0.0410/
0.0093

0.0789/
0.0401/
0.0548

0.1266/
–0.0430/
0.0214

Daytime
Rainy

–0.0151/
0.0261/
0.0093

–0.0418/
–0.0033/
–0.0143

0.0278/
–0.0317/
–0.0164

–0.3293/
0.1182/
0.0095

0.0593/
0.0714/
0.0613

–0.0627/
0.0000/
–0.0927

Night
Normal

0.0112/
–0.0021/
–0.0010

–0.1072/
0.0397/
0.0017

–0.0106/
–0.0097/
–0.0047

–0.0536/
0.0273/
0.0099

0.0618/
0.0263/
0.0735

0.0686/
0.0864/
0.1498

Night
Rainy

0.0228/
0.0066/
0.0017

0.0158/
–0.0139/
0.0161

0.1333/
–0.0455/
0.0850

–0.0957/
–0.0383/
–0.0905

0.4615/
–0.1333/
0.0048

–0.5714/
0.1000/
–0.0448

Fig. 6. The result of Adversarial Faster R-CNN in Night Rainy obtained from the
SHIFT dataset.

the most significant improvement. Especially, the bicycle and motorcycle classes
increase 17.02% and 7.17% in precision, and truck and bicycle increase 9.16%
and 6.07% in recall, respectively. Figure 6 shows the results from night rainy
images with rainy blur and low light scene. Compared to the ground truth labels
depicted in Fig. 6(a), Faster R-CNN misses two small targets on the right (car
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Table 3. The performance evaluation of Faster R-CNN and the proposed semi-
supervised adversarial learning technique on daytime normal images.

P/R/AP Car Truck Person Bus Bicycle Motorcycle Average

Faster R-CNN 0.8354/
0.6537/
0.7349

0.5765/
0.5169/
0.5096

0.6594/
0.4930/
0.5271

0.6445/
0.4675/
0.5117

0.4796/
0.2361/
0.2473

0.3850/
0.3008/
0.2402

0.5967/
0.4447/
0.4618

w/adv 0.8441/
0.6561/
0.7366

0.6338/
0.4809/
0.5075

0.6715/
0.4932/
0.5310

0.7500/
0.4265/
0.5210

0.5586/
0.2762/
0.3021

0.5116/
0.2578/
0.2616

0.6616/
0.4318/
0.4766

w/adv & ssl 0.8447/
0.6584/
0.7378

0.6180/
0.4914/
0.5098

0.7111/
0.4751/
0.5313

0.6288/
0.4795/
0.5197

0.5482/
0.2784/
0.3007

0.5000/
0.2578/
0.2629

0.6418/
0.4401/
0.4771

and pedestrian, see Fig. 6(b)), while our Adversarial Faster R-CNN is able to
detect all four objects (two trucks, one car and one pedestrian) as shown in
Fig. 6(c).

As tabulated in Table 2, the improvements of Adversarial Faster R-CNN are
less significant on the BDD100K dataset. This is mainly because the highly
diverse real-world images cannot be entirely replicated by synthetic images gener-
ated by the driving scene simulator. In particular, there is a notable gap between
the rainy effects produced by the simulation and real-world scenes. Furthermore,
the number of images across the four different domains is relatively balanced in
the SHIFT dataset. For the BDD100K dataset, there is a clear imbalance in
terms of the images across different domains as depicted in Fig. 4. Consequently,
it limits the increasing performance of Adversarial Faster R-CNN on the daytime
rainy and night rainy scenes.

4.2 Results of Semi-Supervised Learning

Tables 3, 4, 4, 5 and 6 present the detection results of three models on the
images from four different domains in the BDD100K dataset. It can be observed
that no object detection network significantly outperforms the others for the
daytime normal, daytime rainy, and night normal scenes. However, networks
with semi-supervised learning consistently achieve the best or second-best per-
formance in these three evaluation metrics. This demonstrates the capability of
semi-supervised learning for the improvement on driving scene detection perfor-
mance of CNN-based networks.

While Table 6 shows that, on the average, Faster R-CNN provides better
performance for the night rainy scene, some categories (such as car and truck)
have a significantly lower representation in the dataset. This could result in a
high false (positive and negative) detection rate. As illustrated in Fig. 7 for the
outputs of the private dataset, Faster R-CNN can only detect the vehicles near
the image center. However, Adversarial Faster R-CNN with domain classifiers
is able to identify additional targets at the cost of some false positives. After
incorporating the teacher-student framework for Semi-Supervised Adversarial
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Table 4. The performance evaluation of Faster R-CNN and the proposed semi-
supervised adversarial learning technique on daytime rainy images.

P/R/AP Car Truck Person Bus Bicycle Motorcycle Average

Faster R-CNN 0.8417/
0.6621/
0.7465

0.6255/
0.5621/
0.5726

0.7300/
0.4929/
0.5402

0.9756/
0.3636/
0.5015

0.4074/
0.2619/
0.2374

0.5333/
0.4000/
0.3406

0.6856/
0.4571/
0.4898

w/adv 0.8265/
0.6882/
0.7558

0.5836/
0.5588/
0.5584

0.7578/
0.4612/
0.5237

0.6463/
0.4818/
0.5111

0.4667/
0.3333/
0.2987

0.4706/
0.4000/
0.2479

0.6253/
0.4872/
0.4826

w/adv & ssl 0.8305/
0.6851/
0.7545

0.5682/
0.5719/
0.5641

0.7624/
0.4628/
0.5237

0.6154/
0.5091/
0.5102

0.4167/
0.3571/
0.2993

0.7000/
0.3500/
0.2657

0.6489/
0.4893/
0.4863

Table 5. The performance evaluation of Faster R-CNN and the proposed semi-
supervised adversarial learning technique on night normal images.

P/R/AP Car Truck Person Bus Bicycle Motorcycle Average

Faster R-CNN 0.7756/
0.6497/
0.7261

0.6488/
0.5000/
0.5000

0.6124/
0.4719/
0.4930

0.6298/
0.4453/
0.4608

0.4382/
0.2566/
0.2206

0.5000/
0.2716/
0.2329

0.6008/
0.4325/
0.4389

w/adv 0.7868/
0.6476/
0.7251

0.5415/
0.5397/
0.5017

0.6018/
0.4622/
0.4883

0.5762/
0.4727/
0.4706

0.5000/
0.2829/
0.2941

0.5686/
0.3580/
0.3827

0.5958/
0.4605/
0.4771

w/adv & ssl 0.7997/
0.6413/
0.7261

0.5675/
0.5293/
0.5023

0.5944/
0.4681/
0.4888

0.5930/
0.4609/
0.4670

0.4234/
0.3092/
0.2999

0.6364/
0.3457/
0.3965

0.6024/
0.4591/
0.4801

Table 6. The performance evaluation of Faster R-CNN and the proposed semi-
supervised adversarial learning technique on night rainy images.

P/R/AP Car Truck Person Bus Bicycle Motorcycle Average

Faster R-CNN 0.7844/
0.6188/
0.7084

0.8478/
0.5417/
0.6037

0.5568/
0.4170/
0.4075

0.8667/
0.5909/
0.6523

0.5385/
0.4667/
0.4187

1.0000/
0.2000/
0.2284

0.7657/
0.4725/
0.5032

w/adv 0.8072/
0.6254/
0.7100

0.8636/
0.5278/
0.6198

0.4611/
0.3787/
0.3170

1.0000/
0.5455/
0.7374

1.0000/
0.3333/
0.4235

0.4286/
0.3000/
0.1836

0.7601/
0.4518/
0.4985

w/adv & ssl 0.8023/
0.6283/
0.7116

0.6984/
0.6111/
0.6202

0.4754/
0.3702/
0.3182

1.0000/
0.5455/
0.7376

1.0000/
0.3333/
0.4190

0.4286/
0.3000/
0.1847

0.7341/
0.4647/
0.4986

Faster R-CNN, the false positives are reduced and the best detection result is
achieved. All in all, the proposed semi-supervised adversarial network possesses
the better generalization capability for diverse input data.
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Fig. 7. The result of Semi-Supervised Adversarial Faster R-CNN in Night Rainy
obtained from our private dataset.

5 Conclusion

To perform road scene object detection without individual training on the images
acquired under different lighting and weather conditions, this paper proposes a
method to employ adversarial learning to alleviate domain shifts among images.
Since the approach does not involve domain classifiers during model inference
or testing, the computation time for testing can be reduced. In the experiments
conducted on public and private datasets, the proposed adversarial learning tech-
nique outperforms the recent traffic scene object detection networks in all dif-
ferent domains. It also demonstrates most significant improvements in the night
rainy scenario.
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Abstract. Accurately predicting the trajectories of dynamic agents is
crucial for the safe navigation of autonomous robotics. However, achiev-
ing precise predictions based solely on past and current observations is
challenging due to the inherent uncertainty in each agent’s intentions,
greatly influencing their future trajectory. Furthermore, the lack of pre-
cise information about agents’ future poses leads to ambiguity regard-
ing which agents should be focused on for predicting the target agent’s
future. To solve this problem, we propose a teacher-student learning app-
roach. Here, the teacher model utilizes actual future poses of other agents
to determine which agents should be focused on for the final predic-
tion. This attentional knowledge guides the student model in determin-
ing which agents to focus on and how much attention to allocate when
predicting future trajectories. Additionally, we introduce a Lane-guided
Attention Module (LAM) that considers interactions with local lanes
near predicted trajectories to enhance prediction performance. This mod-
ule is integrated into the student model to refine agent features, thereby
facilitating a more accurate emulation of the teacher model. We demon-
strate the effectiveness of our proposed model with a large-scale Argo-
verse motion forecasting dataset, improving overall prediction perfor-
mance. Our model can be used plug-and-play, showing consistent perfor-
mance gain. Additionally, it generates more human-intuitive trajectories,
e.g., avoiding collisions with other agents, keeping its lane, or considering
relations with other agents.

Keywords: Trajectroy Prediction · Motion Forecasting · Autonomous
Driving

1 Introduction

Predicting the future poses of dynamic agents is critical for autonomous vehicles
(or robots) to navigate safely and avoid collisions. Various methods have been
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Fig. 1. (a) Existing approaches depend only on past and current observations, which
presents challenges in addressing intentional uncertainties of other agents and opti-
mizing joint behavior distributions. (b) To address this, we propose a teacher-student
learning approach. The teacher model uses future observations of other agents to deter-
mine should-be-attended agents for the final prediction. This attentional knowledge is
transferred to the student model, guiding it to learn agent-wise relations efficiently.

developed to predict agents’ future trajectories using map-based contexts [7,11,
14,34] and considering agent-wise interactions [25,28]. Despite promising results,
the uncertainty in agents’ intentions remains a significant obstacle to accurate
prediction. This unpredictability challenges the forecasting of interactions and
complicates the optimization of collective behavior among agents.

However, by considering the future positions of other agents (though unre-
alistic assumptions during inference time), uncertain intentions can be clari-
fied. This approach offers a more accurate understanding of other agents that
should be focused as they proceed with the interaction when predicting the
future trajectory of the target agent. Inspired by this observation, in this paper,
we aim to leverage the attentional knowledge of a teacher model, which utilizes
other agents’ future information, as supervision for determining the extent of
interaction between each agent.

To this end, we utilize a teacher-student learning approach where knowl-
edge can be transferred from the teacher to the student model as shown in
Fig. 1. Among various knowledge transfer approaches, we focus on attention-
based knowledge transfer, where the agent-wise attention (i.e., which agents
should be attended to) distribution is transferred. Specifically, our teacher model
possesses critical attentional knowledge for agent-specific future predictions, as
all agents determine which agents should be focused on in order to predict tra-
jectories by leveraging the future poses of other agents, excluding themselves,
respectively. Our student model is not allowed to use that future information
but is regularized to mimic its attention to be similar to that of the teacher
model, i.e., minimizing attentional differences between the teacher and student
models. We empirically observe that such guidance notably improves the overall
quality of trajectory prediction, focusing on other agents that the teacher model
attends to.
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Further, we propose a novel Lane-guided Attention Module (LAM) that
refines the predicted trajectories of each agent through interaction with
confidence-augmented lane near the predicted trajectories.

To demonstrate the effectiveness of our proposed model, we conducted experi-
ments with the publicly available large-scale Motion Forecasting Dataset [3]. Our
model, which is applied to existing HiVT [35] and LangeGCN [14] models, pro-
vides a significant improvement. To our best knowledge, this is the first work to
transfer attentional knowledge learned from other agents’ future information.

2 Related Work

2.1 Trajectory Prediction

Recent works in the trajectory prediction domain have introduced methods for
predicting agents’ trajectories using their past trajectories and high-definition
map (HD map). However, challenges remain, such as (i) dealing with trajectory
uncertainty related to human intentions and (ii) accurately predicting interac-
tions with other elements present in the driving scene such as road components
and other agents. Notable approaches to address (i) include optimizing Gaus-
sian location uncertainties and integrating agents’ predicted goal positions to
better understand their intentions [2,11,24,30,31,34]. To resolve (ii), attention-
based architectures [9,20,21,26] have been increasingly chosen as the method
for fusing multimodal data and considering interactions between various compo-
nents. Employing a attention-based architecture allows for the joint prediction
of all agents’ trajectories simultaneously, encompassing the entire scene. Studies
such as [11,31] leverage predicted goal points to consider the intent of each agent
and incorporate this information into the interaction between agent features.
However, predicting future trajectories of agents affected by human intentions
based solely on historical information is challenging, leading to uncertainty in
the interactions between agents. To address this challenge, Sun et al. [28] uses
distance-based rules to classify the types of interactions between agents (e.g.,
first pass, next pass, or unrelated relationships) and integrate this information
into model learning. However, this method incurs ambiguity, where unrelated
agents can be classified as related, and additional costs in classifying interaction
types. Additionally, it is limited to considering only predefined relationships
between agents. Therefore, in this study, the process of classifying interaction
types is omitted. Instead, interactions are autonomously considered using future
trajectory information from other agents in the teacher model. This information
is used as a supervision in the student model, guiding which agents will focus on
when interacting.

2.2 Knowledge Distillation

Knowledge distillation [12] is a widely used method in various fields of computer
vision and natural language processing, aimed at transferring knowledge from



Who Should Have Been Focused 349

high-performing models with a large number of parameters to smaller models
with fewer parameters [10,23]. With the increasing attention towards knowl-
edge distillation, there have been numerous studies and research efforts aimed
at enhancing its performance [1,13,22,29]. [4] demonstrates that larger or more
accurate teacher models do not necessarily result in better student models during
the knowledge distillation process, also propose that early stopping of teacher
model’s training can mitigate this problem. [18] highlight the limitation of con-
ventional knowledge distillation, especially when the size gap between the teacher
and the student model is significant. To overcome this, they propose a multi-step
knowledge distillation method utilizing an intermediate-sized ‘Teacher Assis-
tant’, effectively bridging the gap and improving the performance of the student
model. In recent years, knowledge distillation has been extensively studied and
applied in the field of autonomous vehicle application. For example, Su et al. [27]
proposes a model that is not affected by the number of agents through knowl-
edge transfer from an agent-centric model (teacher) that has high performance
but increases computational cost geometrically with the number of agents to
a scene-centric model (student). Monti et al. [19] proposes an approach that
exploits only a few observation inputs to increase prediction performance and
eliminate noise probability in the detection phase. In this study, we propose a
method of transferring the knowledge of a teacher model, which can better under-
stand the interaction between the target agent and other agents by referencing
the future trajectory of other agents, to a student model. This approach allows
predicting the interactions between agents based not only on history information
but also on distilled features. And this allows for the efficient use of computation
resources and improves the performance of the student model.

3 Method

As shown in Fig. 2, our model uses a teacher-student learning approach where (i)
the teacher model T leverages other agents’ ground-truth future poses to deter-
mine which agents to be attended (or focused) for predicting the target agents’
trajectories. Such attentional knowledge is then transferred to (ii) the student
model S by forcing it to mimic the teacher model’s attention distributions. This
learning approach can be flexibly applied to a variety of attention-based trajec-
tory prediction models. Therefore, we extend our approach by building upon an
existing attention-based model as a baseline.

3.1 Preliminary

A sequence of poses (x, y) in 2D coordinates for an agent i ∈ [1, N ] is split into
the observation trajectory Xi = {(x, y)t

i|t ∈ {1, 2, . . . , Tin}} and the future tra-
jectory Yi = {(x, y)t

i|t ∈ {Tin + 1, . . . , Tin + Tout}} where Tin and Tout are the
observation and the prediction horizons, respectively. Local Encoder flocal gen-
erates per-agent contextual embeddings ci ∈ R

d for i ∈ [1, N ] given agents’ past
observation trajectory Xi and map data. We utilize an attention-based Local
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Fig. 2. An overview of our proposed method. Our model is built upon a teacher-student
learning model where (top) the teacher model can leverage the ground-truth future
observations of other agents while (bottom) the student model cannot use them. The
knowledge is transferred from the teacher model to the student model via attention-
based knowledge distillation, i.e., which agents should be attended to and be interacted
with for the final prediction.

Encoder [14,35] that concentrates on agent-centric local regions, learning tem-
poral dependencies and agent-map relations without considering interactions
between agents.

3.2 Teacher Network

Our Teacher network T leverages other agents’ ground-truth “future” trajec-
tories Yj for j �= i to determine which agents should be truly considered in
predicting future trajectories. To facilitate this process, we propose utilizing two
components as shown in Fig. 2 (top): (1) Future Encoder and (2) Future-Aware
Attention module. Our Future Encoder embeds the displacement of agents’ real
future trajectories at each time step {pt

i −pt−1
i }Tout+Tin

t=Tin
and concatenates it with

learnable token. Subsequently, this concatenated feature is fed into the temporal
attention block, enabling the extraction of overall temporal information about
the agent’s future from the learnable token oj such as BERT [5] and ViT [6].

The Future-Aware-Attention module is utilized to learn which agents the
target agent should focus on, taking into account the future trajectories of all
other agents except the target. Through this module, each agent, acting as a
target agent in turn, accesses the future information and learns more accurately
which agents to consider in order to predict their future trajectories. Therefore,
when the module is stacked multiple times, the knowledge of the target agent’s
future is integrated into cj , which serves as both keys and values. Subsequently,
this future information is exposed to the target agent’s feature ci. However, this
could be perceived as a form of cheating when predicting the future trajectory
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Fig. 3. An overview of Lane-guided Attention Module (LAM), which predicts future
trajectories of agents using their features, selects lanes within D meters of the pre-
dicted trajectories and assigns corresponding confidence value to the lanes. This mod-
ule incorporates the interaction between the generated lane features and agents, aiming
to reduce uncertainties regarding the future trajectories of the agents.

of the target agent. Thus, the teacher network generates an attention coefficient
αi using the Future-Aware Attention module only once, and learns the feature
of the appropriate target agent. We further employ this module that utilizes the
following query, key, and value with learnable parameters WQ, WK , and WV

and the attention coefficient αi is also obtained as follows:

Qi = WQci, Kj = WKφ(cj + oj), Vj = WV φ(cj + oj), (1)

αi = softmax(
QT

i√
d

[Kj ]j �=i). (2)

3.3 Attention-Based Knowledge Distillation

The attention coefficients α obtained from the teacher network provide crucial
insights on which other agents should be attended to and the attention allocation
required for accurate trajectory prediction of the target agent. To transfer this
attentional knowledge from the teacher to the student network, we employ the
knowledge distillation technique introduced in MINILM [32] by minimizing the
following distillation loss:

Ldistill =
1
N

N∑

i=1

DKL (αi ||α′
i) . (3)

where N is the number of agents. αi and α′
i are the attention coefficients from

the teacher model and the student model, respectively.
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3.4 Lane-Guided Attention Module

As shown in Fig. 3, our proposed Lane-guided Attention Module (LAM) first
predicts the future trajectory p̂i for each agent i ∈ [1, N ] using their respec-
tive features as input. Given this, the lane segments around each agent’s pre-
dicted future trajectories are extracted, and a corresponding confidence value is
assigned to each extracted lane segment using the following equation:

Ciξ =
6∑

k=1

{
Πk, if ∃p̂t

ik| |p̂t
ik − pξ,0| < D

0, otherwise
, (4)

where p̂t
ik represents the position of the i-th agent’s k-th mode of the t-th step

in the predicted path, pξ,0 represents the starting position of lane ξ, and Πk

represents the confidence of the k-th mode in the i-th agent’s predicted path. The
lanes to be passed by each agent are obtained within D meter of the predicted
trajectory, and each lane reflects the confidence of the trajectory. So, we can
extract features for the lane segment related to the i-th agent as follows:

ciξ = φlane

([
RT

i (pξ,1 − pξ,0) , RT
i

(
pξ,0 − pTin

i

)
, Ciξ, aξ

])
, (5)

where φlane and pTin
i respectively represent the outputs of the MLP layer and

the position of the i-th agent at time Tin. We define a 2× 2 rotation matrix for
conversion to the central coordinates of the i-th agent as Ri ∈ R

2×2. The starting
and ending positions of lane segment ξ can be represented as pξ,0 ∈ R

2 and
pξ,1 ∈ R

2, respectively. The semantic attributes of lane segment ξ are denoted
as aξ. Then the confidence-weighted lane features are combined with the agent
features using cross-attention with the following query, key, and value:

Q̄i = W̄Qci, K̄iξ = W̄Kciξ, V̄iξ = W̄V ciξ. (6)

3.5 Student Network

Similar to the teacher network, the student network S utilizes a self-attention
module to consider for interactions between agents. However, each agent feature
in the student model is comparatively coarse compared to the teacher model,
which utilizes future information of other agents except for itself. Thus, the
refined agent context feature c̄j obtained from LAM is utilized as the key to
minimize this disparity between teacher model and student model. Therefore,
the query, key, and value of the agent interaction attention in the student model
are as follows:

Q̃i = W̃Qci, K̃j = W̃K c̄j , Ṽj = W̃V cj . (7)

Since the teacher model solely utilizes the future information of other agents
except for itself, and the student model only use the attention coefficients of the
teacher model as supervision, no cheating occurs, and the mode diversity of the
student model is preserved.
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3.6 Decoder

Conditioned on the agent’s contextual embedding, our Decoder fdecoder learns
Gaussian Mixture Model distributions across all time steps after Tin. This process
generates future locations p̂t

i ∈ R
2 and their associated confidences μt

i ∈ R
2 for

agent i at the forthcoming time step t, all within the agent-centric coordinate
system. Such a decoder is commonly used to model both intent uncertainty
(about the agents’ desired goal) and control uncertainty (about agents’ future
states to satisfy its intent) in a single shot [2,35].

3.7 Loss Function

Concretely, we minimize the following loss L to train our student network:

L = Ltraj + Ldistill, (8)

to optimize the predicted trajectories by treating it as M distributions along
with the confidence assigned to each distribution. To achieve this, we minimize
the loss Ltraj to optimize both the predicted trajectory and the confidence asso-
ciated with it. Specifically, the trajectory loss Ltraj is computed by minimizing
the negative log-likelihood function between the ground-truth trajectories and
the predicted trajectories derived from Gaussian mixture components for every
agent, time step, and M mode, considering the confidence assigned to each pre-
dicted pose:

Ltraj = − 1
N

∑N
i=1 log

(∑M
m=1 μim · 1√

2b2
exp

(
− (pi−p̂im)2

2

))
, (9)

where pi denotes the actual future position of the i-th agent, p̂im, μim, denote the
predicted position of the i-th agent of m-th mode and confidence for p̂im repec-
tively, and b is the scale parameter. This trajectory loss is applied to the predic-
tions from our LAM and our decoder fdecoder.

4 Experiments

4.1 Dataset

The Argoverse dataset [3] is a valuable resource for training and evaluating tra-
jectory prediction models for autonomous vehicles. It includes 324,557 scenario
samples, each lasting 5 s (2 s for past observation and 3 s for the future), sampled
at a rate of 10 Hz, with high-definition maps, providing comprehensive data for
trajectory prediction research. This dataset, which covers Pittsburgh and Miami
in the United States, offers 205,942 training samples, 39,272 validation samples,
and 78,143 testing samples. The motion forecasting task in the Argoverse dataset
involves predicting the future trajectories of agents over a 3-second time horizon
based on their past trajectories over a 2-second time span.
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4.2 Metrics

Our model is evaluated using standard metrics for trajectory prediction, which
includes minimum Average Displacement Error (minADE), minimum Final Dis-
placement Error (minFDE), and Miss Rate (MR). The minADE measures the
average displacement error between the ground truth trajectory and the best pre-
dicted sample out of K=6 joint samples. The minFDE metric, on the other hand,
metric measures the final displacement error between the ground truth trajec-
tory’s end position and the best predicted end position from K = 6 joint samples.
The MR refers to the percentage of scenarios where the distance between the
ground truth trajectory’s endpoint and the best predicted endpoint is above
2meter threshold.

Fig. 4. Examples of trajectory prediction result in three complex scenarios, which
demand agent-wise interactions to avoid collisions. To better understand the model’s
ability to consider interactions with other agents, we (A) change the trajectories of
another agent, (B) remove, or (C) add another agent (see changes from Scene A to B).
We use the numeric information and the darkness of the color painted over each agent
to indicate how much the target agent is focusing on the other agents.

4.3 Experiment Details

We conducted training for 64 epochs using a single RTX 3090 Ti GPU, employ-
ing the AdamW optimizer [17]. The model was trained with a batch size of 32,
an initial learning rate of 5 × 10−4, weight decay set to 1 × 10−4, and a dropout
rate of 0.1. To manage the learning rate, we utilized the cosine annealing sched-
uler [16]. Given that our model follows a Teacher-Student framework, we first
trained the teacher model under the aforementioned conditions. Afterward, we
froze the teacher model and employed it while training the student model. To
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maintain consistency with standard practices, we set the number of predicted
modes, denoted as F, to 6. In particular, any ensemble techniques were never
used in both training and testing.

4.4 Effect on Learning Agent-Wise Relations

We observe that our proposed attentional knowledge distillation generally
improves the quality of trajectory predictions, preventing them from violating
physical occupancy constraints such as collisions or irrational trajectories, while
directly confirming the results of the experiment.

In Fig. 4, we experiment how the target agent responds to tasks such as
agent movement, addition, and deletion. Scenario A shows how the trajectory
of the target agent and another agent changes when the position of another
correlated agent changes at an intersection, and scenarios B and C show how well
the interaction between agents is predicted and how reasonably the trajectory
change is predicted when an agent is added or removed that affects the driving
path of target agent. Our model effectively avoids a potential collision with other
agents, while the base model does not. The base model’s predicted trajectories
often remain mostly the same regardless of changes in another agent.

Further, in Fig. 5, we provide five examples of the predicted trajectories in
various scenarios, including turning, intersection passing, and congested areas.
Compared to Base model, our model learns to focus more on highly correlated
agents, predicting better in various scenarios and avoiding collisions with other
agents and not deviating from the lane centers. This may confirms the effective-
ness of our proposed attentional knowledge distillation and Lane-guided Atten-
tion Module.

Fig. 5. Examples of trajectory prediction results from our base model and our proposed
model. We provide typical examples in various driving scenarios: (A) slowing down,
(B) turning left, (C) Crossing an intersection, (D) turning right, and (E) congestions.
Our model generally predicts trajectories that avoid a potential collision with other
agents, does not deviate from lane centers, and attend more relevant agents.
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4.5 Quantitative Comparison with Other Existing Approaches

Fig. 6. Relations between attention
weights (how much the target agent focus
on which agent): (a) teacher-vs-base model
and (b) teacher-vs-student (ours). We also
provide the correlation scores

We observe in Table 1 that our model
clearly outperforms other well-known
models, including THOMAS [8],
TNT [34], DenseTNT [11], LaneGCN
[14], mmTransformer [15], DSP [33],
SceneTransformer [21], HiVT [35],
Multipath++ [30], in terms of
minADE and minFDE. In this
evaluation, we use the test split
of the Argoverse motion forecasting
dataset. As we start from the HiVT
model, we report our reproduced
scores (other scores are brought from
the Argoverse motion forecasting leaderboard). Further, we observe in Fig. 6
that our student model produces attention distributions that are closer to those
of the teacher model, while our base model does not (compare (a) vs. Base Model
and (b) vs. Student Model (ours)). This confirms that our student model can
successfully learn the teacher model’s attentional knowledge even without other
agents’ future information. Also, it can be seen in Table 3 that mimicking the
attentional knowledge of the teacher network in student network directly helps
improve the trajectory prediction performance of the target agent.

Table 1. Argoverse motion forecasting leaderboard scores on the trajectory predic-
tion performance in terms of three widely-used metrics: minADE, minFDE, and MR
(lower is better). We compare ours with the other existing approaches. † indicates our
reproduced results. Data: Argoverse test set

Method minADE (↓) minFDE (↓) MR (↓)

TNT [34] 0.9097 1.4457 0.1656

DenseTNT [11] 0.8817 1.2815 0.1258

LaneGCN [14] 0.8703 1.3622 0.1620

mmTransformer [15] 0.8436 1.3383 0.1540

DSP [33] 0.8194 1.2186 0.1303

SceneTransformer [21] 0.8026 1.2321 0.1255

Multipath++ [30] 0.7897 1.2144 0.1324

HiVT† [35] 0.7995 1.2321 0.1357

+ Ours 0.7867 1.2028 0.1319
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Table 2. Performance comparison with our base model in terms of three different target
agent’s maneuvers: driving straight, right turn, and left turn. Moreover, we extended
our analysis to encompass comparisons among all agents, not just the target agent.
Data: Argoverse validation set

method Maneuver Target minADE (↓) minFDE (↓) MR (↓)

Base [35] All Target agent 0.687 1.030 0.1024

Straight Target agent 0.615 0.857 0.0691

Right-turn Target agent 1.039 1.925 0.2700

Left-turn Target agent 1.045 1.860 0.2674

All All 1.070 2.071 0.3229

Ours All Target agent 0.676(1.60% ↓) 1.008(2.14% ↓) 0.0987(3.61% ↓)

Straight Target agent 0.605(1.63% ↓) 0.839(2.10% ↓) 0.0669(3.18% ↓)

Right-turn Target agent 1.024(1.44% ↓) 1.881(2.29% ↓) 0.2537(6.04% ↓)

Left-turn Target agent 1.029(1.53% ↓) 1.821(2.10% ↓) 0.2581(3.48% ↓)

All All 1.035(3.27% ↓) 1.909(7.82% ↓) 0.3072(4.86% ↓)

4.6 Effect on Different Maneuvers and Overall Agent Prediction

Further, in Table 2, we evaluate the performance in terms of three different
maneuvers, driving straight, right turn, and left turn (where turning requires
more complicated agent-wise interactions). Our model shows an improved per-
formance in all scenarios. In comparison to solely predicting the behavior of
the target agent, we observed performance improvements of 1.60%, 2.14%, and
3.61% for the minADE, minFDE, and MR metrics, respectively. When con-
trasted with predictions made for all agents, the improvements were even more
pronounced, standing at 3.27%, 7.82%, and 4.86% for the same metrics. These

Table 3. Comparison of trajectory prediction performance based on LaneGCN [14] and
HiVT [35]. Each model uses 128dim, 64dim. We also provide our ablation study without
our proposed two modules: (i) Lane-guided Attention Module (LAM) and (ii) the use
of attentional knowledge distillation loss Ldistill. We also represent performance of
the Teacher network. Data: Argoverse validation set. Inference times are reported in
milliseconds (msec), measured based on 12 agents using a single RTX 3090 Ti GPU

Base Model Distillation LAM Teacher minADE (↓) minFDE (↓) MR (↓) Time(ms) (↓)

LaneGCN [14] 0.7118 1.075 0.1030 37

V 0.7067 1.059 0.0968 37

HiVT [35] 0.6868 1.030 0.1024 35

V 0.6830 1.013 0.1005 35

V 0.6804 1.014 0.0995 42

V V 0.6758 1.008 0.0987 42

LaneGCN [14] V 0.6494 0.9683 0.0888 41

HiVT [35] V 0.6270 0.9210 0.0891 40
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results demonstrate that our model can extract robust results by leveraging
interaction information with other agents even with some information loss for
the agent being predicted. In addition, ours model shows distinct performance
improvement in all maneuvers: straight, right-turn, and left-turn.

4.7 Ablation Study

Our model learns which agents should interact with the target agent by uti-
lizing a teacher network that leverages the future trajectories of other agents.
The student model is then trained to mimic this interaction knowledge from the
teacher model. Table 3 presents the performance of the teacher model, demon-
strating that accurately predicting interactions with other agents can signifi-
cantly enhance overall trajectory prediction performance. This emphasizes the
importance of accurate interaction prediction with other agents and demon-
strates why the student model should learn interaction knowledge from the
teacher model. Importantly, the student model is trained to accurately pre-
dict interactions among agents using the distillation method without additional
network complexity, leading to performance improvements without incurring
extra computational costs during the inference phase (see the Distillation and
Time(ms) columns). Furthermore, in Table 3, when using the LAM (see LAM
column), it is confirmed that each agent’s predicted trajectories can be refined
using localized confidence-augmented lane information, and that using the infor-
mation improves performance. In the 6-th row, it is shown that there is a more
enhancement in performance when both modules are employed simultaneously.
This demonstrates that leveraging the LAM to refine the predicted trajectory
and then mimicking the teacher’s attention focus coefficient helps improve perfor-
mance. Additionally, by focusing only on interactions with highly relevant lanes
with the agent, rather than considering interactions with all lanes, we achieved
performance improvements with minimal additional cost. We conducted experi-
ments on both LaneGCN [14] and HiVT [35], and we observed that each module
contributes to its own performance gain.

4.8 Analyzing Distillation Loss Weight Ratios

Table 4. Comparison different distillation loss
weight ratios based on HiVT [35]

Distillation loss weight ratio minADE (↓) minFDE (↓) MR (↓)
0.0 (Base [35]) 0.6868 1.030 0.1024

0.2 0.6888 1.020 0.1007

0.5 0.6916 1.025 0.1013

1.0 0.6830 1.013 0.1005

2.0 0.6873 1.022 0.1018

To investigate the impact
of different weight ratios
between the loss terms, we
conducted a series of exper-
iments. Specifically, we var-
ied the weight of Ldistill by
factors of 0.2, 0.5, 1.0 and
2.0. As shown in Table 4, our
experiments demonstrated that
a 1:1 ratio between the two loss terms provides the most balanced and optimal
performance. This finding led us to adopt the 1:1 ratio in our main experiments.
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5 Conclusion

Accurately predicting the future movements of surrounding traffic agents
remains challenging for fully-autonomous driving. In this paper, we demonstrate
that future information can be effectively utilized during training with the help
of teacher-student technique and attention-based knowledge distillation, This
enables the model to effectively learn which agents should be interacted with tar-
get agents. Also, our proposed Lane-guided Attention Module (LAM) enhances
the transfer of attention coefficients from the network to the student network by
bridging the information gap between both models. Our model generally outper-
forms baseline models on the Argoverse Motion Forecasting dataset, effectively
reducing uncertainty and resulting in improved interaction predictions.

Acknowledgement. This work was supported by 42dot. Also, this work was sup-
ported by Basic Science Research Program through the National Research Foundation
of Korea(NRF) funded by the Ministry of Education(NRF-2021R1A6A1A13044830,
15%) and supported by Institute of Information & communications Technology
Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (RS-
2022-II220043, Adaptive Personality for Intelligent Agents, 15%, IITP-2024-RS-2024-
00397085, Leading Generative AI Human Resources Development, 15%).

References

1. Beyer, L., Zhai, X., Royer, A., Markeeva, L., Anil, R., Kolesnikov, A.: Knowl-
edge distillation: a good teacher is patient and consistent. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10925–
10934 (2022)

2. Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: Multipath: multiple proba-
bilistic anchor trajectory hypotheses for behavior prediction. arXiv preprint
arXiv:1910.05449 (2019)

3. Chang, M.F., et al.: Argoverse: 3D tracking and forecasting with rich maps. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 8748–8757 (2019)

4. Cho, J.H., Hariharan, B.: On the efficacy of knowledge distillation. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 4794–4802
(2019)

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

6. Dosovitskiy, A., et al.: An image is worth 16×16 words: transformers for image
recognition at scale. In: ICLR (2021)

7. Gao, J., et al.: VectorNet: encoding HD maps and agent dynamics from vectorized
representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 11525–11533 (2020)

8. Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: THOMAS:
trajectory heatmap output with learned multi-agent sampling. arXiv preprint
arXiv:2110.06607 (2021)

http://arxiv.org/abs/1910.05449
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2110.06607


360 S. Moon et al.

9. Girgis, R., et al.: Latent variable sequential set transformers for joint multi-agent
motion prediction. arXiv preprint arXiv:2104.00563 (2021)

10. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. Int. J.
Comput. Vision 129, 1789–1819 (2021)

11. Gu, J., Sun, C., Zhao, H.: DenseTNT: end-to-end trajectory prediction from dense
goal sets. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 15303–15312 (2021)

12. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

13. Kim, Y., Rush, A.M.: Sequence-level knowledge distillation. arXiv preprint
arXiv:1606.07947 (2016)

14. Liang, M., Yang, B., Hu, R., Chen, Y., Liao, R., Feng, S., Urtasun, R.: Learning
lane graph representations for motion forecasting. In: ECCV 2020, Part II, pp.
541–556. Springer (2020)

15. Liu, Y., Zhang, J., Fang, L., Jiang, Q., Zhou, B.: Multimodal motion prediction
with stacked transformers. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 7577–7586 (2021)

16. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

17. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

18. Mirzadeh, S.I., Farajtabar, M., Li, A., Levine, N., Matsukawa, A., Ghasemzadeh,
H.: Improved knowledge distillation via teacher assistant. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, pp. 5191–5198 (2020)

19. Monti, A., Porrello, A., Calderara, S., Coscia, P., Ballan, L., Cucchiara, R.: How
many observations are enough? Knowledge distillation for trajectory forecasting.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6553–6562 (2022)

20. Nayakanti, N., Al-Rfou, R., Zhou, A., Goel, K., Refaat, K.S., Sapp, B.: Wayformer:
Motion forecasting via simple & efficient attention networks. In: 2023 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 2980–2987. IEEE
(2023)

21. Ngiam, J., et al.: Scene transformer: a unified architecture for predicting future
trajectories of multiple agents. In: International Conference on Learning Repre-
sentations (2021)

22. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3967–3976 (2019)

23. Phuong, M., Lampert, C.: Towards understanding knowledge distillation. In: Inter-
national Conference on Machine Learning, pp. 5142–5151. PMLR (2019)

24. Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M.: Trajectron++:
dynamically-feasible trajectory forecasting with heterogeneous data. In: ECCV
2020, Part XVIII, pp. 683–700. Springer (2020)

25. Sheng, Z., Xu, Y., Xue, S., Li, D.: Graph-based spatial-temporal convolutional net-
work for vehicle trajectory prediction in autonomous driving. IEEE Trans. Intell.
Transp. Syst. 23(10), 17654–17665 (2022)

26. Shi, S., Jiang, L., Dai, D., Schiele, B.: MTR-A: 1st place solution for 2022 Waymo
open dataset challenge–motion prediction. arXiv preprint arXiv:2209.10033 (2022)

27. Su, D.A., Douillard, B., Al-Rfou, R., Park, C., Sapp, B.: Narrowing the coordinate-
frame gap in behavior prediction models: Distillation for efficient and accurate

http://arxiv.org/abs/2104.00563
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1606.07947
http://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/2209.10033


Who Should Have Been Focused 361

scene-centric motion forecasting. In: 2022 International Conference on Robotics
and Automation (ICRA), pp. 653–659. IEEE (2022)

28. Sun, Q., Huang, X., Gu, J., Williams, B.C., Zhao, H.: M2I: from factored marginal
trajectory prediction to interactive prediction. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 6543–6552 (2022)

29. Tang, J., et al.: Understanding and improving knowledge distillation. arXiv
preprint arXiv:2002.03532 (2020)

30. Varadarajan, B., et al.: Multipath++: efficient information fusion and trajectory
aggregation for behavior prediction. In: 2022 International Conference on Robotics
and Automation (ICRA), pp. 7814–7821. IEEE (2022)

31. Wang, M., et al.: GANet: goal area network for motion forecasting. In: 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 1609–1615.
IEEE (2023)

32. Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., Zhou, M.: MiniLM: deep self-
attention distillation for task-agnostic compression of pre-trained transformers.
Adv. Neural. Inf. Process. Syst. 33, 5776–5788 (2020)

33. Zhang, L., Li, P., Chen, J., Shen, S.: Trajectory prediction with graph-based dual-
scale context fusion. In: 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 11374–11381. IEEE (2022)

34. Zhao, H., et al.: TNT: target-driven trajectory prediction. In: Conference on Robot
Learning, pp. 895–904. PMLR (2021)

35. Zhou, Z., Ye, L., Wang, J., Wu, K., Lu, K.: HiVT: hierarchical vector transformer
for multi-agent motion prediction. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8823–8833 (2022)

http://arxiv.org/abs/2002.03532


VA-OCC : Enhancing Occupancy Dataset
Based on Visible Area for Autonomous

Driving

Yang Li , Weng Feng , Ge Gao(B) , Jun Chang(B) , and Ming Li(B)

School of Computer Science, WuHan University, Wuhan 430072, China
{gaoge,changjun,liming}@whu.edu.cn

Abstract. In the field of autonomous driving, the importance of the
occupancy grid data structure cannot be ignored. The occupancy grid has
advantages such as reducing data complexity, improving computational
efficiency, and facilitating path planning. By constructing an accurate
occupancy grid dataset, researchers can better understand and analyze
the distribution of objects in the environment, providing strong support
for tasks such as object detection and path planning. This paper pro-
poses a new method for constructing an occupancy dataset, which first
constructs dense voxels based on point cloud data, then extracts seman-
tics through two methods, and finally filters the grid based on the vis-
ible area to obtain the ground truth of the Occupancy dataset(Named
as VA-OCC dataset.). By replacing the existing dataset in the paper
with the VA-OCC dataset, better IOU scores and visualization effects
can be achieved.

Keywords: Autonomous Driving · Occupancy Grid Dataset

1 Introduction

Occupancy Grid is a commonly used environmental modeling method in the field
of autonomous driving. It divides the environment into small grids (or cells) and
tracks the state of each cell to achieve perception and understanding of the
environment.

In the field of autonomous driving, Occupancy Grid technology has shown
unique advantages. Firstly, it can provide comprehensive and detailed environ-
mental representation, helping vehicles to perceive and understand the sur-
rounding environment more accurately. Secondly, Occupancy Grid technology
has stronger robustness against occlusion. In real-life scenarios, vehicles may
encounter obstacles such as buildings and trees, which can affect the accuracy of
perception. However, with Occupancy Grid technology, vehicles can still per-
ceive the surrounding environment relatively completely, avoiding information
loss caused by occlusions. In addition, Occupancy Grid technology also promotes
more efficient sensor fusion.
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Existing Occupancy Grid ground truth datasets are generated based on exist-
ing datasets containing full semantic segmentation point cloud ground truth.
However, the manual and time costs of annotating full semantic segmentation
point cloud ground truth are high and may not be suitable for all cases. This
paper proposes a complete pathway to construct Occupancy Grid ground truth
datasets, which can extract semantics from full semantic segmentation point
cloud ground truth and from full semantic segmentation 2D camera surround
view images.

Furthermore, in practical scenarios, drivers can only observe a part of objects,
which can be referred to as the foreground within the foreground. Unlike exist-
ing datasets, VA-OCC dataset retains only the part of the foreground within
the foreground, enabling the model to focus more on the areas that are truly
observable and have an impact on autonomous driving during training. This
significantly improves the accuracy of occupancy prediction and lays a solid
foundation for the next steps in planning and control.

The main contributions of this paper are:

1. Proposed a complete pathway for constructing VA-OCC dataset, including a
new method for assigning semantics to occupancy voxels.

2. Utilized visual selection to generate Occupancy Grid ground truth that better
reflects the actual observation conditions of human drivers in autonomous
driving scenarios.

3. Demonstrated through experiments the superiority of the datasets generated
using this method.

2 Related Work

2.1 3D and 2D Semantic Segmentation Datasets

[1–3] have road scene point cloud ground truth data with full point cloud anno-
tations, containing rich semantic information. While datasets like [2,4] provide
multi-camera surround view image data, they lack 2D semantic segmentation
annotations for these images. [5–7] are several widely used 2D semantic segmen-
tation datasets, but they do not include annotations for surround view images.

2.2 Occupancy Dataset

[8] integrates multiple frames of LiDAR point clouds, employs Poisson recon-
struction to fill holes, and voxelizes the grid to obtain dense occupancy labels. [9]
addresses the issue of some occupancy labels being overlooked due to the spar-
sity of point clouds, and introduces the Augmentation and Purification (AAP)
pipeline for densification of annotations, requiring approximately 4000 h of man-
ual work. [10] additionally generates LiDAR visibility masks and camera visibil-
ity masks to indicate whether each voxel is observed in the current LiDAR or
multi-camera view.
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3 Methodology

VA-OCC dataset requires a point cloud dataset as the data source, and the
dataset used in this paper is the nuscenes dataset (Fig. 1).

Fig. 1. VA-OCC dataset construction process.

3.1 Generating Dense Occupied Grids

In the context of autonomous driving scenarios, due to the sparsity of a single
frame of LiDAR point cloud, in order to generate dense and distinguishable
occupied grids, multiple frames of point clouds need to be aggregated first.

In each scene, dynamic objects and static backgrounds are separated based on
the 3D object bounding box true values in each frame. For the static background,
the static background of each frame is transformed to the vehicle coordinate
system of the first frame of the scenario and aggregated to obtain a dense static
background point cloud of the entire scene. For dynamic objects, each object is
identified with a unique token (the token remains the same when the same object
appears in multiple frames). By traversing the entire scene and aggregating the
point clouds of the same object in different frames based on the token, dense
point clouds for each object are obtained.

After the separation is completed, the dense static background point cloud
of the scene is first transformed to the current frame based on the ego-position.
Then, the point cloud of the corresponding object is placed based on the object
token list obtained from the dataset, points outside the set perception range
are removed, further repair is done through Poisson reconstruction (mainly to
repair road surface holes), and finally, Gaussian smoothing is applied to flatten
the road surface to obtain a complete dense point cloud for the current frame.
A voxel grid of size (200,200,16) is generated with a voxel size of 0.5 m.



VA-OCC 365

3.2 Visual Area Selection

Recently proposed occupancy prediction models often take images as input,
where only a part of the object is visible in the image (i.e., the visual area).
Given this reality, it is unreasonable to calculate loss based on the complete
occupancy as the ground truth; moreover, distant buildings, plants, and objects
with other large obstacles between them and the ego-vehicle have less impact
on the vehicle’s movement. Filtering out these parts when constructing the VA-
OCC dataset allows the model to focus more on the parts that affect the vehicle’s
movement during training. Therefore, we propose a visual area selection algo-
rithm to further process the occupancy.

Taking the voxel at the driver’s head position as the origin, a ray is emitted
to each voxel in the occupied space. The occupancy of each voxel is judged
every unit distance along each ray, and only the first occupied voxel encountered
on each ray is recorded. The recorded voxels are then consolidated to obtain a
preliminary visual occupancy ground truth without semantics.

3.3 Semantic Assignment to Occupancy

There are two methods to obtain semantic information based on 3D or 2D avail-
able data.

3D Semantics. If has fully semantic segmented point cloud ground truth,
semantics can be assigned to the occupancy ground truth using the nearest
neighbor algorithm.

2D Semantics. Because the occupied ground truth of VA-OCC dataset only
considers the visual surface, no need to consider the depth of the inner voxel,
if there are fully surrounding semantic segmented multi-camera image ground
truth, the centroids of the voxels can be projected to the corresponding image
positions using the transformation matrix from point cloud to image, and seman-
tic information can be assigned to the voxels at those positions.

3.4 Scene Completion and Refinement

Due to the large voxel size, the completeness of the road surface will be greatly
affected after visual area selection. Therefore, it is necessary to complete the road
surface and prevent the removal of valid information in the subsequent connected
component detection. Finally, a connectivity testing is performed starting from
the road surface where the ego-vehicle is located using breadth-first search (BFS),
removing objects that only have their upper half remaining and distant plants,
buildings, and backgrounds that do not affect the vehicle’s movement (see Fig. 2).
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Fig. 2. Original six camera images (left), inference results of the model trained on the
SurroundOcc dataset (middle), inference results of the model trained on the VA-OCC
dataset (right).

4 Experiments

4.1 2D Semantic Segmentation Ground Truth Construction

Datasets such as [1,2] contain 3D full point cloud semantic segmentation ground
truth data, with [1] proposing a complete annotation process. However, there
is currently no complete ground truth data for surrounding multi-camera 2D
top-view semantic segmentation in existing datasets. Existing AI annotation
methods such as [11–13] lack accuracy, while manual annotation is costly. In
order to efficiently demonstrate the effectiveness of the proposed method in this
paper, a method for generating 2D full semantic segmentation ground truth
based on high-quality occupancy ground truth is proposed. Firstly, based on
the original images and the transformation matrix from LiDAR to the camera,
the direction vector of each pixel in the image corresponding to the point cloud
space is obtained. Then, this vector is transformed into occupancy space. Finally,
starting from the camera position along this vector, the semantic of the first
encountered voxel with semantics is assigned to the corresponding pixel. After
traversing each pixel, complete ground truth data for surrounding multi-camera
2D top-view semantic segmentation can be obtained (see Fig. 3).

4.2 Visualization Processing with CUDA Acceleration

By emitting rays from the camera’s optical center to the voxel grid ground truth,
we can detect which voxels in the camera’s field of view are completely occluded.
These occluded voxels are then marked as “free” status, allowing us to visualize
the camera view of the occupancy grid. However, this process requires traversing
a large number of ray directions and determining whether they intersect with
voxels with semantics based on the distance traversed by the rays, leading to sig-
nificant time consumption. By parallelizing this process using CUDA program-
ming, assigning each CUDA core to traverse one ray, the required processing time
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Fig. 3. The full semantic segmentation ground truth for camera images constructed
according to the method in this article,the semantic free part in the figure is both the
part that exceeds the occupied grid range.

can be significantly reduced. This parallel operation among cores does not inter-
fere with each other. Through testing, using CUDA acceleration to process the
occupancy grid ground truth results in a speed improvement of approximately
100 times compared to traditional serial processing, greatly improving processing
efficiency.

4.3 Training Results and Comparison

The baseline model used in the comparative experiment is SurroundOcc. In
order to highlight the superiority of our dataset, a voxel size of 0.5 m was used
for horizontal comparison in the experiment. Training was conducted using VA-
OCC dataset replacing the dataset used in the original paper (see Fig. 4). For
evaluation metrics, just like the original paper, we use the intersection over union
(IoU) of occupied voxels, ignoring their semantic class as the evaluation metric
of the scene completion (SC) task and the mIoU of all semantic classes for the
SSC task.

IoU =
TP

TP + FP + FN

mIoU =
1
C

C∑

i=1

TPi

TPi + FPi + FNi

where TP, FP, FN indicate the number of true positive, false positive, and false
negative predictions. C is the class number.

This paper validates the effectiveness of the VA-OCC dataset based on two
benchmark algorithms, SurrounOcc and OCC3D. The OCC3D dataset is widely
used by most occupancy grid algorithms at present. (see Table 1) Training on
our dataset improved IoU by 41.5% compared to the SurrounOcc dataset, and
by 10.9% compared to the more general OCC3D dataset.
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Table 1. Replacing the dataset in SurroundOcc and OCC3D with the VA-OCC dataset
(* indicates the use of the VA-OCC dataset) resulted in an improvement in the IoU
evaluation metrics.

SurroundOcc SurroundOcc* OCC3D OCC3D*

IoU 31.49 44.56 41.75 46.32

barrier 20.59 30.26 39.33 42.12

bicycle 11.68 14.56 20.56 22.38

bus 28.06 31.45 38.29 42.11

car 30.86 39.22 42.24 45.86

construction-vehicle 10.20 8.45 16.93 16.65

motorcycle 15.14 16.22 24.52 23.67

pedestrian 14.09 16.39 22.72 24.75

traffic-cone 12.06 20.17 21.05 22.93

trailer 14.38 14.56 31.11 32.37

driveable-surface 37.29 51.43 53.33 58.19

other-flat 23.20 27.80 33.84 34.58

sidewalk 24.49 31.95 37.98 41.74

terrain 22.77 27.28 33.23 35.11

manmade 14.86 18.35 20.79 22.31

vegetation 21.86 18.35 18.01 19.65

mIoU 20.30 30.34 28.53 33.53

4.4 Road Completion Comparison Experiment

Due to the relatively large voxel size, occlusion between voxels is more severe,
especially when vehicles are on slopes, which is particularly evident on the road
surface. After visualization filtering, the continuity of the road surface is severely
disrupted, with many gaps in the road surface. This can lead to incorrect guid-
ance to the model during training, although the model can fill in the gaps during
prediction, it still results in a decrease in model performance(see Table 2).

4.5 Connectivity Screening Comparison Experiment

In scenes where the lower half of vehicles, pedestrians, foreground objects, plants,
buildings, and other background objects are occluded, after visualization filter-
ing, the lower parts are omitted due to occlusion, leaving only the higher parts.
These lower parts of objects do not actually affect the vehicle’s driving, and
training the model to complete them is meaningless. Starting from the road
surface at the self-position, connectivity filtering is performed using the BFS
algorithm, retaining only the connected parts. As shown in the Table 2, this
approach allows the model to focus on the parts that truly affect the vehicle’s
driving, improving prediction accuracy (see Fig. 5).
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Fig. 4. The upper and lower rows respectively show the ground truth and model train-
ing results of the original dataset and the dataset used in this paper. The model trained
on the dataset in this paper achieves higher inference accuracy while inferring valid
information, as evidenced by the clearer vehicles in the inference results shown in the
figure below.

Fig. 5. The image on the left shows the rear-view camera image of the vehicle, indi-
cating that the lifting pole is obstructing the rear road. It can be observed from the
comparison in the right part that the model trained based on the dataset in this paper
(below) is able to more clearly identify the drivable area and objects that affect the
vehicle’s movement

Table 2. Effects of various improvement strategies on experimental results

Visual-Area Filtering Road completion Connectivity Screening IoU driveable-surface

31.49 37.29

✓ 38.67 41.95

✓ ✓ 40.37 50.15

✓ ✓ ✓ 44.56 51.43
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5 Conclusion

This paper proposes a novel approach to construct a complete occupancy grid
dataset. Building upon existing methods, a new method is introduced to extract
semantic information from 2D semantic segmentation for occupancy semantic
acquisition. The effectiveness of occupancy ground truth visualization is fur-
ther enhanced through visual filtering and road surface completion methods. By
replacing the existing dataset with the VA-OCC dataset, better IOU indices and
visualization effects can be achieved.

Funding. This work was supported by the Key RD Program in Hubei Province(Grant

No. 2022BAA079) and the Key Project of Hubei Province (Grant No. 2021BAA179).
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Abstract. Autonomous aerial monitoring is an important task aimed
at gathering information from areas that may not be easily accessible by
humans. At the same time, this task often requires recognizing anomalies
from a significant distance and/or not previously encountered in the past.
In this paper, we propose a novel framework that leverages the advanced
capabilities provided by Large Language Models (LLMs) to actively col-
lect information and perform anomaly detection in novel scenes. To this
end, we propose an LLM-based model dialogue approach, in which two
deep learning models engage in a dialogue to actively control a drone
to increase perception and anomaly detection accuracy. We conduct our
experiments in a high fidelity simulation environment where an LLM is
provided with a predetermined set of natural language movement com-
mands mapped into executable code functions. Additionally, we deploy
a multimodal Visual Question Answering (VQA) model charged with
the task of visual question answering and captioning. By engaging the
two models in conversation, the LLM asks exploratory questions while
simultaneously flying a drone into different parts of the scene, providing
a novel way to implement active perception. By leveraging LLM’s rea-
soning ability, we output an improved detailed description of the scene
going beyond existing static perception approaches. In addition to infor-
mation gathering, our approach is utilized for anomaly detection and our
results demonstrate the proposed method’s effectiveness in informing and
alerting about potential hazards.
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1 Introduction

In the last few years, drones have witnessed numerous technological advance-
ments, as well as great commercial exposure for their ability to perform difficult
tasks, such as surveillance, anomaly detection, and aerial monitoring in chal-
lenging environments. To effectively support these tasks and ensure the efficient
and autonomous operation of robots, large informative datasets, e.g., contain-
ing drone images, action states, and/or anomalies, were necessary in order to
cover every possible scenario that could occur [1–3]. These approaches primarily
focused on collecting a large quantity of data and employing different learning
techniques to detect possible anomalies in autonomous drone flying scenarios.

With the major advancements in deep learning across numerous domains,
there have been multiple attempts to incorporate these modern, more effective
technologies for the sake of enhancing autonomous systems’ efficiency and capa-
bility. By deploying larger, more advanced deep learning models a substantial
improvement in performance was witnessed [4,5]. Nevertheless, these methods
lack the ability to actively perceive the scene in order to issue the appropriate
control commands and further improve the perception accuracy based on the
current conditions. Such active perception approaches have shown promising

Fig. 1. Overview of the proposed model dialogue approach. First a drone captures an
image. This image, along with an appropriate question, is fed to the employed VQA
model. Then, the VQA model provides a response that is fed to the LLM model which
in turn issues a movement command and a new exploratory question.
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results in other relevant domains in recent years [6–8]. However, it is not trivial
to implement such methods in open-world setups.

The main contribution of this paper is a novel approach for active perception
and anomaly detection that leverages the capabilities of recent Large Language
Models (LLMs) by developing a model dialogue approach in which two deep
learning models interact in order to continuously improve the final prediction.
To this end, we equip the employed LLM with complete navigational control
through a set of specific textual commands that ultimately navigate a drone in
real time, implementing an active perception scheme in which the drone explores
the scene and exploits potential hazardous scenarios and anomalies. Further-
more, we incorporate a Visual Question Answering (VQA) model in order to
engage the two models in interactive conversation from which the LLM acts as a
controller that can extract meaningful textual information about the unknown
scene in which the drone operates. Our goal is to provide a detailed descrip-
tion of the scene gathered throughout the conversation along with explanations
that led to these decisions. This dialogue process leads to an active perception
pipeline in which we can gather additional information about the scene, as well
as validate the scene details. The conducted experimental evaluation shows that
the proposed approach can indeed enable a drone to successfully navigate an
unknown open environment and provide an explainable and detailed description
of the scene in a zero-shot fashion, as well as detect anomalies and output poten-
tial safety measures in response to potentially hazardous observations. The code
used for the conducted experiments, including detailed prompts and experimen-
tal results are provided at https://github.com/Tzoulio/Large Models Dialogue
for Active Perception.

The rest of the paper is structured as follows. Section 2 introduces the related
work, while the proposed method is presented in Sect. 3. The experimental eval-
uation is provided in Sect. 4, while Sect. 5 concludes the paper.

2 Related Work

The task of Visual Question Answering [9] has increased in popularity in recent
years, with the ability to combine computer vision with Natural Language Pro-
cessing (NLP) resulting in a system that can process two types of different
modalities at the same time. Such an ability is crucial in robotics applications
considering they are often applied to scenarios and environments that require
handling such multimodal data. By giving a robot the ability to process multiple
data together at once, they increase the quality and quantity of information they
acquire, which in turn expands their overall knowledge of the world. As a result,
there have been multiple attempts at applying VQA in robotics. Some works
focus on having the robot interact with the environment and come up with an
answer to a specific question, mimicking the VQA task. Deng et al. [10] uses
VQA in a robotic manipulation scenario. They train a Deep Q Network (DQN)
and through reinforcement learning teach the robot to continuously manipulate
objects until they come up with the right answer. In [11] a Hierarchical Inter-
active Memory Network (HIMN) was deployed as a controller that allows the

https://github.com/Tzoulio/Large_Models_Dialogue_for_Active_Perception
https://github.com/Tzoulio/Large_Models_Dialogue_for_Active_Perception
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system to store and retrieve information hierarchically in the form of memory
and enables the robot to provide an answer by interacting with its environment
in real-time. EmbodiedQA [12] is another approach that deploys a robot in an
unknown environment in which the robot learns to navigate through using imi-
tation learning and ultimately gathers the appropriate information to answer the
question. Our work leverages the recent advances in VQA as a fundamental part
of the proposed pipeline by employing a VQA model which acts as the sensing
model, which processes the data acquired from the world and answers questions
regarding these.

After the breakthrough that LLMs made in the field of AI, researchers have
been constantly finding ways to utilize them in robotic applications. A lot of
works leverage the LLMs’ reasoning capabilities and language understanding
ability to act as a communicator between the human operator who issues a com-
mand in natural language and the robot who executes the command in the form
of code [13–16]. These approaches either directly map specific commands to code
snippets that are applied on the robot directly or provide enough resources to
the LLM to construct code and make specific API calls that will produce the
correct result on the robot, as specified in the natural language prompt. Gener-
ally, a lot of research is focused on advancing the LLM capabilities further, by
implementing different modules together with the LLM in an attempt to give it
multi-modal capabilities [17–19]. This resulted in a lot of works which combined
multi-modal variations of LLMs into robot task planning [20–22]. These works
utilize imitation learning to teach a control agent how to perform the natural
language tasks which are learned from a dataset consisting of sets of demonstra-
tions during different timestamps. In other works, such as [13], users are able to
control an aerial drone through natural language and prompt engineering. The
proposed method goes beyond these approaches by employing a dialogue-based
approach, in which only one model has full access to the visual modality and the
other model can interact with this model through textual prompts.

The proposed method is more closely related to recent attempts to combine
LLMs with VQA models. Some works [23–26] focus on initiating a conversation
between the two models to enhance the VQAs ability in the captioning task.
They start with a general caption of a query image and through ChatGPT’s
ability of understanding and generalising textual information an active dialogue
between the LLM and the VQA module is initiated. During the dialogue, Chat-
GPT makes inquiries about possible information that the image might contain.
Afterwards, the VQA model answers by confirming or denying and providing
additional information for the scene. The process continues until ChatGPT out-
puts a detailed description containing all the knowledge it gathered through the
conversation. Other methods follow a similar approach [27–29] by providing com-
plementary knowledge to the LLM in the form of captions. This enhances the
quality and flow of information, resulting in better answers and captions for the
query images. Our method builds on this idea, going beyond these approaches
by implementing active perception through the drone’s navigation scheme. We
collect a different image of the scene each time the drone reaches a new position.
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At the same time, the employed LLM asks an exploratory question with each
movement command and the VQA model provides an answer and a caption.
This way, we are able to gather more information (extracted by the different
captions we get in every position) as well as explore parts of the initial image
that the camera could not see either by them being obscured or simply by being
too far away.

3 Proposed Method

In this work, we aim to equip a drone with active perception and anomaly detec-
tion capabilities in order to provide a robust scene description, as depicted in
Fig. 1. First, the drone leverages a VQA model which provides descriptions of
the environment through captions. In this way, the VQA model provides a way
for the LLM to “sense” the environment through text. Additionally, the VQA
model outputs an image-caption matching score in order to help the LLM dis-
tinguish between good and bad captions. Then, the LLM validates the gathered
textual information through the VQAs question-answering module combined
with active perception and ultimately provides a generalized scene description
together with explainable attention maps. The outline of the proposed approach
is shown through an example in Fig. 2. This example should be used as a ref-
erence point through the description provided in this Section, since it further
clarifies how the proposed method works.

For the VQA model, we incorporate the Plug-and-Play VQA (PnP-VQA)
[30] framework, as shown in Fig. 3. To perform the task of image captioning,
image-question pairs are processed by a pre-trained vision-language model called
BLIP [31] which is also able to output a similarity score between the image and
the question. The image is split into K patches and through GradCAM [32],
a feature-attribution interpretability technique, they are able to provide the
most relevant image patches. Finally, the image captioning module of BLIP
is combined with top-k sampling to generate captions only for the relevant
patches. Subsequently, the produced caption and question are fed into the ques-
tion answering module to produce the answer. For the LLM, we employed the
GPT3.5 as our model [33].

Let the LLM model denoted by f(A,C), which takes two distinct text
sequences as input A = [A1, A2, . . . , An], C = [C1, C2, . . . , Cm] and outputs
a response sequence Q = [Q1, Q2, . . . , Qk], in the form of a question i.e.,
Q = f(A,C), where A denotes the answer to a previous question by the VQA
model (if exists) and C denotes a textual description (caption) of the current
scene. In this work, we employed the GPT3.5 model to implement f(·), while
we feed the concatenated A and C to the model. We assume Ai, Ci and Qi

denote the indices of words, while n, m and k denote the corresponding sequence
lengths. Similarly, the VQA network g(Q, I) takes as input the output sequence
of the LLM Q, as well as an image I, producing two different textual sequences
A,C = g(Q, I), where A is the answer to the question and C denotes the cap-
tion for the image. Then, these outputs are fed to the LLM and this process
repeats in an iterative fashion.
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Fig. 2. A typical example of the operation of the proposed method. During active
perception, the two models engage in a conversation and exchange information. In
validation, a premature description and caption are chosen together and information
is validated by revisiting the saved positions. Then, in the explanation mode, the final
description and caption are provided together with attention maps.
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Fig. 3. The employed VQA architecture.

To grant the LLM control of the drone we first define a set of diverse func-
tions, each one in charge of a specific navigational output. Afterwards, we provide
the drone with a detailed prompt consisting of a set of commands mapped to
a specific function apiece, certain rules the GPT3.5 outputs must follow, the
general goal of the task and tips on how to filter and extract information from
captions. Additionally, to prevent hallucination [34], i.e., imaginative and fabri-
cated outputs from the controller, we begin the prompt by informing LLM that
it is in a game scenario, the commands serve as its controls and the goal is to
provide a detailed description of the observed scene while looking out for any
possible anomalies that could lead to hazardous situations. The list of commands
is split into:

(i) Active perception commands
(a) Move closer, to move 10 m forward.
(b) Move back, to move 5 m backwards.
(c) Move right, to move 10 m to the right.
(d) Move left, to move 10 m to the left.

(ii) General control commands
(a) Save position, to save the current position of the drone.
(b) Ask a question, to ask exploratory questions.
(c) I know enough, to return to the starting position.

Additionally, we divide the diverse list of rules the LLM must follow into:

(i) General Rules, to make sure LLM outputs the commands and questions
correctly.

(ii) Active Perception rules, which ensure the proper movement of the drone.
(iii) Visual Question Answering rules, in order to utilize the captions and

answers as efficiently as possible and optimize the procedure.
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The propose pipeline consists of the following: an active perception mode, a
validation mode and an explanation mode. Throughout active perception mode,
the drone’s camera takes snapshots of the observed scene and the controller asks
questions while simultaneously issuing different movement commands. The pro-
cess always starts with the question “What do you see?”. Consequently, the VQA
model returns an answer, a caption and a percentage indicating if the caption
matches the specific image to help distinguish between accurate and inaccurate
captions. Through multiple diverse captions from different angles of the scene,
the LLM model is able to gain knowledge and by leveraging its language under-
standing capabilities it is able to generalize and understand the context, as well
as output possible safety measures for the specific scene. Then, during explo-
ration mode, we encourage the LLM (by providing the appropriate prompt) to
use the command save position whenever it deems it necessary in order to save
the current drone position and revisit it during validation mode. The process
continues until the LLM uses the command I know enough and transitions to
validation mode.

During the validation mode, we ask the LLM to output a description and a
caption of its current knowledge, along with which parts it wants to validate.
We add random Gaussian noise to the saved positions, in order to gain different
question-image pairs before inputting them to the VQA model again. In each new
position, the controller asks one validating question for each targeted piece of
information it wants to validate and we also save the question-image pairs which
hold the highest matching score percentage for explanation mode. Afterwards,
the controller compiles all the answers in each revisited position and leverages an
ensemble approach to update the scene description and caption. In the end, the
drone returns to its starting position outputting the final description, caption
and the safety rules about the scene.

Finally, in order to provide the ability to explain the conclusions drawn by
the developed pipeline, we extract the GradCAM’s visualization from our VQA
model in order to output attention maps on the validated images, as shown in
Fig. 2. As a result, when the drone returns to its starting position it is able to
output the question-image pairs through an attention mask, highlighting the
parts of the image that lead to its decisions on the captioning and question-
answering tasks.

4 Experimental Evaluation

All the experiments were conducted using the Airsim simulation environment
[35]. It is built upon Unreal Engine 4 and consists of a physics engine and
different environmental, vehicular and sensory models. By testing out the quad-
rotor vehicular model in multiple environments we can simulate a plethora of
scenarios that provide physical and visual feedback adjacent to the real world.
Specifically, our experiments take place in typical surveillance environments such
as a mountain landscape, a lake, a public square and a snowy road, as shown in
Fig. 4.
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Fig. 4. Four different environments were used for the conducted experiments: a moun-
tain landscape, a snowy road, a public square and a lake.

To quantitatively evaluate the performance of the proposed method we com-
pute the caption-image matching score (using the VQA model) at the drone’s
spawn position and at every subsequent position revisited during the validation
module. We then calculate the average caption-image matching score across all
positions for ten independent experiments. The results are reported in Table 1,
where we compare the baseline score (directly using the description at the start-
ing position of the drone), and the final validated result of the proposed method
(“Proposed”). Our results indicate that in different environments, the proposed
method consistently enhances the caption-image matching score, suggesting that
the generated captions provide more relevant information that aligns well with
the scene. Furthermore, we present the average run time required, to obtain
a validated, detailed scene description with explainable attention maps. Given
that the average experiment time is approximately 12 min and recognizing that
such a duration is impractical in hazardous situations, we introduce a special
rule in our prompt. This rule stipulates that whenever the proposed method
detects a potential anomaly, it must immediately stop exploration and proceed
with validation and result generation. By implementing this rule, we reduce the
average experiment time to under 5 min in anomaly induced scenarios.
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Table 1. Average image-caption matching score (calculated over ten runs) for each of
the employed environments.

Environment Baseline Proposed Time of Experiment

Mountain Landscape 0.384 0.585 12min 57 s

Public Square 0.361 0.699 12min 28 s

Snow road 0.458 0.629 11min 48 s

Lake 0.451 0.690 13min 26 s

Additionally, we assess our system’s performance on the task of anomaly
detection. By introducing potential hazards or dangerous elements, such as fires
and car crashes, into each scene (refer to Fig. 5 for some example anomalies),
we evaluate the baseline framework’s ability to accurately identify anomalies,
comparing it with the performance of our proposed system following the active
perception and validation phases. We consider the system successful in anomaly
detection when it identifies the anomaly in its captions in a coherent and gram-
matically logical manner. To evaluate the proposed method in scenes that contain
anomalies, we deploy hazards in three distinct scenarios. Initially, we position a
potential hazard within the range of the drone’s spawn point. Subsequently, we
increase the distance between the drone’s spawn point and the hazard. Finally,
we place the hazard in an obscured view from the initial drone spawn point neces-
sitating movement to locate it. We conduct the experiments ten times for each

Fig. 5. Example anomalies in the four different environments. Note that some anoma-
lies are challenging to detect and require very careful inspection of the input frame.
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environment and present the accuracy of anomaly detection (averaging the ten
runs over the three setups), comparing the baseline and the proposed method,
in Table 2.

Table 2. Comparing anomaly detection accuracy between baseline and the proposed
method.

Method Environment Anomaly Detection Score

Baseline Mountain Landscape 0.53

Proposed Mountain Landscape 0.90

Baseline Public Square 0.43

Proposed Public Square 0.73

Baseline Lake 0.26

Proposed Lake 0.76

Baseline Snow 0.20

Proposed Snow 0.83

These results indicate that the drone succeeded in providing a description
and caption about the unknown scene whilst only relying on outputs from the
VQA model in the form of text. Moreover, when hazardous anomalies are intro-
duced, altering the scene to an unsafe condition, our system successfully identi-
fies the danger and suggests necessary safety precautions. Finally, the proposed
pipeline can also provide interpretable attention maps, leveraging GradCAM’s
capabilities, both for the intermediate and final questions/captions, which show-
case the validated information in order for a human operator to assess. Two
indicative examples are shown in Fig. 6, highlighting the improved explainabil-
ity capabilities provided by the proposed method. Furthermore, in Table 3, we
compare the captions provided by the baseline model with the captions pro-
vided by the proposed framework and in Table 4 we provide the detailed scene
descriptions leveraged by our proposed framework. Note that in most cases the
proposed method leads to a more accurate description. However, hallucinations
can still occur despite the validation process. Increasing the number of examina-
tion points and/or adding additional validation steps could help further reduce
these occurrences.
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Fig. 6. Two examples for two different questions, indicating the additional explain
ability capabilities that can be provided by the proposed pipeline.

Table 3. Caption examples provided by the baseline VQA model and the proposed
model. We highlight the correct pieces of information with the color green, the wrong
ones with the color red and the ambiguous ones with orange.

Scene Baseline Proposed

Mountain Landscape A view of rocky moun-
tain peaks that looks
into the horizon

A serene mountainous landscape
with mist, snow-capped moun-
tains, and trees.

Snowy road in moun-
tainside

The snowy mountain is
covered in a thick blan-
ket of snow.

A snowy mountain with a road
leading into glacier water.

Public Square A fountain park filled
with lots of water.

A lively fountain park shrouded in
dense fog with water shoots creat-
ing a mysterious atmosphere

Lake A group of tall vegeta-
tion on a river.

A tranquil lake setting with ducks,
tall vegetation, and lush green
plants, offering a picturesque nat-
ural landscape.

Mountain Landscape
with fire

A huge flame and a
cloud of black smoke.

A devastating forest fire consumes
the valley, threatening the green
vegetation and trees in its path.

Lake with a car fire The steam rises in the
clouds on a foggy day.

A car crash has occured, with a
truck damaged after crashing into
a river emitting smoke, individuals
trying to move the stuck truck.
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Table 4. We showcase our methods ability to provide descriptions of the scenes, after
the information was gathered through Active Perception and after it was validated
through our validation module. We highlight the correct pieces of information with the
color green, the wrong ones with the color red and the ambiguous ones with orange.

Environment Proposed Final Description

Mountain Landscape The aerial surveillance drone has captured a serene
mountain landscape with trees covering its slopes.
While there is no visible forest in the scene, a clear
lake adds to the natural beauty of the surroundings.
The absence of human activity enhances the peace-
fulness of the environment.

Mountain Landscape with fire The aerial surveillance drone captures a dramatic
scene with a group of mountains featuring rocky
peaks in the background. In the foreground, a fire
rages with red lava and flames, casting a fiery glow.
On the left side, a majestic mountain stands tall,
adding to the rugged landscape. Meanwhile, on the
right side, another fire burns with smoke billowing
into the sky. The background displays a computer
artwork, adding a surreal touch to the overall view.

Snowy road in mountainside The scene depicts a tranquil snowy landscape with
no specific objects or anomalies present. The serene
setting is characterized by the peacefulness of the
snow-covered terrain and the absence of any notable
features.

Snowy road in mountainside
with car crash

The scene depicts a snowy road with a truck trav-
eling on it. The road is covered in snow, and there
is a mountain nearby covered in heavy snow. The
presence of the truck on the snowy road indicates
a potential hazardous situation that needs to be
approached with caution.

Public Square The scene features a round, red tiled courtyard
enveloped in fog, creating an eerie and mysteri-
ous atmosphere. The fog obscures the surroundings,
adding to the sense of obscurity and intrigue. The
digital object, previously mentioned, is no longer
present in the scene leaving behind a solitary and
enigmatic courtyard.

Public Square with fire The scene features a small fountain with water
spraying, and an outdoor fountain with a fire dis-
play, and a fire torch made of metal. Both the small
fountain and fire display have been confirmed to
be present in the scene. The fire torch made of
metal is also part of the scene, adding to the overall
ambiance.

Lake The scene portrays a tranquil river flowing with rip-
ples at its center. Along the riverbank, the trees
stand tall and healthy, framing the water’s edge
without any nearby structures interrupting the nat-
ural beauty. Across the river lies a park merging into
a dense forest, enhancing the scene’s idyllic charm.
A blanket of fog envelops the surroundings, lending
an air of mystery and serenity to the landscape.

Lake with fire The scene features a body of water with a small
boat floating in the middle. In front of the boat, a
tree is engulfed in flames, emitting orange burning
flames. The fire has spread to the bush tucker on a
field with trees. However, there is no floating island
engulfed by flames as previously mentioned. Smoke
rises from the burning objects, creating a hazardous
environment.
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5 Conclusion

In this paper, we presented a novel framework that employs LLMs to actively
collect information and detect anomalies, even in unprecedented situations. We
propose a method where two deep learning models engage in dialogue to control a
drone and improve anomaly detection accuracy. We test our approach in a realis-
tic simulation environment, where the LLM follows natural language commands
to move the drone, while a VQA model answers questions about images. By com-
bining these models, the LLM asks questions while guiding the drone through
the scene, providing a unique way to improve perception accuracy, as well as
detect potential anomalies. At the same time, by leveraging the explainability
capabilities of the employed VQA model, the proposed method can also further
improve the explainability of the perception process. By providing four different
types of scenes, with different hazardous situations in them and without requir-
ing any fine-tuning or retraining of the models, we demonstrate the potential of
the proposed method for handling open-ended adaptation in-the-wild. Addition-
ally, to the best of our knowledge, there is currently no other established way
to implement and evaluate active perception in unstructured open-world setups.
Therefore, this work opens several research directions, including effective evalu-
ation of approaches that extend beyond static perception and pave the way for
applications in other areas as well.
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Abstract. Slippery road weather conditions are prevalent in many
regions and cause a regular risk for traffic. Still, there has been less
research on how autonomous vehicles could detect slippery driving con-
ditions on the road to drive safely. In this work, we propose a method
to predict a dense grip map from the area in front of the car, based
on postprocessed multimodal sensor data. We trained a convolutional
neural network to predict pixelwise grip values from fused RGB camera,
thermal camera, and LiDAR reflectance images, based on weakly super-
vised ground truth from an optical road weather sensor.

The experiments show that it is possible to predict dense grip values
with good accuracy from the used data modalities as the produced grip
map follows both ground truth measurements and local weather condi-
tions, such as snowy areas on the road. The model using only the RGB
camera or LiDAR reflectance modality provided good baseline results
for grip prediction accuracy while using models fusing the RGB camera,
thermal camera, and LiDAR modalities improved the grip predictions
significantly.

Keywords: Grip prediction · Autonomous driving · Convolutional
neural networks

1 Introduction

Harsh winter conditions pose unique challenges to autonomous driving. Accord-
ing to the Road Weather Management Program by the U.S. Department of
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Fig. 1. Our work presents a grip prediction model, which operates on pixelwise fused
RGB camera, thermal camera, and LiDAR reflectance measurements and predicts a
dense grip map of the road area. The ground truth for training is obtained with an opti-
cal road weather sensor that provides road grip measurements which are postprocessed
with GNSS trajectories and external calibrations to match the input data.

Transportation, 24 % of weather-related vehicle crashes in the U.S. occur on
snowy, slushy, or icy pavement, and 15 % happen during snowfall or sleet each
year [20]. Besides low visibility, significant challenges posed by winter conditions
include changes in road surface slipperiness. Snowy and icy road surfaces, in
particular, can drastically reduce the friction between vehicle wheels and the
road compared to dry and wet roads. Therefore, autonomous driving systems
must be capable of distinguishing such scenarios, requiring specialized sensing
solutions.

Several approaches exist for estimating the grip on the road. However, the
greatest shortcoming of most of these methods in the sense of autonomous driv-
ing has been the lack of ability to sense the road ahead of the vehicle, thus
only allowing the vehicle to react in situations where the slippery conditions
have already affected the driving. To enable sensing of the road further ahead,
cameras or other forward-facing, longer-range sensors must be deployed.

In addition, the grip can often vary between different sections of the road
depending on local snow, ice, and water layer thicknesses. For example, snowy
roads with frequent traffic usually have clear tire tracks, which human drivers
follow to avoid the snowy areas on the road. Human drivers can also distinguish
sudden icy or wet areas on the road allowing them to either avoid these areas or
decrease driving speeds accordingly. Therefore producing dense grip predictions
would enable autonomous vehicles to react to the sensed conditions in a manner
that human drivers can achieve.

Besides traditional vision by RGB cameras, even more accurate grip pre-
dictions could be achieved by combining measurements from other long-range
sensors. For example, many LiDARs measure the return intensity of the sent
infrared laser pulse, which could be used to differentiate ice and water on the
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road due to their different optical properties. In addition, a thermal camera
might be able to differentiate some road surface layer types, such as snowy and
clear areas on the road. These sensors are commonly used in autonomous vehi-
cles, so their positive effect on grip prediction could be easily adopted by the
industry.

In this paper, we introduce a pixelwise road surface grip prediction model
based on a convolutional neural network (CNN) to generate dense grip map
predictions based on fused images from front-facing RGB and thermal cameras
as well as LiDAR reflectance measurements. The ground truth grip values were
provided by an optical road weather sensor, the data of which were projected on
the other sensor data during postprocessing using 3D transformations between
different sensors and the postprocessed trajectory of the data collection. The
main idea and different sensor modalities are presented in Fig. 1. We collected
a 37 h (1538 km) dataset with our autonomous research platform ARVO (Fig. 2)
within different adverse weather conditions and preprocessed it for the aims of
this study.

This work extends the previous work by Pesonen [19] and provides a new
ablation study of the grip prediction accuracy between different input data
modalities. The previous approach was also improved with a more consistent
training and validation setup and extended testing. The capability of the dense
grip map prediction was measured using quantitative error measurements and
qualitative analysis for road areas where ground truth measurements could not
be obtained. The study shows that the dense grip predictions are improved with
the fused RGB, thermal camera, and LiDAR inputs, while the model relying
on the sole RGB inputs, already, greatly improves the resolution of any prior
camera-based grip prediction methods.

Our contributions to the state of the art are: 1) We developed a novel method
to collect and process a dataset with pixelwise matching of multimodal images
and sparse road grip measurements. 2) We proposed a model to predict a dense
grip map of the road area in diverse weather conditions. 3) We compared the grip
prediction accuracies of models using RGB images, thermal images, and LiDAR
reflectance measurements as model input modalities both separately and with
every combination using multi-encoder-fusion.

We shared a demo of our models in a Gitlab repository to allow readers to
test our methods.1

2 Background

While dense road surface grip map prediction has only been proposed in our
earlier work [19], methods for grip prediction have been proposed before using
various sensor setups. Road surface grip measurement methods can be roughly
divided into non-contact and contact-based measurements, which have been
addressed in surveys by Ma et al. [12] and Acosta et al. [1] respectively. Even

1 https://gitlab.com/fgi nls/public/grip-prediction.

https://gitlab.com/fgi_nls/public/grip-prediction
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though contact-based grip sensors and models relying on vehicle information,
such as wheel rotation speeds, are incapable of producing the required predic-
tions for grip in front of the car, their use has been essential for evaluating the
later-developed non-contact methods. According to the survey by Ma et al. [12]
the most prominent non-contact-based methods rely on infrared spectroscopy,
computer vision, optical polarisation, or radar detection.

Most of the proposed camera-based road surface grip prediction methods
have relied on classification of different road surface conditions without provid-
ing scalar estimates of the surface grip [18,22] or by using a two-part process
where the classification result is further used to generate a scalar estimate of the
road surface grip [4,10,24,28]. Few models have also been suggested for directly
generating scalar grip estimates [2,5,16]. However, as a common limitation, all of
the models rely on either generating a single prediction for the whole input image
or for small regions of interest in predefined shapes. In some of the studies the
ground truth labeling was generated by expert annotators [22,28], in one using
a portable pendulum tester [4], in one using friction wheel trailer measurements
[10], in one with vehicle response [2], and in one with an optical sensor [16].

Models generating pixelwise outputs have become popular in many tasks,
such as semantic segmentation and monocular depth estimation. In semantic
segmentation, models are trained to classify each pixel of the input image. Solu-
tions proposed for the task, some of which have also found use in many other
problems, include U-net [21], FPN [11] and DeepLabV3+ [3].

Monocular depth estimation is a task more similar to the one presented in
this paper, as the labels are scalar distance values instead of discrete classes as
in the case of segmentation. In addition, the training labels could originate from
sparse measurements such as LiDAR readings. Such weak supervision has been
applied to monocular depth estimation with sparse labels by Guizilini et al. [6]
showing similarity to our grip prediction task due to the comparable sparsity of
the ground truth labels.

As both optical road weather sensors and LiDARs use lasers to measure
the return intensity of the measured object, the use of LiDARs for road sur-
face condition prediction shows potential. Ruiz-Llata et al. [23] and Shin et al.
[26] showed that different road surface conditions can be detected using LiDAR
measurements. Sebastian et al. [25] proposed the use of a LiDAR-based CNN
for simultaneous road condition and weather classification. While the use of 3D
LiDARs was proposed in the studies, their use for dense road surface grip pre-
diction was not investigated in depth.

As noted, the prior literature is concentrated on low-resolution grip predic-
tions using individual sensor inputs. This study aims to fill the gap by introduc-
ing both data and methods for generating dense predictions using multimodal
input data.

3 Data

In this section, we describe the collection and preprocessing of the data used to
train and evaluate the proposed grip prediction methods.
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3.1 Dataset Collection

We collected a 37 h or 1538 km dataset of different driving conditions with the
sensor setup in our autonomous driving research vehicle ARVO, of which an
older version is presented in our earlier study [13]. The dataset includes various
driving conditions, such as daytime and nighttime, snowfall, snow-covered roads,
slushy conditions, rain, and wet roads. It also contains data from several road
types, such as highways, urban roads, and paved and unpaved local roads. The
dataset was collected mostly in the capital region of Finland during fall and
winter, with a smaller part collected in Western Lapland during spring. The
dataset was postprocessed to contain samples at a frequency of 2 fps and after
automatic filtering of low-quality data, the dataset had 237 067 samples.

For this project, we used data from a forward-facing RGB camera (Basler
MED ace 2.3 MP 164 color), three forward-facing thermal cameras (FLIR ADK,
24◦ FOV), a roof-mounted 128-beam rotating LiDAR (Velodyne Alpha Prime
VLS-128), a GNSS Inertial Navigation System (INS) (Novatel PwrPak7-E1),
and a mobile road weather sensor (Vaisala Mobile Detector MD30). An image
of the car with highlighted sensor locations is shown in Fig. 2. The left and right
thermal cameras were horizontally tilted approximately 23◦ outwards from the
center camera to achieve a combined field of view covering a larger horizontal
angle. All sensors were synchronized with GNSS INS triggering signals except the
road weather sensor, which was synchronized manually during postprocessing.

We chose these long-range sensor modalities for this research due to their
common use in autonomous driving development. We also noted in our pre-
liminary studies that different types of snow can have type-specific features in
thermal cameras. LiDAR reflectance measurements (laser pulse return inten-
sity amplitude which is normalized with distance internally by LiDAR sensor)
could also provide single-band spectral information on the surface material as
the LiDAR sensor used in this study uses 903 nm wavelength lasers, which has

Fig. 2. The research vehicle ARVO used for data collection. The long-range sensors
shown in box A are 1. LiDAR, 2. RGB camera in a weatherproof housing and 3. thermal
cameras. The road weather sensor is shown in box B.
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Fig. 3. The distribution of grip values and road surface states provided by the road
weather sensor measurements in the complete unprocessed dataset. We observe that
most of the data is collected within dry, wet, or snowy conditions.

different extinction coefficients between water and ice according to the data by
Palmer and Williams [17] and the data by Warren and Brandt [27].

The road weather sensor Vaisala Mobile Detector MD30 is an optical sensor
that estimates water, ice, and snow layer thicknesses using three laser intensity
measurements in different wavelengths. The operating principle of the sensor is
not publicly available, but an earlier sensor prototype is presented in a master’s
thesis [9]. The sensor uses an internal model for calculating the grip estimate of
the road, most likely based on the three surface layer thickness values. Based
on earlier studies on optical sensors [14,15], we assume that an optimistic upper
limit of the sensor grip estimate accuracy is 0.1. However, the grip estimate can
be more accurate within clear conditions with constant grip. The surface layer
thickness and grip estimates are measured with a 40 fps sampling rate. In addi-
tion, the sensor provides road surface condition class, road and air temperatures,
and other meteorological measurements. In our analysis, we have assumed that
the sensor’s grip measurements are sufficiently accurate that it is reasonable to
imitate the sensor measurements for a dense grip map, even though the sensor
grip values are likely to contain some inaccuracies as the grip between the tires
and the road surface is a complex physical phenomenon.

The grip and road surface condition distribution in our dataset is visualized
in Fig. 3. We observe that the two most prominent road states are dry and snowy
conditions. These conditions have two distinct grip coefficients, which are 0.82 for
dry road and 0.35 for snowy road. Additionally, we note that wet roads usually
have a grip of less than 0.8, and the smallest grip of 0.1 is observed on icy roads
or roads with very thick layers of water.

3.2 Datasplit

The dataset includes data collections from 18 days, many of which shared the
same data collection locations. To ensure that the training, validation, and test
sets were collected from different locations while maintaining similar weather
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condition distributions, we used a geofencing-based approach to choose the vali-
dation and test sets from the full dataset. We chose circular areas within approx-
imately one-kilometer intervals from the data collection area so that all samples
collected within these areas are included either in the validation or the test set.
The rest of the data is included in the training set, except for any positions less
than 55 m from any border of the chosen circular areas. This 55-m gap assures
that no observations are shared between validation, testing, or training. With
this data split, we achieved a qualitatively similar distribution of weather con-
ditions between training, validation, and test sets. Additional qualitative data
filtering was also done at this stage. In the end, the training set has 159 801
samples (79.1%), the validation set has 15 343 samples (7.6%) and the test set
has 26 783 samples (13.3%).

There is a possibility that some conditions of the input data, such as illumi-
nation, would allow the model to fit to these conditions and learn the general
grip conditions on specific data collection dates. Therefore, we used three sepa-
rate data collections, with 16 139 samples in total, as additional test drives to
demonstrate the accuracy of the model regardless of this effect.

3.3 Pixelwise Matching of Modalities

To obtain pixelwise pairs of image data and ground truth road weather measure-
ments, we used the following preprocessing approach. We calibrated all cameras
intrinsically and extrinsically and measured the 3D locations and orientations
of each sensor. Due to the hardware-based synchronization, we also know the
time correspondences between each of the sensors. The GNSS trajectory was
postprocessed using base-station data to increase its accuracy.

We chose the RGB camera image as the reference frame of the data as it
has the highest resolution regarding the front area of the car. The road weather
sensor measurements were overlaid on the RGB images with the following pro-
cedure: first, we used the postprocessed trajectory and the external transforma-
tion between the INS reference frame and the road weather sensor measurement
locations to project the road weather sensor measurement positions to a 3D tra-
jectory. This trajectory of the measurements is then transformed to the RGB
camera coordinates and projected to the RGB camera image plane. Therefore,
we obtained RGB camera images where the road weather measurement points,
which were recorded soon after the RGB camera capture time, are overlaid. To
improve the data quality, we only included road weather measurement points
within 50 m of the cameras and excluded the measurement points behind any
obstacles.

The LiDAR point clouds were motion-corrected with the postprocessed tra-
jectory and projected to the RGB camera pixel coordinates. We also accumulated
more LiDAR points from the lower part of the three previous scans to include
more reflectance measurements from the nearby road area.

The thermal cameras required a more complex pixelwise matching with the
RGB camera. Initially, we generated approximate range images from the LiDAR
point clouds projected onto the RGB camera. For each RGB camera pixel, we
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identified a corresponding 3D point from the range image, projected that point
onto a single thermal camera frame, and determined the corresponding thermal
value from the thermal camera image. As a result, we obtained thermal camera
images projected onto each RGB camera frame. We normalized the pixel values
of the left and right thermal cameras to match the scale of the center thermal
camera, ensuring a value distribution close to the shared image border.

As the thermal pixel values correspond to the thermal flux in the pixel with a
varying scale due to online calibration, the raw thermal values were not consid-
ered suitable for this work. Therefore, we normalized the thermal camera pixel
values within each frame so that a sample area from the road has a consistent
distribution with zero mean and unit variance. In addition, the borders of the
thermal camera images had lower values within cold conditions due to the oper-
ation of the thermal camera sensor. We alleviated this effect by determining the
systematic error distribution for each thermal camera image and subtracting
that error to obtain an image with a more homogenous value distribution. The
data preprocessing is described in more detail in the preliminary results of our
work [19].

An example of the pixelwise matched sensor data can be seen in Fig. 1. The
pixelwise matching quality varies between frames and occasionally distant areas
or tall objects closer to the camera might appear unaligned between different
sensors. We considered this effect negligible for this work, as the road surface
is mostly well aligned and the road surface is usually large and homogenous,
alleviating any problems that could be caused by the slight unalignment.

4 Methods

In this section, we present our model for the grip prediction, the training setup,
and the performance evaluation methods.

4.1 Model

To generate dense predictions of the road surface grip using the multimodal input
data, we propose using a convolutional neural network trained with the sparse
pixelwise matched road weather measurements as the ground truth labels. Our
models are based on Feature Pyramid Network (FPN) [11] which is adapted to
predict pixelwise scalar values for regression. The FPN model was chosen as it
was shown efficient for the task in our preliminary studies.

We trained our models with every combination of the collected input modal-
ities to measure their effect on grip prediction accuracy. The models utilizing
a single input modality are based on the standard FPN implementation which
takes an image tensor as the input. However, the multimodal models include
separate encoders for each input modality, and their features are concatenated
channel-wise within each feature scale before being forwarded to the decoder. We
implemented this feature-level fusion approach due to finding occasional lower-
quality samples in some input modalities, meaning it was useful for the model to
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learn to discard these features in the corresponding situations. For each of the
model encoders, we used ResNet-18 [7].

The outputs of the model are the predicted grip and the predicted water,
ice, and snow layer thicknesses for each pixel. The grip prediction is the primary
task of the model and the prediction of different surface layer thicknesses is used
as an auxiliary task to support the learning, as it has been shown to improve
the prediction accuracy of the obtained model in our prior experiments [19]. The
model architecture and the training scheme are illustrated in Fig. 4.

In most frames, more road weather measurement points were visible further
away from the car. These distant points also contain less information as the
resolution of the RGB camera and other sensors concerning the road surface
was smaller. We alleviated the effect of these distant points by weighting the
road weather measurements within each image based on their y-coordinate in
the RGB image plane: the weight of each measurement point decreases linearly
from the bottom of the image to the estimated horizon level. With this approach,
we could approximately balance the prediction accuracy over the whole road
area. For validation and testing the pixelwise weights were normalized within
each frame so that their mean is one. For the training, the normalization was
performed on the unfiltered road weather measurements, which included some
overlapping positions, leading to slightly larger weights on average.

The predicted grip and surface layer thickness values are compared to the
sparse ground truth values from the postprocessed road weather sensor data

Fig. 4. The model architecture and training scheme for the model using all data modal-
ities. Each input data modality has a separate encoder and their features are concate-
nated within each feature scale before the FPN decoder. The loss is evaluated both for
the grip and the surface layer thickness prediction tasks.
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with the following loss function:
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where x is the input image tensor, N is the number of pixels containing ground
truth grip values in the sample, wi is the weight for pixel i, yi

p, and f i
p(x|θ) are

the ground truth and model output for grip value at pixel i and yl,i
a and f l,i

a (x|θ)
are the ground truth and model output for surface layer l value at pixel i. The
first term denotes the weighted mean square error for the grip prediction task
and the second term denotes the similarly weighted mean square error for the
prediction of surface layer thicknesses. The parameter λ is used to adjust the
effect of the supportive auxiliary task and in our experiments, it was set to 1.0.

4.2 Training Setup

Each model was trained using the Adam optimizer [8] for 38 epochs with a batch
size of 32 and a learning rate of 1e − 3. The FPN model used a dropout rate
of 20% in its last layer. The models were compared using the instances which
achieved the best validation loss during the training.

As our method was designed to predict the grip and the layer thicknesses
based on the surface appearance, we avoided excessive augmentation to maintain
accurate predictions. Some augmentations were still used to ensure appropriate
generalization. Therefore, it was chosen to apply small random scale and rotation
augmentation with a 30% probability, horizontal flip with a 50% probability,
small random blur with a 30% probability, and random color jitter to the RGB
images with a 30% probability.

4.3 Performance Evaluation

The model performance was evaluated with a root mean square error (RMSE)
between the predicted and the ground truth grip values. A similar weighting as
in the training loss (1) was applied during validation and test error evaluation
as we wanted to measure the grip prediction accuracy balanced over the road
area. Due to this weighting, the mean square error was evaluated for each frame
separately, and these sample-wise square errors were averaged before evaluating
the square root. The test accuracy is reported both for the test set from the
main data collection and the three extra test drives with no correspondence to
the main dataset.

In addition to the main evaluation metric RMSE, we assessed the test set
performance using mean absolute error (MAE), pixelwise unweighted RMSE,
and grip weighted RMSE. The pixelwise unweighted RMSE is similar to the main
RMSE error, except it omits the weighting in the equation (1). To calculate the
grip weighted RMSE, the grip range is divided into ten bins. The weight for each
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bin is calculated from the inverse of the number of ground truth measurements
in that bin, with all weights scaled to a mean of one. The framewise evaluated
mean squared error within each bin is then weighted with the corresponding bin
weight, and the square root of the mean of these weighted errors is calculated
to obtain the grip weighted RMSE. This process imitates the error for a dataset
with a uniform distribution of grip measurements. The grip weighted RMSE is
also weighted in a pixelwise manner, similar to the training loss.

However, the error evaluation alone could not show if the grip predictions
are valid over the road areas which rarely contain ground truth measurements.
Therefore we also performed qualitative analysis on the model output to estimate
how well the grip map follows the slipperiness expected by human drivers.

5 Results

In this section, we first analyze the quantitative errors from our validation and
test sets and then inspect the qualitative performance of different models.

5.1 Validation and Test Set Errors

We performed the experiments by training the model with different sensor
modalities as the input to observe the effect of each sensor on the grip pre-
diction accuracy. The validation set, test set, and separate test drive dataset
information and RMSEs achieved with each model are found in Table 1. The
additional metrics for the test set are listed in Table 2.

For the validation and test set all obtained errors are significantly smaller
than the standard deviation of the dataset, which insists that the models could
learn to predict useful grip values. In most experiments, the best or second-
to-best results are achieved with the model that uses all data modalities. Using
RGB images provides the best accuracy when compared to other data modalities,
but the model using only the LiDAR reflectance achieves comparable results
with the RGB model. While the combination of RGB and thermal images does
not improve performance over using RGB data alone, combining thermal and
reflectance data provides similar improvements as the combination of RGB and
reflectance. This indicates that the RGB and thermal information may overlap
significantly, but also provide information unavailable from LiDAR reflectance
alone. Therefore, almost all of the best or second-best results in Table 1 are
achieved using some combination of LiDAR reflectance and a higher-resolution
image input.

The separate test drive results confirm that the use of several data modalities
improves the accuracy and the models have not noticeably overfit to the training
data. Even though the standard deviation in each test drive is close to the model
errors, it should be noted that the conditions in a single test drive are mostly
constant and the models have predicted at least the general conditions in the
test drive. However, there is variance and inconsistency in the separate test drive
results as the amount of data is small, and adverse effects in one modality could
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decrease the performance of a single model. Some differences between the results
could also be explained by the specific driving conditions, as the dark conditions
in Test drive 1 might benefit the performance of the models using reflectance.

The results of the additional test set metrics in the Table 2 follow the expected
previous results with RMSE. As the grip weighted RMSE has larger values than
the previous RMSE, we conclude that less prevalent grip values are more difficult
to predict than the prevalent values. However, the grip weighted RMSE is below
0.1 which is relatively accurate as grip prediction performance.

We also verify the FPN model choice by comparing the performance of U-
net and DeepLabV3+ using only RGB inputs. The results are shown in Table 3.
While DeepLabV3+ performed best on the test set and two of the separate
test drives, the comparable results confirm that our validation loss-based model
choice should not hinder our results and further model optimization can be left
as future work along other hyperparameters.

In addition, a scatter plot of the grip and different surface layer thickness
predictions in the test set is shown in Fig. 5. The surface layer thickness predic-
tions mostly follow the ground truth values within a relatively small error range
while the predicted grip values have a larger error distribution, partly due to
misinterpretation of snowy conditions.

5.2 Qualitative Performance

Besides the error evaluation based on the ground truth road weather sensor
measurements, we evaluated the grip map prediction over the complete road
area qualitatively. Several example scenarios and grip map predictions from the
final proposed model in different road weather conditions are shown in Fig. 6.
Additionally, examples from the other introduced models and a comparison of

Table 1. Dataset information and grip prediction RMSE for different models on the
validation set, test set, and separate test drives. Different data modalities are abbre-
viated where RGB denotes RGB camera, T denotes thermal camera and R denotes
LiDAR reflectance measurements. The best-achieved error in each set is in bold and
the second-to-best is underlined.

Validation set Test set Test drive 1 Test drive 2 Test drive 3

Weather condition Varying Varying Snowy,snowfall, dark Snowy Wet, slushy

Grip mean 0.6474 0.659 0.399 0.557 0.649

Grip SD 0.2037 0.201 0.104 0.140 0.159

# samples 15 343 26 783 5 746 2 042 8 351

Modalities RMSE RMSE RMSE RMSE RMSE

RGB 0.0657 0.0589 0.1041 0.1497 0.1062

T 0.0794 0.0772 0.1248 0.1670 0.1361

R 0.0677 0.0591 0.0992 0.1262 0.0944

RGB + T 0.0655 0.0605 0.1024 0.1416 0.1069

RGB + R 0.0638 0.0565 0.1038 0.1418 0.0917

T + R 0.0664 0.0586 0.1056 0.1038 0.0906

RGB + T + R 0.0632 0.0575 0.0974 0.1118 0.0994
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Table 2. Additional test set metrics of the models using different modalities.

Modalities MAE Pixelwise unweighted RMSE Grip weighted RMSE

RGB 0.0242 0.0698 0.0912

T 0.0323 0.0875 0.0955

R 0.0236 0.0734 0.0947

RGB+T 0.0248 0.0720 0.0909

RGB+R 0.0248 0.0680 0.0939

T+R 0.0231 0.0720 0.0974

RGB+T+R 0.0238 0.0674 0.0908

Table 3. Comparison of different model architectures with only RGB input. Errors in
RMSE.

Model Validation set Test set Test drive 1 Test drive 2 Test drive 3

FPN (proposed) 0.0657 0.0589 0.1041 0.1497 0.1062

U-net 0.0692 0.0604 0.1065 0.1466 0.1127

DeepLabV3+ 0.0673 0.0583 0.1061 0.1462 0.1026

the impact of different modalities on the qualitative results are shown in Fig. 7
and in the supplementary material. In all figures in this work, the road area is
segmented manually as the model does not differentiate the road area from the
input data.

In general, we observe that the model output is smooth and is often constant
when there are no variations in road weather conditions, such as when the road
is completely dry, completely wet, or completely covered in snow. The model
predictions could also mostly follow the boundaries between snowy and clear
areas as seen in scenarios presented in Fig. 6 where clear tire tracks can be seen
on otherwise snowy roads. Some conditions are still difficult to detect, such as
the second scenario on the right column, in which the model could not detect
the low grip of an area covered with deep water.

In addition, the model performance is unclear in some conditions that are
further from the usual ground truth data locations, such as on the adjacent
lane. The model output also could not follow sharp changes in grip values as
the model seems to average the grip on relatively large prediction areas. This
is likely due to the sparsity and varying data quality of the ground truth road
weather measurements.

In Fig. 7 we show performance differences between models using different
data modalities as inputs. In some examples, the thermal and reflectance-based
single modality models misclassify the grip conditions of the whole scene as the
data modality can not differentiate the current condition correctly. However, the
model using each data modality seems to combine the correct predictions from
the single modalities into a consistent representation of the grip map.
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Fig. 5. Scatter plots of predicted grips and layer thicknesses produced by the best,
proposed model (RGB+T+R). The x-axis represents the ground truth values and the
y-axis the predictions. The plots were generated using 50 000 random measurements
and corresponding predictions from the test set. The red dashed line represents the
position of correct predictions. (Color figure online)

Fig. 6. Visualisations of the qualitative performance of the final model (RGB+T+R).
The ground truth labels are shown using 14-by-14-pixel colored squares drawn on the
RGB input image.

6 Discussion

The results support the original hypothesis on the accuracy of the dense grip
map and the benefit of additional data modalities besides the RGB camera. Even
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Fig. 7. Example grip prediction visualizations for each single-modality model and the
RGB+T+R model. Some samples were chosen to highlight the performance differences
between models.

though a large portion of the accuracy is obtained by separating the dry and
snowy conditions from each other, it seems the model can perform in other road
weather conditions as well.

However, one has to consider several error sources, as the optical road weather
sensor is not designed to measure all the complex phenomena that could affect
the grip between the tires and the road. In addition, the correct synchronization
and alignment of the road weather sensor data was challenging. There is also a
risk that the data split into training, validation, and test sets could cause some
samples in different sets to have too many similarities meaning it’s possible
that some overfitting could not be observed from the validation and test set
results. However, the results on the data from the three extra test drives defend
the validation and test set results. In general, one would need an even larger
representation of different weather conditions in the dataset to obtain a model
with less bias and higher accuracy in several real-life road weather conditions.
Despite these limitations, our results show evidence of the performance of our
method.

7 Conclusions

This study presents a novel method to predict a dense grip map of the road
area from multimodal image data with a convolutional neural network. The
models using RGB or 3D LiDAR reflectance measurements provide the best
baseline results, whereas the highest accuracy predictions are achieved with sen-
sor fusion using modality-wise encoders. The use of thermal camera images also
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shows potential, while their contribution is smaller than that of the RGB and
reflectance measurements. The results follow those of earlier studies in proving
that the RGB camera is a powerful tool for detecting road surface conditions
while also providing major steps in using 3D LiDAR reflectance measurements
for dense grip prediction both alone and alongside RGB cameras.

The best model configuration using a combination of all three input modali-
ties achieves an RMSE of 0.0632 and an RMSE of 0.0575 on the diverse validation
and test sets respectively. The results from separate test drives also prove the
system’s usability in unseen conditions. In addition, the qualitative results show
the model recognizing various shapes of snow, ice, and water layer distributions
affecting the grip prediction. These qualitative results were also improved with
the model that uses multimodal inputs with the fusion of encoder features.

To achieve a reliable implementation of this method for autonomous driving,
one should collect a large dataset with improved sensor data quality and an
even more diverse and balanced set of road and weather conditions. It could
also be investigated if one could improve the prediction accuracy by switching
the reference image plane from the presented RGB camera frame to another
plane, such as the bird’s-eye view of the road area or even the 3D frame of
the LiDAR. Finally, one should develop methods to predict the uncertainty of
the grip prediction output to fuse the output from this method reliably with
autonomous driving systems.
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timodal end-to-end learning for autonomous steering in adverse road and weather
conditions. In: 2020 25th International Conference on Pattern Recognition (ICPR),
pp. 699–706. IEEE (2021)

14. Malmivuo, M.: Comparison study of mobile optical friction and temperature meters
2013. Publications by Finnish Transport Agency (2013)

15. Malmivuo, M.: Test of optical MD30 sensors within Mäntsälä contract – winter sea-
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O.E., López-Fernández, J.R.: Lidar design for road condition measurement ahead
of a moving vehicle. In: 2017 IEEE Sensors, pp. 1–3 (2017)
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Abstract. Drivable area segmentation is a crucial task in autonomous
driving. While current works mainly focus on analyzing single image
and overlook the intra-video associations, due to the limited availability
of video-based datasets. We present a novel prototype-based approach,
named DASeg, to tackle the challenge of annotating intra-video query
images using annotated support images as guidance. The primary obsta-
cle lies in aggregating representative prototypes while ensuring resilience
to variations in appearance and position across the video. Our method
consists of three key components: position embedding for utilizing posi-
tional priors, soft-pooling for alleviating the limited coverage of intra-
class variations from the support provided, and prototype regulariza-
tion for generalizability enhancement. We augmented the lane detection
dataset VIL-100 by incorporating drivable area annotations, resulting in
a new dataset named VDA-100, which was employed to evaluate the per-
formance of the proposed method. Experiments show that our method
achieves mIoU score of 88.3% with the pre-trained backbone from lane
detection model, and 89.1% when trained from scratch. Our code and
dataset is available at https://github.com/CZY-Code/DASeg.

Keywords: Drivable area segmentation · Positional prior ·
Soft-pooling · Prototype regularization

1 Introduction

Drivable area division refers to the identification of flat and obstacle-free regions
on the road where vehicles can maneuver while adhering to traffic regulations.
The availability of drivable area information is essential for local path planning
at all levels of autonomous driving and plays a crucial role in decision-making
tasks, including steering and lane changes. The performance of drivable area seg-
mentation technology has a profound impact on the safety of intelligent vehicles.

Vision sensors remain crucial for acquiring information in autonomous driv-
ing. However, the imaging capabilities of vision sensors are susceptible to illu-
mination and weather conditions, making it challenging to maintain robustness
in complex and dynamic scenarios. Traditional road segmentation approaches
like threshold methods [23] and clustering methods [31] rely on hand-designed
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15317, pp. 405–419, 2025.
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Fig. 1. Problem formulation. Given support image Is and its mask Ms, DASeg
predicts the mask M ′

q of intra-video query image Iq. The backbone for extracting
features Fs and Fq is pre-trained and kept frozen during training.

features which constrained by expert knowledge. Traditional methods struggle
to capture the variability of complex traffic environments and the diversity of
road structures, limiting their applicability to specific environments. Current
approach for road segmentation mainly relies on deep learning [7,9,26,29]. Deep
neural networks automatically extract semantic features from the image data,
while reducing reliance on prior knowledge and eliminating constraints related
to road types and obstacle types. Therefore, it progressively become the main-
stream solution for the road perception.

While deep learning models provide high accuracy, their substantial param-
eters and computational demands make exclusive deployment inefficient for
onboard vehicle systems with strict resource constraints. Previous methods also
primarily utilize single images due to dataset limitations, failing to leverage
the temporally dynamic nature of drivable areas evident across video sequences
captured during continuous driving. However, incorporating inter-frame con-
text could enhance segmentation robustness, especially under complex condi-
tions involving transient occlusions or dynamic scenes. The observation inspires
us to introduce a lightweight video-based framework for real-time drivable area
segmentation by incorporating inter-frame context. Our contributions in this
work can be summarized as:

– We propose DASeg to obtain coarse segmentation annotations of query images
within a video with annotated support image. The proposed method achieves
the state-of-the-art performance compared with recent methods

– Our method shares the backbone with the lane detection method [5], and
introduces only 0.43M additional parameters, aiming to reduce the computa-
tional burden on on-vehicle chip.

– We manually annotated the detailed mask of the drivable area, based on
the public video-based lane detection dataset VIL-100 [35]. Our new dataset
VDA-100 is open source and could facilitate the community.
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2 Related Work

2.1 Fully-Automatic Segmentation

Related with our work, we divide The fully-automatic segmentation method into
two categories: General semantic segmentation and road segmentation.

General semantic segmentation, the task of assigning semantic labels to
every pixel in an image has been a fundamental problem in computer vision
with wide-ranging applications. One of the pioneering works in this area is
the DeepLab series, which has made remarkable contributions. DeepLab V3 [4]
employed an Atrous Spatial Pyramid Pooling module to capture multi-scale con-
textual information, the ASPP module uses parallel atrous convolutions with
different dilation rates to extract features at multiple scales. Another notable
approach is SegFormer [33], which introduced a multi-scale transformer encoder
to capture both local and global contextual information, each transformer blocks
operates on features at a different resolution.

Road segmentation method can be divided according to the type of sensor
used, and the main sensors used are monocular camera, binocular camera, and
lidar. The existing drivable area segmentation methods can be classified based
on the type of sensor employed. The primary sensors utilized in these methods
include monocular camera, binocular camera, and LiDAR. In terms of the fusion
of RGB images and LiDAR point clouds, LiDAR-camera [9] built two pipelines
for daytime and nighttime respectively. The unsupervised method [18] integrates
image coordinates and LIDAR information to generate a Delaunay triangulation
that captures the spatial relationship among obstacle points. The method of fus-
ing RGB images with surface normal maps has also produced promising results.
The cross-modal domain adaptation framework [29] introduces the collaborative
cross-guidance module to enable cross-modal in-domain sample supplementa-
tion, and a selective feature alignment module is introduced to bridge the domain
gap between the source domain and the target domain. SNE-RoadSeg [7] first
introduces a surface normal estimator to infer surface normal map from dense
depth image and proposes a data-fusion module to extract and fuse features
from both RGB images and inferred surface normal map. DFM-RTFNet [26]
proposed a dynamic fusion module to dynamically fuse two different modalities
of features in a multi-scale fashion, the fused feature is processed by five decoder
layers and a softmax layer to output the result.

2.2 Semi-automatic Segmentation

The semi-automatic segmentation method can be divided into two categories:
video object segmentation and few-shot semantic segmentation.

Semi-automatic video object segmentation methods primarily lie in
the setting of first-frame mask propagation. These methods can be categorized
based on how they utilize the object masks provided at test time. As an online
Fine-tuning method [1] start with a pre-trained base CNN for image labeling on
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ImageNet, then train a parent network to improve but are not focused on a spe-
cific object, finally fine-tuning on a segmentation example for the specific target
object in a single frame. The propagation-based method VPNs [11] uses the pre-
vious frame mask to infer the current mask, which combines two components, a
temporal bilateral network for dense and video adaptive filtering, followed by a
spatial network to refine features and increased flexibility. The matching-based
methods aim to distinguish the target area from the background based on the
pixel-level similarity between two object units, [22] proposed a siamese network
that uses features from different depth layers to take advantage of both the spa-
tial details and semantic information. RANet [30] employed an encoder-decoder
framework to learn pixel-level similarity and segmentation in an end-to-end man-
ner and proposed a ranking attention module, which automatically ranks and
selects these maps for fine-grained performance. To alleviate the demand for
large-scale, pixel-wise annotated training samples, several un-/weakly-supervised
learning-based methods were recently developed. LIIR [13] exploits cross-video
affinities as extra negative samples within a unified, inter-and intra-video recon-
struction scheme.

Few-shot semantic segmentation, the task of adapting a segmentation
model to novel categories given only a few examples. This task poses unique chal-
lenges, as models must quickly learn to segment new classes with limited train-
ing data. PPNet [17] introduces a part-aware prototype learning mechanism,
which extracts region-level features from support images and aggregates to con-
struct class-level prototypes. PANet [27] proposed prototype generation module
to construct class-level prototypes from the support images, and introduced the
prototype alignment module to align prototypes with the query image features
to produce the final segmentation outputs. The key innovation of DGPNet [12]
is the use of Dense Gaussian Processes (DGPs) to model the task-specific seg-
mentation distribution. DGPs can capture rich contextual dependencies in the
segmentation maps, allowing for accurate adaptation with limited data. Moti-
vated by the simple Gestalt principle that pixels belonging to the same object
are more similar than those to different objects of same class, SSP [6] uses query
prototypes to match query features, where the query prototypes are collected
from high-confidence query predictions.

3 Preliminary

3.1 Problem Formulation

Classical fully-automatic segmentation methods need to use a large amount of
training data to learn the standard method:

f̂ ∈ arg min
f∈F

1
Nt

∑
ε(f(It),Mt), (1)

where F denotes the hypothesis space, and ε is an error function that evaluates
the estimate f(·) against corresponding label. The It and Mt denote the training
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data, which are selected from the entire dataset and are not restricted to the
same video or scenario, the Nt represents the number of training samples, and it
is usually very large, taking the BDD100K dataset [34] as an example, Nt = 80K.
However, through the use of temporal consistency prior and supporting image
guidance, our method can be trained on a small number of labeled data sets to
obtain a high-performance annotation tool for the drivable area.

Our video-based semi-automatic segmentation models are typically learned
in a fully supervised manner, requiring Nq input training samples and their
annotations, as shown in Fig. 1. The standard method for evaluating learning
outcomes follows an empirical loss minimization formulation:

f̂ ∈ arg min
f∈F

1
Nq

∑
ε(f(Iq, Is,Ms),Mq). (2)

Given the query image Iq, we aim to generate a segmentation of the drivable
area M ′

q by leveraging the support image Is and its well-annotated mask Ms.
Both the support image Is ∈ R

1×3×H×W and the query image Iq ∈ R
Nq×3×H×W

are assumed to be from the same video. To make f̂ a good approximation, current
fully-automatic segmentation methods directly use the desired output Mq, as the
prior knowledge, with the price of requiring vast amounts of well-annotated data.
Through the pattern of formula 2, our semi-automatic method only requires 0.8K
of annotation data, far less than the 80K of the fully-automatic methods.

3.2 Dataset

The public datasets for drivable area segmentation as shown in Table 1. SYN-
THIA and R2D are collected in the virtual simulator, KITTI Road and
BDD100K are collected in the real world. KITTI Road offers RGB-D data but
only 289 images are collected. The widely used BDD100K is not a video-based
dataset, which does not contain temporal information, and does not meet our
needs. VIL-100 is a video-based dataset for lane detection, but does not contain
drivable area annotation.

Table 1. Related datasets. The DA and Lane columns show whether there are
annotations of drivable area and lane lines, respectively.

Dataset Domain Number DA Lane Type

KITTI Road [8] Real 289 ✓ ✗ Image

SYNTHIA [21] Synthetic ∼13K ✓ ✗ Image

R2D [7] Synthetic ∼11K ✓ ✗ Image

BDD100K [34] Real 80K ✓ ✓ Image

VIL-100 [35] Real 10K ✗ ✓ Video

VDA-100 Real 10K ✓ ✓ Video
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Fig. 2. Annotations of drivable area. Different from the definition of road surface,
the drivable area must consider traffic regulations. The side of the direct area is divided
by a dotted line and is not occupied, so it is marked as an alternative area, as shown in
Fig. 2a and Fig. 2b. If the side of the direct area is divided by a solid line or is already
occupied, it cannot be marked as an alternative area, as shown in Fig. 2c and Fig. 2d.

To obtain an available dataset, we manually annotate detailed masks of driv-
able areas based on the VIL-100 [35]. The new dataset called VDA-100 was
used for training and evaluation. As shown in Fig. 2, we selected four annotated
images to illustrate annotation principles.

The first 10 frames of each video was manually annotated, with 80% of the
total 100 videos allocated for training and the remaining 20% for evaluation.
During training, a single frame is randomly selected from the manually anno-
tated frames as the support image, while the rest of the intra-video images serve
as query images. The proposed method aims to use the limited number of man-
ual annotations to achieve coarse annotating of the rest unlabeled intra-video
images.

4 Proposed Method

Inspired by prototype matching [22,30], we construct an embedded space that
incorporates appearance information and position information, as shown in
Fig. 3. The embedded space is used to store modified query prototypes obtained
through soft pooling. Subsequently, labels are assigned to each pixel based on
the similarity between query image feature and prototypes within the embedded
space.
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Fig. 3. Proposed network architecture.

4.1 Pixel-Wise Position Embedding

Unlike other visual concepts such as cats or dogs, the concept of a drivable
area cannot be defined based on its appearance alone, positional information
is also required. Thus, we introduce position embedding to improve inter-class
discriminability by incorporating explicit positional priors. Previous segmen-
tation methods [14,20] solve the problem by training a discriminative clas-
sifier p(Class|(Appearance)), which neglects the underlying data distribution
p(Position|Class). In our observation, the direct area and the alternative area
are composed of similar road surface pixels. That is, the distribution of appear-
ance features p((Appearance)|ClassD) and p((Appearance)|ClassA) are close.
Therefore, it is not discriminative to solely rely on the appearance feature.

To solve the above problem, we use positional information to make image
features more discriminative. Based on our observations, the direct area pre-
dominantly occupies the central region of the image, whereas the alternative
area is typically situated on the left or right sides. Namely, the gap between
p((Position)|ClassA) distribution and p((Position)|ClassD) distribution is
large. With the prior mentioned above, we solve the drivable area segmentation
problem by training a discriminative classifier p(Class|(Appearance, Position)).
In this work, we use sine and cosine functions of different frequencies to encode
2D positional information of each pixel in appearance feature:

PE(x,y,4i) = sin(
x

T 4i/D
),

PE(x,y,4i+1) = cos(
x

T 4i/D
),

PE(x,y,4i+2) = sin(
y

T 4i/D
),

PE(x,y,4i+3) = cos(
y

T 4i/D
),

(3)

where the T is a hand-design temperature, a larger T results in a more flattened
attention map, and vice versa [24]. To make sure the max wavelength 2π · T
is always larger than the spatial dimension max(H,W ), we choose T = 16 in
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our method. D represents the channel size of the appearance feature which is
extracted by backbone B(I) ∈ R

D×H×W , i ∈ [0, 1, ..., 4/D − 1] is the channel
index, x, y is the location of pixel. The position embedding has the same size as
the appearance feature.

To decouple the appearance and position contributions to the prototype-to-
feature similarity computed as dot product between query and support, we con-
catenate the position embedding and appearance feature in channel dimension
as query feature Fs and support feature Fs for subsequent processes:

Fs = concat(B(Is), PEs),
Fq = concat(B(Iq), PEq),

(4)

where Fs, Fq ∈ R
2D×H×W , for simplicity, we denote C = 2D in the following

sections. Both the positional embedding in queries and supports are generated
based on 2D coordinates, which makes it more consistent to compare the posi-
tional similarity.

4.2 Prototype Soft Pooling

Queries in DETR series [2,16,28] can be interpreted as soft-pooling feature from
a feature map based on the query-to-feature similarity, which considers both
the appearance and position information. While the appearance similarity is
for pooling semantically support feature, the positional similarity is to provide
a positional constraint for pooling feature around the query position. Inspired
by the SSP [6], we proposed soft-pooling to gather more representative query
prototypes for alleviating the limited coverage of intra-class variations from the
support provided, with the principle that pixels belonging to the same foreground
are more similar than those from different foregrounds.

First, we use masked average pooling to collect support prototypes Ps with
support mask Ms:

P i
s =

1
‖M i

s‖1
∑

M i
s ⊗ FT

s , (5)

where the i ∈ [0, 1, ...,K] is the class index, We set K = 3 to denote the number
of classes, with each class representing a specific area: background, direct area,
and alternative area. M i

r and ‖M i
s‖1 represent the mask and the total number

of pixels, respectively, belonging to the ith class. Fs is the position-encoded
support feature, Ps ∈ R

K×C denote support prototypes specifically correspond
to the three different classes.

The cosine similarity CosSim(Ps, Fq) ∈ R
K×H×W between query feature Fq

and support prototypes Ps decides how much the query prototype should soft-
pooling from each pixel of the query feature itself, the cosine similarity can be
formulated as:

CosSim(P, F )i,j =
P i · F j

‖P i‖2 · ‖F j‖2 . (6)

We employ the cosine distance due to its enhanced stability and superior perfor-
mance compared to other distance metrics, such as squared Euclidean distance.
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Additionally, cosine distance is bounded, which facilitates ease of optimization.
The query prototype P ′

q used to classify each pixel is calculated by weighting
the soft-pooled prototype and the support prototype in the channel dimension
through a fully connected layer, the whole procedure can be formulated as:

P ′
q = MLP (concat(Ps, CosSim(Ps, Fq) ⊗ Fq)). (7)

Then, we use the generated query prototypes P ′
q ∈ R

K×C to perform self-
matching with each pixel of query feature by calculating the cosine similarity:

M ′
q = CosSim(P ′

q, Fq), (8)

where the M ′
q ∈ R

K×H×W means the probability that each pixel is classified
into K semantic classes.

4.3 Prototype Regularization

The preceding subsections outline the inference pipeline for utilizing an anno-
tated noise-free support set {Is,Ms} to predict the query mask M ′

q of query
image Iq. In order to enhance the generalization ability of the model by appro-
priately increasing the input noise, we use the query image Iq and the predicted
noise mask M ′

q to realize the robust prediction of support mask M ′
s. We call the

reverse segment pipeline as prototype regularization, which introduces noise into
solid prototype to mimic realistic prototype generation, the prototype regular-
ization can be formulated as:

P ′
s = MLP (concat(Pq, CosSim(Pq, Fs) ⊗ Fs)),

M ′
s = CosSim(P ′

s, Fs),
(9)

where the Pq is obtained by masked average pooling with query feature Iq

and predicted mask M ′
q, the Fs is the support feature obtained as described

in Sect. 4.1.
After computing the probability masks M ′

q and M ′
s of the query image and

support image through two opposite pipelines, we calculate the segmentation
loss Lseg as follows:

Lseg(M,M ′) = − 1
HW

K∑

i=1

HW∑

j=1

M(i,j) log(M ′
(i,j)), (10)

where M is the ground truth and the M ′ is the prediction. Optimizing the above
loss will derive suitable prototype for each class. The total training loss consists
of two parts of segment loss:

Ltotal = λq · Lseg(Mq,M
′
q) + λs · Lseg(Ms,M

′
s), (11)

where the λq and λs are the weights used to balance the influence of two opposite
pipelines on network parameters.
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5 Experiments

5.1 Implementation Details

The input images are resized to 320 × 640 pixels and the batchsize is set to 8.
During training, the AdamW optimizer is employed over 60 epochs with the
momentum value of 0.9, the weight decay value of 5e−4, and the initial learn-
ing rate of 1e−3. Cosine annealing scheduler is used to gradually decrease the
learning rate to 0. We did the tuning experiment and found that the perfor-
mance is best when the loss balance weights λq, λs ∈ [0, 1] are set to 0.4 and
0.6 respectively. We employ vanilla ResNet [10] with FPN [15] as the backbone.
Data augmentation contains random affine transformations (translation, rota-
tion, and scaling) and random horizontal flips. All experiments were performed
on a machine equipped with an Intel i7-10700K processor and a single RTX
2080Ti GPU.

5.2 Results

Table 2. Comparison on VDA-100 dataset. The IoUD and IoUA denotes the IoU
metric of the direct area and alternative area, respectively, and the mIoU is the mean
IoU of segmented classes.

Type Method mIoU↑ IoUD↑ IoUA↑ #Params ↓
Fully-automatic DeepLabV3+ [4] 70.0 72.4 67.5 15.4M

SegFormer [33] 69.2 70.7 67.7 7.2M

YOLOP [32] 72.3 75.6 69.0 5.53

Sparse U-PDP [25] 72.9 74.2 71.6 18.8M

TwinLiteNet+ [3] 72.6 73.8 71.3 0.44M

Semi-automatic PPNet [17] 82.4 83.0 81.8 31.5M

DGPNet [12] 80.5 82.5 78.4 20.9M

SSP [6] 82.5 85.3 79.6 8.7M

PANet [27] 83.8 87.0 80.6 14.7M

LIIR [13] 85.0 85.6 84.3 13.4M

VPNs [11] 82.6 84.2 80.9 21.1M

RANet [30] 84.0 86.5 81.5 14.5M

DASeg 88.3 90.7 85.8 0.43M

As shown in Table 2, the proposed method achieves promising performance with
an IoU score of 90.7% for direct area and 85.8% for alternative area, outperform
the previous few-shot based methods and road segmentation methods. Compar-
ing to direct area, the position of alternative area exhibits greater flexibility and
is affected by the driving environment and traffic regulations. Thus, the exper-
iments indicate that the IoUA score is approximately 5% lower than the IoUD

score.
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Table 3. Ablation studies. For simplicity, PE means position embedding, SP means
soft-pooling, PR means prototype regularization.

Method mIoU↑ IoUD↑ IoUA↑ Params↓
w/o PE 83.5 89.0 77.9 0.35

w/o SP 70.3 90.0 50.6 0.21

w/o PR 85.5 90.2 80.7 0.43

DASeg 88.3 90.7 85.8 0.43M

5.3 Ablation Study

To compare the effects of the three components on performance, we utilize the T-
SNE [19] to visualize the embedding space, and the channel dimension of image
features and prototypes are reduced from 256 to 3, as shown in Fig. 4. Comparing
Fig. 4a with Fig. 4b, the gap between red and green points in the embedded
space increases, which means that the position embedding makes the two types
of foreground features more discriminative. Comparing Fig. 4c with Fig. 4a, a
large number of green points are not included in the green sphere, which means
that the soft-pooling strategy can make the prototype of the alternative area
more representative, which is achieved by reducing the distance between the
prototype and the feature cluster in the embedding space. Comparing Fig. 4d
with Fig. 4a, the number of green points outside the green sphere increases, thus
the noise introduced by the prototype regularization procedure improves the
generalization of the proposed method.

Fig. 4. Feature visualization. The points in gray, red, and green correspond to the
pixels from the background, direct area, and alternative area, respectively. The red
and green spheres depict the prototypes of the direct area and alternative area. (Color
figure online)

To quantitatively analyze the effects of position embedding, soft-pooling,
and prototype regularization proposed in this work, we take the ResNet18 as
the baseline and conduct ablation experiments as shown in Table 3.The ablation
experiment shows that the performance of three components bring gain of 4.8%,
18%, and 2.8% on the mIoU score, respectively. Notably, the soft-pooling strategy
achieves a 35.8% gain in performance for alternative areas.
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In our observation, the lanes serve as the contours of the drivable area in
real driving scenarios. Therefore, the extracted image feature employed in lane
detection and drivable area segmentation can be shared. To verify the feasibility
of sharing the backbone between the lane detection method and the drivable
area segmentation method, we incorporate the proposed segmentation branch
with the pre-trained backbone from DIlane [5].

Table 4. Feasibility verification of the shared backbone. Comparing the perfor-
mance of using the backbone trained from scratch and pre-trained by lane detection
task.

Pre-trained mIoU↑ IoUD↑ IoUA↑ Params↓
✗ 89.1 91.2 86.9 11.77M

✓ 88.3 90.7 85.8 0.43M

The comparative experimental results are shown in Table 4, employing the
pre-trained backbone requires training only 0.43M parameters, leading to a very
slight decrease of 0.5% in IoUD score and a 1.1% decrease in IoUA score. There-
fore, the pre-trained backbone of lane detection has solid generalization for the
task of drivable area segmentation. Therefore, the proposed method can be used
as a plug-and-play branch to integrate with lane detection applications, and only
0.43M more parameters are added.

To investigate the impact of temporal distance on the results, we randomly
selected two images from the evaluation set videos as the support and query
images, respectively. The maximum number of frames in each video was 100.
To facilitate the analysis, we recorded the mIoU indicators at different distances
between the support and query images. We then standardized the mIoU values
using the formula mIoU−μmIoU

σmIoU
, where μmIoU and σmIoU are the mean and stan-

dard deviation of the mIoU, respectively. Finally, we performed curve fitting and
visualization, as shown in Fig. 5.

The performance of the proposed method only decreases slightly as the dis-
tance increases. Because of prototype regularization proposed in Sect. 4.3, noise
is introduced to enhance generalization.
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Fig. 5. Impact of the temporal distance. The horizontal axis represents the number
of frames between the support and query image in the video, and the vertical axis
represents the normalized mIoU performance.

6 Conclusion

We introduce a video-based semi-automatic drivable area segmentation method
along with VDA-100 dataset. Our method requires only one annotated image to
achieve coarse annotation for intra-video images. To alleviate the computational
burden on on-vehicle chip, our method can function as a tiny plug-and-play
branch, sharing the backbone with the lane detection method and achieving a
promising performance.
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Abstract. Motion prediction is an important aspect for Autonomous
Driving (AD) and Advance Driver Assistance Systems (ADAS). Cur-
rent state-of-the-art motion prediction methods rely on High Definition
(HD) maps for capturing the surrounding context of the ego vehicle.
Such systems lack scalability in real-world deployment as (HD) maps
are expensive to produce and update in real-time. To overcome this
issue, we propose Context Aware Scene Prediction Transformer (CASP-
Former), which can perform multi-modal motion prediction from ras-
terized BEV images. Our system can be integrated with any upstream
perception module that is capable of generating BEV images. Moreover,
Context Aware Scene Prediction Transformer (CASPFormer) directly
decodes vectorized trajectories without any post-processing. Trajecto-
ries are decoded recurrently using deformable attention, as it is compu-
tationally efficient and provides the network with the ability to focus
its attention on the important spatial locations of the BEV images. In
addition, we also address the issue of mode collapse for generating multi-
ple scene-consistent trajectories by incorporating learnable mode queries.
We evaluate our model on the nuScenes dataset and show that it reaches
state-of-the-art across multiple metrics.

Keywords: Autonomous Driving · Multi-Modal Trajectory
Prediction · Deformable Attention

1 Introduction

In recent years, AD and ADAS technologies have gained huge attention as they
can significantly improve the safety and comfort standards across the automotive
industry [20]. The current approach to these self-driving tasks is to divide them
into multiple independent sub-tasks, mainly i) perception, ii) motion prediction,
and iii) motion planning, and optimize each task individually [7]. The percep-
tion task deals with the detection and segmentation of surrounding dynamic and
static environment contexts. The dynamic context captures the motion of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15317, pp. 420–434, 2025.
https://doi.org/10.1007/978-3-031-78447-7_28
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Fig. 1. Shows an overview of the CASPFormer architecture. The backbone uses CNN
and convolution RNN to generate the scene encodings. The scene encodings have a
pyramid structure with increasing resolution from top to bottom. The deformable self-
attention module applies a multi-scale feature fusion on the scene encodings, while the
deformable cross-attention module recurrently decodes the trajectories. The output of
the previous time step is used to update the position of the reference point and the
query embeddings in deformable cross-attention.

dynamic agents in the scene e.g. pedestrians, cyclists, vehicles, traffic lights, etc.,
while the static context includes stationary elements of the scene e.g. road and
lane boundaries, pedestrian crossings, traffic signs, parked vehicles, construction
sites etc. As defined by Cui et al. [9], the motion prediction task involves pre-
dicting multi-modal future trajectories for agents in a scene. The prediction of
multiple future trajectories enables the model to account for uncertainties in the
dynamic context. In addition, to ensure safety critical operation, the predicted
trajectories must adhere to the static and dynamic contexts. Lastly, the objec-
tive of the motion planning task is to generate the control actions for the ego
vehicle to navigate it through the scene while adhering to the traffic rules and
dynamics of the vehicle.

Current state-of-the-art models [17,24,26,29,35,36] in motion prediction
require HD maps for static context with centimeter-level accuracy. Such a strict
constraint on HD maps leads to high production costs [4]. Thus, these models suf-
fer from the problem of scalability in a real-world deployment. A cost-effective
and scalable alternative is to construct BEV images from a vision perception
system deployed on the ego vehicle, as proposed by Li et al. [19] in their BEV-
Former model. To efficiently decode trajectories and learn spatial attention on
the feature maps of BEV images, we opt for the deformable attention mechanism
proposed in Deformable Detection Transformer (DETR) [37]. Furthermore, to
generate a diverse set of modes in multi-modal trajectory prediction, we incor-
porate learnable embeddings into our architecture. Contrary to previous studies
[17,31,35], which use one set of learnable embeddings, our network consists of
two sets of learnable embeddings. The first set, temporal queries, is responsi-
ble for capturing the temporal correlation in the output trajectories, and the
second set, mode queries, aims to address the issue of mode collapse. Follow-
ing the works [29,35], we recurrently decode the multi-modal trajectories. This
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allows the network to update the reference point for deformable attention and
the temporal queries through feedback loops of the recurrent decoder.

A depiction of our proposed network Context Aware Scene Prediction Trans-
former (CASPFormer) is shown in Fig. 1. Furthermore, Fig. 2 highlights the com-
ponents of the recurrent decoder. The contributions of our work are summarised
as follows:

– A novel motion prediction architecture is introduced that generates multi-
modal vectorized trajectories from BEV images.

– It incorporates two sets of learnable embeddings: temporal queries for cap-
turing the temporal correlation in the output trajectories and mode queries
for overcoming the issue of mode collapse.

– The trajectory decoding is done recurrently using deformable attention where
the feedback loops update the reference point for deformable attention and
the temporal queries.

– We evaluate our method on the nuScenes motion prediction benchmark [25]
and show that it achieves state-of-the-art performance across various metrics.

2 Related Work

In this section, we highlight the corresponding related work. Section 2.1 catego-
rized the previous studies based on how their scene representation is constructed.
Section 2.2 highlights various methods for generating multi-modal prediction.
Section 2.3 discusses several transformer-based attention mechanisms that can
be used to extract meaningful representations from BEV images.

2.1 Input Scene Representation

The scene representation in the motion prediction task can be divided into
two categories, rasterized scene representation and vectorized scene representa-
tion. The studies with rasterized scene representation [5,9,14,29] take advantage
of matured practices in Convolution Neural Networks (CNN) to extract scene
encodings. On the other hand, the vectorized representation was first introduced
by LaneGCN [20] which identified that HD maps have an underlying graph struc-
ture that can be exploited to learn long-range and efficient static scene encodings
with Graph Neural Network (GNN). VectorNet [13] later showed that not only
the static context, but also the dynamic context can also be represented in vec-
torized format. Follow-up studies [17,31,35,36] have provided several motion
prediction methods that receive both static and dynamic contexts in vectorized
form.

2.2 Multi-modal Prediction

To accommodate uncertainties in traffic scenarios, autonomous vehicles must
predict various scene-consistent trajectories adhering to the static and dynamic
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context. One approach [3,8] employs a variational auto-encoder to learn multiple
latent representations of the entire scene and then decodes these latent repre-
sentations generating multiple trajectories corresponding to each agent. How-
ever, these methods require multiple forward passes during both training and
inference and are prone to mode collapse. Other approaches [14,29] use spatial-
temporal grids to predict the future position for each agent and sample multiple
goal positions. Thereafter, scene-consistent trajectories are generated which con-
nect the proposed goal positions with the current position of the agents. These
approaches learn multi-modality inherently without a specific training strategy,
however, post-processing is required to generate trajectories from the grid. Alter-
natively, Multipath [5] utilizes fixed anchors corresponding to different modes.
It constructs multiple trajectories by generating the offsets and probability dis-
tribution corresponding to each one of these anchors. A potential limitation
of Multipath is that most of the fixed anchors are not relevant for particular
scenes. This issue is addressed in the follow-up studies [17,31,35], which learn
the anchors during the training with the help of learnable embeddings and pre-
dict a diverse set of modes.

2.3 Transformer-Based Attention in Image Domain

In recent years, transformer-based attention [32] mechanisms have achieved huge
success in the image domain. The studies [11,22,33] establish the foundation for
transformer-based encoders for image processing. Since these approaches lack
decoder networks, their application is limited only to feature extraction. DETR
[2] introduces a transformer-based encoder-decoder architecture capable of end-
to-end object detection. However, DETR suffers from two major problems: slow
convergence and low performance in detecting small objects, as its encoder is
limited to processing features with very small resolution due to its quadratic
computational complexity with the size of feature maps.

Deformable DETR [37] overcomes these problems by sparsifying the selection
of values and computing the attention solely based upon queries whilst elimi-
nating the need for keys. The decrease in computational cost allows both the
encoder and decoder to attend to every feature map in the feature pyramid gen-
erated by the backbone. Deformable DETR thus significantly reduces training
time while increasing performance in detecting small objects. Follow-up studies
[18,28] on Deformable DETR establish that a large part of its computational
cost comes from the deformable self-attention module, and therefore propose to
reduce this cost by limiting the number of queries which undergo self-attention.
We compare training time with and without deformable self-attention modules
in ablation studies because computational cost plays an important role in the
deployment of models on edge devices operating in vehicles.

3 Methods

This section will explain the methods which are utilized in our work and in
particular our contribution to the current state of the art. Section 3.1 describes



424 H. Yadav et al.

the formulation of the input and output of the network. Section 3.2 focuses on
network architecture of CASPFormer and its components. Section 3.3 illustrates
the loss formulation.

3.1 Input-Output Formulation

CASPFormer receives static and dynamic contexts of the surrounding region of
the ego vehicle and outputs multi-modal vectorized trajectories.

Static Context Input. The static context is rasterized into a grid-based input
of shape (H,W ). The feature dimension of rasterized static context contains
binary feature maps consisting of information about the drivable area, center
lines, driving lanes, road boundaries, and pedestrian crossing. The input of static
context can be depicted as follows:

Is ∈ R
H×W×|Fs|, (1)

where H is the height of the grid, W is the width of the grid, and | Fs | is the
number of input features of static context.

Dynamic Context Input. The dynamic context contains the motion informa-
tion of all the road agents for the past Ti time steps. Corresponding to each time
step Ti, a grid of shape (H,W ) is created. The motion attributes of each dynamic
agent are filled at the nearest voxel to their current position within each tem-
poral grid. These attributes include the dynamic agent’s velocity, acceleration,
location offset, height, width, and heading information. The rasterized input of
dynamic context thus can be depicted as:

Id ∈ R
Ti×H×W×|Fd|, (2)

where, | Fd | is the number of input features of dynamic context.

Output. The predicted trajectories contain the position information i.e. (x, y)
of the ego vehicle, and the output tensor can thus be represented as:

Y ∈ R
M×To×2, (3)

where, M is the number of modes, To is the number of future time steps.

3.2 Network Architecture

The overall network architecture is shown in Fig. 1. The network consists of a
backbone and a recurrent decoder. For our work, the backbone architecture is
adopted from Context Aware Scene Prediction Network (CASPNet) [29], as it
is currently state-of-the-art in the nuScenes dataset [1]. It receives static and
dynamic contexts in rasterized formats to generate multi-scale scene encodings.
It is important to note that the CASPFormer is not limited to a particular back-
bone and can be extended to other transformer or CNN based backbones. The
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Fig. 2. A depiction of the recurrent decoder network architecture. The position embed-
dings are non-learnable and help the network in learning the location of features. The
mode queries serve the purpose of producing multiple scene-consistent trajectories in
the multi-modal output. The temporal correlation in the predicted trajectories is cap-
tured with temporal queries. The position of the reference point for the deformable
attention is set to the ego vehicle position in the scene. The recurrent architecture
updates the ego vehicle position and the temporal queries at every recurrent step.

works [29,35] suggests that decoding the trajectory in a recurrent fashion results
in better prediction capabilities. Inspired by this observation, we also decode the
trajectory recurrently from the multi-scale scene encodings. A detailed schematic
of the recurrent decoder is depicted in Fig. 2.

The recurrent decoder employs deformable attention [37] to gather essential
information from the scene encodings. The deformable attention module consists
of deformable self-attention and deformable cross-attention modules. Thereby,
the scene encodings are first encoded in the deformable self-attention module,
which performs multi-scale feature fusion. The position information in the scene
encodings is captured with non-learnable sinusoidal positional embeddings [37].
The fused scene encodings are then processed by a deformable cross-attention
module, in which the attention map is learned through a linear transformation
of queries. During our initial experiments, we only introduced temporal queries
corresponding to each mode. The objective of the temporal queries was two-
fold, first, they must learn the temporal correlation across the different time
steps in the predicted trajectories, and second, they must distinguish between
different modes as illustrated in previous works [17,31,35]. However, our prelim-
inary experiments showed that this setup results in mode collapse (see the left
column of Fig. 3). We observed that although the different modes do correspond
to different speeds, they miss out on other possible scene-consistent trajectories.
To overcome this issue, we use another set of queries, called mode queries, in our
network architecture. The results show that mode queries significantly improve
the diversity of modes (see the right column of Fig. 3). Another aspect of the
original deformable cross-attention [37] is that it utilizes reference points to help
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Fig. 3. First row shows the predicted trajectories by the network without mode queries.
The second row shows the corresponding scenarios after the mode queries are incor-
porated into the network. The generalization capability of the network improves with
mode queries as the network can predict the trajectories that can follow multiple scene-
consistent paths.

the network focus its attention at a particular location in the image. We exploit
this property of deformable cross-attention and set the reference point to the
ego vehicle position based on the recurrent predicted trajectory output.

The recurrent behavior in the decoder is achieved by incorporating a feedback
loop into the deformable cross-attention module. It outputs queries correspond-
ing to individual modes, which are then transformed into multi-modal trajecto-
ries using Multi-Layer Perceptron (MLP). To capture the temporal correlation
in the predicted trajectories, the temporal queries are updated to output queries
of the previous iteration. In addition, the reference point is updated to the end
point of the predicted trajectories from the previous iteration.

The working mechanism of the deformable cross-attention module is shown
in Fig. 4. It consists of multiple iterations of deformable cross-attention layers
between queries and fused scene encodings. The mode queries are added to the
temporal queries before every deformable cross-attention layer.

3.3 Loss Formulation

We use the loss function proposed by HiVT [36]. It encourages diversity in pre-
dicted trajectories by optimizing only the best mode. The selection of the best
mode is done based on the minimum l2 between the ground truth and the pre-
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Fig. 4. An illustration of the proposed deformable cross-attention module. The offsets
in the deformable cross-attention layer are computed with the linear transformation
of the queries (as is done in original deformable attention [37]). These queries are
generated by summing up temporal queries and mode queries. Values are then sampled
from the multi-scale fused scene encodings at these offset locations and a weighted sum
of the sampled values is computed. This process is repeated N times to produce the
output queries.

dicted trajectories, averaged over all time steps. The loss function comprises of
a regression loss Lreg and a classification loss Lcls:

L = Lreg + Lcls, (4)

Regression loss optimizes negative log-likelihood with the probability density
function of the Laplace distribution, L(· | ·), as follows:

Lreg = − 1
To

To∑

t=1

log[L(Pt | μt, bt)], (5)

where μt, and bt are the position and uncertainty at each time step of the pre-
dicted best mode trajectory respectively, and Pt are the ground truth trajectory
positions. The classification loss aims to optimize only the mode probabilities
π(k) corresponding to mode k using the cross-entropy loss:

Lcls = − 1
M

M∑

k=1

log(π(k))L(PTo,k | μTo,k, bTo,k), (6)

4 Experiments

This section focuses on the experiments conducted using CASPFormer.
Section 4.1 illustrates the dataset, metrics, and other experimental setting.
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Section 4.2 provides a detailed comparison with the current state-of-the-art.
Section 4.3 explains the design context of the ablation studies and the corre-
sponding results.

4.1 Experimental Setup

Dataset. We test CASPFormer on the publicly available nuScenes dataset [1],
which contains 1000 twenty-second-long traffic scenes from Boston and Singa-
pore. The dataset consists of various traffic situations.

Metrics. We report the performance of CASPFormer using minADEk, MRk,
minFDEk, and OffRoadRate. minADEk computes the average of pointwise l2
distance in meters between the ground truth and the predicted modes and then
chooses the minimum value across all k modes. minFDEk computes the l2 dis-
tance between the ground truth and predicted modes for the last time step only,
and then selects the minimum amongst all k modes. MRk is defined as the frac-
tion of misses, where a miss occurs if the maximum pointwise l2 distance between
the ground truth and the predicted modes is more than two meters. OffRoad-
Rate measures the fraction of predicted trajectories that lie outside the driving
area.

Implementation Details. CASPFormer is trained on an Nvidia A100 GPU
with a batch size of 64 using AdamW optimizer [23]. The number of past time
steps for dynamic context is set to Ti = 3, which is equivalent to 1 s of input
trajectory as the sampling rate is 2 Hz. The number of future time steps for the
output is set to To = 12, which is equivalent to 6 s of prediction. The number
of modes is set to M = 5. These hyperparameters are adopted from nuScenes
motion prediction challenge [25].

The static and dynamic contexts cover a region of size 152 m × 96 m with
a resolution of 1 m, leading to the input grid sizes of (152, 96). The ego vehicle
is placed at (122, 48) pointing upward in this grid. We perform data augmenta-
tion on the rasterized inputs during training. The inputs are randomly rotated in
between [−60◦, 60◦], and randomly translated in between [−3, 3] with a probabil-
ity of 0.75. The value of repetitions of deformable attention layers N , as depicted
in Fig. 4, is set to four. The number of feature levels in the feature pyramid is
also set to four, and the hidden dimension of all feature maps is set to 64. The
network hyperparameters have been tuned to achieve the best performance of
the network on nuScenes motion prediction challenge [25].

4.2 Results

We compare our work against the state-of-the-art on the nuScenes Motion Pre-
diction Challenge [25] in Table 1. CASPFormer achieves the best performance in
minADE5, MR5, and OffRoadRate. It should be noted that we have not included
the work by Yao et al. [34] in our comparison, as their model Goal-LBP performs
significantly worse on minFDE1 (9.20) and OffRoadRate (0.07) in comparison to
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Table 1. Comparison with state-of-the-art on the nuScenes prediction test split.

Method minADE5↓ MR5↓ minFDE1↓ OffRoadRate↓
GOHOME [15] 1.42 0.57 6.99 0.04

Autobot [17] 1.37 0.62 8.19 0.02

THOMAS [16] 1.33 0.55 6.71 0.03

PGP [10] 1.27 0.52 7.17 0.03

MacFormer [12] 1.21 0.57 7.50 0.02

LAFormer [21] 1.19 0.48 6.95 0.02

FRM [27] 1.18 0.48 6.59 0.02

Q-EANet v2 [6] 1.18 0.48 6.77 0.03

CASPNet++ [30] 1.16 0.50 6.18 0.01

CASPFormer (ours) 1.15 0.48 6.70 0.01

all other methods mentioned in Table 1. Moreover, this study is published after
the conclusion of our work and therefore its methods could not have been ver-
ified and considered in our approach. Furthermore, we would also like to point
out that the primary goal of CASPFormer is to remove the post-processing
pipeline in CASPNet++ [30] and directly generate the vectorized trajectories
for downstream planning task. However, it can be noticed that minFDE1 in
CASPFormer worsens in comparison to CASPNet++ and we hypothesised that
this phenomenon happens due to a change in the direction of trajectory gen-
eration. CASPNet++ first generates the goal position of the agent and then
generates a trajectory to connect the goal position with the current position of
that agent. In contrast CASPFormer generates the trajectory from the current
position towards the goal position of the agent, such a setup would lead to an
accumulation of errors from previous time steps in estimating the goal position,
and thus a comparatively worse minFDE1.

Our qualitative results are illustrated in Fig. 5, which shows that CASP-
Former can predict multiple modes consistent with the scene. In addition, we
discover that each mode corresponds to a different driving speed of the ego vehi-
cle. A potential limitation is that in some cases the trajectories are not well
aligned with the lanes and we aim to tackle this in our future work.

4.3 Ablation Studies

We perform ablation studies on the nuScenes prediction validation split. The
results of our ablation study are shown in Table 2. Where experiment #1 repre-
sents the baseline network architecture, which includes all modules, as presented
in Fig. 2. In the following, we discuss the experimental setting of all the ablation
studies and their results:

Importance of Mode Queries. To show the significance of mode queries, we
conduct an experiment, in which the mode queries are not provided as input
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Fig. 5. Qualitative results on nuScenes prediction validation split. The blue region
represents the drivable area and the green overlays portray the driving lanes. The
pedestrian crossing is shown in red color. The current position of the ego vehicle is
indicated with the black dot at the end of the input trajectory. The network can
predict multiple scene-consistent trajectories in diverse scenarios such as intersections
and crossings. (Color figure online)

to deformable cross-attention module, as presented in Fig. 2. The results of this
experiment illustrate that the network performs worse on all metrics especially
on minADE5 when the mode queries are not provided in comparision to when
they are (see experiments #1 and #2 in Table 2). The corresponding qualitative
results of the experiment #2 are illustrated in Fig. 3, which indicate that even
though the modes retain the property of capturing various speeds of the ego
vehicle, they follow the same path and miss out on other possible paths, thus
leading to mode collapse. Therefore, we deduce that the introduction of mode
queries helps avoid mode collapse in CASPFormer.

Effect of Deformable Self-Attention. The studies [18,28] point out that a
significant computational cost in deformable attention comes from its deformable
self-attention module. In our experiments, we also discover that if the deformable
self-attention module is removed, the training time reduces by 60.3%, while
minADE5, MR5 and minFDE1 increase by 11.5%, 15.2% and 7.6% respectively
(see experiments #1 and #3 in Table 2). This can be a reasonable trade-off
depending on the constraints for the motion prediction module. When removing
the deformable self-attention module, we sum up the positional embeddings and
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Table 2. Ablation Study on nuScenes Prediction Validation Split

# Mode
Embeddings

Deformable
Self Attention

Recurrent
Architecture

Ego Vehicle
Position

minADE5↓ MR5↓ minFDE1↓

1. � � � � 1.13 0.46 6.43

2. - � � � 1.72 0.60 6.60

3. � - � � 1.26 0.53 6.92

4. � � - � 1.21 0.48 6.63

5. � � � - 1.15 0.48 6.51

scene encodings along the channel dimension and provide it directly as input
into the deformable cross-attention module.

Importance of Recurrent Architecture. We also test whether the recurrent
feedback loops help the network in performing better across the various metrics.
Thus we remove both feedback loops from our baseline network (as shown in
Fig. 2) and decode the complete 6 s trajectories in a single forward pass. The
results of this experiment show that the performance of the network decreases
across all the metrics when the feedback loops are not present in the network (see
experiments #1 and #4 in Table 2). This confirms the findings of the works [29,
35] that the recurrent architecture improves multimodal trajectory prediction.

Importance of Providing Ego Vehicle Position. The results of our experi-
ments show that setting the reference point to the ego vehicle position does not
improve the network performance by any significant degree (see experiments #1
and #5 in Table 2), where in the experiment #5, the reference points are directly
learned via linear transformation of mode embeddings as is the case with the
original deformable attention [37]. Nevertheless, we speculate that setting the
reference point to the position of the agent in the scene can play an important
role in multi-agent joint motion prediction, and leave a detailed study of this for
future work.

5 Conclusion

In this study, a novel network architecture, CASPFormer, is proposed which per-
forms multi-modal trajectory prediction from BEV images of the surrounding
scene. CASPFormer employs a deformable attention mechanism to decode tra-
jectories recurrently. Moreover, our work illustrates a mechanism to incorporate
mode queries, which prevents the mode collapse and enables the network to gen-
erate scene-consistent multi-modal trajectories. We also identify that excluding
the deformable self-attention module leads to a significant decrease in compu-
tational cost, without much effect on the network performance. Thus, in our
future work, we aim to remove or modify the deformable self-attention module.
Moreover, our future work would involve further study of the effect of vectorized



432 H. Yadav et al.

dynamic context and the impact of reference points in multi-agent joint motion
prediction.
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Abstract. Leveraging rich information is crucial for dense prediction
tasks. Light field (LF) cameras are instrumental in this regard, as they
allow data to be sampled from various perspectives. This capability pro-
vides valuable spatial, depth, and angular information, enhancing scene-
parsing tasks. However, we have identified two overlooked issues for the
LF salient object detection (SOD) task. (1): Previous approaches pre-
dominantly employ a customized two-stream design to discover the spa-
tial and depth features within light field images. The network struggles
to learn the implicit angular information between different images due
to a lack of intra-network data connectivity. (2): Little research has been
directed towards the data augmentation strategy for LF SOD. Research
on inter-network data connectivity is scant. In this study, we propose an
efficient paradigm (LF Tracy) to address those issues. This comprises a
single-pipeline encoder paired with a highly efficient information aggre-
gation (IA) module (∼8M parameters) to establish an intra-network con-
nection. Then, a simple yet effective data augmentation strategy called
MixLD is designed to bridge the inter-network connections. Owing to
this innovative paradigm, our model surpasses the existing state-of-the-
art method through extensive experiments. Especially, LF Tracy demon-
strates a 23% improvement over previous results on the latest large-scale
PKU dataset. The source code is publicly available at: https://github.
com/FeiBryantkit/LF-Tracy.

Keywords: Light field camera · Salient object detection · Neural
network · Scene parsing

1 Introduction

The objective of SOD lies in mimicking human visual attention mechanisms
to accurately identify the most conspicuous objects or regions in a variety of
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visual contexts. In particular, SOD plays a dual role: it not only aids agents
in discerning the most striking and important elements in visual scenarios but
also plays a pivotal role in several downstream tasks, including object detection,
segmentation, and other dense prediction tasks [2,29].
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Fig. 1. Paradigms of LFSOD model.
The conventional two-stream methods
(a) and our single-pipeline method (b).

Within the SOD community, the cur-
rent 2D-based methods [6,23] rely on
the powerful feature extraction capabil-
ities of Convolutional Neural Networks
and Transformers, coupled with finely
crafted decoders, to achieve impressive
results. Meanwhile, a rich array of 3D
methods [3,27] have been introduced by
utilizing depth or thermal information to
boost the result. Given that information
from various domains aids neural net-

works in more effectively learning scene features, LF cameras have been intro-
duced [18]. LF camera is capable of capturing spatial, depth, and angular infor-
mation. However, two significant challenges are neglected.

One: Lacking Intra-network Data Connectivity. The existing datasets for LF
cameras consist of post-processed All-Focused (AF) images and Focal Stacks
(FS) [17,22,38,41]. AF images are full of texture information. FS images refer
to images that include angular and depth information. The asymmetric data
construction enriches the geometric information captured by LF cameras.

Fig. 2. Search space is visu-
alized utilizing TSNE. “DAF”
and “DFS” represent the fea-
ture maps of AF and FS in
the dual pipeline method, while
“SAF” and “SFS” represent
the feature maps of AF and FS
in the single pipeline method.

However, the implicit angular details cannot
be directly utilized; they can only be obtained
by exploring the latent relationships between
images. While effectively utilizing depth and spa-
tial information enhances the network’s ability
to understand scenes, the current two-stream
approach (Fig. 1(a)) neglects essential linkages
among various images and disregards the angular
information flow throughout the network, result-
ing in smaller searching space. As illustrated in
Fig. 2, the high-dimensional data visualization
(i.e., TSNE) is conducted to demonstrate the
search space of features. The search space of SFS
(single-pipeline, focal stack) and SAF (single-
pipeline, all-focused image) is significantly larger
than that of the two-stream method.

Furthermore, in using a single-pipeline encoder, while different images can
guide the network to learn angular features, merging the unfocused segments in
AF image with all-focused data in FS images results in feature contamination
within the feature space, significantly undermining the network’s discriminative
capabilities. Hence, one of the key points of our work is “how to leverage
angular information while circumventing the alignment issues brought
about by varying shooting viewpoints?”.
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Fig. 3. A statistical result for the MixLD
strategy. (d) indicates the AF image, and
(a) and (b) illustrate the pixel distribution
of the AF image and the FS image, respec-
tively. (c) represents the central image
after MixLD. (e) and (f) show the dif-
ference maps between the AF informa-
tion and the original FS image, before and
after MixLD. In (a), (b), and (c), the hori-
zontal and vertical axes represent the pixel
values and the number of pixels at those
values, respectively. For (e) and (f), they
represent the pixel value differences and
the number of pixels at those difference
values, respectively.

Two: Lacking Inter-network Data Con-
nectivity. Although researchers in the
LF community enhance the under-
standing of scenes by introducing
depth information (Focal Stack), exist-
ing works still adhere to the conven-
tional RGB-D fusion structures [4,5],
employing common data augmentation
(DA) strategies. Those methods isolat-
edly excavate the angular features and
bury the relationship between differ-
ent LF representations since there is
no data interaction before the train-
ing process [33]. Therefore, another
key point of our work is “develop-
ing a novel DA strategy specifi-
cally for the LFSOD task to bridge
a connection between various LF
data sources before the training
process”. Figure 3 indicates a statis-
tical result through the MixLD strat-
egy. Before applying data augmenta-
tion, although a certain degree of data
similarity between AF and FS can be
observed from figures Fig. 3(a) and Fig. 3(b), there are still considerable differ-
ences in data within the range of [0, 100] pixels. However, after DA, by analyzing
the distribution of the phase spectrum (Fig. 3(c)) and calculating its similarity
with the central figure in the frequency domain (Fig. 3(f)), it can be seen that
information has been aggregated.

In this work, we propose a novel paradigm (LF Tracy) to overcome the afore-
mentioned challenges. Firstly, a single-pipeline framework in Fig. 1(b) is estab-
lished to achieve the intra-network data connectivity. By learning different LF
representations from a comprehensive perspective through a single backbone, our
network can fully utilize the information from LF images rather than conduct-
ing separate feature extraction for LF representations. Furthermore, a simple
yet IA model is performed within LF Tracy to effectively align and fuse the cou-
pled features through the same backbone. Moreover, a simple data augmentation
strategy called MixLD is introduced to establish inter-network data connectivity.

To demonstrate the efficiency of the proposed LF Tracy paradigm, compre-
hensive experiments are conducted on the large-scale PKU dataset [17], which
comprises samples from both terrestrial and aquatic environments, and the
LFSOD datasets [22,38,41]. By employing this paradigm (MixLD+Backbone+
IA), our network achieved the state-of-the-art performance compared with pre-
vious works. Specifically, on the PKU dataset, our work achieved a 23% improve-
ment in accuracy, fully validating the effectiveness of our network.
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At a glance, we deliver the following contributions:

– We propose a single-stream SOD paradigm from scratch, bridging the inter-
network and intra-network data connectivity.

– We have designed a low-parameter Information Aggregation (IA) Module that
uncovers angular information while avoiding feature aliasing. Furthermore, we
introduce a data augmentation strategy, namely MixLD, to establish inter-
network data connectivity.

– An in-depth analysis is conducted to evaluate the performance of the single
stream network under different hyper-parameters and module combinations.

– Our method achieves top performance on three LF datasets and one large-
scale PKU dataset, which comprises over 10K images.

2 Related Work

Discovering and connecting the spatial, depth, and angular information of LF is
essential for designing an efficient SOD neural network. Therefore, we will dis-
cuss the utilization of light field information from two aspects: Intra-network
Data Connectivity in Sect. 2.1 and Inter-network Data Connectivity
in Sect. 2.2. Lastly, preliminaries related to LF imaging are introduced in the
appendix.

2.1 Intra-network Data Connectivity

The SOD task can be traced back to rule-based methodologies, which predomi-
nantly relied on visual attributes such as color, contrast, and spatial distribution
to ascertain salient areas in images. In recent years, there has been a paradigm
shift in the SOD community towards leveraging deep learning paradigms. Specif-
ically, MENet [31] introduced iterative refinement and frequency decomposition
mechanisms to improve detection accuracy. By utilizing transformer and multi-
scale refinement architecture, Wang et al . [9] used high- and low-resolution
images to achieve SOD. Furthermore, Zhang et al . [7] implemented SOD for
panoramic images. Apart from those single-modality SOD networks, depth infor-
mation is introduced to enhance performance, whereas multi-model fusion strate-
gies [3,8] are employed for RGB and thermal data.

For the SOD task of LF, Wang et al . [28] implemented a dual-pipeline neural
network in the SOD community. Since then, the two-stream approach [21] for
processing LF images has stood in a leading position in this field. Typically, this
involves employing one backbone for processing AF images and another for FS
images or the depth image extracted from LF sub-aperture images. Although the
two-stream approach has seen considerable advancement in various tasks [36],
it is typically applied to modalities that are isolated, such as depth and RGB
images. For light field cameras, the depth, angular, and spatial information are
embedded across different representations, i.e., AF images and FS images. Pro-
cessing these images in an isolated manner buries the angular features of light
field cameras, and thus remains a sub-optimal method [33].
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2.2 Inter-network Data Connectivity

Data augmentation (DA) has been thoroughly explored in various vision tasks
such as image recognition, image classification, and semantic segmentation, prov-
ing effective in enhancing network performance and mitigating the issue of over-
fitting. The traditional data augmentation strategies can be roughly divided into
five categories based on the adjusted purpose. 1) Flipping the image along its
vertical and horizontal axis is a typical technique for increasing the diversity of
data available for training. Furthermore, rotating an image at a certain angle is
also a contributing factor. 2) Color jitter simulates images under different light-
ing and camera settings, enabling the trained model to better adapt to various
scenarios. 3) Cutout [10] is introduced to drought or mismatch part of pixel-level
information between neighboring pixels to increase the discrimination capabil-
ity of the network. 4) Beyond deep learning, several works [11,35] introduced
machine learning-based strategies to boost the network capability. 5) Mixing-
based methods [15,33] leverage information from multiple images by generating
blended input images.

Those methods demonstrate noticeable performance for the single image in
the augmentation community. However, for light field cameras, the subtle angu-
lar information hidden within the interplay of multiple images cannot be cap-
tured through DA applied to individual images alone. Thus, establishing data
connectivity across networks becomes crucial.

3 Methodology

This section introduces a comprehensive overview of our proposed paradigm,
designed for the LFSOD task. Firstly, the framework’s architecture is meticu-
lously expounded in Sect. 3.1. Additionally, in Sect. 3.2, we introduce a simple yet
fusion module, which is pivotal for efficiently aggregating Light Field features.
Last but not least, Sect. 3.3 delves into our innovative DA Strategy.

3.1 Proposed LF Tracy Framework

As shown in Fig. 4, the proposed network has two components: a four-stage
encoder providing rich multi-dimensional information from different asymmet-
ric data and the IA Module. The IA Module serves a dual purpose: 1) It over-
comes the mismatching between the features established in-network connectivity
through the same encoder block. 2) It can realign these features before sending
them to the prediction head. The AFttention image Im

AF and FSttention stack
Im
FS are described separately to provide a more intuitive description of the infor-

mation flow and interaction process. The AFttention image and FSttention stack
indicate the data source after MixLD. Furthermore, for simplicity, the follow-
ing description is based on the stage one, which is the same for the other three
stages. Especially, by applying the encoder block, the images are transferred into
AF features (FAF ∈R(64×64×64)) and FS features (Fn

FS∈R(64×64×64)|n ∈ [1, 12]).
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Fig. 4. Pipeline of LF Tracy network. FS and AS images are fed into the backbone for
feature extraction. Multi-level features are then fed into the IA module (Sect. 3.3) for
in-network data fusion and to predict the final result image.

After applying the IA Module, the 13 features are aggregated into one feature
(f1∈R(64×64×64)), which contains all spatial, angular, and depth information.
After four stages, there is a set of feature maps {fl|l ∈ [1, 4]} with channel
dimension {64, 128, 320, 512}. Only f1 is described in detail here, as the pro-
cesses for the other dimensions are identical. Furthermore, at the training stage,
to cooperate with the structure loss [12] calculation, fl is also passed through
one convolutional layer to compress channel information, as in Eq. (1).

fM1 = Conv(64, 1)(fl), (1)

where Conv(64, 1)(·) indicates the convolutional layer with input channel 64 and
output channel one. fM1 denotes the feature after merging at the first stage. Fur-
thermore, drawing upon the structure loss as outlined in [32], we have integrated
the Tversky Loss [26] into our training process to improve supervision during
training, specifically targeting a reduction in false positives and negatives.

3.2 Information Aggregation: IA Module

To fuse the implicit angular, explicit spatial, and depth information from asym-
metric data, we introduce a simple IA Module that follows a two-step interaction
process. Firstly, given single feature (Fn

FS |n ∈ [1, 12]), the FS-guided Querry
and Key are generated through their respective convolutional layer. Through
matrix multiplication, the attention map (M∈R(4096×4096)) is obtained. The
attention map integrates a broader context into the aggregation of local fea-
tures and enhances the representative capability of the focus part. Furthermore,
applying the third convolutional layer to FAF , the AF image guided Value
(VAF ∈R4096×64) is generated, as in Eq. (2)–(5). Given that the SOD task is
sensitive to hyper-parameters and module design, we adopt a dimension reduc-
tion method for Query and Key. For more details on dimension reduction, please
refer to Sect. 5.2.
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Q = Convq(Cin, C∗
out)(F

n
FS), (2)

K = Convk(Cin, C∗
out)(F

n
FS), (3)

M = Soft{Mul(Q,K)}, (4)
V = Convv(Cin, Cout)(FAF ). (5)

The tokens (T∈R4096×64), which contains information from certain focal images,
is obtained by multiplication of attention map and Value, as in Eq. (6).

T = Mul(M,V ). (6)

After obtaining the tokens, the A-FS features F̂n
FS are generated by applying the

reshape operation. Note that the number of images has remained unchanged until
now. This operation aims to enhance the spatial information at the corresponding
depth by guiding the information from the FS image and, with the help of
AF features, establish a connection between the global AF and FS information.
Secondly, we introduce a set of leanable parameters to calculate the contribution
of different FS features. To further enhance the spatial context information, a
submission is undertaken, and the final result f1 is obtained as in Eq. (7).

f1 = AF +
12∑

i=1

σ × F̂n
FS . (7)

Given multi-scale features {f1, f2, f3, f4}, interpolation and concatenation
are conducted. Finally, by applying the convolutional layer following an interpo-
lation, the mask f is compressed and sent to the prediction head.

3.3 Data Augmentation Strategy: MixLD

As depicted in Fig. 5, the primary objective of the specific data augmentation
strategy for the LFSOD task is to amalgamate distinct representations inherent
in light field camera, namely, AF image (IAF ), FS (In

FS |n ∈ [1, 12]), and implicit
angular information. This strategy is methodically partitioned into two discrete
phases, each targeting specific aspects of the integration process. Initially, a non-
intrusive approach is employed to integrate angular and depth information into
the composite AF image while preserving the integrity of spatial data dimen-
sions. Specifically, the data augmentation strategy can be described as following
steps:

Firstly: (FS2AF). Following the FS setting [25], one FS slice In
FS with dimen-

sion {3×256×256} is randomly selected with a likelihood of 0.1. This FS image
is then subjected to a pixel-level fusion process, meticulously blending it into
the AF image representation, as shown in Eq. (8).

Im
AF = {α × IAF + (1 − α){Rand(In

FS)}, (8)



442 F. Teng et al.

Focal Stack AF Image

Random 
Selection

FSttention Stack

AFttention 
Image Step a

Step b

Fig. 5. Schematic illustration of our
proposed MixLD strategy tailored for
LFSOD. The strategy contains two
independent steps (a and b), each of
which is carried out randomly.

where α denotes the degree of blending and
n indicates the quantities of focal images.
Im
AF indicates the AF image after blend-

ing, i.e., AFttention image. In MixLD, α =
1 indicates no blending and α = 0 indi-
cates that the AF Image is completely
replaced. Only the AF image is altered dur-
ing this process, while the FS images remain
unchanged. Meanwhile, this procedure is
not conducted for each interaction.

Secondly: (AF2FS). The AFttention
image is integrated into all the FS images
with a probability of 0.5, as in Eq. (9).

Im
Fn

= {β × Im
AF + (1 − β) × In

FS}, (9)

where β denotes also a super parameter for the degree of blending in stage two
and n denotes the quantities of focal images. Im

Fn
indicates the FS after blending

i.e., FSttention stack. This integration carried out with a fusion probability of
0.5 instead of 0.1, aims to make it more possible to enrich the FS with additional
information. By blending the AF image into the FS images, each focal image
retains its inherent depth information, gains implicit angular insights from the
other focal image, and enhances its spatial geometric information from the AF
image. Furthermore, the AFttention image Im

AF and FSttention stack (Im
Fn

|n ∈
[1, 12]) are fed into the network. It is important to emphasize that both phases
(FS2AF and AF2FS) of MixLD are conducted randomly. It is possible for data
interaction to occur in only one phase, while the other remains non-interactive.

It is precisely through this form of blending that the neural network while
learning the inherent AF and FS information, can break out of the conventional
framework to learn implicit angular information. For detailed algorithms, please
refer to the pseudocode presented in the Appendix.

4 Experiments

To effectively demonstrate the efficacy of the approach, we showcase the quan-
titative result and qualitative results on different datasets. Firstly, we introduce
the experimental setup in Sect. 4.1. Secondly, in Sect. 4.2, we present a quantita-
tive comparison with other methods. Thirdly, in Sect. 4.3, we showcase the visual
results of the method, along with a visual comparison with previous approaches.

4.1 Implementation Details

Datasets: The experiments are conducted following the benchmark proposed
by the PKU team [17]. The datasets involve traditional LFSOD datasets, which
include LFSD [22], DUT-LF [41], HFUT [38] and a large-scale PKU dataset [17].
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Table 1. Quantitative comparison with other methods in terms of MAE. The best
result is highlighted in red. “Gain” indicates the improvement in our results compared
to previous state-of-the-art methods. STSA1, STSA2, and STSA3 represent the out-
comes of the PKU Team [17] using different quantities of data for training. Although
STSA3 uses DUFT+HFUT+PKU-LF as a training set and outperforms other meth-
ods, our method still surpasses the STSA3 network without expanding Training data.
“Gain” denotes unavailable results.

Split NTU-60 Split NTU-120

Methods
LFNet SSF D3Net ATSA UCNet ESCNet JLDCF MEANetGFRNet STSA1 STSA2 STSA3 Ours Gain

[40] [42] [13] [39] [37] [43] [16] [20] [34] [17]
TIP20 CVPR20 TNNLS21 ECCV21TPAMI22 TIP22 TPAMI22 Neuc22 ICME23 TPAMI23

LFSD .092 .067 .095 .068 .072 n.a. .070 .077 .065 .067 .065 .062 .046 26%↑
HFUT .096 .100 .091 .084 .090 .090 .075 .072 .072 .067 .072 .057 .056 2%↑
DUT-LF .055 .050 .083 .041 .081 .061 .058 .031 .026 .033 .030 .027 .023 12%↑
PKU-LF n.a. .062 .067 .045 .070 n.a. .049 n.a. n.a. .047 .042 .035 .027 23%↑

The images within the PKU dataset are sourced from terrestrial and aquatic
environments. Two experiment strategies are conducted: I) training on DUT-
LF + HFUT, ∼1000 images, and evaluation on the whole LFSD dataset, the
DUT-LF testing dataset, and HFUT testing dataset; II) training and testing on
the PKU-LF dataset. PKU-LF dataset contains more than 10K images. For the
ablation study, the experiments are based on experiment strategy one.

Setting Details: The image size for all the datasets is 256 × 256. Each scene is
structured to contain exactly 12 focal slices to meet specific coding requirements.
This is achieved by strategically duplicating focal slices in the original order.
Data augmentation is applied with Flipping, Cropping, Rotating, and MixLD
for the training process. The blending parameter α, β are set into 0.5 and 0.5,
respectively. The AdamW optimizer with a learning rate of 5e−5 and weight
decay of 1e−4 is adapted for training. All the experiments are conducted on one
A6000 GPU with a batch size of 6. The training epochs are limited to 300.

Evaluation Metrics: To analyze the results of different methods, we employ mean
absolute error (MAE) [24] for a fair comparison. For F-measure (Fmean

β ) [1], E-
measure (Sman

β ) [12], S-measure (Sα), we compare them with the previously best
methods.

4.2 Quantitative Results

To verify the efficiency of the approach, we compare the designed network
with existing methods. Table 1 shows that the best performance of the pro-
posed approach significantly outperforms existing methods across the LFSD
series dataset [22,38,41] and PKU dataset [17] on MAE. Due to the variabil-
ity in performance across different evaluation metrics and datasets, we follow
the benchmark provided by the PKU team [17].
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Table 2. Quantitative comparison with
other methods on different datasets in
terms of F mean

β , Emean
β , and Sα. We con-

duct an unequal comparison by selecting
the highest scores from previous works,
i.e., “PreV” and comparing them with
our results.

Dataset Metrics PreV Our Gain
LFSD [22] Fmean

β .862 [4] .896 3.9%↑
Emean

β .902 [17] .912 1.1%↑
Sα .864 [14] .902 4.4%↑

HFUT [38] Fmean
β .771 [17] .769 0.3%↓

Emean
β .864 [17] .865 0.1%↑
Sα .810 [17] .833 0.1%↑

DUT-LF [41] Fmean
β .906 [17] .936 3.3%↑

Emean
β .954[17] .957 0.3%↑
Sα .911[17] .938 3.0%↑

The proposed method significantly
surpasses this integrated benchmark.
The network’s performance is most
effectively proved, particularly with
the large-scale and richly varied PKU
dataset. By establishing the pre-
network connectivity and the in-
network connectivity of LF data,
the network reconnects the intrinsic
relationships between different light
field camera images, achieving a 23%
improvement in MAE compared with
STSA3. It should be noted that
the training dataset of STSA3 is
an extension dataset (DUT-LF +
HFUT + PKU-LF). We used the
PKU-LF dataset, and the net-
work performance still exceeded
by 23%. In Table 2, we perform a com-
parison in terms of other evaluation cri-
teria following PKU team [17]. While other networks may perform well in certain
respects, LF Tracy still surpasses previous methods on a majority of metrics.
This fully demonstrates the network’s superior comprehensive perception capa-
bilities without being data-dependent.

4.3 Qualitative Results

It can be seen from Fig. 6 that the LF Tracy achieves outstanding accuracy across
different scenarios by establishing intra-network and inter-network connectivity.
Whether dealing with a single scene or complex scenarios, the network deliv-
ers excellent visualization results. Especially, for transparent backboards under
varying lighting conditions, the network identifies the object through efficient
information processing. Meanwhile, thin structures have always been a challeng-
ing issue in SOD tasks, yet the network has successfully identified both the necks
of animals and the slender support poles of basketball hoops. Furthermore, the
visual comparison results demonstrate the method’s superiority, as in Fig. 7. The
proposed network accurately identifies the locations of objects, and notably, it
precisely identifies challenging boundaries and lines. For the images in the middle
row, the area with two pedestrians walking side by side is particularly challenging
to discern. The varied colors and textures of their clothing present a significant
challenge to the network. While other methods show numerous errors in this
region, the proposed network achieves accurate identification.
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DUT-LF
99.2% 99.5%

HFUT
99.5%
LFSD

98.7%
PKU-LF

99.2% 98.0% 99.1%

Fig. 6. Qualitative Result on four
datasets. From top to bottom, the
ground truth, AF image feature maps,
decoder maps, and predicted masks are
illustrated.

Image GT Ours ATSA JLDCF LFNet SSF UCNet

DUT-LF

  LFSD

HUFT

Fig. 7. Qualitative Comparison on three
datasets. The difference maps between the
visual results of various methods and the
ground truth are displayed. Red pixels
indicate pixels where the predicted results
do not align with the ground truth. (Color
figure online)

5 Ablation Studies

In this section, several ablation studies are conducted to showcase the process of
designing the network from scratch. Firstly, in Sect. 5.1, the experiments are car-
ried out to comprehensively examine the effects of various components incorpo-
rated in the methods. Section 5.2 showcases an in-depth analysis for the IA Mod-
ule and FS Stack. Section 5.3 investigates the performance of different backbones
for the SOD task. Section 5.4 demonstrated the in-depth analysis for MixLD.

5.1 Ablation Study for the Approach

In the experimental analysis, as shown in Table. 3, we ablated components of
the approach to assess their contributions. The optimal performance achieved
an MAE of 0.046. Firstly, eliminating the data augmentation strategy MixLD
resulted in a performance decrease, and adapting CutMib [33] has few contri-
butions to the performance. This indicates the necessity of MixLD to connect
the different data before sending them into the network. After that, we ablate
the core component of the network, the IA module, and the multi-scale features
are directly fused. The MAE dramatically increased. The observed significant
disparity of 0.286 highlights the effectiveness of the IA module. This module is
integral for effectively realigning and managing the data imbalance across diverse
sources. In particular, it is pivotal in reducing data mismatching between LF and
AF images, facilitating more effective data integration, and improving accuracy
with one stream encoder. Finally, without FS, the result is further reduced.
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Table 3. The ablation study for LF Tracy.

ModelOur w/o. MixLD w. CutMib w/o. IA w/o. LF

MAE .046 .052 .051 .332 .057

Parameters Analysis: The total Parameters of the designed LF Tray are 30M .
After removing the first stage in the IA module, the parameters decrease to 27M .
Furthermore, removing the entire IA module, the parameters fall into 24M . With
only 6M parameters, the network is capable of intra-network data connections
and efficient feature fusion. GFlops and FPS: When processing 12 FS images,
i.e., handling a total of 13 light field images in a single training flow, the GFLOPs
and FPS are 104.13 and 4.28, respectively. Without the IA module, these values
are 84.8 GFLOPs and 4.73 FPS.

5.2 In-Depth Analysis for the IA Module and FS Stack

To demonstrate the contribution of the FS stack and the alignment and fusion
capabilities of the IA module for asymmetric data, the ablation studies are con-
ducted from three different aspects.

Table 4. An ablation study for the
IA Module is conducted to evaluate
its capabilities in terms of feature
fusion and alignment.

Stack Size 2 3 5 12

w/o. IA .137 .141 .205 .332
w. IA .051 .051 .049 .046

➀ Focal Stack Images: We compared the
discrimination ability of the network with
and without the IA module, using 2, 3, 5,
and 12 FS images, respectively. As indi-
cated in Table 4, without the IA module,
continuously stacking FS images does not
enhance the network’s capability; rather, it
negatively impacts the network. With the
addition of the IA module, the focused range
and implicit angular information in the FS
are utilized, increasing the network’s discrimination ability.

➁ Fusion strategy in IA module: In Table 5, four different fusion strate-
gies are compared. Firstly, we introduced an attention-based feature interac-
tion process, accompanied by a set of learnable parameters, to achieve the
fusion of information from different data sources. Then, we replaced this pro-
cess with deformable cross attention [44]. Subsequently, we directly add the
features point by point. Finally, we utilized cross-attention for feature interac-
tion, directly adding the interacted feature maps. Although the point-by-point
addition method has achieved significant results in semantic segmentation tasks,
it does not work effectively for SOD tasks. Likewise, the method of deformable
cross attention also did not surpass the method we proposed.
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Table 5. The exploration of different
fusion strategies: A&PD represents atten-
tion and dot product (with learnable
parameters), DA represents deformable
cross attention, ADD represents addition,
and A&D represents attention and addi-
tion.

Strategy A&PD DA ADD A&D

MAE .046 .056 .332 .048

Table 6. In the first step of the IA
Module, the reduction rate for the
dimensions of Query and Key is eval-
uated. We perform channel compres-
sion at different scales. The MAE
and GFlops are reported. ‘R&Rate’
indicates Reduction Rate.

R&Rate 1 1/4 1/8 1/16

MAE .050 .049 .046 .050

➂ Reduction Rate: Last but not least, a set of experiments are conducted to
deeply access the better hyper-parameters within IA module. Inspired by [19],
the dimensions of the Query and Key are compressed in the IA module. Four
different reduction rates are chosen. As shown in Table 6, over-reducing or under-
reducing the channel can lead to performance degradation. The best option is
to reduce the query and key dimensions to 1/8 of the original size.

5.3 Selection of Various Backbones

Table 7. An ablation study for the
selection of encoder backbone is con-
ducted. B0, B1, B2, B4 indicate the
backbone scales.

Backbone B0 B1 B2 B4

PVTv2 [30] .120 .097 .072 .087
AgentPVT [19] .153 .137 .142 .145

We conducted a series of experiments
based on traditional datasets to assess the
optimal feature extraction backbone. The
PVTv2 [30] and the agent attention [19]
are selected. To prevent pre-trained weights
from causing an unfair comparison in the
selection of backbones, we conducted exper-
iments for 100 epochs without pre-trained
weights. Table 7 shows that the agent atten-
tion is ineffective for the dataset, and the performance on the LFSOD dataset
does not improve with the increase in the number of parameters. Due to this
reason, we have chosen PVTv2 as the backbone.

5.4 In-Depth Analysis for MixLD

Interaction Probability Between Texture and Depth Information: In
determining the optimal combination for incorporating depth information into
AF images (FS2AF) and augmenting each FS image with texture information
(AF2FS). Several experiments are designed with occurrence probabilities set
at 0.1, 0.5, and 0.9. From the Table 8, it can be seen that: ➀ Assigning low
occurrence probabilities (0.1) to both FS2AF and AF2FS minimally impacts
the experimental outcomes, yet the performance metrics are analogous to those
achieved with the CutMix augmentation technique. ➁ Excessive integration of



448 F. Teng et al.

depth information into AF images (probability set at 0.9 for FS2AF) leads to
a significant loss of spatial information, affecting the network’s performance.
➂ While injecting spatial information into FS images improves the network’s
ability to discriminate, excessive fusion can damage the valuable depth cues.

Table 8. Exploration for the occurrence
probabilities of FS2AF and AF2FS.

Selection Rate
FS2AF

0.1 0.5 0.9

AF2FS

0.1 0.51 0.55 0.57

0.5 0.46 0.49 0.54

0.9 0.49 0.52 0.59

Table 9. Exploration of the blend-
ing rates in MixLD.

α = β 0.1 0.3 0.5 0.7 0.9

MAE .053 .049 .046 .073 .142

Blending Rate Analysis: To explore the optimal blending ratio of AF image
and FS. We altered the parameter α in the first step, which involves blending
one FS slice into AF images. Furthermore, in the second step, the parameter β
is adjusted to merge the blended AF image into FS. Due to the various combi-
nations of α − β pair, we only experimented with a few combinations based on
α = β. As shown in Table 9, the optimal outcome is achieved with a blending
rate of 0.5. Notably, deviations from this ratio, either by increasing or decreasing
the blending rate, result in a discernible decline in performance.

6 Conclusion

Contribution: In this paper, we present a unified single-stream method (LF
Tracy) for salient object detection, bridging the inter-network and intra-network
data connectivity. First, we have designed an efficient IA module. This module
effectively addresses the feature mismatching of different LF representations. In
combination with a single-pipeline encoder, it enables intra-network data con-
nectivity. Uniquely, our study tests the network’s performance and achieves lead-
ing results on four distinct datasets. Second, we propose a data augmentation
strategy for saliency object detection, specifically targeting inter-network con-
nectivity. This method facilitates interaction among different channels of data,
enhancing the network’s discriminative ability.

Limitation and Further Work: The task of salient object detection is sensi-
tive to the choice of backbone, which sets it apart from other dense prediction
tasks, such as semantic segmentation. Establishing a unified pixel-wise prediction
framework is challenging and requires investigation in future work.
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